Computer Modeling and Simulation
Techniques for Computer Vision Problems

A Dissertation Presented
by
Ming-Chin Lu

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical Engineering

State University of New York
at
Stony Brook

May 1993

Copyright © by
Ming-Chin Lu
1993

State University of New York
at Stony Brook

The Graduate School

Ming-Chin Lu

We the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

Muralidhara Subbarao, Advisor, Associate Professor
Department of Electrical Engineering

John Murray, Associate Professor, Chairman
Department of Electrical Engineering

Dali Tao, Assistant Professor
Department of Electrical Engineering

Vaclav Dolezal, Professor
Department of Applied Mathematics & Statistics

This dissertation is accepted by the Graduate School.

Graduate School

ii

Abstract of the Dissertation

Computer Modeling and Simulation
Techniques for Computer Vision Problems

by
Ming-Chin Lu
Doctor of Philosophy
in
Electrical Engineering
State University of New York at Stony Brook

1993

Verification of computer vision theories is facilitated by
the development and implementation of computer simulation
systems. Computer simulation avoids the necessity of build-
ing actual systems; they are fast, flexible, and can be easily
duplicated for use by others. Development and implemen-
tation of computational models in computer vision are both
interesting and challenging. It involves research in diverse

areas and requires integration of both science and technology.

111

This dissertation addresses the computer modeling and sim-
ulation techniques for two computer vision problems: object
recognition and image sensing process. Image sensing process
investigates how an image is sensed by specifying the input
characteristics of the object and the imaging devices, while
object recognition is a high level processing of the sensed im-
age. We present a neural network model to solve the problem
of 3-D object identification and pose estimation. The net-
work is divided into two stages, namely Feature Extraction
Stage and Feature Detection Stage to extract the feature vec-
tors and to identify the objects, respectively. 3-D moments
are used as input feature vectors to the network. Therefore,
unoccluded objects are required. We also present an useful
computational model to explore the image sensing process.
This model decouples the photometric information and the
geometric information of objects in the scene. Therefore, it
is computationally tractable. Finally, we extend the proposed
image sensing model to simulate the formation of moving ob-
jects and stereo imaging applications. All the models pre-
sented here have been implemented and the implementations
are efficient, modular, extensible, and user-friendly so that
others can easily reproduce and/or verify their experiments

on a broader set of computer vision theories.

iv

To my parents and my wife

Contents

Abstract i1
Listof Figures xii
Listof Tables xiii
Acknowledgements Xiv

1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 4
1.2.1 Object Recognition 4

1.2.2 Camera Modeling and Image Sensing 7

1.2.3 Motion and Stereo Simulation 9

1.2.4 Neural Network 10

1.3 ThesisOverview 11

2 3-D Object Identification and Pose Estimation 14
2.1 Introduction 14
2.2 Feature Extraction Using 3-D Moment Invariants 18

vi

3

2.3

2.4

2.5

2.6

2.7

2.8

The Network Architecture
2.3.1 Feature Extraction Stage
2.3.2 Feature Detection Stage
2.3.3 The Network Arbitrator
Training Operation Processes
Normal Operation Processes
Computer Simulation
2.6.1 Object Generation using Ray Casting Algorithm . .

2.6.2 OPEN: The Object Identification and Pose Estima-

tion Network Simulator
Simulation Results
2.7.1 The Simulations
2.7.2 Performance Analysis

Conclusion

Image Sensing Model for CCD Camera Systems

3.1

3.2

3.3

3.4

Introduction
Computational Model
Extensions to Motion and Stereo Simulation
3.3.1 Motion Simulation
3.3.2 Stereo Vision System

Conclusion

Vil

4 The IDS Computer Simulation System 67

4.1 Introduction, 67
4.2 The Simulation Engine 68
4.3 The User Interfaces 73
4.4 SimulationResults, 78
44.1 GeometricOptics 78
4.4.2 PSF From Diffraction Model 80

4.5 Applications 81
4.6 Conclusion 85
5 The AVS Active Vision Camera System 86
5.1 Introduction 86
5.2 Simulation Algorithms, 87
5.2.1 CurvedObjects 87
5.2.2 Motion Simulation 89
523 StereoSystem 91

5.3 The User Interfaces 93
5.4 SimulationResults 0000 96
54.1 CurvedObjects 96
54.2 Motion 98
543 Stereo. 99

5.5 Conclusion 101

viii

6 Conclusion 102

6.1 Summary 102
6.2 Future Research. 104
Bibliography 106

A Sample Input Description File for 3-D Object Generation 114

B The Point Spread Function From Diffraction model . . . 119

ix

List of Figures

2-1 Computational elements in a neural network.
2-2 Block diagram of the proposed object identification and

pose estimationnetwork.
2-3 Feature extractionnetwork.
2-4 Network structure inFDS.
2-5 The composite tree of a machine part.
2-6 The functional block diagram of the OPEN simulator. . . .
2-7 Sample airplanes X, Y, Z.
2-8 Sample machineparts., ..
2-9 Viewing angle in pose estimation.
2-10 Simulation results for airplanes.

2-11 Simulation results for machine parts.

3-1 Block diagram of a video camera system.
3-2 Entrance pupil coordinate system.
3-3 Typical geometry of pixels on a CCD image detector.

3-4 Relationship between the displacement of a point in the

scene and the corresponding point in the image plane.

36
38

43
46

52
58

63

3-5 A general stereo systemmodel. 64
3-6 Global coordinate system used in stereo simulation. 65
3-7 Block diagram of a stereo vision system. 65
4-1 Blur circle calculation. 69
4-2 Startup screen of the simulation system (SGI user interface). 74
4-3 XGl userinterface. 75
4-4 DTl userinterface. 76
4-5 Popup window for “Edt Param” command. 76
4-6 Full operationmenu. 77
4-7 Simulated images for Tiger. 79
4-8 Airypattern. 81
4-9 Simulation result using diffraction principle. 82
4-10 (a) Test object Tiger, (b) Simulation results. 83
4-11 (a) Test object Edge, (b) Simulation results. 84
5-1 Simulation algorithm for curved objects. 89
5-2 Simulation algorithm for moving objects. 92
5-3 AVS graphical user interface. 93
5-4 Categorized parametersin AVS. 94
5-5 Simulated images for two planar boxes placed at different

distances. 97
5-6 Simulated images for object placed on a cone-shaped depth

MAP. © « o« v e e e e e e e e e e e e 97
5-7 Resampled images in motion simulation. 98

x1

5-8

5-9

B-1

Simulated images under shift operation and the general
motion vector. L

Simulation of stereo image pairs.

Image formation using diffraction model.

X11

119

List of Tables

2-1 Training database configuration 41
2-2 Simulation results for airplanes. 44
2-3 Simulation results for machine parts. 45

xiii

Acknowledgements

I would first like to express my sincere thanks to my thesis advisor
Prof. M. Subbarao for his guidance and inspiration. I am indebted to
Prof. J. Murray, Prof. D. Tao, and Prof. V. Dolezal for helpful discussions
and being on my thesis committee.

I am grateful for guidance from Prof. H.-S. Don and Dr. C.-H. Lo
in the early stages of my research on 3-D moment and neural network.
I would also like to thank Mr. H.-C. Mike Lee for his assistance with
computing facilities and helpful discussions. Special thanks to Ms. M.
Krause for her kindness and help during my graduate studies.

This work was supported in part by the National Science Foundation

under Grant IRI-8821923 and the Olympus Corporation.

Chapter 1

Introduction

1.1 Motivation

Obtaining information about three-dimensional scenes is a central
problem in computer vision. The scene information that can be sensed
are of two types: photometric and geometric. Photometric information
consists of color and radiance of objects in the scene. Geometric informa-
tion consists of shapes and distances of objects in the scene. The sensed
data is in the form of digital images. Higher level processing of sensed

data is necessary in tasks such as object recognition.

Many theories have been developed in computer vision during the
past three decades for recovering scene information. Verification of such
computer vision theories often require expensive and accurate camera
systems, and laboratory facilities for calibration and experimentation.

As an alternative, it is possible to develop computational models of the

camera system, and simulate the system on a computer. This is not only
faster and cheaper than building actual camera systems and setting up
expensive laboratories, it also provides flexibility and accuracy. The
physical parameters of the camera system (e.g. focal length, sampling
rate, quantization level, noise characteristics, optical aberrations, etc.)
are easily changed and they can be set to desired values to very high
accuracy. The only major limitation is the amount of computational

resources required for simulation.

The motivation for the research presented here is precisely the one
mentioned above — that is to verify a set of computer vision theories.
During the last five years, the computer vision research group in our de-
partment has developed new theories for object recognition, determining
the distance of objects in a scene, and restoration of defocused images. In
particular, verification of theories related to determining the distance of
objects required an expensive camera system and elaborate laboratory
set up. Even after a modest camera system and a laboratory became
available, the necessity for a simulation system was acutely felt for the
purpose of debugging the implementation of the theory on the actual

camera system.

One goal of this research is to develop and implement computational
models for verifying a set of vision theories. Another important goal
is to make the implementations efficient, modular, extensible, portable
and user-friendly so that other researchers can easily use and/or extend

our developed systems to verify a much broader set of computer vision

theories.

A valuable byproduct of the development of a computational model
for the verification of a theory and its implementation is a better under-
standing of the theory itself. For example, consider our model (presented
later) of the image sensing and digitization of a defocused image in a CCD
camera. This model was developed to verify a method of determining dis-
tance and rapid autofocusing of camera systems. We were surprised to
discover that over 15 (as opposed to only a few) intermediate steps had
to be considered in the transformation of the light energy incident on
the camera’s entrance pupil into a digital image. Our attempt to develop
these steps led us to detailed investigations into many areas: the effect
of diffraction on the formation of defocused images, the technology of the
Charge Coupled Devices (CCDs), the standards for video signal transmis-
sion and digitization, just to name a few. In contrast to the complexity of
the actual image formation in a camera system, researchers in computer
vision and computer graphics routinely over-simplify it and adopt a pin-
hole camera model. This over-simplification is especially unacceptable

in the case of many computer vision applications.

The challenge of computer modeling and simulation lies not only
in researching diverse areas and integrating scientific and technological
information, but also in the development of computationally efficient al-
gorithms and their implementation. A further challenge is to develop
a system which many others can, and are willing to use it in their re-

search. This requires the system to be user-friendly, portable, and easily

extensible.

During the last three years of research, we have developed and im-
plemented computational models for the following two problems: (i) ob-
ject recognition based on 3-D moment invariants using neural networks,
and (ii) sensing and digitization of defocused images in a CCD camera
system. This research is not being done in isolation for the purpose
of doing research, but it is part of a larger project involving several
researchers, and the results of this research are intended to be used by
other researchers in our group. This goal has already been accomplished.
Others have used our results to verify theories for object recognition, de-

termining distance of objects, and autofocusing of camera systems.

1.2 Literature Review

1L.2.1 Object Recognition

Bolle and Cooper [3] present a Bayesian classifier for local 3-D shape
recognition. They partition an image into many small windows within
which surfaces can be locally approximated by one or two quadric sur-
facesin the 3-D space, and then process these windows in parallel using a

Bayesian minimum-probability-of-error recognition scheme. A detailed

descriptions of other classifiers can be found in the book by Duda and

Hart [10].

Reeves and Taylor [36] propose a model based recognition technique
for the shape classification of three-dimensional objects using global fea-
tures. They developed a method to generate an exhaustive set of library
views and worst case views of an object. Their system also requires un-
occluded views of objects, but no restrictions are placed on object position
and orientation. They compute simple statistics for the library and bal-
ance the individual feature vector elements by dividing by the associated
deviation of the database. Then, they store the balanced feature vectors
in the balanced library. When there is an input test object, an algorithm
is used to compute up to 252 test view (the viewing angles are taken from
the sampling vertices — the worst case). They match each test view, by
means of an Euclidean distance in feature space, to its closest entry in
the library. This best match library entry is used to identify the type and

orientation of the test object.

Lo and Don [27, 28] propose a 3-D object identification method using
3-D moments. They use a group-theoretic method to derive 3-D moment
invariants. Objects are then recognized by their shapes via moment
invariants. They first compute the 3-D moment invariants, and then use
the computed moments as feature vectors to identify the 3-D objects in
the scene. A prototype 3-layer neural classification network is proposed
to identify the object in the scene. Their network consists of 5 input

nodes (corresponding to three second-order and two quadratic third-order

moment invariants), 40 hidden nodes, and 2 output nodes to perform a

two-class non-convex curved object classification problem.

Darwish and Jain [9] use a priori knowledge about the scene to
coordinate and control bilevel image segmentation for visual pattern in-
spection. Jain and Hoffman [21] propose an evidence-based recognition
algorithm to identify 3-D objects by looking for notable features of objects.
3-D range image is used as the database. Eight stages are involved in the
object recognition process. The first six stages are used to retrieve an ini-
tial object representation. They are: 1) image acquisition stage to obtain
range image; 2) image preprocessing stage to remove background and
enhance the range image; 3) segmentation stage to get surface patches;
4) classification stage to get the classified surface patches; 5) merging
stage to reconstruct the surfaces; 6) information retrieval stage to derive
the initial object representation from the morphological properties of the
range image, surface patches, and jump edges. The last two stages,
modified representation stage and recognition stage, use an evidence
rulebase which provides salient information about surface patches and
pairs of patches for various objects in a database. Evidence rules sup-
port or refute hypotheses about the identity of an observed object. A
measure of similarity between observed features derived from the range
image and supporting features present in the evidence feature rules is
developed for each object in the database. Then, the maximum similarity

value is used to identify an object in the range image.

1.2.2 Camera Modeling and Image Sensing

Previous literature [13, 24, 37] in computer vision and computer
graphics areas on camera system modeling are mostly either descriptive
in nature or adopt a pin-hole camera model. This over-simplification is
especially unacceptable in the case of many computer vision applications

such as depth from defocus.

Potmesil and Chakravarty [35] extended camera modeling from the
traditional pinhole projection model to a lens and aperture camera model.
They add an aperture function to the basic lens model used in geometrical

optics:

where u is the object distance, v is the image distance, and f is the focal
length. They primarily dealt with only the effects of image defocus due
to the lens and the aperture. Other characteristics of a CCD camera
such as vignetting, CCD sensor geometry and response, CCD noise, etc.

were not considered.

Chen [7] revised the algorithm proposed by Potmesil and Chakravarty
[35] using simple light particle theory instead of the wave theory to avoid
complicated computations and the huge memory consumption. A new
algorithm was presented by him to deal with the highly defocused scenes

due to the lens and aperture effects.

Shafer’s work [42] is perhaps the first to deal with a detailed de-

scription of the image sensing process. Many important aspects of the

image sensing process which are routinely ignored by computer vision
researchers are discussed in detail by him. He has presented a twelve-
parameter model for a robot imaging system — six parameters in camera
position and orientation, three in the optical system, and three in sen-
sitivity. In addition, he provides valuable information on the state of
the art in the imaging system technology and calibration. However,
Shafer’s model is incomplete for the purpose of computer implementa-
tion. Further, it couples the effects of geometric and photometric aspects
of a scene, thus making any modified version of it to be computationally

intractable.

Recently, Subbarao and Nikzad [47] propose a mathematical model
for a typical CCD camera system used in machine vision applications.
Their model is based on a precise definition of the input to a camera sys-
tem. This definition decouples the geometric properties of the scene from
the photometric properties of the scene in the input to the camera system.
They presented an ordered sequence of about 20 operations to transform
the input properties to a digital image as sensed by the camera system. In
order for their contribution to be used by other researchers, this math-
ematical model needs to be modified to obtain a computational model
for implementation purpose. Furthermore, a friendly, user-controllable,
flexible, and extensible user interface needs to be provided so that others

are willing to use the simulation system.

1.2.3 Motion and Stereo Simulation

Algorithms for computing the images of moving objects are found in
the Computer Graphics literature. Motion involves geometric transfor-
mations of images. Such transformations include translation, rotation,
scaling, and other nonlinear operations. Most of the simulation algo-
rithms adapt a pin-hole camera model to compute the new images. No

defocus effect due to lens is modeled.

Weiman [50] has developed algorithms for performing scaling and
shearing of images by rational amounts. Feibush et al [12] give a some-
what more sophisticated mechanism for image transformation using fil-
tering techniques. A more detailed description of various transforma-

tions on motion simulation can be found in the book by Foley et al [13].

Stereo simulation can be considered as motion simulation on both
the left and the right camera with the motion displacements correspond
to the camera locations. Hodges and McAllister [17] propose a method
for presenting stereo pairs to the eye. Neilson and Olsen [33] develop an

algorithm to construct 2-D images based on constrained 3-D movement.

Krotkov’s dissertation [23] addresses a set of visual perception prob-
lems called the spatial layout problems. In one of the problems, he uses
a pair of verging cameras to develop and analyze a practical system for
computing range from stereo. Other issues on camera calibration, fo-
cus ranging, and cooperative focusing and stereo are also discussed in
his dissertation. The text book Robot Vision by Horn [19] also provides

an excellent introduction to image sensing and formation, motion, and

stereo vision issues.

1.2.4 Neural Network

Neural net models have brought many researchers attention for
many years in the hope of achieving human-like performance on pattern
recognition, speech recognition, and image understanding applications
where many hypotheses are pursued in parallel and high computation
speed are required. So far, the best systems are far behind the human
performance. For these applications, neural net seems to be a good ap-
proach to the solution because it has the advantage of 1) highly parallel
structure, 2) parallel distributed processing capability, 3) higher degree
of fault tolerance capability than von Neumann sequential computers,

and 4) the learning capability.

Lippmann [25] gives an excellent introduction to the field of neural
network by reviewing six important neural net models that can be used
for pattern classification. He divides these models into 4 categories as 1)
binary input, supervised learning (e.g., Hopfield net and Hamming net);
2) binary input, unsupervised learning (Carpenter/Grossberg classifier);
3) continuous-valued input, supervised learning (perception model and
multi-layer perception model); and 4) continuous-valued input, unsuper-
vised learning (Kohonen self-organizing map). Both the algorithms and

the examples for these models are presented in his paper.

Hopfield and Tank [20] present a highly-interconnected network of

10

non-linear analog neurons to solve the optimization problems. They
model the processing elements (called neurons) as amplifiers in con-
junction with feedback circuits comprised of resistors and capacitors.
The transfer function of the amplifier is the sigmoid monotonic function.
They define an energy function of the network and try to minimize this
function. A traveling-salesman problem is used as a demonstration of

their model.

Rumelhart et al present a multilayer network model and the back-
propagation training algorithm in [38]. They extend the delta rule to
the generalized delta rule. In this generalized rule, a momentum term
is included to increase the learning rate without leading to oscillation.
Several examples are used as illustrations on how their algorithms can
be applied. We use their algorithm in the training process of the object

recognition network to be presented later.

1.3 Thesis Overview

This dissertation is organized as follows: Chapter 2 presents the de-
sign of a neural network model to solve the problem of 3-D object recog-
nition. Both the object identification and pose estimation problems are
solved concurrently. We use 3-D moment invariants as feature vectors to
the proposed network. The network itself is a multi-stage feed-forward

neural network using back-propagation algorithm as the training rule.

11

A complete simulation program called OPEN (Object identification and
Pose Estimation Network simulator) is developed to solve the problem

of 3-D object identification and pose estimation concurrently.

Chapter 3 discusses the image sensing model for CCD camera sys-
tems. We start from the image sensing process for a single camera system
by specifying the input object parameters and the CCD camera param-
eters. The proposed model decouples the photometric information and
the geometric information. Therefore, the computations involved in the
image sensing process become tractable and implementable. This model
is then extended to the simulation of moving objects and the simulation

of stereo image pairs. The diffraction effect is also included.

Chapter 4 presents the IDS (Image Defocus Simulator) computer
simulation system. This simulation system consists of a simulation
engine and three user interfaces. The simulation engine implements
the image sensing process starting from the object information, pass-
ing through the imaging device, and ending at the image detector to
form the sensed image. In order for others to use our model to verify
their computer vision theories/implementations, three user interfaces
are provided — Sunview Graphical Interface (SGI), X-window Graphical
Interface (XGI), and Dummy Terminal Interface (DTI) —so that users can
easily enter the camera/object parameters to conduct the experiments.
Some simulation results on the verification of the theories on Depth From

Defocus (DFD) are included.

Chapter 5 describes the AVS (Active Vision Simulator) computer

12

simulation system. The simulation of curved objects, moving objects,
and stereo system are emphasized here. The user interface, simulation

results, and some applications are also included.

This dissertation concludes with Chapter 6, which reviews what has
been learned from this work, describes some natural extensions of it,
shows how others can use our model and simulation systems in their

work, and presents a final summary and future research topics.

13

Chapter 2

3-D Object Identification and Pose

Estimation

2.1 Introduction

3-D Object identification and pose estimation are two of the major
computer vision tasks in many applications such as robotics and mis-
sion planning systems. The goal of object identification is to identify an
unknown object from the given model database; while that of pose esti-
mation is to determine in real time what orientation the space shuttle,
for example, is facing a 3-D object in order to aim antennas, launch scien-
tific instruments, and so on. As described in Chapter 1, some approaches
use a feature extractor to extract presumably relevant information from
the input data and then design a classifier to minimize the probability

of error [10]. The other approaches generate a large set of model library

14

Input o
Xo ias @
X1 output
y
N-1
X1 y=f(igowixi+ ?)

Figure 2-1: Computational elements in a neural network.

features and apply their algorithms to find the best match [8, 36]. These
approaches require, in general, large amount of computation time and/or

database.

The recently proposed 3-layer neural network has the capability of
classifying patterns with arbitrarily complex decision regions [25, 39].
The network consists of individual computational elements or nodes,
called neurons, connected by links with variable or fixed weights. Each
element simply sums its weighted inputs and passes the result through
a linear or nonlinear transfer function to generate its output as shown
in Figure 2-1. The network has the advantages of 1) the simplicity of the
computational elements, and 2) the potentially parallel structure. Our
goal is to find a model to decompose the problem of 3-D object identifica-
tion and pose estimation into several parallelly realizable layers so that

we can take the advantages of the neural network.

In this Chapter, we present a multi-stage neural network model

15

[29, 30] to identify 3-D unoccluded objects from arbitrary viewing angles
and to estimate their poses. We use 3-D moment invariants as feature
vectors to the network. Therefore, unoccluded views of objects are re-
quired. The invariants and vector moment functions are constructed
using the complex moment derived from [27]. It is based on the Clebsch-
Gordon expansion in group representation theory [11]. Moments are
first expressed in the basis of spherical harmonic polynomials. They
are called complex moments. Vectors and scalars are extracted from the
compounds of complex moments via Clebsch-Gordon expansion. Higher
order moment invariants are also derived in this way. They represent

the fine spatial details on the objects.

The neural network model presented here is divided into two major
stages: the Feature Extraction Stage (FES) and the Feature Detection
Stage (FDS). FES is a fixed-weight, biased neural network used to extract
moment invariant features from the input image — range image which is
commonly used in robotic vision applications. They are multiview repre-
sentations of 3-D objects with the 3-D coordinates of points on the visible
surfaces obtained from, e.g., the laser range finders. After the feature
vectors are extracted, they are fedforward to the FDS which consists of
an object identification subnetwork and ¢ pose estimation subnetworks
to handle c-class problems. They are all variable-weight, biased neural
networks. A network arbitrator is also designed to dispatch the input
vectors and to choose one of the output poses during training and nor-

mal operation processes, respectively. Based on this approach, object

16

identification and pose estimation can be done concurrently. We have
developed a simulation package called Object identification and Pose Es-
timation Network simulator (OPEN) and conducted simulations on both
convex and non-convex curved objects. The 3-D moment features of ob-
jects were extracted from the FES stage and used as the input features
to the networks in the FDS stage. After the network is trained, some
randomly generated testing images are fed into the network to evaluate
the performance of the system. The performance is evaluated using dif-
ferent number of hidden units, number of training iterations, and the
computational complexity. After a reasonable amount of training cycles,
the results show that (1) a high percentage of objects can be correctly
identified even though some of them look similar; and (2) the orientation

can be successfully estimated which could be used for robot applications.

This Chapter is organized as follows: Section 2 presents the compu-
tation of 3-D geometric moments and moment invariants for 3-D range-
data; Section 3 describes the computational model of the network; Sec-
tion 4 discusses the training process; Section 5 discusses the normal
operation processes; Section 6 presents the computer simulation; Sec-
tion 7 presents the simulation results; and finally, Section 8 concludes

this Chapter with a summary of results and a few remarks.

17

2.2 Feature Extraction Using 3-D Moment

Invariants

Lo and Don[27] propose a procedure to compute 3-D moment and
apply the computed moment invariants to object identification and posi-
tioning. Objects are recognized by their shapes via moment invariants.
The work on object identification and pose estimation we are going to
present in this Chapter is an extension of the work proposed by them.
Here we present a neural network approach to compute, in FES, the mo-
ment invariants proposed by them and then feed the parallelly computed
moments to FDS to identify the object and estimate its pose. In this sec-
tion, we will summarize how the moment invariants are computed based

on their theoretical contribution.

The 3-D moment of order p = [+ m + n of a 3-D density function

p(x,y,z) is defined by the Riemann integrals:

My, = N/ / / hy™ 2" p(x,y, 2) de dy dz (2.1)

where the constant V is used to normalize the integral so that My, = 1.
If the density function is piecewisely continuous and bounded in a finite
region in R® space, then moments of all order exist. In this case, the

characteristic function of p(z, y, z) can be defined as
M (uy,ug,us) = /OO /OO /OO exp’(ztuavtusz) gy o) de dy dz (2.2)

where vy, u,, and u; are spatial frequency components. Equation (2.2)

18

19

can be expanded into a power series

M (uy,uz, us) / / / ulx—l—ugy—l—ugz) plz,y,z)dedydz (2.3)

By interchanging the integration and summation in Equation (2.3), the

characteristic function can be expressed as an infinite series of homoge-

neous polynomials of vy, u,, and u; as

o0 /'p
M ul,ug,u;), Z J’Hp ul,u2,u3) (2.4)
p=0 p:
where
p P! l
H,(uy, ug,ug) = Z T ’Mlmnulu;”ug (2.5)
{,m,n=0 m.n

Introducing a vector ¢ whose components are the monomial] u}'u}

and a vector m whose components are the coefficients of wjuju} in H,,

that is,
i = [o - dbululo-] (2.6)
. P!
m = [Mypo Moy --- Tt Wimn -]

so that @ - m = H,. The components of « and m may be arranged in
different order as long as their scalar product remains to be #,

In the 3-D space, the moments of a 2-D surface patch, parameterized

by u; and u,, can be computed by the following equation:

Min = v // (ur, ug) y™ (ur, uz) 2" (u1, u2) /g duy duy 2.7

where A is the area of the patch and ¢ is the determinant of the metric

tensor of the 2-D surface. In range data applications, the surface in the

range image is represented by a monge patch z = z(z,y) and the image
plane is parameterized by the coordinates v; = = and u; = y. In such

case, Equation (2.7) becomes:

0z 0z
_ I m n 2
Mzmn—A//x Yz \/1+(a$) H(Goydedy @8)

where R is the projection of the surface patch on the image plane.

Moments with their origin at the centroid of the density function are
called central moments. The central moments have the nice property of
invariance under translation. We use second and third order moment
invariants derived from the vectors and scalars which are extracted from
the compounds of complex moments as shown in [27]. Moment vectors
constructed from higher order moments are too expensive to compute

and are very sensitive to noise.

For second order moment invariants,

S 2 .2 .2 o ,
U=[uj u; uj ujuz Ujus UUs

the components of « can be expressed as a linear combination of the

symmetric tensor space of rank 2 [11]. This results in five second-order

complex moments 7 = [vZ vl Y vi' vy?:

27
vi = 1r(]\4[200 — Moo + 72Mi10),
27
V% = 15(2Myo1 — 72Mon),
2
Vg = \/_(2M002 — Maoo — Mo), (2.9)

3V5

20

21

2T)
Vz_l = B(QMIOI -]2M011),

27 :
1/2_2 = HE(MQOO — Moz — j2Mi10).
The ten third-order moments

S _ ¢33 03 . 92 2 9 9 9 9
U= [u] u, u; uju, uUjUz Uz UU3 UgU; U U3 UpUgUs]

are decomposed into two complex moment multiples. Seven of the third-

order complex moments, denoted by
- 3 2 —2 -3
vs=1[vy vy - vy vy

are:

[T .
1/::3)) = g[(—MSOO —|— 3M120) ‘I’](MOSO - 3M210)]7

67 .
Vg = g[(Mgol - MO21) +]2M111]7
V3 .
1/?1) = —W[(MSOO + Miso — 4Mi2) + j(Moso + Mz10 — 4Mo12)],
5T
27
l/g - %[QMOOS — 3Mj01 — 3M021], (2'10)
V3 }
vyt = —W[(—M:soo — Mz + 4Mi2) + j(Mozo + Ma1o — 4Mor2)],
57T
6 .
1/3_2 = %KMZ(H — M021) -]2M111]7

-3 _ |

35[(M300 — 3Mi30) + j(Moso — 3M310)].

Another three third-order complex moments, denoted by

22

are:
Vér .
V% = T[(—M:aoo — My — Mioz) — j(Moso + Moo + Moi2)],
2V 3w
V? = 5 [Moos + Maor + Mo, (2.11)
_ Vor .
vto= T[(M:aoo + Migo + Mioz2) — j(Mozo + Mo + Moa)],

These equations give a relationship between geometric moments and

complex moments. The moment invariants can be computed as [27]:

2
1/8 = gﬁ(Mzoo + Mozo + Mooz),
v(2,2)0 = (5)7 [203052 — 2kt + (V)Y (2.12)
o= (5)% (ivy® — vyt + nd — mytvy + 0y
where 7 is a second rank spherical tensor and
T];n = E <27 i? 27 m— Z|27 27 27 m> I/%I/;’n_l
1=—2
Note that nv is a cubic polynomial of second order moments obtained by

Sadjadi and Hall [41]. Two quadratic moment invariants containing the

third-order moments are given below
v(3:3)) = (N7 [208n5° — 2ivs® + 204w — (U9))],
V(L)) = (3)7 2! — (1)), (2.13)
When each invariant moment feature is divided by suitable power of

vy, it becomes invariant under change of size. Those similitude-invariant

quantities derived from the moment invariants in the above equations

are given below

2 V(272)8
]22 = (V8)2)
2 _

1522 - (V8)37
3,3

]gé = V(‘;ggov
(v9)

1,1)°

]?1 = I/(07 EO'
(v9)

723 _ v(3,3)2v9
233 — ol
(v9)™
723 _ v(3,1)a1
123 = PRI
(19)
723 _ v(1,1)q1
112 = A
(v0)™
13333 = V2(3734 2;
(19)=
3 V(373)2V(371)2
Hsss = 0y 2E ’
(v9)™
13133 = V2(37 14)27
(19)=
3 V(371)2V(171)2
Lhs = 0y 2E
(v9)™

2.3 The Network Architecture

(2.14)

(2.15)

(2.16)

(2.17)

. The results are:

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The block diagram of the proposed network is shown in Figure 2-

2. It is divided into two major stages: Feature Extraction Stage (FES)

23

Identification Pose
C+1 M J(.B
| Multiplexer |
¢ 3 3 3
ve (FDS) | (FES)
Object Pose Pose |~
Identification| |Estimation| - - - |Estimation !
Network Network 1 Network c
B 11 11° - 11 E)I?eature
T/IN : traction
~S A : “Ativate” Network

Figure 2-2: Block diagram of the proposed object identification and pose

estimation network.

and Feature Detection Stage (FDS). FES is a fixed-weight, biased neural
network to extract moment invariant features from the input image.
FDS consists of c+1 three-layer, variable-weight, biased neural networks
to detect input features and to map them into one of ¢ target classes and
one of its orientations. A network arbitrator is also included to dispatch
the input vectors and to choose one of the output poses during training

and normal operation processes, respectively.

2.3.1 Feature Extraction Stage

Consider a digitized N x N range image, the 3-D geometric central

moment can be computed as:

(z — Mioo)'(y — Moio)™ (2(z,y) — Moo1)"p(. y,2) (2.25)

24

25

where

\/1 + (Az)2 +(22)2, if (z,y) is not a background pixel

Az)" T By
p(:E?y?Z):

1, otherwise
(2.26)
Note that central moments are used such that the resulting moment

invariants are invariant under translation.

Knowing that z'y™2" = exp(l/lnz+mlIny+nlnz), we can rewrite the

summation kernel in Equation (2.25) as

exp[l - In(x — Myoo) + m - (y — Moro) + 1 - (2(x,y) — Moo1) +
1
Slnp(e,,)]

= exp{l-In(x — Mioo) + m - (y — Moio) +n - (2(x,y) — Moo1) +
Nz Az,

1 2
Sl (5 + () 2.27)

As one can see in Equation (2.27), the complicated computation of the
product-of-power terms can be simplified as the summation of weighted
linear terms passing through a transfer function. Therefore, it can be ef-
ficiently and rapidly computed by using multi-layer perceptron networks
with different transfer functions in each layer. The resulting network
is shown in Figure 2-3 where solid lines represent pre-calculated fixed

weight connections. Our approach consists of the following steps:

(S.1) Compute the square of the density function p(z,y).

Design two N x N-neuron planes with the transfer

26

Moment Invariants

FES5

bias

Image

Figure 2-3: Feature extraction network.

(S.2)

(S.3)

function

frei(z) = 2°.
The weights connecting from the image plane, N x N
neurons, to those two planes are pre-calculated fixed
values such that the output values in F'E1 layers are
(2)” and (£2)* in the left and right plane, respec-
tively. The decision of background/nonbackground

pixels is made by the middle plane which has a trans-

fer function, e.g., of

fFElM(iU) = U(—.?f —|— t).
where U(-) is the unit step function and ¢ is the thresh-
old. This plane provides “activation” inputs to the
other two planes. The output of this step is p*(z,y).

Compute In p*(z,y) using the following transfer func-

tion in F'E2 layer:
fre2(x) = In(z).

Compute In(x— Migo), In(y— Mo10), and In(z(x, y)— Moo1)
in FE3 layer.

The terms z, y are encoded in the fixed weight con-
nections coming from the bias terms; while the z(z,y)
term comes from the input image. The transfer func-

tion used in this layer is

fres(z) =In|z|.

27

except that the neuron next to the left of the leftmost
neuron plane uses a function of frpsi(z) = 1/x to

compute the scaling coefficients 1/Mgqq.

(S.4) Compute M,,,,.
Construct a row of neurons in F'F4 layer with the

transfer function

frea(x) = exp(x).

The order p = [+ m + n is encoded in the weights
between F'£3 and F E4 layers.
(S.5) Compute the moment invariants based on the coeffi-

cients derived in [27]

Using the above procedure, we can generate moment invariant feature

vector [
r_rr2 2 3 3 2,3 2,3 2,3 3 3 3 3
I= [122 1222]33]11 Iy Ly Lhis]3333]1333]1133 11113]

Note that, some coefficient arrangements must be done to avoid any

singularity in the above transfer functions.

2.3.2 Feature Detection Stage

This stage consists of ¢ + 1 networks — one Object Identification
Network (OIN) and ¢ Pose Estimation Networks (PEN). The structure

of each network is shown in Figure 2-4 where dashed lines are used to

28

\ = == - -~
e AT EIEETEEEANTT Tl
R S R e R
=== - = RN Tz
- __=-=z=
H 4 SIS o~ =TI ooz
ias N T Siaoooi T e E R
, X S~ S™mSIzsl - -
N “TS ST T >
L N T=3=C
, _-zITRT7T 2T -T2 _CFEss_ O~
== _== =2

Multiplexer

11

‘““Activate’’

Loca

11

Moment

11

Invariants

Memory

Figure 2-4: Network structure in FDS.

29

represent adaptable weight connections. The output of the OIN is either
logic zero or one to represent the corresponding object; while the outputs
of the PEN are continuous values between 0 to = to represent the angles
a, 3,~ between the principle axis of the object and the positive x-, y-, and

z-axis, respectively.

Since analog output is required to represent the angles, we will need
a large amount of training cycles for PENs to converge. This is accom-
plished by associating a local memory with each network to increase the
bandwidth of the PENs. When the network is in the off-line training
process, identified by the signal T/N = 1, the feature vector I extracted
from the previous stage is dispatched to both the local memory of OIN
and one of the local memories of PEN, depending on the activation sta-
tus of the PEN which is determined by the network arbitrator. After
the memories are filled with proper training samples, every networks
start their training cycles by disabling the write ability to their local
memories and enabling the multiplexors. These ¢+1 networks will then
function independently and concurrently afterwards. By doing so, the
training cycles used for PENs are ¢ times those used for OIN. This is to

trade network complexity for flexibility and computational efficiency.

Basically, the networks in this stage are 3-layer perceptrons. The
learning rule used is the back-propagation training algorithm which uses
sigmoidal threshold function and iterative gradient descent method to
adapt the weights in the network[39]. To speed up the convergence, we

implement the bias units and use momentum term in the generalized

30

delta rule.

2.3.3 The Network Arbitrator

The Network Arbitrator (NA) is a combinational circuit used to con-
trol the operations of the proposed network. It takes as input the control
signal 7/N and the output vector of OIN. The output signals are c-bit
control lines and M-bit (M = [log, ¢|) selection lines to handle the op-
erations of the training and normal operation processes, respectively.
The detailed operations of these two processes will be discussed in the

following two sections.

During training operation process, NA dispatches in a pre-specified
order the input feature vectors into the proper local memory locations
within OIN and PENs such that the local memory of OIN is filled with
all the input feature vectors and that of PEN is filled with all the input
feature vectors belonging to that class. When an image is sent to the
trained network, NA selects the “most likely” object as the target and
guarantees the output of the corresponding pose if the outputs of OIN
exceed the given threshold. Should none of the outputs of OIN exceed
that threshold, NA will reject the input image and classify it as “unde-
cided”. In case of a tie, NA selects the “most important” one to minimize

the risk [10] that might happen.

2.4 Training Operation Processes

The operation of the proposed network is divided into two processes,
namely, training process and normal operation process. During training
process, feature vectors will be sent to the corresponding local memories
first. After that, local memories are write-protected and used as the
input sources to their corresponding network. Finally, each network in
FDS starts training its weights by using the local memory inside that

network. The training of each network is summarized below:

(T.1) Compute the output at node i, o} and o, of the hidden
and the output layer when the n-th input vector is

presented.

oh, = fQowi I +¢7)
k

oy, = fQ_wi op, +67)
P

(T.2) Compute the delta weight at node i, 6] and 6}, of the

output and the hidden layer.

oy = (17 — o})o, (1 —op)

01

op. = oy (1l —o 25 wi!

32

(T.3) Update the weight.

a1 n n oon—1 o on—2
wi; &6 0 4+ 0w —wii),

if 2-th unit is in the output layer.

Wi E67 I+ (w]T — wi?),

)

if 2-th unit is in the hidden layer.

where w7, is the weight from the j-th to the :-th unit at the n-th input
presentation number; ¢” is the biased weight connected to node i; ¢ is
the learning rate; t” is the ¢-th component of the n-th target vector; 0 is

the momentum; and f(-) is the sigmoid function.

2.5 Normal Operation Processes

Once the network is trained, local memories are no longer needed.
This is done by removing the shaded block in Figure 2-4 and by combining
the FE5 layer in Figure 2-3 and the FD1 layer in Figure 2-4. Since
then, the network is operated in normal operation process. When a
range image is presented in the network input, its feature vector will
be extracted by FES and sent to OIN and all the PENs. Based on the
trained weights, FDS can identify the object and estimate ¢ poses in the ¢

PENSs. The correct pose will then be selected by the network arbitrator.

33

2.6 Computer Simulation

Based on the proposed neural network model, we have developed
and implemented a computer simulation program called OPEN (Object
identification and Pose Estimation Network simulator). The objects are
generated using ray casting algorithm [40]. In this section, we are going

to describe the 3-D scene generator and the OPEN simulation program.

2.6.1 Object Generation using Ray Casting Algorithm

Roth [40] models solid objects by combining primitive solids, such
as blocks and cylinders, using the set operators union, intersection, and
difference. We have implemented his model in ANSI C and the imple-
mented program can be easily ported to various platforms (e.g., VAX,

SUN, and PCs).

The program generates 3-D scenes consisting of primitives of blocks,
spheres (ellipsoids), cylinders, and cones. These primitives can be arbi-
trarily scaled, rotated, and translated. The input data to the program is

organized as a node-based tree structure. Each node contains 14 fields:

struct _NCDE {
char *I abel;
i nt address;
char *node type; /*"conposite" or
"primtive" */
char *op; /[*"union", "intersection",
or "difference" */

34

char *primtive; /[/*"block", "sphere",
"cylinder" or "cone" */
float a, b, r; /[* rotation */

float sx, sy, sz; /* scaling */
float tx, ty, tz; /* translation */
3
The leaf nodes of the tree are the primitive nodes while the internal
nodes are the composite nodes. The 3-D transform is associated with
each node in the tree. This program generates 3-D range image with
hidden surface removed. Figure 2-5 is the composite tree of the “depth
stop” machine part. The corresponding input description file can be

found in Appendix A.

2.6.2 OPEN: The Object Identification and Pose Esti-

mation Network Simulator

Figure 2-6 is the functional block diagram of the OPEN simulator.
The OPEN kernel consists of a FDS stage, a network arbitrator, and I/0
interface routines. When the FDS has never been trained (we call this
the initial training process), OPEN takes the range image as input and
generates the feature vector I via the FES stage. The users can specify
the number of training cycles used to train the FDS. After the number of
training cycles has been reached, OPEN outputs (i) the internal states
(weights) of the FDS stage to a file, (ii) the generated moment invariant

vectors, and (iii) the actual number of training cycles used if the network

35

36

Figure 2-5: The composite tree of a machine part.

converges before the user-specified number of training cycles has been
reached. If the network is not properly trained, the user can continue
training the network by specifying the name of the internal state file
as shown in the dashed line in Figure 2-6(a) (we call this the continued
training process). Using this methodology, user does not have to waste
time in re-training the network from the beginning. Instead, he/she can
load the previously trained FDS states and keep training the network

until the results are satisfactory.

When the training process is finished, user can feed the 3-D range
image to the normal operation process to test the performance of the
trained network. The operation status of the OPEN simulator is deter-
mined by a command line switch which instructs the OPEN simulator to
perform (i) the initial training process, (ii) the continued training process,

or (iii) the normal operation process.

The OPEN simulator, as the name suggests, provides a open system
methodology in the sense that user can easily modify/adapt the modules
of the simulator to use different training algorithms and/or feature vector
extraction methods. The proposed network is highly parallel and suitable

for hardware implementation.

37

res

Moment Invariants /

Y

OPEN
kernel

—»/ Interna States /

of Training Cycl es/

(a) Training operation process.

States

imege /] Fes

\

OPEN
kernel

—7 Object ID code /

4% Pose Information /

(b) Normal operation process.

Figure 2-6: The functional block diagram of the OPEN simulator.

38

Figure 2-7: Sample airplanes X, Y, Z.

2.7 Simulation Results

Two simulations were conducted. The first simulation uses three
airplanes X, Y, and Z as shown in the first, second, and third row of
Figure 2-7, respectively. The only difference between X and Y'is that Y'is
armed with one missile under each wing, while X is not. The second sim-
ulation uses three computer-generated industrial machine parts: depth

stop, column base, and wedge lift as shown in Figure 2-8.

39

40

ot ' o
L8)
1 4w 4e

Figure 2-8: Sample machine parts.

2.7.1 The Simulations

In order to generate the training database, we put each object in the
center of a sphere and generate the range images from the viewpoints
which equally sample the intersection circle of the sphere and a horizon-
tal plane. The angles between the z-y plane and the sample points are
chosen to be +90°, £72°, +54°, 436°, £18°, and 0° to generate 1, 8, 12, 16,
20, and 24 images, respectively (refer to Figure 2-9 and Table 2-1). We
also randomly generate 118 images as testing database for each object.

This results in a total of 768 sample images in each simulation.

In Figure 2-9, for a point on a unit sphere with angle 4,, 6,, and 6,

Figure 2-9: Viewing angle in pose estimation.

a(degree) |90 | 721543618 | 0| -18| -36| -54 | -72| -90

0,(degree) | 0|18 |36 |54 | 72|90 | 108 | 126 | 144 | 162 | 180

Table 2-1: Training database configuration

with respect to the positive x-, y-, and z-axis, we have

z = cosb,
y = cosb, (2.28)
z = cosb,

From the geometrical relationship in Figure 2-9, we have
0 = [0, 0, 0. =27 £ cos ' (cosa cosB) 27 % cos™'(cosa sin 3) % — af

which is the pose information vector to be estimated.

The convergence of the network is measured by the root-mean-

square (RMS) error value, computed by the equation:

> | =T |2

npN,

RMS = \l (2.29)

where n, is the number of patterns in the training set; n, is the number
of nodes in the output layer; and || - || is the Euclidean norm. We consider

the network as trained when the RMS error is less than 1 percent.

2.7.2 Performance Analysis

When the network is trained, the testing samples are fed into the
proposed system. The performance is evaluated by the percentage cor-
rectness. The output is claimed correct if the object is identified and the
error of the estimated angle is within 5°. The results are shown in Ta-

ble 2-2 and Table 2-3 for airplane and machine parts, respectively. The

42

100

o 90]
>
5 80 f
S 70 |
360 |
§ 50 + * |dentification]
E *’+ X 0 ﬁ\l_rpllane)é

40, : + Airplane ,

X X Alrglanez
3

0 ‘ ‘ ‘ ‘ ‘ ‘
O 20 40 60 80 100 120 140
Number of Hidden Nodes

Figure 2-10: Simulation results for airplanes.

relationship between the number of hidden nodes used and the percent-
age correctness are plotted in Figure 2-10 and Figure 2-11 for airplane
and machine part simulations. In the airplane simulation, the best re-
sults occur when the number of hidden nodes are 99, 110, 99, and 110
for the identification, airplane X estimation, airplane Y estimation, and
airplane Z estimation network, respectively; while in the machine parts
simulation, they are 33, 99, 99, and 66 for the identification, depth stop
estimation, column base estimation, and wedge lift estimation network,

respectively.

Based on the proposed architecture, the training cycles used in PEN
is c-1 times more than those used in OIN (in our simulations, ¢ = 3) to

deal with the analog outputs of PENs. The overall training cycles are

number of | identification | plane X | plane Y | plane Z
hidden nodes (%) | PE. (%) | PE. (%) | PE. (%)
11 41.2 45.1 38.2 35.8

22 52.4 49.9 41.9 39.1

33 77.6 61.4 50.0 47.0

44 83.5 75.3 62.1 57.3

55 88.2 80.2 70.5 60.9

66 86.7 88.6 80.0 65.0

77 85.7 89.1 78.4 60.3

88 87.3 90.3 82.6 68.4

99 92.9 914 89.3 75.0

110 89.5 92.5 73.5 86.0

121 87.0 89.6 65.1 79.0

Table 2-2: Simulation results for airplanes.

44

number of | identification | depth stop | column base | wedge lift
hidden nodes (%) P.E. (%) PE. (%) | PE. (%)
11 51.3 40.2 42.5 47.3

22 62.3 45.3 55.2 55.2

33 97.6 55.7 67.1 64.3

44 94.9 62.1 77.3 75.3

55 95.7 73.5 85.9 87.5

66 94.8 84.3 97.5 98.7

77 92.5 85.5 95.1 974

88 93.5 87.3 96.3 85.7

99 92.9 89.9 98.7 90.1

110 87.1 73.1 94.3 71.4

121 85.9 73.5 93.2 72.5

Table 2-3: Simulation results for machine parts.

45

46

100 - .
o 90 | ,
>
3 80]
S 70 |
2 60 , |
+— X
850 ¢+ * |dentification
E X g 0 Depth stop

400 & + Column base |

X Wedge lift
3

0 ‘ ‘ ‘ ‘ ‘ ‘
O 20 40 60 80 100 120 140
Number of Hidden Nodes

Figure 2-11: Simulation results for machine parts.

25,000 and 12,000 for the results shown in Figure 2-10 and Figure 2-11,
respectively. Note that, the training cycles used for the first simulation
are about twice more than those used for the second one. This is expected
because of the similarity between the airplanes, we will need a much
more complex network and use more training cycles to get a better result.
Besides, the time complexity of the calculation of the moment invariants
is O(N?p?*) for N x N image and an order p moment set. This large
amount of computation time can be greatly reduced by using the parallel

architecture of the multi-layer networks.

2.8 Conclusion

In this Chapter, we have shown that 3-D moment invariants are
useful to encode 3-D information. The moment feature extraction does
not require the sophisticated range image segmentation. The large com-
putation of the moment invariants can be done by five simple neuron
layers. The network complexity is traded for better results and greater
flexibility. Even though the off-line training of the network is time con-
suming, the identification of the unknown object and its orientation can

be obtained simultaneously when the network is trained.

47

Chapter 3

Image Sensing Model for CCD Camera

Systems

3.1 Introduction

Verification of many computer vision theories require expensive and
accurate camera systems, and laboratory facilities for calibration and ex-
perimentation. As an alternative, it is possible to develop computational
models of the camera system, and simulate the system on a computer.
This is not only faster and cheaper than building actual camera systems
and setting up expensive laboratories, it also provides flexibility and ac-
curacy. The physical parameters of the camera system (e.g. focal length,
sampling rate, quantization level, noise characteristics, optical aberra-
tions, etc.) can be easily changed and they can be set to desired values

to very high accuracy.

48

The motivation for this work arose from our need for the experimen-
tal verification of a set of new theories on measuring object distances
using image defocus information (depth from defocus) [44, 48, 49]. The
experiments required a precision camera system whose parameters could
be controlled and measured accurately. We have used the computer
model and the simulation system described in this and the following
Chapters to synthesize experimental data and validate the new methods

of measuring distance.

The camera model in this Chapter is derived from the mathemati-
cal model presented by Subbarao and Nikzad [47]. Their mathematical
model has been modified and extended to obtain a computational model.
Further, we have implemented the computational model and demon-
strated its practical application in research on two problems in machine
vision. Our implementation is nearly optimal in terms of the compu-
tational resources. One reason for this is that the model decouples the
photometric properties of a scene from the geometric properties of the

scene in the input to the camera system.

A camera system (or any physical system) can be modeled at many
levels of detail and abstraction. Here we have attempted to focus on
developing what we believe is a useful model rather than a detailed
model. Our model involves seven major stages. Each of these stages can
be extended (or condensed) to make it more (or less) detailed than what
we have presented. For example, the stage involving the CCD sensor

can be made more detailed using the CCD model presented by Healey

49

and Kondepudy [15].

We also extended the proposed computational model to simulate the
image formation of moving objects (motion) and stereo vision system. All
the models presented in this Chapter are implemented and described in
the following two Chapters — the Image Defocus Simulator (IDS) simu-
lates the image formation process, while the Active Vision System (AVS)

simulates the moving objects and stereo imaging.

This Chapter is organized as follows: Section 2 presents the com-
putational model for a CCD camera system; Section 3 extends the com-
putational model to motion and stereo simulation; and finally, Section 4

concludes this Chapter with a few remarks.

3.2 Computational Model

A block diagram of a typical CCD video camera system used in ma-
chine vision applications is shown in Figure 3-1. Inside the optical sys-
tem stage, there are in general many lenses and apertures. However, we
are concerned only with the terminal properties of the aggregate [14].
The terminals of this stage are an entrance pupil (effective or real) repre-
senting a finite aperture through which the light must pass to reach the
imaging elements and an exit pupil (again effective or real) representing
a finite aperture through which light must pass as it leaves the imaging

element on its way to the image detector plane. It is also assumed that

50

_|

IF T CCD Spec. lTss
o Cable
o c o) -
e 2 £ T S a = 2 o p| Digital
SCEHe—»iE)E) > 15:5 =5§ :?_E(% :88 =§EHQ_>§§_>
=l | 2] |84 OB 5 L &| Daa
LL = O O
l f T
T T,

<
—
8

FS
Figure 3-1: Block diagram of a video camera system.

the passage of light between the entrance and exit pupil planes can be

adequately described by geometric optics [16].

We define a spherical coordinate system with its z-axis along the
optical axis and the origin fixed in the plane of the entrance pupil as
shown in Figure 3-2 (called Entrance Pupil Coordinate System, or EPCS
for short). All the distance measurements are made with respect to
O. The external parameters of the camera system are the position (three
parameters) and orientation (three parameters) of the EPCS with respect

to some reference coordinate system in the scene.

We consider the scene to contain only objects with opaque surfaces.
In such case, for every direction defined by (6, ¢) in the EPCS, there is a
unique point P on a visible object in the scene as shown in Figure 3-2.
If r is the distance from P to the origin O, then the geometry of visible
surfaces in the scene can be completely defined by a function (6, ¢) which

gives geometric information about visible surfaces in the scene.

What the camera “observes” due to the point source P is the electro-

51

Object

Exit Pupil Wor

Entrance Pupil

y

Figure 3-2: Entrance pupil coordinate system.

magnetic field distribution produced by the source at the entrance pupil.
This field distribution can be specified by a very general form; however,
we shall restrict ourselves to a simpler case. We will only consider inco-
herent and unpolarized light. The quantities we are interested are the
radius r of the wavefront incident on the entrance pupil and the energy
strength of the wavefront as a function of its wavelength A. These quan-
tities are assumed to remain the same during one exposure period of the

camera.

We define the focused image f(6, ¢, A,t) of the scene to be the power
of light of wavelength A incident on the entrance pupil from the direction
(0, ¢) at time ¢t. The function f(-) encodes purely photometric information.
We define the inputs to the camera system to be (6, ¢) which describes
the geometry of the scene, and the focused image (6, ¢, \,t) which de-
scribes the appearance of the scene. These two functions are quantities

which are directly observable by the camera system. There is no inter-

52

dependence between these two quantities. This should be compared to
the traditional convention of characterizing the photometric aspects of
the scene in terms of scene radiance. The radiance of a small surface
patch in the scene is the light power emitted by the surface patch into
a unit solid angle per unit area, and has units of Watts/m?/Steradian.
Since the area of a surface cannot be estimated without a knowledge of
the distance r and orientation of the surface patch with respect to the
camera system, the radiance of the surface patch cannot be observed by
the camera system independently. Therefore, characterization of scene
appearance in terms of the radiance of surface patches in the scene in-
variably couples the photometric and geometric properties. In contrast,
our characterization of scene properties in terms of f(, ¢, \,¢) and (6, ¢)

decouples the photometric and geometric properties.

Having defined the input to the camera, we will now define a se-
quence of transformations which transforms the input signal to the out-
put digital image. The blocks in Figure 3-1 are numbered from left to
right as stage : for: = 1,2, 3, ..., 7. The output of the ith stage is denoted
by a function of the form f;. Each stage : may have one or more steps
denoted by f;; for j = a,b,¢c,.... Each step in the sequence of transforma-
tions typically corresponds to the effect of one component of the camera

system on the input signal.

(TR.1) Light Filtering: Light filter is used to control the spec-

tral content of light entering the camera system. Its

53

characteristic can be specified by a transmittance func-
tion 7T,r(\) where 0 < 77x(A) < 1.0. The output of this

stage is:
f1(97¢7)‘7t) = f(07¢7)‘7t) TLF()\) (31)

(TR.2) Vignetting: When there are multiple apertures in the
optical system along the optical axis displaced with re-
spect to each other, the effective light energy transmit-
ted by the system decreases with increasing inclination
of light rays with respect to the optical axis [16, 19]. This
effect can be specified by a vignetting function 7v (6, ¢)
where 0 < 7Ty (6, ¢) < 1.0. The output is:

f2(07¢7)‘7t) = f1(97¢7)‘7t) : TV(97¢) (32)

(TR.3) Optical System: An image forming optical system can
be characterized in terms of the image (or light energy
distribution on the image detector) produced by the sys-
tem when the scene contains a single point light source.
The image of a point light source corresponds to the point
spread function (PSF) of the camera system (when the
light energy incident from the point source onto the en-
trance pupil is one unit). The scene can be considered to
be an aggregate of point light sources each correspond-
ing to one point on the visible surfaces in the scene.

When the point sources in the scene are incoherent, the

light intensity distribution produced on the image detec-
tor by each of the point sources can be simply summed
to obtain the overall image. (If the point sources are co-
herent, then the electromagnetic field distribution will
have to be summed instead of their intensities; we shall
not consider this case here.) In this case, the imaging
system acts as a linear system with its characteristics
specified by a PSF h(0,¢,60',¢',r(8, ¢),€) where (see Fig-
ure 3-2) (4, ¢) is the direction of the point source P, (¢', ¢')
is the direction of a point on the image detector in the
image plane, and € is a vector specifying the parameters
of the imaging system such as its focal length, aperture

diameter, etc.

After standard transformation from spherical to a
normalized Cartesian coordinate system (taking z = 2/ =

D, £2(6,6,)\,1) and h(6, 6,8, ¢',7(0,6),) can be equiva-

lently represented as fi(x,y, A, t)and h/(z,y, 2, y', r(z,y), €),

respectively. Hence, the output is:

f3($/7y,7)‘7t) = /_OJ_ h/(I,y,SE,,y/,T‘(CE,‘y),g) X
folx,y, A t) da dy (3.3)

If the PSF is spatially invariant in the region of inter-

est (i.e. isoplanetic region [4]), then the above integral

55

becomes a convolution operation:

f3($l7y/7)‘7t) = /O:O/OO h/($, - 3773// - y,T($,y),g) X

— 00

fil@,y, A1) de dy (3.4)

(TR.4) Field Stop: The extent of the image detector deter-
mines the field of view of the imaging system which
can be specified by the transmittance function of the
field stop Trs(z’,y’) where Trs(2’,y’) has a value of 1 in-
side the image detector region and a value of 0 outside.

Therefore, the output will be:
f4($/ay/7)‘7t) = f3($/,y/,)\,t) TFS($/7y/) (35)

(TR.5) CCD Sensor: The transducer on the image detector
which converts light energy to electrical energy is not
uniformly sensitive with respect to wavelength A. To
take this effect into account, we model the sensitivity by

Ts(A) with 0 < T () < 1.0. This will transform f, to:
f5a($/7y/7)‘7t) = f4($l,’y/,)\,t) Ts()\) (3.6)

Since the output of the photosensor on the image
detector depends on the total light energy incident on
the detectors, the light energy has to be integrated with

respect to the wavelength J, i.e.

Fanl ' 1) = /O:o Frala' ', A, 1) dX (3.7)

56

The image sensor is exposed to incident light for a
finite duration of time. During the period when the
sensor is exposed, the strength of the incident light may
vary because of the changing area of the aperture stop
with time 7'45(¢). In a CCD camera, this is equivalent to
measuring, periodically, the charge collected by the CCD
elements and then clearing the charge in the elements.

The effect of the exposure function is:

fse(@'y' 1) = /O:O fsn(@y', 7) Tas(t — t)dr (3.8)

If T4s(t) is symmetric, then equation (3.8) becomes a
convolution operation. Next, we take into account
the physical shape and size of the photosensor elements
(pixels) and the sensor noise. Let R(xz,y) be a function
whose value is 1 inside the surface area of a photosensor
element and 0 outside, and n;(z’, y’, t) be the CCD sensor
noise. We model each sensor element as producing an
output proportional to the total light energy incident on
its surface. Noise is then added to this output. The

following expression results:
frala sy) = [[falan Bt) Rla— o, 8= y') dadf
+ ns(z’,y', 1) (3.9)

If R(x,y) is symmetric, i.e. R(z,y) = R(—z,—y), then the

integration in equation (3.9) is a convolution.

57

CCD Pixd Photosensitive
|<— b —>| rrTTrrnT ; —— Area

—

[~ Xs |

Figure 3-3: Typical geometry of pixels on a CCD image detector.

We will assume that the continuous signal f54(z', y’, t)
is sampled in time periodically at fixed intervals of 7,
and sampled in space on a discrete rectangular grid of
points separated by a distance of z, along the horizontal
direction and by a distance of y, along the vertical di-
rection as shown in Figure 3-3. The resulting sampled

output will be:

1 roy ot
fSe(:cla y/7 t) = f5d($/7 ’y/, t) —————— comb <$—7 y—, —)
| 7s s [ys| x5 Ys Tel
(3.10)
which is converted to a discrete function, represented as

a three-dimensional matrix fs¢[, j, k], as:

f5f[i7j7k]:fSS(i'xsyj'ysy k'Tsl) (311)

fori =0,1,---,M—1;5=0,1,--- . N=1;k=0,1,---, K—1
where M, N, and K are the number of columns, rows,

and image frames, respectively.

58

Ideally, we require the output of the photosensitive
elements to be proportional to the light energy incident
on them. However, in practice, their output is not pro-
portional but some other function of light energy S(/7).

Therefore, the output will be
f5g[i7j7k]:S(f5f[i7j,k]) (312)

If the sensor response function is different for different
photosensitive elements indexed by (¢,), then S(/) will
become S(z, j, I). Several models have been proposed for
S(I) in the literature such as the gamma model, linear
model, etc.

Finally, the three-dimensional array is converted to
one-dimensional sequence of numbers which can be con-
verted to analog signals and transmitted over a cable.

The resulting output is:
fsli - M4+ k-M-N) = f5,[i, 5,k (3.13)

where we assume, for simplicity, that all rows are scanned
in sequence one by one and that all the synchronization

pulses for video monitor are ignored.

(TR.6) D/A Converter: The discrete sequence of numbers rep-

resented by f;[¢] is converted to an analog signal using a
sample-and-hold circuit. The time interval 7,, between

two numbers is an input parameter to this stage. Note

59

that 7,, < {7#%. The operation of the reconstruction cir-
cuit can be thought of as interpolating the sequence of

values f;[i] defined at ¢ - 7,; to get an analog signal:

K-M-N—-1
fea(t) = han(t) x IZ; f16(t — 1-7s2) (3.14)
where hy,(t) is the effective impulse response of the
sample-and-hold interpolation circuit and x is the con-
volution operator.
Finally, the video signal fs,(¢) is amplified before it
is transmitted over a video cable so that any noise in-
troduced in the cable will not dominate the signal. The

resulting output signal is:
fe(t) = feu(t) * ha(t) + na(t) (3.15)

where h,(t) and n,(t) are the impulse response and the

additive noise of the amplifier, respectively.

(TR.7) Frame Grabber: The input signal to this stage is

fra(t) = fo(t) x he(t) + ne(t) (3.16)

where £.(t) and n.(t) are the impulse response and ad-
ditive noise of the video cable, respectively. This analog
signal is sampled at intervals of 7,3 by multiplying it
with Y00 6(t — n7g). If 753 # 752, this will cause geo-

metric distortion of the picture. This phenomenon has

been called mismatched electronics in Shafer [42]. The

60

sampled values are interpolated by an n-th order (usu-
ally n = 0) sample-and-hold filter. The resulting signal
is again sampled by a slightly shifted sampling function
to get an impulse train which is converted to a sequence

of numbers as follows:

alt) =] X st—ma| - a0} a0

- (3.17)
1 t— kng
fr(t) = Ecomb(-) - fa(?) (3.18)
(+k),
Filll = [el d (3.19)

where h,,(t) and ng,(t) are the impulse response and
additive noise of the sample-and-hold filter, respectively;
0 < k£ < 1; and the following equation is used in the

derivation.

> 1 t
n:z_:oo §(t —nr) = ;comb <;) (3.20)

Finally, the sequence of numbers are quantized and

sent to frame buffer for further processing.

3.3 Extensions to Motion and Stereo Simu-
lation

In this section, we will extend the computational model presented

in the previous section to simulate the image sensing process for moving

objects and binocular stereo camera systems.

3.3.1 Motion Simulation

When objects move in front of a camera, or when a camera moves
through a fixed environment, there are corresponding changes in the
images. The displacement of a point in the environment will cause a
displacement of the corresponding image point. In motion simulation,
we assume that all the objects in the scene are rigid objects. Therefore,

the shape of the objects will not change during motion.

Figure 3-4 shows the relationship between an object motion vector
m, = P;Pg =[Veo Ve V. At]and the image motion vector ni;, = P;PZ-’.
For simplifying the discussion, the image plane is placed at the focused
position and is perpendicular to the optical axis (z-axis). The vector 7,
can be decomposed into two components, one parallel to the x-y plane
(P;Pg’) which shifts the object, and another parallel to the z-axis which

changes the size of the object.

Consider the translation vector P,P". Let P,P" = [V, Atf] =
[Vee Ve 0 At]for a fixed time interval A¢. This corresponds to a
motion vector mi; = [‘72- At] = [Vai Vi 0 At] in the image plane.
The amount of displacement is ||P,P”|| = ||V,At|| in the scene which

corresponds to a displacement of | |P;PZ-’ || = ||V;At]| in the image plane.

Figure 3-4: Relationship between the displacement of a point in the scene

and the corresponding point in the image plane.

From the geometry in Figure 3-4, we have

IV,AL|] 7o ! '

The displacement of points in the image plane can be computed using
Equation (3.21). For z-axis movement, i.e. V,, # 0, there will be a change
in the size of the objects in the scene. This results in image magnification

or shrinking which requires image interpolation and resampling.

3.3.2 Stereo Vision System

A general stereo system model is shown in Figure 3-5 where O is
the global origin, O’ and O” are the entrance pupil origin of the left and
the right cameras, respectively. The left and the right cameras can be

treated as monocular camera systems similar to that in Figure 3-2. The

63

Figure 3-5: A general stereo system model.

global origin O is introduced as a reference point for the positions of the

object, the left camera, and the right camera.

In this generalized stereo system, the optical axes of the two cameras
are not parallel, but intersect at some point in the scene. In order to
simplify computations in our simulation, we restrict the optical axes of
the cameras to be parallel. Therefore, in this model, there is a relative
translation between the two cameras, but no relative rotation. This

restriction can be removed at the expense of more computation.

Figure 3-6 is the global coordinate system used in our current stereo
simulation where z-, z’-, and z”-axes are parallel to each other. Based
on this configuration, the stereo vision system can be modeled as shown
in Figure 3-7. The scene information is first translated, and scaled

with respect to the origin of each camera. After this transformation, the

64

65

Figure 3-6: Global coordinate system used in stereo simulation.

oo}
®
o

Digital

4

Jeqoelo
auwelH

!

i

Cable

Jal|AuoD
via

!

losues
ano

CCD Spec. 1

i

dos
pRH

i

To—

woesAs
feondo

i

BumeubiA

!

Burel|i4
617

q

uojewIosuel |
aUsos

A

Digital
Data

4

Jagaelo
alwelH

l

i

Cable

JaleAuoD
v/d

CCD Spec. 2

}

losues
anso

f

dois
ppH

TFS

i

wesAs
reondo

i

Bumeubin

—

i

Burey| 4
Wb

A

uoirewLosuel |
TS

A

Scene

Figure 3-7: Block diagram of a stereo vision system.

photometric information f(4, ¢, A, t) and the geometric/depth information
r(0, ¢) are transformed to fi(0, ¢, A, 1), f.(0,¢,A,t) and r/(0, ¢), r.(0, ¢) for
the left and the right cameras. These functions are the input to the
camera system. The remaining functional blocks are the same as those

presented in Section 3.2.

3.4 Conclusion

A computational model has been developed for a CCD camera used
in computer vision applications. This model consists of 7 functional
blocks, namely, light filtering, vignetting, optical system, field stop, CCD
sensor, D/A converter, and the frame grabber. Each functional block is
refined to one or more computational steps toward the image sensing
process. There are 27 user controllable parameters in these 16 compu-
tational steps for single camera model. With the addition of the motion
information parameters and the positional parameters of two cameras,
the proposed model is extended to cover the simulation of moving objects

and the stereo imaging system.

The model presented in this Chapter decouples the geometric and
photometric information of the scene. Each functional block in this
model is modularized and independent. Therefore, it is computationally
tractable and can be easily extended and/or modified for other imaging

applications.

66

Chapter 4

The IDS Computer Simulation System

4.1 Introduction

Based on the model presented in the previous chapter, a computer
simulation system called Image Defocus Simulator (IDS) has been de-
veloped. It can simulate a typical CCD camera system used in machine
vision applications.

IDS is a menu-driven simulation system which takes as input the
camera parameters and scene information. The output of IDS is a digital
image of the scene as sensed by the camera. IDS consists of a number of
distinct software modules each implementing one step in the computa-
tional model. The modules are independent and can be easily modified
to enhance the simulation system. From the functional point of view,
IDS consists of a kernel engine and three user interfaces, namely, Sun-

view Graphical Interface (SGI), X window Graphical Interface (XGI),

67

and Dummy TTY Interface (DTI). The simulation engine is a machine-
independent module to carry out all the computations involved while
the user interfaces are used to provide a menu- or command-driven 1I/O
interface. The kernel engine and the DTI are machine-independent and
hence portable. The SGI and XGI can be easily ported to SUN work-
stations and any machine with standard X11/R4 or newer distribution,
respectively. Therefore it is very easy to extend the model and the sim-
ulation system to cover different types of imaging systems. A detailed

description of the user interfaces and the reference manual of IDS can

be found in [31, 46].

This Chapter is organized as follows: Section 2 presents the sim-
ulation engine of IDS; Section 3 describes the user interfaces; Section
4 presents the simulation result using both geometric optics and wave-
optics; Section 5 describes the applications of IDS to the verification
of the implementations of a theory of depth-from-defocus; and finally,

Section 6 summarizes this Chapter.

4.2 The Simulation Engine

Consider the scene parameters f(¢, ¢, A\,t) and (6, ¢). If the profile
of the scene in a small field-of-view is smooth, then we can approximate
r(0, ¢) by a constant v which specifies the distance between the scene and

the origin O in the EPCS. Under these circumstances, the point spread

68

69

d
T

- \/ ——
—— S ——»

Figure 4-1: Blur circle calculation.

function will be spatially invariant. If geometric optics is assumed, then
the diameter of the blur circle can be computed using the lens equation

1/f = 1/u+1/v and Figure 4-1. The resulting diameter of the blur circle

d is:
d, = $|s—v| (4.1)
dpm
d, = o (4.2)
P

where f is the effective focal length; F'is the F-number (defined as f/D);
d,, is the diameter of blur circle in millimeter; p is the CCD pixel element
size in millimeter; d, is the diameter of the blur circle in pixels; v is the
distance between the exit pupil and the plane where the object is focused;
and s is the distance between the exit pupil and the photosensor plane.

The point spread function according to paraxial geometric optics is:

. d?n
wap, TS
h($7y) = (43)

0 otherwise

If »(0, ¢) cannot be approximated by a constant distance u, then we
must calculate the blur circle for each point in the scene and sum them to
synthesize the image. Sometimes the paraxial model of the point spread
function is not a satisfactory approximation to the actual point spread
function. In this case, the actual point spread function of the optical
system is measured for various distances u and pre-stored in a file. The
IDS will then use this file in the image synthesizing process. The choice
of the point spread function is determined by the parameter “psf” which
can be “psf=cylinder” for geometric optics, “psf=file f i | enane [size]
wi dt h hei ght ” for pre-calibrated point spread function stored in the
file named f i | enane of size Wi dt h by hei ght, or “psf=wave_optics”
for wave optics. Therefore, one can choose geometric optics as well as
physical optics as the point spread function to synthesize images. Note
that, we use boldface to represent keywords in parameter specifications
and use t ypewri t er font to represent user-specified input. Keywords

enclosed by square brackets are optional.

The effect of light filtering and vignetting are specified by the func-
tions Trr(-) and Ty(-), respectively. They can be: (i) a constant, (ii) a
Gaussian mask gaussian(o,, 0,), or (iii) a function tabulated and stored
in a file. Based on this information, Equations (3.1)-(3.4) can be com-

puted with the information € = (s, f, F).

The parameter 75 controls the field-of-view of the photosensor de-

vices. For a CCD camera, the field stop is rectangular in shape with

70

width A and height B. Therefore,
Ty
Typs(z,y) = =2 4.4
rs(e,y) = rect (5, L) (4.4)
This is implemented by restricting the calculations to a rectangular re-

gion as specified above.

In most cases, the exposure function can be approximated by a rect-

angular function 7'4s(t) = rect(+) where 7' is the duration of exposure

L
30

which is typically - second. If the object is not moving, then timing
information can be discarded. Further, from the geometry of CCD pixels
in Figure 3-3, we have R(z,y) = rect({, ¥) for Equation (3.9). The sensor
response function S(/) can be either I” (for standard NTSC TV, v ~ 55
[43]), al+b (a, b are constants), or a table read from a file.

Combining all the above information and adding (i) the impulse
response functions for sample-and-hold circuit (using #,;), for amplifier
(using h,), and for cable connections (using 4.); (ii) the corresponding
noise functions (using n,;, n,, and n.); (iii) the CCD noise (using n,); (iv)
the sampling information (using 7, 75, 7.3); and (v) the CCD geometry
(using z,,y,), we can carry out Equations (3.5)-(3.19) directly to complete

the simulation.

All the parameters mentioned above can be changed by using “Edt
Param” command in the user interface to be discussed later. Further-
more, to deal with the tremendous amount of data storage expected and
the variable size of the resulting output images, a built-in dynamic mem-

ory manager is used to achieve the greatest flexibility.

71

As one can expect, the convolution operation is a critical part in the
simulation. Consider the convolution of the M x N image f[m,n] and the

Px () point spread function %[p, q|:

M-1N-1

gla, Bl =3 > flm,n]hla —m, 3 —n] (4.5)

m=0 n=0
where m = 0,1,--- M—1; n = 0,1,---,N—1; p = 0,1,---,P—1; ¢ =
0,1,---,Q—1l;a=0,1,---,(M+P-2);and = 0,1,---,(N+Q—2). This
equation can be rewritten as:
min{a,M—~1} min{8,N—1}

gla, f] = mZZO ; flm,n]hlo=m, B — n] (4.6)
In this equation, we simply assume that i[p,¢q| = 0forp > P,p < 0,¢ > Q,
or ¢ < 0. The computational complexity to carry out the convolution
directly will be O((M +P) x (N+Q) x M x N) which is a huge number
if the image size is large. On the contrary, if we take the 2-D Discrete
Fourier Transform of ¢[«, 5]:

K-1L-1

Glk, 11 = 3 Y gla, BIWieW)’ (4.7)
a=0 =0
as K DFTs of the form:
L—1
Ala,] =3 gla, BIW)° (4.8)
£5=0

followed by L DF'Ts of the form:
K-1
Glk, (] =Y Ala, (W (4.9
a=0

where k =0,1,---, K—1;{=0,1,---,L—1; K = M+P—1;and L = N+(Q—1

[34], then the computational complexity for using FFT algorithm will

72

be O((M + P) x (N+Q) x logy[(M+ P) x (N+@Q)]). For small values
of P, (), it will be more efficient to use direct convolution. Therefore,
we provide three options in computing convolutions: direct, FFT, and
smart convolution. In “direct” mode, no matter how big (or small) the
image/psf size is, direct convolution is carried out in the spatial domain.
Similarly, in “FFT” mode, irrespective of image/psf size, convolution is
carried out in the Fourier domain using FFT algorithm. In “smart”
mode, the expected number of operations is calculated for direct and
FFT modes, and the mode which requires lower number of operations is
chosen. Equations (4.8) and (4.9) suggest a method for parallelization to

speed up the computations.

4.3 The User Interfaces

IDS provides three user interfaces — Sunview Graphical Interface
(SGI), X-window Graphical Interface (XGI), and Dummy TTY Interface
(DTI). The only difference between SGI and XGI is that SGI runs un-
der Sunview environment while XGI runs under X window environment.
They both provide a graphical, menu-driven, and mouse-oriented inter-
active user interface. The DTI interface is designed for users to run
their simulations on a dummy terminal. It provides all the functions
of IDS except the capability of displaying images and menus. A typical
screen for SGI, XGI, and DTI are shown in Figure 4-2, Figure 4-3, and

73

eevisl:101>
A

EESEIN T1ape Defocus Simulator (C) Lo) ht , RF of SUNY Input ob

_ m
o ((Quit] (Closze] (Fead object] [Read Parameters]
|«
[+ Filename: ¢local/home/melu/sinulation/ids/testing
: 128 Width: 128 Height: 128 Default: & I/P
L
[«
o ([Show A11] (Reset A1) [Options] (Edt Param)
[Feading

Status
Win Wth Hgt Status
I/FP
0/P

Figure 4-2: Startup screen of the simulation system (SGI user interface).

Figure 4-4, respectively. The SGI is used in the following illustrations.

Under SGI, users are provided with eight commands, three text-
input fields (“Filename”, “Width”, and “Height”), and two choices (“Size”
and “Default”) as shown in Figure 4-2. All the I/O commands and the
“Read Parameters” command take the string in the “Filename” field
as the target filename. The image size is determined by the “Width”
and “Height” fields which can be changed by either the “Size” choice
(for square image) or the user input (for arbitrary size image). The
command “Read Parameters” reads a file which contains all the user-
controllable parameters. These parameters are parsed through a built-

in LR(1) parser [1] to generate tokens and detect possible syntax errors.

74

75

[®) Image Defocus Simulator (C) Copyright 1992, RF of SUNY

(fuit j] (Close j] (Read Object \‘J (Read Parameters)

Filename: /local/home/mcluysimilation/ids/testing/tiger.256

width: 256 Height: 256 Default: I/P

(Show A1l _) (Reset All _) (Options _) (Edt Param _:]
{ write){ print){ Fitwin){ viewvalue)
(IS |G |G

{ spectram){ Histogram)

Win Wth Hgt Status

I/P 256 256 Object: /local/home/mclu/sivolation/ids/testimg/tiger.256
0/P 256 256 ODutput iwmage at step 3
Step 3: Optical system (psf:cylinder d=11 pixels, r=5.2400)

Figure 4-3: XGI user interface.

The parsing results are then interpreted by an interpreter to generate
parameter values. These values can be modified by the “Edt Param”
command which pops up a window as shown in Figure 4-5. The default

parameter values can also be found in Figure 4-5.

The “Options” command controls the system-wide options such as
input/output image format, convolution method, and how to handle the
image border. The input/output image format can be binary/ASCII in-
tegers, binary/ASCII floating numbers, or even a n-th order polynomial
(input only) specified by the order of the polynomial and the correspond-
ing coefficients. The convolution method can be direct, FF'T, or smart

mode implementation as described in the previous section. The image

[xterm

eevisl:10Ey ids
o o o o o o o o o o o o o R R

* *
* Image Defocus Simulator (1052 *
* *
* by Mingchin Lu and Muralidhara Subbarao *
* *
E Verzion 1,51 (C) Copyright 1992, Research Foundation of SHNY E
* All rights Reserved *
* *

0 e o e S e o e G e e o o o e o e o e R
Reading default parameter file: Alocalshomesmcluslibdids_param,ini

15 1

Figure 4-4: DTI user interface.

<<< Parameters >>>
Image Defocus Simulator F Mumber: &

= (mm): 35.24412
delta = (mm): 0.0245

Focal length (mm): 3%

@ Object distance (mm): 5035

CCD gize (mm/pxl): 0.013

Filename: /local/home/m|

C128 Width: 128 He Lambda (A): 57904 Xs (mn): 17un ¥s (mm): 13um

Tel (med: 33.3ms Te2 (m=): 2us T=3 (ms): 2us
[Show A1] [Reset AlJ T_LF(lambda): 1

p.=.f: cylinder
T ¥itheta,phi): constant 1
T FS(x,v): rect(x/9.3, ¥/9.3)
T_S{lambda): 1
T_AS(t): rect(t/.0333)

Rix,y):
S(I):
h_shit):
N_sh(t):
h_alt):
N_ACt):
hoecl(t):
N_Cit):
N_Si{x,y,t):

rect(x/13um, y/13um)
I

0-order

none

delta(t)

none

delta(t)
none
none

Figure 4-5: Popup window for “Edt Param” command.

Image Defocus Simulator (C) Copyright 19

[(Quit] [Cloge] [Read object] [Read Farameters]

Filename: +e/mclu/simulation/ids/testing/tiger.256
<256 Width: 256 Height: 256 Default: < I/P

[Show ALl] [Rezet All] [Options] [Edt Param]

(Write] [Print] [Fit Win] (View Value]

(Bun) (Step] ([Goto]

(Spectrum] (Histogram) Status
Win Wth Hgt Status
I/F 256 256 UObject: /local/home/meclu/zimulation/ida/testi
0/P

Figure 4-6: Full operation menu.

border can be treated as a zero-padded, mirrored, or periodic image dur-
ing convolution. For “zero-padded” option, the image outside the field of
view is simply treated as a dark area, i.e., an area with zero values. For
“periodic” option, the image is considered as f(aM +m,bN +n) = f(m,n)
for an M xN image where a,b € {0,+1,4+2,---}. And for “mirrored”
option, the image is first reflected along its right side border, then the re-
sulting image is reflected along its top border; this gives an image which
is four times larger than the original image. This four times larger im-
age is then taken to be wrapped around at its borders. Note that, the
“mirrored” option gives a periodic image whose period is twice that of the
“periodic” option. After the input image and the parameters are loaded,

additional command buttons are available as shown in Figure 4-6.

The “Run”, “Step”, and “Goto” commands control the execution of the

77

simulation. Users can step or go to any particular stage in Figure 3-1 or
any transformation step to examine its output. The value of the pixels
of the image can be viewed via “View Value” command. We also provide
Fourier spectrum and histogram analysis of a given image by using
the “Spectrum” and the “Histogram” commands. The “Default” choice
specifies the window (object or image) to which the command should be
applied.

Finally, the synthesized image can be saved to a file and/or sent to
printer for printing using a halftone algorithm. All the images shown in

Section 4.4 are processed this way.

4.4 Simulation Results

4.4.1 Geometric Optics

Now we present the simulation results of IDS under the paraxial
geometric optics model. The original image is shown in Figure 4-6 and

the simulation results are shown in Figure 4-7.

Figure 4-7 shows 16 pictures of Tiger arranged in 4 rows and 4
columns. The distance of the object increases (350mm-8943mm) row-
wise from top to bottom whereas the distance s between the lens and the

image detector increases (34mm-37mm) column-wise from left to right.

78

79

(a) s =34 (b) s =35 (¢) s =36 (d) s =37

u = 350 u = 350 u = 350 u = 350

(e) s =34 ®s=235 (g) s =36 (h) s =37

u =910 u =910 u =910

(1) s=34 D s=37

u = 1700 u = 1700

(m) s = 34 (0) s =36 (p) s =37

u = 8943 u = 8943 u = 8943 u = 8943

Figure 4-7: Simulated images for Tiger.

The focal length and the F-number are fixed at 35mm and 4, respectively.
In Figure 4-7, for convolution operation, the “mirror” option mentioned

earlier was used.

In Figure 4-7, somewhere along a direction parallel to the left-bottom
to top-right diagonal, the pictures are focused, whereas, on either side
of the this, the image defocus increases. This is consistent with the
fact that image defocus should increase when either the object is moved
farther or closer from its focused position, or when the image detector is

moved farther or closer from its focused position.

4.4.,2 PSF From Diffraction Model

The model of point spread function derived from Fraunhofer Diffrac-
tion principle is more accurate than the one based on geometric optics. In
this subsection, we present the simulation results for a point spread func-
tion derived from Fraunhofer diffraction principle. The derivation for
the point spread function in this case can be found in Appendix B where
Equation (B.21) is the point spread function, and Equations (B.27)-(B.30)

are the relationships between the PSF and the camera parameters.

The point spread function in this case is the well-known Airy pattern.
The result of the point spread function generated by the simulation is
shown in Figure 4-8 where the parameters used are A = 5790 ;1, f=

35mm, F' =4, u = 1500 mm, and s = 35.245 mm. Figure 4-8 is magnified

80

Figure 4-8: Airy pattern.

by about 2.6 times and over-exposed in the center by 10,000 so that the

outer rings become visible.

One example of simulation for this case is shown in Figure 4-9 (com-

pare this with Figure 4-3 which is based on geometric optics).

4.5 Applications

IDS has been used in our laboratory to test and debug the implemen-
tations of two new methods for finding distance of objects [48, 49] from
their defocused images. IDS was used to generate a large number of test
images in the range of interest for different camera parameter settings.
Then, the programs implementing the methods of finding distance were

tested using the generated images as input.

Figure 4-10 and Figure 4-11 show the results of testing one of the
methods described in Subbarao and Wei [49]. Synthetic images were
generated for 94 distinct distances of an object for three different lens

positions. Other camera parameters were fixed. For each object distance,

81

[#] Image D:

efocus Simulator {C) Copyright 1992, RF of SUNY | [#] Input Window

(Quit _j (Close _) (Read Ob ject _:j @ead Paraneters_:j

Filenane:

Midth: 256, Height: 256 Default: I/P

flocal/hone/nelu/sinulation/ids/testing/tiger 256

Show RLL)(Reset ALl “’)(Options “’j(Edt Paran “’j 'I .

Run) (Step _) (Goto _)

(P |
{ wite) print) Fit Win){ View Value)
¢

¢

Spectrun)(Histogran _)

Hin Hth Hgt Status

0/P 256 256 Output inage at step 3
Step 3 DOptical systen {psfiwvave optics, foc_defect 28.7678)

82

I/F 256 256 O0Object: /local/homes/nclu/sinulation/ids/testing/tiger,256

Figure 4-9: Simulation result using diffraction principle.

the corresponding three images were given as input to the program for
finding distance. The distance determined by the program was used to
calculate a lens position which would bring the object into sharp focus.
The lens position determined by the program is plotted against the cor-
rect lens position in Figure 4-10(b) and Figure 4-11(b). The results of
the program are in solid line and the correct results are in dashed line.
The rms deviation of the solid line from the dashed line in both cases is
within 1% of the maximum range. This validates the implementation
of the program and the theory behind it. The program was also run on
an actual camera system named Stonybrook Passive Autofocusing and
Ranging Camera System (SPARCS) built in our laboratory. In this case

also, the program performed well.

Focused position (step nunber)

(a)

The RMS focusing v.s. the ideal case (Tiger)
100

"rme_results" —

90 "ideal .dat" ----

80

70

60

50

40

30

20 / g
10

0 20 40 60 80 100 120 140
bj ect position (step nunber)

(b)

Figure 4-10: (a) Test object Tiger, (b) Simulation results.

160

83

Focused position (step nunber)

(a)

The RMS focusing v.s. the ideal case (Edge)
100

"rme_results" —

90 i deal _case" ----

80

70

60

50

40

30

20 / g
10

0 20 40 60 80 100 120 140
bj ect position (step nunber)

(b)

Figure 4-11: (a) Test object Edge, (b) Simulation results.

160

84

4.6 Conclusion

Based on the proposed computational model presented in the pre-
vious chapter, we have developed a computer simulation package called
IDS. IDS is user-friendly, modular, and extensible. It has been used to
test and debug the implementations of two new methods on depth from
defocus. It can also be used to generate synthesized images for research
on restoration of defocused images. IDS can be easily extended for re-
search in other areas such as simulation of image formation in a stereo
CCD camera, and simulation of the image of a moving object in a CCD
camera. At the expense of increased computation, IDS can also be ex-
tended for spatially-variant point spread functions. The computational

time in this case can be reduced by adapting IDS to parallel computing.

The IDS simulation engine is written in ANSI C which is portable
to almost any machine with a C compiler. The DTI user interface is also
machine-independent and hence portable. The SGI user interface can
be directly moved to SUN workstations; while the XGI graphical user
interface can be easily ported to virtually any machine with standard
X11/R4 distributions. Therefore, IDS can be easily installed and used by

other researchers.

85

Chapter 5

The AVS Active Vision Camera System

5.1 Introduction

In active vision,changing the direction of view and the visual param-
eters facilitates and makes efficient the computational stage of machine
vision. An active vision system can be considered as a system that
integrates visual sensing and action. There are two common tasks to
be solved in active vision systems: one is the correspondence problem
in stereo imaging, the other is motion estimation to dynamically track
the objects in the scene. Many researchers have proposed algorithms
[2, 5, 19, 22, 23, 26, 32, 51] for these tasks. Our objective here is to pro-
vide researchers a simulation environment to simulate image sensing

process in motion and stereo systems.

In this Chapter, a computer simulation system called Active Vision

Simulator (AVS) is presented. AVS is an extension of the Image Defocus

86

Simulator (IDS) presented in the previous Chapter. It can be used to
simulate image formation process in a monocular (MONO mode) or a
binocular (STEREO mode) camera system. The simulation of curved
objects is also included in AVS. The user interfaces for AVS are similar
to those in IDS, i.e., two graphical user interfaces — Sunview Graphical
Interface (SGI) and X-window Graphical Interface (XGI), and a dummy

terminal user interface — Dummy TTY Interface (DTI).

This Chapter is organized as follows: Section 2 describes the sim-
ulation algorithms used for curved objects, motion simulation, and stereo
imaging; Section 3 describes the user interfaces of AVS; Section 4 presents

the simulation results; and finally, Section 5 concludes this Chapter.

5.2 Simulation Algorithms

5.2.1 Curved Objects

Consider the photometric information f(6, ¢, A,¢) and the geometric
information r(6, ¢). r(6,¢) contains the depth information of objects in
the scene. For curved objects, r(6,¢) can not be approximated by a
constant u. Under this situation, the point spread function is space-
variant and is specified by 2 (0, ¢, ¢, ¢', (0, ¢), €) as discussed in Chapter 3.

In a Cartesian coordinate system, the geometric information and the

87

point spread function can be represented as r(z,y) and A'(x,y, r(x,y),€),
respectively, under the assumption that all CCD elements have the same

characteristics. In this case, the output of the optical system will be:

falz,y, A1) = K (z,y,r(2,y), €) « fi(z,y, A1) (5.1)
where « is the convolution operator.

Assume there are NV different distances (r;,z = 1,---, V) in the scene.
Using superposition, fi(z,y, A,t) can be decomposed into N components

as:
N

fé($7y7)‘7t):Zf22($7y7)\7t) (52)

=1

where

fé(x,y,)\,t), ifr(x,y) =T
f2i($7y7)‘7t) =

0, elsewhere

Thus, Equation (5.1) becomes:

N
f3($7y7)‘7t) = Zh/($7y7r($7y)7é)*fQi($7y7A7t)

=1
N

= > hi(z,y,) % fai(w,y, A) (5.3)
=1

where %;(-) is the point spread function for the planar object at distance
r;. Note that, if the profile of the scene in a small field-of-view is smooth,

we have N =1 and

f3($7y7)‘7t) = h/(xvyaéj*fé(mayv)‘vt)

as derived in Equation (3.4). Therefore, the algorithm for the simula-

tion of curved objects can be summarized as in Figure 5-1 where FFT

88

Step 1: Decompose the object into N planes, fx(z,y, A, t), of distance
ri,t =1,---, N, according to the depth map information;
Step 2: for i =1 to N do
begin
Compute and store the point spread function 4;
end;
Step 3: f3 «— 0;
for.=1to N do
begin
Ja = fa+ faixh,

end;

Figure 5-1: Simulation algorithm for curved objects.

algorithm can be applied in Step 3 to reduce the large amount of compu-

tations needed.

5.2.2 Motion Simulation

The motion parameters used in the simulation are specified by the
vector m = [V, V, V. At], where V., V,, and V, are the velocity

components of the motion; At is the duration of the motion. Here, we

89

assume that the scene contains only rigid objects so that the object will

not change its shape while it is moving.

For objects moving perpendicular to the optical axis, i.e. V, = 0,
the size of the objects in the scene will remain unchanged. However,
part of the original image will move out of the field-of-view and will not
appear in the image plane. This will also introduce other objects into the
scene which are not in the original image. Therefore, the original input
image must include the objects that may come into the camera’s field of
view due to motion. This problem can be avoided by assuming a dark
background. When parts of the objects move out of the camera’s field of
view, the dark background appears in the field of view. Here, we use this

approach for its simplicity and efficiency in memory management.

When an object moves toward or away from the camera, the objects
in the scene will be enlarged or shrunk. Therefore, resampling must be
done to compensate for this effect. In AVS, we use bi-linear interpolation
to compute the value g(m,n) from its four neighbors f(z,;), f(: + 1,7),
fi,7+1),and f(: 4+ 1,7 + 1). The result is:

gmn)=a-(m—1)+b-(n—Jj)+ec-(m—2)(n—yj)+d (5.4)
where: <m <i+1,7<n<j+1,and

a = fli+1,7) = f(i,))

b= fli,7+1)—f(z,7)

d = f(,7)

90

The simulation of an object moving with an arbitrary motion vector
m is done by a shift operation if V, # 0 or V,, # 0, and then a resampling
operation if V, # 0 to get the synthesized image. The algorithm is shown
in Figure 5-2. Note that, during up-sampling process, the image might
be smoothed, while in the down-sampling process, some image details

might be lost.

5.2.3 Stereo System

For a binocular camera system, the two camera positions are spec-
ified by the vectors 0, = (2] i 2 0.1 0,1 6. and 0, =
[vy z b 0, 0,] with respect to the global origin O in
Figure 3-5. The components of these vectors specify the positions and

the orientations of the two cameras.

Stereo image pairs can be generated using the motion algorithm
presented in Figure 5-2 where the motion displacement corresponds to
(=1, —y1, —z) for the left camera and (—z,, —y,, —z,) for the right camera.
Note that, the orientation parameters are fixed to be 6, = 90°, §, = 90°,
and 9, = 0°.

91

92

Step 1: if V, # 0 or V, # 0 then
begin
Shift the object horizontally by the amount V,At;
Shift the object vertically by the amount V, At
Append dark background if part of the object is
moved out of the view;
end;
Step 2: if V, # 0 then
begin
if V, > 0 then
move the object toward the camera and resample;
else/*V, < 0%
move the object away from the camera and down-sample;
Append dark background if the neighbor of the object
appears in the view;

end;

Figure 5-2: Simulation algorithm for moving objects.

Active Viegion Simulator (C) by M.C. Lu & M. Subbarac, Copyright 1992, RF of SUNY

(Quit) ([Close) [Read object) [Read Parameters) (Read Depth Map) Mode: & STERED
Filename: /local/home/melu/simulation/avs/testimg/tiger.256

2256 Width: 256 Height: 256 Default: & OBJ

[Show All] [Reset ALl] [Optionz] [Edt Param] [Write] [Print]
l Eun] | Step] | Goto] [Depth Map] [Spectrum] [Hiztogram]
[Fit Win] [View Value]

il AR o

Status

Win Wth Hgt Status

LEFT

OBJ 256 256 Object: /local/home/melu/simulation/ave/testimg/tiger.256
RIGHT

Figure 5-3: AVS graphical user interface.

5.3 The User Interfaces

Three user interfaces are provided in AVS — SGI, XGI, and DTI. The
appearance and the basic functions of these user interfaces are similar
to those in IDS. AVS has all the functions of IDS plus one more window
and some additional features as shown in Figure 5-3. Besides, the single

parameter window in IDS is now three parameter windows in AVS — one

93

o uLEL.Lows ||

<<< Parameters (Object) >>>»

Active Visio

Quit Object distance (mm): 5053’ Wawelength (A): 57904
Filename: Ve (mm/=): 0.0 Yy (mm/=): 0.0
256 Wi Vz (mmf2): 0.0 dt (=ec): 0.0
Show All
(e T
<<¢ Parameters (Left Camera) »>> <<< Parameters (Right Camera) >
Focal length (mm): 35, F Number: 4 Focal length (mm): 350 F Number: 4
s (mm): 35.24412 delta s (mm): 0.0245 & (mm): 35.24412 delta = (mm): 0.0245
CCD size (mm/pxl): 0.013 X (mm): 17um Ya (mm): 13um CCD zize (mm/pxl): 0.013 ¥z (mm): 17um Y= (mm): 13um
Talims): 33.3ms Ta2(mz): 2us Ta3(ms): Zus Tal(ma): 33.3ms Ta2(me): 2us Ta3(mz): 2us
[Posgition] ¥ (mm): 0.0 ¥ (mm): 0.0 Z (mm): 0.0 [Position] X (mm): 0.0 Y (mm): 0.0 Z (mm): 0.0
[Orientation] ¥:90.0 Y: 90.0 Z: 0.0 [Orientation] ¥:90.0 ¥: 90.0 Z: 0.0
T_LF{lambda): 1 T_LF(lambda): 1
p.s.f: cylinder p.s.f: cylinder
T_V(theta,phi): constant 1 T_¥{theta,phi): constant 1
T_FS(x,y): rect(x/9.3, v/9.3) T_FS(x,y): rect(x/9.3, v/9.3)
T_S{lambdal: 1 T_S({lambda): 1
T_AS(t): rect(t/.0333) T_AS(t): rect(t/.0333)
R(x,¥): rect(x/13umn, y/13um) Rix,y): rect(x/13um, y/13um)
S(Iy: I S(Iy: I
h_sh(t): O-order h_zh(t): 0-order
N_shi{t): none N_sh(t): none
h_a(t): delta(t) h_a(t): delta(t)
N_A(t): none N_A{t): none
h_c(t): delta(t) h_cit): delta(t)
N_C{t): none N_C(t): none
N_S(x,y,t): none N_S(x,y,t): none

Figure 5-4: Categorized parameters in AVS.

each for the left and the right camera (camera parameters), the other for
object-specific parameters as shown in Figure 5-4

For curved object simulation, the depth map is read from a file by
using the “Read DepthMap” command. The depth information stored in
the file is a relative value, Ar(z,y), with respect to the object distance u
which is the shortest distance between the global origin O and the scene

(i.e., min{d;,: = 1,---, N}). The object distance r(z,y) is computed as
d($7y) = Ar($7y) k+u

where £ is the scaling factor option in the option menu popped up by the

94

“Option” command. The format of the depth map file is also specified in

this menu.

When the depth map is loaded, depth information r(z,y) can be
viewed by using the “Depth Map” command which will pop up a window
with depth profile. The value of the depth at each point can then be
viewed on the screen by moving the mouse pointer to the desired location.
In DTI, the value is displayed according to the command line arguments

used.

The parameters can be edited/viewed by the “Edt Param” command
which searches the “Default” field for target window. The target can
be object parameters, left camera parameters, or the right camera pa-
rameters as shown in Figure 5-4. The object parameters contain object
distance and wave length information for general object information;
and V., V,, V;, dt for motion information. The camera parameters are ba-
sically the same as those in IDS except that (i) the object distance and
wave length information are moved to the object parameters window;
and (ii) the camera position and orientation information (O,, O)) are

added.

Another added feature is the “Mode” choice in Figure 5-3 which can
be toggled between MONO and STEREO mode to simulate monocular
and binocular image formation process. In “MONO” mode, “Left Camera”
window will disappear. Therefore, the image will be synthesized in
the “right camera” window by default. All the other commands are

borrowed from IDS and carry the same functions. Besides, the 3-D

95

object generation program described in Chapter 2 is also integrated into

this system as a tool to generate the depth map information r(x, y).

5.4 Simulation Results

In this section, some simulation results are presented to illustrate

the capability of AVS simulator.

5.4.1 Curved Objects

Figure 5-5 gives a simulated image of two striped boxes placed at two
distances. The scene and the depth map are shown in Figure 5-5(a) and
Figure 5-5(b), respectively. Note that, the darker the value the depth
map is coded, the closer the object is to the camera. The horizontal-
striped box is located near the camera, while the vertical-striped box is
located away from the camera. The camera parameters are adjusted
to focus at the vertical-striped box. The resulting image is shown in

Figure 5-5(C).

Another example is the tiger face placed on a cone-shape depth map
as shown in Figure 5-6(a) and Figure 5-6(b), respectively. The depth
range is from 2000mm to 3600mm (inside the cone) and the camera
parameters are adjusted to focus at an object distance of 2000mm. The

resulting image is shown in Figure 5-6(c). Note that, the depth outside

(a) (b) (c)

Figure 5-5: Simulated images for two planar boxes placed at different

distances.

(a) (b) (c)

Figure 5-6: Simulated images for object placed on a cone-shaped depth

map.

97

(a) niy (b) (c) nt;

Figure 5-7: Resampled images in motion simulation.

the cone (white area) is assumed to be infinity. Therefore, a circle is

visible in Figure 5-6(c).

5.4.2 Motion

Figure 5-7 shows the simulated images of moving objects. The
center image is the original one. The left and the right images are
generated with motion vector m; = [0 0 — 2.5m/s lsec| and
me = [0 0 2.5m/s lsec], respectively. All other parameters are

the default ones in Figure 5-4.

The simulation of the shift operation (motion with V, = 0) and the

combined operation are shown in Figure 5-8 with i3 = [100 100 0 Isec]

98

(a) ms (b) n?y

Figure 5-8: Simulated images under shift operation and the general

motion vector.

and my = [100 100 2.5m/s 1lsec|. All other parameters remain the

default ones.

Note that in Figure 5-7(c), Figure 5-8(a) and (b), dark background is
introduced because the object is moved away from camera or part of the

object move out of the field of view as mentioned in Section 5.2.

5.4.3 Stereo

The simulation of the stereo image pairs for the left camera position
O = [-100mm y 2z 90° 90° 0] and the right camera position
0, = [L00mm y. z 90° 90° 0] is shown in Figure 5-9 where

the first row is the image on the left camera, the second row is the

99

(a) (b)

Figure 5-9: Simulation of stereo image pairs.

image on the right camera. In Figure 5-9(a), vy = 2, =y, = 2z, = 0
which corresponds to the shift operation; in Figure 5-9(b), the left lens is
moved toward the object with y; = —100mm, z; = 500mm while the right
camera is moved toward the camera with y; = 100mm, z; = —500mm. The
image resampling and the dark background effect are visible in these

simulations.

100

5.5 Conclusion

In this Chapter, we have implemented the curved object, motion,
and stereo image sensing simulation in the computer simulation pack-
age called Active Vision Simulator. AVS is a natural extension of IDS
presented in the previous Chapter. It can be used to synthesize the
images for research on image restoration, motion analysis, depth from
defocus, and algorithms for solving the correspondence problem in stereo

vision area.

The efforts spent on extending the IDS to AVS is limited — two added
modules on motion and stereo, and some changes in the user-interfaces —
because of the module design and embedded extensibility of our original
design of IDS. Again, AVS can also be easily extended if needed and
can be used by other researchers on the verification of various vision

theories.

101

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we presented the computer modeling and simu-
lation techniques for two computer vision problems — object recognition
and image sensing process. We first focused on the 3-D object identifica-
tion and pose estimation problem in object recognition process. The goal
was to identify an unknown object from the given image and to estimate

the orientation of the object in the scene.

We have successfully modeled and implemented a 3-D object identi-
fication and pose estimation algorithm using a neural network architec-
ture. Feature vectors of the image were extracted using a fixed weight
neural network. These vectors were then fed to a variable weight neural
network for training and identification purpose. The back-propagation

algorithm was used to train the network. A simulation system called

102

Object identification and Pose Estimation Network simulator (OPEN)
was developed which can be used to obtain a configuration for better
identification rate. Once the network is trained, the identification and
pose estimation of the unknown object can be obtained concurrently. The

proposed model is highly parallel and can be realized using hardware.

We also presented a computational model for image sensing and
formation process. This model decouples the photometric and the geo-
metric properties of the object in the scene. It consists of seven functional
blocks, sixteen computational steps, and twenty-seven user controllable
parameters. Based on this model, we have developed a computer simu-
lation system called Image Defocus Simulator (IDS). IDS provides three
user-friendly interfaces. It is efficient, modular, and extensible. IDS is
currently being used by our research group and other research groups in

academic and industrial laboratories.

The computational model for monocular camera system was further
extended to motion simulation and stereo vision system. A computer
simulation system based on the extended model was also developed. This
simulator, called Active Vision Simulator (AVS), inherits all the functions
of the IDS plus the ability to simulate curved objects, moving objects, and

stereo image pairs. AVS is also efficient, modular, and extensible.

To sum up, the theories on the object recognition, image sensing and
formation, motion simulation, and stereo vision have been studied in
this dissertation. We presented a neural network computational model

to solve the problem of 3-D object identification and pose estimation;

103

we also presented a computational model to synthesize images in the
monocular CCD camera system, motion environment, and stereo vision
systems. All the models presented in this dissertation are implemented
and can be easily used/modified by other researchers for their computer

vision applications.

6.2 Future Research

The research described here can be extended in several ways. One
natural extension to AVS is the modeling and simulation of a stereo
camera system where the relative position and orientation of the two
cameras is arbitrary. At present, the AVS is limited to a stereo camera
where the optical axes of the left and the right cameras are parallel.
When the optical axes are not parallel, the scene geometry specified as
input with respect to one camera will have to be transformed using a
translation vector and a rotation matrix to obtain the geometry with
respect to the other camera. Further, ray tracing will be needed to
compute the sensed image near the occlusion boundaries. This extension

is computationally very intensive.

A second extension is a more detailed modeling and simulation of
the various components of a camera system such as the optical system,

CCD sensor, sources of noise, etc. This also increases the computation.

Further extensions include modeling and simulation of color camera

104

105

systems, parallel implementation on parallel/super computers, and effi-
cient modeling and simulation of a large sequence of images to create a
movie of a scene which has multiple objects each moving with different

translational and rotational parameters.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, and Tools, Addison-Wesley, Massachusetts, 1986.

[2] S. T. Barnard and M. A. Fischler, “Computational Stereo,” Comput-
ing Surveys, Vol. 14, No. 4, Dec. 1982.

[3] R. M. Bolle and D. B. Cooper, “Bayesian Recognition of Local 3-D
Shape by Approximating Image Intensity Functions with Quadric
Polynomials,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-6, No. 4, pp. 418-429, July 1984.

[4] M. Born and E. Wolf, Principles of Optics, Sixth edition, Pergamon
Press, Oxford, 1980.

[5] P. Bouthemy and P. Lalande, “Motion Detection in an Image Se-
quence Using Gibbs Distributions,” Proceeding of IEEE Interna-
tional Conference on Acoustic, Speech, and Signal Processing, pp.

1651-1654, May 1989.

106

[6] Y. C. Chen, “Lens Effect on Synthetic Image Generation Based on
Light Particle Theory,” Computer Graphics, pp. 347-366, 1987.

[71 Y. C. Chen, “Synthetic Image Generation for Highly Defocused
Scenes,” in N. Magnenat-Thalmann and D. Thalmann (Eds.), New
Trends in Computer Graphics, Proceeding of CG International’88,
Springer-Verlag, Berlin Heidelberg, pp. 117-125, 1988.

[8] D. Cyganski and J. A. Orr, “Applications of tensor theory to object
recognition and orientation determination,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 662-
673, Nov. 1985.

[9] A. M. Darwish and A. K. Jain, “A Rule Based Approach for Visual
Pattern Inspection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 10, No. 1, pp. 56-68, Jan. 1988.

[10] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analy-
sis, John Wiley & Sons, New York, 1973.

[11] A. R. Edmonds, Angular Momentum in Quantum Mechanics,

Princeton Univ. press. 1974.

[12] E. A. Feibush, M. Levoy, and R. L. Cook, “Synthetic Texturing Using
Digital Filters,” SIGGRAPH 80, pp. 294-301, 1980.

[13] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer
Graphics: Principle and Practice, Second edition, Addison-Wesley,
Massachusetts, 1990.

107

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Book
Co., San Francisco, 1968.

G. Healey and R. Kondepudy, “Modeling and Calibrating CCD Cam-
eras for Illumination Insensitive Machine Vision,” Proceedings of
Optics, Illumination, and Image Sensing for Machine Vision VI,

SPIE Proceedings Conf. 1614, Nov. 1991.

E. Hecht, Optics, Second edition, Addison-Wesley, Massachusetts,
1987.

L. Hodges and D. McAllister, “Stereo and Alternating-Pair Tech-
niques for Display of Computer-Generated Images,” CG&A, 5(9),
pp. 38-45, Sep. 1985.

H. H. Hopkins, “The Frequency Response of a Defocused Optical
System,” Proceeding of Royal Society of London, A 231, pp. 91-103,
1955.

B. K. P. Horn, Robot Vision, McGraw-Hill, New York, 1986.

dJ. J. Hopfield and D. W. Tank, “Neural Computation of Decisions
in Optimization Problems,” Biological Cybernetics, Vol. 52, pp. 141-
152, 1985.

A. K. Jain and R. Hoffman, “Evidence-Based Recognition of 3-D
Objects,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol. 10, No. 6, pp. 783-802, Nov. 1988.

108

[22] J. Konrad and E. Dubois, “Bayesian Estimation of Motion Vector
Fields,” IEEE Transaction on Pattern Analysis and Machine Intel-
ligence, Vol. 14, No. 9, pp. 910-927, Sep. 1992.

[23] E. P. Krotkov, Exploratory Visual Sensing for Determing Spatial
Layout with an Agile Stereo Camera System, Ph.D. dissertation,
Department of Computer and Information Science, University of

Pennsylvania, PA, April 1987.

[24] M. D. Levine, Vision in Man and Machine, McGraw-Hill, New York,
1985.

[25] R. P. Lippmann, “An introduction to computing with Neural nets,”
IEEE ASSP Magazine, April 1987.

[26] Y. Liu and T. S. Huang, “A Linear Algorithm for Determining Mo-
tion and Structure From Line Correspondences,” Computer Vision,

Graphics, and Image Processing, Vol. 44, No. 1, pp. 35-57, 1988.

[27] C.-H. Lo and H.-S. Don, “3-D moment forms : their construction and
application to object identification and positioning,” IEEE Transac-
tion on Pattern Analysis and Machine Intelligence, vol. PAMI-11,
pp. 1053-1064, Oct. 1989.

[28] C.-H. Lo and H.-S. Don, “Pattern Recognition Using 3-D Moments,”
The Tenth International Conference on Pattern Recognition, Atlantic

City, June 16-21, 1990.

109

[29]

[30]

[31]

[32]

[33]

[34]

M.-C. Lu, C.-H. Lo, and H.-S. Don, “3-D Object Identification and
Pose Estimation,” in C.H. Dagli, S. R. T. Kumara, and Y. C. Shin
(Eds.), Intelligent Engineering Systems Through Artificial Neural
Networks, ASME Press, New York, pp.473-478, 1991.

M.-C. Lu, C.-H. Lo, and H.-S. Don, “A Neural Network Approach to
3-D Object Identification and Pose Estimation,” Proceeding of the
IEEE International Joint Conference on Neural Networks, Vol. 3,
pp-2600-2605, Singapore, Nov. 1991.

M.-C. Lu and M. Subbarao, “Image Defocus Simulator: A Soft-
ware Tool,” Technical Report No. 92.05.27, Computer Vision Labo-
ratory, Department of Electrical Engineering, State University of

New York, Stony Brook, May 1992.

D. Murray and B. Buxton, “Scene Segmentation From Visual Motion
Using Global Optimization,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-9, pp. 220-228, March 1987.

G. Neilson and D. Olsen, Jr., “Direct Manipulation Techniques for
3D Objects Using 2-D Locator Devices,” in Proceedings of the 1986
Workshop on Interactive 3D Graphics, ACM, New York, pp. 175-182,
1987.

A.V.Oppenheim and R. W. Schafer, Discrete-time Signal Processing,
Prentice-Hall, Englewood Cliffs, 1989.

110

[35] M. Potmesil and I. Chakravarty, “Synthetic Image Generation with
a Lens and Aperture Camera Model,” ACM Transactions on Graph-
ics, Vol. 1, No. 2, pp. 85-108, April 1982.

[36] A.Reeves and R. Taylor, “Identification of three-dimensional objects
using range information”, IEEE Transaction on Pattern Analysis

and Machine Intelligence, vol. 11, No. 4, pp. 403-410, Apr. 1989.

[37] A. Rosenfeld and A. C. Kak, Digital Picture Processing, Second edi-
tion, Academic Press, New York, 1982.

[38] D. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Inter-
nal Representations by Error Propagation,” in D. Rumelhart and
J. McClelland, Parallel Distributed Processing, Vol. 1 M.I.T Press,
Cambridge, MA. 1986.

[39] D. Rumelhart and J. McClelland, Parallel Distributed Processing,
Vol. 1 M.I.T Press, Cambridge, MA. 1986.

[40] S. D. Roth, “Ray Casting for Modeling Solids,” Computer Graphics
and Image Processing, 18, pp. 109-144, 1982.

[41] F. A. Sadjadi and E. L. Hall, “Three dimensional moment invari-
ants,” IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-2, pp. 127-136, Mar. 1980.

[42] S. A. Shafer, “Automation and Calibration for Robot Vision Sys-
tems,” Technical Report No. CMU-CS-88-147, Computer Science

Department, Carnegie Mellon University, 1988.

111

[43]

[44]

[45]

[46]

[47]

[48]

W. N. Sproson, Colour Science in Television and Display Systems,

Adam Hilger Ltd., Bristol, 1983.

M. Subbarao, “Efficient Depth Recovery Through Inverse Optics,”
In: Freeman H (Ed.) Machine Vision for Inspection and Measure-

ment, Academic Press, Boston, pp 101-126, 1988.

M. Subbarao, “On the Depth Information in the Point Spread Func-
tion of a Defocused Optical System,” Technical Report No. 90.02.07,
Computer Vision Laboratory, Department of Electrical Engineering,

State University of New York, Stony Brook, 1990.

M. Subbarao and M.-C. Lu, “Computer Modeling and Simulation of
Camera Defocus,” Technical Report No. 92.01.16, Computer Vision
Laboratory, Department of Electrical Engineering, State University
of New York, Stony Brook, 1992. (Also appears in Proceedings of
Optics, Illumination, and Image Sensing for Machine Vision VII,
SPIE Proceedings Conf. 1822, Boston, Nov. 1992)

M. Subbarao and A. Nikzad, “Model for Image Sensing and Digiti-
zation in Computer Vision,” Proceedings of SPIE conference, OE/90,
Boston, Nov. 1990.

M. Subbarao and G. Surya, “Application of Spatial-Domain Con-
volution/Deconvolution Transform for Determining Distance from
Image Defocus,” Technical Report No. 92.01.18, Computer Vision
Laboratory, Department of Electrical Engineering, State Univer-

sity of New York, Stony Brook, 1992. (Also appears in Proceedings

112

113

of Optics, Illumination, and Image Sensing for Machine Vision VII,
SPIE Proceedings Conf. 1822, Boston, Nov. 1992)

[49] M. Subbarao and T.-C. Wei, “Depth From Defocus and Rapid Aut-
ofocusing: A Practical Approach,” Technical Report No. 92.01.17,
Computer Vision Laboratory, Department of Electrical Engineer-
ing, State University of New York, Stony Brook. (An abbreviated
version appears in Proceedings of the IEEE Computer Vision and

Pattern Recognition, pp. 773-776, June 1992)

[50] C. F. R. Weiman, “Continuous Anti-Aliased Rotation and Room of
Raster Images,” SIGGRAPH 80, pp. 286-293, 1980.

[51] J. Weng, T. Huang, and N. Ahuja, “Motion and Structure from Line
Correspondences: Closed-Form Solution, Uniqueness, and Opti-

mization,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 14, No. 3, pp. 318-336, March 1992.

Appendix A

Sample Input Description File for 3-D

Object Generation

In this Appendix, a sample input description file for 3-D object gen-
eration using ray casting algorithm is included. The output range image
is the “depth stop” machine part as shown in the first row of Figure 2-8,
corresponding to the composite tree of Figure 2-5. The first entry in
this file is the number of nodes in the tree. This 3-D object generation

program is available as a tool in AVS simulation system.

17

dept h_st op
0
conposite
di fference
cone

0. 0. O.

2. 2. 2.

0. 0. 120.
ds

00
conposite

114

di fference
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

01
primtive
uni on
cyl i nder
0. 90. O.

4.25 4.25 40.

7. 31. -4.
ds

000
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

001
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

0000
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

115

0001
primtive
uni on

bl ock

0. 0. O.
35. 6. 24.

-30. -12. -12.

ds

0010
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

0011
primtive
uni on
cyl i nder
0. 0. O.
9. 9. 28.
-39. -9. -14.
ds

00000
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

00001
conposite
uni on
cone

0. 0. O.
1. 1. 1.

116

0. 0. O.

ds

00100
primtive
uni on
cyl i nder

0. 0. O.
20. 20. 28.

25. -9. -14.

ds

00101
primtive
uni on

bl ock

0. 0. O.

4. 32. 28.
23. 9. -14.
ds

000000
primtive
uni on
cyl i nder

0. 0. O.
30. 30. 24.

25. -9. -12.

ds

000001
primtive
uni on

bl ock

0. 0. O.
36. 28. 24.
7. 11. -12.
ds

000010
primtive
uni on

bl ock

117

0. 0. O.
64. 32. 6.

-39. -25. -3.

ds

000011
primtive
uni on
cyl i nder

0. 0. O.
16. 16. 24.

-39. -9. -12.

118

Appendix B

The Point Spread Function From

Diffraction model

In this appendix, an expression is derived for the point spread func-
tion of an optical system based on the Fraunhofer diffraction princi-
ple. Most of the derivation here follows from Born and Wolf[4], Chen[6],
Hopkins[18], and Subbarao[45]. The derivation here integrates and sup-

plements the relevant material from there for the case of a CCD camera.

Figure B-1 shows the diagram used for image formation where ¢

y
s
2R /
W
* /A Q/ r /L|J = X
[e/ I ~ A r4 s | IV]
\t ------- 9/ f R y
| e
ﬁne DrT:gctor
u of gperture v 5

Figure B-1: Image formation using diffraction model.

119

is the unit vector from O to (). The derivation makes the following
assumptions:

(B.1) Point P lies in the neighborhood of point (',

(B.2) f>R> A,

(B.3) > 1,

(B.4) Huygens-Fresnel principle is used, and

(B.5) Normal incidence of point light source.

Note that, the last assumption is used to simplify the derivations. It can

be removed without loss of generality.

In Figure B-1, the field at point P can be expressed as:

N . isz
U(P) = — LA it / / € s (B.1)
)\TO W T2

where W is the wavefront originating at O and % is the amplitude at ()
of the incident wave. Since only small angles are involved, we have, to a

good approximation:

re — 1o = —q- I (B.2)

Also, dS = v? d§) (d€) is the element of solid angle that dS subtends at O),

the field at P can be approximated by:

N . ikTg
U(p) ~ LA ik / / Y (B.3)
)\’T‘O Q T9
~ A / / e~k T gq) (B.4)
A Q

This is the Debye integral which expresses the field at P as a super-

position of plane waves of different directions of propagation. From the

120

assumptions /> R > X and % > 1, the Debye integral can be evaluated
using the following approach.
Let the coordinates of P and) be (z,y,z) and (¢, 7, (), respectively.

In polar notation,

r = rsiny ¢ = Rpsind
(B.5)

y = rcosy n = Rpcost

where Rp is the length of QQ’; r is the length of PO’; and 0 < p < 1. Since

@ lies on the spherical wave-front W, we have

1R22
C:_\/'UQ—RQPQZ—'U [1—5 p + -

v2 2 v?
Therefore,
L » 2r (R 2r 1 /27 R\? ,
kG-l = ~ <—r) pcos (6 —) — V13 (TZ) (;) p (B.7)
Introducing the dimensionless variables
21 (R\? 27 (R
w=3(3) = w=(3)r (B8
we have
Lo v\ 2 I,
kq- 1= wvopcos (0 —) — (E) ug + 5 Uop (B.9)

From Equation (B.4) and df2 = W, we have:

;2 w2 1 p27 . 1 2
U(P) = —li}?el(ﬁ) “0/0/0 e—l[vopCOS(ﬁ—ll/)-kguop]pdpdg (B.10)
2 RQA (v)2 1 1. 2
- W)Lw (%) uo/o Jo (vop) €72"" pdp (B.11)
N 2 w2
& B A (5 [0 (uo, vo) — i (uo, vo)] (B.12)

Av?

121

where J; is the Bessel function of the first kind of order 0, and

1 1

C(ug,vo) = 2/0 Jo(vgp) cos <§u0p2>pdp
1 /1

S(ug,vg) = 2/0 Jo(vop) sin <§u0p2)pdp

C(up, vo) and S(uo, vo) can
Un(uo, ‘Uo) =

Vi(ug,vo) = i

and the identities

The results are:

C(UO, ’Uo) =

S(UO, ’Uo) =

d
— [x_”Jn(x)] = —a " Jy(x)
dx
2cos & 2sin &
: Us (uo, vo) + : Us(ug, vo),
Up Ug
2 v2 2sin &
— sin .i S0y Vo(uo, vo)
Ug ZUO Ug
2cos &
- Uo 1(’LL0, 'UO),
2sin & 2cos &
: 1(u07 ’UO) - 2(u07 ’00)7
Ug Ug
2 2 2 %o
— cos _U—O cos o(uo, vo)
Ug Zuo Ug
2sin %
- : 1(u07 '00)7

(B.13)

(B.14)

be evaluated in terms of the Lommel functions

(B.15)
(B.16)
(B.17)
(B.18)

%<1

0 (B.19)

=% > 1

o

%<1

Y (B.20)

120 > 1

o

The intensity in the neighborhood of the focus can be computed as:
](’Uo, ‘Uo) = U(P)U(P)*

2 ;
I <—) [UF (o, vo) + Uz (uo, v0)] , |?| <1
0

— (B.21)

9 2
Iy <—) {1+ Vg (uo, vo) + V¥ (uo, o)

Uo
1 212
— 2Vo(ug, vo) cos [E (uO + U—O)]

o
1 v2 '

— 2Vi(up, vo) sin [— (uo + U—O)] 1, |@| > 1
2 Uo Vo

wR2|A|
A2

where [y = ()? is the intensity at the geometrical focus point v, =
vg = 0. This is the point spread function using Fraunhofer diffraction

principle.

The relationships between the point spread function in equation (B.21)

and the camera parameters can be derived as follows:

Using the geometrical relationship in Figure B-1, we have

mQ = 6% + v? + 26v cos (B.22)

2
For small o, cosa & 1 — £, Therefore,

— o R?

If\%

7| < 1, O'Q) can be approximated by

S SR?

123

From Rayleigh’s tolerance on defocusing, the amount of focus defect A

can be defined as A = % Since

Wiae = OA—0Q = s —0'Q (B.25)

the amount of focus defect can be computed as

4 S R?

In terms of lens data, we have the following parameters to compute

the point spread function ~(r) of the camera system:

I N SR T
eV (}—a—;) (B:27)
ug = 7wA (B.28)
v =)\7;‘};1“ (B.29)
h(r) = I(ug,vo) (B.30)

where r = /22 + y2.

124

