
Formal Syntax
and

Semantics of
Programming Languages

A Laboratory Based Approach

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York • Don Mills, Ontario

Wokingham, England • Amsterdam • Bonn • Sydney • Singapore

Tokyo • Madrid • San Juan • Milan • Paris

Kenneth Slonneger
University of Iowa

Barry L. Kurtz
Louisiana Tech University

Senior Acquisitions Editor: Tom Stone
Assistant Editor: Kathleen Billus
Production Coordinator: Marybeth Mooney
Cover Designer: Diana C. Coe
Manufacturing Coordinator: Evelyn Beaton

The procedures and applications presented in this book have been included
for their instructional value. They have been tested with care but are not
guaranteed for any particular purpose. The publisher does not offer any war-
ranties or representations, nor does it accept any liabilities with respect to
the programs or applications.

Reproduced by Addison-Wesley from camera-ready copy supplied by the
authors.

Copyright © 1995 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.

ISBN 0-201-65697-3

1234 5 6 7 8 9 10-MA-979695

Library of Congr ess Cataloging-in-Publication Data

Slonneger, Kenneth.
Formal syntax and semantics of programming languages: a laboratory
based approach / Kenneth Slonneger, Barry L. Kurtz.
p.cm.
Includes bibliographical references and index.
ISBN 0-201-65697-3
1.Pr ogramming languages (Electronic computers)--Syntax.
2.Pr ogramming languages (Electronic computers)--Semantics.
I. Kurtz, Barry L. II. Title.
QA76.7.S59 1995
005.13'1--dc20 94-4203

CIP

Dedications

To my father, Robert

Barry L. Kurtz

To Marybeth and my family

Ken Slonneger

v

Preface

This text developed out of our experiences teaching courses covering the
formal semantics of programming languages. Independently we both devel-
oped laboratory exercises implementing small programming languages in
Prolog following denotational definitions. Prolog proved to be an excellent
tool for illustrating the formal semantics of programming languages. We
found that these laboratory exercises were highly successful in motivating
students since the hands-on experience helped demystify the study of for-
mal semantics. At a professional meeting we became aware of each other’s
experiences with a laboratory approach to semantics, and this book evolved
from that conference.

Although this text has been carefully written so that the laboratory activities
can be omitted without loss of continuity, we hope that most readers will try
the laboratory approach and experience the same success that we have ob-
served in our classes.

Overall Goals

We have pursued a broad spectrum of definitional techniques, illustrated
with numerous examples. Although the specification methods are formal,
the presentation is “gentle”, providing just enough in the way of mathemati-
cal underpinnings to produce an understanding of the metalanguages. We
hope to supply enough coverage of mathematics and formal methods to jus-
tify the definitional techniques, but the text is accessible to students with a
basic grounding in discrete mathematics as presented to undergraduate
computer science students.

There has been a tendency in the area of formal semantics to create cryptic,
overly concise semantic definitions that intimidate students new to the study
of programming languages. The emphasis in this text is on clear notational
conventions with the goals of readability and understandability foremost in
our minds.

As with other textbooks in this field, we introduce the basic concepts using
mini-languages that are rich enough to illustrate the fundamental concepts,
yet sparse enough to avoid being overwhelming. We have named our mini-
languages after birds.

vi PREFACE

Wren is a simple imperative language with two types, integer and Bool-
ean, thus allowing for context-sensitive type and declaration checking. It
has assignment, if, while, and input/output commands.

Pelican, a block-structured, imperative language, is an extension of Wren
containing the declaration of constants, anonymous blocks, procedures,
and recursive definitions.

The description of continuations in denotational semantics requires a modi-
fied version of Wren with goto statements, which we call Gull. This mini-
language can be skipped without loss of continuity if continuations are not
covered.

Organization of the Text

The primary target readership of our text is first-year graduate students,
although by careful selection of materials it is also accessible to advanced
undergraduate students. The text contains more material than can be cov-
ered in a one semester course. We have provided a wide variety of tech-
niques so that instructors may choose materials to suit the particular needs
of their students.

Dependencies between chapters are indicated in the graph below. We have
purposely attempted to minimize mutual interdependencies and to make
our presentation as broad as possible.

10

1

13

119

87

65432 128

Only sections 2 and 3 of Chapter 8 depend on Chapter 5. The text contains
a laboratory component that we describe in more detail in a moment. How-
ever, materials have been carefully organized so that no components of the
non-laboratory sections of the text are dependent on any laboratory activi-

PREFACE vii

ties. All of the laboratory activities except those in Chapter 6 depend on
Chapter 2.

Overview

The first four chapters deal primarily with the syntax of programming lan-
guages. Chapter 1 treats context-free syntax in the guise of BNF grammars
and their variants. Since most methods of semantic specification use ab-
stract syntax trees, the abstract syntax of languages is presented and con-
trasted with concrete syntax.

Language processing with Prolog is introduced in Chapter 2 by describing a
scanner for Wren and a parser defined in terms of Prolog logic grammars.
These utilities act as the front end for the prototype context checkers, inter-
preters, and translators developed later in the text. Extensions of BNF gram-
mars that provide methods of verifying the context-sensitive aspects of pro-
gramming languages—namely, attribute grammars and two-level grammars—
are described in Chapters 3 and 4.

Chapters 5 through 8 are devoted to semantic formalisms that can be clas-
sified as operational semantics. Chapter 5 introduces the lambda calculus
by describing its syntax and the evaluation of lambda expressions by reduc-
tion rules. Metacircular interpreters are consider in Chapter 6, which intro-
duces the self-definition of programming languages.

Chapter 7 describes the translation of Wren into assembly language using
an attribute grammar that constructs the target code as a program is parsed.
Two well-known operational formalisms are treated in Chapter 8: the SECD
machine—an abstract machine for evaluating the lambda calculus—and
structural operational semantics—an operational methodology for describ-
ing the semantics of programming languages in terms of logical rules of
inference. We use this technique to specify the semantics of Wren formally.

The last five chapters present three traditional methods of defining the se-
mantics of programming languages formally and one recently proposed tech-
nique. Denotational semantics, one of the most complete and successful
methods of specifying a programming language, is covered in Chapter 9.
Specifications of several languages are provided, including a calculator lan-
guage, Wren, Pelican, and Gull, a language whose semantics requires con-
tinuation semantics. Denotational semantics is also used to check the con-
text constraints for Wren. Chapter 10 deals with the mathematical founda-
tions of denotational semantics in domain theory by describing the data
structures employed by denotational definitions. Chapter 10 also includes a
justification for recursive definitions via fixed-point semantics, which is then
applied in lambda calculus evaluation.

viii PREFACE

Axiomatic semantics, dealt with in Chapter 11, has become an important
component of software development by means of proofs of correctness for
algorithms. The approach here presents axiomatic specifications of Wren
and Pelican, but the primary examples involve proofs of partial correctness
and termination. The chapter concludes with a brief introduction to using
assertions as program specifications and deriving program code based on
these assertions. Chapter 12 investigates the algebraic specification of ab-
stract data types and uses these formalisms to specify the context constraints
and the semantics of Wren. Algebraic semantics also provides an explana-
tion of abstract syntax.

Chapter 13 introduces a specification method, action semantics, that has
been proposed recently in response to criticisms arising from the difficulty
of using formal methods. Action semantics resembles denotational seman-
tics but can be viewed in terms of operational behavior without sacrificing
mathematical rigor. We use it to specify the semantics of the calculator lan-
guage, Wren, and Pelican. The text concludes with two short appendices
introducing the basics of programming in Prolog and Scheme, which is used
in Chapter 6.

The Laboratory Component

A unique feature of this text is the laboratory component. Running through-
out the text is a series of exercises and examples that involve implementing
syntactic and semantic specifications on real systems. We have chosen Prolog
as the primary vehicle for these implementations for several reasons:

1. Prolog provides high-level programming enabling the construction of deri-
vation trees and abstract syntax trees as structures without using pointer
programming as needed in most imperative languages.

2. Most Prolog systems provide a programming environment that is easy to
use, especially in the context of rapid prototyping; large systems can be
developed one predicate at a time and can be tested during their con-
struction.

3. Logic programming creates a framework for drawing out the logical prop-
erties of abstract specifications that encourages students to approach
problems in a disciplined and logical manner. Furthermore, the specifi-
cations described in logic become executable specifications with Prolog.

4. Prolog’s logic grammars provide a simple-to-use parser that can serve as
a front end to language processors. It also serves as a direct implemen-
tation of attribute grammars and provides an immediate application of
BNF specifications of the context-free part of a language’s grammar.

PREFACE ix

An appendix covering the basics of Prolog is provided for students unfamil-
iar with logic programming.

Our experience has shown that the laboratory practice greatly enhances the
learning experience. The only way to master formal methods of language
definition is to practice writing and reading language specifications. We in-
volve students in the implementation of general tools that can be applied to
a variety of examples and that provide increased motivation and feedback to
the students. Submitting specifications to a prototyping system can un-
cover oversights and subtleties that are not apparent to a casual reader. As
authors, we have frequently used these laboratory approaches to help “de-
bug” our formal specifications!

Laboratory materials found in this textbook are available on the Internet via
anonymous ftp from ftp.cs.uiowa.edu in the subdirectory pub/slonnegr.

Laboratory Activities
Chapter 2: Scanning and parsing Wren

Chapter 3: Context checking Wren using an attribute grammar

Chapter 4: Context checking Hollerith literals using a two-level grammar

Chapter 5: Evaluating the lambda calculus using its reduction rules

Chapter 6: Self-definition of Scheme (Lisp)

Self-definition of Prolog

Chapter 7: Translating (compiling) Wren programs following an attribute
grammar

Chapter 8: Interpreting the lambda calculus using the SECD machine

Interpreting Wren according to a definition using structural
operational semantics

Chapter 9: Interpreting Wren following a denotational specification

Chapter 10: Evaluating a lambda calculus that includes recursive defini-
tions

Chapter 12: Interpreting Wren according to an algebraic specification of
the language

Chapter 13: Translating Pelican programs into action notation following a
specification in action semantics.

x PREFACE

Acknowledgments

We would like to thank Addison-Wesley for their support in developing this
text—in particular, Tom Stone, senior editor for Computer Science, Kathleen
Billus, assistant editor, Marybeth Mooney, production coordinator, and the
many other people who helped put this text together.

We would like to acknowledge the following reviewers for their valuable feed-
back that helped us improve the text: Doris Carver (Louisiana State Univer-
sity), Art Fleck (University of Iowa), Ray Ford (University of Montana), Phokion
Kolaitis (Santa Cruz), William Purdy (Syracuse University), and Roy Rubinstein
(Worcester Polytech). The comments and suggestions of a number of stu-
dents contributed substantially to the text; those students include Matt Clay,
David Frank, Sun Kim, Kent Lee, Terry Letsche, Sandeep Pal, Ruth Ruei,
Matt Tucker, and Satish Viswanantham.

We used Microsoft Word and Aldus PageMaker for the Macintosh to develop
this text. We owe a particular debt to the Internet, which allowed us to ex-
change and develop materials smoothly. Finally, we each would like to thank
our respective family members whose encouragement and patience made
this text possible.

Ken Slonneger
Barry L. Kurtz

xi

Contents

Chapter 1
SPECIFYING SYNTAX 1

1.1 GRAMMARS AND BNF 2
Context-Free Grammars 4
Context-Sensitive Grammars 8
Exercises 8

1.2 THE PROGRAMMING LANGUAGE WREN 10
Ambiguity 12
Context Constraints in Wren 13
Semantic Errors in Wren 15
Exercises 16

1.3 VARIANTS OF BNF 18
Exercises 20

1.4 ABSTRACT SYNTAX 21
Abstract Syntax Trees 21
Abstract Syntax of a Programming Language 23
Exercises 29

1.5 FURTHER READING 30

Chapter 2
INTRODUCTION TO LABORATORY ACTIVITIES 31

2.1 SCANNING 33
Exercises 39

2.2 LOGIC GRAMMARS 40
Motivating Logic Grammars 41
Improving the Parser 44
Prolog Grammar Rules 46
Parameters in Grammars 47
Executing Goals in a Logic Grammar 49
Exercises 49

2.3 PARSING WREN 50
Handling Left Recursion 52
Left Factoring 55
Exercises 56

2.4 FURTHER READING 57

Chapter 3
ATTRIBUTE GRAMMARS 59

3.1 CONCEPTS AND EXAMPLES 59
Examples of Attribute Grammars 60
Formal Definitions 66

xii CONTENTS

Semantics via Attribute Grammars 67
Exercises 71

3.2 AN ATTRIBUTE GRAMMAR FOR WREN 74
The Symbol Table 74
Commands 80
Expressions 82
Exercises 90

3.3 LABORATORY: CONTEXT CHECKING WREN 92
Declarations 96
Commands 99
Expressions 101
Exercises 102

3.4 FURTHER READING 103

Chapter 4
TWO-LEVEL GRAMMARS 105

4.1 CONCEPTS AND EXAMPLES 105
Fortran String Literals 111
Derivation Trees 113
Exercises 115

4.2 A TWO-LEVEL GRAMMAR FOR WREN 116
Declarations 117
Commands and Expressions 124
Exercises 132

4.3 TWO-LEVEL GRAMMARS AND PROLOG 132
Implementing Two-Level Grammars in Prolog 133
Two-Level Grammars and Logic Programming 136
Exercises 138

4.4 FURTHER READING 138

Chapter 5
THE LAMBDA CALCULUS 139

5.1 CONCEPTS AND EXAMPLES 140
Syntax of the Lambda Calculus 140
Curried Functions 143
Semantics of Lambda Expressions 145
Exercises 146

5.2 LAMBDA REDUCTION 147
Reduction Strategies 151
Correlation with Parameter Passing 155
Constants in the Pure Lambda Calculus 156
Functional Programming Languages 158
Exercises 158

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR 160
Scanner and Parser 160
The Lambda Calculus Evaluator 162
Exercises 165

CONTENTS xiii

5.4 FURTHER READING 166

Chapter 6
SELF-DEFINITION OF PROGRAMMING LANGUAGES 167

6.1 SELF-DEFINITION OF LISP 167
Metacircular Interpreter 169
Running the Interpreter 174
Exercises 178

6.2 SELF-DEFINITION OF PROLOG 179
Displaying Failure 181
Exercises 185

6.3 FURTHER READING 185

Chapter 7
TRANSLATIONAL SEMANTICS 187

7.1 CONCEPTS AND EXAMPLES 187
A Program Translation 189
Exercises 191

7.2 ATTRIBUTE GRAMMAR CODE GENERATION 191
Expressions 193
Commands 201
Exercises 213

7.3 LABORATORY: IMPLEMENTING CODE GENERATION 215
Commands 217
Expressions 219
Exercises 221

7.4 FURTHER READING 222

Chapter 8
TRADITIONAL OPERATIONAL SEMANTICS 223

8.1 CONCEPTS AND EXAMPLES 224
VDL 226
Exercises 227

8.2 SECD: AN ABSTRACT MACHINE 228
Example 231
Parameter Passing 232
Static Scoping 233
Exercises 234

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE 235
Exercises 237

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION 238
Specifying Syntax 239
Inference Systems and Structural Induction 242
Exercises 244

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS 245
Semantics of Expressions in Wren 245

xiv CONTENTS

Example 248
Outcomes 250
Exercises 252

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS 253
A Sample Computation 256
Semantic Equivalence 260
Natural Semantics 261
Exercises 262

8.7 LABORATORY: IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS 264
Commands 265
Expressions 267
Top-Level Driver 268
Exercises 269

8.8 FURTHER READING 269

Chapter 9
DENOTATIONAL SEMANTICS 271

9.1 CONCEPTS AND EXAMPLES 271
The Syntactic World 272
The Semantic World 273
Compositionality 276
Exercises 277

9.2 A CALCULATOR LANGUAGE 277
Calculator Semantics 280
Semantic Functions 282
A Sample Calculation 283
Exercises 284

9.3 THE DENOTATIONAL SEMANTICS OF WREN 285
Semantic Domains 286
Language Constructs in Wren 288
Auxiliary Functions 290
Semantic Equations 290
Error Handling 293
Semantic Equivalence 294
Input and Output 294
Elaborating a Denotational Definition 296
Exercises 302

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS 304
Exercises 309

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS 310
Environments 311
Stores 312
Semantic Functions 313
Semantic Equations 316
Procedures 318
Exercises 321

CONTENTS xv

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX 323
Exercises 327

9.7 CONTINUATION SEMANTICS 328
Continuations 331
The Programming Language Gull 333
Auxiliary Functions 335
Semantic Equations 336
The Error Continuation 336
Exercises 338

9.8 FURTHER READING 339

Chapter 10
DOMAIN THEORY AND FIXED-POINT SEMANTICS 341

10.1 CONCEPTS AND EXAMPLES 341
Recursive Definitions of Functions 342
Recursive Definitions of Sets (Types) 343
Modeling Nontermination 344
Exercises 345

10.2 DOMAIN THEORY 345
Elementary Domains 348
Product Domains 349
Sum Domains (Disjoint Unions) 351
Function Domains 355
Continuity of Functions on Domains 361
Exercises 363

10.3 FIXED-POINT SEMANTICS 365
First Step 366
Second Step 368
Continuous Functionals 374
Fixed points for Nonrecursive Functions 379
Revisiting Denotational Semantics 380
Fixed-Point Induction 382
Exercises 384

10.4 LABORATORY: RECURSION IN THE LAMBDA CALCULUS 388
Conditional Expressions 390
Paradoxical Combinator 390
Fixed-Point Identity 392
Exercises 393

10.5 FURTHER READING 394

Chapter 11
AXIOMATIC SEMANTICS 395

11.1 CONCEPTS AND EXAMPLES 395
Axiomatic Semantics of Programming Languages 396

11.2 AXIOMATIC SEMANTICS FOR WREN 398
Assignment Command 398
Input and Output 400

xvi CONTENTS

Rules of Inference 401
While Command and Loop Invariants 405
More on Loop Invariants 408
Nested While Loops 410
Exercises 415

11.3 AXIOMATIC SEMANTICS FOR PELICAN 418
Blocks 420
Nonrecursive Procedures 422
Recursive Procedures 425
Exercises 429

11.4 PROVING TERMINATION 432
Steps in Showing Termination 433
Termination of Recursive Procedures 435
Exercises 436

11.5 INTRODUCTION TO PROGRAM DERIVATION 437
Table of Cubes 437
Binary Search 440
Exercises 441

11.6 FURTHER READING 442

Chapter 12
ALGEBRAIC SEMANTICS 443

12.1 CONCEPTS AND EXAMPLES 444
A Module for Truth Values 446
Module Syntax 447
A Module for Natural Numbers 448
A Module for Characters 452
A Parameterized Module and Some Instantiations 453
A Module for Finite Mappings 456
Exercises 459

12.2 MATHEMATICAL FOUNDATIONS 460
Ground Terms 461
Σ-Algebras 461
A Congruence from the Equations 463
The Quotient Algebra 465
Homomorphisms 466
Consistency and Completeness 467
Exercises 469

12.3 USING ALGEBRAIC SPECIfiCATIONS 471
Data Abstraction 471
A Module for Unbounded Queues 472
Implementing Queues as Unbounded Arrays 474
Verification of Queue Axioms 477
ADTs As Algebras 477
Abstract Syntax and Algebraic Specifications 481
Exercise 485

CONTENTS xvii

12.4 ALGEBRAIC SEMANTICS FOR WREN 487
Types and Values in Wren 488
Abstract Syntax for Wren 489
A Type Checker for Wren 490
An Interpreter for Wren 494
A Wren System 498
Exercises 499

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS 499
Module Booleans 500
Module Naturals 501
Declarations 503
Commands 503
Expressions 505
Exercises 505

12.6 FURTHER READING 506

Chapter 13
ACTION SEMANTICS 507

13.1 CONCEPTS AND EXAMPLES 508
Data and Sorts 511
Yielders 514
Actions 515
The Functional Facet 515
The Imperative Facet 518
Exercises 520

13.2 ACTION SEMANTICS OF A CALCULATOR 522
Semantic Functions 523
Semantic Equations 524
A Sample Calculation 528
Exercises 530

13.3 THE DECLARATIVE FACET AND WREN 531
The Programming Language Wren 534
Exercises 540

13.4 THE REFLECTIVE FACET AND PELICAN 541
The Reflective Facet and Procedures 545
Procedures Without Parameters 547
Procedures With A Parameter 548
Recursive Definitions 550
Translating to Action Notation 551
Exercises 558

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION 559
Exercises 563

13.6 FURTHER READING 563

xviii CONTENTS

Appendix A
LOGIC PROGRAMMING WITH PROLOG 565

Prolog 566
BNF Syntax for Prolog 568
A Prolog Example 569
Predefined Predicates 571
Recursion in Prolog 572
Control Aspects of Prolog 574
Lists in Prolog 575
Sorting in Prolog 581
The Logical Variable 582
Equality and Comparison in Prolog 583
Input and Output Predicates 585

Appendix B
FUNCTIONAL PROGRAMMING WITH SCHEME 587

Lisp 588
Scheme Syntax 589
Functions on S-expressions 590
Lists in Scheme 591
Syntax for Functions 592
Scheme Evaluation 593
Special Forms 596
Defining Functions in Scheme 596
Recursive Definitions 598
Lambda Notation 599
Recursive Functions on Lists 599
Scope Rules in Scheme 603
Proving Correctness in Scheme 605
Higher-Order Functions 606
Currying 608
Tail Recursion 609

Bibliography 611

Index 625

1

Chapter 1
SPECIFYING SYNTAX

Language provides a means of communication by sound and written
symbols. Human beings learn language as a consequence of their life
experiences, but in linguistics—the science of languages—the forms

and meanings of languages are subjected to a more rigorous examination.
This science can also be applied to the subject of this text, programming
languages. In contrast to the natural languages, with which we communi-
cate our thoughts and feelings, programming languages can be viewed as
artificial languages defined by men and women initially for the purpose of
communicating with computers but, as importantly, for communicating al-
gorithms among people.

Many of the methods and much of the terminology of linguistics apply to
programming languages. For example, language definitions consist of three
components:

1. Syntax refers to the ways symbols may be combined to create well-formed
sentences (or programs) in the language. Syntax defines the formal rela-
tions between the constituents of a language, thereby providing a struc-
tural description of the various expressions that make up legal strings in
the language. Syntax deals solely with the form and structure of symbols
in a language without any consideration given to their meaning.

2. Semantics reveals the meaning of syntactically valid strings in a lan-
guage. For natural languages, this means correlating sentences and
phrases with the objects, thoughts, and feelings of our experiences. For
programming languages, semantics describes the behavior that a com-
puter follows when executing a program in the language. We might dis-
close this behavior by describing the relationship between the input and
output of a program or by a step-by-step explanation of how a program
will execute on a real or an abstract machine.

3. Pragmatics alludes to those aspects of language that involve the users of
the language, namely psychological and sociological phenomena such as
utility, scope of application, and effects on the users. For programming
languages, pragmatics includes issues such as ease of implementation,
efficiency in application, and programming methodology.

1

2 CHAPTER 1 SPECIFYING SYNTAX

Syntax must be specified prior to semantics since meaning can be given only
to correctly formed expressions in a language. Similarly, semantics needs to
be formulated before considering the issues of pragmatics, since interaction
with human users can be considered only for expressions whose meaning is
understood. In the current text, we are primarily concerned with syntax and
semantics, leaving the subject of pragmatics to those who design and imple-
ment programming languages, chiefly compiler writers. Our paramount goal
is to explain methods for furnishing a precise definition of the syntax and
semantics of a programming language.

We begin by describing a metalanguage for syntax specification called BNF.
We then use it to define the syntax of the main programming language em-
ployed in this text, a small imperative language called Wren. After a brief look
at variants of BNF, the chapter concludes with a discussion of the abstract
syntax of a programming language.

At the simplest level, languages are sets of sentences, each consisting of a
finite sequence of symbols from some finite alphabet. Any really interesting
language has an infinite number of sentences. This does not mean that it has
an infinitely long sentence but that there is no maximum length for all the
finite length sentences. The initial concern in describing languages is how to
specify an infinite set with notation that is finite. We will see that a BNF
grammar is a finite specification of a language that may be infinite.

1.1 GRAMMARS AND BNF

Formal methods have been more successful with describing the syntax of
programming languages than with explaining their semantics. Defining the
syntax of programming languages bears a close resemblance to formulating
the grammar of a natural language, describing how symbols may be formed
into the valid phrases of the language. The formal grammars that Noam
Chomsky proposed for natural languages apply to programming languages
as well.

Definition : A grammar < Σ,N,P,S> consists of four parts:

1. A finite set Σ of terminal symbols , the alphabet of the language, that are
assembled to make up the sentences in the language.

2. A finite set N of nonter minal symbols or syntactic categories , each of
which represents some collection of subphrases of the sentences.

3. A finite set P of productions or rules that describe how each nonterminal
is defined in terms of terminal symbols and nonterminals. The choice of

3

nonterminals determines the phrases of the language to which we ascribe
meaning.

4. A distinguished nonterminal S, the start symbol , that specifies the prin-
cipal category being defined—for example, sentence or program. ❚

In accordance with the traditional notation for programming language gram-
mars, we represent nonterminals with the form “<category-name>” and pro-
ductions as follows:

<declaration> ::= var <variable list> : <type> ;

where “var”, “:” , and “;” are terminal symbols in the language. The symbol
“::=” is part of the language for describing grammars and can be read “is
defined to be” or “may be composed of ”. When applied to programming lan-
guages, this notation is known as Backus-Naur For m or BNF for the re-
searchers who first used it to describe Algol60. Note that BNF is a language
for defining languages—that is, BNF is a metalanguage . By formalizing syn-
tactic definitions, BNF greatly simplifies semantic specifications. Before con-
sidering BNF in more detail, we investigate various forms that grammars
may take.

The vocabulary of a grammar includes its terminal and nonterminal sym-
bols. An arbitrary production has the form α ::= β where α and β are strings
of symbols from the vocabulary, and α has at least one nonterminal in it.
Chomsky classified grammars according to the structure of their produc-
tions, suggesting four forms of particular usefulness, calling them type 0
through type 3.

Type 0: The most general grammars, the unrestricted grammars , require
only that at least one nonterminal occur on the left side of a rule,
“α ::= β”—for example,

a <thing> b ::= b <another thing>.

Type 1: When we add the restriction that the right side contains no fewer
symbols than the left side, we get the context-sensitive gram-
mars—for example, a rule of the form

<thing> b ::= b <thing>.

Equivalently, context-sensitive grammars can be built using only
productions of the form “α γ ::= αβγ”, where is a
nonterminal, α, β, and γ are strings over the vocabulary, and β is
not an empty string. These rules are called context-sensitive be-
cause the replacement of a nonterminal by its definition depends
on the surrounding symbols.

Type 2: The context-fr ee grammars prescribe that the left side be a single
nonterminal producing rules of the form “<A> ::= α”, such as

1.1 GRAMMARS AND BNF

4 CHAPTER 1 SPECIFYING SYNTAX

<expression> ::= <expression> * <term>

where “* ” is a terminal symbol. Type 2 grammars correspond to
the BNF grammars and play a major role in defining programming
languages, as will be described in this chapter.

Type 3: The most restrictive grammars, the regular grammars , allow only
a terminal or a terminal followed by one nonterminal on the right
side—that is, rules of the form “<A> ::= a” or “<A> ::= a <A>”. A
grammar describing binary numerals can be designed using the
format of a regular grammar:

<binary numeral> ::= 0

<binary numeral> ::= 1

<binary numeral> ::= 0 <binary numeral>

<binary numeral> ::= 1 <binary numeral>.

The class of regular BNF grammars can be used to specify identifi-
ers and numerals in most programming languages.

When a nonterminal has several alternative productions, the symbol “|” sepa-
rates the right-hand sides of alternatives. The four type 3 productions given
above are equivalent to the following consolidated production:

 <binary numeral> ::= 0 | 1 | 0 <binary numeral> | 1 <binary numeral>.

Context-Free Grammars

As an example of a context-free grammar, consider the syntactic specifica-
tion of a small fragment of English shown in Figure 1.1. The terminal sym-
bols of the language are displayed in boldface. This grammar allows sen-
tences such as “the girl sang a song. ” and “the cat surprised the boy with
a song. ”.

The grammar is context-free because only single nonterminals occur on the
left sides of the rules. Note that the language defined by our grammar con-
tains many nonsensical sentences, such as “the telescope sang the cat by
a boy. ”. In other words, only syntax, and not semantics, is addressed by the
grammar.

In addition to specifying the legal sentences of the language, a BNF definition
establishes a structure for its phrases by virtue of the way a sentence can be
derived. A derivation begins with the start symbol of the grammar, here the
syntactic category <sentence>, replacing nonterminals by strings of symbols
according to rules in the grammar.

5

 <sentence> ::= <noun phrase> <verb phrase> .

 <noun phrase> ::= <determiner> <noun>

| <determiner> <noun> <prepositional phrase>

 <verb phrase> ::= <verb> | <verb> <noun phrase>

| <verb> <noun phrase> <prepositional phrase>

 <prepositional phrase> ::= <preposition> <noun phrase>

 <noun> ::= boy | girl | cat | telescope | song | feather

 <determiner> ::= a | the

 <verb> ::= saw | touched | surprised | sang

 <preposition> ::= by | with

Figure 1.1: An English Grammar

An example of a derivation is given in Figure 1.2. It uniformly replaces the
leftmost nonterminal in the string. Derivations can be constructed following
other strategies, such as always replacing the rightmost nonterminal, but
the outcome remains the same as long as the grammar is not ambiguous. We
discuss ambiguity later. The symbol ⇒ denotes the relation encompassing
one step of a derivation.

The structure embodied in a derivation can be displayed by a derivation
tree or parse tr ee in which each leaf node is labeled with a terminal symbol

<sentence> ⇒ <noun phrase> <verb phrase> .

⇒ <determiner> <noun> <verb phrase> .

⇒ the <noun> <verb phrase> .

⇒ the girl <verb phrase> .

⇒ the girl <verb> <noun phrase> <prepositional phrase> .

⇒ the girl touched <noun phrase> <prepositional phrase> .

⇒ the girl touched <determiner> <noun> <prepositional phrase> .

⇒ the girl touched the <noun> <prepositional phrase> .

⇒ the girl touched the cat <prepositional phrase> .

⇒ the girl touched the cat <preposition> <noun phrase> .

⇒ the girl touched the cat with <noun phrase> .

⇒ the girl touched the cat with <determiner> <noun> .

⇒ the girl touched the cat with a <noun> .

⇒ the girl touched the cat with a feather .

Figure 1.2: A Derivation

1.1 GRAMMARS AND BNF

6 CHAPTER 1 SPECIFYING SYNTAX

feather

<sentence>

<noun phrase> <verb phrase> .

<det> <noun>

the girl touched

the cat with

a

<verb> <noun phrase>

<det> <noun>

<prep phrase>

<prep> <noun phrase>

<det> <noun>

Figure 1.3: A Derivation Tree

and each interior node by a nonterminal whose children represent the right
side of the production used for it in the derivation. A derivation tree for the
sentence “the girl touched the cat with a feather.” is shown in Figure 1.3.

Definition : A grammar is ambiguous if some phrase in the language gener-
ated by the grammar has two distinct derivation trees. ❚

Since the syntax of a phrase determines the structure needed to define its
meaning, ambiguity in grammars presents a problem in language specifica-
tion. The English language fragment defined in Figure 1.1 allows ambiguity
as witnessed by a second derivation tree for the sentence “the girl touched
the cat with a feather .” drawn in Figure 1.4. The first parsing of the sen-
tence implies that a feather was used to touch the cat, while in the second it
was the cat in possession of a feather that was touched.

We accept ambiguity in English since the context of a discourse frequently
clarifies any confusions. In addition, thought and meaning can survive in
spite of a certain amount of misunderstanding. But computers require a
greater precision of expression in order to carry out tasks correctly. There-
fore ambiguity needs to be minimized in programming language definitions,
although, as we see later, some ambiguity may be acceptable.

At first glance it may not appear that our fragment of English defines an
infinite language. The fact that some nonterminals are defined in terms of
themselves—that is, using recursion—admits the construction of unbounded
strings of terminals. In the case of our English fragment, the recursion is
indirect, involving noun phrases and prepositional phrases. It allows the con-

7

<sentence>

<noun phrase> <verb phrase> .

<det> <noun>

the girl touched

the cat

with

a feather

<verb> <noun phrase>

<det> <noun> <prep phrase>

<prep> <noun phrase>

<det> <noun>

Figure 1.4: Another Derivation Tree

struction of sentences of the form “the cat saw a boy with a girl with a boy
with a girl with a boy with a girl. ” where there is no upper bound on the
number of prepositional phrases.

To determine whether a nonterminal is defined recursively in a grammar, it
suffices to build a directed graph that shows the dependencies among the
nonterminals. If the graph contains a cycle, the nonterminals in the cycle are
defined recursively. Figure 1.5 illustrates the dependency graph for the En-
glish grammar shown in Figure 1.1.

<sentence>

<verb phrase>

<noun phrase>

<determiner>

<noun>

<prepositional phrase>

<verb>
<preposition>

Figure 1.5: The Dependency Graph

1.1 GRAMMARS AND BNF

8 CHAPTER 1 SPECIFYING SYNTAX

Finally, observe again that a syntactic specification of a language entails no
requirement that all the sentences it allows make sense. The semantics of
the language will decide which sentences are meaningful and which are non-
sense. Syntax only determines the correct form of sentences.

Context-Sensitive Grammars

To illustrate a context-sensitive grammar, we consider a synthetic language
defined over the alphabet Σ = { a, b, c } using the productions portrayed in
Figure 1.6.

<sentence> ::= abc | a<thing>bc

<thing>b ::= b<thing>

<thing>c ::= <other>bcc

a<other> ::= aa | aa<thing>

b<other> ::= <other>b

Figure 1.6: A Context-Sensitive Grammar

The language generated by this grammar consists of strings having equal
numbers of a’s, b’s, and c’s in that order—namely, the set { abc, aabbcc ,
aaabbbccc , … }. Notice that when replacing the nonterminal <thing>, the
terminal symbol following the nonterminal determines which rule can be
applied. This causes the grammar to be context-sensitive. In fact, a result in
computation theory asserts that no context-free grammar produces this lan-
guage. Figure 1.7 contains a derivation of a string in the language.

<sentence> => a<thing>bc

=> ab<thing>c

=> ab<other>bcc

=> a<other>bbcc

=> aabbcc

Figure 1.7: A Derivation

Exercises

1. Find two derivation trees for the sentence “the girl saw a boy with a
telescope. ” using the grammar in Figure 1.1 and show the derivations
that correspond to the two trees.

9

2. Give two different derivations of the sentence “the boy with a cat sang
a song. ”, but show that the derivations produce the same derivation
tree.

3. Look up the following terms in a dictionary: linguistics, semiotics, gram-
mar, syntax, semantics, and pragmatics.

4. Remove the syntactic category <prepositional phrase> and all related
productions from the grammar in Figure 1.1. Show that the resulting
grammar defines a finite language by counting all the sentences in it.

5. Using the grammar in Figure 1.6, derive the <sentence> aaabbbccc .

6. Consider the following two grammars, each of which generates strings of
correctly balanced parentheses and brackets. Determine if either or both
is ambiguous. The Greek letter ε represents an empty string.

a) <string> ::= <string> <string> | (<string>) |[<string>] | ε

b) <string> ::= (<string>) <string> | [<string>] <string> | ε

7. Describe the languages over the terminal set { a, b } defined by each of
the following grammars:

a) <string> ::= a <string> b | ab

b) <string> ::= a <string> a | b <string> b | ε

c) <string>::= a | b <A>
<A> ::= a | a <string> | b <A> <A>
 ::= b | b <string> | a

8. Use the following grammar to construct a derivation tree for the sen-
tence “the girl that the cat that the boy touched saw sang a song. ”:

<sentence> ::= <noun phrase> <verb phrase> .

<noun phrase> ::= <determiner> <noun>

| <determiner> <noun> <relative clause>

<verb phrase> ::= <verb> | <verb> <noun phrase>

<relative clause> ::= that <noun phrase> <verb phrase>

<noun> ::= boy | girl | cat | telescope | song | feather

<determiner> ::= a | the

<verb> ::= saw | touched |surprised | sang

Readers familiar with computation theory may show that the language
generated by this grammar is context-free but not regular.

1.1 GRAMMARS AND BNF

10 CHAPTER 1 SPECIFYING SYNTAX

9. Identify which productions in the English grammar of Figure 1.1 can be
reformulated as type 3 productions. It can be proved that productions of
the form <A> ::= a1 a2 a3 …an are also allowable in regular gram-
mars. Given this fact, prove the English grammar is regular—that is, it
can be defined by a type 3 grammar. Reduce the size of the language by
limiting the terminal vocabulary to boy, a, saw, and by and omit the
period. This exercise requires showing that the concatenation of two
regular grammars is regular.

1.2 THE PROGRAMMING LANGUAGE WREN

In this text, the formal methods for programming language specification will
be illustrated with an example language Wren and several extensions to it.
Wren is a small imperative language whose only control structures are the if
command for selection and the while command for iteration. The name of
the language comes from its smallness and its dependence on the while
command (w in Wren). Variables are explicitly typed as integer or boolean ,
and the semantics of Wren follows a strong typing discipline when using
expressions.

A BNF definition of Wren may be found in Figure 1.8. Observe that terminal
symbols, such as reserved words, special symbols (:=, +, …), and the letters
and digits that form numbers and identifiers, are shown in boldface for em-
phasis.

Reserved words are keywords provided in a language definition to make it
easier to read and understand. Making keywords reserved prohibits their
use as identifiers and facilitates the analysis of the language. Many program-
ming languages treat some keywords as predefined identifiers—for example,
“write” in Pascal. We take all keywords to be reserved words to simplify the
presentation of semantics. Since declaration sequences may be empty, one
of the production rules for Wren produces a string with no symbols, denoted
by the Greek letter ε.

The syntax of a programming language is commonly divided into two parts,
the lexical syntax that describes the smallest units with significance, called
tokens , and the phrase-structur e syntax that explains how tokens are ar-
ranged into programs. The lexical syntax recognizes identifiers, numerals,
special symbols, and reserved words as if a syntactic category <token> had
the definition:

<token> ::= <identifier> | <numeral> | <reserved word> | <relation>

| <weak op> | <strong op> | := | (|) | , | ; | :

where

11

 <program> ::= program <identifier> is <block>

 <block> ::= <declaration seq> begin <command seq> end

 <declaration seq> ::= ε | <declaration> <declaration seq>

 <declaration> ::= var <variable list> : <type> ;

 <type> ::= integer | boolean

 <variable list> ::= <variable> | <variable> , <variable list>

 <command seq> ::= <command> | <command> ; <command seq>

 <command> ::= <variable> := <expr> | skip

| read <variable> | write <integer expr>

| while <boolean expr> do <command seq> end while

| if <boolean expr> then <command seq> end if

| if <boolean expr> then <command seq> else <command seq> end if

 <expr> ::= <integer expr> | <boolean expr>

 <integer expr> ::= <term> | <integer expr> <weak op> <term>

 <term> ::= <element> | <term> <strong op> <element>

 <element> ::= <numeral> | <variable> | (<integer expr>) | – <element>

 <boolean expr> ::= <boolean term> | <boolean expr> or <boolean term>

 <boolean term> ::= <boolean element>

 | <boolean term> and <boolean element>

 <boolean element> ::= true | false | <variable> | <comparison>

| not (<boolean expr>) | (<boolean expr>)

 <comparison> ::= <integer expr> <relation> <integer expr>

 <variable> ::= <identifier>

 <relation> ::= <= | < | = | > | >= | <>

 <weak op> ::= + | –

 <strong op> ::= * | /

 <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>

 <letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m

 | n | o | p | q | r | s | t | u | v | w | x | y | z

 <numeral> ::= <digit> | <digit> <numeral>

 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 1.8: BNF for Wren

<reserved word> ::= program | is | begin | end | var | integer

| boolean | read | write | skip | while | do | if

| then | else | and | or | true | false | not.

1.2 THE PROGRAMMING LANGUAGE WREN

12 CHAPTER 1 SPECIFYING SYNTAX

Such a division of syntax into lexical issues and the structure of programs in
terms of tokens corresponds to the way programming languages are nor-
mally implemented. Programs as text are presented to a lexical analyzer or
scanner that reads characters and produces a list of tokens taken from the
lexicon , a collection of possible tokens of the language. Since semantics
ascribes meaning to programs in terms of the structure of their phrases, the
details of lexical syntax are irrelevant. The internal structure of tokens is
immaterial, and only intelligible tokens take part in providing semantics to a
program. In Figure 1.8, the productions defining <relation>, <weak op>,
<strong op>, <identifier>, <letter>, <numeral>, and <digit> form the lexical
syntax of Wren, although the first three rules may be used as abbreviations
in the phrase-structure syntax of the language.

Ambiguity

The BNF definition for Wren is apparently free of ambiguity, but we still con-
sider where ambiguity might enter into the syntactic definition of a program-
ming language. Pascal allows the ambiguity of the “dangling else” by the
definitions

 <command> ::= if <boolean expr> then <command>

 | if <boolean expr> then <command> else <command>.

The string “if expr1 then if expr2 then cmd1 else cmd2” has two structural
definitions, as shown in Figure 1.9. The Pascal definition mandates the sec-
ond form as correct by adding the informal rule that an else clause goes with
the nearest if command. In Wren this ambiguity is avoided by bracketing the
then or else clause syntactically with end if. These examples illustrate that
derivation trees can be constructed with any nonterminal at their root. Such
trees can appear as subtrees in a derivation from the start symbol <pro-
gram>.

Another source of ambiguity in the syntax of expressions is explored in an
exercise. Note that these ambiguities arise in recursive productions that al-
low a particular nonterminal to be replaced at two different locations in the
definition, as in the production

<command> ::= if <boolean expr> then <command> else <command>.

This observation does not provide a method for avoiding ambiguity; it only
describes a situation to consider for possible problems. In fact, there exists
no general method for determining whether an arbitrary BNF specification is
ambiguousornot.

13

<command>

<expr >
1

<expr >
2

<cmd >
1

<cmd >
2

if then else

if

<command>

then

<cmd >
2

<expr >
2

<cmd >
1

<command>

<command>if <expr >
1

if

then

then else

Figure 1.9: Two Structural Definitions

Context Constraints in Wren

Each program in Wren can be thought of as a string of tokens, although not
every string of tokens is a legal Wren program. The BNF specification re-
stricts the set of possible strings to those that can be obtained by a deriva-
tion from the nonterminal <program>. Even then, illegal programs remain.
The BNF notation can define only those aspects of the syntax that are con-
text-free, since each production can be applied regardless of the surround-
ing symbols. Therefore the program in Figure 1.10 passes the requirements
prescribed by the BNF grammar for Wren.

program illegal is

var a : boolean;

begin

a := 5

end

Figure 1.10: An Illegal Wren Program

The error in the program “illegal” involves a violation of the context defined
by a declaration. The variable “a” has been declared of Boolean type, but in
the body of the program, an attempt is made to assign to it an integer value.
The classification of such an error entails some controversy. Language

1.2 THE PROGRAMMING LANGUAGE WREN

14 CHAPTER 1 SPECIFYING SYNTAX

implementers, such as compiler writers, say that such an infraction belongs
to the static semantics of a language since it involves the meaning of sym-
bols and can be determined statically, which means solely derived from the
text of the program. We argue that static errors belong to the syntax, not the
semantics, of a language. Consider a program in which we declare a con-
stant:

const c = 5;

In the context of this declaration, the following assignment commands are
erroneous for essentially the same reason: It makes no sense to assign an
expression value to a constant.

5 := 66;

c := 66;

The error in the first command can be determined based on the context-free
grammar (BNF) of the language, but the second is normally recognized as
part of checking the context constraints. Our view is that both errors involve
the incorrect formation of symbols in a command—that is, the syntax of the
language. The basis of these syntactic restrictions is to avoid commands that
are meaningless given the usual model of the language.

Though it may be difficult to draw the line accurately between syntax and
semantics, we hold that issues normally dealt with from the static text should
be called syntax, and those that involve a program’s behavior during execu-
tion be called semantics. Therefore we consider syntax to have two compo-
nents: the context-fr ee syntax defined by a BNF specification and the con-
text-sensitive syntax consisting of context conditions or constraints that
legal programs must obey. While the context-free syntax can be defined eas-
ily with a formal metalanguage BNF, at this point we specify the context
conditions for Wren informally in Figure 1.11.

1. The program name identifier may not be declared elsewhere in the program.

2. All identifiers that appear in a block must be declared in that block.

3. No identifier may be declared more than once in a block.

4. The identifier on the left side of an assignment command must be declared
as a variable, and the expression on the right must be of the same type.

5. An identifier occurring as an (integer) element must be an integer variable.

6. An identifier occurring as a Boolean element must be a Boolean variable.

7. An identifier occurring in a read command must be an integer variable.

Figure 1.11: Context Conditions for Wren

15

In theory the context conditions can be prescribed using a context-sensitive
grammar, but these grammars are unsuitable for several reasons. For one,
they bear no resemblance to the techniques that are used to check context
conditions in implementing a programming language. A second problem is
that the expansion of a node in the derivation tree may depend on sibling
nodes (the context). Therefore we lose the direct hierarchical relationships
between nonterminals that furnish a basis for semantic descriptions. Fi-
nally, formal context-sensitive grammars are difficult to construct and un-
derstand. Later in the text, more pragmatic formal methods for defining the
context-sensitive aspects of programming languages will be investigated us-
ing attribute grammars, two-level grammars, and the methods of denotational
semantics and algebraic semantics.

An eighth rule may be added to the list of context conditions for Wren:

8. No reserved word may be used as an identifier.

Since a scanner recognizes reserved words and distinguishes them from iden-
tifiers, attaching tags of some sort to the identifiers, this problem can be
handled by the requirements of the BNF grammar. If a reserved word occurs
in a position where an identifier is expected, the context-free derivation fails.
Therefore we omit rule 8 from the list of context conditions.

The relationships between the languages specified in defining Wren are shown
in the diagram below:

All strings of terminal symbols

Sentences defined by
the context-free grammar

Well-formed Wren programs that
satisfy the context constraints

Semantic Errors in Wren

As any programmer knows, even after all syntax errors are removed from a
program, it may still be defective. The fault may be that the program ex-
ecutes to completion but its behavior does not agree with the specification of
the problem that the program is trying to solve. This notion of correctness
will be dealt with in Chapter 11. A second possibility is that the program
does not terminate normally because it has tried to carry out an operation

1.2 THE PROGRAMMING LANGUAGE WREN

16 CHAPTER 1 SPECIFYING SYNTAX

that cannot be executed by the run-time system. We call these faults seman-
tic or dynamic errors. The semantic errors that can be committed while
executing a Wren program are listed in Figure 1.12.

1. An attempt is made to divide by zero.

2. A variable that has not been initialized is accessed.

3. A read command is executed when the input file is empty.

4. An iteration command (while) does not terminate.

Figure 1.12: Semantic Errors in Wren

We include nontermination as a semantic error in Wren even though some
programs, such as real-time programs, are intended to run forever. In pre-
senting the semantics of Wren, we will expect every valid Wren program to
halt.

Exercises

1. Draw a dependency graph for the nonterminal <expr> in the BNF defini-
tion of Wren.

2. Consider the following specification of expressions:
<expr> ::= <element> | <expr> <weak op> <expr>
<element> ::= <numeral> | <variable>
<weak op> ::= + | –

Demonstrate its ambiguity by displaying two derivation trees for the
expression “a–b–c ”. Explain how the Wren specification avoids this prob-
lem.

3. This Wren program has a number of errors. Classify them as context-
free, context-sensitive, or semantic.

program errors was
var a,b : integer ;
var p,b ; boolean ;

begin
a := 34;
if b≠0 then p := true else p := (a+1);
write p; write q

end

17

4. Modify the concrete syntax of Wren by adding an exponential operator ↑
whose precedence is higher than the other arithmetic operators (includ-
ing unary minus) and whose associativity is right-to-left.

5. This BNF grammar defines expressions with three operations, * , -, and
+, and the variables “a”, “b”, “c”, and “d”.

<expr> ::= <thing> | <thing> * <expr>

<object> ::= <element> | <element> – <object>

<thing> ::= <object> | <thing> + <object>

<element> ::= a | b | c | d | (<object>)

a) Give the order of precedence among the three operations.

b) Give the order (left-to-right or right-to-left) of execution for each op-
eration.

c) Explain how the parentheses defined for the nonterminal <element>
may be used in these expressions. Describe their limitations.

6. Explain how the Wren productions for <identifier> and <numeral> can
be written in the forms allowed for regular grammars (type 3)—namely,
<A> ::= a or <A> ::= a .

7. Explain the relation between left or right recursion in definition of ex-
pressions and terms, and the associativity of the binary operations (left-
to-right or right-to-left).

8. Write a BNF specification of the syntax of the Roman numerals less than
100. Use this grammar to derive the string “XLVII”.

9. Consider a language of expressions over lists of integers. List constants
have the form: [3,-6,1], [86], []. General list expressions may be formed
using the binary infix operators

+, –, * , and @ (for concatenation),

where * has the highest precedence, + and - have the same next lower
precedence, and @ has the lowest precedence. @ is to be right associa-
tive and the other operations are to be left associative. Parentheses may
be used to override these rules.

Example: [1,2,3] + [2,2,3] * [5,-1,0] @ [8,21] evaluates to [11,0,3,8,21].

Write a BNF specification for this language of list expressions. Assume
that <integer> has already been defined. The conformity of lists for the
arithmetic operations is not handled by the BNF grammar since it is a
context-sensitive issue.

1.2 THE PROGRAMMING LANGUAGE WREN

18 CHAPTER 1 SPECIFYING SYNTAX

10. Show that the following grammar for expressions is ambiguous and pro-
vide an alternative unambiguous grammar that defines the same set of
expressions.

<expr> ::= <term> | <factor>
<term> ::= <factor> | <expr> + <term>
<factor> ::= <ident> | (<expr>) | <expr> * <factor>
<ident> ::= a | b | c

11. Consult [Naur63] to see how Algol solves the dangling else problem.

12. Explain how the syntactic ambiguity of the term “a(5)” in Ada is re-
solved. (Note: Ada uses parentheses to enclose array subscripts.)

1.3 VARIANTS OF BNF

Several notational variations of BNF are in common usage for describing
context-free grammars. First we consider an alternate way of expressing regu-
lar grammars—namely, by regular expr essions . Each regular expression E
denotes some language L(E) defined over an alphabet Σ. Figure 1.13 exhibits
the language of regular expressions with ε representing the empty string,
lowercase letters at the beginning of the alphabet portraying symbols in Σ,
and uppercase letters standing for regular expressions.

Regular Expression Language Denoted

∅ ∅

ε { ε }

a { a }

(E • F) { uv | u∈L(E) and v∈L(F) } = L(E)•L(F)

(E | F) { u | u∈L(E) or u∈L(F) } = L(E) ∪ L(F)

(E*) { u1u2...un | u1,u2,,...,un∈L(E) and n≥0 }

Figure 1.13: Regular Expressions

The normal precedence for these regular operations is, from highest to low-
est, “*” (Kleene closure or star), “•” (concatenation), and “|” (alternation), so
that some pairs of parentheses may be omitted. Observe that a language over
an alphabet Σ is a subset of Σ*, the set of all finite length strings of symbols
from Σ.

19

The BNF definition of <digit> in Wren is already in the form of a regular
expression. Numerals in Wren can be written as a regular expression using

 <numeral> ::= <digit> • <digit>*.

The concatenation operator “•” is frequently omitted so that identifiers can
be defined by

<identifier> ::= <letter> (<letter> | <digit>)*.

Several regular expressions have special abbreviations:

E+ = E • E* represents the concatenation of one or more strings from L(E).

En represents the concatenation of exactly n≥0 strings from L(E).

E?= ε | E represents zero or one string from L(E).

For example, in a language with signed numerals, their specification can be
expressed as

<signed numeral> ::= (+ | –)? <digit>+,

and the context-sensitive language defined in Figure 1.6 can be described as
the set { anbncn | n≥1 }. Although this set is not regular, it can be described
succinctly using this extension of the notation. The new operators “+”, “n”,
and “?” have the same precedence as “*”.

The major reason for using the language of regular expressions is to avoid an
unnecessary use of recursion in BNF specifications. Braces are also em-
ployed to represent zero or more copies of some syntactic category, for ex-
ample:

<declaration seq> ::= { <declaration> },

<command seq> ::= <command> { ; <command> }, and

<integer expr> ::= <term> { <weak op> <term> }.

In general, braces are defined by { E } = E*. The braces used in this notation
bear no relation to the braces that delimit a set. Since the sequencing of
commands is an associative operation, these abbreviations for lists lose no
information, but for integer expressions we no longer know the precedence
for weak operators, left-to-right or right-to-left. Generally, we use only abbre-
viations in specifying syntax when the lost information is immaterial. The
example of command sequences illustrates a place where ambiguity may be
allowed in a grammar definition without impairing the accuracy of the defini-
tion, at least for program semantics. After all, a command sequence can be
thought of simply as a list of commands. A derivation tree for a command
sequence can be represented using a nested tree structure or the multibranch
tree illustrated in Figure 1.14.

1.3 VARIANTS OF BNF

20 CHAPTER 1 SPECIFYING SYNTAX

<command seq> <command seq>

<command seq>

<command seq>

<command seq>

cmd 1

cmd2

cmd 3

cmd4

cmd1

cmd 2 cmd 3

cmd4

Figure 1.14: Derivation Trees for Command Sequences

Exercises

1. Use braces to replace recursion in specifying variable lists and terms in
Wren.

2. Specify the syntax of the Roman numerals less that 100 using regular
expressions.

3. Write a BNF grammar that specifies the language of regular expressions
in Figure 1.13 over the alphabet Σ = {a,b,c}. The grammar should enforce
the precedence rules for the operators.

4. Investigate possible algebraic laws for the binary operators in regular
expressions. Consider associative, commutative, and distributive laws
for the operators “•” and “|”. Prove properties that hold and give
counterexamples for those that do not. Do these binary operations have
identities?

5. Prove these special laws for “*”:

a) E* = ε | (E•E*)

b) E* = ε | (E*•E)

Hint: Show that the languages, sets of strings, denoted by the expres-
sions are equal.

6. Use regular expressions to define the following token classes:

a) Integer numerals (positive or negative) with no leading zeros.

b) Fixed point decimal numerals that must have at least one digit before
and after the decimal point.

c) Identifiers that allow lowercase letters and underscores but with the
properties that no underscore occurs at the beginning or the end of
the identifier and that it contains no two consecutive underscores.

21

1.4 ABSTRACT SYNTAX

The BNF definition of a programming language is sometimes referred to as
the concrete syntax of the language since it tells how to recognize the physi-
cal text of a program. Software utilities take a program as a file of characters,
recognize that it satisfies the context-free syntax for the language, and pro-
duce a derivation tree exhibiting its structure. This software usually decom-
poses into two parts: a scanner or lexical analyzer that reads the text and
creates a list of tokens and a parser or syntactic analyzer that forms a
derivation tree from the token list based on the BNF definition. Figure 1.15
illustrates this process.

Program
text

Token
list

Scanner Parser Derivation
tree

Figure 1.15: The Scanner and Parser

We can think of this process as two functions:

scan : Character* → Token*

parse : Token* → Derivation Tree

whose composition “parse ° scan” creates a derivation tree from a list of
characters forming the physical program.

The success of this process “parse ° scan” depends on the accuracy and
detail found in the syntactic specification, the BNF, of the programming lan-
guage. In particular, ambiguity in a language specification may make it im-
possible to define this function.

Abstract Syntax Trees

Those qualities of a BNF definition that make parsing possible also create a
resulting derivation tree containing far more information than necessary for
a semantic specification. For example, the categories of terms and elements
are required for accurate parsing, but when ascribing meaning to an expres-
sion, only its basic structure is needed. Consider the trees in Figures 1.16
and 1.17.

1.4 ABSTRACT SYNTAX

22 CHAPTER 1 SPECIFYING SYNTAX

<integer expr>

<weak op> <term>

<element><strong op>

<integer expr>

<term>

<term>

<element>

<integer expr>()

–

+

* <weak op> <term><integer expr>

<term>

<element>

<element>

<element>

num(5) ide(a)

ide(b)

num(1)

<numeral>

<numeral>

<variable>

<identifier>

<variable>

<identifier>

Figure 1.16: A Derivation Tree for 5* a– (b+1)

The derivation tree retains all the information used in parsing including de-
tails that only the parser needs. On the other hand, an abstract syntax tr ee
captures the syntactic structure of the expression completely in a much sim-
pler form. After all, the crucial property of the expression “5* a – (b+1)” is that
it is a difference of a product and a sum of certain numbers and variables.
Any other information is redundant. Figure 1.17 shows two possible abstract
syntax trees for the expression. In all three trees, we assume that the text
has already been tokenized (scanned).

In transforming a derivation tree into an abstract syntax tree, we generally
pull the terminal symbols representing operations and commands up to the
root nodes of subtrees, leaving the operands as their children. The second
tree in Figure 1.17 varies slightly from this principle in the interest of regu-
larity in expressions. Using this approach, this expression can be thought of
as a binary operation and two subexpressions. The choice of the left subtree
for the binary operation is arbitrary; it seems to suggest a prefix notation for
binary operations, but we are not talking about concrete syntax here, only
an abstract representation of certain language constructs. We may choose
any representation that we want as long as we can describe the constructs of
the language adequately and maintain consistency.

23

–

+*

num(5) ide(a) ide(b) num(1) num(5) ide(a) ide(b) num(1)

expr

expr

expr–

* +

Figure 1.17: Abstract Syntax Trees for 5* a– (b+1)

The literature of computer science contains considerable confusion between
derivation trees and abstract syntax trees; the term parse tree has been used
to refer to both kinds of trees. We explain the issue by viewing these trees as
abstractions of phrases in a programming language. Derivation trees ab-
stract derivations in the sense that one derivation tree can correspond to
several different derivations—for example, leftmost or rightmost. Further-
more, abstract syntax trees abstract derivation trees, since several strings in
the language may correspond to the same abstract syntax tree but yet have
different derivation trees; for example, “(a+5)–x/2” and “a+5–(x/2)” have the
same abstract syntax tree, although their derivation trees are different.

Abstract Syntax of a Programming Language

The point of abstract syntax is simply to communicate the structure of phrases
in terms of their semantics in a programming language as trees. Semantics
can be defined in terms of derivation trees and actually is with attribute
grammars, but most semantic methods are far more understandable when
based on a cleaner representation of the phrases in a language. As can be
seen from Figure 1.17, designing patterns for abstract syntax allows freedom
in format, but for a particular programming language specification, we want
uniform templates for the various parts of a language. The blueprints for the
abstract syntax trees of a programming language are specified by a collection
of syntactic categories or domains and a set of rules telling how categories
are decomposed into other categories or tokens.

To design the abstract syntax for a programming language, we need to deter-
mine which notions (nonterminals) are fundamental to the language and
which basic forms the constructs of the language may take. As an example,
consider the expressions in Wren—that is, those language phrases derivable
from the nonterminal <expr>. By observing the concrete syntax for Wren
(Figure 1.8), we see that expressions ultimately consist of operations (+, –,
and, not, and so on) applied to numerals, identifiers, and Boolean constants
(true and false). Therefore we reduce the nonterminals used to define ex-
pressions into three abstract syntactic categories: Expression, Numeral, and

1.4 ABSTRACT SYNTAX

24 CHAPTER 1 SPECIFYING SYNTAX

Identifier. We fold the categories of terms, elements, and comparisons into
Expression since they are simply special cases of expressions.

To find the abstract productions that specify the basic patterns of expres-
sions, we first repeat those BNF rules that define expressions in Wren, but
with the nonterminals <weak op>, <strong op>, <relation>, and <variable>
factored out:

<expr> ::= <integer expr> | <boolean expr>

<integer expr> ::= <term>

| <integer expr> + <term> | <integer expr> – <term>

<term> ::= <element> | <term> * <element> | <term> / <element>

<element> ::= <numeral> | <identifier> | (<integer expr>) | – <element>

<boolean expr> ::= <boolean term> | <boolean expr> or <boolean term>

<boolean term> ::= <boolean element>

 | <boolean term> and <boolean element>

<boolean element> ::= true | false | <identifier> | <comparison>

| not (<boolean expr>) | (<boolean expr>)

<comparison> ::= <integer expr> <= <integer expr>

| <integer expr> < <integer expr>

| <integer expr> = <integer expr>

| <integer expr> >= <integer expr>

| <integer expr> > <integer expr>

| <integer expr> <> <integer expr>

Observe that in a derivation

<expr> ⇒ <integer expr> ⇒ <term> ⇒ <element> ⇒ <numeral>,

the only essential information relative to Wren is that an expression can be a
numeral. Outside of the parsing problem, the intervening nonterminals play
no essential role in describing Wren. Therefore unit rules such as <integer
expr> ::= <term>, can be ignored unless they involve basic components of
expressions, such as numerals, identifiers, or essential nonterminals. So we
select only those rules from the BNF that describe the structure of possible
expressions. Omitting parenthesized expressions, the following list results:

<integer expr> + <term>

<integer expr> – <term>

<term> * <element>

<term> / <element>

<numeral>

25

<identifier>

– <element>

<boolean expr> or <boolean term>

<boolean term> and <boolean element>

true

false

not (<boolean expr>)

<integer expr> <= <integer expr>

<integer expr> < <integer expr>

<integer expr> = <integer expr>

<integer expr> >= <integer expr>

<integer expr> > <integer expr>

<integer expr> <> <integer expr>

After the redundant nonterminals are merged into Expression, these basic
templates can be summarized by the following abstract production rules:

Expression ::= Numeral | Identifier | true | false

| Expression Operator Expression | – Expression

| not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

An abstract syntax for Wren is given in Figure 1.18. This abstract syntax
delineates the possible abstract syntax trees that may be produced by pro-
grams in the language. To avoid confusion with concrete syntax, we utilize a
slightly different notation for abstract production rules, using identifiers start-
ing with uppercase letters for syntactic categories.

Notice that a definition of abstract syntax tolerates more ambiguity since the
concrete syntax has already determined the correct interpretation of the sym-
bols in the program text. We investigate a formal description of abstract syn-
tax in Chapter 12, using the terminology of algebraic semantics.

We suggested earlier that parsing a program results in the construction of a
derivation tree for the program. As a consequence of adhering to the BNF
syntax of a language, any parsing algorithm must at least implicitly create a
derivation tree. But in fact we usually design a parser to generate an abstract
syntax tree instead of a derivation tree. Therefore the syntax of “parse” is
given by

parse : Token* → Abstract Syntax Tree.

1.4 ABSTRACT SYNTAX

26 CHAPTER 1 SPECIFYING SYNTAX

 Abstract Syntactic Categories
Program Type Operator

Block Command Numeral

Declaration Expression Identifier

 Abstract Production Rules
Program ::= program Identifier is Block

Block ::= Declaration* begin Command+ end

Declaration ::= var Identifier+ : Type ;

Type ::= integer | boolean

Command ::= Identifier := Expression | skip | read Identifier

| write Expression | while Expression do Command+

| if Expression then Command+

| if Expression then Command+ else Command+

Expression ::= Numeral | Identifier | true | false

| Expression Operator Expression | – Expression

| not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 1.18: Abstract Syntax for Wren

Generally, this parse function will not be one to one. The token lists for the
expressions “a+b-c” and “(a+b-c)” map to the same abstract syntax tree. The
main point of abstract syntax is to omit the details of physical representa-
tion, leaving only the forms of the abstract trees that may be produced. For
example, the abstract syntax has no need for parentheses since they are just
used to disambiguate expressions. Once this assessment has been done by
the parser, the resulting abstract trees have unambiguous meaning, since
the branching of trees accurately conveys the hierarchical structure of a
phrase. Whereas the concrete syntax defines the way programs in a lan-
guage are actually written, the abstract syntax captures the pure structure
of phrases in the language by specifying the logical relations (relative to the
intended semantics) between parts of the language. We can think of an ab-
stract syntax tree as embodying the derivation history of a phrase in the
language without mentioning all of the terminal and nonterminal symbols.

When we implement a parser using Prolog in Chapter 2, the parsing opera-
tion applied to the token string for the expression “5* a – (b+1)” will create a
Prolog structure:

expr(minus,expr(times,num(5),ide(a)),expr(plus,ide(b),num(1))),

27

which is a linear representation of one of the abstract syntax trees in Figure
1.17. See Appendix A for a definition of Prolog structures.

In the abstract production rules, lists of declarations, commands, and iden-
tifiers are described by means of the closure operators “*” and “+”. An alter-
native approach used in many formal methods of specifying semantics in-
volves direct recursion as in:

command = command ; command | identifier := expression | skip |

The closure operator “+” on commands ignores the occurrence of semicolons
between commands, but in abstract syntax semicolons are only cosmetic.
Although the abstract production rules in Figure 1.18 use reserved words,
these act only as mnemonic devices to help us recognize the phrases being
formulated. In fact, not all the reserved words are used in the productions,
only enough to suggest the structure of the programming constructs. Note
that we have deleted end if and end while for the sake of conciseness.

An alternative way of describing the abstract production rules is displayed in
Figure 1.19 where the definitions are given as tagged record structures. Ac-
tually, the notation used to specify the abstract productions is not crucial.
The important property of abstract syntax is embodied in the relationships
between the categories; for example, a while command consists of an ex-
pression and a list of commands. As mathematical objects, the various cat-
egories are built from aggregations (Cartesian products), alternations (dis-
joint unions), and list structures. Any notations for these three constructors
can serve to define the abstract production rules. We explore these math-
ematical structures more carefully in Chapter 10.

As an example, consider abstract pattern of the command

while n>0 do write n; n:=n-1 end while .

Figure 1.20 shows an abstract syntax tree for this command based on the
abstract syntax defined in Figure 1.18. Since the body of a while command is
a command sequence, we need an extra level in the tree to represent the list
of commands. In contrast, following the abstract syntax specification in Fig-
ure 1.19 produces a structure representing a similar abstract syntax tree:

while(expr(>,ide(n),num(0)),
[write(ide(n)),assign(ide(n), expr(-,ide(n),num(1)))]).

The list of commands (a command sequence) in the body of the while com-
mand is represented as a list using brackets in the structure. This notation
agrees with that used by Prolog lists in the next chapter—namely, [a, b, c].
The abstract syntax tree of a complete Wren program as a Prolog structure
can be found at the beginning of Chapter 2. Notice the lists of variables,
declarations, and commands in the representation of that tree.

1.4 ABSTRACT SYNTAX

28 CHAPTER 1 SPECIFYING SYNTAX

Abstract Production Rules

Program ::= prog(Identifier, Block)

Block ::= block(Declaration*, Command+)

Declaration ::= dec(Type, Identifier+)

Type ::= integer | boolean

Command ::= assign(Identifier, Expression) | skip

| read(Identifier) | write(Expression)

| while(Expression, Command+) | if(Expression, Command+)

| ifelse(Expression, Command+, Command+)

Expression ::= Numeral | Identifier | true | false | not(Expression)

| expr(Operator, Expression, Expression) | minus(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 1.19: Alternative Abstract Syntax for Wren

Although concrete syntax is essential to implementing programming lan-
guages, it is the abstract syntax that lies at the heart of semantic definitions.
The concrete syntax is incidental to language specification, but it is impor-
tant to users since it influences the way they think about a language. This
aspect of pragmatics is not of direct concern to us in studying the semantics
of programming languages.

num(0)ide(n)

num(1)

assign

while

>

–ide(n)

ide(n)

write

ide(n)

Figure 1.20: Abstract Syntax Tree

It can be argued that when designing a new programming language, we need
to formulate the abstract syntax along with the semantics so that the mean-
ing of a program emanates from a mapping

meaning : Abstract Syntax Trees → Semantic Objects

29

where the semantic objects provide meaning for the various language con-
structs. Different approaches to semantics depend on the disparate kinds of
objects used to define meaning. Later we will see that this discussion is skewed
to the denotational approach to semantics, but viewing meaning as a func-
tion from syntactic phrases to some sort of semantic objects can be a useful
way of organizing formal semantics.

Given the abstract syntax of a programming language, the concrete syntax
can be defined by an operation

unparse : Abstract Syntax Trees → Concrete Syntax

where Concrete Syntax refers to derivation trees, to lists of tokens, or to lists
of characters representing program texts. Since two different phrases follow-
ing the concrete syntax may produce the same abstract syntax tree, unparse
may not be a function at all. To ensure that unparse is a well-defined func-
tion, some canonical representation of concrete phrases must be specified—
for example, taking expressions having the fewest parentheses. The correct-
ness of a parsing algorithm can be demonstrated by showing that it is the
inverse, in some sense, of the unparse function.

Exercises

1. Construct a derivation tree and an abstract syntax tree for the Wren com-
mand

“if n>0 then a := 3 else skip end if ”.

Also write the abstract tree as a Prolog structure.

2. Parse the following token list to produce an abstract syntax tree:
[while, not, lparen, ide(done), rparen, do, ide(n), assign,
 ide(n), minus, num(1), semicolon, ide(done), assign,
 ide(n), greater, num(0), end, while]

3. Draw an abstract syntax tree for the following Wren program:

program binary is
var n,p : integer ;

begin
read n; p := 2;
while p<=n do p := 2* p end while ;
p := p/2;
while p>0 do

if n>= p then write 1; n := n–p else write 0 end if ;
p := p/2

end while
end

1.4 ABSTRACT SYNTAX

30 CHAPTER 1 SPECIFYING SYNTAX

4. Using the concrete syntax of Wren, draw abstract syntax trees or record-
like structures following the definition in Figure 1.19 for these language
constructs:

a) (a+7)* (n/2)

b) while n>=0 do s:=s+(n* n); n:= n–1 end while

c) if a and b or c then r ead m; write m else a:=not(b and c) end if

1.5 FURTHER READING

The concepts and terminology for describing the syntax of languages derives
from Noam Chomsky’s seminal work in the 1950s—for example, [Chomsky56]
and [Chomsky59]. His classification of grammars and the related theory has
been adopted for the study of programming languages. Most of this material
falls into the area of the theory of computation. For additional material, see
[Hopcroft79] and [Martin91]. These books and many others contain results
on the expressiveness and limitations of the classes of grammars and on
derivations, derivation trees, and syntactic ambiguity.

John Backus and Peter Naur defined BNF in conjunction with the group that
developed Algol60. The report [Naur63] describing Algol syntax using BNF is
still one of the clearest presentations of a programming language, although
the semantics is given informally.

Most books on compiler writing contain extensive discussions of syntax speci-
fication, derivation trees, and parsing. These books sometimes confuse the
notions of concrete and abstract syntax, but they usually contain extensive
examples of lexical and syntactic analysis. We recommend [Aho86] and [Par-
sons92]. Compiler writers typically disagree with our distinction between syn-
tax and semantics, putting context constraints with semantics under the
name static semantics. Our view that static semantics is an oxymoron is
supported by [Meek90].

Abstract syntax was first described by John McCarthy in the context of Lisp
[McCarthy65a]. More material on abstract syntax and other issues pertain-
ing to the syntax of programming languages can be found in various text-
books on formal syntax and semantics, including [Watt91] and [Meyer90].
The book by Roland Backhouse concentrates exclusively on the syntax of
programming languages [Backhouse79].

31

31

Chapter 2
INTRODUCTION TO
LABORATORY ACTIVITIES

The laboratory activities introduced in this chapter and used elsewhere
in the text are not required to understand definitional techniques and
formal specifications, but we feel that laboratory practice will greatly

enhance the learning experience. The laboratories provide a way not only to
write language specifications but to test and debug them. Submitting speci-
fications as a prototyping system will uncover oversights and subtleties that
are not apparent to a casual reader. This laboratory approach also suggests
that formal definitions of programming languages can be useful. The labora-
tory activities are carried out using Prolog. Readers not familiar with Prolog,
should consult Appendix A or one of the references on Prolog (see the further
readings at the end of this chapter) before proceeding.

In this chapter we develop a “front end” for a programming language pro-
cessing system. Later we use this front end for a system that check the con-
text-sensitive part of the Wren grammar and for prototype interpreters based
on semantic specifications that provide implementations of programming lan-
guages.

The front end consists of two parts:

1. A scanner that reads a text file containing a Wren program and builds a
Prolog list of tokens representing the meaningful atomic components of
the program.

2. A parser that matches the tokens to the BNF definition of Wren, produc-
ing an abstract syntax tree corresponding to the Wren program.

Our intention here is not to construct production level software but to for-
mulate an understandable, workable, and correct language system. The Prolog
code will be kept simple and easy to read, since the main purpose here is to
understand the definitional techniques studied in the text. Generally, only
primitive error handling is provided, so that the scanner-parser system merely
fails when a program has incorrect context-free syntax.

The system requests the name of a file containing a program, scans the pro-
gram producing a token list, and parses it, creating an abstract syntax tree

32 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

representing the structure of the program. The transcript below shows a
typical execution of the scanner and parser. User input is depicted in bold-
face. The token list and abstract syntax tree have been formatted to make
them easier to read.

| ?- go .

>>> Scanning and Parsing Wren <<<

Enter name of source file: switch.wren

 program switch is
 var sum,k : integer;
 var switch : boolean;
 begin
 switch := true; sum := 0; k := 1;
 while k<10 do
 switch := not(switch);
 if switch then sum := sum+k end if;
 k := k+1
 end while;
 write sum
 end

Scan successful

[program,ide(switch),is,var,ide(sum),comma,ide(k),colon,integer,
 semicolon,var,ide(switch),colon,boolean,semicolon,begin,
 ide(switch),assign,true,semicolon,ide(sum),assign,num(0),
 semicolon,ide(k),assign,num(1),semicolon,while,ide(k),less,
 num(10),do,ide(switch),assign,not,lparen,ide(switch),rparen,
 semicolon,if,ide(switch),then,ide(sum),assign,ide(sum),plus,
 ide(k),end,if,semicolon,ide(k),assign,ide(k),plus,num(1),end,
 while,semicolon,write,ide(sum),end,eop]

Parse successful

prog([dec(integer,[sum,k]),dec(boolean,[switch])],
 [assign(switch,true),assign(sum,num(0)),assign(k,num(1)),
 while(exp(less,ide(k),num(10)),
 [assign(switch,bnot(ide(switch))),
 if(ide(switch),
 [assign(sum,exp(plus,ide(sum),ide(k)))],skip),
 assign(k,exp(plus,ide(k),num(1)))]),
 write(ide(sum))])

yes

332.1 SCANNING

Observe that the program “switch.wren”, although satisfying the context-
free syntax of Wren, is syntactically illegal. Review the context constraints in
Figure 1.11 to identify the (minor) error. Several predefined predicates, pri-
marily for input and output, are used to build the front end of the language
processing system. See Appendix A for a brief description of these predicates.

2.1 SCANNING

The scanner reads the program text and produces a list of tokens according
to the lexical syntax of the programming language. Recall that the lexical
syntax can be defined using a regular grammar—for example,

<numeral> ::= 0 | 1 | … | 9 | 0 <numeral>

| 1 <numeral> | … | 9 <numeral>,

which we abbreviate as

<numeral> ::= <digit> | <digit> <numeral>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

First we recognize a digit by specifying a span of ascii values.

digit(C) :- 48 =< C, C =< 57. % 0-9

The symbol “%” signals a comment that extends to the end of the line.

The form of these productions fits nicely with processing a stream of charac-
ters in Prolog. We name the predicate that collects a sequence of digits into a
numeral getnum and write the productions for numeral as

getnum ::= digit | digit getnum.

The first digit tells us that we have a numeral to process. We split the produc-
tion into two parts, the first to start the processing of a numeral and the
second to continue the processing until a nondigit occurs in the input stream.

getnum ::= digit restnum

restnum ::= ε | digit restnum % ε represents an empty string

We describe these regular productions using the transition diagram shown
in Figure 2.1.

Parameters are then added to the nonterminals, the first to hold a readahead
character and the second to contain the numeral being constructed, either
as a Prolog number or as a list of ascii values representing the digits.

34 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

getnum digit

digit

restnum

Figure 2.1: A Transition Diagram for getnum

The predicates are defined by

getnum(C,N) :- digit(C), get0(D), restnum(D,Lc), name(N,[C|Lc]).

restnum(C,[C|Lc]) :- digit(C), get0(D), restnum(D,Lc).

restnum(C,[]). % end numeral if C is not a digit

and the numeral processor is initiated by the query

get0(C), getnum(C,N).

The first get0 acts as a priming read that gets (inputs) the first character,
which is bound to C for getnum to process. Then getnum verifies that the first
character is a digit, gets the next character, which is bound to D, and asks
restnum to construct the tail Lc of the numeral. When restnum returns with
the tail, the entire list [C|Lc] of digits passes to the predefined predicate name,
which converts it into a Prolog number N. The predicate restnum reads char-
acters forming them into a list until a nondigit is obtained, finishing the list
with an empty tail.

Figure 2.2 shows a trace following the processing of the numeral given by the
characters “905” followed by a return. This string generates the ascii values
57, 48, 53, and 10 on the input stream. Note that variables are numbered,
since each recursive call requires a fresh set of variables to be instantiated.
For example, the predicate get0 is called four times with the variables C, D,
D1, and D2, respectively.

This example illustrates the basic principle behind the scanner—namely, to
get the first item in a list and then call another predicate to construct the tail
of the list. This second predicate is called repeatedly, with the items in the
list being constructed as the first elements of the subsequent tails. When no
more items are possible, the empty tail is returned. In order to comprehend
the scanner better, we uniformly name the variables found in it:

Character (an ascii value): C, D, E

Token (a Prolog atom or simple structure): T, U

List of Characters: Lc

List of Tokens: Lt

35

Query Bindings
get0(C) C = 57
getnum(57,N)

digit(57)
get0(D) D = 48
restnum(48,Lc) Lc = [48|Lc1]

digit(48)
get0(D1) D1 = 53
restnum(53,Lc1) Lc1 = [53|Lc2]

digit(53)
get0(D2) D2 = 10
restnum(10,Lc2) Lc2 = [10|Lc3]

digit(10) fails
restnum(10,Lc2) Lc2 = []

name(N,[57|Lc])
where Lc = [48|Lc1] = [48,53|Lc2] = [48,53]

name(N,[57,48,53]) gives N=905.

Figure 2.2: Reading the Numeral 905

The predicates used in the scanner are described informally below, following
the convention that input variables are marked by “+” and output variables
by “–”. Although most predicates in Prolog are invertible, meaning that vari-
ables can act as input or output parameters in different applications, the
scanner needs to act in one direction only since it involves the side effect of
reading a text file. The marking of parameters by “+” and “–” below will help
the reader understand the execution of the scanner. Observe that some of
the predicates have two variables for characters, one for the current lookahead
character and one for the next lookahead character.

scan(Lt)

– Construct a list of tokens Lt.

restprog(T,D,Lt)

+ T is the previous token.

+ D is the lookahead character.

– Construct a list of tokens Lt from the rest of the program.

getch(C)

– Get the next character C and echo the character.

2.1 SCANNING

36 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

gettoken(C,T,D)

+ C is the lookahead character.

– Construct the next token T and

– find the next lookahead character D.

restnum(C,[C|Lc],E)

+ C is the lookahead character.

– Construct the tail of the number Lc and

– find the next lookahead character E.

restid(C,[C|Lc],E)

+ C is the lookahead character.

– Construct the tail of the identifier or reserved word string Lc and

– find the next lookahead character E.

To enable the scanner to recognize the different classes of characters, we
define predicates, each representing a particular set of characters.

lower(C) :- 97=<C, C=<122. % a-z
upper(C) :- 65=<C, C=<90. % A-Z
digit(C) :- 48 =< C, C=< 57. % 0-9
space(32). tabch(9). period(46). slash(47).
endline(10). endfile(26). endfile(-1).
whitespace(C) :- space(C) ; tabch(C) ; endline(C).
idchar(C) :- lower(C) ; digit(C).

At the top level of the scanner, scan gets the first character, calls gettoken to
find the first token, and then uses restprog to construct the rest of the token
list. Each line of the program listing is indented four spaces by means of
tab(4). Both scan and restprog invoke gettoken with a lookahead character C.
When the end of the file is reached, gettoken returns a special atom eop sym-
bolizing the end of the program. Note that getch performs special duties if the
current character represents the end of a line or the end of the file.

scan([T|Lt]) :- tab(4), getch(C), gettoken(C,T,D), restprog(T,D,Lt).
getch(C) :- get0(C), (endline(C),nl,tab(4) ; endfile(C),nl ; put(C)).
restprog(eop,C,[]). % end of file reached with previous character
restprog(T,C,[U|Lt]) :- gettoken(C,U,D), restprog(U,D,Lt).

To classify symbolic tokens, we need to identify those that are constructed
from a single symbol and those that are constructed from two characters.
Unfortunately, the first character in the two-character symbols may also stand
alone. Therefore we classify symbols as single or double and provide a predi-
cate to recognize the two-character symbols. Symbols specified by the predi-

37

cate single consist of a single character. This predicate associates a token
name with the ascii code of each character.

single(40,lparen). single(41,rparen). single(42,times).
single(43,plus). single(44,comma). single(45,minus).
single(47,divides). single(59,semicolon). single(61,equal).

Characters that may occur as a symbol by themselves or may be the first
character in a string of length two are recognized by the predicate double. The
second argument for double names the token given by the one-character sym-
bol.

double(58,colon). double(60,less). double(62,grtr).

If, however, the symbol is two characters long, pair succeeds and provides the
name of the token.

pair(58,61,assign). % :=
pair(60,61,lteq). % <=
pair(60,62,neq). % <>
pair(62,61,gteq). % >=

We also need to recognize the reserved words in Wren. The predicate reswd
defines the set of reserved words.

reswd(program). reswd(is). reswd(begin). reswd(end).
reswd(var). reswd(integer). reswd(boolean). reswd(read).
reswd(write). reswd(while). reswd(do). reswd(if).
reswd(then). reswd(else). reswd(skip). reswd(or).
reswd(and). reswd(true). reswd(false). reswd(not).

Figure 2.3 displays a transition diagram for analyzing the kinds of tokens in
Wren. The Prolog code for scanning tokens is given below. Numerals are
handled in the manner we discussed earlier. Although the productions for
identifiers permit reserved words to be treated as identifiers, the scanner will
first check each character string to see whether it is an identifier or a re-
served word. Identifier tokens take the form ide(sum) while reserved words
stand for themselves as Prolog atoms.

gettoken(C,num(N),E) :- digit(C), getch(D), restnum(D,Lc,E), name(N,[C|Lc]).

restnum(C,[C|Lc],E) :- digit(C), getch(D), restnum(D,Lc,E).

restnum(C,[],C). % end of number if C is not a digit

gettoken(C,T,E) :- lower(C), getch(D), restid(D,Lc,E),

name(Id,[C|Lc]), (reswd(Id),T=Id ; T=ide(Id)).

restid(C,[C|Lc],E) :- idchar(C), getch(D), restid(D,Lc,E).

restid(C,[],C). % end of identifier if C is not an id character

2.1 SCANNING

38 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

gettoken

grtrless

assign lteq neq gteq

colon

double

restnum restid
digit lower

digit or lower

si
ng

le

: < >

=>==

digit

single
character
symbol

Figure 2.3: Classifying Tokens

gettoken(C,T,D) :- single(C,T), getch(D).

gettoken(C,T,E) :- double(C,U), getch(D), (pair(C,D,T),getch(E) ; T=U,E=D).

gettoken(C,eop,0) :- endfile(C).

gettoken(C,T,E) :- whitespace(C), getch(D), gettoken(D,T,E).

gettoken(C,T,E) :- write('Illegal character: '), put(C), nl, abort.

Single-character symbols are handled directly, while the two-character sym-
bols require a decision guarded by pair. If pair succeeds, a new lookahead
character is needed; otherwise, the token name is taken from the double
predicate and the original lookahead character is used. When an end-of-file
character occurs as the lookahead character, the token eop is returned. The
predicate gettoken also allows for whitespace to be skipped, as seen in the
next to the last clause. Finally, any illegal characters are trapped in the last
clause, causing the scanner to abort with an error message.

To make the scanner easy to use, we define a predicate go that requests the
name of the text file containing the Wren program to be scanned and invokes
the scanner. Notice how it opens the text file for reading and closes it after

39

the scanning is complete. The list of tokens is displayed by means of the
predefined predicate write.

go :- nl, write('>>> Scanning Wren <<<'), nl, nl,
write('Enter name of source file: '), nl, getfilename(fileName), nl,
see(fileName), scan(Tokens), seen, write('Scan successful'), nl, nl,
write(Tokens), nl.

The predicate for reading the file name is patterned on the code for scanning
a numeral or an identifier. A priming read (get0) is followed by a predicate
that accumulates a list of ascii values for the characters in the file name. We
permit both uppercase and lowercase letters as well as digits, period, and
slash in our file names. That enables the scanner to handle file names such
as “gcd.wren” and “Programs/Factorial”. Other symbols may be added at the
user’s discretion.

getfilename(W) :- get0(C), restfilename(C,Cs), name(W,Cs).
restfilename(C,[C|Cs]) :- filechar(C), get0(D), restfilename(D,Cs).
restfilename(C,[]).

filechar(C) :- lower(C) ; upper(C) ; digit(C) ; period(C) ; slash(C).

The transcript at the beginning of this chapter shows an execution of the
scanner on a Wren program.

Exercises

1. Modify the scanner for Wren so that it accepts and recognizes the follow-
ing classes of tokens:

a) Character strings of the form "abcde".

b) Character constants of the form 'a' or #\a.

c) Fixed point numerals of the form 123.45.

2. Change the scanner for Wren so that “/=” is recognized instead of “<>”.

3. Change the scanner for Wren so that “<=” and “>=” can also be entered
as “=<” and “=>”.

4. Add a repeat-until command to Wren and change the scanner appropri-
ately.

5. Write a scanner for English using the alphabet of uppercase and lower-
case letters and the following punctuation symbols: period, comma, ques-

2.1 SCANNING

40 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

tion mark, semicolon, colon, and exclamation. Each word and punctua-
tion symbol in the text will be a token in the scanner.

6. Write a scanner that constructs a token list for a Roman numeral. Ig-
nore any characters that are not part of the Roman numeral.

7. Write a scanner for the language of list expressions described in exercise
9 at the end of section 1.2.

2.2 LOGIC GRAMMARS

The parser forms the second part of the front end of our language processing
system. It receives a token list from the scanner, and, following the BNF
definition of the language, produces an abstract syntax tree. Prolog provides
a mechanism, definite clause grammars , that makes the parser particu-
larly easy to construct. Although the resulting system cannot compare in
efficiency to present-day compilers for parsing, these grammars serve admi-
rably for our prototype systems. Definite clause grammars are also called
logic grammars , and we use these terms interchangeably.

 Concrete Syntax

<sentence> ::= <noun phrase> <verb phrase> .

<noun phrase> ::= <determiner> <noun>

<verb phrase> ::= <verb> | <verb> <noun phrase>

<determiner> ::= a | the

<noun> ::= boy | girl | cat | telescope | song | feather

<verb> ::= saw | touched | surprised | sang

Abstract Syntax

Sentence ::= NounPhrase Predicate

NounPhrase ::= Determiner Noun

Predicate ::= Verb | Verb NounPhrase

Determiner ::= a | the

Noun ::= boy | girl | cat | telescope | song | feather

Verb ::= saw | touched | surprised | sang

Figure 2.4: An English Grammar

First, we motivate and explain the nature of parsing in Prolog with an ex-
ample based on a subset of the English grammar found in Figure 1.1. To

41

simplify the problem, we consider an English grammar without prepositional
phrases. The BNF and abstract syntax are displayed in Figure 2.4. The ab-
stract syntax closely resembles the concrete syntax with a slight change in
names for syntactic categories and the deletion of the period.

Given a string from the language, say “the girl sang a song. ”, our goal is to
construct an abstract syntax tree exhibiting the structure of this sentence—
for example, the tree in Figure 2.5. This abstract syntax tree is quite similar
to a derivation tree for the sentence.

Since we plan to carry out the parsing in Prolog, the resulting abstract syn-
tax tree will be represented as a Prolog structure, with function symbols
used to tag the syntactic categories:

sent(nounph(det(the), noun(girl)), pred(verb(sang), nounph(det(a), noun(song)))).

Observe how nicely Prolog describes a tree structure in a linear form. Recall
that we view the front end for our English language grammar as a two-step
process: the scanner takes a string of characters, “the girl sang a song. ”,
and creates the token list [the, girl, sang, a, song, '.']; and the parser takes the
token list and constructs an abstract syntax tree as a Prolog structure, such
as the one above.

Sentence

NounPhrase Predicate

Determiner Noun Verb

Determiner Noun
the girl sang

a song

NounPhrase

Figure 2.5: An Abstract Syntax Tree for “the girl sang a song. ”

Motivating Logic Grammars

Although logic grammars in Prolog can be used without understanding how
they work, we choose to explain their mechanism. The reader who wants to
ignore this topic may skip to the subsection Prolog Grammar Rules .

2.2 LOGIC GRAMMARS

42 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Assume that the token list [the, girl, sang, a, song, '.'] has been generated by the
scanner. The logic programming approach to analyzing a sentence according
to a grammar can be seen in terms of a graph whose edges are labeled by the
tokens that are terminals in the language.

the girl sang a song .

Two terminals are contiguous in the original string if they share a common
node in the graph.

girl sang

A sequence of contiguous labels constitutes a nonterminal if it corresponds
to the right-hand side of a production rule for that nonterminal in the BNF
grammar. For example, the three productions

<determiner> ::= a,

<noun> ::= song , and

<noun phrase> ::= <determiner> <noun>

tell us that “a song” can serve as a noun phrase. Since these two terminals lie
next to each other in the graph, we know they constitute a noun phrase.

a song

<determiner> <noun>

<noun phrase>

To enable these conditions to be expressed in logic, we give each node in the
graph an arbitrary label—for example, using positive integers.

1 2 3 4 5 6 7

the girl sang a song .

A predicate nounPhrase(K,L) is defined as asserting that the path from node K
to node L can be interpreted as an instance of the nonterminal <noun phrase>.
For example, nounPhrase(4,6) holds because edge <4,5> is labeled by a deter-
miner a and edge <5,6> is labeled by a noun song .

The appropriate rule for <noun phrase> is

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

43

The common variable M makes the two edges contiguous. The complete BNF
grammar written in logic is listed in Figure 2.6.

sentence(K,L) :- nounPhrase(K,M), predicate(M,N), period(N,L).

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

predicate(K,L) :- verb(K,M), nounPhrase(M,L).

predicate(K,L) :- verb(K,L).

determiner(K,L) :- a(K,L).

determiner(K,L) :- the(K,L).

noun(K,L) :- boy(K,L).

noun(K,L) :- girl(K,L).

noun(K,L) :- cat(K,L).

noun(K,L) :- telescope(K,L).

noun(K,L) :- song(K,L).

noun(K,L) :- feather(K,L).

verb(K,L) :- saw(K,L).

verb(K,L) :- touched(K,L).

verb(K,L) :- surprised(K,L).

verb(K,L) :- sang(K,L).

Figure 2.6: Parsing in Prolog

The graph for the sentence “the girl sang a song. ” can be created by entering
the following facts:

the(1,2). girl(2,3).

sang(3,4). a(4,5).

song(5,6). period(6,7).

The syntactic correctness of the sentence, “the girl sang a song. ” can be
determined by either of the following queries:

?- sentence(1,7).
yes

?- sentence(X,Y).
X = 1
Y = 7
yes

2.2 LOGIC GRAMMARS

44 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

The sentence is recognized by the logic program when paths in the graph
corresponding to the syntactic categories in the grammar are verified as build-
ing an instance of the nonterminal <sentence>.

1 2 3 4 5 6 7

the girl sang a song .

<determiner> <determiner><noun> <noun><verb>

<noun phrase>

<predicate>

<sentence>

<noun phrase>

Note the similarity of the structure exhibited by the paths in the graph with
the derivation tree for the sentence.

Improving the Parser

Two problems remain before this parser will be easy to use:

1. Entering the graph using predicates the(1,2), girl(2,3), … is awkward since
the scanner produces only a list of tokens—namely, [the,girl,sang a, song,'.'].

2. So far the logic program recognizes only a syntactically valid sentence
and does not produce a representation of the abstract syntax tree for the
sentence.

The first problem can be solved and the logic program simplified by using
sublists of the token list to label the nodes of the graph. These lists are called
difference lists since the difference between two adjacent node labels is the
atom that labels the intervening edge.

[the,girl,sang,a,song,'.']

[girl,sang,a,song,'.']

[sang,a,song,'.']

[a,song,'.']

[song,'.']

['.']
[]

the girl sang a song .

45

In general, a difference list is a Prolog structure consisting of two Prolog lists,
with possibly uninstantiated components, having the property that the sec-
ond list is or can be a suffix of the first one. Together they represent those
items in the first list but not in the second list. For example,

difflist([a,b,c,d],[c,d]) represents the list [a,b], and

difflist([a,b,c|T],T) represents the list [a,b,c].

The concatenation of difference lists can be performed in constant time un-
der certain conditions. Therefore many algorithms have very efficient ver-
sions using difference lists. For more on this technique of programming in
Prolog, see the further readings at the end of the chapter.

The next version of the grammar exploits the same definitions for sentence,
nounPhrase, and predicate, but it handles the tokens using a predicate 'C' (for
“connect”), which is predefined in most Prolog implementations. The query
'C'(K,boy,L) succeeds if the edge joining the nodes K and L is labeled by the
token boy. Figure 2.7 gives the Prolog code for the improved parser. The vari-
ables in the Prolog code stand for difference lists now instead of natural
numbers.

sentence(K,L) :- nounPhrase(K,M), predicate(M,R), 'C'(R,'.',L).

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

predicate(K,L) :- verb(K,M), nounPhrase(M,L).

predicate(K,L) :- verb(K,L).

determiner(K,L) :- 'C'(K,a,L).

determiner(K,L) :- 'C'(K,the,L).

noun(K,L) :- 'C'(K,boy,L).

noun(K,L) :- 'C'(K,girl,L).

noun(K,L) :- 'C'(K,cat,L).

noun(K,L) :- 'C'(K,telescope,L).

noun(K,L) :- 'C'(K,song,L).

noun(K,L) :- 'C'(K,feather,L).

verb(K,L) :- 'C'(K,saw,L).

verb(K,L) :- 'C'(K,touched,L).

verb(K,L) :- 'C'(K,surprised,L).

verb(K,L) :- 'C'(K,sang,L).

'C'([H|T],H,T). % Edge from node [H|T] to node T is labeled with atom H

Figure 2.7: Improved Parsingin Prolog

2.2 LOGIC GRAMMARS

46 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

An advantage of this approach is that the graph need not be explicitly cre-
ated when this representation is employed. The syntactic correctness of the
sentence “the girl sang a song. ” can be recognized by the following query:

?- sentence([the,girl,sang,a,song,'.'],[]).
yes

The parsing succeeds because the node labeled with [the,girl,sang,a,song,'.']
can be joined to the node labeled with [] by a path representing the sentence
predicate. Now the parsing query fits the scanner, since the arguments to
sentence are the token list and the tail that remains when the tokens in the
sentence are consumed.

By exploiting the invertibility of logic programming, it is possible to use the
logic grammar to generate sentences in the language with the following query:

?- sentence(S, []).
S = [a,boy,saw,a,boy,.] ;
S = [a,boy,saw,a,girl,.] ;
S = [a,boy,saw,a,cat,.] ;
S = [a,boy,saw,a,telescope,.] ;
S = [a,boy,saw,a,song,.] ;
S = [a,boy,saw,a,feather,.] ;
S = [a,boy,saw,the,boy,.] ;
S = [a,boy,saw,the,girl,.] ;
S = [a,boy,saw,the,cat,.]
yes

Using semicolons to resume the inference engine, we initiate the construc-
tion of all the sentences defined by the grammar. If the grammar contains a
recursive rule, say with the conjunction and,

NounPhrase ::= Determiner Noun

| Determiner Noun and NounPhrase,

then the language allows infinitely many sentences, and the sentence gen-
erator will get stuck with ever-lengthening nounPhrase phrases, such as “a
boy saw a boy. ”, “a boy saw a boy and a boy. ”, “a boy saw a boy and a boy
and a boy. ”, and so on.

Prolog Grammar Rules

Most implementations of Prolog have a preprocessor that translates special
grammar rules into regular Prolog clauses that allow the recognition of cor-
rect sentences as seen above. The BNF definition of the English subset takes

47

the form of the logic grammar in Prolog shown in Figure 2.8. Logic grammars
use a special predefined infix predicate “-->” to force this translation into
normal Prolog code.

sentence --> nounPhrase, predicate, ['.'].
nounPhrase --> determiner, noun.
predicate --> verb, nounPhrase.
predicate --> verb.
determiner --> [a].
determiner --> [the].
noun --> [boy] ; [girl] ; [cat] ; [telescope] ; [song] ; [feather].
verb --> [saw] ; [touched] ; [surprised] ; [sang].

Figure 2.8: A Logic Grammar

The similarity between Figure 2.8 and the concrete syntax (BNF) in Figure
2.1 demonstrates the utility of logic grammars. Note that terminal symbols
appear exactly as they do in the source text, but they are placed inside brack-
ets. Since they are Prolog atoms, tokens starting with characters other than
lowercase letters must be delimited by apostrophes. The Prolog interpreter
automatically translates these special rules into normal Prolog clauses iden-
tical to those in Figure 2.7. Each predicate is automatically given two param-
eters in the translation. For example, the logic grammar clauses are trans-
lated as shown in the examples below:

nounPhrase --> determiner, noun.

becomes nounPhrase(K,L) :- determiner(K,M),noun(M,L).

predicate --> verb. becomes predicate(K,L) :- verb(K,L).

noun --> [boy]. becomes noun(K,L) :- 'C'(K,boy,L).

Since a Prolog system generates its own variable names, listing the trans-
lated code is unlikely to show the names K, L, and M, but the meaning will be
the same.

Parameters in Grammars

The second problem, that of producing an abstract syntax tree as a sentence
is parsed, can be handled by using parameters in the logic grammar rules.
Predicates defined by using Prolog grammar rules may have arguments in
addition to the implicit ones created by the preprocessor. These additional
arguments are usually inserted by the translator in front of the implicit argu-
ments. (Some Prolog implementations insert the additional arguments after
the implicit ones.)

2.2 LOGIC GRAMMARS

48 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

For example, the grammar rule

sentence(sent(N,P)) --> nounPhrase(N), predicate(P), ['.'].

will be translated into the normal Prolog clause

sentence(sent(N,P),K,L) :- nounPhrase(N,K,M), predicate(P,M,R), 'C'(R,'.',L).

Figure 2.9 presents the complete BNF grammar with parameters added to
build a derivation tree.

sentence(sent(N,P)) --> nounPhrase(N), predicate(P), ['.'].
nounPhrase(nounph(D,N)) --> determiner(D), noun(N).
predicate(pred(V,N)) --> verb(V), nounPhrase(N).
predicate(pred(V)) --> verb(V).

determiner(det(a)) --> [a].
determiner(det(the)) --> [the].
noun(noun(boy)) --> [boy].
noun(noun(girl)) --> [girl].
noun(noun(cat)) --> [cat].
noun(noun(telescope)) --> [telescope].

noun(noun(song)) --> [song].
noun(noun(feather)) --> [feather].
verb(verb(saw)) --> [saw].
verb(verb(touched)) --> [telescope].
verb(verb(surprised)) --> [surprised].
verb(verb(sang)) --> [sang].

Figure 2.9: A Logic Grammar with Parameters

A query with a variable representing an abstract syntax tree produces that
tree as its answer:

?- sentence(Tree, [the,girl,sang,a,song,'.'], []).
Tree = sent(nounph(det(the), noun(girl)),
 pred(verb(sang), nounph(det(a), noun(song))))
yes

A subphrase can be parsed as well.

?- predicate(Tree, [sang,a,song], []).
Tree = pred(verb(sang), nounph(det(a), noun(song)))
yes

49

Executing Goals in a Logic Grammar

Prolog terms placed within braces in a logic grammar are not translated by
the preprocessor. They are executed as regular Prolog clauses unchanged.
For example, the first clause in the English grammar can be written

sentence(S) --> nounPhrase(N), predicate(P), ['.'], {S=sent(N,P)}.

The resulting Prolog clause after translation is

sentence(S,K,L) :-
nounPhrase(N,K,M), predicate(P,M,R), 'C'(R,'.',L), S=sent(N,P).

As a second example, we add a word-counting facility to the English gram-
mar in Figure 2.9 (only those clauses that need to be changed are shown):

sentence(WC,sent(N,P)) -->
nounPhrase(W1,N), predicate(W2,P), ['.'], {WC is W1+W2}.

nounPhrase(WC,nounph(D,N)) --> determiner(D), noun(N), {WC is 2}.

predicate(WC,pred(V,N)) --> verb(V), nounPhrase(W,N), {WC is W+1}.

predicate(1,pred(V)) --> verb(V).

If the word-counting feature is used, conditions may be placed on the sen-
tences accepted by the grammar; for example, if only sentences with no more
than ten words are to be accepted, the first clause can be written

sentence(WC,sen(N,P)) -->
nounPhrase(W1,N), predicate(W2,P), ['.'], {WC is W1+W2, WC <= 10}.

Any sentence with more than ten words will fail to parse in this augmented
grammar because of the condition. Computing values and testing them illus-
trates the basic idea of attribute grammar, the subject of the next chapter.

The astute reader may have noticed that in the English grammar in this
chapter, each sentence has exactly five words. The condition on word count
makes more sense if applied to a grammar that includes prepositional phrases
or allows and ’s in the <noun phrase> strings.

Exercises

1. Write a definite clause grammar for an English grammar that includes
prepositional phrases as in Chapter 1. To avoid ambiguity, add preposi-
tional phrases only to noun phrases.

2.2 LOGIC GRAMMARS

50 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

2. Modify <noun phrase> to allow and according to the productions in Fig-
ure 2.4. Construct a logic grammar, and try to generate all the sen-
tences. Make sure you recognize the shortest noun phrase first.

3. This grammar is a BNF specification of the language of Roman numerals
less than 500.

<roman> ::= <hundreds> <tens> <units>

<hundreds> ::= <empty> | C | CC| CCC | CD

<tens> ::= <low tens> | XL | L <low tens> | XC

<low tens> ::= <empty> | <low tens> X

<units> ::= <low units> | IV | V <low units> | IX

<low units> ::= <empty> | <low units> I

Write a logic grammar that parses strings in this language and also
enforces a constraint that the number of X’s in <low tens> and I’s in
<low units> can be no more than three.

4. Write a logic grammar for the language of list expressions described in
exercise 9 in section 1.2.

2.3 PARSING WREN

Prolog’s definite clause grammars provide a mechanism for parsing Wren as
well as our English language fragment. Again, we start with the BNF specifi-
cation of Wren’s concrete syntax and convert the productions into logic gram-
mar clauses with as few changes as required. Parameters to the clauses
construct an abstract syntax tree for the program being parsed.

We illustrate the process with a couple of the straightforward productions.

<program> ::= program <identifier> is <block>

becomes
program(AST) --> [program], [ide(I)], [is], block(AST).

and

<block> ::= <declaration seq> begin <command seq> end

becomes
block(prog(Decs,Cmds)) --> decs(Decs), [begin], cmds(Cmds), [end].

51

Observe that the reserved words and identifiers are recognized as Prolog
atoms and ide structures inside brackets. The logic grammar needs to match
the form of the tokens produced by the scanner. Also, note how the abstract
syntax tree (AST) for a block is constructed from the two subtrees for decla-
rations and commands.

The BNF specification for commands can be converted into logic grammar
clauses with little modification.

<command> ::= <variable> := <expr>

becomes
command(assign(V,E)) --> [ide(V)], [assign], expr(E).

and

<command> ::= while <boolean expr> do <command seq> end while

becomes
command(while(Test,Body)) -->

[while], boolexpr(Test), [do], cmds(Body), [end, while].

Parsing Wren involves collecting lists of items for several of its syntactic cat-
egories: command sequences, declaration sequences, and lists of variables.
We describe the pattern for handling these lists by means of command se-
quences and leave the other two as exercises. Our approach follows the strategy
for building a list in the scanner—that is, we obtain the first object in the list
and then call a predicate to construct the (possibly empty) tail of the list. In
each case, we use Prolog lists for the representation of the subtrees in the
abstract syntax tree.

The productions

<command seq> ::= <command> | <command> ; <command seq>

become the two predicates

cmds(Cmds) --> command(Cmd), restcmds(Cmd,Cmds).

restcmds(Cmd,[Cmd|Cmds]) --> [semicolon], cmds(Cmds).

restcmds(Cmd,[Cmd]) --> [].

A variable list can be formed in exactly the same way; but remember that
declaration sequences may be empty, thereby producing an empty list [] as
the abstract syntax subtree.

2.3 PARSING WREN

52 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Handling Left Recursion

In defining the syntax of programming languages, BNF specifications fre-
quently use left recursion to define lists and expressions; in fact, expressions
with left associative operations are naturally formulated using left recursion.
Unfortunately, parsing left recursion can lead the interpreter down an infi-
nite branch of the search tree in the corresponding logic program.

As an example, consider a language of expressions with left associative addi-
tion and subtraction of numbers:

<expr> ::= <expr> <opr> <numeral>

<expr> ::= <numeral>

<opr> ::= + | –

<numeral> ::= … % as before

Using a Prolog definite clause grammar produces the following rules:

expr(plus(E1,E2)) --> expr(E1), ['+'], [num(E2)].

expr(minus(E1,E2)) --> expr(E1), ['–'], [num(E2)].

expr(E) --> [num(E)].

which translate into the following Prolog clauses:

expr(plus(E1,E2),K,L) :- expr(E1,K,M), 'C'(M,'+',N), 'C'(N,num(E2),L).

expr(minus(E1,E2),K,L) :- expr(E1,K,M), 'C'(M,'–',N), 'C'(N,num(E2),L).

expr(E,K,L) :- 'C'(K,num(E),L).

Suppose the string “5–2” runs through the scanner, and the logic grammar is
invoked with the query

?- expr(E, [num(5), '–', num(2)], []).

The Prolog interpreter repeatedly tries expr with an uninstantiated variable
as the first argument, creating an endless search for a derivation, as shown
in Figure 2.10.

The depth-first strategy for satisfying goals makes it impossible for Prolog to
find the consequence defined by the logic program. The logic interpreter needs
to satisfy the initial goal in the goal list first. The usual way to remove left
recursion from a BNF grammar is to define a new syntactic category that
handles all but the first token:

<expr> ::= <numeral> <rest of expr>

53

<rest of expr> ::= <opr> <numeral> <rest of expr>

<rest of expr> ::= ε

expr(E, [num(5), '–', num(2)], [])

expr(E1,[num(5), '–', num(2)],M), c(M,'+',N), c(N,num(E2),[])

expr(E11,[num(5), '–', num(2)],M1), c(M1,'+',N1), c(N1,num(E21),[]) …

expr(E12,[num(5), '–', num(2)],M2), c(M2,'+',N2), c(N2,num(E22),[]) …

:

Figure 2.10: Parsing the expression “5–2”

The corresponding logic grammar has the property that each rule starts with
a goal that can be verified without going down an infinite branch of the search
tree. A careful definition of the parameters enables the grammar to construct
a left associative parse tree even though the logic grammar is right recursive.

expr(E) --> [num(E1)], restexpr(E1,E).

restexpr(E1,E) --> ['+'], [num(E2)], restexpr(plus(E1,E2),E).

restexpr(E1,E) --> ['–'], [num(E2)], restexpr(minus(E1,E2),E).

restexpr(E,E) --> [].

The predicate restexpr(E1,E) means that the expression E1 has been con-
structed from the symbols encountered so far, and the resulting parse tree
will be E once the rest of the symbols making up the expression have been
processed. The last rule “restexpr(E,E) --> [].” states that when no tokens are
left to build an expression, the result is the expression created so far—namely,
the first argument.

For Wren, we use logic grammar clauses

expr(E) --> intexpr(E).
expr(E) --> boolexpr(E).

2.3 PARSING WREN

54 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

intexpr(E) --> term(T), restintexpr(T,E).
restintexpr(T,E) --> weakop(Op), term(T1), restintexpr(exp(Op,T,T1),E).
restintexpr(E,E) --> [].
term(T) --> element(P), restterm(P,T).
restterm(P,T) --> strongop(Op), element(P1), restterm(exp(Op,P,P1),T).
restterm(T,T) --> [].
element(num(N)) --> [num(N)].
element(Ide(I)) --> [ide(I)].
weakop(plus) --> [plus]. weakop(minus) --> [minus].
strongop(times) --> [times]. strongop(divides) --> [divides].
comparison(bexp(R,E1,E2)) --> intexpr(E1), rel(R), intexpr(E2).
rel(equal) --> [equal]. rel(neq) --> [neq]. rel(less) --> [less].
rel(grtr) --> [grtr]. rel(gteq) --> [gteq]. rel(lteq) --> [lteq].

following the pattern shown above for integer expressions. Many of the BNF
rules translate directly into logic grammar clauses. For example, the BNF
productions for handling parentheses and unary minus in integer expres-
sions,

<element> ::= (<integer expr>)

<element> ::= – <element>

become the logic grammar clauses,

element(E) --> [lparen], intexpr(E), [rparen].

element(minus(E)) --> [minus], element(E).

Note that we can use the same function symbol minus for both unary minus
and subtraction since the number of parameters help define the structure.
Boolean expressions are handled in a similar manner.

Recall that we suggested two different formats for the abstract syntax of
expressions formed from binary operations:

exp(plus,E1,E2)
and

plus(E1,E2).

The choice between these two templates is largely subjective, depending on
the purpose for which the trees will be used. We elect to use the exp(plus,E1,E2)
format when we develop an interpreter for Wren in later chapters because it
eases the handling of arithmetic expressions. In this chapter we have used
both formats to emphasize that the difference is primarily cosmetic.

55

Left Factoring

Sometimes two productions have a common initial string of terminals and
nonterminals to be processed. If the first production fails, the second one
has to recognize that initial string all over again. Factoring the initial string
as a separate rule leads to a more efficient parsing algorithm.

Suppose now that expressions have right associative operators at two prece-
dence levels:

expr(plus(E1,E2)) --> term(E1), ['+'], expr(E2).

expr(minus(E1,E2)) --> term(E1), ['–'], expr(E2).

expr(E) --> term(E).

term(times(T1,T2)) --> [num(T1)], ['* '], term(T2).

term(divides(T1,T2)) --> [num(T1)], ['/'], term(T2).

term(T) --> [num(T)].

The problem here is that when processing a string such as “2* 3* 4* 5* 6 – 7”,
the term “2* 3* 4* 5* 6” must be recognized twice, once by the first clause that
expects a plus sign next, and once by the second clause that matches the
minus sign. This inefficiency is remedied by rewriting the grammar as fol-
lows:

expr(E) --> term(E1), restexpr(E1,E).

restexpr(E1,plus(E1,E2)) --> ['+'], expr(E2).

restexpr(E1,minus(E1,E2)) --> ['–'], expr(E2).

restexpr(E,E) --> [].

term(T) --> [num(T1)], restterm(T1,T).

restterm(T1,times(T1,T2)) --> ['* '], term(T2).

restterm(T1,divides(T1,T2)) --> ['/'], term(T2).

restterm(T,T) --> [].

Now the term “2* 3* 4* 5* 6” will be parsed only once.

Left factoring can also be used in processing the if commands in Wren.

<command> ::= if <boolean expr> then <command seq> end if

 | if <boolean expr> then <command seq> else <command seq> end if

becomes

command(Cmd) -->
[if], boolexpr(Test), [then], cmds(Then), restif(Test,Then,Cmd).

2.3 PARSING WREN

56 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

restif(Test,Then,if(Test,Then,Else)) --> [else], cmds(Else), [end], [if].

restif(Test,Then,if(Test,Then)) --> [end], [if].

Observe that we construct either a ternary structure or a binary structure
for the command, depending on whether we encounter else or not. Again, we
use a predicate go to control the system:

go :- nl,write('>>> Interpreting: Wren <<<'), nl, nl,
write(‘Enter name of source file: '), nl, getfilename(fileName), nl,
see(fileName), scan(Tokens), seen, write(‘Scan successful’), nl, !,
write(Tokens), nl, nl,
program(AST,Tokens,[eop]), write(‘Parse successful’), nl, !,
write(AST), nl, nl.

Note that cut operations “!” have been inserted after the scanning and pars-
ing phases of the language processing. This ensures that the Prolog inter-
preter never backtracks into the parser or scanner after each has completed
successfully. Such backtracking can only generate spurious error messages.
A cut acts as a one-way passage. It always succeeds once, but if the back-
tracking attempts the cut a second time, the entire query fails. Except for the
go clause, we refrain from using cuts in our Prolog code because we want to
avoid their nonlogical properties. See the references for details on the cut
operation.

Exercises

1. Write the logic grammar clauses that parse declaration sequences and
variable lists.

<declaration seq> ::= ε | <declaration> <declaration seq>

<declaration> ::= var <variable list> : <type> ;

<type> ::= integer | boolean

<variable list> ::= <variable> | <variable> , <variable list>

2. Write the logic grammar clauses that parse Boolean expressions. Use
the tag bexp for these expressions.

<boolean expr> ::= <boolean term>

| <boolean expr> or <boolean term>

<boolean term> ::= <boolean element>

| <boolean term> and <boolean element>

57

<boolean element> ::= true | false | <variable> | <comparison>

|not (<boolean expr>) | (<boolean expr>)

3. Add these language constructs to Wren and modify the parser to handle
them:

a) repeat-until commands
<command> ::= ... | repeat <command seq> until <boolean expr>

b) conditional expressions
<expression> ::= ...

 | if <boolean expr> then <integer expr> else <integer expr>

c) expressions with side effects
<expression> ::= ... | begin <command seq> return <expr> end

2.4 FURTHER READING

Many books provide a basic introduction to Prolog. Our favorites include the
classic textbook by Clocksin and Mellish that is already in its third edition
[Clocksin87]; Ivan Bratko’s book [Bratko90], which emphasizes the use of
Prolog in artificial intelligence; and the comprehensive text by Sterling and
Shapiro [Sterling94]. These books also include descriptions of the operational
semantics of Prolog with information on unification, the resolution proof strat-
egy, and the depth-first search method used by Prolog. The last book has a
good discussion of programming with difference lists in Prolog. The model for
our scanner can be found in the Clocksin and Mellish text where the lexical
analysis of an English sentence is presented.

Most Prolog texts cover the definite clause grammars that we used to build
the parsers in this chapter. In addition to [Clocksin87] and [Sterling86], see
[Kluzniak85], [Malpas87], [Covington88], and [Saint-Dizier90] for material
on logic grammars.

The roots of Prolog lie in language processing. It has been said that Prolog
was invented by Robert Kowalski in 1974 and implemented by Alain Col-
merauer in 1973. To explain this apparent contradiction, we note that Prolog
originated in Colmerauer’s interest in using logic to express grammar rules
and to formalize the parsing of natural language sentences. He developed
the mechanism of syntactic analysis in logic before the power of Prolog as a
general purpose programming language was made apparent by Kowalski.
For more information on the early development of Prolog and logic gram-
mars see [Colmerauer78] and [Kowalski79].

2.4 FURTHER READING

58 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Some of the issues discussed in this chapter, such as left recursion and left
factoring, are handled in compiler writing texts (see [Aho86] and [Parsons92]).
Prolog was given credibility as a vehicle for language processing in 1980 by
David Warren in a paper that describes a compiler written in Prolog [War-
ren80].

59

Chapter 3
ATTRIBUTE GRAMMARS

In Chapter 1 we discussed the hierarchy of formal grammars proposed by
Noam Chomsky. We mentioned that context-sensitive conditions, such
as ensuring the same value for n in a string anbncn, cannot be tested

using a context-free grammar. Although we showed a context-sensitive gram-
mar for this particular problem, these grammars in general are impractical
for specifying the context conditions for a programming language. In this
chapter and the next we investigate two different techniques for augmenting
a context-free grammar in order to verify context-sensitive conditions.

Attribute grammars can perform several useful functions in specifying the
syntax and semantics of a programming language. An attribute grammar
can be used to specify the context-sensitive aspects of the syntax of a lan-
guage, such as checking that an item has been declared and that the use of
the item is consistent with its declaration. As we will see in Chapter 7, at-
tribute grammars can also be used in specifying an operational semantics of
a programming language by defining a translation into lower-level code based
on a specific machine architecture.

Attribute grammars were first developed by Donald Knuth in 1968 as a means
of formalizing the semantics of a context-free language. Since their primary
application has been in compiler writing, they are a tool mostly used by pro-
gramming language implementers. In the first section, we use examples to
introduce attribute grammars. We then provide a formal definition for an
attribute grammar followed by additional examples. Next we develop an at-
tribute grammar for Wren that is sensitive to the context conditions dis-
cussed in Chapter 1 (see Figure 1.11). Finally, as a laboratory activity, we
develop a context-sensitive parser for Wren.

3.1 CONCEPTS AND EXAMPLES

An attribute grammar may be informally defined as a context-free grammar
that has been extended to provide context sensitivity using a set of attributes,
assignment of attribute values, evaluation rules, and conditions. A finite,
possibly empty set of attributes is associated with each distinct symbol in
the grammar. Each attribute has an associated domain of values, such as

60 CHAPTER 3 ATTRIBUTE GRAMMARS

integers, character and string values, or more complex structures. Viewing
the input sentence (or program) as a parse tree, attribute grammars can
pass values from a node to its parent, using a synthesized attribute, or from
the current node to a child, using an inherited attribute. In addition to pass-
ing attribute values up or down the parse tree, the attribute values may be
assigned, modified, and checked at any node in the derivation tree. The fol-
lowing examples should clarify some of these points.

Examples of Attribute Grammars

We will attempt to write a grammar to recognize sentences of the form anbncn.
The sentences aaabbbccc and abc belong to this grammar but the sentences
aaabbbbcc and aabbbcc do not. Consider this first attempt to describe the
language using a context-free grammar:

<letter sequence> ::= <a sequence> <b sequence> <c sequence>

<asequence> ::= a | <a sequence> a

<bsequence> ::= b | <bsequence> b

<csequence> ::= c | <csequence> c

As seen in Figure 3.1, this grammar can generate the string aaabbbccc . It
can also generate the string aaabbbbcc , as seen in Figure 3.2.

<letter sequence>

<a sequence>

<a sequence>

<a sequence>

<b sequence>

<b sequence>

a

<c sequence>

<c sequence>a

a

b

b

b

c

c

c

 <b sequence> <c sequence>

Figure 3.1: Parse Tree for the String aaabbbccc

As has already been noted in Chapter 1, it is impossible to write a context-
free grammar to generate only those sentences of the form anbncn. However,
it is possible to write a context-sensitive grammar for sentences of this form.
Attribute grammars provide another approach for defining context-sensitiv-

613.1 CONCEPTS AND EXAMPLES

ity. If we augment our grammar with an attribute describing the length of
aletter sequence, we can use these values to ensur e that the sequences of
a’s, b’s, and c’s all have the same length.

<letter sequence>

<a sequence>

<a sequence>

<a sequence>

<b sequence>

<b sequence>

<c sequence>

<b sequence>

a

a

a

b

b

b

b

c

c

<b sequence> <c sequence>

Figure 3.2: Parse Tree for the String aaabbbbcc

The first solution involves a synthesized attribute Size that is associated with
the nonterminals <asequence>, <bsequence>, and <csequence>. W e add
the condition that, at the root of the tree, the Size attribute for each of the
letter sequences has the same value. If a character sequence consists of a
single character, Size is set to 1; if it consists of a character sequence fol-
lowed by a single character, Size for the parent character sequence is the
Size of the child character sequence plus one. We have added the necessary
attribute assignments and conditions to the grammar shown below. Notice
that we differentiate a parent sequence from a child sequence by adding
subscripts to the nonterminal symbols.

<lettersequence> ::= <asequence> <bsequence> <csequence>
condition :

Size (<asequence>) = Size (<bsequence>) = Size (<csequence>)

<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2 a
Size (<asequence>) ← Size (<asequence> 2) + 1

62 CHAPTER 3 ATTRIBUTE GRAMMARS

<bsequence> ::= b
Size (<bsequence>) ← 1

| <bsequence> 2 b
Size (<bsequence>) ← Size (<bsequence> 2) + 1

<csequence> ::= c
Size (<csequence>) ← 1

| <csequence> 2 c
Size (<csequence>) ←Size (<csequence> 2) + 1

This attribute grammar successfully parses the sequence aaabbbccc since
the sequence obeys the BNF and satisfies all conditions in the attribute gram-
mar. The complete, decorated parse tree is shown in Figure 3.3.

c

c

 condition: true
 Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<letter sequence>

<a sequence>

<a sequence> <b sequence> <c sequence>

<b sequence> <c sequence>

Size : 3

Size : 2

Size : 1

a

a

a

b

b

b

c

Size : 1Size : 1

Size : 2Size : 2

Size : 3Size : 3
<b sequence> <c sequence>

<a sequence>

Figure 3.3: Parse Tree for aaabbbccc Using Synthesized Attributes

On the other hand, this attribute grammar cannot parse the sequence
aaabbbbcc . Although this sequence satisfies the BNF part of the grammar, it
does not satisfy the condition required of the attribute values, as shown in
Figure 3.4.

When using only synthesized attributes, all of the relevant information is
passed up to the root of the parse tree where the checking takes place. How-
ever, it is often more convenient to pass information up from one part of a
tree, transfer it at some specified node, and then have it inherited down into
other parts of the tree.

63

<letter sequence>

<a sequence> <b sequence> <c sequence>

<b sequence>

<b sequence>

Size : 4

<a sequence>

a

a

a b

b

b

b

c

c
Size : 1

Size : 1

Size : 1

Size : 2

Size : 2

Size : 2 Size : 3

Size : 3

 condition: false
 Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<a sequence> <b sequence> <c sequence>

Figure 3.4: Parse Tree for aaabbbbcc Using Synthesized Attributes

Reconsider the problem of recognizing sequences of the form anbncn. In this
solution, we use the attribute Size as a synthesized attribute for the sequence
of a’s and InhSize as inherited attributes for the sequences of b’s and c’s. As
we have already seen, we can synthesize the size of the sequence of a’s to the
root of the parse tree. In this solution we set the InhSize attribute for the b
sequence and the c sequence to this value and inherit it down the tree,
decrementing the value by one every time we see another character in the
sequence. When we reach the node where the sequence has a child consist-
ing of a single character, we check if the inherited InhSize attribute equals
one. If so, the size of the sequence must be the same as the size of the se-
quences of a’s; otherwise, the two sizes do not match and the parse is unsuc-
cessful. These ideas are expressed in the following attribute grammar:

<lettersequence> ::= <asequence> <bsequence> <csequence>
InhSize (<bsequence>) ← Size (<asequence>)
InhSize (<csequence>) ← Size (<asequence>)

3.1 CONCEPTS AND EXAMPLES

64 CHAPTER 3 ATTRIBUTE GRAMMARS

<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2 a
Size (<asequence>) ← Size (<asequence> 2) + 1

<bsequence> ::= b
condition: InhSize (<bsequence>) = 1

| <bsequence> 2 b
InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

<csequence> ::= c
condition: InhSize (<csequence>) = 1

| <csequence> 2 c
InhSize (<csequence> 2) ← InhSize (<csequence>) – 1

For the nonterminal <asequence>, Size is a synthesized attribute, as we can
see from the attribute assignment

Size (<asequence>) ← Size (<asequence> 2) + 1.

Here the value of the child is incremented by one and passed to the parent.
For the nonterminals <bsequence> and <csequence>, InhSize is an inher-
ited attribute that is passed from parent to child. The assignment

InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

shows that the value is decremented by one each time it is passed from the
parent sequence to the child sequence. When the sequence is a single char-
acter, we check that the inherited size attribute value is one. Figure 3.5 shows
a decorated attribute parse tree for the sequence aaabbbccc , which satisfies
the attribute grammar since it satisfies the BNF and all attribute conditions
are true. Size is synthesized up the left branch, passed over to the center and
right branches at the root, inherited down the center branch, and inherited
down the right branch as InhSize.

As before, we demonstrate that the attribute grammar cannot parse the se-
quence aaabbbbcc . Although this sequence satisfies the BNF part of the gram-
mar, it does not satisfy all conditions associated with attribute values, as
shown in Figure 3.6. In this case, the parse fails on two conditions. It only
takes one false condition anywhere in the decorated parse tree to make the
parse fail.

65

<letter sequence>

<a sequence> <b sequence> <c sequence>

<a sequence> <b sequence> <c sequence>

Size : 3

Size : 2

Size : 1
condition: true
 InhSize = 1

a

a

a

b

b

b

c

c

c

InhSize : 3InhSize : 3

InhSize : 2InhSize : 2

InhSize : 1InhSize : 1
condition: true
 InhSize = 1

<a sequence> <b sequence> <c sequence>

Figure 3.5: Parse Tree for aaabbbccc Using Inherited Attributes

<a sequence>

<letter sequence>

<a sequence> <b sequence> <c sequence>

<b sequence>

<b sequence>
InhSize : 0

a

a

a

b

b

b

b c

c

InhSize : 3InhSize : 3Size : 3

InhSize: 2InhSize : 2Size : 2

InhSize : 1Size : 1

condition: false
 InhSize = 1

condition: false
 InhSize = 1

<a sequence> <b sequence> <c sequence>

Figure 3.6: Parse Tree for aaabbbbcc Using Inherited Attributes

3.1 CONCEPTS AND EXAMPLES

66 CHAPTER 3 ATTRIBUTE GRAMMARS

In this grammar the sequence of a’s determines the “desired” length against
which the other sequences are checked. Consider the sequence aabbbccc . It
might be argued that the sequence of a’s is “at fault” and not the other two
sequences. However, in a programming language with declarations, we use
the declarations to determine the “desired” types against which the remain-
der of the program is checked. The declaration information is synthesized up
to the root of the tree and passed into the entire program for checking. Using
this approach makes it easier to localize errors that cause the parse to fail.
Also, if both synthesized and inherited attributes are used, an attribute value
may be threaded throughout a tree. We will see this mechanism in Chapter 7
when an attribute grammar is used to help determine label names in the
generation of code. Before developing the complete attribute grammar for
Wren, we provide some formal definitions associated with attribute gram-
mars and examine one more example where attributes are used to determine
the semantics of binary numerals.

Formal Definitions

Although the above examples were introduced in an informal way, attribute
grammars furnish a formal mechanism for specifying a context-sensitive gram-
mar, as indicated by the following definitions.

Definition : An attribute grammar is a context-free grammar augmented
with attributes, semantic rules, and conditions.

Let G = <N,Σ,P,S> be a context-free grammar (see Chapter 1).
Write a production p ∈P in the form:

p: X0 ::= X1 X2 … Xnp

where np ≥ 1, X0 ∈ N and Xk ∈ N ∪ Σ for 1 ≤ k ≤ np.

A derivation tree for a sentence in a context-free language, as defined in
Chapter 1, has the property that each of its leaf nodes is labeled with a
symbol from Σ and each interior node t corresponds to a production p ∈ P
such that t is labeled with X0 and t has np children labeled with X1, X2, …,
Xnp in left-to-right order.

For each syntactic category X ∈ N in the grammar, there are two finite dis-
joint sets I(X) and S(X) of inherited and synthesized attributes . For X = S,
the start symbol, I(X) = ∅.

Let A(X) = I(X) ∪ S(X) be the set of attributes of X. Each attribute Atb ∈ A(X)
takes a value from some semantic domain (such as the integers, strings of
characters, or structures of some type) associated with that attribute. These
values are defined by semantic functions or semantic rules associated
with the productions in P.

Consider again a production p ∈ P of the form X0 ::= X1 X2 … Xnp Each
synthesized attribute Atb ∈ S(X0) has its value defined in terms of the at-

67

tributes in A(X1) ∪ A(X2) ∪ … ∪ A(Xnp
) ∪ I(X0). Each inherited attribute

Atb ∈ I(Xk) for 1 ≤ k ≤ np has its value defined in terms of the attributes in
A(X0) ∪ S(X1) ∪ S(X2) ∪ … ∪ S(Xnp

).

Each production may also have a set of conditions on the values of the at-
tributes in A(X0) ∪ A(X1) ∪ A(X2) ∪ … ∪ A(Xnp

) that further constrain an
application of the production. The derivation (or parse) of a sentence in the
attribute grammar is satisfied if and only if the context-free grammar is sat-
isfied and all conditions are true. The semantics of a nonterminal can be
considered to be a distinguished attribute evaluated at the root node of the
derivation tree of that nonterminal. ❚

Semantics via Attribute Grammars

We illustrate the use of attribute grammars to specify meaning by developing
the semantics of binary numerals. A binary numeral is a sequence of binary
digits followed by a binary point (a period) and another sequence of binary
digits—for example, 100.001 and 0.001101. For simplicity, we require at
least one binary digit, which may be 0, for each sequence of binary digits. It
is possible to relax this assumption—for example 101 or .11—but this flexibility
adds to the complexity of the grammar without altering the semantics of
binary numerals. Therefore we leave this modification as an exercise. We
define the semantics of a binary numeral to be the real number value Val
associated with the numeral, expressed in base-ten notation. For example,
the semantics of the numeral 100.001 is 4.125.

The first version of an attribute grammar defining the meaning of binary
numerals involves only synthesized attributes.

Synthesized Inherited
Nonterminals Attributes Attributes
<binary numeral> Val —
<binary digits> Val, Len —
<bit> Val —

<binary numeral> ::= <binary digits>1 . <binary digits>2

Val (<binary numeral>) ← Val (<binary digits>1) +
Val (<binary digits>2) / 2Len (<binary digits>2)

<binary digits> ::=

 <binary digits>2 <bit>
Val (<binary digits>) ← 2 • Val (<binary digits>2) + Val (<bit>)
Len (<binary digits>) ← Len (<binary digits>2) + 1

| <bit>
Val (<binary digits>) ← Val (<bit>)
Len (<binary digits>) ← 1

3.1 CONCEPTS AND EXAMPLES

68 CHAPTER 3 ATTRIBUTE GRAMMARS

<bit> ::=

 0
Val (<bit>) ← 0

| 1
Val (<bit>) ← 1

The derivation tree in Figure 3.7 illustrates the use of attributes that give the
semantics for the binary numeral 1101.01 to be the real number 13.25.

<binary numeral>
Val: 13 + 1/22 = 13.25

<binary digits>
Val : 13
Len : 4

<binary digits>
Val : 1
Len : 2

<binary digits>
Val : 6
Len : 3

<binary digits>
Val : 3
Len : 2

<binary digits>
Val : 1
Len : 1

<bit>
Val : 1

<binary digits>
Val : 0
Len : 1

<bit>
Val : 1

<bit>
Val : 0

<bit>
Val : 1

<bit>
Val : 1

<bit>
Val : 0

1

1

1 1

0 0

Figure 3.7: Binary Numeral Semantics Using Synthesized Attributes

69

The previous specification for the semantics of binary numerals was not based
on positional information. As a result, the attribute values below the root do
not represent the semantic meaning of the digits at the leaves. We now present
an approach based on positional semantics, illustrated first in base 10,

123.45 = 1•102 + 2•101 + 3•100 + 4•10-1 + 5•10-2

and then in base 2,

110.101 = 1•22 + 1•21 + 0•20 + 1•2-1 + 0•2-2 + 1•2-3

= 6.625 (base 10).

We develop a positional semantics in which an inherited attribute called Pos
is introduced. It is convenient to separate the sequence of binary digits to the
left of the binary point, identified by the nonterminal <binary digits>, from
the fractional binary digits to the right of the binary point, identified by the
nonterminal <fraction digits>.

Synthesized Inherited
Nonterminals Attributes Attributes

<binary numeral> Val —
<binary digits> Val Pos
<fraction digits> Val, Len —
<bit> Val Pos

We write our grammar in left recursive form, which means that the leftmost
binary digit in a sequence of digits is “at the bottom” of the parse tree, as
shown in Figure 3.7. For the binary digits to the left of the binary point, we
initialize the Pos attribute to zero and increment it by one as we go down the
tree structure. This technique provides the correct positional information for
the binary digits in the integer part, but a different approach is needed for
the fractional binary digits since the exponents from left to right are -1, -2,
-3, Notice that this exponent information can be derived from the length
of the binary sequence of digits from the binary point up to, and including,
the digit itself. Therefore we add a length attribute for fractional digits that is
transformed into a positional attribute for the individual bit. Notice that the
Val attribute at any point in the tree contains the absolute value for the
portion of the binary numeral in that subtree. Therefore the value of a parent
node is the sum of the values for the children nodes. These ideas are imple-
mented in the following attribute grammar:

<binary numeral> ::= <binary digits> . <fraction digits>

Val (<binary numeral>) ← Val (<binary digits>)+Val (<fraction digits>)

Pos (<binary digits>) ← 0

3.1 CONCEPTS AND EXAMPLES

70 CHAPTER 3 ATTRIBUTE GRAMMARS

<binary digits> ::=

 <binary digits>2 <bit>

Val (<binary digits>) ← Val (<binary digits>2) + Val (<bit>)

Pos (<binary digits>2) ← Pos (<binary digits>) + 1

Pos (<bit>) ← Pos (<binary digits>)

| <bit>

Val (<binary digits>) ← Val (<bit>)

Pos (<bit>) ← Pos (<binary digits>)

<fraction digits> ::=

 <fraction digits>2 <bit>

Val (<fraction digits>) ← Val (<fraction digits>2) + Val (<bit>)

Len (<fraction digits>) ← Len (<fraction digits>2) + 1

Pos (<bit>) ← - Len (<fraction digits>)

| <bit>

Val (<fraction digits>) ← Val (<bit>)

Len (<fraction digits>) ← 1

Pos (<bit>) ← - 1

<bit> ::=

 0

Val (<bit>) ← 0

| 1

Val (<bit>) ← 2Pos (<bit>)

The parse tree in Figure 3.8 illustrates the use of positional attributes to
generate the semantics of the binary numeral 110.101 to be the real number
6.625.

The two attribute grammars for binary numerals do not involve conditions. If
we limit the size of binary numerals to match a particular machine architec-
ture, conditionals can be introduced to ensure that the binary numerals are
of proper size. Actually, this situation is fairly complex since real number
representations in most computers are based on scientific notation, not the
fractional notation that has been illustrated above. We examine this problem
of checking the size of binary numerals in the exercises.

71

11

<bit>
Val : 2-3 = 0.125
Pos : -3

 <binary numeral>
Val : 6 + 0.625 = 6.625

<binary digits>
Val : 6
Pos : 0

<fraction digits>
Val : 0.625
Len : 3

<fraction digits>
Val : 0.5
Len : 2

<fraction digits>
Val : 0.5
Len : 1

<binary digits>
Val : 6
Pos : 1

<binary digits>
Val : 4
Pos : 2

<bit>
Val : 0
Pos : -2

<bit>
Val : 2-1 = 0.5
Pos : -1

<bit>
Val : 0
Pos : 0

<bit>
Val : 21 = 2
Pos : 1

<bit>
Val : 22 = 4
Pos : 2

0

0

1

1

Figure 3.8: Binary Numeral Semantics Using Positional Attributes

Exercises

1. In old versions of Fortran that did not have the character data type,
character strings were expressed in the following format:

<string literal> ::= <numeral> H <string>

where the <numeral> is a base-ten integer (≥ 1), H is a keyword (named
after Herman Hollerith), and <string> is a sequence of characters. The
semantics of this string literal is correct if the numeric value of the base-
ten numeral matches the length of the string. Write an attribute gram-
mar using only synthesized attributes for the nonterminals in the defi-
nition of <string literal>.

2. Repeat exercise 1, using a synthesized attribute for <numeral> and an
inherited attribute for <string>.

3. Repeat exercise 1, using an inherited attribute for <numeral> and a
synthesized attribute for <string>.

3.1 CONCEPTS AND EXAMPLES

72 CHAPTER 3 ATTRIBUTE GRAMMARS

4. The following BNF specification defines the language of Roman numer-
als less than 1000:

<roman> ::= <hundreds> <tens> <units>

<hundreds> ::= <low hundreds> | CD | D <low hundreds> | CM

<low hundreds> ::= ε | <low hundreds> C

<tens> ::= <low tens> | XL | L <low tens> | XC

<low tens> ::= ε | <low tens> X

<units> ::= <low units> | IV | V <low units> | IX

<low units> ::= ε | <low units> I

Define attributes for this grammar to carry out two tasks:

a) Restrict the number of X’s in <low tens>, the I’s in <low units>, and
the C’s in <low hundreds> to no more than three.

b) Provide an attribute for <roman> that gives the decimal value of the
Roman numeral being defined.

Define any other attributes needed for these tasks, but do not change
the BNF grammar.

5. Expand the binary numeral attribute grammar (either version) to allow
for binary numerals with no binary point (1101), binary fractions with
no fraction part (101.), and binary fractions with no whole number part
(.101).

6. Develop an attribute grammar for integers that allows a leading sign
character (+ or -) and that ensures that the value of the integer does
not exceed the capacity of the machine. Assume a two’s complement
representation; if the word-size is n bits, the values range from -2n-1

to 2n-1-1.

7. Develop an attribute grammar for binary numerals that represents signed
integers using two’s complement. Assume that a word-size attribute is
inherited by the two’s complement binary numeral. The meaning of the
binary numeral should be present at the root of the tree.

8. Assume that we have a 32-bit machine where real numbers are repre-
sented in scientific notation with a 24-bit mantissa and an 8-bit expo-
nent with 2 as the base. Both mantissa and exponent are two’s comple-
ment binary numerals. Using the results from exercise 7, write an at-
tribute grammar for <binary real number> where the meaning of the
binary numeral is at the root of the tree in base-10 notation—for ex-
ample, 0.5•25.

733.1 CONCEPTS AND EXAMPLES

9. Assuming that we allow the left side of a binary fraction to be left recur-
sive and the fractional part to be right recursive, simplify the positional
attribute grammar for binary fractions.

10. Consider a language of expressions with only the variables a, b, and c
and formed using the binary infix operators

+, –, * , /, and ↑ (for exponentiation)

where ↑ has the highest precedence, * and / have the same next lower
precedence, and + and – have the lowest precedence. ↑ is to be right
associative and the other operations are to be left associative. Parenthe-
ses may be used to override these rules. Provide a BNF specification of
this language of expressions. Add attributes to your BNF specification
so that the following (unusual) conditions are satisfied by every valid
expression accepted by the attribute grammar:

a) The maximum depth of parenthesis nesting is three.

b) No valid expression has more than eight applications of operators.

c) If an expression has more divisions than multiplications, then sub-
tractions are forbidden.

11. A binary tree consists of a root containing a value that is an integer, a
(possibly empty) left subtree, and a (possibly empty) right subtree. Such
a binary tree can be represented by a triple (Left subtree, Root, Right
subtree). Let the symbol nil denote an empty tree. Examples of binary
trees include:

(nil,13,nil)
represents a tree with one node labeled with the value 13.

((nil,3,nil),8,nil)
represents a tree with 8 at the root, an empty right subtree, and a
nonempty left subtree with root labeled by 3 and empty subtrees.

The following BNF specification describes this representation of binary
trees.

<binary tree> ::= nil | (<binary tree> <value> <binary tree>)

<value> ::= <digit> | <value> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Augment this grammar with attributes that carry out the following tasks:

a) A binary tree is balanced if the heights of the subtrees at each interior
node are within one of each other. Accept only balanced binary trees.

b) A binary search tree is a binary tree with the property that all the
values in the left subtree of any node N are less than the value at N,
and all the value in the right subtree of N are greater than or equal to
the value at node N. Accept only binary search trees.

74 CHAPTER 3 ATTRIBUTE GRAMMARS

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

In this section we develop an attribute grammar for Wren that performs con-
text checking that is the same as that done by a compiler. We concentrate on
context-sensitive conditions for programs that obey the BNF of Wren, as sum-
marized in Figure 1.11.

Wren, as we have defined it, is a flat language in the sense that there is only
one block in a program. As a consequence, all declarations belong to a single
declaration sequence at the main program level. In the exercises we extend
Wren and investigate nested blocks, but for the moment we concentrate on
developing an attribute grammar for our current version of Wren. It should
be noted that there is one small exception to our single set of declarations:
The program name itself is not part of the block structure. It is a language
design decision whether an object can have the same name as the program
name; at this point we have elected to require that the program name be
unique and not be used elsewhere in the program.

The Symbol Table

We build our declaration information in an attribute called Symbol-table.
This attribute is synthesized from the declaration sequence and inherited
into the command sequence of a program. The attribute value is transferred
at the block level, at which time the program name is added to the Symbol-
table attribute. Symbol-table contains a set of pairs each associating a name
with a type. All variables are of type integer or boolean, and we introduce a
pseudo-type, called program, for the program name identifier, and a default
value undefined to represent the absence of a type. Since all declarations in
our current version of Wren are global, there is a single Symbol-table that is
passed down to the command sequence. We will develop a number of utility
operations to manipulate the Symbol-table attribute.

Since variable names and types cannot magically appear in the symbol table
attribute at the internal nodes of our parse tree, all of this information must
be synthesized into the tree using attributes such as Name, Type, and Var-
list. Figure 3.9 contains a complete list of the attributes and associated value
types. We have added the pseudo-type value of program to the attribute Type
so that the program name is uniquely identified. A Name value is a string of
one or more letters or digits. A Var-list value is a sequence of Name values.
The Symbol-table attribute consists of a set of pairs containing a name and a
type. The nonterminals and their associated attributes for the grammar are
listed in Figure 3.10. Next we introduce our attribute grammar rules and
associated conditions by first focusing on the declaration portion of a Wren
program.

75

Attribute Value Types

Type { integer, boolean, program, undefined }

Name String of letters or digits

Var-list Sequence of Name values

Symbol-table Set of pairs of the form [Name, Type]

Figure 3.9: Attributes and Values

Synthesized Inherited
Nonterminals Attributes Attributes

<block> — Symbol-table
<declarationsequence> Symbol-table —
<declaration> Symbol-table —
<variable list> Var-list —
<type> Type —
<commandsequence> — Symbol-table
<command> — Symbol-table
<expr> — Symbol-table, Type
<integer expr> — Symbol-table, Type
<term> — Symbol-table, Type
<element> — Symbol-table, Type
<boolean expr> — Symbol-table, Type
<boolean term> — Symbol-table, Type
<boolean element> — Symbol-table, Type
<comparison> — Symbol-table
<variable> Name —
<identifier> Name —
<letter> Name —
<digit> Name —

Figure 3.10: Attributes Associated with Nonterminal Symbols

Consider the short program fragment:

program p is
var x, y : integer;
var a : boolean;

begin
:

end

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

76 CHAPTER 3 ATTRIBUTE GRAMMARS

The Symbol-table attribute value passed to the command sequence will be

[[‘p’, program], [‘x’, integer], [‘y’, integer], [‘a’, boolean]].

We have chosen to use list-like notation for both sets and sequences; how-
ever, we assume no significance for the ordering in the case of sets. The
decorated parse tree for this program fragment appears in Figure 3.11.

<declaration sequence>
Symbol-table: S3
condition: true

begin <command sequence>
Symbol-table: S4

end

<declaration>
Symbol-table: S1

var <variable list>
Var-list: ['x','y']
condition: true

: <type>
Type: integer

;

integer
<variable>
Name: 'x'

<variable list>
Var-list: ['y']

<identifier>
Name: 'x'

,

<variable>
Name: 'y'

<identifier>
Name: 'y'

<letter>
Name: 'y'

y

<letter>
Name: 'x'

x

<declaration>
Symbol-table: S2

<declaration sequence>
Symbol-table: S2
conditon: true

<letter>
Name: 'p'

p

<variable>
Name: 'a'

<identifier>
Name: 'a'

<letter>
Name: 'a'

<block>
Symbol-table: S0
condition: true

<program>

program <identifier>
Name: 'p'

is

. . .

var

a

S0 = [['p', program]]

S1 = [['x', integer], ['y', integer]]

S2 = [['a', boolean]]

S3 = S1 ∪ S2
S4 = S0 ∪ S3

<variable list>
Var-list: ['a']

:

<type>
Type: boolean

;

boolean

<declaration seq>
Symbol-table: ∅

ε

Figure 3.11: Decorated Parse Tree for Wren Program Fragment

77

The attribute Symbol-table is initialized with a pair of values: the Name value
for the program identifier and the pseudo-type program. This Symbol-table
attribute is inherited into <block>.

<program> ::= program <identifier> is <block>

Symbol-table(<block>) ←
add-item((Name(<identifier>), program), empty-table)

For the example in Figure 3.11, the Symbol-table attribute for <block> has
the value [[‘p’, program]]. A single declaration has the form

var <var-list> : <type>;

The attribute grammar must construct a Symbol-table attribute value in which
each variable in the list is entered separately in the table with the associated
type. For example,

var x, y : integer;

results in a symbol table value of [[‘x’, integer], [‘y’, integer]]. In order to ac-
complish this, we need a synthesized attribute Var-list that collects a list of
Name values, [‘x’, ‘y’] in this case, and a utility function “build-symbol-table”
to construct the required symbol table value.

<declaration> ::= var <variable list> : <type>;

Symbol-table(<declaration>) ←
build-symbol-table(Var-list(<variable list>), Type(<type>))

We first look at how the Var-list value is synthesized. Observe that the Lisp-
like function “cons” builds the lists of variables.

<variable list> ::=

 <variable>

Var-list(<variable list>) ←
cons(Name(<variable>), empty-list)

| <variable> , <variable list>2

Var-list(<variable list>) ←
cons(Name(<variable>),Var-list(<variable list>2))

condition:

if Name(<variable>) is not a member of Var-list(<variable list>2)

then error(“”)

else error(“Duplicate variable in declaration list”)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

78 CHAPTER 3 ATTRIBUTE GRAMMARS

Every time we add a new Name value to the Var-list attribute, we must verify
that it is not already present in the synthesized attribute value for variables
that appear to the right. In the attribute grammars for strings of the form
anbncn, the conditions are either true or false. In this attribute grammar for
Wren, we use a slightly different strategy that provides more precise informa-
tion about any condition check that fails. We assume the existence of an
error routine with a string parameter. Calling the error routine with an empty
string means that the condition is true. Calling the error routine with a
nonempty error message indicates that the condition is false and that the
error message provides specific information about the nature of the error
encountered.

For the nonterminal <type>, Type is a synthesized attribute with the values
integer or boolean, depending on the declared type.

<type> ::= integer

Type(<type>) ← integer

| boolean

Type(<type>) ← boolean

We complete our discussion of <declaration> by looking at the utility func-
tions involved. We have assumed some basic list manipulation functions,
such as head, tail, and cons. These utility functions are described later, at
the end of Figure 3.12, using pattern matching with Prolog-like list struc-
tures. The “build-symbol-table” utility function removes names from the vari-
able listing one at a time and adds the pair [name, type] to the symbol table.
The utility function “add-item” does the actual appending. This process con-
tinues until the entire symbol table is built.

build-symbol-table(var-list, type) =

if empty(var-list)

then empty-table

else add-item(head(var-list), type,

build-symbol-table(tail(var-list),type))

add-item(name, type, table) = cons([name,type], table)

In situations where a declaration sequence is empty, the empty symbol table
value is returned. When the declaration sequence is one declaration followed
by another declaration sequence, the union of the two table values is passed
up to the parent provided that the intersection of the two table values is
empty; otherwise, an error condition occurs and the parse fails.

79

<declarationsequence> ::=

 ε
Symbol-table(<declarationsequence>) ← empty-table

| <declaration> <declarationsequence> 2

Symbol-table(<declarationsequence>) ←
table-union(Symbol-table(<declaration>),

 Symbol-table(<declarationsequence> 2))

 condition:

if table-intersection(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2)) = empty

then error(“”)

else error(“Duplicate declaration of an identifier”)

The utility function “table-union” glues the symbol tables together. Compare
it with the Prolog function concat in Appendix A.

table-union(table1, table2) =

if empty(table1)

then table2

else if lookup-type(first-name(table1),table2) = undefined

then cons(head(table1), table-union(tail(table1), table2))

else table-union(tail(table1), table2))

The utility function “table-intersection” does not perform a set intersection,
rather it returns only one of two values, empty or nonempty, as appropriate.
This task is accomplished by removing items from table1, one at a time, and
looking up the type associated with the name in table2. If the type is unde-
fined, then the intersection process continues with the rest of table1. How-
ever, if any other type is returned, the table intersection must be nonempty
and this value is returned immediately without continuing the search.

table-intersection(table1, table2) =

if empty(table1)

then empty

else if lookup-type(first-name(table1),table2) ≠ undefined

then nonempty

else table-intersection(tail(table1), table2)

The utility function “lookup-type” proceeds down a list using recursion, check-
ing the first item as it goes to see if it matches the given name. If it does, the
corresponding type is returned; if it does not, the search continues with the

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

80 CHAPTER 3 ATTRIBUTE GRAMMARS

tail of the table. If the empty table is reached, the value undefined is re-
turned.

lookup-type(name, table) =
if empty(table)

then undefined
else if head(table) = [name, type]

then type

else lookup-type(name, tail(table))

Commands

The grammar rule for <block> is very similar to <declarationsequence> ex-
cept that one of the symbol tables contains the program identifier. The union
of these two tables is passed to <commandsequence> in the rule for <block>,
as shown in Figure 3.12. In the command section, Symbol-table is an inher-
ited attribute that is passed down from <commandsequence> to the various
instances of <command>, except for skip which does not require any decla-
ration or type checking.

<commandsequence> ::=
 <command>

Symbol-table(<command>) ←
Symbol-table(<commandsequence>)

| <command> ; <commandsequence> 2

Symbol-table(<command>) ←
Symbol-table(<commandsequence>)

Symbol-table(<commandsequence> 2) ←
Symbol-table(<commandsequence>)

A read command requires an integer variable. Two context-sensitive errors
are possible: The variable is not declared or the variable is not of type integer.
In the condition check, the function lookup-type retrieves the variable type,
which may be undefined if the variable is not found in Symbol-table; thus the
type either satisfies the condition of being an integer or fails because it is not
declared or not of the proper type.

<command> ::= read <variable>
condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer : error(“”)
undefined : error(“Variable not declared”)

boolean, program : error(“Integer variable expected for read”)

81

A write command requires an integer expression. One way of specifying this
is through a BNF production:

<command> ::= write <integer expr>.

However, since <integer expr> is only one alternative for <expr>, we have
elected to show a more relaxed BNF that expands to expression and to pass
an inherited attribute Type to <expr> so that it can check that the expression
is an integer expression. This attribute will be passed to each kind of expres-
sion so that the type consistency of variables is maintained. The symbol
table is also inherited down to the <integer expr> nonterminal. The attribute
grammar for <integer expr> ensures that any variables occurring in the ex-
pression are of type integer.

<command> ::= write <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ← integer

If the language has other types of expressions, such as character and string
expressions, having output commands pass an inherited attribute Type pro-
vides a way of type checking the expressions.

In an assignment command, the Symbol-table and the type of the target vari-
able are passed to the expression. We also look up the target variable in the
Symbol-table. If the type of the target variable is undefined or program, an
error occurs.

<command> ::= <variable> := <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ←
 lookup-type(Name(<variable>),Symbol-table(<command>))

condition:

case lookup-type(Name(<variable>),Symbol-table(<command>)) is

integer, boolean : error(“”)

undefined : error(“Target variable not declared”)

program : error(“Target variable same as program name”).

The control commands while and if pass the Symbol-table attribute to the
<boolean expression> and <commandsequence> levels and the expected type
to <boolean expr>. Notice that in this case we have only allowed for <boolean
expr> (and not <expr>) in the BNF since, even if other types are added such
as character or string, the conditional still allows only a Boolean expression.

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

82 CHAPTER 3 ATTRIBUTE GRAMMARS

<command> ::=
while <boolean expr> do <commandsequence> end while

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ←

Symbol-table(<command>)
Type(<boolean expr>) ← boolean

<command> ::=
 if <boolean expr> then <cmdsequence> end if

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ←

Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> 1

else <commandsequence> 2 end if
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 1) ←

Symbol-table(<command>)
Symbol-table(<commandsequence> 2) ←

Symbol-table(<command>)

Type(<boolean expr>) ← boolean

Expressions

The Symbol-table and Type attributes of <expr> are passed to the two kinds
of expressions in Wren. To ensure that the proper alternative for expression
is chosen, a guard (condition) on each rule stops the derivation if the types
are not consistent. Other errors are handled at a lower level in the derivation.
If more sorts of data are available, the sets in the conditions can be ex-
panded.

<expr> ::=
 <integer expr>

Symbol-table(<integer expr>) ← Symbol-table(<expr>)
Type(<integer expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { boolean }

| <boolean expr>
Symbol-table(<boolean expr>) ← Symbol-table(<expr>)
Type(<boolean expr>) ← Type(<expr>)

condition : Type(<expr>) ∉ { integer }

83

The nonterminals <integer expr> and <term> pass the Symbol-table and Type
attributes down to the children nodes, except for <weak op> and <strong
op>, which require no context checking.

<integer expr> ::=
 <term>

Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<term>) ← Type(<integer expr>)

| <integer expr>2 <weak op> <term>
Symbol-table(<integer expr>2) ← Symbol-table(<integer expr>)
Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<integer expr>2) ← Type(<integer expr>)
Type(<term>) ← Type(<integer expr>)

<term> ::=
 <element>

Symbol-table(<element>) ← Symbol-table(<term>)
Type(<element>) ← Type(<term>)

| <term>2 <strong op> <element>
Symbol-table(<term>2) ← Symbol-table(<term>)
Symbol-table(<element>) ← Symbol-table(<term>)
Type(<term>2) ← Type(<term>)

Type(<element>) ← Type(<term>)

The nonterminal <element> can expand to <numeral>, which requires no
context checking, a parenthesized or negated expression, which receives Sym-
bol-table and Type, or a variable, which is looked up in the symbol table.
Normally, we expect this variable to be declared (not undefined) and to have
type integer. On the other hand, if the inherited Type attribute is undefined,
we have no expectations for the type of the variable, so no error is reported,
thereby avoiding certain spurious errors.

<element> ::=
 <numeral>
| <variable>

condition:
case lookup-type(Name(<variable>), Symbol-table(<element>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : if Type(<element>)=undefined

then error(“”)
else error(“Integer variable expected”)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

84 CHAPTER 3 ATTRIBUTE GRAMMARS

| (<expr>)
Symbol-table(<expr>) ← Symbol-table(<element>)
Type(<expr>) ← Type(<element>)

| - <element>2

Symbol-table(<element>2) ← Symbol-table(<element>)

Type(<element>2) ← Type(<element>)

The attribute grammar definitions for <boolean expr>, <boolean term>, and
<boolean element> are similar to their integer counterparts and are shown in
Figure 3.12. A comparison passes the Symbol-table and Type attributes down
to both integer expressions.

<comparison> ::= <integer expr>1 <relation> <integer expr>2

Symbol-table(<integer expr>1) ← Symbol-table(<comparison>)
Symbol-table(<integer expr>2) ← Symbol-table(<comparison>)
Type(<integer expr>1) ← integer

Type(<integer expr>2) ← integer

Note that we have restricted comparisons to integer expressions only. Other
alternatives are presented in the exercises.

This completes the context checking attribute grammar for Wren, except for
the productions for <identifier>, <variable>, <letter>, and <digit>, which ap-
pear in the complete grammar in Figure 3.12.

 <program> ::= program <identifier> is <block>

Symbol-table(<block>) ←
add-item((Name(<identifier>), program), empty-table)

 <block> ::= <declarationsequence> begin <commandsequence> end
Symbol-table(<commandsequence>) ←

table-union(Symbol-table(<block>),
Symbol-table(<declarationsequence>))

condition:
if table-intersection(Symbol-table(<block>),

Symbol-table(<declarationsequence>)) = empty
then error(“”)
else error(“Program name used as a variable”)

 <declaration> ::= var <variable list> : <type>;
Symbol-table(<declaration>) ←

build-symbol-table(Var-list(<variable list>), Type(<type>))

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 1)

85

<declarationsequence> ::=

 ε
Symbol-table(<declarationsequence>) ← empty-table

| <declaration> <declaration sequence>2
Symbol-table(<declarationsequence>) ←

table-union(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2))

condition:

if table-intersection(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2)) = empty

then error(“”)

else error(“Duplicate declaration of identifier”)

<variable list> ::=
 <variable>

Var-list(<variable list>) ← cons(Name(<variable>), empty-list)
| <variable> , <variable list>2

Var-list(<variable list>) ←
cons(Name(<variable>),Var-list(<variable list>2))

condition:
if Name(<variable>) is not a member of Var-list(<variable list>2)

then error(“”)
else error(“Duplicate variable in declaration list”)

 <type> ::=
 integer

Type(<type>) ← integer
| boolean

Type(<type>) ← boolean

 <commandsequence> ::=
 <command>

Symbol-table(<command>) ← Symbol-table(<commandsequence>)
| <command> ; <command sequence>2

Symbol-table(<command>) ← Symbol-table(<commandsequence>)
Symbol-table(<cmdsequence> 2) ← Symbol-table(<commandsequence>)

 <command> ::=
 skip

| read <variable>
condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : error(“Integer variable expected for read”)

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 2)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

86 CHAPTER 3 ATTRIBUTE GRAMMARS

| write <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ← integer

| <variable> := <expr>
Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ←
 lookup-type(Name(<variable>),Symbol-table(<command>))

condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer, boolean: error(“”)
undefined : error(“Target variable not declared”)
program : error(“Target variable same as program name”)

| while <boolean expr> do <commandsequence> end while
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> 1
else <commandsequence> 2 end if

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 1) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 2) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> end if
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

 <expr> ::=
 <integer expr>

Symbol-table(<integer expr>) ← Symbol-table(<expr>)
Type(<integer expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { boolean }

| <boolean expr>
Symbol-table(<boolean expr>) ← Symbol-table(<expr>)
Type(<boolean expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { integer }

 <integer expr> ::=
 <term>

Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<term>) ← Type(<integer expr>)

| <integer expr>2 <weak op> <term>
Symbol-table(<integer expr>2) ← Symbol-table(<integer expr>)
Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<integer expr>2) ← Type(<integer expr>)
Type(<term>) ← Type(<integer expr>)

 Figure 3.12: Context Checking Attribute Grammar for Wren (Part 3)

87

<term> ::=

 <element>

Symbol-table(<element>) ← Symbol-table(<term>)

Type(<element>) ← Type(<term>)

| <term>2 <strong op> <element>

Symbol-table(<term>2) ← Symbol-table(<term>)

Symbol-table(<element>) ← Symbol-table(<term>)

Type(<term>2) ← Type(<term>)

Type(<element>) ← Type(<term>)

 <weak op> ::= + | –

 <strong op> ::= * | /

 <element> ::=
 <numeral>
| <variable>

condition:
case lookup-type(Name(<variable>), Symbol-table(<element>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : if Type(<element>)=undefined

then error(“”)
else error(“Integer variable expected”)

| (<expr>)
Symbol-table(<expr>) ← Symbol-table(<element>)
Type(<expr>) ← Type(<element>)

| - <element>2
Symbol-table(<element>2) ← Symbol-table(<element>)
Type(<element>2) ← Type(<element>)

<boolean expr> ::=
 <boolean term>

Symbol-table(<boolean term>) ← Symbol-table(<boolean expr>)
Type(<boolean term>) ← Type(<boolean expr>)

| <boolean expr>2 or <boolean term>
Symbol-table(<boolean expr>2) ←Symbol-table(<boolean expr>)
Symbol-table(<boolean term>) ← Symbol-table(<boolean expr>)
Type(<boolean expr>2) ← Type(<boolean expr>)
Type(<boolean term>) ← Type(<boolean expr>)

<boolean term> ::=
 <boolean element>

Symbol-table(<boolean element>) ← Symbol-table(<boolean term>)
Type(<boolean element>) ← Type(<boolean term>)

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 4)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

88 CHAPTER 3 ATTRIBUTE GRAMMARS

| <boolean term>2 and <boolean element>

Symbol-table(<boolean term>2) ← Symbol-table(<boolean term>)

Symbol-table(<boolean element>) ← Symbol-table(<boolean term>)

Type(<boolean term>2) ← Type(<boolean term>)

Type(<boolean element>) ← Type(<boolean term>)

 <boolean element> ::=
 true
| false
| <variable>

condition:
case lookup-type(Name(<variable>),Symbol-table(<boolean element>)) is

boolean : error(“”)
undefined : error(“Variable not declared”)
integer, program : if Type(<boolean element>) = undefined

then error(“”)
else error(“Boolean variable expected”)

| <comparison>
Symbol-table(<comparison>) ← Symbol-table(<boolean element>)

| not (<boolean expr>)
Symbol-table(<boolean expr>) ← Symbol-table(<boolean element>)
Type(<boolean expr>) ← Type(<boolean element>)

| (<boolean expr>)
Symbol-table(<boolean expr>) ← Symbol-table(<boolean element>)
Type(<boolean expr>) ← Type(<boolean element>)

 <comparison> ::= <integer expr>1 <relation> <integer expr>2
Symbol-table(<integer expr>1) ← Symbol-table(<comparison>)
Symbol-table(<integer expr>2) ← Symbol-table(<comparison>)
Type(<integer expr>1) ← integer
Type(<integer expr>2) ← integer

 <relation> ::= = | < > | < | < = | > | > =

 <variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

<identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← str-concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← str-concat(Name(<identifier>2),Name(<digit>))
 <letter> ::=

 a
Name(<letter>) ← ‘a’

: : :
| z

Name(<letter>) ← ‘z’

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 5)

89

 <numeral> ::= <digit> | <numeral> <digit>
 <digit> ::=

 0
Name(<digit>) ← ‘0’

: : :
| 9

Name(<digit>) ← ‘9’

Auxiliary Functions
 build-symbol-table(var-list, type) =

if empty(var-list)
then empty-table
else add-item(head(var-list),type,build-symbol-table(tail(var-list), type))

 add-item(name, type, table) = cons([name,type], table)

 table-union(table1, table2) =
if empty(table1)

then table2
else if lookup-type(first-name(table1),table2) = undefined

then cons(head(table1), table-union(tail(table1), table2))
else table-union(tail(table1), table2))

 table-intersection(table1, table2) =
if empty(table1)

then empty
else if lookup-type(first-name(table1),table2) ≠ undefined

then nonempty else table-intersection(tail(table1),table2)

 lookup-type(name, table) =
if empty(table)

then undefined
else if head(table) = [name, type]

then type else lookup-type(name,tail(table))

 head([first | rest]) = head

 tail([first | rest]) = rest

 cons(first, rest) = [first | rest]

 first-name([[name,type] | restTable]) = name

 empty-table = empty-list = []

 empty([]) = true

 empty([first | rest]) = false

 str-concat(char-sequence1, char-sequence2) returns the
concatenation of char-sequence1 followed by char-sequence2

 error(string) prints nonempty strings

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 6)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

90 CHAPTER 3 ATTRIBUTE GRAMMARS

Exercises

1 Draw the parse tree decorated with attributes for the following Wren
program:

program p is
var b: boolean;
var m, n: integer;

begin
read m; read n;
b := m < n;
if b then write m

else write n
end if

end

2. Suppose the declarations in the above program are replaced by

var b, m, n: integer;

Show the changes in the parse tree from exercise 1.

3. Modify the attribute grammar for Wren to allow for checking equality or
inequality of Boolean expressions in comparisons, but none of the other
relations.

4. Add the declaration types character and string to Wren. Allow the input
of an integer and character (use readch), but not Boolean and string.
Allow output of integer, character, and string (use writech and writestr),
but not Boolean. Restrict a string literal to a sequence of lowercase al-
phabetic characters, digit characters, and the space character. Modify
the attribute grammar to enforce the related context conditions. Over-
loading read and write makes this problem more difficult.

5. After completing exercise 4, add the following string expressions, char-
acter expressions, and additions to integer expressions.

String Expressions:
concat(<str expr>,<str expr>)
substr(<str expr>,<int expr>,<int expr>)

where the first integer expression is the start
position and the second expression is the length

toStr(<char expr>)
“example of a string literal”

91

Character Expressions:
toChar(<str expr>,<int expr>)

where the integer expression is the position of the
character in the string

char(<int expr>)
'X' character literal

Additions to Integer Expressions:
ord(<char expr>)
length(<str expr>)

After carefully specifying the BNF for these operations, add the appro-
priate context checking using attributes.

6. Suppose that we extend Wren to allow for the following alternative in
declarations:

<declaration> ::= procedure <identifier> is <block>

This alternative results in a new value for Type, which we name proce-
dure. We also add a call command:

<command> ::= call <identifier>

These changes allow nested blocks with local declarations. Modify the
attribute grammar for Wren to accommodate these changes. Follow Pas-
cal scope rules by requiring that an identifier must be declared before it
is used. Furthermore, remove the first context condition concerning the
program identifier and relax the second and third context conditions:

2. All identifiers that appear in a block must be declared in that block or
in an enclosing block.

3. No identifier may be declared more than once at the top level of
a block.

Hint: One attribute should synthesize declarations and a different at-
tribute should inherit declarations since the declaration information has
to be inherited into the declaration section itself because of the occur-
rence of a <block> in a procedure declaration.

7. Recall the language of expressions formed as lists of integers in exercise
9 in section 1.2. Augment the BNF grammar for the language with at-
tributes that enforce the conformity of lists given to the arithmetic op-
erations +, –, and * .

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

92 CHAPTER 3 ATTRIBUTE GRAMMARS

3.3 LABORATORY: CONTEXT CHECKING WREN

We have already seen how logic grammars in Prolog can be used to construct
an abstract syntax tree for a Wren program. Using several utility predicates,
we constructed a scanner that converts a text file containing a program into
a sequence of tokens. We utilize this same “front-end” software for the cur-
rent laboratory activity; however, we extend the parser using attributes to
perform context-sensitive declaration and type checking.

Before proceeding directly into the development of the attribute grammar in
Prolog, we need to make some important design decisions about the expected
output from our context checker. The scanning and parsing front-end pro-
gram from Chapter 2 assumes that the input program obeys the BNF for
Wren. With attribute grammars, we have additional context-sensitive condi-
tions at selected nodes that must be satisfied for the parse to succeed. The
first question we need to address is what should be the output of the parser
for a program that obeys the BNF but fails one of the context condition checks.
We can elect to have the entire parse fail, with Prolog simply reporting “no”,
but this response seems less than satisfactory. Another alternative, the one
we develop, is to allow the parse to succeed, provided the BNF is satisfied,
and to insert error messages in cases where context-sensitive checking fails.

The second design decision we have to make is the form of the output of the
parser in cases where the parse succeeds but may contain context checking
errors. In Chapter 2 Wren programs were transformed into a compact form
that contained only the relevant syntactic information—namely, abstract syn-
tax trees. For example, the assignment statement in Wren

x := 3 + 2 * y

was tokenized by the scanner to:

 [ide(x),assign,num(3),plus,num(2),times,ide(y)]

and then parsed to produce the abstract syntax tree:

assign(x,exp(plus,num(3),exp(times,num(2),ide(y)))).

This latter form will be useful when we develop an interpreter for Wren in
later chapters. Since the current project deals with the detection of context
condition violations, we elect to retain the stream of tokens output from the
scanner with the possible error messages inserted to indicate any context
condition violations. This approach is best illustrated by an example. The
program below does not perform any useful function; it simply demonstrates
a variety of commands and types.

93

?- go.

>>> Checking Context Constraints in Wren <<<

Enter name of source file: prog1.wren

 program prog1 is
 var x,y: integer;
 var b,c: boolean;
 begin
 read x; read y; write x+y;
 b := x < y;
 if x = y
 then c := x <= y
 else c := x > y end if;
 while c do x := x + 1 end while;
 b := b and (b or c)
 end

Scan successful
[program,ide(prog1),is,
 var,ide(x),comma,ide(y),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(y),semicolon,
 write,ide(x),plus,ide(y),semicolon,
 ide(b),assign,ide(x),less,ide(y),semicolon,
 if,ide(x),equal,ide(y),

 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(c),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),do,
 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(b),or,ide(c),rparen,
 end,
eop]

Parse successful
[program,ide(prog1),is,
 var,ide(x),comma,ide(y),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(y),semicolon,
 write,ide(x),plus,ide(y),semicolon,
 ide(b),assign,ide(x),less,ide(y),semicolon,
 if,ide(x),equal,ide(y),

3.3 LABORATORY: CONTEXT CHECKING WREN

94 CHAPTER 3 ATTRIBUTE GRAMMARS

 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(c),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),do,
 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(b),or,ide(c),rparen,
 end]

For readability, we have inserted line feeds and spacing for indentation in the
listing shown above. The test program obeys the BNF and all context-sensi-
tive conditions, so the output of the parser is the same as the output from
the scanner, except for the removal of the final eop token. It may seem that
we have done a lot of work to accomplish nothing, but introducing some
context-sensitive errors will illustrate what the parser is doing for us.

?- go.

>>> Checking Context Constraints in Wren <<<

Enter name of source file: prog2.wren
 program prog2 is
 var x,y,b: integer;
 var b,c: boolean;
 begin
 read x; read c; write x+a;
 b := x < c;
 if x = y
 then c := x <= y
 else y := x > y
 end if;
 while c > b do x := x + 1 end while;
 b := b and (y or z)
 end
Scan successful
[program,ide(prog2),is,
 var,ide(x),comma,ide(y),comma,ide(b),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(c),semicolon,
 write,ide(x),plus,ide(a),semicolon,
 ide(b),assign,ide(x),less,ide(c),semicolon,
 if,ide(x),equal,ide(y),
 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(y),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),grtr,ide(b),do,

95

 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(y),or,ide(z),rparen,
 end, eop]

Parse successful
[program,ide(prog2),is,
 var,ide(x),comma,ide(y),comma,ide(b),colon,integer,semicolon,
 ERROR: Duplicate declaration of an identifier,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,
 read,ide(c),
 ERROR: Integer variable expected for read,semicolon,
 write,ide(x),plus,ide(a),
 ERROR: Variable not declared,semicolon,
 ide(b),assign,ide(x),less,ide(c),
 ERROR: Integer variable expected,
 ERROR: Integer expression expected,
 semicolon,
 if,ide(x),equal,ide(y),
 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(y),assign,ide(x),grtr,ide(y),
 ERROR: Integer expression expected,
 end,if,semicolon,
 while,ide(c),
 ERROR: Integer variable expected,grtr,ide(b),do,
 ide(x),assign,ide(x),plus,num(1),end,while,semicolon,
 ide(b),assign,ide(b),
 ERROR: Boolean variable expected,and,lparen,ide(y),
 ERROR: Boolean variable expected,or,ide(z),
 ERROR: Variable not declared,rparen,
 ERROR: Integer expression expected,
 end]

Again, we have formatted the output for readability. It should be noted that
the error messages appear near the locations where the errors occur. As
mentioned previously, for programs that obey the BNF, we allow the parse to
succeed, although there may or may not be context-sensitive errors. The
following strategy is implemented: An error variable is placed at all locations
when a context-sensitive check is made. This variable is bound either to the
atom noError or to an appropriate error message entered as an atom (a string
inside apostrophes). During the final stage of processing, we flatten the parse
tree into a linear list and strip away all noError values using a predicate called
flattenplus, so only the real error messages remain.

3.3 LABORATORY: CONTEXT CHECKING WREN

96 CHAPTER 3 ATTRIBUTE GRAMMARS

Declarations

Now that we have formulated a goal for this laboratory exercise, we can pro-
ceed to develop the parser using stepwise refinement. Enough code is pre-
sented to introduce the idea of implementing the attribute grammar in Prolog.
Those portions of code that are not detailed here are left as exercises.

program(TokenList) -->
[program], [ide(I)], [is],
{ addItem(I,program,[],InitialSymbolTable) },
block(Block, InitialSymbolTable),
{ flattenplus([program, ide(I), is, Block], TokenList) }.

After getting the program identifier name, we add it with the pseudo-type
program to the InitialSymbolTable, which is passed to the predicate block. This
predicate returns a structure (Block) that is used to build the list

[program, ide(I), is, Block],

which is flattened into a modified token list and given as the result of the
context checker.

The utility functions in our attribute grammar use functional notation that
can only be simulated in Prolog. We adopt the strategy that the return value
is the last term in the parameter list, so addItem in Prolog becomes

addItem(Name, Type, Table, [[Name,Type] | Table]).

The code for block is the first place we do context checking to ensure that the
program name is not declared elsewhere in the program.

block([ErrorMsg, Decs, begin, Cmds, end],InitialSymbolTable) -->
decs(Decs,DecsSymbolTable),
{ tableIntersection(InitialSymbolTable, DecsSymbolTable,Result),
 tableUnion(InitialSymbolTable, DecsSymbolTable, SymbolTable),
 (Result=nonEmpty,

ErrorMsg='ERROR: Program name used as a variable'
 ; Result=empty, ErrorMsg=noError) },
[begin], cmds(Cmds,SymbolTable), [end].

A block parses simply as

decs(Decs,DecsSymbolTable), [begin], cmds(Cmds,SymbolTable), [end],

but we have added some Prolog code to perform a table intersection, which
returns one of two results: empty or nonEmpty. We bind the variable ErrorMsg
to the atom noError if the intersection is empty or to an appropriate error
message (another atom) if the program name appears in the declarations. We
also form the union of the InitialSymbolTable and the DecsSymbolTable produc-
ing a value to be passed to the command sequence as SymbolTable.

97

The utility predicate tableIntersection follows directly from the definition of the
utility function in the attribute grammar. Notice the use of lookupType that
returns the value undefined if the identifier is not found in the table, or the
associated type if the identifier is found. The predicate tableUnion also follows
directly from the definition in the attribute grammar; its definition is left as
an exercise.

tableIntersection([], Table2, empty).

tableIntersection(Table1, [], empty).

tableIntersection([[Name, Type1] | RestTable], Table2, nonEmpty) :-
lookupType(Name, Table2,Type2), (Type2=integer; Type2=boolean).

tableIntersection([[Name, Type] | RestTable], Table2, Result) :-
tableIntersection(RestTable, Table2, Result).

lookupType(Name, [], undefined).

lookupType(Name, [[Name,Type] | RestTable], Type).

lookupType(Name, [Name1 | RestTable], Type) :-
lookupType(Name, RestTable, Type).

Observe that many of the variables in the heads of these clauses do not
appear in the bodies of the clauses. Anonymous variables such as the follow-
ing can be used in this situation:

tableIntersection([], _, empty).

tableIntersection(_, [], empty).

tableIntersection([[Name, _] | _], Table2, nonEmpty) :-
lookupType(Name, Table2,Type2), (Type2=integer; Type2=boolean).

tableIntersection([[_ , _] | RestTable], Table2, Result) :-
tableIntersection(RestTable, Table2, Result).

We prefer using variable names instead of anonymous variables because
suggestive variable names make the clause definitions more intelligible. Sub-
stituting variable names in place of anonymous variables may result in warn-
ing messages from some Prolog systems, but the program still functions cor-
rectly.

Two types of multiple declarations may occur in Wren: duplicates within the
same declaration, as in

var x, y, z, x : boolean ;

and duplicates between two different declarations, as in

var x, y, z: boolean ;

var u, v, w, x: integer ;

3.3 LABORATORY: CONTEXT CHECKING WREN

98 CHAPTER 3 ATTRIBUTE GRAMMARS

The context checker needs to recognize both errors. A variable list is a single
variable followed by a list of variables, which may or may not be empty. In
either case, we check if the current head of the variable list is a member of
the list of remaining variables. If so, we have a duplicate variable error; oth-
erwise, we pass forward the error message generated by the remainder of the
list. Note that commas are inserted into the variable list that is returned
since we want to construct the original token sequence.

varlist(Vars,ErrorMsg) --> [ide(Var)], restvars(ide(Var),Vars,ErrorMsg).

restvars(ide(Var),[ide(Var), comma |Vars],ErrorMsg) -->
[comma], varlist(Vars,ErrorMsg1),
{ member(ide(Var),Vars),
 ErrorMsg='ERROR: Duplicate variable in listing'
 ; ErrorMsg = ErrorMsg1 }.

restvars(ide(Var),[ide(Var)],ErrorMsg) --> [], { ErrorMsg=noError }.

Once we have determined there are no duplicate variables within a single
declaration, we check between declarations. The strategy is much the same:
A sequence of declarations is a single declaration followed by any remaining
declarations, which may or may not be empty. In each case, we check if the
table intersection of the symbol table associated with the current declaration
is disjoint from the symbol table of the remaining declarations. If it is not, an
error message is generated. The code shown below is incomplete, as the table
intersection test and the ERROR message are missing. Completing this code
is left as an exercise.

decs(Decs,SymbolTable) --> dec(Dec,SymbolTable1),
restdecs(Dec,SymbolTable1,Decs,SymbolTable).

decs([],[]) --> [].

restdecs(Dec,SymbolTable1,[Dec,ErrorMsg|Decs],SymbolTable) -->
decs(Decs,SymbolTable2),
{ tableUnion(SymbolTable1,SymbolTable2,SymbolTable),
 (ErrorMsg=noError) }.

restdecs(Dec,SymbolTable,[Dec],SymbolTable) --> [].

A single declaration results in a symbol table that is constructed by the util-
ity predicate buildSymbolTable, which takes a list of variables and a single
type and inserts a [Var, Type] pair into an initially empty symbol table for each
variable name in the list. Observe that we remove commas from the variable
list before passing it to buildSymbolTable. A predicate delete needs to be de-
fined to perform this task.

99

dec([var, Vars, ErrorMsg, colon, Type, semicolon],SymbolTable) -->
[var], varlist(Vars, ErrorMsg), [colon], type(Type), [semicolon],
{ delete(comma,Vars,NewVars),
 buildSymbolTable(NewVars, Type, SymbolTable) }.

type(integer) --> [integer].

type(boolean) --> [boolean].

buildSymbolTable([], Type, []).

buildSymbolTable([ide(Var)|RestVars], Type, SymbolTable):-
buildSymbolTable(RestVars,Type,SymbolTable1),
addItem(Var, Type, SymbolTable1, SymbolTable).

Commands

We now turn our attention to the context checking within command sequences.
A command sequence is a single command followed by the remaining com-
mands, which may or may not be empty. We pass the symbol table attribute
down the derivation tree to both the first command and to the remaining
commands.

cmds(Cmds,SymbolTable) -->
command(Cmd,SymbolTable), restcmds(Cmd,Cmds,SymbolTable).

restcmds(Cmd,[Cmd, semicolon|Cmds],SymbolTable) -->
[semicolon], cmds(Cmds,SymbolTable).

restcmds(Cmd,[Cmd],SymbolTable) --> [].

The skip command is very simple; it needs no type checking. The read com-
mand requires the associated variable to be of type integer. Two possible
errors may occur in a read command: The variable has not been declared or
the variable is of the wrong type.

command(skip,SymbolTable) --> [skip].

command([read, ide(I), ErrorMsg], SymbolTable) -->
[read], [ide(I)],
{ lookupType(I,SymbolTable,Type),

(Type = integer, ErrorMsg=noError
; Type = undefined, ErrorMsg='ERROR: Variable not declared'
; (Type = boolean; Type = program),

ErrorMsg='ERROR: Integer variable expected') }.

The write command requests an integer expression by passing the value
integer as an inherited attribute to the expression. This task is left as an
exercise.

3.3 LABORATORY: CONTEXT CHECKING WREN

100 CHAPTER 3 ATTRIBUTE GRAMMARS

A correct assignment command has one of two forms: An integer variable is
assigned the result of an integer expression or a Boolean variable is assigned
the result of a Boolean expression. Two potential errors can occur: The target
variable is not declared or the target variable and the expression are not the
same type. The decision to have a successful parse whenever the BNF is
satisfied complicates the code for the assignment command. No matter which
errors occur, we must consume the symbols in the expression on the right-
hand side. View the definition below as a case command controlled by the
type of the target variable. Each case selection includes a call to parse the
expression.

command([ide(V), assign, E, ErrorMsg], SymbolTable) -->
[ide(V)], [assign],
{ lookupType(V,SymbolTable,VarType) },
 ({ VarType = integer },

(expr(E,SymbolTable,integer), { ErrorMsg=noError }
 ; expr(E,SymbolTable,boolean),

{ ErrorMsg='ERROR: Integer expression expected' }) ;
 { VarType = boolean },

(expr(E,SymbolTable,boolean), { ErrorMsg=noError }
; expr(E,SymbolTable,integer),

{ ErrorMsg='ERROR: Boolean expression expected' }) ;
 { VarType = undefined, ErrorMsg='ERROR: Target of assign not declared' ;
 VarType = program,

ErrorMsg='ERROR: Program name used as a variable' },
 expr(E,SymbolTable,undefined)).

The if and while commands do no type checking directly; rather they pass
the SymbolTable and Type attributes to their constituent parts. The if-then-
else command is given; the while command is left as an exercise.

command([if,Test,then,Then,Else],SymbolTable) -->
[if], boolexpr(Test,SymbolTable,boolean), [then],

cmds(Then,SymbolTable), restif(Else,SymbolTable).

restif([else,Else,end,if],SymbolTable) -->
[else], cmds(Else,SymbolTable), [end], [if].

restif([end,if],SymbolTable) --> [end], [if].

101

Expressions

The inherited attribute passed from <expr> to <int expr> and <bool expr>
may have the value undefined. We cannot let such a value cause failure in the
parsing, so four clauses are needed in the logic grammar.

expr(E,SymbolTable,integer) --> intexpr(E,SymbolTable,integer).

expr(E,SymbolTable,boolean) --> boolexpr(E,SymbolTable,boolean).

expr(E,SymbolTable,undefined) --> intexpr(E,SymbolTable,undefined).

expr(E,SymbolTable,undefined) --> boolexpr(E,SymbolTable,undefined).

In the attribute grammar, we made expression and term left recursive since
this matches the left associativity of the additive and multiplicative opera-
tions. Since we cannot use left recursion in logic grammars, we need to adopt
a different strategy for producing the same parse tree. When we studied BNF,
we learned that

<int expr> ::= <int expr> <weak op> <term>

can also be expressed as

<int expr> ::= <term> { <weak op> <term> }

where the braces mean zero or more occurrences. We use this technique to
develop our logic grammar (see Chapter 2 for more on this issue).

intexpr(E,SymbolTable,Type) -->
term(T,SymbolTable,Type), restintexpr(T,E,SymbolTable,Type).

restintexpr(T, E, SymbolTable,Type) -->
weakop(Op), term(T1, SymbolTable,Type),
restintexpr([T,Op,T1], E, SymbolTable,Type).

restintexpr(E,E,SymbolTable,Type) --> [].

weakop(plus) --> [plus].

weakop(minus) --> [minus].

A term is an element, possibly followed by more elements separated by mul-
tiplication or division (strong operators). The code for term, restterm, and
strongop is left as an exercise.

An element may be a constant number, in which case no type checking is
required. If the element is a variable, it is looked up in the symbol table. Two
errors are possible: The variable is not declared or it is the wrong type. No
error occurs if it is an integer and we are expecting an integer or if the vari-
able is defined, but we are not expecting any type in particular (the inherited
attribute Type has the value undefined because the target variable in an as-
signment command was undeclared).

3.3 LABORATORY: CONTEXT CHECKING WREN

102 CHAPTER 3 ATTRIBUTE GRAMMARS

element([num(N)],SymbolTable,Type) --> [num(N)].

element([ide(I),ErrorMsg],SymbolTable,Type) -->
[ide(I)],
{ lookupType(I,SymbolTable,VarType),

(VarType = integer, Type = integer, ErrorMsg=noError
; VarType = undefined, ErrorMsg='ERROR: Variable not declared'
; Type = undefined, ErrorMsg=noError
; (VarType = boolean; VarType = program),

ErrorMsg='ERROR: Integer variable expected') }.

element([lparen, E, rparen], SymbolTable,Type) -->
[lparen], intexpr(E,SymbolTable,Type), [rparen].

element([minus|E],SymbolTable,Type) -->
[minus], element(E, SymbolTable,Type).

We complete the discussion of the Prolog implementation of the attribute
grammar for context checking by focusing on the code for Boolean expres-
sions and for comparisons. Boolean expression, which handles the or opera-
tor, and Boolean term, which handles the and operator, are very similar to
integer expression and term. A Boolean element may be a constant, true or
false , a variable, whose declaration and type must be checked, a compari-
son, a parenthesized Boolean expression, or the unary Boolean operator not.
Except for comparison, which is given below, this code is left as an exercise.

comparison([E1,R,E2],SymbolTable) -->
intexpr(E1,SymbolTable,integer), rel(R), intexpr(E2,SymbolTable,integer).

rel(equal) --> [equal]. rel(neq) --> [neq]. rel(less) --> [less].

rel(grtr) --> [grtr]. rel(gteq) --> [gteq]. rel(lteq) --> [lteq].

This completes the discussion and partial implementation of our context
checking attribute grammar. When the omitted code has been developed, the
program will produce the output given at the start of the section.

Exercises

1. Complete the code for the following predicates that were omitted from
the text:

• the tableUnion utility function

• the predicate restdecs by adding the tableIntersection test

• the write command

103

• the while command

• term, restterm, and strongop

• boolexpr, boolterm, and boolelement

• a flatten utility predicate flattenplus that also removes noError

2. Modify the Prolog implementation of our Wren attribute grammar to al-
low checking equality or inequality of Boolean expressions in compari-
sons, but none of the other relations.

3. Following exercise 4 in Section 3.2, add the declaration types character
and string to Wren. Implement the changes to the attribute grammar in
Prolog.

4. Following exercise 5 in Section 3.2, add the commands for character
and string manipulations. Use attributes to add any appropriate con-
text checking.

5. Following exercise 6 in Section 3.2, add the declaration and calling of
parameterless procedures.

3.4 FURTHER READING

The seminal paper in attribute grammars has been written by Donald Knuth
[Knuth68]. Other papers have explored the mathematical semantics of at-
tribute grammars [Mayoh81] or developed new concepts, such as ordered
attribute grammars [Kastens80]. David Watt presents an extended attribute
grammar for Pascal [Watt79].

The primary application of attribute grammars is in compiler construction
[Bochman78]. Attribute grammars can be used both for type checking, as we
have seen in this chapter, and code generation, as we will see in Chapter 7.
Many automated tools have been written to aid in compiler construction.
Kennedy and Warren discuss the generation of attribute grammar evaluators
[Kennedy76]. Those familiar with Unix software may have used LEX, an au-
tomated lexical analyzer [Lesk75], and YACC, “Yet Another Compiler-Com-
piler” [Johnson78]. Automated tools can help generate production level com-
pilers [Farrow84]. Readers wanting to explore the application of attribute
grammars in compiler construction can consult any number of references,
including [Aho86], [Fischer91], [Parsons92], and [Pittman92].

Recent research in attribute grammars includes work in attribute propaga-
tion by message passing [Demers85] and using attribute grammars to build
language-based editors [Johnson85]. The Synthesizer-Generator [Reps89] is

3.4 FURTHER READING

104 CHAPTER 3 ATTRIBUTE GRAMMARS

a modern software tool to build context-sensitive editors. This sophisticated,
windows-based product is built on top of LEX and YACC (or equivalent tools).
Editors are available for languages such as Pascal and C. We have used the
Synthesizer-Generator as a teaching tool in a compiler class by asking stu-
dents to build a context-sensitive editor for Wren. Uses of the Synthesizer-
Generator include many diverse context-sensitive situations, such as calcu-
lations in a spreadsheet or balancing chemical equations.

Attribute grammars can also be used for type inferencing. It is possible to
have a strongly typed language without requiring explicit declarations. ML is
one such language. The first time an identifier appears in a program, its type
is inferred from the usage. The type can be synthesized to the root of the
parse tree. Other usage of the same identifier must be type consistent. Reps
and Teitelbaum [Reps89] demonstrate type inferencing by using the Synthe-
sizer-Generator to build a language editor that automatically inserts type
declarations in a program based on the usage of identifiers.

Chapter 4
TWO-LEVEL GRAMMARS

We used attributes in Chapter 3 to augment a context-free grammar
in order to verify context sensitivity. This chapter will focus on two-
level grammars, another formal technique that starts with a con-

text-free grammar, augmenting it with a higher-level grammar to test con-
text-sensitive properties.

A BNF grammar involves a finite number of terminal symbols and produc-
tion rules. We think of BNF as a “one-level grammar”. The new approach of
introducing “rules about rules” is called a “two-level grammar”. Although we
still have a finite number of terminal symbols, adding a second level to the
grammar can be used to generate an infinite number of production rules.
Consequently, a two-level grammar is inherently more powerful than a BNF
grammar. Two-level grammars are sometimes called W-grammars, named
after Aad van Wijngaarden, the researcher who developed this approach. The
programming language Algol68 was defined using a two-level grammar to
specify its complete syntax, including context-sensitive conditions.

This chapter begins with a brief introduction to two-level grammars; then in
section 4.2, we develop a context-sensitive grammar for Wren. Two-level gram-
mars can also be extended into the realm of operational semantics by building
a programming language interpreter into the grammar, but this extension is
beyond the scope of this text. Interested readers can consult the references
described in the further reading section of this chapter. We end the chapter by
showing how small two-level grammars can be implemented in Prolog. We also
discuss the relationship of two-level grammars and logic programming.

4.1 CONCEPTS AND EXAMPLES

We begin by looking at the part of a two-level grammar that is equivalent to
BNF. Protonotions correspond to nonterminals and terminals in a BNF gram-
mar. We use a sequence of lowercase, boldface characters to represent
protonotions. Terminals are distinguished by the final word symbol . Spaces
can occur anywhere in a protonotion and do not change its meaning. Ex-
amples of protonotions are

program is equivalent to the nonterminal <program>.

program symbol is equivalent to the keyword program . 105

106 CHAPTER 4 TWO-LEVEL GRAMMARS

The correspondence between the protonotions ending in symbol and the
actual terminal symbols is presented in a representation table.

A grammar rule for defining protonotions is called a hyper -rule. The follow-
ing conventions are used in hyper-rules:

• A colon separates the left- and right-hand side of a rule.

• A comma indicates the juxtaposition of protonotions.

• A semicolon indicates alternatives on the right-hand side of a rule.

• A period terminates a hyper-rule.

For example, the following hyper-rule corresponds to the productions for
 <element> in Wren.

element : numeral;
variable;
left par en symbol, integer expr , right par en symbol;
negation symbol, element.

A complete (context-free) grammar for Wren using two-level grammar nota-
tion is shown in Figure 4.1, with the corresponding representation table given
in Figure 4.2.

Next we look at the terms and notation associated with the “second level” of
two-level grammars. A metanotion can stand for any number of protonotions.
Metanotions are written in boldface, uppercase letters with no embedded
spaces. The allowed protonotions are specified in the form of metarules ,
which use the following notational conventions:

program : pr ogram symbol, identifier , is symbol, block.

block : declaration seq, begin symbol, command seq, end symbol.

declaration seq : empty;
declaration, declaration seq.

empty : .

declaration : var symbol, variable list, colon symbol,
type, semicolon symbol.

type : integer symbol;
boolean symbol.

variable list : variable;
variable, comma symbol, variable list.

command seq : command;
command, semicolon symbol, command seq.

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 1)

1074.1 CONCEPTS AND EXAMPLES

command : variable, assign symbol, expr ession;

read symbol, variable;

write symbol, integer expr;

skip symbol;

while symbol, boolean expr , do symbol,

command seq, end while symbol;

if symbol, boolean expr , then symbol,

command seq, end if symbol;

if symbol, boolean expr , then symbol, command seq,

else symbol, command seq, end if symbol.
expression : integer expr;

boolean expr .

integer expr : term;
integer expr , weak op, ter m.

term : element;
term, strong op, element.

element : numeral;
variable;
left par en symbol, integer expr , right par en symbol;
negation symbol, element.

boolean expr : boolean ter m;
boolean expr , or symbol, boolean ter m.

boolean ter m : boolean element;
boolean ter m, and symbol, boolean element.

boolean element : true symbol;
false symbol;
variable;
comparison;
left par en symbol, Boolean expr , right par en symbol;
not symbol, left par en symbol,

boolean expr , right par en symbol.

comparison : integer expr , relation, integer expr .

variable : identifier .

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 2)

• A double colon (::) separates the left- and right-hand sides of a metarule.

• A space indicates the juxtaposition of items.

• A semicolon indicates alternatives on the right-hand side of a metarule.

• A period terminates a metarule.

108 CHAPTER 4 TWO-LEVEL GRAMMARS

relation : less or equal symbol;

less symbol;

equal symbol;

greater symbol;

greater or equal symbol;

not equal symbol.

weak op : plus symbol;
minus symbol.

strong op : multiply symbol;
divide symbol.

identifier : letter;
letter, identifier;
letter, digit.

letter : a symbol; b symbol; c symbol; d symbol; e symbol; f symbol;
g symbol; h symbol; i symbol; j symbol; k symbol; l symbol;
m symbol; n symbol; o symbol; p symbol; q symbol; r symbol;
s symbol; t symbol; u symbol; v symbol; w symbol; x symbol;
y symbol; z symbol.

numeral : digit;
digit, numeral.

digit : zero symbol; one symbol; two symbol; three symbol;
four symbol; five symbol; six symbol; seven symbol;
eight symbol; nine symbol.

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 3)

The following metarule specifies that the metanotion ALPHA stands for 26
alternative protonotions.

ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

A metarule can also contain metanotions on the right-hand side.

NOTION :: ALPHA; NOTION ALPHA.

In this case a NOTION is any sequence of bold, lowercase letters—in other
words, a protonotion. Metanotions can also appear anywhere in a hyper-
rule. For example, the following hyper-rule for Wren

109

program symbol program colon symbol :

is symbol is semicolon symbol ;

begin symbol begin comma symbol ,

end symbol end assign symbol :=

var symbol var plus symbol +

integer symbol integer minus symbol -

boolean symbol boolean multiply symbol *

skip symbol skip divide symbol /

read symbol read negation symbol -

write symbol write left par en symbol (

while symbol while right par en symbol)

do symbol do less or equal symbol <=

end while symbol end while less symbol <

if symbol if equal symbol =

then symbol then greater symbol >

else symbol else greater or equal symbol >=

end if symbol end if not equal symbol <>

or symbol or a symbol a

and symbol and : : :

not symbol not z symbol z

true symbol true zero symbol 0

false symbol false : : :

nine symbol 9

Figure 4.2: Representation Table for Wren

 letter : a symbol; b symbol; c symbol; d symbol; e symbol; f symbol;

g symbol; h symbol; i symbol; j symbol; k symbol; l symbol;

m symbol; n symbol; o symbol; p symbol; q symbol; r symbol;

s symbol; t symbol; u symbol; v symbol; w symbol;

x symbol; y symbol; z symbol.

can now be written simply as

letter: ALPHA symbol.

By introducing a metanotion, we have one hyper-rule that stands for 26
possible rules: letter : a symbol. , letter : b symbol. , and so on.

Traditionally, two-level grammars are printed in boldface. The basic terms
introduced so far can be summarized as follows:

4.1 CONCEPTS AND EXAMPLES

110 CHAPTER 4 TWO-LEVEL GRAMMARS

• A protonotion is a sequence of lowercase, boldface characters that define
a nonterminal; however, if the nonterminal is followed by the protonotion
symbol , then protonotion corresponds to a terminal in the target language
as given in a representation table.

• A metanotion is a sequence of uppercase characters, used to represent
any number of protonotions.

• A hyper -rule is a production rule that define a protonotion or a class of
protonotions; it may contain protonotions and metanotions on the left-
and right-hand sides, and substitutions of protonotions for metanotions
must be consistent.

• A metarule is a production rule that defines the single metanotion on its
left-hand side using protonotions or metanotions on its right-hand side.

As indicated at the start of this chapter, it is possible to generate an infinite
number of production rules. Suppose that we want to specify a nonempty list
structure as a sequence of one or more items separated by commas. Wren
uses a list structure to define lists of variables:

variable list : variable; variable, comma symbol, variable list.

We can generalize this list concept by introducing the metanotion NOTION to
provide a template for list construction:

NOTION list : NOTION; NOTION, comma symbol, NOTION list.

If NOTION has the value variable , this hyper-rule specifies our metarule
from Wren. If NOTION takes other values, say integer or character , then we
are specifying a list of integers or a list of characters. We do require consis-
tent substitution of protonotions for a metanotion within a hyper-rule, thus
guaranteeing that our list contains elements of the same type. It will not be
possible to produce a hyper-rule such as

 integer list : character; integer , comma symbol, variable list. (illegal!)

Since NOTION can match any protonotion (without embedded spaces), we
have given a single hyper-rule that can match an infinite number of produc-
tions specifying nonempty lists containing items of the same kind.

We now introduce some notational conveniences. The metanotion EMPTY
can stand for the empty protonotion:

EMPTY :: .

Suppose that we want to use a tally notation to define the concept of number.
For example, the tally iiiiiiii represents the number 8. We can specify a tally
by the metarule

TALLY :: i ; T ALLY i.

111

We cannot represent the number zero by using TALLY, so we use the EMPTY
protonotion

TALLETY :: EMPTY ; TALLY.

A conventional notation in two-level grammars is to have the suffix -ETY
allow the EMPTY protonotion as one of the alternatives.

A second notational convenience allows us to relax (at least notationally) the
consistent substitution principle. Consider the nonempty list example again.
Initially assume lists can contain integers or characters, but not both.

LISTITEM list :
 LISTITEM; LISTITEM, comma symbol, LISTITEM list.

LISTITEM :: integer; character .

Now suppose we want to mix integers and characters in a single list. A pos-
sible specification is

mixed list : LISTITEM; LISTITEM1, comma symbol, mixed list.
LISTITEM1 :: LISTITEM.

The hyper-rule mixed list has four different possibilities:

1. mixed list : integer; integer , comma symbol, mixed list.
2. mixed list : integer; character , comma symbol, mixed list.
3. mixed list : character; character , comma symbol, mixed list.
4. mixed list : character; integer , comma symbol, mixed list.

We adopt the convention that a metanotion ending in a digit stands for the
same set of protonotions as the metanotion without the digit, so we do not
have to specify metarules such as LISTITEM1 :: LISTITEM. given above. (It
should be noted that LISTITEM1 was not strictly required to produce the
mixed list since LISTITEM and LISTITEM1 appear only once in different
alternatives; however, the intent of this example should be clear.)

Fortran String Literals

In older versions of Fortran having no character data type, character string
literals were expressed in the following format:

<string literal> ::= <numeral> H <string>

where the <numeral> is a base-ten integer (≥ 1), H is a keyword (named after
Herman Hollerith), and <string> is a sequence of characters. The (context-
sensitive) syntax of this string literal will be correct if the numeric value of
the base-ten numeral matches the length of the string. A two-level grammar
is developed for a Fortran string literal. The initial version assumes that the

4.1 CONCEPTS AND EXAMPLES

112 CHAPTER 4 TWO-LEVEL GRAMMARS

numeral is a single digit from 1 to 9. The hyper-rules for the digit symbols
are as follows:

i digit : digit one symbol.
ii digit : digit two symbol.
iii digit : digit thr ee symbol.
iiii digit : digit four symbol.
iiiii digit : digit five symbol.
iiiiii digit : digit six symbol.
iiiiiii digit : digit seven symbol.
iiiiiiii digit : digit eight symbol.
iiiiiiiii digit : digit nine symbol.

The string literal is a sequence of lowercase letters, which we call LETTERSEQ ,
as specified by the following metarules:

APLHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

LETTER :: letter ALPHA.
LETTERSEQ :: LETTER; LETTERSEQ LETTER.

The string literal, called hollerith , is specified by the following hyper-rule.
Notice that the consistent substitution for TALLY, defined previously, pro-
vides the desired context sensitivity.

hollerith : T ALLY digit, hollerith symbol, T ALLY LETTERSEQ.

Finally, we need to show how a TALLY LETTERSEQ decomposes. The basic
idea is that every time we remove an i from TALLY we also remove a LETTER
from LETTERSEQ . We must eventually reach a single i followed by a single
LETTER . The following two hyper-rules express these ideas.

TALLY i LETTER LETTERSEQ : i LETTER, T ALLY LETTERSEQ.
i LETTER : LETTER symbol.

The representation table for this two-level grammar involves symbols for low-
ercase letters, digits, and the separator H.

Representation Table

letter a symbol a digit one symbol 1

 : : : : : : : :

letter z symbol z digit nine symbol 9

hollerith symbol H

113

Derivation Trees

Since two-level grammars are simply a variant of BNF, they support the idea
of a derivation tree to exhibit the structure of a string of symbols.

Definition : A derivation tr ee of a string in a two-level grammar displays a
derivation of a sentence in the grammar. The nodes in the tree are labeled
with protonotions, and the protonotions for all leaf nodes end with symbol ,
indicating terminal symbols. Traversing the leaf nodes from left to right (a
preorder traversal) and replacing the protonotion symbols with the corre-
sponding tokens in the Representation Table produces the string being parsed.
Empty leaves just disappear. ❚

The derivation tree for “3Habc” is shown in Figure 4.3.

hollerith

iii digit hollerith symbol iii letter a letter b letter c

digit three symbol ii letter b letter ci letter a

i letter b i letter cletter a symbol

letter c symbolletter b symbol

Figure 4.3: Derivation Tree for “3Habc”

When a string does not obey the context-sensitive conditions, no derivation
is possible. Figure 4.4 shows an attempt to draw a derivation tree for “4Habc”,
but, as indicated, it is not possible to complete the tree.

If an arbitrary numeral is allowed to the left of the hollerith symbol in the
previous example, a mechanism is needed to transform the base-ten nu-
meral into a tally representation. For example, if the leaves of the subtree for
a numeral are digit two symbol followed by digit thr ee symbol , the TALLY
will be iiiiiiiiiiiiiiiiiiiiiii , a sequence of 23 i’s. We need to allow for a zero digit
at any position, other than the leading digit, and for the corresponding empty
tally.

EMPTY digit : digit zer o symbol.

TALLETY :: T ALLY; EMPTY.

4.1 CONCEPTS AND EXAMPLES

114 CHAPTER 4 TWO-LEVEL GRAMMARS

ii letter c

hollerith

iiii digit hollerith symbol iiii letter a letter b letter c

digit four symbol iii letter b letter ci letter a

i letter bletter a symbol

?letter b symbol

Figure 4.4: Attempted Derivation Tree for “4Habc”

We develop a hyper-rule for TALLY constant that captures the semantics of
base-ten numerals. For a multiple digit numeral d1d2 ... dn-1dn, we know
that

value(d1d2 ... dn-1dn) is 10•value(d1d2…dn-1) + value(dn).

In a tally numeration system, multiplying by 10 is accomplished by concat-
enating ten copies of the tally together. So we rewrite our equation as

tally(d1d2 ... dn-1dn) is ten copies of tally(d1d2…dn-1)

followed by one copy of tally(dn).

A where clause gives us a mechanism for expressing this equality, as evi-
denced by the following hyper-rule that includes both the base case and the
general case:

TALLETY constant :

TALLETY digit;

TALLETY2 constant, T ALLETY3 digit, wher e TALLETY is

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2

TALLETY3.

where TALLETY is T ALLETY : EMPTY .

The where clause is similar to condition checking in attribute grammars. If
the condition holds, the EMPTY protonotion is the leaf on the tree; other-
wise, the parse fails. This where clause is best illustrated by drawing the
complete derivation tree, as shown for the numeral 23 in Figure 4.5. Notice
that we rely on the fact that spaces in a protonotion do not change the
protonotion.

115

iiiiiiiiiiiiiiiiiiiiiii constant

ii constant

ii digit

digit two symbol

iii digit

digit three symbol

where iiiiiiiiiiiiiiiiiiiiiii
 is ii ii ii ii ii ii ii ii ii ii iii

EMPTY

Figure 4.5: Derivation Tree for the Numeral 23

Exercises

1. Suppose that we have a programming language that allows mixed types
for the arithmetic operations. Setting aside issues of precedence for the
moment, we can describe expressions by the following two-level grammar:

EXPRTYPE :: integer expr ession;
real expr ession; complex expr ession.

OPERATION :: addition; subtraction; multiplication; division.

expression : EXPR TYPE, OPERA TION, EXPR TYPE.

How many different hyper-rules are possible for expression?

2. Suppose we have the following productions:

TYPE :: integer; r eal; complex; character; string.

assignment : TYPE1 name, assign symbol, TYPE2 expr ession,
where TYPE1 is assignment compatible with TYPE2.

Write the hyper-rules for this where condition assuming success if the
types are the same, an integer expression can be assigned to a real or
complex variable, a real expression can be assigned to a complex vari-
able, and a character can be assigned to a string variable.

3. Develop a two-level grammar that parses only strings of the form anbncn.
Use the consistent substitution of a metanotion into a hyper-rule to
guarantee that the values of n are the same. Test the grammar by draw-
ing the derivation tree for “aaabbbccc ”. Also show why there is no valid
derivation tree for “aabbbcc ”.

4. Some implementations of Pascal limit the size of identifiers to eight or
fewer characters. The following hyper-rule expresses this constraint:

identifier : letter , upto iiiiiii alphanum.

4.1 CONCEPTS AND EXAMPLES

116 CHAPTER 4 TWO-LEVEL GRAMMARS

Develop a general hyper-rule to express the meaning of
upto TALLY NOTION

Draw the derivation tree for the identifier “count”.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

The two-level grammar that we construct for Wren performs all necessary
context checking. The primary focus is on ensuring that identifiers are not
multiply declared, that variables used in the program have been declared,
and that their usage is consistent with their types (see Figure 1.11). All dec-
laration information is present in a metanotion called DECLSEQ, which is
associated with the context-sensitive portions of commands. We use the fol-
lowing Wren program for illustration as we develop the two-level grammar:

program p is
var x, y : integer;
var a : boolean;

begin
read x; read y;
a := x < y;
if a then write x else write y end if

end

The program is syntactically correct if we can build a complete derivation
tree for it. Recall that a tree is complete if every leaf is a terminal symbol or
empty and that a preorder traversal of the leaf nodes matches the target
program once the symbols have been replaced with the corresponding to-
kens from the representation table. We introduce metarules and hyper-rules
on an “as needed” basis while discussing the sample program. The complete
two-level grammar, with all rules identified by number, will appear later in
this chapter in Figures 4.12 and 4.13. The representation table for Wren has
already been presented in Figure 4.2.

We first introduce the metanotions that serve as some of the basic building
blocks in Wren.

(m1) ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

(m2) NUM :: zer o; one; two; thr ee; four; five; six; seven; eight; nine.

(m3) ALPHANUM :: ALPHA; NUM.

(m4) LETTER :: letter ALPHA.

(m5) DIGIT :: digit NUM.

117

(m6) LETTERDIGIT :: LETTER; DIGIT .

A NAME starts with a letter followed by any sequence of letters or digits. One
possible NAME is

letter r digit two letter d digit two

A NUMERAL is a sequence of digits.

(m7) NAME :: LETTER; NAME LETTERDIGIT .

(m8) NUMERAL :: DIGIT ; NUMERAL DIGIT .

Declarations

A declaration associates a name with a type. Suppose that a Wren program
contains the following declarations:

var sum1 : integer ;
var done : boolean ;

These declarations will be represented in our two-level grammar derivation
tree as

letter s letter u letter m digit 1 type integer
letter d letter o letter n letter e type boolean

The following metanotions define a declaration and a declaration sequence.
Since a valid Wren program may have no declarations—for example, it may
be a program that writes only constant values—we need to allow for an empty
declaration sequence.

(m9) DECL :: NAME type TYPE.

(m10)TYPE :: integer; boolean; pr ogram.

(m11)DECLSEQ :: DECL; DECLSEQ DECL.

(m12)DECLSEQETY :: DECLSEQ; EMPTY .

(m13)EMPTY :: .

These metanotions are sufficient to begin construction of the declaration
information for a Wren program. The most difficult aspect of gathering to-
gether the declaration information is the use of variable lists, such as

var w, x, y, z : integer;

which should produce the following DECLSEQ :

letter w type integer letter x type integer
letter y type integer letter z type integer

4.2 A TWO-LEVEL GRAMMAR FOR WREN

118 CHAPTER 4 TWO-LEVEL GRAMMARS

The difficulty is that integer appears only once as a terminal symbol and has
to be “shared” with all the variables in the list. The following program frag-
ments should produce this same DECLSEQ , despite the different syntactic
form:

var w : integer;
var x : integer;
var y : integer;
var z : integer;

and
var w, x : integer;
var y, z : integer;

A DECLSEQ permits three alternatives: (1) a sequence followed by a single
declaration, (2) a single declaration, or (3) an empty declaration.

(h3) DECLSEQ DECL declaration seq :
DECLSEQ declaration seq, DECL declaration.

(h4) DECLSEQ declaration seq : DECLSEQ declaration.

(h5) EMPTY declaration seq : EMPTY .

It should be noted that these three hyper-rules can be expressed as two
rules (h4 is redundant), but we retain the three alternatives for the sake of
clarity. If all variables are declared in a separate declaration, we will require
a single hyper-rule for a declaration:

(h6) NAME type TYPE declaration : var symbol, NAME symbol,
colon symbol, TYPE symbol, semicolon symbol.

Figure 4.6 shows how h6, in combination with h3 and h4, can parse the
definition of w, x, y, and z in separate declarations. For pedagogical empha-
sis, the corresponding metanotions are shown in italics to the left of the
nodes in the tree, but these metanotions are not part of the tree itself. Ob-
serve that the specification of NAME symbol restricts identifier names to
single characters. Since this makes the derivation tree more manageable
with regard to depth, the example programs use only single letter identifiers.
An exercise at the end of this section asks what modifications are needed in
the grammar to allow for multiple character identifiers.

The same declaration sequence should be produced by the single declaration:
var w, x, y, z : integer;

This is accomplished by adding three hyper-rules:

1. The first variable in the list, which must be preceded by var symbol and
followed by comma symbol .

119

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration seq

DECLSEQ

DECL

letter z type integer
declaration

NAME type TYPE

letter z
symbol

var
symbol

letter y type integer
declaration

NAME type TYPE

letter y
symbol

var
symbol

letter x type integer
declaration

NAME type TYPE

letter x
symbol

colon
symbol

integer
symbol

semicolon
symbol

var
symbol

letter w type integer
declaration

NAME type TYPE

letter w
symbol

colon
symbol

integer
symbol

semicolon
symbol

var
symbol

letter w type integer
letter x type integer
letter y type integer
declaration seq

DECL

DECLSEQ

DECLSEQ letter w type integer
letter x type integer
declaration seq

DECL

letter w type integer
declaration seq

DECL

colon
symbol

integer
symbol

semicolon
symbol

colon
symbol

integer
symbol

semicolon
symbol

Figure 4.6: Parsing Individual Declarations

2. The last variable in the list, which must be followed by colon symbol , the
type, and semicolon symbol

3. “In between” variables, each of which is followed by comma symbol

4.2 A TWO-LEVEL GRAMMAR FOR WREN

120 CHAPTER 4 TWO-LEVEL GRAMMARS

The general strategy is to have the type information passed from right to left.
Here are the three hyper-rules that are used in conjunction with h4 to build
the declaration information.

(h7) DECLSEQ NAME type TYPE declaration :
DECLSEQ NAME type TYPE var list,
NAME symbol, colon symbol, TYPE symbol, semicolon symbol.

(h8) DECLSEQ NAME1 type TYPE NAME2 type TYPE var list :
DECLSEQ NAME1 type TYPE var list,
NAME1 symbol, comma symbol.

(h9) NAME1 type TYPE NAME2 type TYPE var list :
var symbol, NAME1 symbol, comma symbol.

Figure 4.7 shows the derivation tree for the declaration of the variables w, x,
y, and z in a single declaration statement.

We now return to our sample program. To develop the derivation tree from
the program node, we need these hyper-rules for program and block .

(h1) program : program symbol, NAME symbol, is symbol,
block with NAME type pr ogram DECLSEQETY ,
where NAME type pr ogram DECLSEQETY unique.

(h2) block with NAME type pr ogram DECLSEQETY :
DECLSEQETY declaration seq, begin symbol,
NAME type pr ogram DECLSEQETY command seq, end symbol.

Notice that the program identifier name is added to the declaration sequence
with type program . This information is passed to the command sequence and
is also checked for multiple declarations of the same identifier by a where rule.
A top-level derivation tree for the example program is shown in Figure 4.8.

The where rule checks for the uniqueness of declarations. All leaf nodes for
the where clauses will be EMPTY if the identifiers are unique. Since our
hyper-rules for variable lists have produced separate declaration informa-
tion for each identifier, this checking is relatively straightforward, albeit
lengthy. The easiest case is a single declaration, which is obviously unique.

(h22) where DECL unique : EMPTY .

In the case of multiple declarations, we separate the last declaration in the
list, and we use the following rule to ensure that the name is not contained in
any declarations to the left

121

letter w
symbol

comma
symbol

letter y
symbol

comma
symbol

letter z
symbol

colon
symbol

integer
symbol

semicolon
symbol

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration

DECLSEQ

NAME type TYPE

var
symbol

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration seq

DECLSEQ

NAME1 type TYPE
NAME2 type TYPE

letter w type integer
letter x type integer
letter y type integer
letter z type integer
varlist

letter w type integer
letter x type integer
letter y type integer
varlist

DECLSEQ
NAME1 type TYPE
NAME2 type TYPE

letter w type integer
letter x type integer
varlist

letter x
symbol

comma
symbol

NAME1 type TYPE
NAME2 type TYPE

Figure 4.7: Parsing the Declaration: var w, x, y, z : integer ;

(h23) where DECLSEQ NAME type TYPE unique :
where DECLSEQ unique,
where NAME not in DECLSEQ.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

122 CHAPTER 4 TWO-LEVEL GRAMMARS

program

program
symbol

is
symbol

letter p
symbol

block with
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where
letter p type program
letter x type integer
letter y type integer
letter a type boolean
unique

letter x type integer
letter y type integer
letter a type boolean
declaration seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

begin
symbol

end
symbol

See Figure 4.9

letter x type integer
letter y type integer
declaration seq

letter a type boolean
declaration

var
symbol

letter a
symbol

colon
symbol

boolean
symbol

semicolon
symbol

letter x
symbol

comma
symbol

var
symbol

letter y
symbol

colon
symbol

integer
symbol

semicolon
symbol

letter x type integer
letter y type integer
declaration

letter x type integer
letter y type integer
var list

See Figure 4.10

Figure 4.8: Top-Level Derivation Tree of Sample Program

To ensure that a name is not contained in a declaration sequence, we check
one declaration at a time from right to left.

(h24) where NAME not in DECLSEQ DECL :
where NAME not in DECLSEQ,
where NAME not in DECL.

123

The type information in a declaration sequence is not needed to check for
name uniqueness, so the hyper-rule simply checks that two names are not
the same.

(h25) where NAME1 not in NAME2 type TYPE :
where NAME1 is not NAME2.

Names are separated into a sequence of characters, which is possibly empty,
followed by a final character. We need to use the metanotions for NOTION
and NOTETY introduced in section 4.1.

(m14)NOTION :: ALPHA; NOTION ALPHA.

(m15)NOTETY :: NOTION; EMPTY .

The identifiers contain either alphabetic characters or digit characters. If
characters are of different kind, they are not equal. If characters are of the
same kind but they are not the same, then one character appears before the
other character in the appropriate character set. This test is applied to all
characters in the sequence until a mismatch is found.

(h26) where NOTETY1 NOTION1 ALPHANUM1 is not
NOTETY2 NOTION2 ALPHANUM2 :

where NOTETY1 is not NOTETY2;
where NOTION1 dif ferent kind NOTION2;
where ALPHANUM1 pr ecedes ALPHANUM2

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM2 pr ecedes ALPHANUM1

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM1 pr ecedes ALPHANUM2

in zero one two thr ee four five six seven eight nine;
where ALPHANUM2 pr ecedes ALPHANUM1

in zero one two thr ee four five six seven eight nine.

A letter is always different than a digit .

(h27) where letter dif ferent kind digit : EMPTY .

(h28) where digit dif ferent kind letter : EMPTY .

Finally, two hyper-rules check whether a character or a digit precedes an-
other.

(h29) where ALPHA1 pr ecedes ALPHA2
in NOTETY1 ALPHA1 NOTETY2 ALPHA2 NOTETY3 : EMPTY .

(h30) where NUM1 pr ecedes NUM2
in NOTETY1 NUM1 NOTETY2 NUM2 NOTETY3 : EMPTY .

Figure 4.9 shows the use of these where rules to check the uniqueness of the
identifiers in our sample program.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

124 CHAPTER 4 TWO-LEVEL GRAMMARS

where
letter p type program
letter x type integer
letter y type integer
letter a type boolean
unique

where
letter p type program
letter x type integer
letter y type integer
unique

where letter a
not in
letter p type program
letter x type integer
letter y type integer

where letter a
not in
letter p type program
letter x type integer

where letter a
not in
letter y type boolean

where letter a
is not letter y

where letter a
precedes letter y in
abcdefghijklmnopqrstuvwxyz

EMPTY

where letter a
not in
letter p type program

where letter a
not in
letter x type integer

where letter a
is not letter p

where letter a
precedes letter p in
abcdefghijklmnopqrstuvwxyz

EMPTY

where letter a
is not letter x

where letter a
precedes letter x in
abcdefghijklmnopqrstuvwxyz

EMPTY

left as an
exercise

Figure 4.9: Checking Uniqueness of Declared Identifiers

Commands and Expressions

We complete the development of our two-level grammar for Wren by examin-
ing how declaration information is used to check for the proper use of vari-
ables that appear in commands. To reduce the number of hyper-rules, we
introduce metanotions for the arithmetic operators and comparison opera-
tors.

125

(m16)WEAKOP :: plus symbol; minus symbol.

(m17)STRONGOP :: multiply symbol; divide symbol.

(m18)RELATION ::
less or equal symbol; less symbol; not equal symbol;
greater symbol; gr eater or equal symbol; equal symbol.

Declaration information is passed to each individual command. Note that an
empty declaration sequence need not be allowed since every program must
be named, even if no variables are declared.

(h10) DECLSEQ command seq :
DECLSEQ command;
DECLSEQ command, semicolon symbol,

DECLSEQ command seq.

Commands use the declaration information in different ways:

• The skip command uses no declaration information.

• The write , while , and if commands pass the declaration information to
their constituent parts.

• The read command uses the declaration information to check that the
associated variable is of type integer.

Here is the hyper-rule that separates these cases:

(h11) DECLSEQ command :
TYPE NAME in DECLSEQ, assign symbol,

TYPE expr ession in DECLSEQ;
skip symbol;
read symbol, integer NAME in DECLSEQ;
write symbol, integer expr ession in DECLSEQ;

while symbol, boolean expr ession in DECLSEQ, do symbol,
DECLSEQ command seq, end while symbol;

if symbol, boolean expr ession in DECLSEQ, then symbol,
DECLSEQ command seq, end if symbol;

if symbol, boolean expr ession in DECLSEQ, then symbol,
DECLSEQ command seq, else symbol,
DECLSEQ command seq, end if symbol.

The read command illustrates hyper-rules of the form TYPE NAME in
DECLSEQ that perform two important functions: They produce the appro-
priate NAME symbol and they check that the NAME appears in the DECLSEQ
with the appropriate TYPE .

4.2 A TWO-LEVEL GRAMMAR FOR WREN

126 CHAPTER 4 TWO-LEVEL GRAMMARS

(h19) TYPE NAME in DECLSEQ :
NAME symbol, wher e NAME type TYPE found in DECLSEQ.

The DECLSEQ is checked one declaration at a time from left to right. The
EMPTY notion is produced if the appropriate declaration is found; other-
wise, the parse fails.

(h20) where NAME type TYPE found in
NAME type TYPE DECLSEQETY : EMPTY .

(h21) where NAME1 type TYPE1 found in NAME2 type TYPE2
DECLSEQETY : wher e NAME1 type TYPE1

found in DECLSEQETY .

The remainder of the two-level grammar, dealing with expressions and com-
parisons, is straightforward. The portion of the grammar dealing with Bool-
ean expressions has been left as an exercise.

(h12) integer expr ession in DECLSEQ :
term in DECLSEQ;
integer expr ession in DECLSEQ, WEAKOP , term in DECLSEQ.

(h13) term in DECLSEQ :
element in DECLSEQ;
term in DECLSEQ, STRONGOP , element in DECLSEQ.

(h14) element in DECLSEQ :
NUMERAL symbol;
integer NAME in DECLSEQ;
left par en symbol, integer expr ession in DECLSEQ,

 right par en symbol;
negation symbol, element in DECLSEQ.

(h15) boolean expr ession in DECLSEQ : left as an exercise.

(h16) boolean ter m in DECLSEQ : left as an exercise.

(h17) boolean element in DECLSEQ : left as an exercise.

(h18) comparison in DECLSEQ :
integer expr ession in DECLSEQ, RELA TION,

integer expr ession in DECLSEQ.

Figures 4.10 and 4.11 illustrate a partial derivation tree for the command
sequence in the sample program. The unfinished branches in the tree are left
as exercises.

127

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

semicolon
symbol

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

semicolon
symbol

read
symbol

Left as an
exercise

integer letter x in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter x
symbol

where letter x type
integer found in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where letter x type
integer found in
letter x type integer
letter y type integer
letter a type boolean

EMPTY

See
Figure 4.11

Figure 4.10: Partial Derivation Tree for a Command Sequence

4.2 A TWO-LEVEL GRAMMAR FOR WREN

128 CHAPTER 4 TWO-LEVEL GRAMMARS

integer expression
in
letter p type
program
letter x type
integer
letter y type
integer
letter a type
boolean

semicolon
symbol

boolean expression in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

boolean letter a in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter a
symbol

where letter a type
boolean found in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where letter a type
boolean found in
letter x type integer
letter y type integer
letter a type boolean

EMPTY

assign
symbol

where letter a type
boolean found in
letter y type integer
letter a type boolean

where letter a type
boolean found in
letter a type boolean

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

write
symbol

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

Left as an
exercise

then
symbol

if
symbol

else
symbol

end if
symbol

Left as an
exercise

Left as an
exercise

Left as an
exercise

Figure 4.11: Partial Derivation Tree for a Command Sequence (continued)

129

 (m1) ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

 (m2) NUM :: zer o; one; two; thr ee; four; five; six; seven; eight; nine.

 (m3) ALPHANUM :: ALPHA; NUM.

 (m4) LETTER :: letter ALPHA.

 (m5) DIGIT :: digit NUM.

 (m6) LETTERDIGIT :: LETTER; DIGIT .

 (m7) NAME :: LETTER; NAME LETTERDIGIT .

 (m8) NUMERAL :: DIGIT ; NUMERAL DIGIT .

 (m9) DECL :: NAME type TYPE.

 (m10) TYPE :: integer; boolean; pr ogram.

 (m11) DECLSEQ :: DECL; DECLSEQ DECL.

 (m12) DECLSEQETY :: DECLSEQ; EMPTY .

 (m13) EMPTY :: .

 (m14) NOTION :: ALPHA; NOTION ALPHA.

 (m15) NOTETY :: NOTION; EMPTY .

 (m16) WEAKOP :: plus symbol; minus symbol.

 (m17) STRONGOP :: multiply symbol; divide symbol.

 (m18) RELATION :: less or equal symbol; less symbol; not equal symbol;
greater symbol; gr eater or equal symbol; equal symbol.

Figure 4.12: Metarules for Wren

 (h1) program : program symbol, NAME symbol, is symbol,
block with NAME type pr ogram DECLSEQETY ,
where NAME type pr ogram DECLSEQETY unique.

 (h2) block with NAME type pr ogram DECLSEQETY :
DECLSEQETY declaration seq, begin symbol,
NAME type pr ogram DECLSEQETY command seq, end symbol.

 (h3) DECLSEQ DECL declaration seq :
DECLSEQ declaration seq, DECL declaration.

 (h4) DECLSEQ declaration seq :
DECLSEQ declaration.

 (h5) EMPTY declaration seq : EMPTY .

Figure 4.13: Hyper-rules for Wren (Part 1)

4.2 A TWO-LEVEL GRAMMAR FOR WREN

130 CHAPTER 4 TWO-LEVEL GRAMMARS

 (h6) NAME type TYPE declaration : var symbol, NAME symbol,
colon symbol, TYPE symbol, semicolon symbol.

 (h7) DECLSEQ NAME type TYPE declaration :
DECLSEQ NAME type TYPE var list,
NAME symbol, colon symbol, TYPE symbol, semicolon symbol.

 (h8) DECLSEQ NAME1 type TYPE NAME2 type TYPE var list :
DECLSEQ NAME1 type TYPE var list,
NAME1 symbol, comma symbol.

 (h9) NAME1 type TYPE NAME2 type TYPE var list :
var symbol, NAME1 symbol, comma symbol.

 (h10) DECLSEQ command seq :
DECLSEQ command;
DECLSEQ command, semicolon symbol,
DECLSEQ command seq.

 (h11) DECLSEQ command :
TYPE NAME in DECLSEQ, assign symbol,

TYPE expr ession in DECLSEQ;
skip symbol;
read symbol, integer NAME in DECLSEQ;
write symbol, integer expr ession in DECLSEQ;
while symbol, boolean expr ession in DECLSEQ, do symbol,

DECLSEQ command seq, end while symbol;
if symbol, boolean expr ession in DECLSEQ, then symbol,

DECLSEQ command seq, end if symbol;
if symbol, boolean expr ession in DECLSEQ, then symbol,

DECLSEQ command seq, else symbol,
DECLSEQ command seq, end if symbol.

 (h12) integer expr ession in DECLSEQ :
term in DECLSEQ;
integer expr ession in DECLSEQ, WEAKOP , term in DECLSEQ.

 (h13) term in DECLSEQ :
element in DECLSEQ;
term in DECLSEQ, STRONGOP , element in DECLSEQ.

 (h14) element in DECLSEQ :
NUMERAL symbol;
integer NAME in DECLSEQ;
left par en symbol, integer expr ession in DECLSEQ,

right par en symbol;
negation symbol, element in DECLSEQ.

 (h15) boolean expr ession in DECLSEQ : left as exercise

 (h16) boolean ter m in DECLSEQ : left as exercise

Figure 4.13: Hyper-rules for Wren (Part 2)

131

 (h17) boolean element in DECLSEQ : left as exercise

 (h18) comparison in DECLSEQ :
integer expr ession in DECLSEQ, RELA TION,
integer expr ession in DECLSEQ.

 (h19) TYPE NAME in DECLSEQ :
NAME symbol, wher e NAME type TYPE found in DECLSEQ

 (h20) where NAME type TYPE found in NAME type TYPE DECLSEQETY :
EMPTY.

 (h21) where NAME1 type TYPE1 found in NAME2 type TYPE2
DECLSEQETY : wher e NAME1 type TYPE1 found in

DECLSEQETY .

 (h22) where DECL unique : EMPTY .

 (h23) where DECLSEQ NAME type TYPE unique :
where DECLSEQ unique,
where NAME not in DECLSEQ.

 (h24) where NAME not in DECLSEQ DECL :
where NAME not in DECLSEQ,
where NAME not in DECL.

 (h25) where NAME1 not in NAME2 type TYPE :
where NAME1 is not NAME2.

 (h26) where NOTETY1 NOTION1 ALPHANUM1 is not
NOTETY2 NOTION2 ALPHANUM2 :

where NOTETY1 is not NOTETY2;
where NOTION1 dif ferent kind NOTION2;
where ALPHANUM1 pr ecedes ALPHANUM2

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM2 pr ecedes ALPHANUM1

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM1 pr ecedes ALPHANUM2

in zero one two thr ee four five six seven eight nine;
where ALPHANUM2 pr ecedes ALPHANUM1

in zero one two thr ee four five six seven eight nine.

 (h27) where letter dif ferent kind digit : EMPTY .

 (h28) where digit dif ferent kind letter : EMPTY .

 (h29) where ALPHA1 pr ecedes ALPHA2
in NOTETY1 ALPHA1 NOTETY2 ALPHA2 NOTETY3 : EMPTY .

 (h30) where NUM1 pr ecedes NUM2
in NOTETY1 NUM1 NOTETY2 NUM2 NOTETY3 : EMPTY .

Figure 4.13: Hyper-rules for Wren (Part 3)

4.2 A TWO-LEVEL GRAMMAR FOR WREN

132 CHAPTER 4 TWO-LEVEL GRAMMARS

Exercises

1. Show the derivation tree for the following declaration sequence:
var w, x : integer;
var y, z : integer;

2. Complete the remaining branches in Figure 4.9.

3. Complete the following hyper-rules:
(h15) boolean expr ession in DECLSEQ :
(h16) boolean ter m in DECLSEQ :
(h17) boolean element in DECLSEQ :

4. Complete the remaining branches in Figures 4.10 and 4.11.

5. Draw the complete derivation tree for the following program:
program p is

var n, f : integer;
begin

read n; f := 1;
while n > 0 do f := f * n; n := n – 1 end while;
write f

end

6. Suppose the declaration in exercise 5 is changed to
var n : integer;
var f : boolean;

Show all locations in the command sequence where the parse fails, as-
suming the declaration sequence letter n type integer letter f type
boolean .

7. Show all changes necessary to metarules and hyper-rules to allow for
multiple character identifiers. Some rules already allow for multiple char-
acters whereas others, such as those with NAME symbol , will have to
be modified. Additional rules may be needed.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

The consistent substitution of protonotions for a metanotion within a hyper-
rule may seem similar to the binding of identifiers in a Prolog clause. In fact,
a close relationship exists between two-level grammars and logic program-
ming. Rather than present a complete implementation of the two-level gram-

133

mar for Wren in this section, we present a brief example of implementing a
two-level grammar in Prolog and then discuss some of the relationships be-
tween two-level grammars and logic programming.

Implementing Two-Level Grammars in Prolog

We implement the Hollerith string literal grammar from Section 4.1 to give
the flavor a two-level grammar in Prolog. The top-level predicate, named
hollerith, is called with three arguments:

hollerith(<list of digit symbols>, hollerith, <list of lowercase letters>).

The program should print either “valid Hollerith string” or “invalid Hollerith
string”, as appropriate for the data. We assume the list of digits and list of
letters are syntactically correct. A sample session appears below.

| ?- hollerith([digitSixSymbol], hollerith, [a,b,c,d,e,f]).
valid Hollerith string
yes

| ?- hollerith([digitSixSymbol], hollerith, [a,b,c,d,e]).
invalid Hollerith string
yes

| ?- hollerith([digitTwoSymbol,digitFiveSymbol], hollerith,
 [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y]).
valid Hollerith string
yes

| ?- hollerith([digitTwoSymbol,digitFiveSymbol], hollerith,
 [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]).
invalid Hollerith string
yes

This interface is not very elegant, but it will serve adequately to illustrate the
intended performance. An exercise suggests techniques for improving the
interface. Observe that we have allowed for numerals of any size, so a where
clause must be used in the grammar. The two-level grammar for Hollerith
string literals is summarized in Figure 4.14.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

134 CHAPTER 4 TWO-LEVEL GRAMMARS

hollerith : T ALLY digit, hollerith symbol, T ALLY LETTERSEQ.

TALLY i LETTER LETTERSEQ : i LETTER, T ALLY LETTERSEQ.
i LETTER: LETTER symbol.

i digit : digit one symbol.
ii digit : digit two symbol.
iii digit : digit thr ee symbol.
iiii digit : digit four symbol.
iiiii digit : digit five symbol.
iiiiii digit : digit six symbol.
iiiiiii digit : digit seven symbol.
iiiiiiii digit : digit eight symbol.
iiiiiiiii digit : digit nine symbol.

TALLETY constant :
TALLETY digit;
TALLETY2 constant, T ALLETY3 digit, wher e TALLETY is

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2
TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2
TALLETY3.

where TALLETY is T ALLETY : EMPTY .

EMPTY digit : digit zer o symbol.
TALLETY :: T ALLY; EMPTY.

APLHA :: a; b; c; d; e; f; g; h; i; j; k; l; m; n; o; p; q; r; s; t; u; v; w; x; y; z.
LETTER :: letter ALPHA.
LETTERSEQ :: LETTER; LETTERSEQ LETTER.

Figure 4.14: Two-level Grammar for Hollerith String Literals

The clauses for single digits are simple.

digit([digitZeroSymbol], []).
digit([digitOneSymbol], [i]).
digit([digitTwoSymbol], [i,i]).
digit([digitThreeSymbol], [i,i,i]).
digit([digitFourSymbol], [i,i,i,i]).
digit([digitFiveSymbol], [i,i,i,i,i]).
digit([digitSixSymbol], [i,i,i,i,i,i]).
digit([digitSevenSymbol], [i,i,i,i,i,i,i]).
digit([digitEightSymbol], [i,i,i,i,i,i,i,i]).
digit([digitNineSymbol], [i,i,i,i,i,i,i,i,i]).

135

A constant is a single digit or a sequence of digits. We use the technique of
concatenating ten copies of the tally for the leading digits to the tally for the
units digit to produce a final tally. Supporting clauses are used to split the
digits into the leading digits and units digit, to concatenate the ten copies of
the leading digit’s tally to the units digit’s tally, and to perform the concat-
enation itself.

constant(DIGIT, TALLETY) :- digit(TALLETY, DIGIT).

constant(DIGITS, TALLETY) :-
splitDigits(DIGITS, LeadingDIGITS, UnitDIGIT),
constant(LeadingDIGITS, TALLETY2),
digit(UnitDIGIT, TALLETY3),
concatTenPlusDigit(TALLETY2, TALLETY3, TALLETY).

splitDigits([D], [], [D]).

splitDigits([Head|Tail],[Head|Result],Unit) :- splitDigits(Tail, Result, Unit).

concatTenPlusDigit(TALLETY2, TALLETY3, TALLETY) :-
concat(TALLETY2, TALLETY2, TwoTimes),
concat(TwoTimes, TwoTimes, FourTimes),
concat(FourTimes, FourTimes, EightTimes),
concat(EightTimes, TwoTimes, TenTimes),
concat(TenTimes, TALLETY3, TALLETY).

concat([],L,L).

concat([Head|Tail],L,[Head|Result]) :- concat(Tail,L,Result).

The tally is generated from the number part, and it is used to check the
length of the letter sequence. Each time a tally symbol is removed, a letter is
removed. One base case is a single tally and a single letter, resulting in a
valid hollerith string. If either the tally or the letter sequence becomes empty,
the other base cases, the hollerith string is invalid. Each letter is checked to
ensure that it is a lowercase character.

hollerith(Number,hollerith,Letters) :- constant(Number, TALLETY),
letterSeq(TALLETY, Letters).

letterSeq([i],[Letter]) :- alpha(Letter),
write(‘valid Hollerith string’), nl.

letterSeq([i|TALLETY],[Letter|Letters]) :- alpha(Letter),
letterSeq(TALLETY, Letters).

letterSeq([],Letters) :- write(‘invalid Hollerith string’), nl.

letterSeq(Number,[]) :- write(‘invalid Hollerith string’), nl.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

136 CHAPTER 4 TWO-LEVEL GRAMMARS

alpha(a). alpha(b). alpha(c). alpha(d). alpha(e). alpha(f).
alpha(g). alpha(h). alpha(i). alpha(j). alpha(k). alpha(l).
alpha(m). alpha(n). alpha(o). alpha(p). alpha(q). alpha(r).
alpha(s). alpha(t). alpha(u). alpha(v). alpha(w). alpha(x).
alpha(y). alpha(z).

Two-level Grammars and Logic Programming

Hyper-rules in two-level grammars are similar to clauses in Prolog. In two-
level grammars we have consistent substitution of the same value for a par-
ticular metanotion in a rule. In Prolog we have the consistent binding of the
same value to a particular variable in a clause. Some of the syntax and pat-
tern matching in two-level grammars are also similar to Prolog. Several re-
searchers have investigated the relationships between two-level grammars
(also known as W-grammars) and logic programming. We briefly summarize
one of those approaches, originally presented by S. J. Turner in a paper
entitled “W-Grammars for Logic Programming” [Turner84].

A programming language seldom completely represents a programming para-
digm. For example, Common Lisp is not a purely functional language, and
Prolog is not a purely logical language. Turner believes that two-level gram-
mars as an implementation mechanism for logic programming have many
advantages over Prolog, the most popular logic programming language. He
implements a logic programming system based on a two-level (or W-) gram-
mar in a system called WLOG. He claims this system overcomes some of the
disadvantages of Prolog (see [Turner84], page 352).

• Understanding Prolog requires a detailed understanding of the backtrack-
ing mechanism built into the implementation of Prolog.

• The meaning of a Prolog program is highly dependent on the order of the
clauses in the database, making the formal analysis of the semantics of
Prolog very difficult.

• Many built-in predicates in Prolog have side effects that make parallel
implementations difficult.

• Minor programming errors, such as misspelling, are difficult to find since
the entire program fails with no indication of where the error occurred.

Consider the following example taken from Turner’s paper:

MAN :: geor ge; john; paul.

WOMAN :: jane; mary; sue.

137

PERSON :: MAN; WOMAN.

THING :: flowers; food; football; food; wine.

LEGAL :: PERSON likes THING; PERSON likes PERSON.

A fact is usually stated as a hyper-rule with an empty right side, such as:

mary likes football : .

john likes wine : .

paul likes mary : .

jane likes sue : .

paul likes food : .

george likes football : .

We can make a query, such as finding out what paul likes:

paul likes THING?

which succeeds with THING matching mary and food. We can have com-
pound queries, such as:

PERSON1 likes PERSON, PERSON likes THING?

which succeeds with paul likes mary and mary likes football. Hyper-rules
with right-hand sides are used to express rules of logic. Consider the logical
rule: Two people who like the same object like each other, which is expressed
as:

PERSON1 likes PERSON2 : PERSON1 likes OBJECT ,

PERSON2 likes OBJECT .

From the database given above, we can conclude that mary likes john.

Turner’s paper gives a formal definition of WLOG and discusses an imple-
mentation based on non-deterministic finite automata. This implementation
uses a breadth-first search, which means that the order of the database is
not critical and that certain types of parallelism can be realized. The system
also handles not in a more understandable manner than Prolog. With the
database given above, if we pose the query

paul likes WOMAN?

then only mary is found in the database. In WLOG, if we make the query

not [paul likes WOMAN]?

then the values of sue and jane satisfy the query. This should be compared
with Prolog where this query fails. In WLOG, not[not[X]]? is satisfied by the
same values as X?, but this is not true in Prolog, which is based on negation
as failure. This completes our brief look at the relationship between two-level
grammars and pure logic programming.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

138 CHAPTER 4 TWO-LEVEL GRAMMARS

Exercises

1. Build a “front end” for the Hollerith string checker to prompt the user for
string input and then print the appropriate evaluation message. Use the
built-in Prolog clause name for converting a string to a sequence of ascii
codes.

2. Implement a two-level grammar that parses strings of the form anbncn.
The program should either print that the string obeys the grammar or
that it does not. Assume that the strings are syntactically correct, in the
sense that they are a sequence of a’s followed by a sequence of b’s,
followed by a sequence of c’s.

3. Implement a two-level grammar to recognize valid Pascal identifiers as-
suming that an identifier starts with a letter followed by a sequence of
alphanumeric characters and that the length of the identifier is eight or
fewer characters (see exercise 4 in section 4.1).

4.4 FURTHER READING

Two-level grammars are also called W-grammars after their developer, Aad
van Wijngaarden, who described them in an early paper [vanW ijngaarden66].
The formal definition of Algol68 using two-level grammars appears in [van
Wijngaarden76]. [Kupka80] has applied two-level grammars to model infor-
mation processing.

Several references include two-level grammars as part of an overview of for-
mal techniques. Most notable are [Pagan81], [Marcotty76], and [Cleaveland77].
Pagan develops an interpreter for a language with parameterized procedures
using a two-level grammar.

Some of the theoretical issues relating to two-level grammars are discussed
in [Deussen75] and [Slintzoff67]. The relationship between two-level gram-
mars and programming language design is explored in [van Wijngaarden82],
[Maluszynski84], and [Turner84].

The most active group of researchers in the United States working on two-
level grammars is at the University of Alabama, Birmingham. Barrett Bryant
and Balanjaninath Edupuganty are coauthors of several papers dealing with
applications of two-level grammars to a wide variety of problem domains
[Bryant86a], [Bryant86b], [Bryant88], [Edupuganty85], [Edupuganty88],
[Edupuganty89], and [Sundararaghavan87].

Chapter 5
THE LAMBDA CALCULUS

Functions play a prominent role in describing the semantics of a pro-
gramming language, since the meaning of a computer program can be
considered as a function from input values to output values. In addi-

tion, functions play an essential role in mathematics, which means that much
of the theory of functions, including the issue of computability, unfolded as
part of mathematical logic before the advent of computers. In particular, Alonzo
Church developed the lambda calculus in the 1930s as a theory of functions
that provides rules for manipulating functions in a purely syntactic manner.

Although the lambda calculus arose as a branch of mathematical logic to
provide a foundation for mathematics, it has led to considerable ramifica-
tions in the theory of programming languages. Beyond the influence of the
lambda calculus in the area of computation theory, it has contributed im-
portant results to the formal semantics of programming languages:

• Although the lambda calculus has the power to represent all computable
functions, its uncomplicated syntax and semantics provide an excellent
vehicle for studying the meaning of programming language concepts.

• All functional programming languages can be viewed as syntactic varia-
tions of the lambda calculus, so that both their semantics and implemen-
tation can be analyzed in the context of the lambda calculus.

• Denotational semantics, one of the foremost methods of formal specifica-
tion of languages, grew out of research in the lambda calculus and ex-
presses its definitions using the higher-order functions of the lambda cal-
culus.

In this chapter we take a brief but careful look at the lambda calculus, first
defining it as a language and then viewing it as a computational formalism in
light of its reduction rules. We end the chapter by implementing a lambda
calculus evaluator in Prolog. In Chapter 10 we continue the study of func-
tions with the goal of explaining recursive definitions.

139

140 CHAPTER 5 THE LAMBDA CALCULUS

5.1 CONCEPTS AND EXAMPLES

Our description of the lambda calculus begins with some motivation for the
notation. A function is a mapping from the elements of a domain set to the
elements of a codomain set given by a rule—for example,

cube : Integer → Integer where cube(n) = n3.

Certain questions arise from such a function definition:

• What is the value of the identifier “cube”?

• How can we represent the object bound to “cube”?

• Can this function be defined without giving it a name?

Church’s lambda notation allows the definition of an anonymous function,
that is, a function without a name:

λn . n3 defines the function that maps each n in the domain to n3.

We say that the expression represented by λn . n3 is the value bound to the
identifier “cube”. The number and order of the parameters to the function
are specified between the λ symbol and an expression. For instance, the
expression n2+m is ambiguous as the definition of a function rule:

(3,4) |→ 32+4 = 13 or (3,4) |→ 42+3 = 19.

Lambda notation resolves the ambiguity by specifying the order of the pa-
rameters:

λn . λm . n2+m or λm . λn . n2+m.

Most functional programming languages allow anonymous functions as val-
ues; for example, the function λn . n3 is represented as

(lambda (n) (* n n n)) in Scheme and

fn n => n* n* n in Standard ML.

Syntax of the Lambda Calculus

The lambda calculus derives its usefulness from having a sparse syntax and
a simple semantics, and yet it retains sufficient power to represent all com-
putable functions. Lambda expressions come in four varieties:

1. Variables, which are usually taken to be any lowercase letters.

1415.1 CONCEPTS AND EXAMPLES

2. Predefined constants, which act as values and operations are allowed in
an impure or applied lambda calculus .

3. Function applications (combinations).

4. Lambda abstractions (function definitions).

The simplicity of lambda calculus syntax is apparent from a BNF specifica-
tion of its concrete syntax:

<expression> ::= <variable> ; lowercase identifiers

| <constant> ; predefined objects

| (<expression> <expression>) ; combinations

| (λ <variable> . <expression>) ; abstractions.

In the spirit of software engineering, we allow identifiers of more than one
letter to stand as variables and constants. The pure lambda calculus has no
predefined constants, but it still allows the definition of all of the common
constants and functions of arithmetic and list manipulation. We will say
more about the expressibility of the pure lambda calculus later in this chap-
ter. For now, predefined constants will be allowed in our examples, including
numerals (for example, 34), add (for addition), mul (for multiplication), succ
(the successor function), and sqr (the squaring function).

In an abstraction, the variable named is referred to as the bound variable
and the associated lambda expression is the body of the abstraction. With a
function application (E1 E2), it is expected that E1 evaluates to a predefined
function (a constant) or an abstraction, say (λx . E3), in which case the result
of the application will be the evaluation of E3 after every “free” occurrence of
x in E3 has been replaced by E2. In a combination (E1 E2), the function or
operator E1 is called the rator and its argument or operand E2 is called the
rand . Formal definitions of free occurrences of variables and the replace-
ment operation will be provided shortly.

Lambda expressions will be illustrated with several examples in which we
use prefix notation as in Lisp for predefined binary operations and so avoid
the issue of precedence among operations.

• The lambda expression λx . x denotes the identity function in the sense
that ((λx . x) E) = E for any lambda expression E. Functions that allow
arguments of many types, such as this identity function, are known as
polymorphic operations. The lambda expression (λx . x) acts as an iden-
tity function on the set of integers, on a set of functions of some type, or on
any other kind of object.

• The expression λn . (add n 1) denotes the successor function on the inte-
gers so that ((λn . (add n 1)) 5) = 6. Note that “add” and 1 need to be

142 CHAPTER 5 THE LAMBDA CALCULUS

predefined constants to define this function, and 5 must be predefined to
apply the function as we have done.

• The abstraction (λf . (λx . (f (f x)))) describes a function with two arguments,
a function and a value, that applies the function to the value twice. If sqr is
the (predefined) integer function that squares its argument, then

(((λf . (λx . (f (f x)))) sqr) 3) = ((λx . (sqr (sqr x))) 3)

= (sqr (sqr 3)) = (sqr 9) = 81.

Here f is replaced by sqr and then x by 3. These examples show that the
number of parentheses in lambda expressions can become quite large. The
following notational conventions allow abbreviations that reduce the number
of parentheses:

1. Uppercase letters and identifiers beginning with capital letters will be used
as metavariables ranging over lambda expressions.

2. Function application associates to the left.

E1 E2 E3 means ((E1 E2) E3)

3. The scope of “λ<variable>” in an abstraction extends as far to the right as
possible.

λx . E1 E2 E3 means (λx . (E1 E2 E3)) and not ((λx . E1 E2) E3).

So application has a higher precedence than abstraction, and parenthe-
ses are needed for (λx . E1 E2) E3, where E3 is intended to be an argument
to the function λx . E1 E2 and not part of the body of the function as
above.

4. An abstraction allows a list of variables that abbreviates a series of lambda
abstractions.

λx y z . E means (λx . (λy . (λz . E)))

5. Functions defined as lambda expression abstractions are anonymous, so
the lambda expression itself denotes the function. As a notational con-
vention, lambda expressions may be named using the syntax

define <name> = <expression>.

For example, given define Twice = λf . λx . f (f x), it follows that

(Twice (λn . (add n 1)) 5) = 7.

We follow a convention of starting defined names with uppercase letters
to distinguish them from variables. Imagine that “Twice” is replaced by its
definition as with a macro expansion before the lambda expression is
reduced. Later we show a step-by-step reduction of this lambda expres-
sion to 7.

143

Example : Because of the sparse syntax of the lambda calculus, correctly
parenthesizing (parsing) a lambda expression can be challenging. We illus-
trate the problem by grouping the terms in the following lambda expression:

(λn . λf . λx . f (n f x)) (λg . λy . g y).

We first identify the lambda abstractions, using the rule that the scope of
lambda variable extends as far as possible. Observe that the lambda ab-
stractions in the first term are ended by an existing set of parentheses.

(λx . f (n f x)) (λy . g y)

(λf . (λx . f (n f x))) (λg . (λy . g y))

(λn . (λf . (λx . f (n f x))))

Then grouping the combinations by associating them to the left yields the
completely parenthesized expression:

((λn . (λf . (λx . (f ((n f) x))))) (λg . (λy . (g y)))). ❚

Curried Functions

Lambda calculus as described above seems to permit functions of a single
variable only. The abstraction mechanism allows for only one parameter at a
time. However, many useful functions, such as binary arithmetic operations,
require more than one parameter; for example, sum(a,b) = a+b matches the
syntactic specification sum : NxN → N, where N denotes the natural numbers.

Lambda calculus admits two solutions to this problem:

1. Allow ordered pairs as lambda expressions, say using the notation <x,y>,
and define the addition function on pairs:

sum <a,b> = a + b

Pairs can be provided by using a predefined “cons” operation as in Lisp,
or the pairing operation can be defined in terms of primitive lambda ex-
pressions in the pure lambda calculus, as will be seen later in the chap-
ter.

2. Use the curried version of the function with the property that arguments
are supplied one at a time:

add : N → N → N (→ associates to the right)

where add a b = a + b (function application associates to the left).

Now (add a) : N → N is a function with the property that ((add a) b) = a + b.
In this way, the successor function can be defined as (add 1).

5.1 CONCEPTS AND EXAMPLES

144 CHAPTER 5 THE LAMBDA CALCULUS

Note that the notational conventions of associating → to the right and func-
tion application to the left agree. The terms “curried” and “currying” honor
Haskell Curry who used the mechanism in his study of functions. Moses
Schönfinkel actually developed the idea of currying before Curry, which means
that it might more accurately be called “Schönfinkeling”.

The operations of currying and uncurrying a function can be expressed in
the lambda calculus as

define Curry = λf . λx . λy . f <x,y>

define Uncurry = λf . λp . f (head p) (tail p)

provided the pairing operation <x,y> = (cons x y) and the functions (head p)
and (tail p) are available, either as predefined functions or as functions de-
fined in the pure lambda calculus, as we will see later.

Therefore the two versions of the addition operation are related as follows:

Curry sum = add and Uncurry add = sum.

One advantage of currying is that it permits the “partial application” of a
function. Consider an example using Twice that takes advantage of the cur-
rying of functions:

define Twice = λf . λx . f (f x).

Note that Twice is another example of a polymorphic function in the sense
that it may be applied to any function and element as long as that element is
in the domain of the function and its image under the function is also in that
domain. The mechanism that allows functions to be defined to work on a
number of types of data is also known as parametric polymorphism .

If D is any domain, the syntax (or signature) for Twice can be described as

Twice : (D → D) → D → D.

Given the square function, sqr : N → N where N stands for the natural num-
bers, it follows that

(Twice sqr) : N → N

is itself a function. This new function can be named

define FourthPower = Twice sqr.

Observe that FourthPower is defined without any reference to its argument.
Defining new functions in this way embodies the spirit of functional pro-
gramming. Much of the power of a functional programming language lies in
its ability to define and apply higher-order functions—that is, functions that
take functions as arguments and/or return a function as their result. Twice
is higher-order since it maps one function to another.

145

Semantics of Lambda Expressions

A lambda expression has as its meaning the lambda expression that results
after all its function applications (combinations) are carried out. Evaluating
a lambda expression is called reduction . The basic reduction rule involves
substituting expressions for free variables in a manner similar to the way
that the parameters in a function definition are passed as arguments in a
function call. We start by defining the concepts of free occurrences of vari-
ables and the substitution of expressions for variables.

Definition : An occurrence of a variable v in a lambda expression is called
bound if it is within the scope of a “λv”; otherwise it is called free. ❚

A variable may occur both bound and free in the same lambda expression;
for example, in λx . y λy . y x the first occurrence of y is free and the other two
are bound. Note the care we take in distinguishing between a variable and
occurrences of that variable in a lambda expression.

The notation E[v→E1] refers to the lambda expression obtained by replacing
each free occurrence of the variable v in E by the lambda expression E1.
Such a substitution is called valid or safe if no free variable in E1 becomes
bound as a result of the substitution E[v→E1]. An invalid substitution in-
volves a variable captur e or name clash .

For example, the naive substitution (λx . (mul y x))[y→x] to get (λx . (mul x x))
is unsafe since the result represents a squaring operation whereas the origi-
nal lambda expression does not. We cannot allow the change in semantics
engendered by this naive substitution, since we want to preserve the seman-
tics of lambda expressions as we manipulate them.

The definition of substitution requires some care to avoid variable capture.
We first need to identify the variables in E that are free by defining an opera-
tion that lists the variables that occur free in an expression. For example,
FV(λx . y λy . y x z) = {y,z}.

Definition : The set of fr ee variables (variables that occur free) in an expres-
sion E, denoted by FV(E), is defined as follows:

a) FV(c) = ∅ for any constant c

b) FV(x) = {x} for any variable x

c) FV(E1 E2) = FV(E1) ∪ FV(E2)

d) FV(λx . E) = FV(E) – {x} ❚

A lambda expression E with no free variables (FV(E) = ∅) is called closed .

5.1 CONCEPTS AND EXAMPLES

146 CHAPTER 5 THE LAMBDA CALCULUS

Definition : The substitution of an expression for a (free) variable in a lambda
expression is denoted by E[v→E1] and is defined as follows:

a) v[v→E1] = E1 for any variable v

b) x[v→E1] = x for any variable x≠v

c) c[v→E1] = c for any constant c

d) (Erator Erand)[v→E1] = ((Erator[v→E1]) (Erand[v→E1]))

e) (λv . E)[v→E1] = (λv . E)

f) (λx . E)[v→E1] = λx . (E[v→E1]) when x≠v and x∉FV(E1)

g) (λx . E)[v→E1] = λz . (E[x→z][v→E1]) when x≠v and x∈FV(E1),

where z≠v and z∉FV(E E1) ❚

In part g) the first substitution E[x→z] replaces the bound variable x that will
capture the free x’s in E1 by an entirely new bound variable z. Then the
intended substitution can be performed safely.

Example : (λy . (λf . f x) y)[x→f y]

(λy . (λf . f x) y)[x→f y]

= λz . ((λf . f x) z)[x→f y] by g) since y∈FV(f y)

= λz . ((λf . f x)[x→f y] z[x→f y]) by d)

= λz . ((λf . f x)[x→f y] z) by b)

= λz . (λg . (g x)[x→f y]) z by g) since f∈FV(f y)

= λz . (λg . g (f y)) z by d), b), and a) ❚

Observe that if v∉FV(E), then E[v→E
1
] is essentially the same lambda expres-

sion as E; there may be a change of bound variables, but the structure of the
expression remains unchanged.

The substitution operation provides the mechanism for implementing func-
tion application. In the next section we define the rules for simplifying lambda
expressions based on this idea of substitution.

Exercises

1. Correctly parenthesize each of these lambda expressions:

a) λx . x λy . y x

147

b) (λx . x) (λy . y) λx . x (λy . y) z

c) (λf . λy . λz . f z y z) p x

d) λx . x λy . y λz . z λw . w z y x

2. Find the set of free variables for each of the following lambda expres-
sions:

a) λx . x y λz . x z

b) (λx . x y) λz . w λw . w z y x

c) x λz . x λw . w z y

d) λx . x y λx . y x

3. Carry out the following substitutions:

a) (f (λx . x y) λz . x y z)[x→g] b) (λx . λy . f x y)[y→x]

c) ((λx . f x) λf . f x)[f→g x] d) (λf . λy . f x y)[x→f y]

4. Using the function Twice and the successor function succ, define a func-
tion that

a) adds four to its argument.

b) adds sixteen to its argument.

5. Give a definition of the set of bound variables in a lambda expression E,
denoted by BV(E).

6. Show by an example that substitutions can be carried out that alter the
intended semantics if part g) of the substitution rule is replaced by:

g') (λx . E)[v→E1
] = λz . (E[x→z][v→E

1
]) when x≠v and x∈FV(E

1
),

where z∉FV(E E1)

5.2 LAMBDA REDUCTION

Simplifying or evaluating a lambda expression involves reducing the expres-
sion until no more reduction rules apply. The main rule for simplifying a
lambda expression, called β-reduction, encompasses the operation of func-
tion application. Since substituting for free variables in an expression may
cause variable capture, we first need a mechanism for changing the name of
a bound variable in an expression—namely, α-reduction.

5.2 LAMBDA REDUCTION

148 CHAPTER 5 THE LAMBDA CALCULUS

Definition: α-reduction

If v and w are variables and E is a lambda expression,

λv . E ⇒α λw . E[v→w]

provided that w does not occur at all in E, which makes the substitution
E[v→w] safe. The equivalence of expressions under α-reduction is what makes
part g) of the definition of substitution correct.

The α-reduction rule simply allows the changing of bound variables as long
as there is no capture of a free variable occurrence. The two sides of the rule
can be thought of as variants of each other, both members of an equivalence
class of “congruent” lambda expressions. ❚

The example substitution at the end of the previous section contains two
α-reductions:

λy . (λf . f x) y ⇒α λz . (λf . f x) z

λz . (λf . f x) z ⇒α λz . (λg . g x) z

Now that we have a justification of the substitution mechanism, the main
simplification rule can be formally defined.

Definition: β-reduction

If v is a variable and E and E1 are lambda expressions,

(λv . E) E1 ⇒β E[v→E1]

provided that the substitution E[v→E1] is carried out according to the rules
for a safe substitution.

This β-reduction rule describes the function application rule in which the
actual parameter or argument E1 is “passed to” the function (λv . E) by
substituting the argument for the formal parameter v in the function. The
left side (λv . E) E1 of a β-reduction is called a β-redex—a term derived from
the terms “reduction expression” and meaning an expression that can be β-
reduced. β-reduction serves as the main rule of evaluation in the lambda
calculus. α-reduction is simply used to make the substitutions for variables
valid. ❚

The evaluation of a lambda expression consists of a series of β-reductions,
possibly interspersed with α-reductions to change bound variables to avoid
confusion. Take E ⇒ F to mean E ⇒β F or E ⇒α F and let ⇒* be the reflexive
and transitive closure of ⇒. That means for any expression E, E ⇒* E and for
any three expressions, (E1 ⇒* E2 and E2 ⇒* E3) implies E1 ⇒* E3. The goal of
evaluation in the lambda calculus is to reduce a lambda expression via ⇒
until it contains no more β-redexes.

To define an “equality” relation on lambda expressions, we also allow a
β-reduction rule to work backward.

149

Definition : Reversing β-reduction produces the β-abstraction rule,

E[v→E1] ⇒β (λv . E) E1,

and the two rules taken together give β-conversion , denoted by ⇔β. There-
fore E ⇔β F if E ⇒β F or F ⇒β E. Take E ⇔ F to mean E ⇔β F, E ⇒α F or F ⇒α
E and let ⇔* be the reflexive and transitive closure of ⇔. Two lambda expres-
sions E and F are equivalent or equal if E ⇔* F. ❚

We also allow reductions (both α and β) to subexpressions in a lambda ex-
pression. In particular, the following three rules expand the notion of reduc-
tion to components of combinations and abstractions:

1. E1 ⇒ E2 implies E1 E ⇒ E2 E.

2. E1 ⇒ E2 implies E E1 ⇒ E E2.

3. E1 ⇒ E2 implies λx . E1 ⇒ λx . E2 .

A third rule, η-reduction, justifies an extensional view of functions; that is,
two functions are equal if they produce the same values when given the same
arguments. The rule is not strictly necessary for reducing lambda expres-
sions and may cause problems in the presence of constants, but we include
it for completeness.

Definition: η-reduction

If v is a variable, E is a lambda expression (denoting a function), and v has no
free occurrence in E,

λv . (E v) ⇒η E. ❚

Note that in the pure lambda calculus every expression is a function, but the
rule fails when E represents some constants; for example, if 5 is a predefined
constant numeral, λx . (5 x) and 5 are not equivalent or even related.

However, if E stands for a predefined function, the rule remains valid as
suggested by these examples:

λx . (sqr x) ⇒η sqr

λx . (add 5 x) ⇒η (add 5).

Remember, (add 5 x) abbreviates ((add 5) x).

The requirement that x should have no free occurrences in E is necessary to
avoid a reduction such as

λx . (add x x) ⇒ (add x),

which is clearly invalid.

Take E ⇔η F to mean E ⇒η F or F ⇒η E.

5.2 LAMBDA REDUCTION

150 CHAPTER 5 THE LAMBDA CALCULUS

The η-reduction rule can be used to justify the extensionality of functions;
namely, if f(x) = g(x) for all x, then f = g. In the framework of the lambda
calculus, we can prove an extensionality property.

Extensionality Theor em: If F1 x ⇒* E and F2 x ⇒* E where x∉FV(F1 F2),
then F1 ⇔* F2 where ⇔* includes η-reductions.

Proof: F1 ⇔η λx . (F1 x) ⇔* λx . E ⇔* λx . (F2 x) ⇔η F2. ❚

Finally, in an applied lambda calculus containing predefined values and op-
erations, we need a justification for evaluating combinations of constant ob-
jects. Such a rule is known as δ-reduction.

Definition: δ-reduction

If the lambda calculus has predefined constants (that is, if it is not pure),
rules associated with those predefined values and functions are called δ rules;
for example, (add 3 5) ⇒δ 8 and (not true) ⇒δ

false. ❚

Example : Consider the following reduction of Twice (λn . (add n 1)) 5 where
the leftmost β-redex is simplified in each step. For each β-reduction, the
redex has its bound variable and argument highlighted in boldface.

Twice (λn . (add n 1)) 5 ⇒ (λf . λx . (f (f x))) (λn . (add n 1)) 5

⇒β (λx . ((λn . (add n 1)) ((λn . (add n 1)) x))) 5

⇒β (λn . (add n 1)) ((λn . (add n 1)) 5)

⇒β (add ((λn . (add n 1)) 5) 1)

⇒β (add (add 5 1) 1) ⇒δ 7. ❚

The key to performing a reduction of a lambda calculus expression lies in
recognizing a β-redex, (λv . E) E1. Observe that such a lambda expression is
a combination whose left subexpression is a lambda abstraction. In terms of
the abstract syntax, we are looking for a structure with the form illustrated
by the following tree:

E

comb

lamb

x

E1

151

Reduction Strategies

The main goal of manipulating a lambda expression is to reduce it to a “sim-
plest form” and consider that as the value of the lambda expression.

Definition : A lambda expression is in normal for m if it contains no β-redexes
(and no δ-rules in an applied lambda calculus), so that it cannot be further
reduced using the β-rule or the δ-rule. An expression in normal form has no
more function applications to evaluate. ❚

The concepts of normal form and reduction strategy can be investigated by
asking four questions:

1. Can every lambda expression be reduced to a normal form?

2. Is there more than one way to reduce a particular lambda expression?

3. If there is more than one reduction strategy, does each one lead to the
same normal form expression?

4. Is there a reduction strategy that will guarantee that a normal form ex-
pression will be produced?

The first question has a negative answer, as shown by the lambda expression
(λx . x x) (λx . x x). This β-redex reduces to itself, meaning that the only
reduction path continues forever:

(λx . x x) (λx . x x) ⇒β

(λx . x x) (λx . x x) ⇒β (λx . x x) (λx . x x) ⇒β …

The second question has an affirmative answer, as evidenced by the different
reduction paths in the following examples.

Example : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

Path 1 : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

⇒β (λy . (add y ((λz . (mul 7 z)) 3))) 5

⇒β (add 5 ((λz . (mul 7 z)) 3))

⇒β (add 5 (mul 7 3)) ⇒δ (add 5 21) ⇒δ 26

Path 2 : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

⇒β (λx . λy . (add y (mul x 3))) 7 5

⇒β (λy . (add y (mul 7 3))) 5

⇒δ (λy . (add y 21)) 5 ⇒β (add 5 21) ⇒δ 26

5.2 LAMBDA REDUCTION

152 CHAPTER 5 THE LAMBDA CALCULUS

In this example both paths lead to the same result, which is clearly in normal
form. Note that in both paths λx must be reduced before λy because at this
point in the reduction, λy is not part of a β-redex. ❚

Example : (λy . 5) ((λx . x x) (λx . x x))

Path 1 : (λy . 5) ((λx . x x) (λx . x x)) ⇒β 5

Path 2 : (λy . 5) ((λx . x x) (λx . x x))

⇒β (λy . 5) ((λx . x x) (λx . x x))

⇒β (λy . 5) ((λx . x x) (λx . x x)) …

With this example the first path, which reduces the leftmost redex first, leads
to a normal form expression, but the second path, which evaluates the
rightmost application each time, results in a nonterminating calculation. ❚

These two reduction strategies have names.

Definition : A normal or der reduction always reduces the leftmost outer-
most β-redex (or δ-redex) first. An applicative or der reduction always re-
duces the leftmost innermost β-redex (or δ-redex) first. ❚

The operative words in this definition are “outermost” and “innermost”. Only
when more than one outermost or innermost redex occur in a lambda
expresion do we choose the leftmost of these redexes.

Definition : For any lambda expression of the form E = ((λx . B) A), we say
that β-redex E is outside any β-redex that occurs in B or A and that these are
inside E. A β-redex in a lambda expression is outermost if there is no β-
redex outside of it, and it is innermost if there is no β-redex inside of it. ❚

Sometimes constructing an abstract syntax tree for the lambda expression
can help show the pertinent β-redexes. For example, in Figure 5.1 the tree
has the outermost and innermost β-redexes marked for the lambda expres-
sion (((λx . λy . (add x y)) ((λz . (succ z)) 5)) ((λw . (sqr w)) 7)). The two kinds of
structured subexpressions are tagged by comb for combinations and lamb
for lambda abstractions. From the tree, we can identify the leftmost outer-
most β-redex as ((λx . λy . (add x y)) ((λz . (succ z)) 5)) and the leftmost inner-
most as ((λz . (succ z)) 5). Remember that a β-redex (λv . E) E1 is a combina-
tion consisting of an abstraction joined with another expression to be passed
to the function. Some abstractions cannot be considered as innermost or
outermost because they are not part of β-redexes.

153

comblamb

w

x

y

z

5

7

comb comb

comb

combcomb

comb

lamb

lamb lamb

w

x

z

y

succ

sqr

add

comb

Outermost

Innermost
and

Outermost

Innermost

Figure 5.1: β-redexes in (((λx.λy.(add x y)) ((λz.(succ z)) 5)) ((λw.(sqr w)) 7))

When reducing lambda expressions in an applied lambda calculus, use a
reduction strategy to decide when both β-reductions and δ-reductions are
carried out. For predefined binary operations, we complete the δ-reduction
only when both arguments have been evaluated. Strictly following an
applicative order reduction strategy requires that ((λn . (add 5 n)) 8) be re-
duced to the lambda expression ((λn . add5 n) 8) where add5 : N → N is the
function that adds 5 to its argument. To avoid making up unary functions
from partially evaluated curried binary functions, we postpone the evalua-
tion of add until both of its arguments are evaluated. So the reduction pro-
ceeds as follows:

((λn . (add 5 n)) 8) ⇒β (add 5 8) ⇒δ 13.

The two remaining questions can be answered by applying the results proved
by Alonzo Church and J. Barkley Rosser in 1936.

Church-Rosser Theor em I : For any lambda expressions E, F, and G, if E ⇒*
F and E ⇒* G, there is a lambda expression Z such that F ⇒* Z and G ⇒* Z.

Proof: The somewhat technical proof of this theorem can be found in
[Barendregt84] or [MacLennan90]. ❚

5.2 LAMBDA REDUCTION

154 CHAPTER 5 THE LAMBDA CALCULUS

Any relation that satisfies this condition is said to have the diamond pr op-
erty or the confluence pr operty .The diagram below suggests the origin of
these terms.

E

F G

Z

⇒ ∗

⇒ ∗ ⇐∗

∗ ⇐

Corollary : For any lambda expressions E, M, and N, if E ⇒* M and E ⇒* N
where M and N are in normal form, M and N are variants of each other
(equivalent with respect to α-reduction).

Proof: The only reduction possible for an expression in normal form is an α-
reduction. Therefore the lambda expression Z in the theorem must be a vari-
ant of M and N by α-reduction only. ❚

This corollary states that if a lambda expression has a normal form, that
normal form is unique up to a change of bound variables, thereby answering
the third question.

Church-Rosser Theor em II : For any lambda expressions E and N, if E ⇒* N
where N is in normal form, there is a normal order reduction from E to N.

Proof: Again see [Barendregt84]. ❚

The second Church-Rosser theorem answers the fourth question by stating
that normal order reduction will produce a normal form lambda expression
if one exists.

A normal order reduction can have either of the following outcomes:
1. It reaches a unique (up to α-conversion) normal form lambda expression.
2. It never terminates.

Unfortunately, there is no algorithmic way to determine for an arbitrary lambda
expression which of these two outcomes will occur.

Turing machines are abstract machines designed in the 1930s by Alan Tur-
ing to model computable functions. It has been shown that the lambda cal-
culus is equivalent to Turing machines in the sense that every lambda ex-
pression has an equivalent function defined by some Turing machine and
vice versa. This equivalence gives credibility to Church’s thesis.

Church’s Thesis : The effectively computable functions on the positive inte-
gers are precisely those functions definable in the pure lambda calculus (and
computable by Turing machines). ❚

155

The term “thesis” means a conjecture. In the case of Church’s thesis, the
conjecture cannot be proved since the informal notion of “effectively comput-
able function” is not defined precisely. But since all methods developed for
computing functions have been proved to be no more powerful than the lambda
calculus, it captures the idea of computable functions as well as we can
hope.

Alan Turing proved a fundamental result, called the undecidability of the
halting pr oblem , which states that there is no algorithmic way to determine
whether or not an arbitrary Turing machine will ever stop running. Therefore
there are lambda expressions for which it cannot be determined whether a
normal order reduction will ever terminate.

Correlation with Parameter Passing

The two fundamental reduction strategies, normal and applicative order, are
related to techniques for passing parameters to a procedure or function in a
programming language. Recall that an abstraction λx . B is an anonymous
function whose formal parameter is x and whose body is the lambda expres-
sion B.

1. Call by name is the same as normal order reduction except that no redex
in a lambda expression that lies within an abstraction (within a function
body) is reduced. With call by name, an actual parameter is passed as an
unevaluated expression that is evaluated in the body of the function be-
ing executed each time the corresponding formal parameter is referenced.
Normal order is ensured by choosing the leftmost redex, which will al-
ways be an outermost one with an unevaluated operand.

2. Call by value is the same as applicative order reduction except that no
redex in a lambda expression that lies within an abstraction is reduced.
This restriction corresponds to the principle that the body of a function is
not evaluated until the function is called (in a β-reduction). Applicative
order means the argument to a function is evaluated before the function
is applied.

Example : The call by value reduction of

(λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x)) z)))) ((λz . (add z 3)) 5)

proceeds as follows:

5.2 LAMBDA REDUCTION

156 CHAPTER 5 THE LAMBDA CALCULUS

(λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) ((λz . (add z 3)) 5)

⇒β (λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) (add 5 3)

⇒δ (λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) 8

⇒β (λf . f (succ 8)) (λz . (λg . (λy . (add (mul (g y) 8))) z))

⇒β (λz . (λg . (λy . (add (mul (g y) 8))) z)) (succ 8)

⇒δ (λz . (λg . (λy . (add (mul (g y) 8))) z)) 9

⇒β (λg . (λy . (add (mul (g y) 8))) 9) ❚

In this example, the reduction of the argument, ((λz . (add z 3)) 5), can be
thought of as an optimization, since we pass in a value and not an unevaluated
expression that would be evaluated twice in the body of the function. Ob-
serve that the final result stops short of normal form with call by value se-
mantics.

Constants in the Pure Lambda Calculus

If Church’s thesis is to be credible, there must be a way to define the nonne-
gative integers in the pure lambda calculus. Furthermore, to allow the defi-
nition of uncurried binary functions, we need to be able to define a list con-
structor and list selectors. Since so many functions employ conditional defi-
nitions, we also need to define Boolean constants and operations. Although
all of these constants can be defined as functions in the pure lambda calcu-
lus, we consider only a few examples here.

The function “Pair” encapsulates two values in a given order; it is essentially
the dotted pair notion (cons) in Lisp.

define Pair = λa . λb . λf . f a b

Two selector functions “Head” and “Tail” confirm that Pair implements the
cons operation.

define Head = λg . g (λa . λb . a)

define Tail = λg . g (λa . λb . b)

Now the correctness of the definitions is verified by reductions:

Head (Pair p q) ⇒ (λg . g (λa . λb . a)) ((λa . λb . λf . f a b) p q)

⇒β ((λa . λb . λf . f a b) p q) (λa . λb . a)

⇒β ((λb . λf . f p b) q) (λa . λb . a)

⇒β (λf . f p q) (λa . λb . a)

⇒β (λa . λb . a) p q ⇒β (λb . p) q ⇒β p

157

As with “cons” in Lisp, “Pair” is sufficient to construct lists of arbitrary length;
for example, assuming we have positive integers and a special constant,

define Nil = λx . λa . λb . a,

a list can be constructed as follows:

define [1, 2, 3, 4] = Pair 1 (Pair 2 (Pair 3 (Pair 4 Nil))).

Combinations of the selector functions can choose items from the list:

Head (Tail (Tail [1, 2, 3, 4])) ⇒ 3.

Several ways have been proposed for representing the natural numbers in
the pure lambda calculus. In each case, cardinal values are encoded as pat-
terns in function definitions. Our approach will be to code a natural number
by the number of times a function parameter is applied:

define 0 = λf . λx . x

define 1 = λf . λx . f x

define 2 = λf . λx . f (f x)

define 3 = λf . λx . f (f (f x)) and so on.

Based on this definition of numerals, the standard arithmetic operations can
be defined as functions in the lambda calculus. We give two examples here.

Successor function, Succ : N → N

define Succ = λn . λf . λx . f (n f x)

Addition operation, Add : N → N → N

define Add = λm . λn . λf . λx . m f (n f x).

As an example of a reduction using this arithmetic of pure lambda expres-
sions, consider the successor of 2. The bound variables are altered in 2 to
make the reduction easier to follow, but the changes are really unnecessary.

Succ 2 ⇒ (λn . λf . λx . f (n f x)) (λg . λy . g (g y))

⇒β λf . λx . f ((λg . λy . g (g y)) f x)

⇒β λf . λx . f ((λy . f (f y)) x)

⇒β λf . λx . f (f (f x)) = 3

5.2 LAMBDA REDUCTION

158 CHAPTER 5 THE LAMBDA CALCULUS

Functional Programming Languages

All functional programming languages can be viewed as syntactic variations
of the lambda calculus. Certainly the fundamental operations in all func-
tional languages are the creation of functions—namely, lambda abstraction—
and the application of functions, the two basic operations in the lambda
calculus. The naming of functions or other objects is pure syntactic sugar
since the values named can be substituted directly for their identifiers, at
least for nonrecursive definitions. Recursive definitions can be made
nonrecursive using a fixed point finder, an issue that we cover in Chapter 10.

Most current functional programming languages follow static scoping to re-
solve references to identifiers not declared in a local scope. Static or lexical
scoping means that nonlocal variables refer to bindings created in the textu-
ally enclosing blocks. In contrast, with dynamic scoping nonlocal references
are resolved by following the calling chain. We examine these two possibili-
ties more carefully in Chapters 6 and 8.

Nested scopes are naturally created by the activations of nested function
calls where the formal parameters designate the local identifiers. A let ex-
pression is an alternate means of writing a lambda expression that is a func-
tion application.

let x=5 in (add x 3) means (λx . (add x 3)) 5.

In some functional languages, a where expression acts as an alternative to
the let expression.

(add x 3) where x=5 also means (λx . (add x 3)) 5.

A recursive let or where, sometimes called “letrec” or “whererec”, requires the
fixed point operator, but we postpone a discussion of that until Chapter 10.
At any rate, the syntactic forms of a functional programming language can
be translated into the lambda calculus and studied in that context. For more
on this translation process, see the further readings at the end of this chap-
ter.

Exercises

1. Identify the innermost and outermost β-redexes in the following lambda
expression and draw its abstract syntax tree:

(λx y z . (add x (mul y z))) ((λx . (succ x)) 5) 12 ((λw . (w 4)) sqr)

159

2. Use both normal order reduction and applicative order reduction to re-
duce the following lambda expressions. Reach a normal form represen-
tation if possible.

a) (λg . g 5) (λx . (add x 3))

b) (λx . (λy z . z y) x) p (λx . x)

c) (λx . x x x) (λx . x x x)

d) (λx . λy . (add x ((λx . (sub x 3)) y))) 5 6

e) (λc . c (λa . λb . b)) ((λa . λb . λf . f a b) p q)

f) Twice (λn . (mul 2 (add n 1))) 5

g) Twice (Twice (λn . (mul 2 (add n 1)))) 5

h) Twice Twice sqr 2

i) (λx . ((λz . (add x x)) ((λx . λz . (z 13 x)) 0 div))) ((λx . (x 5)) sqr)

3. Use call by value semantics to reduce the following lambda expressions:

a) (λf . f add (f mul (f add 5))) (λg . λx . g x x)

b) (λx . λf . f (f x)) ((λy . (add y 2)) ((λz . (sqr z)) ((λy . (succ y)) 1))) sqr

4. Show that Tail (Pair p q) ⇒β q.

5. Using constants defined in the pure lambda calculus, verify the follow-
ing reductions:

a) Succ 0 ⇒ 1

b) Add 2 3 ⇒ 5

6. Using the definitions of Pair, Head, Tail, Curry, and Uncurry, where

define Curry = λf . λx . λy . f (Pair x y)

define Uncurry = λf . λp . f (Head p) (Tail p)

carry out the following reductions:

a) Curry (Uncurry h) ⇒ h

b) Uncurry (Curry h) (Pair r s) ⇒ h (Pair r s)

7. Translate these “let” expressions into lambda expressions and reduce
them. Also write the expressions using “where” instead of “let”.

a) let x = 5 in let y = (add x 3) in (mul x y)

b) let a = 7 in let g = λx . (mul a x) in let a = 2 in (g 10)

5.2 LAMBDA REDUCTION

160 CHAPTER 5 THE LAMBDA CALCULUS

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

In this section we implement a lambda calculus evaluator in Prolog for an
applied lambda calculus with a few constants. Extensions are suggested in
the exercises. The implementation was inspired by a lambda calculus evalu-
ator written in Lisp and described in [Gordon88].

The evaluator expects to read a file containing one lambda expression to be
reduced according to a normal order reduction strategy. A sample execution
follows:

>>> Evaluating an Applied Lambda Calculus <<<
Enter name of source file: twice
 ((L f x (f (f x))) (L n (mul 2 (add n 1))) 5)
Successful Scan
Successful Parse
Result = 26
yes

Since Greek letters are missing from the ascii character set, we use “L” to
stand for λ in lambda expressions. The concrete syntax recognized by our
implementation, displayed in Figure 5.2, allows only two abbreviations for
eliminating parentheses:

(L x y E) means (L x (L y E)), which stands for λx . λy . E and

(E1 E2 E3) means ((E1 E2) E3).

In particular, outermost parentheses are never omitted.

<expression> ::= <identifier> | <constant>

| (L <identifier>+ <expression>)

| (<expression>+ <expression>)

<constant> ::= <numeral> | true | false | succ | sqr

| add | sub | mul

Figure 5.2: Concrete Syntax for an Applied Lambda Calculus

Scanner and Parser

The scanner for the implementation needs to recognize identifiers starting
with lowercase letters, numerals (only nonnegative to simplify the example),
parentheses, and the reserved words “L”, “true”, and “false”, together with

161

the identifiers for the predefined operations. The scanner for Wren can be
adapted to recognize these tokens for the lambda calculus. Remember that
an atom starting with an uppercase letter, such as L, must be written within
apostrophes in Prolog.

The parser takes the list of tokens Tokens from the scanner and constructs
an abstract syntax tree for the lambda expression as a Prolog structure. The
examples below illustrate the tags used by the abstract syntax.

Lambda Expression: λx . (sqr x)

Concrete Syntax: (L x (sqr x))

Abstract Syntax Tree: lamb(x,comb(con(sqr),var(x)))

Lambda Expression: (λx . λy . (add x y)) 5 8

Concrete Syntax: ((L x y (add x y)) 5 8)

Abstract Syntax Tree: comb(comb(lamb(x,lamb(y,comb(comb(con(add),

var(x)),var(y)))),con(5)),con(8))

The abstract syntax tree for the second example is displayed in Figure 5.3.

lambx

comb

con(5)

con(8)comb

comb

lamb

y

comb

con(add) var(x)

var(y)

Figure 5.3: Abstract Syntax Tree for (λx . λy . (add x y)) 5 8

Figure 5.4 gives the abstract syntax used by the lambda calculus evaluator
following a tagged structure format. Identifiers and constants are left un-
specified since they are handled by the scanner.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

162 CHAPTER 5 THE LAMBDA CALCULUS

Expression ::= var(Identifier) | con(Constant)

| lamb(Identifier,Expression)

| comb(Expression,Expression)

Figure 5.4: Abstract Syntax for an Applied Lambda Calculus

We invoke the parser by means of program(expr(E),Tokens,[eop]). Following the
concrete syntax, we obtain the logic grammar shown in Figure 5.5 that rec-
ognizes variables, constants, lambda abstractions, and combinations.

program(expr(E)) --> expr(E).

expr(lamb(X,E)) --> [lparen],['L'],[var(X)],expr(E1),restlamb(E1,E).
restlamb(E,E) --> [rparen].
restlamb(var(Y),lamb(Y,E)) --> expr(E1),restlamb(E1,E).

expr(E) --> [lparen],expr(E1),expr(E2),restcomb(E1,E2,E).
restcomb(E1,E2,comb(E1,E2)) --> [rparen].
restcomb(E1,E2,E) --> expr(E3), restcomb(comb(E1,E2),E3,E).

expr(var(X)) --> [var(X)]. expr(con(N)) --> [num(N)].
expr(con(true)) --> [true]. expr(con(false)) --> [false].
expr(con(succ)) --> [succ]. expr(con(sqr)) --> [sqr].
expr(con(add)) --> [add]. expr(con(sub)) --> [sub].
expr(con(mul)) --> [mul].

Figure 5.5: Logic Grammar for the Lambda Calculus

The Lambda Calculus Evaluator

The evaluator proceeds by reducing the given lambda expression until no
further reduction is possible. That reduction can be carried out in Prolog
using

evaluate(E,NewE) :- reduce(E,TempE), evaluate(TempE,NewE).

evaluate(E,E).

When reduce fails, the second clause terminates the evaluation, returning
the current lambda expression.

Before we can describe the reduction predicate reduce, which encompasses
the β-reduction rule, the δ-reduction rule, and the overall normal order re-
duction strategy, we need to define the substitution operation used by β-

163

reduction. As a first step, we formulate a predicate for determining the free
variables in a lambda expression:

freevars(var(X),[X]).

freevars(con(C),[]).

freevars(comb(Rator,Rand),FV) :- freevars(Rator,RatorFV),
freevars(Rand,RandFV),
union(RatorFV,RandFV,FV).

freevars(lamb(X,E),FV) :- freevars(E,F), delete(X,F,FV).

The utility predicates union(S1,S2,S3), forming S3 as the union of lists S1 and
S2, and delete(X,S1,S2), which removes the item X from the list S1 producing
S2, are left for the reader to supply. Compare the Prolog definition of freevars
with the specification of FV(E) in section 5.1.

The substitution predicate follows the definition in section 5.1 case by case,
except that parts f) and g) combine into one clause with a guard, member(X,F1),
where F1 holds the free variables in E1, to distinguish the cases. If the guard
fails, we are in part f) and just carry out the substitution in E. If, however, X
is a free variable in E1, we construct a new variable Z using the predicate
variant and perform the two substitutions shown in the definition of part g).

subst(var(V),V,E1,E1). % a)

subst(var(X),V,E1,var(X)). % b)

subst(con(C),V,E1,con(C)). % c)

subst(comb(Rator,Rand),V,E1,comb(NewRator,NewRand)) :- % d)
subst(Rator,V,E1,NewRator),

subst(Rand,V,E1,NewRand).

subst(lamb(V,E),V,E1,lamb(V,E)). % e)

subst(lamb(X,E),V,E1,lamb(Z,NewE)) :- freevars(E1,F1),

(member(X,F1), freevars(E,F), % g)

union(F,[V],F2), union(F1,F2,FV),

variant(X,FV,Z),

subst(E,X,var(Z),TempE),

subst(TempE,V,E1,NewE)

; subst(E,V,E1,NewE), Z=X) . % f)

The predicate variant(X,L,NewX) builds a variable that is different from all the
variables in the list L by adding apostrophes to the end of the variable bound
to X.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

164 CHAPTER 5 THE LAMBDA CALCULUS

variant(X,L,NewX) :- member(X,L),prime(X,PrimeX),variant(PrimeX,L,NewX).

variant(X,L,X).

prime(X,PrimeX) :- name(X,L), concat(L,[39],NewL), name(PrimeX,NewL).

The ascii value 39 indicates an apostrophe. The reader needs to furnish the
utility predicates member and concat to finish the specification of the substi-
tution operation. See Appendix A for definitions of these predicates.

The reduce predicate performs a one-step reduction of a lambda expression,
using pattern matching to provide a normal order reduction strategy. Since
no clauses match a variable or a constant, no reduction exists for them—
they are already in normal form. The first clause handles a β-reduction be-
cause the pattern is the outermost β-redex. The second clause executes a
predefined function (δ-reduction) by calling a predicate compute to carry out
the arithmetic and Boolean operations. The third and fourth clauses reduce
the rator and rand expressions in that order, thus ensuring the evaluation of
outermost β-redexes from left to right. Finally, the last clause simplifies a
lambda expression by reducing its body.

reduce(comb(lamb(X,Body),Arg),R) :- subst(Body,X,Arg,R). % 1

reduce(comb(con(C),con(Arg)),R) :- compute(C,Arg,R). % 2

reduce(comb(Rator,Rand),comb(NewRator,Rand)) :-
reduce(Rator,NewRator). % 3

reduce(comb(Rator,Rand),comb(Rator,NewRand)) :-
reduce(Rand,NewRand). % 4

reduce(lamb(X,Body),lamb(X,NewBody)) :- reduce(Body,NewBody). % 5

The compute predicate evaluates the arithmetic operations using Prolog’s na-
tive numerical operations. We give it the responsibility for attaching the con
tag to the result because some predefined operations may not need a tag. An
exercise asks the reader to implement an “if” operation, which produces an
untagged answer since it only evaluates one of its branches.

compute(succ,N,con(R)) :- R is N+1.

compute(sqr,N,con(R)) :- R is N*N.

compute(add,N,con(add(N))). compute(add(M),N,con(R)) :- R is M+N.

compute(sub,N,con(sub(N))). compute(sub(M),N,con(R)) :- R is M-N.

compute(mul,N,con(mul(N))). compute(mul(M),N,con(R)) :- R is M*N.

Notice how the curried binary operations are handled by constructing a Prolog
term containing the left operand, tagged by the operation name to represent
the partially evaluated operation. To compute (add 2 3), which has as its
abstract syntax tree

165

comb(comb(con(add),con(2)),con(3)),

the evaluation proceeds as follows using add(2) to represent the partially
applied operation:

comb(comb(con(add),con(2)),con(3)) ⇒ comb(con(add(2)),con(3))
⇒ con(5).

The final result can be printed by a pretty-printer predicate pp. To visualize
the progress of the reduction, insert pp(TempE) in the evaluate predicate.

pp(var(X)) :- write(X).

pp(con(C)) :- write(C).

pp(lamb(X,E)) :- write('(L '),write(X),tab(1),pp(E),write(')').

pp(comb(Rator,Rand)) :- write('('),pp(Rator),tab(1),pp(Rand),write(')').

If the parser produces a structure of the form expr(Exp), the lambda calculus
evaluator can be invoked using the query

evaluate(Exp,Result), nl, write('Result = '), pp(Result), nl.

Although the lambda calculus evaluator in Prolog suffers from a lack of effi-
ciency, it provides an effective tool for describing the reduction of lambda
expressions. The reader will find that the task of matching parentheses cor-
rectly in an expression inflicts the most discomfort to a user of the evaluator.

Exercises

1. Complete the Prolog code for the lambda calculus evaluator by writing
the missing utility predicates and test the evaluator on some of the lambda
expressions in section 5.2.

2. Define a Prolog predicate boundvars(E,List) that produces a list contain-
ing the bound variables in E.

3. Add the operations “div”, “pred” (for predecessor), “and”, “or”, “not”, “zerop”
(testing whether an expression equals zero), and “(if E1,E2,E3)” to the
evaluator. Test the evaluator on the lambda expression:

((L x (if (zerop x) 5 (div 100 x))) 0).

4. Add lists of arbitrary lambda expressions “[E1, E2, …, En]”, the opera-
tions “cons”, “head”, “tail”, and “nullp” (testing whether a list is empty),
and the constant “nil” to the evaluator.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

166 CHAPTER 5 THE LAMBDA CALCULUS

5. Change the evaluator to applicative order reduction and test it by com-
paring it to the normal order reducer.

6. Add a mechanism to the evaluator for giving definitions prior to the
lambda expression to be evaluated. An example program is

define Twice = (L f x (f (f x)))

define Thrice = (L f x (f (f (f x))))

define Double = (L x (add x x))

(Thrice Twice Double 3).

Provide a predicate elaborate that enters the definitions into an environ-
ment structure, say

env(Double,lamb(x,comb(comb(con(add),var(x)),var(x))),

env(Thrice,lamb(f,lamb(x,comb(var(f),comb(var(f),comb(var(f),var(x)))))),

env(Twice,lamb(f,lamb(x,comb(var(f),comb(var(f),var(x))))),nil)))

where nil represents an empty environment, and a predicate expand that
replaces the defined names by their bindings in the environment. De-
sign the mechanism so that definitions may refer to names that have
already been defined in the list of declarations. This modification will
require changes to the scanner and parser as well as the evaluator.

5.4 FURTHER READING

Many books on functional programming contain material on the lambda cal-
culus, including [Michaelson89], [Revesz88], [Field88], and [Reade89]. For a
short but very clear presentation of the lambda calculus, we recommend
[Gordon88], which contains a lambda calculus evaluator written in Lisp. The
text by Bruce MacLennan [MacLennan90] contains readable proofs for some
of the theoretical results that we skipped in this chapter. For an advanced
and exhaustive look at the lambda calculus, see [Barendregt84].

Several books describe a methodology for translating programs in a func-
tional language into the lambda calculus, among them [Peyton Jones87] and
[Diller88].

167

Chapter 6
SELF-DEFINITION OF
PROGRAMMING LANGUAGES

The execution of a program written in a high-level language provides an
informal, operational specification of the program. Two primary ap-
proaches are used to implement high-level languages: as an interpreter

for the language or as a compiler for the language. Since interpreters and
compilers are able to process any syntactically legal program, they them-
selves can provide an operational definition for a programming level lan-
guage. Program translation will be discussed in Chapter 7. In this chapter we
focus on program interpreters—in particular, a Lisp interpreter written in
Lisp and a Prolog interpreter written in Prolog. In each case, the interpreter
itself is written in the programming language it is interpreting. We call such
an approach an operational self-definition of a programming language and
refer to the implementation as a metacir cular interpr eter .

6.1 SELF-DEFINITION OF LISP

Lisp, initially developed by John McCarthy in 1958, is the second oldest
programming language (after Fortran) in common use today. In the early
1960s McCarthy realized that the semantics of Lisp can be defined in terms
of a few Lisp primitives and that an interpreter for Lisp can be written as a
very small, concise Lisp program. Such an interpreter, referred to as a
metacircular interpreter, can handle function definitions, parameter pass-
ing, and recursion as well as simple S-expressions of Lisp. The small size of
the interpreter is striking, considering the thousands of lines of code needed
to write a compiler for an imperative language.

We have elected to construct the interpreter in Scheme, a popular dialect of
Lisp. Although we implement a subset of Scheme in Scheme, the interpreter
is similar to the original self-definition given by McCarthy. The basic opera-
tions to decompose a list, car and cdr, and the list constructor cons are
described in Figure 6.1. Combined with a predicate null? to test for an empty
list, a conditional expression cond , and a method to define functions using

168 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

define , it is possible to write useful Scheme functions. See Appendix B for a
more detailed description of Scheme. Our first example concatenates two
lists. A function for concatenating lists is usually predefined in Lisp systems
and goes by the name “append”.

(define (concat lst1 lst2)

(cond ((null? lst1) lst2)

(#t (cons (car lst1) (concat (cdr lst1) lst2)))))

List Operations

(car <list>) return the first item in <list>

(cdr <list>) return <list> with the first item removed

(cons <item> <list>) add <item> as first element of <list>

Arithmetic Operations
(+ <e1> <e2>) return sum of the values of <e1> and <e2>
(- <e1> <e2>) return difference of the values of <e1> and <e2>
(* <e1><e2>) return product of the values of <e1> and <e2>
(/ <e1> <e2>) return quotient of the values of <e1> and <e2>

Predicates
(null? <list>) test if <list> is empty
(equal? <s1> <s2>) test the equality of S-expressions <s1> and <s2>
(atom? <s>) test if <s> is an atom

Conditional
(cond (<p1> <e1>) sequentially evaluate predicates <p1>, <p2>, ... till

(<p2> <e2>) one of them, say <pi>, returns a not false (not #f)
 : : result; then the corresponding expression ei is
(<pn> <en>)) evaluated and its value returned from the cond

Function Definition and Anonymous Functions
(define (<name> allow user to define function <name> with formal

<formals>) parameters <formals> and function body <body>
<body>)

(lambda (<formals>) create an anonymous function
 <body>)

(let (<var-bindings>) an alternative to function application;
<body>) <var-bindings> is a list of (variable S-expression)

pairs and the body is a list of S-expressions; let
returns the value of last S-expression in <body>

Other
(quote <item>) return <item> without evaluating it
(display <expr>) print the value of <expr> and return that value
(newline) print a carriage return and return ()

Figure 6.1: Built-in Functions of Scheme

1696.1 SELF-DEFINITION OF LISP

The symbols #t and #f represent the constant values true and false. Anony-
mous functions can be defined as lambda expressions. The let expression is
a variant of function application. If we add an equality predicate equal? and
an atom-testing predicate atom? , we can write other useful list processing
functions with this small set of built-in functions. In the replace function
below, all occurrences of the item s are replaced with the item r at the top
level in the list lst.

(define (replace s r lst)

(cond ((null? lst) lst)

((equal? (car lst) s) (cons r (replace s r (cdr lst))))

(#t (cons (car lst) (replace s r (cdr lst))))))

In order to test the metacircular interpreter, it is necessary to have a function
quote that returns its argument unevaluated and a function display that
prints the value of an S-expression. The basic built-in functions of Scheme
are shown in Figure 6.1.

We have elected to expand the basic interpreter by adding four arithmetic
operations, +, -, * , and /, so that we can execute some recursive arithmetic
functions that are familiar from imperative programming.

(define (fibonacci n)

(cond ((equal? n 0) 1)

 ((equal? n 1) 1)

 (#t (+ (fibonacci (- n 1)) (fibonacci (- n 2))))))

(define (factorial n)

(cond ((equal? n 0) 1)

 (#t (* n (factorial (- n 1))))))

Metacircular Interpreter

When designing a metacircular interpreter, it is easy to confuse those ex-
pressions belonging to the language being interpreted and those belonging to
the language that is doing the interpreting, since both are Scheme. To re-
duce confusion, we use two different fonts: san-serif font for the interpreter code
and normal serif font for the interpreted language. We need three major func-
tions to construct the interpreter:

• The top-level function micro-rep reads an S-expression (an atom or a list),
evaluates it, and prints the result, thus the name rep. The function micro-
rep begins with an empty environment in which all identifiers are unbound.

170 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

• The function micro-eval accepts an S-expression and an environment and
returns the value of the S-expression in the context of the environment.

• The function micro-apply accepts a function name or lambda abstraction,
a list of the results from evaluating the actual parameters, and an environ-
ment, and returns the result of applying the given function to the param-
eters in the given environment.

The functions micro-eval and micro-apply are mutually recursive and continue
simplifying the task at hand until they reach a base case that can be solved
directly. An environment is an association list, a list of (name value) pairs.
Function definitions and variable bindings share the same association list.

The recursive function micro-rep repeatedly reads an S-expression after printing
a prompt, evaluates the expression, prints the result, and calls itself with the
new environment reflecting any definitions that have been elaborated. The
function micro-rep handles two situations:

• If the S-expression is the atom quit, micro-rep prints “Goodbye” and exits
the interpreter.

• If the S-expression is a function definition, micro-rep uses the utility func-
tion updateEnv to add the function name to the environment with an asso-
ciated value, which is a lambda expression encapsulating the parameter
list and the body of the function. Then micro-rep displays the name of the
function.

All other S-expressions are passed on to micro-eval for evaluation. Note that
atoms are recognized first so that we only apply car to a list.

(define (micro-rep env)
(let ((prompt (display ">> ")) (s (read)))

(if (equal? s ‘quit)
(begin (newline) (display "Goodbye") (newline))
(cond

((atom? s) (begin (newline)
(display (micro-eval s env))
(newline)
(micro-rep env)))

((equal? (car s) 'define)
(let ((newenv (updateEnv env

(caadr s)
(list 'lambda (cdadr s) (caddr s)))))

(begin (newline)
(display (caadr s))
(newline)
(micro-rep newenv))))

1716.1 SELF-DEFINITION OF LISP

(#t (begin (newline)
(display (micro-eval s env))
(newline)
(micro-rep env)))))))

The utility function updateEnv adds a new binding onto the front of the given
environment.

(define (updateEnv env ide binding) (cons (list ide binding) env))

The function micro-eval deals with several forms of S-expressions as described
below:

• An atom is either a constant (#t, #f, or a numeral) or a variable whose
value is returned.

• A quoted expression is returned unevaluated.

• The function “display” evaluates its argument, displays that value, and
returns the value of the expression printed.

• The function “newline” prints a carriage return.

• A conditional expression “cond” is handled separately since, unlike most
other functions, its arguments are only evaluated on an “as needed” basis.

• A “let” expression augments the environment with the new variable bind-
ings and evaluates the body of the let in this environment.

All other S-expressions are function calls to be processed by micro-apply, which
receives three arguments:

• A function object, either an identifier bound to a function or a lambda
expression.

• The actual parameters after their evaluation, accomplished by mapping
micro-eval over the actual parameter list.

• The current environment.

We first present the main function micro-eval. The environment is an associa-
tion list where the first item in each entry is an identifier. The utility function
applyEnv uses the built-in function assoc to search for a given identifier in an
association list and return the first list entry that matches the identifier.

(define (applyEnv ide env) (cadr (assoc ide env)))

Map, which is used to evaluate a list of actual parameters, is a built-in func-
tion that applies a functional argument to every item in a list and returns the
list of results.

172 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

(define (micro-eval s env)
(cond ((atom? s)

(cond ((equal? s #t) #t)
((equal? s #f) #f)
((number? s) s)
(else (applyEnv s env))))

((equal? (car s) 'quote) (cadr s))
((equal? (car s) 'lambda) s)
((equal? (car s) 'display)

(let ((expr-value (micro-eval (cadr s) env)))
(display expr-value) expr-value))

((equal? (car s) 'newline) (begin (newline) ‘()))
((equal? (car s) 'cond) (micro-evalcond (cdr s) env))
((equal? (car s) 'let)

(micro-evallet (cddr s) (micro-let-bind (cadr s) env)))
(else (micro-apply (car s)

(map (lambda (x) (micro-eval x env)) (cdr s))
env))))

Observe that the value of a lambda expression in this implementation is the
lambda expression itself. So lambda expressions are handled in the same
way as boolean constants and numerals, and the internal representation of a
function is identical to its syntactic representation.

The arguments for the cond function are a sequence of lists, each with two
parts: a predicate to be tested and an expression to be evaluated if the result
of the test is non-#f (not false). These lists are evaluated sequentially until
the first non-#f predicate is encountered. If all predicates return #f, cond
returns #f. The function micro-evalcond is used to perform the necessary
evaluations on an “as needed” basis.

(define (micro-evalcond clauses env)
(cond ((null? clauses) #f)

((micro-eval (caar clauses) env) (micro-eval (cadar clauses) env))
(else (micro-evalcond (cdr clauses) env))))

We show two simple uses of the let expression before discussing its imple-
mentation. The following let expression returns 5:

(let ((a 2) (b 3)) (+ a b))

In the case of nested let’s, the nearest local binding is used.

(let ((a 5)) (display a)

(let ((a 6)) (display a))

(display (display a)))

173

prints (all on one line)

5 from the first display

6 from the second display inside the inner let

5 from the final nested display

5 from the final outer display

5 from the outer let.

Notice that the value returned from the inner let is not displayed since it is
not the final S-expression in the outer let. The function micro-evallet receives
a list of one or more S-expressions from the body of the let and the environ-
ment constructed using micro-let-bind applied to the list of bindings. These
S-expressions are evaluated until the final one is reached, and that one is
returned after being evaluated.

(define (micro-evallet exprlist env)
(if (null? (cdr exprlist))

(micro-eval (car exprlist) env)
(begin (micro-eval (car exprlist) env)

(micro-evallet (cdr exprlist) env))))

The environment for the execution of a let is the current environment of the
let augmented by the bindings created by the list of (identifier value) pairs.

(define (micro-let-bind pairlist env)
(if (null? pairlist)

env
(cons (list (caar pairlist) (micro-eval (cadar pairlist) env))

(micro-let-bind (cdr pairlist) env))))

We now turn our attention to micro-apply. If the object passed to micro-apply is
one of the predefined functions car, cdr, cons, atom?, null?, equal?, +, -, * , or
/, the appropriate function is executed. If the object is a user-defined func-
tion, micro-apply is called recursively with the value (a lambda expression)
associated with the function identifier, retrieved from the environment using
micro-eval, as the first parameter. If fn, the first formal parameter of micro-
apply, is not an atom, it must already be a lambda expression (an explicit
check can be added if desired). Calling micro-apply with a lambda expression
causes micro-eval to be called with the body of the function as the S-expres-
sion and the environment augmented by the binding of the formal param-
eters to the actual parameter values. This binding is accomplished by micro-
bind, which accepts a list of formal parameters, a list of values, and the cur-
rent environment and adds the (identifier value) pairs, one at a time, to the
environment. Notice that the bindings are added to the front of the environ-

6.1 SELF-DEFINITION OF LISP

174 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

ment, which acts like a stack, so that the most recent value is always re-
trieved by applyEnv.

(define (micro-apply fn args env)
(if (atom? fn)

(cond ((equal? fn 'car) (caar args))
((equal? fn 'cdr) (cdar args))
((equal? fn 'cons) (cons (car args) (cadr args)))
((equal? fn 'atom?) (atom? (car args)))
((equal? fn 'null?) (null? (car args)))
((equal? fn 'equal?) (equal? (car args) (cadr args)))
((equal? fn '+) (+ (car args) (cadr args)))
((equal? fn '-) (- (car args) (cadr args)))
((equal? fn '*) (* (car args) (cadr args)))
((equal? fn '/) (/ (car args) (cadr args)))
(else (micro-apply (micro-eval fn env) args env)))

(micro-eval (caddr fn) (micro-bind (cadr fn) args env))))

(define (micro-bind key-list value-list env)
(if (or (null? key-list) (null? value-list))

env
(cons (list (car key-list) (car value-list))

(micro-bind (cdr key-list) (cdr value-list) env))))

This completes the code for our interpreter, which is initiated by entering

(micro-rep ‘()).

Running the Interpreter

To illustrate its operation, we trace the interpretation of a simple user-de-
fined function “first” that is a renaming of the built-in function car.

>> (define (first lst) (car lst))

first

Now consider the execution of the function call:

>> (first (quote (a b c)))

a

This S-expression is not dealt with by micro-eval, but is passed to micro-apply
with three arguments:

175

first a function identifier

((a b c)) evaluation of the actual parameters

((first (lambda (lst) (car lst)))) the current environment

The evaluation of the actual parameters results from mapping micro-eval onto
the actual parameter list. In this case, the only actual parameter is an ex-
pression that calls the function quote, which is handled by micro-eval di-
rectly.

Since micro-apply does not recognize the object first, it appeals to micro-eval to
evaluate first. So micro-eval looks up a value for first in the environment and
returns a lambda expression to micro-apply, which then calls itself recur-
sively with the following arguments:

((lambda (lst) (car lst))) a function object

((a b c)) evaluation of the actual parameter

((first (lambda (lst) (car lst)))) the current environment

Since the object is not an atom, this results in a call to micro-eval, with the
function body as the first parameter and the environment, augmented by the
binding of formal parameters to actual values.

(car lst) S-expression to be evaluated

((lst (a b c))

(first (lambda (lst) (car lst)))) the current environment

But micro-eval does not deal with car directly; it now calls micro-apply with the
first parameter as car, the evaluation of the actual parameters, and the envi-
ronment.

car a function identifier

((a b c)) evaluation of the actual parameters

((lst (a b c))

(first (lambda (lst) (car lst)))) the current environment

The actual parameter value is supplied when micro-eval evaluates the actual
parameter lst. The function car is something that micro-apply knows how to
deal with directly; it returns the caar of the arguments, namely the atom a.
This result is returned through all the function calls back to micro-rep, which
displays the result.

6.1 SELF-DEFINITION OF LISP

176 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

This interpreter can handle simple recursion, as illustrated by the Fibonacci
and factorial functions given earlier, and it can also handle nested recursion,
as illustrated by Ackermann’s function shown below. We illustrate by calling
Ackermann’s with values 3,2 and 3,3, but with no higher values due to the
explosion of recursion calls.

>> (define (ackermann x y)

(cond ((equal? x 0) (+ y 1))

((equal? y 0) (ackermann (- x 1) 1))

(#t (ackermann (- x 1) (ackermann x (- y 1))))))

ackermann

>> (ackermann 3 2)

29

>> (ackermann 3 3)

61

The interpreter can also deal with anonymous lambda functions, as illus-
trated by

>> ((lambda (lst) (car (cdr lst))) (quote (1 2 3)))

2

A let expression can also bind identifiers to lambda expressions, as illus-
trated by:

>> (let ((addition (lambda (x y) (+ x y))) (a 2) (b 3)) (addition a b))

5

Let expressions that are nested use the innermost binding, including lambda
functions.

>> (let ((addb 4) (b 2))

(let ((addb (lambda (x) (+ b x))) (b 3)) (display (addb b))))

6 from the display itself

6 from the inner let passing its result back through the outer let.

These values are printed on the same line.

Because of the way our interpreter works, let can be recursive (a letrec in
Scheme), as illustrated by the following example:

177

>> (let ((fact (quote (lambda (n)

(cond ((equal? n 0) 1)

(#t (* n (fact (- n 1)))))))))

(fact 5))

120

We complete our discussion of the Scheme interpreter by examining two strat-
egies for evaluating nonlocal variables. Most programming languages, in-
cluding Scheme and Common Lisp, use static scoping—that is, nonlocal vari-
ables are evaluated in their lexical environment. However, our interpreter
and early versions of Lisp use dynamic scoping for which nonlocal variables
are evaluated in the environment of the caller. This scoping strategy results
in the funarg (function argument) problem, which is best illustrated by an
example. We first define a function twice that has a function argument and a
value. The function twice returns the application of the function argument to
the value, and a second application of the function to the result.

>> (define (twice func val) (func (func val)))

twice

Suppose we define a function double that multiplies its argument times two.

>> (define (double n) (* n 2))

double

Now we call twice passing double as the function and three as the value:

>> (twice double 3)

12

The value returned is 12, as expected, since doubling 3 once gives 6, and
doubling it again gives 12. We now generalize the double function by writing
a function, called times, that multiplies its argument by a preset value, called
val.

>> (define (times x) (* x val))

If val is set to 2, we expect the times function to perform just like the double
function. Consider the following let expression:

>> (let ((val 2)) (twice times 3))

27

Surprisingly, the value of 27 is returned rather than the value 12. To under-
stand what is happening, we must carefully examine the environment at

6.1 SELF-DEFINITION OF LISP

178 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

each step of execution. At the time of the function call the environment has
three bindings:

((times (lambda (x) (* x val)))

 (twice (lambda (func val) (func (func val))))

 (val 2))

The execution of twice adds its parameter bindings to the environment be-
fore executing the body of the function.

((val 3)

 (func times)

 (times (lambda (x) (* x val)))

 (twice (lambda (func val) (func (func val))))

 (val 2))

Now we see the source of difficulty; when we start executing the function
body for times and it fetches a value for val, it fetches 3 instead of 2. So,
times became a tripling function, and tripling 3 twice gives 27. Once the
execution of the function is completed, all parameter bindings disappear from
the environment.

Although dynamic scoping is easy to implement, unexpected results, as il-
lustrated above, have led designers of modern programming languages to
abandon this approach. The exercises suggest some modifications to the in-
terpreter so that it implements static scoping.

Exercises

1. Given the following function definition

>> (define (even n)
(cond ((equal? n (* (/ n 2) 2)) #t)

(#t #f))),

trace the evaluation of the function call:

>> (even 3)

2. Add predicates to the interpreter for the five arithmetic relational opera-
tions: <, <=, =, >, and >=.

3. Add the functions “add1” and “sub1” to the interpreter.

179

4. Add the functions (actually special forms since they do not always evaluate
all of their parameters) “if”, “and”, and “or” to the interpreter.

5. Modify the interpreter to save the environment of function definition at
the time of a define. Make sure that this new interpreter solves the funarg
problem and gives the expected results, as shown by the following se-
quence of S-expressions:

>> (define (twice func val) (func (func val)))

>> (define (times x) (* x val))

>> (let ((val 2)) (twice times 3)) ; returns 12

>> (let ((val 4)) (twice times 3)) ; returns 48

6. Implement the predicate zero? and change cond so that an else clause is
allowed. Test the resulting implementation by applying these functions:

>> (define (even n)
(cond ((zero? n) #t)

(else (odd (- n 1)))))
>> (define (odd n)

(cond ((zero? n) #f)
 (else (even (- n 1)))))

7. The implementation of Scheme in this section allows the definition only
of functions using a particular format. Augment the implementation so
that the following definitions are also allowed:

>> (define n 55)

>> (define map (lambda (fn lst)
(cond ((null? lst) (quote ()))

(#t (cons (fn (car lst)) (map fn (cdr lst)))))))

6.2 SELF-DEFINITION OF PROLOG

We first build a very simple meta-interpreter in Prolog that handles only the
conjunction of goals and the chaining goals. A goal succeeds for one of three
reasons:

1. The goal is true.

2. The goal is a conjunction and both conjuncts are true.

3. The goal is the head of a clause whose body is true.

6.2 SELF-DEFINITION OF PROLOG

180 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

All other goals fail. A predefined Prolog predicate clause searches the user
database for a clause whose head matches the first argument; the body of
the clause is returned as the second argument.

prove(true).

prove((Goal1, Goal2)) :- prove(Goal1), prove(Goal2).

prove(Goal) :- clause(Goal, Body), prove(Body).

prove(Goal) :- fail.

We define a membership function, called memb so it will not conflict with any
built-in membership operation.

memb(X,[X|Rest]).
memb(X,[Y|Rest]) :- memb(X,Rest).

Here is the result of the testing:

:- prove((memb(X,[a,b,c]),memb(X,[b,c,d]))).
X = b ; % semicolon requests the next answer, if any
X = c ;
no
:- prove((memb(X,[a,b,c]),memb(X,[d,e,f]))).
no
:- prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),memb(X,[c,d,e]))).
X = c ;
no

These results are correct, but they provide little insight into how they are
obtained. We can overcome this problem by returning a “proof tree” for each
clause that succeeds. The proof for true is simply true, the proof of a con-
junction of goals is a conjunction of the individual proofs, and a proof of a
clause whose head is true because the body is true will be represented as
“Goal<==Proof”. We introduce a new infix binary operator <== for this pur-
pose. The proof tree for failure is simply fail.

:- op(500,xfy,<==).

prove(true, true).

prove((Goal1, Goal2),(Proof1, Proof2)) :- prove(Goal1,Proof1),
prove(Goal2,Proof2).

prove(Goal, Goal<==Proof) :- clause(Goal, Body), prove(Body, Proof).

prove(Goal,fail) :- fail.

Here are the results of our test cases:

181

:- prove((memb(X,[a,b,c]),memb(X,[b,c,d])),Proof).
X = b
Proof = memb(b,[a,b,c])<==memb(b,[b,c])<==true,
memb(b,[b,c,d])<==true

:- prove((memb(X,[a,b,c]),memb(X,[d,e,f])), Proof).
no

:- prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),
memb(X,[c,d,e])), Proof).

X = c
Proof =
(memb(c,[a,b,c])<==memb(c,[b,c])<==memb(c,[c])<==true,

 memb(c,[b,c,d])<==memb(c,[c,d])<==true),
 memb(c,[c,d,e])<==true

Displaying Failure

We still have no display for the second test where the proof fails. Another
alternative is to add a trace facility to show each step in a proof, whether it
succeeds or fails. This capability can be added to the second version of the
meta-interpreter, but for simplicity we return to the first version of the pro-
gram and add a tracing facility. Every time we chain a rule from a goal to a
body, we will indent the trace two spaces. Therefore we add an argument
that provides the level of indentation. This argument is initialized to zero and
is incremented by two every time we prove a clause from its body.

Before the application of a user-defined rule, we print “Call: ” and the goal. If
we exit from the body of the goal successfully, we print “Exit: ” and the goal.
If a subsequent goal fails, we have to backtrack and retry a goal that previ-
ously succeeded. We add a predicate retry that is true the first time it is called
but prints “Retry: ”, the goal, and fails on subsequent calls. When a goal fails,
“Fail: ” and the goal are printed. Here is the meta-interpreter implementing
these changes.

prove(Goal) :- prove(Goal, 0).

prove(true, _).

prove((Goal1, Goal2), Level) :- prove(Goal1, Level), prove(Goal2, Level).

prove(Goal, Level) :- tab(Level), write('Call: '), write(Goal), nl,
clause(Goal, Body),
NewLevel is Level + 2,
prove(Body, NewLevel),
tab(Level), write('Exit: '), write(Goal), nl,
retry(Goal, Level).

6.2 SELF-DEFINITION OF PROLOG

182 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

prove(Goal, Level) :- tab(Level), write('Fail: '), write(Goal), nl, fail.

retry(Goal, Level) :- true ;
tab(Level), write('Retry: '), write(Goal), nl,
fail.

In the first test we call prove with the query

prove((memb(X,[a,b,c]),memb(X,[b,c,d]))).

X first binds to a, but this fails for the second list. The predicate memb is
retried for the first list and X binds to b. This succeeds for the second list, so
the binding of X to b succeeds for both clauses.

Call: memb(_483,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[b,c,d])
 Call: memb(a,[c,d])
 Call: memb(a,[d])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[d])
 Fail: memb(a,[c,d])
Fail: memb(a,[b,c,d])
Retry: memb(a,[a,b,c])
 Call: memb(_483,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[b,c,d])
Exit: memb(b,[b,c,d])

Consider the second query, which has no solution.

prove((memb(X,[a,b,c]),memb(X,[d,e,f]))).

X binds to a, then b, then c, all of which fail to be found in the second list.
When the program backtracks to find any other bindings for X in the first
list, it fails and the entire proof thus fails.

Call: memb(_483,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[d,e,f])
 Call: memb(a,[e,f])
 Call: memb(a,[f])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[f])
 Fail: memb(a,[e,f])

183

Fail: memb(a,[d,e,f])
Retry: memb(a,[a,b,c])
 Call: memb(_483,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[d,e,f])
 Call: memb(b,[e,f])
 Call: memb(b,[f])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[f])
 Fail: memb(b,[e,f])
Fail: memb(b,[d,e,f])
Retry: memb(b,[a,b,c])
 Retry: memb(b,[b,c])
 Call: memb(_483,[c])
 Exit: memb(c,[c])
 Exit: memb(c,[b,c])
Exit: memb(c,[a,b,c])
Call: memb(c,[d,e,f])
 Call: memb(c,[e,f])
 Call: memb(c,[f])
 Call: memb(c,[])
 Fail: memb(c,[])
 Fail: memb(c,[f])
 Fail: memb(c,[e,f])
Fail: memb(c,[d,e,f])
Retry: memb(c,[a,b,c])
 Retry: memb(c,[b,c])
 Retry: memb(c,[c])
 Call: memb(_483,[])
 Fail: memb(_483,[])
 Fail: memb(_483,[c])
 Fail: memb(_483,[b,c])
Fail: memb(_483,[a,b,c])

The final query succeeds.

prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),memb(X,[c,d,e]))).

X first binds to a, but this fails for the second list. Backtracking to the first
list, X binds to b, which succeeds for the second list but fails for the third list.
There are no other occurrences of b in the second list, so the program back-

6.2 SELF-DEFINITION OF PROLOG

184 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

tracks to the first list and binds X to c. This succeeds for the second and
third lists.

Call: memb(_486,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[b,c,d])
 Call: memb(a,[c,d])
 Call: memb(a,[d])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[d])
 Fail: memb(a,[c,d])
Fail: memb(a,[b,c,d])
Retry: memb(a,[a,b,c])
 Call: memb(_486,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[b,c,d])
Exit: memb(b,[b,c,d])
Call: memb(b,[c,d,e])
 Call: memb(b,[d,e])
 Call: memb(b,[e])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[e])
 Fail: memb(b,[d,e])
Fail: memb(b,[c,d,e])
Retry: memb(b,[b,c,d])
 Call: memb(b,[c,d])
 Call: memb(b,[d])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[d])
 Fail: memb(b,[c,d])
Fail: memb(b,[b,c,d])
Retry: memb(b,[a,b,c])
 Retry: memb(b,[b,c])
 Call: memb(_486,[c])
 Exit: memb(c,[c])
 Exit: memb(c,[b,c])
Exit: memb(c,[a,b,c])
Call: memb(c,[b,c,d])
 Call: memb(c,[c,d])
 Exit: memb(c,[c,d])
Exit: memb(c,[b,c,d])

185

Call: memb(c,[c,d,e])
Exit: memb(c,[c,d,e])

Other improvements can be made to the interpreter, but these are left as
exercises. The interpreter works only with user-defined clauses. This limita-
tion is fairly easy to overcome by adding call for built-in clauses. There is no
provision for disjunction. Perhaps the most difficult problem to handle is the
addition of the cut clause to control the underlying search mechanism. Peter
Ross discusses some alternatives that can handle the cut correctly. (See the
further readings at the end of this chapter).

Our Prolog interpreter written in Prolog does not explicitly implement the
built-in backtracking of Prolog or show the unification process. The trace
facility allows us to follow the backtracking but does not illustrate its imple-
mentation. It is also possible to develop a simple Prolog interpreter written in
Lisp where both the backtracking and unification are explicit. The interested
reader may consult the references at the end of the chapter.

Exercises

1. Add a rule for prove that handles built-in predicates correctly by using
call. Be careful to ensure that user-defined clauses are not called twice.

2. Add the capability to handle the disjunction of clauses correctly.

3. Research the implementation of the cut clause (see the references). Imple-
ment cut in the meta-interpreter.

4. Investigate the implementation of a unification function in Lisp or Scheme.
Write and test your function.

5. Use your unification function from exercise 4 to build a logic interpreter
in Lisp or Scheme.

6.3 FURTHER READING

The self-definition of a programming language is a special case of a more
general technique: using a high-level programming language as a
metalanguage for defining the semantics of a high-level programming lan-
guage. The use of programming languages as metalanguages is discussed in
[Pagan76] and [Anderson76]. [Pagan81] gives a definition of the minilanguage
Pam using Algol68 as a metalanguage.

6.3 FURTHER READING

186 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

Lisp was developed during the late 1950s; the seminal publication was
[McCarthy60]. Our self-definition of Scheme using Scheme, a variant of Lisp,
is similar to the original presentation of a Lisp interpreter written in Lisp
given in [McCarthy65b]. Other versions appear in many textbooks on pro-
gramming languages. The use of Scheme as a metalanguage to define a logic
interpreter is described in [Abelson85]. Other good references for the Scheme
programing language include [Springer89] and [Dybvig87].

We present Prolog as a metalanguage throughout this text. A variety of is-
sues dealing with the implementation of Prolog are discussed in [Campbell84].
[Nillson84] presents a very concise interpreter for Prolog written in Lisp. Our
treatment of a Prolog interpreter written in Prolog closely follows the more
detailed presentation by [Ross89].

187

Chapter 7
TRANSLATIONAL SEMANTICS

The previous chapter provided a definition of the semantics of a pro-
gramming language in terms of the programming language itself. The
primary example was based on a Lisp interpreter programmed in Lisp.

Although this is an interesting academic exercise, it has little practical im-
portance. However, programming language compilers are an integral part of
the study of computer science. Compilers perform a translation of a high-
level language into a low-level language. Executing this target program on a
computer captures the semantics of the program in a high-level language.

In Chapter 3 we investigated the use of attribute grammars for context check-
ing. These same techniques can be used to translate Wren into a machine-
oriented language. Translational semantics is based on two notions:

1. The semantics of a programming language can be preserved when the
language is translated into another form, called the target language.

2. The target language can be defined by a small number of primitive con-
structs that are closely related to an actual or a hypothetical machine
architecture.

We first introduce the target language and then build an attribute grammar
that is capable of translating a Wren program into this language. Finally, we
implement this attribute grammar in the laboratory.

7.1 CONCEPTS AND EXAMPLES

In order to focus on issues relating to the translation process, we assume
that the Wren program being translated obeys the context-sensitive condi-
tions for the language as well as the context-free grammar. We parse the
declaration section to ensure that the BNF is correct, but no attributes are
associated with the declaration section. Context checking can be combined
with code generation in a single attribute grammar, but we leave this task
unfinished at this time.

188 CHAPTER 7 TRANSLATIONAL SEMANTICS

The machine code is based on a primitive architecture with a single accumu-
lator (Acc) and a memory addressable with symbolic labels and capable of
holding integer values. In this translation, Boolean values are simulated by
integers. We use names to indicate symbolic locations. The hypothetical ma-
chine has a load/store architecture:

• The LOAD instruction copies a value from a named location, whose value
is not changed, to the accumulator, whose old value is overwritten, or
transfers an integer constant into the accumulator.

• The STO instruction copies the value of the accumulator, whose value is
not changed, to a named location, whose previous value is overwritten.

The target language has two input/output commands:

• GET transfers an integer value from the input device to the named location.

• PUT transfers the value stored at the named location to the output device.

There are four arithmetic operations—ADD, SUB, MULT and DIV—and three
logical operations—AND, OR, and NOT. For the binary operations, the first
operand is the current accumulator value and the second operand is speci-
fied in the instruction itself. The second operand can be either the contents
of a named location or an integer constant. For Boolean values, the integer 1
is used to represent true and the integer 0 to represent false. The result of an
operation is placed in the accumulator. The NOT operation has no argument;
it simply inverts the 0 or 1 in the accumulator.

The target language contains one unconditional jump J and one conditional
jump JF where the conditional jump is executed if the value in the accumu-
lator is false (equal to zero). The argument of a jump instruction is a label
instruction. For example, J L3 means to jump unconditionally to label L3,
which appears in an instruction of the form L3 LABEL. The label instruction
has no operand.

There are six test instructions; they test the value of the accumulator relative
to zero. For example, TSTEQ tests whether the accumulator is equal to zero.
The test instructions are destructive in the sense that the value in the accu-
mulator is replaced by a 1 if the test is true and a 0 if the test is false. We will
find this approach to be convenient when processing Boolean expressions.
The five other test instructions are: TSTLT (less than zero), TSTLE (less than
or equal zero), TSTNE (not equal zero), TSTGE (greater than or equal zero),
and TSTGT (greater than zero). The NO-OP instruction performs no opera-
tion. Finally, the target language includes a HALT instruction. The complete
instruction set is shown in Figure 7.1.

1897.1 CONCEPTS AND EXAMPLES

LOAD <name> or <const> Load accumulator from named
location or load constant value

STO <name> Store accumulator to named location
GET <name> Input value to named location
PUT <name> Output value from named location
ADD <name> or <const> Acc ← Acc + <operand>
SUB <name> or <const> Acc ← Acc – <operand>
MULT <name> or <const> Acc ← Acc • <operand>
DIV <name> or <const> Acc ← Acc / <operand>
AND <name> or 0 or 1 Acc ← Acc and <operand>
OR <name> or 0 or 1 Acc ← Acc or <operand>
NOT Acc ← not Acc
J <label> Jump unconditionally
JF <label> Jump on false (Acc = 0)
LABEL Label instruction
TSTLT Test if Acc Less Than zero
TSTLE Test if Acc Less than or Equal zero
TSTNE Test if Acc Not Equal zero
TSTEQ Test if Acc EQual zero
TSTGE Test if Acc Greater than or Equal zero
TSTGT Test if Acc Greater Than zero
NO-OP No operation
HALT Halt execution

Figure 7.1: Machine-oriented Target Language

A Program Translation

Consider a greatest common divisor (gcd) program:

program gcd is
var m,n : integer;

begin
read m; read n;
while m < > n do

if m < n then n := n – m
else m := m – n

end if
end while;
write m

end

This program translates into the following object code:

GET M
GET N

L1 LABEL
LOAD M

190 CHAPTER 7 TRANSLATIONAL SEMANTICS

SUB N
TSTNE
JF L2
LOAD M
SUB N
TSTLT
JF L3
LOAD N
SUB M
STO N
J L4

L3 LABEL
LOAD M
SUB N
STO M

L4 LABEL
J L1

L2 LABEL
LOAD M
STO T1
PUT T1
HALT

In Chapter 3 we saw that the semantics of a binary numeral can be ex-
pressed as the final value of a synthesized attribute at the root of the parse
tree. We use the same approach here: The synthesized attribute Code inte-
grates the pieces of object code in the target language from lower levels in the
tree, and the final value at the root of the tree expresses the semantics of the
Wren program in the form of its translation into object code in the target
language.

We begin by discussing the constraints imposed by labels and temporary
locations in the target language. Labels throughout the object program must
be unique. With nested control structures, the labels do not appear in order,
as we see from the sample program above. The labels L1 and L2 are associ-
ated with the while loop, the outer control structure, and the labels L3 and
L4 are associated with the nested if structure. We use both an inherited
attribute InhLabel and a synthesized attribute SynLabel working together to
thread the current label value throughout the derivation tree.

The intermediate language uses temporary named locations, labeled T1, T2,
T3, and so forth, to evaluate Boolean and arithmetic expressions. For our
purposes, it is immaterial if these named locations are thought of as regis-
ters or as an area of main memory. One location must not be used for two

191

different purposes at the same time within a subexpression, but it can be
reused once the final value for a subexpression has been processed. Since
temporary locations need not be unique throughout the program, there is no
need to maintain a synthesized attribute returning the last location used.
However, we do need an inherited attribute, called Temp, that transfers the
starting temporary location value to subexpressions.

Exercises

1. Generate object code that is semantically equivalent to the following
Wren program that multiplies two numbers.

program multiply is
var m, n, product : integer;

begin
read m; read n;
product := 0;
while n > 0 do

if 2 * (n / 2) < > n then (* if n is odd *)
product := product + m

end if;
m := 2 * m;
n := n / 2

end while;
write product

end

2. Generate object code that evaluates the following expression:

2 * (x – 1) * (y / 4) – (12 * z + y)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

Figure 7.2 gives all of the attributes and the associated value types necessary
to develop this attribute grammar. The nonterminals <variable>, <identifier>,
<letter>, <numeral>, and <digit> all have an associated Name attribute that
synthesizes an internal representation of identifier names and of base-ten
numerals, as was done in the attribute grammar for Wren in Chapter 3.
Since the source language uses lowercase letters as variable names, and the
target language uses uppercase, we make a conversion between the two in
the production for <letter>.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

192 CHAPTER 7 TRANSLATIONAL SEMANTICS

Attribute Value
Name Sequences of letters and/or digits
Temp Natural numbers (integers ≥ 0)
SynLabel Natural numbers
InhLabel Natural numbers
OpCode ADD, SUB, MULT, DIV
TestCode TSTLT, TSTLE, TSTNE, TSTEQ, TSTGE, TSTGT
Code Sequence of instructions of the following forms:

(Load/Store, Name) as in (LOAD, X)
(Input/Output, Name) as in (GET, X)
(OpCode, Name) as in (ADD, 5)
(BooleanOp, Name) as in (AND, T2)
(Jump, Name) as in (J, L2)
(Name, LABEL) as in (L3, LABEL)
TestCode as in TSTNE
NOT, NO-OP, or HALT

Figure 7.2: Attributes and Values

<variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

<identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<digit>))

<letter> ::=
 a

Name(<letter>) ← ‘A’
: : :

| z
Name(<letter>) ← ‘Z’

<numeral> ::= <digit>
Name(<numeral>) ← Name(<digit>)

| <numeral>2 <digit>
Name(<numeral>) ← concat(Name(<numeral>2),Name(<digit>))

193

<digit> ::=
 0

Name(<digit>) ← ‘0’
 : : :

| 9
Name(<digit>) ← ‘9’

Expressions

We now turn our attention to the code generation for binary arithmetic ex-
pressions. Consider the general form

<left operand> <operator> <right operand>

where the left and right operands may be simple, as in the case of a variable
name or numeral, or compound, as in the case of another operation or a
parenthesized expression. The general case can be handled by the following
code sequence, assuming that n is the value of the inherited attribute Temp:

code for <left operand>
STO T<n+1> (for example, if n = 0, this is T1)
code for <right operand>
STO T<n+2> (for example, if n = 0, this is T2)
LOAD T<n+1>
OpCode T<n+2>

In this situation, OpCode is determined by the <operator>. The inherited
value for Temp is passed to the left operand while that value, incremented by
one, is passed to the right operand, since the location T<n+1> is not available
for use when generating code for the right operand. In general, the value of
Temp represents the highest value used so far in the current subexpression.

As an example of translating expressions, consider the compound expres-
sion

x / (y – 5) * (z + 2 * y).

The expression expands to <term> that then expands to <term>
<strong op> <element>. So, assuming Temp initially equals zero, the code
expansion becomes

code for x/(y – 5)
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

7.2 ATTRIBUTE GRAMMAR CODE GENERATON

194 CHAPTER 7 TRANSLATIONAL SEMANTICS

We show object code in bold when it first appears. Temp is passed unchanged
to the code for the left operand and is incremented by 1 and passed to the
right operand. When we expand the code for x/(y – 5) we have

code for x
STO T1
code for (y – 5)
STO T2
LOAD T1
DIV T2
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

The code for x is LOAD X, so we proceed with the expansion of (y – 5) with
Temp equal to 1, obtaining

LOAD X
STO T1
code for y
STO T2
code for 5
STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

The code for y and for 5 is LOAD Y and LOAD 5, respectively. We now need to
expand the code for (z + 2 * y) with Temp equal to 1.

LOAD X
STO T1
LOAD Y
STO T2
LOAD 5

195

STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
code for z
STO T2
code for 2*y
STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

The code for z is LOAD Z. When we expand the code for 2*y, we use a Temp
value of 2, the inherited value incremented by 1. We complete the code by
using LOAD 2 and LOAD Y as the code for 2 and code for y, respectively. The
complete code expansion is shown below.

LOAD X
STO T1
LOAD Y
STO T2
LOAD 5
STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
LOAD Z
STO T2
LOAD 2
STO T3
LOAD Y
STO T4
LOAD T3
MULT T4

7.2 ATTRIBUTE GRAMMAR CODE GENERATON

196 CHAPTER 7 TRANSLATIONAL SEMANTICS

STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

If the result of this expression, which is currently in the accumulator, is to be
saved, one more store instruction will be needed. The code generated in this
way is correct but very lengthy. A human hand-generating code for the same
expression can do much better. Working “from the inside out” and taking
advantage of known arithmetic properties, such as the commutativity of ad-
dition, a human might produce the following code sequence:

LOAD Y
SUB 5
STO T1 -- T1 contains y – 5
LOAD X
DIV T1
STO T1 -- T1 contains x/(y – 5)
LOAD 2
MULT Y
ADD Z
MULT T1 -- accumulator contains x / (y – 5) * (z + 2 * y)

Only ten instructions and one temporary location are needed, as compared
with 26 instructions and four temporary locations for the code developed
previously. We do not attempt to match hand-compiled code generated by a
human for efficiency; however, there is one small optimization we can make
that improves the code generation. Consider the special case

<left operand> <operator> <variable or numeral>

If we follow the previous scheme, the generated code is

code for <left operand>
STO T<n+1>
code for <variable or numeral>
STO T<n+2>
LOAD T<n+1>
OpCode T<n+2>

When the second operand is a variable or numeral, this code can be opti-
mized to

code for <left operand>

OpCode <variable or numeral>

197

This saves four instructions and two temporary locations. This code pattern
occurs twice in the expression we were evaluating. The code for y–5

LOAD Y becomes LOAD Y
STO T2 SUB 5
LOAD 5
STO T3
LOAD T2
SUB T3

The code for 2*y

LOAD 2 becomes LOAD 2
STO T3 MULT Y
LOAD Y
STO T4
LOAD T3
MULT T4

When this one optimization technique is used, the code for the expression is
reduced to 18 instructions and three temporary locations, as shown below.

LOAD X
STO T1
LOAD Y
SUB 5
STO T2
LOAD T1
DIV T2
STO T1
LOAD Z
STO T2
LOAD 2
MULT Y
STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

Code optimization, a major topic in compiler theory, is very complex and
occurs at many levels. A detailed discussion is beyond the scope of this text,
and we will do no further optimization beyond this one technique.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

198 CHAPTER 7 TRANSLATIONAL SEMANTICS

We now turn our attention to the attribute grammar itself. Four of the at-
tributes listed in Figure 7.2 are utilized in generating the code for arithmetic
expressions: Name, OpCode, Code, and Temp.

First consider the attribute grammar for integer expression.

<integer expr> ::=
 <term>

Code(<integer expr>) ← Code(<term>)
Temp(<term>) ← Temp(<integer expr>)

| <integer expr>2 <weak op> <term>
Code(<integer expr>) ←

concat(Code(<integer expr>2),
optimize(Code(<term>),Temp(<integer expr>),

OpCode(<weak op>)))
Temp(<integer expr>2) ← Temp(<integer expr>)
Temp(<term>) ← Temp(<integer expr>)+1

 <weak op> ::=
 +

OpCode(<weak op>) ← ADD
| –

OpCode(<weak op>) ← SUB

Temp is inherited, as expected, OpCode synthesizes the appropriate object
code operation, and Code is synthesized, as previously described. However,
we need to say something about the utility procedure “optimize”.

optimize(code, temp, opcode) =
if length(code) = 1 then -- a variable or numeral

[(opcode, secondField(first(code)))]
else

concat([(STO, temporary(temp+1))],
code,
[(STO, temporary(temp+2))],
[(LOAD, temporary(temp+1))],

[(opcode, temporary(temp+2))])

If the code for the second operand is a single item, indicating either a variable
or a numeral, we generate a single instruction, the appropriate operation
with that operand. Otherwise, we generate the more lengthy set of instruc-
tions and use two temporary locations. The utility procedure “temporary”
accepts an integer argument and produces the corresponding temporary sym-

199

bol as a string. This requires another utility function “string” to convert an
integer into the corresponding base-ten numeral.

temporary(integer) = concat(‘T’,string(integer))

string(n) = if n = 0 then ‘0’
: :

else if n = 9 then ‘9’
else concat(string(n/10), string(n mod 10))

The code for <term> and <element> is very similar and will be given later in
Figure 7.8. The sharp-eyed reader may notice that we have ignored negation
as one of the alternatives for <element>. Developing this portion of the at-
tribute grammar is left as an exercise. The complete, decorated parse tree for
x / (y – 5) * (z + 2 * y) is shown in Figure 7.3 where we have used an infix
operator @ to represent concatenation.

The code for <boolean expr> is similar to integer expression, except that the
single operator is or. Since the Boolean operations are commutative, there is
no need for a second temporary location. A Boolean term is similar to an
integer term. In <boolean element> the constants false and true result in
loading 0 and 1, respectively. Variables and parenthesized Boolean expres-
sions are handled as expected. A <comparison> is another alternative for a
Boolean element; we will discuss comparisons in a moment. The not opera-
tion results in the NOT instruction being appended after the code for the
Boolean expression being negated. The complete code for Boolean expres-
sions is given in Figure 7.8.

A comparison has the general form

<integer expr>1 <relation> <integer expr>2

Since the target language has test instructions based on comparisons with
zero, we rewrite the comparison as

<integer expr>1 – <integer expr>2 <relation> 0

The generated code will be the code defined for the left side expression minus
the right side expression followed by the test instruction. This code will be
optimized if the right side expression is a constant or a variable. Here is an
example with code optimization: x < y translates into

LOAD X
SUB Y
TSTLT

If the right side expression is complex, the code will not be optimized, as seen
by x >= 2*y, which translates to

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

200 CHAPTER 7 TRANSLATIONAL SEMANTICS

<expr>
Temp : 0
Code : c11

<term>
Temp : 0
Code : c11

<term>
Temp : 0
Code : c5

<strong op>
OpCode : MULT

<strong op>
Opcode : DIV

<element>
Temp : 1
Code : c4

<expr>
Temp : 1
Code : c4

<weak op>
Opcode : SUB

()

<expr>
Temp : 1
Code : c2

<term>
Temp : 1
Code : c2

<element>
Temp : 1
Code : c2

<variable>
Name : 'y'

:

<variable>
Name : 'x'

<term>
Temp : 0
Code : c1

<element>
Temp : 0
Code : c1

:

/

–

*

<element>
Temp : 1
Code : c10

<expr>
Temp : 1
Code : c10

<weak op>
OpCode : ADD

<term>
Temp : 2
Code : c9

()

<term>
Temp : 1
Code : c6

<element>
Temp : 1
Code : c6

<expr>
Temp : 1
Code : c6

<variable>
Name : 'z'

:

+

<term>
Temp : 2
Code : c7

<strong op>
OpCode : MULT

<element>
Temp : 3
Code : c8

<element>
Temp : 2
Code : c7

<variable>
Name : 'y'

<numeral>
Name : '2'

:

:

*

<term>
Temp : 2
Code : c3

<element>
Temp : 2
Code : c3

<numeral>
Name : '5'

:

c1 = [(LOAD,X)] c5 = c1@[(STO,T1)]@c4@[(STO,T2), (LOAD,T1), (DIV,T2)]
c2 = [(LOAD,Y)] c6 = [(LOAD,Z)]
c3 = [(LOAD,5)] c7 = [(LOAD,2)]
c4 = c2@[(SUB,5)] c8 = [(LOAD,Y)]
c9 = c7@[(MULT,Y)]
c10 = c6@[(STO,T2)]@c9@[(STO,T3), (LOAD,T2), (ADD,T3)]
c11 = c5@[(STO,T1)]@c10@[(STO,T2), (LOAD,T1), (MULT,T2)]

Figure 7.3: Expression Parse Tree for x/(y – 5) * (z + 2 * y)

201

LOAD X
STO T1
LOAD 2
MULT Y
STO T2
LOAD T1
SUB T2
TSTGE

There is a direct correspondence between the comparison operators in Wren
and the test instructions in the target language:

< becomes TSTLT
<= becomes TSTLE
= becomes TSTEQ
> becomes TSTGT
>= becomes TSTGE
<> becomes TSTNE.

The following attribute grammar rules follow directly from this discussion.

<comparison> ::= <integer expr>1 <relation> <integer expr>2

Code(<comparison>) ← concat(Code(<integer expr>1),
optimize(Code(<integer expr>2),Temp(<comparison>),SUB),
[TestCode(<relation>)])

Temp(<integer expr>1) ← Temp(<comparison>)

Temp(<integer expr>2) ← Temp(<comparison>)+1

 <relation> ::=
 >

TestCode(<relation>) ← TSTGT
| >=

TestCode(<relation>) ← TSTGE
| <>

TestCode(<relation>) ← TSTNE
| =

TestCode(<relation>) ← TSTEQ
| <=

TestCode(<relation>) ← TSTLE
| <

TestCode(<relation>) ← TSTLT

Commands

The next major task is the generation of code for the commands in Wren. As
mentioned earlier, all labeled locations must be unique throughout the ob-

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

202 CHAPTER 7 TRANSLATIONAL SEMANTICS

ject code. We use two attributes, InhLabel and SynLabel, to thread the cur-
rent label value throughout the tree. The <program> node concatenates HALT
to the code generated by <block>. The program identifier provides source
code documentation but does not contribute to the code generation.

<program> ::= program <identifier> is <block>

Code(<program>) ← concat(Code(<block>), [HALT])

The code for <block> is synthesized directly from the code for <command
sequence>. The inherited attributes Temp and InhLabel are initialized to zero
at this time. Parsing a declaration sequence does not involve any attributes
for code generation.

<block> ::= <declaration sequence> begin <command sequence> end
Code(<block>) ← Code(<command sequence>)
Temp(<command sequence>) ← 0

InhLabel(<command sequence>) ← 0

The BNF for <declaration sequence> will be given in Figure 7.8, but no at-
tributes are calculated for this nonterminal. The nonterminal <command
sequence> allows two alternatives, a single command or a command fol-
lowed by a command sequence. The first case, which describes a single com-
mand, passes the inherited attributes Temp and InhLabel to the child and
synthesizes the attributes Code and SynLabel from the child. When the com-
mand sequence is a command followed by a second command sequence, the
Code attributes from each of the children are concatenated and passed up to
the parent. The inherited attribute Temp passes down to both children. The
inherited attribute InhLabel is passed down to the first child <command>,
synthesized out as SynLabel, passed over and inherited into <command se-
quence>2. Finally SynLabel for <command sequence>2 is passed back to <com-
mand sequence>. The attribute grammar for a command sequence appears
below.

<command sequence> ::=
 <command>

Code(<command sequence>) ← Code(<command>)
Temp(<command>) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
SynLabel(<command sequence>) ← SynLabel(<command>)

| <command> ; <command sequence>2

Code(<command sequence>) ←
concat(Code(<command>),Code(<command sequence>2))

Temp(<command>) ← Temp(<command sequence>)
Temp(<command sequence>2) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)

203

InhLabel(<command sequence>2) ← SynLabel(<command>)

SynLabel(<command sequence>) ← SynLabel(<command sequence>2)

This threading of label values in and out of commands is important and is
illustrated in Figure 7.4.

<cs1>

<c1>

SynLabel (cs1) ←
 SynLabel (cs2)

<cs2>

<cs3>

SynLabel (cs2) ←
 SynLabel (cs3)

<c2>

InhLabel (cs2) ← SynLabel (c1)

InhLabel (c2) ← InhLabel (cs2)

InhLabel (cs3) ← SynLabel (c2)

InhLabel (c3) ← InhLabel (cs3)

A

D

B
C

A

B

C

D

<c3>

SynLabel (cs3) ← SynLabel (c3) E

E

InhLabel (c1) ←
 InhLabel (cs1)

Figure 7.4: Threading of Label Attributes

Some commands, such as assignment, do not affect label values while oth-
ers, such as while or if, require one or two label values. The threaded label
value is incremented appropriately as it passes through the tree and, in this
way, it ensures that all labeled locations are unique throughout the target
code.

A command takes one of seven alternatives: input, output, skip, assign-
ment, a single alternative if, a double alternative if, or while. Four of the
commands—input, output, skip, and assignment—do not generate code with
labels, so the inherited label value InhLabel is “turned around” unmodified
and synthesized back as SynLabel. The if and while commands receive the
inherited attribute InhLabel and synthesize back a different value for SynLabel.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

204 CHAPTER 7 TRANSLATIONAL SEMANTICS

The input, output, and skip commands are very simple. Input of a variable
generates the code of GET followed by the variable name. Output generates
code for the expression, stores the result in a temporary location, and then
does a PUT of that temporary location. Finally, skip generates a NO-OP (no
operation) instruction.

<command> ::= read <variable>
Code(<command>) ← [(GET, Name(<variable>))]
SynLabel(<command>) ← InhLabel(<command>)

<command> ::= write <integer expr>
Code(<command>) ← concat(Code(<integer expr>),

 [(STO, temporary(Temp(<command>)+1))])
 [(PUT, temporary(Temp(<command>)+1))])

Temp(<integer expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

<command> ::= skip
Code(<command>) ← [NO-OP]

SynLabel(<command>) ← InhLabel(<command>)

We have already discussed in detail the code generation for both integer and
Boolean expressions. The result of an expression is left in the accumulator,
so the assignment command concatenates code to store that result in the
target variable name for the assignment. Since an expression may need to
use temporary locations, the inherited attribute Temp is passed down to
<expr>.

<command> ::= <variable> := <expr>
Code(<command>) ←

concat(Code(<expr>),[(STO, Name(<variable>))])
Temp(<expr>) ← Temp(<command>)

SynLabel(<command>) ← InhLabel(<command>)

The while command has the form

while <boolean expr> do <command sequence> end while

where the code generated by the Boolean expression is followed by a condi-
tional jump on false. A flow diagram of the while command and the corre-
sponding code appears in Figure 7.5. We assume that the incoming value of
the InhLabel attribute is n. The attribute grammar definition for the while
command follows directly.

205

command
sequence

boolean
expression

true

false

L< n+1 > LABEL

Code for <boolean expr>

JF L< n+2 >

Code for <command sequence>

L< n+2 > LABEL

J L< n+1>

Figure 7.5: Flow Diagram and Code Generation for a while Command

<command> ::=
while <boolean expr> do <command sequence> end while

Code(<command>) ← concat(
[(label(InhLabel(<command>)+1),LABEL)],
Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+2))],
Code(<command sequence>),
[(J,label(InhLabel(<command>)+1))],
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+2

SynLabel(<command>) ← SynLabel(<command sequence>)

Since the while command itself needs two labels, InhLabel is incremented by
two before being passed down to InhLabel for the command sequence, which
may or may not generate new labels of its own. The SynLabel coming out of
the command sequence is passed out of the while command. The inherited
attribute Temp is passed down to both the Boolean expression and the com-
mand sequence. The utility function “label” converts an integer value into an
appropriate label name.

label(integer) = concat(‘L’, string(integer))

The if command has two forms; we concentrate on the one with two alterna-
tives

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

206 CHAPTER 7 TRANSLATIONAL SEMANTICS

if <boolean expr> then <command sequence>

else <command sequence> end if

where the code generated by the Boolean expression is followed by a condi-
tional jump on false. A flow diagram of the if command and the correspond-
ing code appears in Figure 7.6. Again we assume the incoming value of the
InhLabel attribute is n. The attribute grammar definition for this if command
follows directly.

boolean
expression

true

false

true task
command
sequence

false task
command
sequence

L< n+1 > LABEL

Code for <boolean expr>

JF L< n+1 >

Code for true task
 command sequence

Code for false task
 command sequence

J L< n+2>

L< n+2 > LABEL

Figure 7.6: Flow Diagram and Code Generation for an if Command

<command> ::= if <boolean expr> then <command sequence>1

else <command sequence>2 end if
Code(<command>) ← concat(Code(<boolean expr>),

[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>1),
[(J,label(InhLabel(<command>)+2))],
[(label(InhLabel(<command>)+1),LABEL)],
Code(<command sequence>2),
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>1) ← Temp(<command>)
Temp(<command sequence>2) ← Temp(<command>)

207

InhLabel(<command sequence>1) ← InhLabel(<command>)+2
InhLabel(<command sequence>2) ← SynLabel(<command sequence>1)

SynLabel(<command>) ← SynLabel(<command sequence>2)

Since the if command with two alternatives needs two labels, InhLabel is
incremented by two before being passed down to the first command sequence.
The SynLabel coming out of the first command sequence is threaded over as
the input to InhLabel for the second command sequence. The SynLabel from
the second command sequence is passed out of the if command. The inher-
ited attribute Temp is passed down to the Boolean expression and to both
command sequences.

The single alternative if command is simpler since it needs to generate only
one label instruction. This attribute grammar clause will be presented in
Figure 7.8. The attribute grammar for code generation for Wren is now com-
plete. A summary of the synthesized and inherited attributes associated with
each nonterminal is presented in Figure 7.7. The entire attribute grammar is
given without interruption in Figure 7.8.

Inherited Synthesized
Nonterminal Attributes Attributes
<program> — Code
<block> — Code
<declaration sequence> — —
<declaration> — —
<variable list> — —
<type> — —
<command sequence> Temp, InhLabel Code, SynLabel
<command> Temp, InhLabel Code, SynLabel
<expr> Temp Code
<integer expr> Temp Code
<term> Temp Code
<element> Temp Code
<weak op> — OpCode
<strong op> — OpCode
<boolean expr> Temp Code
<boolean term> Temp Code
<boolean element> Temp Code
<comparison> Temp Code
<relation> — TestCode
<variable> — Name
<identifier> — Name
<numeral> — Name
<letter> — Name
<digit> — Name

Figure 7.7: Attributes Associated with Nonterminal Symbols

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

208 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <program> ::= program <identifier> is <block>
Code(<program>) ← concat(Code(<block>), [HALT])

 <block> ::= <declaration sequence> begin <command sequence> end
Code(<block>) ← Code(<command sequence>)
Temp(<command sequence>) ← 0
InhLabel(<command sequence>) ← 0

 <declaration sequence> ::= ε | <declaration> <declaration sequence>2

 <declaration> ::= var <variable list> : <type>;

 <variable list> ::= <variable> | <variable> , <variable list>2

 <type> ::= integer | boolean

 <command sequence> ::= <command>
Code(<command sequence>) ← Code(<command>)
Temp(<command>) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
SynLabel(<command sequence>) ← SynLabel(<command>)

| <command> ; <command sequence>2
Code(<command sequence>) ←

concat(Code(<command>),Code(<command sequence>2))
Temp(<command>) ← Temp(<command sequence>
Temp(<command sequence>2) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
InhLabel(<command sequence>2) ← SynLabel(<command>)
SynLabel(<command sequence>) ← SynLabel(<command sequence>2)

 <command> ::= <variable> := <expr>
Code(<command>) ← concat(Code(<expr>),[(STO, Name(<variable>))])
Temp(<expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= read <variable>
Code(<command>) ← [(GET, Name(<variable>))]
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= write <integer expr>
Code(<command>) ←

concat(Code(<integer expr>),
[(STO, temporary(Temp(<command>)+1))],
[(PUT, temporary(Temp(<command>)+1))])

Temp(<integer expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

Figure 7.8: Complete Attribute Grammar for Wren (Part 1)

209

 <command> ::= skip
Code(<command>) ← [NO-OP]
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= while <boolean expr> do <command sequence> end while
Code(<command>) ← concat([(label(InhLabel(<command>)+1),LABEL)],

Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+2))],
Code(<command sequence>),
[(J,label(InhLabel(<command>)+1))],
[(label(InhLabel(<command>)+2),LABEL)]),

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+2
SynLabel(<command>) ← SynLabel(<command sequence>)

 <command> ::= if <boolean expr> then <command sequence> end if
Code(<command>) ← concat(Code(<boolean expr>),

[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>),
[(label(InhLabel(<command>)+1),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+1
SynLabel(<command>) ← SynLabel(<command sequence>)

 <command> ::= if <boolean expr> then <command sequence>1
else <command sequence>2 end if

Code(<command>) ← concat(Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>1),
[(J,label(InhLabel(<command>)+2))],
[(label(InhLabel(<command>)+1),LABEL)],
Code(<command sequence>2),
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>1) ← Temp(<command>)
Temp(<command sequence>2) ← Temp(<command>)
InhLabel(<command sequence>1) ← InhLabel(<command>)+2
InhLabel(<command sequence>2) ← SynLabel(<command sequence>1)
SynLabel(<command>) ← SynLabel(<command sequence>2)

Figure 7.8: Complete Attribute Grammar for Wren (Part 2)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

210 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <expr> ::=
 <integer expr>

Code(<expr>) ← Code(<integer expr>)
Temp(<integer expr>) ← Temp(<expr>)

| <boolean expr>
Code(<expr>) ← Code(<boolean expr>)
Temp(<boolean expr>) ← Temp(<expr>)

 <integer expr> ::=
 <term>

Code(<integer expr>) ← Code(<term>)
Temp(<term>) ← Temp(<integer expr>)

| <integer expr>2 <weak op> <term>
Code(<integer expr>) ← concat(Code(<integer expr>2),

optimize(Code(<term>),Temp(<integer expr>),OpCode(<weak op>)))
Temp(<integer expr>2) ← Temp(<integer expr>)
Temp(<term>) ← Temp(<integer expr>)+1

 <weak op> ::=
 +

OpCode(<weak op>) ← ADD
| –

OpCode(<weak op>) ← SUB

 <term> ::=
 <element>

Code(<term>) ← Code(<element>)
Temp(<element>) ← Temp(<term>)

| <term>2 <strong op> <element>
Code(<term>) ← concat(Code(<term>2),

optimize(Code(<element>),Temp(<term>),OpCode(<strong op>)))
Temp(<term>2) ← Temp(<term>)
Temp(<element>) ← Temp(<term>)+1

 <strong op> ::=
 *

OpCode(<strong op>) ← MULT
| /

OpCode(<strong op>) ← DIV

 <element> ::=
 <numeral>

Code(<element>) ← [(LOAD, Name(<numeral>))]
| <variable>

Code(<element>) ← [(LOAD, Name(<variable>))]
| (<integer expr>)

Code(<element>) ← Code(<integer expr>)
Temp(<integer expr>) ← Temp(<element>)

Figure 7.8: Complete Attribute Grammar for Wren (Part 3)

211

 <boolean expr> ::=
 <boolean term>

Code(<boolean expr>) ← Code(<boolean term>)
Temp(<boolean term>) ← Temp(<boolean expr>)

| <boolean expr>2 or <boolean term>
Code(<boolean expr>) ← concat(Code(<boolean expr>2),

[(STO, temporary(Temp(<boolean expr>)+1))],
Code(<boolean term>,
[(OR, temporary(Temp(<boolean expr>)+1))])

Temp(<boolean expr>2) ← Temp(<boolean expr>)
Temp(<boolean term>) ← Temp(<boolean expr>)+1

 <boolean term> ::=
 <boolean element>

Code(<boolean term>) ← Code(<boolean element>)
Temp(<boolean element>) ← Temp(<boolean term>)

| <boolean term>2 and <boolean element>
Code(<boolean term>) ← concat(Code(<boolean term>2),

[(STO, temporary(Temp(<boolean term>)+1))],
Code(<boolean element>,
[(AND, temporary(Temp(<boolean term>)+1))])

Temp(<boolean term>2) ← Temp(<boolean term>)
Temp(<boolean element>) ← Temp(<boolean term>)+1

 <boolean element> ::=
 false

Code(<boolean element>) ← [(LOAD, 0)]
| true

Code(<boolean element>) ← [(LOAD, 1)]
| <variable>

Code(<boolean element>) ← [(LOAD, Name(<variable>))]
| <comparison>

Code(<boolean element>) ← Code(<comparison>)
Temp(<comparison>) ← Temp(<boolean element>)

| (<boolean expr>)
Code(<boolean element>) ← Code(<boolean expr>)
Temp(<boolean expr>) ← Temp(<boolean element>)

| not (<boolean expr>)
Code(<boolean element>) ← concat(Code(<boolean expr>), [NOT]),
Temp(<boolean expr>) ← Temp(<boolean element>)

 <comparison> ::= <integer expr>1 <relation> <integer expr>2
Code(<comparison>) ← concat(Code(<integer expr>1),

optimize(Code(<integer expr>2),Temp(<comparison>),SUB),
[TestCode(<relation>)])

Temp(<integer expr>1) ← Temp(<comparison>)
Temp(<integer expr>2) ← Temp(<comparison>)+1

 Figure 7.8: Complete Attribute Grammar for Wren (Part 4)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

212 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <relation> ::=
 >

TestCode(<relation>) ← TSTGT
| >=

TestCode(<relation>) ← TSTGE
| <>

TestCode(<relation>) ← TSTNE
| =

TestCode(<relation>) ← TSTEQ
| <=

TestCode(<relation>) ← TSTLE
| <

TestCode(<relation>) ← TSTLT

 <variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

 <identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<digit>))

 <letter> ::=
 a

Name(<letter>) ← ‘A’
: :

| z
Name(<letter>) ← ‘Z’

 <numeral> ::=
 <digit>

Name(<numeral>) ← Name(<digit>)
| <numeral>2 <digit>

Name(<numeral>) ← concat(Name(<numeral>2),Name(<digit>))

 <digit> ::=
 0
 Name(<digit>) ← ‘0’

: :
 | 9
 Name(<digit>) ← ‘9’

Figure 7.8: Complete Attribute Grammar for Wren (Part 5)

213

 Auxiliary Functions

 optimize(code, temp, opcode) =
if length(code) = 1 then -- a variable or numeral

[(opcode, secondField(first(code)))]
else

concat([(STO, temporary(temp+1))],
code,
[(STO, temporary(temp+2))],
[(LOAD, temporary(temp+1))],
[(opcode, temporary(temp+2))])

 temporary(integer) = concat(‘T’,string(integer))

 label(integer) = concat(‘L’, string(integer))

 string(n) = if n = 0 then ‘0’
 : : :
else if n = 9 then ‘9’
else concat(string(n/10), string(n mod 10))

Figure 7.8: Complete Attribute Grammar for Wren (Part 6)

Exercises

1. The negation of an element was not specified in the attribute grammar
of Figure 7.8. Add this alternative to the production for <element> with-
out adding any new instructions to the object code.

2. Draw the complete, decorated tree for the arithmetic expression

2 * x * y + z / 3

3. Draw the complete, decorated tree for the command sequence in the
following program:

program mod is
var m, n : integer;

begin
read m; read n;
while m > n do

m := m – n
end while;
write m

end

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

214 CHAPTER 7 TRANSLATIONAL SEMANTICS

4. Without drawing the complete tree, show the code generated by attribute
grammar for the following Wren program:

program multiply is
var m, n, product : integer;

begin
read m; read n;
product := 0;
while n > 0 do

if 2 * (n / 2) < > n then (* if n is odd *)
product := product + m

end if;
m := 2 * m; n := n / 2

end while;
write product

end
Compare the answer for this problem with the answer for exercise 1 in
section 7.1. Is there any difference in efficiency between hand-generated
and machine-generated code?

5. Change the semantic rules for the write command so that the code is
optimized when the expression being printed is a variable or a numeral.

6. The Boolean expressions in the grammar given are fully evaluated. Some
programming languages short-circuit Boolean expression evaluation once
the final result is known. Is it possible to modify the grammar in a simple
way so that short-circuit evaluation is performed?

7. We did not include an optimization for Boolean expressions. Will such
an optimization be possible? If it is, add it to the attribute grammar; if it
is not, explain why.

8. Add the command
repeat <command sequence> until <boolean expr>

to Wren and modify the attribute grammar so that the generated code
causes the loop to be exited when the Boolean expression is true.

9. Add the conditional integer expression
if <boolean expr> then <integer expr>1 else <integer expr>2

to Wren and modify the attribute grammar accordingly.

10. Add integer expressions with side effects
begin <command sequence> return <integer expr> end

to Wren and modify the attribute grammar so that the value returned is
evaluated with the state produced by executing the command sequence.

215

11. Reverse Polish notation is used on some calculators to evaluate arith-
metic expressions. For a binary operation, the first operand is pushed
on a stack, the second operand is pushed on the stack, and, when the
operation is performed, both operands are popped off the stack and the
result of the operation is pushed back onto the stack. Introduce appro-
priate machine instructions for a stack architecture for arithmetic expres-
sion evaluation and modify the attribute grammar for Wren accordingly.

12. The following BNF grammar defines an expression language with binary
operations +, –, *, and /, unary -, and the variables a, b, and c.

<expr> ::= <term> | <expr> + <term> | <expr> – <term>

<term> ::= <elem> | <term> * <elem> | <term> / <elem>

<elem> ::= a | b | c | (<expr>) | - <expr>

Convert this definition into an attribute grammar whose main attribute
Val is an abstract syntax tree for the expression represented in the form
of a tagged structure similar to a Prolog structure. For example,

Val(“(a–b)*-(b+c)/a”) = times(minus(a,b),divides(negative(plus(b,c)),a)).

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

As in Chapter 3, we will be developing an attribute grammar written in Prolog,
but unlike that previous laboratory project, our goal now is the generation of
intermediate code, as described in section 7.1. Although we parse the decla-
ration section of the program, we do not use this information in the genera-
tion of code.

As before, we assume “front end” code to read the text from a file and convert
it into a sequence of tokens. We also add a pretty-printing capability on the
“back end” so that the resulting program looks like assembly code. An ex-
ample illustrates the code generator.

>>> Translating Wren <<<
Enter name of source file: gcd.wren
 program gcd is
 var m,n: integer;
 begin
 read m; read n;
 while m <> n do
 if m < n then n := n - m
 else m := m - n
 end if

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

216 CHAPTER 7 TRANSLATIONAL SEMANTICS

 end while;
 write m
 end
Scan successful
[program,ide(gcd),is,var,ide(m),comma,ide(n),colon,integer,
 semicolon,begin,read,ide(m),semicolon,read,ide(n),semicolon,
 while,ide(m),neq,ide(n),do,if,ide(m),less,ide(n),then,ide(n),
 assign,ide(n),minus,ide(m),else,ide(m),assign,ide(m),minus,
 ide(n),end,if,end,while,semicolon,write,ide(m),end,eop]
Parse successful
[[GET,m],[GET,n],[L1,LABEL],[LOAD,m],[SUB,n],TSTNE,[JF,L2],[LOAD,m],[SUB,n],
 TSTGT,[JF,L3],[LOAD,n],[SUB,m],[STO,n],[J,L4],[L3,LABEL],
 [LOAD,m],[SUB,N],[STO,m],[L4,LABEL],[J,L1],[L2,LABEL],
 [LOAD,m],[STO,T1],[PUT,T1],HALT]

GET M
GET N

L1 LABEL
LOAD M
SUB N
TSTNE
JF L2
LOAD M
SUB N
TSTGT
JF L3
LOAD N
SUB M
STO N
J L4

L3 LABEL
LOAD M
SUB N
STO M

L4 LABEL
J L1

L2 LABEL
LOAD M
STO T1
PUT T1
HALT

yes

The transcript above shows the token list produced by the scanner and the
list of assembly language instructions constructed by the attribute grammar

217

woven throughout the parser. A pretty-print routine capitalizes symbols in
the code and formats the output. The program above is the gcd program in
Wren that was discussed in section 7.1.

This example illustrates the code generated by the Prolog translator once it is
fully implemented. As in previous laboratory sections, we provide only a par-
tial implementation and leave the unimplemented components as exercises.

The generated code for the synthesized attribute Code is maintained as a Prolog
list of assembly language instructions, each of which is a Prolog list itself.

The program clause adds the instruction 'HALT' to the generated code; at the
same time it ignores the program identifier since that value does not affect
the code generated. Because uppercase has particular significance in Prolog,
generated opcodes must be enclosed in apostrophes. At the block level, the
synthesized Code attribute is passed to the program level and the inherited
attributes for Temp and InhLabel are initialized to zero.

program(Code) --> [program, ide(Ident), is], block(Code1),
{ concat(Code1, ['HALT'], Code) }.

block(Code) --> decs, [begin], commandSeq(Code,0,0,SynLabel), [end].

Commands

Implementing decs following the example in Chapter 2 is left as an exercise.
We break a command sequence into the first command followed by the rest of
the commands, if any. The Temp attribute is passed to both children, the
InhLabel attribute from the command sequence is inherited by the first com-
mand, the SynLabel attribute from the first command becomes the InhLabel
attribute of the rest of the commands, and the SynLabel of the rest of the
commands is passed to the parent command sequence. The two code se-
quences are concatenated in a list structure. The rest of the commands are
handled in a similar manner except that when no more commands remain,
the resulting code list is empty.

commandSeq(Code,Temp,InhLab,SynLab) -->
command(Code1,Temp,InhLab,SynLab1),
restcmds(Code2,Temp,SynLab1,SynLab),
{ concat(Code1, Code2, Code) }.

restcmds(Code,Temp,InhLab,SynLab) -->
[semicolon],
command(Code1,Temp,InhLab,SynLab1),
restcmds(Code2,Temp,SynLab1,SynLab),
{ concat(Code1, Code2, Code) }.

restcmds([],Temp,InhLab,InhLab) --> [].

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

218 CHAPTER 7 TRANSLATIONAL SEMANTICS

The input and skip commands do not use the Temp attribute and simply
turn the label attribute around and feed it back out by placing the same
variable Label in both argument places. The assignment and output com-
mands use the Temp attribute and turn around the label attribute. Some of
these commands appear below, others are left as exercises.

command([['GET', Var]], Temp, Label, Label) --> [read,ide(Var)].

command(Code, Temp, Label, Label) -->
[ide(Var), assign], expr(Code1,Temp),
{ concat(Code1, [['STO',Var]], Code) }.

The input of a variable is translated into the GET of the same variable. The
output of an expression is the code generated for the expression, followed by
the store of its result in a temporary location and a PUT of this location. The
skip command generates a NO-OP. The assignment command concatenates
a STO of the target variable after the code generated by expression. The reader
is encouraged to complete the write and skip commands.

The single alternative if command consists of the code for the Boolean ex-
pression that includes a test operation, a conditional jump, the code for the
body, and a label instruction that is the target of the conditional jump. No-
tice the use of the built-in Prolog predicate is to evaluate an arithmetic ex-
pression and bind the result. We have also used a utility predicate label to
combine L with the label number. Note that we need to define a concat predi-
cate that concatenates three lists (see Appendix A).

command(Code,Temp,InhLab,SynLab) -->
[if], { InhLab1 is InhLab+1, label(InhLab1,Lab) },
booleanExpr(Code1,Temp),
[then], commandSeq(Code2,Temp,InhLab1,SynLab), [end,if],
{ concat(Code1, [['JF',Lab]|Code2], [[Lab,'LABEL']], Code) }.

label(Number,Label) :-
name('L',L1), name(Number,L2), concat(L1,L2,L), name(Label,L).

The two-alternative if command has the most complex code sequence:

• The code from the Boolean expression

• A conditional jump to the false task

• The code from the true task

• An unconditional jump to the label instruction following the entire com-
mand

• A label instruction for entry into the false task

• The code for the false task itself

• The final label instruction for the jump out of the true task.

219

The same Temp attribute is passed to all three children. Since the two-alter-
native if command requires two unique labels, the InhLabel for the true com-
mand sequence has been incremented by two. The SynLabel out of the true
command sequence is threaded into the false command sequence. The
SynLabel of the false command sequence is passed to the parent. Here we
need a concat predicate that concatenates four lists.

command(Code,Temp,InhLab,SynLab) -->
[if], { InhLab1 is InhLab+1, InhLab2 is InhLab+2,

label(InhLab1,Lab1), label(InhLab2,Lab2) },
booleanExpr(Code1,Temp),
[then], commandSeq(Code2,Temp,InhLab2,SynLab2),
[else], commandSeq(Code3,Temp,SynLab2,SynLab), [end,if],
{ concat(Code1, [['JF',Lab1]|Code2],
 [['J',Lab2], [Lab1,'LABEL']|Code3], [[Lab2,'LABEL']], Code) }.

The while command begins with a label instruction that is the target for the
unconditional jump at the bottom of the loop, which is followed by the code
for the Boolean expression, a conditional jump out of the while, the code for
the loop body, an unconditional jump to the top of the loop, and a final label
instruction for exiting the while loop. The Temp attribute is inherited down
to the Boolean expression and loop body. Since two labels are used, the
InhLabel to the loop body is incremented by two and the SynLabel from the
loop body is passed back up to the parent. Completion of the code for a while
command is left as an exercise.

Expressions

The code generated by arithmetic expressions does not involve labels, so the
label attributes are not used at all. As we saw earlier in Chapter 2, we have to
transform our left recursive attribute grammar into a right recursive format
when implemented as a logic grammar. If an expression goes directly to a
single term, then Temp is passed in and Code is passed out. If an expression
is a term followed by one or more subsequent terms, then the inherited Temp
value is passed down to the left-hand term and this value incremented by
one is passed to the right-hand term. There may be still more terms to the
right, but since the additive operations are left associative, we have com-
pleted the operation on the left two terms and the temporary locations can be
used again. Therefore the original Temp value is passed down to the clause
for the remaining terms.

The generated code for an integer expression is the code from the first term
followed by the optimized code from any remaining terms. If the code from
the right-hand term is simply the load of a variable or a numeral, the code is

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

220 CHAPTER 7 TRANSLATIONAL SEMANTICS

optimized by having the opcode associated with the binary operation applied
directly to the simple operand. If this is not the case, the result from the left
operand is stored in a temporary, the code is generated for the right operand
that is stored in a second temporary, the first temporary is loaded, and the
operation is applied to the second temporary. The predicate optimize allows
two forms due to the two possible list structures. Notice the use of the utility
predicate temporary to build temporary location names. The resulting code
from an expression with multiple terms is the code from the first term, the
code from the second term, and the code from the remaining terms, if any.

integerExpr(Code,Temp) --> term(Code1,Temp), restExpr(Code2,Temp),
{ concat(Code1, Code2, Code) }.

restExpr(Code,Temp) --> weakop(Op), { Temp1 is Temp+1 },
term(Code1,Temp1),
{ optimize(Code1,OptCode1,Temp,Op) },
restExpr(Code2,Temp),
{ concat(OptCode1, Code2, Code) }.

restExpr([],Temp) --> [].

weakop('ADD') --> [plus].

weakop('SUB') --> [minus].

optimize([['LOAD',Operand]],[[Opcode,Operand]],Temp,Opcode).
optimize(Code,OptCode,Temp,Op) :-

Temp1 is Temp+1, Temp2 is Temp+2,
temporary(Temp1,T1), temporary(Temp2,T2),
concat([['STO',T1]|Code], [['STO',T2], ['LOAD',T1], [Op,T2]], OptCode).

temporary(Number,Temp) :-
name('T',T1), name(Number,T2), concat(T1,T2,T), name(Temp,T).

Terms are similar to expressions and are left as an exercise. For now, we give
a clause for terms that enables the current specification of the attribute gram-
mar to work correctly on a restrict subset of Wren with only the “weak” arith-
metic operators. This clause will have to be replaced to produce correct trans-
lations of terms in Wren.

term(Code,Temp) --> element(Code,Temp).

An element can expand to a number, an identifier, or a parenthesized expres-
sion, in which case the Temp attribute is passed in. The negation of an ele-
ment is left as an exercise.

element(['LOAD',Number], Temp) --> [num(Number)].

element(['LOAD',Name], Temp) --> [ide(Name)].

element(Code,Temp) --> [lparen], expression(Code,Temp), [rparen].

221

The code for expressions, Boolean expressions, Boolean terms, and Boolean
elements is left as an exercise.

The final task is to generate the code for comparisons. We generate code for
the left-side expression, recognize the relation, generate code for the right-
side expression, and then call optimize for the right side using the subtract
operation. The code for the comparison is the concatenation of the code for
the left-side expresion, the optimized code for the right-side expression, and
the test instruction. In the code below, the variable Tst holds the value of the
test operation returned by testcode. The reader is encouraged to write the
clauses for testcode.

comparison(Code,Temp) -->
{ Temp1 is Temp+1 },
integerExpr(Code1,Temp),
testcode(Tst), integerExpr(Code2,Temp1),
{ optimize(Code2,OptCode2,Temp,'SUB') },
{ concat(Code1,OptCode2,[Tst], Code) }.

This completes our partial code generator for Wren. The exercises below de-
scribe the steps needed to complete this Wren translator. Other exercises
deal with extensions to Wren that can be translated into intermediate code.

Exercises

1. Complete the implementation given in this section by adding the follow-
ing featues:

• The output and skip commands

• The while command

• Clauses for term, remterm, and strongop

• Clauses for expression, boolExpr, boolTerm, and boolElement

• Clauses for testcode

2. Write a pretty-print routine for the intermediate code. Add a routine to
capitalize all identifiers. All commands, except for labels, are indented
by one tab and there is a tab between an opcode and its argument. A tab
character is generated by put(9) and a return is accomplished by nl. Re-
cursion in the pretty-print predicate can stop once the halt instruction
is encountered and printed.

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

222 CHAPTER 7 TRANSLATIONAL SEMANTICS

3. The negation of an element (unary minus) was not specified in the pro-
duction that defines elements. Add this alternative using the existing
intermediate code instructions.

4. Modify the output command to print a list of expression values. Add a
new intermediate code command for a line feed that is generated after
the list of expressions is printed.

5. Add the repeat .. until command, as described in exercise 8, section 7.2.

6. Add a conditional expression, as described in exercise 9, section 7.2.

7. Add expressions with side effects, as described in exercise 10, section
7.2.

8. Follow exercise 11 in section 7.2 to change the code generation for a
stack architecture machine and to implement these changes in the Prolog
code generator.

7.4 FURTHER READING

The use of attribute grammars for code generation is of primary interest to
the compiler writer. Lewis, Rosenkrantz, and Stearns presented an early pa-
per on attributed translations [Lewis74]. Several references in compiler con-
struction have already been noted in Section 3.4 [Aho86], [Fischer91], [Par-
sons92], and [Pittman92].

Frank Pagan presents a code-generating attribute grammar for the language
Pam [Pagan81]. Pam is somewhat simpler than Wren since all variables are
of type integer. Because there is no need to generate Boolean values, as our
TST instructions do, his target language has six conditional jumps that use
the same instruction both to test and jump.

We have assigned programs for students to use the Synthesizer-Generator
[Reps89] to implement code generation for Wren. Our code generator in Prolog
operates in batch mode whereas the Synthesizer-Generator code-generating
editor operates in incremental mode. Two windows appear on the screen, one
for the source code and one for the object code. As the code is entered in the
source window, the corresponding object code appears immediately. Changes
in the source code, including deletions, result in “instantaneous” changes in
the object code, even when this involves changes in label numbers and tem-
porary location numbers.

223

Chapter 8
TRADITIONAL OPERATIONAL
SEMANTICS

In contrast to a semantics that describes only what a program does, the
purpose of operational semantics is to describe how a computation is
performed. An introduction to computers and programming languages is

usually presented in terms of operational concepts. For example, an assign-
ment statement “V := E” might be described by the steps that it performs:
Evaluate the expression E and then change the value bound to the variable V
to be this result. In another example, pointer assignments might be made
clearer by drawing boxes and arrows of the configurations before and after
the assignments.

Informal operational semantics illustrates the basic components of the op-
erational approach to meaning. A state or configuration of the machine is
described by means of some representation of symbols, such as labeled boxes,
values in the boxes, and arrows between them. One configuration assumes
the role of the initial state, and a function, determined by the program whose
meaning is being explained, maps one configuration into another. When the
program (or programmer) is exhausted or the transition function is unde-
fined for some reason, the process halts producing a “final” configuration
that we take to be the result of the program.

In this chapter we first discuss how earlier chapters have already presented
the operational semantics of languages. We then briefly describe a well-known
but seldom-used method of specifying a programming language by means of
formal operational semantics—namely, the Vienna Definition Language.

The main part of this chapter looks at the SECD abstract machine defined by
Peter Landin, an early method of describing expression evaluation in the
context of the lambda calculus. The chapter concludes with an introduction
to a formal specification method known as structural operational semantics.
This method describes semantics by means of a logical system of deductive
rules that model the operational behavior of language constructs in an ab-
stract manner.

224 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

The laboratory exercises for this chapter include implementing the SECD
machine for evaluating expressions in the lambda calculus following the pat-
tern used in Chapter 5 and implementing a prototype interpreter of Wren
based on its structural operational semantics using the scanner and parser
developed in Chapter 2.

8.1 CONCEPTS AND EXAMPLES

We have already considered several versions of operational semantics in this
text. For the lambda calculus in Chapter 5, the β-reduction and δ-reduction
rules provide a definition of a computation step for reducing a lambda ex-
pression to its normal form, if possible. A configuration consists of the cur-
rent lambda expression still to be reduced, and the transition function sim-
ply carries out reductions according to a predetermined strategy. The occur-
rence of a lambda expression in normal form signals the termination of the
computation. As with most operational semantics, the computation may con-
tinue forever.

One view of operational semantics is to take the meaning of a programming
language as the collection of results obtained by executing programs on a
particular interpreter or as the assembly language program produced by a
compiler for the language. This approach to meaning is called concrete op-
erational semantics . The translational semantics of a compiler, such as the
one discussed in Chapter 7 using an attribute grammar, can be understood
as a definition of a programming language. The diagram below shows the
structure of a translational system for a programming language.

Source
program

Target
program

Input
data

Target
interpreter

Program
output

Translator

The translational approach entails two major disadvantages as a formal speci-
fication tool:

1. The source language is defined only as well as the target language of the
translator. The correctness and completeness of the specification relies
on a complete understanding of the target language.

2258.1 CONCEPTS AND EXAMPLES

2. A translator can carefully describe the relation between a source pro-
gram and its translation in the target language, but it may at the same
time provide little insight into the essential nature of the source lan-
guage.

More commonly, concrete operational semantics refers to an interpreter ap-
proach in which a source language program is simulated directly. An inter-
pretive definition of a programming language is generally less complex than
following a translational method. The diagram below shows the basic struc-
ture of an interpretation system.

Source
program

Input
data

Interpreter

Program
output

Defining the meaning of a programming language in terms of a real inter-
preter also has shortcomings as a specification mechanism:

1. For complex languages, correct interpreters (as well as compilers) are
difficult to write. Moreover, these definitions are too machine dependent
to serve as formal specifications for a programming language.

2. Interpreters are written to provide practical program development tools,
and they do not provide the mathematical precision needed in a formal
definition.

The metacircular interpreters in Chapter 6 describe the operation of a Lisp
machine and a simplified Prolog machine using the languages themselves to
express the descriptions. These descriptions represent the configurations
directly as structures in the language being defined. John McCarthy’s defini-
tion of Lisp in Lisp [McCarthy65b] was an early landmark in providing the
semantics of a programming language. Although such meta-interpreters can
give insight into a programming language to someone who is already familiar
with the language, they are not suitable as formal definitions because of the
circularity.

Formal semantics demands a better approach, using a precisely defined hy-
pothetical abstract machine described in a formal mathematical or logical
language with no limitations on memory, word size, precision of arithmetic,
and other such implementation-dependent aspects of a language, and rigor-

226 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

ously defined rules that reveal the way the state of the machine is altered
when a program is executed.

VDL

The most ambitious attempt at defining an abstract machine for operational
semantics was the Vienna Definition Language (VDL) developed at the Vienna
IBM laboratory in 1969. All the nonprimitive objects in VDL are modeled as
trees. This includes the program being interpreted (an abstract syntax tree),
memory, input and output lists, environments, and even the control mecha-
nism that performs the interpretation. Figure 8.1 shows a typical VDL con-
figuration that is represented as a collection of subtrees. A set of instruction
definitions, in effect a “microprogram”, interprets an abstract representation
of a program on the abstract machine defined by this tree structure.

… ……

Storage Input Output

Control tree

The nodes of the control tree
represent VDL instructions.

Figure 8.1: A VDL Configuration

Starting with an initial configuration or state that has all the components of
storage properly initialized (probably to “undefined”), input defined as a tree
representing the list of input values, output set as an empty tree, and the
control tree defined as a single instruction to execute the entire program, the
transition function given by the instructions of the VDL interpreter performs
the steps of a computation. One step consists of selecting a leaf node of the
control tree and evaluating it according to the microprogram, producing a

227

new state with a modified control tree. As the leaf nodes of the control tree
are evaluated, a sequence of configurations results:

configuration0 → configuration1 → configuration2 → configuration3 → ….

An interpretation of a program terminates normally when the control tree
becomes empty, signaling that the program has completed. The VDL inter-
preter also recognizes certain error conditions that may occur during an ex-
ecution, and the computation may execute forever.

The major accomplishment of the VDL effort was a specification of PL/I.
Unfortunately, the complexity of definitions in VDL hampers its usefulness.
The tree structures do not relate to any actual implementation, and the de-
tails of the representation can overwhelm the users of a VDL specification to
the point of raising questions about its correctness. Any hope of practical
application of formal semantics depends on providing a certain amount of
clarity and conciseness in language definitions.

Our venture into traditional operational semantics considers two examples
that are more accessible. The first technique illustrates the use of an ab-
stract machine, called the SECD machine, to interpret the lambda calculus.
Developed in the mid 1960s, it provides an elegant example of traditional
operation semantics that has become the basis for some implementations of
functional programming languages. The second method of language specifi-
cation, called structural operational semantics, finds its roots in logic deduc-
tion systems. It is a more abstract approach to operational specifications,
recently supporting applications in type theory.

Exercises

1. List several ways that programming languages are described to begin-
ners using informal operational semantics.

2. How well does the translational semantics of Chapter 7 provide a formal
definition of the programming language Wren? Can it be used to prove
the equivalence of language constructs?

3. Enumerate some of the advantages and disadvantages of using an ac-
tual interpreter or compiler as the definition of Pascal.

8.1 CONCEPTS AND EXAMPLES

228 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

8.2 SECD: AN ABSTRACT MACHINE

In 1964 Peter Landin proposed an abstract machine, called the SECD ma-
chine , for the mechanical evaluation of lambda expressions. This machine
has become a classic example of operational semantics, involving computa-
tional techniques that have been adopted in practical implementations of
functional programming languages. With the SECD machine, evaluation of a
function application entails maintaining an environment that records the
bindings of formal parameters to arguments in a way similar to the method
of implementing function application in some real implementations. The SECD
machine surpasses the efficiency of a lambda calculus evaluator based on β-
reductions, but it lends itself primarily to an applicative order evaluation
strategy. In fact, the SECD machine as described by Landin follows pass by
value semantics in the sense that combinations in the body of a lambda
expression are not reduced unless the lambda abstraction is applied to an
argument; so the evaluator stops short of normal form in some instances.

The states in the abstract machine consist of four components, all exhibiting
stack behavior. The names of these four stacks, S, E, C, and D, provide the
title of the machine.

S for Stack : A structure for storing partial results awaiting subsequent use.

E for Environment : A collection of bindings of values (actual parameters) to
variables (formal parameters).

C for Control: A stack of lambda expressions yet to be evaluated plus a
special symbol “@” meaning that an application can be performed; the top
expression on the stack is the next one to be evaluated.

D for Dump : A stack of complete states corresponding to evaluations in
progress but suspended while other expressions (inner redexes) are evalu-
ated.

In describing the SECD interpreter we represent a state, also called a con-
figuration, as a structured object with four components:

cfg(S, E, C, D).

Borrowing notation from Prolog and mixing it with a few functional opera-
tions, we depict the S and C stacks as lists of the form [a,b,c,d] with the top
at the left and define head and tail so that

head([a,b,c,d]) = a, and

tail([a,b,c,d]) = [b,c,d].

229

To push an item X onto the stack S, we simply write [X|S] for the new stack.
The empty list [] acts as an empty stack.

Environments, which provide bindings for variables, are portrayed as lists of
pairs, say [x|→3, y|→8], with the intention that bindings have precedence
from left to right. An empty environment is denoted by the atom “nil”. In
describing the SECD machine, we let E(x) denote the value bound to x in E,
and let [y|→val]E be the environment E1 that extends E with the property

E1(x) = E(x) if x≠y, and

E1(y) = val.

So if E = [y|→5][x|→3, y|→8] = [y|→5, x|→3], E(y) = 5. If an identifier x has not
been bound in E, the application E(x) returns the variable x itself.

The D stack is represented as a structure. Since a dump is a stack of con-
figurations (states), we display it using notation with the pattern

cfg(S1,E1,C1,cfg(S2,E2,C2,cfg(S3,E3,C3,nil)))

for a dump that stacks three states. An empty dump is also given by “nil”.

When a lambda abstraction (λV . B) appears on the top of the control stack,
it is moved to the partial result stack while its argument is evaluated. The
object that is placed on the stack is a package containing the bound variable
V and body B of the abstraction, together with the current environment Env,
so that the meaning of the free variables can be resolved when the abstrac-
tion is applied. This bundle of three items is known as a closur e since the
term represented is a closed expression in the sense that it carries along the
meanings of its free variables. We represent such a closure by the structure
“closure(V,B,Env)”, which we abbreviate as “cl(V,B,Env)” when space is short.

To evaluate a lambda expression expr, the SECD machine starts with the
initial configuration cfg([],nil,[expr],nil) that has empty stacks for S, E, and
D. The one item on the control stack is the expression to be evaluated. The
SECD machine is defined by a transition function,

transform : State → State,

that maps the current configuration to the next configuration until a final
state results, if it ever does. A final state is recognized by its having an empty
control stack and an empty dump, indicating that no further computation is
possible. Figure 8.2 gives a definition of the transform function as a condi-
tional expression returning a new configuration when given the current con-
figuration.

8.2 SECD: AN ABSTRACT MACHINE

230 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

 transform cfg(S, E, C, D) =

(1) if head(C) is a constant

then cfg([head(C)|S], E, tail(C), D)

(2) else if head(C) is a variable

then cfg([E(head(C))|S], E, tail(C), D)

(3) else if head(C) is an application (Rator Rand)

then cfg(S, E, [Rator,Rand,@|tail(C)], D)

(4) else if head(C) is a lambda abstraction λV . B

then cfg([closure(V,B,E)|S], E, tail(C), D)

(5) else if head(C) = @ and head(tail(S)) is a predefined function f

then cfg([f(head(S))|tail(tail(S))], E, tail(C), D)

(6) else if head(C) = @ and head(tail(S)) = closure(V,B,E1)

then cfg([], [V|→head(S)]E1, [B], cfg(tail(tail(S)),E,tail(C),D))

(7) else if C = []

then cfg([head(S)|S1], E1, C1, D1) where D = cfg(S1,E1,C1,D1)

Figure 8.2: Transition Function for the SECD Machine

In order to explain the SECD machine, we will discuss each case in the defi-
nition of the transition function. The cases are determined primarily by the
top element of the control stack C.

1. If the next expression to be evaluated is a constant, move it as is from the
control stack to the partial result stack S.

2. If the next expression is a variable, push its binding in the current envi-
ronment onto S. If no binding exists, push the variable itself.

3. If the next expression is an application (Rator Rand), decompose it and
reenter the parts onto the control stack C with the Rator at the top, the
Rand next, and the special application symbol @ following the Rand.
(In his original machine, Landin placed the Rand above the Rator to be
evaluated first, but that results in rightmost-innermost evaluation in-
stead of leftmost-innermost—redexes in the Rator before the Rand—that
we described for applicative order evaluation in Chapter 5.)

4. If the next expression is a lambda abstraction, form a closure incorporat-
ing the current environment and add that closure to the partial result
stack. The use of a closure ensures that when the lambda abstraction is
applied, its free variables are resolved in the environment of its defini-
tion, thereby providing static scoping.

231

5. If the next expression is @ and the function in the second place on the S
stack is a predefined function, apply that function to the evaluated argu-
ment at the top of the S stack and replace the two of them with the result.

6. If the next expression is @ and the function in the second place of the S
stack is a closure, after popping @ and the top two elements of S, push
the current configuration onto the dump. Then initiate a new computa-
tion to evaluate the body of the closure in the closure’s environment aug-
mented with the binding of the bound variable in the closure, the formal
parameter, to the argument at the top of the partial result stack.

7. If the control stack is empty, that means the current evaluation is com-
pleted and its result is on the top of the partial result stack. Pop the
configuration on the top of the dump, making it the new current state
with the result of the previous computation appended to the top of its
partial result stack.

If the control stack and the dump are both empty, the transition function is
undefined, and the SECD machine halts in a final state. The value at the top
of the partial result stack is the outcome of the original evaluation.

Example

Shown below are the state transitions as the lambda expression

((λx . (mul x ((λy . sqr y) 5))) 3)

is evaluated by the SECD machine. The numbers at the far right identify
which alternative of the definition by cases is employed at each step. Clo-
sures are represented as cl(V,B,E), and g stands for (λy.sqr y) to save space in
describing the computation.

S E C D

[] nil [((λx.(mul x ((λy.sqr y) 5))) 3)] nil

[] nil [(λx.(mul x (g 5))), 3, @] nil (3)

[cl(x,(mul x (g 5)),nil)] nil [3, @] nil (4)

[3, cl(x,(mul x (g 5)),nil)] nil [@] nil (1)

[] [x|→3] [(mul x (g 5))] d1 (6)

where d1 = cfg([],nil,[],nil)

[] [x|→3] [(mul x), (g 5), @] d1 (3)

8.2 SECD: AN ABSTRACT MACHINE

232 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

[] [x|→3] [mul, x, @, (g 5), @] d1 (3)

[mul] [x|→3] [x, @, (g 5), @] d1 (1)

[3, mul] [x|→3] [@, ((λy.sqr y) 5), @] d1 (2)

[mul3] [x|→3] [((λy.sqr y) 5), @] d1 (5)

where mul3 is the unary function that multiplies its argument by 3

[mul3] [x|→3] [(λy.sqr y), 5, @, @] d1 (3)

[cl(y,(sqr y),E1), mul3] [x|→3] [5, @, @] d1 (4)

where E1 = [x|→3]

[5, cl(y,(sqr y),E1), mul3] [x|→3] [@, @] d1 (1)

[] [y|→5, x|→3] [(sqr y)] d2 (6)

where d2 = cfg([mul3],[x|→3],[@],d1)

[] [y|→5, x|→3] [sqr, y, @] d2 (3)

[sqr] [y|→5, x|→3] [y, @] d2 (1)

[5, sqr] [y|→5, x|→3] [@] d2 (2)

[25] [y|→5, x|→3] [] d2 (5)

[25, mul3] [x|→3] [@] d1 (7)

[75] [x|→3] [] d1 (5)

[75] nil [] nil (7)

The transition function has no definition when both the control stack and
the dump are empty. The result of the evaluation is the value 75 at the top of
the S stack.

Parameter Passing

As mentioned earlier, the SECD machine evaluates redexes following a leftmost-
innermost strategy but fails to continue reducing in the body of a lambda ex-
pression. The next example illustrates this pass by value approach to the
lambda calculus by evaluating the lambda expression ((λf . λx . f x)(λy . y)).

233

S E C D

[] nil [((λf.λx.f x)(λy.y))] nil

[] nil [(λf.λx.f x), (λy.y), @] nil (3)

[cl(f,(λx.f x),nil)] nil [(λy.y), @] nil (4)

[cl(y,y,nil), cl(f,(λx.f x),nil)] nil [@] nil (4)

[] [f|→cl(y,y,nil)] [(λx.f x)] d1 (6)

where d1 = cfg([],nil,[],nil)

[cl(x,(f x),[f|→cl(y,y,nil)])] [f|→cl(y,y,nil)] [] d1 (4)

[cl(x,(f x),[f|→cl(y,y,nil)])] nil [] nil (7)

This final state produces the closure cl(x,(f x),[f|→cl(y,y,nil)]) as the result of
the computation. Unfolding the environment that binds f to cl(y,y,nil) in the
closure and extracting the lambda abstraction (λx . f x) from the closure, we
get (λx . ((λy . y) x)) as the final result following a pass by value reduction. In
true applicative order evaluation, the reduction continues by simplifying the
body of the abstraction giving the lambda expression (λx . x), which is in
normal form, but pass by value reduction does not reduce the bodies of
abstractions that are not applied to arguments.

Static Scoping

The easiest way to see that lambda calculus reduction adheres to static scoping
is to review let-expressions, which we discussed briefly at the end of section
5.2. For example, consider the following expression:

let x=5

in let f = λy . (add x y)

in let x = 3

in f x

Here the variable x is bound to two different values at different points in the
expression. When the function f is applied to 3, to which value is 3 added? By
translating the let-expression into a lambda expression

(λx . (λf . ((λx . f x) 3)) (λy . (add x y))) 5

and reducing, following either a normal order or an applicative order strat-
egy, we get the value 8 as the normal form. To match this behavior in the
SECD machine, the function f must carry along the binding of x to 5 that is

8.2 SECD: AN ABSTRACT MACHINE

234 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

in effect when f is bound to (λy . (add x y)). That is precisely the role of
closures in the interpretation.

In contrast, a slight change to the definition of the transition function turns
the SECD machine into an adherent to dynamic scoping. Simply change
case 6 to read:

else if head(C) = @ and head(tail(S)) = closure(V,B,E1)

then cfg([], [V|→head(S)]E, [B], cfg(tail(tail(S)),E,tail(C),D))

Now the body of the lambda abstraction is evaluated in the environment in
effect at the application of f to x—namely, binding x to 3, so that the compu-
tation produces the value 6. With dynamic scoping, closures can be dis-
pensed with altogether, and case 4 need only move the lambda abstraction
from the top of the control stack to the top of the partial result stack S.

Exercises

1. Trace the execution of the SECD machine on the following lambda ex-
pressions in the applied lambda calculus that we have defined:

a) (succ 4)

b) (λx . (add x 2)) 5

c) (λf . λx . (f (f x))) sqr 2

d) (λx . ((λy . λz . z y) x)) p (λx . x)

2. In the pure lambda calculus, both the successor function and the nu-
meral 0 are defined as lambda expressions (see section 5.2). The expres-
sion (succ 0) takes the form

(λn . λf . λx . f (n f x)) (λf . λx . x)

in the pure lambda calculus. Use the SECD machine and β-reduction to
evaluate this expression. Explain the discrepancy.

3. Trace the execution of the SECD machine on the lambda expression
that corresponds to the let-expresssion discussed in the text:

(λx . (λf . ((λx . f x) 3)) (λy . (add x y))) 5

4. Trace a few steps of the SECD machine when evaluating the lambda
expression (λx . x x) (λx . x x).

5. Modify the SECD machine so that it follows a normal order reduction
strategy. Use a new data structure, a suspension, to model unevaluated
expressions. See [Field88] or [Glaser84] for help on this exercise.

235

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

If we use the scanner and parser from the lambda calculus evaluator in
Chapter 5, the implementation of the SECD machine is a simple task. We
already use Prolog structures for some of the components of a configuration.
All we need to add is a Prolog data structure for environments. We design the
SECD interpreter to be used in the same way as the evaluator, prompting for
the name of a file that contains one lambda expression. The transcript below
shows the SECD machine as it evaluates the lambda expression from the
example in section 8.2.

>>> SECD: Interpreting an Applied Lambda Calculus <<<
Enter name of source file: text
 ((L x (mul x ((L y (sqr y)) 5))) 3)
Successful Scan
Successful Parse
Result = 75
yes

We represent the stack S and control C using Prolog lists, as in the definition
of the transition function in the previous section, but now we implement
head and tail by pattern matching.

Environments are implemented as structures of the form env(x, 3, env(y, 8,
nil)) for the environment [x|→3, y|→8]. An empty environment is given by nil. A
predicate extendEnv(Env,X,Val,NewEnv) appends a new binding to an existing
environment, producing a new environment. A single Prolog clause defines
this predicate:

extendEnv(Env,Ide,Val,env(Ide,Val,Env)).

For example, if Env is bound to the structure env(x, 3, env(y, 8, nil)) and we
execute extendEnv(Env,z,13,NewEnv), NewEnv will be bound to the structure
env(z, 13, env(x, 3, env(y, 8, nil))).

The predicate applyEnv(Env,Ide,Val) performs the application of an environ-
ment to a variable to find its binding. Three clauses define this predicate, the
first clause tries to match the binding at the top of the environment:

applyEnv(env(Ide,Val,Env),Ide,Val).

If the first clause fails, the second continues the search in the “tail” of the
environment:

applyEnv(env(Ide1,Val1,Env),Ide,Val) :- applyEnv(Env,Ide,Val).

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

236 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Finally, the third clause applies to an empty environment signaling a failed
search for the variable. In this case the value returned is the variable itself
marked with a tag:

applyEnv(nil,Ide,var(Ide)).

In agreement with the conventions of Chapter 5, variables and constants
have tags (var and con) provided by the parser to make the pattern matching
easier to understand. Dumps are implemented as Prolog structures follow-
ing the pattern used in the previous section:

cfg(S1,E1,C1,cfg(S2,E2,C2,cfg(S3,E3,C3,nil))).

The transition function for the SECD machine is embodied in a Prolog predi-
cate transform(Config, NewConfig) that carries out one step of the interpreter
each time it is invoked. Seven clauses implement the seven cases in Figure
8.2.

transform(cfg(S,E,[con(C)|T],D), cfg([con(C)|S],E,T,D)). % 1

transform(cfg(S,E,[var(X)|T],D), cfg([Val |S],E,T,D)) :- applyEnv(E,X,Val). % 2

transform(cfg(S,E,[comb(Rator,Rand)|T],D), cfg(S,E,[Rator,Rand,@|T],D)). % 3

transform(cfg(S,E,[lamb(X,B)|T],D), cfg([closure(X,B,E)|S],E,T,D)). % 4

transform(cfg([con(Rand),con(Rator)|T],E,[@|T1],D), cfg([Val|T],E,T1,D)) :- % 5
compute(Rator,Rand,Val).

transform(cfg([Rand,closure(V,B,E1)|T],E,[@|T1],D), % 6
cfg([],E2,[B],cfg(T,E,T1,D))) :-

extendEnv(E1,V,Rand,E2).

transform(cfg([H|S],E,[],cfg(S1,E1,C1,D1)), cfg([H|S1],E1,C1,D1)). % 7

Recall the abstract syntax and the associated tags for the lambda calculus.
Each lambda expression is a variable (var), a constant (con), a lambda ab-
straction (lamb), or a combination (comb). The compute predicate used in step
5 is identical to the one in the evaluator in Chapter 5. Notice how well pattern
matching performs tests such as the one in step 6

if head(C) = @ and head(tail(S)) = closure(V,B,E1),
becomes

transform(cfg([Rand,closure(V,B,E1)|T],E,[@|T1],D), …).

The SECD interpreter is driven by a predicate interpret(Config,Result) that
watches for a final state to terminate the machine:

interpret(cfg([Result|S],Env,[],nil), Result).

237

Otherwise it performs one transition step and calls itself with the new con-
figuration:

interpret(Config,Result) :- transform(Config,NewConfig),
interpret(NewConfig,Result).

If the parser produces a structure of the form expr(Exp), the SECD machine
can be invoked using the query:

interpret(cfg([],nil,[Exp],nil), Result), nl, write('Result = '), pp(Result), nl.

where cfg([],nil,[Exp],nil), Result) serves as the initial configuration and the
predicate pp prints the result (see Chapter 5).

Exercises

1. Following the directions above, implement the SECD machine in Prolog
and test it on some of the lambda expressions in the exercises for sec-
tion 8.2.

2. Change the Prolog implementation of the SECD machine so that it fol-
lows the semantics of dynamic scoping instead of static scoping. Illus-
trate the difference between static and dynamic scoping by evaluating
the lambda expression that corresponds to the following let expression:

let a = 7 in let g = λx . (mul a x) in let a = 2 in (g 10)

3. Add a conditional expression (if E1 E2 E3) to the interpreter. Since the
SECD machine follows an applicative order evaluation strategy, “if” can-
not be handled by compute, which expects its arguments to be evaluated
already. A new case can be added to the definition of transform that ma-
nipulates the top few items on the control stack. Test the machine on
the following lambda expressions:

((L x (if (zerop x) 5 (div 100 x))) 0)

((L x (if (zerop x) 2 ((L x (x x)) (L x (x x))))) 0)

4. Extend the lambda calculus to include a “label” expression of the form

<expression> ::= … | (label <variable> <expression>)

whose semantics requires that the expression be bound to the variable
in the environment before the expression is evaluated. This mechanism
allows recursive functions to be defined (the original approach in Lisp).
This definition of the factorial function exemplifies the use of a label
expression:

((label f (L n (if (zerop n) 1 (mul n (f (pred n)))))) 8)

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

238 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

5. Compare the efficiency of the lambda calculus evaluator in Chapter 5
with the SECD machine in this chapter. Use combinations of “Twice”
and “Thrice” as test expressions, where

Twice = λf . λx . f (f x) and
Thrice = λf . λx . f (f (f x)).

For example, try Twice (λz . (add z 1))
Thrice (λz . (add z 1))
Twice Thrice (λz . (add z 1))
Thrice Twice (λz . (add z 1))
Twice Twice Thrice (λz . (add z 1))
Twice Thrice Twice (λz . (add z 1)) and so on.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

Proving properties of programs and the constructs of programming languages
provides one of the main justifications of formal descriptions of languages.
Operational semantics specifies programming languages in terms of program
execution on abstract machines. Structural operational semantics , devel-
oped by Gordon Plotkin in 1981, represents computation by means of de-
ductive systems that turn the abstract machine into a system of logical infer-
ences. Since the semantic descriptions are based on deductive logic, proofs
of program properties are derived directly from the definitions of language
constructs.

With structural operational semantics, definitions are given by inference
rules consisting of a conclusion that follows from a set of premises, possibly
under control of some condition. The general form of an inference rule has
the premises listed above a horizontal line, the conclusion below, and the
condition, if present, to the right.

conclusion

premise1 premise2 … premisen condition

If the number of premises is zero, n=0 in the example, the line is omitted, and
we refer to the rule as an axiom . This method of presenting rules evolved
from a form of logic called natural deduction . As an example in natural
deduction, three inference rules express the logical properties of the con-
junction (and) connective:

239

p

p ∧ q

q

p ∧ q

p ∧ q

p q

The principle that allows the introduction of a universal quantifier exhibits a
rule with a condition:

∀xP(x)

P(a) a does not occur in P(x) or in any
assumption on which P(a) depends.

For more on natural deduction, see the further readings at the end of this
chapter.

Rather than investigate this method of expressing logical deductions, we con-
centrate on the use of inference rules of this form in structural operational
semantics. But before we consider the semantics of Wren, we see how an
inference system can be used to describe the syntax of Wren.

Specifying Syntax

For the present, we ignore the declarations in a Wren program, assuming
that any program whose semantics is to be explained has been verified as
syntactically correct (including the context-sensitive syntax), and that all in-
teger identifiers in the program are included in a set Id and Boolean identifi-
ers in a set Bid. Furthermore, we concern ourselves only with abstract syn-
tax, since any program submitted for semantic analysis comes in the form of
an abstract syntax tree.

The abstract syntax of these Wren programs is formed from the syntactic
sets defined in Figure 8.3. The elements of the sets are identified by the
designated metavariables, possibly with subscripts, attached to each syntac-
tic category.

When describing the abstract syntax of a programming language, we strive
to fit the description to the structure of the semantic formalism that uses it.
The precise notational form of abstract syntax is not intrinsic to a language,
as is the concrete syntax. We simply need to give the patterns of the struc-
tures that capture the essential components of constructs in the language.
For instance, the fundamental property of an assignment is that it consists
of an identifier and an expression of the same type.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

240 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

n ∈ Num = Set of numerals

b ∈ { true , false } = Set of Boolean values

id ∈ Id = Set of integer identifiers

bid ∈ Bid = Set of Boolean identifiers

iop ∈ Iop = { +, –, * , / }

rop ∈ Rop = { <, ≤, =, ≥, >, <> }

bop ∈ Bop = { and , or }

ie ∈ Iexp = Set of integer expressions

be ∈ Bexp = Set of Boolean expressions

c ∈ Cmd = Set of commands

Figure 8.3: Syntactic Categories

Figure 8.4 gives a version of the abstract syntax of Wren specially adapted to
a structural operational semantic description. In particular, the patterns that
abstract syntax trees may take are specified by inference rules and axioms,
some with conditions. The statements that make up the premises and con-
clusions have the form of type assertions; for example,

n : iexp with the condition n∈Num

asserts that objects taken from Num may serve as integer expressions. In
this context, “n : iexp” states that n is of type iexp, the sort of objects corre-
sponding to the set Iexp defined in Figure 8.3. The types iexp, bexp, and cmd
correspond to the sets Iexp, Bexp, and Cmd, respectively.

The biggest difference between this specification of abstract syntax and that
in Chapter 1 is the way we handle lists of commands. The inference rule that
permits a command to be a sequence of two commands enables the type
“cmd” to include arbitrary finite sequences of commands. Since we ignore
declarations in this presentation, a Wren program may be thought of simply
as a command. Moreover, a combination of symbols c is a command if we can
construct a derivation of the assertion “c : cmd”. In fact, the derivation paral-
lels an abstract syntax tree for the group of symbols. Later we give semantics
to Wren programs by describing the meaning of a command relative to this
specification of abstract syntax.

Assuming that the identifier x is a member of Id because of a declaration that
has already been elaborated, a deduction showing the abstract structure of
the command “x := 5 ; while not (x=0) do x := x-1 ; write x” is displayed in
Figure 8.5. Conditions have been omitted to save space, but each condition
should be obvious to the reader. Compare this deduction in the inference
system with a derivation according to an abstract syntax given by a BNF-
type specification.

241

ie1 rop ie2 : bexp

ie1 : iexp ie2 : iexp
rop∈Rop

be1 bop be2 : bexp

be1 : bexp be2 : bexp
bop∈Bop

not(be) : bexp

be : bexp

be : bexp c : cmd

if be then c : cmd

be : bexp c1 : cmd c2 : cmd

if be then c1 else c2 : cmd

skip : cmd

read id : cmd id∈Id
ie : iexp

write ie : cmd

 c1 : cmd c2 : cmd

c1 ; c2 : cmd

ie : iexp

id := ie : cmd
id∈Id

ie1 : iexp ie2 : iexp

ie1 iop ie2 : iexp
iop∈Iop

be : bexp

bid := be : cmd
bid∈Bid

while be do c : cmd

be : bexp c : cmd

– ie : iexp

ie : iexp

n : iexp n∈Num

id : iexp id∈Id

b : bexp b∈{true,false}

bid : bexp bid∈Bid

Figure 8.4: Abstract Syntax for Wren

As with most definitions of abstract syntax, this approach allows ambiguity.
For the derivation in Figure 8.5, the command sequence can be associated to
the left instead of to the right. The choice of grouping command sequences is
known as an inessential ambiguity since it has no effect on the semantics
of the language. Essential ambiguities, such as those in expressions (asso-
ciativity of minus) and if commands (dangling else), are handled by the con-
crete syntax that is used to construct abstract syntax trees from the program
text. Since we represent these tree structures with a linear notation, we in-
sert (meta-)parentheses in abstract syntax expressions whose structure is
not obvious.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

242 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

 x := 5 : cmd while not(x=0) do x := x-1 ; write x : cmd

x := 5 ; while not(x=0) do x := x-1 ; write x : cmd

while not(x=0) do x := x-1 : cmd write x : cmd

not(x=0) : bexp x := x-1 : cmd x : iexp

5 : iexp

x=0 : bexp x-1 : iexp

x : iexp 0 : iexp x : iexp 1 : iexp

Figure 8.5: Derivation in the Abstract Syntax

Inference Systems and Structural Induction

The abstract syntax for Wren presented in Figure 8.4 can be defined just as
well using a BNF specification or even other notational conventions (see
[Astesiano91]). The common thread between these presentations of syntax is
the inductive nature of the definitions. A set of objects, say Iexp, is specified
by describing certain atomic elements—n∈Iexp for each n∈Num and id∈Iexp
for each id∈Id—and then describing how more complex objects are constructed
from already existing objects,

{ie1,ie2∈Iexp and iop∈Iop} implies {(ie1 iop ie2)∈Iexp}.

The fundamental structure remains the same whether the set is defined by
inference rules or by BNF rules:

iexp ::= n | id | ie1 iop ie2 and

iop ::= + | – | * | / where n∈Num, id∈Id, and ie1,ie2∈Iexp.

Structured objects described using inductive definitions support a proof
method, a version of mathematical induction, known as structural induc-
tion . This induction technique depends on the property that each object in
some collection is either an atomic element with no structure or is created
from other objects using well-defined constructor operations.

Principle of Structural Induction : To prove that a property holds for all
phrases in some syntactic category, we need to confirm two conditions:

1. Basis : The property must be established for each atomic
(nondecomposable) syntactic element.

2. Induction step : The property must be proved for any composite element
given that it holds for each of its immediate subphrases (the induction
hypothesis). ❚

243

For objects defined by a system of inference rules, the axioms create atomic
items that are handled by the basis of the induction, and the rules with
premises correspond to the induction step. The induction hypothesis as-
sumes that the property being proved holds for all the objects occurring in
premises, and we must show that the property holds for the object in the
conclusion of the rule.

The syntactic categories defined for the abstract syntax of Wren are so gen-
eral that few interesting properties can be proven about them. For a simple
example, consider the set of all expressions, Exp = Iexp ∪ Bexp. The elemen-
tary components of expressions can be divided into two classes:

1. The operands, Rand = Num ∪ {true ,false } ∪ Id ∪ Bid.

2. The operators, Rator = Iop ∪ Rop ∪ Bop ∪ {not}.

We can prove a lemma about the number of operands and operators in any
Wren expression using structural induction.

Lemma : For any expression e∈(Iexp ∪ Bexp) containing no unary operations
(without not and unary minus), the number of operands in e is greater than
the number of operators in e. Write #rand(e) > #rator(e) to express this rela-
tion.

Proof: These expressions are defined by the first seven rules in Figure 8.4.

Basis : Atomic expressions are formed by the four axioms corresponding to
numerals, Boolean constants, integer identifiers, and Boolean identifiers. In
each case the expression defined has one operand and zero operators, satis-
fying the property of the lemma.

Induction Step : We consider three cases corresponding to the three infer-
ence rules that create structured expressions using a binary operator.

Case 1 : e = ie1 iop ie2 for some iop∈Iop where ie1,ie2 : iexp. By the induction
hypothesis, #rator(ie1) < #rand(ie1) and #rator(ie2) < #rand(ie2). It follows that
#rator(ie2)+1 ≤ #rand(ie2). But #rator(ie1 iop ie2) = #rator(ie1) + #rator(ie2) + 1
and #rand(ie1 iop ie2) = #rand(ie1) + #rand(ie2). Therefore, #rator(ie1 iop ie2)
= #rator(ie1) + #rator(ie2) + 1 < #rand(ie1) + #rand(ie2) = #rand(ie1 iop ie2).

Case 2 : e = ie1 rop ie2 for some rop∈Rop where ie1,ie2 : iexp.
This case is similar to case 1.

Case 3 : e = be1 bop be2 for some bop∈Bop where be1,be2 : bexp.
This case is also similar to case 1.

Therefore, by the principle of structural induction, the property
#rator(e) < #rand(e) holds for all expressions e∈(Iexp ∪ Bexp) containing no
unary operations. ❚

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

244 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Exercises

1. Construct derivations of these Wren constructs using the abstract syn-
tax inference system in Figure 8.4. Refer to the concrete syntax to re-
solve ambiguities. Assume that all identifiers have been properly de-
clared.

a) a* b + c* d

b) -n-k-5 = n/2* k

c) n>0 and not (switch)

d) if a>=b then while a>=c do write a ; a := a-1 else skip

2. Define (part of) the concrete syntax of Wren using inference rules and
axioms in a manner similar to the definition of the abstract syntax of
Wren in Figure 8.4.

3. Use the definition of concrete syntax from exercise 2 and structural in-
duction to prove the following properties:

a) Every expression in Wren has the same number of left and right pa-
rentheses.

b) Each command in Wren has at least as many occurrences of the re-
served word then as of the reserved word else .

4. The following two inference rules define a language comprising lists of
integers using “::” as an infix operator denoting the operation of prefix-
ing an element to a list (cons in Lisp):

m∈Num
m :: tail : intList

tail : intList[] : intList

These are similar to the lists in ML where “::” is a right associative opera-
tor and lists can be abbreviated as follows: [1,2,3,4] = 1 :: 2 :: 3 :: 4 :: [].

Functions on these lists of integers can be defined inductively by de-
scribing their behavior on the two kinds of lists established by the defi-
nitions.

length([]) = 0

length(m::tail) = 1+length(tail) where m∈Num and tail:intList

concat([],L) = L where L:intList

concat(m::tail,L) = m :: concat(tail,L) where m∈Num and tail,L:intList

reverse([]) = []

245

reverse(m::tail) = concat(reverse(tail), m::[])
where m∈Num and tail:intList

Use structural induction to prove the following properties concerning
the functions just defined on integer lists where the variables L, L1, L2,
and L3 range over intList. Some properties depend on earlier ones.

a) concat(L,[]) = L

b) length(concat(L1,L2)) = length(L1)+length(L2)

c) concat(L1,concat(L2,L3)) = concat(concat(L1,L2),L3)

d) length(reverse(L)) = length(L)

e) reverse(concat(L1,L2)) = concat(reverse(L2),reverse(L1))

f) reverse(reverse(L)) = L

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

We now develop a description of the semantics of Wren using an inference
system according to structural operational semantics. The task can be sepa-
rated into two parts, the first specifying the semantics of expressions in Wren
and the second specifying the semantics of commands.

Semantics of Expressions in Wren

Structural operational semantics provides a deductive system, based on the
abstract syntax of a programming language, that allows a syntactic transfor-
mation of language elements to normal form values that serve as their mean-
ing. Such a definition includes a notion of configurations representing the
progress of computations and an inference system that defines transitions
between the configurations. We concentrate first on the meaning (evaluation)
of expressions in Wren.

Since expressions in Wren permit identifiers, their meaning depends on the
values of identifiers recorded in a structure, called the store, that models the
memory of a computer. Any expression (even any program) contains only a
finite set of identifiers, which means that the store structure can be viewed
as a finite set of pairs binding values to identifiers, sometimes referred to as
a finite function . For any store sto, let dom(sto) denote the (finite) set of
identifiers with bindings in sto.

Thinking of a store as a set of pairs, we informally use a notation of the form
{x|→3, y|→5, p|→true} to represent a store with three bindings. For this store,
dom(sto) = {x,y,p}. Let Store with sto as its metavariable stand for the cat-

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

246 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

egory of stores. The actual implementation of stores is immaterial to the
specification of a programming language, so we rely on three abstract opera-
tions to describe the manipulation of stores:

1. emptySto represents a store with no bindings; that is, all identifiers are
undefined.

2. updateSto(sto,id,n) and updateSto(sto,bid,b) represent the store that agrees
with sto but contains one new binding, either id|→n or bid|→b.

3. applySto(sto,id) and applySto(sto,bid) return the value associated with id
or bid; if no binding exists, the operation fails blocking the deduction.

Observe that applySto(sto,id) is defined if and only if id∈dom(sto), and the
corresponding property holds for Boolean identifiers. Expressions in Wren
have no way to modify bindings in a store, so the operation updateSto is not
used in defining their semantics in Wren.

In a manner similar to the store actions, the binary operations allowed in
Wren expressions are abstracted into an all-purpose function
compute(op,arg1,arg2) that performs the actual computations. For example,
compute(+,3,5) returns the numeral 8, compute(<,3,5) returns true , and
compute(and,true ,false) returns false . Since compute(/,n,0) is not defined,
the evaluation of any expression in which this computation appears must
fail. We say that such an evaluation is stuck , since no rule can be success-
fully applied to an expression of the form “n/0”. A stuck computation cannot
proceed. This concept is different from a nonterminating computation, which
proceeds forever.

For evaluating expressions, a configuration consists of a pair containing an
expression to examine and a store that provides a context for the computa-
tion. A particular evaluation starts with a configuration, and under control of
an inference system, allows a reduction of the configuration to a final or
terminating configuration that acts as a normal form value for the expres-
sion. In Wren, final configurations for expressions have a first value that is a
numeral or a Boolean constant: <n,sto> or <b,sto>.

The inference system for Wren expressions, shown in Figure 8.6, provides
rules for each syntactic form that is not in normal form. The symbol ➞ serves
to represent a transition from one configuration to another. Note that some
rules—namely, axioms (7), (12), and (13)—have conditions.

247

<ie1,sto> ➞ <ie1',sto>

<ie1 iop ie2,sto> ➞ <ie1' iop ie2,sto>
(1)

<ie1,sto> ➞ <ie1',sto>

<ie1 rop ie2,sto> ➞ <ie1' rop ie2,sto>
(2)

<be1,sto> ➞ <be1',sto>

<be1 bop be2,sto> ➞ <be1' bop be2,sto>
(3)

<ie2,sto> ➞ <ie2',sto>

<n iop ie2,sto> ➞ <n iop ie2',sto>
(4)

<ie2,sto> ➞ <ie2',sto>

<n rop ie2,sto> ➞ <n rop ie2',sto>
(5)

<be2,sto> ➞ <be2',sto>

<b bop be2,sto> ➞ <b bop be2',sto>
(6)

<n1 iop n2, sto> ➞ <compute(iop,n1,n2), sto> (iop ≠ /) or (n2 ≠ 0)(7)

<n1 rop n2, sto> ➞ <compute(rop,n1,n2), sto> (8)

<b1 bop b2, sto> ➞ <compute(bop,b1,b2), sto> (9)

<bid,sto> ➞ <applySto(sto,bid),sto> bid∈dom(sto)(13)

(10)
<be,sto> ➞ <be',sto>

<not(be),sto> ➞ <not(be'),sto>

(11) <not(true),sto> ➞ <false,sto> <not(false),sto> ➞ <true,sto>

<id,sto> ➞ <applySto(sto,id),sto> id∈dom(sto)(12)

Figure 8.6: Inference System for Expressions

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

248 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

The inference rules enforce a definite strategy for evaluating expressions.
Rules (1) through (3) require that the left argument in a binary expression be
simplified first. Only when the left argument has been reduced to a constant
(n or b) can rules (4) through (6) proceed by evaluating the right argument.
Finally, when both arguments are constants, rules (7) through (9) permit the
binary operation to be calculated using compute. The only other rules handle
the unary operation not and the atomic expressions that are identifiers. Atomic
expressions that are numerals or Boolean constants have already been re-
duced to normal form. Unary minus has been left as an exercise at the end of
this section.

We can view a computation describing the meaning of an expression as a
sequence of configurations where each transition is justified using rules (1)
through (13):

<e1,sto> ➞ <e2,sto> ➞ <e3,sto> ➞ … ➞ <en-1,sto> ➞ <en,sto>.

Then by adding a rule (14), which makes the ➞ relation transitive, we can
deduce <e1,sto> ➞ <en,sto> by applying the new rule n-1 times.

<e1,sto> ➞ <e2,sto>

<e1,sto> ➞ <e3,sto>

e1,e2,e3∈Iexp
or

e1,e2,e3∈Bexp

<e2,sto> ➞ <e3,sto>
(14)

In addition to having ➞ be transitive, it makes sense to assume that ➞ is also
reflexive, so that <e,sto> ➞ <e,sto> for any expression e and store sto. Then
when we write <e1,sto> ➞ <e2,sto>, we mean that one configuration <e1,sto>
can be reduced to another configuration <e2,sto>, possibly the same one, by
zero or more applications of inference rules from Figure 8.6.

The rules in these inference systems are really rule schemes , representing
classes of actual rules in which specific identifiers, numerals, Boolean con-
stants, and specific operators replace the metavariables in the inference rules.
For example, “< 5 ≥ 12,emptySto> ➞ <false ,emptySto>” is an instance of rule
(8) since compute(≥,5,12) = false .

Example

Consider an evaluation of the expression “x+y+6” with sto = {x|→17, y|→25}
given as the store. The sequence of computations depends on the structure
of the abstract syntax tree that “x+y+6” represents. We distinguish between
the two possibilities by inserting parentheses as structuring devices. We carry
out the computation for “x+(y+6)” and leave the alternative grouping as an
exercise. Observe that in Wren an abstract syntax tree with this form must
have come from a text string that originally had parentheses.

249

We first display the computation sequence for “x+(y+6)” as a linear deriva-
tion:

a) <y,sto> ➞ <25,sto> since applySto(sto,y)=25 (12)

b) <y+6,sto> ➞ <25+6,sto> (1) and a

c) <25+6,sto> ➞ <31,sto> since compute(+,25,6)=31 (7)

d) <y+6,sto> ➞ <31,sto> (14), b, and c

e) <x,sto> ➞ <17,sto> since applySto(sto,x)=17 (12)

f) <x+(y+6),sto> ➞ <17+(y+6),sto> (1) and e

g) <17+(y+6),sto> ➞ <17+31,sto> (4) and d

h) <x+(y+6),sto> ➞ <17+31,sto> (14), f, and g

i) <17+31,sto> ➞ <48,sto> since compute(+,17,31)=48 (7)

j) <x+(y+6),sto> ➞ <48,sto> (14), h, and i

The last configuration is terminal since <48,sto> is in normal form. Note the
use of rule (14) that makes ➞ a transitive relation. Using a proof by math-
ematical induction, we can establish a derived rule that allows any finite
sequence of transitions as premises for the rule:

<e1,sto> ➞ <e2,sto>

<e1,sto> ➞ <en,sto>

<e2,sto> ➞ <e3,sto> <en-1,sto> ➞ <en,sto>…

provided that n≥2 and every ei comes from Iexp or every ei comes from Bexp.

Figure 8.7 depicts the derivation tree corresponding to the inferences that
evaluate “x+(y+6)”. To save space, the store argument is shortened to “s”. The
last step of the deduction uses the generalization of rule (14) seen immedi-
ately above.

<17+(y+6),s> ➞ <17+31,s>

<x+(y+6),s> ➞ <48,s>

<17+31,s> ➞ <48,s>

<y+6,s> ➞ <31,s>

<y+6,s> ➞ <25+6,s> <25+6,s> ➞ <31,s>

<y,s> ➞ <25,s>

<x,s> ➞ <17,s>

<x+(y+6),s> ➞ <17+(y+6),s>

Figure 8.7: A Derivation Tree

Notice from the previous example that the step-by-step computation seman-
tics prescribes a left-to-right evaluation strategy for expressions. For an ex-

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

250 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

pression such as “(2* x)+(3* y)”, with parentheses to show the structure of the
abstract syntax tree, the subexpression “2* x” is evaluated before the
subexpression “3* y”. Some language designers complain that such ordering
amounts to over specification of the semantics of expressions. However, slight
changes in the inference rules can make expression evaluation
nondeterministic in terms of this order. The problem is left to the reader as
an exercise.

Outcomes

We say the computation has terminated or halted if no rule applies to the
final configuration <en,sto>. This happens if the configuration is in normal
form or if no rule can be applied because of unsatisfied conditions. Since we
solely consider syntactically correct expressions, the only conditions whose
failure may cause the computation to become stuck result from the dynamic
errors of Wren. These conditions are as follows:

1. (iop≠/) or (n≠0) for rule (7)

2. id∈dom(sto) for rule (12)

3. bid∈dom(sto) for rule (13)

Taking the conditions into account, we can establish a completeness result
for the inference system that defines the semantics of Wren expressions.

Definition : For any expression e, let var(e) be the set of variable identifiers
that occur in e. ❚

Completeness Theorem:

1. For any ie∈(Iexp – Num) and sto∈Store with var(ie)⊆dom(sto) and no oc-
currence of the division operator in ie, there is a numeral n∈Num such
that <ie,sto> ➞ <n,sto>.

2. For any be∈(Bexp – {true ,false }) and sto∈Store with var(be)⊆dom(sto) and
no occurrence of the division operator in be, there is a Boolean constant
b∈{true ,false } such that <be,sto> ➞ <b,sto>.

Proof: The proof is by structural induction following the abstract syntax of
expressions in Wren.

1. Let ie∈(Iexp – Num) and sto∈Store with var(ie)⊆dom(sto), and suppose ie
has no occurrence of the division operator. According to the definition of
abstract syntax presented in Figure 8.4, ie must be of the form id∈Id or
(ie1 iop ie2) where iop∈Iop–{/} and ie1,ie2 : iexp also have no occurrence
of /.

Case 1 : ie = id∈Id. Then id∈dom(sto) and <id,sto> ➞ <n,sto> where n =
applySto(sto,id) using rule (12).

251

Case 2 : ie = ie1 iop ie2 where iop∈Iop – {/} and ie1,ie2 : iexp,
and for i=1,2, var(iei)⊆dom(sto) and iei contains no occurrence of /.

Subcase a : ie1 = n1∈Num and ie2 = n2∈Num. Then <ie,sto> =
<n1 iop n2,sto> ➞ <n,sto> where n = compute(iop,n1,n2) by rule (7), whose
condition is satisfied since iop≠/.

Subcase b : ie1 = n1∈Num and ie2∈(Iexp – Num). By the induction hy-
pothesis, <ie2,sto> ➞ <n2,sto> for some n2∈Num. We then use rule (4) to
get <ie,sto> = <n1 iop ie2,sto> ➞ <n1 iop n2,sto>, to which we can apply
subcase a.

Subcase c : ie1∈(Iexp – Num) and ie2∈Iexp. By the induction hypothesis,
<ie1,sto> ➞ <n1,sto> for some n1∈Num. We then use rule (1) to get <ie,sto>
= <ie1 iop ie2,sto> ➞ <n1 iop ie2,sto>, to which we can apply subcase a or
subcase b.

Therefore, the conditions for structural induction on integer expressions
are satisfied and the theorem holds for all ie∈(Iexp–Num).

2. An exercise. ❚

A companion theorem, called the consistency theorem, asserts that every
computation has a unique result.

Consistency Theorem:

1. For any ie∈(Iexp – Num) and sto∈Store, if <ie,sto> ➞ <n1,sto> and <ie,sto>
➞ <n2,sto> with n1,n2∈Num, it follows that n1 = n2.

2. For any be∈(Bexp – {true ,false }) and sto∈Store, if <be,sto> ➞ <b1,sto>
and <be,sto> ➞ <b2,sto> with b1,b2∈{true ,false }, it follows that b1 = b2.

Proof: Use structural induction again.

1. Let ie∈(Iexp – Num) and sto∈Store with <ie,sto> ➞ <n1,sto> and <ie,sto>
➞ <n2,sto> for n1,n2∈Num.

Case 1 : ie = id∈Id. Then both computations must use rule (12), and n1
= applySto(sto,id) = n2.

Case 2 : ie = ie1 iop ie2. The last step in the computations <ie1 iop ie2,sto>
➞ <n1,sto> and <ie1 iop ie2,sto> ➞ <n2,sto> must be obtained by apply-
ing rule (7) to expressions of the form k1 iop k2 and m1 iop m2
where k1,k2,m1,m2 ∈Num,

<ie1 ,sto> ➞ <k1,sto>, <ie2,sto> ➞ <k2,sto>,
<ie1,sto> ➞ <m1,sto>, <ie2,sto> ➞ <m2,sto>,
compute(iop,k1,k2) = n1, and compute(iop,m1,m2) = n2.

Then by the induction hypothesis, k1 = m1 and k2 = m2.
Therefore n1 = compute(iop,k1,k2) = compute(iop,m1,m2) = n2.

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

252 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Now the result follows by structural induction.

2. An exercise. ❚

Exercises

1. Evaluate the Wren expression “(x+y)+6” using the store, sto = {x|→17,
y|→25}. Draw a derivation tree that shows the applications of the infer-
ence rules.

2. Evaluate the following Wren expressions using the structural operational
specification in Figure 8.6 and the store sto = {a|→6, b|→9, p|→true,
q|→false}.
a) (a<>0) and not (p and q)
b) a – (b – (a –1))
c) (a > 10) or (c=0)
d) b / (a-6)

3. Prove the derived rule for the semantics of Wren expressions:

<e1,sto> ➞ <e2,sto> <e2,sto> ➞ <e3,sto> … <en-1,sto> ➞ <en,sto>

<e1,sto> ➞ <en,sto>

with the condition that n≥2 and every ei comes from Iexp or every ei
comes from Bexp.

4. Provide additional inference rules in Figure 8.6 so that the system gives
meaning to Wren expressions using the unary minus operation. Hint:
Use compute for the arithmetic.

5. Modify the inference system for Wren expressions so that binary expres-
sions can have either the left or the right argument evaluated first.

6. Complete the proof of the completeness theorem for Boolean expres-
sions in Wren.

7. Complete the proof of the consistency theorem for Boolean expressions
in Wren.

8. Define rules that specify the meaning of Boolean expressions of the form
“b1 and b2” and “b1 or b2” directly in the manner of rule (11) for not.
Then rewrite the specification of Wren expressions so that and then and
or else are interpreted as conditional (short-circuit) operators. A condi-
tional and—for example, “b1 and then b2”—is equivalent to “if b1 then
b2 else false ”.

253

9. Extend Wren to include conditional integer expressions with the ab-
stract syntax

be : bexp ie1 : iexp ie2 : iexp

if be then ie1 else ie2 : iexp

and add inference rule(s) to give them meaning.

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

The structural operational semantics of a command in Wren describes the
steps of a computation as the command modifies the state of a machine. We
now consider language features—assignment and input—that can change
the values bound to identifiers in the store. In addition, the read and write
commands affect the input and output lists associated with the execution of
a program. A triple of values represents the state of our abstract machine:
the current input list, the current output list, and the current store. Input
and output sequences are finite lists of numerals. We use structures of the
form st(in,out,sto) to describe the state of a machine at a particular instant,
where “in” and “out” are finite lists of numerals, represented using the nota-
tion [3,5,8].

A configuration on which the transition system operates contains a com-
mand to be executed and a state. Given a command c0 and an initial state
st(in0,out0,sto0), a computation proceeds following a set of inference rules.

<c0,st(in0,out0,sto0)> ➞ <c1,st(in1,out1,sto1)> ➞ <c2,st(in2,out2,sto2)> ➞ ….

The inference rules for the structural operational semantics of commands in
Wren are listed in Figure 8.8. Observe that most commands need not delve
into the internal structure of states; in fact, only assignment, read, and write
explicitly modify components of the state. The input and output lists are
manipulated by auxiliary functions, head, tail, and affix. The write com-
mand uses affix to append a numeral onto the right end of the output list.
For example, affix([2,3,5],8) = [2,3,5,8].

Again, the inference rules promote a well-defined strategy for the execution
of commands. When the action of a command depends on the value of some
expression that serves as a component in the command, we use a rule whose
premise describes one step in the reduction of the expression and whose
conclusion assimilates that change into the command. See rules (1), (3), and
(11) for illustrations of this strategy. When the expression has been reduced
to its normal form (a numeral or a Boolean constant), the command carries
out its action. See rules (2), (4), (5), and (12) for examples.

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

254 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<if be then c1 else c2,st(in,out,sto)> ➞ <if be' then c1 else c2,st(in,out,sto)>

<while be do c,state> ➞ <if be then (c ; while be do c) else skip,state>

<read id,st(in,out,sto)> ➞
<skip,st(tail(in),out,updateSto(sto,id,head(in)))>

<ie,sto> ➞ <ie',sto>

<write ie,st(in,out,sto)> ➞ <write ie',st(in,out,sto)>
(11)

(12) <write n,st(in,out,sto)> ➞ <skip,st(in,affix(out,n),sto)

<id := n,st(in,out,sto)> ➞ <skip,st(in,out,updateSto(sto,id,n))>

<bid := b,st(in,out,sto)> ➞ <skip,st(in,out,updateSto(sto,bid,b))>

(2a)

<be,sto> ➞ <be',sto>(3)

(1a)
<ie,sto> ➞ <ie',sto>

<id := ie,st(in,out,sto)> ➞ <id := ie',st(in,out,sto)>

(4) <if true then c1 else c2,state> ➞ <c1,state>

(5) <if false then c1 else c2,state> ➞ <c2,state>

(7)

in ≠ [](10)

(8)
<c1,state> ➞ <c1',state'>

<c1 ; c2,state> ➞ <c1' ; c2,state'>

(6) <if be then c,state> ➞ <if be then c else skip,state>

(9) <skip ; c,state> ➞ <c,state>

<be,sto> ➞ <be',sto>

<bid:=be,st(in,out,sto)> ➞ <bid:=be',st(in,out,sto)>
(1b)

(2b)

Figure 8.8: Semantics for Commands

255

Note that assignment and the read and write commands are elementary
actions, so they reduce to an “empty command” represented by skip . Two
commands, if-then and while , are handled by translation into forms that
are treated elsewhere (see rules (6) and (7)). Finally, command sequencing
(semicolon) needs two rules—one to bring about the reduction of the first
command to skip , and the second to discard the first command when it has
been simplified to skip . Observe that now we have the possibility that a com-
putation may continue forever because of the while command in Wren. Rule
(7) defines “while be do c” in terms of itself.

For completeness, we again included an inference rule that makes the tran-
sition relation ➞ transitive:

<c1,state1> ➞ <c2,state2>

<c1,state1> ➞ <c3,state3>

<c2,state2> ➞ <c3,state3>
(13)

and furthermore assume that ➞ is a reflexive relation.

Given a Wren program whose declarations have been elaborated, verifying
that it satisfies the context conditions of its syntax, and whose body is the
command c, and given a list [n1, n2, n3, …, nk] of numerals as input, the
transition rules defined by the inference system in Figure 8.8 are applied to
the initial configuration, <c, st([n1,n2,n3,…,nk],[],emptySto)>, to produce the
meaning of the Wren program.

A configuration with the pattern <skip ,state> serves as a normal form for
computations. No rule applies to configurations in this form, and their state
embodies the result of the computation—namely, the output list and the
final store—when all of the commands have been executed. We have three
possible outcomes of a computation that starts with a command and an
initial state:

1. After a finite number of transitions, we reach a configuration <skip ,state>
in normal form.

2. After a finite number of transitions, we reach a configuration that is not
in normal form but for which no further transition is defined. This can
happen when an expression evaluation becomes stuck because of an
undefined identifier or division by zero, or upon the failure of the condi-
tion on rule (10), which specifies that the input list is nonempty when a
read command is to be executed next.

3. A computation sequence continues without end when describing the se-
mantics of a while command that never terminates. As a simple example,
consider the transitions:

<while true do skip ,state>

➞ <if true then (skip ; while true do skip) else skip ,state> (7)

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

256 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

➞ <skip ; while true do skip ,state> (4)

➞ <while true do skip ,state> (9)

➞ <if true then (skip ; while true do skip) else skip ,state> (7)

➞ <skip ; while true do skip ,state> (4)

➞ <while true do skip ,state> (9)

➞ ….

We use the notation <c,state> ➞ ∞ to denote the property that a compu-
tation sequence starting with the configuration <c,state> fails to termi-
nate. It should be obvious from the example above that for any state st,
<while true do skip ,st> ➞ ∞ .

Using rules (8) and (9) we can derive a new inference rule (9') that will make
deductions a bit more concise.

<c1,state> ➞ <skip,state'>

<c1 ; c2,state> ➞ <c2,state'>
(9')

Verifying this new rule provides an example of a derivation following the in-
ference system.

<skip ; c2,state'> ➞ <c2,state'> (9)
(8)

<c1,state> ➞ <skip,state'>

<c1 ; c2,state> ➞ <skip ; c2,state'>

<c1 ; c2,state> ➞ <c2,state'> (13)

A Sample Computation

Since the steps in a computation following structural operational semantics
are very small, derivation sequences for even simple programs can get quite
lengthy. We illustrate the semantics with an example that may well be a test
of endurance. The Wren program under consideration consists of the com-
mand sequence

mx := 0; read z; while z≥0 do ((if z>mx then mx:=z);read z); write mx

where we assume that all identifiers have been appropriately declared. Meta-
parentheses clarify the grouping of this representation of the abstract syn-
tax. The program is given the input list: [5,8,3,-1].

To shorten the description of the derivation, a number of abbreviations will
be employed:

c1 = (mx:=0)

c2 = read z

257

c3 = while z≥0 do ((if z>mx then mx:=z);read z)

c4 = write mx

cw = (if z>mx then mx:=z);read z

{ } = emptySto

We start the transition system with the initial state, st([5,8,3,-1],[],{ }).

Throughout the derivation, assume that “if z>mx then mx:=z” is an abbre-
viation of “if z>mx then mx:=z else skip ” to avoid the extra steps using rule
(6). For each step in the derivation, the number of the rule being applied will
appear at the far right. The details of expression evaluation are suppressed,
so we just use “(expr)” to signify a derivation for an expression even though it
may consist of several steps. The rule (13) that makes ➞ transitive is gener-
ally ignored, but its result is implied. Here then is the computation according
to structural operational semantics.

<mx:=0,st([5,8,3,-1],[],{ })> ➞ <skip ,st([5,8,3,-1],[],{mx|→0})> (2)

<mx:=0;c2;c3;c4,st([5,8,3,-1],[],{ })> ➞

<read z;c3;c4,st([5,8,3,-1],[],{mx|→0})> (9')

<read z,st([5,8,3,-1],[],{mx|→0})> ➞ <skip ,st([8,3,-1],[],{mx|→0,z|→5})> (10)

<read z;c3;c4,st([5,8,3,-1],[],{mx|→0})> ➞ (9')

<(while z≥0 do cw);c4,st([8,3,-1],[],{mx|→0,z|→5})>

<while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (7)

<if z≥0 then (cw;c3) else skip ,st([8,3,-1],[],{mx|→0,z|→5})>

<z≥0,{mx|→0,z|→5}> ➞ <true ,{mx|→0,z|→5}> (expr)

<if z≥0 then (cw;c3) else skip ,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (3)

<if true then (cw; c3) else skip ,st([8,3,-1],[],{mx|→0,z|→5})>

<if true then (cw;c3) else skip ,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (4)

<cw;c3,st([8,3,-1],[],{mx|→0,z|→5})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5}>

<z>mx,{mx|→0,z|→5}> ➞ <true ,{mx|→0,z|→5}> (expr)

<if z>mx then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}> ➞ (3)

<if true then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}>

<if true then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}> ➞ (4)

<mx:=z,st([8,3,-1],[],{mx|→0,z|→5}>

<z,{mx|→0,z|→5}> ➞ <5,{mx|→0,z|→5}> (expr)

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

258 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<mx:=z,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (1)

<mx:=5,st([8,3,-1],[],{mx|→0,z|→5})>

<mx:=5,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (2)

<skip ,st([8,3,-1],[],{mx|→5,z|→5})>

<if z>mx then mx:=z,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (13)

<skip ,st([8,3,-1],[],{mx|→5,z|→5})>

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5})> ➞

<read z;while z≥0 do cw,st([8,3,-1],[],{mx|→5,z|→5})> (9')

<read z,st([8,3,-1],[],{mx|→5,z|→5})> ➞ <skip ,st([3,-1],[],{mx|→5,z|→8})> (10)

<read z;while z≥0 do cw,st([8,3,-1],[],{mx|→5,z|→5})> ➞ (9')

<while z≥0 do cw,st([3,-1],[],{mx|→5,|→8})>

<while z≥0 do cw,st([3,-1],[],{mx|→5,z|→8})> ➞ (7)

<if z≥0 then (cw;c3) else skip ,st([3,-1],[],{mx|→5,|→8})>

<z≥0,{mx|→5,z|→8}> ➞ <true ,{m|→5,|→8}> (expr)

<if z≥0 then (cw;c3) else skip ,st([3,-1],[],{mx|→5,|→8})> ➞ (3)

<if true then (cw;c3) else skip ,st([3,-1],[],{mx|→5,z|→8})>

<if true then (cw;c3) else skip ,st([3,-1],[],{mx|→5,z|→8})> ➞ (4)

<cw;c3,st([3,-1],[],{mx|→5,|→8})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([3,-1],[],{mx|→5,|→8}>

<z>mx,{mx|→5,z|→8}> ➞ <true ,{m|→5,z|→8})> (expr)

<if z>mx then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<if true then mx:=z,st([3,-1],[],{mx|→5,z|→8})> (3)

<if true then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<mx:=z,st([3,-1],[],{mx|→5,z|→8})> (4)

<z,{mx|→5,z|→8}> ➞ <8,{mx|→5,z|→8}> (expr)

<mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<mx:=8,st([3,-1],[],{mx|→5,z|→8})> (1)

<mx:=8,st([3,-1],[],{mx|→5,|→8}> ➞ (2)

<skip ,st([3,-1],[],{mx|→8,z|→8}>

<if z>mx then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞ (13)

<skip ,st([3,-1],[],{mx|→8,z|→8})>

259

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([3,-1],[],{mx|→5,z|→8})>

➞

<read z;while z≥0 do cw,st([3,-1],[],{mx|→8,|→8})> (9')

<read z,st([3,-1],[],{mx|→8,z|→8})> ➞ <skip ,st([-1],[],{mx|→8,z|→3})> (10)

<read z;while z≥0 do cw,st([3,-1],[],{mx|→8,z|→8})> ➞ (9')

<while z≥0 do cw,st([-1],[],{mx|→8,z|→3})>

<while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> ➞ (7)

<if z≥0 then (cw;c3) else skip ,st([-1],[],{mx|→8,z|→3})>

<z≥0,{mx|→8,z|→3}> ➞ <true ,{mx|→8,z|→3}> (expr)

<if z≥0 then (cw;c3) else skip ,st([-1],[],{mx|→8,z|→3})> ➞ (3)

<if true then (cw;c3) else skip ,st([-1],[],{mx|→8,z|→3})>

<if true then (cw;c3) else skip ,st([-1],[],{mx|→8,z|→3})> ➞ (4)

<cw;c3,st([-1],[],{mx|→8,z|→3})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([-1],[],{m|→8,z|→3}>

<z>mx,{mx|→8,z|→3}> ➞ <false ,{mx|→8,z|→3})> (expr)

<if z>mx then mx:=z,st([-1],[],{mx|→8,z|→3})> ➞ (3)

<if false then mx:=z,st([-1],[],{mx|→8,z|→3})>

<if false then mx:=z,st([-1],[],{mx|→8,z|→3})> ➞ (5)

<skip ,st([-1],[],{mx|→8,z|→3})>

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> (9')

<read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})>

<read z,st([-1],[],{mx|→8,z|→3})> ➞ <skip ,st([],[],{mx|→8,z|→-1})> (10)

<read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> ➞ (9')

<while z≥0 do cw,st([],[],{mx|→8,z|→-1})>

<while z≥0 do cw,st([],[],{m|→8,z|→-1})> ➞ (7)

<if z≥0 then (cw;c3) else skip ,st([],[],{mx|→8,z|→-1})>

<z≥0,{mx|→8,z|→-1}> ➞ <false ,{mx|→8,z|→-1}> (expr)

<if z≥0 then (cw;c3) else skip ,st([],[],{mx|→8,z|→-1})> ➞ (3)

<if false then (cw;c3) else skip ,st([],[],{mx|→8,z|→-1})>

<if false then (cw;c3) else skip ,st([],[],{mx|→8,z|→-1})> ➞ (5)

<skip ,st([],[],{mx|→8,z|→-1})>

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

260 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<while z≥0 do cw,st([],[],{mx|→8,z|→-1})> ➞ (13)

<skip ,st([],[],{mx|→8,z|→-1})>

<while z≥0 do cw ;write mx,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (9')

<write mx,st([],[],{mx|→8,z|→-1})>

<mx,{mx|→8,z|→-1})> ➞ <8,{mx|→8,z|→-1}> (expr)

<write mx,st([],[],{mx|→8,z|→-1})> ➞ (11)

<write 8,st([],[],{mx|→8,z|→-1})>

<write 8,st([],[],{mx|→8,z|→-1})> ➞ (12)

<skip ,st([],[8],{mx|→8,z|→-1})>

<c1;c2;c3;c4,st([5,8,3,-1],[],{ })> ➞

<skip ,st([],[8],{mx|→8,z|→-1})> (13)

This linear deduction of the final state represents a derivation tree with axi-
oms at its leaf nodes and the configuration <skip , st([],[8],{mx|→8,z|→-1})> at
its root. Clearly, there is no reasonable way we can show the tree for this
derivation.

Semantic Equivalence

One justification for formal definitions of programming languages is to pro-
vide a method for determining when two commands have the same effect. In
the framework of structural operational semantics, we can define semantic
equivalence in terms of the computation sequences produced by the two
commands.

Definition : Commands c1 and c2 are semantically equivalent, written c1 ≡
c2, if both of the following two properties hold:

1. For any two states s and sf,

<c1,s> ➞ <skip ,sf> if and only if <c2,s> ➞ <skip ,sf>, and

2. For any state s,

<c1,s> ➞ ∞ if and only if <c2,s> ➞ ∞. ❚

It follows that for semantically equivalent commands, if one gets stuck in a
nonfinal configuration, the other must also.

Example : For any c1,c2 : cmd and be : bexp,

if be then c1 else c2 ≡ if not (be) then c2 else c1.

261

Proof: Let be : bexp and let c1 and c2 be any two commands. Suppose that
s = st(in,out,sto) is an arbitrary state.

Case 1 : <be,sto> ➞ <true ,sto> by some computation sequence.
Then <not(be),sto> ➞ <not (true),sto> ➞ <false ,sto> by rules (10) and (11) for
expressions in Figure 8.6. Now use rules (3), (4), and (5) for commands to get:

<if be then c1 else c2,s> ➞ <if true then c1 else c2,s> ➞ <c1,s> and

<if not (be) then c2 else c1,s> ➞ <if false then c2 else c1,s> ➞ <c1,s>.

From here on the two computations from <c1,s> must be identical.

Case 2 : <be,sto> ➞ <false ,sto> by some computation. Proceed as in case 1.

Case 3 : <be,sto> ➞ <be’,sto> where be' is not a Boolean constant and the
computation is stuck. Then both

<if be then c1 else c2,s> ➞ <if be' then c1 else c2,s> and

<if not (be) then c2 else c1,s> ➞ <if not (be’) then c2 else c1,s>

are stuck computations. ❚

Our definition of semantic equivalence entails a slight anomaly in that any
two nonterminating computations are viewed as equivalent. In particular,
this means that a program that prints the number 5 endlessly is considered
equivalent to another program that runs forever without any output. For
terminating computations, however, the definition of semantic equivalence
agrees with our intuition for programs having the same behavior.

Natural Semantics

Structural operational semantics takes as its mission the description of the
individual steps of a computation. It strives to capture the smallest possible
changes in configurations. For this reason, structural operational semantics
is sometimes called small-step semantics . An alternative semantics takes
the opposite view—namely, to describe the computation in large steps pro-
viding a direct relation between initial and final states. This version of opera-
tional semantics is defined by inference systems to create a so-called big-
step semantics . The most developed version of big-step semantics, called
natural semantics , was proposed by a group in France led by Gilles Kahn.

To suggest the flavor of natural semantics, we show in Figure 8.9 several of
the inference rules that are used to define the meaning of Wren. In natural
semantics, configurations have several possible forms for each kind of lan-
guage construct:

Expressions: <e,sto>, n, or b, and

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

262 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Commands: <c,state> or state.

A transition defines a final result in one step, namely

<e,sto> ➨ n or <e,sto> ➨ b, and

<c,state> ➨ state',

We chose to investigate small-step semantics because big-step semantics
closely resembles denotational semantics and, in fact, can be viewed as a
notational variant of it. See Chapter 9 for a description of denotational se-
mantics. For more on natural semantics as well as structural operational
semantics, see the further readings at the end of this chapter.

<ie1,sto> ➨ n1

<ie1 iop ie2,sto> ➨ compute(iop,n1,n2)

<ie2,sto> ➨ n2

<be,sto> ➨ true

<if be then c1 else c2,st(in,out,sto)> ➨ st(in',out',sto')

<c1,st(in,out,sto)> ➨ st(in',out',sto')

<c1,state> ➨ state'

<c1 ; c2,state> ➨ state''

<c2,state'> ➨ state''

<be,sto> ➨ false

<if be then c1 else c2,st(in,out,sto)> ➨ st(in',out',sto')

<c2,st(in,out,sto)> ➨ st(in',out',sto')

Figure 8.9: Some Inference Rules for the Natural Semantics of Wren

Exercises

1. Derive the computation sequence for the following Wren programs. Use
[8,13,-1] as the input list.

a) read a; read b; c:=a; a:=b; b:=c; write a; write b

b) n:=3; f:=1; while n>1 do (f:=f* n; n:=n-1); write f

c) s:=0; read a; while a≥0 do (s:=s+a; read a); write s

d) read x; if x>5 then y := x+2 else y := 0

e) p:=true ; read m; while p do (read a; m:=m* a; p:=not (p)); write m

263

2. The following rule provides an alternate definition of the while com-
mand in Wren:

<if be then (c ; while be do c) else skip,state> ➞ <skip,state'>

<while be do c,state> ➞ <skip,state'>
(7')

Show that the inference system with rule (7) replaced by this new rule is
equivalent to the original system.

3. Add these language constructs to Wren and provide meaning for them
by defining inference rules for their semantics.

repeat c until be : cmd

be : bexp c : cmda)

begin c return ie end : iexp

c : cmd ie : iexp b)

c) swap (id1,id2) : cmd id1,id2∈Id

ie1,ie2 : iexp

id1,id2 := ie1,ie2 : cmd
 id1,id2∈Id

d) Parallel assignment:

4. Verify the following semantic equivalences.

a) For any c:cmd, c ; skip ≡ c.

b) For any c:cmd, skip ; c ≡ c.

c) For any be:bexp and c:cmd, if be then c else c ≡ c, assuming the
reduction of be does not become stuck.

d) For any be:bexp and c1,c2,c3:cmd,
(if be then c1 else c2) ; c3 ≡ if be then (c1 ; c3) else (c2 ; c3).

5. Prove that these pairs of commands are not semantically equivalent:

a) c3 ; (if be then c1 else c2) and if be then (c3 ; c1) else (c3 ; c2)

b) id1,id2 := ie1,ie2 and id1 := ie1 ; id2 := ie2

6. Extend Wren to include a definite iteration command of the form

ie1 : iexp ie2 : iexp c : cmd

for id := ie1 to ie2 do c end : cmd
id∈Id

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

264 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

whose informal semantics agrees with the for command in Pascal. Add
inference rules to the structural operational semantics of Wren to give a
formal semantics for this new command.

8.7 LABORATORY: IMPLEMENTING STRUCTURAL
OPERATIONAL SEMANTICS

In Chapter 2 we developed a scanner and parser that take a text file contain-
ing a Wren program and produce an abstract syntax tree. Now we continue,
creating a prototype implementation of Wren based on its structural opera-
tional semantics.

The transcript below shows a sample execution with the operational inter-
preter. The program reads a positive decimal integer and converts it into
binary by subtracting powers of two. The example illustrates how the input
list can be handled in Prolog.

>>> Interpreting Wren via Operational Semantics <<<
Enter name of source file: tobinary.wren
 program tobinary is
 var n,p : integer;
 begin
 read n; p := 2;
 while p<=n do p := 2*p end while;
 p := p/2;
 while p>0 do
 if n>= p then write 1; n := n-p
 else write 0 end if;
 p := p/2
 end while
 end
Scan successful
Parse successful
Enter input list followed by a period: [321].
Output = [1,0,1,0,0,0,0,0,1]
Final Store:
 n int(0)
 p int(0)
yes

265

Commands

As with the implementation of the SECD machine in section 8.3, we define a
predicate transform(Config,NewConfig) that carries out one computation step
for the transition function. A configuration is represented just as it was in
section 8.6—namely, st(In,Out,Sto)—except that we need uppercase for Prolog
variables. Then rules (3), (4), and (5) defining transitions for if-then-else
commands become three Prolog clauses whose order requires rule (3) to be
last, which means that its more general pattern applies only if the Boolean
expression is not in normal form.

transform(cfg(if(bool(true),C1,C2),State), cfg(C1,State)). % 4

transform(cfg(if(bool(false),C1,C2),State), cfg(C2,State)). % 5

transform(cfg(if(Be,C1,C2),st(In,Out,Sto)), % 3
cfg(if(Be1,C1,C2),st(In,Out,Sto))) :- transform(cfg(Be,Sto),cfg(Be1,Sto)).

The predicate transform that reduces expressions is defined later. Rules (6)
and (7) in Figure 8.8 translate while and if commands according to their
meaning. Two Prolog clauses perform the required translations.

transform(cfg(if(Be,C),State), cfg(if(Be,C,skip),State)). % 6

transform(cfg(while(Be,C),State), cfg(if(Be,[C,while(Be,C)],skip),State)). % 7

Remember from Chapter 2 that the parser produces a Prolog list of com-
mands as the abstract syntax tree for a sequence of commands. Therefore
the command “c1 ; c2 ; c3 ; c4” comes from the parser as [c1, c2, c3, c4]. So rule
(9) becomes

transform(cfg([skip|Cs],State), cfg(Cs,State)). % 9

and rule (8), which must follow rule (9), becomes

transform(cfg([C|Cs],State), cfg([C1|Cs],State1)) :- % 8
transform(cfg(C,State),cfg(C1,State1)).

Since a list of commands may become empty, we need an additional clause
that has no analogue in Figure 8.8:

transform(cfg([],State), cfg(skip,State)).

Before considering the assignment command, we discuss how to model the
finite function that comprises the store. We portray the store as a Prolog
structure of the form

sto(a, int(3), sto(b, int(8), sto(c, bool(false), nil)))

for the store {a|→3, b|→8, c|→false}. The empty store is given by the Prolog
atom nil. The auxiliary functions for manipulating the store become predi-
cates defined as follows:

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

266 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

updateSto(sto(Ide,V,Sto),Ide,Val,sto(Ide,Val,Sto)).

updateSto(sto(I,V,Sto),Ide,Val,sto(I,V,NewSto)) :-
updateSto(Sto,Ide,Val,NewSto).

updateSto(nil,Ide,Val,sto(Ide,Val,nil)).

applySto(sto(Ide,Val,Sto),Ide,Val).

applySto(sto(I,V,Sto),Ide,Val) :- applySto(Sto,Ide,Val).

applySto(nil,Ide,undefined) :- write('Undefined variable'), nl, abort.

Note that when an identifier cannot be found in the store, applySto prints an
error message and aborts the execution of the operational interpreter.

If the right side of an assignment is already in normal form, the new binding
can be entered into the store immediately. Two clauses correspond to the two
parts of rule (2).

transform(cfg(assign(Ide,int(N)),st(In,Out,Sto)), % 2a
cfg(skip,st(In,Out,Sto1))) :- updateSto(Sto,Ide,int(N),Sto1).

transform(cfg(assign(Ide,bool(B)),st(In,Out,Sto)), % 2b
cfg(skip,st(In,Out,Sto1))) :- updateSto(Sto,Ide,bool(B),Sto1).

We leave the tags produced by the scanner and parser on constants as we
place the values in memory.

If the right side of an assignment is not yet in normal form, we call on the
transition function for expressions to reduce the right side using the predi-
cate transform(cfg(E,Sto),cfg(E1,Sto)) that provides the operational semantics
for expressions. We can combine the two parts of rule (1) in the Prolog imple-
mentation, since Prolog is not strongly typed.

transform(cfg(assign(Ide,E),st(In,Out,Sto)), % 1
cfg(assign(Ide,E1),st(In,Out,Sto))) :- transform(cfg(E,Sto),cfg(E1,Sto)).

Again, because of pattern matching, the more specialized clause head must
precede the more general—that is, rule (2) comes before rule (1).

The read command is handled by two clauses, one to catch the dynamic
error when the input list is empty and one to carry out the operation. Note
that the head and tail functions are replaced by pattern matching.

transform(cfg(read(Ide),st([],Out,Sto)),cfg(skip,st([],Out,Sto))) :- % 10
write('Attempted read of empty file'), nl, abort.

transform(cfg(read(Ide),st([N|T],Out,Sto)), cfg(skip,st(T,Out,Sto1))) :- % 10
 updateSto(Sto,Ide,int(N),Sto1).

267

The write command uses a Prolog predicate concat that concatenates two
lists to affix a value to the right end of the output list.

transform(cfg(write(int(N)),st(In,Out,Sto)), cfg(skip,st(In,Out1,Sto))) :- % 12
concat(Out,[N],Out1).

transform(cfg(write(E),st(In,Out,Sto)), cfg(write(E1),st(In,Out,Sto))) :- % 11
transform(cfg(E,Sto),cfg(E1,Sto)).

We need a driver predicate interpret to call the transition predicate transform
repeatedly until a normal form configuration with the skip command turns
up or until the program aborts, if ever.

interpret(cfg(skip,FinalState),FinalState).

interpret(Config,FinalState) :- transform(Config,NewConfig),
interpret(NewConfig,FinalState).

Expressions

The three groups of rules for binary expressions must be handled from the
most specific to the most general. Rules (7), (8), and (9), having both argu-
ments in normal form, must come first.

transform(cfg(exp(Opr,int(N1),int(N2)),Sto), cfg(Val,Sto)) :- % 7
compute(Opr,int(N1),int(N2),Val).

transform(cfg(bexp(Opr,int(N1),int(N2)),Sto), cfg(Val,Sto)) :- % 8
compute(Opr,int(N1),int(N2),Val).

transform(cfg(bexp(Opr,bool(B1),bool(B2)),Sto), cfg(Val,Sto)) :- % 9
compute(Opr,bool(B1),bool(B2),Val).

For all three rules, the actual computation is isolated in the predicate
compute(Opr,A1,A2,Result).

Expressions whose first argument is in normal form are treated in rules (4),
(5), and (6). We use E2p for E2'.

transform(cfg(exp(Opr,int(N),E2),Sto), cfg(exp(Opr,int(N),E2p),Sto)) :- % 4
transform(cfg(E2,Sto),cfg(E2p,Sto)).

transform(cfg(bexp(Opr,int(N),E2),Sto), cfg(bexp(Opr,int(N),E2p),Sto)) :- % 5
transform(cfg(E2,Sto),cfg(E2p,Sto)).

transform(cfg(bexp(Opr,bool(B),E2),Sto),
cfg(bexp(Opr,bool(B),E2p),Sto)) :- % 6

transform(cfg(E2,Sto),cfg(E2p,Sto)).

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

268 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Those rules in which the left argument is not yet in normal form—namely (1),
(2), and (3)—must come last.

transform(cfg(exp(Opr,E1,E2),Sto),cfg(exp(Opr,E1p,E2),Sto)) :- % 1
transform(cfg(E1,Sto),cfg(E1p,Sto)).

transform(cfg(bexp(Opr,E1,E2),Sto),cfg(bexp(Opr,E1p,E2),Sto)) :- % 2+3
transform(cfg(E1,Sto),cfg(E1p,Sto)).

Rules (2) and (3) can be folded together by letting Opr stand for both compari-
sons and Boolean operators. The compute predicate relies on native arith-
metic in Prolog and simple pattern matching to carry out the computations.
A few examples of clauses for this predicate are listed below.

compute(plus,int(M),int(N),int(R)) :- R is M+N.

compute(divides,int(M),int(0),int(0)) :- write('Division by zero'), nl, abort.
compute(divides,int(M),int(N),int(R)) :- R is M//N.

compute(equal,int(M),int(N),bool(true)) :- M =:= N.
compute(equal,int(M),int(N),bool(false)).

compute(neq,int(M),int(N),bool(false)) :- M =:= N.
compute(neq,int(M),int(N),bool(true)).

compute(less,int(M),int(N),bool(true)) :- M < N.
compute(less,int(M),int(N),bool(false)).

compute(and,bool(true),bool(true),bool(true)).
compute(and,bool(P),bool(Q),bool(false)).

Observe how a division by zero error causes the interpreter to abort. We use
abort to signal a stuck configuration. Also note that the clauses for each
operator depend on their order for correctness.

To complete the transition function for the operational semantics of expres-
sions, we still need to handle the two unary operations, logical not and unary
minus, which are left as exercises, and to deal with identifiers by probing the
store (rules 12 and 13 for expressions). One clause defines the transition
function for both integer and Boolean identifiers.

transform(cfg(ide(Ide),Sto), cfg(Val,Sto)) :- applySto(Sto,Ide,Val). % 12+13

Finally, we need to define the driver predicate evaluate that propels and moni-
tors the computation steps for expressions.

evaluate(cfg(int(N),Sto), int(N)).

evaluate(cfg(bool(B),Sto), bool(B)).

evaluate(Config, FinalValue) :- transform(Config, NewConfig),
evaluate(NewConfig, FinalValue).

269

Top-Level Driver

At the top level we call interpret with an initial configuration containing the
command Cmd that makes up the body of the Wren program together with an
initial state st(In,[],nil)) where In holds the input list obtained from the user.
We depend on a predicate go to request the input and print the output.

go :- nl,write('>>> Interpreting Wren via Operational Semantics <<<'), nl, nl,
write('Enter name of source file: '), nl, readfilename(File), nl,
see(File), scan(Tokens), seen, write('Scan successful'), nl, !,
program(prog(Dec,Cmd),Tokens,[eop]), write('Parse successful'), nl, !,
write('Enter input list followed by a period: '), nl, read(In), nl,
interpret(cfg(Cmd,st(In,[],nil)),st(FinalIn,Out,Sto)), nl,
write('Output = '), write(Out), nl, nl,
write('Final Store:'), nl, printSto(Sto), nl.

Exercises

1. Supply Prolog definitions for the transition rules for the remaining ex-
pression types: not and unary minus.

2. Complete the definition of the compute predicate.

3. Extend the prototype interpreter to include the following language con-
structs.
a) repeat-until commands

Command ::= ... | repeat Command until Expression
b) conditional expressions

Expression ::= ... | if Expression then Expression else Expression
c) expressions with side effects

Expression ::= ... | begin Command return Expression end

4. Give a definition of the Prolog predicate printSto(Sto) that prints the bind-
ings in the store Sto, one to a line.

8.8 FURTHER READING

Structural operational semantics originated in a seminal technical report by
Gordon Plotkin [Plotkin81]. This initial presentation of an operational se-
mantics based on inference rules defines a number of imperative program-
ming constructs using small-step semantics. Early work with big-step se-
mantics, called natural semantics by the group at INRIA, can be found in

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

270 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

[Kahn87]. The logic text [Reeves90] contains an introduction to natural de-
duction, the logic methodology that provides a basis for structural opera-
tional semantics. Also see [Prawitz65] for a more advanced description of
natural deduction.

The introduction to formal semantics by Nielson and Nielson [Nielson92] treats
both structural operational semantics and natural deduction. They suggest
translating such operational definitions of programming languages into pro-
totype implementations using Miranda.

Matthew Hennessy [Hennessy90] has aimed his text at an undergraduate
audience, providing many examples of operational specifications using both
small-step and big-step semantics, using the terms computation semantics
and evaluation semantics. Hennessy considers imperative, functional, and
concurrent programming languages in his examples. He also includes an
extensive discussion of structural induction with numerous examples.

Egidio Astesiano [Astesiano91] gives a clear and logical presentation of op-
erational semantics based on inference systems. He discusses the use of
inference rules to specify abstract syntax and compares small-step and big-
step operational semantics. Astesiano also describes the relation between
natural semantics and denotational semantics.

Peter Landin’s description of the SECD machine appears in [Landin64] and
[Landin66]. Many recent texts on functional programming also contain ma-
terial on SECD machines and their variants, including [Glaser84], [Henson87],
[Field88], and [Reade89].

Peter Wegner’s survey paper [Wegner72] covers the basics of the Vienna Defi-
nition Language. [Pagan81] describes VDL succinctly, using two small pro-
gramming languages to illustrate this specification method.

271

Chapter 9
DENOTATIONAL SEMANTICS

With formal semantics we give programs meaning by mapping them
into some abstract but precise domain of objects. Using denotational
semantics, we provide meaning in terms of mathematical objects,

such as integers, truth values, tuples of values, and functions. For this rea-
son, denotational semantics was originally called mathematical semantics.

Christopher Strachey and his Programming Research Group at Oxford de-
veloped denotational semantics in the mid 1960s; Dana Scott supplied the
mathematical foundations in 1969. Although originally intended as a mecha-
nism for the analysis of programming languages, denotational semantics has
become a powerful tool for language design and implementation.

In this chapter we take a careful look at denotational semantics. We illus-
trate the methodology by specifying the language of a simple calculator and
three programming languages: (1) Wren, (2) a language with procedures called
Pelican, and (3) a language with goto’s called Gull. The presentation differs
from some of the literature on denotational semantics in that we enhance the
readability of the specifications by avoiding the Greek alphabet and single
character identifiers found in the traditional presentations.

9.1 CONCEPTS AND EXAMPLES

Denotational semantics is based on the recognition that programs and the
objects they manipulate are symbolic realizations of abstract mathematical
objects, for example,

strings of digits realize numbers, and

function subprograms realize (approximate) mathematical functions.

The exact meaning of “approximate” as used here will be made clear in Chap-
ter 10. The idea of denotational semantics is to associate an appropriate
mathematical object, such as a number, a tuple, or a function, with each
phrase of the language. The phrase is said to denote the mathematical ob-
ject, and the object is called the denotation of the phrase.

272 CHAPTER 9 DENOTATIONAL SEMANTICS

Syntactically, a phrase in a programming language is defined in terms of its
constituent parts by its BNF specification. The decomposition of language
phrases into their subphrases is reflected in the abstract syntax of the pro-
gramming language as well. A fundamental principle of denotational seman-
tics is that the definition be compositional. That means the denotation of a
language construct is defined in terms of the denotations of its subphrases.
Later we discuss reasons for having compositional definitions.

Traditionally, denotational definitions use special brackets, the emphatic
brackets [[]], to separate the syntactic world from the semantic world. If p is
a syntactic phrase in a programming language, then a denotational specifi-
cation of the language will define a mapping meaning, so that meaning [[p]] is
the denotation of p—namely, an abstract mathematical entity that models
the semantics of p.

For example, the expressions “2*4”, “(5+3)”, “008”, and “8” are syntactic
phrases that all denote the same abstract object, namely the integer 8. There-
fore with a denotational definition of expressions we should be able to show
that

meaning [[2*4]] = meaning [[(5+3)]] = meaning [[008]] = meaning [[8]] = 8.

Functions play a prominent role in denotational semantics, modeling the
bindings in stores and environments as well as control abstractions in pro-
gramming languages. For example, the “program”

fact(n) = if n=0 then 1 else n*fact(n–1)

denotes the factorial function, a mathematical object that can be viewed as
the set of ordered pairs,

{ <0,1>, <1,1>, <2,2>, <3,6>, <4,24>, <5,120>, <6,720>, … },

and a denotational semantics should confirm this relationship.

A denotational specification of a programming language consists of five com-
ponents, two specifying the syntactic world, one describing the semantic
domains, and two defining the functions that map the syntactic objects to
the semantic objects.

The Syntactic World

Syntactic categories or syntactic domains name collections of syntac-
tic objects that may occur in phrases in the definition of the syntax of the
language—for example,

Numeral, Command, and Expression.

Commonly, each syntactic domain has a special metavariable associated
with it to stand for elements in the domain—for example,

2739.1 CONCEPTS AND EXAMPLES

C : Command

E : Expression

N : Numeral

I : Identifier.

With this traditional notation, the colon means “element of”. Subscripts
will be used to provide additional instances of the metavariables.

Abstract production rules describe the ways that objects from the syn-
tactic categories may be combined in accordance with the BNF definition
of the language. They provide the possible patterns that the abstract
syntax trees of language phrases may take. These abstract production
rules can be defined using the syntactic categories or using the metavariables
for elements of the categories as an abbreviation mechanism.

Command ::= while Expression do Command+

E ::= N | I | E O E | – E

These rules are the abstract productions that were discussed in Chapter 1.
They do not fully specify the details of syntax with respect to parsing
items in the language but simply portray the possible forms of syntactic
constructs that have been verified as correct by some other means.

The Semantic World

Semantic domains are “sets” of mathematical objects of a particular
form. The sets serving as domains have a lattice-like structure that will
be described in Chapter 10. For now we view these semantic domains as
normal mathematical sets and structures—for example,

Boolean = { true, false } is the set of truth values,

Integer = { … , -2, -1, 0, 1, 2, 3, 4, … } is the set of integers, and

Store = (Variable → Integer) consists of sets of bindings (functions
mapping variable names to values).

We use the notation A → B to denote the set of functions with domain A
and codomain B.

The Connection between Syntax and Semantics

Semantic functions map objects of the syntactic world into objects in
the semantic world. Constructs of the subject language—namely elements
of the syntactic domains—are mapped into the semantic domains. These
functions are specified by giving their syntax (domain and codomain),
called their signatures—for example,

274 CHAPTER 9 DENOTATIONAL SEMANTICS

meaning : Program → Store

evaluate : Expression → (Store → Value)

and by using semantic equations to specify how the functions act on
each pattern in the syntactic definition of the language phrases. For ex-
ample,

evaluate [[E1 + E2]] sto = plus(evaluate [[E1]] sto, evaluate [[E2]] sto)

states that the value of an expression “E1 + E2” is the mathematical sum
of the values of its component subexpressions. Note that the value of an
expression will depend on the current bindings in the store, here repre-
sented by the variable “sto”. The function evaluate maps syntactic ex-
pressions to semantic values—namely, integers—using mathematical
operations such as plus. We refer to these operations as auxiliary func-
tions in the denotational definition.

Figure 9.1 contains a complete denotational specification of a simple lan-
guage of nonnegative integer numerals. This definition requires two auxiliary
functions defined in the semantic world, where Number x Number denotes
the Cartesian product.

plus : Number x Number → Number

times : Number x Number → Number.

Syntactic Domains
N : Numeral -- nonnegative numerals

D : Digit -- decimal digits

Abstract Production Rules
Numeral ::= Digit | Numeral Digit

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Semantic Domain
Number = { 0, 1, 2, 3, 4, … } -- natural numbers

Semantic Functions
value : Numeral → Number

digit : Digit → Number

Semantic Equations
value [[N D]] = plus (times(10, value [[N]]), digit [[D]])

value [[D]] = digit [[D]]

digit [[0]] = 0 digit [[3]] = 3 digit [[6]] = 6 digit [[8]] = 8

digit [[1]] = 1 digit [[4]] = 4 digit [[7]] = 7 digit [[9]] = 9

digit [[2]] = 2 digit [[5]] = 5

Figure 9.1: A Language of Numerals

275

We need two syntactic domains for the language of numerals. Phrases in this
language are mapped into the mathematical domain of natural numbers.
Generally we have one semantic function for each syntactic domain and one
semantic equation for each production in the abstract syntax. To distinguish
numerals (syntax) from numbers (semantics), different typefaces are employed.
Note the compositionality of the definition in that the value of a phrase “N D”
is defined in terms of the value of N and the value of D.

As an example of evaluating a numeral according to this denotational defini-
tion, we find the value of the numeral 65:

value [[65]] = plus(times(10, value [[6]]), digit [[5]])
= plus(times(10, digit [[6]]), 5)
= plus(times(10, 6), 5)
= plus(60, 5) = 65

Solely using the specification of the semantics of numerals, we can easily
prove that value [[008]] = value [[8]]:

value [[008]] = plus(times(10, value [[00]]), digit [[8]])
= plus(times(10, plus(times(10, value [[0]]), digit [[0]])), 8)
= plus(times(10, plus(times(10, digit [[0]]), 0)), 8)
= plus(times(10, plus(times(10, 0), 0)), 8)
= 8 = digit [[8]] = value [[8]]

Although the syntactic expression “008” inside the emphatic brackets is writ-
ten in linear form, it actually represents the abstract syntax tree shown in
Figure 9.2 that reflects its derivation

<numeral> ⇒ <numeral> <digit> ⇒ <numeral> <digit> <digit> ⇒
<digit> <digit> <digit> ⇒ 0 <digit> <digit> ⇒ 0 0 <digit> ⇒ 0 0 8.

Numeral

Numeral

Numeral

0

Digit

Digit

0

Digit

8

Figure 9.2: An Abstract Syntax Tree

9.1 CONCEPTS AND EXAMPLES

276 CHAPTER 9 DENOTATIONAL SEMANTICS

The elements of the syntactic world inside of the emphatic brackets are al-
ways abstract syntax trees. We write them in a linear form only for conve-
nience. The abstract production rules will be used to describe the abstract
syntax trees and the concrete syntax to disambiguate them.

Compositionality

The principle of compositionality has a long history in mathematics and the
specification of languages (see the further readings at the end of this chap-
ter). In his book [Tennent91] on the semantics of programming languages,
Tennent suggests three reasons for using compositional definitions:

1. In a denotational definition, each phrase of a language is given a meaning
that describes its contribution to the meaning of a complete program that
contains it. Furthermore, the meaning of each phrase is formulated as a
function of the denotations of its immediate subphrases. As a result,
whenever two phrases have the same denotation, one can be replaced by
the other without changing the meaning of the program. Therefore a
denotational semantics supports the substitution of semantically equiva-
lent phrases.

2. Since a denotational definition parallels the syntactic structure of its BNF
specification, properties of constructs in the language can be verified by
structural induction, the version of mathematical induction introduced
in Chapter 8 that follows the syntactic structure of phrases in the lan-
guage.

3. Compositionality lends a certain elegance to denotational definitions, since
the semantic equations are structured by the syntax of the language.
Moreover, this structure allows the individual language constructs to be
analyzed and evaluated in relative isolation from other features in the
language.

As a consequence of compositionality, the semantic function value is a
homomorphism, which means that the function respects operations. As
an illustration, consider a function H : A → B where A has a binary opera-
tion f : AxA → A and B has a binary operation g : BxB → B. The function
H is a homomorphism if H(f(x,y)) = g(H(x),H(y)) for all x,y∈ A. For the
example in Figure 9.1, the operation f is concatenation and g(m,n) =
plus (times (10, m), n). Therefore value (f(x,y)) = g(value (x),value (y)), which
thus demonstrates that value is a homomorphism.

277

Exercises

1. Using the language of numerals in Figure 9.1, draw abstract syntax
trees for the numerals “5” and “6789”.

2. Use the denotational semantics for numerals to derive the value of “3087”.

3. Define a denotational semantics for the language of numerals in which
the meaning of a string of digits is the number of digits in the string.

4. Define a denotational semantics for the language of octal (base 8) nu-
merals. Use the definition to find the value of “752”.

5. This is a BNF specification (and abstract syntax) of the language of Ro-
man numerals less than five hundred.

Roman ::= Hundreds Tens Units

Hundreds ::= ε | C | CC| CCC | CD

Tens ::= LowTens | XL | L LowTens | XC

LowTens ::= ε | LowTens X

Units ::= LowUnits | IV | V LowUnits | IX

LowUnits ::= ε | LowUnits I

The language of Roman numerals is subject to context constraints that
the number of X’s in LowTens and I’s in LowUnits can be no more than
three. Remember ε represents the empty string.

Provide semantic functions and semantic equations for a denotational
definition of Roman numerals that furnishes the numeric value of each
string in the language. Assume that the context constraints have been
verified by other means.

9.2 A CALCULATOR LANGUAGE

In this section we develop the denotational semantics for the language of the
simple three-function calculator shown in Figure 9.3. A “program” on this
calculator consists of a sequence of keystrokes generally alternating between
operands and operators. The concrete syntax in Figure 9.4 gives those com-
binations that we call legal on the calculator. For instance,

6 + 33 x 2 =

produces the value 78 on the display of the calculator. Observe that unlike
more complex calculators, keystrokes are entered and processed from left to
right, so that the addition is performed before the multiplication.

9.2 A CALCULATOR LANGUAGE

278 CHAPTER 9 DENOTATIONAL SEMANTICS

4

7

6

8

2

0

1 3

9

5

x

–

+

=

Clear

M R

M+

+/–

Figure 9.3: A Three-Function Calculator

In fact calculators usually accept any sequence of key presses, but we have
limited our syntax to those collections that a user is most likely to employ.
We outlaw combinations such as

5 + + 6 = and 88 x +/- 11 + MR MR

that provide no new meaningful calculations although many real calculators
allow them. The Clear key occurs in several productions because a user is
likely to press it at almost any time. The plus-minus key +/- changes the sign
of the displayed value.

<program> ::= <expression sequence>

<expression sequence> ::= <expression>| <expression> <expression sequence>

<expression> ::= <term> | <expression> <operator> <term>

| <expression> <answer> | <expression> <answer> +/-

<term> ::= <numeral> | MR | Clear | <term> +/-

<operator> ::= + | – | x

<answer> ::= M+ | =

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 9.4: Concrete Syntax for the Calculator Language

279

To simplify the definition of the denotational semantics for the calculator, the
abstract syntax in Figure 9.5 considerably reduces the complexity of the
notation while still representing all the key sequences allowed by the con-
crete syntax. Since +/- acts in much the same way as the answer keys, it has
been included with them in the abstract syntax.

Abstract Syntactic Domains
P : Program O : Operator N : Numeral

S : ExprSequence A : Answer D : Digit

E : Expression

Abstract Production Rules
Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression Answer

| Expression Operator Expression

Operator ::= + | – | x

Answer ::= M+ | = | +/-

Numeral ::= see Figure 9.1

Figure 9.5: Abstract Syntax for the Calculator Language

Following the concrete syntax for the calculator language, given the sequence
of keystrokes

10 M+ + 6 +/- = x MR =

a parser will construct the abstract syntax tree shown in Figure 9.6. Notice
that most operations associate to the left because of the way keystrokes are
processed from left to right.

Expression

=

x

610 +/–

Expression

Expression

Expression

Expression

Expression

=

+

MR

M+

Figure 9.6: An Abstract Syntax Tree for 10 M+ + 6 +/- = x MR =

9.2 A CALCULATOR LANGUAGE

280 CHAPTER 9 DENOTATIONAL SEMANTICS

The syntax of the calculator language encompasses six syntactic domains if
we ignore the structure of numerals. In providing semantics for the calcula-
tor we define a semantic function for each of these domains. But before these
functions can be specified, we need to describe the semantic domains into
which they map, and to do so requires that we understand the operation of
the calculator.

Calculator Semantics

The description presented here for the meaning of calculator expressions is
slightly more complicated than it needs to be so that some extensions of the
meaning can be implemented easily. See the exercises at the end of this
section for an alternative model of the calculator. To define the semantics of
the calculator, we use a state that maintains four registers or values to cap-
ture its internal working:

1. An internal accumulator maintains a running total value reflecting the
operations that have been carried out so far.

2. An operator flag indicates the pending operation that will be executed
when another operand is made available.

3. The current display portrays the latest numeral that has been entered,
the memory value that has been recalled using MR, or the total computed
so far whenever the = or M+ key has been pressed.

4. The memory of the calculator contains a value, initially zero; it is con-
trolled by the M+ and MR keys.

Calculator arithmetic will be modeled by several auxiliary functions that carry
out the three basic binary operations and an “identity” operation for the case
when no operator is pending:

plus : Integer x Integer → Integer

minus : Integer x Integer → Integer

times : Integer x Integer → Integer

nop : Integer x Integer → Integer where nop(a,d) = d.

We use the same names for the values of the operator flag and for the auxil-
iary operations, assuming an implicit function that identifies the flag values
with the auxiliary functions. To understand how the state varies under the
control of the keystrokes, consider the calculation in Figure 9.7 and how it
affects these four values.

281

Keystroke Accumulator Operator Flag Display Memory
0 nop 0 0

12 0 nop 12 0

+ 12 plus 12 0

5 12 plus 5 0
+/- 12 plus -5 0

= 12 nop 7 0

x 7 times 7 0

2 7 times 2 0

M+ 7 nop 14 14

123 7 nop 123 14

M+ 7 nop 123 137

MR 7 nop 137 137
+/- 7 nop -137 137

– -137 minus -137 137

25 -137 minus 25 137

= -137 nop -162 137

+ -162 plus -162 137

MR -162 plus 137 137

= -162 nop -25 137

Figure 9.7: Sample Calculation of 12 + 5 +/- = x 2 M+ 123 M+ MR +/- – 25 = + MR =

Although the meaning of a calculator program will be the final integer value
shown on the display, we are also interested in the behavior of the calculator
in response to individual keystrokes and partial results. This meaning de-
pends on the following semantic domains:

Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Operation = { plus, minus, times, nop }

State = Integer x Operation x Integer x Integer.

The Operation domain can be compared to an enumerated type in Pascal.
These four values act as flags inside the calculator by saving the last opera-
tor keystroke. Integer represents the abstract collection of mathematical in-
tegers, and State takes values that are quadruples embodying the internal
accumulator, the pending operation, the display, and the memory. In par-
ticular, observe which entries change the various values in the State tuple:

9.2 A CALCULATOR LANGUAGE

282 CHAPTER 9 DENOTATIONAL SEMANTICS

State tuple value Tokens that may alter the value
Accumulator Clear, +, –, and x
Operator Flag Clear, +, –, x, =, and M+

Display Clear, numeral, =, M+, MR, and +/-
Memory Clear and M+

The trace in Figure 9.7 shows the changing state in response to various
keystrokes.

Semantic Functions

The denotational semantics for this calculator has a semantic function for
each of the syntactic domains.

meaning : Program → Integer

perform : ExprSequence → (State → State)

evaluate : Expression → (State → State)

compute : Operator → (State → State)

calculate : Answer → (State → State)

value : Numeral → Integer -- uses only nonnegative integers

Semantic equations specifying the functions are defined in Figure 9.8, with
one equation for each production rule in the abstract syntax. Inspection of
the semantics for individual keystrokes will provide an understanding of the
calculator operation. The semantic function meaning calls perform on a se-
quence of one or more expressions that makes up a program, giving perform
an initial state (0,nop,0,0) as its argument. An expression sequence is evalu-
ated one expression at a time by composing executions of the evaluate func-
tion. Finally, meaning returns the display value given as a result of evaluat-
ing the last expression in the sequence.

The semantic function evaluate produces a function in State → State as its
result when applied to an expression. The functions compute and calculate
give meaning to operators and “totaling” keys. For example, + computes the
pending operation with the accumulator and display, updating the accumu-
lator and display but leaving the display unchanged. Moreover, plus becomes
the new pending operation. In contrast, = places the computed value into the
display with nop signaling that there is no longer a pending operation.

Observe that MR and +/- act only on the display. Compound keystrokes are
handled as compositions, eliminating the need to give the argument tuple.
The semantic equation, given here as a composition,

evaluate [[E A]] = calculate [[A]] ° evaluate [[E]]

is equivalent to writing
evaluate [[E A]] (a,op,d,m) = calculate [[A]] (evaluate [[E]] (a,op,d,m)).

283

meaning [[P]] = d where perform [[P]](0,nop,0,0) = (a,op,d,m)

perform [[E S]] = perform [[S]] ° evaluate [[E]]

perform [[E]] = evaluate [[E]]

evaluate [[N]] (a,op,d,m) = (a,op,v,m) where v = value [[N]]

evaluate [[MR]] (a,op,d,m) = (a,op,m,m)

evaluate [[Clear]] (a,op,d,m) = (0,nop,0,0)

evaluate [[E1 O E2]] = evaluate [[E2]] ° compute [[O]] ° evaluate [[E1]]

evaluate [[E A]] = calculate [[A]] ° evaluate [[E]]

compute [[+]] (a,op,d,m) = (op(a,d),plus,op(a,d),m)

compute [[–]] (a,op,d,m) = (op(a,d),minus,op(a,d),m)

compute [[x]] (a,op,d,m) = (op(a,d),times,op(a,d),m)

calculate [[=]] (a,op,d,m) = (a,nop,op(a,d),m)

calculate [[M+]] (a,op,d,m) = (a,nop,v,plus(m,v)) where v = op(a,d)

calculate [[+/-]] (a,op,d,m) = (a,op,minus(0,d),m)

value [[N]] = see Figure 9.1

Figure 9.8: Semantic Equations for the Calculator Language

Denotational definitions commonly use this technique of factoring out argu-
ments to semantic equations whenever possible. It was for this reason that
the syntax of evaluate and the other semantic functions are given in a cur-
ried form (see Chapter 5 for a discussion of curried functions)

evaluate : Expression → (State → State)

instead of as an uncurried function acting on a tuple

evaluate : (Expression x State) → State.

A Sample Calculation

As an example of an evaluation according to the definition, consider the se-
ries of keystrokes “2 + 3 =”. The meaning of the sequence is given by

meaning [[2 + 3 =]] = d where perform [[2 + 3 =]](0,nop,0,0) = (a,op,d,m).

The evaluation proceeds as follows:

perform [[2 + 3 =]](0,nop,0,0)

= evaluate [[2 + 3 =]](0,nop,0,0)

= (calculate [[=]] ° evaluate [[2 + 3]]) (0,nop,0,0)

= (calculate [[=]] ° evaluate [[3]] ° compute [[+]] ° evaluate [[2]]) (0,nop,0,0)

9.2 A CALCULATOR LANGUAGE

284 CHAPTER 9 DENOTATIONAL SEMANTICS

= calculate [[=]] (evaluate [[3]] (compute [[+]] (evaluate [[2]] (0,nop,0,0))))

= calculate [[=]] (evaluate [[3]] (compute [[+]] (0,nop,2,0))), since value [[2]] = 2

= calculate [[=]] (evaluate [[3]] (2,plus,2,0)), since nop(0,2) = 2

= calculate [[=]] (2,plus,3,0), since value [[3]] = 3

= (2,nop,5,0), since plus(2,3) = 5.

Therefore meaning [[2 + 3 =]] = 5.

A similar evaluation corresponding to the computation in Figure 9.7 will
provide a useful example of elaborating the semantics of the calculator—
namely, to demonstrate that

meaning [[12 + 5 +/- = x 2 M+ 123 M+ MR +/- – 25 = + MR =]] = -25.

Remember that the ambiguity in the abstract syntax is resolved by viewing
the keystrokes from left to right.

Real calculators have two conditions that produce errors when evaluating
integer arithmetic: arithmetic overflow and division by zero. Our calculator
has no division so that we can avoid handling the problem of division by zero
as a means of reducing the complexity of the example. Furthermore, we as-
sume unlimited integers so that overflow is not a problem.

Exercises

1. Draw the abstract syntax tree that results from parsing the series of
keystrokes

12 + 5 +/- M+ M+ - 55 =.

Remember, keystrokes are entered and evaluated from left to right.

2. Evaluate the semantics of these combinations of keystrokes using the
denotational definition in this section:

a) 8 +/- + 5 x 3 =

b) 7 x 2 M+ M+ M+ – 15 + MR =

c) 10 - 5 +/- M+ 6 x MR M+ =

3. Prove that for any expression E, perform[[E Clear]] = perform[[Clear]].

4. Some calculators treat = differently from the calculator in this section,
repeating the most recent operation, so that “2 + 5 = =” leaves 12 on the
display and “2 + 5 = = =” leaves 17. Describe the changes that must be
made in the denotational semantics to model this alternative interpreta-
tion.

285

5. Prove that for any expression E, meaning [[E = M+]] = meaning [[E M+ =]].

6. Add to the calculator a key sqr that computes the square of the value in
the display. Alter the semantics to model the action of this key. Its syn-
tax should be similar to that of the +/- key.

7. Alter the calculator semantics so that Clear leaves the memory un-
changed. Modify the semantic equations to reflect this change.

8. Explain how the evaluate function for the semantics of the calculator
language can be thought of as a homomorphism.

9. Rewrite the denotational definition of the calculator semantics taking
the state to be State = Integer x Integer x (clear + unclear), representing
the display, memory, and a “clear” flag. Delete the semantic functions
compute and calculate, and use the following abstract syntax:

Abstract Syntactic Domains

P : Program E : Expression D: Digit

S : ExprSequence N : Numeral

Abstract Production Rules

Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression M+

| Expression = | Expression +/-

| Expression + Expression | Expression - Expression

| Expression x Expression

9.3 THE DENOTATIONAL SEMANTICS OF WREN

The programming language Wren exemplifies a class of languages referred to
as imperative. Several properties characterize imperative programming lan-
guages:

1. Programs consist of commands, thereby explaining the term “imperative”.

2. Programs operate on a global data structure, called a store, in which
results are generally computed by incrementally updating values until a
final result is produced.

3. The dominant command is the assignment instruction, which modifies a
location in the store.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

286 CHAPTER 9 DENOTATIONAL SEMANTICS

4. Program control entails sequencing, selection, and iteration, represented
by the semicolon, the if command, and the while command in Wren.

The abstract syntax for Wren appears in Figure 9.9. Compare this version
with the one in Figure 1.18. Note that lists of commands are handled some-
what differently. Instead of using the postfix operator “+”, a command is al-
lowed to be a pair of commands that by repetition produces a sequence of
commands. However, the definition still provides abstract syntax trees for
the same collection of programs. As a second change, input and output have
been omitted from Wren for the time being. This simplifies our initial discus-
sion of denotational semantics. The issues involved with defining input and
output will be considered later.

 Abstract Syntactic Domains
P : Program C : Command N : Numeral

D : Declaration E : Expression I : Identifier

T : Type O : Operator

Abstract Production Rules
Program ::= program Identifier is Declaration* begin Command end

Declaration ::= var Identifier+ : Type ;

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| skip | if Expression then Command else Command

| if Expression then Command | while Expression do Command

Expression ::= Numeral | Identifier | true | false | - Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 9.9: Abstract Syntax for Wren

Semantic Domains

To provide a denotational semantics for Wren, we need to specify semantic
domains into which the syntactic constructs map. Wren uses two primitive
domains that can be described by listing (or suggesting) their values:

Integer = { …, -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }.

Primitive domains are combined into more complex structures by certain
mathematical constructions. The calculator language uses two of these struc-
tures, the Cartesian product and the function domain. The State in the se-

287

mantics of the calculator is a Cartesian product of four primitive domains, so
that each element of the State is a quadruple. Although we do not name the
function domains, we use them in the semantic functions—for example,
evaluate maps an Expression into a set of functions State → State. The nota-
tion for a function domain A → B agrees with normal mathematical notation.
We view this expression as representing the set of functions from A into B;
that the function f is a member of this set can be described by f : A → B using
a colon as the symbol for membership.

Wren without input and output needs no Cartesian product for its seman-
tics, but function domains are essential. The Store (memory) is modeled as a
function from Identifiers to values,

Store = Identifier → (SV + undefined),

where SV represents the collection of values that may be placed in the store,
the so-called storable values, and undefined is a special value indicating
that an identifier has not yet been assigned a value. The constant function
mapping each identifier to undefined serves as the initial store provided to a
Wren program. Wren allows integers and Boolean values to be storable. To
specify the domain of storable values, we take the union of the primitive
domains Integer and Boolean. The notion of set union will not keep the sets
separate if they contain common elements. For this reason, we use the no-
tion of disjoint union or disjoint sum that requires tags on the elements
from each set so that their origin can be determined. We exploit the notation

SV = int(Integer) + bool(Boolean)

for the disjoint union of Integer and Boolean, where the tag int indicates the
integer values and the tag bool specifies the Boolean values. Typical elements
of SV are int(5), int(-99), and bool(true). Such elements can be viewed as
Prolog structures where the function symbols provide the tags or as items in
a Standard ML datatype. The important feature of disjoint unions is that we
can always determine the origin of an element of SV by inspecting its tag. In
the disjoint sum for Store, undefined is a tagged value with no data field.
Chapter 10 provides a more formal definition of the structure of disjoint
unions.

We assume several properties about the store that make it an abstraction of
the physical memory of a computer—namely, that it has an unbounded
number of locations and that each location will be large enough to contain
any storable value. Formal semantics usually does not concern itself with
implementation restrictions imposed when executing programs on an ac-
tual computer.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

288 CHAPTER 9 DENOTATIONAL SEMANTICS

Language Constructs in Wren

Structurally, Wren includes three main varieties of language constructs: dec-
larations, commands, and expressions. In programming languages, declara-
tions define bindings of names (identifiers) to objects such as memory loca-
tions, literals (constants), procedures, and functions. These bindings are re-
corded in a structure, called an environment, that is active over some part
of a program known as the scope of the bindings. Since a Wren program has
only one scope, the entire program, environments can be ignored in its se-
mantics. Thus the environment of a Wren program is constant, in effect de-
termined at the start of the program, and need not be modeled at all in the
dynamic semantics of Wren. The declarations in Wren act solely as part of
the context-sensitive syntax that we assume has already been verified by
some other means, say an attribute grammar. Later we show that denotational
semantics can be used to verify context conditions. For now, we assume that
any Wren program to be analyzed by our denotational semantics has no
inconsistency in its use of types. At this stage, we also ignore the program
identifier, taking it as documentation only.

Expressions in a programming language produce values. An important de-
fining trait of a language is the sorts of values that expressions can produce,
called the expressible values or the first-class values of the language. The
expressible values in Wren are the same as the storable values:

EV = int(Integer) + bool(Boolean).

The value of an expression will depend on the values associated with its
identifiers in the store. Therefore the semantic function evaluate for expres-
sions has as its signature

evaluate : Expression → (Store → EV).

The syntax of evaluate can also be given by

evaluate : Expression x Store → EV,

but we prefer the first (curried) version since it allows partial evaluation of
the semantic function. The object evaluate [[I]] makes sense as a function
from the store to an expressible value when we use the curried version. This
approach to defining functions sometimes allows us to factor out rightmost
arguments (see command sequencing in the denotational definition given
later in this section).

Commands may modify the store, so we define the meaning of a command to
be a function from the current store to a new store. We mentioned earlier
that the store is global and implied that only one store exists. When we speak
of the “current store” and the “new store”, we mean snapshots of the same
store. The signature of the semantic function execute for commands is given by

execute : Command → (Store → Store).

289

The meaning of a command is thus a function from Store to Store.

As for primitive syntactic domains, Numerals will be handled by the seman-
tic function value as with the calculator language, and the Boolean values
true and false will be defined directly by evaluate. Note that the syntactic
domain Identifier is used in defining the semantic domain Store. To make
sense of this mixing of syntactic and semantic worlds, we assume that the
denotational semantics of Wren has an implicit semantic function that maps
each Identifier in the syntactic world to a value in the semantic world that is
the identifier itself, as the attribute Name did in the attribute grammars for
Wren. We can pretend that we have an invisible semantic function defined
by id [[I]] = I.

Since input and output commands have been omitted from Wren for the time
being, we consider the final values of the variables of the program to be the
semantics of the program. So the signature of meaning is

meaning : Program → Store.

The semantic domains for Wren and the signatures of the semantic func-
tions are summarized in Figure 9.10. Remember that the semantic domain
Store allows its maps to take the special value undefined to represent identi-
fiers that have not yet been assigned a value and that in the disjoint sum,
undefined stands for a tag with an empty “value”. By the way, in construct-
ing semantic domains we assume that disjoint sum “+” has a higher prece-
dence than the forming of a function domain, so some parentheses may be
omitted—for example, those around SV + undefined in the definiton of Store.

Semantic Domains
Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }

EV = int(Integer) + bool(Boolean) -- expressible values

SV = int(Integer) + bool(Boolean) -- storable values

Store = Identifier → SV + undefined

Semantic Functions
meaning : Program → Store

execute : Command → (Store → Store)

evaluate : Expression → (Store → EV)

value : Numeral → EV

Figure 9.10: Semantic Domains and Functions for Wren

9.3 THE DENOTATIONAL SEMANTICS OF WREN

290 CHAPTER 9 DENOTATIONAL SEMANTICS

Auxiliary Functions

To complete our denotational definition of Wren, we need several auxiliary
functions representing the normal operations on the primitive semantic do-
mains and others to make the semantic equations easier to read. Since Wren
is an algorithmic language, its operations must map to mathematical opera-
tions in the semantic world. Here we use the semantic operations plus, mi-
nus, times, divides, less, lesseq, greater, greatereq, equal, neq defined on the
integers with their normal mathematical meanings. The relational operators
have syntax following the pattern

less : Integer x Integer → Boolean.

Operations that update and access the store can be threaded into the defini-
tions of the semantic functions, but we get a cleaner specification by factor-
ing these operations out of the semantic equations, thereby treating the store
as an abstract data type. In defining these auxiliary functions and Wren’s
semantic functions, we make use of semantic metavariables in a way similar
to the syntactic domains. We use “sto” for elements of Store and “val” for
values in either EV or SV. Three auxiliary functions manipulate the store:

emptySto : Store

emptySto I = undefined or emptySto = λ I . undefined

updateSto : Store x Identifier x SV → Store

updateSto(sto,I,val) I1 = (if I = I1 then val else sto(I1))

applySto : Store x Identifier → SV + undefined

applySto(sto,I) = sto(I)

The definition of updateSto means that updateSto(sto,I,val) is the function
Identifier → SV + undefined that is identical to sto except that I is bound to
val. Denotational definitions frequently use lambda notation to describe func-
tions, as seen above in the definition of emptySto. See Chapter 5 for an expla-
nation of the lambda calculus.

Semantic Equations

The semantic equations for the denotational semantics of Wren are listed in
Figure 9.11. Notice how we simply ignore the declarations in the first equa-
tion by defining the meaning of a program to be the store that results from
executing the commands of the program starting with the store in which all
identifiers are undefined. Command sequencing follows the pattern shown
in the calculator language. Observe that execute [[skip]] is the identity func-
tion on Store. Some semantic equations for expressions are omitted in Fig-
ure 9.11—they follow the pattern given for the operations addition and less
than.

291

meaning [[program I is D begin C end]] = execute [[C]] emptySto

execute [[C1 ; C2]] = execute [[C2]] ° execute [[C1]]

execute [[skip]] sto = sto

execute [[I := E]] sto = updateSto(sto, I, (evaluate [[E]] sto))

execute [[if E then C]] sto = if p then execute [[C]] sto else sto

where bool(p) = evaluate [[E]] sto

execute [[if E then C1 else C2]] sto =

if p then execute [[C1]] sto else execute [[C2]] sto

where bool(p) = evaluate [[E]] sto

execute [[while E do C]] = loop

where loop sto = if p then loop(execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto

evaluate [[I]] sto = if val=undefined then error else val

where val = applySto(sto, I)

evaluate [[N]] sto = int(value [[N]])

evaluate [[true]] sto = bool(true) evaluate [[false]] sto = bool(false)

evaluate [[E1 + E2]] sto = int(plus(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto
:

evaluate [[E1 / E2]] sto = if n=0 then error else int(divides(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto

evaluate [[E1 < E2]] sto = if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto
:

evaluate [[E1 and E2]] sto = if p then bool(q) else bool(false)

where bool(p) = evaluate [[E1]] sto and bool(q) = evaluate [[E2]] sto

evaluate [[E1 or E2]] sto = if p then bool(true) else bool(q)

where bool(p) = evaluate [[E1]] sto and bool(q) = evaluate [[E2]] sto

evaluate [[- E]] sto = int(minus(0,m)) where int(m) = evaluate [[E]] sto

evaluate [[not(E)]] sto = if p then bool(false) else bool(true)

where bool(p) = evaluate [[E]] sto

Figure 9.11: Semantic Equations for Wren

An assignment evaluates the expression on the right and updates the store
accordingly. To illustrate the change in the store caused by the updateSto
operation, we use the notation “{x|→int(3), y|→int(5), z|→int(8)}” to represent
a store with those three bindings where every other identifier maps to unde-
fined. Observe that for any Wren program, no matter how long or complex,

9.3 THE DENOTATIONAL SEMANTICS OF WREN

292 CHAPTER 9 DENOTATIONAL SEMANTICS

the current store function will always be finite in the sense that all but a
finite set of identifiers will map to undefined. We also use the notation
“{x|→int(25) y|→int(-1)}sto” to stand for the store that is identical to sto ex-
cept that x has the value 25 and y the value -1. Therefore we can write

updateSto(updateSto(emptySto,a,int(0)),b,int(1))
= updateSto({a|→int(0)}emptySto,b,int(1))
= {a|→int(0), b|→int(1)}emptySto
= {a|→int(0), b|→int(1)}.

Incidentally, this store is the meaning of execute [[a := 0; b := 1]] emptySto. To
tie these two notations together, we view {a|→int(0), b|→int(1)}as an abbrevia-
tion for {a|→int(0), b|→int(1)}emptySto.

One other point needs to be made about our functional notation. It has been
implicitly assumed that function application associates to the left as with the
lambda calculus, so that

execute [[a := 0; b := 1]] emptySto = (execute [[a := 0; b := 1]]) emptySto.

Furthermore, the arrow forming a function domain associates to the right,
so that

execute : Command → Store → Store
means

execute : Command → (Store → Store).

Surprisingly, these two conventions, associating application to the left and
→ to the right, agree, as shown by the following signatures:

execute : Command → Store → Store

execute [[a := 0; b := 1]] : Store → Store

execute [[a := 0; b := 1]] emptySto : Store.

Also remember that composition “°” is an associative operation so that no
convention is required to disambiguate f°g°h.

When we inspect primitive values, as in the selection (if) commands, we must
account for the tags provided by the disjoint sum. Maintaining correct tags is
also an important part of defining the evaluate semantic function.

The while command presents special difficulties in a denotational definition.
A naive approach to its meaning follows its operational description—namely,
to evaluate the test and, if its value is true, to execute the body of the while
and repeat the entire command, whereas if it is false, to do nothing (more).
The corresponding semantic equation can be written:

execute [[while E do C]] sto =
if p then execute [[while E do C]](execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto.

293

Although this equation captures the operational explanation, it fails to ad-
here to a fundamental tenet of denotational semantics—namely, that each
semantic equation be compositional. The meaning of the while command is
defined in terms of itself, not just its constituent parts. Using a technique
common to functional programming we transform this equation into a defi-
nition that is compositional:

execute [[while E do C]] = loop
where loop sto = if p then loop(execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto.

In this definition we have factored out a function embodying the effect of the
meaning of a while command; “loop: Store → Store” is a function that models
execute [[while E do C]] compositionally as a recursive function defined on
stores. This approach will be justified in Chapter 10, where we also ensure
that recursive definitions of functions are really describing mathematical
objects.

The meaning of expressions is straightforward, consisting of evaluating the
operands and then passing the values to auxiliary functions in the semantic
world. The Boolean operations and, or, and not are defined directly as condi-
tional expressions in the metalanguage.

Error Handling

We take a simple approach to dynamic errors in Wren, automatically adding
a special element error to each of the semantic domains and assuming that
all semantic functions produce error when given error as an argument; that
is, errors propagate. In an actual programming language, a program aborts
when a dynamic (or runtime) error occurs, but the kind of denotational se-
mantics described in this section—namely, direct denotational semantics—
makes this sort of termination very difficult to define.

Nontermination of a while command is also not modeled directly by our
semantics, but it will be considered when we study semantic domains more
carefully in Chapter 10. We tolerate an operational point of view in the sense
that a nonterminating while command gives no value at all under the ex-
ecute semantic function, making execute a partial function. For example, we
consider execute [[while true do skip]] to be an undefined function on any
store.

The semantic equations in Figure 9.11 are heavily dependent on pattern
matching, such as “int(m) = evaluate [[E]] sto”, for their definition. The ques-
tion may arise as to whether this pattern matching can fail—for example,
what if “evaluate [[E]] sto” in a numeric expression produces the value
bool(true)? Since we assume that programs that are analyzed by the

9.3 THE DENOTATIONAL SEMANTICS OF WREN

294 CHAPTER 9 DENOTATIONAL SEMANTICS

denotational semantics have already been verified as syntactically valid ac-
cording to both the context-free and context-sensitive syntax of Wren, a nu-
meric expression cannot produce a Boolean value. If, on the other hand,
such an expression produces error, say by accessing an undefined variable,
then the error value is propagated through the equations.

Semantic Equivalence

Denotational semantics provides a method for formulating the equivalence
of two language phrases.

Definition: Two language constructs are semantically equivalent if they
share the same denotation according to their denotational definition. ❚

For example, for any command C, since

execute [[C; skip]] sto = execute [[skip]] (execute [[C]] sto) = execute [[C]] sto,

we conclude that “C; skip” is semantically equivalent to C.

Furthermore, we can show that the following denotations are mathemati-
cally the same function:

execute [[a := 0; b := 1]] sto = {a|→int(0), b|→int(1)}sto

execute [[b := 1; a := b–b]] sto = execute [[a := b–b]] {b|→int(1)}sto
= {b|→int(1), a|→int(0)}sto,

since 0 = minus(1,1). Therefore “a := 0; b := 1” is semantically equivalent to
“b := 1; a := b–b”.

As a consequence of this definition of semantic equivalence, we cannot dis-
tinguish nonterminating computations since they have no denotation. Hence,
the commands “while true do m:=m+1” and “while true do skip” are se-
mantically equivalent. (Since we consider only abstract syntax trees when
analyzing syntax, we omit “end while” from these commands.)

Input and Output

Remember, Wren allows only integer values for input and output. The read
and write commands permit Wren to communicate with entities outside of
programs—namely, files of integers. We model these files as semantic do-
mains that are sets of finite lists where any particular file is an element of
one of these sets:

Input = Integer*
Output = Integer*.

295

At each point during the execution of a program, the values in these lists
influence the current computation and the final result of the program. We
define the meaning of a program as a function between two files taken from
Input and Output:

meaning : Program → (Input → Output).

Since input and output are performed by commands, the semantic function
for them must encompass the values of the input and output files. We de-
scribe the state of a machine executing a Wren program with input and out-
put as a semantic domain containing the store and two lists of integers:

State = Store x Input x Output.

The signature of the execute semantic function for commands becomes

execute : Command → State → State.

Again, we rely on auxiliary functions to handle the manipulation of the input
and output files to simplify the semantic equations. We represent an arbi-
trary list of integers by the notation [n1,n2, ..., nk] where k≥0. A list with k=0
is empty and is represented as []. We need four auxiliary functions that are
similar to those found in a list-processing language such as Scheme (see
Chapter 6).

head : Integer* → Integer

head [n1,n2, ..., nk] = n1 provided k≥1.

tail : Integer* → Integer*

tail [n1,n2, ..., nk] = [n2, ..., nk] provided k≥1.

null : Integer* → Boolean

null [n1,n2, ..., nk] = (k=0)

affix : Integer* x Integer → Integer*

affix ([n1,n2, ..., nk],m) = [n1,n2, ..., nk,m].

Although all the semantic equations for meaning and execute must be al-
tered to reflect the new signature, the changes for most commands are merely
cosmetic and are left to the reader as an exercise. We list only those semantic
equations that are totally new, using “inp” and “outp” as metavariables rang-
ing over Input and Output:

meaning [[program I is D begin C end]] inp = outp
where (sto, inp1, outp) = execute [[C]] (emptySto, inp, [])

execute [[read I]] (sto,inp,outp) =
if null(inp) then error

else (updateSto(sto,I,int(head(inp))), tail(inp), outp)

9.3 THE DENOTATIONAL SEMANTICS OF WREN

296 CHAPTER 9 DENOTATIONAL SEMANTICS

execute [[write E]] (sto,inp,outp) = (sto, inp, affix(outp,val))
where int(val) = evaluate [[E]] sto.

In the next section where Wren is implemented in the laboratory, we develop
a prototype implementation of Wren based on its denotational semantics. We
consider two methods for implementing input and output, one based on these
denotational definitions, and one that ignores the denotational approach,
handling input and output interactively.

Elaborating a Denotational Definition

The denotational semantics for Wren supplies a meaning to each Wren pro-
gram. Here we apply the semantic functions defined for Wren to give mean-
ing to the following Wren program that contains both input and output. This
example illustrates that a complete denotational description of even a small
program entails a considerable amount of patience and attention to detail.

program sample is
var sum,num : integer;

begin
sum := 0;
read num;
while num>=0 do

if num>9 and num<100
then sum := sum+num

end if;
read num

end while;
write sum

end

The meaning of the program is defined by

meaning [[program I is D begin C end]] inp = outp
where (sto, inp1, outp) = execute [[C]] (emptySto, inp, []).

The semantic equations for execute must be altered to reflect the use of states.
For example, the meaning of an assignment command is defined as

execute [[I := E]] (sto,inp,outp) =
(updateSto(sto,I,(evaluate [[E]] sto)),inp,outp).

Let the input list be [5,22,-1]. To simplify the work, the elaboration employs
several abbreviations.

d = var sum,num : integer

c1 = sum := 0

c2 = read num

297

c3 = while num>=0 do c3.1 ; c3.2

c3.1 = if num>9 and num<100 then sum := sum+num

c3.2 = read num

c4 = write sum

Using these abbreviations for the abstract syntax trees that make up the
program, the meaning of sample unfolds as follows:

meaning [[program sample is d begin c1 ; c2 ; c3 ; c4 end]] [5,22,-1] = outp
 where (sto, inp1, outp) = execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], []).

In Wren the semantics of a program reduces to the meaning of its sequence
of commands.

execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], [])
= (execute [[c4]] ° execute [[c3]] ° execute [[c2]] ° execute [[c1]])

(emptySto, [5,22,-1], [])
= execute [[c4]] (execute [[c3]] (execute [[c2]] (execute [[c1]]

(emptySto, [5,22,-1], [])))).

The commands are executed from the inside out, starting with c1.

execute [[sum := 0]] (emptySto, [5,22,-1], [])
= (updateSto(emptySto, sum, (evaluate [[0]] emptySto)), [5,22,-1], [])
= (updateSto(emptySto, sum, int(0)), [5,22,-1], [])
= ({sum|→int(0)}, [5,22,-1], []).

execute [[read num]] ({sum|→int(0)}, [5,22,-1], [])
= (updateSto({sum|→int(0)},num,int(5)), [22,-1], [])
= ({sum|→int(0),num|→int(5)}, [22,-1], []).

Let sto0,5 = {sum|→int(0),num|→int(5)}.

execute [[while num>=0 do c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= loop (sto0,5, [22,-1], [])

where loop (sto,in,out) =
if p then loop(execute [[c3.1 ; c3.2]] (sto,in,out)) else (sto,in,out)

where bool(p) = evaluate [[num>=0]] sto.
We work on the Boolean expression first.

evaluate [[num]] sto0,5 = applySto(sto0,5, num) = int(5).

evaluate [[0]] sto0,5 = int(0).

evaluate [[num>=0]] sto0,5
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[-0]] sto0,5

= if greatereq(5,0) then bool(true) else bool(false)
= bool(true).

9.3 THE DENOTATIONAL SEMANTICS OF WREN

298 CHAPTER 9 DENOTATIONAL SEMANTICS

Now we can execute loop for the first time.

loop (sto0,5, [22,-1], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))

else (sto0,5, [22,-1], [])
where bool(p) = evaluate [[num>=0]] sto0,5

= if true then loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))
else (sto0,5, [22,-1], [])

= loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], [])).

To complete the execution of loop, we need to execute the body of the while
command.

execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= execute [[read num]]

(execute [[if num>9 and num<100 then sum := sum+num]]
(sto0,5, [22,-1], [])).

We need the value of the Boolean expression in the if command next.

evaluate [[num>9]] sto0,5
= if greater(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[9]] sto0,5

= if greater(5,9) then bool(true) else bool(false)
= bool(false)

evaluate [[num<100]] sto0,5
= if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[100]] sto0,5

= if less(5,100) then bool(true) else bool(false)
= bool(true)

evaluate [[num>9 and num<100]] sto0,5
= if p then bool(q) else bool(false)

where bool(p) = evaluate [[num>9]] sto0,5
 and bool(q) = evaluate [[num<100]] sto0,5

= if false then bool(true) else bool(false)
= bool(false).

Continuing with the if command, we get the following.

execute [[if num>9 and num<100 then sum := sum+num]] (sto0,5, [22,-1], [])
= if p then execute [[sum := sum+num]] (sto0,5, [22,-1], [])

 else (sto0,5, [22,-1], [])
where bool(p) = evaluate [[num>9 and num<100]] sto0,5

= if false then execute [[sum := sum+num]] (sto0,5, [22,-1], [])
 else (sto0,5, [22,-1], [])

= (sto0,5, [22,-1], []).

299

After finishing with the if command, we proceed with the second command
in the body of the while.

execute [[read num]] (sto0,5, [22,-1], []))
= (updateSto(sto0,5,num,int(22)), [-1], [])
= ({sum|→int(0),num|→int(22)}, [-1], []).

Let sto0,22 = {sum|→int(0),num|→int(22)}.

Summarizing the execution of the body of the while command, we have the
result

execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []) = (sto0,22, [-1], []).

This completes the first pass through loop.

loop (sto0,5, [22,-1], [])
= loop (execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))
= loop (sto0,22, [-1], []).

Again, we work on the Boolean expression from the while command first.

evaluate [[num]] sto0,22 = applySto(sto0,22, num) = int(22).

evaluate [[0]] sto0,22 = int(0).

evaluate [[num>=0]] sto0,22
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[0]] sto0,22

= if greatereq(22,0) then bool(true) else bool(false)
= bool(true).

Now we can execute loop for the second time.

loop (sto0,22, [-1], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))

else (sto0,22, [-1], [])
where bool(p) = evaluate [[num>=0]] sto0,22

= if true then loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))
else (sto0,22, [-1], [])

= loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], [])).

Again we execute the body of the while command.

execute [[c3.1 ; c3.2]] (sto0,22, [-1], [])
= execute [[read num]]

(execute [[if num>9 and num<100
then sum := sum+num]] (sto0,22, [-1], [])).

The Boolean expression in the if command must be evaluated again.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

300 CHAPTER 9 DENOTATIONAL SEMANTICS

evaluate [[num>9]] sto0,22
= if greater(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[9]] sto0,22

= if greater(22,9) then bool(true) else bool(false)
= bool(true)

evaluate [[num<100]] sto0,22
= if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[100]] sto0,22

= if less(22,100) then bool(true) else bool(false)
= bool(true)

evaluate [[num>9 and num<100]] sto0,22
= if p then bool(q) else bool(false)

where bool(p) = evaluate [[num>9]] sto0,22
 and bool(q) = evaluate [[num<100]] sto0,22

= if true then bool(true) else bool(false)
= bool(true).

This time we execute the then clause in the if command.

execute [[if num>9 and num<100 then sum := sum+num]] (sto0,22, [-1], [])
= if p then execute [[sum := sum+num]] (sto0,22, [-1], [])

else (sto0,22, [-1], [])
where bool(p) = evaluate [[num>9 and num<100]] sto0,22

= if true then execute [[sum := sum+num]] (sto0,22, [-1], [])
else (sto0,22, [-1], [])

= execute [[sum := sum+num]] (sto0,22, [-1], []).

Therefore we need the value of the right side of the assignment command.

evaluate [[sum+num]] sto0,22
= int(plus(m,n))

where int(m) = evaluate [[sum]] sto0,22
 and int(n) = evaluate [[num]] sto0,22

= int(plus(0,22)) = int(22).

Completing the assignment provides the state produced by the if command.

execute [[sum := sum+num]] (sto0,22, [-1], [])
= (updateSto(sto0,22, sum, (evaluate [[sum+num]] sto0,22)), [-1], [])
= (updateSto(sto0,22, sum, int(22)), [-1], [])
= ({sum|→int(22),num|→int(22)}, [-1], []).

Let sto22,22 = {sum|→int(22),num|→int(22)}.

301

Continuing with the body of the while command for its second pass yields a
state with a new store after executing the read command.

execute [[read num]] (sto22,22, [-1], []))
= (updateSto(sto22,22,num,int(-1)), [], [])
= ({sum|→int(22),num|→int(-1)}, [], []).

Let sto22,-1 = {sum|→int(22),num|→int(-1)}.

Summarizing the second execution of the body of the while command, we
have the result

execute [[c3.1 ; c3.2]] (sto0,22, [-1], []) = (sto22,-1, [], []).

This completes the second pass through loop.

loop (sto0,22, [-1], [])
= loop (execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))
= loop(sto22,-1, [], []).

Again we work on the Boolean expression from the while command first.

evaluate [[num]] sto22,-1 = applySto(sto22,-1, num) = int(-1).

evaluate [[0]] sto22,-1 = int(0).

evaluate [[num>=0]] sto22,-1
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto22,-1
 and int(n) = evaluate [[0]] sto22,-1

= if greatereq(-1,0) then bool(true) else bool(false)
= bool(false).

When we execute loop for the third time, we exit the while command.

loop (sto22,-1, [], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto22,-1, [], []))

else (sto22,-1, [], [])
where bool(p) = evaluate [[num>=0]] sto22,-1

= if false then loop(execute [[c3.1 ; c3.2]] (sto22,-1, [], []))
else (sto22,-1, [], [])

= (sto22,-1, [], []).

Recapping the execution of the while command, we conclude:

execute [[while num>=0 do c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= loop (sto0,5, [22,-1], [])
= (sto22,-1, [], []).

Now we continue with the fourth command in the program.

evaluate [[sum]] sto22,-1 = applySto(sto22,-1, sum) = int(22).

9.3 THE DENOTATIONAL SEMANTICS OF WREN

302 CHAPTER 9 DENOTATIONAL SEMANTICS

execute [[write sum]] (sto22,-1, [], [])
= (sto22,-1, [], affix([],val)) where int(val) = evaluate [[sum]] sto22,-1
= (sto22,-1, [], [22])).

Finally, we summarize the execution of the four commands to obtain the
meaning of the program.

execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], []) = (sto22,-1, [], [22])).
and so

meaning [[program sample is d begin c1 ; c2 ; c3 ; c4 end]] [5,22,-1] = [22].

Exercises

1. Add these language constructs to Wren and provide their denotational
semantics.

a) repeat-until command
Command ::= ... | repeat Command until Expression

b) conditional expression
Expression ::= ... | if Expression then Expression else Expression

Use your definition to prove the semantic equivalence of

m := if E1 then E2 else E3 and if E1 then m:=E2 else m:=E3.

c) expression with side effects
Expression ::= ... | begin Command return Expression end.

d) case command

Command ::= case IntegerExpr of (when Numeral+ => Command)+

2. Express the denotational meaning of this code fragment as a function
Store → Store using the notation described in this section for represent-
ing stores:

switch := true; sum := 0; k := 1;
while k<4 do

switch := not(switch);
if switch then sum := sum+k end if;
k := k+1

end while

3. Modify the remaining semantic equations for execute to reflect the inclu-
sion of input and output in Wren.

4. Carefully prove: execute [[m:=5; n:=m+3]] = execute [[n:=8; m:=n-3]].

303

5. Prove the semantic equivalence of these language phrases:

a) while E do C and if E then (C; while E do C) else skip

b) if E then C1 else C2 and if not(E) then C2 else C1

c) x := 5; y := 2*x and y := 10; x := y/2

d) E1 + E2 and E2 + E1

e) if E then (if E then C1 else C2) else C3 and if E then C1 else C3

f) (while E do C1); if E then C2 else C3 and (while E do C1); C3

6. Elaborate the denotational meaning of the following Wren program us-
ing the function, meaning: Program → Input → Output, taking [5,22,-1]
as the input list:

program bool is
var a,b : boolean;

begin
a := true; b := true;
while a or b do

write 5;
if not(a) then b := not(b) end if;
if b then a := not(a) end if

end while
end

7. Discuss the ambiguity in binary operations that occurs when expres-
sions can have side effects—for example, the expressions in exercise 1c
or in a language with function subprograms. Give an example of this
ambiguity. Where is this issue dealt with in a denotational definition?

8. A vending machine takes nickels, dimes, and quarters and has buttons
to select gum (30¢), a candy bar (50¢), or a brownie (65¢), or to return
the coins entered. After entering a sequence of coins and pressing a
button, the user receives the selected item (or nothing) and the change
from the purchase. When the value of the coins is insufficient for the
button pressed, the outcome is the same as from return.

The following two examples show how the vending machine might be
used:

“dime, dime, dime, quarter, candy bar button”
produces a candy bar and 5 cents in change.

“quarter, nickel, return” or “quarter, nickel, candy”
produce nothing and 30 cents in change.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

304 CHAPTER 9 DENOTATIONAL SEMANTICS

The language of the vending machine has the following abstract
syntax:

Program ::= CoinSeq Button
CoinSeq ::= ε | Coin CoinSeq
Coin ::= Nickel | Dime | Quarter
Button ::= Gum | Candy | Brownie | Return

Using the semantic domains
Result = { gum, candy, brownie, naught } and
Number = { 0, 1, 2, 3, 4, … },

provide a denotational semantics for the language of the vending ma-
chine.

9. Consider the language of propositional logic, which contains symbols
from the following syntactic domains:

var : Var = { p, q, r, p1, q1, r1, p2, q2, … } Propositional variables

con : Con = { t, f } Propositional constants

uop : Uop = { ~ } Unary operation

bop : Bop = { ∧ , ∨ , ⊃ , ↔ } Binary operations

a) Give a BNF grammar for the concrete syntax of the language (well-
formed formulas) of propositional logic.

b) Describe an abstract syntax of this language in terms of the syntactic
variables for the syntactic domains.

c) Provide a denotational definition that gives meaning to the formulas
in the language of propositional logic, specifying the semantic
domain(s), the syntax of the semantic function(s), and the semantic
equations that define the semantics of the language. One parameter
to the semantic functions will be a function assigning Boolean values
to the propositional variables.

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

In Chapter 2 we developed a scanner and parser that take a text file contain-
ing a Wren program and produce an abstract syntax tree. Now we continue,
creating a prototype implementation of Wren based on its denotational se-
mantics. The semantic equations are translated into Prolog clauses that carry
out the denotational definition when executed.

We illustrate the result of this exercise with a Wren program that tests whether
positive integers are prime. It expects a list of integers terminated by a nega-
tive number or zero as input and returns those integers that are prime and

305

zero for those that are not. A sample execution of a version of the interpreter
using interactive (nondenotational) input and output is shown below:

>>> Interpreting Wren via Denotational Semantics <<<
Enter name of source file: prime.wren
 program prime is
 var num,div : integer;
 var done : boolean;
 begin
 read num;
 while num>0 do
 div := 2; done := false;
 while div<= num/2 and not(done) do
 done := num = div*(num/div);
 div := div+1
 end while;
 if done then write 0
 else write num
 end if;
 read num
 end while
 end
Scan successful
Parse successful
Input: 23
Output = 23
Input: 91
Output = 0
Input: 149
Output = 149
Input: 0
Final store:

num int(0)
div int(75)
done bool(false)

yes

If the denotational approach to input and output is followed using a state
containing an input list, an output list, and the store (see section 9.3), the
results look like this:

Enter input list followed by a period:
[23,79,91,129,149,177,0].

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

306 CHAPTER 9 DENOTATIONAL SEMANTICS

Output = [23,79,0,0,149,0]
yes

We consider the version with interactive input and output in this section,
leaving the denotational version as an exercise. To implement a denotational
definition in Prolog, we translate semantic functions into relations given by
Prolog predicates. Since functions are relations, this approach works nicely.
For example, the execute function

execute : Command → Store → Store

becomes the predicate execute(Cmd, Sto, NewSto). In the abstract syntax tree
produced by the parser, command sequencing is handled by using a Prolog
list of commands. In the semantic equations, execute processes the first com-
mand producing a temporary store that is given to another application of
execute on the rest of the commands. Executing an empty list results in the
identity relation on stores.

execute([Cmd|Cmds],Sto,NewSto) :- execute(Cmd,Sto,TempSto),
execute(Cmds,TempSto,NewSto).

execute([],Sto,Sto).

Both the if and while commands require auxiliary predicates in their Prolog
versions. We illustrate the while command since it is a bit more complex:

execute(while(Test,Body),Sto,NewSto) :- loop(Test,Body,Sto,NewSto).

loop(Test,Body,Sto,NewSto) :- evaluate(Test,Sto,Val),
iterate(Val,Test,Body,Sto,NewSto).

iterate(bool(true),Test,Body,Sto,NewSto) :- execute(Body,Sto,TempSto),
loop(Test,Body,TempSto,NewSto).

iterate(bool(false),Test,Body,Sto,Sto).

Before considering the assignment command, we need to discuss how to
model the finite function that comprises the store. We portray the store as a
Prolog structure of the form

sto(a, int(3), sto(b, int(8), sto(c, bool(false), nil)))

for the store {a|→int(3), b|→int(8), c|→bool(false)}. The empty store is given by
the Prolog atom nil. The auxiliary functions for manipulating the store be-
come predicates defined as follows:

updateSto(sto(Ide,V,Sto),Ide,Val,sto(Ide,Val,Sto)).

updateSto(sto(I,V,Sto),Ide,Val,sto(I,V,NewSto)) :-
updateSto(Sto,Ide,Val,NewSto).

updateSto(nil,Ide,Val,sto(Ide,Val,nil)).

307

The predicate updateSto(Sto,Ide,Val,NewSto) searches the current store for a
match with Ide. If the identifier is found, its binding is changed to Val in the
new store. If Ide is not found, the binding Ide|→Val is inserted at the end of
the store. A value binding for an identifier is found using the predicate applySto.

applySto(sto(Ide,Val,Sto),Ide,Val).

applySto(sto(I,V,Sto),Ide,Val) :- applySto(Sto,Ide,Val).

applySto(nil,Ide,undefined) :- write('Undefined variable'), nl, abort.

Note that when an identifier cannot be found in the store, applySto prints an
error message and aborts the execution of the denotational interpreter to
indicate the runtime error.

The assignment command evaluates the expression on the right and updates
the identifier in the store:

execute(assign(Ide,Exp),Sto,NewSto) :- evaluate(Exp,Sto,Val),
updateSto(Sto,Ide,Val,NewSto).

The evaluate function, evaluate : Expression → Store → EV, takes an expres-
sion and the current store and produces an expressible value. For literals,
we use the value given by the scanner and attach the appropriate tag:

evaluate(num(N),Sto,int(N)).

evaluate(true,Sto,bool(true)).

evaluate(false,Sto,bool(false)).

For identifiers, evaluate simply fetches a value from the store:

evaluate(ide(Ide),Sto,Val) :- applySto(Sto,Ide,Val).

Numeric binary operations are handled by evaluating the two operands us-
ing evaluate and calling a predicate compute that carries out the operations
using the native arithmetic in Prolog. We illustrate a few of the operations:

evaluate(exp(Opr,E1,E2),Sto,Val) :- evaluate(E1,Sto,V1), evaluate(E2,Sto,V2),
compute(Opr,V1,V2,Val).

compute(times,int(M),int(N),int(R)) :- R is M*N.

compute(divides,int(M),int(0),int(0)) :- write('Division by zero'), nl, abort.

compute(divides,int(M),int(N),int(R)) :- R is M//N.

Observe how a division-by-zero error causes the interpreter to abort. This
action does not follow the denotational definition but avoids the problem of
propagating errors in the prototype interpreter.

Comparisons and Boolean operations can be dealt with in a similar manner,
except that some operations are implemented using pattern matching:

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

308 CHAPTER 9 DENOTATIONAL SEMANTICS

evaluate(bexp(Opr,E1,E2),Sto,Val) :- evaluate(E1,Sto,V1), evaluate(E2,Sto,V2),
compute(Opr,V1,V2,Val).

compute(equal,int(M),int(N),bool(true)) :- M =:= N.
compute(equal,int(M),int(N),bool(false)).

compute(neq,int(M),int(N),bool(false)) :- M =:= N.
compute(neq,int(M),int(N),bool(true)).

compute(lteq,int(M),int(N),bool(true)) :- M =< N.
compute(lteq,int(M),int(N),bool(false)).

compute(and,bool(true),bool(true),bool(true)).
compute(and,bool(P),bool(Q),bool(false)).

For an entire program, meaning calls execute with an empty store and returns
the final store, which is printed by the predicate controlling the system.

meaning(prog(Dec,Cmd),Sto) :- execute(Cmd,nil,Sto).

We now consider the two approaches to input and output. For the interactive
version, we disregard the denotational definitions for read and write and
simply rely on Prolog to fetch an input value from the keyboard and print an
integer on the screen. Executing the read command this way requires an
auxiliary predicate readnum that can be based on the part of the scanner for
processing integers.

execute(read(Ide),Sto,NewSto) :- write('Input: '), nl, readnum(N),
updateSto(Sto,Ide,int(N),NewSto).

execute(write(Exp),Sto,Sto) :- evaluate(Exp,Sto,Val), Val=int(M),
write('Output = '), write(M), nl.

The denotational approach complicates the semantic equations for execute,
as was discussed in section 9.3. Then the read and write commands act
directly on the input and output lists in the state, modeled by a Prolog struc-
ture, state(Sto,Inp,Outp).

execute(read(Ide),state(Sto,[H|T],Outp),state(NewSto,T,Outp)) :-
updateSto(Sto,Ide,int(H),NewSto).

execute(read(Ide),state(Sto,[],Outp),state(NewSto,[],Outp)) :-
write('Attempt to read empty input'), nl, abort.

execute(write(Exp),state(Sto,Inp,Outp),state(Sto,Inp,Outp1)) :-
evaluate(Exp,Sto,Val), int(M)=Val, concat(Outp,[M],Outp1).

Note that in both versions of write, we use a variable as the third parameter
of evaluate, and then use unification, denoted by =, to pull the integer out of
the structure. This convention ensures that if evaluate involves a store lookup

309

that fails, the failure comes in the body of the third clause applySto and not
because undefined in the head of that clause failed to pattern match with int(M).

The top-level meaning predicate calls execute with the original input list and
produces the output list as its result. We depend on a predicate go to request
the input and print the output.

meaning(prog(Dec,Cmd),Inp,Outp)) :-
execute(Cmd,state(nil,Inp,[]),state(Sto,Inp1,Outp)).

go :- nl, write('>>> Interpreting Wren <<<'), nl, nl,
write('Enter name of source file: '), nl, getfilename(FileName), nl,
see(FileName), scan(Tokens), seen, write('Scan successful'), nl, !,
program(Parse,Tokens,[eop]), write('Parse successful'), nl, !,
write('Enter input list followed by a period: '), nl, read(Inp), nl,
meaning(Parse,Inp,Outp),nl,write('Output = '), write(Outp), nl.

All of the clauses defining execute must correctly maintain the state; for ex-
ample, the assignment command has no effect on the input or output list but
needs access to the store argument inside the state:

execute(assign(Ide,Exp),state(Sto,Inp,Outp),state(Sto1,Inp,Outp)) :-
evaluate(Exp,Sto,Val), updateSto(Sto,Ide,Val,Sto1).

Exercises

1. Supply Prolog definitions for the remaining commands: skip and if.

2. Supply Prolog definitions for subtraction, multiplication, or, unary mi-
nus, not, and the remaining relations. Be careful in handling the tags
on the values.

3. Write a Prolog predicate readnum that accepts a string of digits from the
terminal and forms an integer. Modify the predicate to accept an op-
tional minus sign immediately preceding the digits.

4. Complete the Prolog definition of the prototype interpreter for both in-
teractive input and output and for the denotational version.

5. Extend the prototype interpreter to include the following language con-
structs:
a) repeat-until commands

Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

310 CHAPTER 9 DENOTATIONAL SEMANTICS

c) expressions with side effects

Expression ::= ... | begin Command return Expression end

6. Write a scanner, parser, and denotational interpreter for the calculator
language described in section 9.2.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

In this section we extend Wren to a programming language in which declara-
tions contribute to the semantics as well as the context-sensitive syntax of
the language. The addition of procedures significantly enlarges the language,
and we thus take the P from procedure to give it a new name, Pelican. Figure
9.12 contains a definition of its abstract syntax. Notice the features that
make Pelican different from Wren:

Abstract Syntactic Domains
P : Program C : Command N : Numeral

B : Block E : Expression I : Identifier

D : Declaration O : Operator L : Identifier+

T : Type

Abstract Production Rules
Program ::= program Identifier is Block

Block ::= Declaration begin Command end

Declaration ::= ε | Declaration Declaration

| const Identifier = Expression

| var Identifier : Type | var Identifier, Identifier+ : Type

| procedure Identifier is Block

| procedure Identifier (Identifier : Type) is Block

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| skip | if Expression then Command else Command

| if Expression then Command | while Expression do Command

| declare Block | Identifier | Identifier(Expression)

| read Identifier | write Expression

Expression ::= Numeral | Identifier | true | false | - Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | –| * | / | or | and | <= | < | = | > | >= | <>

Figure 9.12: Abstract Syntax for Pelican

311

1. A program may consist of several scopes corresponding to the syntactic
domain Block that occurs in the main program, in anonymous blocks
headed by declare, and in procedures.

2. Each block may contain constant declarations indicated by const as well
as variable declarations.

3. Pelican permits the declaration of procedures with zero or one value pa-
rameter and their use as commands. We limit procedures to no more than
one parameter for the sake of simplicity. Multiple parameters will be left
as an exercise.

We have slightly modified the specification of lists of declarations to make the
semantic equations easier to define. In particular, the nonempty lists of iden-
tifiers in variable declarations are specified with two clauses: the first handles
a basis case of one identifier, and the second manages lists of two or more
identifiers. In addition, we specify Pelican without the read and write com-
mands, whose definitions are left as an exercise at the end of this section.

Environments

In a block structured language with more than one scope, such as Pelican,
the same identifier can refer to different objects in different parts of the pro-
gram. The region where an identifier has a unique meaning is called the
scope of the identifier, and this meaning is recorded in a structure called an
environment. Therefore in Pelican the bindings between a variable identifier
and a value split into two parts: (1) a binding between the identifier and a
location, modeling a memory address, and (2) a binding of the location to its
value in the store. The record of bindings between identifiers and locations
as well as bindings of other sorts of objects, such as literals and procedures,
to identifiers is maintained in the environment. Those values that are bindable
to identifiers are known as denotable values, and in Pelican they are given
by the semantic domain

DV = int(Integer) + bool(Boolean) + var(Location) + Procedure,

where Procedure represents the domain of procedure objects in Pelican. We
defer the discussion of Pelican procedures until later. The first two terms in
the disjoint sum for DV provide the literal values that can be bound to iden-
tifiers by a const declaration.

As with stores, we use auxiliary functions to manipulate environments, thereby
treating them as an abstract data type:

emptyEnv : Environment

emptyEnv I = unbound

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

312 CHAPTER 9 DENOTATIONAL SEMANTICS

extendEnv : Environment x Identifier x DV → Environment

extendEnv(env,I,dval) I1 = (if I = I1 then dval else env(I1))

applyEnv : Environment x Identifier → DV + unbound

applyEnv(env,I) = env(I).

Stores

A store in Pelican becomes a function from locations, here modeled by the
natural numbers, to the storable values, augmented by two special values:
(1) unused for those locations that have not been bound to an identifier by a
declaration, and (2) undefined for locations that have been associated with a
variable identifier but do not have a value yet. Locations serve as an abstrac-
tion of memory addresses and should not be confused with them. In fact, any
ordinal set can be used to model locations; we take the natural numbers for
convenience.

The auxiliary functions for stores now include operations for allocating and
deallocating memory locations at block entry and exit:

emptySto : Store

emptySto loc = unused

updateSto : Store x Location x (SV + undefined + unused) → Store

updateSto(sto,loc,val) loc1 = (if loc = loc1 then val else sto(loc1))

applySto : Store x Location → SV + undefined + unused

applySto(sto,loc) = sto(loc)

allocate : Store → Store x Location

allocate sto = (updateSto(sto,loc,undefined),loc)
where loc = minimum { k | sto(k) = unused }

deallocate : Store x Location → Store

deallocate(sto,loc) = updateSto(sto,loc,unused).

The semantic domains for Pelican are summarized in Figure 9.13. We save
the explanation of the Procedure domain until later in this section.

Figures 9.14 and 9.15 show how a Pelican program with multiple scopes
influences environments and the store. We use a notation for environments
that is similar to the one employed to display the store. The expression
“[a|→int(5),b|→var(0)]” indicates that the identifier a is bound to the con-
stant 5 and b is bound to the location 0, while all other identifiers are un-
bound. Furthermore, “[x|→var(3),y|→var(4)]env” denotes the environment that
is identical to env except that x and y have new bindings.

313

Semantic Domains
Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }

EV = int(Integer) + bool(Boolean) -- expressible values

SV = int(Integer) + bool(Boolean) -- storable values

DV = EV + var(Location) + Procedure -- denotable values

Location = Natural Number = { 0, 1 2, 3, 4, … }

Store = Location → SV + unused + undefined

Environment = Identifier → DV + unbound

Procedure = proc0(Store → Store) + proc1(Location → Store → Store)

Semantic Functions
meaning : Program → Store

perform : Block → Environment → Store → Store

elaborate : Declaration → Environment → Store → Environment x Store

execute : Command → Environment → Store → Store

evaluate : Expression → Environment → Store → EV

value : Numeral → EV

Figure 9.13: Semantic Domains and Functions for Pelican

In the representation of the stores in Figure 9.15, locations that are unused
are simply omitted, whereas locations that are allocated but without a mean-
ingful value are indicated within the brackets as bound to undefined. So the
empty store with all locations bound to unused can be depicted by { }. Note
that seven different locations are allocated for the seven variables declared in
the program.

Semantic Functions

The main alteration in the semantic functions for Pelican is to add Environ-
ment as an argument and to include functions providing meaning to Blocks
and Declarations. The semantic function elaborate constructs a new envi-
ronment on top of the given environment reflecting the declarations that are
processed in the current block. Observe that elaborate produces a new store
as well as a new environment, since the declaration of variable identifiers
requires the allocation of locations, which thereby changes the state of the
store. On the other hand, constant and procedure declarations have no ef-
fect on the store. The function perform has the same signature as execute, but
it elaborates the declarations in the block before its commands are executed.
The signatures of the semantic functions may be found in Figure 9.13.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

314 CHAPTER 9 DENOTATIONAL SEMANTICS

 program scope is Environment
const c = 9; [c|→int(9)]

var a : integer; [a|→var(0), c|→int(9)]

var b : boolean; [b|→var(1), a|→var(0), c|→int(9)]

begin

a := 10; env1

b := a>0; env1

declare

const a = 0; [a|→int(0)] env1

var x,y : integer; [y|→var(3), x|→var(2), a|→int(0)] env1

begin

x := a; env2

y := c–2; env2

declare

var x : boolean; [x|→var(4)] env2

var c,d : integer; [d|→var(6), c|→var(5), x|→var(4)] env2

begin

x := not(b); env3

c := y+5; env3

d := 17 env3

end;

x := –c env2

end;

a := a+5 env1

end

where env1 = [b|→var(1), a|→var(0), c|→int(9)]

env2 = [y|→var(3), x|→var(2), a|→int(0)] env1

= [y|→var(3), x|→var(2), a|→int(0), b|→var(1), c|→int(9)]

env3 = [d|→var(6), c|→var(5), x|→var(4)] env2

= [d|→var(6), c|→var(5), x|→var(4), y|→var(3), a|→int(0), b|→var(1)]

Figure 9.14: Environments for the Program “scope”

315

 program scope is Store
const c = 9; { }

var a : integer; { 0|→ud }

var b : boolean; { 0|→ud, 1|→ud }

begin

a := 10; { 0|→int(10), 1|→ud }

b := a>0; { 0|→int(10), 1|→bool(true) }

declare

const a = 0; { 0|→int(10), 1|→bool(true) }

var x,y : integer; { 0|→int(10), 1|→bool(true), 2|→ud, 3|→ud }

begin

x := a; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→ud }

y := c–2; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7) }

declare

var x : boolean; { 0|→int(10), 1|→bool(true), 2|→int(0),

 3|→int(7), 4|→ud }

var c,d : integer; { 0|→int(10), 1|→bool(true), 2|→int(0),

3|→int(7), 4|→ud, 5|→ud, 6|→ud }

begin

x := not(b); { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→ud, 6|→ud }

c := y+5; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→ud }

d := 17 { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17) }

end;

x := –c { 0|→int(10), 1|→bool(true), 2|→int(-9), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17)) }

end;

a := a+5 { 0|→int(15), 1|→bool(true), 2|→int(-9), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17) }

end

where ud = undefined

Figure 9.15: The Store for the Program “scope”

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

316 CHAPTER 9 DENOTATIONAL SEMANTICS

Semantic Equations

Many of the semantic equations are straightforward extensions of those for
Wren, especially for those language constructs that are defined in the
denotational semantics of Wren. Figure 9.16 shows the semantic equations
except that we have omitted many of the evaluate equations since they all
follow the pattern established by the addition operation. We focus on those
functions that are entirely new—namely, perform and elaborate. The func-
tion perform is invoked by meaning for the whole program and by execute for
an anonymous block (declare). It also is encapsulated in the procedure ob-
jects declared in a program, but these will be considered in detail later.

meaning [[program I is B]] = perform [[B]] emptyEnv emptySto

perform [[D begin C end]] env sto = execute [[C]] env1 sto1
where (env1, sto1) = elaborate [[D]] env sto

elaborate [[ε]] env sto = (env, sto)

elaborate [[D1 D2]] env sto = elaborate [[D2]] env1 sto1

where (env1, sto1) = elaborate [[D1]] env sto

elaborate [[const I = E]] env sto = (extendEnv(env,I,evaluate [[E]] env sto), sto)

elaborate [[var I : T]] env sto = (extendEnv(env,I,var(loc)), sto1)

where (sto1, loc) = allocate sto

elaborate [[var I, L : T]] env sto = elaborate [[var L : T]] env1 sto1

where (env1,sto1) = elaborate [[var I : T]] env sto

elaborate [[procedure I is B]] env sto = (env1, sto)

where env1 = extendEnv(env,I,proc0(proc))

and proc = perform [[B]] env1

elaborate [[procedure I1(I2 : T) is B]] env sto = (env1, sto)

where env1 = extendEnv(env,I1,proc1(proc))

and proc loc = perform [[B]] extendEnv(env1,I2,var(loc))

Figure 9.16: Semantic Equations for Pelican (Part 1)

Compare the equation for elaborating a sequence of declarations with that
for executing a pair of commands. Since elaborate produces a pair of values,
Environment and Store, the composition operator cannot be used. Of course,
an empty declaration leaves the environment and store unchanged.

317

execute [[C1 ; C2]] env sto = execute [[C2]] env (execute [[C1]] env sto)

execute [[skip]] env sto = sto

execute [[I := E]] env sto = updateSto(sto, loc, (evaluate [[E]] env sto))

where var(loc) = applyEnv(env,I)

execute [[if E then C]] env sto = if p then execute [[C]] env sto else sto

where bool(p) = evaluate [[E]] env sto

execute [[if E then C1 else C2]] env sto =

if p then execute [[C1]] env sto else execute [[C2]] env sto

where bool(p) = evaluate [[E]] env sto

execute [[while E do C]] = loop

where loop env sto = if p then loop env (execute [[C]] env sto) else sto

where bool(p) = evaluate [[E]] env sto

execute [[declare B]] env sto = perform [[B]] env sto

execute [[I]] env sto = proc sto

where proc0(proc) = applyEnv(env,I)

execute [[I(E)]] env sto = proc loc updateSto(sto1,loc,evaluate [[E]] env sto)

where proc1(proc) = applyEnv(env,I) and (sto1,loc) = allocate sto

evaluate [[I]] env sto =

if dval = int(n) or dval = bool(p) then dval

else if dval = var(loc)

then if applySto(sto,loc) = undefined

then error

else applySto(sto,loc)

where dval = applyEnv(env,I)

evaluate [[N]] env sto = int(value [[N]])

evaluate [[true]] env sto = bool(true)

evaluate [[false]] env sto = bool(false)

evaluate [[E1 + E2]] env sto = int(plus(m,n))

where int(m) = evaluate [[E1]] env sto and int(n) = evaluate [[E2]] env sto

:

evaluate [[E1 / E2]] env sto = if n=0 then error else int(divides(m,n))

where int(m) = evaluate [[E1]] env sto and int(n) = evaluate [[E2]] env sto

:

Figure 9.16: Semantic Equations for Pelican (Part 2)

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

318 CHAPTER 9 DENOTATIONAL SEMANTICS

The declaration of a list of variable identifiers is reduced to declarations of
individual variable identifiers by elaborating the single identifier (the head
of the list) to produce a new environment and store and then by elaborating
the list of identifiers (the tail of the list) using that environment and store. In
the equation for “var I : T”, allocate produces a new state of the store be-
cause a location with the value undefined has been reserved for the variable.
Recall that L is the metavariable for nonempty lists of identifiers. The equa-
tion for “const I = E” simply binds the current value of E to the identifier I in
the environment, leaving the store unchanged. Note that these constant
identifiers are bound to dynamic expressions whose values may not be known
until run-time.

Observe that when a sequence of commands is executed, both commands
receive the same environment; only the store is modified by the commands.
The semantic equations may also be written using compositon:

execute [[C1 ; C2]] env = (execute [[C2]] env) ° (execute [[C1]] env)

An assignment command depends on the environment for the location of the
target variable and on the store for the value of the expression on the right
side. Executing an assignment results in a modification of the store using
updateSto.

Because we assume Pelican programs have already been checked for syntax
errors (both context-free and context-sensitive), only syntactically correct pro-
grams are submitted for semantic analysis. Therefore identifiers used in as-
signment commands, in expression, and in procedure calls are bound to
values of the appropriate type. The following semantic decisions need to be
handled in the semantic equations (in the absence of the read command):

1. Whether an identifier in an expression represents a constant or a variable.

2. Whether the location bound to a variable identifier has a value when it is
accessed (whether it is defined).

3. Whether the second operand to a divides operation is zero.

Procedures

A procedure declaration assembles a new binding in the environment. We
consider procedures without parameters first.

elaborate [[procedure I is B]] env sto = (env1, sto)
where env1 = (extendEnv(env,I,proc0(proc))
and proc = perform [[B]] env1.

The procedure object proc, constructed to complete the binding, encapsu-
lates a call of perform on the body of the procedure in the environment now
being defined, thus ensuring two important properties:

319

1. Since a procedure object carries along an extension of the environment in
effect at its definition, we get static scoping. That means nonlocal vari-
ables in the procedure will refer to variables in the scope of the declara-
tion, not in the scope of the call of the procedure (dynamic scoping). A
procedure object constructed this way is an example of a closure (see
Section 8.2).

2. Since the environment env1 inserted into the procedure object contains
the binding of the procedure identifier with this object, recursive refer-
ences to the procedure are permitted. If recursion is forbidden, the proce-
dure object can be defined by

proc = perform [[B]] env.

When such a procedure object is invoked by “execute [[I]] env sto”, the object
is found by accessing the current environment and is executed by passing
the current store to it, after first removing the tag proc0.

execute [[I]] env sto = proc sto
where proc0(proc) = applyEnv(env,I).

For procedures that take a parameter, the object defined in the declaration is
a function of a location corresponding to the formal parameter that will be
provided at procedure invocation time when the value of the actual param-
eter passed to the procedure is stored in the location.

elaborate [[procedure I1(I2 : T) is B]] env sto = (env1, sto)
where env1 = extendEnv(env,I1,proc1(proc))
and proc loc = perform [[B]] extendEnv(env1,I2,var(loc)).

The environment encapsulated with the procedure object includes a binding
of the unspecified location “loc” to the formal parameter I2. Note that the
actual location must be allocated at the point of call, thus providing “call by
value” semantics for the parameter.

execute [[I(E)]] env sto = proc loc updateSto(sto1,loc,evaluate [[E]] env sto)
where proc1(proc) = applyEnv(env,I) and (sto1,loc) = allocate sto.

The procedure object then executes with a store having the allocated location
loc bound to the value of the actual parameter “evaluate [[E]] env sto”. Again
the environment env1, provided to the procedure object proc, contains the
binding of the procedure name, so that recursion can take place.

Figure 9.17 shows a Pelican program with the declaration of a recursive pro-
cedure along with the environments at points of the program. Because Peli-
can adheres to static scoping, we can identify the bound identifiers at each
position in the program. Since the procedure has no local variables other
than the formal parameter, the procedure object proc disregards the elabora-
tion of its (empty) declarations. The four calls, sum(3), sum(2), sum(1), and

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

320 CHAPTER 9 DENOTATIONAL SEMANTICS

 program summation is Environment

var s : integer; [s|→var(0)]

procedure sum(n:integer) is [s|→var(0), sum|→proc1(proc)]

begin

if n>0 env2,loc

then s := s+n; env2,loc

sum(n–1) end if env2,loc

end;

begin

s := 0; env1

sum(3) env1

end

 where

proc =

λ loc . execute [[if n>0 then s := s+n; sum(n–1)]] extendEnv(env1,n,var(loc))

env1 = [s|→var(0), sum|→proc1(proc)]

env2,1 = [s|→var(0), sum|→proc1(proc), n|→var(1)]

env2,2 = [s|→var(0), sum|→proc1(proc), n|→var(2)]

env2,3 = [s|→var(0), sum|→proc1(proc), n|→var(3)]

env2,4 = [s|→var(0), sum|→proc1(proc), n|→var(4)]

Figure 9.17: A Procedure Declaration in Pelican

sum(0), result in four environments env2,1, env2,2, env2,3, and env2,4, respec-
tively, as new locations are allocated.

In Figure 9.18 we describe the status of the store as the declarations and
commands of the program summation are processed according to the
denotational semantics of Pelican, showing the store only when it changes.
Each time sum is invoked, a new location is allocated and bound to n as the
value of loc in the procedure object proc. Therefore env2,loc stands for four
different environments for the body of the procedure depending on the cur-
rent value of loc—namely, 1, 2, 3, or 4. These four locations in the store
correspond to the four activation records that an implementation of Pelican
creates when executing this program.

321

Store
var s : integer; { 0|→undefined }

procedure sum(n:integer) is...

s := 0; { 0|→int(0) }

sum(3) { 0|→int(0), 1|→int(3) }

if n>0 …

s := s+n; { 0|→int(3), 1|→int(3) }

sum(2) { 0|→int(3), 1|→int(3), 2|→int(2) }

if n>0 …

s := s+n; { 0|→int(5), 1|→int(3), 2|→int(2) }

sum(1) { 0|→int(5), 1|→int(3), 2|→int(2), 3|→int(1) }

if n>0 …

s := s+n; { 0|→int(6), 1|→int(3), 2|→int(2), 3|→int(1) }

sum(0) { 0|→int(6), 1|→int(3), 2|→int(2), 3|→int(1), 4|→int(0) }

if n>0 … is false causing termination.

Figure 9.18: The Store While Executing “summation”

Exercises

1. Although we defined an auxiliary function deallocate, we made no use of
it in the denotational semantics of Pelican. Extend the denotational defi-
nition to provide for the deallocation of store locations at block exit.

Hint: Use perform [[D begin C end]] env sto =
release [[D]] env1 (execute [[C]] env1 sto1)

where (env1,sto1) = elaborate [[D]] env sto

 and define the semantic function release.

2. Provide denotational definitions for the read and write commands. Use
triples of the form (sto,inp,outp) to represent the state of a computation.

3. Modify Pelican so that the parameter is passed by

a) reference

b) value-result (an in-out parameter in Ada)

c) constant (a read-only parameter known as an in parameter in Ada).

4. Modify Pelican so that it uses dynamic scoping to resolve nonlocal vari-
able references.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

322 CHAPTER 9 DENOTATIONAL SEMANTICS

5. Modify Pelican so that a procedure may have an arbitrary number of
parameters.

6. Trace the environment and store in the manner of Figures 9.14, 9.15,
9.17, and 9.18 for the following Pelican programs:

a) program trace1 is
var a : integer;
procedure q1 is

begin a := 5 end;
procedure q2 is

var a : integer;
begin a := 3; q1 end;

begin

a := 0; q2; write a
end

b) program trace2 is
var n,f : integer;
procedure fac(n : integer) is

procedure mul(m : integer) is begin f := f*m end;
begin

if n=0 then f:=1
else fac(n-1); mul(n) end if

end;

begin

n := 4; fac(n); write f

end

7. Carefully explain and contrast the following terms used to classify the
semantic domains in a denotational definition of a programming lan-
guage:

• expressible values

• storable values

• denotable values.

Use examples from real programming languages to illustrate a sort of
values that is

a) expressible, storable, and denotable

b) denotable but neither storable nor expressible

c) expressible and storable but not denotable

d) expressible but neither storable nor denotable.

323

8. Suppose that Pelican is extended to include functions of one parameter,
passed by value. The abstract syntax now has productions of the form:

Declaration ::= …
 | function Identifier (Identifier : Type) : Type is Declaration

begin Command return Expression end

Expressions ::= … | Identifier (Expression)

Make all the necessary changes in the denotational definition of Pelican
to incorporate this new language construct.

9. Some programming languages allow functions with no parameters but
require an empty parameter list at the time of the call, as in f(). Why do
these languages have this requirement?

10. Remove the assignment command, parameter passing, the read com-
mand, and the while command from Pelican, calling the new language
BabyPelican. Also consider the values unused and undefined as the same.
Use structural induction (see Chapter 8) to prove that every command
in BabyPelican is semantically equivalent to skip.

11. Construct a prototype denotational interpreter for Pelican in Prolog.

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

In Chapter 3 we developed an attribute grammar to check the context con-
straints imposed by the declarations and type regime of a programming lan-
guage. Here we solve the same problem in the framework of denotational
semantics, mapping a program into the semantic domain Boolean in such a
way that the resulting truth value records whether the program satisfies the
requirements of the context-sensitive syntax. We assume that programs ana-
lyzed in this way already agree with the context-free syntax of the language.

A slightly modified Pelican serves as an example for illustrating this process
of verifying context conditions. We leave procedure declarations and calls to
be handled in an exercise and include the read and write commands now.
The context conditions for Pelican are listed in Figure 9.19, including those
for procedures that will be treated in an exercise.

The context checker has radically simplified denotational semantics since run-
time behavior need not be modeled. In particular, we drop the store and register
only the types of objects in environments, not their values. Figure 9.20 lists the
semantic domains and the signatures of the semantic functions. The semantic
function elaborate enters the type information given by declarations into the
environment in much the same way the attribute grammar constructed a sym-
bol table in Chapter 3. Typify produces the type of an expression given the
types of the identifiers recorded in the (type) environment.

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

324 CHAPTER 9 DENOTATIONAL SEMANTICS

1. The program name identifier lies in a scope outside the main block.

2. All identifiers that appear in a block must be declared in that block or in an
enclosing block.

3. No identifier may be declared more than once at the top level of a block.

4. The identifier on the left side of an assignment command must be declared as a
variable, and the expression on the right side must be of the same type.

5. An identifier occurring as an (integer) element must be an integer variable or an
integer constant.

6. An identifier occurring as a Boolean element must be a Boolean variable or a
Boolean constant.

7. An identifier occurring in a read command must be an integer variable.

8. An identifier used in a procedure call must be defined in a procedure declaration
with the same (zero or one) number of parameters.

9. The identifier defined as the formal parameter in a procedure declaration is con-
sidered to belong to the top level declarations of the block that forms the body of
the procedure.

10. The expression in a procedure call must match the type of the formal parameter
in the procedure’s declaration.

Figure 9.19: Context Conditions for Pelican

Since environments map identifiers to types, we need a semantic domain
Sort to assemble the possible types. Note that we distinguish between con-
stants (integer and boolean) and variables (intvar and boolvar). It is important
to remember that every domain is automatically augmented with an error
value, and every semantic function and auxiliary function propagates error.

Semantic Domains
Boolean = { true, false }

Sort = { integer, boolean, intvar, boolvar, program, unbound }

Environment = Identifier → Sort

Semantic Functions
validate : Program → Boolean

examine : Block → Environment → Boolean

elaborate : Declaration → (Environment x Environment)

→ (Environment x Environment)

check : Command → Environment → Boolean

typify : Expression → Environment → Sort

Figure 9.20: Semantic Domains and Functions for Context Checking

325

We need two environments to elaborate each block:

1. One environment (locenv) holds the identifiers local to the block so that
duplicate identifier declarations can be detected. It begins the block as an
empty envirnoment with no bindings.

2. The other environment (env) collects the accumulated bindings from all
of the enclosing blocks. This environment is required so that the expres-
sions in constant declarations can be typified.

Both type environments are built in the same way by adding a new binding
using extendEnv as each declaration is elaborated. The auxiliary functions
for maintaining environments are listed below (see section 9.5 for definitions):

emptyEnv : Environment

extendEnv : Environment x Identifier x Sort → Environment

applyEnv : Environment x Identifier → Sort

type : Type → Sort
type(integer) = intvar

type(boolean) = boolvar.

The semantic equations in Figure 9.21 show that each time a block is initial-
ized, we build a local type environment starting with the empty environment.
The first equation indicates that the program identifier is viewed as lying in a
block of its own, and so it does not conflict with any other occurrences of
identifiers. This alteration in the context conditions for program identifiers
as compared to Wren makes the denotational specification much simpler.

validate [[program I is B]] =

examine [[B]] extendEnv(emptyEnv,I,program)

examine [[D begin C end]] env = check [[C]] env1

where (locenv1, env1) = elaborate [[D]] (emptyEnv, env)

elaborate [[ε]] (locenv, env) = (locenv, env)

elaborate [[D1 D2]] = (elaborate [[D2]]) ° (elaborate [[D1]])

elaborate [[const I = E]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,typify [[E]] env),extendEnv(env,I,typify [[E]] env))

else error

elaborate [[var I : T]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,type (T)),extendEnv(env,I,type (T)))

else error

elaborate [[var I, L : T]] = (elaborate [[var L : T]]) ° (elaborate [[var I : T]])

Figure 9.21: Checking Context Constraints in Pelican (Part 1)

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

326 CHAPTER 9 DENOTATIONAL SEMANTICS

As declarations are processed, the environment for the current local block
(locenv) and the cumulative environment (env) are constructed incremen-
tally, adding a binding of an identifier to a type for each individual declara-
tion while checking for multiple declarations of an identifier in the local envi

check [[C1 ; C2]] env = (check [[C1]] env) and (check [[C2]] env)

check [[skip]] env = true

check [[I := E]] env =

 (applyEnv (env,I) = intvar and typify [[E]] env = integer)

or (applyEnv (env,I) = boolvar and typify [[E]] env = boolean)

check [[if E then C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[if E then C1 else C2]] env =

(typify [[E]] env = boolean) and (check [[C1]] env) and (check [[C2]] env)

check [[while E do C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[declare B]] env = examine [[B]] env

check [[read I]] env = (applyEnv(I, env) = intvar)

check [[write E]] env = (typify [[E]] env = integer)

typify [[I]] env = case applyEnv(env,I) of

intvar, integer : integer

boolvar, boolean : boolean

program : program

unbound : error

typify [[N]] env = integer

typify [[true]] env = boolean

typify [[false]] env = boolean

typify [[E1 + E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then integer else error
:

typify [[E1 and E2]] env =

if (typify [[E1]] env = boolean) and (typify [[E2]] env = boolean)

then boolean else error
:

typify [[E1 < E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then boolean else error

:

Figure 9.21: Checking Context Constraints in Pelican (Part 2)

327

ronment. If an attempt is made to declare an identifier that is not unbound
locally, the error value results. We assume that all semantic functions propa-
gate the error value.

Checking commands involves finding Boolean or integer expressions where
required and recursively checking sequences of commands that might occur.
The semantic function check applied to a declare command just calls the
examine function for the block. Simple expressions have their types deter-
mined directly. When we typify a compound expression, we must verify that
its operands have the proper types and then specify the appropriate result
type. If any part of the verification fails, error becomes the type value to be
propagated.

A program satisfies the context-sensitive syntax of Pelican if validate pro-
duces true when applied to it. A final value of false or error means that the
program does not fulfill the context constraints of the programming language.

The elaboration of the following Pelican program suggests the need for the
local environment for context checking. Observe the difference if the Boolean
variable is changed to “b”. Note that the expressions “m+21” cannot be typi-
fied without access to the global environment, env.

locenv env

program p is [] [p|→program]

const m = 34; [m|→integer] [m|→integer, p|→program]

begin

declare [] [m|→integer, p|→program]

begin

var c : boolean; [c|→boolvar] [c|→boolvar, m|→integer,

begin p|→program]

const c = m+21; error
begin

write m+c;
end

end

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

328 CHAPTER 9 DENOTATIONAL SEMANTICS

Exercises

1. Apply the validate semantic function to these Pelican programs and elabo-
rate the definitions that check the context constraints for Pelican.

a) program a is b) program b is
const c = 99; const c = 99;
var n : integer; var b : boolean;

begin begin
read n; b := false;
n := c-n; if b and true
write c+1; then b := c end if;
write n b := c>0

end end

c) program c is d) program d is
var x,y,z : integer; var b : boolean;

begin const c = true;
read x; begin
y := z; b := not(c) or false;
declare read b;

var x,z : integer; write 1109
begin end

while x>0 do
x := x-1 end while; e) program e is

declare var m,n : integer;
var x,y : boolean; begin
const y = false; read m;

begin n := m/5;
skip write n+k

end end
end

end

2. Extend the denotational semantics for context checking Pelican to in-
clude procedure declarations and calls.

3. Extend the result in exercise 2 to incorporate procedures with an arbi-
trary number of parameters.

4. Reformulate the denotational semantics for context checking Pelican
using false in place of error and changing the signature of elaborate to

elaborate : Declaration → Environment x Environment
→ Environment x Environment x Boolean

Let typify applied to an expression with a type error or an unbound
identifier take the value unbound.

329

5. Following the denotational approach in this section, implement a con-
text checker for Pelican in Prolog.

9.7 CONTINUATION SEMANTICS

All the denotational definitions studied so far in this chapter embody what is
known as direct denotational semantics. With this approach, each seman-
tic equation for a language construct describes a transformation of argu-
ment domain values, such as environment and store, directly into results in
some semantic domain, such as a new environment, an updated store, or an
expressible value. Furthermore, the results from one construct pass directly
to the language construct that immediately follows it physically in the code.
The semantic equation for command sequencing shows this property best:

execute [[C1 ; C2]] sto = execute [[C2]] (execute [[C1]]sto).

Observe that this semantic equation has the second command C2 working
directly on the store produced by the first command. We return to Wren for
these examples since the points to be made here do not depend on environ-
ments as found in Pelican. As an example, consider the following Wren pro-
gram fragment processed by the semantic function execute : Command →
Store → Store.

s := 0; n := 5;
while n>1 do

s := s+n; n := n–2
end while;
mean := s/2

Figure 9.22 outlines the modifications through which the store progresses as
execute is applied to this sequence of commands. At the same time we sup-
press the applications of evaluate that must be carried out in the analysis—
for example, evaluate [[5]] and evaluate [[n>1]]. Our purpose is to illustrate the
flow of data through commands in direct denotational semantics.

Although many language constructs have perspicuous descriptions in direct
denotational semantics, two problems reduce the applicability of this ap-
proach:

1. When an error occurs in determining the meaning of a language con-
struct, the error must propagate through all of the remaining denotational
transformations in the definition of the construct in a program. If seman-
tic equations detail all the aspects of this propagation, they become clut-
tered with error testing. We avoided such confusion in our semantic equa-
tions by informally describing the nature of error propagation at the cost

9.7 CONTINUATION SEMANTICS

330 CHAPTER 9 DENOTATIONAL SEMANTICS

of lost precision in the definitions. Furthermore, most programming lan-
guage implementations do not propagate errors in this manner; they abort
(terminate) execution on finding a dynamic error. Of course, denotational
definitions do not have to adhere to real implementations, but aborting
execution is an easier way to handle errors, if we only have a way of
describing it.

2. Most programing languages allow radical transfers of control during the
execution of a program—in particular, by means of the goto command.
Such constructs cannot be modeled easily with direct denotational se-
mantics.

sto0 = { }
↓

execute [[s := 0]] sto0
↓

sto1 = { s|→int(0) }
↓

execute [[n := 5]] sto1
↓

sto2 = { s|→int(0), n|→int(5) }
↓

execute [[while n>1 do s := s+n; n := n–2]] sto2
↓

execute [[s := s+n]] sto2
↓

sto3 = { s|→int(5), n|→int(5) }
↓

execute [[n := n–2]] sto3
↓

sto4 = { s|→int(5), n|→int(3) }
↓

execute [[s := s+n]] sto4
↓

sto5 = { s|→int(8), n|→int(3) }
↓

execute [[n := n–2]] sto5
↓

sto6 = { s|→int(8), n|→int(1) }
↓

execute [[mean := s/2]] sto6
↓

sto7 = { s|→int(8), n|→int(1), mean|→int(4) }

Figure 9.22: Passing the Store through a Denotational Analysis

331

Consider again the meaning of command sequencing, “execute [[C1 ; C2]]”.
Direct denotational semantics assumes that C2 will be executed immediately
following C1 and that it depends on receiving a store from “execute [[C1]] sto”.
But what happens if C1 does not pass control on to C2, producing a new store
for C2 to act on? The reasons that C1 may not be immediately followed by C2
include the occurrence of a dynamic error in C1, or because C1 may belong to
a class of commands, called sequencers, including goto, stop, return, exit
(Ada or Modula-2), break (C), continue (C), raise (a language with excep-
tions), and resume (a language with coroutines). Sequencers have the prop-
erty that computation generally does not proceed with the next command in
the physical text of the program.

Returning to a concrete example, regard a sequence (block) of four labeled
commands:

begin L1 : C1; L2 : C2; L3 : C3; L4 : C4 end.

With direct semantics, the sequence has as its meaning

execute [[C4]] ° execute [[C3]] ° execute [[C2]] ° execute [[C1]],

if we ignore the denotations of the labels for now. As a store transformation,
the sequence can be viewed as follows:

sto0 ➞ execute [[C1]] ➞ execute [[C2]] ➞ execute [[C3]] ➞ execute [[C4]] ➞ stofinal.

But what if C3 is the command “goto L1”? Then the store transformation
must develop as follows:

sto0 ➞ execute [[C1]] ➞ execute [[C2]] ➞ execute [[C3]] ➞ execute [[C1]] ➞ ….

To handle these two possibilities, “execute [[C3]]” must be able to make the
choice of sending its result, a store, on to “execute [[C4]]” or to somewhere
else, such as “execute [[C1]]”. Before describing how this choice can be made,
we need to establish the meaning of a label. We take the label Lk, for k=1, 2,
3, or 4, to denote the computation starting with the command Ck and run-
ning to the termination of the program. This meaning is encapsulated as a
function from the current store to a final store for the entire program. Such
functions are known as continuations, and a denotational definition involv-
ing them is called continuation semantics or standard semantics.

Continuations

A continuation describes the change of state (store in this case) that occurs
as a result of executing the program from a particular point until the pro-
gram terminates; that is, a continuation models the remainder of the pro-
gram from a point in the code. The semantic domain of continuations,

Continuation = Store → Store

9.7 CONTINUATION SEMANTICS

332 CHAPTER 9 DENOTATIONAL SEMANTICS

is included with the denotable values since they can be bound to identifiers
(labels). Each label in a program is bound to a continuation in the environ-
ment of the block containing that label.

For the previous block with four commands and no sequencers, we have an
environment env with the following bindings:

Identifier Denotable Value
L1 cont1 = execute [[C1; C2; C3; C4]] env
L2 cont2 = execute [[C2; C3; C4]] env
L3 cont3 = execute [[C3; C4]] env
L4 cont4 = execute [[C4]] env

Note that each continuation depends on an environment that contains the
bindings of all the labels being elaborated so that jumps anywhere in the
block can be made when we allow sequencers. Therefore the signature of
execute includes an environment domain:

execute : Command → Environment → Store → Store

This is not, however, the final signature for execute since we have one more
issue to deal with.

Suppose that C2 is not a sequencer. Then “execute [[C2]]” passes its resulting
store to the rest of the computation starting at C3—namely, the “normal”
continuation cont3. On the other hand, if C3 is “goto L1”, it passes its result-
ing store to the continuation bound to L1—namely, cont1. To allow these two
possibilities, we make the normal continuation an argument to “execute [[Ck]]”
to be executed with normal program flow (as with C2) or to be discarded
when a sequencer occurs (as with C3). Therefore the final signature of ex-
ecute has the form

execute : Command → Environment → Continuation → Store → Store,

and the corresponding semantic equation for command sequencing becomes

execute [[C1 ; C2]] env cont sto = execute [[C1]] env {execute [[C2]] env cont} sto

where “execute [[C2]] env cont” is the normal continuation for C1. The con-
tinuation given to the execution of C1 encapsulates the execution of C2 fol-
lowed by the execution of the original continuation. Traditionally, braces are
used to delimit this constructed continuation. Observe the functionality of
this normal continuation:

execute [[C2]] env cont : Store → Store.

The semantic equation for the goto command shows that the continuation
bound to the label comes from the environment and is executed with the
store passed as a parameter,

execute [[goto L]] env cont sto = applyEnv(env,L) sto

333

with the effect that the normal continuation is simply discarded. In the pre-
vious example, where C2 is skip and C3 is “goto L1”,

execute [[C2]] env cont3 = cont3
and execute [[C3]] env cont4 = applyEnv(env,L1).

Observe that the store argument has been factored out of both of these se-
mantic equations.

The Programming Language Gull

We illustrate continuation semantics with Gull (G for goto), a programming
language that is similar to Wren but contains two sequencers, goto and stop.
Figure 9.23 provides the abstract syntax for Gull.

Syntactic Domains
P : Program L : Label O : Operator

S : Series I : Identifier N : Numeral

C : Command E : Expression

Abstract Production Rules
Program ::= program Identifier is begin Series end

Series ::= Command

Command ::= Command ; Command | Identifier := Expression

| if Expression then Series else Series

| while Expression do Series | skip | stop

| goto Label | begin Series end | Label : Command

Expression ::= Identifier | Numeral | - Expression

 | Expression Operator Expression

Operator ::= + | – | * | / | = | <= | < | > | >= | <>

Label ::= Identifier

Figure 9.23: Abstract Syntax of Gull

Gull permits only integer variables and has simply the if-then-else selection
command for economy. The syntactic domain “Series” acts as the syntactic
domain that corresponds to blocks, thus making the bodies of if and while
commands into local scoping regions. A local environment for labels can also
be created by an anonymous block using “begin Series end”. Although a
series is only a command in the abstract syntax, it serves as a separate
syntactic category to allow for the elaboration of labels in the command. The
syntax of Gull must have context constraints that forbid multiple labels with
the same identifier in a series and a jump to an undefined label.

9.7 CONTINUATION SEMANTICS

334 CHAPTER 9 DENOTATIONAL SEMANTICS

We need to elaborate labels at the top level and also inside compound com-
mands, ensuring correct denotations for language constructs, such as those
found in the program shown below. This poorly written program is designed
to illustrate the environments created by labels in Gull. Figure 9.24 displays
the nesting of the five environments that bind the labels in the program.

program labels is

begin

s:= 0; m := 1;

outer : if m<=5

then n := 1;

 inner : if n<= 4

then s := s+m n;

 goto next;

 next : n := n+1;

 goto inner

 else m := m+1;

 goto outer end if

 else goto done end if;

 done : answer := s

end

*

env1

env2

env3

env4

env5

Figure 9.24: A Gull Program

Figure 9.25 provides the semantic domains and the signatures of the seman-
tic functions for the continuation semantics of Gull. As already mentioned,
continuations are functions from store to store, and environments map la-
bels to continuations, the only denotable values in Gull. Therefore we do not
bother to put tags on them. The semantic functions indicate that only com-
mands depend on continuations, sometimes called command continuations.
A deeper investigation of continuation semantics would study expression
continuations and declaration continuations. An expression continuation
encapsulates the rest of the computation following the expression being evalu-
ated. These are the continuations in Scheme, which allows the manipulation
of such continuations as first-class objects in the same way as any other

335

functions. Declaration continuations are necessary to model an escape from
the elaboration of a declaration, say because of an error. These other kinds of
continuations are beyond the scope of this text. They are covered in other
books (see the further readings at the end of the chapter).

Semantic Domains
EV = int(Integer) + bool(Boolean)

SV = int(Integer)

DV = Continuation

Store = Identifier → SV + undefined

Continuation = Store → Store

Environment = Label → Continuation + unbound

Semantic Functions
meaning : Program → Store

perform : Series → Environment → Continuation → Store → Store

execute : Command → Environment → Continuation → Store → Store

evaluate : Expression → Store → EV

Figure 9.25: Semantic Domains and Semantic Functions of Gull

Auxiliary Functions

The semantic equations defining the semantic functions require a number of
auxiliary functions that have been presented previously. When we specify
the meaning of a program, an initial environment, emptyEnv, an initial store,
emptySto, and an initial continuation, identityCont, must be supplied. The
initial continuation is a function that takes the store resulting at the end of
the execution of the entire program and produces the final “answer”. We take
the final store as the answer of a program, since Gull has no output. The
initial continuation can thus be the identity function.

emptySto : Store

updateSto : Store x Identifier x SV → Store

applySto : Store x Identifier → SV

emptyEnv : Environment

extendEnv : Environment x Label+ x Continuation+ → Environment

applyEnv : Environment x Label → Continuation

identityCont : Continuation

identityCont = λ sto . sto.

9.7 CONTINUATION SEMANTICS

336 CHAPTER 9 DENOTATIONAL SEMANTICS

Since the denotational semantics of Gull elaborates all the labels in a series
in one semantic equation, extendEnv takes lists of labels and continuations
as arguments. An exercise asks the reader to define this auxiliary function.

Semantic Equations

The semantic equations for Gull are detailed in Figure 9.26. We examine the
specification of execute first, assuming that the environment argument al-
ready contains bindings for all visible labels. Command sequencing has al-
ready been described. Executing the skip command makes no change in the
store, so the current store is passed to the current continuation to continue
the execution of the program. The stop command abandons the current con-
tinuation and returns the current store, which thereby becomes the final
store terminating the denotational analysis. The if and while commands are
analogues of those for direct semantics, passing the current continuation to
appropriate series. The only exception occurs when the while test is false
and the effect is like a skip command. The assignment command calls the
current continuation with a store reflecting the new value that has been
stored.

Since our denotational specification of Gull ignores expression continuations,
the semantic equations for evaluate remain the same as those for Wren.

The function perform, specifying the meaning of a series, assumes a list of n
commands, all possessing labels. It proceeds by binding each label to the
appropriate continuation that encapsulates the rest of the code from the
point of the label in the program together with an environment that includes
all the bindings being established in the series. Observe that each defined
continuation executes one command with the continuation that follows the
command. The last continuation contn executes the last command with the
continuation that was originally passed to the series, representing the rest of
the program following the series. Once the labels have been elaborated, the
first continuation cont1, which embodies the entire list of commands, is in-
voked.

The Error Continuation

Gull does not handle errors any better than Wren, even though we suggested
earlier that continuation semantics allows us to abort execution when a dy-
namic error occurs. To treat errors properly, we need expression continua-
tions, so that when division by zero or accessing an undefined variable hap-
pens, an error continuation can be called at that point. Our specification of
Gull has to inspect the result of evaluating an expression at the command

337

level and call an error (command) continuation there. The semantic equation
for the assignment command then takes the form

execute [[I := E]] env cont sto =
if evaluate [[E]] sto=error

then errCont sto else cont updateSto(sto,I,evaluate [[E]] sto).

meaning [[program I is begin S end]] =

perform [[S]] emptyEnv identityCont emptySto

perform [[L1: C1; L2: C2; … ; Ln: Cn]] env cont = cont1

where cont1 = execute [[C1]] env1 cont2
cont2 = execute [[C2]] env1 cont3

:
contn = execute [[Cn]] env1 cont

and env1 = extendEnv(env,[L1, L2, … , Ln],[cont1, cont2, … , contn])

execute [[I := E]] env cont sto = cont updateSto(sto,I,evaluate [[E]] sto)

execute [[skip]] env cont sto = cont sto

execute [[stop]] env cont sto = sto

execute [[if E then S1 else S2]] env cont sto =

if p then perform [[S1]] env cont sto else perform [[S2]] env cont sto

where bool(p) = evaluate [[E]] sto

execute [[while E do S]] env cont sto = loop

where loop env cont sto = if p then perform [[S]] env {loop env cont} sto

else cont sto

where bool(p) = evaluate [[E]] sto

execute [[C1 ; C2]] env cont sto = execute [[C1]] env {execute [[C2]] env cont} sto

execute [[begin S end]] env cont sto = perform [[S]] env cont sto

execute [[goto L]] env cont sto = applyEnv(env,L) sto

execute [[L : C]] = execute [[C]]

evaluate [[I]] sto = applySto(sto,I)

evaluate [[N]] sto = value [[N]]

evaluate [[-E]] = int(minus(0,m)) where int(m) = evaluate [[E1]] sto

evaluate [[E1 + E2]] sto = int(plus(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto

:

Figure 9.26: Semantic Equations for Gull

9.7 CONTINUATION SEMANTICS

338 CHAPTER 9 DENOTATIONAL SEMANTICS

For the if command, the value of “evaluate [[E]] sto” must be examined before
executing one of the branches.

execute [[if E then S1 else S2]] env cont sto =
if evaluate [[E]] sto=error

then errCont sto
else if p then perform [[S1]] env cont sto

else perform [[S2]] env cont sto
where bool(p) = evaluate [[E]] sto.

The error continuation errCont performs in the same way as the identity
continuation, except that it should signal an error condition some way, say
by displaying an error message. For our purposes, we simply take errCont =
identityCont.

Exercises

1. Give a definition of extendEnv for lists of identifiers and continuations.

2. Describe the continuations used in analyzing the following program
denotationally, and give the bindings in its environment:

program fact is
begin

f := 1; n := 6;
start : if n>=1 then goto rest else stop end if;
 rest : f := f*n; n := n–1; goto start

end

3. Add an exit command to Gull and provide a denotational definition for
its semantics. Executing an exit causes control to transfer to the point
following the closest enclosing begin-end construct. Explain why it is
not sufficient to exit from the enclosing series.

4. Define the denotational semantics of a programming language that com-
bines the features of Gull and Pelican.

5. Construct a denotational interpreter for Gull in Prolog. See the further
readings for a suggestion on handling continuations as Prolog struc-
tures.

339

9.8 FURTHER READING

Denotational semantics grew out of the tradition of mathematical logic, and
early versions were characterized by single-letter identifiers, the Greek al-
phabet, and a heavy use of concise and sometimes cryptic mathematical
notation. Under the influence of the principles of good software design, more
recent expositions of denotational semantics possess enhanced readability
as a result of the use of meaningful identifiers and the concepts of data
abstraction.

One of the best descriptions of denotational semantics can be found in David
Schmidt’s book [Schmidt88], which covers most of the material that we de-
scribe in this chapter as well as additional material and examples treating
compound data structures, applicative languages, expression continuations,
and concurrency.

The traditional reference for denotational semantics has been the book by
Joseph Stoy [Stoy77]. Many of the later books were based on his work. The
books by Michael Gordon [Gordon79], Frank Pagan [Pagan81], and Lloyd
Allison [Allison86] contain short but thorough explanations of denotational
semantics with many good examples, although the dense notation in them
requires careful reading. The books by Allison and Gordon have clear pre-
sentations of continuation semantics. Moreover, Allison discusses at some
length the possibility of implementing a denotational definition using an im-
perative programming language to construct interpreters. His examples were
one of the inspirations for our denotational interpreter of Wren written in
Prolog.

Several textbooks published in the past few years provide additional examples
of denotational specifications and a look at the various notational conven-
tions employed in denotational semantics. These books, [Meyer90], [Watt91],
and [Nielson92], are written at about the same level as our presentation. The
Nielson book discusses implementing denotational definitions using the func-
tional language Miranda. David Watt’s very readable text uses notational
conventions that are close to ours. Watt also suggests using denotational
semantics to verify the context constraints on programming languages. His
text contains a complete denotational specification of an imperative program-
ming language called Triangle. He suggests using Standard ML as a vehicle
for constructing a denotational interpreter for Triangle based on the specifi-
cation. Watt coined the term semantic prototyping for the process of imple-
menting formal specifications of programming languages. Susan Stepney gives
a denotational semantics for a small imperative programming language and
a hypothetical machine language (using continuation semantics). After de-
scribing a compiler from one the other, she verifies it relative to the formal
specifications and implements the system in Prolog [Stepney93].

9.8 FURTHER READING

340 CHAPTER 9 DENOTATIONAL SEMANTICS

More formal treatments of denotational semantics can be found in [Mosses90],
[Tennent91], and [Winskel93]. The book by Tennent contains an interesting
discussion of compositionality. He suggests [Janssen86] for a historical re-
view of the notion of compositional definitions. Tennent has also written an
undergraduate textbook on the concepts of programming languages that is
based on denotational principles [Tennent81].

Most of the descriptions of implementing denotational semantics have avoided
the problems inherent in continuation semantics. For a short presentation of
denotational interpreters that handle continuations, see [Slonneger93], where
implementations in Standard ML and Prolog are explained and compared.

341

Chapter 10
DOMAIN THEORY AND
FIXED-POINT SEMANTICS

Although we did not stress the point in Chapter 9, the notation of
denotational semantics is built upon that of the lambda calculus. The
purpose of denotational semantics is to provide mathematical descrip-

tions of programming languages independent of their operational behavior.
The extended lambda calculus serves as a mathematical formalism, a
metalanguage, for denotational definitions. As with all mathematical formal-
isms, we need to know that the lambda calculus has a model to ensure that
the definitions are not meaningless.

Furthermore, denotational definitions, as well as programming languages in
general, rely heavily on recursion, a mechanism whose description we de-
ferred in the discussion of the lambda calculus in Chapter 5. Normally a user
of a programming language does not care about the logical foundations of
declarations, but we maintain that serious questions can be raised concern-
ing the validity of recursion. In this chapter we justify recursive definitions to
guarantee that they actually define meaningful objects.

10.1 CONCEPTS AND EXAMPLES

Programmers use recursion to define functions and procedures as subpro-
grams that call themselves and also to define recursive data structures. Most
imperative programming languages require the use of pointers to declare
recursive data types such as (linked) lists and trees. In contrast, many func-
tional programming languages allow the direct declaration of recursive types.
Rather than investigating recursive types in an actual programming language,
we study recursive data declarations in a wider context. In this introductory
section we consider the problems inherent in recursively defined functions
and data and the related issue of nontermination.

342 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Recursive Definitions of Functions

When we define a symbol in a denotational definition or in a program, we
expect that the symbol can be replaced by its meaning wherever it occurs. In
particular, we expect that the symbol is defined in terms of other (preferably
simpler) concepts so that any expression involving the symbol can be ex-
pressed by substituting its definition. With this concept in mind, consider
two simple recursive definitions:

f(n) = if n=0 then 1 else f(n–1)

g(n) = if n=0 then 1 else g(n+1).

The purpose of these definitions is to give meaning to the symbols “f” and “g”.
Both definitions can be expressed in the applied lambda calculus as

define f = λn . (if (zerop n) 1 (f (sub n 1)))

define g = λn . (if (zerop n) 1 (g (succ n))).

Either way, these definitions fail the condition that the defined symbol can
be replaced by its meaning, since that meaning also contains the symbol.
The definitions are circular. The best we can say is that recursive “defini-
tions” are equations in the newly defined symbol. The meaning of the symbol
will be a solution to the equation, if a solution exists. If the equation has
more than one solution, we need some reason for choosing one of those solu-
tions as the meaning of the new symbol.

An analogous situation can be seen with a mathematical equation that re-
sembles the recursive definitions:

x = x2 – 4x + 6.

This “definition” of x has two solutions, x=2 and x=3. Other similar defini-
tions of x, such as x = x+5, have no solutions at all, while x = x2/x has
infinitely many solutions. We need to describe conditions on a recursive defi-
nition of a function, really a recursion equation, to guarantee that at least
one solution exists and a reason for choosing one particular solution as the
meaning of the function.

For the examples considered earlier, we will describe in this chapter a meth-
odology that enables us to show that the equation in f has only one solution
(λn . 1), but the equation in g has many solutions, including

(λn . 1) and (λn . if n=0 then 1 else undefined).

One purpose of this chapter is to develop a “fixed-point” semantics that gives
a consistent meaning to recursive definitions of functions.

34310.1 CONCEPTS AND EXAMPLES

Recursive Definitions of Sets (Types)

Recursively defined sets occur in both programming languages and specifi-
cations of languages. Consider the following examples:

1. The BNF specification of Wren uses direct recursion in specifying the syn-
tactic category of identifiers,

<identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>,

and indirect recursion in many places, such as,

<command> ::= if <boolean expr> then <command seq> end if

<command seq> ::= <command> | <command> ; <command seq>.

2. The domain of lists of natural numbers N may be provided in a functional
programming language according to the definition:

List = {nil } ∪ (N x List) where nil represents the empty list.

Scheme lists have essentially this form using “cons” as the constructor
operation forming ordered pairs in N x List. Standard ML allows data type
declarations following this pattern.

3. A model for the (pure) lambda calculus requires a domain of values that
are manipulated by the rules of the system. These values incorporate
variables as primitive objects and functions that may act on any values in
the domain, including any of the functions. If V denotes the set of vari-
ables and D→D represents the set of functions from set D to D, the do-
main of values for the lambda calculus can be “defined” by D = V ∪ (D→D).

The third example presents major problems if we analyze the cardinality of
the sets involved. We give the critical results without going into the details of
measuring the cardinality of sets. It suffices to mention that the sizes of sets
are compared by putting their elements into a one-to-one correspondence.
We denote the cardinality of a set A by |A| with the following properties:

1. |A| ≤ |B| if there is a one-to-one function A→B.

2. |A| = |B| if there is a one-to-one and onto function A→B (which can be
shown to be equivalent to |A| ≤ |B| and |B| ≤ |A|).

3. |A| < |B| if |A| ≤ |B| but not |A| ≥ |B|.

Two results about cardinalities of sets establish the problem with the recur-
sive “definition” of D:

1. In the first use of “diagonalization” as a proof method, Georg Cantor
proved that for any set A, |A| < |P(A)| where P(A) is the power set
of A—that is, the set of all subsets of A.

344 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

2. If |A| > 1, then |P(A)| ≤ |A→A|.

Since D→D is a subset of D by the definition, |D→D| ≤ |D|. Therefore,
|D→D| ≤ |D| < |P(D)| ≤ |D→D|,

which is clearly a contradiction.

One way to provide a solution to the recursion equation D = V ∪ (D→D) is to
restrict the membership in the set of functions D→D by putting a “structure”
on the sets under consideration and by requiring that functions are well-
behaved relative to the structure. Although the solution to this recursion
equation is beyond the scope of this book (see the further readings at the end
of this chapter), we study this structure carefully for the intuition that it
provides about recursively defined functions and sets.

Modeling Nontermination

Any programming language that provides (indefinite) iteration or recursively
defined functions unfortunately also allows a programmer to write nontermi-
nating programs. Specifying the semantics of such a language requires a
mechanism for representing nontermination. At this point we preview do-
main theory by considering how it handles nontermination. Domain theory
is based on a relation of definedness. We say x ⊆ y if x is less defined than or
equal to y. This means that the information content of x is contained in the
information content of y. Each domain (structured set) contains a least ele-
ment ⊥, called bottom, representing the absence of information. Bottom can
be viewed as the result of a computation that fails to terminate normally. By
adding a bottom element to every domain, values that produce no outcome
under a function can be represented by taking ⊥ as the result. This simple
idea enables us to avoid partial functions in describing the semantics of a
programming language, since values for which a function is undefined map
to the bottom element in the codomain.

Dana Scott developed domain theory to provide a model for the lambda cal-
culus and thereby provide a consistent foundation for denotational seman-
tics. Without such a foundation, we have no reason to believe that denotational
definitions really have mathematical meaning. At the same time, domain
theory gives us a valid interpretation for recursively defined functions and
types.

In this chapter we first describe the structure supplied to sets by domain
theory, and then we investigate the semantics of recursively defined func-
tions via fixed-point theory. Finally, we use fixed points to give meaning to
recursively defined functions in the lambda calculus, implementing them by
extending the lambda calculus evaluator described in Chapter 5.

345

Exercises

1. Write a recursive definition of the factorial function in the lambda calcu-
lus using define.

2. Give a recursive definition of binary trees whose leaf nodes contain natural
number values.

3. Suppose A is a finite set with |A| = n. Show that |P(A)| = 2n and |A→A|
= nn.

4. Let A be an arbitrary set. Show that it is impossible for f : A→P(A) to be a
one-to-one and onto function. Hint: Consider the set X = {a∈A | a∉f(a)}.

5. Prove that |P(A)| ≤ |A→A| for any set A with |A| ≥ 2. Hint: Consider the
characteristic functions of the sets in P(A).

10.2 DOMAIN THEORY

The structured sets that serve as semantic domains in denotational seman-
tics are similar to the structured sets called lattices, but these domains have
several distinctive properties. Domains possess a special element ⊥, called
bottom , that denotes an undefined element or simply the absence of infor-
mation. A computation that fails to complete normally produces ⊥ as its
result. Later in this section we describe how the bottom element of a domain
can be used to represent the nontermination of programs, since a program
that never halts is certainly an undefined object. But first we need to define
the structural properties of the sets that serve as domains.

Definition : A partial or der on a set S is a relation ⊆ with the following
properties:

1. ⊆ is reflexive : x ⊆ x for all x∈S.

2. ⊆ is transitive : (x ⊆ y and y ⊆ z) implies x ⊆ z for all x,y,z∈S.

3. ⊆ is antisymmetric : (x ⊆ y and y ⊆ x) implies x = y for all x,y∈S. ❚

Definition : Let A be a subset of S.

1. A lower bound of A is an element b∈S such that b ⊆ x for all x∈A.

2. An upper bound of A is an element u∈S such that x ⊆ u for all x∈A.

3. A least upper bound of A, written lub A, is an upper bound of A with the
property that for any upper bound m of A, lub A ⊆ m. ❚

Example 1 : The subset relation ⊆ on the power set P({1,2,3}) is a partial order
as shown by the Hasse diagram in Figure 10.1. The main idea of a Hasse

10.2 DOMAIN THEORY

346 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

diagram is to represent links between distinct items where no other values
intervene. The reflexive and transitive closure of this “minimal” relation forms
the ordering being defined. We know that the subset relation is reflexive,
transitive, and antisymmetric. Any subset of P({1,2,3}) has lower, upper, and
least upper bounds. For example, if A = { {1}, {1,3}, {3} }, both {1,2,3} and {1,3}
are upper bounds of A, ∅ is a lower bound of A, and lub A = {1,3}. ❚

{ 1,2,3 }

{ 1,2 } { 1,3 } { 2,3 }

{ 1 } { 2 } { 3 }

∅

Figure 10.1: Partial order on P({1,2,3})

In addition to possessing a partial ordering, the structured sets of domain
theory require a “smallest” element and the existence of limits for sequences
that admit a certain conformity.

Definition : An ascending chain in a partially ordered set S is a sequence of
elements {x1, x2, x3, x4, …} with the property x1 ⊆ x2 ⊆ x3 ⊆ x4 ⊆ …. ❚

Remember that the symbol ⊆ stands for an arbitrary partial order, not neces-
sarily the subset relation. Each item in an ascending chain must contain
information that is consistent with its predecessor in the chain; it may be
equal to its predecessor or it may provide additional information.

Definition : A complete partial or der (cpo) on a set S is a partial order ⊆
with the following properties:

1. There is an element ⊥∈S for which ⊥ ⊆ x for all x∈S.

2. Every ascending chain in S has a least upper bound in S. ❚

Sets with complete partial orders serve as the semantic domains in
denotational semantics. On these domains, ⊆ is thought of as the relation
approximates or is less defined than or equal to . View x ⊆ y as asserting

347

that y has at least as much information content as x does, and that the
information in y is consistent with that in x. In other words, y is a consistent
(possibly trivial) extension of x in terms of information.

The least upper bound of an ascending chain summarizes the information
that has been accumulated in a consistent manner as the chain progresses.
Since an ascending chain may have an infinite number of distinct values, the
least upper bound acts as a limit value for the infinite sequence. On the
other hand, a chain may have duplicate elements, since ⊆ includes equality,
and a chain may take a constant value from some point onward. Then the
least upper bound is that constant value.

Example 1 (r evisited) : P({1,2,3}) with ⊆ is a complete partial order. If S is
a set of subsets of {1,2,3}, lub S = ∪{X | X∈S}, and ∅ serves as bottom.
Note that every ascending chain in P({1,2,3}) is a finite subset of P({1,2,3})—
for example, the chain with x1={2}, x2={2,3}, x3={1,2,3}, and xi={1,2,3} for
all i≥4. ❚

Example 2 : Define m ⊆ n on the set S = {1,2,3,5,6,15} as the divides relation,
m|n (n is a multiple of m). The set S with the divides ordering is a complete
partial order with 1 as the bottom element, and since each ascending chain
is finite, its last element serves as the least upper bound. Figure 10.2 gives a
Hasse diagram for this ordered set. Observe that the elements of the set lie
on three levels. Therefore no ascending chain can have more than three
distinct values. ❚

6 15

2 3 5

1

Figure 10.2: Partial order “divides” on {1,2,3,5,6,15}

These complete partially ordered sets have a lattice-like structure but need
not be lattices. Lattices possess the property that any two elements have a
least upper bound and a greatest lower bound. A complete lattice also satis-
fies the condition that any subset has a least upper bound and a greatest
lower bound. Observe that {1,2,3,5,6,15} with “divides” is not a lattice since
{6,15} has no least upper bound.

10.2 DOMAIN THEORY

348 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Any finite set with a partial order and a bottom element ⊥ is a cpo since each
ascending chain is a finite set and its last component will be the least upper
bound. A partially ordered set with an infinite number of distinct elements
that lie on an infinite number of “levels” may not be a cpo.

Elementary Domains

Common mathematical sets such as the natural numbers and the Boolean
values are converted into complete partial orders by adding a bottom ele-
ment ⊥ and defining the discrete partial or der ⊆ as follows:

for x,y∈S, x ⊆ y iff x = y or x = ⊥.

In denotational semantics, elementary domains correspond to “answers” or
results produced by programs. A typical program produces a stream of these
atomic values as its result.

Example 3 : The domain of Boolean values T has the structure shown in
Figure 10.3. With a discrete partial order, bottom is called an improper value,
and the original elements of the set are called proper . Each proper value,
true or false, contains more information than ⊥, but they are incomparable
with each other. The value true has no more information content than false;
it is just different information. ❚

true false

⊥T

Figure 10.3: Boolean Domain

Example 4 : The domain of natural numbers N has the structure portrayed
in Figure 10.4. ❚

0 1 2 3 …

⊥N

4

Figure 10.4: Domain of natural numbers

349

Do not confuse the “approximates” ordering ⊆ with the numeric ordering ≤
on the natural numbers. Under ⊆, no pair of natural numbers is comparable,
since neither contains more or even the same information as the other. These
primitive complete partially ordered sets are also called elementary or flat
domains . More complex domains are formed by three domain constructors.

Product Domains

Definition : If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, the product domain of A and B is AxB with the ordering ⊆AxB where

AxB = {<a,b> | a∈A and b∈B} and

<a,b> ⊆AxB <c,d> iff a ⊆A c and b ⊆B d. ❚

It is a simple matter to show that ⊆AxB is a partial order on AxB, which we
invite the reader to try as an exercise. Assuming that a product domain is a
partial order, we need a bottom element and least upper bound for ascending
chains to guarantee it is a cpo.

Theorem: ⊆AxB is a complete partial order on AxB.

Proof: ⊥AxB = <⊥A,⊥B> acts as bottom for AxB, since ⊥A ⊆A a and ⊥B ⊆ B b for
each a∈A and b∈B. If <a1,b1> ⊆ <a2,b2> ⊆ <a3,b3> ⊆ … is an ascending chain
in AxB, then a1 ⊆A a2 ⊆A a3 ⊆A … is a chain in A with a least upper bound
lub{ai|i≥1}∈A, and b1 ⊆B b2 ⊆B b3 ⊆B … is a chain in B with a least upper
bound lub{bi|i≥1}∈B. Therefore lub{<ai,bi>|i≥1} = <lub{ai|i≥1},lub{bi|i≥1}>∈AxB
is the least upper bound for the original chain. ❚

A product domain can be constructed with any finite set of domains in the
same manner. If D1, D2, …, Dn are domains (sets with complete partial or-
ders), then D1xD2x…xDn with the induced partial order is a domain. If the
original domains are identical, then the product domain is written Dn.

Example 5 : Consider a classification of university students according to two
domains.

1. Level = {⊥L, undergraduate, graduate, nondegree}

2. Gender = {⊥G, female, male}

The product domain Level x Gender allows 12 different values as depicted in
the diagram in Figure 10.5, which shows the partial ordering between the
elements using only the first letters to symbolize the values. Notice that six
values are “partial”, containing incomplete information for the classification.
We can interpret these partial values by imagining two processes, one to
determine the level of a student and the other to ascertain the gender. The
six incomplete values fit into one of three patterns.

10.2 DOMAIN THEORY

350 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

<⊥L,⊥G> Both processes fail to terminate normally.

<⊥L,male> The Gender process terminates with a result but the Level
process fails.

<graduate,⊥G> The Level process completes but the Gender one does not
terminate normally. ❚

<u,f> <g,f> <n,f> <u,m> <g,m> <n,m>

 <⊥L,f> <u,⊥G> <g,⊥G> <n,⊥G> <⊥L,m>

<⊥L,⊥G>

Figure 10.5: Level x Gender

To choose components from an element of a product domain, selector func-
tions are defined on the structured domain.

Definition : Assume that for any product domain AxB, there are projection
functions

first : AxB→A, defined by first <a,b> = a for any <a,b>∈AxB, and

second : AxB→B, defined by second <a,b> = b for any <a,b>∈AxB. ❚

Selector functions of this sort may be applied to arbitrary product domains,
D1xD2x…xDn. As a shorthand notation we sometimes use 1st, 2nd, 3rd, …,
nth, for the names of the selector functions.

Example 6 : We used a product domain IntegerxOperationx IntegerxInteger
to represent the states of the calculator in Chapter 9. In the semantic equa-
tions of Figure 9.8, pattern matching simulates the projection functions—
for example, the equation

meaning [[P]] = d where (a,op,d,m) = perform [[P]] (0,nop,0,0)

abbreviates the equation

meaning [[P]] = third(perform [[P]] (0,nop,0,0)).

Similarly,

evaluate [[MR]] (a,op,d,m) = (a,op,m,m)

351

is a more readable translation of

evaluate [[MR]] st = (first(st),second(st),fourth(st),fourth(st)). ❚

Generally, using pattern matching to select components from a structure
leads to more understandable definitions, as witnessed by its use in Prolog
and many functional programming languages, such as Standard ML.

Sum Domains (Disjoint Unions)

Definition : If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, the sum domain of A and B is A+B with the ordering ⊆A+B defined by

A+B = {<a,1> | a∈A} ∪ {<b,2> | b∈B} ∪ {⊥A+B},

<a,1> ⊆A+B <c,1> if a ⊆A c,

<b,2> ⊆A+B <d,2> if b ⊆B d,

⊥A+B ⊆A+B <a,1> for each a∈A,

⊥A+B ⊆A+B <b,2> for each b∈B, and

⊥A+B ⊆A+B ⊥A+B. ❚

The choice of “1” and “2” as tags in a disjoint union is purely arbitrary. Any
two distinguishable values can serve the purpose. In Chapter 9 we used the
symbols int and bool as tags for the sum domain of storable values when
specifying the semantics of Wren,

SV = int(Integer) + bool(Boolean),

which can be thought of as an abbreviation of {<i,int>|i∈Integer} ∪
{<b,bool>|b∈Boolean} ∪ {⊥}.

Again it is not difficult to show that ⊆A+B is a partial order on A+B, and the
proof is left as an exercise.

Theorem: ⊆A+B is a complete partial order on A+B.

Proof: ⊥A+B ⊆ x for any x∈A+B by definition. An ascending chain x1 ⊆ x2 ⊆ x3
⊆ … in A+B may repeat ⊥A+B forever or eventually climb into either Ax{1} or
Bx{2}. In the first case, the least upper bound will be ⊥A+B, and in the other
two cases the least upper bound will exist in A or B. ❚

Example 7 : The sum domain T+N (Boolean values and natural numbers)
may be viewed as the structure portrayed in Figure 10.6, where the tags have
been omitted to simplify the diagram. ❚

10.2 DOMAIN THEORY

352 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

⊥T+N

0 1 2 3 …

⊥N

4true false

⊥T

Figure 10.6: The sum domain T+N

A sum domain can be constructed with any finite set of domains in the same
manner as with two domains. If D1, D2, …, Dn are domains (sets with com-
plete partial orders), then D1 + D2 + … + Dn = {<d,i> | d∈Di, 1≤i≤n} ∪ {⊥}with
the induced partial order is a domain.

Functions on sum domains include a constructor, a selector, and a testing
function.

Definition : Let S = A+B, where A and B are two domains.

1. Injection (creation):

inS : A→S is defined for a∈A as inS a = <a,1>∈S

inS : B→S is defined for b∈B as inS b = <b,2>∈S

2. Projection (selection):

outA : S→A is defined for s∈S as outA s = a∈A if s=<a,1>, and
outA s = ⊥A∈A if s=<b,2> or s=⊥S.

outB : S→B is defined for s∈S as outB s = b∈B if s=<b,2>, and
outB s = ⊥B∈B if s=<a,1> or s=⊥S.

3. Inspection (testing): Recall that T = {true, false, ⊥T}.

isA : S→T is defined for s∈S as
(isA s) if and only if there exists a∈A with s=<a,1>.

isB : S→T is defined for s∈S as
(isB s) if and only if there exists b∈B with s=<b,2>.

In both cases, ⊥S is mapped to ⊥T. ❚

Example 8 : In the semantic domain of storable values for Wren shown in
Figure 9.10, the identifiers int and bool act as the tags to specify the separate
sets of integers and Boolean values. The notation

353

SV = int(Integer) + bool(Boolean)
= {int(n)|n∈Integer} ∪ {bool(b)|b∈Boolean} ∪ {⊥SV}

represents the sum domain

SV = (Integer x {int}) ∪ (Boolean x {bool}) ∪ {⊥SV}.

Then an injection function is defined by

inSV : Integer → SV where inSV n = int(n). ❚

Actually, the tags themselves can be thought of as constituting the injection
function (or as constructors) with the syntax int : Integer → SV and
bool : Boolean → SV, so that we can dispense with the special injection func-
tion inSV.

A projection function takes the form

outInteger : SV → Integer where outInteger int(n) = n
outInteger bool(b) = ⊥.

Inspection is handled by pattern matching, as in the semantic equation

execute [[if E then C]] sto = if p then execute [[C]] sto else sto
where bool(p) = evaluate [[E]] sto,

which stands for

execute [[if E then C]] sto =
if isBoolean(val)

then if outBoolean(val) then execute [[C]] sto else sto
else ⊥

where val = evaluate [[E]] sto.

Example 9 : In the sum domain Level + Gender shown in Figure 10.7, tags lv
for level and gd for gender are attached to the elements from the two compo-
nent domains. If a computation attempts to identify either the level or the
gender of a particular student (but not both), it may utterly fail giving ⊥, it
may be able to identify the level or the gender of the student, or as a middle
ground it may know that the computation is working on the level value but
may not be able to complete its work, thus producing the result ⊥L. ❚

An infinite sum domain may be defined in a similar way.
If D1, D2, D3, … are domains, then D1 + D2 + D3 + … contains elements of the
form <d,i> where d∈Di for i≥1 plus a new bottom element.

This infinite sum domain construction allows the definition of the domain of
all finite sequences (lists) formed using elements from a domain D and de-
noted by D*.

10.2 DOMAIN THEORY

354 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

lv (undergraduate)

lv (⊥L)

⊥ L+G

gd (⊥G)

lv (graduate)

lv (nondegree) gd (female) gd (male)

Figure 10.7: Level + Gender

D* = {nil }+D+D2+D3+D4+… where nil represents the empty sequence.

An element of D* is either the empty list nil, a finite ordered tuple from Dk for
some k≥1, or ⊥.

Special selector and constructor functions are defined on D*.

Definition : Let L∈D* and e∈D. Then L=<d,k> for d∈Dk for some k≥0 where
D0 = {nil }.

1. head : D*→D where
head (L) = first (outDk(L)) if k>0 and head (<nil,0>) = ⊥.

2. tail : D*→D* where
tail (L) = inD* (<2nd(outDk(L)),3rd(outDk(L)),…,kth(outDk(L))>) if k>0 and
tail (<nil,0>) = ⊥.

3. null : D*→T where
null (<nil,0>) = true and null (L) = false if L = <d,k> with k>0.
Therefore null (L) = isD0(L).

4. prefix : DxD*→D* where
prefix (e,L) = inD* (<e,1st(outDk(L)),2nd(outDk(L)),…,kth(outDk(L))>) and
prefix (e,<nil,0>)) = <<e>,1>

5. affix : D*xD→D* where
affix (L,e) = inD* (<1st(outDk(L)),2nd(outDk(L)),…,kth(outDk(L)),e>) and
affix (<nil,0>,e) = <<e>,1>. ❚

Each of these five functions on lists maps bottom to bottom. The binary
functions prefix and affix produce ⊥ if either argument is bottom.

355

Function Domains

Definition : A function from a set A to a set B is total if f(x)∈B is defined for
every x∈A. If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, define Fun(A,B) to be the set of all total functions from A to B. (This
set of functions will be restricted later.) Define ⊆ on Fun(A,B) as follows:

For f,g∈Fun(A,B), f ⊆ g if f(x) ⊆B g(x) for all x∈A. ❚

Lemma : ⊆ is a partial order on Fun(A,B).

Proof:
1. Reflexive: Since ⊆B is reflexive, f(x) ⊆B f(x) for all x∈A, so f ⊆ f for any

f∈Fun(A,B).

2. Transitive: Suppose f ⊆ g and g ⊆ h. Then f(x) ⊆B g(x) and g(x) ⊆B h(x) for
all x∈A. Since ⊆B is transitive, f(x) ⊆B h(x) for all x∈A, and so f ⊆ h.

3. Antisymmetric: Suppose f ⊆ g and g ⊆ f. Then f(x) ⊆B g(x) and g(x) ⊆B
f(x) for all x∈A. Since ⊆B is antisymmetric, f(x) = g(x) for all x∈A, and so
f = g. ❚

Theorem: ⊆ is a complete partial order on Fun(A,B).

Proof: Define bottom for Fun(A,B) as the function ⊥(x) = ⊥B for all x∈A. Since
⊥(x) = ⊥B ⊆B f(x) for all x∈A and f∈Fun(A,B), ⊥ ⊆ f for any f∈Fun(A,B). Let f1 ⊆
f2 ⊆ f3 ⊆ … be an ascending chain in Fun(A,B). Then for any x∈A, f1(x) ⊆B f2(x)
⊆B f3(x) ⊆B … is a chain in B, which has a least upper bound, yx∈B. Note that
yx is lub{fi(x)|i≥1}. Define the function F(x) = yx for each x∈A. F serves as a
least upper bound for the original chain. Set lub{fi|i≥1} = F. ❚

The set Fun(A,B) of all total functions from A to B contains many functions
with abnormal behavior that precludes calculating or even approximating
them on a computer. For example, consider a function H : (N→N) → (N→N)
defined by

for g∈N→N, H g = λn . if g(n)=⊥ then 0 else 1.

Certainly H∈Fun(N→N,N→N), but if we make this function acceptable in the
domain theory that provides a foundation for denotational definitions, we
have accepted a function that solves the halting problem—that is, whether
an arbitrary function halts normally on given data. To exclude this and other
abnormal functions, we place two restrictions on functions to ensure that
they have agreeable behavior.

Definition : A function f in Fun(A,B) is monotonic if x ⊆A y implies f(x) ⊆B f(y)
for all x,y∈A. ❚

Since we interpret ⊆ to mean “approximates”, whenever y has at least as
much information as x, it follows that f(y) has at least as much information

10.2 DOMAIN THEORY

356 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

as f(x). We get more information out of a function by putting more informa-
tion into it.

An ascending chain in a partially order set can be viewed as a subset of the
partially ordered set on which the ordering is total (any two elements are
comparable).

Definition : A function f∈Fun(A,B) is continuous if it preserves least upper
bounds—that is, if x1 ⊆A x2 ⊆A x3 ⊆A … is an ascending chain in A, then
f(lub{xi|i≥1}}) = lub{f(xi)|i≥1}. ❚

Note that if f is also monotonic, then f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B … is an ascend-
ing chain. Intuitively, continuity means that there are no surprises when
taking the least upper bounds (limits) of approximations. The diagram in
Figure 10.8 shows the relation between the two chains.

x1 ⊆A x2 ⊆A x3 ⊆A … ⇒ lub{xi|i≥1}

↓ ↓ ↓ ↓
f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B … ⇒ lub{f(xi)|i≥1} = f(lub{xi|i≥1})

Figure 10.8: Continuity

A continuous function f has predictable behavior in the sense that if we know
its value on the terms of an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ …, we also know
its value on the least upper bound of the chain since f(lub{xi|i≥1}) is the least
upper bound of the chain f(x1) ⊆ f(x2) ⊆ f(x3) ⊆ …. It is possible to predict the
value of f on lub{xi|i≥1} by its behavior on each xi.

Lemma : If f∈Fun(A,B) is continuous, it is also monotonic.

Proof: Suppose f is continuous and x ⊆A y. Then x ⊆A y ⊆A y ⊆A y ⊆A … is an
ascending chain in A, and so by the continuity of f,

f(x) ⊆B lubB{f(x),f(y)} = f(lubA{x,y}) = f(y). ❚

Definition : Define A→B to be the set of functions in Fun(A,B) that are
(monotonic and) continuous. This set is ordered by the relation ⊆ from
Fun(A,B). ❚

Lemma : The relation ⊆ restricted to A→B is a partial order.

Proof: The properties reflexive, transitive, and antisymmetric are inherited
by a subset. ❚

The example function H : (N→N) → (N→N) defined by

for g∈N→N, H g = λn . if g(n)=⊥ then 0 else 1

is neither monotonic nor continuous. It suffices to show that it is not mono-
tonic by a counterexample.

357

Let g1 = λn . ⊥ and g2 = λn . 0. Then g1 ⊆ g2. But H(g1) = λn . 0, H(g2) = λn . 1,
and the functions λn . 0 and λn . 1 are not related by ⊆ at all.

Two lemmas will be useful in proving the continuity of functions.

Lub Lemma : If x1 ⊆ x2 ⊆ x3 ⊆ … is an ascending chain in a cpo A, and xi ⊆
d∈A for each i≥1, it follows that lub{xi|i≥1} ⊆ d.

Proof: By the definition of least upper bound, if d is a bound for the chain, the
least upper bound lub{xi|i≥1} must be no larger than d. ❚

Limit Lemma : If x1 ⊆ x2 ⊆ x3 ⊆ … and y1 ⊆ y2 ⊆ y3 ⊆ … are ascending chains
in a cpo A, and xi ⊆ yi for each i≥1, then lub{xi|i≥1} ⊆ lub{yi|i≥1}.

Proof: For each i≥1, xi ⊆ yi ⊆ lub{yi|i≥1}. Therefore lub{xi|i≥1} ⊆ lub{yi|i≥1} by
the Lub lemma (take d = lub{yi|i≥1}). ❚

Theorem: The relation ⊆ on A→B, the set of functions in Fun(A,B) that are
monotonic and continuous, is a complete partial order.

Proof: Since ⊆ is a partial order on A→B, two properties need to be verified.

1. The bottom element in Fun(A,B) is also in A→B, which can be proved by
showing that the function ⊥(x) = ⊥B is monotonic and continuous.

2. For any ascending chain in A→B, its least upper bound, which is an ele-
ment of Fun(A,B), is also in A→B, which means that it is monotonic and
continuous.

Part 1 : If x ⊆A y for some x,y∈A, then ⊥(x) = ⊥B = ⊥(y), which means ⊥(x) ⊆B
⊥(y), and so ⊥ is a monotonic function. If x1 ⊆A x2 ⊆A x3 ⊆A … is an ascending
chain in A, then its image under the function ⊥ will be the ascending chain
⊥B ⊆B ⊥B ⊆B ⊥B ⊆B …, whose least upper bound is ⊥B. Therefore ⊥(lub{xi|i≥1})
= ⊥B = lub{⊥(xi)|i≥1}, and ⊥ is a continuous function.

Part 2 : Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain in A→B, and let F =
lub{fi|i≥1} be its least upper bound (in Fun(A,B)). Remember the definition of
F, F(x) = lub{fi(x)|i≥1} for each x∈A. We need to show that F is monotonic and
continuous so that we know F is a member of A→B.

Monotonic : If x ⊆A y, then fi(x) ⊆B fi(y) ⊆B lub{fi(y)|i≥1} for any i since each fi
is monotonic. Therefore F(y) = lub{fi(y)|i≥1} is an upper bound for each fi(x),
and so the least upper bound of all the fi(x) satisfies F(x) = lub{fi(x)|i≥1} ⊆ F(y),
and F is monotonic. This result can also be proved using the Limit lemma.
Since fi(x) ⊆B fi(y) for each i≥1, F(x) = lub{fi(x)|i≥1} ⊆ lub{fi(y)|i≥1} = F(y).

10.2 DOMAIN THEORY

358 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Continuous : Let x1 ⊆A x2 ⊆A x3 ⊆A … be an ascending chain in A. We need to
show that F(lub{xj|j≥1}) = lub{F(xj)|j≥1} where F(x) = lub{fi(x)|i≥1} for each
x∈A. Note that “i” is used to index the ascending chain of functions from
A→B while “j” is used to index the ascending chains of elements in A and B.
So F is continuous if F(lub{xj|j≥1}) = lub{F(xj)|j≥1}.

Recall these definitions and properties.

1. Each fi is continuous: fi(lub{xj|j≥1}) = lub{fi(xj)|j≥1} for each chain {xj|j≥1}
in A.

2. Definition of F: F(x) = lub{fi(x)|i≥1} for each x∈A.

Thus F(lub{xj|j≥1}) = lub{fi(lub{xj|j≥1})|i≥1} by 2
= lub{lub{fi(xj)|j≥1}|i≥1} by 1
= lub{lub{fi(xj)|i≥1}|j≥1} ‡ needs to be shown
= lub{F(xj)|j≥1} by 2.

The condition ‡ to be proved is illustrated in Figure 10.9.

f1(x1) ⊆ f2(x1) ⊆ f3(x1) ⊆ F(x1)

f1(x2) ⊆ f2(x2) ⊆ f3(x2) ⊆ F(x2)

f1(x3) ⊆ f2(x3) ⊆ f3(x3) ⊆ F(x3)

f1(lub {xj|j≥1}) ⊆ f2(lub {xj|j≥1}) ⊆ f3(lub {xj|j≥1}) ⊆ ?

⊆ ⊆ ⊆

⊆

⊆
⊆

⊆ ⊆ ⊆
⊆⊆⊆

⊆
⊆

⊆

⊆ ⊆ ⊆

lub {xj|j≥1}

x3

x1

x2

f1 f2 f3 F=lub {fi|i≥1}

Figure 10.9: Continuity of F = lub{f
i
|i≥1}

The rows in the diagram correspond to the definition of F as the least upper
bound of the ascending chain of functions lub{fi|i≥1}. The columns corre-
spond to the continuity of each fi—namely, that lub{fi(xj)|j≥1} = fi(lub{xj|j≥1})
for each i and each ascending chain {xj|j≥1} in A.

35910.2 DOMAIN THEORY

First Half : lub{lub{fi(xj)|j≥1}|i≥1} ⊆ lub{lub{fi(xj)|i≥1}|j≥1}

For all k and j, fk(xj) ⊆ lub{fi(xj)|i≥1} by the definition of F (the rows of
Figure 10.9). We have ascending chains fk(x1) ⊆ fk(x2) ⊆ fk(x3) ⊆ … for
each k and lub{fi(x1)|i≥1} ⊆ lub{fi(x2)|i≥1} ⊆ lub{fi(x3)|i≥1} ⊆ …. So for each
k, lub{fk(xj)|j≥1} ⊆ lub{lub{fi(xj)|i≥1}|j≥1} by the Limit lemma. This corre-
sponds to the top row. Hence lub { lub { fk(x j)|j≥1}|k≥1} ⊆
lub{lub{fi(xj)|i≥1}|j≥1} by the Lub lemma. Now change k to i.

Second Half : lub{lub{fi(xj)|i≥1}|j≥1} ⊆ lub{lub{fi(xj)|j≥1}|i≥1}

For all i and k, fi(xk) ⊆ fi(lub{xj|j≥1}) = lub{fi(xj)|j≥1} by using the fact that each
fi is monotonic and continuous (the columns of Figure 10.9). So for each k,
lub{fi(xk)|i≥1} ⊆ lub{lub{fi(xj)|j≥1}|i≥1} by the Limit lemma. This corresponds
to the rightmost column. Hence lub{lub{fi(xk)|i≥1}|k≥1} ⊆ lub{lub {fi(xj)|j≥1}|i≥1}
by the Lub lemma. Now change k to j.

Therefore F is continuous. ❚

Corollary : Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain of continuous functions
in A→B. Then F = lub{fi|i≥1} is a continuous function.

Proof: This corollary was proved in Part 2 of the proof of the previous theo-
rem. ❚

In agreement with the notation for denotational semantics in Chapter 9, as a
domain constructor, we treat → as a right associative operation. The domain
A→B→C means A→(B→C), which is the set of continuous functions from A
into the set of continuous functions from B to C. If f∈A→B→C, then for a∈A,
f(a)∈B→C. Generally, we write “:” to represent membership in a domain. So
we write g : A→B for g∈A→B.

Example 10 : Consider the functions from a small domain of students,

Student = {⊥, Autry, Bates}

to the domain of levels,

Level = {⊥, undergraduate, graduate, nondegree}.

We can think of the functions in Fun(Student,Level) as descriptions of our
success in classifying two students, Autry and Bates. The set of all total
functions, Fun(Student,Level), contains 64 (43) elements, but only 19 of these
functions are monotonic and continuous. The structure of Student → Level
is portrayed by the lattice-like structure in Figure 10.10, where the values in
the domains are denoted by only their first letters. ❚

Since the domain Student of a function in Student→Level is finite, it is enough
to show that the function is monotonic as we show in the next theorem.

360 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

a → u
b → u
⊥ → u

a → g
b → g
⊥ → g

a → n
b → n
⊥ → n

a → g
b → n
⊥ → ⊥

a → n
b → g
⊥ → ⊥

a → n
b → n
⊥ → ⊥

a → u
b → u
⊥ → ⊥

a → n
b → u
⊥ → ⊥

a → u
b → g
⊥ → ⊥

a → u
b → ⊥
⊥ → ⊥

a → g
b → g
⊥ → ⊥

a → u
b → n
⊥ → ⊥

a → g
b → u
⊥ → ⊥

a → g
b → ⊥
⊥ → ⊥

a → n
b → ⊥
⊥ → ⊥

a →⊥
b → g
⊥ → ⊥

a → ⊥
b → n
⊥ → ⊥

a → ⊥
b → u
⊥ → ⊥

a → ⊥
b → ⊥
⊥ → ⊥

Figure 10.10: Function domain Student → Level

Theorem: If A and B are cpo’s, A is a finite set, and f∈Fun(A,B) is monotonic,
then f is also continuous.

Proof: Let x1 ⊆A x2 ⊆A x3 ⊆A … be an ascending chain in A. Since A is finite, for
some k, xk = xk+1 = xk+2 = …. So the chain is a finite set {x1, x2, x3, …, xk}
whose least upper bound is xk. Since f is monotonic, f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B

361

… ⊆B f(xk) = f(xk+1) = f(xk+2) = … is an ascending chain in B, which is also a
finite set—namely, {f(x1), f(x2), f(x3), …, f(xk)} with f(xk) as its least upper bound.
Therefore, f(lub{xi|i≥1}) = f(xk) = lub{f(xi)|i≥1}, and f is continuous. ❚

Lemma : The function f : Student → Level defined by

f(⊥) = graduate, f(Autry) = nondegree, f(Bates) = graduate

is neither monotonic nor continuous.

Proof: Clearly, ⊥ ⊆ Autry. But f(⊥) = graduate and f(Autry) = nondegree are
incomparable. Therefore, f is not monotonic. By the contrapositive of an ear-
lier theorem, if f is not monotonic, it is also not continuous. ❚

Continuity of Functions on Domains

The notation used for the special functions defined on domains implied that
they were continuous—for example, first : AxB→A. To justify this notation, a
theorem is needed.

Theorem: The following functions on domains and their analogs are con-
tinuous:

1. first : AxB→A

2. inS : A→S where S = A+B

3. outA : A+B→A

4. isA : A+B→T

Proof:
1. Let <a1,b1> ⊆ <a2,b2> ⊆ <a3,b3> ⊆ … be an ascending chain in AxB.

Then lub{first <ai,bi>|i≥1} = lub{ai|i≥1}
= first <lub{ai|i≥1},lub{bi|i≥1}> = first (lubAxB{<ai,bi>|i≥1}).

2. An exercise.

3. An exercise.

4. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in A+B may repeat ⊥A+B forever or
eventually climb into either Ax{1} or Bx{2}. In the first case, the least up-
per bound will be ⊥A+B, and in the other two cases the lub will be some
a∈A or some b∈B.

Case 1 : {xi|i≥1} = {⊥A+B}. Then isA(lubA+B{xi|i≥1}) = isA(⊥A+B) = ⊥T, and
lubT{isA(xi)|i≥1} = lubT{isA(⊥A+B)} = lubT{⊥T} = ⊥T.

Case 2 : {xi|i≥1} = {⊥A+B,…,⊥A+B,<a1,1>,<a2,1>,…} where a1 ⊆A a2 ⊆A a3
⊆A … is a chain in A. Suppose a = lub{ai|i≥1}. Then isA(lubA+B{xi|i≥1}) =
isA(<a,1>) = true, and lubT{isA(xi)|i≥1} = lubT{⊥,…,⊥,true,true,…} = true.

10.2 DOMAIN THEORY

362 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Case 3 : {xi|i≥1} = {⊥A+B,…,⊥A+B,<b1,2>,<b2,2>,…} where b1 ⊆B b2 ⊆B b3
⊆B … is a chain in B. Suppose b = lub{bi|i≥1}.Then isA(lubA+B{xi|i≥1}) =
isA(<b,2>) = false, and lubT{isA(xi)|i≥1} = lubT{⊥,…,⊥,false,false,…} =
false. ❚

The functions defined on lists, such as head and tail, are mostly built from
the selector functions for products and sums. The list functions can be shown
to be continuous by proving that composition preserves the continuity of
functions.

Theorem: The composition of continuous functions is continuous.

Proof: Suppose f : A → B and g : B → C are continuous functions. Let a1 ⊆ a2
⊆ a3 ⊆ … be an ascending chain in A. Then f(a1) ⊆ f(a2) ⊆ f(a3) ⊆ … is an
ascending chain in B with f(lub{ai|i≥1}) = lub{f(ai)|i≥1} by the continuity of f.
Since g is continuous, g(f(a1)) ⊆ g(f(a2)) ⊆ g(f(a3)) ⊆ … is an ascending chain in
C with g(lub{f(ai)|i≥1}) = lub{g(f(ai))|i≥1}. Therefore g(f(lub{ai|i≥1})) =
g(lub{f(ai)|i≥1}) = lub{g(f(ai))|i≥1} and g°f is continuous. ❚

To handle tail, prefix, and affix we need a generalization of this theorem to allow
for tuples of continuous functions, a result that appears as an exercise.

Theorem: The following functions on lists are continuous:

1. head : D* → D
2. tail : D*→ D*

3. null : D* → T
4. prefix : DxD* → D*

5. affix : D*xD → D*

Proof: For 1, 2, 4, 5 use the continuity of the compositions of continuous
functions and the previous theorems. A case analysis is needed to deal with
ascending sequences that contain mostly nil values.

3. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in D* may repeat ⊥D* forever or
eventually climb into Dk, where k≥0 and D0 = {nil }.

Case 1 : {xi|i≥1} = {⊥D*}. null(lubD*{xi|i≥1}) = null(⊥D*) = ⊥T, and
lubT{null(xi)|i≥1} = lubT{⊥T} = ⊥T.

Case 2 : {xi|i≥1} = {⊥D*,⊥D*,…,⊥D*,<nil,0>,<nil,0>,…}.
null(lubD*{xi|i≥1}) = null(<nil,0>) = true, and
lubT{null(xi)|i≥1} = lubT{⊥T,⊥T,…,⊥T,true,true,…} = true.

Case 3 : {xi|i≥1} = {⊥D*,…,⊥D*,<d1,k>,<d2,k>,…} where di∈Dk for some k>0
and d1 ⊆Dk d2 ⊆Dk d3 ⊆Dk … is a chain in Dk. null(lubD*{xi|i≥1}) =
null(<lubDk{di|i≥1},k>) = false since (lubDk{di|i≥1})∈Dk, and lubD{null(xi)|i≥1}
= lubD{null<d1,k>, null<d2,k>, …} = lubD{false, false, …} = false. ❚

36310.2 DOMAIN THEORY

Exercises

1. Determine which of the following ordered sets are complete partial orders:

a) Divides ordering on {1,3,6,9,12,18}.

b) Divides ordering on {2,3,6,12,18}.

c) Divides ordering on {2,4,6,8,10,12}.

d) Divides ordering on the set of positive integers.

e) Divides ordering on the set P of prime numbers.

f) Divides ordering on the set P ∪ {1}.

g) ⊆ (subset) on the nonempty subsets of {a,b,c,d}.

h) ⊆ (subset) on the collection of all finite subsets of the natural num-
bers.

i) ⊆ (subset) on the collection of all subsets of the natural numbers
whose complement is finite.

2. Which of the partially ordered sets in exercise 1 are also lattices?

3. Let S = {1,2,3,4,5,6,9,15,25,30} be ordered by the divides relation.

a) Find all lower bounds for {6,30}.

b) Find all lower bounds for {4,6,15}.

c) Find all upper bounds for {1,2,3}.

d) Does {4,9,25} have an upper bound?

4. Show that ⊆AxB is a partial order on AxB.

5. Show that ⊆A+B is a partial order on A+B.

6. Prove that the least upper bound of an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ …
in a domain D is unique.

7. Let Hair = {⊥,black,blond,brown} and Eyes = {⊥,blue,brown,gray} be two
elementary domains (flat complete partially ordered sets).

a) Sketch a Hasse diagram showing all the elements of Hair x Eyes and
the relationships between its elements under ⊆.

b) Sketch a Hasse diagram showing all the elements of Hair+Eyes and
the relationships between its elements under ⊆.

364 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

8. Suppose that A = {⊥,a} and B = {⊥,b,c,d} are elementary domains.

a) Sketch a Hasse diagram showing all seven elements of A→B and the
relationships between its elements under ⊆.

b) Give an example of one function in Fun(A,B) that is not monotonic.

c) Sketch a Hasse diagram showing all the elements of AxB and the
relationships between its elements under ⊆.

9. Suppose A = {⊥,a,b} and B = {⊥,c} are elementary domains.

a) Sketch a Hasse diagram showing all the elements of (A→B)+(AxB) and
their ordering under the induced partial order. Represent functions
as sets of ordered pairs. Since A→B and AxB are disjoint, omit the
tags on the elements, but provide subscripts for the bottom elements.

b) Give one example of a function in Fun(A→B,AxB) that is continuous
and one that is not monotonic.

10. Prove the following property:

A function f in Fun(A,B) is continuous if and only if both of the following
conditions hold.

a) f is monotonic.

b) For any ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in A, f(lubA{xi|i≥1}) ⊆
lubB{f(xi)|i≥1}.

11. Let A = {⊥,a1,a2,…,am} and B = {⊥,b1,b2,…,bn} be flat domains. Show that

a) Fun(A,B) has (n+1)m+1 elements.

b) A→B has n+(n+1)m elements.

12. Prove that inS and outA are continuous functions.

13. Prove that head and tail are continuous functions.

14. Tell whether these functions F : (N→N)→(N→N) are monotonic and/or
continuous.

a) F g n = if total(g) then g(n) else ⊥, where total(g) is true if and only if
g(n) is defined (not ⊥) for all proper n∈N.

b) F g n = if g = (λn .0) then 1 else 0.

c) F g n = if n∉dom(g) then 0 else ⊥, where dom(g) ={n∈N | g(n)≠⊥}
denotes the domain of g.

365

15. Let N = {⊥,0,1,2,3,…} be the elementary domain of natural numbers. A
function f : N→N is called strict if f(⊥) = ⊥. Consider the function add1 :
N→N defined by add1(n) = n+1 for all n∈N with n≠⊥. Prove that if add1 is
monotonic, it must also be strict.

16. Consider the function F : (N→N) → (N→N) defined by

for g∈N→N, F g = λn . if g(n)=⊥ then 0 else 1

Describe F g1, F g2, and F g3 where the gk : N→N are defined by

g1(n) = n

g2(n) = if n>0 then n/0 else ⊥

g3(n) = if even(n) then n+1 else ⊥

17. Prove that if f∈Fun(A,B), where A and B are domains (cpo’s), is a con-
stant function (there is a b∈B such that f(a) = b for all a∈A), then f is
continuous.

18. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in a cpo A is called stationary if
there is an n≥1 such that for all i≥n, xi = xn. Carefully prove the following
properties:

a) If every ascending chain in A is stationary and f∈Fun(A,B) is mono-
tonic, then f must be continuous.

b) If an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … is not stationary, then for all
i≥1, xi ≠ lub{xj|j≥1}. Hint: Prove the contrapositive.

19. Prove the following lemma: If a1 ⊆ a2 ⊆ a3 ⊆ … and b1 ⊆ b2 ⊆ b3 ⊆ … are
ascending chains with the property that for each m≥1 there exists an
n≥1 such that am ⊆ bn, it follows that lub{ai|i≥1} ⊆ lub{bi|i≥1}.

10.3 FIXED-POINT SEMANTICS

Functions, and in particular recursively defined functions, are central to com-
puter science. Functions are used not only in programming but also in de-
scribing the semantics of programming languages as witnessed by the recur-
sive definitions in denotational specifications. Recursion definitions entail a
circularity that can make them suspect. Many of the paradoxes of logic and
mathematics revolve about circular definitions—for example, the set of all
sets. Considering the suspicious nature of circular definitions, how can we
be certain that function definitions have a consistent model? The use of do-
mains (complete partially ordered sets) and the associated fixed-point theory

10.3 FIXED-POINT SEMANTICS

366 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

to be developed below put recursive function definitions and denotational
semantics on a firm, consistent foundation.

Our goal is to develop a coherent theory of functions that makes sense out of
recursive definitions. In describing fixed-point semantics we restate some of
the definitions from section 10.2 as we motivate the concepts. The discus-
sion breaks into two parts: (1) interpreting partial functions so that they are
total, and (2) giving meaning to a recursively defined function as an approxi-
mation of a sequence of “finite” functions.

First Step

We transform partial functions into analogous total functions.

Example 11 : Let f be a function on a few natural numbers with domain D =
{0,1,2} and codomain C = {0,1,2} and with its rule given as

f(n) = 2/n or as a set of ordered pairs: f = {<1,2>,<2,1>}.

Note that f(0) is undefined; therefore f is a partial function. Now extend f to
make it a total function.

f = {<0,?>,<1,2>,<2,1>}.

Add an undefined element to the codomain, C+ = {⊥C+,0,1,2}, and for symme-
try, do likewise with the domain, D+ = {⊥D+,0,1,2}.

Then define the natural extension of f by having ⊥D+ map to ⊥C+ under f.

f+ = {<⊥,⊥>,<0,⊥>,<1,2>,<2,1>}.

From this point on, we drop the subscripts on ⊥ unless they are needed
to clarify an example. Finally, define a relationship that orders functions
and domains according to how “defined” they are, putting a lattice-like
structure on the elementary domains: For x,y∈D+, x⊆y if x=⊥ or x=y. It
follows that f⊆f+. ❚

This relation is read “f approximates f+” or “f is less defined than or equal to
f+”. D+ and C+ are examples of the flat domains of the previous section.

Consider the function g = {<⊥,⊥>,<0,0>,<1,2>,<2,1>}, which is an extension
of f+ that is slightly more defined. The relationship between the two functions
is denoted by f+ ⊆ g. Observe that the two functions agree where they are
both defined (do not map to ⊥).

Theorem: Let f+ be a natural extension of a function between two sets D and
C so that f+ is a total function from D+ to C+. Then f+ is monotonic and
continuous.

367

Proof: Let x1 ⊆ x2 ⊆ x3 ⊆ … be an ascending chain in the domain D+ = D∪{⊥D+}.
There are two possibilities for the behavior of the chain.

Case 1 : xi = ⊥D+ for all i≥1. Then lub{xi|i≥1} = ⊥D+, and f+(lub{xi|i≥1}) = f+(⊥D+)
= ⊥C+ = lub{⊥C+} = lub{f+(xi)|i≥1}.

Case 2 : xi = ⊥D+ for 1≤i≤k and ⊥D+ ≠ xk+1 = xk+2 = xk+3 = …, since once the
terms move above bottom, the sequence is constant in a flat domain. Then
lub{xi|i≥1} = xk+1, and f+(lub{xi|i≥1}) = f+(xk+1) = lub{⊥C+,f+(xk+1)} = lub{f+(xi)|i≥1}.
If f+ is continuous, it is also monotonic. ❚

Since many functions used in programming, such as “addition”, “less than”,
and “or”, are binary operations, their natural extensions need to be clarified.

Definition : The natural extension of a function whose domain is a Carte-
sian product—namely, f : D1

+xD2
+x…xDn

+→C+—has the property that
f+(x1,x2,…,xn) = ⊥C whenever at least one xi=⊥. Any function that satisfies this
property is known as a strict function. ❚

Theorem: If f+: D1
+xD2

+x…xDn
+→C+ is a natural extension where Di

+, 1≤i≤n,
and C+ are elementary domains, then f+ is monotonic and continuous.

Proof: Consider the case where n=2. We show f+ is continuous.
Let <x1,y1> ⊆ <x2,y2> ⊆ <x3,y3> ⊆ … be an ascending chain in D1

+xD2
+. Since

D1
+ and D2

+ are elementary domains, the chains {xi|i≥1} and {yi|i≥1} must
follow one of the two cases in the previous proof—namely, all ⊥ or eventually
constant proper values in D1

+ and D2
+, respectively.

Case 1 : lub{xi|i≥1} = ⊥D1
+ or lub{yi|i≥1} = ⊥D2

+ (or both). Then f+(lub{<xi,yi>|i≥1})
= f+(<lub{xi|i≥1},lub{yi|i≥1}>) = ⊥C because f+ is a natural extension and one
of its arguments is ⊥; furthermore, lub{f+(<xi,yi>)|i≥1}= lub{⊥C+} = ⊥C+, since
at least one of the chains must be all ⊥.

Case 2 : lub{xi|i≥1} = x∈D1 and lub{yi|i≥1} = y∈D2 (neither is ⊥). Since D1
+

and D2
+ are both elementary domains, there is an integer k such that xi = x

and yi = y for all i≥k. So f+(lub{<xi,yi>|i≥1}) = f+(<lub{xi|i≥1},lub{yi|i≥1}>) =
f+(<x,y>)∈C+ and lub{f+(<xi,yi>)|i≥1}= lub{⊥C+,f+(<x,y>)} = f+(<x,y>). ❚

Example 12 : Consider the natural extension of the conditional expression
operation (if a b c) = if a then b else c.

The natural extension unduly restricts the meaning of the conditional ex-
pression—for example, we prefer that the following expression returns 0 when
m=1 and n=0 instead of causing a fatal error: if n>0 then m/n else 0.

But if we interpret the undefined operation 1/0 as ⊥, when m=1 and n=0,

(if+ n>0 m/n 0) = (if+ false ⊥ 0) = ⊥ for a natural extension. ❚

10.3 FIXED-POINT SEMANTICS

368 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

As we continue with the development of fixed-point semantics, we drop the
superscript plus sign (+) on sets and functions since all sets will be assumed
to be domains (cpo’s) and all functions will be naturally extended unless
otherwise specified.

Second Step

We now define the meaning of a recursive definition of a function defined on
complete partially ordered sets (domains) as the limit of a sequence of ap-
proximations.

Example 13 : Consider a recursively defined function f : N→N where N =
{⊥,0,1,2,3,…} and

f(n) = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (†)

Two questions can be asked about a recursive definition of a function.

1. What function, if any, does this equation in f denote?

2. If the equation specifies more than one function, which one should be
selected?

Define a functional F, a function on functions, by

F : (N→N)→(N→N) where
(F(f)) (n) = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (‡)

Assuming function application associates to the left, we usually omit the
parentheses with multiple applications, writing F f n for (F(f)) (n). A function,
f : N→N, satisfies the original definition (†) if and only if it is a fixed point of
the definition of F (‡)—namely, F f n = f(n) for all n∈N or just F f = f. ❚

Just in case this equivalence has not been understood, we go through it once
more carefully. Suppose f : D→C is a function defined recursively by f(x) =
α(x,f) for each x∈D where α(x,f) is some expression in x and f. Furthermore,
let F : (D→C)→(D→C) be the functional defined by F f x = α(x,f). Then F(f) = f
if and only if F f x = f x for all x∈D if and only if α(x,f) = f x for all x∈D, which
is the same as f(x) = α(x,f) for all x∈D. Observe that the symbol “f” plays
different roles in (†) and (‡). In the recursive definition (†), “f” is the name of
the function being defined, whereas in the functional definition (‡), “f” is a
formal parameter to the (nonrecursive) functional F being defined.

The notation of the lambda calculus is frequently used to define these
functionals.

F f = λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2)
or

F = λf . λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2).

369

Fixed points occur frequently in mathematics. For instance, solving simple
equations can be framed as fixed-point problems. Consider functions de-
fined on the set of natural numbers N and consider fixed points of the func-
tions—namely, n∈N such that g(n) = n.

Function Fixed points

g(n) = n2-6n 0 and 7

g(n) = n all n∈N

g(n) = n+5 none

g(n) = 2 2

For the first function, g(0) = 02-6•0 = 0 and g(7) = 72-6•7 = 7.

Certainly the function specified by a recursive definition must be a fixed
point of the functional F. But that is not enough. The function g = λn . 5 is a
fixed point of F in example 13 as shown by the following calculation:

F g = λn . if n=0 then 5 else if n=1 then g(n+2) else g(n-2)
= λn . if n=0 then 5 else if n=1 then 5 else 5
= λn . 5 = g.

The only problem is that this fixed point does not agree with the operational
view of the function definition. It appears that f(1) = f(3) = f(1) = … does not
produce a value, whereas g(1) = 5. We need to find a fixed point for F that
captures the entire operational behavior of the recursive definition.

When the functional corresponding to a recursive definition (equation) has
more than one fixed point, we need to choose one of them as the function
specified by the definition. It turns out that the fixed points of a suitable
functional are partially ordered by ⊆ in such a way that one of those func-
tions is less defined than all of the other fixed points. Considering all the
fixed points of a functional F, the least defined one makes sense as the func-
tion specified because of the following reasons:

1. Any fixed point of F embodies the information that can be deduced from F.

2. The least fixed point includes no more information than what must be
deduced.

Define the meaning of a recursive definition of a function to be the least fixed
point with respect to ⊆ of the corresponding functional F. We show next that
a unique least fixed point exists for a continuous functional. The following
theorem proves the existence and provides a method for constructing the
least fixed point.

Notation : We define fk for each k≥0 inductively using the rules:
f0(x) = x is the identity function and
fn+1(x) = f(fn(x)) for n≥0. ❚

10.3 FIXED-POINT SEMANTICS

370 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Fixed-Point Theor em: If D with ⊆ is a complete partial order and g : D→D is
any monotonic and continuous function on D, then g has a least fixed point
in D with respect to ⊆.

Proof:

Part 1 : g has a fixed point. Since D is a cpo, g0(⊥) = ⊥ ⊆ g(⊥). Also, since g is
monotonic, g(⊥) ⊆ g(g(⊥)) = g2(⊥). In general, since g is monotonic, gi(⊥) ⊆
gi+1(⊥) implies gi+1(⊥) = g(gi(⊥)) ⊆ g(gi+1(⊥)) = gi+2(⊥). So by induction, ⊥ ⊆ g(⊥)
⊆ g2(⊥) ⊆ g3(⊥) ⊆ g4(⊥) ⊆ … is an ascending chain in D, which must have a
least upper bound u = lub{gi(⊥)|i≥0}∈D.

Then g(u) = g(lub{gi(⊥)|i≥0})

= lub{g(gi(⊥))|i≥0} because g is continuous

= lub{gi+1(⊥)|i≥0}

= lub{gi(⊥)|i>0} = u.
That is, u is a fixed point for g. Note that g0(⊥) = ⊥ has no effect on the least
upper bound of {gi(⊥)|i≥0}.

Part 2 : u is the least fixed point. Let v∈D be another fixed point for g. Then
⊥ ⊆ v and g(⊥) ⊆ g(v) = v, the basis step for induction. Suppose gi(⊥) ⊆ v. Then
since g is monotonic, gi+1(⊥) = g(gi(⊥)) ⊆ g(v) = v, the induction step. There-
fore, by mathematical induction, gi(⊥) ⊆ v for all i≥0. So v is an upper bound
for {gi(⊥)|i≥0}. Hence u ⊆ v by the Lub lemma, since u is the least upper
bound for {gi(⊥)|i≥0}. ❚

Corollary : Every continuous functional F : (A→B)→(A→B), where A and B
are domains, has a least fixed point Ffp : A→B, which can be taken as the
meaning of the (recursive) definition corresponding to F.

Proof: This is an immediate application of the fixed-point theorem. ❚

Example 13 (r evisited) : Consider the functional F : (N→N)→(N→N) that we
defined earlier corresponding to the recursive definition (†),

F f n = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (‡)

Construct the ascending sequence

⊥ ⊆ F(⊥) ⊆ F2(⊥) ⊆ F3(⊥) ⊆ F4(⊥) ⊆ …

and its least upper bound following the proof of the fixed-point theorem.

Use the following abbreviations:

f0(n) = F0 ⊥ n = ⊥(n)

f1(n) = F ⊥ n = F f0 n

f2(n) = F (F ⊥) n = F f1 n

fk+1(n) = Fk+1 ⊥ n = F fk n, in general.

371

Now calculate a few terms in the ascending chain

f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ ….

f0(n) = F0 ⊥ n = ⊥(n) = ⊥ for n∈N, the everywhere undefined function.

f1(n) = F ⊥ n = F f0 n
= if n=0 then 5 else if n=1 then f0(n+2) else f0(n-2)
= if n=0 then 5 else if n=1 then ⊥(n+2) else ⊥(n-2)
= if n=0 then 5 else ⊥

f2(n) = F2 ⊥ n = F f1 n

= if n=0 then 5 else if n=1 then f1(n+2) else f1(n-2)

= if n=0 then 5
else if n=1 then f1(3)

else (if n-2=0 then 5 else ⊥)
= if n=0 then 5

else if n=1 then ⊥
else if n=2 then 5 else ⊥

f3(n) = F3 ⊥ n = F f2 n
= if n=0 then 5 else if n=1 then f2(n+2) else f2(n-2)
= if n=0 then 5

else if n=1 then f2(3)
else (if n-2=0 then 5

else if n-2=1 then ⊥
else if n-2=2 then 5 else ⊥)

= if n=0 then 5
else if n=1 then ⊥

else if n=2 then 5
else if n=3 then ⊥

else if n=4 then 5 else ⊥

f4(n) = F4 ⊥ n = F f3 n

= if n=0 then 5 else if n=1 then f3(n+2) else f3(n-2)

= if n=0 then 5
else if n=1 then f3(3)

else (if n-2=0 then 5
else if n-2=1 then ⊥

else if n-2=2 then 5
else if n-2=3 then ⊥

else if n-2=4 then 5 else ⊥)

10.3 FIXED-POINT SEMANTICS

372 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

= if n=0 then 5
else if n=1 then ⊥

else if n=2 then 5
else if n=3 then ⊥

else if n=4 then 5
else if n=5 then ⊥

else if n=6 then 5 else ⊥

A pattern seems to be developing.

Lemma : For all i≥0, fi(n) = if n<2i and even(n) then 5 else ⊥
= if n<2i then (if even(n) then 5 else ⊥) else ⊥.

Proof: The proof proceeds by induction on i.

1. By the previous computations, for i = 0 (also i= 1, 2, 3, and 4)
fi(n) = if n<2i then (if even(n) then 5 else ⊥) else ⊥

2. As the induction hypothesis, assume that fi(n) = if n<2i then (if even(n)
then 5 else ⊥) else ⊥, for some arbitrary i≥0.
Then
fi+1(n) = F fi n

= if n=0 then 5 else if n=1 then fi(n+2) else fi(n-2)

= if n=0 then 5
else if n=1 then fi(3)

else (if n-2<2i then (if even(n–2) then 5 else ⊥) else ⊥)
= if n=0 then 5

else if n=1 then ⊥
else (if n<2i+2 then (if even(n) then 5 else ⊥) else ⊥)

= if n<2(i+1) then (if even(n) then 5 else ⊥) else ⊥.
Therefore our pattern for the fi is correct. ❚

The least upper bound of the ascending chain f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ …, where fi(n)
= if n<2i then (if even(n) then 5 else ⊥) else ⊥, must be defined (not ⊥) for any
n where some fi is defined, and must take the value 5 there. Hence the least
upper bound is

Ffp(n) = (lub{fi|i≥0}) n
= (lub{Fi ⊥|i≥0}) n
= if even(n) then 5 else ⊥, for all n∈N,

and this function can be taken as the meaning of the original recursive defi-
nition. Figure 10.11 shows the chain of approximating functions as sets of
ordered pairs, omitting the undefined (⊥) values. Following this set theoretic
viewpoint, the least upper bound of the ascending chain can be taken as the
union of all these functions, lub{fi|i≥0} = ∪{fi|i≥0}, to get a function that is
undefined for all odd values.

373

f0 = ∅

f1 = { <0,5> }

f2 = { <0,5>,<2,5> }

f3 = { <0,5>,<2,5>,<4,5> }

f4 = { <0,5>,<2,5>,<4,5>,<6,5> }

f5 = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5> }

f6 = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5>,<10,5> }
 : :
fk = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5>,<10,5>,…,<2•k-2,5> }
 : :

Figure 10.11: Approximations to Ffp

Remember that the definition of the function lub{fi|i≥0} is given as the least
upper bound of the fi’s on individual values of n,

(lub{fi|i≥0}) n = lub{fi(n)|i≥0}.

The procedure for computing a least fixed point for a functional can be
described as an operator on functions F : D→D.

fix : (D→D)→D where
fix = λF . lub{Fi(⊥)|i≥0}.

The least fixed point of the functional

F = λf . λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2)

can then be expressed as Ffp = fix F where D = N→N.

For F : (N→N)→(N→N), fix has type fix : ((N→N)→(N→N))→(N→N).

The fixed-point operator fix provides a fixed point for any continuous func-
tional—namely, the least defined function with this fixed-point property.

Fixed-Point Identity : F(fix F) = fix F.

Summary : Recapping the fixed-point semantics of functions, we start with a
recursive definition, say fac : N→N, where

fac n = if n=0 then 1 else n•fac(n-1) or

fac = λn . if n=0 then 1 else n•fac(n-1)

Operationally, the meaning of fac on a value n∈N results from unfolding the
definition enough times, necessarily a finite number of times, until the basis
case is reached. For example, we calculate fac(4) by the following process:

fac(4) = if 4=0 then 1 else 4•fac(3) = 4•fac(3)
= 4•(if 3=0 then 1 else 3•fac(2)) = 4•3•fac(2)

10.3 FIXED-POINT SEMANTICS

374 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

= 4•3•(if 2=0 then 1 else 2•fac(1)) = 4•3•2•fac(1)
= 4•3•2•(if 1=0 then 1 else 1•fac(0)) = 4•3•2•1•fac(0)
= 4•3•2•1•1 = 24

The problem with providing a mathematical interpretation of this unfolding
process is that we cannot predict ahead of time how many unfoldings of the
definition are required. The idea of fixed-point semantics is to consider a
corresponding (nonrecursive) functional

Fac : (N→N)→(N→N) where

Fac = λf . λn . if n=0 then 1 else n•f(n-1)

and construct terms in the ascending chain

⊥ ⊆ Fac(⊥) ⊆ Fac2(⊥) ⊆ Fac3(⊥) ⊆ Fac4(⊥) ⊆ ….

Using the abbreviations faci = Faci(⊥) for i≥0, the chain can also be viewed as
fac0 ⊆ fac1 ⊆ fac2 ⊆ fac3 ⊆ fac4 ⊆ ….

A careful investigation of these “partial” functions faci : N→N reveals that

fac0 n = ⊥

faci n = Faci(⊥) n
= Fac(faci-1) n
= if n<i then n! else ⊥ for i≥1.

The proof that this pattern is correct for the functions in the ascending chain
is left as an exercise. It follows that any application of fac to a natural num-
ber can be handled by one of these nonrecursive approximating functions
faci. For instance, fac 4 = fac5 4, fac 100 = fac101 100, and in general fac m =
facm+1 m.

The purpose of each approximating function faci = Faci(⊥) is to embody any
calculation of the factorial function that entails fewer than i unfoldings of the
recursive definition. Fixed-point semantics gives the least upper bound of
these approximating functions as the meaning of the original recursive defi-
nition of fac. The ascending chain, whose limit is the least upper bound,
lub{faci|i≥0} = lub{Faci ⊥|i≥0}, is made up of finite functions, each consistent
with its predecessor in the chain, and having the property that any computa-
tion of fac can be obtained by one of the functions far enough out in the
chain.

Continuous Functionals

To apply the theorem about the existence of a least fixed point to the
functionals F as described in the previous examples, it must be established
that these functionals are continuous.

375

Writing the conditional expression function if-then-else as a function
if : TxNxN→N or alternatively taking a curried version if : T→N→N→N, these
functionals take the form

F f n = if(n=0, 5, if(n=1, f(n+2), f(n–2))) uncurried if

Fac f n = (if n=0 1 n•f(n–1)) curried if

Since it has already been proved that the natural extension of an arbitrary
function on elementary domains is continuous, parts of these definitions are
known to be continuous—namely, the functions defined by the expressions
“n=0”, “n+2”, and “n–1”. Several lemmas will fill in the remaining properties
needed to verify the continuity of these and other functionals.

Lemma : A constant function f : D→C, where f(x) = k for some fixed k∈C and
for all x∈D, is continuous given either of the two extensions

1. The natural extension where f(⊥D) = ⊥C.

2. The “unnatural” extension where f(⊥D) = k.

Proof: Part 1 follows by a proof similar to the one for the earlier theorem
about the continuity of natural extensions, and part 2 is left as an exercise at
the end of this section. ❚

Lemma : An identity function f : D→D, where f(x) = x for all x in a domain D,
is continuous.

Proof: If x1 ⊆ x2 ⊆ x3 ⊆ … is an ascending chain in D, it follows that f(lub{xi|i≥1})
= lub{xi|i≥1} = lub{f(xi)|i≥1}. ❚

In defining the meaning of the conditional expression function,

if(a,b,c) = if a then b else c.

where if : TxDxD→D for some domain D and T = {⊥,true,false},

the natural extension is considered too restrictive. The preferred approach is
to define this function by

(if true then b else c) = b for any b,c∈D
(if false then b else c) = c for any b,c∈D
(if ⊥ then b else c) = ⊥D for any b,c∈D

Note that this is not a natural extension. It allows an undefined or “errone-
ous” expression in one branch of a conditional as long as that branch is
avoided when the expression is undefined. For example, h(nil) is defined for
the function

h(L) = if L≠nil then head(L) else nil.

10.3 FIXED-POINT SEMANTICS

376 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Lemma : The uncurried “if” function as defined above is continuous.

Proof: Let <t1,b1,c1> ⊆ <t2,b2,c2> ⊆ <t3,b3,c3> ⊆ … be an ascending chain in
TxDxD. Three cases need to be considered:

Case 1 : ti= ⊥T for all i≥1.

Case 2 : ti= true for all i≥k, for some fixed k.

Case 3 : ti= false for all i≥k, for some fixed k.

The details of this proof are left as an exercise. ❚

Lemma : A generalized composition of continuous functions is continuous—
namely, if f : C1xC2x…xCn→C is continuous and gi : Di→Ci is continuous for
each i, 1≤i≤n, then f°(g1,g2,…,gn) : D1xD2x…xDn→C, defined by
f°(g1,g2,…,gn) <x1,x2,…,xn> = f <g1(x1),g2(x2),…,gn(xn)> is also continuous.

Proof: This is a straightforward application of the definition of continuity and
is left as an exercise. ❚

The previous lemmas apply to functions on any domains. When considering
the continuity of functionals, say

F : (D→D)→(D→D) for some domain D

where F is defined by a rule of the form

F f d = some expression in f and d,
a composition will probably involve the “independent” variable f—for
example, in a functional such as

F : (N→N)→(N→N) where

F f n = n + (if n=0 then 0 else f(f(n-1))).

Lemma : If F1, F2, …, Fn are continuous functionals, say Fi : (D
n→D)→(Dn→D)

for each i, 1≤i≤n, the functional F : (Dn→D)→(Dn→D) defined by
F f d = f <F1 f d, F2 f d, …, Fn f d> for all f∈Dn→D and d∈Dn is also continuous.

Proof: Consider the case where n=1.
So F1 : (D→D)→(D→D), F : (D→D)→(D→D), and F f d = f <F1 f d> for all
f∈D→D and d∈D. Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain in D→D. The
proof shows that lub{F(fi)|i≥1} = F(lub{fi|i≥1}) in two parts.

Part 1 : lub{F(fi)|i≥1} ⊆ F(lub{fi|i≥1}). For each i≥1, fi ⊆ lub{fi|i≥1}. Since F1 is
monotonic, F1(fi) ⊆ F1(lub{fi|i≥1}), which means that F1 fi d ⊆ F1 lub{fi|i≥1} d
for each d∈D.

Since fi is monotonic, fi <F1 fi d> ⊆ fi <F1 lub{fi|i≥1} d>. But F fi d = fi <F1 fi d>
and fi <F1 lub{fi|i≥1} d> ⊆ lub{fi|i≥1} <F1 lub{fi|i≥1} d>. Therefore, F fi d ⊆
lub{fi|i≥1} <(F1 lub{fi|i≥1} d> for each i≥1 and d∈D. So by the Lub lemma,
lub{F(fi)|i≥1} d = lub{F fi d|i≥1} ⊆ lub{fi|i≥1} <F1 lub{fi|i≥1} d> = F lub{fi|i≥1} d
for each d∈D.

377

Part 2 : F(lub{fi|i≥1}) ⊆ lub{F(fi)|i≥1}.
For any d∈D,
F lub{fi|i≥1} d = lub{fi|i≥1} <F1 lub{fj} d> by the definition of F

= lub{fi|i≥1} <lub{F1(fj)} d> since F1 is continuous
= lub{lub{fi|i≥1} <{F1(fj)} d>} since lub{fi|i≥1} is continuous
= lub{lub{fi <{F1(fj)} d>|i≥1}} by the definition of lub{fi|i≥1}. †

If j≤i, then fj ⊆ fi, F1 fj ⊆ F1 fi since F1 is monotonic, F1 fj d ⊆ F1 fi d for each
d∈D, and fi <F1 fj d> ⊆ fi <F1 fi d> since fi is monotonic.

If i<j, then fi ⊆ fj and fi <F1 fj d> ⊆ fj <F1 fj d> for each d∈D by the meaning
of ⊆.

Therefore fi <F1 fj d> ⊆ lub{fn <F1 fn d>|n≥1} for each i,j≥1.
But lub{fn <F1 fn d>|i≥1} = lub{F fn d|i≥1} = lub{F(fn)|i≥1} d by the defini-
tion of F. So fi <F1 fj d> ⊆ lub{F(fn)|n≥1} d for each i,j≥1,
and lub{fi <F1 fj d>|i≥1} ⊆ lub{F(fn)|n≥1} d for each j≥1.
Hence lub{lub{fi <F1 fj d>|i≥1}|j≥1} ⊆ lub{F(fn)|n≥1} d.
Combining with † gives F(lub{fi|i≥1}) d ⊆ lub{F(fn)|n≥1} d. ❚

Continuity Theor em: Any functional H defined by the composition of natu-
rally extended functions on elementary domains, constant functions, the iden-
tity function, the if-then-else conditional expression, and a function param-
eter f, is continuous.

Proof: The proof follows by structural induction on the form of the definition
of the functional. The basis is handled by the continuity of natural exten-
sions, constant functions, and the identity function, and the induction step
relies on the previous lemmas, which state that the composition of continu-
ous functions, possibly involving f, is continuous. The details are left as an
exercise. ❚

Example 14 : Before proceeding, we work out the least fixed point of another
functional by constructing approximating terms in the ascending chain.

H : (N→N)→(N→N) where

H h n = n + (if n=0 then 0 else h(h(n-1)))
= if n=0 then n else n+h(h(n-1)).

Consider the ascending chain h0 ⊆ h1 ⊆ h2 ⊆ h3 ⊆ … where h0 n = H0 ⊥ n =
⊥(n) and hi n = Hi ⊥ n = H hi-1 n for i≥1. Calculate terms of this sequence until
a pattern becomes apparent.

h0(n) = ⊥(n) = ⊥

h1(n) = H h0 n = H ⊥ n
= if n=0 then n else n+h0(h0(n-1))
= if n=0 then n else n+⊥(⊥(n-1))
= if n=0 then 0 else ⊥

10.3 FIXED-POINT SEMANTICS

378 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Note that the natural extension of + is strict in ⊥.

h2(n) = H h1 n
= if n=0 then 0 else n+h1(h1(n-1))
= if n=0 then 0 else n+h1(if n-1=0 then 0 else ⊥)
= if n=0 then 0 else n+h1(if n=1 then 0 else ⊥)
= if n=0 then 0 else n+if n=1 then h1(0) else h1(⊥)
= if n=0 then 0 else if n=1 then n+0 else n+⊥
= if n=0 then 0 else if n=1 then 1 else ⊥

h3(n) = H h2 n

= if n=0 then 0 else n+h2(h2(n-1))

= if n=0 then 0
else n+h2(if n–1=0 then 0 else if n–1=1 then 1 else ⊥)

= if n=0 then 0
else n+h2(if n=1 then 0 else if n=2 then 1 else ⊥)

= if n=0 then 0
else if n=1 then 1+h2(0)

else if n=2 then 2+h2(1) else n+h2(⊥)
= if n=0 then 0

else if n=1 then 1
else if n=2 then 3 else ⊥

h4(n) = H h3 n

= if n=0 then 0 else n+h3(h3(n-1))

= if n=0 then 0
else n+h3(if n–1=0 then 0

else if n–1=1 then 1
else if n–1=2 then 3 else ⊥)

= if n=0 then 0
else n+h3(if n=1 then 0

else if n=2 then 1
else if n=3 then 3 else ⊥)

= if n=0 then 0
else if n=1 then 1+h3(0)

else if n=2 then 2+h3(1)
else if n=3 then 3+h3(3) else n+h3(⊥)

= if n=0 then 0
else if n=1 then 1

else if n=2 then 3
else if n=3 then ⊥ else ⊥

= h3(n)

Therefore hk(n) = h3(n) for each k≥3, and the least fixed point is
lub{hk|k≥0} = h3. Note that the last derivation shows that H h3 = h3. ❚

379

Fixed points for Nonrecursive Functions

Consider the function g(n) = n2 – 6n defined on the natural numbers N. The
function g allows two interpretations in the context of fixed-point theory.

First Interpr etation : The natural extension g+: N+→N+ of g is a continuous
function on the elementary domain N+ = N∪{⊥}. Then the least fixed point of
g+, which will be an element of N+, may be constructed as the least upper
bound of the ascending sequence

⊥ ⊆ g+(⊥) ⊆ g+(g+(⊥)) ⊆ g+(g+(g+(⊥))) ⊆ ….

But g+(⊥) = ⊥, and if (g+)k-1(⊥) = ⊥, then (g+)k(⊥) = g+((g+)k-1(⊥)) = g+(⊥) = ⊥. So
by induction (g+)k(⊥) = ⊥ for any k≥1.

Therefore lub{(g+)k(⊥)|k≥0} = lub{⊥|k≥0} = ⊥ is the least fixed point.

In fact, g+ has three fixed points in N∪{⊥}: g+(0) = 0, g+(7) = 7, and g+(⊥) = ⊥.

0 7

⊥

Second Interpr etation : Think of g(n) = n2 – 6n as a rule defining a “recur-
sive” function that just has no actual recursive call of g.

The corresponding functional G : (N→N)→(N→N) is defined by the rule
G g n = n2 – 6n.

A function g satisfies the definition g(n) = n2 – 6n if and only if it is a fixed
point of G—that is, G g = g.

The fixed point construction proceeds as follows:
G0 ⊥ n = ⊥(n) = ⊥
G1 ⊥ n = n2 – 6n
G2 ⊥ n = n2 – 6n

:
Gk ⊥ n = n2 – 6n

:
Therefore the least fixed point is lub{Gk(⊥)|k≥0} = λn . n2 – 6n, which follows
the same definition rule as the original function g.

In the first interpretation we computed the least fixed point of the original
function g, while in the second we obtained the least fixed point of a func-
tional related to g. These two examples show that the least fixed point con-
struction can be applied to any continuous function, although its impor-
tance comes from giving a consistent semantics to functions specified by
actual recursive definitions.

10.3 FIXED-POINT SEMANTICS

380 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Revisiting Denotational Semantics

In Chapter 9 we were tempted to define the meaning of a while command in
Wren recursively with the semantic equation

execute [[while E do C]] sto =
if evaluate [[E]] sto = bool(true)

then execute [[while E do C]](execute [[C]] sto) else sto.

But this approach violates the principle of compositionality that states that
the meaning of any syntactic phrase may be defined only in terms of the
meanings of its proper subparts. This circular definition disobeys the prin-
ciple, since the meaning of execute [[while E do C]] is defined in terms of
itself.

Now we can solve this problem by using a fixed-point operator in the defini-
tion of the while command. The function execute [[while E do C]] satisfies the
recursive definition above if and only if it is a fixed point of the functional

W = λf . λs . if evaluate [[E]] s = bool(true) then f(execute [[C]] s) else s
= λf . λs . if evaluate [[E]] s = bool(true) then (f°execute [[C]]) s else s.

Therefore we obtain a nonrecursive and compositional definition of the mean-
ing of a while command by means of

execute [[while E do C]] = fix W.

We gain insight into both the while command and fixed-point semantics by
constructing a few terms in the ascending chain whose least upper bound is
fix W,

W0 ⊥ ⊆ W1 ⊥ ⊆ W2 ⊥ ⊆ W3 ⊥ ⊆ … where fix W = lub{Wi(⊥)|i≥0}.

The fixed-point construction for W proceeds as follows:

W0(⊥) = λs . ⊥

W1(⊥) = W(W0 ⊥)
= λs . if evaluate [[E]] s = bool(true) then ⊥(execute [[C]] s) else s
= λs . if evaluate [[E]] s = bool(true) then ⊥ else s

Let exC stand for the function execute [[C]] and continue the construction.

W2(⊥) = W(W1 ⊥)

= λs . if evaluate [[E]] s = bool(true) then W1 ⊥ (exC s) else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then ⊥ else exC s)
else s

381

W3(⊥) = W(W2 ⊥)

= λs . if evaluate [[E]] s = bool(true) then W2 ⊥ (exC s) else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

 then (if evaluate [[E]] (exC (exC s)) = bool(true)
then ⊥ else exC (exC s))

 else (exC s))
else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

 then (if evaluate [[E]] (exC2 s) = bool(true)
then ⊥ else (exC2 s))

 else (exC s))
else s

W4(⊥) = λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

 then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

then ⊥ else (exC3 s))
else (exC2 s))

 else (exC s))
else s

In general,
Wk+1(⊥) = W(Wk ⊥)

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

:
then (if evaluate [[E]] (exCk s) = bool(true)

then ⊥ else (exCk s))
else (exCk-1 s))

:
else (exC2 s))

 else (exC s))
else s

The function Wk+1(⊥) allows the body C of the while to be executed up to k
times, which means that this approximation to the meaning of the while
command can handle any instance of a while with at most k iterations of the
body. Any application of a while command will have some finite number of
iterations, say n. Therefore its meaning is subsumed in the approximation
Wn+1(⊥). The least upper bound of this ascending sequence provides seman-

10.3 FIXED-POINT SEMANTICS

382 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

tics for the while command: execute [[while E do C]] = fix W = lub{Wi(⊥)|i≥0}.
Unlike previous examples of fixed-point constructions, we cannot derive a
closed form representation of the least fixed point because of the complexity
of the definition.

Another way to view the definition of execute [[while E do C]] is in terms of the
fixed-point identity, W(fix W) = fix W, where

W= λf . λs . if evaluate [[E]] s = bool(true) then f(execute [[C]] s) else s.

In this context, execute [[while E do C]] = fix W. Now define loop = fix W.

Then
execute [[while E do C]] = loop

where loop s = (W loop) s
= loop

where loop s = if evaluate [[E]] s = bool(true)
then loop(execute [[C]] s) else s.

The local function “loop” is the least fixed point of W. Following this approach
produces the compositional definition of execute [[while E do C]] that we used
in our specification of Wren in Figure 9.11.

Fixed-Point Induction

Since recursively defined functions get their meaning from the least fixed-
point construction, properties of these functions can be established by means
of induction on the construction of the least fixed point lub{Fi(⊥)|i≥0}. For
instance, alternate definitions and properties of “closed form” definitions can
frequently be proved using fixed-point induction.

Let Φ(f) be a predicate that describes a property for an arbitrary function f
defined recursively. To show Φ holds for the least fixed point Ffp of the func-
tional F corresponding to a recursive definition of f, two conditions are needed.

Part 1 :Show by induction that Φ holds for each element in the ascending
chain

⊥ ⊆ F(⊥) ⊆ F2(⊥) ⊆ F3(⊥) ⊆ ….

Part 2 :Show that Φ remains true when the least upper bound is taken.

Part 2 is handled by defining a class of predicates with the necessary prop-
erty, the so-called admissible predicates.

Definition : A predicate is called admissible if it has the property that when-
ever the predicate holds for each term in an ascending chain of functions, it
also must hold for the least upper bound of that chain. ❚

383

Theorem: Any finite conjunction of inequalities of the form α(F) ⊆ β(F), where
α and β are continuous functionals, is an admissible predicate. This includes
terms of the form α(F) = β(F).

Proof: The proof of this theorem is beyond the scope of this text. See the
further readings at the end of the chapter. ❚

Mathematical induction is used to verify the condition in Part 1.

Given a functional F : (D→D)→(D→D) for some domain D and an admissible
predicate Φ(f), show the following properties:

(a) Φ(⊥) holds where ⊥ : D→D.

(b) For any i≥0, if Φ(Fi(⊥)), then Φ(Fi+1(⊥)).

An alternate version of condition (b) is

(b') For any f : D→D, if Φ(f), then Φ(F(f)).

Either formulation is sufficient to infer that the predicate Φ holds for every
function in the ascending chain {Fi(⊥)|i≥0}.

We illustrate fixed-point induction with a simple example.

Example 15 : Let f : N→N be defined by f(n) = if n=0 then 1 else 3n2-n+f(n-1).
Prove that f ⊆ λn . n3+n2. The recursively defined function f corresponds to
the functional F : (N→N)→(N→N) given by

F f n = if n=0 then 0 else 3n2-n+f(n-1).

Let Φ(f) be the predicate f ⊆ λn . n3+n2.

(a) Since ⊥ ⊆ λn . n3+n2, Φ(⊥) holds.

(b') Suppose Φ(f)—that is, f ⊆ λn . n3+n2.

Then F f n = if n=0 then 0 else 3n2-n+f(n-1)

⊆ if n=0 then 0 else 3n2-n+(n-1)3+(n-1)2

= if n=0 then 0 else 3n2-n+n3-3n2+3n-1+n2-2n+1

= if n=0 then 0 else n3+n2 = n3+n2 for n≥0. ❚

A property proved by fixed-point induction may involve two functions, say
Φ(f,g). Then satisfying the hypothesis (Part 1) for induction involves the fol-
lowing two steps:

(a) Φ(⊥,⊥).

(b') For any f and g given by functionals F and G, Φ(f,g) implies Φ(F(f),G(g)).

10.3 FIXED-POINT SEMANTICS

384 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Example 16 : A recursive definition of a function is called tail r ecursive if
each recursive call of the function is the last computation performed by the
function. For example, the factorial function can be defined recursively by

fac n = if n=0 then 1 else n•fac(n-1)

or it can be given a tail recursive definition using

tailfac (n,p) = if n=0 then p else tailfac(n-1,n•p)

where the factorial of n results from the call, tailfac(n,1).

The correctness of the tail-recursive approach can be verified by fixed-point
induction. The functionals that correspond to these two recursive definitions
have the form

F : (N→N)→(N→N), where F f n = if n=0 then 1 else n•f(n-1)

and

G : (NxN→N)→(NxN→N), where G g (n,p) = if n=0 then p else g(n-1,n•p).

We want to prove that Ffp n = Gfp (n,1) for all n∈N. The result follows from a
stronger assertion—namely, that p•Ffp(n) = Gfp (n,p) for all n,p∈N.

Let Φ(f,g) be the predicate “p•f(n) = g(n,p) for all n,p∈N”.

(a) Since f0 n= ⊥ = g0(n,p) for all n,p∈N, Φ(f0,g0) holds.

(b) Suppose Φ(fi,gi)—that is, p•fi(n) = gi(n,p) for all n,p∈N. Note that for
some values of n, both sides of this equation are ⊥.

Then gi+1(n,p) = G gi (n,p)
= if n=0 then p else gi(n-1,n•p)
= if n=0 then p else n•p•fi(n-1) (induction hypothesis)
= p•(if n=0 then 1 else n•fi(n-1))
= p•fi+1(n).

Therefore by fixed-point induction Φ(Ffp,Gfp) holds—that is,

p•Ffp(n) = Gfp (n,p) for all n∈N.

The verification of fac n = tailfac(n,1) follows taking p=1, since fac is Ffp
and tailfac is Gfp. ❚

The property p•fac n = tailfac(n,p) can be verified using normal mathematical
induction on n as well.

Exercises

1. Show that the converse of the theorem about natural extensions is not
true—namely,

385

False Theor em: Let g be an extension of a function between two sets D
and C so that g is a total function from D+ to C+. If g is monotonic and
continuous, then g is the natural extension of f.

2. Use the construction of the functions hi
 as in the example in this section

to find the least fixed point for these functionals. State the recursive
definitions that give rise to these functionals.

a) H f n = if n=0 then 3 else f(n+1)

b) H f n = if n=0 then 0 else (2n–1)+f(n–1)

3. Prove by induction that the approximating functions for the recursive
definition

fac n = if n=0 then 1 else n•fac(n-1)

have the form

fac0 n = ⊥
faci n = if n<i then n! else ⊥ for i≥1.

4. Prove that the “unnatural” extension of a constant function is continu-
ous.

5. Complete the proof that if : TxNxN→N is continuous and also show that
if : T→N→N→N is continuous.

6. Prove that a generalized composition of continuous functions is con-
tinuous.

7. Find a simple (nonrecursive) definition for each of these functions in
N→N using a fixed-point construction.

a) g(n) = if n>0 then 2+g(n–1) else 0

b) h(n) = if n=0 then 0 else if n=1 then h(n+1)–1 else h(n–1)+1

c) f(n) = if n=0 then 0 else if n=1 then f(n-1)+1 else n2

d) g(n) = if n=0 then 1 else 2n+g(n–1)

e) h(n) = if n=0 then 1 else if n=1 then 2 else 4n–4+h(n–2)

f) f(n) = if n=0 then f(n+1)+1 else 1

g) f(n) = if n>100 then n–10 else f(f(n+11)) (McCarthy’s 91 function)

8. Consider the following functional defined on functions over the natural
numbers:

G : (N→N)→(N→N)
G = λg . λn . if n=0 then 2 else g(n)

10.3 FIXED-POINT SEMANTICS

386 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

a) Give and justify a recursive definition that corresponds to this func-
tional—that is, an operational definition of a function that will be a
fixed point of G.

b) Define four different functions, g0, g1, g2, and g3, that are fixed points
of the functional G, including the least fixed point, g0. Carefully prove
that g0 and g1 are fixed points of G.

c) Draw a diagram showing the relationship “is less defined than or
equal” between these four functions.

d) Informally describe the operational behavior of the recursive defini-
tion in part a). Which of the four fixed-point functions has the closest
behavior to the operational view?

9. Let T = {⊥,true,false} be the elementary domain of Boolean values with
the bottom element ⊥. The function and : T x T → T must agree with the
following truth table:

and true false ⊥

true true false ?

false false false ?

⊥ ? ? ?

Complete this truth-table in two ways to produce two different mono-
tonic versions of the function and defined on T. Explain how these two
and functions correspond to the possible interpretations of the predefined
Boolean and function in a programming language such as Pascal.

10. Prove the Continuity Theorem:

Any functional H defined by the composition of naturally extended func-
tions on elementary domains, constant functions, the identity function,
the if-then-else conditional expression, and a function variable f, is con-
tinuous.

11. Use fixed-point induction to prove the equality of the following functions
in N→N:

f(n) = if n>5 then n-5 else f(f(n+13))

g(n) = if n>5 then n-5 else g(n+8)

12. Use fixed point-induction to prove the equality of the following functions
in NxN→N:

f(m,n) = if m=0 then n else f(2•m,n)+3

g(m,n) = if m=0 then n else g(2•m,n+3)

Hint: Let Φ(f,g) be ∀m>0∀n[f(m,n)=g(m,n) and g(m,n+3)=g(m,n)+3].

387

13. Let f : N→N be a function defined by a recursive rule of the form

f(n) = if p(n) then n else f(f(h(n))),

where p:N→T and h:N→N are two arbitrary functions.

Use fixed-point induction to show that f°f = f (f is idempotent).
Hint: Let Φ(g) be “f(g(n)) = g(n) for all n∈N”.

14. Let D be the set of natural numbers. Prove that the fixed-point operator

fix : (D→D)→D where
fix = λF . lub{Fi(⊥)|i≥0}

is monotonic and continuous.

15. Let N be the domain of natural numbers. The set of finite lists of natural
numbers can be specified by the recursive definition L = {nil } ∪ (NxL),
where nil is a special constant symbol. One way to give meaning to such
a recursive definition is to take L to be the least fixed point of the func-
tion F(X) = {nil} ∪ (NxX)—namely, L = F(L).

a) Define and prove those properties that F must satisfy to guarantee
the existence of a least fixed point.

b) Carefully describe the first four terms in the ascending chain that is
used in constructing the least fixed point for F.

16. (Thanks to Art Fleck at the University of Iowa for this problem.) Context-
free grammars can be viewed as systems of equations where the
nonterminals are regarded as variables (or unknowns) over sets of strings;
the solution for the start symbol yields the language to be defined. In
general, such an equation system has solutions that are tuples of sets,
one for each nonterminal. Such solutions can be regarded as fixed points
in that when they are substituted in the right-hand side, the result is
precisely the solution again. For example (using ε for the null string), the
grammar

A ::= aAc | B
B ::= bB | C
C ::= ε | C

corresponds to the transformation on triples <X,Y,Z> of sets defined
by

f(<X,Y,Z>) = <{a}•X•{c} ∪ Y, {b}•Y ∪ Z, {ε} ∪ Z>,
whose fixed point <A, B, C> then satisfies the set equations

A = {a}•A•{c} ∪ B
B = {b}•B ∪ C
C = {ε} ∪ C

for appropriate A,B,C ⊆ {a,b,c}*. For instance, the equations above are
satisfied by the sets A = {an b* cn | n≥0}, B = b*, C = {ε}.

10.3 FIXED-POINT SEMANTICS

388 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Show that the equation system corresponding to the grammar above
has more than one possible solution so that simply seeking an arbitrary
solution is insufficient for formal language purposes. However, the least
fixed point solution provides exactly the language normally defined by
the grammar. Illustrate how the first few steps of the ascending chain in
the fixed-point construction lead to the desired language elements for
the grammar above, and discuss the connection with derivations in the
grammar.
Note: We have the natural partial order for tuples of sets where

<S1, …, Sk> ⊆ <T1, … , Tk> if Si ⊆ Ti for all i, 1≤i≤k.

17. Prove Park’s Induction Principle: If f : D→D is a continuous function on
a domain D and d∈D such that f d ⊆ d, it follows that fix f ⊆ d.

18. Let A and B be two domains with functions f : A→B and g : B→A.
Prove that fix (f°g) = f(fix (g°f)).

10.4 LABORATORY: RECURSION IN THE LAMBDA CALCULUS

Before we implement a fixed-point finder to provide recursively defined func-
tions in the lambda calculus evaluator presented in Chapter 5, we describe
how a definition mechanism, like a macro system, can be added to the evalu-
ator. An example showing the definition and use of symbols follows.

>>> Evaluating the Lambda Calculus <<<
Enter name of source file: cube
 define Thrice = (L f x (f (f (f x))))
 define Sqr = (L x (mul x x))
 define Cube = (L x (mul x (Sqr x)))
 (Thrice Cube 2)
Successful Scan
Successful Parse
Result = 134217728
yes

Without the capability of forming definitions, the lambda expressions that
we want to evaluate get extremely large. Now the file submitted to the evalu-
ator will contain zero or more definitions followed by one lambda expression
to be evaluated. Symbols defined in earlier lines may be used in later defini-
tions.

The system maintains definitions of new symbols in a definition table Tab
using predicates extendTab and applyTab in the same with way that environ-

389

ments are handled with the SECD machine in Chapter 8 and Pelican in Chap-
ter 9. Processing the definitions decomposes into two parts: (1) elaboration
and (2) expansion. As the list of definitions is processed, the right side of
each definition must be expanded and a new binding added to the table.

elaborate(Tab,[def(X,E)|Defns],NewTab) :- expand(E,Tab,[],NewE),
extendTab(Tab,X,NewE,TempTab),
elaborate(TempTab,Defns,NewTab).

elaborate(Tab,[],Tab).

The expansion mechanism keeps track of the variable occurrences that have
been bound since only free occurrences of symbols are replaced. Moving
inside of an abstraction appends the lambda variable to the set of bound
variables BV.

expand(var(X),Tab,BV,var(X)) :- member(X,BV). % X is bound
expand(var(X),Tab,BV,E) :- applyTab(Tab,X,E). % X is free and defined
expand(var(X),Tab,BV,var(X)). % X is a free variable
expand(con(C),Tab,BV,con(C)). % C is a constant
expand(comb(Rator,Rand),Tab,BV,comb(NewRator,NewRand)) :-

expand(Rator,Tab,BV,NewRator), expand(Rand,Tab,BV,NewRand).
expand(lamb(X,E),Tab,BV,lamb(X,NewE)) :-

concat(BV,[X],NewBV), expand(E,Tab,NewBV,NewE).

The definition table is manipulated by two predicates. We add a binding
Ide|→Exp to the definition table Tab using extendTab.

extendTab(Tab,Ide,Exp,tab(Ide,Exp,Tab)).

We look up an identifier Ide in the definition table Tab using applyTab, which
fails if the identifier is not found.

applyTab(tab(Ide,Exp,Tab),Ide,Exp).

applyTab(tab(Ide1,Exp1,Tab),Ide,Exp) :- applyTab(Tab,Ide,Exp).

The scanner must be altered to recognize the reserved word define and the
equal symbol. The parser then produces a list of definitions of the form def(X,E)
together with the lambda expression to be evaluated. The definitions are
elaborated starting with an empty table nil, the lambda expression is ex-
panded, and then the new expression can be evaluated.

go :- nl,write('>>> Evaluating the Lambda Calculus <<<'), nl, nl,
write('Enter name of source file: '), nl, readfile(File), nl,
see(File), scan(Tokens), nl, write('Successful Scan'), nl, !,
seen, program(prog(D,E),Tokens,[eop]), write('Successful Parse'), nl, !,
elaborate(nil,D,Tab), expand(E,Tab,[],Expr), !,
evaluate(Expr,Result), nl, write('Result = '), pp(Result),nl.

10.4 LABORATORY: RECURSION IN THE LAMBDA CALCULUS

390 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Conditional Expressions

Recursive definitions require some way of choosing between the basis case and
the recursive case. An expression-oriented language such as the lambda calcu-
lus (or a functional programming language) uses a conditional expression

(if e1 e2 e3) = if e1 then e2 else e3.

Recall that function application is left associative so that the abstract syntax
tree for this expression takes the form

comb(comb(comb(con(if),e1),e2),e3)

where if has been added as another constant to the applied lambda calculus.
To see how to evaluate comb(con(if),e1), consider the behavior that we expect
when the value of e1 is true or false.

Case 1 : e1 evaluates to true. We want the value of comb(con(if),e1) to be a
selector function that takes the next value e2 and ignores the value e3 after
it. Therefore take the value of comb(con(if),e1) to be the parsed lambda ex-
pression lamb(x,lamb(y, var(x)). Then

comb(comb(comb(con(if),true),e2),e3)
⇒ comb(comb(lamb(x,lamb(y,var(x)),e2),e3)
⇒ comb(lamb(y,e2),e3)
⇒ e2

Case 2 : e1 evaluates to false. Now we want the value of comb(con(if),e1) to select
the second value, and so we take its value to be lamb(x,lamb(y,var(y)). The ex-
pression comb(comb(comb(con(if),false),e2),e3) is left for the reader to reduce.

The Prolog code to carry out the evaluation of “if” is shown below.

compute(if, true, lamb(x,(lamb(y,var(x))))).
compute(if, false, lamb(x,(lamb(y,var(y))))).

Now we can express a functional corresponding to a recursive definition in
the applied lambda calculus.

define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1))))).

Notice here the use of a predicate “zerop” that tests whether its argument is
equal to zero or not.

Paradoxical Combinator

Given a mechanism (conditional expressions) for describing the functionals
corresponding to recursive definitions of functions, the next step is to pro-
vide an implementation of the fixed-point operator fix. The (untyped) lambda
calculus contains expressions that can replicate parts of themselves and

391

thereby act as fixed-point finders satisfying the fixed-point identity. The best
known such expression, called the paradoxical combinator , is given by

define Y = λf . (λx . f (x x)) (λx . f (x x))

or for the lambda calculus evaluator

define Y = (L f ((L x (f (x x))) (L x (f (x x))))).

A reduction proves that Y satisfies the fixed-point identity.

Y E = (λf . (λx . f (x x)) (λx . f (x x))) E
⇒ (λx . E (x x)) (λx . E (x x))
⇒ E ((λx . E (x x)) (λx . E (x x)))
⇒ E (λh . (λx . h (x x)) (λx . h (x x)) E)
⇒ E (Y E).

The careful reader will have noticed that this calculation follows normal or-
der reduction, a necessary prerequisite for having the Y combinator satisfy
the fixed-point identity. Following an applicative order strategy leads to a
nonterminating reduction.

Y E = (λf . (λx . f (x x)) (λx . f (x x))) E
⇒ (λf . f (λx . f (x x)) (λx . f (x x)))) E
⇒ (λf . f (f (λx . f (x x)) (λx . f (x x))))) E
⇒ ….

As motivation for the definition of Y, consider a lambda expression W with a
free variable f

define W = λx . f (x x),

and notice what happens when it is applied to itself.

W W = (λx . f (x x)) (λx . f (x x)) ⇒ f((λx . f (x x)) (λx . f (x x)))
= f(W W) ⇒ f(f((λx . f (x x)) (λx . f (x x)))
= f(f(W W)) ⇒ f(f(f((λx . f (x x)) (λx . f (x x))))
= f(f(f(W W))) ⇒ f(f(f(f(W W)))) ⇒ ….

By continuing this reduction, as many copies of f can be created as are needed.
The fixed-point operator (W W) for f replicates the function f any number of
times. The fixed-point operator Y can then be defined for an arbitrary func-
tion f by

Y f = W W
or abstracting the f

Y = λf . W W.

Actually, the lambda calculus has an infinite number of expressions that
can act as fixed-point operators. Three of these are given in the exercises.

10.4 LABORATORY: RECURSION IN THE LAMBDA CALCULUS

392 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Using the paradoxical combinator, we can execute a function defined recur-
sively as shown by the following transcript of a computation with the facto-
rial function.

>>> Evaluating the Lambda Calculus <<<
Enter name of source file: fact8
 define Y = (L f ((L x (f (x x))) (L x (f (x x)))))
 define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1)))))
 define Factorial = (Y Fac)
 (Factorial 8)
Successful Scan
Successful Parse
Result = 40320
yes

Without the mechanism for defining symbols, the expression must be writ-
ten in its expanded form,

((L f ((L x (f (x x))) (L x (f (x x)))))
(L f n (if (zerop n) 1 (mul n (f (sub n 1)))))

8) ,
but the results obtained from the lambda calculus evaluator are the same.

Fixed-Point Identity

A second approach to providing a fixed-point operator in the evaluator is to
code fix in the evaluator as a constant satisfying the fixed-point identity

F(fix F) = fix F.

All we have to do is add a reduction rule that carries out the effect of the
fixed-point identity from right to left so as to replicate the functional F—
namely, fix F ⇒ F(fix F). In the Prolog code for the evaluator, insert the follow-
ing clause just ahead of the clause for reducing other constants.

reduce(comb(con(fix),E),comb(E,comb(con(fix),E))). % Fixed Point Operator

Also the constant “fix” must be added to the scanner and parser. A sample
execution follows.
Enter name of source file: fixfact8
 define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1)))))
 (fix Fac 8)
Successful Scan
Successful Parse
Result = 40320
yes

393

To provide a better understanding of the effect of following the fixed-point
identity, consider the definition of factorial with its functional again.

fac n = if n=0 then 1 else n•fac(n-1) and

Fac = λf . λn . if n=0 then 1 else n•f(n-1).

The least fixed point of Fac, (fix Fac), serves as the definition of the factorial
function. The function (fix Fac) is not recursive and can be “reduced” using
the fixed-point identity

fix Fac ⇒ Fac(fix Fac).

The replication of the function encoded in the fix operator enables a reduc-
tion to create as many copies of the original function as it needs.

(fix Fac) 4 ⇒ (Fac (fix Fac)) 4
⇒ (λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 4
⇒ (λn . if n=0 then 1 else n•(fix Fac)(n-1)) 4
⇒ if 4=0 then 1 else 4•(fix Fac)(4-1)
⇒ 4•((fix Fac) 3) ⇒ 4•((Fac (fix Fac)) 3)
⇒ 4•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 3)
⇒ 4•((λn . if n=0 then 1 else n•((fix Fac)(n-1)) 3)
⇒ 4•(if 3=0 then 1 else 3•(fix Fac)(3-1))
⇒ 4•3•((fix Fac) 2) ⇒ 4•3•(Fac (fix Fac)) 2)
⇒ 4•3•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 2)
⇒ 4•3•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 2)
⇒ 4•3•(if 2=0 then 1 else 2•(fix Fac)(2-1))
⇒ 4•3•2•((fix Fac) 1) ⇒ 4•3•2•((Fac (fix Fac)) 1)
⇒ 4•3•2•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 1)
⇒ 4•3•2•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 1)
⇒ 4•3•2•(if 1=0 then 1 else 1•(fix Fac)(1-1))
⇒ 4•3•2•1•((fix Fac) 0) ⇒ 4•3•2•1•((Fac (fix Fac)) 0)
⇒ 4•3•2•1•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 0)
⇒ 4•3•2•1•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 0)
⇒ 4•3•2•1•(if 0=0 then 1 else 0•(fix Fac)(0-1))
⇒ 4•3•2•1•1 = 24

Exercises

1. Add the definition mechanism to the lambda calculus evaluator.

2. Extend the lambda calculus evaluator to recognize and interpret the
conditional expression (if). Remember to add if to the list of reserved
words in the scanner.

10.4 LABORATORY: RECURSION IN THE LAMBDA CALCULUS

394 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

3. Show that each of the following expressions is a fixed-point operator in
the lambda calculus:

Yr = λh . (λg . λx . h (g g) x) (λg . λx . h (g g) x)

Yf = λh . (λx . h (λy . x x y)) (λx . h (λy . x x y))

Yg = (λx . λy . y (x x y)) (λx . λy . y (x x y))

4. Using the following definitions, calculate fib 4 by applying the Fixed-
Point Identity.

G = λg . λn . if n=0 then 0 else if n=1 then 1 else g(n-1) + g(n-2)

fib = fix G = fix (λg . λn . if n<2 then n else g(n-1) + g(n-2)).

5. Add several relational operators, such as = and <, to the lambda calcu-
lus evaluator and use them to test other recursive definitions.

10.5 FURTHER READING

Many of the books that contain material on denotational semantics also treat
domain theory. In particular, see [Allison86], [Schmidt88], [Stoy77], and
[Watt91]. David Schmidt’s book has a chapter on recursively defined do-
mains, including the inverse limit construction that justifies their existence.
[Paulson87] also contains material on domain theory. For a more advanced
treatment of domain theory, see [Mosses90] and [Gunter90]. Dana Scott’s
description of domains and models for the lambda calculus may be found in
[Scott76], [Scott80], and [Scott82].

The early papers on fixed-point semantics [Manna72] and [Manna73] are a
good source of examples, although the notation shows its age. Much of this
material is summarized in [Manna74]. This book contains a proof of the theo-
rem about admissible predicates for fixed-point induction. [Bird76] also con-
tains considerable material on fixed-point semantics.

Most books on functional programming or the lambda calculus contain dis-
cussions of the paradoxical combinator and the fixed-point identity. Good
examples include [Field88], [Peyton Jones87], and [Reade89]. For an advanced
presentation of recursion in the lambda calculus, see [Barendregt84].

395

Chapter 11
AXIOMATIC SEMANTICS

The techniques for operational semantics, introduced in Chapters 5
through 8, and denotational semantics, discussed in Chapters 9 and
10, are based on the notion of the “state of a machine”. For example, in

the denotational semantics of Wren, the semantic equation for the execution
of a statement is a mapping from the current machine state, represented by
the store, input stream and output stream, to a new machine state.

Based on methods of logical deduction from predicate logic, axiomatic se-
mantics is more abstract than denotational semantics in that there is no
concept corresponding to the state of the machine. Rather, the semantic
meaning of a program is based on assertions about relationships that re-
main the same each time the program executes. The relation between an
initial assertion and a final assertion following a piece of code captures the
essence of the semantics of the code. Another piece of code that defines the
algorithm slightly differently yet produces the same final assertion will be
semantically equivalent provided any initial assertions are also the same.
The proofs that the assertions are true do not rely on any particular architec-
ture for the underlying machine; rather they depend on the relationships
between the values of the variables. Although individual values of variables
change as a program executes, certain relationships among them remain the
same. These invariant relationships form the assertions that express the
semantics of the program.

11.1 CONCEPTS AND EXAMPLES

Axiomatic semantics has two starting points: a paper by Robert Floyd and a
somewhat different approach introduced by C. A. R. Hoare. We use the nota-
tion presented by Hoare. Axiomatic semantics is commonly associated with
proving a program to be correct using a purely static analysis of the text of
the program. This static approach is in clear contrast to the dynamic ap-
proach, which tests a program by focusing on how the values of variables
change as a program executes. Another application of axiomatic semantics is
to consider assertions as program specifications from which the program
code itself can be derived. We look at this technique briefly in section 11.5.

396 CHAPTER 11 AXIOMATIC SEMANTICS

Axiomatic semantics does have some limitations: Side effects are disallowed
in expressions; the goto command is difficult to specify; aliasing is not al-
lowed; and scope rules are difficult to describe unless we require all identifier
names to be unique. Despite these limitations, axiomatic semantics is an
attractive technique because of its potential effect on software development:

• The development of “bug free” algorithms that have been proved correct.

• The automatic generation of program code based on specifications.

Axiomatic Semantics of Programming Languages

In proving the correctness of a program, we use an applied predicate (first-
order) logic with equality whose individual variables correspond to program
variables and whose function symbols include all the operations that occur
in program expressions. Therefore we view expressions such as “2*n+1” and
“x+y>0” as terms in the predicate logic (mathematical terms) whose values
are determined by the current assignment to the individual variables in the
logic language. Furthermore, we assume the standard mathematical and
logical properties of operations modeled in the logic—for example, 2*3+1 = 7
and 4+1>0 = true.

An assertion is a logical formula constructed using the individual variables,
individual constants, and function symbols in the applied predicate calcu-
lus. When each variable in an assertion is assigned a value (determined by
the value of the corresponding program variable), the assertion becomes valid
(true) or invalid (false) under a standard interpretation of the constants and
functions in the logical language.

Typically, assertions consist of a conjunction of elementary statements de-
scribing the logical properties of program variables, such as stating that a
variable takes values from a particular set, say m < 5, or defining a relation
among variables, such as k = n2. In many cases, assertions correspond di-
rectly to Boolean expressions in Wren, and the two notions are frequently
confused in axiomatic semantics. We maintain a distinction between asser-
tions and Boolean expressions by always presenting assertions in an italic
font like this. In some instances, assertions use features of predicate logic
that go beyond what is expressible in Boolean expressions—namely, when
universal quantifiers, existential quantifiers, and implications occur in for-
mulas.

For the purposes of axiomatic semantics, a program reduces to the meaning
of a command, which in the abstract syntax includes a sequence of com-
mands. We describe the semantics of a program by annotating it with asser-
tions that are always valid when the control of the program reaches the points
of the assertions. In particular, the meaning or correctness of a command (a

39711.1 CONCEPTS AND EXAMPLES

program) is described by placing an assertion, called a precondition, before
a command and another assertion, called a postcondition, after the com-
mand:

{ PRE } C { POST }.

Therefore the meaning of command C can be viewed as the ordered pair
<PRE, POST>, called a specification of C. We say that the command C is
correct with respect to the specification given by the precondition and
postcondition provided that if the command is executed with values that
make the precondition true, the command halts and the resulting values
make the postcondition true. Extending this notion to an entire program
supplies a meaning of program correctness and a semantics to programs in
a language.

Definition: A program is partially correct with respect to a precondition
and a postcondition provided that if the program is started with values that
make the precondition true, the resulting values make the postcondition
true when the program halts (if ever). If it can also be shown that the pro-
gram terminates when started with values satisfying the precondition, the
program is called (totally) correct.

Partial Correctness = (Precondition and Termination ⊃ Postcondition)

Total Correctness = (Partial Correctness and Termination). ❚

We focus on proofs of partial correctness for programs in Wren and Pelican in
the next two sections and briefly look at proofs of termination in section
11.4. The goal of axiomatic semantics is to provide axioms and proof rules
that capture the intended meaning of each command in a programming lan-
guage. These rules are constructed so that a specification for a given com-
mand can be deduced, thereby proving the partial correctness of the com-
mand relative to the specification. Such a deduction consists of a finite se-
quence of assertions (formulas of the predicate logic) each of which is either
the precondition, an axiom associated with a program command, or a rule of
inference whose premises have already been established.

Before considering the axioms and proof rules for Wren, we need to discuss
the problem of specifications briefly. Extensive literature has dealt with the
difficult problem of accurate specifications of algorithms. Programmers fre-
quently miss the subtlety inherent in precise specifications. As an example,
consider the following specification of the problem of finding the smaller of
two nonnegative integers:

PRE = { m≥0 and n≥0 }

POST = { minimum≤m and minimum≤n and minimum≥0 }.

Unhappily, this specification is satisfied by the command “minimum := 0”,
which does not satisfy the informal description. We do not have space in this

398 CHAPTER 11 AXIOMATIC SEMANTICS

text to consider the problems of accurate specifications, but correctness proofs
of programs only serve the programmer when the proof is carried out relative
to correct specifications.

11.2 AXIOMATIC SEMANTICS FOR WREN

Again Wren serves as the initial programming language for semantic specifi-
cation. In the next section we expand the presentation to Pelican with con-
stants, procedures, blocks, and recursion. For each of these languages, axi-
omatic semantics focuses on assertions that describe the logical relation-
ships between the values of program variables at points in a program.

An axiomatic analysis of Wren program behavior concentrates on the com-
mands of the programming language. In the absence of side effects, expres-
sions in Wren can be treated as mathematical expressions and be evaluated
using mathematical rules. We assume that any program submitted for se-
mantic analysis has already been verified as syntactically correct, including
adherence to all context conditions. Therefore the declarations (of variables
only) in Wren can be ignored in describing its axiomatic semantics. In the
next section we investigate the impact of constant and procedure declara-
tions on this approach to semantics.

Assignment Command

The first command we examine is assignment, beginning with three examples
of preconditions and postconditions for assignment commands:

Example 1: { k = 5 } k := k + 1 { k = 6 }

Example 2: { j = 3 and k = 4} j := j + k { j = 7 and k = 4 }

Example 3: { a > 0 } a := a – 1 { a ≥ 0 }.

For these simple examples, correctness is easy to prove either proceeding
from the precondition to the postcondition or from the postcondition to the
precondition. However, many times starting with the postcondition and work-
ing backward to derive the precondition proves easier (at least initially). We
assume expressions with no side effects in the assignment commands, so
only the the target variable is changed. “Working backward” means substi-
tuting the expression on the right-hand side of the assignment for every oc-
currence of the target variable in the postcondition and deriving the precon-
dition, following the principle that whatever is true about the target variable
after the assignment must be true about the expression before the assign-
ment. Consider the following examples:

399

Example 1

{ k = 6 } postcondition
{ k + 1 = 6 } substituting k + 1 for k in postcondition
{ k = 5 } precondition, after simplification.

Example 2

{ j = 7 and k = 4 } postcondition
{ j + k = 7 and k = 4 } substituting j + k for j in postcondition
{ j = 3 and k = 4} precondition, after simplification.

Example 3

{ a ≥ 0 } postcondition
{ a – 1 ≥ 0 } substituting a – 1 for a in postcondition
{ a ≥ 1 } simplification
{ a > 0 } precondition, since a≥1 ≡ a>0 assuming a is an integer.

Given an assignment of the form V := E and a postcondition P, we use the
notation P[V→E] (as in Chapter 5) to indicate the consistent substitution of E
in place of each free occurrence of V in P. This notation enables us to give an
axiomatic definition for the assignment command as

{ P[V→E] } V := E { P } (Assign)

The substitution operation P[V→E] needs to be defined carefully since for-
mulas in the predicate calculus allow both free and bound occurrences of
variables. This task will be given as an exercise at the end of this section.

If we view assertions as predicates—namely, Boolean valued expressions with
a parameter—the axiom can be stated

{ P(E) } V := E { P(V) }.

A proof of correctness following the assignment axiom can be summarized by
writing

{ a > 0 } ⊃

{ a ≥ 1 } ⊃

{ a – 1 ≥ 0 } = { P(a–1) }

a := a–1

{ a ≥ 0 } = { P(a) }

where ⊃ denotes logical implication. The axiom that specifies “V := E” essen-
tially states that if we can prove a property about E before the assignment,
the same property about V holds after the assignment.

11.2 AXIOMATIC SEMANTICS FOR WREN

400 CHAPTER 11 AXIOMATIC SEMANTICS

At first glance the assignment axiom may seem more complicated than it
needs to be with its use of substitution in the precondition. To appreciate the
subtlety of assignment, consider the following unsound axiom:

{ true } V := E { V = E }.

This apparently reasonable axiom for assignment is unsound because it al-
lows us to prove false assertions—for example,

{ true } m := m+1 { m = m+1 }.

Input and Output

The commands read and write assume the existence of input and output
files. We use “IN = ” and “OUT = ” to indicate the contents of these files in
assertions and brackets to represent a list of items in a file; so [1,2,3] repre-
sents a file with the three integers 1, 2 and 3. We consider the left side of the
list to be the start of the file and the right side to be the end. For example,
affixing the value 4 onto the end of the file [1,2,3] is represented by writing
[1,2,3][4]. In a similar way, 4 is prefixed to the file [1,2,3] by writing [4][1,2,3].
Juxtaposition means concatenation.

Capital letters are used to indicate some unspecified item or sequence of
items; [K]L thus represents a file starting with the value K and followed by any
sequence L, which may or may not be empty. For contrast, small caps denote
numerals, and large caps denote lists of numerals. Exploiting this notation,
we specify the semantics of the read command as removing the first value
from the input file and “assigning” it to the variable that appears in the com-
mand.

{ IN = [K]L and P[V→K] } read V { IN = L and P } (Read)

The write command appends the current value denoted by the expression to
the end of the output file. Our axiomatic rule also specifies that the value of
the expression is not changed and that no other assertions are changed.

{ OUT=L and E=K and P } write E { OUT=L[K] and E=K and P } (Write)

where P is any arbitrary set of additional assertions.

The symbols acting as variables in the Read axiom serve two different pur-
poses. Those symbols that describe the input list, a numeral and a list of
numerals, stay constant throughout any deduction containing them. We re-
fer to symbols of this type as logical variables, meaning that their bindings
are frozen during the deduction (see Appendix A for a discussion of logical
variables in Prolog). In contrast, the variable V and any variables in the ex-
pression E correspond to program variables and may represent different val-
ues during a verification. The values of these variables depend on the current

401

assignment of values to program variables at the point where the assertion
containing them occurs. When applying the axioms and proof rules of axiom-
atic semantics, we will use uppercase letters for logical variables and lower-
case letters for individual variables corresponding to program variables.

The axioms and rules of inference in an axiomatic definition of a program-
ming language are really axiom and rule schemes. The symbols “V”, “E”, and
“P” need to be replaced by actual variables, expressions, and formulas, re-
spectively, to form instances of the axioms and rules for use in a deduction.

Rules of Inference

For other axiomatic specifications, we introduce rules of inference that have
the form

H1, H2, ..., Hn

H

This notation can be interpreted as

If H1, H2, ..., Hn have all been verified, we may conclude that H is valid.

Note the similarity with the notation used by structural operational seman-
tics in Chapter 8. The sequencing of two commands serves as the first ex-
ample of a rule of inference:

{ P } C1 { Q }, { Q } C2 { R } (Sequence)

{ P } C1; C2 { R }

This rule says that if starting with the precondition P we can prove Q after
executing C1 and starting with Q we can prove R after C2, we can conclude
that starting with the precondition P, R is true after executing C1; C2. Ob-
serve that the middle assertion Q is “forgotten” in the conclusion.

The if command involves a choice between alternatives. Two paths lead
through an if command; therefore, if we can prove each path is correct given
the appropriate value of the Boolean expression, the entire command is cor-
rect.

{ P and B } C1 { Q }, { P and (not B) } C2 { Q } (If-Else)

 { P } if B then C1 else C2 end if { Q }

Note that the Boolean expression B is used as part of the assertions in the
premises of the rule. The axiomatic definition for the single alternative if is
similar, except that for the false branch we need to show that the final asser-
tion can be derived directly from the initial assertion P when the condition B
is false.

11.2 AXIOMATIC SEMANTICS FOR WREN

402 CHAPTER 11 AXIOMATIC SEMANTICS

{ P and B } C { Q }, (P and (not B)) ⊃ Q (If-Then)

{ P } if B then C end if { Q }

Before presenting the axiomatic definition for while, we examine some gen-
eral rules applicable to all commands and verify a short program. Sometimes
the result that is proved is stronger than required. In this case it is possible
to weaken the postcondition.

{ P } C { Q }, Q ⊃ R (Weaken)

 { P } C { R }

Other times the given precondition is stronger than necessary to complete
the proof.

P ⊃ Q, { Q } C { R } (Strengthen)

{ P } C { R }

Finally, it is possible to relate assertions by the logical relationships and
and or.

{ P1 } C { Q1 }, { P2 } C { Q2 } (And)

{ P1 and P2 } C { Q1 and Q2 }

{ P1 } C { Q1 }, { P2 } C { Q2 } (Or)

{ P1 or P2 } C { Q1 or Q2 }

Example: For a first example of a proof of correctness, consider the following
program fragment.

read x; read y;
if x < y then write x

else write y
end if

To avoid the runtime error of reading from an empty file, the initial assertion
requires two or more items in the input file, which we indicate by writing two
items in brackets before the rest of the file. The output file may or may not be
empty initially.

Precondition: P = { IN = [M,N]L1 and OUT = L2 }

The program writes to the output file the minimum of the two values read. To
specify this as an assertion, we consider two alternatives:

Postcondition: Q = { (OUT = L2[M] and M < N) or (OUT = L2[N] and M ≥ N) }

The correct assertion after the first read command is

R = { IN = [N]L1 and OUT = L2 and x = M },

403

and after the second read command the correct assertion is

S = { IN = L1 and OUT = L2 and x = M and y = N }.

We obtain these assertions by working the axiom for the read command back-
ward through the first two commands. The verification of these assertions
can then be presented in a top-down manner as follows:

{ IN = [M,N]L1 and OUT = L2 } ⊃
{ IN = [M,N]L1 and OUT = L2 and M = M } = P'

read x;
{ IN = [N]L1 and OUT = L2 and x = M } ⊃
{ IN = [N]L1 and OUT = L2 and x = M and N = N } = R'

read y;
{ IN = L1 and OUT = L2 and x = M and y = N } = S.

Since { x < y or x ≥ y } is always true, we can add it to our assertion without
changing its truth value. After manipulating this assertion using the logical
equivalence (using the symbol ≡ for equivalence),

(P1 and (P2 or P3)) ≡ ((P1 and P2) or (P1 and P3)),

we have the assertion:

S' = { (IN = L1 and OUT = L2 and x = M and y = N and (x < y or x ≥ y) } ≡

{ (IN = L1 and OUT = L2 and x = M and y = N and x < y) or
(IN = L1 and OUT = L2 and x = M and y = N and x ≥ y) }.

Representing this assertion as { P1 or P2 }, we now must prove the validity of

{ P1 or P2 }
if x < y then write x

else write y
end if

{ Q }

where Q is { (OUT = L2[M] and M < N) or (OUT = L2[N] and M ≥ N) }. Therefore we
must prove valid

{ (P1 or P2) and B } write x { Q }

and { (P1 or P2)and (not B) } write y { Q }

where B is { x < y }.

{ (P1 or P2) and B } simplifies to

T1 = { IN = L1 and OUT = L2 and x = M and y = N and x < y }.

After executing “write x”, we have

{ IN = L1 and OUT = L2[M] and x = M and y = N and M < N }.

11.2 AXIOMATIC SEMANTICS FOR WREN

404 CHAPTER 11 AXIOMATIC SEMANTICS

Call this Q1. Similarly { (P1 or P2) and (not B) } simplifies to

T2 = { IN = L1 and OUT = L2 and x = M and y = N and x ≥ y }.

After the “write y” we have

{IN = L1 and OUT = L2[N] and x = M and y = N and M ≥ N}.

Call this Q2. Since Q1 ⊃ (Q1 or Q2.) and Q2 ⊃ (Q1 or Q2)) we replace each
individual assertion with

Q1 or Q2 ≡
((IN = L1 and OUT = L2[M] and x = M and y = N and M < N) or
(IN = L1 and OUT = L2[N] and x = M and y = N and M ≥ N)).

Finally we weaken the conclusion by removing the parts of the assertion
about the input file and the values of x and y to arrive at our final assertion,
the postcondition. Figure 11.1 displays the deduction as proof trees using
the abbreviations given above. Note that we omit “end if” to save space. ❚

P ⊃ P', {P'} read x {R} R ⊃ R', {R'} read y {S}, S ⊃ S', S' ⊃ (P1 or P2)

{P} read x {R} {R} read y {P1 or P2}

{P} read x ; read y {P1 or P2}

(((P1 or P2) and B) ⊃ T1), {T1} write x {Q1}

{(P1 or P2) and B} write x {Q1}, Q1 ⊃ (Q1 or Q2)

{(P1 or P2) and B} write x {Q1 or Q2}

 (((P1 or P2) and (not B)) ⊃ T2), {T2} write y {Q2}

{(P1 or P2) and (not B)} write y {Q2}, Q2 ⊃ (Q1 or Q2)

{(P1 or P2) and (not B)} write y {Q1 or Q2}

{P1 or P2} if x < y then write x else write y {Q1 or Q2}, (Q1 or Q2) ⊃ Q

{P1 or P2} if x < y then write x else write y {Q}

{(P1 or P2) and B} write x {Q1 or Q2}, {(P1 or P2) and (not B)} write y {Q1 or Q2}

{P} read x ; read y {P1 or P2}, {P1 or P2} if x < y then write x else write y {Q}

{P} read x ; read y ; if x < y then write x else write y {Q}

Figure 11.1: Derivation Tree for the Correctness Proof

405

While Command and Loop Invariants

Continuing the axiomatic definition of Wren, we specify the while command:

{ P and B } C { P } (While)

{ P } while B do C end while { P and (not B) }

In this definition P is called the loop invariant. This assertion captures the
essence of the while loop: It must be true initially, it must be preserved after
the loop body executes, and, combined with the exit condition, it implies the
assertion that follows the loop. Figure 11.2 illustrates the situation.

C

B

{ P and B }

{ P and (not B) }

while

do

end while

Initialization: Show that
the loop invariant is valid
initially.

Preservation: Verify that the
loop invariant holds each time
the loop executes.

Completion: Prove that
the loop invariant and the
exit condition imply the
final assertion.

{ P }
1

2

3

1

2

3

Figure 11.2: Structure of the While Rule

The purpose of the Preservation step is to verify the premise for the While
rule shown above. The Initialization and Completion steps are used to tie the
while loop into its surrounding code and assertions.

Example: Discovering the loop invariant requires insight. Consider the fol-
lowing program fragment that calculates factorial, as indicated by the final
assertion. Remember, we use lowercase letters for variables and uppercase
(small caps) to represent numerals that remain constant.

{ N ≥ 0 }
k := N; f := 1;
while k > 0 do { loop invariant }

f := f * k; k := k – 1;
end while

{ f = N! }

11.2 AXIOMATIC SEMANTICS FOR WREN

406 CHAPTER 11 AXIOMATIC SEMANTICS

The loop invariant involves a relationship between variables that remains the
same no matter how many times the loop executes. The loop invariant also
involves the while loop condition, k > 0 in the example above, modified to
include the exit case, which is k = 0 in this case. Combining these condi-
tions, we have k ≥ 0 as part of the loop invariant. Other components of the
loop invariant involve the variables that change values as a result of loop
execution, f and k in the program above. We also look at the final assertion
after the loop and notice that N! needs to be involved. For this program, we
can discover the loop invariant by examining how N! is calculated for a simple
case, say N = 5. We examine the calculation in progress at the end of the loop
where k has just been decremented to 3.

f

k

 k !

3 • 2 • 1N! = 5 • 4 •

The variable f has stored the part of the computation completed so far, 5 • 4,
and k has the starting value for the remaining computation. So k! represents
the rest of the value to be computed. The complete value is f • k!, which, at all
times, must equal N!. We can show this in a table:

k k! f f•k!
5 120 1 120
4 24 5 120
3 6 20 120
2 2 60 120
1 1 120 120
0 1 120 120

Now we have our loop invariant: { f •k! = N! and k ≥ 0 }.

We show the loop invariant is initially true by deriving it from the initializa-
tion commands and the precondition.

{ N ≥ 0 } ⊃
{ N! = N! and N ≥ 0 }

k := N;
{ k! = N! and k ≥ 0 } ⊃
{ 1 • k! = N! and k ≥ 0 }

f := 1;
{ f • k! = N! and k ≥ 0 }

407

Note that N! = N! is a tautology when N ≥ 0, so we can replace it with true. We
also know for any clause P that (P and true) is equivalent to P. Thus we can
begin with the initial assertion N ≥ 0. Some of these implications are actually
logical equivalences, but we write implications because that is all we need for
the proofs.

To show that the loop invariant is preserved, we start with the invariant at
the bottom of the loop and push it back through the body of the loop to prove
{ P and B }, the loop invariant combined with the entry condition at the top of
the loop. Summarizing the proof gives us the following:

{ f•k! = N! and k > 0 } ⊃
{ f•k•(k–1)! = N! and k > 0 }

f := f * k;
{ f•(k–1)! = N! and k > 0 } ⊃
{ f•(k–1)! = N! and k–1≥ 0 }

k := k – 1;
{ f •k! = N! and k ≥ 0 }

We rely on the fact that k is an integer to transform the condition k > 0 into
the equivalent condition k–1 ≥ 0.

Finally, we must prove the assertion after the while loop can be derived from
(P and not B).

{ f • k! = N! and k ≥ 0 and (not k > 0) } ⊃
{ f • k! = N! and k ≥ 0 and k ≤ 0 } ⊃
{ f • k! = N! and k = 0 } ⊃
{ f = N! and k = 0 } ⊃ { f = N! }

The last simplification is a weakening of the assertion { f = N! and k = 0 }. ❚

While proving this algorithm to be correct, we avoid some problems that
occur when the algorithm is executed on a real computer. For example, the
factorial function grows very rapidly, and it does not take a large value of N
for N! to exceed the storage capacity for integers on a particular machine.
However, we want to develop a machine-independent definition of the se-
mantics of a programming language, so we ignore these restrictions. We sum-
marize our axiomatic definitions for Wren in Figure 11.3, including the Skip
axiom, which makes no change in the assertion.

11.2 AXIOMATIC SEMANTICS FOR WREN

408 CHAPTER 11 AXIOMATIC SEMANTICS

Assign { P[V→E] } V := E { P }

Read { IN = [K]L and P[V→K] } read V { IN = L and P }

Write { OUT=[L] and E=K and P } write E { OUT= L[K] and E=K and P }

Skip { P } skip { P }

Sequence {P} C1 {Q}, {Q} C2 {R}
{P} C1; C2 {R}

If-Then {P and B} C {Q}, (P and not B) ⊃ Q
{P} if B then C end if {Q}

If-Else {P and B} C1 {Q}, {P and not B} C2 {Q}
{P} if B then C1 else C2 end if {Q}

While {P and B} C {P}
{P} while B do C end while {P and not B}

Weaken {P} C {Q}, Q ⊃ R
Postcondition {P} C {R}

Strengthen P ⊃ Q, {Q} C {R}
Precondition {P} C {R}

And {P} C {Q}, {P'} C {Q'}
{P and P'} C {Q and Q'}

Or {P} C {Q}, {P'} C {Q'}
{P or P'} C {Q or Q'}

Figure 11.3 Axiomatic Semantics for Wren

More on Loop Invariants

Constructing loop invariants for while commands in a program provides the
main challenge when proving correctness with an imperative language. Al-
though no simple formula solves this problem, several general principles can
help in analyzing the logic of the loop when finding an invariant.

• A loop invariant describes a relationship among the variables that does
not change as the loop is executed. The variables may change their values,
but the relationship stays constant.

• Constructing a table of values for the variables that change often reveals a
property among variables that does not change.

• Combining what has already been computed at some stage in the loop
with what has yet to be computed may yield a constant of some sort.

409

• An expression related to the test B for the loop can usually be combined
with the assertion { not B } to produce part of the postcondition.

• A possible loop invariant can be assembled to attempt to carry out the
proof. We need enough to produce the final postcondition but not so much
that we cannot establish the initialization step or prove the preservation of
the loop invariant.

Example: Consider a short program that computes the exponential function
for two nonnegative integers, M and N. The code specified by means of a pre-
condition and postcondition follows:

{ M>0 and N≥0 }
a := M; b := N; k := 1;
while b>0 do

if b=2*(b/2)
then a := a*a; b := b/2
else b := b–1; k := k*a

end if
end while

{ k = MN }

Recall that division in Wren is integer division. We begin by tracing the algo-
rithm with two small numbers, M=2 and N=7, and thereby build a table of
values to search for a suitable loop invariant. The value MN = 128 remains
constant throughout the execution of the loop. Since the goal of the code is to
compute the exponential function, we add a column to the table for the value
of ab, since a is the variable that gets multiplied.

a b k ab

2 7 1 128
2 6 2 64
4 3 2 64
4 2 8 16

16 1 8 16
16 0 128 1

Observe that ab changes exactly when k changes. In fact, their product is
constant, namely 128. This relationship suggests that k•ab = MN will be part
of the invariant. Furthermore, the loop variable b decreases to 0 but always
stays nonnegative. The relation b≥0 seems to be invariant, and when com-
bined with “not B”, which is b≤0, establishes b=0 at the end of the loop.
When b=0 is joined with k•ab = MN, we get the postcondition k = MN. Thus we
have as a loop invariant:

{ b≥0 and k•ab = MN }.

11.2 AXIOMATIC SEMANTICS FOR WREN

410 CHAPTER 11 AXIOMATIC SEMANTICS

Finally, we verify the program by checking that the loop invariant is consis-
tent with an application of the rule for the while command in the given
setting.

Initialization

{ M>0 and N≥0 } ⊃
{ M=M>0 and N=N≥0 and 1=1 }

a := M; b := N; k := 1;
{ a=M>0 and b=N≥0 and k=1 } ⊃
{ b≥0 and k•ab=MN }

Preservation

Case 1: b is even, that is, b = 2i ≥ 0 for some i ≥ 0.
Then b=2•(b/2) ≥ 0 and b/2 = i ≥ 0.

{ b≥0 and k•ab=MN and b>0 } ⊃
{ b>0 and k•ab=M

N } ⊃
{ b/2>0 and k•(a•a)b/2=MN }

a := a*a; b := b/2
{ b>0 and k•ab=MN } ⊃ { b≥0 and k•ab=MN }

Case 2: b is odd, that is, b = 2i+1 > 0 for some i ≥ 0.
Then b<>2•(b/2).

{ b≥0 and k•ab=MN and b>0 } ⊃
{ b>0 and k•ab=M

N } ⊃
{ b–1≥0 and k•a•ab-1=MN }

b := b–1; k := k*a
{ b≥0 and k•ab=MN }

These two cases correspond to the premises in the rule for the if com-
mand. The conclusion of the axiom establishes:

{ b≥0 and k•ab=MN and b>0 }
if b=2*(b/2) then a := a*a; b := b/2

else b := b–1; k := k*a end if
{ b≥0 and k•ab=M

N }

Completion

{ b≥0 and k•ab=MN and b≤0 } ⊃
{ b=0 and k•ab=MN } ⊃ { k=MN } ❚

Nested While Loops

Example: We now consider a more complex algorithm with nested while
loops. In addition to a precondition and postcondition specifying the goal of
the code, each while loop is annotated by a loop invariant to be supplied in
the proof.

411

{ IN = [A] and OUT = [] and A ≥ 0 }
read x;
m := 0; n := 0; s := 0;
while x>0 do { outer loop invariant: C }

x := x–1; n := m+2; m := m+1;
while m>0 do { inner loop invariant: D }

m := m–1; s := s+1
end while;
m := n

end while;
write s

{ OUT = [A2] }

Imagine for now that an oracle has provided the invariants for this program.
Later we discuss how the invariants might be discovered. Given the complex-
ity of the problem, it is convenient to introduce predicate notation to refer to
the invariants. The outer invariant C is

C(x,m,n,s) = (x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[]).

Initialization (outer loop): First we prove that this invariant is true initially
by working through the initialization code. Check the deduction from bot-
tom to top.

{ IN = [A] and OUT = [] and A≥0 } ⊃
{ A≥0 and 0=2(A–A) and 0=(A–A)2 and IN = [A][] and OUT=[] }

read x;
{ x≥0 and 0=2(A–x) and 0=(A–x)2 and IN = [] and OUT=[] } ⊃
{ x≥0 and 0=2(A–x) and 0=0 and 0=(A–x)2 and IN = [] and OUT=[] }

m := 0;
{ x≥0 and m=2(A–x) and m=0 and 0=(A–x)2 and OUT=[] } ⊃
{ x≥0 and m=2(A–x) and m=0 and 0≥0 and 0=(A–x)2 and OUT=[] }

n := 0;
{ x≥0 and m=2(A–x) and m=n and n≥0 and 0=(A–x)2 and OUT=[] }

s := 0;
{ x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] }.

Completion (outer loop): Next we show that the outer loop invariant and the
exit condition, followed by the write command, produce the desired final
assertion.

{ C(x,m,n,s) and x≤0 }
⊃ { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] and x≤0 }
⊃ { x=0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] }
⊃ { s=A2 and OUT=[] }

and
{ s=A

2 and OUT=[] } write s { s=A
2 and OUT=[A2] } ⊃ { OUT=[A2] }.

11.2 AXIOMATIC SEMANTICS FOR WREN

412 CHAPTER 11 AXIOMATIC SEMANTICS

Preservation (outer loop): Showing preservation of the outer loop invariant
involves executing the inner loop; we thus introduce the inner loop invariant
D, again obtained from the oracle:

D(x,m,n,s) =
 (x≥0 and n=2(A–x) and m≥0 and n≥0 and m+s=(A–x)2 and OUT=[]).

Initialization (inner loop): We show that the inner loop invariant is initially
true by starting with the outer loop invariant, combined with the loop entry
condition, and pushing the result through the assignment commands before
the inner loop.

{ C(x,m,n,s) and x>0 }
≡ { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 and OUT=[] and x>0 }
⊃ { x–1≥0 and m+2=2(A–x+1) and m+1≥0 and m+2≥0

and m+1+s=(A–x+1)2 and OUT=[] }
≡ { D(x–1,m+1,m+2,s) }
since (s=(A–x)2 and m+2=2(A–x+1)) ⊃ m+1+s=(A–x+1)2.

Therefore, using the assignment rule, we have

{ C(x,m,n,s) and x>0 } ⊃ { D(x–1,m+1,m+2,s) }
x := x–1; n := m+2; m := m+1

{ D(x,m,n,s) }.

Preservation (inner loop): Next we need to show that the inner loop invariant
is preserved, that is,

{ D(x,m,n,s) and m>0 } m := m–1; s := s+1 { D(x,m,n,s) }.

It suffices to show

(D(x,m,n,s) and m>0)
⊃ (x≥0 and n=2(A–x) and m≥0 and n≥0

and m+s=(A–x)2 and OUT=[] and m>0)
⊃ (x≥0 and n=2(A–x) and m–1≥0 and n≥0

and m–1+s+1=(A–x)2 and OUT=[])
≡ D(x,m–1,n,s+1).

The preservation step is complete because after the assignments, m replaces
m–1 and s replaces s+1 to produce the loop invariant D(x,m,n,s).

Completion (inner loop): To complete our proof, we need to show that the
inner loop invariant, combined with the inner loop exit condition and pushed
through the assignment m := n, results in the outer loop invariant:

{ D(x,m,n,s) and m≤0 } m := n { C(x,m,n,s) }.

It suffices to show (D(x,m,n,s) and m≤0) ⊃ C(x,n,n,s):

413

(D(x,m,n,s) and m≤0)
⊃ (x≥0 and n=2(A–x) and m≥0 and n≥0

and m+s=(A–x)2 and OUT=[] and m≤0)
⊃ (x≥0 and n=2(A–x) and n=n≥0 and s=(A–x)2 and OUT=[])
≡ C(x,n,n,s).

Thus the outer loop invariant is preserved. ❚

The previous verification suggests a derived rule for assignment commands:

 P ⊃ Q[V→E]

{ P } V := E { Q }

We used an application of this derived rule when we proved

(C(x,m,n,s) and x>0) ⊃ D(x–1,m+1,m+2,s)

from which we deduced

{ C(x,m,n,s) and x>0 }
x := x–1; n := m+2; m := m+1

{ D(x,m,n,s) }.

Proving a program correct is a fairly mechanical process once the loop invari-
ants are known. We have already suggested that one way to discover a loop
invariant is to make a table of values for a simple case and to trace values for
the relevant variables. To see how tracing can be used, let A = 3 in the previ-
ous example and hand execute the loops. The table of values is shown in
Figure 11.4.

The positions where the invariant C(x,m,n,s) for the outer loop should hold
are marked by arrows. Note how the variable s takes the values of the perfect
squares—namely, 0, 1, 4, and 9—at these locations. The difficulty is to de-
termine what s is the square of as its value increases.

Observe that x decreases as the program executes. Since A is constant, this
means the value A–x increases: 0, 1, 2, and 3. This gives us the relationship
s = (A–x)2. We also note that m is always even and increases: 0, 2, 4, 6. This
produces the relation m = 2(A–x) in the outer invariant.

For the inner loop invariant, s is not always a perfect square, but m+s is.
Also, in the inner loop, n preserves the final value for m as the loop executes.
So n also obeys the relationship n = 2(A–x).

Finally, the loop entry conditions are combined with the exit condition. For
the outer loop, x>0 is combined with x=0 to produce the condition x≥0 for the
outer loop invariant. In a similar way, m>0 is combined with m=0 to give m≥0
in the inner loop invariant.

11.2 AXIOMATIC SEMANTICS FOR WREN

414 CHAPTER 11 AXIOMATIC SEMANTICS

3 0 0 0 0

2 1 2 0 1

0 2 1

2 2 2 1

1 3 4 1 2

2 4 2

1 4 4 4

1 4 3

0 4 4

0 5 6 4 3

4 6 5

3 6 6

2 6 7

➜

1 6 8
0 6 9

0 6 6 9

➜

➜

➜

x m n s A-x

Figure 11.4: Tracing Variable Values

Since finding the loop invariant is the most difficult part of proving a pro-
gram correct, we present one more example. Consider the following program:

{ IN = [A] and A≥2 }
read n; b := true; d := 2;
while d<n and b do { loop invariant }

if n = d*(n/d) then b := false end if;
d := d+1

end while
{ b ≡ ∀ k[2≤k<A ⊃ not ∃ j[k•j = A]] }

The Boolean variable b is a flag, remaining true if no divisor of n, other than 1,
is found—in other words, if n is prime. If a divisor is found, b is set to false
and remains false. Here the invariant needs to record the partial results
computed so far as the loop is executed.

At each stage in the loop, the potential divisors have been checked success-
fully up to but not including the current value of d. We use the final assertion

415

as a guide for constructing the invariant that expresses the portion of the
computation completed so far.

Invariant = ([b ≡ ∀ k[2≤k<d ⊃ not ∃ j[k•j = A]]] and n=A≥2 and 2≤d≤n).

The remainder of the proof is left as an exercise.

Exercises

1. Give a deduction that verifies the specification of the following program
fragment:

{ x=A and y=B } z:=x; x:=y; y:=z { x=B and y=A }.

2. Define a proof rule for the repeat command.
{ P } repeat C until B { Q and B }

Use this proof rule to verify the partial correctness of the program seg-
ment shown below:

{ m = A > 0 and n = B ≥ 0 }
p := 1;
repeat

p := p*n; m := m–1
until m = 0

{ p = BA }

3. Prove the partial correctness of the following program for integer multi-
plication by repeated addition.

{ B ≥ 0 }
x := A; y := B; product := 0;
while y > 0 do

product := product+x; y := y–1
end while

{ product = A•B }

4. Prove the partial correctness of this more efficient integer multiplication
program.

{ m = A and n = B ≥ 0 }
x := m; y := n; product := 0;
while y > 0 do

if 2*(y/2) <> y then product := product+x end if;
x := 2*x; y := y/2

end while;
{ product = A•B }

Hint: Consider the two cases where y is even (y = 2k) and y is odd (y =
2k+1). Remember that / denotes integer division.

11.2 AXIOMATIC SEMANTICS FOR WREN

416 CHAPTER 11 AXIOMATIC SEMANTICS

5. Finish the proof of the prime number detection program.

6. The least common multiple of two positive integers m and n, LCM(m,n),
is the smallest integer k such that k=i*m and k=j*n for some integers i
and j. Write a Wren program segment that for integer variables m and n
will set another variable, say k, to the value LCM(m,n). Give a formal
proof of the partial correctness of the program fragment.

7. Provide postconditions for these code fragments and show their partial
correctness.

a) { m = A ≥ 0 }
r := 0;
while (r+1)*(r+1)<=m do r:=r+1 end while

{ Postcondition }

b) { m = A ≥ 0 }
x:=0; odd:=1; sum:=1;
while sum<=m do

x:=x+1; odd:=odd+2; sum:=sum+odd
end while

{ Postcondition }

c) { A ≥ 0 and B ≥ 0 }
sum:=0; m:=A;
while m≥0 do

count := 0;
while count≤B do

sum := sum+1; count := count+1
end while;

m := m–1
end while

{ Postcondition }

8. Write a fragment of Wren code C satisfying the following specification:

{ M≥0 and K≥0 }
C

{ result=bK and M=b0+b1•2+ … +bj•2
j+ … where bj=0 or 1 }.

Prove that the code is partially correct with respect to the specification.

9. Carefully define the substitution operation P[V→E] for the predicate
calculus. Be careful to avoid the problem of free variable capture. See
substitution for the lambda calculus in Chapter 5.

417

10. Supply proofs of partial correctness for the following examples:

a) { N ≥ 0 }
sum:=0; exp:=0; term:=1;
while exp<N do

sum := sum+term; exp := exp+1; term := term*2
end while

{ sum = 2N–1 }

b) { N ≥ 0 and D > 0 }
q:=0; r:=N;
while r>=D do

r := r–D; q := q+1
end while

{ N = q•D+r and 0≤r<D }

c) { true }
k:=1; c:=0; sum:=0;
while sum<=1000 do

sum := sum+k*k; c := c+1; k := k+1
end while

{ “c is the smallest number of consecutive squares
starting at 1 whose sum is greater than 1000” }

d) { N >0 and N is odd }
sum:=1; term:=1;
while term<>N do

term := term+2; sum := sum+2*term–1;
end while

{ sum = N•(N+1)/2 }

e) { true }
sum:=0; term:=1;
while term<10000 do

sum := sum+term; term := 10*term;
end while

{ sum = 1111 }

f) { N ≥ 2 }
k:=N; fact:=1; p:=1;
while k<>1 do

k := k–1; temp := fact;
fact := k*(p+fact); p := p+temp

end while
{ fact = N! }

11.2 AXIOMATIC SEMANTICS FOR WREN

418 CHAPTER 11 AXIOMATIC SEMANTICS

g) { A ≥ 0 and B ≥ 0 }
m := A; n := B; product := 0;
while m<>0 do

while 2*(m/2)=m do
n := 2*n; m := m/2

end while;
product := product+n; m := m–1

end while
{ product = A•B }

11. Suppose Wren has been extended to include an exponentiation opera-
tion ↑. Prove the partial correctness of the following code segment.

{ m = A ≥ 1 }
s := 1; k := 0;
while s < m do

s := s + 2↑k; k := k+1
end while

{ log2 A ≤ k < 1+log2 A }

11.3 AXIOMATIC SEMANTICS FOR PELICAN

Pelican, first introduced in Chapter 9, is an extension of Wren that includes
the following features:

• Declarations of constants, procedures with no parameters, and procedures
with a single parameter.

• Anonymous blocks with a declaration section and a command section.

• Procedure calls as commands.
Figure 11.5 restates the abstract syntax of Pelican.

Now we need to include the declarations in the axiomatic semantics. We
assume that all programs have been checked independently to satisfy all
syntactic rules and that only syntactically valid programs, including those
that adhere to the context sensitive-conditions, are analyzed semantically.
Some restrictions on the choice of identifier names will be introduced so that
our presentation of the axiomatic semantics of Pelican does not become bogged
down with syntactic details.

Since we do not have an underlying model for environments that can differ-
entiate between different uses of the same identifier in different scopes, we
require that all identifiers be named uniquely throughout the program. No
generality is lost by such a restriction since any program with duplicate iden-
tifier names can be transformed into a program with unique names by sys-

419

tematic substitutions of identifier names within the scope of the identifier.
For example, consider the following Pelican program with duplicate identifier
names:

 program squaring is
var x, y: integer;
procedure square(x : integer) is

var y: integer;
begin

y := x * x; write y
end

begin
read x; read y; square(x); square(y)

end

Abstract Syntactic Domains
P : Program C : Command N : Numeral

B : Block E : Expression I : Identifier

D : Declaration O : Operator L : Identifier+

T : Type

Abstract Production Rules
Program ::= program Identifier is Block

Block ::= Declaration begin Command end

Declaration ::= ε| Declaration Declaration

| const Identifier = Expression

| var Identifier : Type | var Identifier Identifier+ : Type

| procedure Identifier is Block

| procedure Identifier (Identifier : Type) is Block

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| read Identifier | write Expression | skip | declare Block

| if Expression then Command else Command

| while Expression do Command | Identifier

| if Expression then Command | Identifier(Expression)

Expression ::= Numeral | Identifier | true | false | – Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 11.5: Abstract Syntax for Pelican

11.3 AXIOMATIC SEMANTICS FOR PELICAN

420 CHAPTER 11 AXIOMATIC SEMANTICS

The renaming works as follows: The first occurrence of the identifier name
remains unchanged while each other occurrence in a different scope is sys-
tematically substituted with the same name followed by a numeric suffix (1,
2, 3, …, as needed) that makes the name unique. To make sure this substi-
tution does not result in duplication of other declarations, we mark it with a
unique character, such as the sharp sign # shown below, that is not allowed
in the original syntax. Using this scheme, the program given above becomes:

 program squaring is
var x, y: integer;
procedure square(x#1 : integer) is

var y#1: integer;
begin

 y#1 := x#1 * x#1; write y#1
end

begin
read x; read y; square(x); square(y)

end

We inherit all of the axioms from Wren: Assign, Read, Write, Skip, Sequence,
If-Then, If-Else, While, Weaken Postcondition, Strengthen Precondition, And,
and Or. We also need to introduce an alternative form for rules of inference:

H1, H2, ..., Hn |− Hn+1

H
This rule can be interpreted as follows:

If Hn+1 can be derived from H1, H2, ..., Hn, we may conclude H.

Blocks

Although we do not need to retain declaration information for context check-
ing, which we assume has already been performed, we do need a mechanism
for retaining pertinent declaration information, such as constant values, the
bodies of procedure declarations, and their formal parameters, if applicable.
This task is accomplished by two assertions, Procs and Const, which will
depend on the declarations in the program being analyzed. We define Procs
to be a set of assertions constructed as follows:

• If p is a declared parameterless procedure with body B, add body(p) = B to
Procs.

• If p is a declared procedure with formal parameter F and body B, add
parameter(p)=F and body(p)=B to Procs.

Constant declarations are handled by adding an assertion Const such that,
for each declared constant c with value N, Const contains an assertion c = N.

421

For a constant declaration with an arbitrary expression, c = E, the assertion
takes the form c = K where K is the current value of E. In the event that there
are no declared constants, Const ≡ true. With these mechanisms, we can
give an axiomatic definition for a block:

Procs |− { P and Const } C { Q } (Block)

{ P } D begin C end { Q }

Example: Before continuing with the development of other new axiomatic
definitions, we demonstrate how the block rule works for the following anony-
mous block, declare B, with a constant declaration:

declare
constant x = 10;
var y : integer;

begin
read y; y := x + y; write y

end

Suppose we want to prove that

{ IN = [7]L and OUT = [] } B { OUT = [17] }.

Since no procedures are declared, Procs contains no assertions, but Const
contains the assertion x = 10. We must show

{ IN = [7]L and OUT = [] and x = 10 }
read y; y := x + y; write y

{ OUT = [17] }.

The proof proceeds as follows:

{ IN = [7]L and OUT = [] and x = 10 } ⊃
{ IN = [7]L and OUT = [] and x = 10 and 7 = 7 }

read y
{ IN = L and OUT = [] and x = 10 and y = 7 } ⊃
{ IN = L and OUT = [] and x = 10 and x+y = 10+7 }

y := x + y
{ IN = L and OUT = [] and x = 10 and y = 17 }

write y
{ IN = L and OUT = [17] and x = 10 and y = 17 } ⊃
{ OUT = [17] }. ❚

11.3 AXIOMATIC SEMANTICS FOR PELICAN

422 CHAPTER 11 AXIOMATIC SEMANTICS

Nonrecursive Procedures

Pelican requires four separate axiomatic definitions for procedure calls:
nonrecursive calls without and with a parameter and recursive calls without
and with a parameter. Calling a nonrecursive procedure without a parameter
involves proving the logical relation of assertions around the execution of the
body of the procedure. The subscript on the name of the rule indicates no
parameter for the procedure.

{P} B {Q}, body(proc) = B (Call0)

{P} proc {Q}

Example: Consider this anonymous block declare B that squares the exist-
ing value of x:

declare
procedure square is

begin
x := x * x

end
begin

square
end

For this block, Procs is the assertion

body(square) = (x := x * x)

and Const is the true assertion. So, using the Block rule, we need to show

body(square) = (x:= x*x) |− { x = N and true} square {x = N*N }.

The first assertion in the hypothesis of Call0 requires that we prove
{ x = N and true } B { x = N•N }.

Since { P and true } is equivalent to P, using the rule for a procedure invoca-
tion without a parameter, we need to prove

{ x = N } x := x*x { x = N*N }.

Substituting x*x for x in the postcondition, we have { x*x = N*N }. Because we
know {x = N} ⊃ { x*x = N*N }, we strengthen the precondition to obtain the
initial assertion. ❚

If a procedure P has a formal parameter F and the procedure invocation has
an expression E as the actual parameter, we add the binding of F to E in both
the precondition and postcondition to prove the procedure call is correct.

423

{P} B {Q}, body(proc) = B, parameter(proc) = F (Call1)

{ P[F→E] } proc(E) { Q[F→E] }

If we can show the relation {P} B {Q} is true about F where B = body(proc), we
may conclude that the relation { P[F→E] } proc(E) { Q[F→E] } is true about E.

Example: Consider an anonymous block declare B that increments the ex-
isting value of a nonlocal variable x by an amount specified as a parameter:

declare
procedure increment(step : integer) is

begin
x := x + step

end
begin

increment(y)
end

We want to prove { x = M and y = N} B { x = M + N and y = N}.

For this block, Procs contains the conjunction of the assertions
body(increment) = (x := x+step)
parameter(increment) = step,

and Const is the true assertion. We thus need to show

body(increment) = (x:=x+step), parameter(increment) = step

 |− { x=M and y=N and true } increment(y) { x=M+N and y=N }.

We can eliminate the “and true”; then using our rule for a procedure invoca-
tion with parameter, we have to show

{ x = M and step = N }
 x := x + step

{ x = M + N and step = N }

Substituting “x+step” for x in the postcondition, we have

{ x + step = M + N and step = N } ⊃
{ x + N = M + N and step = N } ⊃
{ x = M and step = N }

the desired precondition. Therefore, by the rule Call1, we may conclude
{ x=M and y=N and true } increment(y) { x=M+N and y=N }. ❚

Although not illustrated by the previous example, we must introduce some
restrictions on parameter usage so as to avoid aliasing and thereby proving
false assertions. Neither of these restrictions results in any loss of generality.
Since we want to have parameters passed by value, any changes in the for-

11.3 AXIOMATIC SEMANTICS FOR PELICAN

424 CHAPTER 11 AXIOMATIC SEMANTICS

mal parameter inside the procedure should not be visible outside the proce-
dure. This situation becomes a problem if the actual parameter is a variable.

We avoid the problem by not allowing the formal parameter to change value
inside the procedure command sequence. Any program violating this restric-
tion can be transformed into an equivalent program that obeys the restric-
tion by declaring a new local variable, assigning this variable the value of the
parameter, and then using the local variable in the place of the parameter
throughout the procedure. For example, the code on the left allows the for-
mal parameter f to change value but the corresponding code on the right
permits only a local variable to change value.

procedure p (f : integer) is procedure p (f : integer) is
begin var local#f : integer;

f := f * f; begin
write f local#f := f;

end local#f := local#f * local#f;
write local#f

end

The second restriction requires that if the actual parameter is a variable that
is manipulated globally inside the procedure body, no change is made to the
value of the formal parameter for which it is substituted. The procedure given
below changes two nonlocal variables. We are concerned only with changes
made to the variable x, which happens to be the actual parameter. The con-
straint adds a new variable at the level of invocation, assigning the value of
the “manipulated” variable to the new variable, and passing the new variable
as a parameter. This transformation is illustrated below by altering the vari-
able “x” by appending “new#”in the calling environment and passing “new#x”
as the actual parameter.

procedure q (f : integer) is procedure q (f : integer) is
begin begin

read x; read x;
y := y + f y := y + f

end end
 : :
p(x); new#x := x;

p(new#x);

Exercises at the end of this section provide Pelican programs for which erro-
neous semantics can be proved using the Call1 rule when these transforma-
tions are ignored.

425

Recursive Procedures

Next we discuss recursive procedures without a parameter. Consider the
following procedure that reads and discards all zeros until the first nonzero
value is encountered.

procedure nonzero is
begin

read x;
if x = 0 then nonzero end if

end

We cannot use the rule for a nonrecursive procedure without a parameter
because we will have an endless sequence of applications of the same rule.
To see how to avoid this problem, we use a technique similar to mathemati-
cal induction. Recall that with induction we have to show a base case and to
prove that the proposition is true for n assuming that it is true for n–1. With
recursion, we use a similar approach: We prove that the current call is cor-
rect if we assume that the result from any previous call is correct. The basis
case corresponds to the situation in which the procedure is called, but it
does not call itself again.

{P} proc {Q} |− {P} C {Q}, body(proc) = C (Recursion0)

{P} proc {Q}

Example: For the procedure nonzero given above, suppose that the input file
contains a sequence Z of zero or more 0’s followed by a nonzero value, call it
N, followed by any sequence of values L. We want to prove

{ IN = Z[N]L and Z contains only zeros and N ≠ 0} = P
nonzero

{ IN = L and x = N ≠ 0 } = Q.

To prove the correctness of the procedure call relative to the given specifica-
tion, we need to show the following correctness specification for the body of
the procedure

{ IN = Z[N]L and Z contains only zeros and N ≠ 0 } = P
read x;
if x = 0 then nonzero end if

{ IN = L and x = N ≠ 0 } = Q

where we are allowed to use the recursive assumption when nonzero is called
from within itself. We make an assertion between the read command and the
if command that takes into account two cases: Either x is zero or x is non-
zero.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

426 CHAPTER 11 AXIOMATIC SEMANTICS

In the case that the sequence of zeros is not empty, we can write

Z = [0]Z', where Z' contains zero or more 0’s,

and in the other case, Z is empty. Therefore the precondition P is equivalent to

((IN = [0]Z'[N]L and Z' contains only zeros and N ≠ 0) or (IN = [N]L and N ≠ 0))

Case 1: Z is not empty.

{ IN = [0]Z'[N]L and Z' contains only zeros and N ≠ 0 }
read x

{ IN = Z'[N]L and Z' contains only zeros and N ≠ 0 and x = 0 }.

Case 2: Z is empty.

{ IN = [N]L and N ≠ 0 } read x { IN = L and x =N ≠ 0 }.

Applying the Or rule allows us to conclude the following assertion, called R,
after the read command:

R = ((IN = Z'[N]L and Z' contains only zeros and N ≠ 0 and x = 0)
or (IN = L and x = N≠ 0)).

Using the If-Then rule, we must show:

{ R and x = 0} nonzero { IN = L and x = N ≠ 0 } and
(R and x ≠ 0) ⊃ (IN = L and x = N ≠ 0).

The second assertion holds directly since (R and x ≠ 0) implies the final as-
sertion. The first assertion involving the recursive call simplifies to

{ IN = Z'[N]L and N≠0 and x = 0 } nonzero {IN = L and x = N ≠ 0 }.

This is a stronger precondition than we require, so it suffices to prove:

{ IN = Z'[N]L and N ≠ 0} nonzero { IN = L and x = N ≠ 0 }.

But this is exactly the recursive assertion, {P} nonzero {Q}, which we may
assume to be true (the induction hypothesis), so the proof is complete. ❚

Finally, we consider an inference rule for a recursively defined procedure
with a parameter. The axiomatic definition follows directly from recursion
without a parameter, modified by the changes inherent in calling a proce-
dure with a parameter.

∀ f ({P[F→f]} proc(f) {Q[F→f] }) |−{P} C {Q}, body(proc)=C, parameter(proc)=F

{ P[F→E] } proc(E) { Q[F→E] } (Recursion1)

427

The induction hypothesis allows us to assume the correctness of a recursive
call of the procedure with any expression that satisfies the precondition as
the actual parameter.

Example: To see how this rule works, we prove the correctness of a recur-
sively defined factorial program. Since we do not have procedures that re-
turn values, we depend on a global variable “fact” to hold the current value
as we return from the recursive calls.

procedure factorial(n : integer) is
begin

if n = 0 then fact := 1
else factorial(n–1); fact := n*fact;

end if;
end;

We want to prove

{ num = K ≥ 0 } = P[F→E]
factorial(num)

{ fact = num! and num = K } = Q[F→E], which implies fact = K!.

In the proof below, “num” refers to the original actual parameter (called E in
the rule) and “n” refers to the formal parameter (called F) in the recursive
definition. Substituting the body of the procedure, we must show

{ n = K ≥ 0 } = P
if n = 0 then fact := 1

else factorial(n–1); fact := n*fact;
end if;

{ fact = n! and n = K } = Q

assuming as an induction hypothesis
∀ f({ f = K ≥ 0 } = P[F→f]

factorial(f)
 { fact = f! and f = K } = Q[F→f]).

Case 1: n = 0.
Use the If-Else rule for the case when the condition is true:

{ n = K ≥ 0 and n = 0 } ⊃
{ n = K = 0 and 1 = 0! = K! }

fact := 1
{ n = K = 0 and fact = 0! = n! } ⊃ { fact = n! and n = K }.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

428 CHAPTER 11 AXIOMATIC SEMANTICS

Case 2: n > 0.
The recursive assumption with f=n-1 gives

{ n = K ≥ 0 and n > 0 } ⊃
{ n-1 = K–1 ≥ 0 }

factorial(n-1)
{ fact = (n-1)! and n-1 = K–1 } ⊃
{ fact = (n-1)! }

The Assign rule gives

{ fact = (n-1)! } ⊃
{ n•fact = n•(n–1)! }

fact := n * fact
{ fact = n•(n–1)! = n! }, which is the desired postcondition. ❚

The complete axiomatic definition for Pelican is presented in Figure 11.6.

Assign { P[V→E] } V := E { P }

Read { IN = [K]L and P[V→K] } read V { IN = L and P }

Write { OUT=[L] and E=K and P } write E { OUT= L[K] and E=K and P }

Skip { P } skip { P }

Sequence {P} C1 {Q}, {Q} C2 {R}
{P} C1; C2 {R}

If-Then {P and B} C {Q}, (P and not B) ⊃ Q
{P} if B then C end if {Q}

If-Else {P and B} C1 {Q}, {P and not B} C2 {Q}
{P} if B then C1 else C2 end if {Q}

While {P and B} C {P}
{P} while B do C end while {P and not B}

Block Procs |− { P and Const } C { Q }

{ P } D begin C end { Q }

where for all declarations “procedure I is B” in D,
“body(I) = B” is contained in Procs;

for all declarations “procedure I(F) is B” in D,
“body(I) = B and parameter(I) = F” is contained in Procs; and

Const consists of a conjunction of true and ci = Ei

for each constant declaration of the form “const ci = Ei” in D.

Figure 11.6: Axiomatic Semantics for Pelican (Part 1)

429

Call without Parameter (Call0)

{P} B {Q}, body(proc) = B

{P} proc {Q}

Call with Parameter (Call1)

{P} B {Q}, body(proc) = B, parameter(proc) = F

{ P[F→E] } proc(E) { Q[F→E] }

Recursion without Parameter (Recursion0)

{P} proc {Q} |− {P} B {Q}, body(proc) = B

{P} proc {Q}

Recursion with Parameter (Recursion1)

∀ f({P[F→f]} proc(f){Q[F→f]}) |−{P} B{Q}, body(proc)=B, parameter(proc)=F

{ P[F→E] } proc(E) { Q[F→E] }

Weaken {P} C {Q}, Q ⊃ R
Postcondition {P} C {R}

Strengthen P ⊃ Q, {Q} C {R}
Precondition {P} C {R}

And {P} C {Q}, {P'} C {Q'}
{P and P'} C {Q and Q'}

Or {P} C {Q}, {P'} C {Q'}
 {P or P'} C {Q or Q'}

Figure 11.6: Axiomatic Semantics for Pelican (Part 2)

Exercises

1. Prove that the following two program fragments are semantically equiva-
lent, assuming the declaration of the procedure increment given in this
section.

read x; read x;
write x increment(-4);

increment(1);
increment(3);
write x

2. Give an example where an invalid assertion can be proved if we allow
duplicate identifiers to occur at different levels of scope.

11.3 AXIOMATIC SEMANTICS FOR PELICAN

430 CHAPTER 11 AXIOMATIC SEMANTICS

3. Prove that the following procedure copies all nonzero values from the
input file to the output file up to, but not including, the first zero value.

procedure copy is
var n : integer;
begin

read n; if n ≠ 0 then write n; copy end if
end

4. Prove that the procedure “power” raises a to the power specified by the
parameter value and leaves the result in the global variable product.

procedure power(b: integer) is
begin

if b = 0 then product := 1
else power(b – 1); product := product * a

end if
end

5. Prove the partial correctness of this program relative to its specification.

{ B ≥ 0 }
program multiply is

var m,n : integer;
procedure incrementm(x : integer) is

begin m := m+x end;
begin

m := 0; n := B;
while n>0 do

incrementm(A); n := n – 1
end while

end
{ m = A•B }

6. Consider the following procedure:

procedure outputsequence(n: integer) is
begin

if n > 0 then write n; outputsequence(n–1) end if
end

Prove that
{val = A ≥ 0 and OUT = []}

outputsequence(val)
{OUT = [A, A-1, A-2, ... , 2, 1]}

7. Modify outputsequence in problem 6 so that it outputs values from 1 up
to A. Prove the procedure correct.

431

8. Prove the partial correctness of the following Pelican program:

{ K≥0 and IN = [K] and OUT = [] }
program recurrence is

var num,ans : integer;
procedure fun(m : integer) is

var temp : integer;
begin

if m = 0
then ans := 1
else temp := 2*m+1; fun(m–1); ans := ans + temp

end if
end;

begin
read num; fun(num); write ans

end

{ OUT = [(K+1)2] }

9. Illustrate the need for the transformation of procedures with a param-
eter that is changed in the body of the procedure by proving the spuri-
ous “correctness” of the following code using the Call1 rule:

{ OUT = [] }
program problem1 is

var a : integer;
procedure p (b : integer) is

begin b := 5 end;
begin

a := 21; p(a); write a
end

{ OUT = [5] }

10. Justify the need for the transformation of a one parameter procedure
that makes a nonlocal change in the actual parameter by proving the
spurious “correctness” of the following code using the Call1 rule:

{ OUT = [] }
program problem2 is

var m : integer;
procedure q (f : integer) is

begin m := 8 end;
begin

m := 55; q(m); write m
end

{ OUT = [55] }

11.3 AXIOMATIC SEMANTICS FOR PELICAN

432 CHAPTER 11 AXIOMATIC SEMANTICS

11. Show what modifications will have to be made to the axiomatic defini-
tions of Pelican to allow for procedures with several value parameters.

11.4 PROVING TERMINATION

In the proofs studied so far, we have considered only partial correctness,
which means that the program must satisfy the specified assertions only if it
ever halts, reaching the final assertion. The question of termination is fre-
quently handled as a separate problem.

Termination is not an issue with many commands, such as assignment,
selection, input/output, and nonrecursive procedure invocation. That these
commands must terminate is contained in their semantics. Two language
constructs require proofs of termination:

• Indefinite iteration (while)

• Invocation of a recursively defined procedure

The first case can be handled as a consequence of (well-founded) induction
on an expression that is computed each pass through the loop, and the sec-
ond can be managed by induction on some property possessed by each re-
cursive call of the procedure.

Definition: A partial order > or ≥ on a set W is well-founded if there exists no
infinite decreasing sequence of distinct elements from W. ❚

This means that given a sequence of elements {xi | i ≥ 1} from W such that
x1 ≥ x2 ≥ x3 ≥ x4 ≥ …, there must exist an integer k such that ∀ i,j≥k, xi = xj.

If the partial order is strict, meaning that it is irreflexive, any decreasing
sequence must have only distinct elements and so must be finite.

Examples of Well-founded Orderings

1. The natural numbers N ordered by >.

2. The Cartesian product NxN ordered by a lexicographic ordering defined
as: <m1,m2> > <n1,n2> if ([m1 > n1] or [m1 = n1 and m2 > n2]).

3. The positive integers, P, ordered by the relation “properly divides”:
m > n if (∃ k[m = n•k] and m≠n).

433

Steps in Showing Termination

With indefinite iteration, termination is established by showing two steps:

1. Find a set W with a strict well-founded ordering >.

2. Find a termination expression E with the following properties:

a) Whenever control passes through the beginning of the iterative loop,
the value of E is in W.

b) E takes a smaller value with respect to > each time the top of the
iterative loop is passed.

In the context of a while command—for example, “while B do C end while”
with invariant P—the two conditions take the following form:

a) P ⊃ E∈ W

b) { P and B and E=A } C { A > E }.

Example: Consider the following program that calculates the factorial of a
natural number:

read n;
k := 0; f := 1;
while k < n do

k := k + 1; f := k * f
end while;
write f

Take W = N, the set of natural numbers, as the well-founded set and E =
n – k as the termination expression. Therefore, m∈ W if and only if m ≥ 0.
The loop invariant P is

 (n ≥ 0 and k ≤ n and f = k! and OUT = []).

The conditions on the termination expression must hold at the top of the
while loop where the invariant holds.

The two conditions follow immediately:

a) (n ≥ 0 and k ≤ n and f = k! and OUT = []) ⊃ (n – k ≥ 0)

b) { n ≥ 0 and k ≤ n and f = k! and OUT = [] and k < n and n – k = A } ⊃
{ n – (k + 1) = A – 1 }

k := k + 1; f := k * f
{ n – k = A – 1 < A } ❚

11.4 PROVING TERMINATION

434 CHAPTER 11 AXIOMATIC SEMANTICS

Example: As another example, consider the program with nested loops from
section 11.2.

read x;
m := 0; n := 0; s := 0;
while x > 0 do

x := x–1; n := m+2; m := m+1;
while m > 0 do

m := m–1; s := s+1
end while;
m := n

end while;
write s

With nested loops, each loop needs its own termination expression. In this
example, they share the natural numbers as the well-founded set. The termi-
nation expressions can be defined as follows:

• For the outer loop: Eo = x

• For the inner loop: Ei = m

The code below shows the loop invariants used to verify that the termination
expressions are adequate.

read x;
m := 0; n := 0; s := 0;
while x>0 do { x≥0 and m=2(A–x) and m=n≥0 and s=(A–x)2 }

x := x–1; n := m+2; m := m+1;
while m>0 do { x≥0 and n=2(A–x) and m≥0

m := m–1; s := s+1 and n≥0 and m+s=(A–x)2 }
end while;
m := n

end while;
write s

We leave the verification that the expressions Eo and Ei defined above satisfy
the two conditions needed to prove termination as an exercise at the end of
this section. ❚

Note that the termination expression method described above depends on
identifying some loop control “counter” that cannot change forever.

435

Termination of Recursive Procedures

A procedure defined recursively contains the seeds of an induction proof for
termination, if only a suitable property about the problem can be identified
on which to base the induction.

Example: Consider a Pelican procedure to read and write input values until
the value zero is encountered.

procedure copy is
var n: integer;
begin

read n;
if n ≠ 0 then write n; copy end if

end

This procedure terminates (normally) only if the input stream contains the
value zero. For a particular invocation of the procedure “copy”, the depth of
recursion depends on the number of nonzero integers preceding the first
zero. We describe the input stream as IN = L1[0]L2 where L1 contains no zero
values.

Lemma: Given input of the form IN = L1[0]L2 where L1 contains no zero
values, the command “copy” halts.

Proof: By induction on the length of L1, leng(L1).

Basis: leng(L1)=0.
Then the input list has the form IN = [0]L2, and after “read n”, n=0.
Calling copy causes execution of only the code

read n;
which terminates.

Induction Step: leng(L1)=k>0.
As an induction hypothesis, assume that copy halts when
leng(L1)=k–1≥0. Then copy causes the execution of the code

read n;
write n;
copy

which terminates because for this inner copy, leng(L1)=k–1. ❚

The complete proof of correctness of the procedure copy is left as an exercise.

11.4 PROVING TERMINATION

436 CHAPTER 11 AXIOMATIC SEMANTICS

Exercises

1. Formally prove that the factorial program in section 11.2 terminates.
What happens to the termination proof if we remove the precondition
N≥0?

2. Prove that the following program terminates. Also show partial correct-
ness.

{ A ≠ 0 and B ≥ 0 }
m := A; n := B; k := 1;
while n > 0 do

if 2*(n/2) = n
then m := m*m; n := n/2
else n := n–1; k := k*m

end if
end while

{ k = AB }

3. For the nested loop problem in this section, verify that the expressions
Eo and Ei satisfy the two conditions needed to prove termination.

4. Prove that the following program terminates. Also show partial correct-
ness.

{ A≥0 and B≥0 and (A≠0 or B≠0) }
m := A; n := B;
while m > 0 do

if m ≤ n then n := n–m
else x := m; m := n; n := x

end if
end while

{ n is the greatest common divisor of A and B }

Verify each of the following termination expressions:

• E1 = <m,n> with the lexicographic ordering on NxN.

• E2 = 2m+n with the “greater than” ordering on N.

5. Prove the termination of the prime number program at the end of sec-
tion 11.2.

6. Prove the termination of the program fragments in exercise 10 of sec-
tion 11.2.

437

11.5 INTRODUCTION TO PROGRAM DERIVATION

In the first three sections of this chapter we started with programs or proce-
dures that were already written, added assertions to the programs, and proved
the assertions to be correct. In this section we apply axiomatic semantics in
a different way, starting with assertions that represent program specifica-
tions and then deriving a program to match the assertions.

Suppose that we want to build a table of squares where T[k] contains k2. A
straightforward approach is to compute k*k for each k and store the values
in the table. However, multiplicative operations are inherently inefficient com-
pared with additive operations, so we ask if this table can be generated using
addition only. Actually this problem is not difficult; an early Greek investiga-
tion of “square” numbers provides a solution. As indicated by the table be-
low, each square is the sum of consecutive odd numbers.

Square Summation
1 1
4 1 + 3
9 1 + 3 + 5

16 1 + 3 + 5 + 7
25 1 + 3 + 5 + 7 + 9

The algorithm follows directly.

Table of Cubes

We now propose a slight variation of this problem: Construct a table of cubes
using only additive methods. Given the ease of the solution for the table of
squares, it may seem that we can find the answer quickly with just a little
thought by playing with the numbers, but this problem turns out to be non-
trivial. During a SIGCSE tutorial, David Gries reported that he assigned this
problem to an advanced class in computer science and, even given several
weeks, no one was able to come up with a correct solution. However, a solu-
tion can be produced directly if the techniques of program derivation are
used.

We start with the final assertion that expresses the result of our program:

{ T[k] = k3 for all 0 ≤ k ≤ N }.

We build the table from the zeroth entry through the Nth entry, so for any
particular value m ≤ N+1, we know that all preceding table entries have been
generated. This property becomes part of the loop invariant:

11.5 INTRODUCTION TO PROGRAM DERIVATION

438 CHAPTER 11 AXIOMATIC SEMANTICS

{ T[k] = k3 for all 0 ≤ k < m }.

The value of m will increase until it reaches N+1, at which time the loop
terminates. This condition gives us the other part of the loop invariant:

{ 0 ≤ m ≤ N+1 }.

We now have enough information to begin writing the program, starting with
a skeleton describing the structure of the program.

m := 0;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1 }

T[m] := ???
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

We introduce a new variable x whose value is assigned to T[m] each time the
loop executes, adding to our loop invariant the requirement that x = m3.
Since x can only be changed by addition, we introduce another variable y
and the assignment command x := x + y. The new value of x in the next
iteration has to be (m+1)3, so we have

x + y = (m+1)3 = m3 + 3m2 + 3m + 1.

But we already have in our loop invariant the requirement that x = m3, so
this means that y = 3m2 + 3m + 1 must be added to the loop invariant. Since
m is initially zero, this means the initial values for x and y are 0 and 1,
respectively. Here is the derived program so far.

m := 0;
x := 0;
y := 1;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3 and y = 3m2 + 3m + 1 }
T[m] := x;
x := x + y;
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

The variable y can change only by addition, so we introduce a new variable z
and the assignment y := y + z. The next time through the loop, m is incremented
by one so that value of y must become

3(m + 1)2 + 3(m + 1) + 1 = 3m2 + 9m + 7.

439

But this new value equals y + z, so

y + z = 3m2 + 9m + 7.

If we subtract the invariant y = 3m2 + 3m + 1 from this equation, we end up
with the requirement

z = 6m + 6,

which is added to the invariant. This relationship also means that z must be
initialized to 6. So the code now becomes

m := 0;
x := 0;
y := 1;
z := 6;
while m <> N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3

T[m] := x; and y = 3m2 + 3m + 1
x := x + y; and z = 6m + 6 }
y := y + z;
 : :
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }.

The next time through the loop, the new value of z must equal

6(m + 1) + 6 = 6m + 6 + 6 = (old value of z) + 6.

This equality tells us that z must be incremented by 6 each time through the
loop, and therefore the computation meets the requirement of consisting of
additive operations. So now we have the complete program.

m := 0;
x := 0;
y := 1;
z := 6;
while m < N + 1 do { T[k] = k3 for all 0 ≤ k < m and 0 ≤ m ≤ N+1

and x = m3

T[m] := x; and y = 3m2 + 3m + 1
x := x + y; and z = 6m + 6 }
y := y + z;
z := z + 6;
m := m + 1

end while
 { T[k] = k3 for all 0 ≤ k ≤ N }

11.5 INTRODUCTION TO PROGRAM DERIVATION

440 CHAPTER 11 AXIOMATIC SEMANTICS

In the event that this formal derivation does not offer convincing enough
proof that the above program works as expected, we present a small table of
values following the algorithm.

m x y z
0 0 1 6
1 1 7 12
2 8 19 18
3 27 37 24
4 64 61 30

Binary Search

The example above illustrates the technique of program derivation to pro-
duce a simple program, but it is tempting to ask if program derivation tech-
niques can generate “really useful” programs. We conclude this section with
the derivation of a binary search algorithm, an algorithm commonly pre-
sented in the study of data structures. We assume the following precondition
for the sorted array A:

{ A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N] }.

We want to determine if there exists at least one i such that 0 ≤ i < N and x =
A[i]. However, x may not be present so we cannot require x = A[i] as part of
the postcondition. Specifying the postcondition takes some insight. Notice
that the precondition specifies that x be contained in the interval [A[0], A[N]),
where [m,n) indicates an interval defined by the set { k | m≤k<n }. The basic
idea will be to narrow that interval continually until it contains only a single
element. We specify this by using indices i and j for the interval limits and
requiring that ultimately j = i + 1. So the postcondition is

{ A[i] ≤ x < A[j] and j = i + 1 }.

The test determining whether A[i] = x is made independently of this algo-
rithm, but we will be able to guarantee that if A[i] ≠ x then x is not present
anywhere in [A[0], A[N]).

The basic idea of the algorithm is that the subinterval [A[i],A[j]) becomes
smaller and smaller, yet always contains x, until the postcondition is satis-
fied. We can now start construction of our program based on the following
observations:

• The loop invariant is A[i] ≤ x < A[j].

• The loop will repeat until j = i+1, so the loop entry condition is j ≠ i+1.

441

• The loop invariant is implied by the precondition if we set i to 0 and
j to N.

Here is the initial program framework:

 { A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N} }

i := 0;
j := N;
while j ≠ i + 1 do { A[i] ≤ x < A[j] }

 : : :
end while

 { A[i] ≤ x < A[j] and j = i + 1 }

We make the interval [A[i],A[j]) shrink by either increasing i or decreasing j.
Suppose that we divide the interval “in half” by introducing the variable k =
(i + j)/2, using integer division. Now x either lies in the interval [A[i],A[k]) or
the interval [A[k],A[j]). It should be pointed out that x might lie in both inter-
vals if A contains duplicate copies of x. However, in this case it does not
matter which subinterval is chosen since both satisfy the loop invariant, and
our algorithm requires only that we find one index, even though several may
exist. If x < A[k], then setting j to k maintains the loop invariant. Otherwise
A[k] ≤ x and setting i to k maintains the loop invariant. Here is the completed
algorithm.

 { A[0..N] is a sequence of integers such that
A[i] ≤ A[i+1] for all 0 ≤ i < N and x is an integer and A[0] ≤ x < A[N] }

i := 0;
j := N;
while j ≠ i + 1 do { A[i] ≤ x < A[j] }

k := (i + j) / 2;
if x < A[k] then j := k

else i := k
end if

end while
 { A[i] ≤ x < A[j] and j = i + 1 }

Exercises

1. Derive a program that constructs a table with T[k] = k4, using only addi-
tive methods. This is similar to the table of cubes example except that
four new variables have to be introduced with four assignment com-
mands changing the values of these variables by addition.

11.5 INTRODUCTION TO PROGRAM DERIVATION

442 CHAPTER 11 AXIOMATIC SEMANTICS

2. Suppose that N is a fixed integer greater than or equal to zero (so the
precondition is { N ≥ 0 }). Derive a program to find the integer square root
of N. The integer square root is the largest integer that is less than or
equal to the square root of N. This can be expressed as the postcondition:

 { a ≥ 0 and 0 ≤ a2 and a2 ≤ N and N < (a + 1)2 }

Hint: Use two variables, a and b, initialized to 0 and N+1, respectively. As
in the binary search problem, find the midpoint of a and b and change
one of the values until the desired subinterval is found.

11.6 FURTHER READING

The original idea of verifying the correctness of a program using the tech-
niques of logic first appears in papers by Robert Floyd [Floyd67] and C. A. R.
Hoare [Hoare69]. These papers still serve as excellent introductions to axi-
omatic semantics. An early application of this method to programming lan-
guage specification can be found in the definition of Pascal in [Hoare73].

The books dealing with the analysis of programs and languages in the frame-
work of the predicate logic can be divided into two groups:

• Books that develop axiomatic methods primarily to prove the correctness
of programs as a tool of software engineering [Alagic78], [Backhouse86],
[Francez92], [Gries81], and [Gumb89]. These authors concentrate on de-
scribing techniques of program construction and verification based on the
predicate logic. The discussion of program derivation in section 11.5 falls
into this classification. A book on program derivation by Geoff Dromey
[Dromey89] gives numerous examples of this approach to program con-
struction. The related method of “weakest precondition” is discussed in
[Dijkstra76].

• Books that view axiomatic methods as a means of programming language
definition [Meyer90], [Nielson92], [Pagan81], [Tennent91], and [Winskel93].
Although correctness is discussed in these books, the emphasis is on us-
ing logic to specify the semantics of programming languages in a manner
similar to the presentation of Wren and Pelican in this chapter.

For a review of predicate logic see [Enderton72], [Mendelson79], or [Reeves90].

443

Chapter 12
ALGEBRAIC SEMANTICS

The formal semantic techniques we have studied so far include
denotational semantics, whose mathematical foundations lie in re-
cursive function theory, and axiomatic semantics, whose foundations

depend on predicate logic. In this chapter we study algebraic semantics, an-
other formalism for semantic specification whose foundations are based on
abstract algebras. Algebraic semantics involves the algebraic specification of
data and language constructs. The basic idea of the algebraic approach to
semantics is to name the different sorts of objects and the operations on the
objects and to use algebraic axioms to describe their characteristic proper-
ties.

The methodology of algebraic semantics is customarily used to specify ab-
stract data types (ADTs). The basic principle in specifying an ADT involves
describing the logical properties of data objects in terms of properties of op-
erations (some of which may be constants) that manipulate the data. The
actual representation of the data objects and the implementations of the
operations on the data are not part of the specification. For instance, we
specify the abstract type whose values are stacks by defining the properties
of the operations that push or pop items from the stacks, avoiding a descrip-
tion of a physical representation of the objects that serve as stacks.

In this chapter we introduce the basic ideas of algebraic specifications (syn-
tax) and the corresponding algebras (semantics) that serve as models of speci-
fications. As we will see, algebraic specifications extend from low-level ob-
jects, such as truth values with Boolean operations, through high-level ob-
jects, such as programs with operations to perform type checking and to
interpret source code. Algebraic semantics is a broad field of study, and in
this brief overview we can only suggest the underlying mathematical founda-
tions. Some of the fundamental notions developed here will be used in the
next chapter when we investigate our final approach to semantics, action
semantics.

444 CHAPTER 12 ALGEBRAIC SEMANTICS

12.1 CONCEPTS AND EXAMPLES

Before exploring examples, we introduce some of the vocabulary of algebraic
specification. The types in a programming language serve to classify the data
processed by programs. Here we refer to types as sorts . An algebraic specifi-
cation defining one or more sorts contains two parts: the signatur e and the
equations (or axioms).

Definition : A signatur e Σ of an algebraic specification is a pair <Sorts, Op-
erations> where Sorts is a set containing names of sorts and Operations is a
family of function symbols indexed by the functionalities of the operations
represented by the function symbols. ❚

We use the terms “functions” and “operations” interchangeably, but when
considering specifications, these terms refer to formal function symbols. The
set of operations in a specification provides the syntax of the functions that
are defined on the sorts of data. Suppose we want to specify an abstract type
whose values are lists of integers. We provide three sorts in the specification:

Sorts = { Integer, Boolean, List }.

The elements of Sorts are only names; we can assume nothing about the
properties of these sorts. The set of operations may include the function
symbols given below with their signatures:

zero : Integer
one : Integer
plus (_ , _) : Integer, Integer → Integer
minus (_ , _) : Integer, Integer → Integer
true : Boolean
false : Boolean
emptyList : List
cons (_ , _) : Integer, List → List
head (_) : List → Integer
tail (_) : List → List
empty? (_) : List → Boolean
length (_) : List → Integer

The family of operations can be decomposed into eight sets of function sym-
bols indexed by the domain-codomain constraints on the functions. We list
several of the sets of operations in the family:

OprBoolean = { true, false }

OprInteger,Integer→Integer = { plus, minus }

OprList→Integer = { head, length }

44512.1 CONCEPTS AND EXAMPLES

Other sets of operations are indexed by Integer, List, (Integer,List→List),
(List→List), and (List→Boolean). Observe that operations with no domain rep-
resent constants of a particular sort—for example, zero, one, true, false, and
emptyList. The signature of a specification can be compared with the declara-
tions in a program—a specification defines the kinds of objects to which
names will refer. The signature shown above tells us how we may use identi-
fiers such as List, cons, and length but does not describe the behavior of the
corresponding functions.

The equations in a specification act to constrain the operations in such a way
as to indicate the appropriate behavior for the operations. They serve as
axioms specifying an algebra, similar to the properties of associativity and
commutativity of operations that we associate with abstract algebras in math-
ematics. Equations may involve variables representing arbitrary values from
the various sorts in the specification. The variables in an equation are uni-
versally quantified implicitly. Listed below are several equations (axioms) that
may appear in a specification of lists.

head (cons (m, s)) = m

empty? (emptyList) = true

empty? (cons (m, s)) = false

The first equation stands for the closed assertion:

∀m:Integer, ∀s:List [head (cons (m, s)) = m].

Since indexed sets can challenge our tolerance of notation, algebraic specifi-
cations are commonly represented using a module-like syntactic structure
that encapsulates the pertinent information concerning the signature and
the equations of the specification. We have already seen how the family of
operations will be specified when we used the “function header” notation
above:

cons (_ , _) : Integer,List → List.

The syntax of the function symbol is spelled out as a pattern, with under-
scores representing the parameter positions and the Cartesian product indi-
cated by a comma forming the domain. These notational conventions have
become common practice in algebraic specifications.

Another advantage of the module representation of algebraic specifications
is that it lends itself to decomposing definitions into relatively small compo-
nents. We break the specification of lists of integers into three smaller mod-
ules for integers, Boolean values, and then lists, using a mechanism to im-
port the signature and equations of one module into another. We view an
algebraic specification as a sequence of modules, so that when one module
imports another module, the sorts and functions in the signature can be
used in the importing module. Relative to this importing mechanism, we

446 CHAPTER 12 ALGEBRAIC SEMANTICS

define sorts and functions to be either exported or hidden. Hidden symbols
are visible only in the module where they are first defined. Later we see that
modules can be parameterized to define generic abstract data types. With
parameterized specifications, certain portions of the module are left unspeci-
fied until the module is instantiated by specifying values for the formal pa-
rameters.

A Module for Truth Values

We now turn our attention to a module that gives an algebraic specification
of truth values.

module Booleans
exports

sorts Boolean
operations

true : Boolean
false : Boolean
errorBoolean : Boolean
not (_) : Boolean → Boolean
and (_ , _) : Boolean, Boolean → Boolean
or (_ , _) : Boolean, Boolean → Boolean
implies (_ , _) : Boolean, Boolean → Boolean
eq? (_ , _) : Boolean, Boolean → Boolean

end exports

operations
xor (_ , _) : Boolean, Boolean → Boolean

variables
b, b1, b2 : Boolean

equations
[B1] and (true, b) = b
[B2] and (false, true) = false
[B3] and (false, false) = false
[B4] not (true) = false
[B5] not (false) = true
[B6] or (b1, b2) = not (and (not (b1), not (b2)))
[B7] implies (b1, b2) = or (not (b1), b2)
[B8] xor (b1, b2) = and (or (b1, b2), not (and (b1, b2)))
[B9] eq? (b1, b2) = not (xor (b1, b2))

end Booleans

447

The sort Boolean has two “normal” constant values, true and false, and an
error value errorBoolean. We discuss the handling of errors in conjunction
with the next module that specifies natural numbers. The functions not, and,
or, and eq? are exported, whereas the function xor (exclusive or) is hidden.
The module has no hidden sorts. Remember that the variables in equations
are universally quantified implicitly, so that equation [B1] represents the
axiom:

∀b:Boolean [and (true, b) = b].

The equations in a specification may allow several variations that result ulti-
mately in the same definition. For example, the semantics of or can be speci-
fied directly by

or (true, true) = true

or (true, false)= true

or (false, b) = b.

Although these different definitions often suggest different evaluation strate-
gies, the equations in a specification are purely declarative and do not imply
any particular evaluation order. The xor is defined in terms of and, or, and not.
In order to illustrate hidden functions, we have elected not to make xor pub-
lic. The eq? function is defined as the logical negation of xor. A direct defini-
tion of eq? is also possible.

Module Syntax

Before turning our attention to more sample modules, we examine the struc-
ture of a typical module. Each of the components specified below may be
omitted in defining a particular module.

module <module-name>
imports

<list of modules>

parameters <parameter name>
sorts <sort names>
operations <function symbols with their signatures>
variables <list of variables and their sorts>
equations <unconditional and conditional equations>

end <parameter name>

exports
sorts <list of public sorts>
operations <list containing signatures of public function symbols>

end exports

12.1 CONCEPTS AND EXAMPLES

448 CHAPTER 12 ALGEBRAIC SEMANTICS

sorts <hidden sort names>

operations
<hidden function symbols with their signatures>

variables
<list of variables and their sorts>

equations
<unconditional and conditional equations>

end <module-name>

The second section contains parameters that are defined in terms of formal
parameter symbols. The actual values (arguments) are supplied when the
module is instantiated by naming the parameterized module and supplying
already defined sorts and operations for each of the formal sort names and
function symbols in the parameter. The functionality (syntax) of the actual
operations must agree with the formal parameters, and the argument func-
tions must satisfy the equations in the parameters section that specify prop-
erties of the formal parameters. We have shown the format for a single pa-
rameter, but multiple parameters are also possible. When modules are im-
ported, items in them may be renamed. We show the syntax for renaming
later in the section.

The syntax of function application may be represented using several forms,
but in this chapter we rely on ordinary prefix notation with parentheses de-
limiting the arguments. This notation eliminates the need for precedence
rules to disambiguate the order of execution of the corresponding opera-
tions. In the next chapter we consider some variations on this notation for
function application. Functions can also return multiple values as tuples—
for example:

h : S1 → S2,S3.

Tupled outputs are a notational convenience and can be replaced by a single
sort. These details are left as an exercise.

Equations specifying the properties of operations can be unconditional, as in
the Booleans module, or conditional. A conditional equation has the form

lhs = rhs when lhs1 = rhs1, lhs2 = rhs2, ..., lhsn = rhsn.

Finally, we mention that modules cannot be nested.

A Module for Natural Numbers

In the rest of this section, we give more sample modules to illustrate the
ideas introduced above, concentrating on specifications that will be needed
to define the semantics of Wren. The next module specifies the natural num-

449

bers, containing constant function symbols 0, 1, 10 and errorNatural, a func-
tion succ used to construct terms for the specification, the numeric opera-
tions add, sub, mul, div, and the predicate operations eq?, less?, and greater?.
An exercise asks the reader to add an exponentiation operation exp to Naturals.
This function is used when Naturals is imported by a module called Strings.

module Naturals
imports Booleans
exports

sorts Natural
operations

0 : Natural
1 : Natural
10 : Natural
errorNatural : Natural
succ (_) : Natural → Natural
add (_ , _) : Natural, Natural → Natural
sub (_ , _) : Natural, Natural → Natural
mul (_ , _) : Natural, Natural → Natural
div (_ , _) : Natural, Natural → Natural
eq? (_ , _) : Natural, Natural → Boolean
less? (_ , _) : Natural, Natural → Boolean
greater? (_ , _) : Natural, Natural → Boolean

end exports

variables
m, n : Natural

equations
[N1] 1 = succ (0)
[N2] 10 = succ (succ (succ (succ (succ (succ (

 succ (succ (succ (succ (0))))))))))
[N3] add (m, 0) = m
[N4] add (m, succ (n)) = succ (add (m, n))
[N5] sub (0, succ(n)) = errorNatural
[N6] sub (m, 0) = m
[N7] sub (succ (m), succ (n)) = sub (m, n)
[N8] mul (m, 0) = 0 when m≠errorNatural
[N9] mul (m, 1) = m
[N10] mul (m, succ(n)) = add (m, mul (m, n))
[N11] div (m, 0) = errorNatural
[N12] div (0, succ (n)) = 0 when n≠errorNatural

12.1 CONCEPTS AND EXAMPLES

450 CHAPTER 12 ALGEBRAIC SEMANTICS

[N13] div (m, succ (n)) = if (less? (m, succ (n)),
0,
succ(div(sub(m,succ(n)),succ(n))))

[N14] eq? (0, 0) = true
[N15] eq? (0, succ (n)) = false when n≠errorNatural
[N16] eq? (succ (m), 0) = false when m≠errorNatural
[N17] eq? (succ (m), succ (n)) = eq? (m, n)
[N18] less? (0, succ (m)) = true when m≠errorNatural
[N19] less? (m, 0) = false when m≠errorNatural
[N20] less? (succ (m), succ (n)) = less? (m, n)
[N21] greater? (m, n) = less? (n, m)

end Naturals

Each sort will contain an error value to represent the result of operations on
values outside of their normal domains. We assume that all operations propa-
gate errors, so that, for example, the following properties hold:

succ (errorNatural) = errorNatural

mul (succ (errorNatural), 0) = errorNatural

or (true, errorBoolean) = errorBoolean

eq? (succ(0), errorNatural) = errorBoolean.

Propagating errors in this manner requires that some equations have condi-
tions that restrict the operations to nonerror values. Without these condi-
tions, the entire sort reduces to the error value, as witnessed by a deduction
using [N8] and ignoring the condition:

0 = mul(succ(errorNatural),0) = mul(errorNatural,0) = errorNatural.

Without the condition on [N8], all the objects in Natural can be shown to
equal errorNatural:

succ(0) = succ(errorNatural) = errorNatural,

succ(succ(0)) = succ(errorNatural) = errorNatural,

and so on.

The equations that require conditions to avoid this sort of inconsistency—
namely, [N8], [N12], [N15], [N16], [N18], and [N19] in the Naturals module—
are those in which the variable(s) on the left disappear on the right. As a
notational convention to enhance readability, we use n≠errorNatural for eq?
(n,errorNatural) = false and similar abbreviations for the other sorts.

The module Naturals has no equation defining properties for the succ func-
tion. This operation is called a constructor , since together with the con-
stant 0, succ can be used to construct representations of the values that
form the natural numbers. In a model of this specification, we assume that

45112.1 CONCEPTS AND EXAMPLES

values are equal only when their identity can be derived from the equations.
Since there are no equations for succ, 0 does not equal succ(0), which does
not equal succ(succ(0)), and so forth. So the terms 0, succ(0), succ(succ(0)), ...
can be viewed as characterizing the natural numbers, the objects defined by
the module.

The element errorNatural can be derived from the equations in two cases:
subtracting a number from another number smaller than itself and dividing
any number by zero. Thus we say that the terms that can be generated in the
natural numbers specification consist of the values 0, succ(0), succ(succ(0),
succ(succ(succ(0))), ... and errorNatural. This set serves as the universe of val-
ues or the carrier set for one of the algebras that acts as a model of the
specification. We will define this so-called term algebra model carefully when
we discuss the mathematical foundations of algebraic specifications in the
next section.

This method of interpreting the meaning of the equations is known as initial
algebraic semantics . In an initial model, the equality of items can be proved
only as a direct result of equations in the module; otherwise they are never
considered to be the same. This characteristic is called the no confusion
property. The no junk property of the initial model says that all terms in the
carrier set of a model of the specification correspond to terms generated from
the signature of the module. We will examine the no confusion and no junk
properties again in the next section when we discuss the construction of an
initial algebra and describe its properties.

The constant functions 1 and 10 are convenient renamings of particular natu-
ral numbers for easy reference outside of the module. Addition is defined
recursively with the second operand being decremented until it eventually
reaches 0, the base case. The other operations, sub, mul, and div are defined
recursively in similar ways. The rule [N9] is redundant since its values are
included in [N10]. The div equations introduce the built-in polymorphic func-
tion if, which is used to determine when div has reached the base case (the
dividend is less than the divisor).

div (m, succ (n)) = if (less? (m, succ (n)),
0,
succ (div (sub (m, succ (n)), succ (n))))

A generic if operation cannot be specified by an algebraic specification itself
since its arguments range over all possible sorts. However, it is always pos-
sible to eliminate the if by writing multiple conditional equations. For ex-
ample,

452 CHAPTER 12 ALGEBRAIC SEMANTICS

div (m, succ (n)) = 0 when less? (m, succ (n)) = true
div (m, succ (n)) = succ (div (sub (m, succ (n)), succ (n))))

when less? (m, succ (n)) = false
div (m, succ (n)) = errorNatural when less? (m, succ (n)) = errorBoolean.

Given this equivalence, we will continue to use if as a notational convenience
without sacrificing the underlying foundations of algebraic semantics. Ob-
serve that using if requires that the module Booleans be imported to provide
truth values.

A Module for Characters

The Characters module presented below defines an underlying character set
adequate for Wren identifiers. Although this character set is limited to digits
and lowercase characters, the module can be easily extended to a larger
character set.

module Characters
imports Booleans, Naturals
exports

sorts Char
operations

eq? (_ , _) : Char, Char → Boolean
letter? (_) : Char → Boolean
digit? (_) : Char → Boolean
ord (_) : Char → Natural
char-0 : Char
char-1 : Char
 : :
char-9 : Char
char-a : Char
char-b : Char
char-c : Char
 : :
char-y : Char
char-z : Char
errorChar : Char

end exports

variables
c, c1, c2 : Char

equations
[C1] ord (char-0) = 0

453

[C2] ord (char-1) = succ (ord (char-0))
[C3] ord (char-2) = succ (ord (char-1))
 : : :
[C10] ord (char-9) = succ (ord (char-8))
[C11] ord (char-a) = succ (ord (char-9))
[C12] ord (char-b) = succ (ord (char-a))
[C13] ord (char-c) = succ (ord (char-b))
 : : :
[C35] ord (char-y) = succ (ord (char-x))
[C36] ord (char-z) = succ (ord (char-y))
[C37] eq? (c1, c2) = eq? (ord (c1), ord (c2))
[C38] letter? (c) = and (not (greater? (ord (char-a), ord (c))),

not (greater? (ord (c), ord (char-z))))
[C39] digit? (c) = and (not (greater? (ord (char-0), ord (c))),

not (greater? (ord (c) ord (char-9))))
end Characters

Observe that the equation “ord (char-9) = 9” cannot be derived from the equa-
tions in the module, since 9 is not a constant defined in Naturals. Rather
than add the constants 2 through 9 and 11 through 35 to Naturals (for this
character set), we rely on the repeated application of the successor function
to define the ordinal values. The ord function here does not produce ascii
codes as in Pascal but simply gives integer values starting at 0. Note that eq?
refers to two different operations in [C37]. The first represents the equality
operation on the characters currently being defined, and the second symbol-
izes equality on the natural numbers imported from Naturals. The sorts of
the arguments determine which of the overloaded eq? operations the func-
tion symbol represents.

A Parameterized Module and Some Instantiations

The next example shows a parameterized module for homogeneous lists where
the type of the items in the lists is specified when the module is instantiated.

module Lists
imports Booleans, Naturals

parameters Items
sorts Item
operations

errorItem : Item
eq? : Item, Item → Boolean

12.1 CONCEPTS AND EXAMPLES

454 CHAPTER 12 ALGEBRAIC SEMANTICS

variables
a, b, c : Item

equations
eq? (a,a) = true when a≠errorItem
eq? (a,b) = eq? (b,a)
implies (and (eq? (a,b), eq? (b,c)), eq? (a,c)) = true

when a≠errorItem, b≠errorItem, c≠errorItem
end Items

exports
sorts List
operations

null : List
errorList : List
cons (_ , _) : Item, List → List
concat (_ , _) : List, List → List
equal? (_ , _) : List, List → Boolean
length (_) : List → Natural
mkList (_) : Item → List

end exports

variables
i, i1, i2 : Item
s, s1, s2 : List

equations
[S1] concat (null, s) = s
[S2] concat (cons (i, s1), s2) = cons (i, concat (s1, s2))
[S3] equal? (null, null) = true
[S4] equal? (null, cons (i, s)) = false when s≠errorList, i≠errorItem
[S5] equal? (cons (i, s), null) = false when s≠errorList, i≠errorItem
[S6] equal? (cons (i1, s1), cons (i2, s2)) = and (eq? (i1, i2), equal? (s1, s2))
[S7] length (null) = 0
[S8] length (cons (i, s)) = succ (length (s)) when i≠errorItem
[S9] mkList (i) = cons (i, null)

end Lists

The three parameters for Lists define the type of items that are being joined,
an error value, and an equality test required for comparing the items. The
equations in the parameter section ensure that the operation associated with
the formal symbol eq? is an equivalence relation. The symbols that act as
parameters are unspecified until the module is instantiated when imported
into another module. The operation null is a constant that acts as a construc-
tor representing the empty list, and cons is a constructor function, having no

455

defining equations, that builds nonempty lists. The structures formed by
applications of the constructor functions represent the values of the sort List.

The length function is defined recursively with the base case treating the null
list and the other case handling all other lists. The operation mkList is a
convenience function to convert a single item into a list containing only that
item. Since cons and null are exported, the user can do this task directly, but
having a named function improves readability.

The process of renaming is illustrated in the following example of a list of
integers, called Files, that will be used for input and output in the specifica-
tion of Wren. Sometimes sorts and operations are renamed purely for pur-
poses of documentation. Items that are not renamed on import retain their
original names. For example, the constructor for Files will still be cons. See
the further readings at the end of this chapter for more on these issues.

module Files
imports Booleans, Naturals,

instantiation of Lists
bind Items using Natural for Item

using errorNatural for errorItem
using eq? for eq?

rename using File for List
using emptyFile for null
using mkFile for mkList
using errorFile for errorList

exports
sorts File
operations

empty? (_) : File → Boolean
end exports

variables
f : File

equations
[F1] empty? (f) = equal? (f, emptyFile)

end Files

The identifiers created by renaming are exported by the module as well as
the identifiers in the exports section. Note that we extend the instantiated
imported module Lists with a new operation empty?. The Strings module,
which is used to specify identifiers in Wren, also contains an instantiation of
Lists.

12.1 CONCEPTS AND EXAMPLES

456 CHAPTER 12 ALGEBRAIC SEMANTICS

module Strings
imports Booleans,Naturals, Characters,

instantiation of Lists
bind Items using Char for Item

using errorChar for errorItem
using eq? for eq?

rename using String for List
using nullString for null
using mkString for mkList
using strEqual for equal?
using errorString for errorList

exports
sorts String
operations

string-to-natural (_) : String → Boolean, Natural
end exports
variables

c : Char
b : Boolean
n : Natural
s : String

equations
[Str1] string-to-natural (nullString) = <true,0>
[Str2] string-to-natural (cons (c, s))=

if (and (digit? (c), b),
<true, add (mul (sub (ord (c), ord (char-0)),

exp (10, length (s))), n)>,
<false, 0>)

when <b,n> = string-to-natural (s)
end Strings

The string-to-natural function returns a pair: The first value is a truth value
that indicates whether the conversion was successful, and the second value
is the numeric result. We introduced the constant 10 in Naturals to make
this specification more readable. The operation exp is added to Naturals in
an exercise.

A Module for Finite Mappings

The final modules of this section are Mappings and an instantiation of Map-
pings. A mapping associates a domain value of some sort with an item taken
from some range (codomain) sort. Both the domain and range sorts are speci-
fied by parameters and determined at the time of instantiation. We use two

457

mappings later in an algebraic specification of Wren. The type checking mod-
ule associates Wren types with variable names modeling a symbol table, and
the evaluation (or execution) module associates numeric values with variable
names, modeling a store. Both of these sorts result from instantiations of
Mappings.

module Mappings
imports Booleans
parameters Entries

sorts Domain, Range
operations

equals (_ , _) : Domain, Domain → Boolean
errorDomain : Domain
errorRange : Range

variables
a, b, c : Domain

equations
equals (a, a) = true when a≠errorDomain
equals (a, b) = equals (b, a)
implies (and (equals (a, b), equals (b, c)), equals (a, c)) = true

when a≠errorDomain, b≠errorDomain, c≠errorDomain
 end Entries

exports
sorts Mapping
operations

emptyMap : Mapping
errorMapping : Mapping
update (_ , _ , _) : Mapping, Domain, Range → Mapping
apply (_ , _) : Mapping, Domain → Range

end exports
variables

m : Mapping
d, d1, d2 : Domain
r : Range

equations
[M1] apply (emptyMap, d) = errorRange
[M2] apply (update (m, d1, r), d2) = r

when equals (d1, d2) = true, m≠errorMapping
[M3] apply (update (m, d1, r), d2) = apply (m, d2)

when equals (d1, d2) = false, r≠errorRange
end Mappings

12.1 CONCEPTS AND EXAMPLES

458 CHAPTER 12 ALGEBRAIC SEMANTICS

The operation emptyMap is a constant, and the update operation adds or
changes a pair consisting of a domain value and a range value in a mapping.
The operation apply returns the range value associated with a domain value
or returns errorRange if the mapping has no value for that domain element.
Observe the similarity between terms for this specification and the Prolog
terms we used in implementing environments and stores earlier in the text.
The finite mapping [a|→8,b|→13] corresponds to the term

update (update (emptyMap, a, 8), b, 13),
which represents an object of sort Mapping.

A store structure that associates identifiers represented as strings with natural
numbers can be defined in terms of Mappings. The following module instan-
tiates Mappings using the types String and Natural for the domain and range
sorts of the mappings, respectively. The operations are renamed to fit the
store model of memory.

module Stores
imports Strings, Naturals,

instantiation of Mappings
bind Entries using String for Domain

using Natural for Range
using strEqual for equals
using errorString for errorDomain
using errorNatural for errorRange

rename using Store for Mapping
using emptySto for emptyMap
using updateSto for update
using applySto for apply

end Stores

We have introduced enough basic modules to develop an algebraic specifica-
tion of Wren in section 12.4. However, the notation is sometimes less conve-
nient than desired—for example,

succ (succ (succ (0))) stands for the natural number written as 3 (base-ten)

and

cons (char-a, cons (char-b, nullString)) represents the string literal “ab”.

Additional specification modules can be developed to provide a more conven-
tional notation (see Chapter 6 of [Bergstra89]), but these notational issues
are beyond the scope of this book. We also ignore the problem of conflict
resolution when several imported modules extend some previously defined
module by defining operations with the same name in different ways. Since
this topic is dealt with in the references, our presentation will concentrate on
semantic rather than syntactic issues. We take a brief look at the mathemati-
cal foundations of algebraic semantics in the next section.

459

Exercises

1. Give the equation(s) for a direct definition of eq? in the module Booleans.

2. Show how the output of tuples can be eliminated by introducing new
sorts. Develop a specific example to illustrate the technique.

3. Add function symbols lesseq? and greatereq? to the module Naturals
and provide equations to specify their behavior.

4. Add a function symbol exp representing the exponentiation operation to
Naturals and provide appropriate equations to specify its behavior.

5. Extend the module for Naturals to a module for Integers by introducing
a predecessor operator.

6. Consider the module Mappings. No equations are provided to specify
the sort Mapping, so two mappings are equal if they are represented by
the same term. Does this notion of equality agree with the normal meaning
of equal mappings? What equation(s) can be added to the module to
remedy this problem?

7. Define a module that specifies binary trees with natural numbers at its
leaf nodes only. Include operations for constructing trees, selecting parts
from a tree, and several operations that compute values associated with
binary trees, such as “sum of the values at the leaf nodes” and “height of
a tree”.

8. Redo exercise 7 for binary trees with natural numbers at interior nodes
in addition to the leaf nodes.

9. Consider the signature defined by the module Mixtures. List five terms of
sort Mixture. Suggest some equations that we may want this specification
to satisfy. Hint: Consider algebraic properties of the binary operation.
module Mixtures

exports
sorts Mixture
operations

flour : Mixture
sugar : Mixture
salt : Mixture
mix (_ , _) : Mixture, Mixture → Mixture

end exports
end Mixtures

12.1 CONCEPTS AND EXAMPLES

460 CHAPTER 12 ALGEBRAIC SEMANTICS

12.2 MATHEMATICAL FOUNDATIONS

Some very simple modules serve to illustrate the mathematical foundations
of algebraic semantics. We simplify the module Booleans to include only the
constants false and true and the function not. In a similar way, we limit Naturals
to the constant 0, the constructor succ, and the function symbol add. By
limiting the operations in this way, we avoid the need for error values in the
sorts. See the references, particularly [Ehrig85], for a description of error
handling in algebraic specifications.

module Bools
exports

sorts Boolean
operations

true : Boolean
false : Boolean
not (_) : Boolean → Boolean

end exports

equations
[B1] not (true) = false
[B2] not (false) = true

end Bools

module Nats
imports Bools
exports

sorts Natural
operations

0 : Natural
succ (_) : Natural → Natural
add (_ , _) : Natural, Natural → Natural

end exports

variables
m, n : Natural

equations
[N1] add (m, 0) = m
[N2] add (m, succ (n)) = succ (add (m, n))

end Nats

461

Ground Terms

In the previous section we pointed out function symbols that act as con-
structors provide a way of building terms that represent the objects being
defined by a specification. Actually, all function symbols can be used to con-
struct terms that stand for the objects of the various sorts in the signature,
although one sort is usually distinguished as the type of interest. We are
particularly interested in those terms that have no variables.

Definition : For a given signature Σ = <Sorts,Operations>, the set of ground
terms TΣ for a sort S is defined inductively as follows:

1. All constants (nullary function symbols) of sort S in Operations are ground
terms of sort S.

2. For every function symbol f : S1,…,Sn → S in Operations, if t1,…,tn are
ground terms of sorts S1,…,Sn, respectively, then f(t1,…,tn) is a ground
term of sort S where S1,…,Sn,S∈Sorts. ❚

Example : The ground terms of sort Boolean for the Bools module consist of
all those expressions that can be built using the constants true and false and
the operation symbol not. This set of ground terms is infinite.

true, not(true), not(not(true)), not(not(not(true))), ...
false, not(false), not(not(false)), not(not(not(false))), …. ❚

Example : The ground terms of sort Natural in the Nats module are more
complex, since two constructors build new terms from old; the patterns are
suggested below:

0, add(0,0),
succ(0), add(0,succ(0)), add(succ(0),0),
succ(succ(0)), add(0,succ(succ(0))), add(succ(succ(0)),0),

add(succ(0),succ(0)),
succ(succ(succ(0))), add(0,succ(succ(succ(0)))), add(succ(succ(succ(0))),0),

add(succ(0),succ(succ(0))), add(succ(succ(0)),succ(0)),
: : : ❚

If we ignore the equations in these two modules for now, the ground terms
must be mutually distinct. On the basis of the signature only (no equations),
we have no reason to conclude that not(true) is the same as false and that
add(succ(0),succ(0)) is the same as succ(succ(0)).

Σ-Algebras

Algebraic specifications deal only with the syntax of data objects and their
operations. Semantics is provided by defining algebras that serve as models

12.2 MATHEMATICAL FOUNDATIONS

462 CHAPTER 12 ALGEBRAIC SEMANTICS

of the specifications. Homogeneous algebras can be thought of as a single
set, called the carrier , on which several operations may be defined—for ex-
ample, the integers with addition and multiplication form a ring. Computer
science applications and some mathematical systems, such as vector spaces,
need structures with several types. Heterogeneous or many-sorted alge-
bras have a number of operations that act on a collection of sets. Specifica-
tions are modeled by Σ-algebras, which are many-sorted.

Definition : For a given signature Σ, an algebra A is a Σ-algebra under the
following circumstances:

• There is a one-to-one correspondence between the carrier sets of A and the
sorts of Σ.

• There is a one-to-one correspondence between the constants and func-
tions of A and the operation symbols of Σ so that those constants and
functions are of the appropriate sorts and functionalities. ❚

A Σ-algebra contains a set for each sort in S and an actual function for each
of the function symbols in Σ. For example, let Σ = <Sorts, Operations> be a
signature where Sorts is a set of sort names and Operations is a set of func-
tion symbols of the form f : S1,…,Sn → S where S and each Si are sort names
from Sorts. Then a Σ-algebra A consists of the following:

1. A collection of sets { SA | S∈Sorts }, called the carrier sets .

2. A collection of functions { fA | f∈Operations } with the functionality

fA : (S1)A,…,(Sn)A → SA

for each f : S1,…,Sn → S in Operations.

Σ-algebras are called heterogeneous or many-sorted algebras because they
may contain objects of more than one sort.

Definition : The term algebra T Σ for a signature Σ = <Sorts, Operations> is
constructed as follows. The carrier sets { STΣ

 | S∈Sorts } are defined induc-
tively.

1. For each constant c of sort S in Σ we have a corresponding constant
“c” in STΣ

.

2. For each function symbol f : S1,...,Sn → S in Σ and any n elements
t1∈(S1)TΣ

, …,tn∈(Sn)TΣ
, the term “f(t1,...,tn)” belongs to the carrier set (S)TΣ

.

The functions in the term algebra, corresponding to the function sym-
bols in Operations, are defined by simply forming the literal term that
results from applying the function symbol to terms. For each function
symbol f : S1,...,Sn → S in Σ and any n elements t1∈(S1)TΣ

, …,tn∈(Sn)TΣ
, we

define the function fTΣ
 by fTΣ

(t1, ..., tn) = “f(t1, ..., tn)”. ❚

463

The elements of the carrier sets of TΣ consist of strings of symbols chosen
from a set containing the constants and function symbols of Σ together with
the special symbols “(”, “)”, and “,”. For example, the carrier set for the term
algebra TΣ constructed from the module Bools contains all the ground terms
from the signature, including

“true”, “not(true)”, “not(not(true))”, ...
“false”, “not(false)”, “not(not(false))”,

Furthermore, the function notTΣ
 maps “true” to “not(true)”, which is mapped to

“not(not(true))”, and so forth.

This term algebra clearly does not specify the intended meaning of Bools
since the carrier set is infinite. Also, “false” ≠ “not(true)”, which is different
from our understanding of the not function in Boolean logic. So far we have
not accounted for the equations in a specification and what properties they
enforce in an algebra.

Definition : For a signature Σ and a Σ-algebra A, the evaluation function
evalA : TΣ → A from ground terms to values in A is defined as:

evalA (“c”) = cA for constants c and

evalA(“f(t1,..,tn)”) = fA(evalA(t1),..,evalA(tn))
where each term ti is of sort Si for f : S1,…,Sm→S in Operations. ❚

For any Σ-algebra A, the evaluation function from TΣ must always exist and
have the property that it maps function symbols to actual functions in A in a
conformal way to be defined later. The term algebra TΣ is a symbolic alge-
bra—concrete but symbolic.

A Congruence from the Equations

As the function symbols and constants create a set of ground terms, the
equations of a specification generate a congruence ≡ on the ground terms. A
congruence is an equivalence relation with an additional “substitution” prop-
erty.

Definition : Let Spec = <Σ,E> be a specification with signature Σ and equa-
tions E. The congruence ≡E deter mined by E on T Σ is the smallest relation
satisfying the following properties:

1. Variable Assignment: Given an equation lhs = rhs in E that contains vari-
ables v1,..,vn and given any ground terms t1,..,tn from TΣ of the same sorts
as the respective variables,

lhs[v1|→ t1, …, vn|→ tn] ≡E rhs[v1|→ t1, ..., vn|→ tn]

12.2 MATHEMATICAL FOUNDATIONS

464 CHAPTER 12 ALGEBRAIC SEMANTICS

where vi |→ ti indicates substituting the ground term ti for the variable vi.
If the equation is conditional, the condition must be valid after the vari-
able assignment is carried out on the condition.

2. Reflexive: For every ground term t∈TΣ, t ≡E t.

3. Symmetric: For any ground terms t1, t2∈TΣ, t1 ≡E t2 implies t2 ≡E t1.

4. Transitive: For any terms t1, t2, t3∈TΣ,
(t1 ≡E t2 and t2 ≡E t3) implies t1 ≡E t3.

5. Substitution Property: If t1 ≡E t1',…,tn ≡E tn' and f : S1,…,Sn→S is any
function symbol in Σ, then f(t1,…,tn) ≡E f(t1',…,tn'). ❚

Normally, we omit the subscript E and rely on the context to determine which
equations apply. To generate an equivalence relation from a set of equations,
we take every ground instance of all the equations as a basis, and allow any
derivation using the reflexive, symmetric, and transitive properties and the
rule that each function symbol preserves equivalence when building ground
terms.

For the Bools module, all ground terms are congruent to true or to false.

true ≡ not(false) ≡ not(not(true)) ≡ not(not(not(false))) ≡
false ≡ not(true) ≡ not(not(false)) ≡ not(not(not(true))) ≡

These congruences are easy to prove since no variables are involved. For the
Nats module, all ground terms are congruent to one of 0, succ(0), succ(succ(0)),
succ(succ(succ(0))), and so forth. For example, the following four terms are
congruent:

succ(succ(0)) ≡ add(0,succ(succ(0))) ≡
add(succ(succ(0)),0) ≡ add(succ(0),succ(0)).

We show the proof for add(succ(0),succ(0)) ≡ succ(succ(0)).

add(succ(0),succ(0))
≡ succ(add(succ(0),0)) using [N2] from Nats and a variable

assignment with [m|→ succ(0), n|→ 0]
≡ succ(succ(0)) using [N1] from Nats and a variable

assignment with [m|→ succ(0)].

Definition : If Spec is a specification with signature Σ and equations E, a Σ-
algebra A is a model of Spec if for all ground terms t1 and t2, t1 ≡E t2 implies
evalA(t1) = evalA(t2). ❚

Example : Consider the algebra A = <{off, on}, {off, on, switch}>,
where off and on are constants and switch is defined by

switch(off) = on and switch(on) = off.

465

Then if Σ is the signature of Bools, A is a Σ-algebra that models the specifica-
tion defined by Bools.

BooleanA = {off, on} is the carrier set corresponding to sort Boolean.

Operation symbols of Σ Constants/functions of A
 true : Boolean trueA = on : BooleanA
 false : Boolean falseA = off : BooleanA
 not : Boolean → Boolean notA = switch : BooleanA → BooleanA

For example, not(true) ≡ false and in the algebra A,

evalA(not(true)) = notA(evalA(true)) = notA(trueA) = switch(on) = off, and
evalA(false) = off. ❚

There may be many models for Spec. We now construct a particular Σ-alge-
bra, called the initial algebra , that is guaranteed to exist. We take this initial
algebra to be the meaning of the specification Spec.

The Quotient Algebra

The term algebra TΣ serves as the starting point in constructing an initial
algebra. We build the quotient algebra Q from the term algebra TΣ of a speci-
fication <Σ,E> by factoring out congruences.

Definition : Let <Σ,E> be a specification with Σ = <Sorts, Operations>. If t is a
term in TΣ, we represent its congruence class as [t] = { t' | t ≡E t' }. So [t] = [t']
if and only if t ≡E t'. These congruence classes form the members of the
carrier sets { STΣ

 | S∈Sorts } of the quotient algebra , one set for each sort S
in the signature. We translate a constant c into the congruence class [c]. The
functions in the term algebra define functions in the quotient algebra in the
following way:

Given a function symbol f : S1,...,Sn → S in Σ, fQ([t1],…,[tn]) = [f(t1,..,tn)] for
any terms ti : Si, with 1≤i≤n, from the appropriate carrier sets.

The function fQ is well-defined, since t1 ≡E t1', ..., tn ≡E tn' implies fQ(t1,..,tn) ≡E
fQ(t1',..,tn') by the Substitution Property for congruences. ❚

Consider the term algebra for Bools. There are two congruence classes, which
we may as well call [true] and [false]. From our previous observation of the
congruence of ground terms, we know that the congruence class [true] con-
tains

“true”, “not(false)”, “not(not(true))”, “not(not(not(false)))”, ...

and the congruence class [false] contains
“false”, “not(true)”, “not(not(false))”, “not(not(not(true)))”,

12.2 MATHEMATICAL FOUNDATIONS

466 CHAPTER 12 ALGEBRAIC SEMANTICS

The function notQ is defined in the following way:

notQ([false]) = [not(false)] = [true], and
notQ([true]) = [not(true)] = [false].

So the quotient algebra has the carrier set { [true], [false] } and the function
notQ. This quotient algebra is, in fact, an initial algebra for Bools. Initial alge-
bras are not necessarily unique. For example, the algebra

A = <{off, on}, {off, on, switch}>

is also an initial algebra for Bools.

An initial algebra is “finest-grained” in the sense that it equates only those
terms required to be equated, and, therefore, its carrier sets contain as many
elements as possible. Using the procedure outlined above for developing the
term algebra and then the quotient algebra, we can always guarantee that at
least one initial algebra exists for any specification.

Homomorphisms

Functions between Σ-algebras that preserve the operations are called Σ-ho-
momorphisms. See Chapter 9 for another description of homomorphisms.
These functions are used to compare and contrast algebras that act as mod-
els of specifications.

Definition : Suppose that A and B are Σ-algebras for a given signature Σ =
<Sorts, Operations>. Then h is a Σ-homomorphism if it maps the carrier
sets of A to the carrier sets of B and the constants and functions of A to the
constants and functions of B, so that the behavior of the constants and func-
tions is preserved. In other words, h consists of a collection { hS | S∈Sorts } of
functions hS : SA → SB for S∈Sorts such that

hS(cA) = cB for each constant symbol c : S, and

hS(fA(a1,…,an)) = fB(hS1
(a1),…,hSn

(an)) for each function symbol

f : S1,...,Sn → S in S and any n elements a1∈(S1)A,…,an∈(Sn)A. ❚

If there is a Σ-homomorphism h from A to B and the inverse of h is a Σ-
homomorphism from B to A, then h is an isomorphism and—apart from
renaming carrier sets, constants, and functions—the two algebras are ex-
actly the same.

The notion of Σ-homomorphism is used to define the concept of initial alge-
bra formally.

467

Definition : A Σ-algebra I in the class of all Σ-algebras that serve as models of
a specification with signature Σ is called initial if for any Σ-algebra A in the
class, there is a unique homomorphism h : I → A. ❚

The quotient algebra Q for a specification is an initial algebra. Therefore for
any Σ-algebra A that acts as a model of the specification, there is a unique
Σ-homomorphism from Q to A. The function evalA : TΣ → A induces the Σ-
homomorphism h from Q to A using the definition:

h([t]) = evalA(t) for each t∈TS.

The homomorphism h is well defined because if t1 ≡ t2, h([t1]) = evalA(t1) =
evalA(t2) = h([t2]).

Any algebra isomorphic to Q is also an initial algebra. So since the quotient
algebra Q and the algebra A = <{off, on}, {off, on, switch}> are isomorphic, A is
also an initial algebra for Bools. We can now formally define the terms junk
and confusion, introduced earlier in this chapter.

Definition : Let <Σ,E> be a specification, let Q be the quotient algebra for
<Σ,E>, and let B be an arbitrary model of the specification.

1. If the homomorphism from Q to a Σ-algebra B is not onto (not surjective),
then B contains junk since B contains values that do not correspond to
any terms constructed from the signature.

2. If the homomorphism from Q to B is not one-to-one (not injective), then B
exhibits confusion since two different values in the quotient algebra cor-
respond to the same value in B. ❚

Consider the quotient algebra for Nats with the infinite carrier set [0], [succ(0)],
[succ(succ(0))], and so on. Suppose that we have a 16-bit computer for which
the integers consist of the following set of values:

{ -32768, -32767, ..., -1, 0, 1, 2, 3, ..., 32766, 32767 }.

The negative integers are junk with respect to Nats since they cannot be
images of any of the natural numbers. On the other hand, all positive inte-
gers above 32767 must be confusion. When mapping an infinite carrier set
onto a finite machine, confusion must occur.

Consistency and Completeness

Consistency and completeness are two issues related to junk and confusion.
The following examples illustrate these notions. Suppose we want to add a
predecessor operation to naturals by importing Naturals (the original ver-
sion) and defining a predecessor function pred.

12.2 MATHEMATICAL FOUNDATIONS

468 CHAPTER 12 ALGEBRAIC SEMANTICS

module Predecessor1

imports Booleans, Naturals
exports

operations
pred (_) : Natural → Natural

end exports

variables
n : Natural

equations
[P1] pred (succ (n)) = n

end Predecessor1

We say that Naturals is a subspecification of Predecessor1 since the signa-
ture and equations of Predecessor1 include the signature and equations of
Naturals. We have added a new congruence class [pred(0)], which is not con-
gruent to 0 or any of the successors of 0. We say that [pred(0)] is junk and that
Predecessor1 is not a complete extension of Naturals. We can resolve this
problem by adding the equation [P2] pred(0) = 0 (or [P2] pred(0) = errorNatural).

Suppose that we define another predecessor module in the following way:

module Predecessor2

imports Booleans, Naturals

exports
operations

pred (_) : Natural → Natural
end exports

variables
n : Natural

equations
[P1] pred (n) = sub (n, succ (0))
[P2] pred (0) = 0

end Predecessor2

The first equation specifies the predecessor by subtracting one, and the sec-
ond equation is carried over from the “fix” for Predecessor1. In the module
Naturals, we have the congruence classes:

[errorNatural], [0], [succ(0)], [succ(succ(0))],

With the new module Predecessor2, we have pred(0) = sub(0,succ(0)) =
errorNatural by [P1] and [N5], and pred(0) = 0 by [P2]. So we have reduced the
number of congruence classes, since [0] = [errorNatural]. Because this has

469

introduced confusion, we say that Predecessor2 is not a consistent exten-
sion of Naturals.

Definition : Let Spec be a specification with signature Σ = <Sorts, Opera-
tions> and equations E. Suppose SubSpec is a subspecification of Spec with
sorts SubSorts (a subset of Sorts) and equations SubE (a subset of E). Let T
and SubT represent the terms of Sorts and SubSorts, respectively.

• Spec is a complete extension of SubSpec if for every sort S in SubSorts
and every term t1 in T, there exists a term t2 in SubT such that t1 and t2
are congruent with respect to E.

• Spec is a consistent extension of SubSpec if for every sort S in SubSorts
and all terms t1 and t2 in T, t1 and t2 are congruent with respect to E if and
only if t1 and t2 are congruent with respect to SubE. ❚

Exercises

1. Describe an initial algebra for the simplified Nats module given in this
section.

2. Use the specification of Booleans in section 12.1 to prove the following
congruences:

a) and(not(false),not(true)) ≡ false

b) or(not(false),not(true)) ≡ true

3. Use the specification of Naturals in section 12.1 to prove the following
congruences:

a) sub (10, succ (succ (succ (succ (succ (succ(0)))))))
≡ succ (succ (succ (succ (0))))

b) mul (succ (succ (0)), succ (succ (0))) ≡ succ (succ (succ (succ (0))))

c) less? (succ (0), succ (succ (succ (0)))) ≡ true

4. Each of the following algebras are Σ-algebras for the signature of Nats.
Identify those that are initial and define the homomorphisms from the
initial algebras to the other algebras. Do any of these algebras contain
confusion or junk?

a) A = <{ 0, 1, 2, 3, … }, {0A, succA, addA}> where 0A = 0, succA = λn . n+1,
and addA = λm . λn . m+n.

b) B = <{ 0, 1, 2 }, {0B, succB, addB}> where 0B = 0, succB(0)= 1, succB(1)=
2, succB(2)= 0, and addB = λm . λn . m+n (modulo 3).

12.2 MATHEMATICAL FOUNDATIONS

470 CHAPTER 12 ALGEBRAIC SEMANTICS

c) C = <{ …, -2, -1, 0, 1, 2, 3, … }, {0C, succC, addC}> where 0C = 0, succC
= λn . n+1, and addC = λm . λn . m+n.

d) D = <{ zero, succ(zero), succ(succ(zero)), … }, {0D, succD, addD}> where
0D = zero, succD = λn . succ(n), addD(m,zero) = m, and addD(m,succD(n))
= succ(addD(m,n)).

5. List five different terms in the term algebra TΣ for the specification of
stores in the module at the end of section 12.1. Describe the quotient
algebra for Mappings, including two additional equations:

[M4] update (update (m, d1, r1), d2, r2) = update (update (m, d2, r2), d1, r1)
when d1≠d2

[M5] update (update (m, d1, r1), d1, r2) = update (m, d1, r2).

6. Consider the following module that defines a specification <Σ,E> with
signature Σ and equations E. Ignore the possibility of an errorBoolean
value in the sort.

module Booleans
exports

sorts Boolean
operations

true : Boolean
false : Boolean
not (_) : Boolean → Boolean
nand (_ , _) : Boolean, Boolean → Boolean

end exports
variables

b : Boolean
equations

[B1] nand (false, false) = true
[B2] nand (false, true) = false
[B3] nand (true, false) = false
[B4] nand (true, true) = false
[B5] not (b) = nand (b, b)

end Booleans

a) Give an induction definition of the carrier set of the term algebra TΣ
for this Σ.

b) Carefully describe the quotient algebra Q for this specification.

c) Describe another algebra A whose carrier set has only one element
and that models this specification. Define a homomorphism from Q
to A.

d) Describe another algebra B whose carrier set has three elements and
that models this specification. Define a homomorphism from Q to B.

471

12.3 USING ALGEBRAIC SPECIFICATIONS

Before considering the algebraic semantics for Wren, we take a detour to
discuss several other uses of algebraic specifications. Defining abstract data
types has proved to be the most productive application of these specification
methods so far. In the first part of this section we develop and discuss the
specification of abstract data types using algebraic methods. Then in the
second part of this section we return to the concept of abstract syntax and
see that it can be put on a more formal foundation by exploiting algebraic
specifications and their corresponding algebras.

Data Abstraction

The main problem in creating large software systems is that their complexity
can exceed the programmers’ powers of comprehension. Using abstraction
provides a fundamental technique for dealing with this complexity. Abstrac-
tion means that a programmer concentrates on the essential features of the
problem while ignoring details and characteristics of concrete realizations in
order to moderate the magnitude of the complexity.

Abstraction aids in the constructing, understanding, and maintaining of sys-
tems by reducing the number of details a programmer needs to understand
while working on one part of the problem. The reliability of a system is en-
hanced by designing it in modules that maintain a consistent level of ab-
straction, and by permitting only certain operations at each level of abstrac-
tion. Any operation that violates the logical view of the current level of ab-
straction is prohibited. A programmer uses procedural and data abstrac-
tions without knowing how they are implemented (called infor mation hid-
ing). Unnecessary details of data representation or of an operation’s imple-
mentation are hidden from those who have no need to see them.

Data abstraction refers to facilities that allow the definition of new sorts of
data and operations on that data. Once the data and operations have been
defined, the programmer forgets about the implementation and simply deals
with their logical properties. The goal of data abstraction is to separate the
logical properties of the data and operations from the implementation. Pro-
grammers work with abstract data types when they use the predefined types
in a programming language. The objects and operations of integer type are
used in a program based solely on their logical characteristics; programmers
need know nothing of the representation of integers or of the implementation
of the arithmetic operations. This information hiding allows them to consider
problems at a higher level of abstraction by ignoring implementation details.
High-level strategies should not be based on low-level details.

12.3 USING ALGEBRAIC SPECIFICATIONS

472 CHAPTER 12 ALGEBRAIC SEMANTICS

The full power of abstraction becomes evident only when programmers can
create abstract data types for themselves. Many modern programming lan-
guages provide support for the specification of ADTs. Three facilities are de-
sirable in a programming language for the creation of ADTs:

1. Information Hiding : The compiler should ensure that the user of an ADT
does not have access to the representation (of the values) and implemen-
tation (of the operations) of an ADT.

2. Encapsulation : All aspects of the specification and implementation of an
ADT should be contained in one or two syntactic unit(s) with a well-de-
fined interface to the users of the ADT. The Ada package, the Modula-2
module, and the class feature in object-oriented programming languages
are examples of encapsulation mechanisms.

3. Generic types (parameterized modules): There should be a way of defin-
ing an ADT as a template without specifying the nature of all its compo-
nents. Such a generic type will be instantiated when the properties of its
missing component values are instantiated.

Instead of delving into the definition of ADTs in programming languages, we
return now to a more formal discussion of data abstraction in the context of
algebraic specification as already examined in the first two sections of this
chapter.

A Module for Unbounded Queues

We start by giving the signature of a specification of queues of natural num-
bers.

module Queues
imports Booleans, Naturals
exports

sorts Queue
operations

newQ : Queue
errorQueue : Queue
addQ (_ , _) : Queue, Natural → Queue
deleteQ (_) : Queue → Queue
frontQ (_) : Queue → Natural
isEmptyQ (_) : Queue → Boolean

end exports
end Queues

473

Given only the signature of Queues, we have no justification for assuming
any properties of the operations other than their basic syntax. Except for the
names of the operations, which are only meaningless symbols at this point,
this module could be specifying stacks instead of queues. One answer to this
ambiguity is to define the characteristic properties of the queue ADT by de-
scribing informally what each operation does—for example:

• The function isEmptyQ(q) returns true if and only if the queue q is empty.

• The function frontQ(q) returns the natural number in the queue that was
added earliest without being deleted yet.

• If q is an empty queue, frontQ(q) is an error value.

Several problems arise with this sort of informal approach. The descriptions
are ambiguous, depending on terms that have not been defined—for example,
“empty” and “earliest”. The properties depend heavily on the names used for
the operations and what they suggest. The names will be of no use with a
completely new data type. On the other hand, a programmer may be tempted
to define the meaning of the operations in terms of an implementation of
them, say as an array with two index values identifying the front and rear of
the queue, but this defeats the whole intent of data abstraction, which is to
separate logical properties of data objects from their concrete realization.

A more formal approach to specifying the properties of an ADT is through a
set of axioms in the form of module equations that relate the operations to
each other. We insert the following sections into the module Queues:

variables
q : Queue
m : Natural

equations

[Q1] isEmptyQ (newQ) = true

[Q2] isEmptyQ (addQ (q,m)) = false when q≠errorQueue, m≠errorNatural

[Q3] delete (newQ) = newQ

[Q4] deleteQ (addQ (q,m)) = if (isEmptyQ(q), newQ, addQ(deleteQ(q),m))
when m≠errorNatural

[Q5] frontQ (newQ) = errorNatural

[Q6] frontQ (addQ (q,m)) = if (isEmptyQ(q), m, frontQ(q))
when m≠errorNatural

The decision to have delete(newQ) return newQ is arbitrary. Some other time
we might want delete(newQ) to be errorQueue when describing the behavior of
a queue.

12.3 USING ALGEBRAIC SPECIFICATIONS

474 CHAPTER 12 ALGEBRAIC SEMANTICS

Implementing Queues as Unbounded Arrays

Assuming that the axioms correctly specify the concept of a queue, they can
be used to verify that an implementation is correct. A realization of an ab-
stract data type will consist of a representation of the objects of the type,
implementations of the operations, and a representation function Φ that
maps terms in the model onto the abstract objects in such a way that the
axioms are satisfied. For example, say we want to represent queues as arrays
with two pointers, one to the front of the queue and one to the rear. Note that
the implementation is simplified by defining unbounded arrays, since the
queues that have been described are unbounded.

To enhance the readability of this presentation, we use abbreviations such
as “m=n” for eq?(m,n) and “m≤n” for not(greater?(m,n)) from now on. The notion
of an unbounded array is presented as an abstract data type in the following
module:

module Arrays
imports Booleans, Naturals
exports

sorts Array
operations

newArray : Array
errorArray : Array
assign (_ , _ , _) : Array, Natural, Natural → Array
access (_ , _) : Array, Natural → Natural

end exports

variables
arr : Array
i, j, m : Natural

equations
[A1] access (newArray, i) = errorNatural
[A2] access (assign (arr, i, m), j) = if (i = j, m, access(arr,j))

when m≠errorNatural
end Arrays

The implementation of the ADT Queue using the ADT Array has the following
set of triples as its objects:

ArrayQ = { <arr,f,e> | arr : Array and f,e : Natural and f≤e }.

The operations over ArrayQ are defined as follows:

[AQ1] newAQ = <newArray,0,0>

[AQ2] addAQ (<arr,f,e>, m) = <assign(arr,e,m),f,e+1>

475

[AQ3] deleteAQ (<arr,f,e>) = if (f = e, <newArray,0,0>, <arr,f+1,e>)

[AQ4] frontAQ (<arr,f,e>) = if (f = e, errorNatural, access(arr,f))

[AQ5] isEmptyAQ (<arr,f,e>) = (f = e) when arr≠errorArray

The array queues are related to the abstract queues by a homomorphism,
called a representation function,

Φ : { ArrayQ,Natural,Boolean } → { Queue,Natural,Boolean },

defined on the objects and operations of the sort. We use the symbolic
terms “Φ(arr,f,e)” to represent the abstract queue objects in Queue.

For arr : Array, m : Natural, and b : Boolean,

Φ (<arr,f,e>) = Φ(arr,f,e) when f≤e

Φ (<arr,f,e>) = errorQueue when f>e

Φ (m) = m

Φ (b) = b

Φ (newAQ) = newQ

Φ (addAQ) = addQ

Φ (deleteAQ) = deleteQ

Φ (frontAQ) = frontQ

Φ (isEmptyAQ) = isEmptyQ

Under the homomorphism, the five equations that define operations for the
array queues map into five equations describing properties of the abstract
queues.

[D1] newQ = Φ(newArray,0,0)

[D2] addQ (Φ(arr,f,e), m) = Φ(assign(arr,e,m),f,e+1)

[D3] deleteQ (Φ(arr,f,e)) = if (f = e, Φ(newArray,0,0), Φ(arr,f+1,e))

[D4] frontQ (Φ(arr,f,e)) = if (f = e, errorNatural, access(arr,f))

[D5] isEmptyQ (Φ(arr,f,e)) = (f = e)

As an example, consider the image of [AQ2] under Φ.

Assume [AQ2] addAQ (<arr,f,e>,m) = <assign (arr,e,m),f,e+1>.

Then addQ (Φ(arr,f,e),m) = Φ(addAQ) (Φ(<arr,f,e>),Φ(m)>)

= Φ(addAQ (<arr,f,e>,m))

= Φ(assign(arr,e,m),f,e+1),

which is [D2].

12.3 USING ALGEBRAIC SPECIFICATIONS

476 CHAPTER 12 ALGEBRAIC SEMANTICS

The implementation is correct if its objects can be shown to satisfy the queue
axioms [Q1] to [Q6] for arbitrary queues of the form q = Φ(arr,f,e) with f≤e and
arbitrary elements m of Natural, given the definitions [D1] to [D5] and the
equations for arrays. First we need a short lemma.

Lemma : For any queue Φ(a,f,e) constructed using the operations of the imple-
mentation, f≤e.

Proof: The only operations that produce queues are newQ, addQ, and deleteQ,
the constructors in the signature. The proof is by induction on the number of
applications of these operations.

Basis : Since newQ = Φ(newArray,0,0), f≤e.

Induction Step : Suppose that Φ(a,f,e) has been constructed with n applica-
tions of the operations and that f≤e.

Consider a queue constructed with one more application of these functions,
for a total of n+1.

Case 1 : The n+1st
 operation is addQ.

But addQ (Φ(a,f,e),m) = Φ(assign (a,f,m), f, e+1) has f≤e+1.

Case 2 : The n+1st
 operation is deleteQ.

But deleteQ (Φ(a,f,e)) = if (f = e, Φ(arr,f,e), Φ(arr,f+1,e)).
If f=e, then f≤e, and if f<e, then f+1≤e. ❚

The proof of the lemma is an example of a general principle, called structural
induction because the induction covers all of the ways in which the objects
of the data type may be constructed (see the discussion of structural induc-
tion in Chapter 8). The goal is to prove a property that holds for all the values
of a particular sort, and the induction applies to those operations (the con-
structors) that produce elements of the sort. For the lemma, the constructors
for Queue consist of newQ, addQ, and deleteQ. The general principle can be
described as follows:

Structural Induction : Suppose f1, f2, …, fn are the operations that
act as constructors for an abstract data type S, and P is a property of
values of sort S. If the truth of P for all arguments of sort S for each fi
implies the truth of P for the results of all applications of fi that satisfy
the syntactic specification of S, it follows that P is true of all values of
the data type. The basis case results from those constructors with no
arguments—namely, the constants of sort S.

To enable the verification of [Q4] as part of proving the validity of this queue
implementation, it is necessary to extend Φ for the following values:

For any f : Natural and arr : Array, Φ(arr,f,f) = newQ.

This extension is consistent with definition [D1].

477

Verification of Queue Axioms

Let q = Φ(a,f,e) be an arbitrary queue and let m be an arbitrary element of
Natural.

[Q1] isEmptyQ (newQ) = isEmptyQ (Φ(newArray,0,0)) by [D1]
= (0 = 0) = true by [D5].

[Q2] isEmptyQ (addQ (Φ(arr,f,e),m))
= isEmptyQ (Φ(assign(arr,e,m),f,e+1) by [D2]
= (f = e+1) = false, since f≤e by [D5] and the lemma.

[Q3] deleteQ (newQ) = deleteQ (Φ(newArray,0,0)) by [D1]
= Φ(newArray,0,0) = newQ by [D3] and [D1].

[Q4] deleteQ (addQ (Φ(arr,f,e), m))
= deleteQ (Φ(assign(arr,e,m),f,e+1)) by [D2]
= Φ(assign(arr,e,m),f+1,e+1) by [D3].

Case 1 : f = e, that is, isEmptyQ (Φ(arr,f,e)) = true.
Then Φ(assign(arr,e,m),f+1,e+1) = newQ by [D1].

Case 2 : f < e, that is, isEmptyQ (Φ(arr,f,e)) = false.
Then Φ(assign(arr,e,m),f+1,e+1) = addQ (Φ(arr,f+1,e), m) by [D2]

= addQ (deleteQ (Φ(arr,f,e)), m) by [D3].

[Q5] frontQ (newQ) = frontQ (Φ(newArray,0,0)) by [D1]
= errorNatural since 0 = 0 by [D4].

[Q6] frontQ (addQ (Φ(arr,f,e), m)) = frontQ (Φ(assign(arr,e,m),f,e+1)) by [D2]
= access (assign(arr,e,m), f) by [D4].

Case 1 : f = e, that is, isEmptyQ (Φ(arr,f,e)) = true.
So access (assign(arr,e,m), f) = access (assign (arr,e,m), e) = m by [A2].

Case 2 : f < e, that is, isEmptyQ (Φ(arr,f,e)) = false.
Then access (assign (arr,e,m), f)= access (arr,f)

= frontQ (Φ(arr,f,e)) by [A2] and [D4].

Since the six axioms for the unbounded queue ADT have been verified, we
know that the implementation via the unbounded arrays is correct. ❚

ADTs As Algebras

In the previous section we defined Σ-algebras, the many-sorted algebras that
correspond to specifications with signature Σ. Now we apply some of the
results to the queue ADT. Recall that any signature Σ defines a Σ-algebra TΣ
of all the terms over the signature, and that by taking the quotient algebra Q
defined by the congruence based on the equations E of a specification, we get

12.3 USING ALGEBRAIC SPECIFICATIONS

478 CHAPTER 12 ALGEBRAIC SEMANTICS

an initial algebra that serves as the finest-grained model of a specification
<Σ,E>.

Example : An instance of the queue ADT has operations involving three sorts
of objects—namely, Natural, Boolean, and the type being defined, Queue. Some
authors designate the type being defined as the type of inter est. In this
context, a graphical notation has been suggested (see Figure 12.1) to define
the signatur e of the operations of the algebra.

newQ

addQdeleteQ

frontQisEmptyQ

NaturalQueueBoolean

Figure 12.1: Signature of Queues

The signature of the queue ADT defines a term algebra TΣ, sometimes called
a free word algebra , formed by taking all legal combinations of operations
that produce queue objects. The values in the sort Queue are those produced
by the constructor operations. For example, the following terms are elements
of TΣ (we use common abbreviations for natural numbers now, such as 5 for
succ(succ(succ(succ(succ(0))))):

newQ,

addQ (newQ,5), and

deleteQ (addQ (addQ (deleteQ (newQ),9),15)).

The term free for such an algebra means that the operations are combined in
any way satisfying the syntactic constraints, and that all such terms are
distinct objects in the algebra. The properties of an ADT are given by a set E
of equations or axioms that define identities among the terms of TΣ.

So the queue ADT is not a free algebra, since the axioms recognize certain
terms as being equal. For example:

deleteQ (newQ) = newQ and

deleteQ (addQ (addQ (deleteQ (newQ), 9), 15)) = addQ (newQ, 15).

479

The equations define a congruence ≡E on the free algebra of terms as de-
scribed in section 12.2. That equivalence relation defines a set of equivalence
classes that partition TΣ.

[t]E = { u∈TΣ | u ≡E t }

For example, [newQ]E = { newQ, deleteQ(newQ), deleteQ(deleteQ(newQ)), … }.

The operations of the ADT can be defined on these equivalence classes as in
the previous section:

For an n-ary operation f∈S and t1,t2,…,tn∈TΣ,
let fQ([t1],[t2],…,[tn]) = [f(t1,t2,…,tn)].

The resulting (quotient) algebra, also called TΣ,E, is the abstract data type
being defined. When manipulating the objects of the (quotient) algebra TΣ,E
the normal practice is to use representatives from the equivalence classes.

Definition : A canonical or normal for m for the terms in a quotient algebra
is a set of distinct representatives, one from each equivalence class. ❚

Lemma : For the queue ADT TΣ,E each term is equivalent to the value newQ or
to a term of the form addQ(addQ(…addQ(addQ(newQ,m1),m2),…),mn–1),mn) for
some n≥1 where m1,m2,…,mn : Natural.

Proof: The proof is by structural induction.

Basis : The only constant in TΣ is newQ, which is in normal form.

Induction Step : Consider a queue term t with more than one application of
the constructors (newQ, addQ, deleteQ), and assume that any term with fewer
applications of the constructors can be put into normal form.

Case 1 : t = addQ(q,m) will be in normal form when q, which has fewer con-
structors than t, is in normal form.

Case 2 : Consider t = deleteQ(q) where q is in normal form.

Subcase a : q = newQ. Then deleteQ(q) = newQ is in normal form.

Subcase b : q = addQ(p,m) where p is in normal form.

Then deleteQ(addQ(p,m)) = if (isEmptyQ(p), newQ,addQ(deleteQ(p),m)).

If p is empty, deleteQ(q) = newQ is in normal form.

If p is not empty, deleteQ(q) = addQ(deleteQ(p),m). Since deleteQ(p)
has fewer constructors than t, it can be put into normal form, so
that deleteQ(q) is in normal form. ❚

A canonical form for an ADT can be thought of as an “abstract implementa-
tion” of the type. John Guttag [Guttag78b] calls this a direct implementa-
tion and represents it graphically as shown in Figure 12.2.

12.3 USING ALGEBRAIC SPECIFICATIONS

480 CHAPTER 12 ALGEBRAIC SEMANTICS

addQ (addQ (addQ (newQ, 3), 5), 8) =

newQ = newQ

addQ

3

5

8

newQ

addQ

addQ

Figure 12.2: Direct Implementation of Queues

The canonical form for an ADT provides an effective tool for proving proper-
ties about the type.

Lemma : The representation function Φ that implements queues as arrays is
an onto function.

Proof: Since any queue can be written as newQ or as addQ(q,m), we need to
handle only these two forms. By [D1], Φ(newArray,0,0) = newQ.

Assume as an induction hypothesis that q = Φ(arr,f,e) for some array.
Then by [D2], Φ(assign(arr,e,m),f,e+1) = addQ (Φ(arr,f,e),m).

Therefore any queue is the image of some triple under the representation
function Φ. ❚

Given an ADT with signature Σ, operations in Σ that produce an element of
the type of interest have already been called constructors . Those operations
in Σ whose range is an already defined type of “basic” values are called selec-
tors . The operations of Σ are partitioned into two disjoint sets, Con the set of
constructors and Sel the set of selectors. The selectors for Queues are frontQ
and isEmptyQ.

Definition : A set of equations for an ADT is sufficiently complete if for each
ground term f(t1,t2,…,tn) where f∈Sel, the set of selectors, there is an element
u of a predefined type such that f(t1,t2,…,tn) ≡E u. This condition means there
are sufficient axioms to make the derivation to u.

Theorem: The equations in the module Queues are sufficiently complete.

Proof:
1. Every queue can be written in normal form as newQ or as addQ(q,m).

481

2. isEmptyQ(newQ) = true, isEmptyQ(addQ(q,m)) = false, frontQ(newQ) =
errorNatural, and frontQ(addQ(q,m)) = m or frontQ(q) (use induction). ❚

Abstract Syntax and Algebraic Specifications

Throughout the text we have emphasized the importance of abstract syntax
in the definition of programming language semantics. In particular, we have
stressed several points about abstract syntax:

• In a language definition we need to specify only the meaning of the syntac-
tic forms given by the abstract syntax, since this formalism furnishes all
the essential syntactic constructs in the language. Details in the concrete
syntax (BNF) may be ignored. No harm arises from an ambiguous abstract
syntax since its purpose is not syntactic analysis (parsing). Abstract syn-
tax need only delineate the structure of possible language constructs that
can occur in the programs to be analyzed semantically.

• The abstract syntax of a programming language may take many different
forms, depending on the semantic techniques that are applied to it. For
instance, the abstract syntax for structural operational semantics has little
resemblance to that for denotational semantics in its format.

The variety of abstract syntax and its tolerance of ambiguity raises questions
concerning the nature of abstract syntax and its relation to the language
defined by the concrete syntax. Answers to these questions can be found by
analyzing the syntax of programming languages in the context of algebraic
specifications.

To illustrate how a grammar can be viewed algebraically, we begin with a
small language of integer expressions whose concrete syntax is shown in
Figure 12.3.

<expr> ::= <term>

<expr> ::= <expr> + <term>

<expr> ::= <expr> – <term>

<term> ::= <element>

<term> ::= <term> * <element>

<element> ::= <identifier>

<element> ::= (<expr>)

Figure 12.3: Concrete Syntax for Expressions

To put this syntactic specification into an algebraic setting, we define a sig-
nature Σ that corresponds exactly to the BNF definition. Each nonterminal

12.3 USING ALGEBRAIC SPECIFICATIONS

482 CHAPTER 12 ALGEBRAIC SEMANTICS

becomes a sort in Σ, and each production becomes a function symbol whose
syntax captures the essence of the production. The signature of the concrete
syntax is given in the module Expressions.

module Expressions
exports

sorts Expression, Term, Element, Identifier
operations

expr (_) : Term → Expression
add (_ , _) : Expression, Term → Expression
sub (_ , _) : Expression, Term → Expression
term (_) : Element → Term
mul (_ , _) : Term, Element → Term
elem (_) : Identifier → Element
paren (_) : Expression → Element

end exports
end Expressions

Observe that the terminal symbols in the grammar are “forgotten” in the
signature since they are embodied in the unique names of the function sym-
bols. Now consider the collection of Σ-algebras following this signature. Since
the specification has no equations, the term algebra TΣ is initial in the collec-
tion of all Σ-algebras, meaning that for any Σ-algebra A, there is a unique
homomorphism h : TΣ → A. The elements of TΣ are terms constructed using
the function symbols in Σ. Since this signature has no constants, we assume
a set of constants of sort Identifier and represent them as structures of the
form ide(x) containing atoms as the identifiers. Think of these structures as
the tokens produced by a scanner. The expression “x * (y + z)” corresponds to
the following term in TΣ:

t = expr (mul (term (elem (ide(x))),

paren (add (expr (term (elem (ide(y)))),

term (elem (ide(z))))))).

Constructing such a term corresponds to parsing the expression. In fact, the
three algebras, the term algebra TΣ, the collection of expressions satisfying
the BNF definition, and the collection of parse (derivation) trees of expres-
sions are isomorphic. Consider the two trees in Figure 12.4. The one on the
left is the derivation tree for “x * (y + z)”, and the other one represents its
associated term in TΣ.

483

<element>

<identifier>

expr

mul

term

add

paren

expr term

term

elem

ide

x

y

z

<expression>

<term>

<element>

<expression>

<element>

<identifier>

z

<term><expression>

<term>

<element>

y

<identifier>

*

+

()

x

<term>

elem

elem

ide

ide

Figure 12.4: Derivation Tree and Algebraic Term

If the concrete syntax of a programming language coincides with the initial
term algebra of a specification with signature Σ, what does its abstract syn-
tax correspond to? Consider the following algebraic specification of abstract
syntax for the expression language.

module AbstractExpressions
exports

sorts AbstractExpr, Symbol
operations

plus (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
minus (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
times (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
ide (_) : Symbol → AbstractExpr

end exports
end AbstractExpressions

Employing the set Symbol of symbolic atoms used as identifiers in the ex-
pression language, we can construct terms with the four constructor func-
tion symbols in the AbstractExpressions module to represent the abstract
syntax trees for the language. These freely constructed terms form a term
algebra, call it A, according to the signature of AbstractExpressions. In addi-

12.3 USING ALGEBRAIC SPECIFICATIONS

484 CHAPTER 12 ALGEBRAIC SEMANTICS

tion, A also serves as a model of the specification in the Expressions module;
that is, A is a Σ-algebra as evidenced by the following interpretation of the
sorts and function symbols:

ExpressionA = TermA = ElementA = AbstractExpr

IdentifierA = { ide(x) | x : Symbol }.

Operations:

exprA : AbstractExpr → AbstractExpr
defined by exprA (e) = e

addA : AbstractExpr, AbstractExpr → AbstractExpr
defined by addA (e1,e2) = plus(e1,e2)

subA : AbstractExpr, AbstractExpr → AbstractExpr
defined by subA (e1,e2) = minus(e1,e2)

termA : AbstractExpr → AbstractExpr
defined by termA (e) = e

mulA : AbstractExpr, AbstractExpr → AbstractExpr
defined by mulA (e1,e2) = times(e1,e2)

elemA : Identifier → AbstractExpr
defined by elemA (e) = e

parenA: AbstractExpr → AbstractExpr
defined by parenA (e) = e

Under this interpretation of the symbols in Σ, the term t, shown in Figure
12.4, becomes a value in the Σ-algebra A:

tA = (expr (mul (term (elem (ide(x))),
paren (add (expr (term(elem (ide(y)))), term (elem (ide(z))))))))A

= exprA (mulA (termA (elemA (ide(x))),
parenA (addA (exprA (termA (elemA (ide(y)))), termA(elemA (ide(z)))))))

= exprA (mulA (termA (ide(x)),
parenA (addA (exprA (termA (ide(y))), termA (ide(z))))))

= exprA (mulA (ide(x), parenA (addA (exprA (ide(y)), ide(z)))))

= mulA (ide(x), addA (ide(y), ide(z)))

= times (ide(x), plus (ide(y), ide(z)))

The last term in this evaluation represents the abstract syntax tree in A that
corresponds to the original expression “x * (y + z)”.

Each version of abstract syntax is a Σ-algebra for the signature associated
with the grammar that forms the concrete syntax of the language. Further-

485

more, any Σ-algebra serving as an abstract syntax is a homomorphic image
of TΣ, the initial algebra for the specification with signature Σ. Generally, Σ-
algebras acting as abstract syntax will contain confusion; the homomorphism
from TΣ will not be one-to-one. This confusion reflects the abstracting pro-
cess: By confusing elements in the algebra, we are suppressing details in the
syntax. The expressions “x+y” and “(x+y)”, although distinct in the concrete
syntax and in TΣ, are indistinguishable when mapped to plus(ide(x),ide(y)) in A.

Any Σ-algebra for the signature resulting from the concrete syntax can serve
as the abstract syntax for some semantic specification of the language, but
many such algebras will be so confused that the associated semantics will be
trivial or absurd. The task of the semanticist is to choose an appropriate Σ-
algebra that captures the organization of the language in such a way that
appropriate semantics can be attributed to it.

Exercises

1. Define suitable canonical forms for the following ADTs, and prove their
correctness:

a) Unbounded Array

b) Stack of natural numbers

2. Define a parameterized module for queues in which the items in the
queues are unspecified until the module is instantiated. Give an
instantiation of the module.

3. Define a module that specifies the integers including operations for suc-
cessor, predecessor, addition, equality, and less than. Determine the
form of canonical terms for the (initial) quotient algebra for the specifi-
cation, proving that the forms chosen are adequate.

4. Determine the form of canonical terms for the (initial) quotient algebra
generated by the following module that specifies lists of natural num-
bers. Prove that the canonical forms are sufficient and argue that the
choice is minimal.

module NatLists
imports Booleans, Naturals
exports
sorts List
functions

emptyList : List
mkList (_) : Natural → List
concat (_ , _) : List, List → List

12.3 USING ALGEBRAIC SPECIFICATIONS

486 CHAPTER 12 ALGEBRAIC SEMANTICS

consL (_ , _) : Natural, List → List
consR (_ , _) : List, Natural → List
empty? (_) : List → Boolean
length (_) : List → Natural

end exports

variables
s, s1, s2, s3 : List
m : Natural

equations
[NL1] concat (s, emptyList) = s
[NL2] concat (emptyList, s) = s
[NL3] concat (concat (s1, s2), s3) = concat (s1, concat (s2, s3))
[NL4] consL (m, s) = concat (mkList (m), s)
[NL5] consR (s, m) = concat (s, mkList (m))
[NL6] empty? (emptyList) = true
[NL7] empty? (mkList (m)) = false when m ≠ errorNatural
[NL8] empty? (concat (s1, s2)) = and (empty? (s1), empty? (s2))
[NL9] length (emptyList) = 0
[NL10] length (mkList (m)) = 1 when m ≠ errorNatural
[NL11] length (concat (s1, s2)) = add (length (s1), length (s2))

end NatLists

5. Define alternate abstract syntax for the expression language by specify-
ing a signature with a module and an Σ-algebra for the signature Σ of
Expressions that does the following:

a) Describes only the structure of an expression, so that the abstract
syntax tree for “x * (y + z)” is opr (ide(x), opr (ide(y), ide(z))).

b) Identifies only the first identifier in an expression, so that the ab-
stract syntax tree for “x * (y + z)” is ide(x).

6. Specify modules for the concrete syntax and the abstract syntax of Wren
as described in Chapter 1 and show how its term algebra of the abstract
syntax module can be interpreted as a Σ-algebra for the signature of the
module for the concrete syntax.

487

12.4 ALGEBRAIC SEMANTICS FOR WREN

We have seen that there are many aspects in specifying the syntax and se-
mantics of a programming language. In Chapter 1 we studied BNF and its
variants; in Chapter 2 we built a lexical analyzer and parser for Wren. Con-
text checking was demonstrated using three approaches: attribute gram-
mars (Chapter 3), two-level grammars (Chapter 4), and denotational seman-
tics (Chapter 9). Programming language semantics has been handled in a
variety of ways: self-definition (Chapter 6), translational semantics (Chapter
7), structural operational semantics (Chapter 8), denotational semantics
(Chapter 9), and axiomatic semantics (Chapter 11). Each technique has its
strengths and weaknesses. For example, denotational semantics can per-
form type checking and program interpretation, but it does not stress lexical
analysis and parsing beyond the abstract production rules. Axiomatic se-
mantics does not deal with lexical analysis, parsing, or type checking. Most
techniques rely on knowledge of well-known domains, such as truth values
with logical operations or numbers with arithmetic operations.

Of the techniques studied so far, algebraic semantics is perhaps the most
versatile in its ability to perform all of the functions mentioned above. Mod-
ules can be developed to perform lexical analysis, parsing, type checking and
language evaluation. Basic domains, such as truth values, natural numbers,
and characters, are carefully specified using fundamental concepts, such as
zero and the successor function for natural numbers. The initial algebras
constructed as quotient algebras represent the meaning of these domains,
apart from the renaming of constants and functions. Because of the length of
a complete presentation, we elect not to develop the lexical analyzer and
parser for Wren using algebraic specifications. See [Bergstra89] for the miss-
ing specification techniques. Rather, we concentrate on showing how the
methodology can be used to perform type checking and program interpreta-
tion. In particular, we develop the following modules:

• WrenTypes specifies the allowed types for Wren programs.

• WrenValues specifies the permissible value domains.

• WrenASTs specifies the output of the parser, the abstract syntax trees.

• WrenTypeChecker returns a Boolean value resulting from context checking.

• WrenEvaluator interprets a Wren program given an input file.

• WrenSystem calls the evaluator if type checking is successful.

For simplicity, we have limited the domain of arithmetic values to natural
numbers. To reduce the complexity of the example, declarations allow only a
single identifier. Boolean variables can be declared, but we leave their ma-
nipulation as an exercise at the end of this section. We also leave the han-

12.4 ALGEBRAIC SEMANTICS FOR WREN

488 CHAPTER 12 ALGEBRAIC SEMANTICS

dling of runtime errors, such as division by zero and reading from an empty
file, as an exercise. Since nonterminating programs cause technical difficul-
ties in an algebraic specification, we plan to describe only computations (pro-
grams and input) that terminate. We want our equations for the Wren evalu-
ator to be sufficiently complete; that is, every program and input list can be
reduced to an equivalent term in the sort of lists of natural numbers (output
lists). We lose the property of sufficient completeness when we include con-
figurations that produce nonterminating computations.

Types and Values in Wren

The first module, WrenTypes, specifies four constant functions, naturalType,
booleanType, programType, and errorType, along with a single Boolean opera-
tion to test the equality of two types.

module WrenTypes
imports Booleans
exports

sorts WrenType
operations

naturalType : WrenType
booleanType : WrenType
programType : WrenType
errorType : WrenType
eq? (_ , _) : WrenType, WrenType → Boolean

end exports

variables
t, t1, t2 : WrenType

equations
[Wt1] eq? (t, t) = true when t≠errorType
[Wt2] eq? (t1, t2) = eq? (t2,t1)
[Wt3] eq? (naturalType, booleanType) = false
[Wt4] eq? (naturalType, programType) = false
[Wt5] eq? (naturalType, errorType) = false
[Wt6] eq? (booleanType, programType) = false
[Wt7] eq? (booleanType, errorType) = false
[Wt8] eq? (programType, errorType) = false

end WrenTypes

The next module, WrenValues, specifies three functions for identifying natu-
ral numbers, Boolean values, and an error value. These function symbols
perform the same role as the tags in a disjoint union. Two values are equal
only if they come from the same domain and if they are equal in that domain.

489

module WrenValues
imports Booleans, Naturals
exports

sorts WrenValue
operations

wrenValue (_) : Natural → WrenValue
wrenValue (_) : Boolean → WrenValue
errorValue : WrenValue
eq? (_ , _) : WrenValue, WrenValue → Boolean

end exports

variables
x, y : WrenValue
n, n1, n2 : Natural
b, b1, b2 : Boolean

equations
[Wv1] eq? (x, y) = eq? (y,x)
[Wv2] eq? (wrenValue(n1), wrenValue(n2)) = eq? (n1,n2)
[Wv3] eq? (wrenValue(b1), wrenValue(b2)) = eq? (b1,b2)
[Wv4] eq? (wrenValue(n), wrenValue(b)) = false

when m ≠ errorNatural, b ≠ errorBoolean
[Wv5] eq? (wrenValue(n), errorValue) = false when n ≠ errorNatural
[Wv6] eq? (wrenValue(b), errorValue) = false when b ≠ errorBoolean

end WrenValues

Abstract Syntax for Wren

The abstract syntax tree module specifies the form of a Wren program that
has been parsed successfully. As noted previously, we show only the struc-
ture of the abstract syntax trees, not how they are constructed.

module WrenASTs
imports Naturals, Strings, WrenTypes
exports

sorts WrenProgram, Block, DecSeq, Declaration,
CmdSeq, Command, Expr, Ident

operations
astWrenProgram (_ , _) : Ident, Block → WrenProgram
astBlock (_ , _) : DecSeq, CmdSeq → Block
astDecs (_ , _) : Declaration, DecSeq → DecSeq
astEmptyDecs : DecSeq
astDec (_ , _) : Ident, WrenType → Declaration

12.4 ALGEBRAIC SEMANTICS FOR WREN

490 CHAPTER 12 ALGEBRAIC SEMANTICS

astCmds (_ , _) : Command, CmdSeq → CmdSeq
astOneCmd (_) : Command → CmdSeq
astRead (_) : Ident → Command
astWrite (_) : Expr → Command
astAssign (_ , _) : Ident, Expr → Command
astSkip : Command
astWhile (_ , _) : Expr, CmdSeq → Command
astIfThen (_ , _) : Expr, CmdSeq → Command
astIfElse (_ , _ , _) : Expr, CmdSeq, CmdSeq → Command
astAddition (_ , _) : Expr, Expr → Expr
astSubtraction (_ , _) : Expr, Expr → Expr
astMultiplication (_ , _) : Expr, Expr → Expr
astDivision (_ , _) : Expr, Expr → Expr
astEqual (_ , _) : Expr, Expr → Expr
astNotEqual (_ , _) : Expr, Expr → Expr
astLessThan (_ , _) : Expr, Expr → Expr
astLessThanEqual (_ , _) : Expr, Expr → Expr
astGreaterThan (_ , _) : Expr, Expr → Expr
astGreaterThanEqual (_ , _) : Expr, Expr → Expr
astVariable (_) : Ident → Expr
astNaturalConstant (_) : Natural → Expr
astIdent (_) : String → Ident

end exports
end WrenASTs

If we define a module for the concrete syntax of Wren based on its BNF speci-
fication, an algebra modeling WrenASTs will be a homomorphic image of the
term algebra over that concrete syntax.

A Type Checker for Wren

The WrenTypeChecker module exports an overloaded function check that re-
turns a Boolean result indicating if the context conditions are satisfied. Call-
ing check with a declaration sequence performs an additional vital function:
It builds the symbol table that associates names with types.

module WrenTypeChecker
imports Booleans, WrenTypes, WrenASTs,

instantiation of Mappings
bind Entries using String for Domain

using WrenType for Range

using eq? for equals

491

using errorString for errorDomain

using errorType for errorRange

rename using SymbolTable for Mapping

using nullSymTab for emptyMap
exports

operations
check (_) : WrenProgram → Boolean
check (_ , _) : Block, SymbolTable → Boolean
check (_ , _) : DecSeq, SymbolTable → Boolean, SymbolTable
check (_ , _) : Declaration, SymbolTable → Boolean, SymbolTable
check (_ , _) : CmdSeq, SymbolTable → Boolean
check (_ , _) : Command, SymbolTable → Boolean

end exports

operations
typeExpr : Expr, SymbolTable → WrenType

variables
block : Block
decs : DecSeq
dec : Declaration
cmds, cmds1, cmds2 : CmdSeq
cmd : Command
expr, expr1, expr2 : Expr
type : WrenType
symtab, symtab1 : SymbolTable
m : Natural
name : String
b, b1, b2 : Boolean

equations
[Tc1] check (astWrenProgram (astIdent (name), block))

= check (block, update(nullSymTab, name, programType))

[Tc2] check (astBlock (decs, cmds), symtab)
= and (b1,b2)

when <b1,symtab1> = check (decs, symtab),
 b2 = check (cmds, symtab1),

[Tc3] check (astDecs (dec, decs), symtab)
= <and (b1,b2), symtab2>

when <b1,symtab1> = check (dec, symtab),
<b2,symtab2> = check (decs, symtab1)

12.4 ALGEBRAIC SEMANTICS FOR WREN

492 CHAPTER 12 ALGEBRAIC SEMANTICS

[Tc4] check (astEmptyDecs, symtab)
= <true, symtab>

[Tc5] check (astDec (astIdent (name), type), symtab)
= if (apply (symtab, name) = errorType,

<true, update(symtab, name, type)>,
<false, symtab>)

[Tc6] check (astCmds (cmd, cmds), symtab)
= and (check (cmd, symtab), check (cmds, symtab))

[Tc7] check (astOneCmd (cmd), symtab)
= check (cmd, symtab)

[Tc8] check (astRead (astIdent (name)), symtab)
= eq?(apply (symtab, name), naturalType)

[Tc9] check (astWrite (expr, symtab)
= eq? (typeExpr (expr, symtab), naturalType)

[Tc10] check (astAssign (astIdent (name), expr), symtab)
= eq? (apply(symtab, name), typeExpr (expr, symtab))

[Tc11] check (astSkip, symtab)
= true

[Tc12] check (astWhile (expr, cmds), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

check (cmds, symtab),
false)

[Tc13] check (astIfThen (expr, cmds), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

check (cmds, symtab),
false)

[Tc14] check (astIfElse (expr, cmds1, cmds2), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

and (check (cmds1, symtab), check (cmds2, symtab)),
false)

[Tc15] typeExpr (astAddition (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

493

[Tc16] typeExpr (astSubtraction (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc17] typeExpr (astMultiplication (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc18] typeExpr (astDivision (expr1, expr2), symtab)
= if (and(eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc19] typeExpr (astEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc20] typeExpr (astNotEqual (expr1,expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc21] typeExpr (astLessThan (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc22] typeExpr (astLessThanEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc23] typeExpr (astGreaterThan (expr1,expr2),symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

12.4 ALGEBRAIC SEMANTICS FOR WREN

494 CHAPTER 12 ALGEBRAIC SEMANTICS

[Tc24] typeExpr (astGreaterThanEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc25] typeExpr (astNaturalConstant (m), symtab)
= naturalType

[Tc26] typeExpr (astVariable (astIdent(name)), symtab)
= apply (symtab, name)

end WrenTypeChecker

Most of the type-checking equations are self-evident; we point out only gen-
eral features here. Equations [Tc1], [Tc3], and [Tc5] build the symbol table
from the declarations while ensuring that no identifier is declared twice. [Tc1]
adds the program name with programType to the table. Most of the equations
for commands pass the symbol table information along for checking at lower
levels. The following equations perform the actual type checking:

[Tc5] No identifier is declared more than once.

[Tc8] The variable in a read command has naturalType.

[Tc9] The expression in a write command has naturalType.

[Tc10] The assignment target variable and expression have the same type.

[Tc12-14] The expressions in while and if commands have booleanType.

[Tc15-18] Arithmetic operations involve expressions of naturalType.

[Tc19-24] Comparisons involve expressions of naturalType.

An Interpreter for Wren

The WrenEvaluator module is used to specify semantic functions that give
meaning to the constructs of Wren. The top-level function meaning takes a
Wren program and an input file and returns the output file resulting from
executing the program. We assume that the output file is initially empty. The
declaration sequence builds a store that associates each declared variable
with an initial value, zero for naturalType and false for booleanType. Commands
use the current store, input file, and output file to compute a new store, a
new input file, and a new output file. Evaluating an expression produces a
WrenValue.

495

module WrenEvaluator

imports Booleans, Naturals, Strings, Files, WrenValues, WrenASTs,
instantiation of Mappings

bind Entries using String for Domain
using WrenValue for Range
using eq? for equals
using errorString for errorDomain
using errorValue for errorRange

rename using Store for Mapping
using emptySto for emptyMap
using updateSto for update
using applySto for apply

exports
operations

meaning (_ , _) : WrenProgram, File → File
perform (_ , _) : Block, File → File
elaborate (_ , _) : DecSeq, Store → Store
elaborate (_ , _) : Declaration, Store → Store
execute (_ , _ , _ , _) : CmdSeq, Store, File, File → Store, File, File
execute (_ , _ , _ , _) : Command, Store, File, File → Store, File, File
evaluate (_ , _) : Expr, Store → WrenValue

end exports

variables
input, input1, input2 : File
output, output1, output2 : File
block : Block
decs : DecSeq
cmds, cmds1, cmds2 : CmdSeq
cmd : Command
expr, expr1, expr2 : Expr
sto, sto1, sto2 : Store
value : WrenValue
m,n : Natural
name : String
b : Boolean

equations
[Ev1] meaning (astWrenProgram (astIdent (name), block), input)

= perform (block, input)

[Ev2] perform (astBlock (decs,cmds), input)
= execute (cmds, elaborate (decs, emptySto), input, emptyFile)

12.4 ALGEBRAIC SEMANTICS FOR WREN

496 CHAPTER 12 ALGEBRAIC SEMANTICS

[Ev3] elaborate (astDecs (dec, decs), sto)
= elaborate (decs,elaborate(dec, sto))

[Ev4] elaborate (astEmptyDecs, sto)
= sto

[Ev5] elaborate (astDec (astIdent (name), naturalType), sto)
= updateSto(sto, name, wrenValue(0))

[Ev6] elaborate (astDec (astIdent (name), booleanType), sto)
= updateSto(sto, name, wrenValue(false))

[Ev7] execute (astCmds (cmd, cmds), sto1, input1, output1)
= execute (cmds, sto2, input2, output2)
when <sto2, input2, output2> = execute (cmd, sto1, input1, output1)

[Ev8] execute (astOneCmd (cmd), sto, input, output)
= execute (cmd, sto, input, output)

[Ev9] execute (astSkip, sto, input, output)
= <sto, input, output>

[Ev10] execute (astRead(astIdent (name)), sto, input, output)
= if (empty? (input),

error case left as an exercise
<updateSto(sto, name, first), rest, output>)

when input = cons(first,rest)

[Ev11] execute (astWrite (expr), sto, input, output)
= <sto, input, concat (output, mkFile (evaluate (expr, sto)))>

[Ev12] execute (astAssign (astIdent (name), expr), sto, input, output)
= <updateSto(sto, name, evaluate (expr, sto)), input, output>

[Ev13] execute (astWhile (expr, cmds), sto1, input1, output1)
= if (eq? (evaluate (expr, sto1), wrenValue(true))

execute (astWhile(expr, cmds), sto2, input2, output2)
when <sto2, input2, output2> =

 execute (cmds, sto1, input1, output1),
<sto1, input1, output1>)

[Ev14] execute (astIfThen (expr, cmds), sto, input, output)
= if (eq? (evaluate (expr, sto), wrenValue(true))

execute (cmds, sto, input, output),
<sto, input, output>)

[Ev15] execute (astIfElse (expr, cmds1, cmds2), sto, input, output)
= if (eq? (evaluate (expr, sto), wrenValue(true))

execute (cmds1, sto, input, output)
execute (cmds2, sto, input, output))

497

[Ev16] evaluate (astAddition (expr1, expr2), sto)
= wrenValue(add (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev17] evaluate (astSubtraction (expr1, expr2), sto)
= wrenValue(sub (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev18] evaluate (astMultiplication (expr1, expr2), sto)
= wrenValue(mul (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev19] evaluate (astDivision (expr1, expr2), sto)
= wrenValue(div (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev20] evaluate (astEqual (expr1, expr2), sto)
= wrenValue(eq? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev21] evaluate (astNotEqual (expr1, expr2), sto)
= wrenValue(not (eq? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev22] evaluate (astLessThan (expr1, expr2), sto)
= wrenValue(less? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev23] evaluate (astLessThanEqual (expr1, expr2), sto)
= wrenValue(not(greater? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev24] evaluate (astGreaterThan (expr1, expr2), sto)
= wrenValue(greater? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

12.4 ALGEBRAIC SEMANTICS FOR WREN

498 CHAPTER 12 ALGEBRAIC SEMANTICS

[Ev25] evaluate (astGreaterThanEqual (expr1, expr2), sto)
= wrenValue(not(less? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, st)

[Ev26] evaluate (astNaturalConstant (m), sto)

= wrenValue(m)

[Ev27] evaluate (astVariable (astIdent (name)), sto)
= applySto (sto, name)

end WrenEvaluator

Each equation should be self-explanatory. Observe that [Ev10] is incomplete,
as we have only indicated that error handling is needed for reading from an
empty file. Also [Ev17] might cause an error when a larger number is sub-
tracted from a smaller number, or [Ev19] when any number is divided by
zero. We have elected not to show this error handling since it requires modi-
fications to almost all equations to propagate the error to the top level, and
this introduces unwanted complexity. Two exercises deal with alternative
error-handling techniques.

A Wren System

Our final module, WrenSystem, invokes the type checker and, if it succeeds,
calls the evaluator. If type checking fails, the empty file is returned. Remem-
ber that we have assumed the program interpretation completes success-
fully to avoid technical issues relating to sufficient completeness.

module WrenSystem
imports WrenTypeChecker, WrenEvaluator
exports

operations
runWren : WrenProgram, File → File

end exports

variables
input : File
program : WrenProgram

equations
[Ws1] runWren (program, input) = if (check (program),

meaning (program, input),
emptyFile)

-- return an empty file if context violation, otherwise run program
end WrenSystem

499

This completes the development of an algebraic specification for Wren. In the
next section, we implement part of this specification in Prolog.

Exercises

1. What changes, if any, would be needed in the modules presented in this
section if an Integers module were used in place of a Naturals module?

2. Complete the syntactic and semantic functions and equations for Bool-
ean expressions. The comparisons given in this section will be only one
possible alternative for a Boolean expression.

3. One technique of error handling is to assign default values such as zero
when an item is read from an empty file. For division by zero, consider
introducing a constant representing a maximum allowed natural num-
ber. Assuming WordSize is imported from a module called
ComputerSystem, how can such a value be defined? Indicate by revising
the equations how all arithmetic operations have to guard against ex-
ceeding such a value.

4. Halting evaluation due to a fatal runtime error, such as reading from an
empty file or division by zero, is difficult to specify. Briefly indicate how
this problem can be handled by returning a Boolean value (in addition
to other values) to indicate whether each operation is successful.

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

As with other semantic definitions, algebraic specifications can be translated
directly into Prolog. In the development presented in this section, we assume
that the lexical analyzer and parser given in Chapter 2 provide input to the
interpreter. The user is asked to specify a file containing a Wren program and
an input file (a list of natural numbers). Interpreting the program produces
the output file. Numerals in the input file are translated into natural number
notation for processing, and when a write statement is encountered, values
in natural number notation are translated to base-ten numerals.

We show the implementation of three modules: Booleans, Naturals, and
WrenEvaluator. We have not translated identifier names into the Strings no-
tation based on a Characters module; these modules are left as an exercise
at the end of this section. Implementation of the modules for Files and Map-
pings is also left as an exercise. Observe that we have no mechanism for
implementing generic modules, such as Lists, in Prolog, so we simply imple-

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

500 CHAPTER 12 ALGEBRAIC SEMANTICS

ment the instantiated modules directly. Finally, we have not implemented
the WrenTypeChecker; that project has also been left as an exercise.

Before examining the implementations of the modules, we inspect the ex-
pected behavior of the system, including the output of the parser to remind
us of the format produced by the language-processing system. This program
converts a list of binary digits into the corresponding decimal number using
any integer greater than 1 to terminate the list.

>>> Interpreting Wren via Algebraic Semantics <<<
Enter name of source file: frombinary.wren
 program frombinary is
 var sum,n : integer;
 begin
 sum := 0; read n;
 while n<2 do
 sum := 2*sum+n; read n
 end while;
 write sum
 end
Scan successful
Parse successful
prog([dec(integer,[sum,n])],
 [assign(sum,num(0)),read(n),
 while(exp(less,ide(n),num(2)),
 [assign(sum,exp(plus,exp(times,num(2),ide(sum)),ide(n))),
 read(n)]),
 write(ide(sum))])
Enter an input list followed by a period: [1,0,1,0,1,1,2].
Output = [43]
yes

Module Booleans

The implementation of the module Booleans includes the constants true and
false and the functions not, and, or, xor, and beq (note the name change to
avoid confusion with equality in the Naturals module).

boolean(true).
boolean(false).

bnot(true, false).
bnot(false, true).

501

and(true, P, P).
and(false, true, false).
and(false, false, false).

or(false,P,P).
or(true,P,true) :- boolean(P).

xor(P, Q, R) :- or(P,Q,PorQ), and(P,Q,PandQ),
bnot(PandQ,NotPandQ), and(PorQ,NotPandQ, R).

beq(P, Q, R) :- xor(P,Q,PxorQ), bnot(PxorQ,R).

We have followed the specifications given in the module Booleans closely
except for the direct definition of or. We misspell not as bnot to avoid conflict
with the predefined predicate for logical negation that may exist in some
Prolog implementations.

Module Naturals

The implementation of Naturals follows directly from the algebraic specifica-
tion. The predicate natural succeeds with arguments of the form

zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))), and so on.

Calling this predicate with a variable, such as natural(M), generates the natu-
ral numbers in this form if repeated solutions are requested by entering a
semicolon after each successful answer to the query.

natural(zero).
natural(succ(M)) :- natural(M).

The arithmetic functions follow the algebraic specification. Rather than re-
turn an error value for subtraction of a larger number from a smaller num-
ber or for division by zero, we print an appropriate error message and abort
the program execution. The comparison operations follow directly from their
definitions. Observe how the conditions in the specifications are handled in
the Prolog clauses. We give a definition of the exponentiation operation now
for completeness.

add(M, zero, M) :- natural(M).
add(M, succ(N), succ(R)) :- add(M,N,R).

sub(zero, succ(N), R) :- write('Error: Result of subtraction is negative'), nl, abort.
sub(M, zero, M) :- natural(M).
sub(succ(M), succ(N), R) :- sub(M,N,R).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

502 CHAPTER 12 ALGEBRAIC SEMANTICS

mul(M, zero, zero) :- natural(M).
mul(M, succ(zero), M) :- natural(M).
mul(M, succ(succ(N)), R) :- mul(M,succ(N),R1), add(M,R1,R).

div(M, zero, R) :- write('Error: Division by zero'), nl, abort.
div(M, succ(N), zero) :- less(M,succ(N),true).
div(M,succ(N),succ(Quotient)) :- less(M,succ(N),false),

sub(M,succ(N),Dividend),
div(Dividend,succ(N),Quotient).

exp(succ(M), zero, succ(zero)) :- natural(M).
exp(M, succ(zero), M) :- natural(M).
exp(M, succ(N), R) :- exp(M,N,MexpN), mul(M, MexpN, R).

eq(zero,zero,true).
eq(zero,succ(N),false) :- natural(N).
eq(succ(M),zero,false) :- natural(M).
eq(succ(M),succ(N),BoolValue) :- eq(M,N,BoolValue).

less(zero,succ(N),true) :- natural(N).
less(M,zero,false) :- natural(M).
less(succ(M),succ(N),BoolValue) :- less(M,N,BoolValue).

greater(M,N,BoolValue) :- less(N,M,BoolValue).

lesseq(M,N,BoolValue) :- less(M,N,B1), eq(M,N,B2), or(B1,B2,BoolValue).

greatereq(M,N,BoolValue) :- greater(M,N,B1), eq(M,N,B2), or(B1,B2,BoolValue).

We add two operations not specified in the Naturals module that convert
base-ten numerals to natural numbers as defined in the module Naturals
using successor notation and vice versa. Specifically, toNat converts a nu-
meral to natural notation and toNum converts a natural number to a base-
ten numeral. For example, toNat(4,Num) returns Num = succ (succ (succ (succ
(zero)))).

toNat(0,zero).
toNat(Num, succ(M)) :- Num>0, NumMinus1 is Num-1, toNat(NumMinus1, M).

toNum(zero,0).
toNum(succ(M),Num) :- toNum(M,Num1), Num is Num1+1.

503

Declarations

The clauses for elaborate are used to build a store with numeric variables
initialized to zero and Boolean variables initialized to false.

elaborate([Dec|Decs],StoIn,StoOut) :- % Ev3
elaborate(Dec,StoIn,Sto),
elaborate(Decs,Sto,StoOut).

elaborate([],Sto,Sto). % Ev4

elaborate(dec(integer,[Var]),StoIn,StoOut) :- % Ev5
updateSto(StoIn,Var,zero,StoOut).

elaborate(dec(boolean,[Var]),StoIn,StoOut) :- % Ev6
updateSto(StoIn,Var,false,StoOut).

Commands

For a sequence of commands, the commands following the first command
are evaluated with the store produced by the first command. The Prolog code
is simpler if we allow an empty command sequence as the base case.

execute([Cmd|Cmds],StoIn,InputIn,OutputIn, %Ev7
StoOut,InputOut,OutputOut) :-

execute(Cmd,StoIn,InputIn,OutputIn,Sto,Input,Output),
execute(Cmds,Sto,Input,Output,StoOut,InputOut,OutputOut).

execute([],Sto,Input,Output,Sto,Input,Output). % Ev8

The read command removes the first item from the input file, converts it to
natural number notation, and places the result in the store. The write com-
mand evaluates the expression, converts the resulting value from natural
number notation to a numeric value, and appends the result to the end of
the output file.

execute(read(Var),StoIn,emptyFile,Output,StoOut,_,Output) :- % Ev10
write(‘Fatal Error: Reading an empty file’), nl, abort.

execute(read(Var),StoIn,[FirstIn|RestIn],Output,StoOut,RestIn,Output) :- % Ev10
toNat(FirstIn,Value),
updateSto(StoIn,Var,Value,StoOut).

execute(write(Expr),Sto,Input,OutputIn,Sto,Input,OutputOut) :- % Ev11
evaluate(Expr,StoIn,ExprValue),
toNum(ExprValue,Value),
mkFile(Value,ValueOut),
concat(OutputIn,ValueOut,OutputOut).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

504 CHAPTER 12 ALGEBRAIC SEMANTICS

Assignment evaluates the expression using the current store and then up-
dates that store to reflect the new binding. The skip command makes no
changes to the store or to the files.

execute(assign(Var,Expr),StoIn,Input,Output,StoOut,Input,Output) :- % Ev12
evaluate(Expr,StoIn,Value).
updateSto(StoIn,Var,Value,StoOut).

execute(skip,Sto,Input,Output,Sto,Input,Output). % Ev9

The two forms of if commands test the Boolean expressions and then let a
predicate select carry out the appropriate actions. Observe how the one-al-
ternative if command passes an empty command sequence to select. If the
comparison in the while command is false, the store and files are returned
unchanged. If the comparison is true, the while command is reevaluated
with the store and files resulting from the execution of the while loop body.
These commands are implemented with auxiliary predicates, select and iter-
ate, to minimize the amount of backtracking the system must do.

execute(if(Expr,Cmds),StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev14
select(BoolVal,Cmds,[],StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

execute(if(Expr,Cmds1,Cmds2),StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev15
select(BoolVal,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

select(true,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds1,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

select(false,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

execute(while(Expr,Cmds),StoIn,InputIn,OutputIn, StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev13
iterate(BoolVal,Expr,Cmds,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

iterate(true,Expr,Cmds,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds,StoIn,InputIn,OutputIn,Sto,Input,Output),
execute(while(Expr,Cmds),Sto,Input,Output,StoOut,InputOut,OutputOut).

iterate(false,Expr,Cmds,Sto,Input,Output,Sto,Input,Output).

505

Expressions

The evaluation of arithmetic expressions is straightforward. Addition is shown
below; the other three operations are left as exercises. Evaluating a variable
involves looking up the value in the store. A numeric constant is converted to
natural number notation and returned.

evaluate(exp(plus,Expr1,Expr2),Sto,Result) :- % Ev16
evaluate(Expr1,Sto,Val1),
evaluate(Expr2,Sto,Val2),
add(Val1,Val2,Result).

evaluate(num(Constant),Sto,Value) :- toNat(Constant,Value). %Ev26

evaluate(ide(Var),Sto,Value) :- applySto(Sto,Var,Value). % Ev27

Evaluation of comparisons is similar to arithmetic expressions; the equal
comparison is given below, and the five others are left as an exercise.

evaluate(exp(equal,Expr1,Expr2),Sto,Bool) :- % Ev20
evaluate(Expr1,Sto,Val1),
evaluate(Expr2,Sto,Val2),
eq(Val1,Val2,Bool).

The Prolog implementation of the algebraic specification of Wren is similar to
the denotational interpreter with respect to command and expression evalu-
ation. Perhaps the biggest difference is in not relying on Prolog native arith-
metic to perform comparisons and numeric operations. Instead, the Naturals
module performs these operations based solely on a number system derived
from applying a successor operation to an initial value zero.

More elaborate approaches are possible in which the original specification module
is read and interpreted. These tasks are beyond the scope of this book; inter-
ested readers can consult the further readings at the end of this chapter.

Exercises

1. Complete the interpreter as presented by adding the modules Files and
Mappings and by completing the remaining arithmetic operations and
comparison operations.

2. As an extension of exercise 2 in section 12.4, implement the syntactic
and semantic functions and equations for Boolean expressions in Prolog.

3. Add modules for Characters and Strings. Translate identifiers from the
parser, such as ide(name), into Strings, such as cons(char-n, cons(char-a,
cons(char-m, cons(char-e, nullString)))).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

506 CHAPTER 12 ALGEBRAIC SEMANTICS

4. Implement the modules WrenTypeChecker and WrenSystem. If a con-
text violation is encountered, print an appropriate error message, indi-
cating where the error occurred. Process the remainder of the program
for other context violations, but do not evaluate the program.

5. Change the Naturals module to be an Integers module. Be sure to change
other parts of the program, such as removing the error on subtraction,
accordingly.

12.6 FURTHER READING

Ehrig and Mahr [Ehrig85] present the best overall discussion of algebraic
specifications and the algebras that model them with a clear presentation of
the theory. This subject matter developed from the work done on abstract
data types by the ADJ group in the 1970s [Goguen78]. Watt’s book on formal
semantics [Watt91] also serves as a good introduction to algebraic specifica-
tions supported by many examples. The short paper by Burstall and Goguen
[Burstall82] provides a concise but well-motivated discussion of specifica-
tions. For a more advanced treatment of the subject, see [Wirsing90].

The algebraic specification of data types has been developed primarily by
John Guttag and the ADJ group. The best presentations of abstract data
types can be found in [Guttag78a], [Guttag78b], [Guttag78c], and [Guttag80].
[Goguen77] and [Broy87] both discuss the use of algebraic specifications to
model abstract syntax. For more on abstract syntax, see [Noonan85] and
[Pagan83].

Using algebraic methods to specify the semantics of a programming lan-
guage is covered in considerable detail in [Bergstra89]. Our specification of
Wren is largely based on the ideas in his book. Another presentation of alge-
braic semantics can be found in [Broy87].

507

Chapter 13
ACTION SEMANTICS

The formal methods discussed in earlier chapters, particularly
denotational semantics and structural operational semantics, have
been used extensively to provide accurate and unambiguous defini-

tions of programming languages. Unlike informal definitions written in En-
glish or some other natural language, formal definitional techniques can
serve as a basis for proving properties of programming languages and the
correctness of programs. Although most programmers rely on informal speci-
fications of languages, these definitions are often vague, incomplete, and even
erroneous. English does not lend itself to precise and unambiguous definitions.

In spite of the arguments for relying on formal specifications of programming
languages, programmers generally avoid them when learning, trying to un-
derstand, or even implementing a programming language. They find formal
definitions notationally dense, cryptic, and unlike the way they view the be-
havior of programming languages. Furthermore, formal specifications are
difficult to create accurately, to modify, and to extend. Formal definitions of
large programming languages are overwhelming to both the language de-
signer and the language user, and therefore remain mostly unread.

Programmers understand programming languages in terms of basic concepts
such as control flow, bindings, modifications of storage, and parameter pass-
ing. Formal specifications often obscure these notions to the point that the
reader must invest considerable time to determine whether a language fol-
lows static or dynamic scoping and how parameters are actually passed.
Sometimes the most fundamental concepts of the programming language
are the hardest to understand in a formal definition.

Action semantics, which attempts to answer these criticisms of formal meth-
ods for language specification, has been developed over the past few years by
Peter Mosses with the collaboration of David Watt. The goal of their efforts
has been to produce formal semantic specifications that directly reflect the
ordinary computational concepts of programming languages and that are
easy to read and understand. In this chapter we present an introduction to
the methods of action semantics by specifying three languages: the calcula-
tor language from Chapter 9, Wren, and Pelican.

508 CHAPTER 13 ACTION SEMANTICS

13.1 CONCEPTS AND EXAMPLES

Action semantics has evolved out of the tradition of denotational semantics,
where syntactic entities (abstract syntax trees) are mapped compositionally
by semantic functions into semantic entities that act as the denotations of
the syntactic objects. The chief difference between the two methods of formal
specification lies in the nature of the semantic entities. The semantic func-
tions of denotational semantics map syntactic phrases into primitive math-
ematical values, structured objects, and such higher-order functions as are
found in the lambda calculus where functions can be applied to other func-
tions. In contrast, action semantics uses three kinds of first-order entities as
denotations: actions , data , and yielders . “First-order” means that actions
cannot be applied to other actions.

• The semantic entities known as actions incorporate the performance of
computational behavior, using values passed to them to generate new val-
ues that reflect changes in the state of the computation. Actions are the
engines that process data and yielders.

• The data entities consist of mathematical values, such as integers, Bool-
ean values, and abstract cells representing memory locations, that em-
body particles of information. Data are classified into sorts so that the
kinds of information processed by actions are well specified in a language
definition. Sorts of data are defined by algebraic specifications in the man-
ner discussed in Chapter 12.

• Yielders encompass unevaluated pieces of data whose values depend on
the current information incorporating the state of the computation. Yield-
ers are entities that, depending on the current storage and environment,
can be evaluated to yield data.

We begin our discussion of action semantics by considering the meaning of
several simple language constructs from Pelican (see section 9.5), first view-
ing denotational definitions and then introducing enough action notation to
describe the constructs in action semantics. Figure 13.1 displays the seman-
tic equations for a denotational specification of constant and variable decla-
rations and identifier evaluation.

Denotational semantics expresses the details of a semantic equation func-
tionally, so we see many parameters being passed to, and values returned
from, the semantic functions explicitly. In contrast, each action in action
semantics entails particular modes of control and data flow implicitly. Much
of the information processed by an action is manipulated automatically when
the action is performed.

50913.1 CONCEPTS AND EXAMPLES

elaborate [[const I = E]] env sto = (extendEnv(env,I,evaluate E env sto), sto)

elaborate [[var I : T]] env sto = (extendEnv(env,I,var(loc)), sto1)
where (sto1, loc) = allocate sto

evaluate [[I]] env sto =
if dval = int(n) or dval = bool(p)

then dval
else if dval = var(loc)

then if applySto(sto,loc) = undefined
then error
else applySto(sto,loc)

where dval = applyEnv(env,I)

Figure 13.1: Denotational Semantics for Part of Pelican

In action semantics, the meaning of a programming language is defined by
mapping program phrases to actions. The performance of these actions models
the execution of the program phrases. To define these few constructs from
Pelican, we need to describe several primitive actions, two operations that
yield data, and two composite actions. Primitive actions can store data in
storage cells, bind identifiers to data, compute values, test Boolean values,
and so on. The following primitive actions include the ones needed to define
the fragment of Pelican plus a few others as examples:

complete Terminate normally the action being performed.

fail Abort the action being performed.

give _ Give the value obtained by evaluating a yielder.

allocate a cell Allocate a memory location.

store _ in _ Store a value in a memory location.

bind _ to _ Bind an identifier to data produced by a yielder.

These examples illustrate a syntactic convention wherein parameters to op-
erations are indicated by underscores. Operations in action semantics can
be prefix, infix, or outfix. Outfix operators have only internal place holders
such as in “sum(_,_)”. The last two examples above are considered prefix
since they end with a place holder. Infix operators begin and end with argu-
ment places—for example, “_ or _”. The operations are evaluated with prefix
having the highest precedence and outfix the lowest. Prefix operators are
executed from right to left, and infix from left to right.

Other operations—the yielders in action semantics—give values that depend
on the current information, such as the current storage and the current
bindings:

the _ stored in _ Yield the value of a given type stored in a memory location.

510 CHAPTER 13 ACTION SEMANTICS

the _ bound to _ Yield the object of a certain type bound to an identifier.
the given _ Yield the value of the specified type given to the action.

Action combinators are binary operations that combine existing actions, us-
ing infix notation, to control the order in which subactions are performed as
well as the data flow to and from the subactions. Action combinators are
used to define sequential, selective, iterative, and block structuring control
flow as well as to manage the flow of information between actions. The fol-
lowing two combinators model sequential control and nondeterministic choice,
respectively:

_ then _

Perform the first action; when it completes, perform the second action
taking the data given by the first action.

_ or _

Perform either one of the two actions, choosing one arbitrarily; if it fails,
perform the other action using the original state.

With these operations, we specify the two declarations and identifier evalua-
tion from Pelican in Figure 13.2.

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

elaborate [[const I = E]] =
evaluate E

 then
bind I to the given Value

evaluate [[I]] =
give the Value stored in the Cell bound to I

or
give the Value bound to I

Figure 13.2: Action Semantics for Part of Pelican

These examples convey the basic idea of action specifications. Since prefix
operations are evaluated from right to left, we may omit the parentheses in
“bind I to (the given Cell)” and “give (the Value stored in (the Cell bound to I))”.
Observe that one of the actions in the last semantic equation must fail, thereby
producing either the constant binding or the variable binding to the identi-
fier. In the sequel we describe these primitive actions, yielders, and action
combinators in more detail.

511

A specification of a programming language using action semantics naturally
breaks into the two parts shown in the diagram below.

Programming Language

Action Notation

Meaning of Actions

Upper level

Lower level

Definition of the constructs
of the programming language
in terms of action notation.

Specification of the meaning
of action notation.

The description of action semantics in the book by Peter Mosses [Mosses92]
specifies the meaning of action notation (the lower level, which is also known
as microsemantics) formally using algebraic axioms to present the notation
and structural operational semantics to give the semantics of action perfor-
mance. Here we describe action notation using examples, short English defi-
nitions, and diagrams, concentrating our efforts in the upper level, also known
as macrosemantics, where semantics is bestowed on a programming lan-
guage in terms of action notation.

Data and Sorts

The data manipulated by a programming language need to be specified in a
semantic definition of the language. These data are static, mathematical ob-
jects that include entities such as cells, tuples, and maps—as well as the
expected sets of integers and Boolean values. These entities are required to
describe the behavior of programs in the language.

In action semantics, data are classified into sorts, which are sets of math-
ematical objects equipped with assorted operations on those objects. These
sorts are defined by algebraic specifications. The languages presented in this
chapter require the sorts TruthValue and Integer, which can be specified in a
way similar to the modules in Chapter 12. In the spirit of action semantics,
we define the sorts TruthValue and Integer following the syntax for algebraic
specifications found in [Mosses92]. We omit the equations in the specifica-
tions and refer the reader to Chapter 12 for examples.

13.1 CONCEPTS AND EXAMPLES

512 CHAPTER 13 ACTION SEMANTICS

module TruthValues
exports

sorts TruthValue
operations

true : TruthValue

false : TruthValue

not _ : TruthValue → TruthValue

both (_ , _) : TruthValue, TruthValue → TruthValue

either (_ , _) : TruthValue, TruthValue → TruthValue

_ is _ : TruthValue, TruthValue → TruthValue -- the equality relation
end exports
equations

:
end TruthValues

module Integers
imports TruthValues
exports

sorts Integer
operations

0 : Integer

1 : Integer

10 : Integer

successor _ : Integer → Integer

predecessor _ : Integer → Integer

sum (_ , _) : Integer, Integer → Integer

difference (_ , _) : Integer, Integer → Integer

product (_ , _) : Integer, Integer → Integer

integer-quotient (_ , _) : Integer, Integer → Integer

_ is _ : Integer, Integer → TruthValue -- the equality relation

_ is less than _ : Integer, Integer → TruthValue

_ is greater than _ : Integer, Integer → TruthValue
end exports
equations

:
end Integers

Sort operations allow sorts to be compared and combined to form new sorts.
These operations correspond to normal set operations.

513

Definition : Let S1 and S2 be two sorts.

a) The join or union of S1 and S2 is denoted by S1 | S2.

b) The meet or intersection of S1 and S2 is denoted by S1 & S2.

c) The notation S1 ≤ S2 means that S1 is a subsort of S2. ❚

The sorts used in an action semantics specification form a lattice according
to the partial order ≤. Every sort automatically includes a special element,
called nothing, representing the absence of information in much the same
way as ⊥ was used in domain theory. We use the sort Datum to include all the
values manipulated by actions and refer to tuples each of whose components
is a Datum as Data. Every Datum can be viewed as a member of Data (Datum ≤
Data), since a singleton tuple is identified with the individual in the tuple.
Using this notation, we can make a few assertions about sorts of data:

• The expressible values in Wren constitute the sort (Integer | TruthValue).

• (Integer | TruthValue) ≤ Datum.

• (Integer & TruthValue) = nothing.

The special value nothing plays a particularly important role in action specifi-
cations, representing the result of any operation or action that terminates
abnormally. Every sort automatically contains the value nothing, which rep-
resents the empty sort. Most actions and operations specify the sort of val-
ues that will be used and produced by their performance. Whenever the
wrong kind of value appears, the result will be nothing. As with any semantic
methodology, programs are expected to be syntactically correct—adhering to
both the context-free syntax (BNF) and the context-sensitive syntax (context
constraints dealing with type checking)—before they are submitted to se-
mantic analysis. In spite of this, action semantics follows a strict type disci-
pline in specifying the meaning of language constructs. This careful delinea-
tion of the types of objects manipulated by actions adds to the information
conveyed by the semantic descriptions. Performing an action corresponding
to a language construct that violates type constraints results in failure. An
operation (yielder) that fails for any reason produces the value nothing, and
an action that contains such an operation simply fails.

Although we can describe the sort of actions, actions themselves do not form
a subsort of Datum, since actions, which work on data, cannot manipulate
actions. Later we will see that actions can, however, be encapsulated into
data, called abstractions, that can be “enacted”, thereby causing the perfor-
mance of the actions. This mechanism enables action semantics to model
subprogram declaration and invocation.

Action semantics classifies data according to how far they tend to be propa-
gated during action performance.

13.1 CONCEPTS AND EXAMPLES

514 CHAPTER 13 ACTION SEMANTICS

• Transient Data or tuples of data given as the immediate results of action
performance are called transients. These values model the data
given by expressions. They must be used immediately or be
lost.

• Scoped These data consist of bindings of tokens (identifiers) to data as
in environments. They are accessible (visible) throughout the
performance of an action and its subactions, although they
may be hidden temporarily by the creation of inner scopes.

• Stable Stable data model memory as values stored in cells (or loca-
tions) defined in a language’s specification. Changes in storage
made during action performance are enduring, so that stable
data may be altered only by explicit actions.

When we describe actions themselves later, we will see that actions are also
classified by the fundamental kind of data that they modify. This classifica-
tion gives rise to the so-called facets of action semantics that are determined
by the kind of information principally involved in an action’s performance.

Yielders

During the performance of an action, certain current infor mation is main-
tained implicitly, including:

• The transients given to and given by actions

• The bindings received by and produced by actions

• The current state of the storage

Terms that evaluate to produce data, depending on the current information,
are called yielders . The yielders in an action semantics specification select
information for processing by actions from transients, bindings, and storage,
verifying its type consistency. Below we describe four yielders that play an
important role in language specification.

the given _ : Data → Yielder

Yield the transient data given to an action, provided it agrees with the
sort specified as Data.

the given _ # _ : Datum, PositiveInteger → Yielder

Yield the nth item in the tuple of transient data given to an action, pro-
vided it agrees with the sort specified as Datum, where n is the second
argument.

515

the _ bound to _ : Data, Token → Yielder

Yield the object bound to an identifier denoted by the Token in the current
bindings, after verifying that its type is the sort specified as Data.

the _ stored in _ : Data, Yielder → Yielder

Yield the value of sort Data stored in the memory location denoted by the
cell yielded by the second argument.

Token denotes a subsort of Yielder that gives identifiers. PositiveInteger is a
subsort of Integer. These yielders are evaluated during action performance to
produce values (Data) to be used by and given by actions.

Actions

Actions are dynamic, computational entities that model the operational be-
havior of programming languages. When performed, actions accept the data
passed to them in the form of the current information—namely, the given
transients, the received bindings, and the current state of storage—to give
new transients, produce new bindings, and/or update the state of the stor-
age. If no intermediate result is to be passed on to the next action, the tran-
sient is simply the empty tuple. Similarly, the empty binding, with every
identifier unbound, is passed to the next action if the action produces no
bindings.

Depending on the principal type of information processed, actions are classi-
fied into several different facets, including:

• Functional Facet : actions that process transient information

• Imperative Facet : actions that process stable information

• Declarative Facet : actions that process scoped information

• Basic Facet : actions that principally specify flow of control

• Reflective Facet : actions that handle abstractions (subprograms)

• Hybrid Action Notation : actions that deal with recursive bindings

An action performance may complete (terminate normally), fail (terminate
abnormally), or diverge (not terminate at all).

The Functional Facet

Actions and yielders classified in the functional facet primarily manipulate
the transients given to and given by actions. First we consider composite
actions in the functional and basic facets, a few of the so-called action

13.1 CONCEPTS AND EXAMPLES

516 CHAPTER 13 ACTION SEMANTICS

combinators. These combinators may also process scoped information, but
we defer the discussion of bindings until a later section in this chapter.

Action combinators have the signature

combinator : Action, Action → Action

and are normally written using infix notation. At this point we are concerned
only with control flow and the processing of transients.

The basic combinator “A1 and then A2” performs the first action and then
performs the second. We illustrate the control flow between the two actions
by a dashed line in a diagram that indicates that the first action must termi-
nate normally (complete) before the second action can be performed.

A2

A1
com

plete
A1 and then A2

Both actions can use the transients passed to the combined action. The tran-
sients given by each action are concatenated and given by the combined
action. We depict the concatenation of transients (tuples) by joining the data
flow lines. The transient from the first action precedes that from the second
in the concatenation, which is ordered from left to right. Adding the process-
ing of the transients to “A1 and then A2” gives the following diagram:

A2

A1

transients

transients

com
pleteA1 and then A2

The basic action combinator “A1 and A2” allows interleaving of the perfor-
mance of the two actions. The diagram below shows no control dependency

517

between the two actions, suggesting that they can be performed collaterally.
Both actions use the transients passed to the combined action. The tran-
sients given by each action are concatenated and given by the combined
action.

A2A1

transients

A1 and A2

transients

The functional action combinator “A1 then A2” performs the first action using
the transients given to the combined action and then performs the second
action using the transients given by the first action. The transients given by
the combined action are those given by the second action. The dashed line
shows the control dependency.

A2

A1

transients

transients

com
plete

A1 then A2

For each of these action combinators, if one of the actions gives the value
nothing, the result of the composite action is nothing. We say these combinators
are strict in the value nothing.

The sample language in the next section—namely, the calculator language
from section 9.2—uses a primitive functional action give : Yielder → Action,
which was mentioned earlier; “give Y” where Y is a yielder (a term that evalu-
ates to a data value) gives the value computed from Y as its transient.

13.1 CONCEPTS AND EXAMPLES

518 CHAPTER 13 ACTION SEMANTICS

The yielder “the given S” where S is a sort of data, retrieves and type checks
the datum in the given transient. The yielder takes a parameter that is a sort
to document the type of the datum in the transient.

The yielder “the given S#n” retrieves and type checks the nth datum in the
given transient tuple.

For example, the composite action

give sum (the given Integer#1, the given Integer#2)
and

give (the given Integer#1 is the given Integer#2)

provided with the tuple (3,5) as a transient, gives the tuple (8,false) as its
result. The operation is serves as equality for integers.

(3,5)

(8,false)

give sum (the given Integer#1,
 the given Integer#2)

give (the given Integer#1 is
 the given Integer#2)

The tuple (3,3) given as a transient will result in the tuple (6,true) as the
transient given by this composite action.

The Imperative Facet

Actions and yielders in the imperative facet deal with storage, allocating
memory locations, updating the contents of locations, and fetching values
from memory. All actions work on a common store consisting of an unlimited
number of cells , which are data of the sort Cell. Initially all cells are consid-
ered unused. When an object of sort Cell is allocated, it changes from being
unused to containing a special value called undefined. The values that may be
stored in memory belong to a sort called Storable, corresponding to the stor-
able values in denotational semantics. Thus when specifying an imperative
programming language, we need to specify the sort Storable. Any action may
alter the state of a cell, and such a modification remains in effect until some

519

other action modifies the cell again by storing a different value in it or by
deallocating the cell. Therefore we think of the data stored in cells as stable
information.

Cells form a sort of data that can be left unspecified. This abstract data type
requires only that cells are distinguishable and that we have an unlimited
number of them, although only a finite number will be in use at any one
time. We can view the current storage as a finite mapping from cells to the
sort (Storable | undefined).

Two primitive imperative actions allocate and update storage cells.

allocate a cell

Find an unused cell, storing the value undefined in it, and give the (object
of sort) Cell as the transient of the action.

The actual allocation algorithm is not important, as long as it always yields
an unused cell when performed. In [Mosses92] the allocate operation is a
hybrid action defined in terms of primitive actions from the imperative and
functional facets. We treat it as a primitive action to simplify the discussion.
The precedence rules for action semantics allow us to use multiword opera-
tion names without any confusion. The expression “allocate a cell” represents
a nullary operation. A primitive action defines the modification of a memory
cell.

store Y1 in Y2

Update the cell yielded by Y2 to contain the Storable yielded by Y1.

The imperative facet has no special action combinators, but any action has
the potential of altering storage. In the combination “A1 and then A2”, any
changes to storage by A1 precede those made by A2. In contrast, if both A1
and A2 in “A1 and A2” modify memory, the results are unpredictable because
of the possible interleaving.

The yielder “the S stored in Y” gives the datum currently stored in the cell
yielded by evaluating Y provided that the value given is a datum of sort S.
Otherwise, the yielder gives nothing.

Suppose that two locations, denoted by cell1 and cell2, have been allocated
and currently contain the value undefined. Also assume that the next cell to
be allocated is cell3. Figure 13.3 shows snapshots of the current storage as a
composite action is performed.

The first subaction to the combinator then gives cell3 as a transient to the
second subaction that stores a value there. Observe how indenting deter-
mines the grouping of the actions.

13.1 CONCEPTS AND EXAMPLES

520 CHAPTER 13 ACTION SEMANTICS

Initial storage:

store 3 in cell1

 and then

store 5 in cell2
 and then

allocate a cell

then

store sum (the Integer stored in cell1,

 the Integer stored in cell2)

in the given Cell

cell1

cell2 5

cell3 8

3

cell1

cell2 undefined

3

3cell1

cell2 5

cell1 undefined

cell2 undefined

Figure 13.3: Current Storage While Performing an Action

Exercises

1. Assuming the value 5 as the given transient, diagram the following com-
posite actions:

a) give -7
and

give the given Integer
then

give product (the given Integer#1, the given Integer#2)

b) give difference (0,the given Integer)
then

give successor(the given Integer)
and

give predecessor(the given Integer)
then

give sum (the given Integer#1, the given Integer#2)

2. Actions from the functional facet can be viewed as describing a simple
language of expressions that define functions that take a value (the tran-

521

sient) and give a result (the new transient). Describe the functions de-
fined by the following actions:

a) give successor (the given Integer)
then

give product (the given Integer, the given Integer)

b) give product (2, the given Integer)
then

give successor (the given Integer)

c) give successor (the given Integer)
and then

give product (the given Integer, the given Integer)

d) give predecessor (the given Integer)
and

give successor (the given Integer)
then

give product (the given Integer#1, the given Integer#2)

3. Suppose that the following action is given a cell containing the integer 5
as a transient. What (possible) numbers can be stored in the cell after
performing this action?

store 0 in the given Cell
and

store successor (the Integer stored in the given Cell) in the given Cell
and then

store sum (the Integer stored in the given Cell, 10) in the given Cell

4. Suppose that the current storage contains only two defined cells:
{ cell1|→6, cell2|→-2 }. Describe the current storage after performing the
following action:

give Integer stored in cell1
and

give 10
then

store product (the given Integer#1, the given Integer#2) in the given cell1
then

give successor (the Integer stored in cell2)
then

store difference (the given Integer, the Integer stored in cell1) in cell2

Assuming that cell1 corresponds to the variable x and cell2 to y, what
assignment command(s) are modeled by the performance of this
action?

13.1 CONCEPTS AND EXAMPLES

522 CHAPTER 13 ACTION SEMANTICS

13.2 ACTION SEMANTICS OF A CALCULATOR

We use the calculator from section 9.2 as the first example of a complete
specification by means of action semantics. Here the definition of the calcu-
lator semantics is somewhat simplified by using the imperative facet to pro-
vide a storage location for the calculator memory. A module describes the
necessary imperative features needed for the specification.

module Imperative
imports Integers, Mappings
exports

sorts Storable = Integer,
Storage = Mapping [Cell to (Storable | undefined)],

Cell ≤ Datum
operations

cell1 : Cell
allocate a cell : Action
store _ in _ : Yielder, Yielder → Action

the _ stored in _ : Storable, Yielder → Yielder
:

end exports
equations

:
end Imperative

The module Imperative imports the module Mappings that specifies objects to
model finite functions, instantiating an object of sort Mapping using the nota-
tion “Mapping [domain to codomain]”. We use slightly different (from Chapter 12)
but equivalent notation–namely, Storage = Mapping [Cell to (Storable | undefined)]—
to instantiate the parameters to the Mappings module and to rename (really
give synonyms for) identifiers from the imported module. Using Mappings, Im-
perative can specify an empty map, a mechanism for adding a new ordered pair
to the map, a way to change the image of a domain element, and notation for
applying the map to a domain item. Here we only name the operations, actions,
data, and yielders, used to manipulate storage in action notation.

For reference we repeat the abstract syntax of the calculator language in
Figure 13.4, slightly modified for the action semantic specification. It is a
common practice to fit the definition of the abstract syntax to the method
used for the semantic specification. For example, we used different defini-
tions of abstract syntax in Chapter 8 and Chapter 9. However, since the
concrete syntax of the calculator language is unchanged from Chapter 9, we
are specifying the semantics of the same language.

523

Abstract Syntactic Domains

P : Program E : Expression D : Digit

S : ExprSequence N : Numeral

Abstract Production Rules

Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression + Expression

| Expression – Expression | Expression x Expression

| Expression M+ | Expression = | Expression +/-

Numeral ::= Digit | Numeral Digit

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 13.4: Abstract Syntax for the Calculator Language

Semantic Functions

As with denotational semantics, meaning is ascribed to the calculator lan-
guage via semantic functions, mostly mapping syntactic domains to actions.
Because of the expressiveness of action semantics using the imperative facet,
we need fewer semantic functions.

meaning _ : Program → Action

perform _ : ExprSequence → Action

evaluate _ : Expression → Action

the value of _ : Numeral → Integer -- uses only nonnegative integers

digit value _ : Digit → Integer

The action that serves as the meaning of a program gives a value that can be
taken as the semantics of the program in the calculator language. This value,
corresponding to an expressible value in denotational semantics, is the inte-
ger shown in the display as a result of executing the program. We describe its
sort, a subsort of Datum, by the definition

Value = Integer -- expressible values.

The sort Action includes many operational behaviors but conveys no specifics
about the nature of individual actions. To make specifications more precise,
entities of sort Action can be qualified by describing the outcome , the sort of
information produced by an action, and the income , the sort of information
used by an action. A subsort of Action can be defined by writing

Action [outcome] [income].

13.2 ACTION SEMANTICS OF A CALCULATOR

524 CHAPTER 13 ACTION SEMANTICS

We omit the details that describe possible income and outcome entities for-
mally, but the terminology itself suggests the intent of the qualifications. The
semantic functions for the calculator are more accurately specified by the
following signatures:

meaning _ : Program → Action [completing | giving a Value | storing]
[using current storage]

perform _ : ExprSequence → Action [completing | giving a Value | storing]
[using current storage]

evaluate _ : Expression → Action [completing | giving a Value | storing]
[using current storage]

Note that the symbol |, which denotes the join or union of sorts, is an asso-
ciative operation.

Semantic Equations

The semantic function evaluate does the bulk of the work in specifying the
calculator language. The value given by performing the action resulting from
evaluate, and from the functions meaning and perform, is the value shown in
the display of the calculator. Although the display value can be considered as
the semantics of a phrase in the calculator language, meaning is more fully
specified by describing the activities performed to obtain this value. The ac-
tions of action semantics are designed to model these activities.

The evaluate function takes the nine different forms of expressions as its
actual parameter. For each we describe the intended operational behavior,
and then give the semantic equation that describes this behavior as an ac-
tion. Observe how closely the definition in action notation parallels the infor-
mal description.

• Numeral

To evaluate a numeral, simply display its integer value on the display.

evaluate N = give the value of N

The value given as a transient by the action give is the displayed integer.

• Memory Recall

Display the value stored in the single memory location that we assume has
been allocated initially and named cell1. The module Imperative asserts the
existence of a constant cell, cell1, to serve this purpose.

evaluate MR = give Integer stored in cell1
Again the transient given by the action is the displayed value.

525

• Clear

The clear operation resets the memory location to zero and displays zero.

evaluate Clear =
store 0 in cell1

and
give 0

Since we have no reason to perform one of these subactions before the
other, the composite action uses the and combinator. If interference were
possible between the two activities, we could use and then to establish or-
der. In the case of Clear , choosing an order of performance over-specifies
the behavior.

• Addition of T wo Expr essions

This binary operation gives the sum of the integers that result from the
two expressions. The left expression must be evaluated first since it may
involve a side effect by storing a value in the calculator memory.

evaluate [[E1 + E2]] =
evaluate E1

and then
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

The first combinator forms a tuple (a pair) consisting of the values of the
two expressions, which are evaluated from left to right. That tuple is given
to the sum operation, which adds the two components. Action semantics
uses indenting to describe the evaluation order of action operations. Pa-
rentheses are also allowed for this purpose, but generally the indenting
convention is easier to follow. For comparison, consider the semantic equa-
tion for addition written using parentheses.

evaluate [[E1 + E2]] = (evaluate E1 and then evaluate E2) then
(give sum (the given Integer#1, the given Integer#2))

Since evaluate is a prefix operation, it takes precedence over the and then
combinator. Actually none of these parentheses are necessary, but com-
posite actions are easier to read if they employ some grouping mechanism.

• Difference of T wo Expr essions

• Product of T wo Expr essions

Subtraction and multiplication are handled in the same way as addition,
but difference and product are used to implement the operations.

13.2 ACTION SEMANTICS OF A CALCULATOR

526 CHAPTER 13 ACTION SEMANTICS

• Add to Memory

Display the value of the current expression and add it to the calculator
memory.

evaluate [[E M+]] =
evaluate E

then
store sum (the Integer stored in cell1, the given Integer) in cell1

and
give the given Integer

The second subaction to then must propagate the transient from the first
subaction so that it can be given by the composite action. The primitive
action “store _ in _” yields no transient, which is represented by an empty
tuple. The action “give the given Integer” propagates the integer from the
evaluation of E. Action semantics views a single datum as identical to a
singleton tuple containing the same value. Concatenating the empty tuple
and the singleton tuple produces the value of E as the transient of the and
combinator. Without the subaction “give the given Integer”, the value from E
will be lost. It must be propagated as the resulting transient from the en-
tire action.

Action semantics has a primitive action regive that abbreviates “give the
given Data”. We use this abbreviation in some of the remaining examples,
although using regive reduces the information since the sort of the Data is
not specified.

• Equal

The equal key terminates an evaluation, displaying the value from the
current expression.

evaluate [[E =]] = evaluate E

• Change Sign

The +/- key flips the sign of the integer produced by the latest expression
evaluation.

evaluate [[E +/-]] =
evaluate E

then
give difference (0, the given Integer)

The meaning function initializes the calculator by storing zero in the memory
location and then evaluates the expression sequence. The storing operation
gives an empty transient. The semantic function perform evaluates the ex-
pressions in the sequence one at a time, ignoring the given transients. The
semantic functions value of and digit value have essentially the same behavior

527

as the corresponding functions in denotational semantics. All of the seman-
tic equations for the action semantics of the calculator language are col-
lected in Figure 13.5.

meaning P =
store 0 in cell1

and then
perform P

perform [[E S]] =
evaluate E

then
perform S

perform E = evaluate E

evaluate N = give the value of N

evaluate MR = give Integer stored in cell1

evaluate Clear =
store 0 in cell1

and
give 0

evaluate [[E1 + E2]] =
evaluate E1

and then
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

evaluate [[E1 – E2]] =
evaluate E1

and then
evaluate E2

then
give difference (the given Integer#1, the given Integer#2)

evaluate [[E1 x E2]] =
evaluate E1

and then
evaluate E2

then
give product (the given Integer#1, the given Integer#2)

Figure 13.5: Semantic Equations for the Calculator Language (Part 1)

13.2 ACTION SEMANTICS OF A CALCULATOR

528 CHAPTER 13 ACTION SEMANTICS

evaluate [[E M+]] =
evaluate E

then
store sum (the Integer stored in cell1, the given Integer) in cell1

and
regive -- give the given Data

evaluate [[E =]] = evaluate E

evaluate [[E +/-]] =
evaluate E

then
give difference (0, the given Integer)

the value of [[N D]] = sum (product (10,the value of N), the value of D)

the value of D = digit value D

digit value 0 = 0
 :
digit value 9 = 9

Figure 13.5: Semantic Equations for the Calculator Language (Part 2)

The use of the combinator “and then” in the definition of meaning and perform
is only used to sequence the control flow since the transients are ignored
between the subactions.

Action semantics uses the emphatic brackets “[[” and “]]” slightly differently
than denotational semantics. Semantic functions are applied to abstract syn-
tax trees. In action semantics the notation “[[E1 + E2]]” denotes the abstract
syntax tree composed of a root and three subtrees, E1, +, and E2. Since E1 is
already an abstract syntax tree, we have no need for another set of brackets
in the expression “evaluate E1”. We omit the brackets in each semantic equa-
tion that gives meaning to an abstract syntax tree that consists of a single
subtree (a single object) as in “evaluate Clear ”.

A Sample Calculation

As an example, consider the calculator program elaborated in Figure 9.7:

12 + 5 +/- = x 2 M+ 123 M + MR +/- – 25 = + M R =

This sequence of calculator keystrokes parses into three expressions, so that
the overall structure of the action semantics evaluation has the form

meaning [[12 + 5 +/- = x 2 M+ 123 M + MR +/- – 25 = + M R =]]

529

= store 0 in cell1
and then

perform [[12 + 5 +/- = x 2 M + 123 M + MR +/- – 25 = + M R =]]

= store 0 in cell1
and then

evaluate [[12 + 5 +/- = x 2 M +]]
then

evaluate [[123 M+]]
then

evaluate [[MR +/- – 25 = + M R =]]

The first expression begins with an empty transient and with cell1 containing
the value 0. We show the transient (as a tuple) given by each of the subactions
as well as the value stored in cell1.

Transient cell1
evaluate [[12 + 5 +/- = x 2 M+]] = () 0

give the value of 12 (12) 0
and then

give the value of 5 (5) 0
then

give difference (0, the given Integer) (-5) 0
then (12,-5) 0

give sum (the given Integer#1, the given Integer#2) (7) 0
and then

give the value of 2 (2) 0
then (7,2) 0

give product (the given Integer#1, the given Integer#2) (14) 0
then

store sum (the Integer stored in cell1, the given Integer) in cell1 () 14
and

regive (14) 14

This action gives the value 14, which is also the value in cell1. The second
expression starts with 14 in memory, ignoring the given transient, and re-
sults in the following action:

evaluate [[123 M+]] =
give the value of 123 (123) 14

then
store sum(the Integer stored in cell1,the given Integer) in cell1 () 137

and
regive (123) 137

13.2 ACTION SEMANTICS OF A CALCULATOR

530 CHAPTER 13 ACTION SEMANTICS

This action gives the value 123 and leaves the value 137 in cell1. The third
expression completes the evaluation, starting with 137 in memory, as fol-
lows:

evaluate [[MR +/- – 25 = + M R =]] =
give Integer stored in cell1 (137) 137

then
give difference (0, the given Integer) (-137) 137

and then
give the value of 25 (25) 137

then (-137,25) 137
give difference (the given Integer#1, the given Integer#2) (-162) 137

and then
give Integer stored in cell1 (137) 137

then (-162,137) 137
give sum (the given Integer#1, the given Integer#2) (-25) 137

This final action gives the value -25, leaving the value 137 in the calculator’s
memory.

Exercises

1. Evaluate the semantics of these combinations of keystrokes using the
action semantics definition in this section:

a) 8 +/- + 5 x 3 =

b) 7 x 2 M+ M+ M+ – 15 + M R =

c) 10 – 5 +/- M+ 6 x MR M+ =

Consult the concrete syntax of the calculator language in section 9.2
when parsing these programs. For instance, the program in part a is
grouped in the manner as shown by the parentheses below:

((((8 +/-) + 5) x 3) =)

2. Add to the calculator a key sqr that computes the square of the value in
the display. Alter the semantics to model the action of this key. Its syn-
tax should be similar to that of the +/- key.

3. Prove that for any expression E, meaning [[E = M+]] = meaning [[E M+ =]].

4. Some calculators treat “=” differently than the calculator in this section,
repeating the most recent operation, so that “2 + 5 = = ” leaves 12 on the
display and “2 + 5 = = = ” leaves 17. Consider the changes that must be
made in the action semantics to model this alternative interpretation.

531

13.3 THE DECLARATIVE FACET AND WREN

Actions and yielders in the declarative facet deal primarily with scoped infor-
mation in the form of bindings between identifiers, represented as tokens,
and various semantic entities such as constants, variables, and procedures.
In this section we illustrate several fundamental concepts from the declara-
tive facet, along with a couple of actions dealing with control flow from the
basic facet, in specifying the programming language Wren. Since Wren has
such a simple structure with respect to declarations—namely, a single global
scope—only a few features of the declarative facet are introduced. More com-
plicated actions from the declarative facet are discussed in section 13.4, where
we provide an action specification of Pelican.

One aspect of defining a programming language involves specifying what
kinds of values can be bound to identifiers, the so-called denotable values in
denotational semantics. In action semantics the subsort of Datum that con-
sists of entities that can be bound to identifiers is known as the sort Bindable.
Wren allows binding identifiers only to simple variables, which are modeled
as cells in action semantics. The algebraic specification in a module called
Declarative suggests the salient aspects of the entities in the declarative facet.

module Declarative
imports Imperative, Mappings
exports

sorts Token
Variable = Cell,
Bindable = Variable,
Bindings = Mapping [Token to (Bindable | unbound)]

operations
empty bindings : Bindings
bind _ to _ : Token, Yielder → Action
the _ bound to _ : Data, Token → Yielder
produce _ : Yielder → Action

:
end exports
equations

:
end Declarative

The term “empty bindings” denotes bindings with every identifier unbound.
Action semantics establishes a binding using the primitive declarative action
“bind T to Y”, which produces a singleton binding mapping that we represent
informally by [T|→B] where B is the datum of sort Bindable yielded by Y.

13.3 THE DECLARATIVE FACET AND WREN

532 CHAPTER 13 ACTION SEMANTICS

A declarative yielder finds the value associated with an identifier in the cur-
rent bindings. The term “the S bound to T” evaluates to the entity bound to
the Token T provided it agrees with the sort S; otherwise the yielder gives
nothing. The action “produce Y” creates the bindings consisting of the map
yielded by Y. It corresponds to the action “give Y” in the functional facet.

Before considering composite actions from the declarative facet, we observe
that the action combinators defined earlier process bindings as well as tran-
sients. Although the action combinators introduced as part of the functional
and basic facets do not concentrate on processing bindings, they receive
bindings as part of the current information and produce possibly new bind-
ings as a result of their subactions. The bindings of two actions can combine
in two fundamental ways:

merge(bindings1,bindings2):

Merging the sets of bindings means to form their (disjoint) union with the
understanding that if any identifier has bindings in both sets, the opera-
tion fails, producing nothing.

overlay(bindings1,bindings2):

The bindings are combined in such a way that the associations in bind-
ings1 take precedence over those in bindings2.

In the following diagrams, scoped information flows from left to right whereas
transients still flow from top to bottom. We depict the merging of bindings by
having the lines for scoped information connected by a small circle suggesting
a disjoint union. Later when action combinators use the overlay operation, the
lines show a break indicating which set of bindings takes precedence.

transients

A1

bindings

transients

A2

A1 and A2

bindings

533

A2

A1

transients

com
plete

bindings

transients

A1 and then A2

bindings

For both of the combinators and and and then, each action receives the bind-
ings for the composite action, and the bindings produced by the subactions
are merged. The only difference between these two action combinators is
that and then enforces an ordering in the performance of the two subactions.

The action combinator then has the same declarative behavior as the
combinator and then.

A2

A1

transients

transients

com
pletebindings

A1 then A2

bindings

The only primarily declarative action combinator required in the Wren speci-
fication is the composite action hence. This combinator sequences the bind-
ings with the first subaction receiving the original bindings, the second
subaction receiving the bindings produced by the first, and the bindings
produced by the combined action being those produced by the second
subaction. The combinator hence processes transients in the same way as
the combinator and then.

13.3 THE DECLARATIVE FACET AND WREN

534 CHAPTER 13 ACTION SEMANTICS

A2

A1

bindings

bindings

transients

A1 hence A2

transients

com
plete

The Programming Language Wren

We now turn to describing an action specification of Wren (see section 1.3 or
9.3 for the syntax of Wren). We omit that part of action semantics used to
describe input and output, so the read and write commands from Wren are
ignored in this chapter. Input and output require the communicative facet, a
topic beyond the scope of our presentation. In the action semantics descrip-
tion of Wren, we specify the declarative information of the language despite
the simplicity of its scope rules. The kinds of information processed by Wren
can be specified as the three sorts:

sorts Value = Integer | TruthValue, -- expressible values

Storable = Integer | TruthValue, -- storable values

Bindable = Variable -- denotable values (Variable = Cell)

Four new semantic functions provide meaning to the phrases of Wren. The
signatures below include the outcome and income to help describe the be-
havior of the resulting actions.

run _ : Program → Action [completing | diverging | storing]
[using current storage]

elaborate _ : Declaration → Action [completing | binding | storing]
[using current bindings | current storage]

execute _ : Command → Action [completing | diverging | storing]
[using current bindings | current storage]

535

evaluate _ : Expression → Action [completing | giving a Value]
[using current bindings | current storage]

For each syntactic construct, we give a brief informal description of its se-
mantics and then provide its definition in action semantics.

• Program

First elaborate the declarations, which involve only variables, and then
execute the body of the program using the resulting bindings. The pro-
gram identifier is ignored, serving as documentation only.

run [[program I is D begin C end]] = elaborate D hence execute C

• Variable Declaration

Allocate a cell from storage and then bind the identifier to that cell. The
definition handles declarations of a single variable only. Multiple variable
declarations can be treated as a sequence of declarations.

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

• Empty Declaration

Produce no bindings. “[[]]” denotes an empty tree.

elaborate [[]] = produce empty bindings

• Sequence of Declarations

Elaborate the first declaration and then elaborate the second using the
bindings from the first and producing the combined bindings.

elaborate [[D1 D2]] = elaborate D1 and then elaborate D2

The bindings in D1 should be visible to the second declaration, although in
Wren D2 has no way to refer to an identifier in D1. For this reason, the “and
then” combinator suffices to specify declaration sequencing in Wren. With
and then each subaction constructs bindings independently, and the two
sets of bindings are merged. In a program that satisfies the context con-
straints for Wren, no conflict can arise between the declarations in D1 and
D2 when they merge. The combinator then could be used as well since the
transients play no role in these declarations.

• Sequence of Commands

Execute the first command and then execute the second.

execute [[C1 ; C2]] = execute C1 and then execute C2

13.3 THE DECLARATIVE FACET AND WREN

536 CHAPTER 13 ACTION SEMANTICS

• Skip

Do nothing.

execute skip = complete

• Assignment

Find the cell bound to the identifier and evaluate the expression. Then
store the value of the expression in that cell.

execute [[I := E]] =
give the Cell bound to I and evaluate E

then
store the given Value#2 in the given Cell#1

The parameters to the and combinator are presented without indentation.
The “bound to” yielder and the give action take precedence because prefix
operations are always performed before infix ones. Parentheses can be
used to alter precedence or to enhance clarity.

To describe the decision process in if and while commands, we need an
action combinator that belongs to the basic facet and a primitive action from
the functional facet. The action combinator or models nondeterministic choice.
“A1 or A2” arbitrarily chooses one of the subactions and performs it with the
given transients and the received bindings. If the chosen action fails, the
other subaction is performed with the original transients and bindings. The
effect of or is shown in the diagram below with k = 1 or k = 2, but which one is
not specified by action semantics.

A3-k

Ak

bindings

transients

fail

bindings

transients

bindings

transients

A1 or A2

Although most action combinators are strict relative to failure (if one of the
subactions fails, the composite action also fails), “A1 or A2” can complete (suc-
ceed) even though one of its subactions fails. However, if the chosen action

537

fails after making a change to storage, the change is irrevocable, the other
action is ignored, and the whole action fails.

The primitive functional action “check Y”, where Y is a yielder that gives a
TruthValue, completes if Y yields true and fails if it yields false. The action gives
empty transients and produces empty bindings. The action check acts as a
guard, which when combined with the composite action or enables a specifi-
cation to carry out decision making.

• If Commands

The if commands evaluate the Boolean expression that serves as the test,
and then they perform the then command or the else command depend-
ing on the test. If the else part is missing, the command does nothing
when the condition is false.

execute [[if E then C1 else C2]] =
evaluate E

then
check (the given TruthValue is true) and then execute C1

or
check (the given TruthValue is false) and then execute C2

execute [[if E then C]] =
evaluate E

then
check (the given TruthValue is true) and then execute C

or
check (the given TruthValue is false) and then complete

The operation is acts as equality for the sort TruthValue. Observe that for
each of the if commands only one of the conditions supplied to the action
check can be true. The phrase “and then complete” may be omitted from the
second definition. It simply provides symmetry to the or combinator. Also,
the first check test can read

check (the given TruthValue) and then execute C.

To complete the specification of commands in Wren, we need two more ac-
tions, unfolding _ and unfold, from the basic facet to define the while com-
mand. These actions serve only to determine the flow of control during the
performance of subactions.

unfolding _

The composite action unfolding : Action → Action performs its argument
action, but whenever the dummy action unfold is encountered, the argu-
ment action is performed again in place of unfold.

13.3 THE DECLARATIVE FACET AND WREN

538 CHAPTER 13 ACTION SEMANTICS

unfold

The primitive action unfold is a dummy action, standing for the argument
action of the innermost enclosing unfolding.

The diagram below suggests the behavior of the action unfolding A. Whenever
the action A performs unfold, it is restarted with the transients and bindings
that are given to unfold. Eventually we expect A to complete producing the
final transients and bindings.

A
bindings

transients

transients

bindings

unfold

unfold

unfolding A

The actions unfolding and unfold are used to describe indefinite iteration—in
this case, the while command in Wren. Inside a performance of unfolding, an
invocation of unfold has the effect of restarting the original action.

• While Command

The Boolean expression is evaluated first. If its value is true, the body of the
loop is executed and then the while command is started again when the
execution of the loop body completes; otherwise, the command terminates.

execute [[while E do C]] =
unfolding

evaluate E
then

check (the given TruthValue is true)
and then execute C

and then unfold
or

check (the given TruthValue is false) and then complete

We conclude the specification of Wren by giving the semantic equations for
evaluate, the function that defines the meaning of expressions.

539

• Variable Name

Give the value stored in the memory location bound to the variable.

evaluate I = give Value stored in the Cell bound to I

The precedence rules of action semantics assume that this action is inter-
preted as “give (the Value stored in (the Cell bound to I))”.

• Literal

Give the value of the literal.

evaluate N = give the value of N

evaluate true = give true

evaluate false = give false

• Arithmetic on T wo Expr essions

Evaluate the two expressions and give the sum of their values.

evaluate [[E1 + E2]] =
evaluate E1

and
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

Since Wren allows no side effects in expressions, we have no need to specify
an order of evaluation of the components in a binary expression. Subtrac-
tion, multiplication, and division are handled in a similar manner. If the
integer-quotient operation is given zero as a divisor, the operation gives noth-
ing, and that causes the action to fail.

evaluate [[E1 / E2]] =
evaluate E1

and
evaluate E2

then
give integer-quotient (the given Integer#1, the given Integer#2)

• Unary Minus

Evaluate the expression and give the negation of the resulting value.

evaluate [[- E]] =
evaluate E

then
give difference (0, the given Integer)

13.3 THE DECLARATIVE FACET AND WREN

540 CHAPTER 13 ACTION SEMANTICS

• Relational Expr essions

Evaluate the two expressions and give the result of applying the appropri-
ate relation operation to the two values.

evaluate [[E1 < E2]] =
evaluate E1

and
evaluate E2

then
give (the given Integer#1 is less than the given Integer#2)

• Binary Boolean Operations

Evaluate the two expressions and give the result of applying the appropri-
ate Boolean operation to the two values.

evaluate [[E1 and E2]] =
evaluate E1

and
evaluate E2

then
give both (the given TruthValue#1, the given TruthValue#2)

• Boolean Not

Evaluate the expression and give the logical negation of the given value.

evaluate [[not(E)]] =
evaluate E

then
give not (the given TruthValue)

Exercises

1. Add these language constructs to Wren and define them using action
semantics.

a) repeat-until commands
Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

c) expressions with side effects
Expression ::= ... | begin Command return Expression end

541

2. Provide a definition of conditional (short-circuit) and and or in action
semantics. Use the syntactic forms “E1 and then E2” and “E1 or else
E2” for these expressions.

3. Extend Wren to allow constant declarations and explain how the action
specification needs to be modified.

4. Give an action specification of the vending machine in exercise 8 of sec-
tion 9.3.

13.4 THE REFLECTIVE FACET AND PELICAN

The major changes when we move from Wren to Pelican (see section 9.5) have
to do with declarations: Identifiers can now also be bound to constant values
and to procedures. Therefore the sort Bindable includes two more possibilities.

sorts Bindable = Variable | Value | Procedure -- denotable values

In action semantics procedure objects are modeled as abstractions, which
are yielders that encapsulate actions. We defer specifying procedures until
later in this section. Now we consider the scope rules of Pelican, which are
more complicated than those in Wren, requiring several additional declara-
tive actions.

rebind

This primitive declarative action reproduces all of the received bindings.
The action rebind propagates bindings in a manner analogous to the way
regive propagates transients. The effect of rebind is to extend the scope of
the current bindings.

_ moreover _

As with the combinator and, moreover allows the performance of the two
actions to be interleaved. Both actions use the transients and bindings
passed to the combined action. The bindings produced by the combined
action are the bindings produced by the first action overlaid by those
produced by the second. Transients are handled as with the and
combinator.

The diagram below shows the blending of the bindings using the overlay
operation by means of a broken line. The bindings that follow the solid line
take precedence.

13.4 THE REFLECTIVE FACET AND PELICAN

542 CHAPTER 13 ACTION SEMANTICS

A2

A1

transients

bindings

A1 moreover A2

transients

bindings

_ before _
The declarative action combinator before performs the first action using
the transients and the bindings passed to the combined action, and then
performs the second action using the transients given to the combined
action and the bindings received by the combined action overlaid by those
produced by the first action. The combined action produces the bindings
produced by the first action overlaid with those produced by the second.
The transients given by the combined action are those given by the first
action concatenated with those given by the second.

A2

transients

transients

A1 before A2

A1

com
plete

bindings

bindings

Pelican allows several more kinds of bindings than Wren. We give the three
sorts that specify the kinds of information processed by Pelican, noting that
only Bindable is different from the specification for Wren.

543

sorts Value = Integer | TruthValue, -- expressible values

Storable = Integer | TruthValue, -- storable values

Bindable = Variable | Value | Procedure -- denotable values

The semantic functions for Pelican have the same signatures as in the speci-
fication of Wren, but we need to add several semantics equations for the
additional language constructs in Pelican. We postpone describing proce-
dures for now and concentrate on constant declarations and the declar e
command.

• Constant Declaration

Evaluate the expression and then bind its value to the identifier.

elaborate [[const I = E]] =
evaluate E

then
bind I to the given Value

• Sequence of Declarations

Elaborate the declarations sequentially. Since the scope rules for Pelican
are more complicated, allowing nested scopes, we use the composite ac-
tion before to combine the bindings from the two declarations so that D1
overlays the enclosing environment and D2 overlays D1.

elaborate [[D1 D2]] = elaborate D1 before elaborate D2

The “and then” combinator no longer suffices for declaration sequencing.
Pelican requires that each declaration has access to the identifiers that are
defined earlier in the same block as well as those in any enclosing block,
as illustrated by the declaration sequence below:

const max = 50;

max1 = max+1;

Pelican allows “dynamic expressions” in constant definitions. Using before
ensures that identifiers elaborated in D1 are visible when D2 is elaborated.
Pelican does not require that D2 overlay D1, since declarations in a se-
quence must have distinct identifiers. They may just as well be merged,
but no problems arise when before performs an overlay at two points in the
processing of bindings. Now that we have the combinator before, it can
also be used in place of and then in defining declaration sequencing in
Wren.

• Variable Name or Constant Identifier

An identifier can be bound to a constant value or to a variable. Evaluating
an identifier gives the constant or the value assigned to the variable.

13.4 THE REFLECTIVE FACET AND PELICAN

544 CHAPTER 13 ACTION SEMANTICS

evaluate [[I]] =
give the Value stored in the Cell bound to I

or
give the Value bound to I

Only one of the subactions to the or combinator succeeds, so that the
action gives the appropriate value denoted by the identifier I.

• Anonymous Block (declar e)

Elaborate the declarations in the block, producing bindings that overlay
the bindings received from the enclosing block, and execute the body of
the block with the resulting bindings. The bindings created by the local
declaration are lost after the block is executed.

execute [[declar e D begin C end]] =
rebind moreover elaborate D

hence
execute C

The action rebind propagates the bindings given to it. Therefore the action
“rebind moreover elaborate D” overlays the received bindings (from the en-
closing block) with the local bindings from D to provide the environment in
which C will execute.

As an illustration of this mechanism for handling the declarations in Pelican,
consider the following program.

program scope is
const c = 5;
var n : integer ;

begin
declare

const m = c+8; -- D1
const n = 2* m; -- D2

begin
 : -- C
end;

 :
end

Assuming that the first cell allocated is cell1, the action that elaborates the
first two declarations produces the bindings [c|→5, n|→cell1], which are re-
ceived by the body of the program and therefore by the declare command.
The following action models the execution of the declare command.

545

execute [[declare D1; D2; begin C end]] =
rebind moreover elaborate [[D1 D2]]

hence
execute C

Working from the inside, we first elaborate the declarations

elaborate [[D1 D2]] = elaborate D1 before elaborate D2.

The diagram below, with the empty transients omitted, illustrates the activi-
ties carried out by the before combinator.

[m |→13, c |→5, n |→cell1]

[m |→13]

[n |→26, m |→13]

[n |→26]

elaborate D1

elaborate D2

[c |→5, n |→cell1]
com

plete

This action, elaborate [[D1 D2]], serves as the second subaction in

rebind moreover elaborate [[D1 D2]],

which is depicted in the next diagram.

rebind

elaborate [D1 D2]

[c |→5, n |→cell1]

[n |→26, m |→13]

[n |→26, m |→13, c |→5][c |→5, n |→cell1]

Therefore the body of the anonymous block will execute in an environment
containing three bindings, [n|→26, m|→13, c|→5].

The Reflective Facet and Procedures

The reflective facet addresses those actions and yielders that allow the de-
scription of subprogram declaration and invocation. The activity of a proce-
dure in Pelican can be modeled by the performance of an action. Recall that
actions themselves are not data but can be incorporated in data called ab-

13.4 THE REFLECTIVE FACET AND PELICAN

546 CHAPTER 13 ACTION SEMANTICS

stractions. Objects that can be bound to identifiers in Pelican include proce-
dures, which are modeled as abstractions.

sorts Procedure = Abstraction
Bindable = Variable | Value | Procedure

View an abstraction datum as an entity with three components, the action
itself and the transients and bindings, if any, that will be given to the action
when it is performed.

Action
Transients

Bindings
Abstraction =

As with subprograms in a programming language, we concern ourselves with
two aspects: the creation of a procedural object by means of a declaration
and the invocation of the object that sets it into action. When a Pelican pro-
cedure declaration is elaborated, the code of the procedure modeled as an
action is incorporated into an abstraction using an operation that acts as a
yielder.

abstraction of _ : Action → Yielder

The yielder “abstraction of A” encapsulates the action A into an abstraction
together with no transients and no bindings.

A
—

—

If we want the action inside an abstraction to be performed with certain
transients and bindings, they must be supplied after the abstraction is con-
structed. The current bindings are inserted into an abstraction using an
operation on yielders.

closure of _ : Yielder → Yielder

The yielder “closure of Y” incorporates the bindings received by the en-
closing action into the abstraction given by Y. Attaching the declaration-
time bindings, those bindings in effect when the subprogram is declared,
ensures that the resulting action performs the defined procedure in its
static environment, thereby producing static scoping for resolving refer-
ences to nonlocal identifiers. Assuming that StaticBindings denotes the
current bindings in effect when the declaration is elaborated, the term
“closure of abstraction of A” yields the object shown below. In this example,
bindings are inserted into an abstraction at abstraction-time.

547

A
—

StaticBindings

Once bindings are incorporated into an abstraction, no further changes can
be made to the bindings. A later performance of “closure of _” will have no
effect. Dynamic scoping ensues if bindings are attached at enaction-time—
that is, when a procedure is called and the action in its abstraction is to be
performed. We define the execution of a procedure using a reflective action
enact that takes as its parameter a yielder that gives an abstraction.

enact _ : Yielder → Action

The action “enact Y” activates the action encapsulated in the abstraction
yielded by Y, using the transients and bindings that are included in the
abstraction. If no transients or bindings have been incorporated into the
abstraction, the enclosed action is given empty transients or empty bind-
ings at enaction-time.

Procedures Without Parameters

We now have enough action notation to specify parameterless procedures in
Pelican, handling both their declaration and call, but first we repeat that
procedures are represented by the subsort of Datum known as Abstraction in
the action specification.

sorts Procedure = Abstraction

• Procedure Declaration (no parameter)

Bind the identifier of the declaration to a procedure object that incorpo-
rates the body of the procedure, so that it will be executed in the declara-
tion-time environment.

elaborate [[procedure I is D begin C end]] =
bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

The abstraction bound to I incorporates the current (static) bindings and
empty transients. Executing the body of the procedure resembles the ex-
ecution of a declare command (see the semantic equation for declare).

13.4 THE REFLECTIVE FACET AND PELICAN

548 CHAPTER 13 ACTION SEMANTICS

• Procedure Call (no parameter)

Execute the procedure object bound to the identifier.

execute [[I]] = enact the Procedure bound to I

Recall that the procedure object, an abstraction, brings along its static
environment. The action corresponding to a parameterless procedure ex-
pects no transients, and the abstraction bound to I has empty transients.

Procedures With A Parameter

We need a mechanism that allows an actual parameter to be passed to the
procedure. Another operation on yielders constructs an unevaluated term—
a yielder—that provides a way for the current transient to be incorporated
into the abstraction.

application of _ to _ : Yielder, Yielder → Yielder

The yielder “application of Y1 to Y2” attaches the argument value yielded by Y2
as the transient that will be given to the action encapsulated in the abstrac-
tion yielded by Y1 when that action is enacted. As with bindings, a further
supply of transients to an abstraction is ignored. The argument, a value, is
inserted into the abstraction when the procedure is called.

• Procedure Call (one parameter)

Evaluate the actual parameter, an expression, and then execute the proce-
dure bound to the identifier with the value of the expression.

execute [[I (E)]] =
evaluate E

then
enact application of (the Procedure bound to I) to the given Value

Assuming that Abs, the abstraction bound to I, incorporates the action A
and the bindings StaticBindings, and that Val is the value of the expression
E, “application of Abs to the given Value” creates the abstraction that will be
enacted. The actual parameter(s) to a procedure provide the only transient
information that is relevant at enaction-time.

A
(Val)

StaticBindings

To specify the declaration of procedures with one parameter, we need an-
other action combinator thence that combines the behavior of then for tran-
sients and hence for bindings. Therefore both transients and bindings flow
sequentially through the two actions.

549

A2

A1

bindings

bindings

transients

transients

com
pleteA1 thence A2

The action encapsulated in an abstraction formed by a declaration of a pro-
cedure with a parameter expects a value, the actual parameter, to be given
to it as a transient. This value is stored in a new memory location allocated
by the action. The command that constitutes the body of the procedure is
executed in an environment that consists of the original static environment,
inserted into the abstraction using “closure of”, overlaid by the binding of the
formal parameter to the allocated variable, and then overlaid by the local
declarations.

• Procedure Declaration (one parameter)

Bind the procedure identifier in the declaration to a procedure object that
incorporates the body of the procedure, so that when it is called, it will be
executed in the declaration-time environment and will allocate a local vari-
able for the actual parameter passed to the procedure.

elaborate [[procedure I1 (I2) is D begin C end]] =
bind I1 to

closure of
abstraction of

allocate a cell and give the given Value and rebind
thence

rebind
moreover

bind I2 to the given Cell#1
and

store the given Value#2 in the given Cell#1
hence

rebind moreover elaborate D
hence

execute C

13.4 THE REFLECTIVE FACET AND PELICAN

550 CHAPTER 13 ACTION SEMANTICS

The three uses of rebind ensure that the bindings at each stage of the
specification are extensions of the bindings at the previous stage. The
first argument to thence passes a tuple consisting of a Cell and a Value
(Integer or TruthValue) as transients to the second argument. The action
combinators thence and hence are associative, so we have no need of in-
dentation in the expression “A1 thence A2 hence A3 hence A4”.

Recursive Definitions

The specifications of procedure declarations shown above do not allow re-
cursive calls of the procedures, since the identifiers (procedure names) being
declared are not included in the bindings associated with the abstractions
created by the declarations. The details of the hybrid actions that implement
recursive bindings are beyond the scope of our discussion of action seman-
tics. We can, however, describe a hybrid action for establishing recursive
bindings that is defined in terms of more primitive actions.

recursively bind _ to _ : Token, Bindable → Action

The action “recursively bind T to abstraction of A” produces the binding of T,
an identifier, to an abstraction Abs so that the bindings attached to the
action A incorporated in Abs include the binding being produced.

A
—

Abs =
[T |→Abs]

Therefore the action “recursively bind _ to _” permits the construction of a
circular binding.

elaborate [[procedure I is D begin C end]] =
recursively bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

To illustrate the effects of a recursive declaration, consider the bindings cre-
ated by a Pelican program.

program example is
const c = 5;
var b : boolean ;
procedure p is … begin … end;

begin … end

551

Let A denote the action corresponding to the body of the procedure. The
action “closure of abstraction of A” creates the abstraction Abs shown below,
which does not allow a recursive call of the procedure.

A
—

Abs =
[c |→5, b |→cell1]

The action “bind p to closure of abstraction of A” produces the binding [p|→Abs].
Any reference to the procedure identifier p inside the procedure is an illegal
reference, yielding nothing. In contrast, the action “recursively bind p to closure
of abstraction of A” changes the abstraction Abs into a new abstraction Abs'
whose attached bindings include the association of the procedure abstrac-
tion with p. Now a recursive call is permitted.

A
—

Abs' =
[p |→Abs', c |→5, b |→cell1]

The recursive action produces the binding [p|→Abs'], which when overlaid on
the previous (enclosing) bindings, produces the bindings [p|→Abs', c|→5,
b|→cell1] to be received by the procedure p and the body of the program.

Figure 13.6 collects the definitions for an action semantic specification of
Pelican. Observe how many of the definitions are identical to those of Wren.

Translating to Action Notation

Action notation can be viewed as a metalanguage for the semantic specifica-
tion of programming languages. The semantic equations in Figure 13.6 de-
fine a translator from Pelican programs into action notation, which can act
as an intermediate language in an interpreter or a compiler. By providing an
interpreter of action notation, we can obtain a prototype implementation of
any programming language with a specification in action semantics. A trans-
lator of action notation into a machine language produces a compiler of the
language.

The metalanguage of action semantics can also be used to verify semantic
equivalence between language phrases. Although an action specification can
be read at an informal level, it is a formal definition. Furthermore, action
notation can be manipulated algebraically using properties such as associa-
tivity, commutativity, and identity laws to prove the equivalence of certain
action expressions. Two language phrases are semantically equivalent if their
translations into action notation are equivalent. Discovering the algebraic
properties of action notation is an area of ongoing research. See the further
readings for more on this topic.

13.4 THE REFLECTIVE FACET AND PELICAN

552 CHAPTER 13 ACTION SEMANTICS

run _ : Program → Action [completing | diverging | storing]
[using current storage]

run [[program I is D begin C end]] = elaborate D hence execute C

elaborate _ : Declaration → Action [completing | binding | storing]
[using current bindings | current storage]

elaborate [[]] = produce empty bindings

elaborate [[D1 D2]] = elaborate D1 before elaborate D2

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

elaborate [[const I = E]] =
evaluate E

then
bind I to the given Value

elaborate [[procedure I is D begin C end]] =
recursively bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

elaborate [[procedure I1 (I2) is D begin C end]] =
recursively bind I1 to

closure of
abstraction of

allocate a cell and give the given Value and rebind
thence

rebind
moreover

bind I2 to the given Cell#1
and

store the given Value#2 in the given Cell#1
hence

rebind moreover elaborate D
hence

execute C

Figure 13.6: Semantic Equations for Pelican (Part 1)

553

execute _ : Command → Action [completing | diverging | storing]

[using current bindings | current storage]

execute [[C1 ; C2]] = execute C1 and then execute C2

execute [[declar e D begin C end]] =
rebind moreover elaborate D

hence
execute C

execute skip = complete

execute [[I := E]] =
give the Cell bound to I and evaluate E

then
store the given Value#2 in the given Cell#1

execute [[if E then C]] =
evaluate E

then
check (the given TruthValue is true) and then execute C

or
check (the given TruthValue is false) and then complete

execute [[if E then C1 else C2]] =
evaluate E

then
check (the given TruthValue is true) and then execute C1

or
check (the given TruthValue is false) and then execute C2

execute [[while E do C]] =
unfolding

evaluate E
then

check (the given TruthValue is true) and then
execute C and then unfold

or
check (the given TruthValue is false) and then complete

execute I = enact the Procedure bound to I

execute [[I (E)]] =
evaluate E

then
enact application of (the Procedure bound to I) to the given Value

Figure 13.6: Semantic Equations for Pelican (Part 2)

13.4 THE REFLECTIVE FACET AND PELICAN

554 CHAPTER 13 ACTION SEMANTICS

evaluate _ : Expression → Action [completing | giving a Value]
[using current bindings | current storage]

evaluate I =
give the Value stored in the Cell bound to I

or
give the Value bound to I

evaluate N = give the value of N

evaluate true = give true

evaluate false = give false

evaluate [[E1 + E2]] =
evaluate E1 and evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

 : :

evaluate [[– E]] =
evaluate E

then
give difference (0, the given Integer)

evaluate [[E1 >= E2]] =
evaluate E1 and evaluate E2

then
give not (the given Integer#1 is less than the given Integer#2)

 : :

evaluate [[E1 or E2]] =
evaluate E1 and evaluate E2

then
give either (the given TruthValue#1, the given TruthValue#2)

 : :

evaluate [[not (E)]] =
evaluate E

then
give not (the given TruthValue)

Figure 13.6: Semantic Equations for Pelican (Part 3)

We conclude this section by translating a Pelican program into its equivalent
action notation. This task is aided by the property of compositionality: Each
phrase is defined solely in terms of the meaning of its immediate subphrases.
Furthermore, any phrase may be substituted for a semantically equivalent
phrase without changing the meaning of the program.

555

We illustrate a translation of the following Pelican program annotated as
shown below:

program action is
const max = 50; -- D1
var sum : integer ; -- D2
var switch : boolean ; -- D3

var n : integer ; -- D4
procedure change is -- D5

begin
n := n+3;
switch := not(switch)

end;
begin

sum := 0; -- C1
n := 1; -- C2
switch := true ; -- C3
while n<=max do -- C4

if switch then sum := sum+n end if ;
change

end while
end

The overall structure of the translation takes the form

 run [[program I is D1 D2 D3 D4 D5 begin C1; C2; C3; C4 end]]

= elaborate [[D1 D2 D3 D4 D5]] hence execute [[C1; C2; C3; C4]]

= elaborate D1 before elaborate D2 before elaborate D3
before elaborate D4 before elaborate D5

hence
execute C1 and then execute C2 and then execute C3 and then execute C4

The elaboration uses the property that the combinators and then and before
are both associate. We proceed by elaborating the four declarations in the
program.

elaborate D1 = give the value of 50 then bind max to the given Value

elaborate D2 = allocate a cell then bind sum to the given Cell

elaborate D3 = allocate a cell then bind switch to the given Cell

elaborate D4 = allocate a cell then bind n to the given Cell

13.4 THE REFLECTIVE FACET AND PELICAN

556 CHAPTER 13 ACTION SEMANTICS

elaborate D5 =
recursively bind change to closure of(abstraction of(

rebind
moreover

produce empty bindings
hence

give the Cell bound to n
and

give the Value stored in Cell bound to n
or

give the Value bound to n
and

give the value of 3
then

give sum(the given Integer#1,the given Integer#2)
then

store the given Value#2 in the given Cell#1
and then

give the Cell bound to switch
and

give the Value stored in Cell bound to switch
or

give the Value bound to switch
then

give not(the given Truthvalue)
then

store the given Value#2 in the given Cell#1))

The translation of the Pelican program is completed by expanding the four
commands.

execute C1 = give the Cell bound to sum and give the value of 0
then

store the given Value#2 in the given Cell#1

execute C2 = give the Cell bound to n and give the value of 1
then

store the given Value#2 in the given Cell#1

execute C3= give the Cell bound to switch and give true
then

store the given Value#2 in the given Cell#1

557

execute C4 =
unfolding

give the Value stored in Cell bound to n
or

give the Value bound to n
and

give the Value stored in Cell bound to max
or

give the Value bound to max
 then

give not(the given Integer#1 is greater than the given Integer#2)
then

check (the given Truthvalue is true)
and then

give the Value stored in Cell bound to switch
or

give the Value bound to switch
then

check the given Truthvalue is true
 and then

give the Cell bound to sum
and

give the Value stored in Cell bound to sum
 or

give the Value bound to sum
and

give the Value stored in Cell bound to n
or

give the Value bound to n
then

give sum(the given Integer#1,the given Integer#2)
 then

store the given Value#2 in the given Cell#1
 or

check the given Truthvalue is false
 and then

complete
and then

enact the Procedure bound to change
and then unfold

 or
check the given Truthvalue is false and then complete

13.4 THE REFLECTIVE FACET AND PELICAN

558 CHAPTER 13 ACTION SEMANTICS

Exercises

1. Suppose that the current bindings contain two pairs: [x|→cell1, y |→2].
Consider two actions:

A1 = bind y to 15

A2 = bind x to successor(the Integer bound to y)

What are the (possible) current bindings after performing the following
composite actions?

a) A1 and then A2
b) A1 hence A2
c) A1 and A2
d) A1 moreover A2
e) A1 before A2

2. Extend Pelican to include a definite iteration command using the syntax

for I := E1 to E2 do C end for

and assuming iteration over integer values only. Following the seman-
tics of the for command in Pascal and Ada, provide an action specifica-
tion of this command. Observe the difference in how Pascal and Ada
treat the loop variable I:

a) Pascal: Assume I has been declared in the block containing the for
command.

b) Ada: The for command implicitly declares I to have the subrange
E1..E2 and to have scope extending through the body of the
command only.

3. Modify Pelican so that parameters are passed by

a) reference

b) value-result

4. Modify Pelican so that it uses dynamic scoping to resolve nonlocal vari-
able references.

5. Suppose that Pelican is extended to include functions of one parameter,
passed by value. The abstract syntax now has productions of the form

Declaration ::= … | function Identifier1 (Identifier2) is Declaration
begin Command return Expression end

and

Expressions ::= … | Identifier (Expression).

559

Make all the necessary changes in the action definition of Pelican to
incorporate this new language construct.

6. A unit for a binary operation @ : A,A → A is an element u of A such that
for all a∈A, a@u = u@a = a. Using the primitive actions complete, fail,
regive, and rebind, identify units for the following action combinators:

and then, and, then, or, hence, moreover, before, and thence.

7. Which of the binary combinators in exercise 6 are associative, commu-
tative, and/or idempotent?

8. Translate the following Pelican programs into action notation:

a) program facwhile is
var n : integer ;
var f : integer ;

begin
n := 8; f := 1;
while n>1 do

f := f* n; n := n–1
end while

end

b) program facproc is
const num = 8;
var n : integer ;
var f : integer ;
procedure fac(n : integer) is

procedure mul(m : integer) is
begin f := f* m end;

begin
if n=0 then f := 1 else fac(n–1); mul(n) end if

end;
begin n := num; fac(n) end

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

Prolog serves well as an implementation language for a translator from Peli-
can to action notation. The compositional definitions of the meaning of Peli-
can given in Figure 13.6 convert to Prolog clauses directly. The resulting
actions can be represented as Prolog structures by writing actions, yielders,
and auxilliary operations with prefix syntax. First we show a sample execu-
tion of the translator. The output has been edited (indented) to make the
scope of the actions easier to determine.

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

560 CHAPTER 13 ACTION SEMANTICS

>>> Translating Pelican into Action Semantics <<<
Enter name of source file: small.pelican
 program small is
 const c = 34;
 var n : integer;
 begin
 n := c+21
 end
Translated Action:

hence(
 before(
 then(give(valueof(34)),bind(c,given(Value))),
 before(then(allocateacell,bind(n,given(Cell))),
 produce(emptybindings))),
 andthen(
 then(
 and(give(boundto(Cell,n)),
 then(and(or(give(storedin(Value,boundto(Cell,c))),
 give(boundto(Value,c))),
 give(valueof(21))),
 give(sum(given(Integer,1),given(Integer,2))))),
 storein(given(Value,2),given(Cell,1))),
 complete))
yes

Since this translation is purely a static operation, we need not be concerned
with stores and environments—these are handled when action notation is
interpreted or compiled. At the top level a predicate run translates a program.
Observe that we have dispensed with the syntactic category of blocks to match
the specification in Figure 13.6, thereby giving another example of tailoring
the abstract syntax to the specification method. Several small changes will
be needed in the parser to reflect this alteration in the abstract syntax.

run(prog(Decs,Cmds),hence(ElaborateD,ExecuteC)) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

The Prolog predicate that implements the translation of programs builds Prolog
structures that represent the equivalent action using calls to the predicates
elaborate and execute to construct pieces of the structure. Two clauses deal
with sequences of the declarations.

elaborate([],produce(emptybindings)).

561

elaborate([Dec|Decs],before(ElaborateDec,ElaborateDecs)) :-
elaborate(Dec,ElaborateDec),
elaborate(Decs,ElaborateDecs).

Individual declarations are translated by Prolog clauses that match the ac-
tion definitions in Figure 13.6 in their logical structure.

elaborate(var(T,var(Ide)),then(allocateacell,bind(Ide,given('Cell')))).

elaborate(con(Ide,E),then(EvaluateE,bind(Ide,given('Value')))) :-
 evaluate(E,EvaluateE).

elaborate(proc(Ide,param(Formal),Decs,Cmds),
recursivelybind(Ide,

closureof(abstractionof(
hence(hence(

thence(and(allocateacell,and(give(given('Value')),rebind)),
moreover(rebind,

and(bindto(Formal,given('Cell',1)),
storein(given('Value',2),given('Cell',1))))),

moreover(rebind,ElaborateD)),
ExecuteC))))) :- elaborate(Decs,ElaborateD),

execute(Cmds,ExecuteC).

We leave the clause for procedures with no parameters as an exercise. Com-
mands are translated by the predicate execute. We provide several examples
and leave the remaining clauses as exercises.

execute([Cmd|Cmds],andthen(ExecuteCmd,ExecuteCmds)) :-
execute(Cmd,ExecuteCmd),
execute(Cmds,ExecuteCmds).

execute([],complete).

execute(declare(Decs,Cmds),hence(moreover(rebind,ElaborateD),ExecuteC)) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

execute(skip,complete).

execute(assign(Ide,Exp),then(and(give(boundto('Cell',Ide)),EvaluateE),
storein(given('Value',2),given('Cell',1)))) :-

evaluate(Exp,EvaluateE).

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

562 CHAPTER 13 ACTION SEMANTICS

execute(if(Test,Then),
then(EvaluateE,or(andthen(check(is(given('Truthvalue'),true)),ExecuteC),

andthen(check(is(given('Truthvalue'),false)),complete)))) :-
evaluate(Test,EvaluateE),
execute(Then,ExecuteC).

execute(while(Test,Body),unfolding(
then(EvaluateE,or(andthen(check(is(given('Truthvalue'),true)),

andthen(ExecuteC,unfold)),
andthen(check(is(given('Truthvalue'),false)),complete))))) :-

evaluate(Test,EvaluateE),
execute(Body,ExecuteC).

execute(call(Ide,E),
then(EvaluateE,enact(application(boundto('Procedure',Ide),given('Value'))))) :-

evaluate(E,EvaluateE).

Expressions are translated by the Prolog predicate evaluate. Again we show
several of the clauses, leaving the rest as exercises. Observe how closely the
Prolog clauses agree with the action specifications.

evaluate(ide(Ide),or(give(storedin('Value',boundto('Cell',Ide))),
give(boundto('Value',Ide)))).

evaluate(num(N),give(valueof(N))).

evaluate(minus(E),then(EvaluateE,give(difference(0,given('Integer'))))) :-
evaluate(E,EvaluateE).

evaluate(plus(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(sum(given('Integer',1),given('Integer',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(neq(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(not(is(given('Integer',1),given('Integer',2)))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(and(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(both(given('Truthvalue',1),given('Truthvalue',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

This action notation translator is just the first step in building a prototype
implementation of Pelican. To complete the task, we need to construct an
interpreter for actions. Although this code can be written in Prolog, the num-

563

ber of parameters may make the clauses cumbersome. For example, a predi-
cate for interpreting an action combinator (a binary operation) will require
six parameters for incoming transients, bindings, and store and three pa-
rameters for the resulting information. A language that allows us to main-
tain the store imperatively may produce more readable code. See the further
readings at the end of this chapter for an alternative approach.

Exercises

1. Complete the implementation in Prolog of the action notation translator
by writing the missing clauses.

2. Add these language constructs to Pelican and extend the translator by
defining clauses that construct the appropriate action notation.

a) repeat-until commands
Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

c) expressions with side effects
Expression ::= ... | begin Command return Expression end

d) definite iteration commands
Command ::= …

| for Identifier := Expression to Expression do
Command end for

3. Write a Prolog predicate that prints the resulting action following the
indenting conventions of action semantics. Use the example at the end
of section 13.4 as a model.

4. Write an interpreter for action notation in Prolog or some other pro-
gramming language to produce a prototype system for this subset of
Pelican (no input and output).

13.6 FURTHER READING

The standard reference for action semantics is the book by Peter Mosses
[Mosses92]. He uses a subset of Ada to illustrate the full power of action
semantics, including the communicative facet, which is beyond the scope of
our presentation. Mosses also gives a formal specification of action notation
(the lower level) using structural operational semantics. This book contains

13.6 FURTHER READING

564 CHAPTER 13 ACTION SEMANTICS

an extensive description of the literature that covers the development of ac-
tion semantics over the past ten years. Note that action notation has evolved
over this time frame from a more symbolic notation to a more English-like
presentation. Mosses uses a slightly different framework for the algebraic
specification of data, the so-called unified algebras [Mosses89].

A shorter introduction to action semantics can be found in a technical report
[Mosses91]. These works contain extensive bibliographies that point to the
earlier literature on action semantics. When consulting the earlier papers,
note that the notation of action semantics has evolved considerably during
its development.

David Watt [Watt91] has a lengthy description of action semantics with many
examples, culminating in a complete action specification of Triangle, his ex-
ample imperative programming language. Watt is also involved in a project,
called ACTRESS, using action semantics to construct compilers [Brown92].

We mentioned in section 9.5 that Prolog may not be the best language in
which to write an action interpreter. Functional programming provides a bet-
ter paradigm for manipulating actions. Watt suggests implementing action
semantics in ML [Watt91]. A full description of using ML to develop semantic
prototypes of programming languages can be found in [Ruei93]. In this re-
port a programming language is translated into ML functions that represent
the actions and yielders. These ML functions are executed directly to provide
a prototype interpreter for the language Triangle.

565

Appendix A
LOGIC PROGRAMMING
WITH PROLOG

Imperative programming languages reflect the architecture of the under-
lying von Neumann stored program computer: Programs consist of
instructions stored in memory with a program counter determining which

instruction to execute next. Programs perform their computations by updat-
ing memory locations that correspond to variables. Programs are prescrip-
tive—they dictate precisely how a result is to be computed by means of a
sequence of commands to be performed by the computer. Assignment acts
as the primary operation, updating memory locations to produce a result
obtained by incremental changes to storage using iteration and selection
commands.

An alternative approach, logic programming, allows a programmer to de-
scribe the logical structure of a problem rather than prescribe how a com-
puter is to go about solving it. Based on their essential properties, languages
for logic programming are sometimes called:

1. Descriptive or Declarative Languages : Programs are expressed as known
facts and logical relationships about a problem that hypothesize the ex-
istence of the desired result; a logic interpreter then constructs the de-
sired result by making inferences to prove its existence.

2. Nonprocedural Languages : The programmer states only what is to be
accomplished and leaves it to the interpreter to determine how it is to be
proved.

3. Relational Languages : Desired results are expressed as relations or predi-
cates instead of as functions; rather than define a function for calculat-
ing the square of a number, the programmer defines a relation, say sqr(x,y),
that is true exactly when y = x2.

Imperative programming languages have a descriptive component, namely
expressions: “3* p + 2* q” is a description of a value, not a sequence of com-
puter operations; the compiler and the run-time system handle the details.
High-level imperative languages, like Pascal, are easier to use than assembly
languages because they are more descriptive and less prescriptive.

566 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

The goal of logic programming is for languages to be purely descriptive, speci-
fying only what a program computes and not how. Correct programs will be
easier to develop because the program statements will be logical descriptions
of the problem itself and not of the execution process—the assumptions made
about the problem will be directly apparent from the program text.

Prolog

Prolog, a name derived from “Programming in Logic”, is the most popular
language of this kind; it is essentially a declarative language that allows a
few control features in the interest of acceptable execution performance. Prolog
implements a subset of predicate logic using the Resolution Principle, an
efficient proof procedure for predicate logic developed by Alan Robinson (see
[Robinson65]). The first interpreter was written by Alain Colmerauer and
Philippe Roussel at Marseilles, France, in 1972.

The basic features of Prolog include a powerful pattern-matching facility, a
backtracking strategy that searches for proofs, uniform data structures from
which programs are built, and the general interchangeability of input and
output.

Prolog Syntax

Prolog programs are constructed from terms that are either constants, vari-
ables, or structures.

Constants can be either atoms or numbers:

• Atoms are strings of characters starting with a lowercase letter or en-
closed in apostrophes.

• Numbers are strings of digits with or without a decimal point and a minus
sign.

Variables are strings of characters beginning with an uppercase letter or an
underscore.

Structur es consist of a functor or function symbol , which looks like an
atom, followed by a list of terms inside parentheses, separated by commas.
Structures can be interpreted as predicates (relations):

likes(john,mary).

male(john).

sitsBetween(X,mary,helen).

567

Structures can also be interpreted as structur ed objects similar to records
in Pascal:

person(name('Kilgore','Trout'),date(november,11,1922))

tree(5, tree(3,nil,nil), tree(9,tree(7,nil,nil),nil))

Figure A.1 depicts these structured objects as trees.

5

3 9

7nil nil

nil nil

nil

person

name date

november'Kilgore' 'Trout' 192211

Figure A.1: Structured objects

A Prolog program is a sequence of statements, called clauses , of the form

P0 :- P1, P2, …, Pn.

where each of P0, P1, P2, …, Pn is an atom or a structure. A period terminates
every Prolog clause. A clause can be read declaratively as

P0 is true if P1 and P2 and … and Pn are true

or procedurally as

To satisfy goal P0, satisfy goal P1 and then P2 and then … and then Pn.

In a clause, P0 is called the head goal, and the conjunction of goals P1, P2, …,
Pn forms the body of the clause. A clause without a body is a unit clause or
a fact :

“P.” means “P is true” or “goal P is satisfied”.

A clause without a head, written

“:- P1,P2, …, Pn.” or “?- P1,P2, …, Pn.”

is a goal clause or a query and is interpreted as

“Are P1 and P2 and … and Pn true?” or

“Satisfy goal P1 and then P2 and then … and then Pn”.

PROLOG SYNTAX

568 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

To program in Prolog, one defines a database of facts about the given infor-
mation and conditional clauses or rules about how additional information
can be deduced from the facts. A query sets the Prolog interpreter into action
to try to infer a solution using the database of clauses.

BNF Syntax for Prolog

Prolog is a relatively small programming language as evidenced by a BNF
specification of the core part of Prolog given in Figure A.2. The language
contains a large set of predefined predicates and notational variations such
as infix symbols that are not defined in this specification. In addition, Prolog
allows a special syntax for lists that will be introduced later.

<program> ::= <clause list> <query> | <query>

<clause list> ::= <clause> | <clause list> <clause>

<clause> ::= <predicate> . | <predicate> :- <predicate list> .

<predicate list> ::= <predicate> | <predicate list> , <predicate>

<predicate> ::= <atom> | <atom> (<term list>)

<term list> ::= <term> | <term list> , <term>

<term> ::= <numeral> | <atom> | <variable> | <structure>

<structure> ::= <atom> (<term list>)

<query> ::= ?- <predicate list> .

<atom> ::= <small atom> | ' <string> '

<small atom> ::= <lowercase letter> | <small atom> <character>

<variable> ::= <uppercase letter> | <variable> <character>

<lowercase letter> ::= a | b | c | d | … | x | y | z

<uppercase letter> ::= A | B | C | D | … | X | Y | Z | _

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<character> ::= <lowercase letter> | <uppercase letter>

| <digit> | <special>

<special> ::= + | - | * | / | \ | ^ | ~ | : | . | ? | @ | # | $ | &

<string> ::= <character> | <string> <character>

Figure A.2: BNF for Prolog

569

A Prolog Example

The simple example in this section serves as an introduction to Prolog pro-
gramming for the beginner. Remember that a Prolog program consists of a
collection of facts and rules defined to constrain the logic interpreter in such
a way that when we submit a query, the resulting answers solve the prob-
lems at hand. Facts, rules, and queries can all be entered interactively, but
usually a Prolog programmer creates a file containing the facts and rules,
and then after “consulting” this file, enters only the queries interactively. See
the documentation for instructions on consulting a file with a particular imple-
mentation of Prolog.

We develop the example incrementally, adding facts and rules to the data-
base in several stages. User queries will be shown in boldface followed by the
response from the Prolog interpreter. Comments start with the symbol % and
continue to the end of the line.

Some facts: parent(chester,irvin).
parent(chester,clarence).
parent(chester,mildred).
parent(irvin,ron).
parent(irvin,ken).
parent(clarence,shirley).
parent(clarence,sharon).
parent(clarence,charlie).
parent(mildred,mary).

Some queries:

?- parent(chester,mildred).
yes

?- parent(X,ron).
X = irvin
yes

?- parent(irvin,X).
X = ron;
X = ken; % The user-typed semicolon asks the system for
no % more solutions.

?- parent(X,Y).
X =chester
Y = irvin % System will list all of the parent pairs, one at a time,
yes % if semicolons are entered.

Additional facts: male(chester). female(mildred).
male(irvin). female(shirley).

A PROLOG EXAMPLE

570 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

male(clarence). female(sharon).
male(ron). female(mary).
male(ken).
male(charlie).

Additional queries:

?- parent(clarence,X), male(X).
X = charlie
yes

?- male(X), parent(X,ken).
X = irvin
yes

?- parent(X,ken), female(X).
no

Prolog obeys the “closed world assumption” that presumes that any predi-
cate that cannot be proved must be false.

?- parent(X,Y), parent(Y,sharon).
X = chester
Y = clarence
yes

These queries suggest definitions of several family relationships.

Some rules: father(X,Y) :- parent(X,Y), male(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

paternalgrandfather(X,Y) :- father(X,Z), father(Z,Y).

sibling(X,Y) :- parent(Z,X), parent(Z,Y).

The scope of a variable in Prolog is solely the clause in which it occurs.

Additional queries:

?- paternalgrandfather(X,ken).
X = chester
yes

?- paternalgrandfather(chester,X).
X = ron;
X = ken;
X = shirley; % Note the reversal of the roles of input and output.
X = sharon;
X = charlie;
no

571

?- sibling(ken,X).
X = ron;
X = ken;
no

The inference engine concludes that ken is a sibling of ken since parent(irvin,ken)
and parent(irvin,ken) both hold. To avoid this consequence, the description of
sibling needs to be more carefully constructed.

Predefined Predicates

1. The equality predicate = permits infix notation as well as prefix.

?- ken = ken.
yes

?- =(ken,ron).
no

?- ken = X. % Can a value be found for X to make it the same as ken?
X = ken
yes % The equal operator represents the notion of unification.

2. “not” is a unary predicate:
not(P) is true if P cannot be proved and false if it can.

?- not(ken=ron).
yes

?- not(mary=mary).
no

The closed world assumption governs the way the predicate “not” works since
any goal that cannot be proved using the current set of facts and rules is
assumed to be false and its negation is assumed to be true. The closed world
assumption presumes that any property not recorded in the database is not
true. Some Prolog implementations omit the predefined predicate not because
its behavoir diverges from the logical not of predicate calculus in the pres-
ence of variables (see [Sterling86]). We have avoided using not in the labora-
tory exercises in this text.

The following is a new sibling rule (the previous rule must be removed):

sibling(X,Y) :- parent(Z,X), parent(Z,Y), not(X=Y).

Queries:

?- sibling(ken,X) .
X = ron;
no

PREDEFINED PREDICATES

572 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

?- sibling(X,Y).
X = irvin
Y = clarence; % Predicate sibling defines a symmetric relation.
X = irvin % Three sets of siblings produce six answers.
Y = mildred;
X = clarence % The current database allows 14 answers.
Y = irvin;
X = clarence
Y = mildred;
X = mildred
Y = irvin;
Y = mildred
X = clarence % No semicolon here.
yes

A relation may be defined with several clauses:

closeRelative(X,Y) :- parent(X,Y).
closeRelative(X,Y) :- parent(Y,X).
closeRelative(X,Y) :- sibling(X,Y).

There is an implicit or between the three definitions of the relation closeRelative.
This disjunction may be abbreviated using semicolons as

closeRelative(X,Y) :- parent(X,Y) ; parent(Y,X) ; sibling(X,Y).

We say that the three clauses (or single abbreviated clause) define(s) a “pro-
cedure” named closeRelative with arity two (closeRelative takes two param-
eters). The identifier closeRelative may be used as a different predicate with
other arities.

Recursion in Prolog

We want to define a predicate for “X is an ancestor of Y”. This is true if

parent(X,Y) or
parent(X,Z) and parent(Z,Y) or
parent(X,Z), parent(Z,Z1), and parent(Z1,Y) or

: :

Since the length of the chain of parents cannot be predicted, a recursive
definition is required to allow an arbitrary depth for the definition. The first
possibility above serves as the basis for the recursive definition, and the rest
of the cases are handled by an inductive step.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

573

Add some more facts:

parent(ken,nora). female(nora).
parent(ken,elizabeth). female(elizabeth).

Since the family tree defined by the Prolog clauses is becoming fairly large,
Figure A.3 shows the parent relation between the twelve people defined in
the database of facts.

chester

irvin clarence

shirleyken ron charlie

sharon

mildred

nora elizabeth

mary

Figure A.3: A Family Tree

Some queries:

?- ancestor(mildred,mary).
yes % because parent(mildred,mary).

?- ancestor(irvin,nora).
yes % because

% parent(irvin,ken)
% and ancestor(ken,nora) because parent(ken,nora).

?- ancestor(chester,elizabeth).

yes % because
% parent(chester,irvin)
% and ancestor(irvin,elizabeth)
% because parent(irvin,ken)
% and ancestor(ken,elizabeth) because parent(ken,elizabeth).

?- ancestor(irvin,clarence).
no % because parent(irvin,clarence) is not provable and

% whoever is substituted for Z it is impossible to
% prove parent(irvin,Z) and ancestor(Z,clarence).

All possibilities for Z are tried that make parent(irvin,Z) true, namely Z=ron
and Z=ken, and both ancestor(ron,clarence) and ancestor(ken,clarence) fail.

RECURSION IN PROLOG

574 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

The reader is encouraged to write Prolog definitions for other predicates deal-
ing with family relationships—for example, mother, child, uncle, niece, ma-
ternal grandfather, first cousin, and descendant.

Control Aspects of Prolog

In pure logic programming, the predicates in a goal question may be consid-
ered in any order or in parallel since logical conjunction (and) is commuta-
tive and associative. Furthermore, alternate rules defining a particular predi-
cate (procedure) may be considered in any order or in parallel since logical
disjunction (or) is commutative and associative.

Since Prolog has been implemented with a concern for efficiency, its inter-
preters act with a deterministic strategy for discovering proofs.

1. In defining a predicate, the order in which clauses are presented to the
system (the rule or der or clause or der) is the order in which the inter-
preter tests them—namely, from top to bottom. Here the term “rule” in-
cludes any clause, including facts (clauses without bodies).

Rule order determines the order in which answers are found. Observe
the difference when the two clauses in ancestor are reversed.

ancestor2(X,Y) :- parent(X,Z), ancestor2(Z,Y).
ancestor2(X,Y) :- parent(X,Y).

?- ancestor(irvin,Y).
Y = ron, ken, nora, elizabeth % Four answers returned separately.

?- ancestor2(irvin,Y).
Y = nora, elizabeth, ron, ken % Four answers returned separately.

Depending on the nature of the query, different rule orders may have
different execution speeds when only a yes or no, or only one solution is
desired.

2. In defining a rule with a clause, the order in which terms (subgoals) are
listed on the right-hand side (the goal or der) is the order in which the
interpreter will try to satisfy them—namely, from left to right.

Goal order determines the shape of the search tree that the interpreter
explores in its reasoning. In particular, a poor choice of goal order may
permit a search tree with an infinite branch in which the inference en-
gine will become lost. The version below is ancestor2 with the subgoals in
the body of the first clause interchanged.

ancestor3(X,Y) :- ancestor3(Z,Y), parent(X,Z).

ancestor3(X,Y) :- parent(X,Y).

575

?- ancestor(irvin,elizabeth).
yes

?- ancestor3(irvin,elizabeth).

This query invokes a new query
ancestor3(Z,elizabeth), parent(irvin,Z).

which invokes
ancestor3(Z1,elizabeth), parent(Z,Z1), parent(irvin,Z).

which invokes
ancestor3(Z2,elizabeth), parent(Z1,Z2), parent(Z,Z1), parent(irvin,Z).

which invokes …

The eventual result is a message such as

“Out of local stack during execution; execution aborted.”

The problem with this last definition of the ancestor relation is the left recur-
sion with uninstantiated variables in the first clause. If possible, the leftmost
goal in the body of a clause should be nonrecursive so that a pattern match
occurs and some variables are instantiated before a recursive call is made.

Lists in Prolog

As a special notational convention, a list of terms in Prolog can be repre-
sented between brackets: [a, b, c, d]. As in Lisp, the head of this list is a, and
its tail is [b, c, d]. The tail of [a] is [], the empty list. Lists may contain lists: [5,
2, [a, 8, 2], [x], 9] is a list of five items.

Prolog list notation allows a special form to direct pattern matching. The
term [H | T] matches any list with at least one element:

H matches the head of the list, and

T matches the tail.

A list of terms is permitted to the left of the vertical bar. For example, the
term [X,a,Y | T] matches any list with at least three elements whose second
element is the atom a:

X matches the first element,

Y matches the third element, and

T matches the rest of the list, possibly empty, after the third item.

Using these pattern matching facilities, values can be specified as the inter-
section of constraints on terms instead of by direct assignment.

LISTS IN PROLOG

576 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

Although it may appear that lists form a new data type in Prolog, in fact they
are ordinary structures with a bit of “syntactic sugar” added to make them
easier to use. The list notation is simply an abbreviation for terms constructed
with the predefined “.” function symbol and with [] considered as a special
atom representing the empty list. For example,

[a, b, c] is an abbreviation for .(a, .(b, .(c, [])))

[H | T] is an abbreviation for .(H, T)

[a, b | X] is an abbreviation for .(a, .(b, X))

Note the analogy with the relationship between lists and S-expressions in
Lisp. In particular, the “list” object [a | b] really represents an object corre-
sponding to a dotted pair in Lisp—namely, .(a,b).

List Processing

Many problems can be solved in Prolog by expressing the data as lists and
defining constraints on those lists using patterns with Prolog’s list represen-
tation. We provide a number of examples to illustrate the process of pro-
gramming in Prolog.

1. Define last(L,X) to mean “X is the last element of the list L”.

The last element of a singleton list is its only element.

last([X], X).

The last element of a list with two or more elements is the last item in
its tail.

last([H|T], X) :- last(T, X).

?- last([a,b,c], X).
X = c
yes

?- last([], X).
no

Observe that the “illegal” operation of requesting the last element of an empty
list simply fails. With imperative languages a programmer must test for ex-
ceptional conditions to avoid the run-time failure of a program. With logic
programming, an exception causes the query to fail, so that a calling pro-
gram can respond by trying alternate subgoals. The predicate last acts as a
generator when run “backward”.

577

?- last(L, a).
L = [a];
L = [_5, a]; % The underline indicates system-generated variables.
L = [_5, _9, a];
L = [_5, _9, _13, a] …

The variable H in the definition of last plays no role in the condition part (the
body) of the rule; it really needs no name. Prolog allows anonymous vari-
ables , denoted by an underscore:

last([_ |T], X) :- last(T, X).

Another example of an anonymous variable can be seen in the definition of a
father relation:

father(F) :- parent(F, _), male(F).

The scope of an anonymous variable is its single occurrence. Generally, we
prefer using named variables for documentation rather than anonymous
variables, although anonymous variables can be slightly more efficient since
they do not require that bindings be made.

2. Define member(X,L) to mean “X is a member of the list L”.

For this predicate we need two clauses, one as a basis case and the second
to define the recursion that corresponds to an inductive specification.

The predicate succeeds if X is the first element of L.

member(X, [X|T]).

If the first clause fails, check if X is a member of the tail of L.

member(X, [H|T]) :- member(X,T).

If the item is not in the list, the recursion eventually tries a query of the
form member(X,[]), which fails since the head of no clause for member
has an empty list as its second parameter.

3. Define delete(X,List,NewList) to mean
“The variable NewList is to be bound to a copy of List with all
 instances of X removed”.

When X is removed from an empty list, we get the same empty list.

delete(X,[],[]).

When an item is removed from a list with that item as its head, we get the
list that results from removing the item from the tail of the list (ignoring
the head).

delete(H,[H|T],R) :- delete(H,T,R).

LIST PROCESSING

578 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

If the previous clause fails, X is not the head of the list, so we retain the
head of L and take the tail that results from removing X from the tail of
the original list.

delete(X,[H|T],[H|R]) :- delete(X,T,R).

4. Define union(L1,L2,U) to mean
“The variable U is to be bound to the list that contains the union
 of the elements of L1 and L2”.

If the first list is empty, the result is the second list.

union([],L2,L2). % clause 1

If the head of L1 is a member of L2, it may be ignored since a union does
not retain duplicate elements.

union([H|T],L2,U) :- member(H,L2), union(T,L2,U). % clause 2

If the head of L1 is a not member of L2 (clause 2 fails), it must be included
in the result.

union([H|T],L2,[H|U]) :- union(T,L2,U). % clause 3

In the last two clauses, recursion is used to find the union of the tail of L1
and the list L2.

5. Define concat(X,Y,Z) to mean “the concatenation of lists X and Y is Z”.
In the Prolog literature, this predicate is frequently called append.

concat([], L, L). % clause α

concat([H|T], L, [H|M]) :- concat(T, L, M). % clause β

?- concat([a,b,c], [d,e], R).
R = [a,b,c,d,e]
yes

The inference that produced this answer is illustrated by the search tree
in Figure A.4. When the last query succeeds, the answer is constructed
by unwinding the bindings:

R = [a | M] = [a | [b | M1]] = [a,b | M1] = [a,b | [c | M2]]
= [a,b,c | M2] = [a,b,c | [d,e]] = [a,b,c,d,e].

Figure A.5 shows the search tree for another application of concat using
semicolons to generate all the solutions.

To concatenate more than two lists, use a predicate that joins the lists in
parts.

concat(L,M,N,R) :- concat(M,N,Temp), concat(L,Temp,R).

579

concat([a,b,c],[d,e],R).

fail

H = a
T = [b,c]
R = [a | M]

α β

concat([b,c],[d,e],M).

α β H1 = b
T1 =[c]
M = [b | M1]

fail concat([c],[d,e],M1).

fail

α β H2 = c
T2 = []
M1 = [c | M2]

concat([],[d,e],M2).

succeed with M2 = [d,e]

α

Figure A.4: A Search Tree for concat

No confusion results from using the same name for this predicate, since
the two versions are distinguished by the number of parameters they
take (the arities of the predicates).

6. Define reverse(L,R) to mean “the reverse of list L is R”.

reverse([], []).
reverse([H|T], L) :- reverse(T, M), concat(M, [H], L).

In executing concat, the depth of recursion corresponds to the number of
times that items from the first list are attached (cons) to the front of the
second list. Taken as a measure of complexity, it suggests that the work
done by concat is proportional to the length of the first list. When reverse
is applied to a list of length n, the executions of concat have first argu-
ment of lengths, n-1, n-2, …, 2, 1, which means that the complexity of
reverse is proportional to n2.

LIST PROCESSING

580 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

concat(X,Y,[a,b,c]).

success

X = []

Y = [a,b,c];

H = a
M = [b,c]
X = [a | T]
Y = L

α β
X = []
Y = [a,b,c]

concat(T,L,[b,c]).

success

X = [a]

Y = [b,c];

H1 = b
M1 = [c]
T = [b | T1]
L = L1

α β
T = []
L = [b,c]

concat(T1,L1,[c]).

success

X = [a,b]

Y = [c];

H2 = c
M2 = []
T1 = [c | T2]
L1 = L2

α β
T1 = []
L1 = [c]

success

X = [a,b,c]

Y = [];

concat(T2,L2,[]).

α β
T2 = []
L2 = []

fail

Figure A.5: Another Search Tree for concat

7. An improved reverse using an accumulator:

rev(L, R) :- help(L, [], R).

help([], R, R).
help([H|T], A, R) :- help(T, [H|A], R).

The predicate help is called n times if the original list is of length n, so the
complexity of rev is proportional to n. Observe that the predicat help is
tail recursive.

581

Sorting in Prolog

A few relations are needed for comparing numbers when sorting a list of
numbers (equal and not equal are described later):

M < N, M =< N, M > N, M >= N.

These relations demand that both operands be numeric atoms or arithmetic
expressions whose variables are bound to numbers.

Insertion Sort

If a list consists of head H and tail T, the idea with the insertion sort is to sort
the tail T (recursively) and then insert the item H into its proper place in the tail.

insertSort([], []).
insertSort([X|T], M) :- insertSort(T, L), insert(X, L, M).

insert(X, [H|L], [H|M]) :- H<X, insert(X, L, M).
insert(X, L, [X|L]).

Observe that the clauses for insert are order dependent. The second clause is
executed when the first goal of the first clause fails—namely, when H>=X. If
these clauses are switched, the definition of insert is no longer correct.

Although this dependence on the rule order of Prolog is common in Prolog
programming and may be slightly more efficient, a more logical program is
constructed by making the clauses that define insert independent of each other:

insert(X, [], [X]).
insert(X, [H|L], [X,H|L]) :- X=<H.
insert(X, [H|L], [H|M]) :- X>H, insert(X,L,M).

Now only one clause applies to a given list. The original clause insert(X, L,
[X|L]). must be split into two cases depending on whether L is empty or not.

Quick Sort

The quick sort works by splitting the list into those items less than or equal
to a particular element, called the pivot , and the list of those items greater
than the pivot. The first number in the list can be chosen as the pivot. After
the two sublists are sorted (recursively), they are concatenated with the pivot
in the middle to form a sorted list.

The splitting operation is performed by the predicate partition(P, List, Left,
Right), which means P is a pivot value for the list List, Left = { X∈List | X≤P },
and Right = { X∈List | X>P }.

SORTING IN PROLOG

582 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

partition(P, [], [], []).
partition(P, [A|X], [A|Y], Z) :- A=<P, partition(P, X, Y, Z).
partition(P, [A|X], Y, [A|Z]) :- A>P, partition(P, X, Y, Z).

quickSort([], []).
quickSort([H|T], S) :- partition(H, T, Left, Right),

quickSort(Left, NewLeft),

quickSort(Right, NewRight),

concat(NewLeft, [H|NewRight], S).

The clauses for both partition and quickSort can be entered in any order since
they are made mutually exclusive either by the patterns in their head terms
or by the “guard” goals at the beginning of their bodies. The goals in the
definition of partition may be turned around without affecting correctness but
with a severe penalty of diminished efficiency since the recursive call will be
made whether it is needed or not. An empirical test showed the sorting of 18
integers took 100 times longer with the goals switched than with the original
order.

The Logical Variable

A variable in an imperative language is not the same concept as a variable in
mathematics:

1. A program variable refers to a memory location that may have changes in
its contents; consider an assignment N := N+1.

2. A variable in mathematics simply stands for a value that once deter-
mined will not change. The equations x + 3y = 11 and 2x – 3y = 4 specify
values for x and y—namely, x=5 and y=2—which will not be changed in
this context. A variable in Prolog is called a logical variable and acts in
the manner of a mathematical variable.

3. Once a logical variable is bound to a particular value, called an
instantiation of the variable, that binding cannot be altered unless the
pattern matching that caused the binding is undone because of back-
tracking.

4. The destructive assignment of imperative languages, where a variable
with a value binding is changed, cannot be performed in logic program-
ming.

5. Terms in a query change only by having variables filled in for the first
time, never by having a new value replace an existing value.

6. An iterative accumulation of a value is obtained by having each instance
of a recursive rule take the values passed to it and perform computations
of values for new variables that are then passed to another call.

583

7. Since a logical variable is “write-once”, it is more like a constant identifier
with a dynamic defining expression as in Ada (or Pelican) than a variable
in an imperative language.

The power of logic programming and Prolog comes from using the logical
variable in structures to direct the pattern matching. Results are constructed
by binding values to variables according to the constraints imposed by the
structures of the arguments in the goal term and the head of the clause
being matched. The order that variables are constrained is generally not criti-
cal, and the construction of complex values can be postponed as long as
logical variables hold their places in the structure being constructed.

Equality and Comparison in Prolog

Prolog provides a number of different ways to compare terms and construct
structures. Since beginning Prolog programmers often confuse the various
notions of equality and related predicates, we provide a brief overview of
these predicates.

Unification

“T1 = T2” Succeed if term T1 can be unified with term T2.

| ?- f(X,b) = f(g(a),Y).
X = g(a)

 Y = b
yes

Numerical Comparisons

“=:=”, “=\=”, “<”, “>”, “=<”, “>=”

Evaluate both expressions and compare the results.

| ?- 5<8.
yes

| ?- 5 =< 2.
no

| ?- N =:= 5.
! Error in arithmetic expression: not a number (N not instantiated to a number)
no

| ?- N = 5, N+1 =< 12.
N = 5 % The unification N = 5 causes a binding of N to 5.
yes

EQUALITY AND COMPARISON IN PROLOG

584 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

Forcing Arithmetic Evaluation (is)

“N is Exp” Evaluate the arithmetic expression Exp and try to unify
the resulting number with N, a variable or a number.

| ?- M is 5+8.
M = 13
yes

| ?- 13 is 5+8.
yes

| ?- M is 9, N is M+1.
M = 9
N = 10
yes

| ?- N is 9, N is N+1.
no % N is N+1 can never succeed.

| ?- 6 is 2* K.
! Error in arithmetic expression: not a number (K not instantiated to a number)
no

The infix predicate is provides the computational mechanism to carry out
arithmetic in Prolog. Consider the following predicate that computes the
factorial function:

The factorial of 0 is 1.
fac(0,1).

The factorial of N>0 is N times the factorial of N-1.

fac(N,F) :- N>0, N1 is N-1, fac(N1,R), F is N* R.

| ?- fac(5,F).

F = 120
yes

Identity

“X == Y” Succeed if the terms currently instantiated to X and Y are
literally identical, including variable names.

| ?- X=g(X,U), X==g(X,U).
yes

| ?- X=g(a,U), X==g(V,b).
no

| ?- X\==X. % “X \== X” is the negation of “X == X”

no

585

Term Comparison (Lexicographic)

“T1 @< T2”, “T1 @> T2”, “T1 @=< T2”, “T1 @>= T2”

| ?- ant @< bat.
yes

| ?- @<(f(ant),f(bat)). % infix predicates may also be entered
yes % as prefix

Term Construction

“T =.. L” L is a list whose head is the atom corresponding to the
principal functor of term T and whose tail is the argument
list of that functor in T.

| ?- T =.. [@<,ant,bat], call(T).
T = ant@<bat
yes

| ?- T =.. [@<,bat,bat],call(T).
no

| ?- T =.. [is,N,5], call(T).
N = 5,
T = (5 is 5)
yes

| ?- member(X,[1,2,3,4]) =.. L.
L = [member,X,[1,2,3,4]]
yes

Input and Output Predicates

Several input and output predicates are used in the laboratory exercises. We
describe them below together with a couple of special predicates.

get0(N) N is bound to the ascii code of the next character from the current
input stream (normally the terminal keyboard). When the current
input stream reaches its end of file, a special value is bound to N
and the stream is closed. The special value depends on the Prolog
system, but two possibilities are:

26, the code for control-Z or

-1, a special end of file value.

put(N) The character whose ascii code is the value of N is printed on the
current output stream (normally the terminal screen).

INPUT AND OUTPUT PREDICATES

586 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

see(F) The file whose name is the value of F becomes the current input
stream.

seen Close the current input stream.

tell(F) The file whose name is the value of F becomes the current output
stream.

told Close the current output stream.

read(T) The next Prolog term in the current input stream is bound to T.
The term in the input stream must be followed by a period.

write(T) The Prolog term bound to T is displayed on the current output
stream.

tab(N) N spaces are printed on the output stream.

nl Newline prints a linefeed character on the current output stream.

abort Immediately terminate the attempt to satisfy the original query
and return control to the top level.

name(A,L) A is a literal atom or a number, and L is a list of the ascii codes of
the characters comprising the name of A.

| ?- name(A,[116,104,101]).
A = the

| ?- name(1994,L).
L = [49, 57, 57, 52]

call(T) Assuming T is instantiated to a term that can be interpreted as a
goal, call(T) succeeds if and only if T succeeds as a query.

This Appendix has not covered all of Prolog, but we have introduced enough
Prolog to support the laboratory exercises in the text. See the further read-
ings at the end of Chapter 2 for references to more material on Prolog.

587

Appendix B
FUNCTIONAL PROGRAMMING
WITH SCHEME

The languages usually studied in computer science—namely, Pascal, C,
Modula-2, and Ada—are considered imperative languages because the
basic construct is a command. These languages are heavily influenced

by the “von Neumann architecture” of computers, which includes a store
(memory) and an instruction counter used to identify the next instruction to
be fetched from the store. The computation model has control structures
that determine the sequencing of instructions, which use assignments to
make incremental modifications to the store.

Imperative languages are characterized by the following properties:

• The principal operation is the assignment of values to variables.

• Programs are command oriented, and they carry out algorithms with state-
ment level sequence control, usually by selection and repetition.

• Programs are organized as blocks, and data control is dominated by scope
rules.

• Computing is done by effect, namely by changes to the store.

The computing by effect intrinsic to imperative programming plays havoc
with some of the mathematical properties that are essential to proving the
correctness of programs. For example, is addition commutative in an im-
perative program? Does “write(a+b)” always produce the same value as
“write(b+a)”? Consider the following Pascal program:

program P (output);
var b : integer;
function a : integer;

begin b := b+2; a := 5 end;
begin

b := 10
write(a+b) or write(b+a)

end.

In fact, implementations of Pascal will most likely give different results for
the two versions of this program, depending on the order of evaluation of

588 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

expressions. This anomaly is caused by the side effect in the expression be-
ing evaluated, but programming by effect lies at the heart of imperative pro-
gramming. If we depend on imperative programs, we must discard many of
the basic properties of mathematics, such as associative and commuative
laws of addition and multiplication and the distributive law for multiplica-
tion over addition.

The functional programming paradigm provides an alternative notion of pro-
gramming that avoids the problems of side effects. Functional languages are
concerned with data objects and values instead of variables. Values are bound
to identifiers, but once made, these bindings cannot change. The principal
operation is function application. Functions are treated as first-class objects
that may be stored in data structures, passed as parameters, and returned
as function results. A functional language supplies primitive functions, and
the programmer uses function constructors to define new functions. Pro-
gram execution consists of the evaluation of an expression, and sequence
control depends primarily on selection and recursion. A pure functional lan-
guage has no assignment command; values are communicated by the use of
parameters to functions. These restrictions enforce a discipline on the pro-
grammer that avoids side effects. We say that functional languages are refer-
entially transparent.

Principle of Refer ential T ranspar ency : The value of a function is deter-
mined by the values of its arguments and the context in which the function
application appears, and it is independent of the history of the execution. ❚

Since the evaluation of a function with the same argument produces the
same value every time that it is invoked, an expression will produce the same
value each time it is evaluated in a given context. Referential transparency
guarantees the validity of the property of substituting equals for equals.

Lisp

Work on Lisp (List processing) started in 1956 with an artificial intelligence
group at MIT under John McCarthy. The language was implemented by
McCarthy and his students in 1960 on an IBM 704, which also had the first
Fortran implementation. Lisp was an early example of interactive comput-
ing, which played a substantial role in its popularity. The original develop-
ment of Lisp used S-expressions (S standing for symbolic language) with the
intention of developing an Algol-like version (Lisp 2) with M-expressions (M
for metalanguage). When a Lisp interpreter was written in Lisp with S-ex-
pressions, Lisp 2 was dropped. The principal versions, which are based on
Lisp 1.5, include Interlisp, Franz Lisp, MacLisp, Common Lisp, and Scheme.

589

Lisp has a high-level notation for lists. Functions are defined as expressions,
and repetitive tasks are performed mostly by recursion. Parameters are passed
to functions by value. A Lisp program consists of a set of function definitions
followed by a list of expressions that may include function evaluations.

Scheme Syntax

The Scheme version of Lisp has been chosen here because of its small size
and its uniform treatment of functions. In this appendix we introduce the
fundamentals of functional programming in Scheme. When we say Scheme,
we are referring to Lisp. The basic objects in Scheme, called S-expressions,
consist of atoms and “dotted pairs”:

<S-expr> ::= <atom> | (<S-expr> . <S-expr>)

The only terminal symbols in these productions are the parentheses and the
dot (period). The important characteristic of an S-expression is that it is an
atom or a pair of S-expressions. The syntactic representation of a pair is not
crucial to the basic notion of constructing pairs.

Atoms serve as the elementary objects in Scheme. They are considered indi-
visible with no internal structure.

<atom> ::= <literal atom> | <numeric atom>

<literal atom> ::= <letter> | <literal atom> <letter> | <literal atom> <digit>

<numeric atom> ::= <numeral> | – <numeral>

<numeral> ::= <digit> | <numeral> <digit>

Literal atoms consist of a string of alphanumeric characters usually starting
with a letter. Most Lisp systems allow any special characters in literal atoms
as long as they cannot be confused with numbers. The numeric atoms de-
fined here represent only integers, but most Lisp systems allow floating-point
numeric atoms.

Since S-expressions can have arbitrary nesting when pairs are constructed,
Scheme programmers rely on a graphical representation of S-expressions to
display their structure. Consider the following diagrams illustrating the S-
expression (a . (b. c)):

a

b c

Lisp tree (or L-tree):

SCHEME SYNTAX

590 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

a b c

Cell diagram (or box notation):

We prefer using the box notation for S-expressions. Atoms are represented
as themselves, and if the same atom is used twice in an S-expression, a
single value can be shared since atoms have unique occurrences in S-ex-
pressions.

Functions on S-expressions

The simplicity of Scheme (and Lisp) derives from its dependence on several
basic functions for constructing pairs and selecting components of a pair.
Two selector functions are used to investigate a pair:

car Applied to a nonatomic S-expression, car returns the left part.

cdr Applied to a nonatomic S-expression, cdr returns the right part.

On the IBM 704, car stood for “contents of address register” and cdr for “con-
tents of decrement register”. Some authors have suggested that “head” and
“tail” or “first” and “rest” are more suggestive names for these functions, but
most Lisp programmers still use the traditional names.

The following examples that use brackets [] to delimit arguments do not
follow correct Scheme syntax, which will be introduced shortly:

car [((a . b) . c)] = (a . b)

cdr [((a . b) . c)] = c

An error results if either function is applied to an atom.

An abstract implementation of the selector functions can be explained in
terms of a box diagram:

car returns the left pointer.

cdr returns the right pointer.

a b

c

591

A single constructor function cons builds a pair given two S-expressions:

cons Applied to two S-expressions, cons returns a dotted pair contain-
ing them.

For example:

cons[p , q] = (p . q)

cons[(a . b) , (a . c)] = ((a . b) . (a . c))

As an abstract implementation, we allocate a new cell and set its left and
right components to point to the two arguments. Observe that the atom a is
shared by the two pairs.

c

a b

(a . b)

(a . c)

cons [(a . b) , (a . c)]

Lists in Scheme

The notion of an S-expression is too general for most computing tasks, so
Scheme primarily deals with a subset of the S-expressions. A list in Scheme
is an S-expression with one of two forms:

1. The special atom () is a list representing the empty list. Note that () is the
only S-expression that is both an atom and a list.

2. A dotted pair is a list if its right (cdr) element is a list.

S-expressions that are lists use special notation:

(a . ()) is represented by (a)

(b . (a . ())) is represented by (b a)

(c . (b . (a . ()))) is represented by (c b a)

Cell diagrams for lists are usually drawn with a horizontal “spine” that
stretches from left to right. The spine contains as many boxes as the list has
elements at its top level.

LISTS IN SCHEME

592 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

(a b c)

a b c ()

b ca

d

((a . (b . ())) . ((c . ()) . (d . ())))

((a b) (c) d) =

Observe the abbreviation of a slash through the cell at the end of a list to
represent a pointer to an empty list ().

The elementary constructor and selectors for S-expressions have special prop-
erties when applied to lists.

car When applied to a nonempty list, car returns the first element of
the list.

cdr When applied to a nonempty list, cdr returns a copy of the list
with the first element removed.

cons When applied to an arbitrary S-expression and a list, cons re-
turns the list obtained by appending the first argument onto the
beginning of the list (the second argument).

For example:

car [(a b c)] = a cdr [(a b c)] = (b c)

car [((a))] = (a) cdr [((a))] = ()

cons [(a) , (b c)] = ((a) b c) cons [a , ()] = (a)

Syntax for Functions

In Scheme, the application of a function to a set of arguments is expressed as
a list:

(function-name sequence-of-arguments)

This prefix notation is known as Cambridge Polish For m since it was devel-
oped at MIT in Cambridge. We illustrate the notation by introducing many of
the predefined Scheme numeric functions.

593

Unary functions:
(add1 5) returns 6
(sub1 0) returns -1
(abs (add1 -5)) returns 4

Binary functions:
(- 6 9) returns -3
(quotient 17 5) returns 3
(/ 17 5) returns 3.4
(* 10 12) returns 120
(- (* 10 2) (+ 13 3)) returns 4
(modulo 53 5) returns 3

N-ary functions:
(+ 1 2 3 4 5) returns 15
(* 1 2 3 4 5) returns 120
(max 2 12 3 10) returns 12
(min (* 4 6) (+ 4 6) (- 4 6)) returns -2

Miscellaneous functions:
(expt 2 5) returns 32
(expt 5 -2) returns 0.04
(sqrt 25) returns 5
(sqrt 2) returns 1.4142135623730951

Functions that return Boolean values are called predicates. In Scheme predi-
cates return either the atom #t, which stands for true, or #f, the value for
false. Scheme programmers usually follow the convention of naming a predi-
cate with identifiers that end in a question mark.

(negative? -6) returns #t (= 6 2) returns #f

(zero? 44) returns #f (< 0.5 0.1) returns #f

(positive? -33) returns #f (>= 3 30) returns #f

(number? 5) returns #t (<= -5 -3) returns #t

(integer? 3.7) returns #f (odd? 5) returns #t

(real? 82) returns #f (even? 37) returns #f

(> 6 2) returns #t

Scheme Evaluation

When the Scheme interpreter encounters an atom, it evaluates the atom:

• Numeric atoms evaluate to themselves.

SCHEME EVALUATION

594 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

• The literal atoms #t and #f evaluate to themselves.

• Each other literal atom evaluates to the value, if any, that has been bound
to it.

The define operation may be used to bind a value to an atom. The operation
makes the binding and returns a value:

(define a 5) returns a

(define b 3) returns b

a returns 5

(+ a b) returns 8

(+ a c) returns an error since c has no value bound to it.

Although the value returned by define is unspecified in the Scheme standard,
most Schemes return the name of the identifier that has just been bound.

When the Scheme interpreter evaluates a list, it expects the first item in the
list to be an expression that represents a function. The rest of the items in
the list are evaluated and given to the function as argument values.

(* a (add1 b)) returns 20

Suppose now that we want to apply car to the list (a b c). Evaluating the
expression (car (a b c)) means that a must represent a function, which will be
applied to the values of b and c, and the resulting value is passed to car.
Since we want to apply car to the list (a b c) without evaluating the list, we
need a way to suppress that evaluation. Scheme evaluation is inhibited by
the quote operation.

(quote a) returns the symbol a

(quote (a b c)) returns (a b c) unevaluated

(car (quote (a b c))) returns a

(cdr (quote (a b c))) returns (b c)

(cons (quote x) (quote (y z))) returns the list (x y z)

The quote operation may be abbreviated by using an apostrophe.

(cdr '((a) (b) (c))) returns ((b) (c))

(cons 'p '(q)) returns (p q)

(number? 'a) returns #f

'a returns a

'(1 2 3) returns (1 2 3)

The car and cdr functions may be abbreviated to simplify expressions. (car
(cdr '(a b c))) may be abbreviated as (cadr '(a b c)). Any combination of a’s and
d’s between c and r (up to four operations) defines a Scheme selector func-
tion.

595

Now that we have a mechanism for suppressing evaluation of a literal atom
or a list, several more fundamental functions can be described.

pair? When applied to any S-expression, pair? returns #t if it is a dotted
pair, #f otherwise.

(pair? 'x) returns #f

(pair? '(x)) returns #t

atom? When applied to any S-expression, atom? is the logical negation of
pair?. (atom? is not standard in Scheme.)

null? When applied to any S-expression, null? returns #t if it is the empty
list, #f otherwise.

(null? '()) returns #t

(null? '(())) returns #f

eq? When applied to two literal atoms, eq? returns #t if they are the
same, #f otherwise.

(eq? 'xy 'x) returns #f

(eq? (pair? 'gonzo) #f) returns #t

(eq? '(foo) '(foo)) returns #f

The reader may find the equality function eq? somewhat confusing since it
may appear that the expression (foo) should be equal to itself. To explain this
unusual version of equality, we develop a short example. We use the define
operation to create two bindings.

(define x '(a b))

(define y '(a b))

To explain why (eq? x y) returns #f, consider the cell diagram below. Each time
the Scheme interpreter processes an S-expression, such as (define x '(a b)), it
creates a new copy of the structure being processed.

x

y

ba

Although the values appear to be the same, they are two different copies of
the same S-expression. The test (eq? x y) returns #f because x and y point to
two different objects. We can view eq? as testing pointer equality. On atoms
eq? acts as an equality test since atoms are treated as unique objects. The

SCHEME EVALUATION

596 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

equality of numeric atoms can be tested using the = function. The equality of
general S-expressions will be considered later.

Special Forms

All the operations considered so far do not act in the same way. Scheme
functions, such as +, car, null?, =, and user-defined functions, always evalu-
ate their arguments. In fact, when (+ (car '(2 4 6)) 5) is submitted to the inter-
preter, each of the expressions +, (car '(2 4 6)), and 5 are evaluated:

+ evaluates to the predefined addition operation,

(car '(2 4 6)) evaluates to the number 2, and

5 evaluates to the number 5.

On the other hand, several of the operations described so far do not and
cannot evaluate all of their operands. (quote a) simply returns its operand
unevaluated. (define x (+ 5 6)) evaluates its second argument, but leaves its
first argument unevaluated.

These operations are called special for ms to distinguish them from normal
Scheme functions. A complete list of the special forms in Scheme follows:

and delay let quasiquote
begin do let* quote
case if letrec set!
cond lambda or while
define

For some of these special forms, the determination of which arguments are
evaluated is made on a dynamic basis using the results of evaluations per-
formed so far. We will not take the time to describe all of the special forms in
Scheme. The description of those not used in this appendix can be found in
the references for Scheme.

Defining Functions in Scheme

The special form define returns the name of the function (or other object)
being defined; more importantly, it has the side effect of binding an object
that may be a function to the name.

(define name (lambda (list-of-parameters) expression))

The use of lambda here will be explained later. The basic idea is that execut-
ing the function defined by the expression (lambda (list-of-parameters) ex-
pression) involves evaluating the expression in an environment that contains

597

binding of the parameters in the list to actual arguments. We give examples
to illustrate user-defined Scheme functions below.

• Calculate the hypotenuse given the legs of a right triangle.

(define hypotenuse (lambda (a b) (sqrt (+ (* a a) (* b b)))))

(hypotenuse 3 4) returns 5.0

(hypotenuse 10 20) returns 22.360679774997898

• Find the first item in a list (a synonym for car).

(define first (lambda (L) (car L)))

(first '((a b c))) returns (a b c)

• Find the second item in a list.

(define second (lambda (L) (cadr L)))

(second '((a) (b) (c))) returns (b)

What if the value bound to L does not have a first or second element? We use
revisions to these two functions to illustrate conditional expressions in
Scheme. We plan to change the definition so that

If L is empty, both functions return #f.

If L has only one element, second returns #f.

A mechanism for making decisions is needed to carry out these revisions.
Decisions in Scheme are represented as conditional expressions using the
special form cond:

(cond (c1 e1) (c2 e2) … (cn en) (else en+1)),

which is equivalent to if c1 then return e1

else if c2 then return e2

:

else if cn then return en

else return en+1

If all of c1, c2, …, cn are false and the else clause is omitted, the cond result is
unspecified, although many implementations return an empty list. The func-
tion cond is a special form since it does not evaluate all its arguments. For
the purposes of testing, any non-#f value represents true.

Now we use cond to revise the definitions of the functions first and second.

(define first (lambda (L)
(cond ((null? L) #f)

(else (cdr L)))))

DEFINING FUNCTIONS IN SCHEME

598 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

(define second (lambda (L)
(cond ((null? L) #f)

((null? (cdr L)) #f)
(else (cadr L)))))

Both cond and the body of function definitions allow more generality, allow-
ing a sequence of expressions. Each expression is evaluated and the value of
the last one is the result returned. The other expressions are evaluated for
their side effects (a non-functional aspect of Scheme).

(define categorize (lambda (n)
(cond ((= n 0) (display 'zero) 0)

((positive? n) (display 'positive) 1)
(else (display 'negative) -1))))

Another special form for decision making is the if operation:

(if test then-expression else-expression)

For example, (define safe-divide (lambda (m n)
(if (zero? n)

0
(/ m n))))

Recursive Definitions

The main control structure in Scheme is recursion. Functions that require
performing some sequence of operations an arbitrary number of times can
be defined inductively. These definitions translate directly into recursive
definitons in Scheme. In the next two examples, we define a function using
mathematical induction and then translate that definition using recursion.

• Exponentiation (assume m≠0)

m0 = 1
mn = m • mn-1 for n>0

(define power (lambda (m n)
(if (zero? n)

1
(* m (power m (sub1 n))))))

A sample execution of the power function demonstrates how the recursion
unfolds. In reality, the induction hypothesis inherent in a recursion defini-
tion ensures that the result computes what we want.

(power 2 3)

= 2 • (power 2 2)

= 2 • [2 • (power 2 1)]

599

= 2 • [2 • [2 • (power 2 0)]]

= 2 • [2 • [2 • 1]]

= 2 • [2 • 2] = 2 • 4 = 8
• Fibonacci

fib(0) = 1

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2) for n>1

(define fib (lambda (n)
(cond ((zero? n) 1)

((zero? (sub1 n)) 1)
(else (+ (fib (sub1 n)) (fib (- n 2)))))))

Lambda Notation

Scheme contains a mechanism for defining anonymous functions, as was the
case in the lambda calculus (see Chapter 5). The lambda expression λx,y . y2+x
becomes the S-expression (lambda (x y) (+ (* y y) x)) in Scheme. An anony-
mous function can appear anywhere that a function identifier is allowed. For
example, we can apply the previous function as follows:

((lambda (x y) (+ (* y y) x)) 3 4) returns 19.

In fact, the expression that we use to define a function is simply making a
binding of an identifier to a lambda expression representing an anonymous
function. For example, the expression (define fun (lambda (x y) (+ (* y y) x)))
binds the name fun to the anonymous function (lambda (x y) (+ (* y y) x))).
Scheme permits an abbreviation of such a definition using notation that
shows the pattern of a call of the function as in

(define (fun x y) (+ (* y y) x)).

Recursive Functions on Lists

Many functions in Scheme manipulate lists. Therefore we develop three ex-
amples that show the basic techniques of processing a list recursively.

1. Count the number of occurrences of atoms in a list of atoms. For ex-
ample, (count1 '(a b c b a)) returns 5.

Case 1 : List is empty ⇒ return 0

Case 2 : List is not empty
⇒ it has a first element that is an atom

⇒ return (1 + number of atoms in the cdr of the list).

RECURSIVE DEFINTIONS

600 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

In Scheme, cond can be used to select one of the two cases.

(define count1 (lambda (L)
(cond ((null? L) 0)

(else (add1 (count1 (cdr L)))))))

2. Count the number of occurrences of atoms at the “top level” in an arbi-
trary list. For example, (count2 '(a (b c) d a)) returns 3.

Case 1 : List is empty ⇒ return 0

Case 2 : List is not empty.

Subcase a : First element is an atom (it not is a pair)

⇒ return (1 + number of atoms in the cdr of the list).

Subcase b : First element is not an atom

⇒ return the number of atoms in the cdr of the list.

We write this algorithm in Scheme as the function

(define count2 (lambda (L)
(cond ((null? L) 0)

((atom? (car L)) (add1 (count2 (cdr L))))
(else (count2 (cdr L))))))

3. Count the number of occurrences of atoms at all levels in an arbitrary
list. For example, (count2 '(a (b c) d (a))) returns 5.

Case 1 : List is empty ⇒ return 0

Case 2 : List is not empty.

Subcase a : First element is an atom

⇒ return (1 + number of atoms in the cdr of the list).

Subcase b : First element is not an atom

⇒ return (the number of atoms in the car of the list

+ the number of atoms in the cdr of the list).

The corresponding Scheme function is defined below.

(define count3 (lambda (L)
(cond ((null? L) 0)

((atom? (car L)) (add1 (count3 (cdr L))))
(else (+ (count3 (car L)) (count3 (cdr L)))))))

Now that we have seen the basic patterns for defining functions that process
lists, we describe a number of useful list manipulation functions, most of
which are predefined in Scheme. We give them as user-defined functions as

601

a means of explaining their semantics and to provide additional examples of
Scheme code. In many Scheme systems the identifiers associated with pre-
defined functions may not be redefined since they are reserved words. There-
fore the names of the following user-defined functions may have to be altered
to avoid confusion.

• Length of a list

(define length (lambda (L)
(if (null? L)

0
(add1 (length (cdr L))))))

The function length will work identically to the predefined length function in
Scheme except that the execution may be slower or a stack may overflow
for long lists since the predefined functions may be more efficiently imple-
mented.

• The nth element of a list

(define nth (lambda (n L)
(if (zero? n)

(car L)
(nth (sub1 n) (cdr L)))))

This function finds the nth element of a list using zero as the position of the
first item. So the first element is called the 0th.

• Equality of arbitrary S-expr essions

The strategy for the equality function is to use = for numeric atoms, eq? for
literal atoms, and recursion to compare the left parts and right parts of
dotted pairs. The corresponding predefined function is called equal?.

(define equal? (lambda (s1 s2)
(cond ((number? s1) (= s1 s2))

((atom? s1) (eq? s1 s2))
((atom? s2) #f)
((equal?(car s1) (car s2)) (equal? (cdr s1) (cdr s2)))
(else #f))))

• Concatenate two lists

(define concat (lambda (L1 L2)
(cond ((null? L1) L2)

(else (cons (car L1) (concat (cdr L1) L2))))))

RECURSIVE DEFINTIONS

602 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

For example, (concat '(a b c) '(d e)) becomes
(cons 'a (concat '(b c) '(d e)))

= (cons 'a (cons 'b (concat '(c) '(d e))))
= (cons 'a (cons 'b (cons 'c (concat '() '(d e)))))

= (cons 'a (cons 'b (cons 'c '(d e))))
= (cons 'a (cons 'b '(c d e)))

= (cons 'a '(b c d e))
= (a b c d e)

Although its name may suggest otherwise, this is a pure function, so nei-
ther argument is altered. If length(L1) = n, concat requires n applications of
cons; this is a measure of how much work is done. The predefined function
for concatenating lists is called append and allows an arbitrary number of
lists as its arguments. User functions with an arbitrary number of argu-
ments can be defined several ways, but that topic is beyond the scope of
this presentation.

• Reverse a list

(define reverse (lambda (L)
(if (null? L)

'()
(concat (reverse (cdr L)) (list (car L))))))

The diagram below shows the way reverse handles a list with four ele-
ments. Observe that we assume that the function works correctly on lists
of length three (the induction hypothesis).

(a b c d)

a (b c d)

cdrcar

(d c b) (a)

reverselist

concat
(d c b a)

• Membership (at the top level) in a list

(define member (lambda (e L)
(cond ((null? L) #f)

((equal? e (car L)) L)
(else (member e (cdr L))))))

603

We might expect this Boolean function to return #t (true) or #f (false), but it
returns the rest of the list starting with the matched element for true. This
behavior is consistent with the interpretation that any non-#f object repre-
sents true. If the item is not in the list (the first case in the cond expres-
sion), member returns #f.

• Logical operations

(define and (lambda (s1 s2) (if s1 s2 #f)))

(define or (lambda (s1 s2) (if s1 s2 #t)))

The predefined “and” and “or” operations (actually special forms) allow an
arbitrary number of S-expressions as arguments. In these functions and
in our user-defined functions, the arguments are tested from left to right
until a decision can be made. For and, the first false argument makes the
result #f. For or, the first true argument makes the result non-#f.

Since we defined and and or as regular functions, all of the arguments in a
call must be evaluated even if they are not all needed. The special forms
and and or evaluate only as many operands as are needed to make a deci-
sion.

Scope Rules in Scheme

In Lisp 1.5 and many of its successors, access to nonlocal identifiers is re-
solved by dynamic scoping: the calling chain (along dynamic links) is fol-
lowed until the identifier is found local to a program unit (a function in Lisp).
McCarthy claims that he intended for Lisp to have static scoping but that a
mistake was made in implementing the early versions of Lisp(see
[Wexelblat81]). In fact, dynamic scoping is easier to implement for Lisp.

Scheme and Common Lisp use static scoping; nonlocal references in a func-
tion are resolved at the point of function definition. Static scoping is imple-
mented by associating a closure (instruction pointer and environment pointer)
with each function as it is defined. The calling stack maintains static links
for nonlocal references.

Top-level define’s create a global environment composed of the identifiers
being defined that is visible everywhere. A new scope is created in Scheme
when the formal parameters, which are local identifiers, are bound to actual
values when a function is invoked. The following transcript shows the cre-
ation of a global identifier a and a local (to f) identifier a.

>>> (define a 22)
a

>>> a
22

SCOPE RULES IN SCHEME

604 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

>>> (define f (lambda (a) (* a a)))
f

>>> (f 7)
49

>>> a
22

Local scope can also be created by various versions of the let expression in
Scheme. The basic let expression, actually a special form, elaborates the bind-
ings simultaneously and then evaluates the expression expr in the current
environment augmented by these bindings.

(let ((id1 val1) … (idn valn)) expr)

The expression (let ((a 5) (b 8)) (+ a b)) is an abbreviation of the function
application ((lambda (a b) (+ a b)) 5 8); both expressions return the value 13.
The let expression used to illustrate static scoping in section 8.2 takes the
following form in Scheme:

>>> (let ((x 5))
(let ((f (lambda (y) (+ x y))))

(let ((x 3))
(f x))))

8

The translation into function applications is not as easy to read.

>>> ((lambda (x)
((lambda (f)

((lambda (x) (f x))
 3))

 (lambda (y) (+ x y))))
 5)
8

Scheme also has a sequential let, called let*, that evaluates the bindings from
left to right.

(let* ((a 5) (b (+ a 3))) (* a b)) is equivalent to

>>> (let ((a 5)) (let ((b (+ a 3))) (* a b)))
40.

Finally, letrec must be used to bind an identifier to a function that calls the
identifier—namely, a recursive definition. The following expression defines
fact as an identifier local to the expression.

605

>>> (letrec ((fact (lambda (n)
(cond ((zero? n) 1)

(else (* n (fact (sub1 n))))))))
(fact 5))

120

See Chapter 10 for an explanation of the meaning of letrec in terms of fixed
points.

Proving Correctness in Scheme

Reasoning about the correctness of programs in imperative languages can be
a formidable challenge (see Chapter 11).

• Execution depends on the contents of each memory cell (each variable).

• Loops must be executed statically by constructing a loop invariant.

• The progress of the computation is measured by “snapshots” of the state
of the computation after every instruction.

• Side effects in programs can make correctness proofs very difficult.

Functional languages are much easier to reason about because of referential
transparency: Only those values immediately involved in a function applica-
tion need to be considered. Programs defined as recursive functions usually
can be proved correct by an induction proof. Consider a Scheme function
that computes the sum of the squares of a list of integers.

(define sumsqrs (lambda (L)
(cond ((null? L) 0)

(else (+ (* (car L) (car L)) (sumsqrs (cdr L)))))

Notation: If L is a list, let Lk denote the kth element of L.

Precondition : L is a list of zero or more integers.

Postcondition : (sumsqrs L) = ∑1≤k≤length(L) Lk
2

Proof of correctness: By induction on the length n of L.

Basis : n = length(L) = 0

Then ∑1≤k≤length(L) Lk
2 = 0 and (sumsqrs L) returns 0.

Induction step : Suppose that for any list M of length n,

(sumsqrs M) = ∑1≤k≤length(M) Mk
2.

Let L be a list of length n+1. Note that (cdr L) is a list of length n.

Therefore (sumsqrs L) = L1
2 + (sumsqrs (cdr L))

= L1
2 + ∑2≤k≤length(L) Lk

2 = ∑1≤k≤length(L) Lk
2.

PROVING CORRECTNESS IN SCHEME

606 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

Higher-Order Functions

Much of the expressiveness of functional programming comes from treating
functions as first-class objects with the same rights as other objects—namely,
to be stored in data structures, to be passed as parameters to subprograms,
and to be returned as function results.

In Scheme, functions can be bound to identifiers using define and may also
be stored in structures:

(define fn-list (list add1 – (lambda (n) (* n n))))

or alternatively

(define fn-list (cons add1
(cons –

(cons (lambda (n) (* n n)) '()))))
defines a list of three unary functions.

fn-list returns (#<PROCEDURE add1> #<PROCEDURE –> #<PROCEDURE>).

A Scheme procedure can be defined to apply each of these functions to a
number:

(define construction
(lambda (fl x)

(cond ((null? fl) '())
(else (cons ((car fl) x) (construction (cdr fl) x))))))

so that
(construction fn-list 5) returns (6 –5 25).

The function construction is based on an operation found in FP, a functional
language developed by John Backus (see [Backus78]). It illustrates the pos-
sibility of passing functions as arguments.

Since functions are first-class objects in Scheme, they may be stored in any
sort of structure. It is possible to imagine an application for a stack of func-
tions or even a tree of functions.

Definition : A function is called higher -order if it has one or more functions
as parameters or returns a function as its result. ❚

Higher-order functions are sometimes called functional forms since they al-
low the construction of new functions from already defined functions. The
expressiveness of functional programming comes from the use of functional
forms that allow the development of complex functions from simple func-
tions using abstract patterns—for example, construction defined above. We
continue, describing several of the most useful higher-order functions.

607

• Composition

(define compose (lambda (f g) (lambda (x) (f (g x)))))

(define inc-sqr (compose add1 (lambda (n) (* n n))))

(define sqr-inc (compose (lambda (n) (* n n)) add1))

Note that the two functions inc-sqr and sqr-inc are defined without the use
of parameters.

(inc-sqr 5) returns 26

(sqr-inc 5) returns 36

• Apply to all

In Scheme, map is a predefined function that applies a functional argu-
ment to all the items in a list. It takes a unary function and a list as
arguments and applies the function to each element of the list returning
the list of results.

(map add1 '(1 2 3)) returns (2 3 4)

(map (lambda (n) (* n n)) '(1 2 3)) returns (1 4 9)

(map (lambda (ls) (cons 'a ls)) '((b c) (a) ())) returns ((a b c) (a a) (a))

The function map can be defined as follows:

(define map (lambda (proc lst)
(if (null? lst)

'()
(cons (proc (car lst)) (map proc (cdr lst))))))

• Reduce

Higher-order functions are developed by abstracting common patterns from
programs. For example, consider the functions that find the sum or the
product of a list of numbers:

(define sum (lambda (ls)
(cond ((null? ls) 0)

(else (+ (car ls) (sum (cdr ls)))))))

(define product (lambda (ls)
(cond ((null? ls) 1)

(else (* (car ls) (product (cdr ls)))))))

The common pattern can be abstracted as a higher-order function reduce
(also called foldright):

(define reduce (lambda (proc init ls)
(cond ((null? ls) init)

(else (proc (car ls) (reduce proc init (cdr ls)))))))

HIGHER-ORDER FUNCTIONS

608 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

Reduce can be used to compute both the sum and product of a list of
numbers.

>>> (reduce + 0 '(1 2 3 4 5))
15

>>> (reduce * 1 '(1 2 3 4 5))
120

>>> (reduce concat '() '((1 2 3) (4 5) (6 7 8)))
(1 2 3 4 5 6 7 8)

Now sum and product can be defined in terms of reduce:

(define sum (lambda (ls) (reduce + 0 ls)))

(define product (lambda (ls) (reduce * 1 ls)))

• Filter

By passing a Boolean function, it is possible to “filter” in only those ele-
ments from a list that satisfy the predicate.

(define filter (lambda (proc ls)
(cond ((null? ls) '())

((proc (car ls)) (cons (car ls) (filter proc (cdr ls))))
(else (filter proc (cdr ls))))))

(filter even? '(1 2 3 4 5 6)) returns (2 4 6).

(filter (lambda (n) (> n 3)) '(1 2 3 4 5)) returns (4 5).

Currying

A binary function—for example, + or cons—takes both of its arguments at the
same time. For example, (+ a b) will evaluate both a and b so that their values
can be passed to the addition operation.

Having a binary function take its arguments one at a time can be an advan-
tage. Such a function is called curried after Haskell Curry. (See the discus-
sion of currying in Chapter 5.)

(define curried+ (lambda (m) (lambda (n) (+ m n))))

Note that if only one argument is supplied to curried+, the result is a function
of one argument.

(curried+ 5) returns #<procedure>

((curried+ 5) 8) returns 13

Unary functions can be defined using curried+, as shown below:

609

(define add2 (curried+ 2))

(define add5 (curried+ 5))

In some functional languages—for example, Standard ML and Miranda—all
functions are automatically defined in a curried form. In Scheme, curried
functions must be defined explicitly by nested lambda expressions.

• Curried Map
(define cmap (lambda (proc)

(lambda (lst)
(if (null? lst)

'()
(cons (proc (car lst)) ((cmap proc) (cdr lst))))))

(cmap add1) returns #<procedure>

((cmap add1) '(1 2 3)) returns (2 3 4)

((cmap (cmap add1)) '((1) (2 3) (4 5 6))) returns ((2) (3 4) (5 6 7))

(((compose cmap cmap) add1) '((1) (2 3) (4 5 6))) returns ((2) (3 4) (5 6 7))

The notion of currying can be applied to functions with more than two
arguments.

Tail Recursion

One criticism of functional programming centers on the heavy use of recur-
sion that is seen by some critics as overly inefficient. Scheme and some other
functional languages have a mechanism whereby implementations optimize
certain recursive functions by reducing the storage on the run-time execu-
tion stack.

Example : Factorial
(define factorial (lambda (n)

(if (zero? n)
1
(* n (factorial (sub1 n))))))

When (factorial 6) is invoked, activation records are needed for six invocations
of the function—namely, (factorial 6) through (factorial 0). Without each of these
stack frames, the local values of n—namely, n=6 through n=0—will be lost so
that the multiplication at the end cannot be carried out correctly.

At its deepest level of recursion all the information in the expression

(* 6 (* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0)))))))

is stored in the run-time execution stack. ❚

TAIL RECURSION

610 APPENDIX B FUNCTIONAL PROGRAMMING WITH SCHEME

Definition : A function is tail r ecursive if its only recursive call is the last
action that occurs during any particular invocation of the function. ❚

Example : Factorial with Tail Recursion

(define fact (lambda (n)
(letrec ((fact-help

(lambda (prod count)
(if (> count n)

prod
(fact-help (* count prod)

(add1 count))))))
 (fact-help 1 1))))

Note that although fact-help is recursive, there is no need to save its local
environment when it calls itself since no computation remains after that call.
The result of the recursive call is simply passed on as the result of the cur-
rent activation.

The execution of (fact 6) proceeds as follows:

(fact 6)
(fact-help 1 1)
(fact-help 1 2)
(fact-help 2 3)
(fact-help 6 4)
(fact-help 24 5)
(fact-help 120 6)
(fact-help 720 7)

The final call is the base case, which returns 720 directly. Note that the static
scope rules make the value of n visible in the function fact-help. ❚

Scheme is a small, elegant but amazingly powerful programming language.
We have been able to present only a few of its features in this overview and
have not shown the full range of data types, mutation of data structures
(imperative programming in Scheme), object-oriented programming tech-
niques, stream processing, declaring and using macros, or continuations (as
briefly discussed in section 9.7). However, we have presented enough con-
cepts so that the reader can write simple Scheme functions and understand
the use of Scheme in this text.

611

Bibliography

[Abelson85]
Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and
Interpretation of Computer Programs, MIT Press, Cambridge, MA, 1985.

[Aho86]
Alfred Aho, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, Reading, MA, 1986.

[Alagic78]
Suad Alagic and Michael Arbib, The Design of Well-Structured and Correct
Programs, Springer-Verlag, New York, 1978.

[Allison86]
Lloyd Allison, A Practical Introduction to Denotational Semantics, Cam-
bridge University Press, Cambridge, UK, 1986.

[Anderson76]
E. R. Anderson, F. C. Belz, and E. K. Blum, “SEMANOL (73) A Metalanguage
for Programming the Semantics of Programming Languages”, Acta
Informatica, 6, 1976, pp. 109–131.

[Astesiano91]
Egidio Astesiano, “Inductive and Operational Semantics”, In Formal De-
scription of Programming Concepts, edited by Erich Neuhold, et al, Springer-
Verlag, Berlin, 1991.

[Backhouse79]
Roland Backhouse, Syntax of Programming Languages: Theory and Prac-
tice, Prentice Hall International, Hemel Hempstead, UK, 1979.

[Backhouse86]
Roland Backhouse, Program Construction and Verification, Prentice Hall
International, Englewood Cliffs, NJ, 1986.

[Backus78]
John Backus, “Can Programming Be Liberated from the von Neumann
Style? A functional Style and Its Algebra of Programs”, Communications
of the ACM, 21.8, August 1978, pp. 613–641.

[Barendregt84]
H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, North-
Holland, Amsterdam, 1984.

[Bennett90]
Jeremy Bennett, Introduction to Compiling Techniques, McGraw-Hill, New
York, 1990.

612 BIBLIOGRAPHY

[Bergstra89]
J. Bergstra, J. Heering, and Paul Klint, Algebraic Specification, Addison-
Wesley, Reading, MA, 1989.

[Bird76]
Richard Bird, Programs and Machines, Wiley, New York, 1976.

[Bochman76]
Gregor Bochman, “Semantic Evaluation from Left to Right”, Communica-
tions of the ACM, 19.2, February 1976, pp. 55–62.

[Bochman78]
Gregor Bochman and P. Ward, “Compiler Writing System for Attribute
Grammars”, The Computer Journal, 21.2, May 1978, pp. 144–148.

[Bratko90]
Ivan Bratko, Prolog: Programming for Artificial Intelligence, Second Edi-
tion, Addison-Wesley, Reading, MA, 1990.

[Brown92]
Deryck Brown, Hermano Moura, and David Watt, “ACTRESS: an Action Se-
mantics Directed Compiler Generator”, Proceeding of the 1992 Workshop
on Compiler Construction, Paderborn, Germany, Lecture Notes in Com-
puter Science, 641, Springer-Verlag, Berlin, 1992, pp. 95–109.

[Broy87]
Manfred Broy, Martin Wirsing, and Peter Pepper, “On the Algebraic Defi-
nition of Programming Languages”, ACM Transactions on Programming
Languages and Systems, 9.1, 1987, pp. 54–99.

[Bryant86a]
Barrett Bryant, Balanjaninath Edupuganty, San-Jon Chao, and Danny
Deng, “Two-Level Grammar as a Programming Language for Data Flow
and Pipelined Algorithms”, Proceedings of the IEEE Computer Society 1986
International Conference on Computer Languages, 1986, pp. 136–143.

[Bryant86b]
Barrett Bryant, Balanjaninath Edupuganty, and Lee Hull, “Two-Level
Grammar as an Implementable Metalanguage for Axiomatic Semantics”,
Computer Languages, 11.3/4, 1986, pp. 173–191.

[Bryant88]
Barrett Bryant, et al, “Two-Level Grammar: Data Flow English for Func-
tional and Logic Programming”, Proceedings of the 1988 ACM Computer
Science Conference, pp. 469–474.

[Burstall82]
R. M. Burstall and J. A. Goguen, “Algebras, theories and freeness: an
introduction for computer scientists”, In Theoretical Foundations of Pro-
gramming Methodology, edited by M. Broy and G. Schmidt, Reidel,
Dordreckt, Holland, 1982, pp. 329–348.

BIBLIOGRAPHY 613

[Campbell84]
J. A. Campbell, editor, Implementations of Prolog, Ellis Horwood,
Chichester, UK, 1984.

[Chomsky56]
Noam Chomsky, “Three Models for the Description of Language”, IRE
Transactions on Information Theory, IT-2, 1956, pp. 113–124.

[Chomsky59]
Noam Chomsky, “On Certain Formal Properties of Grammars”, Informa-
tion and Control, 2, 1959, pp. 137–167.

[Cleaveland77]
J. C. Cleaveland and R. C. Uzgalis, Grammars for Programming Languages,
Elsevier North-Holland, New York, 1977.

[Clocksin87]
W. F. Clocksin and C. S. Mellish, Programming in Prolog, Third Edition,
Springer-Verlag, Berlin, 1987.

[Cohen79]
Rina Cohen and Eli Harry, “Automatic Generation of Near-Optimal Trans-
lators for Noncircular Attribute Grammars”, Sixth Annual ACM Sympo-
sium on Principles of Programming Languages, 1979, pp. 121–134.

[Colmerauer78]
Alain Colmerauer, “Metamorphosis Grammars”, In Natural Language Com-
munication with Computers, edited by Leonard Bolc, Springer-Verlag, Ber-
lin, 1978, pp. 133–189.

[Covington88]
Michael Covington, Donald Nute, and Andre Vellino, Prolog Programming
in Depth, Scott, Foresman, Glenview, IL, 1988.

[Demers85]
A. Demers, A. Rogers, and F. K. Zadeck, “Attribute propagation by mes-
sage passing”, ACM SIGPLAN Notices, 20.7, July 1985, pp. 43–59.

[Deransart90]
P. Deransart and M. Jourdan, editors, Attribute Grammars and their Ap-
plications, LNCS 461, Springer-Verlag, Berlin, 1990.

[Deussen75]
P. Deussen, “A Decidability Criterion for van Wijngaarden Grammars”,
Acta Informatica, 5, 1975, pp. 353–375.

[Diller88]
Antoni Diller, Compiling Functional Languages, Wiley, Chichester, UK,
1988.

[Dijkstra76]
Edsger Dijkstra, A Discipline of Programming, Prentice Hall, Englewood
Cliffs, NJ, 1976.

614 BIBLIOGRAPHY

[Dromey89]
Geoff Dromey, Program Derivation: The Development of Programs from Speci-
fications, Addison-Wesley, Reading, MA, 1989.

[Dybvig87]
Kent Dybvig, The Scheme Programming Language, Prentice Hall, Englewood
Cliffs, NJ, 1987, pp. 33–42.

[Edupuganty85]
Balanjaninath Edupuganty and Barrett Bryant, “Two-Level Grammars
for Automatic Interpretation”, Proceedings of the 1985 ACM Annual Con-
ference, Denver, pp. 417–423.

[Edupuganty88]
Balanjaninath Edupuganty and Barrett Bryant, “Two-Level Grammar: An
Implementable Metalanguage for Denotational Semantics”, Technical Re-
port CIS-TR-88-05, University of Alabama at Birmingham, 1988.

[Edupuganty89]
Balanjaninath Edupuganty and B. R. Bryant, “Two-Level Grammar as a
Functional Programming Language”, The Computer Journal, 32.1, 1989,
pp. 36–44.

[Ehrig85]
Hartmut Ehrig and Bernd Mahr, Fundamentals of Algebraic Specification
1: Equations and Initial Semantics, Springer-Verlag, Berlin, 1985.

[Enderton72]
Herbert Enderton, A Mathematical Introduction to Logic, Academic Press,
New York, 1972.

[Farrow84]
Rodney Farrow, “Generating a Production Compiler from an Attribute
Grammar”, IEEE Software, 1.4, October 1984, pp. 77–93.

[Farrow89]
Rodney Farrow and Alec Stanculescu, “A VHDL Compiler Based on At-
tribute Grammar Methodology”, SIGPLAN Notices, 24.7, 1989, pp. 120–
130.

[Field88]
Anthony Field and Peter Harrison, Functional Programming, Addison-
Wesley, Wokingham, UK, 1988.

[Fischer91]
Charles Fischer and Richard LeBlanc, Jr., Crafting a Compiler with C,
Benjamin/Cummings, Redwood City, CA, 1991.

[Floyd67]
Robert Floyd, “Assigning Meaning to Programs”, AMS Symposia in Ap-
plied Mathematics, 19, 1967, pp. 19–67.

[Francez92]
Nissim Francez, Program Verification, Addison-Wesley, Reading, MA, 1992.

BIBLIOGRAPHY 615

[Friedman92]
Daniel Friedman, Mitchell Wand, and Christopher Haynes, Essentials of
Programming Languages, McGraw-Hill, New York, 1992.

[Glaser84]
Hugh Glaser, Chris Hankin, and David Till, Principles of Functional Pro-
gramming, Prentice Hall International, Hemel Hempstead, UK, 1984.

[Goguen77]
J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, “Initial
Algebra Semantics and Continuous Algebras”, Journal of the ACM, 24.1,
January 1977, pp. 68–95.

[Goguen78]
J. A. Goguen, J. W. Thatcher, and E. G. Wagner, “An Initial Algebra Ap-
proach to the Specification, Correctness, and Implementation of Abstract
Data Types”, In Current Trends in Programming Methodology IV: Data Struc-
turing, edited by Raymond Yeh, Prentice Hall, Englewood Cliffs, NJ, 1978,
pp. 80–149.

[Gordon79]
Michael Gordon, The Denotational Description of Programming Languages,
Springer-Verlag, New York, 1979.

[Gordon88]
Michael Gordon, Programming Language Theory and its Implementation,
Prentice Hall International, Hemel Hempstead, UK, 1988.

[Gries81]
David Gries, The Science of Programming, Springer-Verlag, New York, 1981.

[Gumb89]
Raymond Gumb, Programming Logics: An Introduction to Verification and
Semantics, Wiley, New York, 1989.

[Gunter90]
Carl Gunter and Dana Scott, “Semantic Domains”, In Handbook of Theo-
retical Computer Science: Volume B, Formal Models and Semantics, edited
by Jan van Leeuwen, MIT Press, Cambridge, MA, 1990.

[Gunter92]
Carl Gunter, Semantics of Programming Languages: Structures and Tech-
niques, MIT Press, Cambridge, MA, 1992.

[Guttag78a]
John Guttag and J. J. Horning, “The Algebraic Specification of Abstract
Data Types”, Acta Informatica, 10, 1978, pp. 27–52.

[Guttag78b]
John Guttag, Ellis Horowitz, and David Musser, “Abstract Data Types
and Software Validation”, Communications of the ACM, 21.12, December
1978, pp. 1048–1064.

616 BIBLIOGRAPHY

[Guttag78c]
John Guttag, Ellis Horowitz, and David Musser, “The Design of Data Type
Specification”, In Current Trends in Programming Methodology IV: Data
Structuring, edited by Raymond Yeh, Prentice Hall, Englewood Cliffs, NJ,
1978, pp. 60–79.

[Guttag80]
John Guttag, “Notes on Type Abstraction (Version 2)”, IEEE Transactions
on Software Engineering, SE-6.1, January 1980, pp. 13–23.

[Hennessy90]
Matthew Hennessy, The Semantics of Programming Languages: An Elemen-
tary Introduction Using Structural Operational Semantics, Wiley, New York,
1990.

[Henson87]
Martin Henson, Elements of Functional Languages, Blackwell Scientific,
Oxford, UK, 1987.

[Hoare69]
C. A. R. Hoare, “An Axiomatic Basis for Computer Programming”, Com-
munications of the ACM, 12.10, October 1969, pp. 576–580.

[Hoare73]
C. A. R. Hoare and Niklaus Wirth, “An Axiomatic Definition of the Pro-
gramming Language Pascal”, Acta Informatica, 2, 1973, pp. 335–355.

[Hopcroft79]
John Hopcroft and Jeffrey Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979.

[Janssen86]
T. M. V. Janssen, Foundations and Applications of Montague Grammar,
Part I, Volume 19 of CWI Tracts, Center for Mathematics and Computer
Science, Amsterdam, 1986.

[Johnson78]
S. C. Johnson, “YACC - Yet Another Compiler-Compiler”, Bell Laborato-
ries, Murray Hill, NJ, July 1978.

[Johnson85]
G. F. Johnson, and C. N. Fischer, “A Meta-language and System for
Nonlocal Incremental Evaluation in Language-based Editors”, Twelfth ACM
Symposium on Principles of Programming Languages, New Orleans, 1985,
ACM, New York, pp. 141–151.

[Kahn87]
Giles Kahn, “Natural Semantics”, In Fourth Annual Symposium on Theo-
retical Aspects of Computer Science, edited by F. Bandenburg, G. Vidal-
Naquet, and M. Wirsing, Lecture Notes in Computer Science, 247,
Springer-Verlang, Berlin, 1987, pp. 22–39.

BIBLIOGRAPHY 617

[Kamin90]
Samuel Kamin, Programming Languages: An Interpreter-Based Approach,
Addison-Wesley, Reading, MA, 1990.

[Kastens80]
U. Kastens, “Ordered Attribute Grammars”, Acta Informatica, 13.3, 1980,
pp. 229–256.

[Kennedy76]
K. Kennedy and S. K. Warren, “Automatic Generation of Efficient Evalua-
tors for Attribute Grammars”, Third ACM Symposium of Principles of Pro-
gramming Languages, Atlanta, GA, 1976, ACM, New York.

[Kennedy79]
K. Kennedy and J. Ramanathan, “A Deterministic Attribute Grammar
Evaluator Based on Dynamic Sequencing”, ACM Transactions on Program-
ming Languages and Systems, 1.1, 1979, pp. 142–160.

[Kluzniak85]
Feliks Kluzniak and Stanislaw Szpakowicz, Prolog for Programmers, Aca-
demic Press, London, 1985.

[Knuth68]
Donald Knuth, “Semantics of Context-Free Languages”, Mathematical Sys-
tems Theory, 2, 1968, pp. 127–145. Correction in 5, 1971, p. 95.

[Kowalski79]
Robert Kowalski, “Algorithm = Logic + Control”, Communications of the
ACM, 22.7, July 1979, pp. 424–436.

[Kupka80]
I. Kupka, “van Wijngaarden Grammars as a Special Information Process-
ing Model”, In Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science, 88, edited by P. Dembinski, Springer-Verlag,
Berlin, 1980, pp. 387–401.

[Kurtz91]
Barry Kurtz, “Laboratory Activities for Studying the Formal Semantics of
Programming Languages”, SIGCSE Bulletin, 23.1, March 1991, pp. 162–
168.

[Landin64]
Peter Landin, “The Mechanical Evaluation of Expressions”, The Computer
Journal, 6.4, January 1964, pp. 308–320.

[Landin66]
Peter Landin, “A λ-Calculus Approach”, In Advances in Programming and
Non-numerical Computation, edited by Leslie Fox, Pergamon Press, Ox-
ford, UK, 1966, pp. 97–141.

[Lesk75]
M. E. Lesk, “Lex - A Lexical Analyzer Generator”, Computer Science Tech-
nical Report 39, Bell Laboratories, Murray Hill, NJ, October 7, 1975.

618 BIBLIOGRAPHY

[Lewis74]
P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, “Attributed Transla-
tions”, Journal of Computer and Systems Sciences, 9, 1974, pp. 279–307.

[MacLennan90]
Bruce MacLennan, Functional Programming Methodology: Practice and
Theory, Addison-Wesley, Reading, MA, 1990.

[Malpas87]
John Malpas, Prolog: A Relational Language and its Applications, Prentice
Hall, Englewood Cliffs, NJ, 1987.

[McCarthy60]
John McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine”, Communications of the ACM, 3.4, April 1960,
pp. 184–195.

[McCarthy65a]
John McCarthy, “A Basis for a Mathematical Theory of Computation”, In
Computer Programming and Formal Systems, edited by P. Braffort and D.
Hirschberg, North-Holland, Amsterdam, 1965, pp. 33–70.

[McCarthy65b]
John McCarthy, et al, LISP 1.5 Programmer‘s Manual, Second Edition,
MIT Press, Cambridge, MA, 1965.

[Maluszynski84]
Jan Maluszynski, “Towards a Programming Language Based on the No-
tion of Two-Level Grammar”, Theoretical Computer Science, 28, 1984, pp.
13–43.

[Manna72]
Zohar Manna and Jean Vuillemin, “Fixpoint Approach to the Theory of
Computation”, Communications of the ACM, 15.7, July 1972, pp. 528–
536.

[Manna73]
Zohar Manna, Stephen Ness, and Jean Vuillemin, “Inductive Methods for
Proving Properties of Programs”, Communications of the ACM, 16.8, Au-
gust 1973, pp. 491–502.

[Manna74]
Zohar Manna, Mathematical Theory of Computation, McGraw-Hill, New
York, 1974.

[Manna93]
Zohar Manna and Richard Waldinger, The Deductive Foundations of Com-
puter Programming, Addison-Wesley, Reading, MA, 1993.

[Marcotty76]
Michael Marcotty, Henry Ledgard, and Gregor Bochmann, “A Sampler of
Formal Definitions”, Computing Surveys, 8.2, 1976, pp. 191–276.

BIBLIOGRAPHY 619

[Martin91]
John C. Martin, Introduction to Languages and the Theory of Computa-
tion, McGraw-Hill, New York, 1991.

[Mayoh81]
B. H. Mayoh, “Attribute Grammars and Mathematical Semantics”, SIAM
Journal on Computing, 10.3, August 1981, pp. 503–518.

[Meek90]
Brian Meek, “The Static Semantic File”, SIGPLAN Notices, 25.4, 1990, pp.
33–42.

[Mendelson79]
Elliott Mendelson, Introduction to Mathematical Logic, Second Edition, D.
Van Nostrand Company, New York, 1979.

[Meyer90]
Bertrand Meyer, Introduction to the Theory of Programming Languages,
Prentice Hall, Hemel Hempstead, UK, 1990.

[Michaelson89]
Greg Michaelson, An Introduction to Functional Programming through
Lambda Calculus, Addison-Wesley, Wokingham, UK, 1989.

[Mosses89]
Peter Mosses, “Unified Algebras and Action Semantics”, In STACS’89, Pro-
ceedings Symposium on Theoretical Aspects of Computer Science,
Paderborn, Germany, Lecture Notes in Computer Science, 349, Spring-
Verlag, Berlin, 1989.

[Mosses90]
Peter Mosses, “Denotational Semantics”, In Handbook of Theoretical Com-
puter Science: Volume B, Formal Models and Semantics, edited by Jan van
Leeuwen, MIT Press, Cambridge, MA, 1990.

[Mosses91]
Peter Mosses, “An Introduction to Action Semantics”, Technical Report,
DAIMI PB-370, Computer Science Department, Aarhus University, Aarhus,
Denmark, November 1991.

[Mosses92]
Peter Mosses, Action Semantics, Cambridge University Press, Cambridge,
UK, 1992.

[Naur63]
Peter Naur, editor, “Revised Report on the Algorithmic Language Algol
60”, Communications of the ACM, 6.1, January 1963, pp. 1–20.

[Nielson92]
Hanne Riis Nielson and Flemming Nielson, Semantics with Applications:
A Formal Introduction, Wiley, Chichester, UK, 1992.

620 BIBLIOGRAPHY

[Nilsson84]
M. Nilsson, “The World’s Shortest Prolog Interpreter?”, In Implementa-
tions of Prolog, edited by J.A. Campbell, Ellis Horwood, Chichester, UK,
1984, pp. 87–92.

[Noonan85]
Robert Noonan, “An Algorithm for Generating Abstract Syntax Trees”,
Computer Language, 10.3/4, 1985, pp. 225–236.

[Pagan76]
Frank Pagan, “On Interpreter-oriented Definitions of Programming Lan-
guages”, Computer Journal, 2, 1976, pp. 151–155.

[Pagan81]
Frank Pagan, Formal Specification of Programming Languages: A Panoramic
Primer, Prentice Hall, Englewood Cliffs, NJ, 1981.

[Pagan83]
Frank Pagan, “A Diagrammatic Notation for Abstract Syntax and Abstract
Structured Objects”, IEEE Transactions on Software Engineering, SE-9.3,
May 1983, pp. 280–289.

[Parsons92]
Thomas W. Parsons, Introduction to Compiler Construction, Computer Sci-
ence Press, New York, 1992.

[Paulson87]
Lawrence Paulson, Logic and Computation, Cambridge University Press,
Cambridge, UK, 1987.

[Peyton Jones87]
Simon Peyton Jones, Implementation of Functional Programming Lan-
guages, Prentice Hall International, Hemel Hempstead, UK, 1987.

[Pittman92]
Thomas Pittman and James Peters, The Art of Compiler Design: Theory
and Practice, Prentice Hall, Englewood Cliffs, NJ, 1992.

[Plotkin81]
Gordon Plotkin, “A Structural Approach to Operational Semantics”, Tech-
nical Report, DAIMI FN-19, Computer Science Department, Aarhus Uni-
versity, Aarhus, Denmark, 1981.

[Prawitz65]
Dag Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist &
Wiksell, Stockholm, 1965.

[Reade89]
Chris Reade, Elements of Functional Programming, Addison-Wesley,
Wokingham, UK, 1989.

[Reeves90]
Steve Reeves and Michael Clarke, Logic for Computer Science, Addison-
Wesley, Reading, MA, 1990.

BIBLIOGRAPHY 621

[Reps89]
T. Reps and T. Teitelbaum, The Synthesizer Generator: A System for Con-
structing Language-based Editors, Springer-Verlag, New York, 1989.

[Revesz88]
Gyorgy Revesz, Lambda-Calculus, Combinators, and Functional Program-
ming, Cambridge University Press, Cambridge, UK, 1988.

[Robinson65]
J. A. Robinson, “A Machine-Oriented Logic Based On the Resolution Prin-
ciple”, Journal of the ACM, 12, pp. 23–41, January 1965.

[Ross89]
Peter Ross, Advanced Prolog: Techniques and Examples, Addison-Wesley,
Reading, MA, 1989.

[Rosser84]
J. Barkley Rosser, “Highlights of the History of the Lambda-Calculus”,
IEEE Annals of the History of Computing, 1984, pp. 337–349.

[Ruei93]
Ruth Ruei and Ken Slonneger, “Semantic Prototyping: Implementing Ac-
tion Semantics in Standard ML”, Technical Report 93-08, The University
of Iowa, Department of Computer Science, Iowa City, IA, 1993.

[Saint-Dizier90]
Patrick Saint-Dizier and Stan Szpakowicz, Logic and Logic Grammars for
Language Processing, Ellis Horwood, Chichester, UK, 1990.

[Schmidt88]
David Schmidt, Denotational Semantics: A Methodology for Language De-
velopment, Wm. C. Brown Publishers, Dubuque, IA, 1988.

[Scott76]
Dana Scott, “Data Types as Lattices”, SIAM Journal on Computing, 5.3,
September 1976, pp. 522–587.

[Scott80]
Dana Scott, “Lambda Calculus: Some Models, Some Philosophy”, In The
Kleene Symposium, North-Holland, Amsterdam, 1980, pp. 223–265.

[Scott82]
Dana Scott, “Domains for Denotational Semantics”, In Automata, Lan-
guages and Programming IX, Springer-Verlag, Berlin, pp. 577–613.

[Sebesta93]
Robert Sebesta, Concepts of Programming Languages, Benjamin/
Cummings, Redwood City, CA , 1993.

[Sethi89]
Ravi Sethi, Programming Languages: Concepts and Constructs, Addison-
Wesley, Reading, MA, 1989.

[Sintzoff67]
M. Sintzoff, “Existence of a van Wijngaarden Syntax for Every Recursively
Enumerable Set”, Ann. Soc. Sci. Bruxelles 81, 1967, 2, pp. 115–118.

622 BIBLIOGRAPHY

[Slonneger91]
Ken Slonneger, “An Exercise in Denotational Semantics”, SIGCSE Bulle-
tin, 23, 1, March 1991, pp. 178–183.

[Slonneger93]
Ken Slonneger, “Executing Continuation Semantics: A Comparison”, Soft-
ware — Practice and Experience, 23.12, December 1993.

[Springer89]
George Springer and Daniel Friedman, Scheme and the Art of Program-
ming, MIT Press, Cambridge, MA, 1989.

[Stepney93]
Susan Stepney, High Integrity Compilation: A Case Study, Prentice Hall
International, Hemel Hempstead, UK, 1993.

[Sterling94]
Leon Sterling and Ehud Shapiro, The Art of Prolog, Second Edition, MIT
Press, Cambridge, MA, 1994.

[Stoy77]
Joseph Stoy, Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory, MIT Press, Cambridge, MA, 1977.

[Strachey66]
Christopher Strachey, “Towards a Formal Semantics”, In Formal Language
Description Languages, edited by T. B. Steele, North-Holland, Amsterdam,
1966, pp. 198–220.

[Strachey72]
Christopher Strachey, “The Varieties of Programming Language”, In Pro-
ceedings of the International Computing Symposium, Cini Foundation,
Venice, 1972, pp. 222–233.

[Sundararaghavan87]
K. R. Sundararaghavan, Balanjaninath Edupuganty, and Barrett Bryant,
“Towards a Two-Level Grammar Interpreter”, Proceedings of the ACM 25th
Annual Southeast Regional Conference, 1987, Birmingham, AL, pp. 81–
88.

[Tarski55]
Alfred Tarski, “A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions”, Pacific Journal of Mathematics, 5, 1955, pp. 285–309.

[Tennent76]
R. D. Tennent, “The Denotational Semantics of Programming Languages”,
Communications of the ACM, 19.8, August 1976, pp. 437–453.

[Tennent81]
R. D. Tennent, Principles of Programming Languages, Prentice Hall Inter-
national, Englewood Cliffs, NJ, 1981.

[Tennent91]
R. D. Tennent, Semantics of Programming Languages, Prentice Hall Inter-
national, Hemel Hempstead, UK, 1991.

BIBLIOGRAPHY 623

[Turner84]
S. J. Turner, “W-Grammars for Logic Programming”, In Implementations
of Prolog, edited by J. A. Campbell, Ellis Horwood, Chichester, UK, 1984,
pp. 352–368.

[van Wijngaarden66]
Aad van Wijngaarden, “Recursive Definition of Syntax and Semantics”, In
Formal Language Description Languages for Computer Programming, ed-
ited by T. B. Steel, North-Holland, Amsterdam, 1966, pp. 13–24.

[van Wijngaarden76]
Aad van Wijngaarden, et al, Revised Report on the Algorithmic Language
ALGOL 68, Springer-Verlag, Berlin, 1976.

[van Wijngaarden82]
Aad van Wijngaarden, “Languageless Programming”, In The Relationship
Between Numerical Computation and Programming Languages, edited by
J. K. Reid, North-Holland, Amsterdam, 1982, pp. 361–371.

[Wagner78]
E. G. Wagner, T. W. Thatcher, and J. B. Wright, “Programming Languages
as Mathematical Objects”, Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, 45, 1978, Springer-Verlag, Berlin,
1978.

[Waite84]
William Waite and Gerhard Goos, Compiler Construction, Springer-Verlag,
New York, 1984.

[Warren80]
David H. D. Warren, “Logic Programming and Compiler Writing”, Soft-
ware—Practice and Experience, 10, 1980, pp. 97–125.

[Watt79]
David Watt, “An Extended Attribute Grammar for PASCAL”, SIGPLAN No-
tices, 14.2, 1979, pp. 60–74.

[Watt90]
David Watt, Programming Language Concepts and Paradigms, Prentice
Hall International, Hemel Hempstead, UK, 1990.

[Watt91]
David Watt, Programming Language Syntax and Semantics, Prentice Hall
International, Hemel Hempstead, UK, 1991.

[Watt93]
David Watt, Programming Language Processors, Prentice Hall International,
Hemel Hempstead, UK, 1993.

[Wegner72]
Peter Wegner, “The Vienna Definition Language”, Computing Surveys, 4.1,
March 1972, pp. 5–63.

624 BIBLIOGRAPHY

[Wexelblat81]
Richard Wexelblat, The History of Programming Languages, Academic
Press, New York, 1981.

[Winskel93]
Glynn Winskel, The Formal Semantics of Programming Languages, MIT
Press, Cambridge, MA, 1993.

[Wirsing90]
Martin Wirsing, “Algebraic Specification”, In Handbook of Theoretical Com-
puter Science: Volume B, Formal Models and Semantics, edited by Jan van
Leeuwen, MIT Press, Cambridge, MA, 1990.

[Woodcock88]
Jim Woodcock and Martin Loomes, Software Engineering Mathematics:
Formal Methods Demystified, Pitman, London, 1988.

INDEX 625

Index

625

Symbols

--> 47
:: 107
::= 3
E[v→E1] 145
[][] See emphatic brackets
⊥ 346
→ 356
ε 18
λ 140
| 18
• 18
⊆ 345
⇔ 149
⇔* 149
⇒ 5, 148
⇒* 148
⇒α 148
⇒β 148
⇒δ 150
⇒η 149
➨ 262
➞ 246
➞ ∞ 260

A

abstract data types 443, 471
abstract productions 24–26
abstract syntax 23–29, 240–242,

273, 481–485
lambda calculus 162

abstract syntax trees
22, 92, 161, 275, 279

Prolog structure 26–27
action semantics 507–564

abstractions 546–547
actions 508
basic facet 515
Bindable 534, 541, 543

calculator 522–530
cells 518
current information 514
Data 513
data 508
data and sorts 511–514,

534, 543
Datum 513
declarative facet 515, 531–534
empty bindings 531
functional facet 515
hybrid actions 515
imperative facet 515, 518
join 513
lower level 511
meet 513
merge bindings 532
modules

Declarative 531
Imperative 522
Integers 512
TruthValues 512

nothing 513
overlay bindings 532
Pelican 541–559

semantic equations 552–554
Procedure 546
procedures 547–549
reflective facet 515, 545
stable data 519
Storable 518, 534, 543
subsort 513
translating to actions 551–557,

559–563
upper level 511
Value 534, 543
Wren

semantic equations 535–536,
537–540
semantic functions 534–535

626 INDEX

yielders 508
abstraction of _ 546
application of _ to _ 548
closure of _ 546
the _ bound to _ 510, 515, 532
the _ stored in _ 509, 515, 519
the given _ 510, 514
the given _ # _ 514

actions 508, 515
combinators

_ and _ 516, 532
_ and then _ 516, 533
_ before _ 542
_ hence _ 533
_ moreover _ 541
_ or _ 510, 536
_ then _ 510, 517, 533
_ thence _ 548–549

composite actions
unfold 538
unfolding _ 537–538

hybrid actions
recursively bind _ to _ 550

primitive actions
allocate a cell 509, 519
bind _ to _ 509, 531
check _ 537
complete 509
enact _ 547
fail 509
give _ 509
rebind 541
regive 526
store _ in _ 509, 519

admissible predicates 383
ADT See abstract data types
affix 253, 295, 354
algebraic semantics 443–506

abstract syntax 481–485
canonical form 479
carrier sets 462
completeness 468–470
conditional equations 448,

451–452
confusion 451, 467, 485

congruence 463–464
consistency 469
constructors 450–451, 481
equations 444
error values 450
evaluation function 463
function syntax 448
ground terms 461
implementation 499–506
implementing queues 474–486
initial algebras 451, 467
junk 451, 467
mathematical foundations

460–470
models 464
module syntax 447–448
modules 445–459

AbstractExpressions 484
Arrays 474
Booleans 446, 470, 500–501
Bools 460
Characters 452–453
Expressions 482
Files 455
Lists 453–454
Mappings 456–458, 459
Mixtures 459
NatLists 486–487
Nats 460
Naturals 449–450, 501–502
Predecessor

1
 468

Predecessor
2
 468

Queues 472–473
Stores 458
Strings 456

normal form 479
parameterized modules 453–456
quotient algebras 465–466
representation function 475
Σ-algebras 461–463, 477–481
Σ-homomorphisms 466
selectors 481
signatures 444
sorts 444
sufficiently complete 481, 488

INDEX 627

term algebras 462
type of interest 478
Wren 487–499
Wren interpreter 494–498
Wren modules

WrenASTs 489–490
WrenEvaluator 495–498
WrenSystem 498
WrenTypeChecker 490–494
WrenTypes 488
WrenValues 489

Allison, Lloyd 339
ambiguous grammars 6, 12

expressions 16, 18
anbncn 8, 19, 60–66, 138
anonymous function 140
antisymmetric 345
ascending chains 346
Astesiano, Egidio 242, 270
attribute grammars 59–104

binary numerals 67–71
binary trees 73
code generation 191–222
definition 66–67
expression language 73
inherited attributes 63
semantic rules 66
semantics 67–73
synthesized attributes 61
Wren

auxiliary functions 89
commands 80–82
context checking 74–91
declarations 75–80
expressions 82–84
procedures 91
semantic rules 84–89
translation semantics 191–215

auxiliary functions 313–315
axiomatic semantics 395–442

assertion 396
factorial 405–407
limitations 396
loop invariants 405, 408–410
nested while loops 410–414

partial correctness 397
Pelican 418–432

axiomatic definition 428–429
blocks 420–421
constant declarations 420
nonrecursive procedures
422–424
procedure declarations
420–421
recursive procedures 425–429

postcondition 397
precondition 397
prime numbers 414
program derivation 438–442
proof tree 404
restrictions 423–424, 431–432
table of values 409, 414
termination 432–436

indefinite iteration 432
recursion 435

total correctness 397
Wren 398–418

assignment 398–400
axiomatic definition 408
input/output 400–401
while command 405–407

B

Backus, John 30
Backus-Naur Form See BNF
big-step semantics 261
binary search 441
BNF 2, 3
bottom 345

C

'C' 45
calculator language 310

abstract syntax 279, 523
action semantics 522–530
concrete syntax 277–278
example 281, 528–530
semantic equations 282,

628 INDEX

524–528
semantic functions 282,

523–524
semantics 280

call by name 155
call by value 155
canonical form 479
Cantor, Georg 343
cardinality 343
carrier sets 451, 462
Chomsky, Noam 2, 30, 59
Church, Alonzo 139, 153–155
closure 229
Colmerauer, Alain 57, 566
command continuations 334
compilers 187, 224–225
complete partial order 346
completeness 250–252, 468–469
composition 282
compositional 272, 276, 293
concrete operational semantics

224
concrete syntax 21, 50, 481–482
conditional and

252, 386, 541, 603
conditional equations 448,

451–452
conditional expressions 237, 390
confusion 451, 467
congruence 463–464
connect (Prolog predicate) 45
consistency 251–252, 469
constants, declarations of

318, 509–510, 543
constructors 450–451, 481
context checking

attribute grammars 74–91
denotational semantics 323–327
two-level grammars 116–132

context conditions 13, 15, 324
context-free

grammars 3, 4, 388
syntax 14

context-sensitive
errors 78–80, 95

grammars 3, 8, 60–66
syntax 14

continuation semantics 328–331
Gull

semantic domains 335
semantic equations 336–338
semantic functions 335

continuations 331–338
Continuity Theorem 377, 387
continuous functionals 374–378

composition 376
conditional expression 375
constant function 375
identity function 375

continuous functions 356,
361–362

cpo See complete partial order
current information 514
curried functions 143–144,

283, 288, 608–609
Curry, Haskell 144
cut 56

D

dangling else 12
data 508
data abstraction 471–472
Datum 513
deallocate storage 321
declaration continuations 334
declarative languages 565
definite clause grammars 57

See also logic grammars
denotable values 311, 313
denotation 271
denotational semantics 271–340

auxiliary functions 274
calculator language 277–285
context checking

semantic equations 326–327
errors 329
numerals 274
Pelican 311–323

abstract syntax 311

INDEX 629

environments 313
procedures 318–321
semantic domains 315
semantic equations 316–318
semantic functions 316
stores 314–315

propositional logic 304
semantic domains 273
semantic equations 274
semantic functions 273–274
Wren 285–304

auxiliary functions 290
context checking 323–328
errors 293–294
example 296–302
input and output 294–304
prototype interpreter 304–310
semantic domains 286–287
semantic equations 290–293
semantic functions 289

dependency graph 7
derivation trees 5, 19–20,

44, 113–115, 483
diagonalization 343
difference lists 44–45, 57
Dijkstra, Edsger 442
direct denotational semantics

293, 328
direct implementation 480
disjoint union 287, 311
divides relation 347
domain theory 345–365

A+B 351
AxB 349
A→B 356
approximates 346
ascending chain 346, 356
bottom 345
complete partial order 346
continuous functions 356,

361–362
elementary domains 348–349
Fun(A,B) 355
function domains 355–361
improper value 348

injection 352
inspection 352
less defined than or equal to 346
monotonic 355
product domain 349–351
projection 350, 352
sum domain 351–354

dynamic errors 16
dynamic scoping 177–178,

234, 319, 603

E

E* 18
E+ 19
E? 19
elementary domains 348–349
emphatic brackets 272, 528
En 19
encapsulation 472
English grammar 4–8, 40–41

generating sentences 46
parsing 43–45, 47–48

environments 170–174, 228–231,
235–236, 288, 311–312,
314, 324–325, 388

error continuation 336–338
evaluation function 463
expressible values 288, 313
expression continuations 334
expression language

abstract syntax 483–485
concrete syntax 482

extensionality 150

F

facets 514, 515
finite functions 246, 456–458, 522
first-class values 288, 606
fix 373, 392–393
fixed point 368–369
Fixed-Point Identity 373, 393
fixed-point induction 383–384
fixed-point semantics 365–388

630 INDEX

admissible predicate 383
approximates 366
approximations 373
constructing a fixed point

370–373, 378
continuous functionals 374–388
fixed-point induction 383–384
less defined than or equal to 366
natural extension 366, 367
nonrecursive functions 379
while command 380–382

Fixed-Point Theorem 370
flat domains

See elementary domains
Floyd, Robert 395, 442
formal specifications 507
free word algebra 478
front end 31–33
funarg problem 177–178
function domains 355–361
function subprograms 323
functional facet 515–518
functional programming

139, 158, 588
functionals 368
functions 355

G

generic types 472
Gordon, Michael 339
goto commands 329, 396
grammars 2
Gries, David 438
ground terms 461
Gull 333–338

abstract syntax 333
semantic equations 336–337
semantic functions 335

Gull programs
fact 338
labels 334

Guttag, John 480, 506

H

halting problem 155, 355
Hasse diagrams 345, 363–364
heterogeneous algebras 462
Hoare, C. A. R. 395, 442
Hollerith literals 71, 111–115,

133–136
homogeneous algebras 462
homomorphisms

276, 466, 475, 485

I

imperative languages 285–286,
565, 587

in parameter 321
in-out parameter 321
induction 435
inessential ambiguity 19, 241
inference rules 238, 401
infinite sum domain 353
information hiding 471, 472
inherited attributes 67
initial algebras 451, 467
injection 352
input/output 253
inspection 352
interpreters 225
isomorphism 466

J

join 513
junk 451, 467

K

Kahn, Gilles 261, 269
keywords 10
Kleene closure 18
Knuth, Donald 59, 103
Kowalski, Robert 57

INDEX 631

L

λ 140
label expressions 237
labels 331
laboratory activities 31–58

algebraic semantics 499–506
attribute grammars 215–222
context checking 92–103
denotational semantics 304–310
Hollerith literals 133–136
lambda calculus evaluator

160–166
recursion in lambda calculus

389–394
SECD machine 235–238
self-definition

Prolog 179–185
Scheme 169–179

structural operational semantics
264–269

translating to actions 559–563
translational semantics 215–222
two-level grammars 132–133

lambda calculus 139, 341
abstraction 141
applicative order reduction 152
applied lambda calculus 141
β-abstraction 149
β-conversion 149
β-redex 148
bound variables 145
Church-Rosser Theorems

153–155
closed expression 145
combination 141
confluence property 154
equal expressions 149
equivalent expressions 149
extensionality theorem 150
free variables 145, 163
innermost expressions 152
lambda notation 140
lists 156–157
name clash 145

normal form 151
normal order reduction 152, 164
notational conventions 142
numerals 157
outermost expressions 152
paradoxical combinator 391–392
parser 161–162
parsing expressions 143
pure lambda calculus 156–157
recursion 389–394
reduction 145
reduction rules 147–150

α-reduction 148
β-reduction 148
δ-reduction 150
η-reduction 149

reduction strategies 151–155
scanner 160–161
semantics 145–146, 151–155
substitution 146, 163

safe substitution 145
valid substitution 145

syntax 140–141, 160
variable capture 145
variables 141
Y 391

lambda expressions
Add 157
Cube 388
Curry 144, 159
Double 166
Fac 390, 392
Factorial 392
FourthPower 144
Head 156
in Scheme 599
Nil 157
numerals 157
Pair 156
Sqr 388
Succ 157
Tail 156
Thrice 166, 238, 388
Twice 142, 160, 166, 238
Uncurry 144, 159

632 INDEX

Y 391
Landin, Peter 223, 270
lattices 347
least upper bound 345
left factoring 55–56
left recursion 52–54, 101, 575
let expressions 158, 172–173,

233, 237, 604
lexical analyzer 12, 21
lexical syntax 10
lexicon 12
Limit Lemma 357
Lisp See Scheme

history 588
lists 17, 27, 156–157, 165,

244–245, 295, 343, 354,
444–445, 453–454, 575–579,
591–592

logic grammars 40–50
counting words 49
English 47, 48
lambda calculus 162
motivating 41–44
parameters 47–48
preprocessor 46–47
Prolog code 49
Wren 50–57

logic programming 565–586
See also Prolog

and two-level grammars 136–137
logical variable 400, 582–583
loop 382
loop invariants 405, 433
lower bound 345
lub See least upper bound
Lub Lemma 357

M

macrosemantics 511
many-sorted algebras 462
mathematical semantics 271
McCarthy, John

30, 167, 186, 225, 588
meet 513

merging bindings 532
metacircular interpreters

167, 169–174, 225
metalanguage 2, 3, 341
microsemantics 511
ML 140, 244, 564
models 464, 484–485
modules 445–459
monotonic 355
Mosses, Peter 394, 507, 563–564
multiple declarations 97, 120

N

natural deduction 238
natural extension 366, 367
natural semantics 261–262
Naur, Peter 30
nonprocedural languages 565
nonrecursive functions 379
nonterminal symbols 2
nontermination 255–256, 344
normal form 479
normal order reduction 234
nothing 513

O

one-level grammar 105
operational semantics 223–270
overlaying bindings 325, 532

P

Pagan, Frank 138, 185, 222, 339
paradoxes 365
paradoxical combinator

391–392, 394
parameter passing 232
parameterized modules

453–456, 472
parametric polymorphism

See polymorphic operations
parse trees 5
parsers 21, 31, 92, 161–162

INDEX 633

partial correctness 397
partial functions 366
partial order 345
pass by value 232
Pelican

abstract syntax 311, 419
action semantics 541–559
axiomatic semantics 418–432
axioms and rules 428–429
context checking 326–327
context constraints 324
denotable values 541, 543
denotational semantics 311–312
expressible values 543
procedures 545–551
storable values 543

Pelican programs
action 555
facproc 559
facwhile 559
recurrence 431
scope 316–318
small 560
squaring 419
sum 430
summation 320–321
trace1 322
trace2 322

period 567
phrase-structure syntax 10
Plotkin, Gordon 238, 269
polymorphic operations 141, 144
postcondition 397
power set 343
pragmatics 1–2
precondition 397
procedures 318–321
product domain 349–351
productions 2
program derivation 437–442
projection 352
Prolog 565–586

anonymous variables 577
arithmetic expressions 584
atoms 566

BNF syntax 568
body of a clause 567
clause order 574
clauses 567
closed world assumption 570
comment 33
constants 566
control 574–575
cut 56
example 569–571
fact 567
failure 181
family tree 573
function symbols 566
functors 566
goal 567
goal order 574, 582
head goal 567
input/output 585–586
instantiation 582
lists 575–580
logical variable 582–583
not 571
numbers 566
numerical comparisons 583
period 567
predicates 566
procedures 572
query 567
recursion 572–574
rule order 574
rules 568, 570
scope 570
search trees 579–580
sorting 581–582
structured objects 567
structures 566
term construction 585
unification 571, 583
unit clause 567
variables 566

Prolog predicates
abort 586
buildSymbolTable 99
'C' 45

634 INDEX

call 586
clause 180
compute 164, 237, 246, 268,

307–308, 390
concat 578
delete 577
get0 34, 585
getfilename 39
go 39, 56, 269, 311, 390
is 584
lookupType 97
member 577
name 586
nl 586
pretty-print 165
prove 180–181
read 586
tab 586
tableIntersection 97
union 578
write 586

prototyping 31

Q

quotient algebra 465–466

R

rand 141
rator 141
recursion 319, 341–343,

368, 550–551
referential transparency 588
reflexive 345
regular expressions 18
regular grammars 4, 33–34
relational languages 565
remainder of the program 331
representation function 475
reserved words 10–11, 15
Robinson, Alan 566
Roman numerals 50, 72, 277
Ross, Peter 186
Roussel, Philippe 566

rule schemes 248
rules of inference 238–239,

401, 420

S

Σ-algebras 461–463
scanners 12, 21, 31, 33– 40,

92, 160–162
Prolog predicates 35–39

Scheme 140, 167–169, 587–610
atoms 589
Cambridge Polish Form 592
composition 607
conditional expressions 597
correctness 605
curried functions 608–609
defining functions 596
dotted pairs 589
empty list 591
evaluation 593
higher-order functions 606–608
lambda expressions 169, 599
let expressions 168, 604
list processing 599–603
lists 591–592
metacircular interpreter 169–174

micro-apply 174
micro-eval 172
micro-evalcond 172
micro-evallet 173
micro-let-bind 173
micro-rep 170

numeric functions 592, 593
predicates 593
recursive definitons 598
S-expressions 589–590
scope rules 603–605
special forms 596
syntax 590–591
tail recursion 609–610

Scheme functions
atom? 168
car 168, 590, 592
cdr 168, 590, 592

INDEX 635

concat 168, 601
cond 168, 597
cons 168, 591, 592
define 594, 596
display 168
eq? 595
equal? 168, 601
filter 608
if 598
map 607
member 602
newline 168
null? 168, 595
pair? 595
quote 168, 594
reduce 607

Schmidt, David 339, 394
Schönfinkel, Moses 144
scope 288, 311
scoped data 514
Scott, Dana 271, 344, 394
SECD machine 223, 228–234

configuration 228
control 228
dump 228, 229, 236
environment 228
stack 228
transition function 229–230, 236

selectors 481
self-definition 167–186, 225

function application 174–175
Lisp 167–169
Prolog 179–185

proof tree 180
tracing 181

semantic equivalence 260–261,
294, 395, 551

semantic errors 16
semantic prototyping 339
semantics 1–2, 273–274
sequencers 330
side effects 525, 588
signatures 444, 478
small-step semantics 261

specifications of algorithms
397–398

stable data 514
standard semantics 331
start symbol 3
static scoping 177–178, 229,

233–234, 319, 603
static semantics 14, 30
stationary chains 365
Stepney, Susan 339
Storable 518
storable values 287, 313
stores 245–246, 265–266, 306–

307, 314–315, 330, 458, 520
Stoy, Joseph 339
Strachey, Christopher 271
strict functions 517, 367
structural induction 242–245,

276, 476, 479
structural operational semantics

238–270
abstract syntax 239–242
axiom 238
commands 253–264
examples 248–250, 256–260
expressions 245–253
inference system 247
outcomes 250, 255
transition function

247, 254, 265–267
stuck 246
subsorts 513
Substitution Property 464
sufficiently complete 481
sum domain 351–354
symbol table 74–80
symbolic tokens 36–37
syntactic analyzer 21
syntactic categories

See syntactic domains
syntactic domains 26, 239–240,

272–273
syntax 1–2, 272–273
syntax trees

See abstract syntax trees

636 INDEX

synthesized attributes 66–67
Synthesizer-Generator 222

T

table of values 440
tags 351, 352
tail recursion 384, 609–610
Tennent, R. D. 339
term algebra 462
terminal symbols 2
termination 432–436
termination expression 433
tokens 10–12

recognizing 37–38
total correctness 397
transient data 514
transitive 248, 255, 345
translational semantics 187–222,

224–226, 551–557
attribute grammar 207–213
attributes 192
commands 201–207
comparisons 199–201
expressions 193–201
labels 202–207, 218
machine language 188–189
optimization 196–199
program translation 189–191
Prolog implementation 215–222
temporary variables

190, 193, 199, 220
TΣ 462
Turing, Alan 155
Turner, S. J. 136
two-level grammars 105–116

and logic programming 136–137
derivation trees 113–115
EMPTY 110
Hollerith literals 111–112,

133–136
hyper-rule 106, 110
lists 110–111
metanotion 106, 110
metarule 106, 110

notational conventions 106–107
protonotion 105, 110
representation tables 109, 112
TALLY 110–111
terminal symbols 105
where clause 114
Wren comands and expressions

124–126
Wren declarations 117–124
Wren grammar 106–108
Wren specification 129–131

type of interest 478

U

unbound 311
unbounded arrays 474–476
unbounded queues 472–473
undefined 289, 312
unparse 29
unrestricted grammars 3
upper bound 345

V

van Wijngaarden, Aad 105, 138
VDL

See Vienna Definition Language
vending machine 303, 541
Vienna Definition Language

226–227

W

Warren, David 58
Watt, David 103, 339,

506, 507, 564
well-founded partial order 432
while command 380–388,

405, 537–539
white space 36
Wren 10–16

abstract syntax 26, 28,
239–242, 286, 489–490

action semantics 531–541

INDEX 637

algebraic semantics 487–499
attribute grammar 74–91
axiomatic semantics 398–418
axioms and rules 408
BNF 11, 106
code generation 191–215
context checking 84–89,

116–132, 323–328, 490–494
context constraints 14, 74, 494
denotable values 534
denotational semantics 285–304
expressible values 534
interpreter 494–498
logic grammar 50–57
parsing 50–57
reserved words 10–11, 37
semantic errors 16
storable values 534
tokens 38
translational semantics 207–213
two-level grammar 116–132

Wren programs
bool 303
frombinary 500
gcd 189, 215
illegal 13
mod 213
multiply 191, 214
prime 305
prog1 93
prog2 94
switch 32
tobinary 264

Y

Y 391
yielders 508, 514–515

	Title Page
	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Appendix A
	Appendix B
	Bibliography
	Index

