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Preface

Tue neep for a thorough textbook for Statistical Natural Language Pro-
cessing hardly needs to be argued for in the age of on-line information,
electronic communication and the World Wide Web. Increasingly, busi-
nesses, government agencies and individuals are confronted with large
amounts of text that are criticad for working and living, but not well
enough understood to get the enormous value out of them that they po-
tentially hide.

At the same time, the availability of large text corpora has changed
the scientific approach to language in linguistics and cognitive science.
Phenomena that were not detectable or seemed uninteresting in studying
toy domains and individual sentences have moved into the center field of
what is considered important to explain. Whereas as recently as the early
1990s quantitative methods were seen as so inadequate for linguistics
that an important textbook for mathematical linguistics did not cover
them in any way, they are now increasingly seen as crucial for linguistic
theory.

In this book we have tried to achieve a balance between theory and
practice, and between intuition and rigor. We attempt to ground ap-
proaches in theoretical ideas, both mathematica and linguistic, but si-
multaneously we try to not let the material get too dry, and try to show
how theoretical ideas have been used to solve practical problems. To do
this, we first present key concepts in probability theory, statistics, infor-
mation theory, and linguistics in order to give students the foundations
to understand the field and contribute to it. Then we describe the prob-
lems that are addressed in Statisticd Natural Language Processing (NLP),
like tagging and disambiguation, and a selection of important work so
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that students are grounded in the advances that have been made and,
having understood the specia problems that language poses, can move
the field forward.

When we designed the basic structure of the book, we had to make
a number of decisions about what to include and how to organize the
material. A key criterion was to keep the book to a manageable size. (We
didn't entirely succeed!) Thus the book is not a complete introduction
to probability theory, information theory, statistics, and the many other
areas of mathematics that are used in Statistical NLP. We have tried to
cover those topics that seem most important in the field, but there will
be many occasions when those teaching from the book will need to use
supplementary materials for a more in-depth coverage of mathematical
foundations that are of particular interest.

We aso decided against attempting to present Statistical NLP as homo-
geneous in terms of the mathematical tools and theories that are used.
It is true that a unified underlying mathematical theory would be desir-
able, but such a theory simply does not exist at this point. This has led
to an eclectic mix in some places, but we believe that it is too early to
mandate that a particular approach to nie is right and should be given
preference to others.

A perhaps surprising decision is that we do not cover speech recogni-
tion. Speech recognition began as a separate field to NLP, mainly grow-
ing out of electrical engineering departments, with separate conferences
and journals, and many of its own concerns. However, in recent years
there has been increasing convergence and overlap. It was research into
speech recognition that inspired the revival of satistica methods within
NLP, and many of the techniques that we present were developed first for
speech and then spread over into NLP. In particular, work on language
models within speech recognition greatly overlaps with the discussion
of language models in this book. Moreover, one can argue that speech
recognition is the area of language processing that currently is the most
successful and the one that is most widely used in applications. Neverthe-
less, there are a number of practica reasons for excluding the area from
this book: there are already several good textbooks for speech, it is not an
area in which we have worked or are terribly expert, and this book seemed
quite long enough without including speech as well. Additionaly, while
there is overlap, there is aso considerable separation: a speech recogni-
tion textbook requires thorough coverage of issues in signal analysis and
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acoustic moddling which would not generaly be of interest or accessible
to someone from a computer science or NLP background, while in the
reverse direction, most people studying speech would be uninterested in
many of the NLP topics on which we focus.

Other related areas that have a somewhat fuzzy boundary with Statis-
tical NLP are machine learning, text categorization, information retrieval,
and cognitive science. For al of these areas, one can find examples of
work that is not covered and which would fit very wel into the book.
It was simply a matter of space that we did not include important con-
cepts, methods and problems like minimum description length, back-
propagation, the Rocchio algorithm, and the psychological and cognitive-
science literature on frequency effects on language processing.

The decisions that were most difficult for us to make are those that
concern the boundary between statistical and non-statistical NLP. We
beieve that, when we started the book, there was a clear dividing line
between the two, but this line has become much more fuzzy recently.
An increasing number of non-statistical researchers use corpus evidence
and incorporate quantitative methods. And it is now generally accepted
in Statistical NLP that one needs to start with all the scientific knowledge
that is available about a phenomenon when building a probabilistic or
other model, rather than closing one's eyes and taking a clean-date ap-
proach.

Many NLP researchers will therefore question the wisdom of writing a
separate textbook for the satistical side. And the last thing we would
want to do with this textbook is to promote the unfortunate view in
some quarters that linguistic theory and symbolic computational work
are not relevant to Statisticd NLP. However, we believe that there is
so much quite complex foundational material to cover that one simply
cannot write a textbook of a manageable size that is a satisfactory and
comprehensive introduction to all of NLP. Again, other good texts al-
ready exist, and we recommend using supplementary material if a more
balanced coverage of datistical and non-statistical methods is desired.

A final remark is in order on the title we have chosen for this book.
Calling the field Statistical Natural Language Processing might seem ques-
tionable to someone who takes their definition of a statistica method
from a standard introduction to statistics. Statisticall NLP as we define it
comprises al quantitative approaches to automated language processing,
including probabilistic modeling, information theory, and linear algebra.
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While probability theory is the foundation for forma statistical reason-
ing, we take the basic meaning of the term ‘statistics as being broader,
encompassing al quantitative approaches to data (a definition which one
can quickly confirm in amost any dictionary). Although there is thus
some potential for ambiguity, Statisticd NLP has been the most widely
used term to refer to non-symbolic and non-logical work on NLP over the
past decade, and we have decided to keep with this term.

Acknowledgments. Over the course of the three years that we were
working on this book, a number of colleagues and friends have made
comments and suggestions on earlier drafts. We would like to express
our gratitude to al of them, in particular, Einat Amitay, Chris Brew,
Thorsten Brants, Andreas Eisele, Michagl Ernst, Oren Etzioni, Marc Fried-
man, Eric Gaussier, Eli Hagen,Marti Hearst, Nitin Indurkhya, Michael
Inman, Mark Johnson, Rosie Jones, Tom Kalt, Andy Kehler, Julian Ku-
piec, Michael Littman, Arman Maghbouleh, Amir Nagmi, Kris Popat,
Fred Popowich, Geoffrey Sampson, Hadar Shemtov, Scott Stoness, David
Yarowsky, and Jakub Zavrel. We are particularly indebted to Bob Car-
penter, Eugene Charniak, Raymond Mooney, and an anonymous reviewer
for MIT Press, who suggested a large number of improvements, both in
content and exposition, that we feel have greatly increased the overal
quality and usability of the book. We hope that they will sense our grat-
itude when they notice ideas which we have taken from their comments
without proper acknowledgement.

We would like to also thank: Francine Chen, Kris Halvorsen, and Xe-
rox PARC for supporting the second author while writing this book, Jane
Manning for her love and support of the first author, Robert Dale and
Dikran Karagueuzian for advice on book design, and Amy Brand for her
regular help and assistance as our editor.

Feedback. While we have tried hard to make the contents of this book
understandable, comprehensive, and correct, there are doubtless many
places where we could have done better. We welcome feedback to the
authors via email to cmanning@acm.org or hinrich@hotmail.com.

In closing, we can only hope that the availability of a book which col-
lects many of the methods used within Statistical NLP and presents them
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in an accessble fashion will create excitement in potential students, and
help ensure continued rapid progress in the field.

Christopher Manning
Hinrich Schiitze
February 1999
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| N GENERAL, this book is written to be suitable for a graduate-level
semester-long course focusing on Statistical NLP.  There is actually rather
more material than one could hope to cover in a semester, but that rich-
ness gives ample room for the teacher to pick and choose. It is assumed
that the student has prior programming experience, and has some famil-
iarity with formal languages and symbolic parsing methods. It is aso
assumed that the student has a basic grounding in such mathematical
concepts as set theory, logarithms, vectors and matrices, summations,
and integration - we hope nothing more than an adequate high school
education! The student may have aready taken a course on symbolic NLP
methods, but a lot of background is not assumed. In the directions of
probability and statistics, and linguistics, we try to briefly summarize al
the necessary background, since in our experience many people wanting
to learn about Statistical NLP methods have no prior knowledge in these
areas (perhaps this will change over time!). Nevertheless, study of sup-
plementary material in these areas is probably necessary for a student
to have an adequate foundation from which to build, and can only be of
value to the prospective researcher.

What is the best way to read this book and teach from it? The book is
organized into four parts: Preliminaries (part 1), Words (part I1), Grammar
(part 111), and Applications and Techniques (part V).

Part | lays out the mathematical and linguistic foundation that the other
parts build on. Concepts and techniques introduced here are referred to
throughout the book.

Part |l covers word-centered work in Statistical NLP. There is a natu-
ra progression from simple to complex linguistic phenomena in its four
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chapters on collocations, n-gram models, word sense disambiguation,
and lexical acquisition, but each chapter can aso be read on its own.

The four chapters in part 111, Markov Models, tagging, probabilistic con-
text free grammars, and probabilistic parsing, build on each other, and so
they are best presented in sequence. However, the tagging chapter can be
read separately with occasiona references to the Markov Model chapter.

The topics of part IV are four applications and techniques. statisti-
ca dignment and machine trandation, clustering, information retrievd,
and text categorization. Again, these chapters can be treated separately
according to interests and time available, with the few dependencies be-
tween them marked appropriately.

Although we have organized the book with a lot of background and
foundationa material in part I, we would not advise going through al of
it carefully at the beginning of a course based on this book. What the
authors have generaly done is to review the realy essentia bits of part |
in about the first 6 hours of a course. This comprises very basic proba
bility (through section 2.1.8), information theory (through section 2.2.7),
and essentia practical knowledge - some of which is contained in chap-
ter 4, and some of which is the particulars of what is available a one's
own ingtitution. We have generaly left the contents of chapter 3 as a
reading assignment for those without much background in linguistics.
Some knowledge of linguistic concepts is needed in many chapters, but
is particularly relevant to chapter 12, and the instructor may wish to re-
view some syntactic concepts at this point. Other materia from the early
chapters is then introduced on a “need to know” basis during the course.

The choice of topics in part |1 was partly driven by a desire to be able to
present accessible and interesting topics early in a course, in particular,
ones which are aso a good basis for student programming projects. We
have found collocations (chapter 5), word sense disambiguation (chap-
ter 7), and attachment ambiguities (section 8.3) particularly successful in
this regard. Early introduction of attachment ambiguities is adso effec-
tive in showing that there is a role for linguistic concepts and structures
in Statistical NLP. Much of the materia in chapter 6 is rather detailed
reference materia. People interested in applications like speech or op-
tical character recognition may wish to cover al of it, but if n-gram
language models are not a particular focus of interest, one may only
want to read through section 6.2.3. This is enough to understand the
concept of likelihood, maximum likelihood estimates, a couple of simple
smoothing methods (usually necessary if students are to be building any
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probahbilistic models on their own), and good methods for assessing the
performance of systems.

In general, we have attempted to provide ample cross-references so
that, if desired, an instructor can present most chapters independently
with incorporation of prior material where appropriate. In particular, this
is the case for the chapters on collocations, lexica acquisition, tagging,
and information retrieval.

Exercises. There are exercises scattered through or at the end of every
chapter. They vary enormously in difficulty and scope. We have tried to
provide an dementary classification as follows:

*

Simple problems that range from text comprehension through to
such things as mathematical manipulations, simple proofs, and
thinking of examples of something.

More substantial problems, many of which involve either program-
ming or corpus investigations. Many would be suitable as an as
signment to be done over two weeks.

*~xx Large, difficult, or open-ended problems. Many would be suitable
as a term project.

Website. Finally, we encourage students and teachers to take advantage
of the materiad and the references on the companion website. It can be
accessed directly at the URL http://www.sultry.arts.usyd.edu.au/fsnip, or
found through the miT Press website http://mitpressmit.edu, by search-
ing for this book.
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“Statistical considerations are essential to an understanding of
the operation and development of languages”
(Lyons 1968: 98)

“One’s ability to produce and recognize grammatical utterances
is not based on notions ofstatistical approximation and the
like” (Chomsky 1957: 16)

“You say: the point isn’t the word, but its meaning, and you
think of the meaning as a thing of the same kind as the word,
though also different from the word. Here the word, there the
meaning. The money, and the cow that you can buy with it.
(But contrast: money, and its use.)”

(Wittgenstein 1968, Philosophical Investigations, §120)

“For a large class of cases-though not for all-in which we
employ the word ‘meaning’ it can be defined thus: the meaning
of a word is its use in the language. ”  (Wittgenstein 1968, 943)

“Now isn‘t it queer that | say that the word ‘is’ is used with two
different meanings (as the copula and as the sign of equality),
and should not care to say that its meaning is its use; its use,
that is, as the copula and the sign of equality?”

(Wittgenstein 1968, §561)
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Introduction

THe amm of a linguistic science is to be able to characterize and explain
the multitude of linguistic observations circling around us, in conversa
tions, writing, and other media. Part of that has to do with the cognitive
side of how humans acquire, produce, and understand language, part
of it has to do with understanding the relationship between linguistic
utterances and the world, and part of it has to do with understanding
the linguistic structures by which language communicates. In order to
approach the last problem, people have proposed that there are rules
which are used to structure linguistic expressions. This basic approach
has along history that extends back at least 2000 years, but in this cen-
tury the approach became increasingly forma and rigorous as linguists
explored detailed grammars that attempted to describe what were well-
formed versus ill-formed utterances of a language.

However, it has become apparent that there is a problem with this con-
ception. Indeed it was noticed early on by Edward Sapir, who summed it
up in his famous quote “All grammars leak” (Sapir 1921: 38). It is just
not possible to provide an exact and complete characterization of well-
formed utterances that cleanly divides them from all other sequences
of words, which are regarded as ill-formed utterances. This is because
people are always dstretching and bending the ‘rules to meet their com-
municative needs. Nevertheless, it is certainly not the case that the rules
are completely ill-founded. Syntactic rules for a language, such as that a
basic English noun phrase consists of an optional determiner, some num-
ber of adjectives, and then a noun, do capture maor patterns within the
language. But somehow we need to make things looser, in accounting for
the creativity of language use.
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This book explores an approach that addresses this problem head on.
Rather than starting off by dividing sentences into grammatical and un-
grammatical ones, we instead ask, “What are the common patterns that
occur in language use?’ The major tool which we use to identify these
patterns is counting things, otherwise known as statistics, and so the sci-
entific foundation of the book is found in probability theory. Moreover,
we are not merely going to approach this issue as a scientific question,
but rather we wish to show how statistical models of language are built
and successfully used for many natural language processing (NLP) tasks.
While practical utility is something different from the vaidity of a the-
ory, the usefulness of statistical models of language tends to confirm
that there is something right about the basic approach.

Adopting a Statistical NLP approach requires mastering a fair number
of theoretical tools, but before we delve into a lot of theory, this chapter
spends a bit of time attempting to situate the approach to natura lan-
guage processing that we pursue in this book within a broader context.
One should first have some idea about why many people are adopting
a dtatistical approach to natural language processing and of how one
should go about this enterprise. So, in this first chapter, we examine some
of the philosophical themes and leading ideas that motivate a Statistica
approach to linguistics and NLP, and then proceed to get our hands dirty
by beginning an exploration of what one can learn by looking at statistics
over texts.

Rationalist and Empiricist Approaches to Language

Some language researchers and many NLP practitioners are perfectly
happy to just work on text without thinking much about the relationship
between the mental representation of language and its manifestation in
written form. Readers sympathetic with this approach may feel like skip-
ping to the practica sections, but even practicaly-minded people have
to confront the issue of what prior knowledge to try to build into their
model, even if this prior knowledge might be clearly different from what
might be plausibly hypothesized for the brain. This section briefly dis-
cusses the philosophical issues that underlie this question.

Between about 1960 and 1985, most of linguistics, psychology, artifi-
cia intelligence, and natural language processing was completely domi-
nated by arationalist approach. A rationalist approach is characterized
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by the belief that a significant part of the knowledge in the human mind is
not derived by the senses but is fixed in advance, presumably by genetic
inheritance. Within linguistics, this rationalist position has come to dom-
inate the field due to the widespread acceptance of arguments by Noam
Chomsky for an innate language faculty. Within artificial intelligence,
rationalist beliefs can be seen as supporting the attempt to create intel-
ligent systems by handcoding into them a lot of starting knowledge and
reasoning mechanisms, so as to duplicate what the human brain begins
with.

Chomsky argues for this innate structure because of what he perceives
as a problem of the poverty of the stimulus (e.g., Chomsky 1986:. 7). He
suggests that it is difficult to see how children can learn something as
complex as a natural language from the limited input (of variable quality
and interpretability) that they hear during their early years. The rationa-
ist approach attempts to dodge this difficult problem by postulating that
the key parts of language are innate - hardwired in the brain at birth as
part of the human genetic inheritance.

An empiricist approach aso begins by postulating some cognitive abil-
ities as present in the brain. The difference between the approaches is
therefore not absolute but one of degree. One has to assume some initia
gtructure in the brain which causes it to prefer certain ways of organiz-
ing and generalizing from sensory inputs to others, as no learning is
possible from a completely blank date, a tabula rasa. But the thrust of
empiricist approaches is to assume that the mind does not begin with
detailed sets of principles and procedures specific to the various com-
ponents of language and other cognitive domains (for instance, theories
of morphological structure, case marking, and the like). Rather, it is as-
sumed that a baby’s brain begins with general operations for association,
pattern recognition, and generalization, and that these can be applied to
the rich sensory input available to the child to learn the detailed structure
of natural language. Empiricism was dominant in most of the fields men-
tioned above (at least the ones then existing!) between 1920 and 1960,
and is now seeing a resurgence. An empiricist approach to NLP suggests
that we can learn the complicated and extensive structure of language
by specifying an appropriate general language model, and then inducing
the values of parameters by applying statistical, pattern recognition, and
machine learning methods to a large amount of language use.

Generdly in Statistical NLP, people cannot actually work from observ-
ing a large amount of language use situated within its context in the
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world. So, instead, people simply use texts, and regard the textual context
as a surrogate for situating language in a real world context. A body of
texts is called a corpus - corpus is smply Latin for ‘body,” and when you
have several such collections of texts, you have corpora. Adopting such
a corpus-based approach, people have pointed to the earlier advocacy of
empiricist ideas by the British linguist JR. Firth, who coined the slogan
“You shal know a word by the company it keeps’ (Firth 1957: 11). How-
ever an empiricist corpus-based approach is perhaps even more clearly
seen in the work of American structuralists (the ‘post-Bloomfieldians'),
particularly Zellig Harris. For example, (Harris 1951) is an attempt to find
discovery procedures by which a language's structure can be discovered
automatically. While this work had no thoughts to computer implemen-
tation, and is perhaps somewhat computationally naive, we find here aso
the idea that a good grammatical description is one that provides a com-
pact representation of a corpus of texts.

It is not appropriate to provide a detailed philosophical treatment of
scientific approaches to language here, but let us note a few more dif-
ferences between rationalist and empiricist approaches. Rationalists and
empiricists are attempting to describe different things. Chomskyan (or
generative) linguistics seeks to describe the language module of the hu-
man mind (the I-language) for which data such as texts (the E-language)
provide only indirect evidence, which can be supplemented by native
speaker intuitions. Empiricist approaches are interested in describing
the E-language as it actually occurs. Chomsky (1965: 3-4) thus makes
a crucial digtinction between linguistic competence, which reflects the
knowledge of language structure that is assumed to be in the mind of
a native speaker, and linguistic performance in the world, which is af-
fected by all sorts of things such as memory limitations and distracting
noises in the environment. Generative linguistics has argued that one can
isolate linguistic competence and describe it in isolation, while empiricist
approaches generally regject this notion and want to describe actual use
of language.

This difference underlies much of the recent revival of interest in em-
piricist techniques for computational work. During the second phase of
work in artificia intelligence (roughly 1970-1989, say) people were con-
cerned with the science of the mind, and the best way to address that was
seen as building small systems that attempted to behave intelligently.
This approach identified many key problems and approaches that are
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gtill with us today, but the work can be criticized on the grounds that it
dealt only with very small (often pgoratively called ‘toy’) problems, and
often did not provide any sort of objective evaluation of the genera ef-
ficacy of the methods employed. Recently, people have placed greater
emphasis on engineering practical solutions. Principally, they seek meth-
ods that can work on raw text as it exists in the rea world, and objective
comparative evaluations of how wdl different methods work. This new
emphasis is sometimes reflected in naming the field ‘Language Technol-
ogy’ or ‘Language Engineering’ instead of NLP. As we will discuss below,
such goals have tended to favor Statistical NLP approaches, because they
are better at automatic learning (knowledge induction), better at disam-
biguation, and also have a role in the science of linguistics.

Finally, Chomskyan linguistics, while recognizing certain notions of
competition between principles, depends on categorical principles, which
sentences either do or do not satisfy. In general, the same was true of
American structuralism. But the approach we will pursue in Statistica
NLP draws from the work of Shannon, where the aim is to assign proba-
bilities to linguistic events, so that we can say which sentences are ‘usual’
and ‘unusual’. An upshot of this is that while Chomskyan linguists tend
to concentrate on categorical judgements about very rare types of sen-
tences, Statistical np practitioners are interested in good descriptions
of the associations and preferences that occur in the totality of language
use. Indeed, they often find that one can get good real world performance
by concentrating on common types of sentences.

1.2 Scientific Content

Many of the applications of the methods that we present in this book have
a quite applied character. Indeed, much of the recent enthusiasm for
datistical methods in natural language processing derives from people
seeing the prospect of datistical methods providing practical solutions
to rea problems that have eluded solution using traditional NLP methods.
But if statistical methods were just a practical engineering approach, an
approximation to difficult problems of language that science has not yet
been able to figure out, then their interest to us would be rather limited.
Rather, we would like to emphasize right at the beginning that there are
clear and compelling scientific reasons to be interested in the frequency
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with which linguistic forms are used, in other words, statitics, as one
approaches the study of language.

Questions that linguistics should answer

What questions does the study of language concern itself with? As a start
we would like to answer two basic questions.

= What kinds of things do people say?

» What do these things say/ask/request about the world?

From these two basic questions, attention quickly spreads to issues about
how knowledge of language is acquired by humans, and how they actu-
ally go about generating and understanding sentences in rea time. But
let us just concentrate on these two basic questions for now. The first
covers dl aspects of the structure of language, while the second deals
with semantics, pragmatics, and discourse - how to connect utterances
with the world. The first question is the bread and butter of corpus lin-
guistics, but the patterns of use of a word can act as a surrogate for deep
understanding, and hence can let us also address the second question
using corpus-based techniques. Nevertheless patterns in corpora more
easily reveal the syntactic structure of a language, and so the majority of
work in Statistical NLP has dealt with the first question of what kinds of
things people say, and so let us begin with it here.

How does traditional (structuralist/generative) linguistics seek to an-
swer this question? It abstracts away from any attempt to describe the
kinds of things that people usualy say, and instead seeks to describe
a competence grammar that is said to underlie the language (and which
generative approaches assume to be in the speaker’s head). The extent to
which such theories approach the question of what people say is merely
to suggest that there is a set of sentences - grammatical sentences -
which are licensed by the competence grammar, and then other strings
of words are ungrammatical. This concept of grammaticality is meant to
be judged purely on whether a sentence is structuraly well-formed, and
not according to whether it is the kind of thing that people would say
or whether it is semantically anomalous. Chomsky gave Colorless green
ideas sleep furiously as an example of a sentence that is grammatical, al-
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though semanticaly strange and not the kind of thing you would expect
people to say. Syntactic grammaticality is a categorical binary choice.!

Now, initidly, a distinction between grammatical and ungrammatica
sentences does not seem so bad. We immediately notice when a non-
native speaker says something readly wrong - something ungrammatical
- and we are able to correct such sentences to grammatical ones. In con-
trast, except when there are bad speech errors, a native speaker normally
produces grammatical sentences. But there are at least two reasons why
we should seek more. Firstly, while maintaining a binary split between
grammatical and ungrammatical sentences may seem plausible in simple
cases, it becomes increasingly far-fetched as we extend our investiga-
tion. Secondly, regardiess of this, there are many reasons to be interested
in the frequency with which different sentences and sentence types are
used, and simply dividing sentences into grammatical and ungrammati-
cal sentences gives no information about this. For instance, very often
non-native speakers say or write things that are not in any way syntac-
tically ungrammatical, but just somehow subtly odd. Here's an example
from a student essay:

In addition to this, she insisted that women were regarded as a different
existence from men unfairly.

We might respond to this passage by saying that we can understand the
message, but it would sound better expressed dightly differently. This
is a statement about the conventionality of certain modes of expression.
But a convention is simply a way in which people frequently express or
do something, even though other ways are in principle possible.

The fact that sentences do not divide neatly into two sets - grammat-
ical and ungrammatical ones - is wel known to anyone who has been
in linguistics for a while. For many of the complicated sentences of in-
terest to theoretical linguistics, it is difficult for human beings to decide
whether they are grammatical or not. For example, try your hand at judg-
ing the grammaticdity of the following sentences drawn (not at random)

1. Some versions of Chomsky’s 1980s theory, Government-Binding theory (GB), provide a
minor degree of gradedness by suggesting that sentences that disobey some constraints
are only sort of weird while ones that disobey other constraints are truly horrible, but the
forma theory, in GB and elsewhere, provides little support for these notions. Linguists
generdly rely on an informa system of stars and question marks for initialy grading
sentences (where * (ungrammatical) > ?* > ??> ? (questionable)), but these gradations
are converted into a binary grammatical/ungrammatical distinction when people try to
develop the principles of grammar.
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from (van Riemsdijk and Williams 1986) - a textbook, not even a research
paper - before peeking at the answers in the footnote.?

a. John | believe Saly said Bill believed Sue saw.
b. What did Sally whisper that she had secretly read?
c¢. John wants very much for himsdf to win.

d. (Those are) the books you should read before it becomes difficult to
talk about.

e. (Those are) the books you should read before talking about becomes
difficult.

f. Who did Jo think said John saw him?

g. That a serious discussion could arise here of this topic was quite un-
expected.

h. The boys read Mary’s stories about each other.

We find that most people disagree with more than one of van Riemsdijk
and Williams's claims about which sentences are grammatical. This re-
sult raises read questions about what, if anything, generative linguistics
is describing.

This difficulty has led to many statements in the linguistics literature
about judgements being difficult, or the facts quite obscure, as if some-
how there is a categorica answer to whether each sentence is grammati-
cal, but it is hard for human beings to work out what that answer is. Y,
despite these manifest difficulties, most of theoretical linguistics contin-
ues to work in a framework that defines such observations to be out of
the realm of interest (relegating them to performance effects). We be-
lieve that this is unsustainable. On the other hand, it must be noticed
that most simple sentences are either clearly acceptable or unacceptable
and we would want our theory to be able to account for this observation.
Perhaps the right approach is to notice the paralel with other cases of
categorical perception that have been described in the psychological liter-
ature. For instance, although the timing of voicing onset which differenti-
ates a /p/ sound from a /b/ sound is a continuous variable (and its typical

2. Answers. a. OK, b. bad, c. oK, d. oK, e. bad, f. OK, g. OK, h. bad.
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value varies between languages), human beings perceive the results cat-
egorically, and this is why a theory of phonology based on categorica
phonemes is largely viable, despite al the movements and variations in
phonological production occurring in a continuous space. Similarly for
syntax, a categorical theory may suffice for certain purposes. Neverthe-
less, we would argue that the difficulties in giving grammaticdity judge-
ments to complex and convoluted sentences show the implausibility of
extending a binary distinction between grammatical and ungrammatical
strings to al areas of language use.

Non-categorical phenomena in language

But beyond the above difficulties in giving grammaticality judgements, if
we peek into the corners of language, we see clear evidence of failures of
categorical assumptions, and circumstances where considerations of fre-
guency of use are essential to understanding language. This suggests that
while a categorical view of language may be sufficient for many purposes,
we Must see it as an approximation that also has its limitations (just as
Newtonian physics is good for many purposes but has its limits).?

One source of data on non-categorical phenomena in language is to
look at the history of language change (others are looking at sociolin-
guistic variation and competing hypotheses during language acquisition).
Over time, the words and syntax of a language change. Words will change
their meaning and their part of speech. For instance, English while used
to be exclusively a noun meaning ‘time’ a usage that survives mainly in
a few fixed phrases such as to take awhile, but changed to be mainly
used as a complementizer introducing subordinate clauses (While you
were out, ...). It doesn't make sense to say that categoricaly until some
day in 1742 while was only a noun and then it became a complementizer
- even if this clam is only being made for certain speakers rather than
the speech community as a whole. Rather, one would expect a gradua
change. One hypothesis is that if the frequency of use of a word in vari-
ous contexts gradually changes so that it departs from the typica profile
of use of words in the category to which it formerly belonged, and rather
its profile of use comes to more resemble words of another category, then

3. Readers not familiar with linguistics and NLP may have trouble understanding this
section and may wish to skip it, but to return to it after reading chapter 3. The historica
examples include various archaic spelings - the standardization of English spelling is a
relatively modern phenomenon. Reading them aoud is often helpful for decoding them.
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it will come to be reanalyzed as a word of that different category. During
the period of change, one would expect to see evidence of noncategorical
behavior.

Blending of parts of speech: near

At first blush it appears that the word near can be used either as an
adjective as in (1.3a) or as a preposition (1.3b):

a We will review that decision in the near future.
b. He lives near the station.

Evidence for near as an adjective includes its position between a deter-
miner and noun as in (1.3a)- a classic adjective position - and the fact
that it can form an adverb by adding -Iy: We nearly lost. Evidence for
near as a preposition includes that it can head the locative phrase com-
plements of verbs like live asin (1.3b) - a classic role for prepositions, and
that such a phrase can be modified by right, which is normally restricted
to modifying prepositional phrases. He lives right near the station (cf. He
swam right across the lake vs. ??That’s a right red cur). So far, though,
this data is not that surprising: many words in English seem to have
multiple parts of speech. For example, many words are both nouns and
verbs, such as play: They saw a play vs. They play lacrosse on Thursdays.
But the interesting thing is that near can simultaneously show adjective
properties and preposition properties, and thus appears to behave as a
category blend. This happens in sentences like:

a He has never been nearer the center of the financia establishment.
b. We live nearer the water than you thought.

Redlization in the comparative form (nearer) is a halmark of adjectives
(and adverbs). Other categories do not form comparatives and superla-
tives. On the other hand, grammatical theory tells us that adjectives and
nouns do not take direct objects, hence we have to insert prepositions

4. The thoughtful reader might note that some prepositions do have related forms ending
in -er which are perhaps related to comparatives (upper, downer, inner, outer), but we note
that none of these prepositions have a superlative that is formed in analogy to regular
adjectiva superlatives, as near does (that is, nearest), and that none of these other forms
in-er can be used in preposition-like uses. We cannot say: *John lives inner Sydney than
Fred.
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after adjectives and say unsure of his beliefs or convenient for people
who work long hours. In this sense nearer is behaving like a preposition
by heading a locative phrase and taking a direct object. Thus in these
sentences nearer is simultaneously showing properties of adjectives and
prepositions that are not available to the other category. Hence it is ex-
hibiting a blended status somewhere between these two parts of speech,
which are normally taken as categoricaly distinct.

Language change: kind of and sort of

New uses for the word sequences kind of and sort of present a convincing
example of how different frequencies of use in certain constructions can
lead to what is apparently categorica change. In modern English, the
expressions sort of and kind of have at least two distinct uses. In one, sort
or kind functions as a noun with of as a following preposition introducing
a prepositional phrase, as in sentences such as What sort of animal made
these trucks? But there is another usage in which these expressions can
best be thought of as degree modifiers, akin to somewhat or slightly:

a. We are kind of hungry.
b. He sort of understood what was going on.

We can tell that kind/sort of is not behaving as a normal noun preposition
sequence here because it is appearing in contexts - such as between the
subject noun phrase and the verb - where normally one cannot insert a
noun-preposition sequence (for example, one cannot say *He variety of
understood what was going on).

Historically, kind and sort were clearly nouns. Among other things,
they could be preceded by a determiner and followed by a PP:

a A nette sent in to the see, and of ale kind of fishis gedrynge. [1382]
b. | knowe that sorte of men ryght well. [ 15601

Unambiguous degree modifier uses did not appear until the nineteenth
century:

a. | kind of love you, Sal-1 vow. [ 1804]

b. It sort o’ stirs one up to hear about old times. [1833]
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It does not appear that this new construction was borrowed from another
language. Rather it appears to be a language internal development. How
could this innovation have come about?

A plausible hypothesis is to notice that when we have kind/sort of pre-
ceding an adjective, then it is actually ambiguous between these two read-
ings:.

a. [np a[kind] [pp Of [Npdense rock]]]
b. inp alap IMop kind of] densg] rock]

And what one finds is that between the sixteenth and the nineteenth
century, there was a dignificant rise in the use of kind/sort of in this
[Det {sort/kind} of AdjP N] frame:

a. Their finest and best, is a kind of course red cloth. [c. 1600]

b. But in such questions as the present, a hundred contradictory views
may preserve a kind of imperfect analogy. [1743]

(Note that course is here a variant spelling of coarse.) In this environment,
sort/kind of fills a dot that could be occupied by a noun head followed
by a preposition, but it also fills a dot that could be occupied by a de-
gree modifier (with a different syntactic structure). As this usage became
more common, kind/sort of was more commonly being used in a typica
degree modifier dot; in other words, it grew to look syntacticaly more
like a degree modifier. Moreover, the semantics of these particular nouns
was such that they could easily be thought of as degree modifiers. This
frequency change seems to have driven a change in syntactic category,
and in time the use of kind/sort of was extended to other contexts such
as modifying verb phrases.

The general point here is that while language change can be sudden
(due to either external or internal factors), it is generaly gradua. The
details of gradual change can only be made sense of by examining fre-
guencies of use and being sensitive to varying strengths of relationships,
and this type of modding requires dtatistical, as opposed to categorical,
observations.

Although there have only been a few attempts to use Statistical NLP for
explaining complex linguistic phenomena, what is exciting about the sub-
ject matter of this book from the point of view of theoretical linguistics
is that this new way of looking at language may be able to account for
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things such as non-categorical phenomena and language change much
better than anything existing today.

Language and cognition as probabilistic phenomena

A more radical argument for probability as part of a scientific under-
standing of language is that human cognition is probabilistic and that
language must therefore be probabilistic too since it is an integral part
of cognition. A frequent response to our previous examples of non-
categorical phenomena in language is that they are marginal and rare.
Most sentences are either clearly grammatical or clearly ungrammatical.
And most of the time, words are used in only one part of speech, without
blending. But if language and cognition as a whole are best explained
probabilistically, then probability theory must be a central part of an ex-
planatory theory of language.

The argument for a probabilistic approach to cognition is that we live
in a world filled with uncertainty and incomplete information. To be able
to interact successfully with the world, we need to be able to dea with
this type of information. Suppose you want to determine whether it is
safe to wade through a river. You see that the water is flowing sowly, so
probably it won't drag you away. You are pretty certain that no piranhas
or adligators live in this area. You integrate all this information in eval-
uating how safe it is to cross the river. Now, if someone tells you, “the
water is only knee-deep if you walk towards that tall tree over there”, then
this linguistic information will be just one more source of information to
incorporate. Processing the words, forming an idea of the overal mean-
ing of the sentence, and weighing it in making a decision is no different
in principle from looking at the current, forming an idea of the speed
of the water, and taking this sensory information into account. So the
gist of this argument is that the cognitive processes used for language
are identical or at least very similar to those used for processing other
forms of sensory input and other forms of knowledge. These cognitive
processes are best formalized as probabilistic processes or at least by
means of some quantitative framework that can handle uncertainty and
incomplete information.

The facts of language often look quite different depending on whether
or not one is sympathetic to an important role for quantitative meth-
ods in linguistics. A famous example is Chomsky’s dictum that probabil-
ity theory is inappropriate for formalizing the notion of grammaticality.
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He argued that computing the probability of sentences from a corpus
of utterances would assign the same low probability to all unattested
sentences, grammatical and ungrammatical ones aike, and hence not ac-
count for linguistic productivity (Chomsky 195 7: 16). This argument only
makes sense if one has a bias against probabilistic representation of con-
cepts in general. Consider the cognitive representation of the concept
tall. Suppose you see a man who is seven feet tall and it is the first per-
son you've ever seen of that height. You will easily recognize this person
as atall man, not as an uncategorizable man. Similarly, it will be easy
for you to recognize a person of another unattested height, say four feet,
as definitely not tall. In this book, we will look at probabilistic models
that can easily learn and represent this type of regularity and make the
right judgement for unattested examples. Indeed, a mgor part of Statis-
tical NLP is deriving good probability estimates for unseen events. The
premise that all unattested instances will be treated alike in a probabilis-
tic framework does not hold.

We believe that much of the skepticism towards probabilistic mod-
els for language (and for cognition in genera) stems from the fact that
the well-known early probabilistic models (developed in the 1940s and
1950s) are extremely simplistic. Because these simplistic models clearly
do not do justice to the complexity of human language, it is easy to view
probabilistic models in general as inadequate. One of the insights we
hope to promote in this book is that complex probabilistic models can be
as explanatory as complex non-probabilistic models - but with the added
advantage that they can explain phenomena that involve the type of un-
certainty and incompleteness that is so pervasive in cognition in genera
and in language in particular.

These issues relate to the treatment of semantics in Statistical NLP.
We mentioned earlier that most existing work in Statistical NLP has con-
centrated on the lower levels of grammatical processing, and people have
sometimes expressed skepticism as to whether statistical approaches can
ever dea with meaning. But the difficulty in answering this question is
mainly in defining what ‘meaning’ il It is often useful in practice if ‘mean-
ing' is viewed as symbolic expressions in some language, such as when
trandating English into a database query language like SQL. This sort
of trandation can certainly be done using a Statistica NLP system (we
discuss the process of trandation in chapter 13). But from a Statistical
NLP perspective, it is more natural to think of meaning as residing in
the distribution of contexts over which words and utterances are used.
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Philosophically, this brings us close to the position adopted in the later
writings of Wittgenstein (that is, Wittgenstein 1968), where the mean-

USETHEORYOF  ing of a word is defined by the circumstances of its use (a use theory of
MEANING  meaning) - see the quotations at the beginning of the chapter. Under this
conception, much of Statistical NLP research directly tackles questions of
meaning.
1.3 The Ambiguity of Language: Why NLP Is Difficult
An NLP system needs to determine something of the structure of text -
normaly at least enough that it can answer “Who did what to whom?’
Conventional parsing systems try to answer this question only in terms
of possible structures that could be deemed grammatical for some choice
of words of a certain category. For example, given a reasonable grammar,
a standard NLP system will say that sentence (1.10) has 3 syntactic anal-
yses, often caled parses:
(1.10)  Our company is training workers.
The three differing parses might be represented as in (1.11):
(1.11) a S
/\
NP VP
A /\
Our company Aux VP
| T
is v NP
I
training workers
b. S
/\
NP VP
A /\
Our company V NP
IS VP
/\
% NP
I

training workers
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c. S
/\
NP VP
e T T
Our company V NP
| /\
is  AdjP N
T !

training workers

There is (a), the one humans perceive, where is training is the verb group,
and two others with is as the main verb: in (b) the rest is a gerund (cf. Our
problem is training workers), while in (c) training modifies workers (cf.
Those are training wheels). The last two parses are semantically anoma-
lous, but in most current systems semantic analysis is done only after
syntactic analysis (if at al). This means that, as sentences get longer and
grammars get more comprehensive, such ambiguities lead to a terrible
multiplication of parses. For instance, Martin et a. (1987) report their
system giving 455 parses for the sentence in (1.12):°

List the sales of the products produced in 1973 with the products pro-
duced in 1972.

Therefore, a practical NLP system must be good at making disambigua-
tion decisions of word sense, word category, syntactic structure, and
semantic scope. But the goal of maximizing coverage while minimiz-
ing resultant ambiguity is fundamentally inconsistent with symbolic NLP
systems, where extending the coverage of the grammar to obscure con-
structions simply increases the number of undesired parses for common
sentences and vice versa. Furthermore, experience with Al approaches to
parsing and disambiguation, which seek modds with deep understand-
ing, has shown that hand-coded syntactic constraints and preference
rules are time consuming to build, do not scae up well, and are brit-
tle in the face of the extensive use of metaphor in language (Lakoff 1987).
For instance a traditional approach is to use selectional restrictions, and
say, for example, that a verb like swallow requires an animate being as its
subject and a physical object as its object. But such a restriction would
disallow common and straightforward metaphorical extensions of the us
age of swallow such as these:

5. See aso Church and Patil (1982) for similar examples.
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a. | swalowed his story, hook, line, and sinker.
b. The supernova swallowed the planet.

Disambiguation strategies that rely on manua rule creation and hand-
tuning produce a knowledge acquisition bottleneck, and still perform
poorly when evaluated on naturaly occurring text.

A Statistical NLP approach seeks to solve these problems by automat-
ically learning lexical and structural preferences from corpora. Rather
than parsing solely using syntactic categories, such as part of speech la
bes, we recognize that there is a lot of information in the relationships
between words, that is, which words tend to group with each other. This
collocational knowledge can be exploited as a window onto deeper se-
mantic relationships. In particular, the use of statistical models offers
a good solution to the ambiguity problem: satistical models are robust,
generalize well, and behave gracefully in the presence of errors and new
data. Thus Statistical NLP methods have led the way in providing suc-
cessful disambiguation in large scale systems using naturally occurring
text. Moreover, the parameters of Statistica NLP models can often be esti-
mated automatically from text corpora, and this possibility of automatic
learning not only reduces the human effort in producing NLP systems, but
raises interesting scientific issues regarding human language acquisition.

1.4 Dirty Hands

1.4.1 Lexical resources

LEXICAL RESOURCES

BROWN CORPUS

BALANCED CORPUS

So much for motivation. How does one actually proceed? Well, first of al,
one needs to get one's hands on some lexical resources: machine-readable
text, dictionaries, thesauri, and aso tools for processing them. We will
briefly introduce a few important ones here since we will be referring
to them throughout the book. You can consult the website for more
information on how to actually get your hands on them.

The Brown corpus is probably the most widely known corpus. It is
a tagged corpus of about a million words that was put together at Brown
university in the 1960s and 1970s. It is a balanced corpus. That is, an
attempt was made to make the corpus a representative sample of Amer-
ican English at the time. Genres covered are press reportage, fiction,
scientific text, lega text, and many others. Unfortunately, one has to pay
to obtain the Brown corpus, but it is relatively inexpensive for research
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purposes. Many ingtitutions with NLP research have a copy available, so
ask around. The Lancaster-Odo-Bergen (LOB) corpus was built as a British
English replication of the Brown corpus.

The Susanne corpus is a 130,000 word subset of the Brown corpus,
which has the advantage of being fredy available. It is also annotated
with information on the syntactic structure of sentences - the Brown cor-
pus only disambiguates on a word-for-word basis. A larger corpus of
syntactically annotated (or parsed) sentences is the Penn Treebank. The
text is from the Wall Street Journal. It is more widely used, but not avail-
able for free.

The Canadian Hansards, the proceedings of the Canadian parliament,
are the best known example of a bilingual corpus, a corpus that contains
parallel texts in two or more languages that are trandations of each other.
Such paralel texts are important for satistica machine trandation and
other cross-lingual NLP work. The Hansards are another resource that
one has to pay for.

In addition to texts, we aso need dictionaries. WordNet is an eectronic
dictionary of English. Words are organized into a hierarchy. Each node
consists of a synset of words with identical (or close to identica) mean-
ings. There are also some other relations between words that are defined,
such as meronymy or part-whole relations. WordNet is free and can be
downloaded from the internet.
¥ More details on corpora can be found in chapter 4.

Word counts

Once we have downloaded some text, there are a number of quite inter-
esting issues in its low-level representation, classification, and process
ing. Indeed, so many that chapter 4 is devoted to these questions. But
for the moment, let us suppose that our text is being represented as a
list of words. For the investigation in this section, we will be using Mark
Twain’s Tom Sawyer.

There are some obvious first questions to ask. What are the most com-
mon words in the text? The answer is shown in table 1.1. Notice how
this list is dominated by the little words of English which have important
grammatical roles, and which are usually referred to as function words,
such as determiners, prepositions, and complementizers. The one redly
exceptional word in the list is Tom whose frequency clearly reflects the
text that we chose. This is an important point. In general the results one
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Word  Freq. Use

the 3332 determiner (article)

and 2972 conjunction

a 1775 determiner

to 1725 preposition, verba infinitive marker
of 1440 preposition

was 1161 auxiliary verb

it 1027 (personal/expletive) pronoun
in 906 preposition

that 877  complementizer, demonstrative
he 877 (personal) pronoun

I 783 (personal) pronoun

his 772 (possessive)  pronoun

you 686 (personal) pronoun

Tom 679 proper noun
with 642 preposition

Table 1.1 Common words in Tom Sawyer.

gets depends on the corpus or sample used. People use large and var-
ied samples to try to avoid anomalies like this, but in genera the goa of
using a truly ‘representative’ sample of al of English usage is something
of a chimera, and the corpus will reflect the materials from which it was
constructed. For example, if it includes material from linguistics research
papers, then words like ergativity, causativize, and lexicalist may well oc-
cur, but otherwise they are unlikely to be in the corpus at al, no matter
how large it is.

How many words are there in the text? This question can be interpreted
in two ways. The question about the sheer length of the text is distin-
guished by asking how many word tokens there are. There are 71,370.
So this is a very small corpus by any standards, just big enough to illus-
trate a few basic points. Although Tom Sawyer is a reasonable length
novel, it is somewhat less than haf a megabyte of online text, and for
broad coverage statisticd grammars we will often seek collections of text
that are orders of magnitude larger. How many different words, or in
other words, how many word types appear in the text? There are 8,018.
This is actualy quite a smal number for a text its size, and presumably
reflects the fact that Tom Sawyer is written in a colloquia style for chil-
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Word Frequency of
Frequency Frequency

1 3993

2 1292

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91
11-50 540
51-100 99
> 100 102

Table 1.2 Freguency of frequencies of word types in Tom Sawyer.

dren (for instance, a sample of newswire the same size contained dightly
over 11,000 word types). In genera in this way one can tak about to-
kens, iNdividual occurrences of something, and types, the different things
present. One can aso calculate the ratio of tokens to types, which is sim-
ply the average frequency with which each type is used. For Tom Sawyer,
itis8.9.%

The above statitics tell us that words in the corpus occur ‘on average’
about 9 times each. But one of the greatest problems in Statistical NLP
is that word types have a very uneven distribution. Table 1.2 shows how
many word types occur with a certain frequency. Some words are very
common, occurring over 700 times and therefore individually account-
ing for over 1% of the words in the novel (there are 12 such words in
table 1.1). Overal, the most common 100 words account for dightly over
half (50.9%) of the word tokens in the text. On the other extreme, note
that dmost half (49.8%) of the word types occur only once in the corpus.
Such words are referred to as hapax legomena, Greek for ‘read only once.’
Even beyond these words, note that the vast majority of word types oc-

6. This ratio is not a vaid measure of something like ‘text complexity’ just by itsdlf, since
the vaue varies with the size of the text. For a valid comparison, one needs to normalize
the lengths of the texts, such as by calculating the measure over windows of 1,000 words.
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cur extremely infrequently: over 90% of the word types occur 10 times or
less. Nevertheless, very rare words make up a considerable proportion of
the text: 12% of the text is words that occur 3 times or less.

Such simple text counts as these can have a use in applications such
as cryptography, or to give some sort of indication of style or author-
ship. But such primitive statistics on the distribution of words in a text
are hardly terribly linguistically significant. So towards the end of the
chapter we will begin to explore a research avenue that has dightly more
linguistic interest. But these primitive text statistics dready tell us the
reason that Statistical NLP is difficult: it is hard to predict much about
the behavior of words that you never or barely ever observed in your cor-
pus. One might initialy think that these problems would just go away
when one uses a larger corpus, but this hope is not borne out: rather,
lots of words that we do not see at al in Tom Sawyer will occur - once or
twice - in a large corpus. The existence of this long tail of rare words is
the basis for the most celebrated early result in corpus linguistics, Zipf's
law, which we will discuss next.

1.4.3 Zipf's laws

RANK

In his book Human Behavior and the Principle of Least Effort, Zipf argues
that he has found a unifying principle, the Principle of Least Effort, which
underlies essentially the entire human condition (the book even includes
some questionable remarks on human sexuality!). The Principle of Least
Effort argues that people will act so as to minimize their probable average
rate of work (i.e, not only to minimize the work that they would have to
do immediately, but taking due consideration of future work that might
result from doing work poorly in the short term). The evidence for this
theory is certain empirical laws that Zipf uncovered, and his presentation
of these laws begins where his own research began, in uncovering certain
dtatistical distributions in language. We will not comment on his generd
theory here, but will mention some of his empirica language laws.

The famous law: Zipf’s law

If we count up how often each word (type) of a language occurs in a large
corpus, and then list the words in order of their frequency of occurrence,
we can explore the relationship between the frequency of a word f and
its position in the list, known as its rank r. Zipf's law says that:
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Word Freg. Rank f-r Word Freg. Rank f-r
) (r) ) (r)
the 3332 1 3332 turned 51 200 10200
and 2972 2 5944 you'll 30 300 9000
a 1775 3 5235 name 21 400 8400
he 877 10 8770 comes 16 500 8000
but 410 20 8400 group 13 600 7800
be 294 30 8820 lead 11 700 7700
there 222 40 8880 friends 10 800 8000
one 172 50 8600 begin 9 900 8100
about 158 60 9480 family 8 1000 8000
more 138 70 9660 brushed 4 2000 8000
never 124 80 9920 sins 2 3000 6000
Oh 116 90 10440 Could 2 4000 8000
two 104 100 10400 Applausive 1 8000 8000
Table 1.3 Empirical evaluation of Zipf's law on Tom Sawyer.
1
foe—

or, in other words:
There is a constant k such that f . » = k

For example, this says that the 50™ most common word should occur
with three times the frequency of the 150%™ most common word. This
relationship between frequency and rank appears first to have been no-
ticed by Estoup (1916), but was widely publicized by Zipf and continues
to bear his name. We will regard this result not actually as a law, but as a
roughly accurate characterization of certain empirical facts.

Table 1.3 shows an empirical evaluation of Zipf's law on the basis of
Tom Sawyer. Here, Zipf's law is shown to approximately hold, but we
note that it is quite a bit off for the three highest frequency words, and
further that the product f . r tends to bulge a little for words of rank
around 100, a dlight bulge which can also be noted in many of Zipf's
own studies. Nevertheless, Zipf's law is useful as a rough description of
the frequency distribution of words in human languages: there are a few
very common words, a middling number of medium frequency words,
and many low frequency words. Zipf saw in this a deep significance.



(1.16)

1.4 Dirty Hands 25

According to his theory both the speaker and the hearer are trying to
minimize their effort. The speaker’s effort is conserved by having a small
vocabulary of common words and the hearer’s effort is lessened by hav-
ing a large vocabulary of individualy rarer words (so that messages are
less ambiguous). The maximally economical compromise between these
competing needs is argued to be the kind of reciprocal relationship be-
tween frequency and rank that appears in the data supporting Zipf's law.
However, for us, the main upshot of Zipf's law is the practica problem
that for most words our data about their use will be exceedingly sparse.
Only for a few words will we have lots of examples.

The validity and possibilities for the derivation of Zipf's law is studied
extensively by Mandebrot (1954). While studies of larger corpora some-
times show a closer match to Zipf's predictions than our examples here,
Mandelbrot (1954: 12) aso notes that “bien gque la formule de Zipf donne
I"allure générale des courbes, €elle en represente trés mal les details [al-
though Zipf's formula gives the general shape of the curves, it is very
bad in reflecting the details].” Figure 1.1 shows a rank-frequency plot of
the words in one corpus (the Brown corpus) on doubly logarithmic axes.
Zipf's law predicts that this graph should be a straight line with slope — 1.
Mandelbrot noted that the line is often a bad fit, especialy for low and
high ranks. In our example, the line is too low for most low ranks and
too high for ranks greater than 10,000.

To achieve a closer fit to the empirica distribution of words, Mandel-
brot derives the following more general rdationship between rank and
frequency:

f=P(r+p)® or logf = logP - Blog(r + p)

Here P, B and p are parameters of a text, that collectively measure the
richness of the text's use of words. There is still a hyperbolic distribu-
tion between rank and frequency, as in the original equation (1.14). If
this formula is graphed on doubly logarithmic axes, then for large values
of r, it closely approximates a straight line descending with slope —B,
just as Zipf's law. However, by appropriate setting of the other parame-
ters, one can model a curve where the predicted frequency of the most
frequent words is lower, while thereafter there is a bulge in the curve:
just as we saw in the case of Tom Sawyer. The graph in figure 1.2 shows
that Mandebrot's formula is indeed a better fit than Zipf's law for our
corpus. The dlight bulge in the upper left corner and the larger slope
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Figure 1.1 Zipf’s law. The graph shows rank on the X-axis versus frequency
on the Y-axis, using logarithmic scales. The points correspond to the ranks
and frequencies of the words in one corpus (the Brown corpus). The line is the
relationship between rank and frequency predicted by Zipf for k = 100,000, that
isf x r = 100,000.

of B=1.15 modd the lowest and highest ranks better than the line in
figure 1.1 predicted by Zipf.

If we take B=1and p = 0 then Mandelbrot’s formula simplifies to
the one given by Zipf (see exercise 1.3). Based on data similar to the cor-
pora we just looked at, Mandelbrot argues that Zipf’'s simpler formula
just is not true in genera: “lorsque Zipf essayait de représenter tout par
cette loi, il essayait d'habiller tout le monde avec des vétements d une
seule taille [when Zipf tried to represent everything by this (i.e., his) law,
he tried to dress everyone with clothes of a single cut]”. Nevertheless,
Mandelbrot sees the importance of Zipf's work as stressing that there are
often phenomena in the world that are not suitably modeled by Gaussian
(normal) distributions, that is, ‘bell curves’ but by hyperbolic distribu-
tions - a fact discovered earlier in the domain of economics by Pareto.
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Figure 1.2 Mandelbrot’s formula. The graph shows rank on the X-axis versus
frequency on the Y -axis, using logarithmic scales. The points correspond to the
ranks and frequencies of the words in one corpus (the Brown corpus). The line is
the relationship between rank and frequency predicted by Mandelbrot's formula
for p=10%4, B=1.15, p = 100.

Other laws

References to Zipf's law in the Statisticadl NLP literature invariably refer
to the above law, but Zipf actualy proposed a number of other empirical
laws relating to language which were also taken to illustrate the Principle
of Least Effort. At least two others are of some interest to the concerns
of Statistical NLP. One is the suggestion that the number of meanings
of a word is correlated with its frequency. Again, Zipf argues that con-
servation of speaker effort would prefer there to be only one word with
all meanings while conservation of hearer effort would prefer each mean-
ing to be expressed by a different word. Assuming that these forces are
equally strong, Zipf argues that the number of meanings m of a word
obeys the law:

m o |F
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or, given the previous law, that:

m oc ﬁ

Zipf finds empirica support for this result (in his study, words of fre-
guency rank about 10,000 average about 2.1 meanings, words of rank
about 5000 average about 3 meanings, and words of rank about 2000
average about 4.6 meanings).

A second result concerns the tendency of content words to clump. For
a word one can measure the number of lines or pages between each oc-
currence of the word in a text, and then calculate the frequency F of
different interval sizes I. For words of frequency at most 24 in a 260,000
word corpus, Zipf found that the number of intervals of a certain size
was inversely related to the interval size (FocI77, where p varied be-
tween about 1 and 1.3 in Zipf's studies). In other words, most of the time
content words occur near another occurrence of the same word.

v The topic of word senses is discussed in chapter 7, while the clumping
of content words is discussed in section 15.3.

Other laws of Zipf's include that there is an inverse reationship be-
tween the frequency of words and their length, that the greater the fre-
guency of a word or morpheme, the greater the number of different per-
mutations (roughly, compounds and morphologically complex forms) it
will be used in, and yet further laws covering historical change and the
frequency of phonemes.

The significance of power laws

As a fina remark on Zipf's law, we note that there is a debate on how
surprising and interesting Zipf's law and ‘power laws in genera are as
a description of natural phenomena. It has been argued that randomly
generated text exhibits Zipf's law (Li 1992). To show this, we construct
a generator that randomly prodnices characters from the 26 letters of the
alphabet and the blank (that is, each of these 27 symbols has an equal
chance of being generated next). Simplifying dightly, the probability of a
word of length nbeing generated is (52)"5-: the probability of generating
a non-blank character n times and the blank after that. One can show
that the words generated by such a generator obey a power law of the
form Mandelbrot suggested. The key insights are (i) that there are 26
times more words of length n + 1than length n, and (ii) that there is a
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constant ratio by which words of length n are more frequent than words
of length n + 1. These two opposing trends combine into the regularity
of Mandelbrot’s law. See exercise 1.4.

There is in fact a broad class of probability distributions that obey
power laws when the same procedure is applied to them that is used to
compute the Zipf distribution: first counting events, then ranking them
according to their frequency (Giinter et a. 1996). Seen from this angle,
Zipf's law seems less vauable as a characterization of language. But the
basic insight remains. what makes frequency-based approaches to lan-
guage hard is that amost all words are rare. Zipf's law is a good way to
encapsulate this insight.

1.4.4 Collocations

COLLOCATION

Lexicographers and linguists (although rarely those of a generative bent)
have long been interested in collocations. A collocation is any turn of
phrase or accepted usage where somehow the whole is perceived to have
an existence beyond the sum of the parts. Collocations include com-
pounds (disk drive), phrasal verbs (make up), and other stock phrases
(bacon and eggs). They often have a specialized meaning or are idiomatic,
but they need not be. For example, at the time of writing, a favorite ex-
pression of bureaucrats in Australia is international best practice. Now
there appears to be nothing idiomatic about this expression; it is simply
two adjectives modifying a noun in a productive and semantically com-
positional way. But, nevertheless, the frequent use of this phrase as a
fixed expression accompanied by certain connotations justifies regarding
it as a collocation. Indeed, any expression that people repeat because
they have heard others using it is a candidate for a collocation.
v Collocations are discussed in detail in chapter 5. We see later on that
collocations are important in areas of Statisticad NLP such as machine
trandation (chapter 13) and information retrieval (chapter 15). In ma
chine trandation, a word may be trandated differently according to the
collocation it occurs in. An information retrieval system may want to
index only ‘interesting’ phrases, that is, those that are collocations.
Lexicographers are also interested in collocations both because they
show frequent ways in which a word is used, and because they are mul-
tiword units which have an independent existence and probably should
appear in a dictionary. They also have theoretical interest: to the extent
that most of language use is people reusing phrases and constructions
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Frequency Word 1 Word 2

80871 of the
58841 in the
26430 to the
21842 on the
21839 for the

18568 and the
16121 that the

15630 at the
15494 to be
13899 in a
13689 of a
13361 by the

13183 with the
12622 from the
11428 New York

10007 he said
9775 as a
9231 is a
8753 has been
8573 for a

Table 1.4 Commonest bigram collocations in the New York Times.

that they have heard, this serves to de-emphasize the Chomskyan focus
on the creativity of language use, and to give more strength to some-
thing like a Hallidayan approach that considers language to be insepara-
ble from its pragmatic and social context.

Now collocations may be severa words long (such as international best
practice) or they may be discontinuous (such as make [something] up), but
let us restrict ourselves to the simplest case and wonder how we can au-
tomatically identify contiguous two word collocations. It was mentioned
above that collocations tend to be frequent usages. So the first idea to try
might be simply to find the most common two word sequences in a text.
That is fairly easily done, and, for a corpus of text from the New York
Times (see page 153), the results are shown in table 1.4. Unfortunately,
this method does not seem to succeed very well at capturing the collo-
cations present in the text. It is not surprising that these pairs of words
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(normally referred to as bigrams) occur commonly. They simply rep-
resent common syntactic constructions involving individually extremely
common words. One problem is that we are not normalizing for the fre-
quency of the words that make up the collocation. Given that the, of, and
in are extremely common words, and that the syntax of prepositional
and noun phrases means that a determiner commonly follows a preposi-
tion, we should expect to commonly see of the and in the. But that does
not make these word sequences collocations. An obvious next step is to
somehow take into account the frequency of each of the words. We will
look at methods that do this in chapter 5.

A modification that might be less obvious, but which is very effective,
is to filter the collocations and remove those that have parts of speech
(or syntactic categories) that are rarely associated with interesting collo-
cations. There simply are no interesting collocations that have a preposi-
tion as the first word and an article as the second word. The two most fre-
guent patterns for two word collocations are “adjective noun” and “noun
noun” (the latter are called noun-noun compounds). Table 1.5 shows
which bigrams are selected from the corpus if we only keep adjective-
noun and noun-noun bigrams. Almost al of them seem to be phrases
that we would want to list in a dictionary - with some exceptions like last
year and next year.

Our excursion into ‘collocation discovery’ illustrates the back and forth
in Statistical NLP between modeling and data analysis. Our initiad model
was that a collocation is simply a frequent bigram. We analyzed the re-
sults we got based on this model, identified problems and then came
up with a refined model (collocation = frequent bigram with a particular
part-of-speech pattern). This model needs further refinement because of
bigrams like next year that are selected incorrectly. Still, we will leave
our investigation of collocations for now, and continue it in chapter 5.

1.45 Concordances

KEY WORD IN
CONTEXT

As a fina illustration of data exploration, suppose we are interested in
the syntactic frames in which verbs appear. People have researched how
to get a computer to find these frames automatically, but we can also just
use the computer as a tool to find appropriate data. For such purposes,
people often use a Key Word In Context (KWIC) concordancing program
which produces displays of data such as the one in figure 1.3. In such
a display, all occurrences of the word of interest are lined up beneath
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D AW N

10
11
12
13
14
15
16

Frequency Word 1

11487 New
7261 United
5412 Los
3301 |ast
3191 Saudi
2699 |ast
2514 vice
2378 Persian
2161 San
2106 President
2001 Middle
1942 Saddam
1867 Soviet
1850 White
1633 United
1337 Y ork
1328 ail

1210 next
1074 chief
1073 real

1 Introduction

Word 2 Part-of-speech pattern
York AN
States AN
Angeles NN
year AN
Arabia NN
week AN
president AN
Gulf AN
Francisco NN
Bush NN
East AN
Hussein NN
Union AN
House AN
Nations AN
City NN
prices NN
year AN
executive AN
estate AN

Table1.5 Frequent bigrams after filtering. The most frequent bigrams in the
New York Times after applying a part-of-speech filter.

could find a target. The librarian
elights in. The young lady teachers
ingly. The young gentlemen teachers
seeming vexation). The little girls
n various ways, and the little boys
t genuwyne?" Tom lifted his lip and
is little finger for a pen. Then he
ow’'s face was haggard, and his eyes
not overlook the fact that Tom even
own. Two or three glimmering lights
ird flash turned night into day and
that grew about their feet. And it
he Ffirst thing his aunt said to him
p from her lethargy of distress and
ent a new burst of grief from Becky
shudder quiver all through him. He

"showed
"showed
"showed
“showed
"showed

showed
showed
showed
showed
showed
showed
showed
showed
showed
showed
showed

off"
off"
off"
off"

- running hither and thither w
- bending sweetly over pupils

with small scoldings and other
in various ways, and the littl
off" with such diligence that the a
the vacancy. “Well, all right,” sai
Huckleberry how to make an H and an
the fear that was upon him. When he
a marked aversion to these inquests
where it lay, peacefully sleeping,

every little grass-blade, separate

three white, startled faces, too. A
him that he had brought his sorrows
good interest in the proceedings. S
Tom that the thing in his mind had

Huck the fragment of candle-wick pe

Figure1.3 Key Word In Context (xkwIC) display for the word showed.
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NPagent showed off (PP[with/inlmanner)
NPcontent
CPlthat]content
NPagent showed (NP ecipient) VPlinf]content
how VP[inf]content
CP[wherelcontent
NPagen: showed NP[ interest] PP[in]content
NPagen: Showed NP[aversion] PP 0] content

Figure 1.4 Syntactic frames for showed in Tom Sawyer.

one another, with surrounding context shown on both sides. Commonly,
KWIC programs alow you to sort the matches by left or right context.
However, if we are interested in syntactic frames, rather than particu-
lar words, such sorting is of limited use. The data shows occurrences
of the word showed within the novel Torn Sawyer. There are 5 uses of
showed off (actudly al within one paragraph of the text), each in dou-
ble quotes, perhaps because it was a neologism at the time, or perhaps
because Twain considered the expression dang. All of these uses are in-
transitive, although some take prepositional phrase modifiers. Beyond
these, there are four straightforward transitive verb uses with just a
direct object (6, 8, 11, 12) - athough there are interesting differences
between them with 8 being nonagentive, and 12 illustrating a sense of
‘cause to be visible! There is one ditransitive use which adds the person
being shown (16). Three examples make who was shown the object NP
and express the content either as a that-clause (13, 15) or as a non-finite
guestion-form complement clause (7). One other example has a finite
guestion-form complement clause (10) but omits mention of the person
who is shown. Finally two examples have an NP object followed by a
prepositional phrase and are quite idiomatic constructions (9, 14): show
an aversion PP[to] and show an interest PP[in]. But note that while quite
idiomatic, they are not completely frozen forms, since in both cases the
object noun is productively modified to make a more complex NP. We
could systematize the patterns we have found as in figure 1.4.

Callecting information like this about patterns of occurrence of verbs
can be useful not only for purposes such as dictionaries for learners of
foreign languages, but for use in guiding statistical parsers. A substantial
part of the work in Statistical NLP consists (or should consist!) of poring



34

I Introduction

over large amounts of data, like concordance lines and lists of candidates
for collocations. At the outset of a project this is done to understand the
important phenomena, later to refine the initidl modeling, and findly to
evaluate what was achieved.

1.5 Further Reading

BIAS

GRAMMATICALITY

GRAMMATICALIZA-
TION

Chomsky (1965: 47ff, 1980: 234ff, 1986) discusses the distinction be-
tween rationalist and empiricist approaches to language, and presents ar-
guments for the rationalist position. A recent detailed response to these
arguments from an ‘empiricist’ is (Sampson 1997). For people from a gen-
erative (computational) linguistics background wondering what Statisti-
cal NLP can do for them, and how it relates to their traditional concerns,
Abney (1996b) is a good place to start. The observation that there must
be a preference for certain kinds of generdizations in order to bootstrap
induction was pointed out in the machine learning literature by Mitchell
(1980), who termed the preference bias. The work of Firth is highly in-
fluential within certain strands of the British corpus linguistics tradition,
and is thoroughly covered in (Stubbs 1996). References from within the
Statistical NLP community perhaps originate in work from AT&T, see for
instance (Church and Mercer 1993: 1). The Hallidayan approach to lan-
guage is presented in (Haliday 1994).

Thorough discussions of grammaticality judgements in linguistics are
found in (Schiitze 1996) and (Cowart 1997). Cowart argues for making
use of the judgements of a population of speakers, which is quite com-
patible with the approach of this book, and rather against the Chomskyan
approach of exploring the grammar of a single speaker. A good entry
point to the literature on categorical perception is (Harnad 1987).

Lauer (199Sh: ch. 3) advocates an approach involving probability dis-
tributions over meanings. See the Further Reading of chapter 12 for ref-
erences to other Statistical NLP work that involves mapping to semantic
representations.

The discussion of kind/sort of is based on Tabor (1994), which should
be consulted for the sources of the citations used. Tabor provides a con-
nectionist model which shows how the syntactic change discussed can be
caused by changing frequencies of use. A lot of interesting recent work
on gradual syntactic change can be found in the literature on grammati-
calization (Hopper and Traugott 1993).
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Two proponents of an important role for probabilistic mechanisms in
cognition are Anderson (1983, 1990) and Suppes (1984). Sce (Oaksford
and Chater 1998) for a recent collection describing different cognitive
architectures, including connectionism. The view that language is best
explained as a cognitive phenomenon is the central tenet of cognitive
linguistics (Lakoff 1987; Langacker 1987, 19911, but many cognitive lin-
guists would not endorse probability theory as a formalization of cogni-
tive linguistics. See aso (Schutze 1997).

The novel Tom Sawyer is available in the public domain on the internet,
currently from sources including the Virginia Electronic Text Center (see
the website).

Zipf's work began with (Zipf 1929), his doctora thesis. His two major
books are (Zipf 1935) and (Zipf 1949). It is interesting to note that Zipf
was reviewed harshly by linguists in his day (see, for instance, (Kent 1930)
and (Prokosch 1933)). In part these criticisms correctly focussed on the
grandiosity of Zipf's claims (Kent (1930: 88) writes. “problems of phonol-
ogy and morphology are not to be solved en masse by one grand generd
formula’), but they aso reflected, even then, a certain ambivaence to the
application of statistical methods in linguistics. Nevertheless, prominent
American structuralists, such as Martin Joos and Morris Swadesh, did be-
come involved in data collection for statistical studies, with Joos (1936)
emphasizing that the question of whether to use statistical methods in
linguistics should be evaluated separately from Zipf's particular claims.

As well as (Mandelbrot 1954), Mandelbrot’'s investigation of Zipf's law
is summarized in (Mandelbrot 1983) - see especidly chapters 38, 40,
and 42. Mandelbrot attributes the direction of his lifeé's work (leading
to his well known work on fractals and the Mandelbrot set) to reading a
review of (Zipf 1949).

Concordances were first constructed by hand for important literary and
religious works. Computer concordancing began in the late 1950s for the
purposes of categorizing and indexing article titles and abstracts. Luhn
(1960) developed the first computer concordancer and coined the term
KWIC.

1.6 Exercises

Exercise 1.1 [** Requires some knowledge of linguistics]

Try to think of some other cases of noncategorical phenomena in language, per-
haps related to language change. For starters, look at the following pairs of
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sentences, and try to work out the problems they raise. (Could these problems
be solved simply by assigning the words to two categories, or is there evidence
of mixed categoriaity?)

a On the weekend the children had fun.

b. That's the funnest thing we've done al holidays.

a. Do you get much email at work?
b. This morning | had emails from five clients, all complaining.

Exercise 1.2 [+* Probably best attempted after reading chapter 41

Replicate some of the results of section 1.4 on some other piece of text. (Alter-
natively, you could use the same text that we did so that you can check your
work easily. In this case, you should only expect results similar to ours, since
the exact numbers depend on various details of what is treated as a word, how
case digtinctions are treated, etc.)

Exercise 1.3 [*]

Show that Mandelbrot’s law simplifies to Zipf's law for B=1and p = 0.

Exercise 1.4 [% ]
Construct a table like table 1.3 for the random character generator described
above on page 29 (which generates the letters a through z and blank with equal
probability of 1/ 27).

Exercise 1.5 [**]
Think about ways of identifying collocations that might be better than the meth-
ods used in this chapter.

Exercise 1.6 [*«]
If you succeeded in the above exercise, try the method out and see how well it
appears to perform.

Exercise 1.7 [*«]

Write a program to produce KWIC displays from a text file. Have the user be able
to select the word of interest and the size of the surrounding context.



“In 1786, | found, that in Germany they were engaged in a
species of political inquiry, to which they had given the name of
Statistics; and though | apply a different idea to that word, for
by Statistical is meant in Germany, an inquiry for the purpose
of ascertaining the political strength of a country, or questions
respecting matters of state; whereas, the idea | annex to the
term, is an inquiry into the state of a country, for the purpose
of ascertaining the quantum of happiness enjoyed by its
inhabitants, and the means of its future improvement; yet, as

| thought that a new word might attract more public attention,
I resolved on adopting it. ”

(Sir J. Sinclair Statist. Acc. Scot. XX. App. p. xiii, 1798)




Mathematical Foundations

THIS CHAPTER presents some introductory material on probability and
information theory, while the next chapter presents some essential know-
ledge of linguistics. A thorough knowledge of one or more of the fields of
probability and statistics, information theory, and linguistics is desirable,
and perhaps even necessary, for doing original research in the field of Sta-
tistical NLP. We cannot provide a thorough well-motivated introduction to
each of these three fields within this book, but nevertheless, we attempt
to summarize enough material to alow understanding of everything that
follows in the book. We do however assume knowledge of parsing, e-
ther from a computer science or computational linguistics perspective.
We aso assume a reasonable knowledge of mathematica symbols and
techniques, perhaps roughly to the level of a first year undergraduate
course, including the basics of such topics as. set theory, functions and
relations, summations, polynomias, caculus, vectors and matrices, and
logarithms. Mathematical notations that we use are summarized in the
Table of Notations.

If you are familiar with one of the areas covered in these two chap-
ters, then you should probably just skim the corresponding section. If
you're not familiar with a topic, we think it is probably best to try to
read through each section, but you will probably need to reread sections
when the techniques in them are put to use. These chapters don't say
much about applications - they present the preparatory theory for what
follows.
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2 Mathematical Foundations

Elementary Probability Theory

This section sketches the essentials of probability theory necessary to
understand the rest of this book.

Probability spaces

Probability theory deals with predicting how likely it is that something
will happen. For example, if one tosses three coins, how likely is it that
they will al come up heads? Although our eventud aim is to look at
language, we begin with some examples with coins and dice, since their
behavior is simpler and more straightforward.

The notion of the likelihood of something is formalized through the
concept of an experiment (or trial) - the process by which an observation
is made. In this technica sense, tossing three coins is an experiment.
All that is crucia is that the experimental protocol is well defined. We
assume a collection of basic outcomes (or sample points) for our experi-
ment, the sample space Q2. Sample spaces may either be discrete, having at
most a countably infinite number of basic outcomes, or continuous, hav-
ing an uncountable number of basic outcomes (for example, measuring a
person’s height). For language applications and in this introduction, we
will mainly dead with discrete sample spaces which only contain a finite
number of basic outcomes. Let an event A be a subset of Q. For example,
in the coin experiment, the first coin being a head, and the second and
third coming down tails is one basic outcome, while any result of one
head and two tails is an example of an event. Note aso that Q represents
the certain event, the space of al possible experimental outcomes, and
0 represents the impossible event. We say that an experimental outcome
must be an event. The foundations of probability theory depend on the
sat of events F forming a o -field - a set with a maximal element Q and
arbitrary complements and unions. These requirements are trivialy sat-
isfied by making the set of events, the event space, the power set of the
sample space (that is, the set of all subsets of the sample space, often
written 27).

Probabilities are numbers between O and 1, where O indicates impos-
sibility and 1 certainty. A probability function (aso known as a prob-
ability distribution) distributes a probability mass of 1 throughout the
sample space Q. Formally, a discrete probability function is any function
P: ¥—10,1] such that:
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m P(Q)=1

= Countable additivity: For disjoint sets Aje F (i.e, AjnAx=0 for
J#K)

P(G Aj) = i P(A))
J=1 J=1

We cdl P(A) the probability of the event A. These axioms say that an
event that encompasses, say, three distinct possibilities must have a
probability that is the sum of the probabilities of each possibility, and
that since an experiment must have some basic outcome as its result,
the probability of that is 1. Using basic set theory, we can derive from
these axioms a set of further properties of probability functions;, see ex-
ercise 2.1.

A well-founded probability space consists of a sample space Q, a afield
of events /F, and a probability function P. In Statistical NLP applications,
we aways seek to properly define such a probability space for our mod-
els. Otherwise, the numbers we use are merely ad hoc scaling factors, and
there is no mathematical theory to help us. In practice, though, corners
often have been, and continue to be, cut.

Example 1: A fair coin is tossed 3 times. What is the chance of 2 heads ?

Solution: The experimental protocol is clear. The sample space is:
Q = {HHH,HHT,HTH, HTT, THH, THT, TTH, TTT}

Each of the basic outcomes in Q is equally likely, and thus has probability
1/8. A dtuation where each basic outcome is equaly likely is called a
uniform distribution. In a finite sample space with equiprobable basic
outcomes, P(A) = % (where [A[ is the number of elements in a set A).

The event of interest is:
A ={HHT, HTH, THH}

So:

1Al _ 3

P(A)= Q"8
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CONDITIONAL
PROBABILITY

PRIOR PROBABILITY

POSTERIOR
PROBABILITY

(2.2)

(2.3)
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Figure 21 A diagram illustrating the calculation of conditional probabil-
ity P{A|B). Once we know that the outcome is in B, the probability of A becomes
P(An B)/P(B).

Conditional probability and independence

Sometimes we have partiad knowledge about the outcome of an experi-
ment and that naturally influences what experimental outcomes are pos-
sible. We capture this knowledge through the notion of conditional proba-
bility. This is the updated probability of an event given some knowledge.
The probability of an event before we consider our additional knowledge
is called the prior probability of the event, while the new probability that
results from using our additional knowledge is referred to as the pos
terior probability of the event. Returning to example 1 (the chance of
getting 2 heads when tossing 3 coins), if the first coin has been tossed
and is a head, then of the 4 remaining possible basic outcomes, 2 result
in 2 heads, and so the probability of getting 2 heads now becomes % The
conditional probahility of an event A given that an event B has occurred
(P(B)> 0) is:

P(ANB)

" P(B)

Even if P(B) = 0 we have that:

P(ANnB)= P(B)P(A|B) = P(A)P(B|A) [The multiplication rul€]

We can do the conditionalization either way because set intersection is
symmetric (A n B = Bn A). One can easily visudize this result by looking
a the diagram in figure 2.1.

P(A|B)
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The generalization of this rule to multiple events is a central result that
will be used throughout this book, the chain rule:

P(A1N...0 Ap) = P(A)P(A2|ADP(A3]A1 N Ap) -« P(Apl N[ A

v The chain rule is used in many places in Statistical NLP, such as working
out the properties of Markov models in chapter 9.

Two events A, B are independent of each other if P(AnB)= P(A)P(B).
Unless P(B) = 0 this is equivalent to saying that P(A) = P(AIB) (i.e,
knowing that B is the case does not affect the probability of A). This
equivalence follows trividly from the chain rule. Otherwise events are
dependent. We can aso say that A and B are conditionally independent
given C when P(AN B|C) = P(A|C)P(BIC).

Bayes’ theorem

Bayes’ theorem lets us swap the order of dependence between events.
That is, it lets us calculate P(B|A) in terms of P(A|B). This is useful when
the former quantity is difficult to determine. It is a centra tool that we
will use again and again, but it is a trivial consequence of the definition of
conditional probability and the chain rule introduced in equations (2.2)
and (2.3):

P(BNA) _ P(A|B)P(B)

P(A) ~  P(A)

The righthand side denominator P(A) can be viewed as a normalizing
constant, SOMething that ensures that we have a probability function. If
we are smply interested in which event out of some set is most likely
given A, we can ignore it. Since the denominator is the same in al cases,
we have that:

P(BIA) =

arggnax %}Z\f(m = arg;naxP(AlB)P(B)

However, we can also evaluate the denominator by recalling that:
P(AnB) = P(A|B)P(B)

P(A nB) = P(A|B)P(B)

So we have:

P(A) = P(AnB)+P(ANnB) [additivity]

= P(A|B)P(B) + P(A|B)P(B)
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B and B serve to split the set A into two digoint parts (one possibly
empty), and so we can evauate the conditional probability on each, and
then sum, using additivity. More generdly, if we have some group of sets
B; that partition A, that is, if A cu;B; and the B; are digoint, then:;

" (2.7) P(A) =3 P(AIB)P(B)

(2.8)

This gives us the following equivalent but more elaborated version of
Bayes theorem:

Bayes theorem: If A cuUl' B, P(A) >0, and BinB; = 0fori# | then:

P(A|Bj)P(Bj) _ P(AiBj)P(Bj)

P(BjlA) = P(A) >, P(A|B;)P(B;)

Example 2 Suppose one is interested in a rare syntactic construction,
perhaps parasitic gaps, which occurs on average once in 100,000 sen-
tences. Joe Linguist has developed a complicated pattern matcher that
attempts to identify sentences with parasitic gaps. It's pretty good, but
it's not perfect: if a sentence has a parasitic gap, it will say so with proba
bility 0.95, if it doesn't, it will wrongly say it does with probability 0.005.
Suppose the test says that a sentence contains a parasitic gap. What is
the probability that this is true?

Solution: Let G be the event of the sentence having a parasitic gap, and
let T be the event of the test being positive. We want to determine:

P(TIG)P(G)
P(TIG)P(G) + P(T|G)P(G)
0.95 x 0.00001
0.95 x 0.00001 + 0.005 x 0.99999

Here we use having the construction or not as the partition in the de-
nominator. Although Joe's test seems quite reliable, we find that using it
won't help as much as one might have hoped. On average, only 1 in every
500 sentences that the test identifies will actually contain a parasitic gap.
This poor result comes about because the prior probability of a sentence
containing a parasitic gap is so low.

¥ Bayes theorem is central to the noisy channe model described in sec-
tion 22.4.

P(GIT)

~ 0.002
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First Second die

die 1 2 3 4 5 6|

6 7 8 9 |0 11 12

5 6 7 8 9 10 1

4 5 6 7 8 9 IO

3 4 5 6 7 8 9

2 3 4 5 6 7 8

1 2 3 4 5 6 7

X 2 3 4 5 67 8 9 IO 1 12

p(X =x) S T 105 | _ 15 1 1 |
3 18 12 3 36/6 36 9 12 18 36

Figure 2.2 A random variable X for the sum of two dice. Entries in the body
of the table show the value of X given the underlying basic outcomes, while the
bottom two rows show the pmf p(x).

Random variables

A random variable is simply a function X: Q —R" (commonly with n = 1),
where R is the set of real numbers. Rather than having to work with some
irregular event space which differs with every problem we look a, a ran-
dom variable alows us to talk about the probabilities of numerical values
that are related to the event space. We think of an abstract stochastic pro-
cess that generates numbers with a certain probability distribution. (The
word stochastic simply means ‘probabilistic’ or ‘randomly generated,’ but
is especialy commonly used when referring to a sequence of results as-
sumed to be generated by some underlying probability distribution.)

A discrete random variable is a function X: Q—§ where S is a count-
able subset of R.If X:Q —{0,1}, then X is cdled an indicator random
variable or aBernoulli trial.

Example 3:  Suppose the events are those that result from tossing two
dice. Then we could define a discrete random variable X that is the sum
of their faces. S ={2,...,12}, as indicated in figure 2.2.

Because a random variable has a numeric range, we can often do math-
ematics more easily by working with the values of a random variable,
rather than directly with events. In particular we can define the probabil-
ity mass function (pmf) for a random variable X, which gives the proba-
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bility that the random variable has different numeric values.
pmf pX) = p(X =x) = P(Ax) where A, = {weQ: X(w) = x}

We will write pmfs with a lowercase roman letter (even when they are vari-
ables). If a random variable X is distributed according to the pmf p(x),
then we will write X ~ p(x).

Note that p(x) > 0 at only a countable number of points (to satisfy the
stochastic constraint on probabilities), say {x;:i eN}, while p(x) = 0
elsawhere. For a discrete random variable, we have that:

Zp(x,-) = ZP(AX,.) =P(Q) =1

Conversely, any function satisfying these constraints can be regarded as
a mass function.

v Random variables are used throughout the introduction to information
theory in section 2.2.

Expectation and variance

The expectation is the mean or average of a random variable.
If X is a random variable with a pmf p(x) such that >xI1x| p(x) <oo
then the expectation is:

(2.10) E(X) = > xp(x)

(2.11)

Example 4: If rolling one die and Y is the value on its face, then:

6 6
_ 1y, o2 1
E(Y) = 2 yp) =52y = T =3;
y=I y=1
This is the expected average found by totaling up a large number of
throws of the die, and dividing by the number of throws.
If Y ~ p(y) is a random variable, any function g(Y) defines a new

random variable. If E(g(Y)) is defined, then:
E(g(Y) =2 a(y) p(y)
Y

For instance, by letting g be a linear function g(Y) = aY + b, we see that
E(g(Y))=aE(Y)+b. We dso have that E(X +Y) = E(X) + E(Y) and if X
and Y are independent, then E(XY)=E(X)E(Y).
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The variance of a random variable is a measure of whether the values
of the random variable tend to be consistent over trials or to vary a lot.
One measures it by finding out how much on average the variable's vaues
deviate from the variable's expectation:

(2.12) Var(X) = E((X - E(X))?)

STANDARD DEVIATION

= E(X%) - E2(X)

The commonly used standard deviation of a variable is the square root of
the variance. When taking about a particular distribution or set of data,
the mean is commonly denoted as u, the variance as ¢?, and the standard
deviation is hence written as o.

Example 5. What is the expectation and variance for the random vari-
able introduced in example 3, the sum of the numbers on two dice?

Solution:  For the expectation, we can use the result in example 4, and
the formula for combining expectations in (or below) equation (2.11):

E(X) = E(Y +Y) = E(Y) + E(Y) = 3% + 3%: 7

The variance is given by:
Var(X) = E((X —E(X)?) = 3 p(0(x- E(X))* =52

Because the results for rolling two dice are concentrated around 7, the
variance of this distribution is less than for an ‘ll-sided die, which re-
turns a uniform distribution over the numbers 2-12. For such a uniformly
distributed random variable U, we find that Var(U) = 10.

v Cdculating expectations is central to Information Theory, as we will
see in section 2.2. Variances are used in section 5.2.

2.1.6 Notation

In these sections, we have distinguished between P as a probability func-
tion and p as the probability mass function of a random variable. How-
ever, the notations P (-) and p(-) do not always refer to the same function.
Any time that we are taking about a different probability space, then we
are taking about a different function. Sometimes we will denote these
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different functions with subscripts on the function to make it clear what
we are talking about, but in general people just write P and rely on con-
text and the names of the variables that are arguments to the function to
disambiguate. It is important to realize that one equation is often refer-
ring to several different probability functions, al ambiguously referred
toasP.

Joint and conditional distributions

Often we define many random variables over a sample space giving us a
joint (or multivariate) probability distribution. The joint probability mass
function for two discrete random variables X, Y is;

PXx,y)=P(X=Xx,Y=y)

Related to a joint pmf are marginal pmfs, which total up the probability
masses for the values of each variable separately:

px(x) = > px,y)  Py(¥) =D px,y)
Y X

In general the margina mass functions do not determine the joint mass
function. But if X and Y are independent, then p(x,y)=pyx(x)py(y).
For example, for the probability of getting two sixes from rolling two
dice, since these events are independent, we can compute that:

1 1

p(Y=6,Z=6)=p(Y=6)p(Z=6)=€><6=§é

There are analogous results for joint distributions and probabilities for
the intersection of events. So we can define a conditional pmf in terms of
the joint distribution:

Pxy (X|y) = P, y) for y such that py(y)>0

py (¥)
and deduce a chain rule in terms of random variables, for instance:

pw,x,y,z) P wWIRxIW)R Yl w,X)p(zlw,x,y)

Determining P

So far we have just been assuming a probability function P and giving it
the obvious definition for ssimple examples with coins and dice. But what
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do we do when dealing with language? What do we say about the proba-
bility of a sentence like The cow chewed its cud? In genera, for language
events, unlike dice, P is unknown. This means we have to estimate P. We
do this by looking at evidence about what P must be like based on a sam-
ple of data The proportion of times a certain outcome occurs is called
the relative frequency of the outcome. If C(u) is the number of times
an outcome u occurs in N trials then % is the relative frequency of u.
The relative frequency is often denoted f,. Empiricaly, if one performs
a large number of trias, the relative frequency tends to stabilize around
some number. That this number exists provides a basis for letting us
calculate probability estimates.

Techniques for how this can be done are a major topic of this book, par-
ticularly covered in chapter 6. Common to most of these techniques is
to estimate P by assuming that some phenomenon in language is accept-
ably modeled by one of the well-known families of distributions (such as
the binomia or normal distribution), which have been widely studied in
statistics. In particular a binomial distribution can sometimes be used
as an acceptable model of linguistic events. We introduce a couple of
families of distributions in the next subsection. This is referred to as a
parametric approach and has a couple of advantages. It means we have
an explicit probabilistic model of the process by which the data was gen-
erated, and determining a particular probability distribution within the
family only requires the specification of a few parameters, since most of
the nature of the curve is fixed in advance. Since only a few parameters
need to be determined, the amount of training data required is not great,
and one can calculate how much training data is sufficient to make good
probability estimates.

But, some parts of language (such as the distributions of words in
newspaper articles in a particular topic category) are irregular enough
that this approach can run into problems. For example, if we assume
our data is binomialy distributed, but in fact the data looks nothing like
a binomial distribution, then our probability estimates might be wildly
wrong.

For such cases, one can use methods that make no assumptions about
the underlying distribution of the data, or will work reasonably well for
a wide variety of different distributions. This is referred to as a non-
parametric or distribution-free approach. If we simply empiricaly esti-
mate P by counting a large number of random events (giving us a discrete
distribution, though we might produce a continuous distribution from
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such data by interpolation, assuming only that the estimated probability
density function should be a fairly smooth curve), then this is a non-
parametric method. However, empirical counts often need to be modified
or smoothed to deal with the deficiencies of our limited training data, a
topic discussed in chapter 6. Such smoothing techniques usually assume
a certain underlying distribution, and so we are then back in the world of
parametric methods. The disadvantage of nonparametric methods is that
we give our system less prior information about how the data are gener-
ated, so a great deal of training data is usually needed to compensate for
this.

v Non-parametric methods are used in automatic classification when the
underlying distribution of the data is unknown. One such method, ncar-
est neighbor classification, is introduced in section 16.4 for text catego-
rization.

2.1.9 Standard distributions

DISTRIBUTION

PARAMETEKS

BINOMIAL
DISTRIBUTION

Certain probability mass functions crop up commonly in practice. In
particular, one commonly finds the same basic form of a function, but
just with different constants employed. Statisticians have long studied
these families of functions. They refer to the family of functions as a
dgisribuion @Nd to the numbers that define the different members of the
family as parameters. Parameters are constants when one is talking about
a particular pmf, but variables when one is looking a the family. When
writing out the arguments of a distribution, it is usual to separate the
random variable arguments from the parameters with a semicolon (). In
this section, we just briefly introduce the idea of distributions with one
example each of a discrete distribution (the binomial distribution), and a
continuous distribution (the normal distribution).

Discrete distributions: The binomial distribution

A binomial distribution results when one has a series of trials with only
two outcomes (i.e., Bernoulli trials), each trial being independent from all
the others. Repeatedly tossing a (possibly unfair) coin is the prototypical
example of something with a binomial distribution. Now when looking at
linguistic corpora, it is never the case that the next sentence is truly inde-
pendent of the previous one, so use of a binomia distribution is always
an approximation. Nevertheless, for many purposes, the dependency be-
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tween words falls off fairly quickly and we can assume independence. In
any situation where one is counting whether something is present or ab-
sent, or has a certain property or not, and one is ignoring the possibility
of dependencies between one trial and the next, one is a least implic-
itly using a binomial distribution, so this distribution actually crops up
guite commonly in Statistical NLP applications. Examples include: look-
ing through a corpus to find an estimate of the percent of sentences in
English that have the word the in them or finding out how commonly
a verb is used transitively by looking through a corpus for instances of a
certain verb and noting whether each use is transitive or not.

The family of binomia distributions gives the number r of successes
out of n trials given that the probability of success in any trial is p:

n!

. n n
2.13) b(r; n, = Pl — pynr = —" - O=<r=<n
( ) b(r; n,p) ron( p) whereOr

MULTINOMIAL
DISTRIBUTION

(n — !

The term (f) counts the number of different possibilities for choosing
r objects out of n, not considering the order in which they are chosen.
Examples of some binomial distributions are shown in figure 2.3. The bi-
nomial distribution has an expectation of np and a variance of np(1—p).

Example 6: Let R have as value the number of heads in n tosses of a
(possibly weighted) coin, where the probability of a head is p.
Then we have the binomid distribution:

p(R =r)=b(r;n,p)

(The proof of this is by counting: each basic outcome with r heads and
n —r tails has probability h"(1-h)""", and there are (f’) of them.)

v The binomia distribution turns up in various places in the book, such
as when counting n-grams in chapter 6, and for hypothesis testing in
section 8.2.

v The generdization of a binomial trial to the case where each of the tri-
als has more than two basic outcomes is called a multinomial experiment,
and is modded by the multinomial distribution. A zcroth order n-gram
model of the type we discuss in chapter 6 is a straightforward example
of a multinomial distribution.

v Anocther discrete distribution that we discuss and use in this book is the
Poisson distribution (section 15.3.1). Section 5.3 discusses the Bernoulli
distribution, which is simply the special case of the binomial distribution
where there is only one trial. That is, we caculate b(r;1,p).



52

BELL CURVE

NORMAL
DISTRIBUTION

2 Mathematical Foundations

0.5

oo
“N

0T
won

0.4

0.3

probability
N,

\\
N

N

o
e

0.0

- ——— - T T
o 2 4 ] 8 10
count

Figure 2.3 Two examples of binomia distributions: b(r;10,0.7) and
b(r; 10,0.1).

Continuous distributions: The normal distribution

So far we have looked only at discrete probability distributions and
discrete random variables, but many things, such as measurements of
heights and lengths, are best understood as having a continuous domain,
over the rea numbers R. In this book, we do not outline the mathematics
of continuous distributions. Suffice it to say that there are generally anal-
ogous results, except with points becoming intervals, and sums becoming
integrals. However, we will occasionaly have need to refer to continuous
probability distributions, so we will give one example here: the normal
distribution, which is central to al work in probability and dtatistics.

For many things in the world, such as the heights or 1Qs of people,
one gets a distribution that is known in the media as a bell curve, but
which is referred to in statistics as a normal distribution. Some normal
distribution curves are shown in figure 2.4. The values of the graphed
functions, probability density functions (pdf), do not directly give the
probabilities of the points along the x-axis (indeed, the probability of a
point is aways 0 for a continuous distribution). Rather the probability
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Figure 24 Example norma distribution curves. n(x;0, 1) and n(x;1.5, 2).

of a result within a certain interval on the x-axis is given by the area
delimited by that region, the x-axis and the function curve.

The normal distribution has two parameters for the mean u, and the
standard deviation ¢, and the curve is given by:

e~ (x-1?/(2a?)

1
V2mror
The curve where y=0and o = 1 is referred to as the standard normal
distribution. A few figures for areas under this curve are given in the
appendix.

While it is much better to refer to such a curve as a ‘normal distribution’
than as a ‘bel curve, if you really want to fit into the Stetistical NLP or
pattern recognition communities, you should instead learn to refer to
these functions as Gaussians, and to remark things like, ‘Maybe we could
model that using 3 Gaussians' at appropriate moments.!

nix; y, @ =

1. Carl Friedrich Gauss was the first to use norma curves to model experimental data,
using them to moded the errors made by astronomers and surveyors in repeated measure-
ments of the same quantity, but the norma curve was discovered by Abraham de Moivre.
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In much of statistics, the discrete binomial distribution is approxi-
mated by the continuous normal distribution - one can see the basic
similarity in the shapes of the curves by comparing figures 2.3 and 2.4.
Such an approximation is acceptable when both basic outcomes have a
reasonable probability of occurring or the amount of data is very large
(roughly, when np(1-p)> 5). But, in natural language, events like oc-
currences of the phrase shade tree mechanics are so rare, that even if you
have a huge amount of text, there will be a significant difference between
the appropriate binomia curve and the approximating normal curve, and
s0 use of norma approximations can be unwise.

v Gaussians are often used in clustering, as discussed in chapter 14. In
particular, here we have only discussed the one-dimensiona or univariate
norma distribution, while we present there the generdization to many
dimensions (the multivariate normal distribution).

v Other continuous distributions discussed in this book are the hyper-
bolic distributions discussed in section 1.4.3, and the t distribution used
for hypothesis testing in section 5.3.

Bayesian statistics

So far, we have presented a brief introduction to orthodox frequentist
statistics. Not everyone is agreed on the right philosophica foundations
for statistics, and the main rival is a Bayesian approach to statistics. Ac-
tualy, the Bayesians even argue among themselves, but we are not going
to dwell on the philosophical issues here. We want to just briefly intro-
duce the Bayesian approach because Bayesian methods are very useful in
Statistical NLP, and we will come across them in later chapters.

Bayesian updating

Suppose one takes a coin and tosses it 10 times, and gets 8 heads. Then
from a frequentist point of view, the result is that this coin comes down
heads 8 times out of 10. This is what is caled the maximum likelihood es-
timate, as discussed further in section 62.1. However, if one has looked
the coin over, and there doesn't seem anything wrong with it, one would
be very reluctant to accept this estimate. Rather, one would tend to think
that the coin would come down equaly head and tails over the long run,
and getting 8 heads out of 10 is just the kind of thing that happens some-
times given a smal sample. In other words one has a prior belief that
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influences one's beliefs even in the face of apparent evidence againg it.
Bayesian statistics measure degrees of belief, and are calculated by start-
ing with prior beliefs and updating them in the face of evidence, by use
of Bayes theorem.

For example, let u,, be the model’that asserts P(head)=m. Let s be
a particular sequence of observations yielding i heads and j tails. Then,
for any m,0<m=< 1.

P(slim) = m'(1 - m)/
From a frequentist point of view, we wish to find the MLE:

argmaxP(s|um)
m

To do this, we can differentiate the above polynomial, and find its max-
imum, which fortunately gives the intuitive answer of # or 0.8 for the
case of 8 heads and 2 tails.

But now suppose that one wants to quantify one's belief that the coin
is probably a regular, fair one. One can do that by assuming a prior
probability distribution over how likely it is that different models p,, are
true. Since one would want most of the probability mass close to % one
might use something like a Gaussian distribution centered on % but since
polynomials are the only things we can remember how to differentiate, let

us instead assume that on€'s prior bdief is modeled by the distribution:
P(pm) = 6m(1 -m)

This polynomial was chosen because its distribution is centered on %
and, conveniently, the area under the curve between 0 and 1 is 1.

When one sees an observation sequence s one wants to know one€'s new
bdief in the fairness of the coin. One can calculate this from (2.15) and
(2.16) by Bayes theorem:

P(s|tm) P (um)
P(s)
mi(1-m)/ X 6m(1—m)
P(s)

2. By a model we mean whatever theoretical edifices we construct to explain something
in the world. A probabilistic model might comprise the specification of a distribution
and certain parameter values. Thus, we are introducing some notational sloppiness in
equation (2.15), since previousdy we were conditioning on an event, that is, a subset of the
event space, and now we are conditioning on a model, but we will alow ourselves that
freedom.
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6mi+1 (1 _ m)j+1
P(s)
Now P(s) is the prior probability of s. Let us assume for the moment
that it does not depend on um, and therefore that we can ignore it while
finding the m that maximizes this equation. If we then differentiate the
numerator o as find its maximum, we can determine that for the case of
8 heads and 2 tails:

3
argmax P (umls) = 2
m

Because our prior was weak (the polynomial is a quite flat curve centered
over %), we have moved a long way in the direction of believing that the
coin is hiased, but the important point is that we haven't moved al the
way to 0.8. If we had assumed a stronger prior, we would have moved a
smaller distance from 3. (See exercise 2.8.)

But what do we make of the denominator P(s)? Wdll, since we have
just seen s, one might conclude that this is 1, but that is not what it
means. Rather, it is the marginal probability which is obtained by adding
up al the P(s|um) weighted by the probability of um, as we saw earlier in
equation (2.8). For the continuous case, we have the integral:

1
P(s) - L P(s|ttm) P () A

1
= em'*!' (1 -m)/"1dm
10

This just happens to be an instance of the beta integral, another contin-
uous distribution well-studied by datisticians, and so we can look up a
book to find out that:
_ 6+ DI+ D!

Pe)= =G+ 3

But the important point is that the denominator is just a normalization
factor, which ensures that what we caculate for P{umis) in (2.17) is ac-
tually a probability function.

In the generd case where data come in sequentially and we can reason-
ably assume independence between them, we start off with an a priori
probability distribution, and when a new datum comes in, we can update
our beliefs by calculating the maximum of the a posteriori distribution,
what is sometimes referred to as the MAP probability. This then becomes
the new prior, and the process repeats on each new datum. This process
is referred to as Bayesian updating.
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Bayesian decision theory

But there is another thing that we can do with this new approach: use it
to evauate which model or family of models better explains some data.
Suppose that we did not actualy see the sequence of coin tosses but just
heard the results shouted out over the fence. Now it may be the case, as
we have assumed so far, that the results reported truly reflect the results
of tossing a single, possibly weighted coin. This is the theory u, which is
a family of modds, with a parameter representing the weighting of the
coin. But an dternative theory is that at each step someone is tossing
two fair coins, and calling out “tails’ if both of them come down tails,
and heads otherwise. Let us cal this new theory v. According to v, ifs is
a particular observed sequence of i heads and j tails, then:

o= (3) (3

Note that one of these theories has a free parameter (the weighting
of the coin m), while the other has no parameters. Let us assume that,
a priori, both of these theories are equaly likely, for instance:

P(u) = P(v) = %

We can now attempt to work out which theory is more likely given the
data we have seen. We use Bayes theorem again, and write down:

P(s|p)P(u) P(s|v)P(v)

P(s) PO =755

The potentially confusing point here is that we have made a quick
change in our notation. The quantity we are now describing as P(s|u)
is the quantity that we wrote as just P(s) in (2.19) - since at that time we
were assuming that theory u, was true and we were just trying to deter-
mine m, whereas what we are now writing as P(s) is the prior probability
of s, not knowing whether u is true or not. With that gotten straight,
we can calculate the likelihood ratio between these two models. The P(s)
terms in the denominators cancel, and we can work out the rest using
equations (2.19),(2.20), and (2.21):

P(uls) =

P(uls) _  P(slpP(p)
P(vi|s) P(s|v)P(v)
6(i+1)!I(j+1)!

G+j+3)

('@
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10 Results Reported 20 Results Reported

Heads Tails Likelihood ratio Heads Tails Likelihood ratio
0 10 4.03 x 10* 0 20 1.30 x 1010
1 9 2444.23 2 18 2.07 x 107
2 8 244.42 4 16 1.34 x 10°
3 7 36.21 6 14 2307.06
4 6 7.54 8 12 87.89
5 5 2.16 10 10 6.89
6 4 0.84 12 8 1.09
7 3 0.45 14 6 0.35
8 2 0.36 16 4 0.25
9 1 0.37 18 2 0.48
10 0 0.68 20 0 3.74

Table 2.1 Likelihood ratios between two theories. The left three columns are
for a sequence s of 10 pieces of data, and the right three columns for a sequence
of 20 pieces of data.

If this ratio is greater than 1, we should prefer u, and otherwise we should
prefer v (or commonly people take the log of this ratio and see if that
value is greater than or less than zero).

We can calculate this ratio for different combinations of heads and

tails. Table 2.1 shows likelihood values for sequences of 10 and 20 re-
sults. If there are few heads, then the likelihood ratio is greater than one,
and the possibly weighted coin theory wins, since it is never strongly in-
compatible with any data (because of its free parameter). On the other
hand, if the distribution is roughly what we'd expect according to the two
fair coins theory (a lot more heads than tails) then the likelihood ratio is
smaller than one, and the simpler two fair coins theory wins. As the
guantity of data available becomes greater, the ratio of heads needs to
be nearer 2 in order for the two fair coins model to win. If these are the
only two theories under consideration, and we choose the one that wins
in such a likelihood ratio, then we have made what is called the Bayes
optimal decision.
v If there are more theories, we can compare them al and decide on the
most likely one in the same general manner. An example of this and
more general discussion of Bayesian decision theory can be found in our
discussion of word sense disambiguation in section 7.2.1.
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21.11 Exercises

(2.29)

(2.24)

(2.25)

Exercise 2.1 [*]
This exercise indicates the kind of facility with set theory needed for this book,
and summarizes a few useful results in probability theory. Use set theory and
the axioms defining a probability function to show that:

aPAuB)=P(A) + P(B) -P(AnB) [the addition rul€]

b. P(O) = 0

c. P(A) = 1 -P(A)

d Ac<B=P(A) = P(B)

e. P(B -A) = P(B) - P(An B)

Exercise 2.2 [*]
Assume the following sample space:

Q = {is-noun, has-plural-s, is-adjective, is-verb]
and the function f:2%~— [0, 1] with the following values:

X f(x)
{ is-noun } 0.45
{ hasplurd-s} 0.2
{ isadjective } 0.25
{isverb} 0.3

Can f be extended to al of 2 such that it is a well-formed probability distribu-
tion? If not, how would you model these data probabilistically?
Exercise 2.3 [*]

Compute the probability of the event ‘A period occurs after a three-letter word
and this period indicates an abbreviation (not an end-of-sentence marker), as-
suming the following probabilities.

P(is-abbreviation] three-letter-word) = 0.8
P(three-letter-word) = 0.0003

Exercise 2.4 [*]
Are X and Y as defined in the following table independently distributed?
X 0 0 1 1

Y 0 1 0 1
p(X=x,Y=y) 032 008 048 0.12
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Exercise 2.5 [*]

In example 5, we worked out the expectation of the sum of two dice in terms
of the expectation of rolling one die. Show that one gets the same result if one
caculates the expectation for two dice directly.

Exercise 2.6 [% %]

Consider the set of grades you have received for courses taken in the last two
years. Convert them to an appropriate numerica scale. What is the appropriate
distribution for modeling them?

Exercise 2.7 [**]

Find a linguistic phenomenon that the binomial distribution is a good model for.
What is your best estimate for the parameter p?

Exercise 2.8 [**]

Fori=8 and j = 2, confirm that the maximum of equation (2.15) is at 0.8,
and that the maximum of equation (2.17) is 0.75. Suppose our prior belief had
instead been captured by the equation:

P(um) = 30m?(1—m)?

What then would the uar probability be after seeing a particular sequence of 8
heads and 2 tails? (Assume the theory u,,, and a prior belief that the coin is fair.)

Essential Information Theory

The field of information theory was developed in the 1940s by Claude
Shannon, with the initial exposition reported in (Shannon 1948). Shannon
was interested in the problem of maximizing the amount of information
that you can transmit over an imperfect communication channel such as
a noisy phone line (though actually many of his concerns stemmed from
codebreaking in World War 11). For any source of ‘information’ and any
‘communication channel,” Shannon wanted to be able to determine theo-
reticll maxima for (i) data compression - which turns out to be given by
the Entropy H (or more fundamentally, by the Kolmogorov complexity K),
and (ii) the transmission rate - which is given by the Channe Capac-
ity C. Until Shannon, people had assumed that necessarily, if you send
your message at a higher speed, then more errors must occur during the
transmission. But Shannon showed that providing that you transmit the
information in your message at a dower rate than the Channd Capacity,
then you can make the probability of errors in the transmission of your
message as small as you would like.



2.2.1

ALPHABET

ENTROPY
SELF-INFORMATION

(2.26)

(2.27)

2.2 Essential Information Theory 61

Entropy

Let p(x) be the probability mass function of a random variable X, over a
discrete set of symbols (or alphabet) X:

p(x) = P(X =X), X € X

For example, if we toss two coins and count the number of heads, we
have a random variable: p(0)=1/4,p(1)=1/2, p(2) = 1/4.

The entropy (or sdf-information) is the average uncertainty of a single
random variable:

Entropy H(p) = H(X) = => p(x)log, p(x)

xex
Entropy measures the amount of information in a random variable. It is
normally measured in hits (hence the log to the base 2), but using any
other base yields only a linear scaling of results. For the rest of this
book, an unadorned log should be read as log to the base 2. Also, for this
definition to make sense, we define 0 log 0 = 0.

Example 7:  Suppose you are reporting the result of rolling an 8-sided
die. Then the entropy is:
8

8
H(X) = =D p(i) logp(i) = —Z%logé = -log -flg = log8 = 3 hits

i=1 i=1
This result is what we would expect. Entropy, the amount of information
in a random variable, can be thought of as the average length of the
message needed to transmit an outcome of that variable. If we wish to
send the result of rolling an eight-sided die, the most efficient way is to
simply encode the result as a 3 digit binary message:

1 2 3 4 5 6 7 8
001 010 011 100 101 110 111 00O

The transmission cost of each result is 3 bits, and there is no cleverer way
of encoding the results with a lower average transmission cost. In gen-
eral, an optimal code sends a message of probability p(i) in [—log p(i) 1
bits.

The minus sign at the start of the formula for entropy can be moved
inside the logarithm, where it becomes a reciprocal:

1
HX)=> -
(X) Xexp(x) log (%)
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(2.28) H(X) = E(log

TwWENTY QUESTIONS
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People without any statistics background often think about a formula
like this as a sum of the quantity p(x) log( 1/ p(x)) for each x. While this
is mathematically impeccable, it is the wrong way to think about such
equations. Rather you should think of > ,cx p(X) ... as an idiom. It says
to take a weighted average of the rest of the formula (which will be a
function of x), where the weighting depends on the probability of each x.
Technicdly, this idiom defines an expectation, as we saw earlier. Indeed,

)
p(X)
Example 8: Simplified Polynesian Simplified Polynesian’appears to be
just a random sequence of letters, with the letter frequencies as shown:

p t k a i u
/8 1/4 1/8 1/4 1/8 1/8

Then the per-letter entropy is:
HP) = ->  P(i)logP()

ie{p,tk,a,i,u}

1 1 1 1
—[4X§10g§+2XZlng]

1 .
2= bits
2

This is supported by the fact that we can design a code that on average
takes 23 bits to transmit a letter:

p t k a i u
100 00 101 01 110 111

Note that this code has been designed so that fewer bits are used to send
morz2 frequent letters, but still so that it can be unambiguously decoded
- if a code starts with a O then it is of length two, and if it starts with a 1
it is of length 3. There is much work in information theory on the design
of such codes, but we will not further discuss them here.

One can adso think of entropy in terms of the Twenty Questions game.
If you can ask yesno questions like ‘Is it a t or an a@? or ‘Is it a conso-
nant? then on average you will need to ask 2 % guestions to identify each
letter with total certainty (assuming that you ask good questions!). In

3. Polynesian languages, such as Hawai'ian, are well known for their small aphabets.
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Figure 25 The entropy of a weighted coin. The horizontal axis shows the prob-
ability of a weighted coin to come up heads. The vertical axis shows the entropy
of tossing the corresponding coin once.

other words, entropy can be interpreted as a measure of the size of the
‘search space’ consisting of the possible values of a random variable and
its associated probabilities.

Note that: (i) H(X) = 0, (ii) H(X) = 0 only when the vaue of X is
determinate, hence providing no new information, and that (iii) entropy
increases with the message length. The information needed to transmit
the results of tossing a possibly weighted coin depends on the probability
p that it comes up heads, and on the number of tosses made. The entropy
for a single toss is shown in figure 2.5. For multiple tosses, since each
is independent, we would just multiply the number in the graph by the
number of tosses.

Joint entropy and conditional entropy

The joint entropy of a pair of discrete random variables X, Y ~p(x,y)
is the amount of information needed on average to specify both their
values. It is defined as.

H(X, Y) = —;Zyp(x,y)logp(x,y)
XeEX ye
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The conditional entropy of a discrete random variable Y given an-
other X, for X, Y ~p(x,y), expresses how much extra information you

gtill need to supply on average to communicate Y given that the other
party knows X:

(2.30) H(YIX) = > p(x)H(Y|X = x)

(2.31)

xeXx

> p(x)[— > p(yIx)logp(y|x)

xeX yey
= -2 2 pxy)logp(ylx)
xeXx yty

There is dso a Chain rule for entropy:

H(X,Y) = H(X) +H(YI|X)
H(Xl,...,Xn) =H(Xl)+H(X2|X1)+...+H(Xn|X1,...,Xn¥1)

The products in the chain rules for probabilities here become sums be-
cause of the log:

H(X, Y) = —Epx,y) (logp(x, y))
= —Epy (log(p(X) p(yIx)))
= —Epx,y) (logp(x) +logp(y¥Ix))

= —Epw (logp(x))— Epx,y) (logp(yIx))
H(X) + H(Y|X)

Example 9: Simplified Polynesian revisited An important scientific
idea is the digtinction between a model and redity. Simplified Polyne-
sian isn't a random variable, but we approximated it (or modeled it) as
one. But now let's learn a bit more about the language. Further fieldwork
has reveded that Simplified Polynesian has syllable structure. Indeed, it
turns out that al words consist of sequences of CV (consonant-vowel)
syllables. This suggests a better model in terms of two random variables
C for the consonant of a syllable, and V for the vowel, whose joint dis-
tribution P(C,V) and marginal distributions P( C, -) and P(-,V) are as
follows:



(2.32)

(2.33)
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p t Kk
a|f 5 6|2
il 1 0|3
ul 0 % 3|3

L3 1

8 4 8

Note that here the marginal probabilities are on a per-syllable basis,
and are therefore double the probabilities of the letters on a per-letter
basis, which would be:

p t k a i u
1/16 3/8 1/16 1/4 1/8 1/8

We can work out the entropy of the joint distribution, in more than one
way. Let us use the chain rule:

H(C) =2X%X3+231~(2—10g3)
- 9.3 its ~ i
= 3 4Iog?>b|ts~1.061 bits

(C = ¢c)HVIC =¢)

o

=
<
3
i
T s
Sim ™

Il
== N oo
Nw Xi= T

its = 1.375 bits

I
|
o.

H(C, V) = H(C) + HVI|C)
g—Elo 3+E
4739773

29 3 .
= §—510g3~ 2.44 bits

4. Within the calculation, we use an informal, but convenient, notation of expressing
a finite-valued distribution as a sequence of probabilities, which we can calculate the
entropy of.
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Note that those 2.44 bits are now the entropy for a whole syllable (which
was 2 X 2%_— = 5 for the original Simplified Polynesian example). Our better
understanding of the language means that we are now much less uncer-
tain, and hence less surprised by what we see on average than before.

Because the amount of information contained in a message depends on
the length of the message, we normally want to talk in terms of the per-
letter or per-word entropy. For a message of length n, the per-letter/word
entropy, aso known as the entropy rate, is:®

1 1
(2.34) Hyae = 'r—lH(Xln) = —EZD(Xln)logp(Xm)

(2.35)

X1n

If we then assume that a language is a stochastic process consisting of
a sequence of tokens L = (Xi), for example a transcription of every word
you utter in your life, or a corpus comprising everything that is sent
down the newswire to your local paper, then we can define the entropy
of a human language L as the entropy rate for that stochastic process:

.1
Hrate(L) = rlll_.nolo EH(XI;XZ, e Xn)

We take the entropy rate of a language to be the limit of the entropy rate
of a sample of the language as the sample gets longer and longer.

2.2.3 Mutual information

MUTUAL
INFORMATION

By the chain rule for entropy,

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
Therefore,

H(X) — H(X|Y) = H(Y) = H(Y|X)

This difference is caled the mutual information between X and Y. It is the
reduction in uncertainty of one random variable due to knowing about
another, or in other words, the amount of information one random vari-
able contains about another. A diagram illustrating the definition of mu-
tual information and its relationship to entropy is shown in figure 2.6
(adapted from Cover and Thomas (1991: 20)).

5. Commonly throughout this book we use two subscripts on something to indicate a sub-
sequence. So, here, we use X;; to represent the sequence of random variables (Xi,. .., X;)
and similarly x5 = (xi,.. ., xj). This notation is slightly unusual, but very convenient
when sequences are a major part of the domain of discourse. So the reader should re-
member this convention and be on the lookout for it.
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H(X,Y)

/ AN

H(X) H(Y)

Figure 26 The relaionship between mutual information 1 and entropy H.

Mutua information is a symmetric, non-negative measure of the com-
mon information in the two variables. People thus often think of mutual
information as a measure of dependence between variables. However, it
is actualy better to think of it as a measure of independence because:

= |t is 0 only when two variables are independent, but

» For two dependent variables, mutua information grows not only with
the degree of dependence, but also according to the entropy of the
variables.

Simple arithmetic gives us the following formulas for mutua informa-
tion I(X;Y):®
I(X;Y) = H(X) -HXIY)
H(X) + H(Y) - H(X,Y)
1 1
log — ——
%p(x) 0 Sy + %p(y) log o5 + Zyp(x,y)logp(x,y)

px,y)
p(x) p(y)

Since H(X|X) = 0, note that:
H(X) = H(X) - H(X|X) = I(X; X)

> p(x,y) log
X,y

6. Mutua information is conventionally written with a semi-colon separating the two ar-
guments. We are unsure why.
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(2.37)

(2.38)

POINTWISE MUTUAL
INFORMATION

2.2.4
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This illustrates both why entropy is also called sdf-information, and how
the mutual information between two totally dependent variables is not
constant but depends on their entropy.

We can adso derive conditional mutual information and a chain rule:

(X, Y|Z) = I(X;Y)1Z) = H(X|Z) - HXIY, Z)

I(Xin; Y) IXu;Y)+ .+ I(Xp YIXq, ... Xno1)

n
> IXi; YIXy,..o, Xic1)
i=1

In this section we have defined the mutual information between two
random variables. Sometimes people talk about the pointwise mutual
information between two particular points in those distributions:

p(x,Y
p(x) P(Y)

This has sometimes been used as a measure of association between ele-
ments, but there are problems with using this measure, as we will discuss
in section 5.4.

v Mutua information has been used many times in Statistical NLP, such
as for clustering words (section 14.1.3). It aso turns up in word sense
disambiguation (section 7.2.2).

I(x,y) = log

The noisy channel model

Using information theory, Shannon modeled the goal of communicating
down a telephone line - or in general across any channel - in the follow-
ing way: The am is to optimize in terms of throughput and accuracy the
communication of messages in the presence of noise in the channd. It
is assumed that the output of the channel depends probabilisticaly on
the input. In genera, there is a duality between compression, which is
achieved by removing all redundancy, and transmission accuracy, which
is achieved by adding controlled redundancy so that the input can be
recovered even in the presence of noise. The god is to encode the mes
sage in such a way that it occupies minima space while still containing
enough redundancy to be able to detect and correct errors. On receipt,
the message is then decoded to give what was most likely the origina
message. This process is shown in figure 2.7.
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W X 1 Y w
p(ylx)

Message Input to Output from Attempt to
from a finite channel channel reconstruct message
alphabet based on output

Figure 2.7 The noisy channel moddl.
1-P

P

1-P
Figure 2.8 A binary symmetric channel. A 1 or a 0 in the input gets flipped on
transmission with probability p.

The central concept that characterizes a channd in information theory
isits capacity. The channel capacity describes the rate at which one can
transmit information through the channel with an arbitrarily low proba
bility of being unable to recover the input from the output. For a memory-
less channel, Shannon's second theorem states that the channel capacity
can be determined in terms of mutua information as follows:

C =maxI(X;Y)
p{X)

According to this definition, we reach a channd’s capacity if we man-
age to design an input code X whose distribution maximizes the mutual
information between the input and the output over all possible input
distributions p(X) .

As an example, consider the binary symmetric channel in figure 2.8.
Each input symbol is either a 1 or a 0, and noise in the channel causes
each symbol to be flipped in the output with probability p. We find that:

I(X;Y) = H(Y) —H(Y|X)
= H(Y) - H(p)

Therefore,

I(X;Y)=1 -H
I;{g{))(( ) (p)
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I Noisy Channd| O @;
p(oli)

Figure 2.9 The noisy channel model in linguistics.

This last line follows because the mutual information is maximized by
maximizing the entropy in the codes, which is done by making the input
and hence the output distribution uniform, so their entropy is 1 bit. Since
entropy is non-negative, C < 1. The channd capacity is 1 bit only if the
entropy is zero, that is if p = 0 and the channd rdliably transmits a 0 as
Oandalasl orif p =1 and it aways flips bits. A completely noisy
binary channel which transmits both 0s and 1s with equal probability as
Osand 1s (i.e, p = %) has capacity C = 0, since in this case there is
no mutual information between X and Y. Such a channel is useless for
communication.

It was one of the early triumphs of information theory that Shannon
was able to show two important properties of channels. First, channe
capacity is a well-defined notion. In other words, for each channd there
is a smallest upper bound of I(X;Y) over possible distributions p(X).
Second, in many practical applications it is easy to get close to the opti-
mal channel capacity. We can design a code appropriate for the channed
that will transmit information at a rate that is optimal or very close to op-
timal. The concept of capacity eliminates a good part of the guesswork
that was involved in designing communications systems before Shannon.
One can precisdly evaluate how good a code is for a communication line
and design systems with optima or near-optimal performance.

The noisy channel model is important in Statistical NLP because a sim-
plified version of it was a the heart of the renaissance of quantitative
natural language processing in the 1970s. In the first large quantitative
project after the early quantitative NLP work in the 1950s and 60s, re-
searchers at IBM’'s T. J. Watson research center cast both speech recogni-
tion and machine trandation as a noisy channel problem.

Doing linguigtics via the noisy channe modd, we do not get to con-
trol the encoding phase. We simply want to decode the output to give
the most likely input, and so we work with the channd shown in fig-
ure 2.9. Many problems in NLP can be construed as an attempt to de-
termine the most likely input given a certain output. We can determine
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Application Input output p(i) p(oli)
Machine L; word L, word p(Li)ina translation
Tranglation sequences sequences language model model
Optical Character  actual text text with  prob of model of
Recognition (OCR) mistakes language text OCR errors
Part Of Speech POS tag English prob of p(wit)
(POS) tagging sequences  words POS sequences

Speech word speech prob of word acoustic
recognition sequences signal sequences model

Table 22 Statistical NLP problems as decoding problems.

this as follows, by using Bayes theorem, and then noting that the output
probability is a constant:

p)ploli)

[ = argmaxp(ilo) =
gmaxp(i|o) argmax =

= argmax p(i) p(oli)

Here we have two probability distributions to consider: p(i) is the lan-
guage model, the distribution of sequences of ‘words in the input lan-
guage, and p(o|i) is the channel probability.

As an example, suppose we want to trandate a text from English to
French. The noisy channel model for trandation assumes that the true
text is in French, but that, unfortunately, when it was transmitted to us,
it went through a noisy communication channel and came out as English.
So the word cow we see in the text was really vuche, garbled by the noisy
channel to cow. All we need to do in order to trandate is to recover the
origina French - or to decode the English to get the French.”

The vdidity of the noisy channel model for trandation is till giving
rise to many a heated debate among NLP researchers, but there is no
doubt that it is an elegant mathematical framework that has inspired a
significant amount of important research. We will discuss the model in
more detail in chapter 13. Other problems in Statistical NLP can aso be
seen as ingantiations of the decoding problem. A selection is shown in
table 2.2.

7. The French reader may be sympathetic with the view that English is readly a form of
garbled French that makes the language of clarté unnecessarily ambiguous!
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RELATIVE ENTROPY

(2.41)

KuLLBACK- LEIBLER
DIVERGENCE

(2.42)

TRIANGLE [INEQUALITY

(2.43)

(2.44)

(2.45)
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Relative entropy or Kullback-Leibler divergence

For two probability mass functions, p(x), q(x) their relative entropy is
given by:
p(x)

D — i
(Il q) gxp(x) log "y

where again we define O log g = 0 and otherwise p log § = . The relative
entropy, aso known as the Kullback-Leibler divergence, is a measure of
how different two probability distributions (over the same event space)
are. Expressed as an expectation, we have:

p(X)>
q(Xx)

Thus, the KL divergence between p and q is the average number of bits
that are wasted by encoding events from a distribution p with a code
based on a not-quite-right distribution q.

This quantity is always non-negative, and D(pllq) = O iff p = q. For
these reasons, some authors use the name ‘KL distance, but note that
relative entropy is not a metric (in the sense in which the term is used
in mathematics): it is not symmetric in p and g (see exercise 2.12), and
it does not satisfy the triangle inequality.® Hence we will use the name
‘KL divergence, but nevertheless, informally, people often think about
the relative entropy as the ‘distance’ between two probability distribu-
tions. it gives us a measure of how close two pmfs are.

Mutual information is actualy just a measure of how far a joint distri-
bution is from independence:

IXGY) = D(p(x, ) Iip(x) p(y))

We can also derive conditional relative entropy and a chain rule for
relative entropy (Cover and Thomas 1991: 23):

p(yIx)
q(ylx)

D(plla) =Ep (Iog

Dy Ix)1avIx) = > p(x)D p(yIx) log
X Y

D(p(x,»)la(x,y)) = D(p(x) | a(x)) + D(p(yIx)la(y|x))
8. The triangle inequality is that for any three pointsx,y,z:

dix,yy=d(x,z) + d(z,y)
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v KL divergence is used for measuring selectional preferences in sec-
tion 8.4.

The relation to language: Cross entropy

So far we have examined the notion of entropy, and seen roughly how it
is a guide to determining efficient codes for sending messages, but how
does this relate to understanding language? The secret to this is to return
to the idea that entropy is a measure of our uncertainty. The more we
know about something, the lower the entropy will be because we are less
surprised by the outcome of a trial.

We can illustrate this with the examples used above. Consider again
Simplified Polynesian from examples 8 and 9. This language has 6 let-
ters. The simplest code is to use 3 bits for each letter of the language.
This is equivalent to assuming that a good model of the language (where
our ‘model’ is simply a probability distribution) is a uniform model. How-
ever, we noticed that not al the letters occurred equaly often, and, noting
these frequencies, produced a zeroth order model of the language. This
had a lower entropy of 2.5 hits per letter (and we showed how this obser-
vation could be used to produce a more efficient code for transmitting the
language). Thereafter, we noticed the syllable structure of the language,
and developed an even better model that incorporated that syllable struc-
ture into it. The resulting model had an even lower entropy of 1.22 bits
per letter. The essential point here is that if a model captures more of the
structure of a language, then the entropy of the model should be lower.
In other words, we can use entropy as a measure of the quality of our
models.

Alternately, we can think of entropy as a matter of how surprised we
will be. Suppose that we are trying to predict the next word in a Sim-
plified Polynesian text. That is, we are examining P(w|h), where w is
the next word and h is the history of words seen so far. A measure of
our surprise on seeing the next word can be derived in terms of the con-
ditional probability assigned to w by our model m of the distribution of
Simplified Polynesian words. Surprise can be measured by what we might
term the pointwise entropy H(w|h) = -log, m(w|h). If the predictor is
certain that word w follows a given history h and it is correct, then the in-
formation supplied to the predictor on seeing w is —~log, 1 = 0. In other
words, the predictor does not experience any surprise a al. On the other
hand, if the model thinks that w cannot follow h, then m(w|h) = 0 and
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so the information supplied to the predictor is infinite (- log, 0 = «). In
this case our model is infinitely surprised, which is normally a very bad
thing. Usually our modeds will predict a probability between these two
extremes for each event and so the model will gain some information, or
alternatively, be somewhat surprised, when it sees the next word, and the
goal is to keep that level of surprise as low as possible. Summing over the
surprise of the predictor at each word gives an expression for our total
surprise:

n

Hiow = - logym(w;lwi,wa,...,wj_1)
j=1
= —log, m(wy,wa,...,wy)

The second line above follows from the chain rule. Normally, we would
want to normalize this measure by the length of the text so our notion
of surprise is not dependent on the size of the text. This normalized
measure gives the average surprise of the predictor per word.

So far this discussion has been rather informal, but we can formalize
it through the notion of relative entropy. Suppose that we have some
empirica phenomenon, in Statistical NLP usually utterances in a certain
language. Assuming some mapping to numbers, we can represent it via
a random variable X. Then we assume that there is some probability
distribution over the utterances - for instance, you hear Thank you much
more often than On you. So we take X ~ p(x).

Now, unfortunately we do not know what p (-) is for empirical phenom-
ena. But by looking at instances, for example by looking at a corpus of
utterances, we can estimate roughly what p seems to be like. In other
words, we can produce a model m of the rea distribution, based on our
best estimates. In making this model, what we want to do is to mini-
mize D(p Il m)- to have as accurate a probabilistic model as possible.
Unfortunately, we normally cannot calculate this relative entropy - again,
because we do not know what p is. However, there is a related quantity,
the cross entropy, which we fortunately can get a handle on.

The cross entropy between a random variable X with true probability
distribution p(x) and another pmf g (normally a modedl of p) is given by:

H(X,q) = H(X) + D(p Il @)
= ~2.p(x)logq(x)
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1
= Ep (log @)

(Proof of this is Ieft to the reader as exercise 2.13.)

Just as we defined the entropy of a language in section 2.2.2, we can
define the cross entropy of a language L = (Xi) ~ p(x) according to a
model m by:

1
H(L,m)=- lim — > p(x1n) logm(xiy)
Xln
We do not seem to be making much progress, because it gill seems that
we cannot calculate this quantity without knowing p. But if we make
certain assumptions that the language is ‘nice’ then the cross entropy
for the language can be calculated as:

H(L,m) = - rll% % logm(xin)

Using this second form, we can calculate the cross entropy based only
on knowing our probability model and having a large body of utterances
available. That is, we do not actualy attempt to calculate the limit, but
approximate it by calculating for a sufficiently large n:

H(L,m) ~ —% log m(x1n)

This measure is just the figure for our average surprise. Our goa will
be to try to minimize this number. Because H(X) is fixed (if unknown),
this is equivalent to minimizing the relative entropy, which is a measure
of how much our probability distribution departs from actua language
use. The only additional reguirement is that the text that we use to test
the model must be an independent test set, and not part of the training
corpus that we used to estimate the parameters of the model. Cross
entropy is inversely related to the average probability a model assigns to
words in test data. Lower model cross entropy normally leads to better
performance in applications, but it need not do so if it is just a matter of
improving the magnitude of probability estimates, but not their relative
ordering. (See section 6.2.3 for more practica details on calculating the
cross entropy of models.)

But what justifies going from equation (2.48) to equation (2.49)? The
formula for language cross entropy has an expectation embedded within
it:

_ o L 1
H(L,m) = %l_l:l;lo nE (Iog m(Xm))
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Recall that the expectation is a weighted average over al possible se-
guences. But in the above formula we are using a limit and looking at
longer and longer sequences of language use. Intuitively, the idea is then
that if we have seen a huge amount of the language, what we have seen
is ‘typica.” We no longer need to average over al samples of the lan-
guage; the vaue for the entropy rate given by this particular sample will
be roughly right.

The forma version of this is to say that if we assume that L = (Xi) is
a stationary ergodic process, then we can prove the above result. This is
a consequence of the Shannon-McMillan-Breiman theorem, also known as
the Asymptotic Equipartition Property:

Theorem: If Hrqe is the entropy rate of a finite-vaued stationary er-
godic process (X,), then:

—%logp(Xl,...,Xn) _ H, with probability 1

We will not prove this theorem; see Cover and Thomas (1991: ch. 3, 15).
an ergodic process is one that, roughly, cannot get into different sub-
states that it will not escape from. An example of a non-ergodic process
is one that in the beginning chooses one of two states: one in which it
generates O forever, one in which it generates 1 forever. If a process is
not ergodic, then even looking a one very long sequence will not neces-
sarily tell us what its typical behavior is (for example, what is likely to
happen when it gets restarted).

A dsationary process is one that does not change over time. This is
clearly wrong for language: new expressions regularly enter the language
while others die out. And s0, it is not exactly correct to use this result
to alow the caculation of a value for cross entropy for language applica
tions. Nevertheless, for a snapshot of text from a certain period (such as
one year's newswire), we can assume that the language is near enough to
unchanging, and so this is an acceptable approximation to truth. At any
rate, this is the method regularly used.

The entropy of English

As noted above, English in generd is not a stationary ergodic process. But
we can neverthdess model it with various stochastic approximations. In
particular, we can modd English with what are known as n-gram models
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or Markov chains. These modds, which we discuss in detail in chapters 6
and 9, are ones where we assume a limited memory. We assume that the
probability of the next word depends only on the previous k words in the
input. This gives a k™ order Markov approximation:

P(Xn=xnlXn_1 =Xn-1,..., X1 = Xx1) =
P(Xy =Xn!Xn-1=Xn=1,--- s Xn—k = Xn-k)

If we are working on a character basis, for example, we are trying to guess
what the next character in a text will be given the preceding k characters.
Because of the redundancy of English, this is normally fairly easy. For
instance, a generation of students have proved this by being able to make
do with photocopies of articles that are missing the last character or two
of every line

By adding up counts of letters, letter digraphs (that is, sequences of two
letters), and so on in English, one can produce upper bounds for the en-
tropy of English.” We assume some such simplified model of English and
compute its cross entropy against a text and this gives us an upper bound
for the true entropy of English - since D(pllm)= 0, H(X,m)= H(X).
Shannon did this, assuming that English consisted of just 27 symbols
(the 26 letters of the alphabet and seace - he ignored case distinctions
and punctuation). The estimates he derived were:

(2.52) Model Cross entropy (bits)
zeroth order 4,76 (uniform model, so log 2 7)
first order 4.03
second order 2.8

Shannon’s  experiment 1.3 (1.34) (Cover and Thomas 1991: 140)

The first three lines show that as the order of the model increases, that is,
as information about the frequencies of letters (first order) and digraphs
(second order) is used, our model of English improves and the calculated
cross entropy drops. Shannon wanted a tighter upper bound on the en-
tropy of English, and derived one by human experiments - finding out
how good at guessing the next letter in a text a human being was. This
gave a much lower entropy bound for English. (A later experiment with

9. More dtrictly, one produces an estimate for the text on which the counts are based, and
these counts are good for ‘English only to the extent that the text used is representative
of English as a whole. Working at the character level, this is not too severe a problem, but
it becomes quite important when working at the word level, as discussed in chapter 4.
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more subjects on the same text that Shannon used produced the figure
in parentheses, 1.34.)

Of course, the rea entropy of English must be lower dill: there are
doubtless patterns in people’'s speech that humans do not pick up on
(although maybe not that many!). But at present, the statistical language
models that we can construct are much worse than human beings, and
s0 the current goal is to produce models that are as good as English
speakers at knowing which English utterances sound norma or common
and which sound abnormal or marked.
¥ We return to n-gram models in chapter 6.

2.2.8 Perplexity

PERPLEXITY

In the speech recognition community, people tend to refer to perplexity
rather than cross entropy. The relationship between the two is simple:

(2.53) perplexity(x;,, m) = 2H(mm

(2.54)

1
= m(xjp) »

We suspect that speech recognition people prefer to report the larger
non-logarithmic numbers given by perplexity mainly because it is much
easier to impress funding bodies by saying that “we've managed to re-
duce perplexity from 950 to only 540" than by saying that “we've reduced
cross entropy from 9.9 to 9.1 bits.” However, perplexity does adso have
an intuitive reading: a perplexity of k means that you are as surprised
on average as you would have been if you had had to guess between
k equiprobable choices at each step.

2.2.9 Exercises

Exercise 2.9 [*]

Take a (short) piece of text and compute the relative frequencies of the letters
in the text. Assume these are the true probabilities. What is the entropy of this
distribution?

Exercise 2.10 [}

Take another piece of text and compute a second probability distribution over
letters by the same method. What is the KL divergence between the two distribu-
tions? (You will need to ‘smooth’ the second distribution and replace any zero
with a small quantity E.)
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Exercise 2.11 [}

Cast the problem of word sense disambiguation as a noisy channe model, in
analogy to the examples in table 2.2. Word sense disambiguation is the problem
of determining which sense of an ambiguous word is used (e.g., ‘industrial plant’
vs. ‘living plant’ for plant) and will be covered in chapter 7.

Exercise 2.12 [*]

Show that the KL divergence is not symmetric by finding an example of two
distributions p and q for which D(pliq)+D(qllp).

Exercise 2.13 [*}
Prove the equality shown in the first two lines of (2.46).
Exercise 2.14 [*]

We arrived at the simplified way of computing cross entropy in equation (2.49)
under the premise that the process we are dedling with is ergodic and station-
ary. List some characteristics of natural languages that show that these two
properties are only approximately true of English.

Exercise 2.15 [**]

Reproduce Shannon’s experiment. Write a program that shows you a text one
letter at a time. Run it on a text you have not seen. Can you confirm Shannon’s
edtimate of the entropy of English?

Exercise 2.16 [% *]

Repeat the last exercise for one text that is ‘easy’ (e.g., a newsgroup posting) and
one text that is ‘hard’ (e.g., a scientific article from a field you don’t know well).
Do you get different estimates? If the estimates are different, what difficulties
does the experiment raise for interpreting the different estimates of the entropy
of English?

2.3 Further Reading

Aho et al. (1986: ch. 4) cover parsing in computer science, and Allen
(1995: ch. 3) covers parsing in computational linguistics. Most of the
mathematics we use is covered in Part | of (Cormen et a. 1990), but not
vector spaces and matrices, for which one should consult an introduction
to linear agebra such as (Strang 1988).

Many books give good introductions to basic probability theory. A few
good ones, listed in approximate order of increasing difficulty are (Moore
and McCabe 1989; Freedman et a. 1998; Siegel and Castellan 1988; De-
Groot 1975). Krenn and Samuelsson (1997) is particularly recommended
as a much more thorough introduction to statistics aimed at a Statistica
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NLP audience. Unfortunately most introduction to statistics textbooks
follow a very fixed syllabus which is dominated by hypothesis testing as
applied in experimental sciences such as biology and psychology. Of-
ten these concerns are rather distant from the issues of most relevance
to Statistical NLP, and it can be helpful to aso look a books covering
guantitative methods for machine learning, such as (Mitchell 1997).

The coverage of information theory here barely scratches the surface
of that field. Cover and Thomas (1991) provide a thorough introduction.

Brown et a. (1992b) present an estimate of 1.75 bits per character for
the entropy of English based on predicting the next word, trained on an
enormous corpus of English text.
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Linguistic Essentials

THis cHAPTER introduces basic linguistic concepts, which are neces-
sary for making sense of discussions in the rest of the book. It may partly
be a review of things you learned at school, but it will go into more depth
for syntactic phenomena like attachment ambiguities and phrase struc-
ture that are important in NLP. Apart from syntax (sentence structure),
we will cover some morphology (word formation) and semantics (mean-
ing). The last section will give an overview of other areas of linguistics
and pointers to further reading.

Parts of Speech and Morphology

Linguists group the words of a language into classes (sets) which show
similar syntactic behavior, and often a typical semantic type. These
word classes are otherwise caled syntactic or grammatical categories,
but more commonly till by the traditiona name parts of speech (POS).
Three important parts of speech are noun, verb, and adjective. Nouns
typicaly refer to people, animals, concepts and things. The prototypi-
cal verb is used to express the action in a sentence. Adjectives describe
properties of nouns. The most basic test for words belonging to the same
class is the substitution test. Adjectives can be picked out as words that
occur in the frame in (3.1):

sad
intelligent
green

fat

The one is in the corner.
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In sentence (3.21, the noun children refers to a group of people (those
of young age) and the noun candy to a particular type of food:

Children eat sweet candy.

The verb eat describes what children do with candy. The adjective sweet
tells us about a property of candy, namely that it is sweet. Many words
have multiple parts of speech: candy can also be a verb (as in Too much
boiling will candy the molasses), and, at least in British English, sweet
can be a noun, meaning roughly the same as candy. Word classes are
normally divided into two. The open or lexical categories are ones like
nouns, verbs and adjectives which have a large number of members, and
to which new words are commonly added. The closed or functional cat-
egories are categories such as prepositions and determiners (containing
words like of, on, the, a) which have only a few members, and the mem-
bers of which normaly have a clear grammatical use. Normally, the vari-
ous parts of speech for a word are listed in an online dictionary, otherwise
known as a lexicon.

Traditional systems of parts of speech distinguish about 8 categories,
but corpus linguists normally want to use more fine-grained classifica
tions of word classes. There are well-established sets of abbreviations
for naming these classes, usualy referred to as POS tugs. In this chapter,
as we introduce syntactic categories, we will give the abbreviations used
in the Brown corpus for the more important categories. For example, ad-
jectives are tagged using the code JJ in the Brown corpus. Because of its
pioneering role, the Brown corpus tags are particularly widely known.

v We briefly describe and compare several well-known tag sets in sec-
tion 4.3.2.

Word categories are systematically related by morphological processes
such as the formation of the plural form (dog-s) from the singular form of
the noun (dog). Morphology is important in NLP because language is pro-
ductive: in any given text we will encounter words and word forms that
we haven't seen before and that are not in our precompiled dictionary.
Many of these new words are morphologicaly related to known words.
So if we understand morphological processes, we can infer a lot about
the syntactic and semantic properties of new words.

It is important to be able to handle morphology in English, but it's abso-
lutely essential when it comes to highly inflecting languages like Finnish.
In English, a regular verb has only 4 distinct forms, and irregular verbs
have a most 8 forms. One can accomplish a fair amount without mor-
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phology, by just listing all word forms. In contrast, a Finnish verb has
more than 10,000 forms! For a language like Finnish, it would be tedious
and impractical to enumerate all verb forms as an enormous list.

The major types of morphological process are inflection, derivation,
and compounding. Inflections are the systematic modifications of a root
form by means of prefixes and suffixes to indicate grammatical distinc-
tions like singular and plurd. Inflection does not change word class or
meaning significantly, but varies features such as tense, number, and
plurality. All the inflectiona forms of a word are often grouped as mani-
festations of a single lexeme.

Derivation is less systematic. It usually results in a more radical change
of syntactic category, and it often involves a change in meaning. An ex-
ample is the derivation of the adverb widely from the adjective wide (by
appending the suffix -ly). Widely in a phrase like it is widely believed
means among a large we//-dispersed group of people, a shift from the core
meaning of wide (extending over a vast urea). Adverb formation is aso
less systematic than plural inflection. Some adjectives like old or difficult
don't have adverbs. *oldly and *difficultly are not words of English. Here
are some other examples of derivations. the suffix -en transforms adjec-
tives into verbs (weak-en, soft-en), the suffix -able transforms verbs into
adjectives (understand-able, accept-able), and the suffix -er transforms
verbs into nouns (teacher, lead-er).

Compounding refers to the merging of two or more words into a new
word. English has many noun-noun compounds, nouns that are combi-
nations of two other nouns. Examples are tea kettle, disk drive, or college
degree. While these are (usually) written as separate words, they are pro-
nounced as a single word, and denote a single semantic concept, which
one would normally wish to list in the lexicon. There are also other
compounds that involve parts of speech such as adjectives, verbs, and
prepositions, such as downmarket, (to) overtake, and mad cow disease.

We will now introduce the major parts of speech of English.

Nouns and pronouns

Nouns typically refer to entities in the world like people, animals, and
things. Examples are

dog, tree, person, hat, speech, idea, philosophy
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Type of inflection Instances

number singular, plural
gender feminine, masculine, neuter
case nominative, genitive, dative, accusative

Table 3.1 Common inflections of nouns.

English, which is morphologically impoverished compared to many
other languages, has only one inflection of the noun, the plura form.
It is usualy formed by appending the suffix -s. Here are some nouns with
their singular and plural forms.

(3.4) dog : dogs tree: trees person : persons

IRREGULAR

CASE

hat : hats speech : speeches woman : women
idea : ideas philosophy : philosophies child : children

The plural suffix has three pronunciations, /s/ asin hats, /z/, as in boys,
and /as/ as in speeches, the last case being represented by insertion of
an e in the writing system. A few forms like women don't follow the
regular pattern, and are termed irregular.

Number (singular and plural) is one common grammatical distinction
that is marked on the noun. Two other types of inflection that are com-
mon for nouns across languages are gender and case as shown in ta
ble 3.1.

English does not have a system of gender inflections, but it does have
different gender forms for the third person singular pronoun: he (mas-
culing), she (feminineg), and it (neuter). An example of gender inflection
of nouns from Latin is the endings -a for feminine and -us for masculine.
Examples. fili-us ‘son, male child’; fili-a ‘daughter, female child.’ In some
languages, grammatical gender is closdly correlated with the sex of the
person referred to as it is for these two Latin words (female — feminine,
male — masculine, neither — neuter), but in other languages gender is a
largely arbitrary grammatical category. An example linguists are fond of
is the German word for girl, Mddchen, which is neuter.

In some languages, nouns appear in different forms when they have
different functions (subject, object, etc.) in a sentence, and these forms
are caled cases. For example, the Latin for ‘son’ is filius when the subject,
but filium when the object of a verb. Many languages have a rich array
of case inflections, with cases for locatives, instrumentals, etc. English
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has no real case inflections. The only case relationship that is systemati-
caly indicated is the genitive. The genitive describes the possessor. For
example, the phrase the woman's house indicates that the woman owns
the house. The genitive is usually written ’s, but just as ' after words
that end in s, which includes most plural nouns such as in the students’
grievances. Although ’s initially looks like a case inflection, it is actu-
aly what is termed a clitic, aso known as a phrasal affix, because it can
appear not only attached to nouns, but after other words that modify a
noun, as in the person you met’s house was broken into.

Pronouns are a separate smal class of words that act like variables
in that they refer to a person or thing that is somehow sdient in the
discourse context. For example, the pronoun she in sentence (3.5) refers
to the most sdlient person (of feminine gender) in the context of use,
which is Mary.

After Mary arrived in the village, she looked for a bed-and-breakfast.

As well as distinguishing the number of their antecedent, they also
mark person (1st = speaker, 2nd = hearer, or 3rd = other discourse enti-
ties). They are the only words in English which appear in different forms
when they are used as the subject and the object of a sentence. We cal
these forms the nominative or subject case and accusative oOr object case
persona pronouns, respectively. Pronouns also have specia forms, pos-
sessive pronouns, for when they are a possessor, as in my cur, which we
can view as genitive case forms. Somewhat oddly, English pronouns have
another possessive form, often caled the ‘second’ possessive persona
pronoun, used when the object of the preposition of describes the pos-
sessor: a friend of mine. Findly, there are reflexive pronouns, which are
used similarly to ordinary (personal) pronouns except that they aways
refer to a nearby antecedent in the same sentence, normally the subject
of the sentence. For example, herself in sentence (3.6a) must refer to
Mary whereas her in sentence (3.6b) cannot refer to Mary (that is, Mary
saw a woman other than hersdf in the mirror).

a. Mary saw hersdlf in the mirror.
b. Mary saw her in the mirror.

Reflexive pronouns (and certain other expressions like each other) are
often referred to as anaphors, and must refer to something very nearby
in the text. Personal pronouns aso refer to previoudy discussed people
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Nominative Accusative Possessive 2nd Possessive Reflexive
Tag(s) PPS (35G) PPO PP$ PP$$ PPL

PPSS (15G,25G,PL) (PPLS for r1)
1SG I me my mine myself
258G, you you your yours yourself
35G masc h e him his his himself
3SG FEM she her her hers herself
3SG NEUT it it its its itself
1PL we us our ours ourselves
2PL you you your yours yourselves
3PL they them their theirs themselves

PROPER NAMES
ADVERBIAL NOUNS

Table 3.2 Pronoun forms in English. Second person forms do not distinguish
number, except in the reflexive, while third person singular forms distinguish
gender.

and things, but a a dightly greater distance. All the forms for pronouns,
and their Brown tags are summarized in table 3.2.

Brown tags. NN is the Brown tag for singular nouns (candy, woman).
The Brown tag set also distinguishes two specia types of nouns, proper
nouns (or proper names), and adverbial nouns. Proper nouns are names
like Mary, Smith, or United States that refer to particular persons or
things. Proper nouns are usually capitalized. The tag for proper nouns is
NNP.! Adverbial nouns (tag NR) are nouns like home, west and tomorrow
that can be used without modifiers to give information about the circum-
stances of the event described, for example the time or the location. They
have a function similar to adverbs (see below). The tags mentioned so far
have the following plural equivalents:. NNS (plura nouns), NNPS (plura
proper nouns), and NRS (plural adverbia nouns). Many also have posses-
sive or genitive extensions. NN$ (possessive singular nouns), NNS$ (pos-
sessive plura nouns), NNP$ (possessive singular proper nouns), NNPS$
(possessive plural proper nouns), and NRS$ (possessive adverbial nouns).
The tags for pronouns are shown in table 3.2.

1. Actudly, the Brown tag for proper nouns was NP, but we follow the Penn Treebank in
substituting NNP, so that NP can maintain its conventional meaning within linguistics of
a noun phrase (see below). We aso follow the Penn Treebank in using a doubled N in the
related tags mentioned subsequently.
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Words that accompany nouns: Determiners and adjectives

Several other parts of speech most commonly appear accompanying
nouns. Determiners describe the particular reference of a noun. A sub-
type of determiners is articles. The article the indicates that we're talking
about someone or something that we aready know about or can uniquely
determine. We say the tree if we have aready made reference to the tree
or if the reference is clear from context such as when we are standing
next to a tree and it is clear we are referring to it. The article a (or an)
indicates that the person or thing we are talking about was not previously
mentioned. If we say a tree, then we are indicating that we have not men-
tioned this tree before and its identity cannot be inferred from context.
Other determiners include the demonstrutives, such as this and that.

Adjectives are used to describe properties of nouns. Here are some
adjectives (in italics):

ared rose, this long journey, many intelligent children, a very trendy
magazine

Uses such as these modifying a noun are caled attributive or adnominal.
Adjectives aso have a predicative use as a complement of be:

The rose is red. The journey will be long.

Many languages mark distinctions of case, number, and gender on ar-
ticles and adjectives as well as nouns, and we then say that the article or
adjective agrees with the noun, that is, they have the same case, number,
and gender. In English, the morphological modifications of adjectives are
the derivational endings like -ly which we covered earlier, and the for-
mation of comparative (richer, trendier), and superlative (richest, trendi-
est) forms. Only some, mainly shorter, adjectives form morphological
comparatives and superlatives by suffixing -er and -est. For the rest, pe-
riphrastic forms are used (more intelligent, most intelligent). Periphrastic
forms are formed with the auxiliary words, in this case more and most.
The basic form of the adjective (rich, trendy, intelligent) is called the posi-
tive when contrasted with comparative and superlative. Comparative and
superlative forms compare different degrees to which the property de-
scribed by the adjective applies to nouns. The following example should
be sdf-explanatory:

John is rich, Paul is richer, Mary is richest.
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Brown tags. The Brown tag for adjectives (in the positive form) is JJ,
for comparatives JIR, for superlatives JJT. There is a specia tag, JJS,
for the ‘semantically’ superlative adjectives chief, main, and top. Num-
bers are subclasses of adjectives. The cardinals, such as one, two, and
6,000,000, have the tag CD. The ordinas, such as first, second, tenth, and
mid-twentieth have the tag OD.

The Brown tag for articles is AT. Singular determiners, like this, that,
have the tag DT, plura determiners (these, those) DTS; determiners that
can be singular or plural (some, any) DTI, and ‘double conjunction’ deter-
miners (either, neither) DTX.

Quantifiers are words that express ideas like ‘al,” ‘many,” ‘some.’ The
determiners some and any can function as quantifiers. Other parts of
speech that correspond to quantifiers have the tags ABN (pre-quantifier:
all, many) and PN (nomina pronoun: one, something, anything, some-
body). The tag for there when used to express existence at the beginning
of a sentence is EX.

A final group of words that occur with or instead of nouns are the in-
terrogative pronouns and determiners which are used for questions and
relative clauses. Their tags are WDT (wh-determiner: what, which), WP$
(possessive wh-pronoun: whose), WPO (objective wh-pronoun: whom,
which, that), and WPS (nominative wh-pronoun: who, which, that).

Verbs

Verbs are used to describe actions (She threw the stone), activities (She
walked along the river) and states (I have $50). A regular English verb
has the following morphological forms:

w the root or base form: walk

» the third singular present tense: walks

» the gerund and present participle: walking

» the past tense form and past/passive participle: walked

Most of these forms do duty in several functions. The base form is used
for the present tense.

| walk. You wak. We walk. You (guys) walk. They walk.

The third singular person has a different present tense form:
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She walks. He walks. It walks.

The base form is also used for the infinitive with to:
She likes to walk. She has to walk. To walk is fun.
and after modals and in the bare infinitive:

She shouldn’'t walk. She helped me walk.

The -ing form is used for the progressive (indicating that an action is in
progress):

She is waking. She was walking. She will be walking.

and as the gerund, a derived form where the verb gains some or al of the
properties of nouns:

This is the most vigorous walking I've done in a long time. Walking is
fun.

The -ed form serves as past tense indicating an action that took place
in the past:

(3.16) She walked.

PRESENT PERFECT
(3.17)
PAST PERFECT

(3.19)

IRREGULAR

(3.19)

SYNTHETIC FORMS

It also functions as the past participle in the formation of present perfect:
She has walked.
and past perfect:
She had walked.

A number of verbs are irregular and have different forms for past tense
and past participle. Examples are drive and take:

a She drove the car. She has never driven a car.
b. She rook off on Monday. She had aready taken off on Monday.

Just as nouns are commonly marked for features like number and
case, verbs are also commonly marked for certain features. Table 3.3
summarizes grammatical features that are commonly indicated on verbs
across languages. These features can be indicated either morphologically
(also called synthetically), as in the case of the English endings -s, -ing,
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Feature Category Instances

subject number  singular, plura
subject person first (I walk), second (you walk), third (she walks)

tense present tense, past tense, future tense

aspect progressive, perfect

mood/modality possibility, subjunctive, irredlis

participles present participle (walking), past participle (walked)
voice active, passive, middle

Table 3.3 Features commonly marked on verbs,

and -ed), or by means of auxiliaries, words that accompany verbs in a
verb group (8IS0 called analytically). English uses the auxiliaries have,
be, and will (and others) to express aspect, mood, and some tense infor-

‘mation. The present and past perfect are formed with have as we saw

in sentences (3.17) and (3.18). The progressive is formed with be (3.14).
Forms that are built using auxiliaries, as opposed to direct inflection as
in the case of the English past tense, are referred to as periphrustic forms.

In English, there is a class of verbs with specia properties:. the modal
auxiliaries or modals. Modals lack some of the forms of ordinary verbs
(no infinitive, no progressive form), and aways come first in the verb
group. They express modalities like possibility (may, can) or obligation
(should) as illustrated in the following examples.

a With her ahilities, she can do whatever she wants to.
b. He may or may not come to the meeting.
. You should spend more time with your family.

In English, the formation of the future tense with the auxiliary will is in
al ways pardle to that of other modalities:

She will come. She will not come.

Brown tags. The Brown tag set uses VB for the base form (take), VBZ for
the third person singular (takes), VBD for the past tense (took), VBG for
gerund and present participle (taking), and VBN for the past participle
(taken). The tag for moda auxiliaries (can, may, must, could, might, ...)
is MD. Since be, have, and do are important in forming tenses and moods,
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the Brown tag set has separate tags for al forms of these verbs. We omit
them here, but they are listed in table 4.6.

Other parts of speech
Adverbs, prepositions, and particles

We have dready encountered adverbs as an example of morphologica
derivation. Adverbs modify a verb in the same way that adjectives modify
nouns. Adverbs specify place, time, manner or degree:

a. She often travels to Las Vegas.
b. She allegedly committed perjury.
C. She started her career off very impressively.

Some adverbs, such as often, are not derived from adjectives and lack the
suffix -Iy.

Some adverbs can aso modify adjectives ((3.23a) and (3.23b)) and other
adverbs (3.23¢).

a a vey unlikely event
b. a shockingly frank exchange

c. She dtarted her career off very impressively.

Certain adverbs like very are specidized to the role of modifying ad-
jectives and adverbs and do not modify verbs. They are caled degree
adverbs. Their distribution is thus quite distinct from other adverbs, and
they are sometimes regarded as a separate part of speech caled gquali-
fiers.

Prepositions are mainly small words that prototypicaly express spatial
relationships:

in the glass, on the table, over their heads, about an interesting idea,
concerning your recent invention

Most prepositions do double duty as particles. Particles are a subclass
of prepositions that can enter into strong bonds with verbs in the forma-
tion of so-caled phrasal verbs. We can best think of a phrasal verb as
a separate lexica entry with syntactic and semantic properties different
from the verb it was formed from. Here are some examples.
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a. The plane took off at Sam.

b. Don’t give in to him.

c. Itistimeto take on new responsibilities.
d. He was put off by so much rudeness.

Sometimes these constructions can occur with the preposition separated
from the verb:

a | didn't want to rake that responsibility on right now.
b. He put me off.

These phrasal verbs have particular meanings that are quite specialized,
and unpredictable from the verb and particle that make them up.

Sometimes we need to know the meaning of a sentence to be able to
distinguish particles and prepositions: up is a preposition in (3.27a) and
a particle in (3.27b). Note the meaning shift from the litera meaning of
running on an incline in (3.2 74) to the figurative meaning of building up
alarge hill in (3.27b).

a. She ran up a hill.

b. She ran up a hill.

Brown tags. The tags for adverbs are RB (ordinary adverb: simply, lute,
well, little), RBR (comparative adverb: later, better, less), RBT (superlative
adverb: latest, best, least), x (not), QL (qualifier: very, too, extremely), and
QLP (post-qudifier: enough, indeed). Two tags stand for parts of speech
that have both adverbia and interrogative functions. WQL (wh-quaifier:
how) and WRB (wh-adverb: how, when, where).

The Brown tag for prepositions is IN, while particles have the tag RP.

Conjunctions and complementizers

The remaining important word categories are coordinating and subordi-
nating conjunctions. Coordinating conjunctions ‘conjoin’ or coordinate
two words or phrases of (usualy) the same category:

» husband and wife [nouns]
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« She bought or leased the car. [verbs]
= the green triangle and the blue square [noun phrases]
o She bought her car, but she also considered leasing it. [sentences]

One function of coordinating conjunctions is to link two sentences (or
clauses) as shown in the last example. This can also be done by subordi-
nating conjunctions. In the examples below, the subordinating conjunc-
tion is shown in itdlics.

a. She said that he would be late. [proposition]

b. She complained because he was late. [reason]

¢ | won't wait if heislate. [condition]

d. She thanked him although he was late. [concession]
e. Sheleft before he arrived. [tempordl]

Cases of subordinating conjunctions like that in (3.28a) or use of for
which introduce arguments of the verb are often aternatively regarded
as complementizers. The difference between coordination and subordi-
nation is that, as the terms suggest, coordination joins two sentences
as equals whereas subordination attaches a secondary sentence to a pri-
mary sentence. The secondary sentence often expresses a proposition,
a reason, a condition, a concession or a temporaly related event.

Brown tags. The tag for conjunctions is CC. The tag for subordinating
conjunctions is CS.

Phrase Structure

Words do not occur in just any old order. Languages have constraints
on word order. But it is also the case that the words in a sentence are
not just strung together as a sequence of parts of speech, like beads on a
necklace. Instead, words are organized into phrases, groupings of words
that are clumped. as a unit. Syntax is the study of the regularities and
congtraints of word order and phrase structure.

One fundamental idea is that certain groupings of words behave as
constituents. Congtituents can be detected by their being able to occur
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in various positions, and showing uniform syntactic possibilities for ex-
pansion. The examples in (3.29) and (3.30) show evidence from position-
ing and phrasal expansion for a constituent that groups nouns and their
modifiers:

(3.29) a | put the bagels in the freezer.
b. The bagels, [ put in the freezer.
¢ | put in the fridge the bagels (that John had given me)

She him
the woman the man
(3.30) the tall woman < the short man
' the very tall woman the very short man
the tall woman with sad eyes the short man with red hair

parabicmaTic  Thisis the notion of a paradigmatic relationship in Saussurean linguis-
RELATIONSHIP  tics, All elements that can be replaced for each other in a certain syntactic
position (like the noun phrase congituent above) are members of one
rparabicm  paradigm. In contrast, two words bear a syntagmatic relationship if they
;Z[‘::I‘;“:/;:IE can form a phrase (or syntagma) like sewed clothes or sewed a dress. An
syntaoma  IMportant class of syntagmatically related words are collocations (chap-
coLLocaTions  ter 5).

In this section we will briefly mention some of the major phrase types,
and then introduce techniques linguists use to model phrase structure.
The upshot will be to suggest that English sentences typicaly have an

overall phrase structure that looks as follows:

(3.31) S
/\
IvP VP
T~ I
That man  VBD NP PP
| T~
caught the butterfly IN NP
N
with a net

A whole sentence is given the category S. A sentence normally rewrites
as a subject noun phrase and a verb phrase.
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Noun phrases. A noun is usualy embedded in a noun phrase (NP), a syn-
tactic unit of the sentence in which information about the noun is gath-
ered. The noun is the head of the noun phrase, the centra constituent
that determines the syntactic character of the phrase. Noun phrases are
usualy the arguments of verbs, the participants in the action, activity
or state described by the verb. Noun phrases normally consist of an op-
tional determiner, zero or more adjective phrases, a noun head, and then
perhaps some post-modifiers, such as prepositional phrases or clausal
modifiers, with the congtituents appearing in that order. Clausa mod-
ifiers of nouns are referred to as relative clauses. Here is a large noun
phrase that indicates many of these possibilities:

The homeless old man in the park that | tried to help yesterday

Prepositional phrases. Prepositional phrases (PPs) are headed by a
preposition and contain a noun phrase complement. They can appear
within al the other major phrase types. They are particularly common
in noun phrases and verb phrases where they usualy express spatial and
temporal locations and other attributes.

Verb phrases. Analogous to the way nouns head noun phrases, the verb
is the head of the verb phruse (VP). In genera, the verb phrase organizes
al dements of the sentence that depend syntactically on the verb (ex-
cept that in most syntactic theories the verb phrase does not contain the
subject noun phrase). Some examples of verb phrases appear in (3.33):

a. Getting to school on time was a struggle.
b. He was trying to keep his temper.

c. That woman quickly showed me the way to hide.

Adjective phrases. Complex adjective phrases (APs) are less common,
but encompass examples like the phrases shown in bold in these sen-
tences. She is very sure of herself; He seemed a man who was quite
certain to succeed.
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Phrase structure grammars

A syntactic analysis of a sentence tells us how to determine the meaning
of the sentence from the meaning of the words. For example, it will tell us
who does what to whom in the event described in a sentence. Compare:

Mary gave Peter a book.
Peter gave Mary a book.

Sentences (3.34) and (3.35) use the same words, but have different mean-
ings. In the first sentence, the book is transferred from Mary to Peter, in
the second from Peter to Mary. It is the word order that alows us to infer
who did what to whom.

Some languages like Latin or Russian permit many different ways of
ordering the words in a sentence without a change in meaning, and in-
stead use case markings to indicate who did what to whom. This type of
language is caled a free word order language, meaning that word order
isn't used to indicate who the doer is - word order is then usualy used
mainly to indicate discourse structure. Other languages such as English
are more restrictive in the extent to which words can move around in a
sentence. In English, the basic word order is Subject - Verb - Object:

The children (subject) should (auxiliary verb) eat spinach (object).

In genera, this order is modified only to express particular ‘mood’ cat-
egories. In interrogatives (or questions), the subject and first auxiliary
verb are inverted:

Should (auxiliary verb) the children (subject) eat spinach (object)?

If the statement would involve no auxiliary, a form of do appears in the
initial position (Did he cry?). In imperatives (commands or requests),
there is no subject (it is inferred to be the person who is addressed):

(3.38) Eat spinach!

DECLARATIVES

REWRITE RULES

START SYMBOL

Basic sentences are called declaratives when contrasted with interroga-
tives and imperatives.

The regularities of word order are often captured by means of rewrite
rules. A rewrite rule has the form ‘category — category*’ and states that
the symbol on the left side can be rewritten as the sequence of symbols
on the right side. To produce a sentence of the language, we start with
the start symbol ‘S (for sentence). Here is a simple set of rewrite rules.
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S - NPVP AT — the
AT NNS children

NP - {AT NN NNS — {students ]»
NP PP mountains
VP PP slept

VP - {VBD VBD - {ate }
VBD NP saw

P — INNP IN - {'”)

ofj

NN — cake

The rules on the righthand side rewrite one of the syntactic categories
(or part of speech symbols) introduced in the previous sections into a
word of the corresponding category. This part of the grammar is often
separated off as the lexicon. The nature of these rules is that a certain
syntactic category can be rewritten as one or more other syntactic cat-
egories or words. The possihilities for rewriting depend solely on the
category, and not on any surrounding context, so such phrase structure
grammars are commonly referred to as context-free grammars.

With these rules, we can derive sentences. Derivations (3.40) and (3.41)
are two simple examples.

s
- NPVP

-~ AT NNSVBD

— The children slept

S
- NPVP

— AT NNS VBD NP

— AT NNSVBD AT NN

— The children ate the cake

The more intuitive way to represent phrase structure is as a tree. We refer
to the leaf nodes of the tree as terminal nodes and to internal nodes as
nonterminal nodes. In such atree each nonterminal node and its immedi-
ate daughters, otherwise known as a local tree corresponds to the appli-
cation of a rewrite rule. The order of daughters generates the word order
of the sentence, and the tree has a single root node, which is the start
symbol of the grammar. Trees (3.42) and (3.43) correspond to deriva-
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(3.42)

(3.43)
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(3.44)
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tions (3.40) and (3.41). Each node in the tree shows something that we
are hypothesising to be a congtituent.

S
/\
NP VP
N |

AT NNS VBD

| | |
The children slept

S

/\
NP VP

/\ /\
AT NNS VBD NP

| l ! N
The children ate AT NN

the cake

A third and final way to show constituency is via a (labeled) bracketing.
Sets of brackets delimit congtituents and may be labeled to show the
category of the nonterminal nodes. The labeled bracketing for (3.43) is
(3.44):

[s [Np [aT The] [NNschildren]] [velvep atel [Np [ar the] [Nncakel]]l]

A property of most formalizations of natural language syntax in terms
of rewrite rules is recursivity: the fact that there are constellations in
which rewrite rules can be applied an arbitrary number of times. In our
example grammar, a PP contains an NP which can in turn contain an-
other PP. Thus we can get recursive expansions as in the example in
figure 3.1. Here, the sequence of prepositional phrases is generated by
multiple application of the rewrite rule cycle “NP — NP PP, PP — IN NP.”
The derivation applies the cycle twice, but we could apply it three, four,
or a hundred times.

Recursivity makes it possible for a single nonterminal symbol like VP or
NP to be expanded to a large humber of words. (For example, in figure 3.1
the symbol VP is expanded to nine words. ate the cake of the children in
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S
//\
NP VP
/\ /\
DT NNS VBD NP
\ \ 1 T T
the students ate NP PP
N T T~
DT NN IN NP
! I | T T
the cake of NP PP
T T
DT NN IN NP
I | 1 TN
the children in DT NN

the mountains

Figure 3.1 An example of recursive phrase structure expansion.

the mountains.) One consequence is that two words that were gener-
ated by a common rewrite rule and are syntactically linked can become
separated by intervening words as the derivation of a sentence proceeds.
These types of phenomena are called non-local dependencies because two
words can be syntactically dependent even though they occur far apart
in a sentence.

One example of a dependency that can be non-local is subject-verb
agreement, the fact that the subject and verb of a sentence agree in num-
ber and person. We have She walks, He walks, It walks versus | walk, You
walk, We walk, They walk. That is, the verb has the ending -s indicating
third person singular if and only if the subject is in the third person sin-
gular. Subject and verb agree even if other words and phrases intervene
as in the following example.

The women who found the wallet were given a reward.

If we looked only at immediate neighbors it would seem that we would
have to say the wallet was. Only a complete syntactic analysis of the
sentence reveals that The women is the subject and the form of to be has
to be in the plural.
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Another important case of non-local dependencies is the class known
as long-distance dependencies, such as wh-extraction.* The name is based
on the theory that phrases such as which book in (3.46b) are moved (or
extracted) from an underlying position (after the verb as in (3.46a)) to
their “surface” position (the beginning of the sentence as in (3.46b)).

a. Should Peter buy a book?

b. Which book should Peter buy?

Without making any commitment to such a movement theory, it is clear
that we have to recognize a long distance dependency between buy and
which book. Otherwise we would not be able to tell that book is an argu-
ment of buy.

v Non-loca phenomena are a chalenge for some Statistical NLP approa-
ches like n-grams that model local dependencies. An n-gram model
would predict that the word after wallet in (3.45) is was, not were. These
issues are further discussed at the beginning of chapter 11.

A final feature of many versions of phrase structure grammar is empty
nodes. Empty nodes occur when a nonterminal may be rewritten as noth-
ing. For example, noting that one can also say Eat the cake! without a
subject NP, one might suggest adding a rule NP — 0. An NP nonterminal
is then alowed to be rewritten as nothing. This is often represented by
putting a 0 or an e under the node in the tree. Using this notation, the
tree in (3.46b) could be given the structure in (3.47):

g
/\
NP s’
/\

T~
Which book M D S

‘ /\
should NP VP
NN
Peter VB NP
| |
buy e

2. In the speech literature, the term ‘long-distance dependencies regularly refers to any-
thing beyond the range of a trigram model. We have termed such effects ‘non-local depen-
dencies’ and have reserved the term ‘long-distance dependencies for its usud linguistic
meaning of a dependency that appears to be able to cross any number of nodes in a
phrase structure tree.
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The simple model of phrase structure that we have developed here
adopts a context-free view of language. For example, once we have ex-
panded ‘VP to ‘VBD NP and then to ‘sewed NP, we can replace NP with
whatever noun phrase we please. The context provided by the verb sewed
is inaccessible when we decide how to expand NP. This inaccessibility of
context is the key property of a context-free grammar. We could expand
VP to a natural phrase like sewed clothes, but we can as easily choose a
nonsensical expansion like sewed wood blocks.

v How to include necessary dependencies is a central topic in probabilis-
tic parsing, which we discuss in chapter 12.

Dependency: Arguments and adjuncts

Another important organizing notion is the concept of dependents. In a
sentence like:

Sue watched the man at the next table.

Sue and the man are dependents of a watching event. We will say that
they are the two arguments of the verb watch. The PP at the next table is
a dependent of man. It modifies man.

Most commonly, noun phrases are arguments of verbs. The arguments
of verbs can be described at various levels. One can classify the argu-
ments via semantic roles. The agent of an action is the person or thing
that is doing something, the patient is the person or thing that is having
something done to it, and other roles like instrument and goa describe
yet other classes of semantic relationships. Alternatively, one can de-
scribe the syntactic possibilities for arguments in terms of grammatical
relations. All English verbs take a subject, which is the noun phrase that
appears before the verb. Many verbs take an object noun phrase, which
normally appears immediately after the verb. Pronouns are in the sub-
ject case when they are subjects of a verb, and in the object case when
they are objects of a verb. In our earlier example, here repeated as sen-
tence (3.491, children is the subject of eat (the children are the agents
of the action of eating), and sweet candy is the object of eat (the sweet
candy is the thing being acted upon, the patient of the action):

Children eat sweet candy.
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Note that the morphologica form of candy does not change. In English,
pronouns are the only nouns that change their forms when used in the
object case.

Some verbs take two object noun phrases after the verb, both in the
object case:

She gave him the book.

In this sentence, him is the indirect object (describing the recipient, the
one who indirectly gets something) and the book is the direct object (de-
scribing the patient). Other such verbs are verbs of sending and verbs of
communication:

a She sent her mother the book.
b. She emailed him the letter.

Such verbs often alow an aternate expression of their arguments where
the recipient appears in a prepositiona phrase:

She sent the book to her mother.

Languages with case markings normally distinguish these NPs and ex-
press patients in the accusative case and recipients in the dative case.

There are systematic associations between semantic roles and gram-
matical functions, for example agents are usually subjects, but there are
also some dissociations. In Bill received a package from the mailman, it
is the mailman who appears to be the agent. The relationships between
semantic roles and grammatical functions are aso changed by voice a-
ternations (the one feature in table 3.3 which we did not discuss earlier).
Many language make a distinction between active voice and passive voice
(or smply active and passive). Active corresponds to the default way of
expressing the arguments of a verb: the agent is expressed as the subject,
the patient as the object:

Children eat sweet candy.

In the passive, the patient becomes the subject, and the agent is demoted
to an oblique role. In English this means that the order of the two argu-
ments is reversed, and the agent is expressed by means of a prepositiona
by-phrase. The passive is formed with the auxiliary be and the past par-
ticiple:
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Candy is eaten by children.

In other languages, the passive aternation might just involve changes in
case marking, and some morphology on the verb.

Subcategorization

As we have seen, different verbs differ in the number of entities (persons,
animals, things) that they relate. One such difference is the contrast be-
tween transitive and intransitive verbs. Transitive verbs have a (direct)
object, intransitive verbs don't:

a. She brought a bottle of whiskey.
b. She walked (along the river).

In sentence (3.55a), a bottle ofwhiskey is the object of brought. We cannot
use the verb bring without an object: we cannot say She brought. The
verb walk is an example of an intransitive verb. There is no object in
sentence (3.55). There is, however, a prepositional phrase expressing the
location of the activity.

Syntacticians try to classify the dependents of verbs. The first distinc-
tion they make is between arguments and adjuncts. The subject, object,
and direct object are arguments. In general, arguments express entities
that are centrally involved in the activity of the verb. Most arguments are
expressed as NPs, but they may be expressed as PPs, VPs, or as clauses:

a. We deprived him of food.
b. John knows that he is losing.

Arguments are divided into the subject, and all non-subject arguments
which are collectively referred to as complements.

Adjuncts are phrases that have a less tight link to the verb. Adjuncts
are always optiona whereas many complements are obligatory (for ex-
ample, the object of bring is obligatory). Adjuncts can also move around
more easily than complements. Prototypical examples of adjuncts are
phrases that tell us the time, place, or manner of the action or state that
the verb describes as in the following examples:

a. She saw a Woody Allen movie yesterday.
b. She saw a Woody Allen movie in Paris.
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c. She saw the Woody Allen movie with great interest.
d. She saw a Woody Allen movie with a couple of friends.

Subordinate clauses (sentences within a sentence) can aso be either
adjuncts or subcategorized arguments, and can express a variety of rela
tionships to the verb. In the examples we saw earlier in (3.28), (a) involves
an argument clause, while the rest are adjuncts.

Sometimes, it's difficult to distinguish adjuncts and complements. The
prepositional phrase on the table is a complement in the first sentence
(it is subcategorized for by put and cannot be omitted), an adjunct in the
second (it is optional):

She put the book on the table.
He gave his presentation on the stage.

The traditional argument/adjunct distinction is redly a reflection of the
categorical basis of traditional linguistics. In many cases, such as the
following, one seems to find an intermediate degree of selection:

a. | straightened the nail with a hammer.
b. He will retire in Florida.

It is not clear whether the PPs in italics should be regarded as being cen-
traly involved in the event described by the verb or not. Within a Sta-
tistical NLP approach, it probably makes sense to talk instead about the
degree of association between a verb and a dependent.

We refer to the classification of verbs according to the types of com-
plements they permit as subcategorization. We say that a verb subcate-
gorizes for a particular complement. For example, bring subcategorizes
for an object. Here is a list of subcategorized arguments with example
sentences.

= Subject. The children eat candy.

= Object. The children eat candy.

= Prepositional phrase. She put the book on the table.
s Predicative adjective. We made the man angry.

s Bare infinitive. She helped me walk.
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s Infinitive with to. She likesto walk.
m Participial phrase. She stopped singing that tune eventually.

= That-clause. She thinks that it will ruin tomorrow. The that can usu-
aly be omitted: She thinksit will ruin tomorrow.

= Question-form clauses. Sheiswondering why it is ruining in August.
She asked me what book | was reading.

While most of these complements are phrasal units that we have aready
seen, such as NPs and APs, the fina entries are not, in that they are a
unit bigger than an S. The clause why it is ruining in August consists of a
whole sentence it is ruining in August plus an additional constituent out
front. Such a “large clause” is referred to as an S (pronounced “S Bar”)
constituent. Relative clauses and main clause questions are aso anayzed
as S congtituents.

Often verbs have several possible patterns of arguments. A particular
set of arguments that a verb can appear with is referred to as a subcatego-
rizution frame. Here are some subcategorization frames that are common
in English.

= Intransitive verb. NP[subject]. The womun walked.
m Transitive verb. NP[subject], NPlobject]. John loves Mary.

= Ditransitive verb. NP[subject], NP[direct object], NP[indirect object].
Mary gave Peter flowers.

s Intransitive with PP. NP[subject], PP. I rent in Puddington.

= Transitive with PP. NP[subject], NP[object], PP. She put the book on the
table.

= Sentential complement. NP[subject], clause. I know (that) she likes
you.

= Transitive with sentential complement. NP[subj], NP[obj], clause. She
told me that Gary is coming on Tuesday.

Subcategorization frames capture syntactic regularities about comple-
ments. There are also semantic regularities which are caled selectional
restrictions or selectional preferences. For example, the verb bark prefers
dogs as subjects. The verb eat prefers edible things as objects:
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The Chihuahua barked all night.
| eat vegetables every day.

Sentences that violate selectional preferences sound odd:
a The cut barked al night.

b. | eat philosophy every day.

v Selectional preferences are further discussed in section 8.4.

X' theory

Phrase structure rules as presented above do not predict any systematic-
ity in the way that phrases in natural languages are made, nor any reg-
ularities for the appearance of different kinds of dependents in clauses.
However, modern syntax has stressed that there are a lot of such regu-
larities. An important idea is that a word will be the head of a phrase.
The reason why we tak about noun phrases and prepositional phrases
is because they are a congtituent consisting of a noun or preposition re-
spectively, and al their dependents. The noun or preposition heads the
phrase.? Linguists have further argued that there is a broad systematicity
in the way dependents arrange themselves around a head in a phrase. A
head forms a smal constituent with its complements. This constituent
can be modified by adjuncts to form a bigger constituent, and finally this
constituent can combine with a specifier, a subject or something like a
determiner to form a maximal phrase. An example of the genera picture
is shown in (3.64):

NP
/\
Det N’
\ T T
the AP N’
& /\
definitive N PP

!
study ofsubcategorization

3. Recall, however, that verb phrases, as normaly described, are dightly anomaous, since
they include all the complements of the verb, but not the subject.
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The intermediate constituents are referred to as N’ nodes (pronounced
“N bar nodes’). This is basicaly a two bar level theory (where we think
of XP as X"), but is complicated by the fact that recursive adjunction of
modifiers is alowed at the N’ level to express that a noun can have any
number of adjectival phrase modifiers. Sometimes people use theories
with more or fewer bar levels.

The fina step of the argument is that while there may be differences
in word order, this general pattern of constituency is repeated across
phrase types. This idea is referred to as X' theory, where the X is taken
to represent a variable across lexical categories.

Phrase structure ambiguity

So far we have used rewrite rules to generate sentences. It is more com-
mon to use them in parsing, the process of reconstructing the deriva
tion(s) or phrase structure tree(s) that give rise to a particular seguence
of words. We call a phrase structure tree that is constructed from a sen-
tence a parse. For example, the tree in (3.43) is a parse of sentence (3.41).

In most cases, there are many different phrase structure trees that
could al have given rise to a particular sequence of words. A parser
based on a comprehensive grammar of English will usually find hundreds
of parses for a sentence. This phenomenon is called phrase structure
ambiguity or syntactic ambiguity. We saw an example of a syntactically
ambiguous sentence in the introduction, example (1.10): Our company
is training workers. One type of syntactic ambiguity that is particularly
frequent is attachment ambiguity.

Attachment ambiguities occur with phrases that could have been gen-
erated by two different nodes. For example, according to the grammar
in (3.39), there are two ways to generate the prepositional phrase with a
spoon in sentence (3.65):

The children ate the cake with a spoon.

It can be generated as a child of a verb phrase, as in the parse tree shown
in figure 3.2 (a), or as a child of one of the noun phrases, as in the parse
tree shown in figure 3.2 (b).

Different attachments have different meanings. The ‘high’ attachment
to the verb phrase makes a statement about the instrument that the chil-
dren used while eating the cake. The ‘low’ attachment to the noun phrase
tells us which cake was eaten (the cake with a spoon, and not, say, the
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(a) S
//\
NP VP
/\ /\
AT NNS VP PP
The children VBD NP IN NP
| N l N
ae AT NN with AT NN
| | \ \
the cake a spoon
(b) S
/\
NP VP
/\ /\
AT NNS  VBD NP
The children ate NP PP
/\ /\
AT NN IN NP
| | | N

the cake with AT NN

a spoon

Figure 3.2 An example of a prepositional phrase attachment ambiguity.

cake with icing). So resolving attachment ambiguities can be important
for finding the correct semantic interpretation.
A much-studied subclass of syntactic ambiguity is the phenomenon
carDeN paTHs  Of garden pathing. A garden path sentence leads you along a path that
suddenly turns out not to work. For example, there might turn out to be
additional words in the sentence that do not seem to belong there:

(3.66) The horse raced past the barn fell.

Sentence (3.66) from (Bever 1970) is probably the most famous example
of a garden path sentence. By the time most people get to the word barn,
they have constructed a parse that roughly corresponds to the meaning
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‘The horse ran past the barn.” But then there is an additional word fell
that cannot be incrementally added to this parse. We have to backtrack
to raced and construct a completely different parse, corresponding to
the meaning The horse fell after it had been raced past the burn. Garden
pathing is the phenomenon of first being tricked into adopting a spurious
parse and then having to backtrack to try to construct the right parse.

Garden-path sentences are rarely a problem in spoken language. Se-
mantic preferences, the generosity of speakers in following communica
tive maxims, and intonational patterns all usualy prevent us from garden
pathing (MacDonald et al. 1994; Tanenhaus and Trueswell 1995). We can
see this in sentence (3.66) where an intonational break between horse and
raced would tip the hearer off that raced introduces a reduced rdative
clause, not the verb of the main clause. However, garden-pathing can be
a rea problem when reading complex sentences of written English.

We have seen examples of sentences with more than one parse due
to syntactic ambiguity. Most sentences are of this type. But it is aso
possible that a sentence will have no parse at al. The reason could be that
a rule was used in the generation of the sentence that is not covered by
the grammar. The other possihility is that the sentence is ungrammatical
or not syntactically well-formed. Here is an example of an ungrammatical
sentence.

*Slept children the.

It is important to distinguish ungrammaticality from semantic abnormal-
ity. Sentences like the following are odd, but they are jarring because
their semantic interpretation is incoherent whereas (3.67) does not have
an interpretation at al.

a. Colorless green ideas deep furioudly.
b. The cat barked.

People often use a hash mark (#) to indicate semantic, pragmatic, or cul-
tural oddness, as opposed to the marks we introduced earlier for syntac-
tic illformedness.

Semantics and Pragmatics

Semantics is the study of the meaning of words, constructions, and utter-
ances. We can divide semantics into two parts, the study of the meaning
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of individual words (or lexical semantics) and the study of how meanings
of individua words are combined into the meaning of sentences (or even
larger units).

One way to approach lexical semantics is to study how word meanings
are related to each other. We can organize words into a lexical hierarchy,
as is the case, for example, in WordNet, which defines hypernymy and
hyponymy. A hypernym or hyperonym* is a word with a more genera
sense, for example, animal is a hypernym of cat. A hyponym is a word
with a more specialized meaning: cut is a hyponym of animal. (In generd,
if wlis a hypernym of w2, then w? is a hyponym of w'.)) Antonyms are
words with opposite meanings: hot and cold or long and short. The part-
whole relationship is caled meronymy. The word tire is a meronym of
car and leaf is a meronym of tree. The whole corresponding to a part is
caled a holonym.

Synonyms are words with the same meaning (or very similar meaning):
car and automobile are synonyms. Homonyms are words that are written
the same way, but are (historically or conceptualy) realy two different
words with different meanings which seem unrelated. Examples are suit
(‘lawsuit’ and ‘set of garments’) and bunk (‘river bank’ and ‘financia insti-
tution’). If a word's meanings (or senses) are related, we call it a polyseme.
The word brunch is polysemous because its senses (‘nhatural subdivision
of a plant’ and ‘a separate but dependent part of a central organization’)
are related. Lexica ambiguity can refer to both homonymy and polysemy.
The subcase of homonymy where the two words are not only written the
same way, but aso have identical pronunciation, is caled homophony. So
the words buss for a species of fish and bass for a low-pitched sound are
homonyms, but they are not homophones.

v Disambiguating word senses is the topic of chapter 7.

Once we have the meanings of individual words, we need to assemble
them into the meaning of the whole sentence. That is a hard problem
because natural language often does not obey the principle of composi-
tionality by which the meaning of the whole can be drictly predicted from
the meaning of the parts. The word white refers to very different colors
in the following expressions:

white paper, white hair, white skin, white wine
White hair is grey, a white skin really has a rosy color, and white wine

4. The latter is prescriptively correct. The former is more commonly used.
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is actualy yellow (but yellow wine doesn't sound very appealing). The
groupings white hair, white skin, and white wine are examples of colloca
tions. The meaning of the whole is the sum of the meanings of the part
plus some additional semantic component that cannot be predicted from
the parts.

v Collocations are the topic of chapter 5.

If the relationship between the meaning of the words and the meaning
of the phrase is completely opague, we call the phrase an idiom. For ex-
ample, the idiom to kick the bucket describes a process, dying, that has
nothing to do with kicking and buckets. We may be able to explain the
historical origin of the idiom, but in today’s language it is completely
non-compositional. Another example is the noun-noun compound cur-
riuge return for the character that marks the end of a line. Most younger
speakers are not aware of its origina meaning: returning the carriage of
a typewriter to its position on the left margin of the page when starting
anew line.

There are many other important problems in assembling the meanings
of larger units, which we will not discuss in detail here. One example
is the problem of scope. Quantifiers and operators have a scope which
extends over one or more phrases or clauses. In the following sentence,
we can either interpret the quantifier everyone as having scope over the
negative not (meaning that not one person went to the movie), or we can
interpret the negation as having scope over the quantifier (meaning that
a least one person didn't go to the movie):

Everyone didn’t go to the movie.

In order to derive a correct representation of the meaning of the sentence,
we need to determine which interpretation is correct in context.

The next larger unit to consider after words and sentences is a dis-
course. Studies of discourse seek to elucidate the covert relationships
between sentences in a text. In a narrative discourse, one can seek to
describe whether a following sentence is an example, an elaboration, a
restatement, etc. In a conversation one wants to model the relaionship
between turns and the kinds of speech acts involved (questions, state-
ments, requests, acknowledgments, etc.). A central problem in discourse
analysis is the resolution of anaphoric relations.

a. Mary helped Peter get out of the cab. He thanked her.
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b. Mary helped the other passenger out of the cab. The man had asked
her to help him because of his foot injury.

Anaphoric relations hold between noun phrases that refer to the same
person or thing. The noun phrases Peter and He in sentence (3.71a) and
the other passenger and The man in sentence (3.71b) refer to the same
person. The resolution of anaphoric relations is important for informa-
tion extraction. In information extraction, we are scanning a text for a
specific type of event such as natural disasters, terrorist attacks or cor-
porate acquisitions. The task is to identify the participants in the event
and other information typical of such an event (for example the purchase
price in a corporate merger). To do this task well, the correct identi-
fication of anaphoric relations is crucia in order to keep track of the
participants.

Hurricane Hugo destroyed 20,000 Florida homes. At an estimated cost
of one hillion dollars, the disaster has been the most costly in the state's
history.

If we identify Hurricane Hugo and the disaster as referring to the same
entity in mini-discourse (3.72), we will be able to give Hugo as an an-
swer to the question: Which hurricanes caused more than a billion dollars
worth of damage?

Discourse andlysis is part of pragmatics, the study of how knowledge
about the world and language conventions interact with literal meaning.
Anaphoric relations are a pragmatic phenomenon since they are con-
strained by world knowledge. For example, for resolving the relations
in discourse (3.72), it is necessary to know that hurricanes are disasters.
Most areas of pragmatics have not received much attention in Statistical
NLP, both because it is hard to model the complexity of world knowledge
with statistical means and due to the lack of training data. Two areas that
are beginning to receive more attention are the resolution of anaphoric
relations and the modeling of speech acts in dialogues.

Other Areas

Linguistics is traditionally subdivided into phonetics, phonology, mor-
phology, syntax, semantics, and pragmatics. Phonetics is the study of the
physical sounds of language, phenomena like consonants, vowels and in-
tonation. The subject of phonology is the structure of the sound systems
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in languages. Phonetics and phonology are important for speech recogni-
tion and speech synthesis, but since we do not cover speech, we will not
cover them in this book. We will introduce the small number of phonetic
and phonological concepts we need wherever we first refer to them.

In addition to areas of study that deal with different levels of language,
there are dso subfields of linguistics that look at particular aspects of
language. Sociolinguistics studies the interactions of socia organization
and language. The change of languages over time is the subject of histori-
cal linguistics. Linguistic typology looks a how languages make different
use of the inventory of linguistic devices and how they can be classified
into groups based on the way they use these devices. Language acquisi-
tion investigates how children learn language. Psycholinguistics focuses
on issues of real-time production and perception of language and on
the way language is represented in the brain. Many of these areas hold
rich possibilities for making use of quantitative methods. Mathematical
linguistics is usually used to refer to approaches using non-quantitative
mathematical methods.

3.5 Further Reading

In-depth overview articles of a large number of the subfields of linguistics
can be found in (Newmeyer 1988). In many of these areas, the influence
of Statistical NLP can now be felt, be it in the widespread use of corpora,
or in the adoption of quantitative methods from Statistical NLP.

De Saussure 1962 is a landmark work in structuralist linguistics. An
excellent in-depth overview of the field of linguistics for non-linguists is
provided by the Cambridge Encyclopedia of Language (Crystal 1987). See
also (Pinker 1994) for a recent popular book. Marchand (1969) presents
an extremely thorough study of the possibilities for word derivation in
English. Quirk et al. (1985) provide a comprehensive grammar of English.
Finaly, a good work of reference for looking up syntactic (and many mor-
phological and semantic) terms is (Trask 1993).

Good introductions to speech recognition and speech synthesis are:
(Waibel and Lee 1990; Rabiner and Juang 1993; Jelinek 1997).
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Exercises

Exercise 3.1 (1}
What are the parts of speech of the words in the following paragraph?

The lemon is an essential cooking ingredient. Its sharply fragrant juice and
tangy rind is added to sweet and savory dishes in every cuisine. This enchanting
book, written by cookbook author John Smith, offers a wonderful array of recipes
celebrating this internationally popular, intensely flavored fruit.

Exercise 3.2 [*]
Think of five examples of noun-noun compounds.

Exercise 3.3 [x]
Identify subject, direct object and indirect object in the following sentence.

He baked her an apple pie.

Exercise 3.4 [+]
What is the difference in meaning between the following two sentences?

a Mary defended her.
b. Mary defended herself.

Exercise 3.5 [*]

What is the standard word order in the English sentence (a) for declaratives,
(b) for imperatives, (c) for interrogatives?

Exercise 3.6 [*}

What are the comparative and superlative forms for the following adjectives and
adverbs?

good, well, effective, big, curious, bad

Exercise 3.7 [*]

Give base form, third singular present tense form, past tense, past participle,
and present participle for the following verbs.

throw, do, laugh, change, carry, bring, dream

Exercise 3.8 [*]
Transform the following sentences into the passive voice.

a. Mary carried the suitcase up the stairs.
b. Mary gave John the suitcase.
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Exercise 3.9 [*]
What is the difference between a preposition and a particle? What grammatical
function does in have in the following sentences?

a Mary lives in London.

b. When did Mary move in?

c. She putsin alot of hours at work.

d. She put the document in the wrong folder.

Exercise 3.10 [*]
Give three examples each of transitive verbs and intransitive verbs.

Exercise 3.11 [*]
What is the difference between a complement and an adjunct? Are the itdi-
cized phrases in the following sentences complements or adjuncts? What type
of complements or adjuncts?

a. She goes to Church on Sundays.

b. She went to London.

c. Peter relies on Mary for help with his homework.

d. The book is lying on the table.

e. She watched him with a telescope.

Exercise 3.12 [*]

The italicized phrases in the following sentences are examples of attachment
ambiguity. What are the two possible interpretations?

Mary saw the man with the telescope.
The company experienced growth in classified advertising and preprinted inserts.

Exercise 3.13 [*]
Are the following phrases compositional or non-compositional?
to beat around the bush, to eat an orange, to kick butt, to twist somebody’s

arm, help desk, computer program, desktop publishing, book publishing, the
publishing industry

Exercise 3.14 [*]
Are phrasal verbs compositional or non-compositional ?
Exercise 3.15 [*]

In the following sentence, either a few actors or everybody can take wide scope
over the sentence. What is the difference in meaning?

A few actors are liked by everybody.
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THis cHapTER  begins with some brief advice on getting set up to do
corpus-based work. The main requirements for Statistical NLP work are
computers, corpora, and software. Many of the details of computers and
corpora are subject to rapid change, and so it does not make sense to
dwell on these. Moreover, in many cases, one will have to make do with
the computers and corpora at oneis local establishment, even if they are
not in al respects ideal. Regarding software, this book does not attempt
to teach programming skills as it goes, but assumes that a reader inter-
ested in implementing any of the algorithms described herein can aready
program in some programming language. Nevertheless, we provide in
this section a few pointers to languages and tools that may be generaly
useful.

After that the chapter covers a number of interesting issues concerning
the formats and problems one encounters when dealing with éraw datai -
plain text in some electronic form. A very important, if often neglected,
issue is the low-level processing which is done to the text before the rea
work of the research project begins. As we will see, there are a number of
difficult issues in determining what is a word and what is a sentence. In
practice these decisions are generaly made by imperfect heuristic meth-
ods, and it is thus important to remember that the inaccuracies of these
methods affect all subsequent results.

Finaly the chapter turns to marked up data, where some process -
often a human being - has added explicit markup to the text to indicate
something of the structure and semantics of the document. This is often
helpful, but raises its own questions about the kind and content of the
markup used. We introduce the rudiments of SGML markup (and thus
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also xuL) and then turn to substantive issues such as the choice of tag
sets used in corpora marked up for part of speech.

4.1 Getting Set Up

4.1.1 Computers

Text corpora are usualy big. It takes quite a lot of computational re-
sources to deal with large amounts of text. In the early days of comput- f‘
ing, this was the major limitation on the use of corpora For example in
the earliest years of work on constructing the Brown corpus (the 1960s),
just sorting all the words in the corpus to produce a word list would take
17 hours of (dedicated) processing time. This was because the computer
(an 1BMm 7070) had the equivdent of only about 40 kilobytes of memory,
and so the sort agorithm had to store the data being sorted on tape
drives. Today one can sort this amount of data within minutes on even a
modest computer.

As well as needing plenty of space to store corpora, Statistical NLP
methods often consist of a step of collecting a large number of counts
from corpora, which one would like to access speedily. This means that
one wants a computer with lots of hard disk space, and lots of memory.
In a rapidly changing world, it does not make much sense to be more pre-
cise than this about the hardware one needs. Fortunately, all the change
isin a good direction, and often all that one will need is a decent personal
computer with its ram cheaply expanded (whereas even a few years ago,
a substantial sum of money was needed to get a suitably fast computer  §
with sufficient memory and hard disk space). ;

4.1.2 Corpora

A sdection of some of the main organizations that distribute text cor-
pora for linguistic purposes are shown in table 4.1. Most of these orga-
nizations charge moderate sums of money for corpora.! If your budget
does not extend to this, there are now numerous sources of free text,
ranging from email and web pages, to the many books and (maga)zines

1. Prices vary enormoudy, but are normally in the range of US$100-2000 per CD for ’
academic and nonprofit organizations, and reflect the considerable cost of collecting and
processing material.
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Linguistic Data Consortium ( LDC) http://www.ldc.upenn.edu
European Language Resources Association ( ELRA) http://www.icp.grenet.fr/ELRA/
International Computer Archive of Modern English ICAME)  http://nora.hd.uib.no/icame.htmi
Oxford Text Archive (OTA) http://ota.ahds.ac.uk/

Child Language Data Exchange System (CHILDES) http://childes.psy.cmu.edu/

REPRESENTATIVE
SAMPLE

Table 4.1 Major suppliers of electronic corpora with contact URLs.

that are available free on the web. Such free sources will not bring you
linguistically-marked-up corpora, but often there are tools that can do
the task of adding markup automatically reasonably well, and at any rate,
working out how to deal with raw text brings its own challenges. Further
resources for online text can be found on the website.

When working with a corpus, we have to be careful about the valid-
ity of estimates or other results of statistical analysis that we produce.
A corpus is a specid collection of textual material collected according to
a certain set of criteria. For example, the Brown corpus was designed
as a representative sample of written American English as used in 1961
(Francis and Kucera 1982: S-6). Some of the criteria employed in its
construction were to include particular texts in amounts proportional
to actua publication and to exclude verse because Tit presents specia
linguistic problemsi (p. 5).

As a result, estimates obtained from the Brown corpus do not neces-
sarily hold for British English or spoken American English. For example,
the estimates of the entropy of English in section 2.2.7 depend heavily on
the corpus that is used for estimation. One would expect the entropy of
poetry to be higher than that of other written text since poetry can flout
semantic expectations and even grammar. So the entropy of the Brown
corpus will not help much in assessing the entropy of poetry. A more
mundane example is text categorization (see chapter 16) where the per-
formance of a system can deteriorate significantly over time because a
sample drawn for training a one point can lose its representativeness
after a year or two.

The general issue is whether the corpus is a represenrutive sample of
the population of interest. A sample is representative if what we find
for the sample adso holds for the general population. We will not dis
cuss methods for determining representativeness here since this issue
is dealt with a length in the corpus linguistics literature. We aso refer
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BALANCEDCORPUS  the reader to this literature for creating balanced corpora, which are put
together so as to give each subtype of text a share of the corpus that is
proportional to some predetermined criterion of importance. In Statis
tical NLP, one commonly receives as a corpus a certain amount of data
from a certain domain of interest, without having any say in how it is
congtructed. In such cases, having more training text is normaly more
useful than any concerns of baance, and one should simply use dl the
text that is available.

In summary, there is no easy way of determining whether a corpus is
representative, but it is an important issue to keep in mind when doing
Statistica NLP work. The minimal questions we should attempt to answer
when we select a corpus or report results are what type of text the corpus
is representative of and whether the results obtained will transfer to the
domain of interest.

v The effect of corpus variability on the accuracy of part-of-speech tag-
ging is discussed in section 10.3.2.

4.1.3 Software

There are many programs available for looking at text corpora and ana
lyzing the data that you see. In general, however, we assume that readers
will be writing their own software, and so al the software that is really
needed is a plain text editor, and a compiler or interpreter for a lan-
guage of choice. However, certain other tools, such as ones for searching
through text corpora can often be of use. We briefly describe some such
tools later.

Text editors

You will want a plain text editor that shows fairly literally what is actually
in the file. Fairly standard and cheap choices are Emacs for Unix (or
Windows), TextPad for Windows, and BBEdit for Macintosh.

Regular expressions

In many places and in many programs, editors, etc., one wishes to find
certain patterns in text, that are often more complex than a simple match
against a sequence of characters. The most general widespread notation
REGULAR expressions  fOF such matches are regular expressions which can describe patterns
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that are aregular language, the kind that can be recognized by a finite
state machine. If you are not already familiar with regular expressions,
you will want to become familiar with them. Regular expressions can be
used in many plain text editors (Emacs, TextPad, Nisus, BBEdit,...), with
many tools (such as grep and sed), and as built-ins or libraries in many
programming languages (such as Pet-l, C, ...). Introductions to regular
expressions can be found in (Hopcroft and Ullman 1979; Sipser 1996;
Friedl 1997).

Programming languages

Mogt Statistical NLP work is currently done in C/C++. The need to ded
with large amounts of data collection and processing from large texts
means that the efficiency gains of coding in alanguage like C/C++ are
generaly worth it. But for a lot of the ancillary processing of text, there
are many other languages which may be more economical with human
labor. Many people use Perl for general text preparation and reformat-
ting. Its integration of regular expressions into the language syntax is
particularly powerful. In general, interpreted languages are faster for
these kinds of tasks than writing everything in C. Old timers might till
use awk rather than Pert - even though what you can do with it is rather
more limited. Another choice, better liked by programming purists is
Python, but using regular expressions in Python just is not as easy as
Perl. One of the authors still makes considerable use of Prolog. The built-
in database facilities and easy handling of complicated data structures
makes Prolog excel for some tasks, but again, it lacks the easy accessto
regular expressions available in perl. There are other languages such as
SNOBOL/SPITBOL or Icon developed for text computing, and which are
liked by some in the humanities computing world, but their use does
not seem to have permeated into the Statisticad NLP community. In the
last few years there has been increasing uptake of Java. While not as
fast as C, Java has many other appealing features, such as being object-
oriented, providing automatic memory management, and having many
useful libraries.

Programming techniques

This section is not meant as a subgtitute for a general knowledge of com-
puter agorithms, but we briefly mention a couple of useful tips.
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Coding words. Normally Statistical NLP systems deal with a large num-
ber of words, and programming languages like C(++) provide only quite
limited facilities for dealing with words. A method that is commonly used
in Statistical NLP and Information Retrieval is to map words to numbers
on input (and only back to words when needed for output). This gives a
lot of advantages because things like equality can be checked more easily
and quickly on numbers. It aso maps al tokens of a word to its type,
which has a single number. There are various ways to do this. One good
way is to maintain a large hash table (a hash function maps a set of ob-
jects into a specificed range of integers, for example, [0,...,127]). A hash
table dlows one to see efficiently whether a word has been seen before,
and if so return its number, or else add it and assign a new number. The
numbers used might be indices into an array of words (especialy effec-
tive if one limits the application to 65,000 or fewer words, so they can
be stored as 16 bit numbers) or they might just be the address of the
canonical form of the string as stored in the hashtable. This is especially
convenient on output, as then no conversion back to a word has to be
done: the string can just be printed.

There are other useful data structures such as various kinds of trees.
See a book on agorithms such as (Cormen et a. 1990) or (Frakes and
Baeza- Y ates 1992).

Collecting count data. For alot of Statistical NLP work, there is a first
step of collecting counts of various observations, as a basis for estimating
probabilities. The seemingly obvious way to do that is to build a big data
structure (arrays or whatever) in which one counts each event of interest.
But this can often work badly in practice since this mode requires a huge
memory address space which is being roughly randomly accessed. Unless
your computer has enough memory for al those tables, the program will
end up swapping a lot and will run very slowly. Often a better approach is
for the data collecting program to simply emit a token representing each
observation, and then for a follow on program to sort and then count
these tokens. Indeed, these latter steps can often be done by existing
system utilities (such as sort and unig on Unix systems). Among other
places, such a dtrategy is very successfully used in the CMU-Cambridge
Statistical Language Modeling toolkit which can be obtained from the web
(see website).

"1
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MARKUP
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OCR

Text will usually come in either a raw format, or marked up in some
way. Markup is a term that is used for putting codes of some sort into a
computer file, that are not actually part of the text in the file, but explain
something of the structure or formatting of that text. Nearly all computer
systems for dealing with text use mark-up of some sort. Commercia
word processing software uses markup, but hides it from the user by
employing WYsIwYG (What You See Is What You Get) display. Normally,
when dealing with corpora in Statistical NLP, we will want explicit markup
that we can see. This is part of why the first tool in a corpus linguistis
toolbox is a plain text editor.

There are a number of features of text in human languages that can
make them difficult to process automaticaly, even at a low level. Here
we discuss some of the basic problems that one should be aware of. The
discussion is dominated by, but not exclusively concerned with, the most
fundamental problems in English text.

Low-level formatting issues
Junk formatting/content

Depending on the source of the corpus, there may be various formatting
and content that one cannot deal with, and is just junk that needs to be
filtered out. This may include: document headers and separators, type-
setter codes, tables and diagrams, garbled data in the computer file, etc.
If the data comes from OCR (Optical Character Recognition), the OCR pro-
cess may have introduced problems such as headers, footers and floating
material (tables, figures, and footnotes) breaking up the paragraphs of
the text. There will aso usualy be OCR errors where words have been
misrecognized. If your program is meant to deal with only connected En-
glish text, then other kinds of content such as tables and pictures need
to be regarded as junk. Often one needs a filter to remove junk content
before any further processing begins.

Uppercase and lowercase

The original Brown corpus was al capitas (a x before a letter was used to
indicate a capita letter in the original source text). All uppercase text is
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rarely seen these days, but even with modern texts, there are questions of
how to treat capitaization. In particular, if we have two tokens that are
identical except that one has certain letters in uppercase, should we treat
them as the same? For many purposes we would like to treat the, The,

and THE as the same, for example if we just want to do a study of the

usage of definite articles, or noun phrase structure. This is easily done
by converting al words to upper- or lowercase, but the problem is that
a the same time we would normally like to keep the two types of Brown
in Richard Brown and brown paint distinct. In many circumstances it is
easy to distinguish proper names and hence to keep this distinction, but
sometimes it is not. A simple heuristic is to change to lowercase letters
capital letters at the start of a sentence (where English regularly capi-
taizes al words) and in things like headings and titles when there is a
series of words that are al in capitals, while other words with capital let-
ters are assumed to be names and their uppercase letters are preserved.
This heuristic works quite well, but naturally, there are problems. The
first problem is that one has to be able to correctly identify the ends of
sentences, which is not always easy, as we discuss later. In certain gen-
res (such as Winnie the Pooh), words may be capitalized just to stress that
they are making a Very Important Point, without them indicating a proper
name. At any rate, the heuristic will wrongly lowercase names that ap-
pear sentence initialy or in al uppercase sequences. Often this source of
error can be tolerated (because regular words are usualy more common
than proper names), but sometimes this would badly bias estimates. One
can attempt to do better by keeping lists of proper names (perhaps with
further information on whether they name a person, place, or company),
but in general there is not an easy solution to the problem of accurate
proper name detection.

Tokenization: What is a word?

Normally, an early step of processing is to divide the input text into units
called tokens where each is either a word or something else like a number
or a punctuation mark. This process is referred to as tokenization. The
treatment of punctuation varies. While normally people want to keep sen-
tence boundaries (see section 4.2.4 below), often sentence-internal punc-
tuation has just been stripped out. This is probably unwise. Recent work
has emphasized the information contained in al punctuation. No mat-
ter how imperfect a representation, punctuation marks like commas and
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dashes give some clues about the macro structure of the text and what is
likely to modify what.

The question of what counts as a word is a vexed one in linguistics,
and often linguists end up suggesting that there are words at various lev-
els, such as phonologica words versus syntactic words, which need not
al be the same. What is a humble computational linguist meant to do?
Kucera and Francis (1967) suggested the practicad notion of a graphic
word which they define as ia string of contiguous alphanumeric charac-
ters with space on either side; may include hyphens and apostrophes, but
no other punctuation marks® But, unfortunately, life is not that simple,
even if one is just looking for a practical, workable definition. Kucera
and Francis seem in practice to use intuition, since they regard as words
numbers and monetary amounts like $22.50 which do not strictly seem to
obey the definition above. And things get considerably worse. Especially
if using online material such as newsgroups and web pages for data, but
even if sticking to newswires, one finds all sorts of oddities that should
presumably be counted as words, such as references to Micro$oft or the
web company C| net, or the various forms of smilies made out of punctu-
ation marks, such as:-). Even putting aside such creatures, working out
word tokens is a quite difficult affair. The main clue used in English is
the occurrence of whitespace - a space or tab or the beginning of a new
line between words - but even this signal is not necessarily reliable. What
are the main problems?

Periods

Words are not always surrounded by white space. Often punctuation
marks attach to words, such as commas, semicolons, and periods (full
stops). It a first seems easy to remove punctuation marks from word
tokens, but this is problematic for the case of periods. While most peri-
ods are end of sentence punctuation marks, others mark an abbreviation
such as in etc. or Calif. These abbreviation periods presumably should
remain as part of the word, and in some cases keeping them might be im-
portant so that we can distinguish Wash., an abbreviation for the state of
Washington, from the capitalized form of the verb wash. Note especially
that when an abbreviation like etc. appears at the end of the sentence,
then only one period occurs, but it serves both functions of the period,
simultaneously! An example occurred with Calif. earlier in this para-
graph. Within morphology, this phenomenon is referred to as haplology.
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The issue of working out which punctuation marks do indicate the end
of a sentence is discussed further in section 42.4.

Single apostrophes

It is a difficult question to know how to regard English contractions such
as I'll or isn’t. These count as one graphic word according to the definition
above, but many people have a strong intuition that we really have two
words here as these are contractions for | will and is not. Thus some
processors (and some corpora, such as the Penn Treebank) split such
contractions into two words, while others do not. Note the impact that
not splitting them has. The traditional first syntax rule:

S — NP VP

stops being obvioudy true of sentences involving contractions such as
[im right. On the other hand, if one does split, there are then funny
words like ’s and n’t in your data.

Phrases such as the dogis and the childis, when not abbreviations for
the dog is or the dog has, are commonly seen as containing dogis as the
genitive or possessive case of dog. But as we mentioned in section 3.1.1,
this is not actually correct for English where ’s is a clitic which can at-
tach to other elements in a noun phrase, such as in The house I rented
yesterdayis garden is really big. Thus it is again unclear whether to re-
gard dogis as one word or two, and again the Penn Treebank opts for the
latter. Orthographic-word-final single quotations are an especialy tricky
case. Normally they represent the end of a quotation - and so should not
be part of a word, but when following an s, they may represent an (unpro-
nounced) indicator of a plural possessive, as in the boysi toys - and then
should be treated as part of the word, if other possessives are being so
treated. There is no easy way for a tokenizer to determine which function
is intended in many such cases.

Hyphenation: Different forms representing the same word

Perhaps one of the most difficult areas is dealing with hyphens in the
input. Do sequences of letters with a hyphen in between count as one
word or two? Again, the intuitive answer seems to be sometimes one,
sometimes two. This reflects the many sources of hyphens in texts.
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One source is typographical. Words have traditionally been broken and
hyphens inserted to improve justification of text. These line-breaking hy-
phens may be present in data if it comes from what was actualy typeset.
It would seem to be an easy problem to just look for hyphens at the end
of a line, remove them and join the part words at the end of one line and
the beginning of the next. But again, there is the problem of haplology.
If there is a hyphen from some other source, then after that hyphen is
regarded as a legitimate place to break the text, and only one hyphen
appears not two. So it is not dways correct to delete hyphens at the
end of aline, and it is difficult in general to detect which hyphens were
line-breaking hyphens and which were not.

Even if such line-breaking hyphens are not present (and they usually
are not in truly electronic texts), difficult problems remain. Some things
with hyphens are clearly best treated as a single word, such as e-mail
or co-operate or A-l-plus (asin A-l -plus commercial paper, a financia
rating). Other cases are much more arguable, athough we usually want
to regard them as a single word, for example, non-lawyer, pro-Arab, and
so-culled. The hyphens here might be termed lexical hyphens. They are
commonly inserted before or after small word formatives, sometimes for
the purpose of splitting up vowel sequences.

The third class of hyphens is ones inserted to help indicate the cor-
rect grouping of words. A common copy-editing practice is to hyphenate
compound pre-modifiers, as in the example earlier in this sentence or in
examples like these:

a. the once-quiet study of superconductivity
b. a tough regime of business-conduct rules
c. the auminum-export ban

d. a text-based medium

And hyphens occur in other places, where a phrase is seen as in some
sense quotative or as expressing a quantity or rate:

a the idea of a child-as-required-yuppie-possession must be motivating
them

b. a fina Titake-it-or-leave-itT offer

c. the 90-cent-an-hour raise
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d. the 26-year-old

In these cases, we would probably want to treat the things joined by hy-
phens as separate words. In many corpora this type of hyphenation is
very common, and it would greatly increase the size of the word vocab-
ulary (mainly with items outside a dictionary) and obscure the syntactic
structure of the text if such things were not split apart into separate
words.?

A particular problem in this area is that the use of hyphens in many
such cases is extremely inconsistent. Some texts and authorities use
cooperate, while others use co-operate. As another example, in the Dow
Jones newswire, one can find all of database, data-base and data base
(the first and third are commonest, with the former appearing to domi-
nate in software contexts, and the third in discussions of company assets,
but without there being any clear semantic distinction in usage). Closer
to home, look back at the beginning of this section. When we initialy
drafted this chapter, we (quite accidentally) used al of markup, murk-up
and mark(ed) up. A careful copy editor would catch this and demand con-
sistency, but a lot of the text we use has never been past a careful copy
editor, and at any rate, we will commonly use texts from different sources
which often adopt different conventions in just such matters. Note that
this means that we will often have multiple forms, perhaps some treated
as one word and others as two, for what is best thought of as a single
lexeme (a single dictionary entry with a single meaning).

Finally, while British typographic conventions put spaces between
dashes and surrounding words, American typographic conventions nor-
mally have a long dash butting straight up against the words-like this.
While sometimes this dash will be rendered as a specia character or as
multiple dashes in a computer file, the limitations of traditional com-
puter character sets means that it can sometimes be rendered just as a
hyphen, which just further compounds the difficulties noted above.

The same form representing multiple éwords”’

In the main we have been collapsing distinctions and suggesting that
one may wish to regard variant sequences of characters as redly the

2. One possihility is to split things apart, but to add markup, as discussed later in this
chapter, which records that the origind was hyphenated. In this way no information is
lost.
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same word. It is important to aso observe the opposite problem, where
one might wish to treat the identical sequence of characters as different
words. This happens with homographs, where two lexemes have overlap-
ping forms, such as saw as a noun for a tool, or as the past tense of the
verb see. In such cases we might wish to assign occurrences of saw to
two different lexemes.

v Methods of doing this automatically are discussed in chapter 7.

Word segmentation in other languages

Many languages do not put spaces in between words a al, and so the
basic word division agorithm of breaking on whitespace is of no use a
al. Such languages include major East-Asian languages/scripts, such as
Chinese, Japanese, and Thai. Ancient Greek was also written by Ancient
Greeks without word spaces. Spaces were introduced (together with ac-
cent marks, etc.) by those who came afterwards. In such languages, word
segmentation is a much more mgjor and chalenging task.

While maintaining most word spaces, in German compound nouns are
written as a single word, for example Lebensversicherungsgesellschafts-
angestellter Elife insurance company employee.i In many ways this makes
linguistic sense, as compounds are a single word, a least phonologically.
But for processing purposes one may wish to divide such a compound,
or a least to be aware of the internal structure of the word, and this
becomes a limited word segmentation task. While not the rule, joining
of compounds sometimes also happens in English, especialy when they
are common and have a specialized meaning. We noted above that one
finds both data base and database. As another example, while hard disk
is more common, one sometimes finds harddisk in the computer press.

Whitespace not indicating a word break

Until now, the problems we have dealt with have mainly involved splitting
apart sequences of characters where the word divisions are not shown by
whitespace. But the opposite problem of wanting to lump things together
also occurs. Here, things are separated by whitespace but we may wish
to regard them as a single word. One possible case is the reverse of
the German compound problem. If one decides to treat database as one
word, one may wish to treat it as one word even when it is written as data
base. More common cases are things such as phone numbers, where we
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may wish to regard 9365 1873 as a single éword,i or in the cases of multi-
part names such as New York or San Francisco. An especialy difficult
case is when this problem interacts with hyphenation as in a phrase like
this one:

the New Y ork-New Haven railroad

Here the hyphen does not express grouping of just the immediately ad-
jacent graphic words - treating York-New as a semantic unit would be a
big mistake.

Other cases are of more linguistic interest. For many purposes, one
would want to regard phrasal verbs (make up, work out) as a single lex-
eme (section 3.1.4), but this case is especialy tricky since in many cases
the particle is separable from the verb (I couldnit work the answer out),
and so in generd identification of possible phrasa verbs will have to be
left to subsequent processing. One might also want to treat as a single
lexeme certain other fixed phrases, such as in spite of, in order to, and be-
cause of; but typically a tokenizer will regard them as separate words. A
partial implementation of this approach occurs in the LOB corpus where
certain pairs of words such as because of are tagged with a single part of
speech, here preposition, by means of using so-called ditto tugs.

Variant coding of information of a certain semantic type

Many readers may have felt that the example of a phone number in the
previous section was not very recognizable or convincing because their
phone numbers are written as 812-4374, or whatever. However, even if
one is not dealing with multilingual text, any application deadling with
text from different countries or written according to different stylistic
conventions has to be prepared to dea with typographical differences. In
particular, some items such as phone numbers are clearly of one seman-
tic sort, but can appear in many formats. A selection of formats for phone
numbers with their countries, all culled from advertisements in one issue
of the magazine The Economist, is shown in table 4.2. Phone numbers var-
iously use spaces, periods, hyphens, brackets, and even slashes to group
digits in various ways, often not consistently even within one country.
Additionally, phone numbers may include international or nationa long
distance codes, or attempt to show both (as in the first three UK entries
in the table), or just show a local number, and there may or may not
be explicit indication of this via other marks such as brackets and plus
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Phone number Country ~ Phone number Country
01713780647 UK +45 43 48 60 60 Denmark
(44.171) 830 1007 UK 95-51-279648 Pakistan

+44 (0) 1225 753678 UK +411/284 3797 Switzerland
01256468551 UK (94-1) 866854 Sri Lanka

(202) 522-2230 USA +49 69 136-298 05 Germany
[-925-225-3000 USA 33134433226 France

212. 995.5402 USA ++31-20-5200161 The Netherlands

Table 4.2 Different formats for telephone numbers appearing in an issue of
The Economist.

signs. Trying to deal with myriad formats like this is a standard prob-
lem in information extraction. It has most commonly been dealt with by
building carefully handcrafted regular expressions to match formats, but
given the brittleness of such an approach, there is considerable interest
in automatic means for learning the formatting of semantic types.

v We do not cover information extraction extensively in this book, but
there is a little further discussion in section 10.6.2.

Speech corpora

Our discussion has concentrated on written text, but the transcripts of
speech corpora provide their own additional challenges. Speech corpora
normaly have more contractions, various sorts of more phonetic rep-
resentations, show pronunciation variants, contain many sentence frag-
ments, and include fillers like er and um. Example (4.4) - from the Switch-
board corpus available from the LDC - shows a typical extract from a
speech transcript:

Also | [cough] not convinced that the, at least the kind of people that |
work with, lim not convinced that thatis really, uh, doing much for the
progr-, for the, uh, drug problem.

Morphology

Another question is whether one wants to keep word forms like sit, sits
and sat separate or to collapse them. The issues here are similar to those
in the discussion of capitalization, but have traditionally been regarded
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as more linguistically interesting. At first, grouping such forms together
and working in terms of lexemes fedls as if it is the right thing to do. Do-
ing this is usualy referred to in the literature as stemming in reference to
a process that strips off affixes and leaves you with a stem. Alternatively,
the process may be referred to as lemmatization where one is attempting
to find the lemma or lexeme of which one is looking at an inflected form.
These latter terms imply disambiguation at the level of lexemes, such as
whether a use of lying represents the verb lie-lay éto prostrate oneselfi or
lie-lied 6to fib.’

Extensive empirical research within the Information Retrieva (IR) com-
munity has shown that doing stemming does not help the performance
of classic IR systems when performance is measured as an average over
gueries (Salton 1989; Hull 1996). There are always some queries for which
stemming helps a lot. But there are others where performance goes down.
This is a somewhat surprising result, especialy from the viewpoint of lin-
guistic intuition, and so it is important to understand why that is. There
are three main reasons for this.

One is that while grouping the various forms of a stem seems a good
thing to do, it often costs you a lot of information. For instance, while
operating can be used in a periphrastic tense form as in Bill is operating a
tractor (section 3.1.3), it is usually used in noun- and adjective-like uses
such as operating systems or operating costs. It is not hard to see why a
search for operating systems will perform better if it is done on inflected
words than if one instead searches for al paragraphs that contain operat-
and system. Or to consider another example, if someone enters business
and the stemmer then causes retrieval of documents with busy in them,
the results are unlikely to be beneficial.

Secondly, morphological analysis splits one token into several. How-
ever, often it is worthwhile to group closaly related information into
chunks, notwithstanding the blowout in the vocabulary that this causes.
Indeed, in various Statistical NLP domains, people have been able to im-
prove system performance by regarding frequent multiword units as a
single distinctive token. Often inflected words are a useful and effective
chunk size.

Thirdly, most information retrieval studies have been done on English
- athough recently there has been increasing multilingual work. English
has very little morphology, and so the need for deadling intelligently with
morphology is not acute. Many other languages have far richer systems
of inflection and derivation, and then there is a pressing need for mor-
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phological analysis. A full-form lexicon for such languages, one that sepa-
rately lists all inflected forms of all words, would smply be too large. For
instance, Bantu languages (spoken in central and southern Africa) display
rich verbal morphology. Here is a form from KiHaya (Tanzania). Note the
prefixes for subject and object agreement, and tense:

akabimiiha

a-ka-b& mu-ha
1SG-PAST-3PL-3SG-give
€l gave them to him.

For historical reasons, some Bantu language orthographies write many
of these morphemes with whitespace in between them, but in the lan-
guages with éconjunctivei orthographies, morphological analysis is badly
needed. There is an extensive system of pronoun and tense markers ap-
pearing before the verb root, and quite a few other morphemes that can
appear after the root, yielding a large system of combinatoric possibili-
ties. Finnish is another language famous for millions of inflected forms
for each verb.

One might be tempted to conclude from the paragraphs above that,
in languages with rich morphology, one would gain by stripping inflec-
tiona morphology but not derivational morphology. But this hypothesis
remains to be carefully tested in languages where there is sufficient in-
flectional morphology for the question to be interesting.

It is important to redlize that this result from IR need not apply to any
or al Statistical NLP applications. It need not even apply to al of IR.
Morphological analysis might be much more useful in other applications.
Stemming does not help in the non-interactive evaluation of IR systems,
where a query is presented and processed without further input, and the
results are evaluated in terms of the appropriateness of the set of docu-
ments returned. However, principled morphological analysis is vauable
inIR in an interactive context, the context in which IR should redly be
evaluated. A computer does not care about weird stems like busy from
business, but people do. They do not understand what is going on when
business is stemmed to busy and a document with busy in it is returned.

It is also the case that nobody has systematically studied the possi-
bility of letting people interactively influence the stemming. We believe
that this could be very profitable, for cases like saw (where you want to
stem for the sense éseei but not for the sense écutting implementi), or
derivational cases where in some cases you want the stems (arbitrary
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from arbitrariness), but in some you do not (busy from business). But the
suggestion that human input may be needed does show the difficulties of
doing automatic stemming in a knowledge-poor environment of the sort
that has often been assumed in Statistical NLP work (for both ideological
and practical reasons).

v Stemming and IR in generd are further discussed in chapter 15.

4.2.4 Sentences
What is a sentence?

The first answer to what is a sentence is isomething ending with a *.’,'?’
or 1.” We have dready mentioned the problem that only some periods
mark the end of a sentence: others are used to show an abbreviation, or
for both these functions at once. Nevertheless, this basic heuristic gets
one a long way: in genera about 90% of periods are sentence boundary
indicators (Riley 1989). There are a few other pitfalls to be aware of.
Sometimes other punctuation marks split up what one might want to
regard as a sentence. Often what is on one or the other or even both
sides of the punctuation marks colon, semicolon, and dash (%", and
‘—"} might best be thought of as a sentence by itself, as *’ in this example:

(4.6) The scene is written with a combination of unbridied passion and sure-
handed control: In the exchanges of the three characters and the rise and
fal of emotions, Mr. Weller has captured the heartbreaking inexorability
of separation.

Related to this is the fact that sometimes sentences do not nicely follow
in sequence, but seem to nest in awkward ways. While normally nested
things are not seen as sentences by themselves, but clauses, this classi-
fication can be strained for cases such as the quoting of direct speech,
where we get subsentences:

(4.7) 1ou remind meT she remarked, iof your mother.”

A second problem with such indirect speech is that it is standard type-
setting practice (particularly in North America) to place quotation marks
after sentence fina punctuation. Therefore, the end of the sentence is
not after the period in the example above, but after the close quotation
mark that follows the period.

The above remarks suggest that the essence of a heuristic sentence
division agorithm is roughly as in figure 4.1. In practice most systems
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» Place putative sentence boundaries after al occurrences of .?! (and
maybe ;: —)

» Move the boundary after following quotation marks, if any.
» Disgudlify a period boundary in the following circumstances:

- 1If it is preceded by a known abbreviation of a sort that does not nor-
mally occur word finaly, but is commonly followed by a capitaized
proper name, such as Prof. or vs.

- If it is preceded by a known &bbreviation and not followed by an
uppercase word. This will dea correctly with most usages of ab-
breviations like etc. or jr. which can occur sentence medialy or
findly.

» Disgudify a boundary with a ? or ! if:
- It is followed by a lowercase letter (or a known name).

» Regard other putative sentence boundaries as sentence boundaries.

Figure 4.1 Heuristic sentence boundary detection algorithm.

have used heuristic agorithms of this sort. With enough effort in their
development, they can work very well, at least within the textual domain
for which they were built. But any such solution suffers from the same
problems of heuristic processes in other parts of the tokenization pro-
cess. They require a lot of hand-coding and domain knowledge on the
part of the person constructing the tokenizer, and tend to be brittle and
domain-specific.

There has been increasing research recently on more principled meth-
ods of sentence boundary detection. Riley (1989) used statistica clas-
sfication trees to determine sentence boundaries. The features for the
classification trees include the case and length of the words preceding
and following a period, and the a priori probability of different words to
occur before and after a sentence boundary (the computation of which
requires a large quantity of labeled training data). Pamer and Hearst
(1994; 1997) avoid the need for acquiring such data by simply using the
part of speech distribution of the preceding and following words, and
using a neural network to predict sentence boundaries. This yields a
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robust, largely language independent boundary detection agorithm with
high performance (about 98-99% correct). Reynar and Ratnaparkhi (1997)
and Mikheev (1998) develop Maximum Entropy approaches to the prob-
lem, the latter achieving an accuracy rate of 99.25% on sentence boundary
prediction.3

v Sentence boundary detection can be viewed as a classification problem.
We discuss classification, and methods such as classification trees and
maximum entropy models in chapter 16.

What are sentences like?

In linguistics classes, and when doing traditional computational linguis-
tics exercises, sentences are generaly short. This is a least in part be-
cause many of the parsing tools that have traditionally been used have
aruntime exponential in the sentence length, and therefore become im-
practical for sentences over twelve or so words. It is therefore important
to redlize that typical sentences in many text genres are rather long. In
newswire, the modal (most common) length is normaly around 23 words.
A chart of sentence lengths in a sample of newswire text is shown in ta-
ble 4.3.

4.3 Marked-up Data

While much can be done from plain text corpora, by inducing the struc-
ture present in the text, people have often made use of corpora where
some of the structure is shown, since it is then easier to learn more.
This markup may be done by hand, automatically, or by a mixture of
these two methods. Automatic means of learning structure are covered
in the remainder of this book. Here we discuss the basics of markup.
Some texts mark up just a little basic structure such as sentence and
paragraph boundaries, while others mark up a lot, such as the full syntac-
tic structure in corpora like the Penn Treebank and the Susanne corpus.
However, the most common grammatical markup that one finds is a cod-
ing of words for part of speech, and so we devote particular attention to
that.

3. Accuracy as a technica term is defined and discussed in section 8.1. However, the
definition corresponds to oneis intuitive understanding: it is the percent of the time that
one is correctly classifying items.
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Length Number Percent Cum. %

[-5 1317 3.13 3.13

6-10 3215 7.64 10.77
11-15 5906 14.03 24.80
16-20 7206 17.12 41.92
21-25 7350 17.46 59.38
26-30 6281 14.92 74.30
31-35 4740 11.26 85.56
36-40 2826 6.71 92.26
41-45 1606 3.82 96.10
46-50 858 2.04 98.14
51-100 780 1.85 99.99
101+ 6 0.01 100.00

Table 4.3 Sentence lengths in newswire text. Column iPercentT shows the per-
centage in each range, column iCum. %” shows the cumulative percentage below
a certain length.

4.3.1 Markup schemes

S TANDARD
GENERALIZED MARKUP
L ANGUAGE

Various schemes have been used to mark up the structure of text. In
the early days, these were developed on an ad hoc basis, as heeds arose.
One of the more important early examples was the COCOA format, which
was used for including header information in texts (giving author, date,
title, etc.). This information was enclosed within angle brackets with the
first letter indicating the broad semantics of the field. Some other ad hoc
systems of this sort are still in quite common use. The most common
form of grammatica markup, which we discuss in great detail below, is
indicating the part of speech of words by adding a part of speech tag
to each word. These tags are commonly indicated by devices such as
following each word by a dash or underline and then a short code naming
the part of speech. The Penn Treebank uses a form of Lisp-like bracketing
to mark up a tree structure over texts.

However, currently by far the most common and supported form of
markup is to use SGML (the Standard Generalized Markup Language).
SGML is a genera language that lets one define a grammar for texts, in
particular for the type of markup they contain. The now-ubiquitous HTML
is an instance of an SGML encoding. The Text Encoding Initiative (TEI) was
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a maor atempt to define SGML encoding schemes suitable for marking
up various kinds of humanities text resources ranging from poems and
novels to linguistic resources like dictionaries. Another acronym to be
awareof isXML. XML definesasimplified subset of SGML that was partic-
ularly designed for web applications. However, the weight of commercia
support behind XML and the fact that it avoids some of the rather arcane,
and perhaps aso archaic, complexities in the origina SGML  specification
means that the XML subset is likdly to be widely adopted for all other
purposes as well.

This book does not delve deeply into SGML. We will give just the rudi-
mentary knowledge needed to get going. SGML specifies that each doc-
ument type should have a Document Type Definition (pTp), whichisa
grammar for legal structures for the document. For example, it can state
rules that a paragraph must consist of one or more sentences and nothing
else. An SGML parser verifies that a document is in accordance with this
DTD, but within Statistical NLP the DTD is normally ignored and people
just process whatever text is found. An SGML document consists of one
or more elements, which may be recursively nested. Elements normally
begin with a begin tag and end with an end tag, and have document con-
tent in between. Tags are contained within angle brackets, and end tags
begin with a forward dash character. As well as the tag name, the begin
tag may contain additional attribute and value information. A couple of
examples of SGML eements are shown below:

(4.8) a. <p><s>And then he Tleft.</s>

<s>He did not say another word.</s></p>

b. <utt speak="Fred" date="10-Feb-1998">That is an ugly
couch.</utt>

The structure tagging shown in (4.8a), where the tag s is used for sen-
tences and p for paragraphs, is particularly widespread. Example (4.8b)
shows a tag with attributes and values. An element may aso consist of
just a single tag (without any matching end tag). In XML, such empty ee-
ments must be specialy marked by ending the tag name with a forward
dash character.

In general, when making use of SGML-encoded text in a casua way,
one will wish to interpret some tags within angle brackets, and to simply
ignore others. The other SGML syntax that one must be aware of is char-
acter and entity references. These begin with an ampersand and end with
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a semicolon. Character references are a way of specifying characters not
available in the standard AscCIl character set (minus the reserved SGML
markup characters) via their numeric code. Entity references have sym-
bolic names which were defined in the DTD (or are one of a few predefined
entities). Entity references may expand to any text, but are commonly
used just to encode a specia character via a symbolic name. A few exam-
ples of character and entity references are shown in (4.9). They might be
rendered in a browser or when printed as shown in (4.10).

(4.9) a. &#x43; is the less than symbol

(4.10)

b. r&eacute;sum&eacute;

C. This chapter was written on &docdate;.

a. < is the less than symbol
b. resume

c. This chapter was written on January 21, 1998.

There is much more to know about SGML, and some references appear in
the Further Reading below, but this is generally enough for what the XML
community normally terms the éDesperate Perl Hackeri to get by.

4.3.2 Grammatical tagging

BROWN TAG SET

A common first step of analysis is to perform automatic grammatical
tagging for categories roughly akin to conventional parts of speech, but
often considerably more detailed (for instance, distinguishing compara-
tive and superlative forms of adjectives, or singular from plural nouns).
This section examines the nature of tag sets. What tag sets have been
used? Why do people use different ones? Which one should you choose?
v How tagging is done automatically is the subject of chapter 10.

Tag sets

Historically, the most influentia tag sets have been the one used for tag-
ging the American Brown corpus (the Brown tug set) and the series of
tag sets developed at the University of Lancaster, and used for tagging
the Lancaster-Oslo-Bergen corpus and more recently the British National
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Sentence CLAWS ¢5 Brown Penn Treebank |ICE

she PNP PPS PRP PRON(pers,sing)

was VBD BEDZ VBD AUX(pass,past)

told WN VBN VBN V(ditr,edp)

that CJT cs IN CONJUNC(subord)

the ATO AT DT ART(def)

journey  NN1 NN NN N(com,sing)

might VMO MD MD AUX(modal,past)

kill W I VB VB V(montr,infin)

her PNP PPO PRP PRON(poss,sing)
PUN PUNC(per)

Figure 4.2 A sentence as tagged according to severd different tag sets.

Tag set Basic size Tota tags
Brown 87 179
Penn 45
CLAWS1 132
CLAWS2 166
CLAWScc5 62
London-Lund 197

Table 4.4 Sizes of various tag sets.

cstag ser  Corpus (CLAWSL through CLAWSS5; CLAWSS is also referred to as the ¢5
PENN TREEBANK TAG ~ tag set). Recently, the Penn Treebank tag set has been the one most
SET  widely used in computational work. It is a simplified version of the Brown
tag set. A brief summary of tag set sizes is shown in table 4.4. An ex-
ample sentence shown tagged via severd different tag sets is shown in
figure 4.2. These tag sets are al for English. In general, tag sets incorpo-
rate morphological distinctions of a particular language, and so are not
directly applicable to other languages (though often some of the design
ideas can be transferred). Many tag sets for other languages have aso
been developed.

An attempt to align some tag sets, roughly organized by traditional
parts of speech appears in tables 4.5 and 4.6, athough we cannot guar-
antee that they are accurate in every detail. They are mostly aphabetical,
but we have deviated from alphabetica order a little so as to group cat-
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Category

Adjective

Adjective, ordina number
Adjective, comparative
Adjective, superlative
Adjective, superlative, semantically
Adjective, cardina number
Adjective, cardina number, one
Adverb

Adverb, negative

Adverb, comparative

Adverb, superlative

Adverb, particle

Adverb, question

Adverb, degree & question
Adverb, degree

Adverb, degree, postposed
Adverb, nominal

Conjunction, coordination
Conjunction, subordinating
Conjunction, complementizer that
Determiner

Determiner, pronoun
Determiner, pronoun, plural
Determiner, prequalifier
Determiner, prequantifier

Determiner, pronoun or double conj.
Determiner, pronoun or double conj.

Determiner, article
Determiner, postdeterminer
Determiner, possessive
Determiner, possessive, second
Determiner, question
Determiner, possessive & question
Noun

Noun, singular

Noun, plura

Noun, proper, singular

Noun, proper, plural

Noun, adverbia

Noun, adverbia, plura
Pronoun, nominal (indefinite)
Pronoun, personal, subject
Pronoun, personal, subject, 3SG
Pronoun, personal, object
Pronoun, reflexive

Pronoun, reflexive, plural
Pronoun, question, subject
Pronoun, question, object
Pronoun, existential there

Examples

happy, bad

sixth, 72nd, last
happier, worse
happiest, worst
chief, top

3, fifteen

one

often, particularly
not, nit

faster

fastest

up, off, out

when, how, why
how, however
very, so, too
enough, indeed
here, there, now
and, or

although, when
that

this, each, another
any, some

these, those
quite

al, half

both

either, neither
the, a, an

many, same

their, your

mine, yours
which, whatever
whose

aircraft, data
woman, book
women, books
London, Michael
Austrdians, Methodists
tomorrow, home
Sundays, weekdays
none, everything, one
you, we

she, he, it

you, them, me
herself, mysdlf
themselves, ourselves
who, whoever
who, whoever
there

Clawsc5

AJO
ORD
AJC
AJS
AJO
CRD
PNI
AVO
XX0
AVO
AVO
AVP
AVQ
AVQ
AVO
AVO
AVO
cJc
CJs
CJT
DTO
DTO
DTO
DTO
DTO
DTO
DTO
ATO
DTO
DPS
DPS
DTQ
DTQ
NNO
NN1
NN2
NPO
NPO
NNO
NN2
PNI
PNP
PNP
PNP
PNX
PNX
PNQ
PNQ
EXO

Brown

J]

OoD
JIR
JT
JIS

PPLS
WPS
WPO
EX

Table 4.5 Comparison of different tag sets: adjective, adverb, conjunction, de-
terminer, noun, and pronoun tags.
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Category Examples Claws ¢c5 Brown Penn
Verb, base present form (not infinitive)  teke, live WB VB VBP
Verb, infinitive take, live Wi VB VB
Verb, past tense took, lived WD VBD VBD
Verb, present participle taking, living WG VBG VBG
Verb, past/passive participle taken, lived WN VBN VBN
Verb, present 3SG -s form takes, lives w z VBZ VBZ
Verb, auxiliary do, base do VDB DO VBP
Verb, auxiliary do, infinitive do VDB DO VB
Verb, auxiliary do, past did VDD DOD VBD
Verb, auxiliary do, present part. doing VDG VBG VBG
Verb, auxiliary do, past part. done VDN VBN VBN
Verb, auxiliary do, present 3SG does VDZ DOz VBZ
Verb, auxiliary have, base have VHB HV VBP
Verb, auxiliary have, infinitive have VHI HV VB
Verb, auxiliary have, past had VHD HVD VBD
Verb, auxiliary have, present part. having VHG HVG VBG
Verb, auxiliary have, past part. had VHN HVN VBN
Verb, auxiliary have, present 3SG has VHZ HVZ VBZ
Verb, auxiliary be, infinitive be VBI BE VB
Verb, auxiliary be, past were VBD BED VBD
Verb, auxiliary be, past, 3SG was VBD BEDZ VBD
Verb, auxiliary be, present part. being VBG BEG VBG
Verb, auxiliary be, past part. been VBN BEN VBN
Verb, auxiliary be, present, 3SG is,’s VBZ BEZ VBZ
Verb, auxiliary be, present, 1SG am, én VBB BEM VBP
Verb, auxiliary be, present are, ére VBB BER VBP
Verb, modal can, could, €11 VMO MD MD
Infinitive marker to TOO TO TO
Preposition, to to PRP IN TO
Preposition for, above PRP IN IN
Preposition, of of PRF IN IN
Possessive ’s,’ POS $ POS
Interjection (or other isolate) oh, yes, mmm IT] UH UH
Punctuation, sentence ender A2 PUN
Punctuation, semicolon PUN
Punctuation, colon or élipsis PUN
Punctuation, comma PUN
Punctuation, dash PUN
Punctuation, dollar sign $ PUN not $
Punctuation, left bracket (¢ PUL ( (
Punctuation, right bracket )11 PUR ) )
Punctuation, quotation mark, left c PUQ not “
Punctuation, quotation mark, right n PUQ not ”
Foreign words (not in English lexicon) UNC (FW-) FW
Symbol [£i] * not SYM
Symbol, aphabetical A, B,cd zz0
Symbol, ligt item A A. First LS

Table 4.6 Comparison of different tag sets. Verb, preposition, punctuation and
symbol tags. An entry of énoti means an item was ignored in tagging, or was not
separated off as a separate token.
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egories that are sometimes collapsed. In this categorization, we use an
elsewhere convention where the least marked category is used in al cases
where a word cannot be placed within one of the more precise subclassi-
fications. For instance, the plain Adjective category is used for adjectives
that arenit comparatives, superlatives, numbers, etc. The complete Brown
tag set was made larger by two decisions to augment the tag set. Normal
tags could be followed by a hyphen and an attribute like TL (for a ti-
tle word), or in the case of foreign words, the FW foreign word tag was
followed by a hyphen and a part of speech assignment. Secondly, the
Brown tag scheme makes use of écombined tagsi for graphic words that
one might want to think of as multiple lexemes, such as you’ll.* Normally
such items were tagged with two tags joined with a plus sign, but for
negation one just adds * to a tag. So isnit is tagged BEZ* and she’ll is
tagged PPS+MD. Additionally, possessive forms like childrenis are tagged
with a tag ending in ‘$’. Normally, these tags are transparently derived
from a base non-possessive tag, for instance, NNSS$ in this case. These
techniques of expanding the tag set are ignored in the comparison.

Even a cursory glance will show that the tag sets are very different. Part
of this can be attributed to the overal size of the tag set. A larger tag
set will obviously make more fine-grained distinctions. But this is not the
only difference. The tag sets may choose to make distinctions in different
areas. For example, the ¢5 tag set is larger overall than the Penn Treebank
tag set, and it makes many more distinctions in some areas, but in other
areas it has chosen to make many fewer. For instance, the Penn tag set
distinguishes 9 punctuation tags, while ¢5 makes do with only 4. Pre-
sumably this indicates some difference of opinion on what is considered
important. Tag sets aso disagree more fundamentally in how to classify
certain word classes. For example, while the Penn tag set smply regards
subordinating conjunctions as prepositions (consonant with work in gen-
erative linguistics), the ¢5 tag set keeps them separate, and moreover
implicitly groups them with other types of conjunctions. The notion of
implicit grouping referred to here is that al the tag sets informally show
relationships between certain sets of tags by having them begin with the
same letter or pair of letters. This grouping is implicit in that athough
it is obvious to the human eye, they are formaly just distinct symbolic

4. Compare the discussion above. This is aso done in some other corpora, such as the
London-Lund corpus, but the recent trend seems to have been towards dividing such
graphic words into two for the purposes of tagging.
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tags, and programs normaly make no use of these families. However,
in some other tag sets, such as the one for the International Corpus of
English (Greenbaum 1993), an explicit system of high level tags with at-
tributes for the expression of features has been adopted. There has aso
been some apparent development in peopleis ideas of what to encode.
The early tag sets made very fine distinctions in a number of areas such
as the treatment of certain sorts of qualifiers and determiners that were
relevant to only a few words, abeit common ones. More recent tag sets
have generaly made fewer distinctions in such aress.

The design of a tag set

What features should guide the design of a tag set? Standardly, a tag set
encodes both the target feature of classification, telling the user the use-
ful information about the grammatical class of a word, and the predictive
features, encoding features that will be useful in predicting the behavior
of other words in the context. These two tasks should overlap, but they
are not necessarily identical.

The notion of part of speech is actually complex, since parts of speech
can be motivated on various grounds, such as semantic (commonly called
notional) grounds, syntactic distributional grounds, or morphological
grounds. Often these notions of part of speech are in conflict. For the
purposes of prediction, one would want to use the definition of part of
speech that best predicts the behavior of nearby words, and this is pre-
sumably dtrictly distributional tags. But in practice people have often
used tags that reflect notional or morphologica criteria. For example one
of the uses of English present participles ending in -ing is as a gerund
where they behave as a noun. But in the Brown corpus they are quite
regularly tagged with the VBG tag, which is perhaps better reserved for
verbal uses of participles. This happens even within clear noun com-
pounds such as this one:

FUItOn/NP-TL County/NN-TL Purchasing/vBG Department/NN

Ideally, we would want to give digtinctive tags to words that have dis-
tinctive distributions, so that we can use that information to help pro-
cessing elsewhere. This would suggest that some of the tags in, for ex-
ample, the Penn Treebank tag set are too coarse to be good predictors.
For instance, the complementizer that has a very distinct distribution
from regular prepositions, and degree adverbs and the negative not have
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very different distributions from regular adverbs, but neither of these
digtinctions show up in the tag set. People have frequently made changes
to add or remove distinctions according to their intuitions - for exam-
ple, Charniak (1996) questions the decision of the Penn Treebank to tag
auxiliaries with the same tags as other verbs, given that auxiliary verbs
have a very digtinctive distribution, and proceeds to retag them with an
AUX tag. In general, the predictive value of making such changesin the
set of distinctions in part of speech systems has not been very system-
atically evaluated. So long as the same tag set is used for prediction
and classfication, making such changes tends to be a two-edged sword:
splitting tags to capture useful distinctions gives improved information
for prediction, but makes the classification task harder.> For this reason,
there is not necessarily a smple relaionship between tag set size and the
performance of automatic taggers.

4.4 Further Reading

PUNCTUATION

The Brown corpus (the Brown University Standard Corpus of Present-Day
American English) consigts of just over a million words of written Amer-
ican English from 1961. It was compiled and documented by W. Nelson
Francis and Henry Kucera (Francis and Kucera 1964; Kucera and Fran-
cis 1967; Francis and Kucera 1982). The details on early processing of
the Brown corpus are from an email from Henry Kucera (posted to the
corpora mailing list by Katsuhide Sonoda on 26 Sep 1996). The LOB
(Lancaster-Odlo-Bergen) corpus was built as a British-English replication
of the Brown Corpus during the 1970s (Johansson et al. 1978; Garside
et al. 1987).

Identifying proper names is a major issue in Information Extraction.
See (Cardie 1997) for an introduction.

A carefully designed and experimentally tested set of tokenization
rules is the set used for the Susanne corpus (Sampson 1995: 52-59).

Nunberg (1990) provides a linguistic perspective on the importance of
puncuation. an INtroductory discussion of what counts as a word in
linguigtics can be found in (Crowley et d. 1995: 7-9). Lyons (1968: 194-
206) provides a more thorough discussion. The examples in the section
on hyphenation are mainly red examples from the Dow Jones newswire,

5. This is unless one category groups two very separate distributional clusters, in which
case splitting the category can actualy sometimes make classification easier.
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Others are from e-mail messages to the corpora list by Robert Amder and
Mitch Marcus, 1996, and are used with thanks.

There are many existing systems for morphological analysis available,
and some are listed on the website. An effective method of doing stem-
ming in a knowledge-poor way can be found in Kay and Rdscheisen
(1993). Sproat (1992) contains a good discussion of the problems mor-
phology presents for NLP and is the source of our German compound
example.

The COCOA (COunt and Concordance on Atlas) format was used in
corpora from ICAME and in related software such as LEXA {(Hickey 1993).

SGML and XML are described in various books (Herwijnen 1994; Mc-
Grath 1997; St. Laurent 1998), and a lot of information, including some
short readable introductions, is available on the web (see website).

The guidelines of the Text Encoding initiative (1994 P3 version) are
published as McQueen and Burnard (1994), and include a very readable
introduction to SGML in chapter 2. In general, though, rather than read
the actual guidelines, one wants to look at tutorials such as Ide and Véro-
nis (1995), or on the web, perhaps starting at the sites listed on the web-
site. The full complexity of the TElI overwhelmed al but the most dedi-
cated standard bearers. Recent developments include TEILite, which tries
to pare the origina standard down to a human-usable version, and the
Corpus Encoding Standard, a TEI-conformant SGML instance especialy
designed for language engineering corpora.

Early work on CLAWS (Constituent-Likelihood Automatic Word-tagging
System) and its tag set is described in (Garside et a. 1987). The more re-
cent ¢5 tag set presented above is taken from (Garside 1995). The Brown
tag set is described in (Francis and Kucera 1982) while the Penn tag set is
described in (Marcus et a. 1993), and in more detail in (Santorini 1990).

This book is not an introduction to how corpora are used in linguistic
studies (even though it contains a lot of methods and algorithms useful
for such studies). However, recently there has been a flurry of new texts

CORPUS LINGUISTICS ~ ON corpus linguistics (McEnery and Wilson 1996; Stubbs 1996; Biber et al.
1998; Kennedy 1998; Barnbrook 1996). These books aso contain much
more discussion of corpus design issues such as sampling and balance
than we have provided here. For an article specificaly addressing the
problem of designing a representative corpus, see (Biber 1993).

More details about different tag sets are collected in Appendix B of
(Garside et a. 1987) and in the web pages of the AMALGAM project (see
website). The AMALGAM website also has a description of the tokenizing
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rules that they use, which can act as an example of a heuristic sentence di-
vider and tokenizer. Grefenstette and Tapanainen (1994) provide another
discussion of tokenization, showing the results of experiments employ-
ing simple knowledge-poor heuristics.

4.5 Exercises

Exercise 4.1 [ ]

As discussed in the text, it seems that for most purposes, weid want to treat
some hyphenated things as words (for instance, co-worker, Asian-American),
but not others (for instance, ainit-it-great-to-be-a-Texan, child-as-required-yuppie-
possession). Find hyphenated forms in a corpus and suggest some basis for which
forms we would want to treat as words and which we would not. What are the
reasons for your decision? (Different choices may be appropriate for different
needs.) Suggest some methods to identify hyphenated segquences that should
be broken up - eg., ones that only appear as non-fina elements of compound
nouns:

Inlchild-as-required-yuppie-possession] syndrome]

Exercise 4.2 [*+ For linguists]

Take some linguistic problem that you are interested in (non-constituent coordi-
nation, ellipsis, idioms, heavy NP shift, pied-piping, verb class alternations, etc.).
Could one hope to find useful data pertaining to this problem in a general cor-
pus? Why or why not? If you think it might be possible, is there a reasonable
way to search for examples of the phenomenon in either a raw corpus or one
that shows syntectic structures? If the answer to both these questions is yes,
then look for examples in a corpus and report on anything interesting that you
find.

Exercise 4.3 [* ]

Develop a sentence boundary detection algorithm. Evauate how successful it is.
(In the congtruction of the Wall Street Journal section of the ACL-DCI CD-ROM
(Church and Liberman 1991), a rather simplistic sentence boundary detection
algorithm was used, and the results were not hand corrected, so many errors
remain. If this corpus is available to you, you may want to compare your results
with the sentence boundaries marked in the corpus. With luck, you should be
able to write a system that performs considerably better!)
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“When I say, for instance, ‘I had a good breakfast this morning,’
it is clear that I am not in the throes of laborious thought, that
what I have to transmit is hardly more than a pleasurable
memory symbolically rendered in the grooves of habitual
expression. ... It is somewhat as though a dynamo capable of
generating enough power to run an elevator were operated
almost exclusively to feed an electric doorbell.”

(Sapir 1921: 14)




COMPOSITIONALITY

Collocations

A COLLOCATION is an expression consisting of two or more words that
correspond to some conventional way of saying things. Or in the words
of Firth (1957: 181): “Collocations of a given word are statements of the
habitual or customary places of that word.” Collocations include noun
phrases like strong tea and weapons of mass destruction, phrasal verbs
like to make up, and other stock phrases like the rich and powerful. Par-
ticularly interesting are the subtle and not-easily-explainable patterns of
word usage that native speakers all know: why we say a stiff breeze but
not ??a stiff wind (while either a strong breeze or a strong wind is okay),
or why we speak of broad daylight (but not ?bright daylight or ??narrow
darkness).

Collocations are characterized by limited compositionality. We call a
natural language expression compositional if the meaning of the expres-
sion can be predicted from the meaning of the parts. Collocations are not
fully compositional in that there is usually an element of meaning added
to the combination. In the case of strong tea, strong has acquired the
meaning rich in some active agent which is closely related, but slightly
different from the basic sense having great physical strength. 1dioms are
the most extreme examples of non-compositionality. Idioms like to kick
the bucket or to hear it through the grapevine only have an indirect his-
torical relationship to the meanings of the parts of the expression. We
are not talking about buckets or grapevines literally when we use these
idioms. Most collocations exhibit milder forms of non-compositionality,
like the expression international best practice that we used as an exam-
ple earlier in this book. It is very nearly a systematic composition of its
parts, but still has an element of added meaning. It usually refers to ad-
ministrative efficiency and would, for example, not be used to describe a
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5 Collocations

cooking technique although that meaning would be compatible with its
literal meaning.

There is considerable overlap between the concept of collocation and
notions like term, technical term, and terminological phrase. As these
names suggest, the latter three are commonly used when collocations
are extracted from technical domains (in a process called terminology
extraction). The reader should be warned, though, that the word term
has a different meaning in information retrieval. There, it refers to both
words and phrases. So it subsumes the more narrow meaning that we
will use in this chapter.

Collocations are important for a number of applications: natural lan-
guage generation (to make sure that the output sounds natural and mis-
takes like powerful tea or to take a decision are avoided), computational
lexicography (to automatically identify the important collocations to be
listed in a dictionary entry), parsing (so that preference can be given to
parses with natural collocations), and corpus linguistic research (for in-
stance, the study of social phenomena like the reinforcement of cultural
stereotypes through language (Stubbs 1996)).

There is much interest in collocations partly because this is an area that
has been neglected in structural linguistic traditions that follow Saussure
and Chomsky. There is, however, a tradition in British linguistics, asso-
ciated with the names of Firth, Halliday, and Sinclair, which pays close
attention to phenomena like collocations. Structural linguistics concen-
trates on general abstractions about the properties of phrases and sen-
tences. In contrast, Firth’s Contextual Theory of Meaning emphasizes the
importance of context: the context of the social setting (as opposed to
the idealized speaker), the context of spoken and textual discourse (as
opposed to the isolated sentence), and, important for collocations, the
context of surrounding words (hence Firth's famous dictum that a word is
characterized by the company it keeps). These contextual features easily
get lost in the abstract treatment that is typical of structural linguistics.

A good example of the type of problem that is seen as important in
this contextual view of language is Halliday’s example of strong vs. pow-
erful tea (Halliday 1966: 150). It is a convention in English to talk about
strong tea, not powerful tea, although any speaker of English would also
understand the latter unconventional expression. Arguably, there are no
interesting structural properties of English that can be gleaned from this
contrast. However, the contrast may tell us something interesting about
attitudes towards different types of substances in our culture (why do we
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use powerful for drugs like heroin, but not for cigarettes, tea and coffee?)
and it is obviously important to teach this contrast to students who want
to learn idiomatically correct English. Social implications of language use
and language teaching are just the type of problem that British linguists
following a Firthian approach are interested in.

In this chapter, we will introduce a number of approaches to finding
collocations: selection of collocations by frequency, selection based on
mean and variance of the distance between focal word and collocating
word, hypothesis testing, and mutual information. We will then return
to the question of what a collocation is and discuss in more depth differ-
ent definitions that have been proposed and tests for deciding whether
a phrase is a collocation or not. The chapter concludes with further
readings and pointers to some of the literature that we were not able
to include.

The reference corpus we will use in examples in this chapter consists
of four months of the New York Times newswire: from August through
November of 1990. This corpus has about 115 megabytes of text and
roughly 14 million words. Each approach will be applied to this corpus
to make comparison easier. For most of the chapter, the New York Times
examples will only be drawn from fixed two-word phrases (or bigrams).
It is important to keep in mind, however, that we chose this pool for
convenience only. In general, both fixed and variable word combinations
can be collocations. Indeed, the section on mean and variance looks at
the more loosely connected type.

Frequency

Surely the simplest method for finding collocations in a text corpus is
counting. If two words occur together a lot, then that is evidence that
they have a special function that is not simply explained as the function
that results from their combination.

Predictably, just selecting the most frequently occurring bigrams is not
very interesting as is shown in table 5.1. The table shows the bigrams
(sequences of two adjacent words) that are most frequent in the corpus
and their frequency. Except for New York, all the bigrams are pairs of
function words.

There is, however, a very simple heuristic that improves these results
a lot (Justeson and Katz 1995b): pass the candidate phrases through a
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Cw! w?2) wl w?
80871 of the
58841 in the
26430 to the
21842 on the
21839 for the
18568 and the
16121 that the
15630 at the
15494 to be
13899 in a
13689 of a
13361 by the
13183 with the
12622 from the
11428 New York
10007 he said

9775 as a
9231 is a
8753 has been
8573 for a

Table 5.1 Finding Collocations: Raw Frequency. C(-) is the frequency of some-
thing in the corpus.

Tag Pattern Example

AN linear function

NN regression coefficients

AAN Gaussian random variable
ANN cumulative distribution function
NAN mean squared error

NNN class probability function

NPN degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns
were used by Justeson and Katz to identify likely collocations among frequently
occurring word sequences.
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1 2

Cwl w?) w w Tag Pattern
11487 New York AN
7261 United States AN
5412 Los Angeles NN
3301 last year AN
3191 Saudi Arabia NN
2699 last week AN
2514 vice president AN
2378 Persian Gulf AN
2161 San Francisco NN
2106 President Bush NN
2001 Middle East AN
1942 Saddam Hussein NN
1867 Soviet Union AN
1850 White House AN
1633 United Nations AN
1337 York City NN
1328 oil prices NN
1210 next year AN
1074 chief executive AN
1073 real estate AN

Table 5.3 Finding Collocations: Justeson and Katz’ part-of-speech filter.

part-of-speech filter which only lets through those patterns that are likely
to be ‘phrases.’! Justeson and Katz (1995b: 17) suggest the patterns in
table 5.2. Each is followed by an example from the text that they use as a
test set. In these patterns A refers to an adjective, P to a preposition, and
N to a noun.

Table 5.3 shows the most highly ranked phrases after applying the fil-
ter. The results are surprisingly good. There are only 3 bigrams that we
would not regard as non-compositional phrases: last year, last week, and
first time. York City is an artefact of the way we have implemented the
Justeson and Katz filter. The full implementation would search for the
lengest sequence that fits one of the part-of-speech patterns and would
thus find the longer phrase New York City, which contains York City.

The twenty highest ranking phrases containing strong and powerful all

1. Similar ideas can be found in (Ross and Tukey 1975) and (Kupiec et al. 1995).
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w C(strong, w) w C(powerful,w)
support 50 force 13
safety 22 computers 10
sales 21 position 8
opposition 19 men 8
showing 18 computer 8
sense 18 man 7
message 15 symbol 6
defense 14 military 6
gains 13 machines 6
evidence 13 country 6
criticism 13 weapons 5
possibility 11 post 5
feelings 11 people 5
demand 11 nation 5
challenges 11 forces 5
challenge 11 chip 5
case 11 Germany 5
supporter 10 senators 4
signal 9 neighbor 4
man 9 magnet 4

Table 5.4 The nouns w occurring most often in the patterns ‘strong w’ and
‘powerful w.

have the form A N (where A is either strong or powerful). We have listed
them in table 5.4.

Again, given the simplicity of the method, these results are surpris-
ingly accurate. For example, they give evidence that strong challenge and
powerful computers are correct whereas powerful challenge and strong
computers are not. However, we can also see the limits of a frequency-
based method. The nouns man and force are used with both adjectives
(strong force occurs further down the list with a frequency of 4). A more
sophisticated analysis is necessary in such cases.

Neither strong tea nor powerful tea occurs in our New York Times cor-
pus. However, searching the larger corpus of the World Wide Web we find
799 examples of strong tea and 17 examples of powerful tea (the latter
mostly in the computational linguistics literature on collocations), which
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indicates that the correct phrase is strong tea.?

Justeson and Katz’ method of collocation discovery is instructive in
that it demonstrates an important point. A simple quantitative technique
(the frequency filter in this case) combined with a small amount of lin-
guistic knowledge (the importance of parts of speech) goes a long way. In
the rest of this chapter, we will use a stop list that excludes words whose
most frequent tag is not a verb, noun or adjective.

Exercise 5.1 [*]
Add part-of-speech patterns useful for collocation discovery to table 5.2, includ-
ing patterns longer than two tags.

Exercise 5.2 [*]
Pick a document in which your name occurs (an email, a university transcript or
a letter). Does Justeson and Katz’s filter identify your name as a collocation?
Exercise 5.3 [*]

We used the World Wide Web as an auxiliary corpus above because neither stong
tea nor powerful tea occurred in the New York Times. Modify Justeson and Katz’s
method so that it uses the World Wide Web as a resource of last resort.

Mean and Variance

Frequency-based search works well for fixed phrases. But many colloca-
tions consist of two words that stand in a more flexible relationship to
one another. Consider the verb knock and one of its most frequent argu-
ments, door. Here are some examples of knocking on or at a door from
our corpus:

a. she knocked on his door

b. they knocked at the door

c. 100 women knocked on Donaldson’s door
d. a man knocked on the metal front door

The words that appear between knocked and door vary and the distance
between the two words is not constant so a fixed phrase approach would
not work here. But there is enough regularity in the patterns to allow
us to determine that knock is the right verb to use in English for this
situation, not hit, beat or rap.

2. This search was performed on AltaVista on March 28, 1998.
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Sentence: Stocks crash as rescue plan teeters

Bigrams: stocks crash stocks as stocks rescue

MEAN
VARIANCE

crash as crash rescue crash plan
as rescue as plan as teeters
rescue plan  rescue teeters
plan teeters

Figure 5.1 Using a three word collocational window to capture bigrams at a
distance.

A short note is in order here on collocations that occur as a fixed phrase
versus those that are more variable. To simplify matters we only look
at fixed phrase collocations in most of this chapter, and usually at just
bigrams. But it is easy to see how to extend techniques applicable to
bigrams to bigrams at a distance. We define a collocational window (usu-
ally a window of 3 to 4 words on each side of a word), and we enter every
word pair in there as a collocational bigram, as in figure 5.1. We then
proceed to do our calculations as usual on this larger pool of bigrams.

However, the mean and variance based methods described in this sec-
tion by definition look at the pattern of varying distance between two
words. If that pattern of distances is relatively predictable, then we have
evidence for a collocation like knock ... door that is not necessarily a
fixed phrase. We will return to this point and a more in-depth discussion
of what a collocation is towards the end of this chapter.

One way of discovering the relationship between knocked and door is to
compute the mean and variance of the offsets (signed distances) between
the two words in the corpus. The mean is simply the average offset. For
the examples in (5.1), we compute the mean offset between knocked and
door as follows:

211-(3+3+5+5)=4.0

(This assumes a tokenization of Donaldson’s as three words Donaldson,
apostrophe, and s, which is what we actually did.) If there was an oc-
currence of door before knocked, then it would be entered as a negative
number. For example, —3 for the door that she knocked on. We restrict
our analysis to positions in a window of size 9 around the focal word
knocked.
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The variance measures how much the individual offsets deviate from
the mean. We estimate it as follows.
o Siad - dy

n-1

where n is the number of times the two words co-occur, d; is the offset for
co-occurrence i, and d is the sample mean of the offsets. If the offset is
the same in all cases, then the variance is zero. If the offsets are randomly
distributed (which will be the case for two words which occur together by
chance, but not in a particular relationship), then the variance will be
high. As is customary, we use the sample deviation s = V52, the square
root of the variance, to assess how variable the offset between two words
is. The deviation for the four examples of knocked / door in the above
case is 1.15:

s = \/%((3 ~4.0)2+ (3-4.0)2 + (5 -4.0)2 + (5 — 4.0)2) = 1.15

The mean and deviation characterize the distribution of distances be-
tween two words in a corpus. We can use this information to discover
collocations by looking for pairs with low deviation. A low deviation
means that the two words usually occur at about the same distance. Zero
deviation means that the two words always occur at exactly the same
distance.

We can also explain the information that variance gets at in terms of
peaks in the distribution of one word with respect to another. Figure 5.2
shows the three cases we are interested in. The distribution of strong with
respect to opposition has one clear peak at position -1 (corresponding
to the phrase strong opposition). Therefore the variance of strong with
respect to opposition is small (s = 0.67). The mean of —1.15 indicates that
strong usually occurs at position —1 (disregarding the noise introduced
by one occurrence at —4).

We have restricted positions under consideration to a window of size
9 centered around the word of interest. This is because collocations are
essentially a local phenomenon. Note also that we always get a count of
0 at position 0 when we look at the relationship between two different
words. This is because, for example, strong cannot appear in position 0
in contexts in which that position is already occupied by opposition.

Moving on to the second diagram in figure 5.2, the distribution of
strong with respect to support is drawn out, with several negative po-
sitions having large counts. For example, the count of approximately 20
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Position of strong with respect to opposition (d = —1.15, s = 0.67).
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Position of strong with respect to support (d = —1.45,s = 1.07).
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Position of strong with respect to for (d = —1.12,s = 2.15).

Figure 5.2 Histograms of the position of strong relative to three words.
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s d Count | Word 1 Word 2
0.43 0.97 11657 | New York
0.48 1.83 24 | previous games
0.15 2.98 46 | minus points
0.49 3.87 131 | hundreds dollars
4.03 0.44 36 | editorial Atlanta
4.03 0.00 78 | ring New
3.96 0.19 119 | point hundredth
3.96 0.29 106 | subscribers | by
1.07 1.45 80 | strong support
1.13  2.57 7 | powerful organizations
1.01 2.00 112 | Richard Nixon
1.05 0.00 10 | Garrison said

Table 5.5 Finding collocations based on mean and variance. Sample deviation
s and sample mean d of the distances between 12 word pairs.

at position —2 is due to uses like strong leftist support and strong busi-
ness support. Because of this greater variability we get a higher s (1.07)
and a mean that is between positions —1 and —2 (—1.45).

Finally, the occurrences of strong with respect to for are more evenly
distributed. There is tendency for strong to occur before for (hence the
negative mean of —1.12), but it can pretty much occur anywhere around
for. The high deviation of s = 2.15 indicates this variability. This indi-
cates that for and strong don’t form interesting collocations.

The word pairs in table 5.5 indicate the types of collocations that can
be found by this approach. If the mean is close to 1.0 and the devia-
tion low, as is the case for New York, then we have the type of phrase
that Justeson and Katz’ frequency-based approach will also discover. If
the mean is much greater than 1.0, then a low deviation indicates an in-
teresting phrase. The pair previous / games (distance 2) corresponds to
phrases like in the previous 10 games or in the previous 15 games; minus
/ points corresponds to phrases like minus 2 percentage points, minus
3 percentage points etc; hundreds / dollars corresponds to hundreds of
billions of dollars and hundreds of millions of dollars.

High deviation indicates that the two words of the pair stand in no
interesting relationship as demonstrated by the four high-variance exam-
ples in table 5.5. Note that means tend to be close to zero here as one
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would expect for a uniform distribution. More interesting are the cases
in between, word pairs that have large counts for several distances in
their collocational distribution. We already saw the example of strong
{ business } support in figure 5.2. The alternations captured in the other
three medium-variance examples are powerful { lobbying } organizations,
Richard { M. } Nixon, and Garrison said / said Garrison (remember that
we tokenize Richard M. Nixon as four tokens: Richard, M, ., Nixon).

The method of variance-based collocation discovery that we have in-
troduced in this section is due to Smadja. We have simplified things
somewhat. In particular, Smadja (1993) uses an additional constraint
that filters out ‘flat’ peaks in the position histogram, that is, peaks that
are not surrounded by deep valleys (an example is at —2 for the combi-
nation strong / for in figure 5.2). Smadja (1993) shows that the method
is quite successful at terminological extraction (with an estimated accu-
racy of 80%) and at determining appropriate phrases for natural language
generation (Smadja and McKeown 1990).

Smadja’s notion of collocation is less strict than many others’. The
combination knocked / door is probably not a collocation we want to
classify as terminology - although it may be very useful to identify for
the purpose of text generation. Variance-based collocation discovery is
the appropriate method if we want to find this type of word combination,
combinations of words that are in a looser relationship than fixed phrases
and that are variable with respect to intervening material and relative
position.

Hypothesis Testing

One difficulty that we have glossed over so far is that high frequency and
low variance can be accidental. If the two constituent words of a frequent
bigram like new companies are frequently occurring words (as new and
companies are), then we expect the two words to co-occur a lot just by
chance, even if they do not form a collocation.

What we really want to know is whether two words occur together more
often than chance. Assessing whether or not something is a chance event
is one of the classical problems of statistics. It is usually couched in terms
of hypothesis testing. We formulate a null hypothesis Hy that there is no
association between the words beyond chance occurrences, compute the
probability p that the event would occur if Hy were true, and then reject
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Hy if p is too low (typically if beneath a significance level of p < 0.05,
0.01, 0.005, or 0.001) and retain Hop as possible otherwise.3

It is important to note that this is a mode of data analysis where we
look at two things at the same time. As before, we are looking for partic-
ular patterns in the data. But we are also taking into account how much
data we have seen. Even if there is a remarkable pattern, we will discount
it if we haven’t seen enough data to be certain that it couldn’t be due to
chance.

How can we apply the methodology of hypothesis testing to the prob-
lem of finding collocations? We first need to formulate a null hypothesis
which states what should be true if two words do not form a colloca-
tion. For such a free combination of two words we will assume that each
of the words w! and w? is generated completely independently of the
other, and so their chance of coming together is simply given by:

P(wiw?) = P(WwHP(w?)
The model implies that the probability of co-occurrence is just the prod-
uct of the probabilities of the individual words. As we discuss at the

end of this section, this is a rather simplistic model, and not empirically
accurate, but for now we adopt independence as our null hypothesis.

The t test

Next we need a statistical test that tells us how probable or improbable it
is that a certain constellation will occur. A test that has been widely used
for collocation discovery is the t test. The t test looks at the mean and
variance of a sample of measurements, where the null hypothesis is that
the sample is drawn from a distribution with mean p. The test looks at
the difference between the observed and expected means, scaled by the
variance of the data, and tells us how likely one is to get a sample of that
mean and variance (or a more extreme mean and variance) assuming that
the sample is drawn from a normal distribution with mean p. To deter-
mine the probability of getting our sample (or a more extreme sample),
we compute the t statistic:

X—p
SZ
VN
3. Significance at a level of 0.05 is the weakest evidence that is normally accepted in the

experimental sciences. The large amounts of data commonly available for Statistical NLP
tasks means that we can often expect to achieve greater levels of significance.

t:
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where X is the sample mean, s° is the sample variance, N is the sample
size, and y is the mean of the distribution. If the t statistic is large enough
we can reject the null hypothesis. We can find out exactly how large it has
to be by looking up the table of the t distribution we have compiled in
the appendix (or by using the better tables in a statistical reference book,
or by using appropriate computer software).

Here’s an example of applying the t test. Our null hypothesis is that
the mean height of a population of men is 158cm. We are given a sample
of 200 men with X = 169 and s? = 2600 and want to know whether this
sample is from the general population (the null hypothesis) or whether it
is from a different population of smaller men. This gives us the following
t according to the above formula:

[ = 169 - 158
- 2600

200

~ 3.05

If you look up the value of t that corresponds to a confidence level of
o = 0.005, you will find 2.576.# Since the t we got is larger than 2.576,
we can reject the null hypothesis with 99.5% confidence. So we can say
that the sample is not drawn from a population with mean 158cm, and
our probability of error is less than 0.5%.

To see how to use the ¢ test for finding collocations, let us compute the
t value for new companies. What is the sample that we are measuring the
mean and variance of? There is a standard way of extending the t test
for use with proportions or counts. We think of the text corpus as a
long sequence of N bigrams, and the samples are then indicator random
variables that take on the value 1 when the bigram of interest occurs, and
are 0 otherwise.

Using maximum likelihood estimates, we can compute the probabilities
of new and companies as follows. In our corpus, new occurs 15,828
times, companies 4,675 times, and there are 14,307,668 tokens overall.

15828
Pnew) = 14307668
, 4675
P(companies) = 14307668

4. A sample of 200 means 199 degress of freedom, which corresponds to about the same
t as o degrees of freedom. This is the row of the table where we looked up 2.576.
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The null hypothesis is that occurrences of new and companies are inde-
pendent.

Hy : P(new companies) = P(new)P(companies)
15828 4675

- ~ -7
"~ 14307668 * 14307668 361510

If the null hypothesis is true, then the process of randomly generating
bigrams of words and assigning 1 to the outcome new companies and
0 to any other outcome is in effect a Bernoulli trial with p = 3.615 X
107 for the probability of new company turning up. The mean for this
distribution is g = 3.615 x 1077 and the variance is o? = p(1 — p) (see
section 2.1.9), which is approximately p. The approximation o’ =pQl-
p) = p holds since for most bigrams p is small.

It turns out that there are actually 8 occurrences of new companies
among the 14,307,668 bigrams in our corpus. So, for the sample, we
have that the sample mean is: X = ﬁgos—mgg ~ 5.591 x 1077. Now we have
everything we need to apply the t test:

[ = X-4 5.59110~7 — 3.6151077
\/E 5.59110-7
N 14307668

This t value of 0.999932 is not larger than 2.576, the critical value for
o = 0.005. So we cannot reject the null hypothesis that new and compa-
nies occur independently and do not form a collocation. That seems the
right result here: the phrase new companies is completely compositional
and there is no element of added meaning here that would justify elevat-
ing it to the status of collocation. (The t value is suspiciously close to 1.0,
but that is a coincidence. See exercise 5.5.)

Table 5.6 shows t values for ten bigrams that occur exactly 20 times in
the corpus. For the top five bigrams, we can reject the null hypothesis
that the component words occur independently for & = 0.005, so these
are good candidates for collocations. The bottom five bigrams fail the
test for significance, so we will not regard them as good candidates for
collocations.

Note that a frequency-based method would not be able to rank the ten
bigrams since they occur with exactly the same frequency. Looking at the
counts in table 5.6, we can see that the t test takes into account the num-
ber of co-occurrences of the bigram (C(w! w?)) relative to the frequencies
of the component words. If a high proportion of the occurrences of both
words (Ayatollah Ruhollah, videocassette recorder) or at least a very high

~ 0.999932
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t Cwl) Cw?) Cw!lw?) | wl w?
4.4721 42 20 20 | Ayatollah Ruhollah
4.4721 41 27 20 | Bette Midler
4.4720 30 117 20 | Agatha Christie
4.4720 77 59 20 | videocassette | recorder
4.4720 24 320 20 | unsalted butter
2.3714 14907 9017 20 | first made
2.2446 13484 10570 20 | over many
1.3685 14734 13478 20 | into them
1.2176 14093 14776 20 | like people
0.8036 15019 15629 20 | time last

Table 5.6 Finding collocations: The t test applied to 10 bigrams that occur with
frequency 20.

proportion of the occurrences of one of the words (unsalted) occurs in
the bigram, then its ¢ value is high. This criterion makes intuitive sense.

Unlike most of this chapter, the analysis in table 5.6 includes some
stop words - without stop words, it is actually hard to find examples that
fail significance. It turns out that most bigrams attested in a corpus occur
significantly more often than chance. For 824 out of the 831 bigrams that
occurred 20 times in our corpus the null hypothesis of independence can
be rejected. But we would only classify a fraction as true collocations.
The reason for this surprisingly high proportion of possibly dependent
bigrams (STZT ~ 0.99) is that language - if compared with a random word
generator - is very regular so that few completely unpredictable events
happen. Indeed, this is the basis of our ability to perform tasks like
word sense disambiguation and probabilistic parsing that we discuss in
other chapters. The t test and other statistical tests are most useful as
a method for ranking collocations. The level of significance itself is less
useful. In fact, in most publications that we cite in this chapter, the level
of significance is never looked at. All that is used is the scores and the
resulting ranking.

Hypothesis testing of differences

The t test can also be used for a slightly different collocation discovery
problem: to find words whose co-occurrence patterns best distinguish
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t C(w) C(strongw) C(powerfulw) Word

3.1622 933 0 10 computers
2.8284 2337 0 8 computer
2.4494 289 0 6 symbol
2.4494 588 0 6 machines
2.2360 2266 0 5 Germany
2.2360 3745 0 5 nation
2.2360 395 0 5 chip
2.1828 3418 4 13 force
2.0000 1403 0 4 friends
2.0000 267 0 4 neighbor
7.0710 3685 50 0 support
6.3257 3616 58 7 enough
4.6904 986 22 0 safety
4.5825 3741 21 0 sales
4.0249 1093 19 1 opposition
3.9000 802 18 1 showing
3.9000 1641 18 1 sense
3.7416 2501 14 0 defense
3.6055 851 13 0 gains
3.6055 832 13 0 criticism

Table 5.7 Words that occur significantly more often with powerful (the first ten
words) and strong (the last ten words).

between two words. For example, in computational lexicography we may
want to find the words that best differentiate the meanings of strong and
powerful. This use of the t test was suggested by Church and Hanks
(1989). Table 5.7 shows the ten words that occur most significantly more
often with powerful than with strong (first ten words) and most signif-
icantly more often with strong than with powerful (second set of ten
words).

The t scores are computed using the following extension of the t test
to the comparison of the means of two normal populations:

X1 — X
t =

512, 0f

n1+n2

Here the null hypothesis is that the average difference is 0 (u = 0), so we
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havex —u=%= % 2.(X1; — X2,) = X1 — X2. In the denominator we add the
variances of the two populations since the variance of the difference of
two random variables is the sum of their individual variances.

Now we can explain table 5.7. The t values in the table were computed
assuming a Bernoulli distribution (as we did for the basic version of the
t test that we introduced first). If w is the collocate of interest (e.g.,
computers or symbol) and v! and v? are the words we are comparing (e.g.,
powerful and strong), then we have x| = s{ = P(v!w), X2 = s3 = P(V2w),
We again use the approximation s°> = p — p2 ~ p:

_POvw) - P(viw)

P(viw)+P(v2w)
N

We can simplify this as follows.

Cvlw)  C(viw)

N N
C(viw)+C(v2w)
Y N2
Cviw) — C(v2w)
JCOVIw) + C(v2Zw)

~.
u

where C(x) is the number of times x occurs in the corpus.

The application suggested by Church and Hanks (1989) for this form
of the t test was lexicography. The data in table 5.7 are useful to a lex-
icographer who wants to write precise dictionary entries that bring out
the difference between strong and powerful. Based on significant collo-
cates, Church and Hanks analyze the difference as a matter of intrinsic
vs. extrinsic quality. For example, strong support from a demographic
group means that the group is very committed to the cause in question,
but the group may not have any power. So strong describes an intrinsic
quality. Conversely, a powerful supporter is somebody who actually has
the power to move things. Many of the collocates we found in our cor-
pus support Church and Hanks’ analysis. But there is more complexity to
the difference in meaning between the two words since what is extrinsic
and intrinsic can depend on subtle matters like cultural attitudes. For ex-
ample, we talk about strong tea on the one hand and powerful drugs on
the other, a difference that tells us more about our attitude towards tea
and drugs than about the semantics of the two adjectives (Church et al.
1991: 133).
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W) = new w1 = new
wo = companies 8 4667
(new companies) | (e.g., old companies)

Wy # companies 15820 14287181
(e.g., new machines) | (e.g., old machines)

Table 5.8 A 2-by-2 table showing the dependence of occurrences of new and
companies. There are 8 occurrences of new companies in the corpus, 4,667 bi-
grams where the second word is companies, but the first word is not new, 15,820
bigrams with the first word new and a second word different from companies,
and 14,287,181 bigrams that contain neither word in the appropriate position.

Pearson’s chi-square test

Use of the t test has been criticized because it assumes that probabili-
ties are approximately normally distributed, which is not true in general
(Church and Mercer 1993: 20). An alternative test for dependence which
does not assume normally distributed probabilities is the x2 test (pro-
nounced ‘chi-square test’). In the simplest case, the x° test is.applied to
2-by-2 tables like table 5.8. The essence of the test is to compare the
observed frequencies in the table with the frequencies expected for inde-
pendence. If the difference between observed and expected frequencies
is large, then we can reject the null hypothesis of independence.

Table 5.8 shows the distribution of new and companies in the refer-
ence corpus that we introduced earlier. Recall that C (new) = 15,828,
C(companies) = 4,675, C(new companies) = 8, and that there are
14,307,668 tokens in the corpus. That means that the number of bi-
grams w;w;; with the first token not being new and the second token
being companies is 4667 = 4675 — 8. The two cells in the bottom row are
computed in a similar way.

The x? statistic sums the differences between observed and expected
values in all squares of the table, scaled by the magnitude of the expected
values, as follows:

5 (Oyj — Eij)?

X % E
where i ranges over rows of the table, j ranges over columns, O;; is the
observed value for cell (i, j) and E;; is the expected value.

One can show that the quantity X2 is asymptotically x? distributed. In
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other words, if the numbers are large, then X? has a x? distribution. We
will return to the issue of how good this approximation is later.

The expected frequencies E;; are computed from the marginal proba-
bilities, that is, from the totals of the rows and columns converted into
proportions. For example, the expected frequency for cell (1,1) (new
companies) would be the marginal probability of new occurring as the
first part of a bigram times the marginal probability of companies occur-
ring as the second part of a bigram (multiplied by the number of bigrams
in the corpus):

8 + 4667 y 8 + 15820
N N

XN~ 5.2

That is, if new and companies occurred completely independently of each
other we would expect 5.2 occurrences of new companies on average for
a text of the size of our corpus.

The x? test can be applied to tables of any size, but it has a simpler
form for 2-by-2 tables: (see exercise 5.9)

2 _ N(011022 — 01202;)?
(011 + 012)(O11 + 021) (012 + 022) (021 + 022)

X

This formula gives the following x2 value for table 5.8:

14307668(8 x 14287181 — 4667 x 15820)2
(8 +4667)(8 + 15820)(4667 + 14287181)(15820 + 14287181)

~ 1.55

Looking up the x? distribution in the appendix, we find that at a proba-
bility level of & = 0.05 the critical value is x2 = 3.841 (the statistic has
one degree of freedom for a 2-by-2 table). So we cannot reject the null
hypothesis that new and companies occur independently of each other.
Thus new companies is not a good candidate for a collocation.

This result is the same as we got with the t statistic. In general, for the
problem of finding collocations, the differences between the t statistic
and the x? statistic do not seem to be large. For example, the 20 bigrams
with the highest t scores in our corpus are also the 20 bigrams with the
highest x? scores.

However, the x? test is also appropriate for large probabilities, for
which the normality assumption of the t test fails. This is perhaps the
reason that the x? test has been applied to a wider range of problems in
collocation discovery.

One of the early uses of the x? test in Statistical NLP was the identifi-



5.3 Hypothesis Testing 171

| cow - cow
vache 59 6
- vache 8 570934

Table 5.9 Correspondence of vache and cow in an aligned corpus. By applying
the x?2 test to this table one can determine whether vache and cow are transla-
tions of each other.

| corpus 1 corpus 2

word 1 60 9
word 2 500 76
word 3 124 20

Table 5.10 Testing for the independence of words in different corpora using X°.
This test can be used as a metric for corpus similarity.

cation of translation pairs in aligned corpora (Church and Gale 199 1b).
The data in table 5.9 (from a hypothetical aligned corpus) strongly sug-
gest that vache is the French translation of English cow. Here, 59 is the
number of aligned sentence pairs which have cow in the English sentence
and vache in the French sentence etc. The x? value is very high here:
x2 = 456400. So we can reject the null hypothesis that cow and vache
occur independently of each other with high confidence. This pair is a
good candidate for a translation pair.

An interesting application of x? is as a metric for corpus similarity
(Kilgarriff and Rose 1998). Here we compile an n-by-two table for a large
n, for example n = 500. The two columns correspond to the two corpora.
Each row corresponds to a particular word. This is schematically shown
in table 5.10. If the ratio of the counts are about the same (as is the case
in table 5.10, each word occurs roughly 6 times more often in corpus 1
than in corpus 2), then we cannot reject the null hypothesis that both
corpora are drawn from the same underlying source. We can interpret
this as a high degree of similarity. On the other hand, if the ratios vary
wildly, then the X2 score will be high and we have evidence for a high
degree of dissimilarity.

5. They actually use a measure they call ¢2, which is X? multiplied by N. They do this
since they are only interested in ranking translation pairs, so that assessment of signifi-
cance is not important.
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H1 H2
P(w?w!) p="% pr =
. N S
P(w?[-w!) p=7% P2 = ¢
c12 out of ¢, bigrams are wlw? b(ci2; ¢1,p) b(ci2; ¢1,p1)

¢2 — ¢z out of N — ¢ bigrams are ~w!w? b(c, — C12; N—c1,p) b(ca—c12; N-cy,p2)

5.34

LIKELIHOOD RATIO

Table 5.11 How to compute Dunning’s likelihood ratio test. For example, the
likelihood of hypothesis H is the product of the last two lines in the rightmost
column.

Just as application of the t test is problematic because of the under-
lying normality assumption, so is application of X° in cases where the
numbers in the 2-by-2 table are small. Snedecor and Cochran (1989: 127)
advise against using x? if the total sample size is smaller than 20 or if it
is between 20 and 40 and the expected value in any of the cells is 5 or
less.

Likelihood ratios

Likelihood ratios are another approach to hypothesis testing. We will see
below that they are more appropriate for sparse data than the X° test.
But they also have the advantage that the statistic we are computing, a
likelihood ratio, is more interpretable than the X2 statistic. It is simply
a number that tells us how much more likely one hypothesis is than the
other.

In applying the likelihood ratio test to collocation discovery, we ex-
amine the following two alternative explanations for the occurrence fre-
quency of a bigram w!w? (Dunning 1993):

= Hypothesis 1. P(w2|wl) = p = P(w2|-w!)
= Hypothesis 2. P(w?|w!) = p; = p, = P(W?|-wl)

Hypothesis 1 is a formalization of independence (the occurrence of w? is
independent of the previous occurrence of w'), Hypothesis 2 is a formal-
ization of dependence which is good evidence for an interesting colloca-
tion.®

6. We assume that p; > p» if Hypothesis 2 is true. The case P1 < p2 is rare and we will
ignore it here.
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We use the usual maximum likelihood estimates for p, p; and p; and
write ¢;, ¢2, and c1» for the number of occurrences of w!, w? and w!w?
in the corpus:

G —C12

€12
1= 2
p i p N-a

_
P=N

Assuming a binomial distribution:

b(k; n,x) = (k

n>xk(1 _x)nk)

the likelihood of getting the counts for w!, w? and w'!w? that we actually
observed is then L(H;) = b(ci2; ¢1,p)b(c2 — ¢12; N — ¢1,p) for Hypothe-
sis 1 and L(H>) = b(cy2; ¢1,p1)b(c2—c12; N—ci1, p2) for Hypothesis 2. Ta-
ble 5.11 summarizes this discussion. One obtains the likelihoods L(H1)
and L(H>) just given by multiplying the last two lines, the likelihoods of
the specified number of occurrences of w!w? and ~w!w?, respectively.

The log of the likelihood ratio A is then as follows:

L(H,y)
& L(H,)
g b(cy2,c1,p)blc2 — c12,N = ¢1,p)
b(ci2, c1, p1)b(cr — c12,N —¢1, p2)
log L(c12,c¢1,p) +logL(cy — c12,N —¢1,p)

log A

= lo

1

—logL(c12,¢1,p1) —logL(c2 — c12,N ~¢1,p2)

where L(k,n,x) = xK(1 — x)" k.

Table 5.12 shows the twenty bigrams of powerful which are highest
ranked according to the likelihood ratio when the test is applied to the
New York Times corpus (for which N = 14,307,668). We will explain
below why we show the quantity —2logA instead of A. We consider all
occurring bigrams here, including rare ones that occur less than six times,
since this test works well for rare bigrams. For example, powerful cudgels,
which occurs 2 times, is identified as a possible collocation.

One advantage of likelihood ratios is that they have a clear intuitive in-
terpretation. For example, the bigram powerful computers is e0->>82:96 ~
1.3 x 1018 times more likely under the hypothesis that computers is more
likely to follow powerful than its base rate of occurrence would suggest.
This number is easier to interpret than the scores of the t test or the
x? test which we have to look up in a table.
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-2logA  Cw!) Cw?) Cwlw?) w! w?

1291.42 12593 932 150 most powerful
99.31 379 932 10 politically powerful
82.96 932 934 10 powerful computers
80.39 932 3424 13 powerful force
57.27 932 291 6 powerful symbol
51.66 932 40 4 powerful lobbies
51.52 171 932 5 economically powerful
51.05 932 43 4 powerful magnet
50.83 4458 932 10 less powerful
50.75 6252 932 11 very powerful
49.36 932 2064 8 powerful position
48.78 932 591 6 powerful machines
47.42 932 2339 8 powerful computer
43.23 932 16 3 powerful magnets
43.10 932 396 5 powerful chip
40.45 932 3694 8 powerful men
36.36 932 47 3 powerful 486
36.15 932 268 4 powerful neighbor
35.24 932 5245 8 powerful political
34.15 932 3 2 powerful cudgels

Table 5.12 Bigrams of powerful with the highest scores according to Dunning’s
likelihood ratio test.

But the likelihood ratio test also has the advantage that it can be more
appropriate for sparse data than the x? test. How do we use the likeli-
hood ratio for hypothesis testing? If A is a likelihood ratio of a particular
form, then the quantity —-2logA is asymptotically x? distributed (Mood
et al. 1974: 440). So we can use the values in table 5.12 to test the null
hypothesis H; against the alternative hypothesis H,. For example, we can
look up the value of 34.15 for powerful cudgels in the table and reject H,
for this bigram on a confidence level of & = 0.005. (The critical value (for
one degree of freedom) is 7.88. See the table of the x2 distribution in the
appendix.)

The particular form of the likelihood ratio that is required here is that
of a ratio between the maximum likelihood estimate over a subpart of
the parameter space and the maximum likelihood estimate over the en-
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tire parameter space. For the likelihood ratio in (5.11), the entire space
is the space of pairs (p1,p2) for the probability of w? occurring when w!
preceded (p;) and w? occurring when a different word preceded (p2). We
get the maximum likelihood for the data we observed if we assume the
maximum likelihood estimates that we computed in (5.8). The subspace
is the subset of cases for which p; = p». Again, the estimate in (5.8)
gives us the maximum likelihood over the subspace given the data we ob-
served. It can be shown that if A is a ratio of two likelihoods of this type
(one being the maximum likelihood over the subspace, the other over the
entire space), then —2log A is asymptotically x? distributed. ‘Asymptot-
ically’ roughly means ‘if the numbers are large enough’. Whether or not
the numbers are large enough in a particular case is hard to determine,
but Dunning has shown that for small counts the approximation to x?
is better for the likelihood ratio in (5.11) than, for example, for the X?
statistic in (5.6). Therefore, the likelihood ratio test is in general more
appropriate than Pearson’s x° test for collocation discovery.’

Relative frequency ratios. So far we have looked at evidence for collo-
cations within one corpus. Ratios of relative frequencies between two or
more different corpora can be used to discover collocations that are char-
acteristic of a corpus when compared to other corpora (Damerau 1993).
Although ratios of relative frequencies do not fit well into the hypothe-
sis testing paradigm, we treat them here since they can be interpreted as
likelihood ratios.

Table 5.13 shows ten bigrams that occur exactly twice in our reference
corpus (the 1990 New York Times corpus). The bigrams are ranked ac-
cording to the ratio of their relative frequencies in our 1990 reference
corpus versus their frequencies in a 1989 corpus (again drawn from the
months August through November). For example, Karim Obeid occurs 68
times in the 1989 corpus. So the relative frequency ratio r is:

2 _
r = 30668+ 0.024116
751564

The bigrams in table 5.13 are mostly associated with news items that
were more prevalent in 1989 than in 1990: The Muslim cleric Sheik Abdul

7. However, even —2logA is not approximated well by x? if the expected values in the
2-by-2 contingency table are less than 1.0 (Read and Cressie 1988; Pedersen 1996).
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Ratio 1990 1989 w! w?
0.0241 2 68 Karim  Obeid
0.0372 2 44 East Berliners
0.0372 2 44 Miss Manners
0.0399 2 41 17 earthquake
0.0409 2 40 HUD officials
0.0482 2 34 EAST GERMANS
0.0496 2 33 Muslim cleric
0.0496 2 33 John Le

0.0512 2 32 Prague Spring
0.0529 2 31 Among individual

Table 5.13 Damerau’s frequency ratio test. Ten bigrams that occurred twice
in the 1990 New York Times corpus, ranked according to the (inverted) ratio of
relative frequencies in 1989 and 1990.

Karim Obeid (who was abducted in 1989), the disintegration of commu-
nist Eastern Furope (East Berliners, EAST GERMANS, Prague Spring), the
novel The Russia House by John Le Carre, a scandal in the Department of
Housing and Urban Development (HUD), and the October 17 earthquake
in the San Francisco Bay Area. But we also find artefacts like Miss Manners
(whose column the New York Times newswire stopped carrying in 1990)
and Among individual. The reporter Phillip H. Wiggins liked to use the
latter phrase for his stock market reports (Among individual Big Board
issues ...), but he stopped writing for the Times in 1990.

The examples show that frequency ratios are mainly useful to find
subject-specific collocations. The application proposed by Damerau is to
compare a general text with a subject-specific text. Those words and
phrases that on a relative basis occur most often in the subject-specific
text are likely to be part of the vocabulary that is specific to the domain.

Exercise 5.4 [* ]

Identify the most significantly non-independent bigrams according to the t test
in a corpus of your choice.

Exercise 5.5 [*]

It is a coincidence that the t value for new companies is close to 1.0. Show this by
computing the t value of new companies for a corpus with the following counts.
C(new) = 30,000, C(companies) = 9,000, C(new companies) = 20, and corpus
size N = 15,000, 000.
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Exercise 5.6 [*]

We can improve on the method in section 5.2 by taking into account variance. In
fact, Smadja does this and the algorithm described in (Smadja 1993) therefore
bears some similarity to the t test.

Compute the t statistic in equation (5.3) for possible collocations by substituting
mean and variance as computed in section 5.2 for x and s2 and (a) assuming
u = 0, and (b) assuming p = round(x), that is, the closest integer. Note that we
are not testing for bigrams here, but for collocations of word pairs that occur at
any fixed small distance.

Exercise 5.7 [**]

As we pointed out above, almost all bigrams occur significantly more often than
chance if a stop list is used for prefiltering. Verify that there is a large proportion
of bigrams that occur less often than chance if we do not filter out function
words.

Exercise 5.8 [**]

Apply the t test of differences to a corpus of your choice. Work with the follow-
ing word pairs or with word pairs that are appropriate for your corpus: man /
woman, blue / green, lawyer / doctor.

Exercise 5.9 [*]

Derive equation (5.7) from equation (5.6).

Exercise 5.10 [* %]
Find terms that distinguish best between the first and second part of a corpus
of your choice.

Exercise 5.11 [* *]

Repeat the above exercise with random selection. Now you should find that
fewer terms are significant. But some still are. Why? Shouldn’t there be no
differences between corpora drawn from the same source? Do this exercise for
different significance levels.

Exercise 5.12 [* %]

Compute a measure of corpus similarity between two corpora of your choice.

Exercise 5.13 [ %]

Kilgarriff and Rose’s corpus similarity measure can also be used for assessing
corpus homogeneity. This is done by constructing a series of random divisions
of the corpus into a pair of subcorpora. The test is then applied to each pair. If
most of the tests indicated similarity, then it is a homogeneous corpus. Apply
this test to a corpus of your choice.
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Collocations

Iiwhw?)y Ccwl) Ccw?) c(w!w?) | w! w?
18.38 42 20 20 | Ayatollah Ruhollah
17.98 41 27 20 | Bette Midler
16.31 30 117 20 | Agatha Christie
15.94 77 59 20 | videocassette | recorder
15.19 24 320 20 | unsalted butter
1.09 14907 9017 20 | first made
1.01 13484 10570 20 | over many
0.53 14734 13478 20 | into them
0.46 14093 14776 20 | like people
0.29 15019 15629 20 | time last

Table 5.14 Finding collocations: Ten bigrams that occur with frequency 20,
ranked according to mutual information.

Mutual Information

An information-theoretically motivated measure for discovering inter-
esting collocations is pointwise mutual information (Church et al. 1991;
Church and Hanks 1989; Hindle 1990). Fano (1961: 27-28) originally de-
fined mutual information between particular events x’ and y’, in our case
the occurrence of particular words, as follows:

og P(x'y")
P(x)P(Y)

P(X'y")
P(x")

P(y'Ix")
P(y")

This type of mutual information, which we introduced in section 2.2.3,
is roughly a measure of how much one word tells us about the other, a
notion that we will make more precise shortly.

In information theory, mutual information is more often defined as
holding between random variables, not values of random variables as we
have defined it here (see the standard definition in section 2.2.3). We will
see below that these two types of mutual information are quite different
creatures.

When we apply this definition to the 10 collocations from table 5.6, we

I(X,,y,) _

log,

log,
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chambre - chambre MI X
house 31,950 12,004
= house 4793 848,330 4.1 553610
communes — communes
house 4974 38,980
- house 441 852,682 4.2 88405

Table 5.15 Correspondence of chambre and house and communes and house
in the aligned Hansard corpus. Mutual information gives a higher score to (com-
munes,house), while the x? test gives a higher score to the correct translation
pair (chambre,house).

get the same ranking as with the t test (see table 5.14). As usual, we use
maximum likelihood estimates to compute the probabilities, for example:

20 _
I(Ayatollah, Ruhollah) = log, 14307668 ~ 18.38

42
14307668 X 14307668

So what exactly is (pointwise) mutual information, I(x’, y’), a measure of?
Fano writes about definition (5.12):

The amount of information provided by the occurrence of the event
represented by [y’] about the occurrence of the event represented
by [x’] is defined as [(5.12)].

For example, the mutual information measure tells us that the amount
of information we have about the occurrence of Ayatollah at position i in
the corpus increases by 18.38 bits if we are told that Ruhollah occurs at
position i + 1. Or, since (5.12) and (5.13) are equivalent, it also tells us
that the amount of information we have about the occurrence of Ruhollah
at position i + 1 in the corpus increases by 18.38 bits if we are told that
Ayatollah occurs at position i. We could also say that our uncertainty is
reduced by 18.38 bits. In other words, we can be much more certain that
Ruhollah will occur next if we are told that Ayatollah is the current word.

Unfortunately, this measure of ‘increased information’ is in many cases
not a good measure of what an interesting correspondence between two
events is, as has been pointed out by many authors. (We base our dis-
cussion here mainly on (Church and Gale 1991b) and (Maxwell 1992).)
Consider the two examples in table 5.15 of counts of word correspon-
dences between French and English sentences in the Hansard corpus, an
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aligned corpus of debates of the Canadian parliament (the table is simi-
lar to table 5.9). The reason that house frequently appears in translations
of French sentences containing chambre and communes is that the most
common use of house in the Hansard is the phrase House of Commons
which corresponds to Chambre de communes in French. But it is easy
to see that communes is a worse match for house than chambre since
most occurrences of house occur without communes on the French side.
As shown in the table, the x? test is able to infer the correct correspon-
dence whereas mutual information gives preference to the incorrect pair
(communes,house).

We can explain the difference between the two measures easily if we
look at definition (5.12) of mutual information and compare the quanti-
ties I(chambre, house) and I(communes, house):

P(house|chambre) - ﬁ% ~ 0.87

P(house) 08 P(house) 08 P(house)

4974
0.92 19741441 P (house| communes)

P(house) ~ "°% P(house) ~ °® P (house)

The word communes in the French makes it more likely that house oc-
curred in the English than chambre does. The higher mutual information
value for communes reflects the fact that communes causes a larger de-
crease in uncertainty here. But as the example shows decrease in uncer-
tainty does not correspond well to what we want to measure. In contrast,
the x? is a direct test of probabilistic dependence, which in this context
we can interpret as the degree of association between two words and
hence as a measure of their quality as translation pairs and collocations.

Table 5.16 shows a second problem with using mutual information for
finding collocations. We show ten bigrams that occur exactly once in
the first 1000 documents of the reference corpus and their mutual infor-
mation score based on the 1000 documents. The right half of the table
shows the mutual information score based on the entire reference corpus
(about 23,000 documents).

The larger corpus of 23,000 documents makes some better estimates
possible, which in turn leads to a slightly better ranking. The bigrams
marijuana growing and new converts (arguably collocations) have moved
up and Reds survived (definitely not a collocation) has moved down. How-
ever, what is striking is that even after going to a 10 times larger corpus
6 of the bigrams still only occur once and, as a consequence, have in-
accurate maximum likelihood estimates and artificially inflated mutual

log

< log
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Liooo w!'  w? wlw? Bigram I>3000 wi w? wlw? Bigram
16.95 5 1 1 Schwartz eschews | 14.46 106 6 1 Schwartz eschews
15.02 1 19 1 fewest visits 13.06 76 22 1 FIND GARDEN
13.78 5 9 1 FIND GARDEN 11.25 22 267 1 fewest visits
12.00 5 31 1 Indonesian pieces 8.97 43 663 1 Indonesian pieces
9.82 26 27 1 Reds survived 8.04 170 1917 6 marijuana growing
9.21 13 82 1 marijuana growing 5.73 15828 51 3 new converts
7.37 24 159 1 doubt whether 5.26 680 3846 7 doubt whether
6.68 687 9 1 new converts 4.76 739 713 1 Reds survived
6.00 661 15 1 like offensive 1.95 3549 6276 6 must think
3.81 159 283 1 must think 0.41 14093 762 1 like offensive

Table 5.16 Problems for Mutual Information from data sparseness. The table
shows ten bigrams that occurred once in the first 1000 documents in the ref-
erence corpus ranked according to mutual information score in the first 1000
documents (left half of the table) and ranked according to mutual information
score in the entire corpus (right half of the table). These examples illustrate that
a large proportion of bigrams are not well characterized by corpus data (even for
large corpora) and that mutual information is particularly sensitive to estimates
that are inaccurate due to sparseness.

information scores. All 6 are not collocations and we would prefer a
measure which ranks them accordingly.

None of the measures we have seen works very well for low-frequency
events. But there is evidence that sparseness is a particularly difficult
problem for mutual information. To see why, notice that mutual infor-
mation is a log likelihood ratio of the probability of the bigram P(w!w?)
and the product of the probabilities of the individual words P(w!)P(w?).
Consider two extreme cases: perfect dependence of the occurrences of
the two words (they only occur together) and perfect independence (the
occurrence of one does not give us any information about the occurrence
of the other). For perfect dependence we have:

P(xy) P(x) 1

I y) =log 5 p ) =18 brar ) =~ 18 by

That is, among perfectly dependent bigrams, as they get rarer, their mu-
tual information increases.
For perfect independence we have:

Pixy) _, PX)P()
PO~ 98 pop(y)

I(x,y):logp =logl=0
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Symbol Definition Current use Fano
I(x,y) log E&(fl')—y()y) pointwise mutual information mutual information
I(X;Y) Elog % mutual information average MI/expectation of MI

EXPECTATION

Table 5.17 Different definitions of mutual information in (Cover and Thomas
1991) and (Fano 1961).

We can say that mutual information is a good measure of independence.
Values close to 0 indicate independence (independent of frequency). But
it is a bad measure of dependence because for dependence the score
depends on the frequency of the individual words. Other things being
equal, bigrams composed of low-frequency words will receive a higher
score than bigrams composed of high-frequency words. That is the oppo-
site of what we would want a good measure to do since higher frequency
means more evidence and we would prefer a higher rank for bigrams for
whose interestingness we have more evidence. One solution that has been
proposed for this is to use a cutoff and to only look at words with a fre-
quency of at least 3. However, such a move does not solve the underlying
problem, but only ameliorates its effects.

Since pointwise mutual information does not capture the intuitive no-
tion of an interesting collocation very well, it is often not used when it is
made available in practical applications (Fontenelle et al. 1994: 81) or itis
redefined as C(wlw?)I(w',w?) to compensate for the bias of the origi-
nal definition in favor of low-frequency events (Fontenelle et al. 1994: 72,
Hodges et al. 1996).

As we mentioned earlier, the definition of mutual information used
here is common in corpus linguistic studies, but is less common in Infor-
mation Theory. Mutual information in Information Theory refers to the
expectation of the quantity that we have used in this section:

p(X,Y)
p(X)p(Y)

The definition we have used in this chapter is an older one, termed point-
wise mutual information (see section 2.2.3, Fano 1961: 28, and Gallager
1968). Table 5.17 summarizes the older and newer naming conventions.
One quantity is the expectation of the other, so the two types of mutual
information are quite different.

The example of mutual information demonstrates what should be self-

I(X; Y) = Epx,y) log
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evident: it is important to check what a mathematical concept is a for-
malization of. The notion of pointwise mutual information that we have
used here (log %) measures the reduction of uncertainty about
the occurrence of one word when we are told about the occurrence of the
other. As we have seen, such a measure is of limited utility for acquiring

the types of linguistic properties we have looked at in this section.

Exercise 5.14 [* %]

Justeson and Katz'’s part-of-speech filter in section 5.1 can be applied to any of
the other methods of collocation discovery in this chapter. Pick one and modify
it to incorporate a part-of-speech filter. What advantages does the modified
method have?

Exercise 5.15 [* * %]

Design and implement a collocation discovery tool for a translator’s workbench.
Pick either one method or a combination of methods that the translator can
choose from.

Exercise 5.16 [ % x]

Design and implement a collocation discovery tool for a lexicographer’s work-
bench. Pick either one method or a combination of methods that the lexicogra-
pher can choose from.

Exercise 5.17 [ % ]

Many news services tag references to companies in their news stories. For ex-
ample, all references to the General Electric Company would be tagged with the
same tag regardless of which variant of the name is used (e.g., GE, General Elec-
tric, or General Electric Company). Design and implement a collocation discovery
tool for finding company names. How could one partially automate the process
of identifying variants?

The Notion of Collocation

The notion of collocation may be confusing to readers without a back-
ground in linguistics. We will devote this section to discussing in more
detail what a collocation is.

There are actually different definitions of the notion of collocation.
Some authors in the computational and statistical literature define a col-
location as two or more consecutive words with a special behavior, for
example Choueka (1988):

[A collocation is defined as] a sequence of two or more consecutive
words, that has characteristics of a syntactic and semantic unit,
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and whose exact and unambiguous meaning or connotation cannot
be derived directly from the meaning or connotation of its compo-
nents.

Most of the examples we have presented in this chapter also assumed
adjacency of words. But in most linguistically oriented research, a phrase
can be a collocation even if it is not consecutive (as in the example knock
... door). The following criteria are typical of linguistic treatments of
collocations (see for example Benson (1989) and Brundage et al. (1992)),
non-compositionality being the main one we have relied on here.

= Non-compositionality. The meaning of a collocation is not a straight-
forward composition of the meanings of its parts. Either the meaning
is completely different from the free combination (as in the case of id-
ioms like kick the bucket) or there is a connotation or added element of
meaning that cannot be predicted from the parts. For example, white
wine, white hair and white woman all refer to slightly different colors,
s0 we can regard them as collocations.

= Non-substitutability. We cannot substitute other words for for the
components of a collocation even if, in context, they have the same
meaning. For example, we can’t say yellow wine instead of white wine
even though yellow is as good a description of the color of white wine
as white is (it is kind of a yellowish white).

= Non-modifiability. Many collocations cannot be freely modified with
additional lexical material or through grammatical transformations.
This is especially true for frozen expressions like idioms. For example,
we can’'t modify frog in to get a frog in one’s throat into to get an ugly
frog in one’s throat although usually nouns like frog can be modified
by adjectives like ugly. Similarly, going from singular to plural can
make an idiom ill-formed, for example in people as poor as church
mice.

A nice way to test whether a combination is a collocation is to translate
it into another language. If we cannot translate the combination word by
word, then that is evidence that we are dealing with a collocation. For
example, translating make a decision into French one word at a time we
get faire une décision which is incorrect. In French we have to say prendre
une décision. So that is evidence that make a decision is a collocation in
English.
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strength power

to build up ~ to assume ~

to find ~ emergency ~

to save ~ discretionary ~

to sap somebody’s ~ ~ over [several provinces]
brute ~ supernatural ~

tensile ~ to turn off the ~

the ~ to [do X] the ~ to [do X]

[our staff was] at full ~ the balance of ~

on the ~ of [your recommendation] | fire ~

Table 5.18 Collocations in the BBI Combinatory Dictionary of English for the
words strength and power.

Some authors have generalized the notion of collocation even further
and included cases of words that are strongly associated with each other,
but do not necessarily occur in a common grammatical unit and with a
particular order, cases like doctor - nurse or plane - airport. 1t is prob-
ably best to restrict collocations to the narrower sense of grammatically
bound elements that occur in a particular order and use the terms associ-
ation and co-occurrence for the more general phenomenon of words that
are likely to be used in the same context.

It is instructive to look at the types of ccllocations that a purely lin-
guistic analysis of text will discover if plenty of time and person power
is available so that the limitations of statistical analysis and computer
technology need be of no concern. An example of such a purely linguistic
analysis is the BBI Combinatory Dictionary of English (Benson et al. 1993).
In table 5.18, we show some of the collocations (or combinations as the
dictionary prefers to call them) of strength and power that the diction-
ary lists.® We can see immediately that a wider variety of grammatical
patterns is considered here (in particular patterns involving prepositions
and particles). Naturally, the quality of the collocations is also higher
than computer-generated lists - as we would expect from a manually
produced compilation.

We conclude our discussion of the concept of collocation by going
through some subclasses of collocations that deserve special mention.

8. We cannot show collocations of strong and powerful because these adjectives are not
listed as entries in the dictionary.
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Verbs with little semantic content like make, take and do are called light
verbs in collocations like make a decision or do a favor. There is hardly
anything about the meaning of make, take or do that would explain why
we have to say make a decision instead of take a decision and do a fa-
vor instead of make a favor, but for many computational purposes the
correct light verb for combination with a particular noun must be deter-
mined and thus acquired from corpora if this information is not available
in machine-readable dictionaries. Dras and Johnson (1996) examine one
approach to this problem.

Verb particle constructions or phrasal verbs are an especially important
part of the lexicon of English. Many verbs in English like to tell off and
to go down consist of a combination of a main verb and a particle. These
verbs often correspond to a single lexeme in other languages (répriman-
der, descendre in French). This type of construction is a good example of
a collocation with often non-adjacent words.

Proper nouns (also called proper names) are usually included in the
category of collocations in computational work although they are quite
different from lexical collocations. They are most amenable to ap-
proaches that look for fixed phrases that reappear in exactly the same
form throughout a text.

Terminological expressions or phrases refer to concepts and objects in
technical domains. Although they are often fairly compositional (e.g., hy-
draulic oil filter), it is still important to identify them to make sure that
they are treated consistently throughout a technical text. For example,
when translating a manual, we have to make sure that all instances of
hydraulic oil filter are translated by the same term. If two different trans-
lations are used (even if they have the same meaning in some sense), the
reader of the translated manual could get confused and think that two
different entities are being described.

As a final example of the wide range of phenomena that the term col-
location is applied to, let us point to the many different degrees of in-
variability that a collocation can show. At one extreme of the spectrum
we have usage notes in dictionaries that describe subtle differences in us-
age between near-synonyms like answer and reply (diplomatic answer vs.
stinging reply). This type of collocation is important for generating text
that sounds natural, but getting a collocation wrong here is less likely
to lead to a fatal error. The other extreme are completely frozen ex-
pressions like proper names and idioms. Here there is just one way of
saying things and any deviation will completely change the meaning of
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what is said. Luckily, the less compositional and the more important a
collocation, the easier it is to acquire it automatically.

Further Reading

See (Stubbs 1996) for an in-depth discussion of the British tradition of
‘empiricist’ linguistics.

The t test is covened in most general statistics books. Standard ref-
erences are (Snedecor and Cochran 1989: 53) and (Moore and McCabe
1989: 541). Weinberg and Goldberg (1990: 306) and Ramsey and Schafer
(1997) are more accessible for students with less mathematical back-
ground. These books also cover the x? test, but not some of the other
more specialized tests that we discuss here.

One of the first publications on the discovery of collocations was
(Church and Hanks 1989), later expanded to (Church et al. 1991). The au-
thors drew attention to an emerging type of corpus-based dictionary (Sin-
clair 1995) and developed a program of computational lexicography that
combines corpus evidence, computational methods and human judge-
ment to build more comprehensive dictionaries that better reflect actual
language use.

There are a number of ways lexicographers can benefit from automated
processing of corpus data. A lexicographer writes a dictionary entry after
looking at a potentially large number of examples of a word. If the ex-
amples are automatically presorted according to collocations and other
criteria (for example, the topic of the text), then this process can be made
much more efficient. For example, phrasal verbs are sometimes neglected
in dictionaries because they are not separate words. A corpus-based ap-
proach will make their importance evident to the lexicographer. In addi-
tion, a balanced corpus will reveal which of the uses are most frequent
and hence most important for the likely user of a dictionary. Difference
tests like the t test are useful for writing usage notes and for writing ac-
curate definitions that reflect differences in usage between words. Some
of these techniques are being used for the next generation of dictionaries
(Fontenelle et al. 1994).

Eventually, a new form of dictionary could emerge from this work,
a kind of dictionary-cum-corpus in which dictionary entry and corpus
evidence support each other and are organized in a coherent whole. The
COBUILD dictionary already has some of these characteristics (Sinclair
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1995). Since space is less of an issue with electronic dictionaries plenty
of corpus examples can be integrated into a dictionary entry for the in-
terested user.

What we have said about the value of statistical corpus analysis for
monolingual dictionaries applies equally to bilingual dictionaries, at least
if an aligned corpus is available (Smadja et al. 1996).

Another important application of collocations is Information Retrieval
(IR). Accuracy of retrieval can be improved if the similarity between a
user query and a document is determined based on common collocations
(or phrases) instead of common words (Fagan 1989; Evans et al. 1991:
Strzalkowski 1995; Mitra et al. 1997). See Lewis and Jones (1996) and
Krovetz (1991) for further discussion of the question of using colloca-
tion discovery and NLP in Information Retrieval and Nevill-Manning et al.
(1997) for an alternative non-statistical approach to using phrases in IR.
Steier and Belew (1993) present an interesting study of how the treat-
ment of phrases (for example, for phrase weighting) should change as
we move from a subdomain to a general domain. For example, invasive
procedure is completely compositional and a less interesting collocation
in the subdomain of medical articles, but becomes interesting and non-
compositional when ‘exported’ to a general collection that is a mixture of
many specialized domains.

Two other important applications of collocations, which we will just
mention, are natural language generation (Smadja 1993) and cross-
language information retrieval (Hull and Grefenstette 1998).

An important area that we haven’t been able to cover is the discovery
of proper nouns, which can be regarded as a kind of collocation. Proper
nouns cannot be exhaustively covered in dictionaries since new people,
places, and other entities come into existence and are named all the time.
Proper nouns also present their own set of challenges: co-reference (How
can we tell that IBM and International Business Machines refer to the
same entity?), disambiguation (When does AMEX refer to the American
Exchange, when to American Express?), and classification (Is this new en-
tity that the text refers to the name of a person, a location or a company?).
One of the earliest studies on this topic is (Coates-Stephens 1993). Mc-
Donald (1995) focuses on lexicosemantic patterns that can be used as
cues for proper noun detection and classification. Mani and MacMillan
(1995) and Paik et al. (1995) propose ways of classifying proper nouns
according to type.

One frequently used measure for interestingness of collocations that
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we did not cover is the z score, a close relative of the t test. It is used in
several software packages and workbenches for text analysis (Fontenelle
et al. 1994; Hawthorne 1994). The z score should only be applied when
the variance is known, which arguably is not the case in most Statistical
NLP applications.

Fisher’s exact test is another statistical test that can be used for judging
how unexpected a set of observations is. In contrast to the t test and the
x2 test, it is appropriate even for very small counts. However, it is hard
to compute, and it is not clear whether the results obtained in practice
are much different from, for example, the x° test (Pedersen 1996).

Yet another approach to discovering collocations is to search for points
in the word stream with either low or high uncertainty as to what the next
(or previous) word will be. Points with high uncertainty are likely to be
phrase boundaries, which in turn are candidates for points where a col-
location may start or end, whereas points with low uncertainty are likely
to be located within a collocation. See (Evans and Zhai 1996) and (Shimo-
hata et al. 1997) for two approaches that use this type of information for
finding phrases and collocations.
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Statistical Inference: n-gram
Models over Sparse Data

StaTisTicaL  NLP aims to do statistical inference for the field of
ra language. Statistical inference in genera consists of taking som
(generated in accordance with some unknown probability distrib
and then making some inferences about this distribution. For exe
we might look at lots of instances of prepositional phrase attach
in a corpus, and use them to try to predict prepositional phrase ¢
ments for English in general. The discussion in this chapter divide
problem into three areas (although they tend to overlap considerably
viding the training data into equivalence classes, finding a good stat
estimator for each equivalence class, and combining multiple estin

As a running example of datistical estimation, we will examin
classic task of language modeling, where the problem is to predi
next word given the previous words. This task is fundamental to
or optical character recognition, and is aso used for spelling corre
handwriting recognition, and statistical machine trandation. This s
task is often referred to as a Shannon game following the preser
of the task of guessing the next letter in a text in (Shannon 1951).
problem has been well-studied, and indeed many estimation me
were first developed for this task. In general, though, the metho
develop are not specific to this task, and can be directly used for
tasks like word sense disambiguation or probabilistic parsing. The
prediction task just provides a clear easily-understood problem for
the techniques can be developed.
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6 Statistical Inference: n-gram Models over Sparse Data

Bins: Forming Equivalence Classes

Reliability vs. discrimination

Normally, in order to do inference about one feature, we wish to find
other features of the model that predict it. Here, we are assuming that
past behavior is a good guide to what will happen in the future (that is,
that the model is roughly stationary). This gives us a classification task:
we try to predict the target feature on the basis of various classificatory
features. When doing this, we effectively divide the data into equivalence
classes that share values for certain of the classificatory features, and use
this equivalence classing to help predict the value of the target feature
on new pieces of data. This means that we are tacitly making indepen-
dence assumptions: the data either does not depend on other features, or
the dependence is sufficiently minor that we hope that we can neglect it
without doing too much harm. The more classificatory features (of some
relevance) that we identify, the more finely conditions that determine the
unknown probability distribution of the target feature can potentialy be
teased apart. In other words, dividing the data into many bins gives us
greater discrimination. Going against this is the problem that if we use a
lot of bins then a particular bin may contain no or a very small number of
training instances, and then we will not be able to do statistically reliable
estimation of the target feature for that bin. Finding equivalence classes
that are a good compromise between these two criteria is our first goal.

n-gram models

The task of predicting the next word can be stated as attempting to esti-
mate the probability function P;

P(Wn‘wly---awn—l)

In such a stochastic problem, we use a classification of the previous
words, the history, to predict the next word. On the basis of having looked
a alot of text, we know which words tend to follow other words.

For this task, we cannot possibly consider each textual history sepa
rately: most of the time we will be listening to a sentence that we have
never heard before, and so there is no previous identical textua history
on which to base our predictions, and even if we had heard the begin-
ning of the sentence before, it might end differently this time. And so we
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TRIGRAM
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need a method of grouping histories that are similar in some way
to give reasonable predictions as to which words we can expect to
next. One possible way to group them is by making a Markov assun
that only the prior local context - the last few words - affects th
word. If we construct a model where al histories that have the san
n—- 1 words are placed in the same equivaence class, then we h:
(n—1)"™ order Markov model or an n-gram word model (the last w
the n-gram being given by the word we are predicting).

Before continuing with model-building, let us pause for a brief
lude on naming. The cases of n-gram models that people usualy u
for n = 2,3,4, and these dternatives are usudly referred to as a b
atrigram, and a four-gram model, respectively. Reveding this will
be enough to cause any Classicists who are reading this book tc
and to leave the field to uneducated engineering sorts. gram is a
root and so should be put together with Greek number prefixes. S
actually did use the term digram, but with the declining levels of
tion in recent decades, this usage has not survived. As non-presc
linguists, however, we think that the curious mixture of English,
and Latin that our colleagues actualy use is quite fun. So we will |
to stamp it out.!

Now in principle, we would like the n of our n-gram models to be
large, because there are sequences of words like:

Sue swallowed the large green _.

where swallowed is presumably till quite strongly influencing
word will come next - pill or perhaps frog are likely continuation
tree, cur or mountain are presumably unlikely, even though they
genera fairly natural continuations after the large green . Ho
there is the problem that if we divide the data into too many hins
there are a lot of parameters to estimate. For instance, if we c
vatively assume that a speaker is staying within a vocabulary of 2
words, then we get the estimates for numbers of parameters sho
table 6.1.2

1. Rather than four-gram, some people do make an attempt at appearing educ
saying quadgram, but this is not realy correct use of a Latin number prefix (whicl
give quadrigram, cf. quadrilateral), let aone correct use of a Greek number prefix
would give us “a tetragram model.”

2. Given a certain model space (here word n-gram models), the parameters are tf
bers that we have to specify to determine a particular model within that mode
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Modél Parameters

1 st order (bigram model): 20,000 x 19,999 = 400 million
2nd order (trigram modél): 20,000" x 19,999 = 8 trillion
3th order (four-gram model): 20,000” x 19,999 = 1.6 x 10!7

Table6.1 Growth in number of parameters for n-gram models.

So we quickly see that producing a five-gram model, of the sort that
we thought would be useful above, may well not be practica, even if
we have what we think is a very large corpus. For this reason, n-gram
systems currently usually use bigrams or trigrams (and often make do
with a smaller vocabulary).

One way of reducing the number of parameters is to reduce the value
of n, but it is important to realize that n-grams are not the only way
of forming equivalence classes of the history. Among other operations
of equivalencing, we could consider stemming (removing the inflectiona
endings from words) or grouping words into semantic classes (by use
of a pre-existing thesaurus, or by some induced clustering). This is ef-
fectively reducing the vocabulary size over which we form n-grams. But
we do not need to use n-grams at al. There are myriad other ways of
forming equivalence classes of the history - it's just that they're al a bit
more complicated than n-grams. The above example suggests that know-
ledge of the predicate in a clause is useful, so we can imagine a mode
that predicts the next word based on the previous word and the previ-
ous predicate (no matter how far back it is). But this model is harder to
implement, because we first need a fairly accurate method of identifying
the main predicate of a clause. Therefore we will just use n-gram models
in this chapter, but other techniques are covered in chapters 12 and 14.

For anyone from a linguistics background, the idea that we would
choose to use a model of language structure which predicts the next word
simply by examining the previous two words - with no reference to the
structure of the sentence - seems almost preposterous. But, actualy, the

Since we are assuming nothing in particular about the probability distribution, the num-
ber of parameters to be estimated is the number of bins times one less than the number
of values of the target feature (one is subtracted because the probability of the last target
value is automaticaly given by the stochastic constraint that probabilities should sum to
one).
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lexical co-occurrence, semantic, and basic syntactic relationships tl
pear in this very local context are a good predictor of the next
and such systems work surprisingly well. Indeed, it is difficult to
trigram model on the purely linear task of predicting the next wol

Building n-gram models

In the final part of some sections of this chapter, we will actuall
some models and show the results. The reader should be able to r
our results by using the tools and data on the accompanying websi
text that we will use is Jane Austen’s novels, and is available fr
website. This corpus has two advantages. (i) it is freely available
the work of Project Gutenberg, and (ii) it is not too large. The sm
of the corpus is, of course, in many ways aso a disadvantage. Bec
the huge number of parameters of n-gram models, as discussed
n-gram models work best when trained on enormous amounts O
However, such training requires a lot of CPU time and diskspac
small corpus is much more appropriate for a textbook example. E
you will want to make sure that you start off with about 40Mb

diskspace before attempting to recreate our examples.

As usual, the first step is to preprocess the corpus. The Project
berg Austen texts are very clean plain ASCII files. But nevertheles
are the usual problems of punctuation marks attaching to words
on (see chapter 4) that mean that we must do more than simply ¢
whitespace. We decided that we could make do with some very
search-and-replace patterns that removed all punctuation leaving
space separated words (see the website for details). We decided
Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, an
and Sensibility as our corpus for building models, reserving Pers
for testing, as discussed below. This gave us a (small) training co
N = 617,091 words of text, containing a vocabulary V of 14,58
types.

By simply removing al punctuation as we did, our file is literaly
sequence of words. This isn't actualy what people do most of tr
It is commonly felt that there are not very strong dependencies t
sentences, while sentences tend to begin in characteristic ways. So
mark the sentences in the text ~ most commonly by surroundin
with the SGML tags <s> and </s>. The probability calculations
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start of a sentence are then dependent not on the last words of the pre-
ceding sentence but upon a ‘beginning of sentence context. We should
additionally note that we didn't remove case distinctions, so capitalized
words remain in the data, imperfectly indicating where new sentences

begin.

6.2 Statistical Estimators

(6.3)

Given a certain number of pieces of training data that fall into a certain
bin, the second goa is then finding out how to derive a good probabil-
ity estimate for the target feature based on these data. For our running
example of n-grams, we will be interested in P(w;---w,) and the predic-
tion task P(wy,|wy---wy_1). Since

P(wy - - - wn)

P e Wy = - @@
(Wnlwy n-1) Piws - WD)

estimating good conditional probability distributions can be reduced to
having good solutions to simply estimating the unknown probability dis-
tribution of n-grams.3

Let us assume that the training text consists of N words. If we append
n— 1 dummy start symbols to the beginning of the text, we can then aso
say that the corpus consists of N n-grams, with a uniform amount of
conditioning available for the next word in al cases. Let B be the number
of bins (equivalence classes). This will be v~1 where V is the vocabulary
size, for the task of working out the next word and V” for the task of
estimating the probability of different n-grams. Let C(w;---wy) be the
frequency of a certain n-gram in the training text, and let us say that
there are N, n-grams that appeared r times in the training text (i.e, N, =
Hwi---w,: Clwy - - -wy)=r}]). These frequencies of frequencies are
very commonly used in the estimation methods which we cover below.
This notation is summarized in table 6.2.

3. However, when smoothing, one has a choice of whether to smooth the n-gram proba
bility estimates, or to smooth the conditional probability distributions directly. For many
methods, these do not give equivaent results since in the latter case one is separately
smoothing a large number of conditional probability distributions (which normally need
to be themselves grouped into classes in some way).
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N Number of training instances
B Number of bins training instances are divided intc
Win An n-gram wy-- - wy in the training text

C(wy-.-wy) Frequency of n-gram wi---wy in training text

¥ Frequency of an n-gram

f() Frequency estimate of a model

N, Number of bins that have r training instances in |
T, Total count of n-grams of frequency r in further |
h ‘History’ of preceding words

Table 6.2 Notation for the statistica estimation chapter.

Maximum Likelihood Estimation (MLE)
MLE estimates from relative frequencies

Regardless of how we form equivalence classes, we will end up wit
that contain a certain number of training instances. Let us asst
trigram model where we are using the two preceding words of cont
predict the next word, and let us focus in on the bin for the case
the two preceding words were comes across. In a certain corpu
authors found 10 training instances of the words comes across,
those, 8 times they were followed by as, once by more and once
The question at this point is what probability estimates we shoul
for estimating the next word.

The obvious first answer (at least from a frequentist point of vie
to suggest using the relative frequency as a probability estimate:

P(as) = 0.8
P(more) = 0.1
P@ = 01

P(x) = 0.0 for x not among the above 3 words

This estimate is called the maximum likelihood estimate (MLE):

Cwy .- -wy)

Pyip(wy . . -wy) = N

PMLE(Wnl W1 - ) = VL2t W) -

Cwy- -« wp1)
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If one fixes the observed data, and then considers the space of al pos
sible parameter assignments within a certain distribution (here a trigram
model) given the data, then dtatisticians refer to this as a likelihood func-
tion. The maximum likelihood estimate is so called because it is the
choice of parameter values which gives the highest probability to the
training corpus.? The estimate that does that is the one shown above.
It does not waste any probability mass on events that are not in the train-
ing corpus, but rather it makes the probability of observed events as high
as it can subject to the normal stochastic constraints.

But the MLE is in general unsuitable for statistical inference in NLP.
The problem is the sparseness of our data (even if we are using a large
corpus). While a few words are common, the vast mgjority of words are
very uncommon - and longer n-grams involving them are thus much rarer
again. The MLE assigns a zero probability to unseen events, and since
the probability of a long string is generally computed by multiplying the
probabilities of subparts, these zeroes will propagate and give us bad
(zero probability) estimates for the probability of sentences when we just
happened not to see certain n-grams in the training text.” With respect to
the example above, the MLE is not capturing the fact that there are other
words which can follow comes across, for example the and some.

As an example of data sparseness, after training on 1.5 million words
from the IBM Laser Patent Text corpus, Bahl et al. (1983) report that 23%
of the trigram tokens found in further test data drawn from the same
corpus were previously unseen. This corpus is smal by modern stan-
dards, and so one might hope that by collecting much more data that the
problem of data sparseness would simply go away. While this may ini-
tially seem hopeful (if we collect a hundred instances of comes across, we
will probably find instances with it followed by the and some), in practice
it is never a genera solution to the problem. While there are a limited
number of frequent events in language, there is a seemingly never end-

4. This is given that the occurrence of a certain n-gram is assumed to be a random variable
with a binomial distribution (i.e., each n-gram is independent of the next). This is a quite
untrue (though usable) assumption: firstly, each n-gram overlaps with and hence partly
determines the next, and secondly, content words tend to clump (if you use a word once
in a paper, you are likely to use it again), as we discuss in section 15.3.

5. Another way to state this is to observe that if our probability model assigns zero prob-
ability to any event that turns out to actualy occur, then both the cross-entropy and the
KL divergence with respect to (data from) the rea probability distribution is infinite. In
other words we have done a maximally bad job at producing a probability function that
is close to the one we are trying to model.
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ing tail to the probability distribution of rarer and rarer events, a
can never collect enough data to get to the end of the tail.® For i
comes across could be followed by any number, and we will never ¢
ery number. In general, we need to devise better estimators that allc
the possibility that we will see events that we didn't see in the t
text.

All such methods effectively work by somewhat decreasing the
bility of previously seen events, so that there is a little bit of prob
mass left over for previously unseen events. Thus these methods a
quently referred to as discounting methods. The process of discoun
often referred to as smoothing, presumably because a distribution
out zeroes is smoother than one with zeroes. We will examine a r
of smoothing methods in the following sections.

Using Mce estimates for n-gram models of Austen

Based on our Austen corpus, we made n-gram models for different
of n. It is quite straightforward to write on€'s own program to ¢
by totalling up the frequencies of n-grams and (n— I)-grams, an
dividing to get mLe probability estimates, but there is aso software
it on the website.

In practica systems, it is usua to not actualy caculate n-gra
al words. Rather, the n-grams are calculated as usua only for th
common k words, and al other words are regarded as Out-Of-Voc:
(00V) items and mapped to a single token such as <UNK>. Common
will be done for al words that have been encountered only once
training corpus (hapax legomena). A useful variant in some domain
notice the obvious semantic and distributional similarity of rare n
and to have two out-of-vocabulary tokens, one for numbers and c
everything else. Because of the Zipfian distribution of words, cuitti
low frequency items will greatly reduce the parameter space (a
memory requirements of the system being built), while not appr
affecting the model quality (hapax legomena often constitute half
types, but only a fraction of the tokens).

We used the conditional probabilities calculated from our trainir
pus to work out the probabilities of each following word for pa

6. Cf. Zipf’s law - the observation that the relationship between a word's freque

the rank order of its frequency is roughly a reciproca curve - as discussed in secti
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In
person

I-gram

13
254
435

1701

Z-gram

S oowro—

23
41

293

3-gram

4-gram

she

P(-)

the* 0.034
to 0.032
and 0.030
of 0.029
was  0.015
she 0.011
P(-{person)
and 0.099
who  0.099
to 0.076
in 0.045
she 0.009

P(-|In,person)

UNSEEN

P(|ulp)

UNSEEN
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was inferior to both sisters

P(-) P() P() P(-) P(.)

the 0.034 the 0.034 the 0.034  the 0.034 the 0.034

to 0.032 to 0.032 to 0.032 to 0.032 to 0.032

and 0.030 and 0.030 and 0.030 and 0.030

of 0.029 of 0.029 of 0.029 of 0.029

was 0.015 was 0.015 was 0.015 was 0.015
she 0.011 she 0.011 she 0.011
both 0.0005 both 0.0005  both 0.0005
sisters 0.0003 sisters 0.0003

inferior 0.00005

P(-|she) P(-lwas) P (- inferior) P(-{to) P(-1both)
had 0.141 not 0.065 to 0212 be 0.111 of 0.066
was 0.122 a 0.052 the 0.057 to 0.041
the 0.033 her 0.048 in 0.038
to 0.031 have 0.027 and 0.025
Mrs 0.006 she 0.009
what 0.004 sisters 0.006
both 0.0004
inferior 0
P(-|person,she) P(-|she,was) P(-|was,inf.) P(-|inferior,to) P(- to,both)
did 05 not 0.057 UNSEEN the 0.286 to 0.222
was 05 very 0.038 Maria 0.143 Chapter  0.111
in 0.030 cherries  0.143 Hour 0.111
to 0.026 her 0.143 Twice 0.111
inferior 0 both 0 sisters 0
P(-|Lp,s) P(-Ips,w) P(-|s,w,i) P(-lw,it) P(-1it,b)
UNSEEN in 1.0 UNSEEN UNSEEN UNSEEN
inferior 0

Table 6.3 Probabilities of each successive word for a clause from Persuasion.
The probability distribution for the following word is calculated by Maximum
Likelihood Estimate n-gram models for various values of n. The predicted likeli-
hood rank of different words is shown in the first column. The actual next word
is shown at the top of the table in itdlics, and in the table in bold.
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sentence from our test corpus Persuasion. We will cover the issue
corpora in more detail later, but it is vital for assessing a mod
we try it on different data - otherwise it isn't a fair test of how w
model allows us to predict the patterns of language. Extracts from
probability distributions - including the actual next word shown i
- are shown in table 6.3. The unigram distribution ignores conte
tirely, and simply uses the overal frequency of different words. B
is not entirely useless, since, as in this clause, most words in mos
tences are common words. The bigram model uses the preceding
to help predict the next word. In general, this helps enormously
gives us a much better model. In some cases the estimated prob
of the word that actually comes next has gone up by about an or
magnitude (was, to, sisters). However, note that the bigram model
guaranteed to increase the probability estimate. The estimate for s
actually gone down, because she is in genera very common in /
novels (being mainly books about women), but somewhat unexpect
ter the noun person - athough quite possible when an adverbia

is being used, such as In person here. The failure to predict inferiot
was shows problems of data sparseness already starting to crop uj

When the trigram model works, it can work brilliantly. For exar
gives us a probability estimate of 0.5 for was following person she.
genera it is not usable. Either the preceding bigram was never se
fore, and then there is no probability distribution for the following
or a few words have been seen following that bigram, but the dat:
sparse that the resulting estimates are highly unreliable. For examp
bigram to both was seen 9 times in the training text, twice followed
and once each followed by 7 other words, a few of which are shown
table. This is not the kind of density of data on which one can s
build a probabilistic model. The four-gram model is entirely usel¢
general, four-gram models do not become usable until one is traini
severa tens of millions of words of data.

Examining the table suggests an obvious strategy: use higher
n-gram models when one has seen enough data for them to be of
use, but back off to lower order n-gram models when there isn't
data. This is a widely used strategy, which we will discuss below
section on combining estimates, but it isn't by itself a complete s
to the problem of n-gram estimates. For instance, we saw quite a
words following was in the training data - 9409 tokens of 1481 t
but inferior was not one of them. Similarly, athough we had seer
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a lot of words in our training text overall, there are many words that
did not appear, including perfectly ordinary words like decides or wart.
So regardless of how we combine estimates, we still definitely need a
way to give a non-zero probability estimate to words or n-grams that we
happened not to see in our training text, and so we will work on that
problem first.

Laplace’s law, Lidstone’s law and the Jeffreys-Perks law
Laplace’s law

The manifest failure of maximum likelihood estimation forces us to ex-
amine better estimators. The oldest solution is to employ Laplace's law
(1814; 1995). According to this law,

Clwp---wy)+1

N +B
This process is often informally referred to as adding one, and has the
effect of giving a little bit of the probability space to unseen events.
But rather than simply being an unprincipled move, this is actualy the
Bayesian estimator that one derives if one assumes a uniform prior on
events (i.e., that every n-gram was equally likely).

However, note that the estimates which Laplace's law gives are depen-
dent on the size of the vocabulary. For sparse sets of data over large
vocabularies, such as n-grams, Laplace's law actualy gives far too much
of the probability space to unseen events.

Consider some data discussed by Church and Gale (1991a) in the con-
text of their discussion of various estimators for bigrams. Their corpus
of 44 million words of Associated Press (AP) newswire yielded a vocab-
ulary of 400,653 words (maintaining case distinctions, splitting on hy-
phens, etc.). Note that this vocabulary size means that there is a space
of 1.6 x 10'! possible bigrams, and so a priori barely any of them will
actually occur in the corpus. It aso means that in the calculation of Ppap,
Bis far larger than N, and Laplace’'s method is completely unsatisfactory
in such circumstances. Church and Gale used half the corpus (22 million
words) as a training text. Table 6.4 shows the expected frequency esti-
mates Of Various methods that they discuss, and Laplace's law estimates
that we have calculated. Probability estimates can be derived by divid-
ing the frequency estimates by the number of n-grams, N = 22 million.
For Laplace's law, the probability estimate for an n-gram seen r times is

Prap(wy - --wp) =
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r=fme  fempirical  fLap fdel fer N,
0 0.000027 0.000137 0.000037 0.000027 74 671 100 000 2 (
0.448 0.000274 0.396 0.446 2 018 046 C
2 1.25 0.000411 1.24 1.26 449 721 E
3 2.24 0.000548 2.23 2.24 188 933 4
4 3.23 0.000685 3.22 3.24 105 668 K
5 4.21 0.000822 4.22 4.22 68 379 P
6 5.23 0.000959 5.20 5.19 48 190 P
B 6.21 0.00109 6.21 6.21 35 709 P
8 7.21 0.00123 7.18 7.24 27 710 ]
9 8.26 0.00137 8.18 8.25 22 280 ]

Table 6.4 Estimated frequencies for the AP data from Church and Gale f
The first five columns show the estimated frequency calculated for a bigr:
actually appeared r times in the training data according to different etir
r is the maximum likelihood estimate, fempirical uses validation on the t
fLap IS the ‘add one’ method, fqe; is deleted interpolation (two-way cross
tion, using the training data), and f ¢t isthe Good-Turing estimate. The |
columns give the frequencies of frequencies and how often bigrams of a
frequency occurred in further text.

(r+1)/(N+B), so thefrequencyestimate becomes frap = (r+1)N/(
These estimated frequencies are often easier for humans to in
than probabilities, as one can more easily see the effect of the di
ing.

Although each previously unseen bigram has been given a ve
probability, because there are so many of them, 46.5% of the prol
space has actually been given to unseen bigrams.” This is far too
and it is done at the cost of enormously reducing the probabilit
mates of more frequent events. How do we know it is far too mucl
second column of the table shows an empirically determined &
(which we discuss below) of how often unseen n-grams actualy &
in further text, and we see that the individual frequency of occl
of previously unseen n-grams is much lower than Laplace's law pi
while the frequency of occurrence of previously seen n-grams is
higher than predicted.? In particular, the empirical model finds th
9.2% of the bigrams in further text were previoudy unseen.

7. This is calculated as Ng X Ppap(-)=74,671, 100,000 x 0.000137/22, 000,000
8. It is a bit hard dealing with the astronomical numbers in the table. A smadler
which illustrates the same point appears in exercise 6.2.
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Lidstone's law and the Jeffreys-Perks law

Because of this overestimation, a commonly adopted solution to the prob-
lem of multinomia estimation within stetistical practice is Lidstone's law
of succession, where we add not one, but some (normally smaller) posi-
tive value A:

Cwy---wp) +A
N + BA

This method was developed by the actuaries Hardy and Lidstone, and
Johnson showed that it can be viewed as a linear interpolation (see below)
between the MLE estimate and a uniform prior. This may be seen by
setting u = N/(N + Bh):

Clwy - - - wy)
N

The most widely used value for A is % This choice can be theoretically
justified as being the expectation of the same quantity which is maxi-
mized by MLE and so it has its own names, the Jeffreys-Perks law, or
Expected Likelihood Estimation (ELE) (Box and Tiao 1973: 34-36).

In practice, this often helps. For example, we could avoid the objection
above that two much of the probability space was being given to unseen
events by choosing a smal A. But there are two remaining objections:
(1) we need a good way to guess an appropriate value for A in advance, and
(i) discounting using Lidstone's law aways gives probability estimates
linear in the MLE frequency and this is not a good match to the empirica
distribution at low frequencies.

Prig(wy - - - wy) =

1
Prgwy---wy) =p +(1—u)§

Applying these methods to Austen

Degpite the problems inherent in these methods, we will nevertheless try
applying them, in particular ELE, to our Austen corpus. Recal that up
until now the only probability estimate we have been able to derive for
the test corpus clause she was inferior to both sisters was the unigram
estimate, which (multiplying through the bold probabilities in the top
part of table 6.3) gives as its estimate for the probability of the clause
3.96 x 10717, For the other models, the probability estimate was either
zero or undefined, because of the sparseness of the data

Let us now calculate a probability estimate for this clause using a bi-
gram model and ELE. Following the word was, which appeared 9409
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Rank Word MLE ELE

1 not 0.065 0.036

2 a 0.052 0.030

3 the 0.033 0.019

4 to 0.031 0.017
=1482 inferior 0 0.00003

Table 6.5 Expected Likelihood Estimation estimates for the word followin

times, not appeared 608 times in the training corpus, which overal
tained 14589 word types. So our new estimate for P(notiwas) is (
0.5)/(9409 + 14589 x 0.5) = 0.036. The estimate for P(not|wa.
thus been discounted (by amost haf!). If we do similar caculatio
the other words, then we get the results shown in the last column

ble 6.5. The ordering of most likely words is naturaly unchange
the probability estimates of words that did appear in the training
are discounted, while non-occurring words, in particular the actua
word, inferior, are given a non-zero probability of occurrence. Cc
ing in this way to also estimate the other bigram probabilities, w
that this language model gives a probability estimate for the cla
6.89 x 1029, Unfortunately, this probability estimate is actually
than the MLE estimate based on unigram counts - reflecting how ¢
al the MLE probability estimates for seen n-grams are discounted

construction of the ELE model. This result substantiates the slogar
in the titles of (Gale and Church 1990a,b): poor estimates of conte
worse than none. Note, however, that this does not mean that the

that we have constructed is entirely useless. Although the prob:
estimates it gives are extremely low, one can nevertheless use the
rank alternatives. For example, the model does correctly tell us th
was inferior to both sisters is a much more likely clause in Englid
inferior to was both she sisters, whereas the unigram estimate give
both the same probability.

Held out estimation

How do we know that giving 46.5% of the probahility space to
events is too much? One way that we can test this is empiricaly
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can take further text (assumed to be from the same source) and see how
often bigrams that appeared r times in the training text tend to turn up
in the further text. The redization of this idea is the held out estimator
of Jelinek and Mercer (1985).

The held out estimator

For each n-gram, wi---wy, let

Ci(wy -+ -wy)

frequency of w;---w, in training data

Co(wy .. wy) frequency of w;---wy, in held out data

and recall that N, is the number of bigrams with frequency r (in the
training text). Now let:

I, = z Co(wy . wy)

{wi o wnCr(wr -+ wp)=r}
That is, T, is the total number of times that al n-grams that appeared
r times in the training text appeared in the held out data. Then the aver-
age frequency of those n-grams is ,f,— and so an estimate for the proba
bility of one of these n-grams is:

T,

NN

Pro(wy - - - wy) = where C(wy---wy)=r

Pots of data for developing and testing models

A cardina sin in Statistical NLP is to test on your training data. But why is
that? The idea of testing is to assess how well a particular model works.
That can only be done if it is a ‘fair test’ on data that has not been seen
before. In general, models induced from a sample of data have a tendency
to be overtrained, that is, to expect future events to be like the events on
which the model was trained, rather than alowing sufficiently for other
possibilities. (For instance, stock market models sometimes suffer from
this failing.) So it is essential to test on different data. A particular case
of this is for the calculation of cross entropy (section 22.6). To caculate
cross entropy, we take a large sample of text and caculate the per-word
entropy of that text according to our modd. This gives us a measure
of the quality of our model, and an upper bound for the entropy of the
language that the text was drawn from in genera. But al that is only
true if the test data is independent of the training data, and large enough
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to be indicative of the complexity of the language a hand. If
on the training data, the cross entropy can easily be lower than
entropy of the text. In the most blatant case we could build a
that has memorized the training text and aways predicts the ne
with probability 1. Even if we don’'t do that, we will find that ML
excellent language model if you are testing on training data, whicl
the right result.

So when starting to work with some data, one should aways
it immediately into a training portion and a testing portion. The ti
is normally only a smal percentage (510%) of the total data, but
be sufficient for the results to be reliable. You should aways eye
training data - you want to use your human pattern-finding abi
get hints on how to proceed. You shouldn’t eyeball the test data
cheating, even if less directly than getting your program to memc

Commonly, however, one wants to divide both the training «
data into two again, for different reasons. For many Statistical NL
ods, such as held out estimation of n-grams, one gathers coun
one lot of training data, and then one smooths these counts or ¢
certain other parameters of the assumed model based on what t
in further held out or validation data. The held out data needs to
pendent of both the primary training data and the test data. Norn
stage using the held out data involves the estimation of many fe
rameters than are estimated from counts over the primary trainir
and so it is appropriate for the held out data to be much smaller t
primary training data (commonly about 10% of the size). Nevertt
is important that there is sufficient data for any additiona param
the model to be accurately estimated, or significant performanc
can occur (as Chen and Goodman (1996: 317) show).

A typica pattern in Statistical NLP research is to write an al
train it, and test it, note some things that it does wrong, revise
then to repeat the process (often many times!). But, if one does th
not only does one tend to end up seeing aspects of the test set,
repeatedly trying out different variant algorithms and looking
performance can be viewed as subtly probing the contents of the
This means that testing a succession of variant models can again
overtraining. So the right approach is to have two test sets. a devel
test set on which successive variant methods are trialed and a f
set which is used to produce the final results that are publishe
the performance of the algorithm. One should expect perform
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the final test set to be dightly lower than on the development test set
(though sometimes one can be lucky).

The discussion so far leaves open exactly how to choose which parts
of the data are to be used as testing data. Actualy here opinion divides
into two schools. One school favors selecting bits (sentences or even n-
grams) randomly from throughout the data for the test set and using the
rest of the material for training. The advantage of this method is that
the testing data is as similar as possible (with respect to genre, register,
writer, and vocabulary) to the training data. That is, one is training from
as accurate a sample as possible of the type of language in the test data
The other possibility is to set aside large contiguous chunks as test data
The advantage of this is the opposite: in practice, one will end up using
any NLP system on data that varies a little from the training data, as
language use changes a little in topic and structure with the passage of
time. Therefore, some people think it best to smulate that a little by
choosing test data that perhaps isn't quite stationary with respect to the
training data. At any rate, if using held out estimation of parameters, it is
best to choose the same strategy for setting aside data for held out data
as for test data, as this makes the held out data a better simulation of
the test data. This choice is one of the many reasons why system results
can be hard to compare: al else being equal, one should expect dightly
worse performance results if using the second approach.

While covering testing, let us mention one other issue. In early work, it
was common to just run the system on the test data and present a single
performance figure (for perplexity, percent correct or whatever). But this
isn't a very good way of testing, as it gives no idea of the variance in
the performance of the system. A much better way is to divide the test
data into, say 20, smaler samples, and work out a test result on each of
them. From those results, one can work out a mean performance figure,
as before, but one can aso calculate the variance that shows how much
performance tends to vary. If using this method together with continuous
chunks of training data, it is probably best to take the smaller testing
samples from different regions of the data, since the testing lore tends
to be full of stories about certain sections of data sets being “easy,” and
S0 it is better to have used a range of test data from different sections of
the corpus.

If we proceed this way, then one system can score higher on average
than another purely by accident, especially when within-system variance
is high. So just comparing average scores is not enough for meaningful
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System 1 System 2

scores 71, 61, 55, 60, 68, 49, 42, 55, 75, 45, 54, 5
42, 72, 76, 55, 64 55, 36, 58, 55, 67
total 609 526
n 11 11
mean X; 554 47.8
s2 = (xij — X;)? 1,375.4 1,228.8
df 10 10
Pooled g2 = 1-3751-31#: 130.2

_ Xy —X» _ 55.4-47.8 _
t= N - S48 556
e VI

Table 6.6 Using thet test for comparing the performance of two systems.
we caculate the mean for each data set, the denominator in the calculatl
variance and the number of degrees of freedom is (11 - 1) + (11 - 1)
The data do not provide clear support for the superiority of system 1. D
the clear difference in mean scores, the sample variance is too high to dra
definitive conclusions.

system comparison. Instead, we need to apply a statistical test that
into account both mean and variance. Only if the dtatistical test |
the possibility of an accidental difference can we say with confidenc
one system is better than the other.”

An example of using the t test (which we introduced in section
for comparing the performance of two systems is shown in tabl
(adapted from (Snedecor and Cochran 1989: 92)). Note that we
pooled estimate of the sample variance s? here under the assun
that the variance of the two systems is the same (which seems a re
able assumption here: 609 and 526 are close enough). Looking u
t distribution in the appendix, we find that, for rgjecting the hypc
that the system 1 is better than system 2 at a probability level of o =
the critical value is t= 1.72 5 (using a one-tailed test with 20 degr
freedom). Since we have t= 1.56 < 1.725, the data fail the signifi
test. Although the averages are fairly distinct, we cannot conclude
riority of system 1 here because of the large variance of scores.

gg\/stematic discussion of testing methodology for comparing statistical and nr
learning algorithms can be found in (Dietterich 1998). A good case study, for the e
of word sense disambiguation, is (Mooney 1996).
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Using held out estimation on the test data

So long as the frequency of an n-gram C(w;---wy) is the only thing that
we are using to predict its future frequency in text, then we can use held
out estimation performed on the test set to provide the correct answer of
what the discounted estimates of probabilities should be in order to max-
imize the probability of the test set data. Doing this empirically measures
how often n-grams that were seen r times in the training data actually do
occur in the test text. The empirical estimates fempirical in table 6.4 were
found by randomly dividing the 44 million bigrams in the whole AP cor-
pus into equal-sized training and test sets, counting frequencies in the
22 million word training set and then doing held out estimation using
the test set. Whereas other estimates are calculated only from the 22
million words of training data, this estimate can be regarded as an em-
pirically determined gold standard, achieved by alowing access to the
test data.

Cross-validation (deleted estimation)

The fempirical €Stimates discussed immediately above were constructed
by looking at what actually happened in the test data. But the idea of
held out estimation is that we can achieve the same effect by dividing the
training data into two parts. We build initial estimates by doing counts
on one part, and then we use the other pool of held out data to refine
those estimates. The only cost of this approach is that our initia training
data is now less, and so our probability estimates will be less reliable.

Rather than using some of the training data only for frequency counts
and some only for smoothing probability estimates, more efficient
schemes are possible where each part of the training data is used both
as initia training data and as held out data. In genera, such methods in
gtatistics go under the name cross-validation.

Jelinek and Mercer (1985) use a form of two-way cross-vaidation that
they call deleted estimation. Suppose we let N? be the number of n-grams
occurring r times in the a™ part of the training data, and T4? be the total
occurrences of those bigrams from part ain the b™ part. Now depending
on which part is viewed as the basic training data, standard held out
estimates would be either:

1 10
3 or Iy

where C(w;...wy)=r

Pro(wy -+ - wy) =
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The more efficient deleted interpolation estimate does counts
smoothing on both halves and then does a weighted average of the
according to the proportion of words in N? versus N/:

T s THO

del L1 T N(NG + N

where C(wy---w,)=r

On large training corpora, doing deleted estimation on the training
works better than doing held-out estimation using just the training
and indeed table 6.4 shows that it produces results that are quite
to the empirical gold standard.!® It is nevertheless still some way ¢
low frequency events. It overestimates the expected frequency of L
objects, while underestimating the expected frequency of object:
were seen once in the training data. By dividing the text into two
like this, one estimates the probability of an object by how many
it was seen in a sample of size % assuming that the probability
token seen r times in a sample of size § is double that of a token s
times in a sample of size N. However, it is generaly true that as th
of the training corpus increases, the percentage of unseen n-gram
one encounters in held out data, and hence one's probability est
for unseen n-grams, decreases (while never becoming negligible). It

this reason that collecting counts on a smaller training corpus ha
effect of overestimating the probability of unseen n-grams.

There are other ways of doing cross-validation. In particular Ney
(1997) explore a method that they call Leaving-One-Out where th
mary training corpus is of size N — 1 tokens, while 1 token is us
held out data for a sort of simulated testing. This process is repeat
times so that each piece of data is left out in turn. The advantage ©
training regime is that it explores the effect of how the model chan
any particular piece of data had not been observed, and Ney et al.
strong connections between the resulting formulas and the widely
Good-Turing method to which we turn next.!!

10. Remember that, athough the empirica gold standard was derived by held o
mation, it was held out estimation based on looking at the test datal Chen and G

(1998) find in their study that for smaller training corpora, held out estimation
forms deleted estimation.

11. However, Chen and Goodman (1996: 314) suggest that leaving one word oL

time is problematic, and that using larger deleted chunks in deleted interpolation is
preferred.



212

6 Statistical Inference: n-gram Models over Sparse Data

6.2.5 Good-Turing estimation

(6.12)

(6.13) Por(wi---wn)= N where r* =

The Good-Turing estimator

Good (1953) attributes to Turing a method for determining frequency or
probability estimates of items, on the assumption that their distribution
is binomial. This method is suitable for large numbers of observations of
data drawn from a large vocabulary, and works well for n-grams, despite
the fact that words and n-grams do not have a binomia distribution. The
probability estimate in Good-Turing estimation is of the form Pgr=r*/N
where r* can be thought of as an adjusted frequency. The theorem un-
derlying Good-Turing methods gives that for previously observed items:

E (Nr+1)

E(Ny)

where E denotes the expectation of a random variable (see (Church and
Gale 1991a; Gale and Sampson 1995) for discussion of the derivation of
this formula). The total probability mass reserved for unseen objects is
then E(N1)/N (see exercise 6.5).

Using our empirical estimates, we can hope to substitute the observed
N, for E(N,). However, we cannot do this uniformly, since these empir-
ical estimates will be very unreliable for high values of r. In particular,
the most frequent n-gram would be estimated to have probability zero,
since the number of n-grams with frequency one greater than it is zero!
In practice, one of two solutions is employed. One is to use Good-Turing
reestimation only for frequencies r <k for some constant k (e.g., 10).
Low frequency words are numerous, so substitution of the observed fre-
guency of frequencies for the expectation is quite accurate, while the
MLE estimates of high frequency words will also be quite accurate and so
one doesn't need to discount them. The other is to fit some function S
through the observed values of (Y, N,) and to use the smoothed vaues
S(r) for the expectation (this leads to a family of possibilities depend-
ing on exactly which method of curve fitting is employed - Good (1953)
discusses severa smoothing methods). The probability mass % given to
unseen items can either be divided among them uniformly, or by some
more sophisticated method (see under Combining Estimators, below). So
using this method with a uniform estimate for unseen events, we have:

r*=(r+1)

Good-Turing Estimator: If C(wy...wy)=r>0,

rt (r+1)S(r +1)
S(r)
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RENORMALIZATION

COUNT-COUNTS
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|fC(W1...W,):0,

1—Z$0:1Nrrﬁ"‘ - Nl
No ~ NoN

Per(wy -+ - wn) =

Gale and Sampson (1995) present a simple and effective approach,
ple Good-Turing, which effectively combines these two approaches.
smoothing curve they simply use a power curve N, =ar? (with }
to give the appropriate hyperbolic relationship), and estimate A
by simple linear regression on the logarithmic form of this eq
log N, =a+blogr (linear regression is covered in section 15.4.1, or
introductory statistics books). However, they suggest that such a ¢
curve is probably only appropriate for high values of r. For low val
r, they use the measured N, directly. Working up through freque
these direct estimates are used until for one of them there isn't a s
cant difference between r* values calculated directly or via the smo
function, and then smoothed estimates are used for al higher fre
cies.!? Simple Good-Turing can give exceedingly good estimators, &
be seen by comparing the Good-Turing column fgr in table 6.4 wi
empirical gold standard.

Under any of these approaches, it is necessary to renormalize |
estimates to ensure that a proper probability distribution results
can be done either by adjusting the amount of probability mass gi\
unseen items (as in equation (6.14)) or, perhaps better, by keepir
estimate of the probability mass for unseen items as % and renc
izing al the estimates for previousy seen items (as Gale and Sa
(1995) propose).

Frequencies of frequencies in Austen

To do Good-Turing, the first step is to calculate the frequencies of
ent frequencies (aso known as count-counts). Table 6.7 shows e
from the resulting list of frequencies of frequencies for bigram
trigrams. (The numbers are reminiscent of the Zipfian distributic

12. An estimate of r* is deemed significantly different if the difference exceeds 1.6
the standard deviation of the Good-Turing estimate, which is given by:

Nri1 Nrs1
(r+1)2-122 (1 + 1)
\/ N2 Ny
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Bigrams Trigrams

r N, r N, I N, ¥ N,
1 138741 28 90 1 404211 28 35
2 25413 29 120 2 32514 29 32
3 10531 30 86 3 10056 30 25
4 5997 31 98 4 4780 31 18
5 3565 32 99 5 2491 32 19
6 2486 s 6 1571 .-
7 1754 1264 1 7 1088 189 1
8 1342 1366 1 8 749 202 1
9 1106 1917 1 9 582 214 1
10 896 2233 1 10 432 366 1
2507 1 378 1

Table 6.7 Extracts from the frequencies of frequencies distribution for bigrams
and trigrams in the Austen corpus.

section 1.4.3 but different in the details of construction, and more exag-
gerated because they count sequences of words) Table 6.8 then shows
the reestimated counts r* and corresponding probabilities for bigrams.

For the bigrams, the mass reserved for unseen bigrams, Ni/N =
138741/617091 = 0.2248. The space of bigrams is the vocabulary
squared, and we saw 199,252 bigrams, SO using uniform estimates,
the probability estimate for each unseen bigram is: 0.2248/(14585% -
199252) = 1.058 x 10~°. If we now wish to work out conditional prob-
ability estimates for a bigram model by using Good-Turing estimates for
bigram probability estimates, and MLE estimates directly for unigrams,
then we begin as follows:

fcr(person she)  1.228
C(person) 223

P(she|person) = = 0.0055

Continuing in this way gives the results in table 6.9, which can be com-
pared with the bigram estimates in table 6.3. The estimates in general
seem quite reasonable. Multiplying these numbers, we come up with a
probability estimate for the clause of 1.278 x 10~-!7. This is at least much
higher than the ELE estimate, but still suffers from assuming a uniform
distribution over unseen bigrams.
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Table 6.8 Good-Turing estimates for bigrams: Adjusted frequencies and

r*  Pgr(-)
0.0007 1.058x 107°
0.3663 5.982 x10-7

1.228 2.004 x 1076
2.122  3.465 x 1076
3.058 4.993 x 1076
4,015 6.555 x 10°8
4,984 8.138x 106

5,96 9.733 x 1076
6.942 1.134 x 107°
7.928 1.294 x 10°°
8.916 1.456 x 107°

. O OO IO T W O N

28  26.84 4.383 x10-5
29  27.84 4.546x107°
30 28.84 4.709x 107
31 29.84 4.872 x 107
32 30.84 5.035 x 107

1264 1263 0.002062
1366 1365 0.002228
1917 1916 0.003128
2233 2232 0.003644
2507 2506 0. 004092

abilities. Smoothed using the software on the website.

Table 6.9 Good-Turing bigram frequency estimates for the clause from P

sion.

P (she|person) 0.0055
P(was|she) 0.1217
P(inferiorlwas) 6.9 x 1078
P (to| inferior) 0. 1806

P ( both |to) 0.0003956
P (sisters| both)  0.003874
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Briefly noted

Ney and Essen (1993) and Ney et a. (1994) propose two discounting mod-
els. in the absolute discounting model, al non-zero MLE frequencies are
discounted by a smal constant amount 6 and the frequency so gained is
uniformly distributed over unseen events.

Absolute discounting: If C{wy..-wp)=r,

P (r-=6)/N ifr>0

abs (W71 - - Wn) = (B]:/(])V]i)’)(s OtherW|Se
(Recdll that B is the number of bins) In the linear discounting method,
the non-zero MmLE frequencies are scaled by a constant dightly less than
one, and the remaining probability mass is again distributed across novel
events:

Linear discounting: IfC(w; . . . wa) =,

@a-o)r/N ifr>o0

Plwy- - wn) = { o/ No otherwise

These estimates are equivalent to the frequent engineering move of mak-
ing the probability of unseen events some small number € instead of
zero and then rescaling the other probabilities so that they till sum to
one - the choice between them depending on whether the other proba-
bilities are scaled by subtracting or multiplying by a constant. Looking
again at the figures in table 6.4 indicates that absolute discounting seems
like it could provide a good estimate. Examining the fempiricar figures
there, it seems that a discount of 6 =~ 0.77 would work well except for
bigrams that have only been seen once previoudy (which would be un-
derestimated). In general, we could use held out data to estimate a good
value for 6. Extensions of the absolute discounting approach are very
successful, as we discuss below. It is hard to justify linear discounting.
In genera, the higher the frequency of an item in the training text, the
more accurate an unadjusted MLE estimate is, but the linear discounting
method does not even approximate this observation.

A shortcoming of Lidstone's law is that it depends on the number of
bins in the model. While some empty bins result from sparse data prob-
lems, many more may be principled gaps. Good-Turing estimation is one
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NATURAL LAW oF
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6.3 Combining Estimators

method where the estimates of previoudy seen items do not depel
the number of bins. Ristad (1995) explores the hypothesis that
ra sequences use only a subset of the possible bins. He derives v
forms for a Natural Law of Succession, including the following prob
estimate for an n-gram with observed frequency C(w;---wy)=r:

r+1 . _
N+B lfNO-—O
D(N+1+Ng—B)
Pnis(wy - - - wy) = % if No>0Oandr >0

(B-Np)(B—No+1)

No(N2+N+2(B-Np)) otherwise

The centra features of this law are: (i) it reduces to Laplace's law if
thing has been seen in every hin, (ii) the amount of probability
assigned to unseen events decreases quadratically in the number
tridls, and (iii) the total probability mass assigned to unseen eve
independent of the number of bins B, so there is no penalty for
vocabularies.

Combining Estimators

So far the methods we have considered have all made use of nothit
the raw frequency r of an n-gram and have tried to produce the b
timate of its probability in future text from that. But rather than
the same estimate for al n-grams that never appeared or appearec
rarely, we could hope to produce better estimates by looking at tf
guency of the (n — I)-grams found in the n-gram. If these (n— [)-
are themselves rare, then we give a low estimate to the n-gram.
(n — 1)-grams are of moderate frequency, then we give a higher pro
ity estimate for the n-gram.!3 Church and Gale (1991a) present a d
study of this idea, showing how probability estimates for unseen bi
can be egtimated in terms of the probabilities of the unigrams that
pose them. For unseen bigrams, they calculate the joint-if-indepe
probability P(w;)P(w> ), and then group the bigrams into hins bas
this quantity. Good-Turing estimation is then performed on each
give corrected counts that are normalized to yield probabilities.

13. But if the (n—1)-grams are of very high frequency, then we may actually v
lower the estimate again, because the non-appearance of the n-gram is then pres
indicative of a principled gap.
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But in this section we consider the more general problem of how to
combine multiple probability estimates from various different models. If
we have several models of how the history predicts what comes next, then
we might wish to combine them in the hope of producing an even better
model. The idea behind wanting to do this may either be smoothing, or
simply combining different information sources.

For n-gram models, suitably combining various models of different or-
ders is in general the secret to success. Simply combining MLE n-gram
estimates of various orders (with some alowance for unseen words) us
ing the smple linear interpolation technique presented below results in
a quite good language model (Chen and Goodman 1996). One can do bet-
ter, but not by smply using the methods presented above. Rather one
needs to combine the methods presented above with the methods for
combining estimators presented below.

Simple linear interpolation

One way of solving the sparseness in a trigram moded is to mix that model
with bigram and unigram models that suffer less from data sparseness.
In any case where there are multiple probability estimates, we can make
a linear combination of them, providing only that we weight the contri-
bution of each so that the result is another probability function. Inside
Statistical NLP, this is usually called linear interpolation, but elsewhere
the name (finite) mixture modds is more common. When the functions
being interpolated all use a subset of the conditioning information of
the most discriminating function (as in the combination of trigram, bi-
gram and unigram models), this method is often referred to as deleted
interpolation. For interpolating n-gram language models, such as deleted
interpolation from a trigram model, the most basic way to do this is:

Pii(WnlWn—2,Wn-1) = MiP1(Wn) + A2Pa(WnlWp_1) + A3P3(Wn|Wp-1, Wn-2)

where 0 <A;<land >;A; = 1L

While the weights may be set by hand, in general one wants to find the
combination of weights that works best. This can be done automatically
by a simple application of the Expectation Maximization (EM) algorithm,
as is discussed in section 9.2.1, or by other numerical agorithms. For
instance, Chen and Goodman (1996) use Powell’'s algorithm, as presented
in (Press et al. 1988). Chen and Goodman (1996) show that this simple
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model (with just slight complications to deal with previously unseer
tories and to reserve some probability mass for out of vocabulary it
works quite well. They use it as the basdline modd (see section 7.1.
their experiments.

6.32 Katz’s backing-off

BACK-OFF MODELS

(6.19)

In back-off models, different models are consulted in order depel
on their specificity. The most detailed mode that is deemed to prt
sufficiently reliable information about the current context is used. A
back-off may be used to smooth or to combine information sources.
Back-off n-gram models weve proposed by Katz (1987). The est

for an n-gram is alowed to back off through progressively shorter |
ries.

if C(W,‘ﬁn+1 te Wi) > k
Cwins1 wi-i Pho(WilWi—ni2 -+ Wi )

otherwise

Poo(WilWi—ni1 .- . wip) =

If the n-gram of concern has appeared more than k times (k is nor
set to 0 or 1), then an n-gram estimate is used, as in the first line. Bl
mLe estimate is discounted a certain amount (represented by the fur
d) so that some probability mass is reserved for unseen n-grams v
probability will be estimated by backing off. The MLE estimates ne
be discounted in some manner, or else there would be no proba
mass to distribute to the lower order models. One possibility for «
lating the discount is the Good-Turing estimates discussed above
this is what Katz actually used. If the n-gram did not appear or app
k times or less in the training data, then we will use an estimate fr
shorter n-gram. However, this back-off probability has to be mult
by a normalizing factor o so that only the probability mass left o\
the discounting process is distributed among n-grams that are estii
by backing off. Note that in the particular case where the (n-1)-gr:
the immediately preceding history was unseen, the first line is inap
ble for any choice of w;, and the back-off factor o« takes on the value
the second line is chosen, estimation is done recursively via an (n
gram estimate. This recursion can continue down, so that one can
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with a four-gram model and end up estimating the next word based on
unigram frequencies.

While backing off in the absence of much data is generaly reasonable,
it can actually work badly in some circumstances. If we have seen the bi-
gram w;w; many times, and wy is a common word, but we have never seen
the trigram w;w;wg, then a some point we should actually conclude that
this is significant, and perhaps represents a ‘grammatical zero,’ rather
than routinely backing off and estimating P(wg|h) via the bigram esti-
mate P(wi|w;). Rosenfeld and Huang (1992) suggest a more complex
back-off model that attempts to correct for this.

Back-off models are sometimes criticized because their probability es-
timates can change suddenly on adding more data when the back-off al-
gorithm sdlects a different order of n-gram model on which to base the
estimate. Nevertheless, they are simple and in practice work well.

General linear interpolation

In simple linear interpolation, the weights were just a single number, but
one can define a more general and powerful model where the weights are
a function of the history. For k probability functions P, the general form
for a linear interpolation moded is.

k

(6.20) Pi(wlh) = > Ai(h)Pi(wl|h)

i=1

where Vh,0<A;(h)< 1 and X;A;(h) = L

Linear interpolation is commonly used because it is a very genera way
to combine models. Randomly adding in dubious models to a linear in-
terpolation need not do harm providing one finds a good weighting of
the models using the EM agorithm. But linear interpolation can make
bad use of component models, especialy if there is not a careful par-
titioning of the histories with different weights used for different sorts
of histories. For instance, if the A; are just constants in an interpola-
tion of n-gram models, the unigram estimate is always combined in with
the same weight regardless of whether the trigram estimate is very good
(because there is a lot of data) or very poor.

In general the weights are not set according to individual histories.
Training a distinct Aw,_,, .., for ech wi_ne1)6-1) IS not in general fe-
licitous, because it would worsen the sparse data problem. Rather one
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wants to use some sort of equivalence classing of the histories. Bahl
(1983) suggest partitioning the A into bins according to C(w(_n+1)
and tying the parameters for al histories with the same frequency.

Chen and Goodman (1996) show that rather than this method o
ting the A parameters into bins, a better way is to group them accc
to the average number of counts per non-zero eement:

C(W(i—n+1)(i-1))
Wi 1 C(W(i—n+1)i) > 0]

That is, we take the average count over non-zero counts for n-(
Wi_nsl - - wisiw®. We presume that the reason this works is tha
cause of the syntax of language, there are strong structural const
on which words are possible or normal after certain other words.
it is central to most Statistical NLP language models that any word
lowed after any other - and this lets us deal with al possible disflug
- nevertheless in many sSituations there are strong constraints on
can normaly be expected due to the constraints of grammar. While
n-grams have just not been seen, others are ‘grammatical zeroes,” tc
a phrase, because they do not fit with the grammatical rules of the
guage. For instance, in our Austen training corpus, both of the bi
great deal and of that occur 178 times. But of that is followed i
corpus by 115 different words, giving an average count of 1.55, refl
the fact that any adverb, adjective, or noun can fdicitoudy follow 1
a noun phrase, and any capitalized word starting a new sentence i
a possibility. There are thus fairly few grammatical zeroes (maini
verbs and prepositions). On the other hand, great deal is follow
only 36 words giving an average count of 4.94. While a new ser
gtart is again a possibility, grammatical possibilities are otherwise
much limited to conjunctions, prepositions, and the comparative fo
adjectives. In particular, the preposition of follows 38% of the time
higher average count reflects the far greater number of grammatic:
roes following this bigram, and so it is correct to give new unseen |
a much lower estimate of occurrence in this context.

Finaly, note that back-off models are actually a specia case of the
erd linear interpolation model. In back-off models, the functions
are chosen so that their value is O for a history h except for the coef
of the model that would have been chosen using a back-off model,
has the value 1.
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SMDOTHING

(6.22)

(6.23)

LINEAR SUCCESSIVE
ABSTRACTION

(6.24)
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Briefly noted

Bell et a. (1990) and Witten and Bell (1991) introduce a number of
smoothing agorithms for the goal of improving text compression. Their
“Method C” is normaly referred to as Witten-Bell sSmoothing and has been
used for smoothing speech language models. The idea is to mode the
probability of a previously unseen event by estimating the probability of
seeing such a new (previously unseen) event at each point as one proceeds
through the training corpus. In particular, this probability is worked out
relative to a certain history. So to calculate the probability of seeing a
new word after, say, sat in one is caculating from the training data how
often one saw a new word after sat in, which is just the count of the num-
ber of trigram types seen which begin with sat in. It is thus an instance
of generalized linear interpolation:

Pwg(Wilwi—ns1)i-1)) = Awi_penion PMEEWi Wi nen (1))
+ (1= Awipeyin YPwB (Wil Wii-n+2)ii-1))
where the probability mass given to new n-grams is given by:

[{wi : C(Wi_py1 - - - wi)> 0}
iwi  CWiciner - == Wi) > 0} + 20, CWiiny1 - - - wy)

(1- AW(i—rHl)(i—l)) =

However, Chen and Goodman’s (1998) results suggest that this method
is not as good a smoothing technique for language models as others that
we discuss in this section (performing particularly poorly when used on
small training sets).

Samuelsson (1996) develops Linear Successive Abstraction, a method of
determining the parameters of deleted interpolation style models without
the need for their empirical determination on held out data. Samuels-
son's results suggest similar performance within a part-of-speech tagger
to that resulting from conventional deleted interpolation; we are unaware
of any evauation of this technique on word n-gram models.

Another simple but quite successful smoothing method examined by
Chen and Goodman (1996) is the following. MacKay and Peto (1990) argue
for a smoothed distribution of the form:

CWi—n+1 - - - Wi) + &Pyp(WilWips2 - - - Wi-1)
CWips1-. - Wi-1) + &

Pyp(WilWips1 - - Wi1) =

where « represents the number of counts added, in the spirit of Lid-
stone’s law, but distributed according to the lower order distribution.
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6.3.5

6.3 Combining Estimators

Model Cross-entropy Perplexity
Bigram 7.98 bits 252.3
Trigram 7.90 bits 239.1
Fourgram 7.95 bits 247.0

Table 6.10 Back-off language models with Good-Turing estimation teste
Persuasion.

Chen and Goodman (1996) suggest that the number of added c
should be proportional to the number of words seen exactly once,
suggest taking:

o=y(N1(Wi—ns1 - - -wiz1) + B)

where Ny (Wi—ps1. . . wWis1)=[{w;:C(Wj_ns1. .. w;) =1}, and then
mizing B and y on held out data.

Kneser and Ney (1995) develop a back-off model based on an ¢
sion of absolute discounting which provides a new more accurate w
estimating the distribution to which one backs off. Chen and Goo
(1998) find that both this method and an extension of it that they pr
provide excellent smoothing performance.

Language models for Austen

With the introduction of interpolation and back-off, we are at last ¢
point where we can build first-rate language models for our Austen
pus. Using the CMU-Cambridge Statistical Language Modeing T
(see the website) we built back-off language models using Good-T
estimates, following basically the approach of Katz (1987).14 We
caculated the cross-entropy (and perplexity) of these language
on our test set, Persuasion. The results appear in table 6.10. The
mated probabilities for each following word, and the n-gram size us
estimate it for our sample clause is then shown in table 6.11. Our
ability estimates are at last pleasingly higher than the unigram es
with which we began!

While overal the trigram model outperforms the bigram model ¢
test data, note that on our example clause, the bigram modd actua

14. The version of Good-Turing smoothing that the package implements only di
low frequencies - words that occurred fewer than 7 times.
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P(shelh) P(waslh) P(inferiorlh) P(tolh) P(both|h) P (sisters|h) § Product
Unigram  0.011 0.015 0.00005 0.032 0.0005 0.0003 3.96 x 10717
Bigram 0.00529 0.1219 0.0000159 0.183 0.000449 0.00372 3.14 x 10°15
n used 2 2 1 2 2 2
Trigram  0.00529 0.0741 0.0000162 0.183 0.000384 0.00323 1.44 x 10715
nused *+ 2 3 1 2 2 2

Table 6.11 Probability estimates of the test clause according to various lan-
guage models. The unigram estimate is our previous MLE unigram estimate. The
other two estimates are back-off language models. The last column gives the
overall probability estimate given to the clause by the model.

signs a higher probability. Overal, the fourgram model performs dightly
worse than the trigram model. This is expected given the small amount
of training data. Back-off models are in genera not perfectly successful
a simply ignoring inappropriately long contexts, and the models tend to
deteriorate if too large n-grams are chosen for model building relative to
the amount of data available.

6.4 Conclusions

A number of smoothing methods are available which often offer similar
and good performance figures. Using Good-Turing estimation and linear
interpolation or back-off to circumvent the problems of sparse data rep-
resent good current practice. Chen and Goodman (1996, 1998) present
extensive evauations of different smoothing agorithms. The conclusions
of (Chen and Goodman 1998) are that a variant of Kneser-Ney back-
off smoothing that they develop normally gives the best performance.
It is outperformed by the Good-Turing smoothing method explored by
Church and Gale (1991a) when training bigram models on more than 2
million words of text, and one might hypothesize that the same would
be true of trigram models trained on a couple of orders of magnitude
more text. But in all other circumstances, it seems to perform as well or
better than other methods. While simple smoothing methods may be ap-
propriate for exploratory studies, they are best avoided if one is hoping
to produce systems with optimal performance. Active research continues
on better ways of combining probability models and dealing with sparse
data.
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6.5 Further Reading

Important research studies on statistical estimation in the context
guage modeling include (Katz 1987), (Jeinek 1990), (Church ar
1991a), (Ney and Essen 1993), and (Ristad 1995). Other discussion:
timation techniques can be found in (Jelinek 1997) and (Ney et al.
Gae and Church (1994) provide detailed coverage of the probler
“adding one” An approachable account of Good-Turing estimati
be found in (Gale and Sampson 1995). The extensive empirical «
ison of various smoothing methods in (Chen and Goodman 1996
are particularly recommended.

The notion of maximum likdihood across the values of a pa
was first defined in (Fisher 1922). See (Ney et a. 1997) for a prc
the relative frequency redly is the maximum likeihood estimate.

Recently, there has been increasing use of maximum entropy r
for combining models. We defer coverage of maximum entropy
until chapter 16. See Lau et a. (1993) and Rosenfeld (1994, 1€
applications to language models.

The early work cited in section 6.2.2 appears in; (Lidstone 1920)
son 1932), and (Jeffreys 1948). See (Ristad 1995) for discussion
(1979: 395-396) covers Turing's initial development of the idea of
Turing smoothing. This article is reprinted with amplification in
1992).

6.6 Exercises

Exercise 6.1

Explore figures for the percentage of unseen n-grams in test data (tha
from the training data). Explore varying some or all of: (i) the order of tf
(i.e., n), (ii) the size of the training data, (iii) the genre of the training d
(iv) how similar in genre, domain, and year the test data is to the trainin

Exercise 6.2

As asmaller example of the problems with Laplace' s law, work out prc
estimates using Laplace's law given that 100 samples have been seer
potential vocabulary of 1000 items, and in that sample 9 items were
times, 2 items were seen 5 times and the remaining 989 items were uns
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Exercise 6.3 [*]
Show that using e.e yields a probability function, in particular that

> Pee(wi---wp) = 1

Wi---Wn

Exercise 6.4 [x]

Using the word and bigram frequencies within the Austen test corpus given be-
low, confirm the ELE estimate for the test clause she was inferior to both sisters
given in section 6.2.2 (using the fact that the word before she in the corpus was
person).

w C(w) Wi Wy C(wiws)
person 223  person she 2
she 6,917 she was 843
was 9,409 was inferior 0
inferior 33 inferior to 7
to 20,042 to both 9
both 317 both sisters 2
Exercise 6.5 [*]

Show that Good-Turing estimation is well-founded. |.e., you want to show:

_ forwi - - wy)

> Por(wr - - wy) N

W] Wn

=1

Exercise 6.6 [*]

We cdculated a Good-Turing probability estimate for she was inferior to both
sisters using a bigram model with a uniform estimate of unseen bigrams. Make
sure you can recreate these results, and then try doing the same thing using a
trigram model. How well does it work?

Exercise 6.7 [* ]

Build language models for a corpus using the software pointed to on the web-
site (or perhaps build your own). Experiment with what options give the best
language model, as measured by cross-entropy.

Exercise 6.8 [**]

Get two corpora drawn from different domains, and divide each into a training
and a test set. Build language models based on the training data for each domain.
Then calculate the cross-entropy figures for the test sets using both the language
model trained on that domain, and the other language model. How much do the
cross-entropy estimates differ?
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Exercise 6.9

Write a program that learns word n-gram models of some text (perhaps
smoothing, but it is not really necessary for this exercise). Train separate |
on articles from severa Usenet newsgroups or other text from different
and then generate some random text based on the models. How intelligi
the output for different values of n? Is the different character of the \
newsgroups clearly preserved in the generated text?

Exercise 6.10

Write a program that tries to identify the language in which a short segm
text is written, based on training itself on text written in known language
instance, each of the following lines is text in a different language:

doen is ondubbelzinnig uit
pretendre a un emploi

uscirono fuori solo acune
look into any little problem

If you know a little about European languages, you can probably identify
language each sample is from. This is a classification task, in which you
usefully be able to use some of the language modeling techniques dis
in this chapter. (Hint: consider letter n-grams vs. word n-grams.) (Thi:
problem that has been investigated by others; see in particular (Dunning
The website contains pointers to a number of existing language identifi
systems - including one that was originaly done as a solution to this exer
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Word Sense Disambiguation

THis cHAPTER Qives an overview of work on word sense disambigua-
tion within Statistica NLP. It introduces a few of the most important
word sense disambiguation agorithms, and describes their resource re-
guirements and performance.

What is the idea of word sense disambiguation? The problem to be
solved is that many words have several meanings or senses. For such
words given out of context, there is thus ambiguity about how they are
to be interpreted. As a first example of ambiguity, consider the word
bank and two of the senses that can be found in Webster's New Collegiate
Dictionary (Woolf 1973):

» the rising ground bordering a lake, river, or sea...

» an establishment for the custody, loan exchange, or issue of money,
for the extension of credit, and for facilitating the transmission of
funds

The task of disambiguation is to determine which of the senses of an
ambiguous word is invoked in a particular use of the word. This is done
by looking at the context of the word's use.

This is how the problem has normally been construed in the word sense
disambiguation literature. A word is assumed to have a finite humber of
discrete senses, often given by a dictionary, thesaurus, or other reference
source, and the task of the program is to make a forced choice between
these senses for the meaning of each usage of an ambiguous word, based
on the context of use. However, it is important to realize at the outset that
there are a number of reasons to be quite unhappy with such a statement
of the task. The word bank is perhaps the most famous example of an
ambiguous word, but it is really quite atypica. A more typical situation
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is that a word has various somewhat related senses, and it is unclear
whether to and where to draw lines between them. For example, consider
the word title. Some senses that we found in a dictionary were:

s Name/heading of a book, statute, work of art or music, etc.

Material at the start of a film

The right of legal ownership (of land)

= The document that is evidence of this right

An appellation of respect attached to a person’s name
= A written work [by synecdoche, i.e., putting a part for the whole]

One approach is simply to define the senses of a word as the meanings
given to it in a particular dictionary. However, this is unsatisfactory from
a scientific viewpoint because dictionaries often differ greatly in the num-
ber and kind of senses they list, not only because comprehensive dictio-
naries can be more complete, but fundamentaly in the way word uses
are gathered into senses. And often these groupings seem quite arbi-
trary. For example, the above list of senses distinguishes as two senses
a right of legal title to property and a document that shows that right.
However, this pattern of sense extension between a concept and some-
thing that shows the concept is pervasive and could have been, but was
not, distinguished for other uses. For example the same ambiguity exists
when talking about the title of a painting. For instance, one might remark

in a gallery:
This work doesn’t have a title.

That sentence could mean either that the work was not given a title by
the author, or simply that the little placard giving the title, which usually
appears by paintings in a galery, is missing. It is also somewhat unclear
why books, statutes and works of art or music are grouped together while
films are separated out. The second definition could be seen as a specia
case of the first definition. It is quite common in many dictionaries for
senses to be listed that are redly specia cases of ancther sense, if this
sense is frequently and distinctively used in texts. These difficulties sug-
gest that, for most words, the usages and hence the sense definitions are
not to be thought of as like five kinds of cheese, among which one must
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choose, but more like a casserole which has some pieces of clearly dis-
tinct identifiable content, but a lot of stuff of uncertain and mixed origin
in between.

Notwithstanding these philosophical objections, the problem of disam-
biguation is of clear importance in many applications of natural language
processing. A system for automatic trandation from English to German
needs to trandate bank as Ufer for the first sense given above (‘ground
bordering a lake or river’), and as Bank for the second sense (‘financid
institution’). An information retrieval system answering a query about
‘financia banks should return only documents that use bank in the sec-
ond sense. Whenever a system’'s actions depend on the meaning of the
text being processed, disambiguation is beneficial or even necessary.

There is another kind of ambiguity, where a word can be used as differ-
ent parts of speech. For example, butter may be used as a noun, or as a
verb, asin You should butter your toast. Determining the usage of a word
in terms of part of speech is referred to as tagging, and is discussed in
chapter 10. How do these two notions relate? Using a word as a verb
instead of as a noun is clearly a different usage, with a different meaning
involved, and so this could be viewed as a word sense disambiguation
problem. Conversely, differentiating word senses could be viewed as a
tagging problem, but using semantic tags rather than part of speech tags.
In practice, the two topics have been distinguished, partly because of dif-
ferences between the nature of the problem, and partly because of the
methods that have been used to approach them. In general, nearby struc-
tural cues are most useful for determining part of speech (eg., is the
preceding word a determiner?), but are amost useless for determining
semantic sense within a part of speech. Conversely, quite distant content
words are often very effective for determining a semantic sense, but are
of little use for determining part of speech. Consequently, most part of
speech tagging models simply use local context, while word sense disam-
biguation methods often try to use content words in a broader context.

The nature of ambiguity and disambiguation changes quite a bit de-
pending on what materia is available for training a word sense disam-
biguation system. After an initial section about methodology, this chap-
ter has three main sections dealing with different types of training ma
terial. Section 7.2 describes supervised disambiguation, disambiguation
based on a labeled training set. Section 7.3 describes dictionary-based
disambiguation, disambiguation that is based on lexical resources such
as dictionaries and thesauri. Section 7.4 deals with unsupervised disam-
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biguation, the case in which only unlabeled text corpora are available for
training. We conclude with an in-depth discussion of the notion of sense
and pointers to further reading.

71 Methodological Preliminaries

7.1.1

SUPERVISED LEARNING

UNSUPERVISED
LEARNING

CLIJSTERING

CLASSIFICATION

KNOWLEDGE SOURCES

Several important methodological issues come up in the context of word
sense disambiguation. They are of genera relevance to NLP, but have
received special attention in this context. These are: supervised vs. unsu-
pervised learning; the use of artificia evaluation data, known in the word
sense disambiguation context as pseudowords; and the development of
upper and lower bounds for the performance of algorithms, so that their
success can be meaningfully interpreted.

Supervised and unsupervised learning

A lot of algorithms are classified as to whether they involve supervised or
unsupervised learning (Duda and Hart 1973: 45). The digtinction is that
with supervised learning we know the actua status (here, sense label) for
each piece of data on which we train, whereas with unsupervised learn-
ing we d0 NOt know the classification of the data in the training sample.
Unsupervised learning can thus often be viewed as a clustering task (see
chapter 14), while supervised learning can usually be seen as a classifica-
tion task (see chapter 16), or equivaently as a function-fitting task where
one extrapolates the shape of a function based on some data points.

However, in the Statistical NLP domain, things are often not this sim-
ple. Because the production of labeled training data is expensive, people
will often want to be able to learn from unlabeled data, but will try to give
their algorithms a head start by making use of various knowledge sources,
such as dictionaries, or more richly structured data, such as aligned bilin-
gual texts. In other methods, the system is seeded with labeled training
data, but this data is augmented by further learning from unlabeled data.
Rather than trying to force different methods on to a procrustean bed, it
usually makes most sense to simply give a precise answer to the question:
What knowledge sources are needed for use of this method? Aswe will see,
sometimes there are alternative combinations of knowledge sources that
can give similar information (e.g., using either aligned bilingual texts, or
monolingual texts and a bilingual dictionary).
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7.1.2 Pseudowords

PSEUDOWORDS

7.1.3

UPPER BOUND

In order to test the performance of disambiguation agorithms on a nat-
ural ambiguous word, a large number of occurrences has to be disam-
biguated by hand - a time-intensive and laborious task. In cases like this
in which test data are hard to come by, it is often convenient to gener-
ate artificiad evaluation data for the comparison and improvement of text
processing agorithms. In the case of word sense disambiguation these
artificial data are called pseudowords.

Gde et al. (1992e) and Schiitze (1992a) show how pseudowords, i.e.,
artificid ambiguous words, can be created by conflating two or more nat-
ural words. For example, to create the pseudoword banana-door, one
replaces all occurrences of banana and door in a corpus by the artifi-
cid word banana-door. Pseudowords make it easy to create large-scae
training and test sets for disambiguation while obviating the need for
hand-labeling: we regard the text with pseudowords as the ambiguous
source text, and the origina as the text with the ambiguous words dis-
ambiguated.

Upper and lower bounds on performance

While it is important to measure the performance of one's agorithm, nu-
merical evauation by itsdf is meaningless without some discussion of
how well the agorithm performs relative to the difficulty of the task. For
example, whereas 90% accuracy is easy to achieve for part-of-speech tag-
ging of English text, it is beyond the capacity of any existing machine
trandation system. The estimation of upper and lower bounds for the
performance of an algorithm is a way to make sense of performance fig-
ures (Gale et al. 1992a). It is a good idea for many tasks in NLP, especialy
if there are no standardized evaluation sets for comparing systems.

The upper bound used is usually human performance. In the case
of word sense disambiguation, if human judges disagree on the correct
sense assignment for a particular context, then we cannot expect an auto-
matic procedure to do better. Determining upper bounds is particularly
interesting if the disambiguation algorithm uses a limited representation
of contexts, for example just looking at the three words on each side
of the ambiguous word. In such a situation, the reason for poor per-
formance may just be that the contextua representations are not very
informative so that even humans would not be able to disambiguate very
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well based on the same information. We can evaluate this by looking at
human performance when based on the same limited contextua cues.!

An upper bound for word sense disambiguation was established by
Gae et al. (199248). Gale et a. performed tests with the following task:
Subjects were given pairs of occurrences and had to decide whether they
were instances of the same sense. The task resulted in upper bounds
between 97% and 99%. However, most of the words in Gale et al.’s test
sat have few and clearly distinct senses. In contrast, there are many am-
biguous words (in particular, high-frequency ones) that are similar to our
example title, i.e, their senses are interrelated and overlapping. Inter-
judge agreement depends on the type of ambiguity: it is higher for words
with clearly distinct senses (95% and higher) and lower for polysemous
words with many related senses (perhaps as low as 65% to 70%).? The task
is aso easier when viewed as a yes/no decision task than as an arbitrary
clustering task.

This means that we have to look at the properties of an individual am-
biguous word to determine whether a disambiguation agorithm does a
good job for it. For a word like bank we should aim for performance
in the ninety percent range, whereas less stringent criteria should be ap-
plied to fuzzier cases like title, side, and way.

The lower bound or baseline is the performance of the simplest possi-
ble algorithm, usualy the assignment of all contexts to the most frequent
sense. A baseline should aways be given because raw performance num-
bers make it impossible to assess how hard disambiguation is for a par-
ticular word. An accuracy of 90% is an excellent result for an ambiguous
word with two equiprobable senses. The same accuracy for a word with
two senses in a 9 to 1 frequency ratio is triviad to achieve - by always
sdecting the most frequent sense.

v Upper and lower bounds are most relevant when we are deding with
a classification task and the evaluation measure is accuracy. Section 8.1
discusses other evaluation measures, in particular, precision and recall.

1. Although, for limited artificial contexts like this, it is of course possible that computers
might be able to be more successful than human beings at extracting useful predictive
information.

2. See (Jorgensen 1990). To be able to correctly compare the extent of inter-judge agree-

ment