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Preface

Advances in Fuzzy Mathematics and Engineering is a new
international series dedicated to the support and development of
the theory of fuzzy mathematics and related areas and their
industrial appiications in general and in engineering in particular.
The series is supported and published by Beijing Normal
University Press, Beijing .China.

This book. Fuzzy Sets and Fuzzy Information-Granulation
Theory, is the third volume of Collected Papers by Lotfi A.
Zadeh. The first volume, entitled Fuzzy Sets and Applications,
was published in 1987 by John Wiley. Its editors, Ronald R.
Yager, Sergei Ovchinnikov, Richard M. Tong, and Hung T.
Ngugen undertook the project on the occasion of the 20th
anniversary of the publication of the first paper on fuzzy set by
Lotfi A. Zadeh. The second volume,entitled Fuzzy Sers, Fuzzy
Logic, and Fuzzy Systems, was published in 1996 by World
Scientific. Its editors, George J. Klir and Bo Yuan selected,{rom
among all papers by Lotfi Zadeh not included in the first volume.
those papers on fuzzy sets,fuzzy logic,and fuzzy systems whose
easy accessibility would likely be of benefit to those working in
these areas. The previous two volumes in English have proved to
be great utility to anyone interested in fuzzy set theory and its

applications.



Considering the largest number of the readers refated to
Fuzzy Mathematics and Engineering in China, we felt that a
Chinese version of the key selected papers by Lotfi Zadeh Fuzzy
Sets and Fuzzy Information-Granwlation Theory would fit well
into the book series on Advances in Fuzzy Mathematics and
Engineering by Beijing Normal University Press. The book
collects Zadeh's original perception which may be viewed as an
evolution of ideas rooted in his 1965 paper on fuzzy sers; 1971
paper on fuszzy systems; 1973 — 1976 papers on {ingaistic
variables, fuzzy if-then rules and fuzzy graphs: 1979 paper on
fuzzy sets and information granularity; 1986 paper on
generalized constrains; 1996 paper on computing with words and
1997 papers on theory of fuzzy information granwlation.

The purpose of this book is twofold. Firstly,it is intended as
a quick reference for those working in Fuzzy Mathematics and
Engineering in China as well as in the world. Secondly, it is
expected to play a major role in-Research and Development of
Fuzzy Mathematics and Engineering. as a useful source of
supplementary readings in this new book series. We hope this

volume will benefit many readers around the world.

Da RuanChongfu Huang
Editors



Note to the Reader

This book is the third volume of collected papers by Lotf:
A. Zadeh, The first volume ,entitled Fuzzy Sets and Applications.
was published in 1987 by John Wiley (Editors:Ronald R. Yager,
Sergei Ovchinnikov, Richard M. Tong. and Hung T. Ngugen).
The second volume,entitled Fuzzy Sets Fuzzy Logic sand Fuzzy
Systenrs, was published in 1996 by World Scientific ( Editors .
(seorge ], Klir and Be Yuan).

The current edited-book is a set of key selected papers by
Lotfi Zadeh. Both English and Chinese versions of these papers

are avatlable,
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Part 1:Fuzzy Sets






Fuzzy Sets

A fuzzy set is a class of objects with a cominuum of grades
of membership. Such & set is characierized by a membership
(charactenistic Yfunction which assigns to each object a grade of
membership ranging between zero and one. The notions of
inclusion, union, intersection, complement, relation. convexity,
etc,. are extended to such sets, and various properties ol these
notions in the context of fuzzy sets are established. In particular,
a separation theorem [or convex fuzzy sets is proved without

requiring that the fuzzy sets be disjoint.
1. Introduction

More often than not,the classes of objects encountered in
the real physical world do not have precisely defined criteria of
membership. For example, the class of animals clearly includes
dogs. horses, birds,etc. as its members, and clearly excludes
such objects as rocks, fluids.plants, ete. However, such objects
as starfish. bacteria, etc. have an ambiguous status with respect
to the class of animals. The same kind of ambiguity arises in 1he
case of a number such as 10 in relation to the “class”™ of all real
numbers which are much greater than 1.

Clearly. the “class of all real numbers which are much
greater than 1,” or “the class of beautiful women.” or “the class

of tall men,” do not constitute classes or sets in the usual
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mathematical sense of these terms. Yet, the fact remains that
such imprecisely defined “classes” play an imporiant role in
human thinking, particularly in the domains of pattern
recognition, communication of information. and abstraction.
The purpose of this note is explore in a preliminary way
some of the basic properties and implications of a concept which
may be of use in dealing with “classes” of the type cited above.
The concept in question is that of a fuzzy set,Uthat is, a “class”
with a continuum of grades of membership., As will be seen in
the sequel, the notion of a fuzzy set provides a convenient point
of departure for the construction of a conceptual framework
which parallels in many respects the framework used in the case
of ordinary sets, but is more general than the latter and,
potentially, may prove to have a much wider scope of
applicability, particularly in the fields of pattern classification
and information processing. Essentially, such a framework
provides a natural way of dealing with problems in which the
source of imprecision is the absence of sharply defined criteria of
class membership rather than the presence of random variables.
We begin the discussion of fuzzy sets with several basic

definitions.
2. Definitions

Let X be a space of points(objects),with a generic element

D An spplication of this concept 1o the formulation of a class of problems in
partern classification is described in RAND Memorandum RM-4307-PR.*Abstraction
and Partern Classification,"by R. Beliman,R. Kalaba and L. A. Zadeh, October.1964.
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of X denoted by z. Thus.X=1{x].

A fuzzy set (class) A in X is characterized by a membership
(characteristic) function f4(x) which associares with each point'”
in X a real number in the interval [0,1]%.with the value of f,
(x) at x representing the “grade of membership” of » in A.
Thus, the nearer the value of f,(x) to unity, the higher the
grade of membership of x in A. When A is a set in the ordinary
sense of the term, its membership function can take on only two
values 0 and 1, with f,(x)=1 or 0 according as x does or does
not belong to A. Thus, in this case f,(z) reduces to the familiar
characteristic function of a set A. { When there is a need to
differentiate between such sets and fuzzy sets, the sets with rwo-
valued characteristic functions will be referred to as ordinary sets
or simply sets. )

Example. Let X be the real line R' and let 4 be a fuzzy set of
numbers which are much greater than 1. Then, one can give a
precise, albeit subjective, characterization of 4 by specifying f,
(x) as a function on R'. Representative values of such a function
might be: f4(0) =0;f4(1)=0; f4(5)=0.01; f4(10) = 0. 2; £,
(100)=0. 95; £, (500)=1.

It should be noted that, although the membership function

of a {uzzy set has some resemblance to a probability function

{ More generally, the domain of definition of f4{r} may be restricred 10 a
subset of X.

@ Ina more general setting, the range of the membership function can be taken
10 be a suitable partially ordered set P. For our purposes, it is convenient and
sufficient to restrict the range of f to the unit interval. [f the values of f alr) are

interpreted as truth values. the latter case corresponds to a multivalued logic with a
continuum of truth values in the interval 0,17,



when X is a countable set (or a probability density function when
X is a continuum) » there are essential differences between these
concepts which will become clearer in the sequel once the rules of
combination of membership functions and their hasic properties
have been established. In fact, the notion of a fuzzy set is
completely nonstatistical in pature,

We begin with several definitions involving fuzzy sets which
are obvious extensions of the corresponding definiticns for
ordinary sets.

A fuzzy set is empty if and only if its membership function is
identically zero on X.

Two fuzzy sets A and B are equal, written as A= R,if and
only if fa(x)=/fp(x) for all z in X. (In the sequel,instead of
writing f4(x) = fp(x) for all £ in X, we shall write more simply
fa=Ffe)

The complernent of a fuzzy set A is denoted by A’ and is
defined by

Ja=1—Ffa (1)

As in the case of ordinary sets, the notion of containment
plays a central role in the case of fuzzy sets. This notion and the
related notions of union and intersection are defined as follows.

Containment. A 13 contained in B(or, equivalently, A is a
subset of B, or A is smaller than or equal to B)if and only if f,<
fz. In symbols

ACBS 1= o (2)

Union. The union of two fuzzy sets A and B with respective
membership functions f,(x) and fu(z) is a fuzzy set C, written
as C=A|J B,whose membership function is related to those of A

6
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and B by
Jeloy=Max[ file). fo(xr)], x€X (3)
or, in abbreviated form
Se=FfaV fu (4}
Note that {J has the associative property. that is, AU (BUC) =
(AuBsYUC,

Comment. A more intuitively appealing way of defining the
mion is the following:The union of A and Bis the smallest fuzzy
set containing both A and B, More precisely, if D is any fuzzy set
which contains both A and 8. then it also contains the union of
A and B.

To show that this definition is equivalent to (3),we note.
first. that C as defined by (3) contains both 4 and B. since

Maxl:fa *fff]:;fﬁ
and
Max[ f.. Fful= 14

Furthermore, if D is any fuzzy set containing both A and B,

then

fo=fa
S fu
and hence
fngmax[fmfn] = fe
which implies that CCD. Q. E. D.
The notion of an intersection of fuzzy sets can be defined in
an analogous manner. Specifically .
Intersection. The intersection of two fuzzy sets A and B with
respective membership functions £,(x) and fi(a) is fuzzy set .
written as C==A (1 B, whose membership function is related 10

7
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those of A and B by

Felzd=Min[ fa(2), fel(x)], x€X, (5)
or, in abbreviated form

fe=Fal S5 (6}
As in the case of the union, it is casy to show that the
intersection of A and B is the largest fuzzy set which is contained
in bothe A and B. As in the case of ordinary sets, A and B are
disjoint if A1 B is empty. Note that [, like UJ, has the

associative property.
The intersection and union of two fuzzy sets in R! are
illustrated in Fig. 1. The membership function of the union is
comprised of curve segments 1 and 2; that of the intersection is

comprised of segments 3 and 4 Cheavy lines).

" fo (x), 1y ()

Fig. 1. Mustration of the union and intersection of fuzzy sets in R}

Comment. Note that the notion of “belonging,” which plays
fundamental rele in the case of ordinary sets, does not have the
same role in the case of fuzzy sets. Thus, it is not meaningful to
speak of a point x “belonging” to a fuzzy set A except in the
trivial sense of f,(x) being positive. Less trivially, one can

introduce two levels o and f{0<a<(1,0<B<1,a>>8) and agree

8




to say that (1)%z belongs to A”if f.(xr)Za; (2)"x does not
belong to A” if f4{x)=f:and (3)“x has an indeterminate status
relative to A” if #<f4(x)< a. This leads to a three-valued logic
(Kleene,1952) with three truth values; T'(f(£)=a) JF(f ()
=8, and U(B<f () <a),

3. Some properties of [1,J. and complementation

With the operations of union, intersection, and
complementation defined as in (3),(5), and (1), it is easy to
extend many of the basic identities which hold for ordinary sets

to fuzzy sets. As examples, we have

(AUBY =A"NB (7)
l:k M 1 .

(ANBY —A' UB organ’s laws (8
CNAUBY=(CNAYUCNB)Y Distributive laws. (9}
CUANB=WyUAN <Y s) (10)

These and similar equalities can readily be established by
showing that the corresponding relations for the membership
functions of A,B, and C are identities. For example. in the case
of (7), we have

1—Max[f.» fsl=Min{1—f4.1— f5] (1D
which can be easily verified 10 be an identity by testing for the
two possible cases; f ()2 fp(x) and fa(2)<fulx).

Similarly , in the case of (10}, the corresponding relation in
terms of £, fgand f.is,

Max[ f¢sMin[f, !fBJ=Mi“£Max[f(‘¢fA] !Mﬂx[fc:fﬂj]

(12)
which can be verified to be an identity by considering the six
cases,



Fale)y > Fol > felx) Fala) = folx) > fula),
Felx) > falady > fela),
ol > fela) > fala ) fela) > Fala )y > Fala)
Fe () fulx) > falx),
Essentially, fuzzy sets in X constitute a distributive lattice
with a 0 and 1(Birkhoff,1948).
An Interpretation for Unions and Intersections
In the case of ordinary sets,a set C which is expressed in
terms of a family of sets A, +-», A, =+, A, through the
connectives |J and (), can be represented as a network of
switches &, +++, a,, with A, (] A; and A, |} A; gorresponding,
respectively, to series and parallel combinations of «, and a,. In
the case of fuzzy sets,one can give an analogous interpretation in
terms of sieves, Specifically, let f;(x),i =1, ,n.denote the
value of the membership function of A; at x. Associate with f,(x)
a sieve .5, (x) whose meshes are of size f;(z). Then, fi(z) V f,
(x) and f.(x) A f;(x)correspond, respectively, to parallel and

series combinations of 5,{(x) and S,(x),as shown in Fig 2.

] 1
.Sl{ﬂ “+ Sz}
| -

i

= sltl]
5|ll}'

¥
- |

-
Fig. 2. Parallel and series connection of sieves simultating U and 1

More generally,a well-formed expression involving A,, -,
A,+t,and [ corresponds to a network of sieves S;{(x), .S,
(x) which can be found by the conventional synthesis techniques

for switching circuits. As a very simple example,
10




C=[(AUAIN A, JU A, (13}
corresponds to the network shown in Fig. 3.
Naote that the mesh sizes of the sieves in the network depend on .«
and that the network as a whole is equivalent to a single sieve

whose meshes are of size f ().

L J

5,{x) + - S,(x) - 54 1x)

Sslnl -

&

Fig. 3. A network of sieves simuleating {[ /() V f(2)JA L)V 70

4. Algebraic operations on fuzzy sets

In addition to the operations of union and intersection. one
can define a number of other ways of forming combinations of
fuzzy sets and relating them to one another. Among the more
important of these are the following.

Algebraic product. The algebraic product of A and B is
denoted by AB and is defined in terms of the membership
functions of A and B by the relation

Jan=Sfafs (14
Clearly,
ABCANB. (15

11



Algebraic sum. PThe algebraic sum of A and B is denoted by
A+B and is defined by ,
fA+B=fA'|‘fB (16)
provided the sum f,; -+ f; is less than or equal to unity. Thus,
unlike the algebraic product,the algebraic sum is meaningful only
when the condition f;(x)4 fp(x)<I1 is satisfied for all .
Absolute difference. The absolute difference of A and B is
denoted by | A— B |and is defined by
flA-31= (fa—Fsl.
Note that in the case of ordinary sets | A — B | reduces to the
relative complement of AN B in AUB.
Convex combination. By a convex combination of two vectors
f and g is usually meant a linear combination of f and g of the
form Af+(1—A)g,in which 0<CA<(1. This mode of combining f
and g can be generalized 10 fuzzy sets in the following manner.
Let A, B, and A be arbitrary fuzzy sets. The conver
combination of A, B, and A is denoted by (A4,B;A)and is defined
by the relation
(A,B;A)Y=AA+A'B {(17)
where A’ is the complement of A. Written out in terms of
membership functions, (17 )reads
Fiasn ()= o) fale) + {1 — fo(@)fe(x) xEX (18)
A basic property of the convex combination of A, B,and A is

expressed by

L The dual of the algebraic product is the sum ABE=(A'F )Y =A+B— AR,
(This was pointed out by T. Cover. )Note that for ordinary sets [ nd the algebraic
product are equivalent operations,as are 1) and 6B,

12
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ANBC(AB:AYCAU B, for all A. (19)
This property is an immediate consequence of the
inequalities,
Min[ falz)  frlx) A S (Y F (1 — Ay fulx)

SMax[ fi(x) folx) ] xEX (20)

which hold for all A in [0,1]. It is of interest to observe that,

given any fuzzy set C satisfying AN BCCC AL B,one can

always find a fuzzy set A such that C = (A, B; A), The
membership function of this set is given by

_f-:'(-l‘}'"fu(-r)

Fuzzy relation. The concept of a relution { which 15 a

generalization of that of a functionYhas a natural extension to
fuzzy sets and plays an important role in the theory of such sets
and their applications—just as it does in the case of ordinary
sets, In the sequel, we shall merely define the notion of a fuzzy
retation and touch upon a few related concepts.

Ordinarily, a relation is defined as a set of ordered pairs
(Halmos,1960) se, g. the set of all ordered pairs of real numbers
x and y such that xZz=y. In the context of fuzzy sets,a fuzzy
relation in X i1s a fuzzy set in the product space X X X. For
example,the relation denoted by x> y.x . ¥€ R'.may be regarded
as a fuzzy set A in R*,with the membership function of A, f,{x,
v}, having the following (subjective) representative values: f,
(10,5)=0:f.(100,10)=0. 7; f,(100,1)=1;ete.

More generally,one can define an n-ary fuzzy relation in X
as a fuzzy set A in the product space X X X X+ X X. For such

relations, the membership function is of the form f,(x|sr v},

13



where 2, € X, i=1,"",n.

In the case of binary fuzzy relations, the composition of two
fuzzy relations A and B is denoted by B - A and is defined as a
fuzzy relation in X whose membership function is related to those
of A and B by
' fu.alxsy)y=S8up. Min[ fa{xv)+ f(rv. ) 1.

Note that the operation of composition has the associative
propetty
A (BC)=(A-°B)-C,

Fuzzy sets induced by mappings. Let T be a mapping from X
to a space Y. Let B be a fuzzy set in Y with membership function
foly). The inverse mapping T !induces a fuzzy set A in X whose
membership function is defined by

falxY=fp(y),y€Y (22)
tor all r in X which are mapped by T into y.

Consider now a converse problem in which A is a given fuzzy
set in X,and T, as before,is a mapping from X to Y. The
question is: What is the membership function for the fuzzy sec B
in Y which is induced by this mapping?

If T is not one-one,then an ambiguity arises when two or
more distinct points in X ,say x, and x,,with different grades of
membership in A.are mapped into the same point y in Y. In this
case,the question is: What grade of membership in 8 should be
assigned 1o y?

To resolve this ambiguity, we agree to assign the larger of
the two grades of membership to y. More generally, the
membership function for B will be defined by

fuly)=Max,er1,falx) y€Y (23)
14
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where T7'{ y)is the set of points in X which are mapped into v
by T.

5. Convexity

As will be seen in the sequel, the notion of convexity can
readily be extended to fuzzy sets in such a way as to preserve
many of the properties which it has in the context of ordinary
sets. This notion pears to be particularly useful in applications
involving  pattern classification, optimization and related

problems.

£, (x)

convex furry sef non-Convex
\ fuzzy sel
B [y +l1-X,)

oty 1)

Fig. 4. Convex and nonconvex fuzzy sers in K

In What follows ,we assume for concreteness that X is a real

Euclidean space E”.

Definitions
Convexity. A fuzzy set A is conver if and only if the sets T,

defined by
Pi=Arlfi(x)2al (24)

are convex for all « in the interval (0,1].



An alternative and more direct definition of convexity is the-

following®: A is convex if and only if

FalAz + (1 —Ax, ) ZMin[ f 1 (x,) » f4(x2) ] (25)
for all x; and x;in X and all Ain [0,1]). Note that this definition
does not imply that f4(x) must be a a convex function of x, This
is illustrated in Fig. 4 for n=1.

To show the equivalence between the above definitions note
that i{ A is convex in the sense of the first definition and a=f,
(0))S falx)othen 2, €T, and Ax, + (1 — ) 1, € T, by the
convexity of I",. Hence

Saldr, + (1 —VDax, J=Za= f () =Min[ falx, )+ falxs) ]

Conversely, if A is convex in the sense of the second
definition and a= f,(x,),then I', may be regarded as the set of
all points x, for which f,(z;)2 f4(x,). In virtue of (25),every
point of the form Az, 4+ (1—A)x,,05A%1,is also in [, and hence
I.is a convex set. Q. E. D.

A basic property of convex fuzzy sets is expressed by the

Theorem. [f A and B are convex,so is their intersection.

Proof :Let C=A[]B. Then
felAx,+(1—A)z,]

=Min[fa[Az,+ A =Dz, ], falAr,+ A= Dx,]].
(26)

Now,since A and B are convex
fﬂl:‘l-r] +(1 _A)Ig:IEMin[fg (x;) rf_q(.:rz)]

: (27>
FelAe, + (1= )=Minlfp(x,), fa(x,) ]

(@ This way of expressing convexity was suggested to the writer by his
colleague, E, Berlekamp.
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and hence
JolAr + =]
=Min[Min[fala ) fala) o Min[ frlar) o f(a.) ] (28)
or equivalently
Joldr, + (1=, ]
;Min[Min[fA{x. } ?fﬁ(«r] )].Min[f,ﬁj‘g} 9f£r(~3‘: ) ]]
(29)
and thus
Filim,+ (0 —ADx)=Min[f () fela) Q- E. D,
(30)
Boundedness. A {uzzy set A is bounded if and only if the sers I',=
{x| fa(x)Za} are bounded for all a>0;that is,for every a=>0
there exists a finite R(a)such that || r || =R(a) for all £ in T..

If A is a bounded set, then for each ¢ > 0 then exists a
hyperplane H such that f,(x)=<e for all r on the side of H
which does not contain the origin. For,consider the set I, = {.|
falx)=e}. By hypothesis,this set is contained in a sphere S of
radius R.,. L.et H be any hyper —plane supporting S. Then, all
points on the side of A which does not contain the origin lie
outside or on S.and hence for all such points f,(r)=Ze.

Lemma. Let A be a bounded fuzzy set and fet M =Sup.f,
(). (M will be referred to us the mazimal graded in A. Y Then
therve Is at least one point x, contains points in the set Q(e)=1{r|f,
(r’=M—¢}.

Proof. “Consider a nested sequence of bounded sets I',.F.,
seoywhere D= {r| falx)=M—~M/(n+1}).n=1,2++. Note that

‘T This prood was suggested by A, ], Thomaman.
17



I", i1s nonempty for all finite » as a consequence of the definition
of M as M=Sup,fi1(x). (We assume that M >0Q. )

Let x, be an arbitrarily chosen point in T,,n=1,2,+-. Then,
IysXas*+,08 a sequence of points in a closed bounded set T'\. By
the Bolzano-Weierstrass theorem, this sequence must have at
least one limit point,say r,.inT;, Consequently, every spherical
neighborhood of &, will contain infinitely many points from the
sequence x;,x;+**-,and,more particularly,from the subsequence
TN+l INpzs ***s Where N == M/e, Since the points of this
subsequence fall within the set Q(e) = {x | filxr)=M—¢}.the
lemma is proved.

Strict and strong convexity. A fuzzy set A is strictly convex if
the sets T, 0<Ca=<1 are strictly convex (that is,if the midpoint of
any two distinct points in I'; lies in the interior of I',). Note that
this definition reduces to that of strict convexity for ordinary sets
when A is such a set,.

A fuzzy set A is strongly comvexr if, for any two distinct
points x, and x;.and any Adin the open interval (0,1)

f,..[;t.r]+(l—l)xg]:?Min[fA(rl),fA{rz)].
Note that strong convexity does not imply strict convexity or vice
—versa. Note also that if A and B are bounded,so is their union
and intersection. Similarly,if A and B are strictly (strongly)
convex,their intersection is strictly (strongly Yconvex,

Let A be a convex fuzzy set and let M=Sup, f4(x). If A is
bounded ,then,as shown above,either M is attained for some =,
say x,,0r there is at least one point x, at which M is essentially
attained in the sense that, for each € > 0, every spherical
neighborhoed of x,contains points in the set Q)= {x|[M— f,

18
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{x)=¢}.In particular.if 4 is strongly convex and x,is atrained,
then a4, is unique. For.if M= f,(xodand M= f(x\) . with r #.1.,
then f,(x}>M {or x =0. 5x, + 0. 5x,, which contradicts M =
Max_ fa(x).

More generally,let C{A) be the set of all points in X ai
which M is essentially attained. This set will be referred 1o as the
core of A. In the case of convex fuzzy sets, we can assert the
following property of C(A).

Theorem. If A is a convex fuzzy set then its core is a conver
set,

Proof :It will suffice to show that if M is essentially attained
at 1y and x,,x,% x,.then it is also essentially artained at all » of
the form r=A4 2,4+ (1— A, 0ZAZ].

To the end.let p be a cylinder of radius & with the line
passing through x, and x; as its axis. Let x,/ be a point in
sphere of radius ¢ centering on x,and x|’ be a point in a sphere of
radius ¢ centering on x; such that fi(z, Y=M—c and fi(x/ )=
M — & Then, by the convexity of 4, for any point « on the
segment z,'x,’, we have f,(u)Z=M — e. Further-more, by the
convexity of P.all poiats on x,/z,” will lie in P.

Now let = be any point in the segment x,.r,. The distance of
this point from the segment z,/x,' must be less than or equal to
g,8ince &y ;' must be less than or equal to ¢.since ' x," lies in
P. Consequently,a sphere of radius £ centering on r will contain
at least one point of the segment x,' r," and hence will contain at
least one point.say w,at which f,4(w)=M —e¢. This establishes
that M is essentially attained at = and thus proves the theorem.

Corollary. If X=E' and A is strongly convex ,ihen the poini

14



at which M is essentially attained is unique.

Shadow of a furzy set. Let A be a fuzzy set in £E* with
membership function f4(x) = f,(xy s **y x,). For notational
stmplicity. the notion of the shadow (projection) of 4 on a
hyperplane H will be defined below for the special case where H
Is a coordinate hyperplane,e.g. .H={x|x,=0}.

Specifically.the shadow of A on H={x|.r,=0}is defined to
be a fuzzy set Sy(Adin E" 'with fsya (xdgiven by

sl =Fs, o (xzrx,) =sup, falay oo,

Note that this definition is consistent with{23).

When A is a convex fuzzy set,the following property of Sy
(A)is an immediate consequence of the above definition:lf Ais a
convex fuzzy set, then its shadow on any hyperplane is also a
convex fuzzy set.

An interesting property of the shadows of two convex fuzzy
sets is expressed by the following implication

Su(A)=54(B) . Jor all H=A=RA8.

To prove this assertion, it is sufficient to show that if there
eXi5ts a pointssay xryssuch that f4(x,)7 fe(x,) . then their exists
a hyperplane H such that fy, (2" 35 f5 2 (20" ) s where " s
the projection of x, on H.

Suppose that fi(xr,)=e> f3(x,) = 3. Since B is a convex
fuzzy set.the set Ty={z|f3(x)>B}is convex,and hence there
exists a hyper-plane F supporting I'; and passing through x,. Let

H be a hyperplane orthogonal 1o F,and let £, be the projection

D This proof is based on an idea suggested by G. Dantzig for the case where A
and B are ordinary convex sets.

20
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of z,on H. Then,since f{x) =3 for all x on F.we have fs .
(xy" )£ 8. On the other hand. f5 .4 (e, } 2 a. Consequently,

Lo txa 37 S5, 04 (" ) rand similarly for the case where a<{f.

A somewhat more general form of the above assertion 15 the
following:1.et A,but not necessarily 5,be a convex fuzzy set,and
let SE(AY=5(B)Mor all H. Then A=conv B,where conv B is
the convex hull of B.that is +the smallest.convex set containing
B. More generally .S5(A) =5, (B){or all H implies conv A=
conv B,

Separation of conver fuzzry sets. The classical separation
theorem for ordinary convex sets states.in essence.thar if 4 and
B are disjoint con — vex sets. then there exists a separating
hyperplane H such that A is on one side of H and B is on the
other side.

It is natural to inquire if this theorem can be extended to
convex fuzzy sets,without requiring that A and B be disjoint,
since the condition of disjointness i1s much too restrictive in the
case of fuzzy sets, It turns out.as will be seen in the sequel.that
the answer to this question is in the affirmative.

As a preliminary.we shall have to make a few definitions.
Specifically .let A and B be two bounded fuzzy sets and let £ be
a hypersurface in E” defined by an equation A (1) = 0, with all
points for which A (x)Z20 being on one side of H and all points
for which #(x)=0 being on the other side. ‘"' L.et K, be 2 number
dependent on H such that f,(#)=2 K, on one side of H and f
{xr)=Ky on the other side. Let M, be Inf K. The number D, =

d7 MNote thar rhe sets in guestion have & v common.
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1— M will be called the degree of separation of A and B by H,

In general,one is concerned not with a given hypersurface
F ,but with a family of hypersurfaces{H,},with A ranging over,
say, £”. The problem, then,is to find a member of this family
which realizes the highest possible degree of separation.

A special case of this problem is one where the H, are
hyperplanes in E",with A ranging over E". In this case,we define
the degree of separability of A and B by the relation

D=1-M (31
where
M=TInfyMy (32)
with the subscript A omitted for simplicity.

§ fa (x} 1g (x}

1, y
M, s °

- — M "-‘.___“__ -x_

hyperplane H {point}

Fig. 5. Illustration of the separation theorem for fuzzy sets in E!

Among the various assertions that can be made concerning
D, the following statement@is, in effect, an extension of the
separation theorem to convex fuzzy sets.

Theorem, Let A and B be bounded convex fuzzy sets in E*,

@ This s1atement is based on a suggestion of E. Berlekamp.
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with maximal grades M, and My respectively [M,=sup falx),
My=sup, fﬂ{I:‘]. Let M be the maximal grade for the intersection
ANBM=sup, Min[fs(x):.f(2)]). Then D=1— M.

Comment. In plain words .the theorem states that the highest
degree of separation of two convex fuzzy sets A and B that can be
achieved with a hyperplane in E"is one minus the maximal grade
in the intersection A 8. This is illustrated in Fig. 5 for n=1.

Proof : 1t is convenient to consider separately the following
two casess (1)M=Min (M, Myand (2)M<Min (M, .M. Note
that the latter case rules out ACH or BC A,

Case 1. For concreteness . assume that M < M,.so that M=
Ma. Then, by the property of bounded sets already stated there
exists a hyperplane H such that fz(2Y=M for all x on one side
of H.On the other side of H, £, (x)=M because f (r)=SM,=M
for all r.

It remains to be shown that there do not exist an M'<<M
and a hyperplane H’ such that f(x)=M on one side of H and
Selx)=AM on the other side.

This follows at once from the following observation,
Suppose that such H' and M exist.and assume for concreteness
that the core of A(that is,the set of points at which M,=M is
essentlally attained)is on the plus side of Z'. This rules out the
possibility that f,(x)= M for all x on the plus side of H',and
hence necessitates that f4{(x)SSM' for all x on the minus side of
H'  and f; (x) = M for all £ on the plus side of H’.
Consequently,over all x on the plus side of '

Sup, Min[ fa€a)s fulz) S M

and likewise for all x on the minus side of H'. This implies that,
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over all x in X sup,Min[ fa(x), fs(x)J=M ,which contradicts
the assumption that sup Min{ Fa(x). fe(x) J=M>M .

Case 2. Consider the convex sets ['y={x|fi(x¥>M}and i
= {r|fa(x)>M}. These sets are nonempty and disjoint, for if
they were not there would be a point,say w,such that f,(u)>M
and fuu)>M.and hence fanp(u)> M, which contradicts the
assumption that M=sup, fias(x).

Since T4 and Ty are disjoint s by the separation theorem for
ordinary convex sets there exists a hyperplane A such that [4is
on one side of H (say,the plus sideYand Ty is on the other side
(the minus side). Furthermore, by the definitions of [y and T,
for all points on the minus side of H. f.(x)}=M,and for all
points on the plus side of H, fu{x)=M.

Thus, we have shown that there exists a hyperplane &
which realizes 1 — M as the degree of separation of 4 and B. The
concluston that a higher degree of separation of A and B cannot
be realized follows from the argument given in Case 1. This
concludes the proof of the theorem.

The separation theorem for convex fuzzy sets appears to be
of particular relevance to the problem of pattern discrimination.
Its application to this class of problems as well as to problems of
optimization will be explored in subsequent notes on fuzzy sets

and their properties,
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Toward a Theory of Fuzzy Systems

Introduction

Many of the advances in network theory and system theory
during the past three decades are traceable to the influence and
contributions of Ernst Guiliemin, Norbert Wiener. Richard
Bellman, Rudolph Kalman,and their students. In sum. we now
possess and impressive armanentarium of techniques for the
analysis and synthesis of linear and nonlinear systems of various
types — techniques that are particularly effective in dealing with
systems characterized by ordinary differential or difference
equations of moderately high order such as those encountered in
network theory,conirol theory.and related fields.

What we still lack ,and lack rather acutely,are methods for
dealing with systems which are too complex or too ill-defined to
admit of precise analysis. Such systems pervade life sciences.
social sciences, philosophy, economics, phychology and many
other “soft "ields. Furthermoredhef are encountered in what are
normally regarded as “nonsoft”fields when the complexity of a
system rules out the possibility of analyzing it by conventional
mathematical means, whether with or without the aid of
computers. Many examples of such systems are found among
large-scale traffic control systems, partern-recognition syvstems.
machine translators.large-scale information-processing systems,
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L.arge-scale power-distribution networks, neura] networks, and
games such as chess and checkers.

Perhaps the major reason for the ineffectiveness of classical
mathematical techniques in dealing with systems of high order of
complexity lies in their failure 1o come to grips with the issue of
fuzziness, that is, with imprecision that stems not from
randomness but from a lack of sharp transition from membership
mn a class to nonmembership in it. It is this type of imprecision
that arises when one speaks, for example, of the class of real
numbers much larger than 10,since the real numbers can not be
divided dichotomously into those that are much larger than 10
and those that are not. The same applies to classes such as“tall
men, "“good strategies for playing chess,”*“pairs of numbers that
are approximately equal to one another,” “systems that are
approximately linear,"”and so forth. Actually,most of the classes
encountered in the real world are of this fuzzy, imprecisely
defined kind. What sets such classes apart from classes that are
well-defined in the conventional mathematical sense is the
fuzziness of their boundaries. In effect,in the case of a class with
a fuzzy boundary .an objett may have a grade of membership in it
that  lies somewhere between full membership and
nonmembership,

A class that admits of the possibility of partial membership
in it is called a fuzzy set. "3In this sense,the class of tall men,for
example,is a fuzzy set,as is the class of real numbers that are
much larger than 10. We make a fuzzy statement or assertion
when some of the words appearing in the statement or assertion
in question are names for fuzzy sets, This is true,for exampie,of
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such statements as“John is tall.”"“x is approximately equal to
5, "“v is much larger than 10. "In these statements,.the scurces
of fuzziness are the italicized words. which, in effect, are labels
for fuzzy sets,

Why is {uzziness so relevant to complexity? Because no
matter what the nature of a system is, when its complexity
exceeds a certain threshold it becomes impractical or
computationally infeasible to make precise assertions about it.
For example,in the case of chess the size of the decision tree is so
targe that it is impossible ,in general,to find a precise algorithmic
solution to the following problem :Given the position of pieces on
the board,determine an optimal next move, Similarly.in the case
of a large-scale traffic-comtrol system, the complexity of the
system precludes the possibility of precise evaluation of its
performance. Thus, any significant assertion about the
performance of such a system must necessarily be fuzzy in
nature. with the degree of {uzziness increasing with the
complexity of the system.

How can fuzziness be made a part of system theory? A
tentative step in this direction was taken in recent papers'®tlin
which the notions of a fuzzy system®and fuzzy algorithm were
introduced. In what follows.we shall proceed somewhat further
in this direction, focusing our attention on the definition of a
fuzzy system and its state. It should be emphasized .however .that

the task of constructing a complete theory of fuzzy systems is one

L} The maximin automata of Wee and Santosi{ " may be regarded as insrances of

fuzzy systems.
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of very considerable magnitude,and that what we shall have to
say about fuzzy systems in the sequel is merely a first step
toward devising a conceptual framework for dealing with such

systems in both qualitative and quantitative ways.
Elementary properties of fuzzy sets

The concept of a fuzzy system is intimately related to that of
a fuzzy set, In order to make our discussion self-contained,it will
be helpful to begin with a brief summary of some of the basic
definitions pertaining to such sets. @

Definition of a Fuzzy Set

Let X = {x} denote a space of points (objects), with =
denoting a generic element of X, Then a fuzzy set A in X is a set
of ordered pairs

A={[x, pa(2)]} € X (1)

where p,(z)} is termed the grade of membership of x in A, Thus,
if ps (x)takes values in a space M—termed the membership
space—then A is essentially a function from X to M. The
function ps: X — M, which defines A,is called the membership
Sfunction of A. When M contains only two points 0 and 1,4 is
nonfuzzy and its membership function reduces to the
conventional characteristic function of a nonfuzzy set.

Intuitively,a fuzzy set A in X is a class without sharply
defined boundaries—that isya class in which a point (object ) x

may have a grade of membership intermediste between full

® More detailed discussions of fuzzy se1s and their properties may be found in
the references listed st the end of this chapter.
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membership and nonmembership. The important point to note is
that such a fuzzy set can be defined preciselv by associating with
each ux its grade of membership tn A. In what follows, we shall
assume for simplicity that M is the interval [0, 1], with the
grades 0 and 1 representing, respectively, nonmembership and
full membership in a fuzzy set. (More generally, M can be a
partially ordered set or.mcre particularly,a lattice. ¥} Thus ,our
basic assumption will be that a fuzzy set 4 in X,though lacking
in sharply defined boundaries .can be precisely characterized by a
membership function that associates with each x in X a number
in the interval[0,1 Jrepresenting the grade of membership of > in
A

Example

Let A= {a|x>1}(that is,A is the fuzzy set of real numbers
that are much larger than 1). Such a set may be defined
subjectively by a membership function such as;

palx) =0 for <1
=[14+{(x—1)"2]"! for x>1 (2)

It ts important to note that in the case of a fuzzy set it is not
meaningful to speak of an object as belonging or not belonging to
that set,except for objects whose grade of membership in the set
is unity or zero. Thus.if A is the fuzzy set of tall men.then the
statement“John is tall”should not be interpreted as meaning that
John belongs 10 A. Rather, such a statement should be
interpreted as an association of John with the fuzzy set A--an
association which will be denoted by John € A to distinguish it

from an assertion of belonging in the usual nonfuzzy sense - that
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is,John € A,which is meaningful only when A is nonfuzzy. ©

Containment

Let A and B be fuzzy sets in X. Then A is contained in B(or
A is a subser of B)written as ACE,if and only if pu(x)<psla)
for all x in X. (In the sequel, toc simplify the notation we shall
omit x when an equality or inequality holds for all values of x in
X.)

Example

If pta=pes’ s then ACB,

Equality

Two ft.;zzy sets are equal,written as A=R,if and only if p,
= Mg,

Complementation

A fuzzy set A’ is the complement of a fuzzy set A if and only
if pa=1 T Ha

Example

The fuzzy sets A= {z|z3®1} and A’ = {zx|x not>»1} are
complements of one another.

Union

The union of A and B is denoted by AlJ Band is defined as
the smallest fuzzy set containing both A and B, The membership
function of AU B is given by g5 =Max[ 4+ 15 ]. Thus,if at a
point x, sy () =0, 9,say,and gy (x)=0.4,then at that point
Maur(x)=0.0,

(I} Here and elsewhere in this chaprer we shall employ the convention of
underscoring a symbol with a wavy bar to represent a fuzzified version of the meaning
of that symbol. For example.r= y will denote a fuzzy equality of r=> v will denote

fuzzy implication.ete,
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As in the case of nonfuzzy sets, the notton of the union s
closely related to that of the connective “or™, Thus,if A is a class
of tall men, & 1s a class of fat men and “John is tall"or*John is
fat."then John is associated with the union of 4 and B. More
generally ;expressed in symbols we have

r €4 or rgﬂﬁj.‘iﬂuaﬁg (3)

Tntersection

The intersection of A and B is denoted by AN B and is
defined as the largest fuzzy setr contained in both A and B. The
membership function of A B is given by gara=Min{ g4+ ] It
is easy to verify that A B=(A"U B')'. The relation between
the connective®and”and [1is expressed by

x€A and x-éﬁﬁxiAﬂB (4)

Algebraic Produce

The algebraic product of A and B is denoted by AR and is
defined by g4n= g 225 Note that the product distributes over the
unton but not vice-versa.

Algebraic Sum

The algebraic sum of A and B is dencted by A @ B and is
defined by pags= pa+ pp— prap. It is trivial to verify that A @ B
=({A"B').

Relation

A fuzzy relation,R.in the product space X XY= {(x,y) ).z
€ X,y€Y ,is a fuzzy set in X XY characterized by a membership
function s that associates with each ordered pair (z.y)a grade of
membership g, (x,¥)in R. More generally .an n-ary fuzzy relation
in a product space X =X'" X X? X ++ X X" is a fuzzy set in X
characterized by an n-variate membership function e {1y, *+.
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)y, € X'ifori=1,+-,m.
Example
Let X=RXR,where R is the real line (—oc,c0), Then 2%
vy is a fuzzy relation in R%. A subjective expression for gg in this
case might be
elayvy)=0 for <<

y
P Bt
pg(.r¢y)=[1+(1—;) ] for x>y
Composition of Relations
If R, and R, are two fuzzy relations in X?, then by the
composition of R, are R, is meant a {uzzy relation in X* which is
denoted by R, ° R, and is defined by
#RI-RZ(on)ISEP Min( R, (x v}, Ry{v,yv)] (5)
where the supremum is taken over all » in X.
Fuzzy Sets Induced by Mappings
Let f:X—Y be a mapping from X to Y ,with the image of x
under f denoted by y=f(r). Let A be a fuzzy set in X. Then the
mapping f induces a fuzzy set B in Y whose membership function
is given by

pely)= Sup pa(x) (6)
.t‘Ef_li_'r)

where f7'(y) denotes the set of points in X which are mapped
by f into y.

Shadow of a Fuzzy Set

Let A be a fuzzy set in X XY ,and let f denote the mapping
that takes (x, y) into z. The fuzzy set in X that is induced by
this mapping is called the shadow ) (projection) of 4 on X and
is denoted by Sy (A). In consequence of (6),the membership
function of §;(A) is given by
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;:SKH.(J*)=Sup falarsy) (7)
' 3

where p,(x,y) 15 the membership function of A.

Conditioned Fuzzy Sets

A fuzzy set B{x) in Y will be said to be conditioned on x if
its membership function depends on x as a parameter. To place
this dependence in evidence, we shall dencte the membership
function of B(x) as pp{y|x), or— when B can be omitted with
no risk of confusion—as pv|x).

Now suppose that the parameter r» ranges over a space X.
Then, the function g (v |x) defines a mapping from X to the
space of fuzzy sets defined on Y. Through this mapping.a fuzzy
set A in X induces a fuzzy set B in Y,which is defined by

,uﬂ(y)mﬁgg min{ ze, (x) . ey | 2)] (8>
where g4 and g denote the membership functions of A and B,
respectively. In effect. (8) is a special case of the composition of
relations (5),

The notion of a conditioned fuzzy set bears some
resemblance to the notion of a conditional probability

distribution. Thus, (8) is the counterpart of the familiar identity
prt)= | puCyladpatada )

where, for simplicity. x and y are assumed to be real-valued.
Pacr denotes the probability density of x. pp(y|x) denotes the
conditional probability density of v given x and ps(y) denotes

the probability density of y. 91t is worthy of note that,in this as

I To simplify the notation. we use the same symhbol 10 denove a random variable
and a generic value of that vatiable.
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well as many other instances involving fuzziness on the one hand
and probability on the other, the corresponding formulas differ
from one another in that to the operations of summation and
integration involving probabilities corresponds the operation of
taking the supremum (or maximum?} of membership functions,
and to the operation of multiplication of probabilities corresponds
the operation of taking the infimum (or minimum ) of
membership functions. To make this correspondence more
evident, it is convenient to use the symbols V and A for the

supremum and infimum, respectively. Then, (%) becomes

pe(3) =V [palad A pp(y12)] (10
Similarly,(7) becomes
e =V pala) (11)
vef o
for which its probabilitistic counterpart reads
pa(= D pala) (12}
ref

where r and y are assumed to range over finite sets and p,(x)
and pg(y) denote probabilities rather than probability densities
as in (9).

This concludes our brief summary of some of the basic
concepts relating to fuzzy sets. In what follows,we shall employ
these concepts in defining a fuzzy system and explore some of the

elementary properties of such systems.
Sysiem,aggregate and state

For simplicity, we shall restrict our attention to time-
invariant discrete-time systems in which ¢, time, ranges over
integres,and the input and output at time ¢ are real-valued.
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In the theory of nonfuzzy discrete-time systems, it is
customary to introduce the notion of state at the very outset by
defining a system A through its state equations:

L1 =JCxtt,)  t==+ee,—1,0,1,+ (13)
y=glx, u)
where g denotes the imput at time t.y, is the owt put at time ¢ and
x,1s the state at time ¢, with the ranges of u,,y,,and x, denoted by
U,Y and X ,respectively. In this way, A is characterized by two
mappings, f : X XU—+X and g : X XU—Y. The space X is called
the state space of A,and a point a in X is called a state of A.

Let # denote an input sequence starting at,say,t=0, Thus,u
= wotty v 2t;» Where 4, € U, t =0, 1+,/,and { is a nonnegative
integer. The set of all sequences whose elements are drawn from
U will be denoted by 7 ".

Now.to each state @ in X and each input seqguence u =z,
#; in U" will correspond an output sequence y= y,y,**y, 1n Y.
The pair of sequences (u,y) is called an input-output pair of
length {+ 1. The totality of input-output pairs («,y) of varying
lengths that correspond to a particular state e in X will be
referred to as an aggregate of input-output pairs,or simply an
aggregates A (a), with a playing the role of a label for this
aggregate. The union

A= J Aa)

RE N
represents the totality of input-output pairs that correspond to

all the states of A. It is this totality of input-output pairs that we
shall equate with A.
The fact that a state is merely a label for an aggregate

suggests that the concept of an aggregate be accorded a central
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place among the basic concepts of system theory. This is done
implicitly in Refs. [8]and [9],and explicitly in [10]. The point of
departure in the theory developed in Ref. [8]is the definition of a
system as a collection of input-output pairs. An aggregate,then,
may be defined as a subset of input-output pairs which satisfy
certain consistency conditions, with a state playing the role of a
name for an aggregate.

In what follows, we shall first generalize to fuzzy systems
the conventional approach in which a system is described through
its state equations. Then we shall indicate a connection between
the notion of a fuzzy algorithm and a fuzzy system. Finally, we
shall present in a summary form some of the basic definitions
relating to the notion of an aggregate and briefly touch upon

their generalization to fuzzy systems,
State equations for fuzzy systems

Let @, 3, and x, denote, respectively, the input,output and
state of a system A at time ¢. Such a system is said to be
deterministic if it is characterized by state equations of the form

i1 =FCxt,) t=—1,0,1,2,+ (14}

ye=glx,u,) (15)

in which f and g are mappings from X X U to X and Y,
respectively.

A is said to be nondeterministic if z,., and/or y, are not
uniquely determined by &, and «, Let Xt (x,,2,)and Y(z,,udor
X' and ¥*,for short.denote the sets of possible values of z,,,
and y,,respectively,given z, and u,. Then (14)and (15) can be
replaced by equations of the form
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XM =F(x, vit,) (16)

Yi=Glx.u) (17)

where F and (G are mappings from X X U into the space of

subsets of X and Y ,respectively. Thus,a nondeterministic system

is characterized by equations of the form (16)and (17).in which
X™"'and Y are subsets of X and Y .respectively,

The next step in the direction of further generalization is to
assume that X*! and Y are fuzzy rather than nonfuzzy sets in X
and Y, respectively. In this case,we shall say that 4 is a fuzry
discrete-time system., Clearly, such a system reduces to a
nondeterministic system when X' and Y are nonfuzzy sets. In
turn,a nondeterministic system reduces to a deterministic system
when X! and Y are single points (singletons)in their respective
spaces,

Let px(xy |2, s0,) and py( y, |z, 5.} denote the membership
functions of X'*! and Y, respectively.given xr, and «,. Then we
can say that A is characterized by the two membership functions
pxl Ty lxou} and ey, |24} ywhich define conditioned fuzzy
sets in X and Y .respectively.involving x, and #, as parameters.

To illustrate ,suppose that X=R? Then A is a fuzzy system
if its characterization contains statements such as ;“I{ an input «,
=5 is applied to A4 in state x,=(3,5.1)at time ¢,then the state of
A at time ¢+ 1 will be in the vicinity of the point (7,3,5). "Here
the set of points in X that lie in the vicinity of a given point « is a
fuzzy set in X. Such a set may be characterized by a membership

function such as
wl{r)=exp —% | x—a (18)
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where xis a point in X, | x—a || denotes a norm of the vector r
—ua,and £ is a positive constant,

By analogy with nonfuzzy systems,a fuzzy system A will be
satd to be memoryless if the fuzzy set Y is independent of x,—that
is,1f its membership function is of the form gyl v [%,). Just as a
nonfuzzy memoryless system is characterized by a graph y, =g
(1¢,), 1, €U 50 a fuzzy memoryless system is characterized by a
fuzzy graph that is a family of fuzzy sets {Y'(u),u, €U},

In the case of a memoryless system, to each point , in IJ
corresponds a fuzzy set Y'(a,) or Y for short,in Y. Thus,we can
write

Y'=G(u,) 1=e,—1,0,1,2,°% (19
where (¢ is a function from R' to the space of fuzzy sets in Y. Now
as a consequence of equation(8),this implies that if U/ is a fuzzy
set in U characterized by a membership function g (z,),then to
U will correspond the fuzzy set Y* defined by the membership

function

sy (y)=V (sl d A py( v |0)) {20)

Yy

where V and A denote the supremum and minimum,
respectively, Thus, (20)establishes a relation between U' and ¥
which can be expressed as

Y=G,(U) 1=+,—1,0,1,2, (21)
where G, is a2 function from the space of fuzzy sets in [V to the
space of fuzzy sets in Y.

The important point to be noted here is that equation(19),
which expresses Y* as a function of «,.induces equation (21),
which expresses Y' as a function of U", As should be expected,
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{21 reduces to (19)when U is taken to be the singleton {4« 1.

Intuitively. equations (19) and (21) may be interpreted as
follows. If A is a fuzzy mcmoryless system, then to every
nonfuzzy input x, at time 7 corresponds a umgue fuzzy output,
which 1s represented by a conditioned fuzzy set Y in Y. The
membership function of this fuzzy set is given by gy v, |, ).

If the input to A is fuzzy -—that is,if it is a fuzzy set L' in
U—-then the corresponding fuzzy output Y’ is given uniquely by
(21). The membership function for Y is expressed by (20),

As a very simple example,suppose that ' and Y are finite
sets:U'=1{1,2,3} and Y= {1,2,3}. Furthermore ,suppose that if
the input g is 1,then the output is a fuzzy set described verbally
as “y, is approximately equal to 1. "Similarly ,if «,=2 then y, is
approximately equal to 2,and if u,=3 then y, is approximately
equal to 3. More concretely.we assume that g ( ¥ |u,}is defined
by the table.

(111} =1 (2]1)=0.3 s(3]1)=0.1
(112 =0.2 ml2]2)=1 tyl 3]12) =0.2
pr(1]3)=0.1 (213} =0.2 g(3]3) =1

Now assume that the input is a fuzzy set described verbally
as® g is close to 1,”and characterized by the membership function

pel1d=1 4,(2Y=0.2 14(3)=0.1
Then, by using (20, the response to this fuzzy input is found to
be a fuzzy set defined by the membership function

D=1 2 (2)=0.2 2;(3)=0.2

It is convenient to regard(21)as a mapping from names of
fuzzy sets in U to names of fuzzy sets in Y. In many cases of

practical interest such a mapping can be adequately characterized
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by a finite, and perhaps even fairly small. number of points

[ordered pairs(I/,Y)] on the graph of G,. For example .G, might

be characterized approximately by a table such as shown below.

(For simplicity we suppress the subscript ¢ in zand y,)

v | v
i i
11 ] 1.3
L2} 1.6
13 [ 2
1.4 | 2.5
1.5 | 2.9
1.6 | 205
1?? 2?1
1.8 | 1.8
1.9 | 1.6
2 |15
2:1 1.5
3 LS

where r,x€ R,is the name for the fuzzy set of real numbers that

are approximately equal to z. Such a set may be characterized

quantitatively by a membership function. In many practical

situations a very approximate description of this membership

function would be sufficient. In this way.equation{21)can serve

the purpose of an approximate characterization of a fuzzy

memoryless system.,

Turning to nonmemoryless fuzzy systems,consider a system
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A which is characterized by state equations of the form
XN =Fiz, u) (22
Y'=0Cr iy (23)
where F' is a function from the product space X XU to the space
of fuzzy sets in X.G is a function from X XU to the space of
fuzzy sets in Y. X" denotes a fuzzy set in X that is conditioned
on &, and wu, and Y denotes a fuzzy set in Y that, like X', is
conditioned on x, and u,. X' and Y’ represent, respectively. the
fuzzy state and output of A at time ¢ and are defined by the
membership functions gyl 1,0 lxsi ) and g { 3. |1, ) .
Equations (22)and (23)relate the fuzzy state at time ¢+ 1
and the fuzzy output at time ¢ to the nonfuzzy state and nonfuzzy
input at time #. As in the case of a memoryless system.we can
deduce from these equations —by repeated application of (8) -
the state equations for A for the case where the state at time ¢ or
the input at time ¢,or both,are fuzzy.
Specifically,let us assume that the state at time ¢ is a fuzzy
set characterized by a membership {unction gy (x,). Then. by

applying (8) ,we deduce from (22%and (23)

#xclzen Y=V Cpx ) A px L)) (24)
,cfy(y,}=\;;(prx,}f\pr(y,H,;u,)) (25}

which in symbolic form r;:ay be expressed as
X' =F. (X" u,) (267
Y'=0G (X u) (27)

In what follows, to simplify the appearance of equations
such as (24)and (25)we shall omit the subseripts X and ¥ in

membership functions.
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By n»-fold iteration of (26) and (27), we can obtain
expressions for X'***land Y*",for n=1,2, 3, *»*,in terms of

Xtand w,s*** st4,4n. For example .for n=1,we have

X2 =F (Fol X yu,) vtiesy) (28
YV =G (Fo (X vut,) rttegr) (29>
or ,more compactly,
XV o= F (X sty sty ) (30)
YN =G (X sttrrttegr) (31)

To express (30) and (31) in terms of membership

functions,we note that on replacing £ with #+1 in (24)and (25),

we obtain
i) =V Qela ) A plzpps !Ir+l stter)) (32)
Te+ i
My =V el A Lo su00)) (33)
Tt

Then,on substituting #(x,4+,) from (24)into (32)and (33),
we get

,“(Ij-i-z)h__ v ( V (#(I;) A f—ﬁf(-rtq-[ |I; QR;)) -h. #(\I,H.-Z |I_r+] va.-+| ))

By &
{34)

and

F‘(J't+1)= V(v (plx,) AF(I:H |-1'HH;)) A HCy i-l‘:+| ytey ) )

ol PR
(35)
which by virtue of the distributivity of V and A may be

expressed as

ﬂ(-rf+z)= VV (F(Ir) A F G ERTHN 2Ty I-Tr+l9“.-+1)>

Te1 7t

(36)

46




v, )=V V{gla ) A plxy, |-Tr-ﬂ’r) A .ﬂ'(,}ﬁﬂ |-1':+| “lpy))

Tty T
(37}
and likewise for larger values of ». It should be noted that these
relations are fuzzy counterparts of the corresponding expressions
for stochastic systems,!")with Aand V replacing product and
sum, respectively, and membership {unctions replacing
probability [unctions [see (]19) and the equations following it ].

In the above analysts, we have assumed that the successive
INpUts . ***y #,4, are nonfuzzy. On this basis, we can obtain
expressions for X', , X'*"*and Y, ++.Y""" in terms of X' and
Hys ***s W, It 18 natural to raise the question of what the
corresponding expressions for X1, -+, X"+ and Y*, e+ ,Y'*" are
when the successive inputs are fuzzy.

First, let us focus our attention on the state equations {16)
and (17),in which F and G are functions from X XU’ 1o fuzzy
sets 1n X and Y, respectively. Suppose that both the input at time
t and the state at time ¢ are fuzzy. What would be the expressions
for the membership functions of X**' and Y in this simple case?

Let ulx,,u,)denote the membership funcrion of the fuzzy set
whose elements are ordered pairs (z,,%,). PThen, using equation

(8)we can express the membership functions of X't and Y as

follows ;
Al )=V V (ulxvu) A plrg o)) (38)
v) =V V (ulr e, Y A ey, b, i) (39)

1} The probabilistic counterpart of this membership function is the joint
grobability of « and «.
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These formulas assume a simpler form when (., 4,) can be

expressed as

plrga,Yy=p(r ) A pe(u,) (40)
where #(x,) and g («,) denote, respectively, the membership
functions of the fuzzy state and the fuzzy input at time i. In this
case,we shall say that the fuzzy sets X'and U’ are noninteracting.
Essentially .the notion of noninteraction of fuzzy sets corresponds
to the notion of independence of random variables.

The assumption that X' and U" are noninteracting fuzzy sets
is a reasonable one to make in many sases of practical interest,
Under this assumption.(38)and (39)reduce to

plr )= ‘:f ':-:"' (e YA peCu) A (o | 2ru,)) (41)

pCy =V V (ala I N pelue) A ey | 524,) ) (42)

¥

It should be noted that the same expressions can be obtained
by applying (8)to (26)and (27),with the input at time 7 assumed
to be a fuzzy set characterized by u(u,).

In symbolic form, (4]1)and ¢42)can be expressed as

Xt =F(X',U (43

Y =G (X U (44)

where Fy and Gy, are, respectively, functions from the praduct
space of fuzzy sets in X and U to the space of fuzzy sets in X and
fuzzy sets in Y, Thus.equation (43)expresses the fuzzy state at
time £+ 1 as a function of the fuzzy state at time ¢ and the fuzzy
input at time ¢ Similarly, equation (44) expresses the fuzzy
output at time ¢ as a function of the fuzzy state at time ¢ and the
fuzzy input at time £. Note that (43) is induced via (8) by (22),
which expresses the fuzzy state at time ¢+ 1 as a function of the
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nonfuzzy state at time ! and the nonfuzzy input at time ¢. The
same i true of (44)and (23).

When X ,I7 and Y are finite sets,the above equations can be
written more compactly by expressing the membership functions
in matrix or vector form. Specifically, suppose that X, for
example,is a finite set X={x',«,2"}. For each input «,.let M
(u,)denate a matrix whose (7, 7)th element i1s given by

M (a)=p(x' {2 u,)
Also.let x,.,and z, be column vectors whose ith elements are 7
(x,4,) and #€(x, ), respectively. evaluated at x, and z, equal to
x'yi=1,",m., Then,(24)and (25)may be written in matrix form
as

Xy =M{u)x,

where the right-hand member should be interpreted as the matrix
product of M{«,) and x,,with + replaced by ¥ and product by
AL Similarly, (36)and (37 )become

Lorr =My IM (),

_;r+l =My, )M, )z,
where My (u,41)is defined in the same way as M (u,), with y.,,
replacing .. in the definition of the latter,and likewise for y,,,.
More generally.for n=1,2,-** ,we can write

Zoanir =M et ) o M) T,
Vern =My Gty IM Gty Yoo- M) 7,

When both x, and «, are fuzzy,we can no longer employ the
matrix notation to simplify expressions such as (24)and (25),
However,some notational simplification, particularly in the case
of expressions like (36)and (37).may be achieved by the use of

the tensor notation or the notation commonly employed in
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dealing with bilinear forms.

A simple numerical example will serve to tlustrate the use
of the formulas derived above. Specifically ,let us consider a fuzzy
system with binary input and ocutput I/ =Y = {0,1}.and f{inite
state space X = {a,8,7}. Suppose that the membership functions
gl |z, 00 and gy, |, ,u,)for this system are characterized by

the following tables

=1 w,=1

F(Il‘-ht 11‘: 'IUr) H

£ 10.790.2| 1 (0.2 1 |0.6

‘rr '}'3 013 Ul-4 0!9 D*? ].

=10 i, =1

F(,}’rlﬂf;ru;)=
ﬂ' {]118 053 {LE Gt3

LE0.T|0. 30,2

Further, assume that X* and U are characterized by the
membership functions

play=1 u(fr=0.8 pu)=0.4 p(D=1 p(1)=0.3

Then, using (41 ) and (42 ) and employing matrix
multiplication ( with the operation V and A replacing sum and

product},we can readily compute the values of the membership
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functions of X'*'and Y’at the points a.2.7,0,and 1.respectively.
These values are
pla)=1 p(By=0.8 p¥)=0.8 p(03=0.8 p(1)=0.4
It should be noted that,as in the case of a memoryless fuzzy
system, (43)and (44 ) can be used to provide an approximate
characterization of a nonmemoryless fuzzy system. To illustrate,
let us employ the convention introduced earlier,namely ,using the

symbol x to denote the name of a fuzzy set of real numbers that

are approximately equal to x. Then,viewed as refations between
names of fuzzy sers, (43),and (44) may take the appearance of

tables such as shown below,

G
i -

Xr+l= 0 2

-~ - -— -

—
[
G
oY

—
b
Iy

xl
1 z 3 4
Ly A I I e
Y:+l= _ 9 1 1 0

where for simplicity we restricted x and « to integral values.
More generally, the entries in these tables would be names for
fuzzy sets in X ,U ,and Y,and only a finite number of such names
would be used as representative samples(paradigms )of the fuzzy
al




sets in their respective spaces.

So far,we have restricted our attention to the case where a
single fuzzy input " is applied to A in state X'. For this case.we
found expressions for X**'and Y*in terms of X! and U*. The same
approach can readily be extended, however,to the case in which
the input is a sequence of noninteracting fuzzy inputs U/{7*...
U for n=1. The assumption of noninteraction implies that

plus o s d=p(u) ApC 3 N e A pagy ) (45)

To illustrate,let n=1. Then by applying(8)to(36)and(37),

we obtain
#2(x )=V VNV V (ulx) A gl L2, 5u)

Tery 2o M %y

ﬂ,u(.r,...gix,ﬂau;H) A#(#})AF(#:,{.-])) (46>
#(J"H-l): vV V V V (ﬂ(I{) AF(IH.] |I¢rt¢.)

et % R
ApCy | oy stten)) A peCeed A pCee ) (47)
As in the case of (36)and (37),for higher values of » such
relations can be expressed more compactly through the use of
vector and tensor notation. For our purposes,the simple case n=
I considered above suffices 1o illustrate the main features of the
method which can be used to compute the fuzzy state and fuzzy
output of a system at the end of a finite sequence of

noninteracting fuzzy inputs.
Fuzzy systems and fuzzy algorithms

As was shown in a recent note,®the notion of a fuzzy
system bears a close relation to that of a fuzzy algorithm.
Roughly speaking, a fuzzy algorithm is an algorithm in
which some of the instructions are fuzzy in nature. Examples of
52
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such instructions are:{a)Increase x slightiy f yis slightly larger
than 10; (b)Decrease u until it becomes much smaller than v; (c)
Reduce speed if the road is slippery. The sources of fuzziness in
these instructions are the underlined words.

More generally, we may view a fuzzy algorithm as a fuzzy
system A characterized by equations of the form.

XH=FX, U (48

Ur=H(X') | (49)

where X' is a fuzzy state of 4 at time ¢, U’ is a fuzzy input

(representing a {fuzzy instruction)at time ¢,and X*!is the fuzzy

state at time ¢ + 1 resulting from the execution of the fuzzy

instruction represented by U"”. As seen from (48)and (49), the

function F defines the dependence of the fuzzy state at time t+1

on the fuzzy state at time ¢ and the fuzzy input at time ¢, whereas

the function H describes the dependence of the fuzzy input at
time ¢ on the fuzzy state at time ¢.

To illustrate (48)and (49), we shall consider a very simple
example. Suppose that X is a fuzzy subset of a finite set X ={a,,
oy a3.a, tand Ut is a fuzzy subset of a finite set U={8,,3,}. Since
the membership functions of X* and U are mappings from,
respectively , X and U to the unit interval,these functions can be
represented as points in unit hypercubes in R and R?,which we
shall denote for convenience by C* and C% Thus. £ may be
defined by a mapping from C* X C? to C' and H by a mapping
from C* to C?, For example,if the membership function of X' is
represented by the vector(0.5,0.8,1,0. 6)and that of U7 by the
vector (1.0. 2),then the membership function of X**! would be
defined by F as a vector—say(0.2,1,0.8,0. 4),—whereas that
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of {J* would be defined by H as a vector(0. 3,1),say,

It is clear that even in the very simple case where X and U
are small finite sets,it is impracticable to attempt to characterize
F with any degree of precision as a mapping from a product of
unit hypercubes to a unit hypercube. Thus, in general,it would
be necessary to resort to an approximate definition of F and H
through the process of exemplification,as was done in the case of
the relation berween Y* and {* in the previous section 9.see(21)
and subsequent equations. This amounts to selecting a finite
number of sample fuzzy sets in X and U,and tabulating finite
approximations to ¥ and H as mappings from and to the names
of these fuzzy sefs. In this light,an instruction such as “Reduce
speed if the road is slippery”may be viewed as an ordered pair in
H involving the names of fuzzy sets;“Reduce speed”and “Road is
slippery. ”

Consider now the following situation. One is given an
instruction of the form:*If x is much larger that 1 make y equal
to 2. Otherwise make y equal to 1.” Furthermore, the
membership {unction of the class of numbers that are much
larger than 1 is specified to be

pelr)=0 Jor <71
=[1+ =~ 1372]7"  for x=1 (50)
where E denotes the class in question and g is its membership
function.

Now suppose that x =3, How should the above instruction
be executed? Note that p:(3)=0.8.

The answer to this question is that the given instruction
does not cover this contingency or,for that matter,any situation
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in which x is a number such that g (1) >> 0. Specifically, the
instruction in question tells us only that if the input is a fuzzy set
characterized by the membership function(50) .then y=2;and ii
the mnput is characterized by the membership function 1 —peeC2),
then y=1. Now when z is specified to be equal to 3.the input
may be regarded as a fuzzy set whose membership function is
equal to 1 for x=3 and vanishes elsewhere. This fuzzy set is not
in the domain of the instruction—if we view the instruction as a
function defined on a collection of fuzzy sets.

In some cases, it may be permissible to extend the domain of
definition of a fuzzy instruction by an appropriate interpretation
of its intent. For example,in the case considered above it mav be
reasonable to assume that y =2 not just for the fuzzy set of
numbers that are much larger than 1, but also for all fuzzy
subsets of this set whose maximal grade of membership exceeds
or is equal to a preseribed threshold;or.it may be reasonable to
assume that y=2 for all x whose grade of membership in £ is
greater than or equal to a threshold a. Alternatively, the domain
of the instruction can be extended by employing randomized
execution—that 1s,by choosing y==2 and y=1 for a given x with
probabilities we (xdand 1-ug(x), respectively, These and other
ways of extending the domain of fuzzy instructions make the
specification of F and H a problem that, though nontrivial, is
well within the range of computational feasibility in many cases
of practical interest.

Actually,crude forms of fuzzy algorithms are employed quite
extensively in everyday practice. A food recipe is an example of

an algorithm of this type. 50 is the set of instructions for parking
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a car or repairing a TV set. The effectiveness of such algorithms
depends in large measure on the existence of a fuzzy feedback
which makes it possible to observe the output and apply a
corrective input. Indeed, this is implicit in equation (50),except
that in practice the H function is itself quite ill-defined.

The foregoing discussion of the notion of a fuzzy algorithm
was intended primarily to point to a close connection between
this notion and that of a fuzzy system. It may well turn out,
however,that many of the complex problems (such as machine
translation of languages)than so far have eluded all attempts to
solve them by conventional techniques cannot be properly
formulated , much less solved, without the use, in one form or
another,ol a broader conceptual framework in which the notion

of a fuzzy algorithm plays a basic role.
The concept of aggregate

As was pointed out in a previous section, the state of a
system may be viewed as a name for an aggregate of input-output
pairs. In what follows,we shall summarize some of the principal
notions relating to the concept of an aggfegate. but will leave
open the question of how these notions can be extended to fuzzy
systems.

As in that section,let » and y denote a pair of sequences u=
worr* 1, and y=yoy,-+y, of length t+1,where,for simplicity ,z is
assumed to range over nonnegative integers. If & =ugu,*u, and v
=v,4""* v, .then the concatenation of » and v is denoted by wv and
is defined by wv=u,v,* - u,v. v,

Definttion of a System
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A system{discrete-time system) A is delined as a collection of
ordered pairs of time functions (#. y)satisfying the condition of
closure under segmentation ,or CUS for short. Thus

A={{u,y)} u€U",yEY",
where « and y are, respectively,the input and output of A,and
(u, y)is an input-ourpur pair belonging to A. The expression for
the CUS condition is;

If u=vv' and y=ww'(that is,# is a concatenation of time
functions v and v';and y is a concatenation of w and w’)and («,
¥)€ Athen (v, )€ A and (¢ ,w' )€ A. In effect.this condition
requires that every segment of an input-output pair of 4 be an
input-output pair of A.

Comment

When we define a system as a collection of input-output
pairs, we are in effect identifying a physical system or a
mathematical model of it with the totality of observations that
can be made of its input and output time functions. Furthermore,
we tacitly assume that we have as many copies of the system as
there are different initial states,and that each « is applied to all
these copies,so that to each  correspond as many y¥'s as there
are copies of the system,

To characterize A as a collection of input-output pairs it is
usually more expedient to employ an algorithm for generating
input-output pairs belonging to A than to list them, From this
point of view,a differential or difference equation relating the
output of a system to its input may be viewed as a compact way
of specifying the collection of input-output pairs that defines A.
An algorithm or an equation that serves this purpose is called an
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input-out put relation.

Definition of an Aggregate

Let A (ty)denote a subset of A comprising those input-
output pairs that start at time £,. Now suppose we group together
those input-output pairs in A (¢, ) that have some property in
common,and call such groups bundles of input-output pairs. As
we shall see presently,the aggregates of A are bundles of input-
output pairs with certain special propertties ,defined in such a way
as t0 make a state of A merely a name or a label for an aggregate
of A.

It is convenient to state the properties in question as a set of
four conditions defining aggregates of A. These conditions are as
follows ;

1. Covering condition. Let a generic bundle of input-output
pairs in 4 (2,) be denoted by A, (%), with a, serving as an
identifying tag for a bundie. A coilection of such bundles will be
denoted by {A, (¢)}.a,€ 2,0 » where 2,0 is the range of values
that can be assumed by a, at £,: Anticipating that «, will play the
role of a state of A, Z, will be referred to as the state space of A
at time ¢,. Note that ¢,is a variable ranging over the integers 0,1,
2400,

The covering condition requires that the collection

{A; (t.)},a,€ Z, ,be a covering for A(z,) 1that is,
UA., (o) =A)  for all £,in{0,1,} (50

In effect.this condition requires that every input-output pair in A
(¢} be included in some bundle in the collection {A. (te}} e

€s,.
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2. Uniqueness condition, The uniqueness condition is
expressed by

(u>y)€ A, () and (u, Yy I €A, (1= y=y". (52)

In other words,to each input u in the domain of the relation

A,D(rg)correr,ponds a unigue output y. (Note that the sequences u

and y are assumed to be of the same length.)

3. Prefix condition. Consider an input-output pair (au', /')
in A, (¢, ,which is a concatenation of the input-output pairs (a,
v)and (' .,y ), The expression for the condition is

(ue’ sy YEA, ()= (uy) €A, (80) (53
Thus,this condition requires that any prefix [that is, (&, y) Jof an
input-output pair in A, (%) also be an input-output pair in
Aq, (85D

4, Continuation condition. As in the preceding condition, let
(uu’,yy' Ybe an input-output pair in A, (#,) ,with G,y )starting
at .say . The continuation condition may he expressed as

{(u’,y')|(uu',y_j,;’)EAaﬁ(tg)}——*.‘l,l{r;) (54)
where A, (z,)denotes a bundle of input-output pairs starting at
t,» with the understanding that A, (t,} 15 a member of the
collection of bundles {A, (¢}, 0 € 2, ,#,=0,1,2,,and that
o, ranges over 2,1 ]

Informally , the continuation condition merely asserts that a
state &, at time ¢, is transferred by input « into a state &, at time
4.

In terms of the four conditions stated above, the aggregates
and states of a system can be defined as follows;

Definition

25
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The aggregates of A are bundles of input-output pairs of A
satisfying the covering, uniqueness, prefix, and continuation
conditions. The states of A are names (or tags)of the aggregates
of A. The set of names of the aggregates of input-output pairs
starting at 1, is the siate space of A at time #,, Usually,the state
space X, is assumed to be independent of 2,

With the above definitions as a point of departure,one can
deduce all of the properties of the states and state equations of a
system that,in the classical approach,are assumed at the cutset.
The way in which this can be done is described in Ref. [8]and.
more explicitly though in lesser detail .in Ref. [2].

In a previous section, we showed how the conventional
approach in which the point of departure is the definition of a
systemm through its state equations (14) and (15), can be
generalized to fuzzy systems. This naturally gives rise to the
question: How can the approach sketched above in which the
starting point is (a} the definition of a system as a collection of
input-output pairs, (b) the definition of an aggregate as a bundie
of input-output pairs satisfying certain conditions,and (c) the
definition of a state as a name for an aggregate, be similarly
generalized to fuzzy systems?

If we could find an answer to this basic question,we might,
perhaps, be able to develop effective techniques for the
approximate analysis of complex systems for which state
equations cannot be postulated at the outset, We state this
question as an open problem because its solution can be perceived
only dimly at this rudimentary stage of the development of the
theory of fuzzy systems,
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Outline of a New Approach to the Analysis of
Complex Systems and Decision Process

1. Introduction

The Advent of the computer age has stimulated a rapid
expansion in the use of quantitative techniques for the analysis of
economic, urban. social, biological, and other types of systems
in which it is the animate rather than inanimate behavior of
system constituents that plays a dominant role., At present,
most of the techniques emploved for the analysis of kumanistic,
i. €. » human-centered, systems are adaptations of the methods
that have been developed over a long period of time for dealing
with mechanistic systems, i.e. , physical systems governed in the
main by the laws of mechanics, electromagnetism, and
thermodynamics, The remarkable successes of these methods in
unraveling the secrets of nature and enabling us to build better
and better machines have inspired a widely held belief that the
same or similar techniques can be applied with comparable
effectiveness to the analysis of humanistic systems. As a case in
point, the successes of modern control theory in the design of
highly accurate space navigation systems have stimulated its use
in the theoretical analyses of economic and biological systems.
Similarly, the effectiveness of computer simulation techniques in
the macroscopic analyses of physical systems has brought into
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vogue the use of computer-based econometric models for
purposes of forecasting, economic planning, and management.
Given the deeply entrenched tradition of scientific thinking
which equates the understanding of a phenomenon with the
ability to analyze it in quantitative terms, one is certain to strike
a dissonant note by questioning the growing tendency to analyze
the behavior of humanistic systems as if they were mechanistic
systems governed by difference, differential, or integral
equations. Such a note is struck in the present paper.
Essentially, our contention is that the conventional
quantitative techniques of system analysis are intrinsically
unsuited for dealing with humanistic systems or. for that
matter, any system whose complexity is comparable to that of
humanistic systems. The basis for this contention rests on what
might be called the principle of incompatibility. Stated
informally, the essence of this principle is that as the complexity
ol a system increases, our ability to make precise and yet
significant statements about its behavior diminishes until a
threshold is reached beyond which precision and significance (or
relevance) become almost mutually exclusive characieristics. T [t
is in this sense that precise quantitative analyses of the behavior
of humanistic systems are not likely to have much relevance to
the real-world societal, political, economic, and other types of
problems which involve humans either as individuals or in

groups.

@' A corollary principle may be stated succinctly as, “The closer one locks at a
real-wotld problem. the fuzzier becomes its solwiion. ”
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An alternative approach outlined in this paper is based on
the premise that the key elements in human thinking are not
numbers, but labels of fuzzy sets, that is, classes of objects in
which the transition {rom membership to non-membership is
gradual rather than abrupt. Indeed., the pervasiveness of
fuzziness in human thought processes suggests that much of the
logic behind human reasoning is not the traditional two-valued or
even multivalued logic, but a logic with fuzzy truths, fuzzy
connectives, and fuzzy rules of inference. In our view, it is this
fuzzy, and as yet not well-understood. logic that plays a basic
role in what may well be one of the moest important facets of
human thinking , namely, the ability to summarize information —
to extract from the collections of masses of data impinging upon
the human brain those and only those subcollections which are
relevant to the performance of the task at hand.

By its nature, a summary is an approximation to what it
summarizes. For many purposes. a very approximate
characterization of a collection of data is sufficient because most
of the basic tasks performed by humans do not require a high
degree of precision in their execution. The human brain tskes
advantage of this tolerance for imprecision by encoding the
“task-relevanmt” (or “decision-relevant™) information into labels
of fuzzy sets which bear an approximate relation to the primary
data. In this way, the stream of information reaching the brain
via the visual, auditory, tactile, and other senses is eventually
reduced to the trickle that is needed to perform a specified task
with 2 minimal degree of precision. Thus, the ability to
manipulate fuzzy sets and the consequent summarizing capability
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constitute one of the most important assets of the human mind as
well as a fundamental characteristic that distinguishes human
intelligence from the type of machine intelligence that is
embodied in present-day digital computers.

Viewed in this perspective, the traditional techniques of
system analysis are not well suited for dealing with humanistic
systems because they fail to come to grips with the reality of the
fuzziness of human thinking and behavior. Thus, to deal with
such systems realistically, we need approaches which do not
make a fetish of precision, rigor, and mathematical formalism,
and which employ instead a methodological framework which is
tolerant of imprecision and partial truths. The approach
described in the sequel is a step—but not necessarily a definitive
step—1n this direction.

The approach in guestion has three main distinguishing
features: 1) use of so-called “linguistic” variables in place of or
in addition to numerical variables; 2) characterization of simple
relations between variables by conditional fuzzy statements; and
3) characterization of complex relations by fuzzy algorithms,
Before proceeding to a detailed discussion of our approach., it will
be helpful to sketch the principal ideas behind these features. We
begin with a brief explanation of the notion of a hnguistic
variable.

D) Linguistic and Fuzzy Variables: As already pointed out,
the ability to summarize information plays an essential role in the
characterization of complex phenomena. In the case of humans,
the ability to summarize information finds its most pronounced

manifestation in the use of natural languages. Thus, each word
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x in a natural language L may be viewed as a summarized
description of a fuzzy subset M (z) of a universe of discourse U/,
with M (x) representing the meaning of x. In this sense, the
language as a whole may be regarded as a system for assigning
atomic and composite labels (i. e., words, phrases, and
sentences ) to the fuzzy subsets of U. (This point of view is
discussed in greater detail in [4]and[5].) For example, if the
meaning of the noun flower is a fuzzy subset M (flower) , and the
meaning of the adjective red is a fuzzy subset M(red). then the
meaning of the noun phrase red flower is given by the
intersection of M(red) and M flower).

H we regard the color of an object as a variable, then its
values, red, blue, yellow, green, etc., may be interpreted as
labels of fuzzy subsets of a universe of objects. In this sense, the
attribute color is a fuzzy wariable, that is, a variable whose
values are labels of fuzzy sets. It is important to note that the
characterization of a value of the variable color by a natural label
such as red is much less precise than the numerical value of the
wavelength of a particular color.

In the preceding example, the values of the veriable color are
atomic terms like red, blue, yellow, eic. More generally, the
values may be sentences in a specified language, in which case
we say that the variable is nguistic. To illustrate, the values of
the fuzzy variable height might be expressible as tall, ot tail,
somewhat tall y very tall , not very tall, very very tall, tall but not
very tall, quite tall, more or less tall, Thus, the values in
question are sentences formed from the label tall, the ‘negation
nots the counsctives and and bur, and the hedges verys
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somewhat, quite, and more or less. In this sense, the variable
height as defined above is a linguistic variable.

As will be seen in Section T , the main function of linguistic
variables is to provide a systematic means for an approximate
characterization of complex or ill-defined phenomena. In
essence, by moving away {rom the use of quantified variables and
toward the use of the type of linguistic descriptions employed by
humans, we acquire a capability to deal with systems which are
much too complex to be susceptible to analysis in conventional
mathematical terms.

2) Characterization of Simple Relations Between Fuzzy
Variables by Conditional Statements; In quantitative approaches
to system analysis, a dependence between two numerically
valued variables x and y is usually characterized by a table
which, in words, may be expressed as a set of conditional
statements, e.g. , If zis 5 Then yis 10, If x is 6 Then y is 14,
etc,

The same technique is employed in our approach, except
that = and y are allowed to be fuzzy variables. In particular, if x
and y are linguistic variables, the conditional statements
describing the dependence of y on x might read (the following
italicized words represent the values of fuzzy variables);

If x is small Then y is very large

If x 18 not very smail Then y is very very large

If = is not small and not large Then y is not very large
and so forth.

Fuzzy conditional statements of the form ¥ A Then B,

where A and B are terms with a fuzzy meaning , €. g. » “If John is
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" are used routinely

ntce 1o you Then you should be &ind to him,
in everyday discourse. However, the meaning of such statements
when used in communication between humans is poorly defined.
As will be shown is Section V » the conditional statemen: If A
Then B can be given a precise meaning even when A and B are
fuzzy rather than nonfuzzy sets, provided the meanings of A and
B are defined precisely as specified subsets of the universe of
discourse,

In the preceding example, the relation between two fuzzy
variables x and y is simple in the sense that it can be
characterized as a set of conditional statements of the form If A
Then B, where A and B are labels of fuzzy sets representing the
values of x and y, respectively. In the case of more complex
relations, the characterization of the dependence of y on x may
require the use of a fuzzy algorithm. As indicated below, and
discussed in greater detail in Section VI, the notion of a fuzzy
algorithm plays a basic role in providing a means of approximate
characterization of fuzzy concepts and their interrelations.

3) Fuzzy-Algorithmic Characterization of Functions and
Relations: The definition of a fuzzy function through the use of
fuzzy conditional statements is analogous to the definition of a
nonfuzzy function f by a table of pairs (z, f{x)), in which r is a
generic value of the argument of f and f(x) is the value of the
function. Just as a nonfuzzy {function can be defined
algorithmically e. g. , by a program) rather than by a table, so a
fuzzy function can be defined by a fuzzy algorithm rather than as
a collection of fuzzy conditional statements. The same applies to
the definition of sets. relations, and other constructs which are
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fuzzy in nature.

Essentially. a fuzzy algorithm [6] is an ordered sequence of
instructions (like a computer program) in which some of the
instructions may contain labels of fuzzy sets, e.g. ;

Reduce z slightiv il y is large

Increase x very slightly if y is not very large and not very
small

If x is small then stop; otherwise increase r by 2.

By allowing an algorithm to contain instructions of this type, it
becomes possible to give an approximate fuzzy-algorithmic
characterization of a wide variety of complex phenomena. The
important feature of such characterizations is that, though
imprecise in nature, they may be perfectly adequate for the
purposes of a specified task. In this way, fuzzy algorithms can
provide an effective means of approximate description of
objective  functions,  constraints, system performance,
strategies, etc.

In what follows, we shall elaborate on some of the basic
aspects of linguistic variables, fuzzy conditional statements, and
fuzzy algorithms. However, we shall not attempt to present a
definitive exposition of our approach and its applications. Thus,
the present paper should be viewed primarily as an introductory
outline of a method which departs from the tradition of precision
and rigor in scientific analysis — a method whose approximate
nature mirrors the fuzziness of human behavior and thereby
offers a promise of providing a more realistic basis for the
analysis of humanistic systems.

As will be seen in the following sections, the theoretical
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foundation of our approach is actually quite precise and rather
mathematical in spirit. Thus, the source of imprecision in the
approach is not the underlying theory, but the manner in which
linguistic variables and fuzzy algorithms are applied to the
formulation and solution of real-world problems. In effect, the
level of precision in a particular application can be adjusted to [it
the needs of the task and the accuracy of the available data. This

flexibility constitutes one of the important features of the method
that will be described.

2. Fozzy Sets: A summary of relevant properties

In order to make our exposition self-contained., we shall
summarize in this section those properties of fuzzy sets which
will be needed in later sections. (More detailed discussions of
topics in the theory of fuzzy sets which are relevant to the subject
of the present paper may be found in [1]~[17].?

Notation and Terminology

A fuzzy subset A4 of a universe of discourse U/ is
characterized by a membership function z, : U—[0,1]which
assoclates with each element y of U a number g, (¥) in the
interval[0,1] which represents the grade of membership of y in
A. The support ol A i1s the set of points in U at which z,(y) is
positive. A crossover point in A is an element of UV whose grade
of membership in A is 0.5 A fuzzy singleton is a fuzzy set whose
support is a single point in {/. If A is a fuzzy singleton whose
support is the point y. we write

A=ply (2.1)
where p is the-grade of membership of y in A, To be consistent
70
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with this notation, a nonfuzzy singleton will be denoted by 1/y.
A fuzzy set A may be viewed as the union (see(2.27)) of its
constituent singletons. On this basis, A may be represented in

the form
A=j.um.(y)fy (2.2)

where the integral sign stands for the union of the fuzzy
singletons g, (y)/v. If A has a finite support {y,s32s***y 3.}
then (2.2) may be replaced by the summation

=g/t F Sy, (2.3)
or

A= E Ju,-,f’y.- (2.4)

rmm ]

in which g,i=1,++,n, is the grade of membership of y,in A. It
should be noted that the + sign in (2. 3)denctes the union (see
(2. 27)) rather than the arithmetic sum. In this sense of +, a
finite universe of discourse U = { y,, y;, ***y v, } may be

represented simply by the summation

U=y 4y, 4ty (2.5)
or
U= 3 ¥ (2. 6)
i=1
although, strictly, we should write (2. 5)and (2. 6)as
U=1/3+1/y++1/y, (2.7)
and
U= > 1/y. (2.8)
r=1

As an illustration, suppose that
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U=1+24+--+10. (2. 9)
Then a fuzzy subset? of U labeled several may be expressed as
(the symbol & stands for “equal by definition,” or “is defined to

be,”or “denctes”)
several 8 0.5/340.8/4+1/5+1/6+0. 8/7+0.5/8.

2.10)
Similarly, if UJ is the interval [0,100], with y 2 age, then the
fuzzy subsets of U7 labeled voung and old may be represented as
(here and elsewhere in this paper we do not differentiate between
a fuzzy set and its label)

young = Es 1/y+ E:“ (14_(3’—525}2)“1/3, (2. 1)

ad [ PFETTS ew

{see Fig. 1).
The grade of membership in a fuzzy set may itself be a fuzzy
set. For example, if
U=TOM+]JIM+4-DICK +BOB (2.13)
and A is the fuzzy subset labeled agile, then we may have
agile = medium/TOM +low/JIM -+low/DICK
+high /BOB. (2.14)
In this representation, the fuzzy grades of membership low,
medium, and high are fuzzy subsets of the universe V
V=0+0.1+0.24--4+0.94+1 (2.15)
which are defined by

U A is a subset of B, written ACE. il and only if £a(3) L ug(y). for all ¥ in
U. For example, the fuzzy set A=0.6/1+0.3/2 is a subset of B=0.8/1+0.5/2+
0. 6/3.
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tow=0.5/0.24+0.7/0.34+1/0. 4-+0.7/0.54+0.5/0. 6

(2.16)
medium=0.5/0.4+0.7/0. 5+1/0.64+0.7/0. 7+0.5/0. 8

(2. 17)
high=0,5/0.7+0.7/0. 840.9/0. $+1/1. (2.18)

CROSSOVER PT§,
Fig. 1. Disgrammatic representation of young and old.

———
MAGE

Fuzzy Relations

A fuzzy relation R from a set X to a set Y is a fuzzy subset
of the Cartesian product X X Y. (X X Y is the collection of
ordered pairs (z,¥)yx€ X,y € Y). R is characterized by a

bivariate membership function g(x,y) and is expressed
R_Q__L ng(x,y)/(x,y). (2.19)

More generally, for an nary fuzzy relation R which is a fuzzy
subset of X, X X, X XX, we have

R g J‘x 5 pn(xl.'".x.,)/(xn'".xn),
PR RaA

EXiv=1,,n. (2.20)
As an illustration, if
X={TOM,DICK} and Y= {JOHN,]JIM}
then a binary fuzzy relation of resemblance between members of

X and Y might be expressed as
73
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resemblance = 0. 8/ (TOM, JOHN } + 0. 6/(TOM, JIM) +
0. 2/(DICK,JOHN)+ 0. 9/(DICK,JIM).

Alternatively. this relation may be represented as a relation

maltrix
JOHN JIM
TOM [0.8 0.6] (2. 21)
DICK 0.2 0.9

in which the ({, j)th element is the value of pp(x,y) for the sth
value of x and the jth value of y.
If R is a relation from X to Y and § is a relation from Y to

Z, then the composition of R and S is a fuzzy relation denoted by
R » § and defined by

R °ng V (pe(x.y) Ap(y,z))/ (x,2) (2.22)

XnZ ¥

where V and A denote, respectively, max and min. © Thus, for

real a.b,
a,if a=>p
aw;=max(a,b}g= _ (2.23)
b*lf ﬂ{b
Ab=min( b)ﬁ{a'ifagb (2. 24)
o =11 . ] .
B PART I 4

and V,is the supremum over the domain of y.
If the domains of the variables x,y, and z are finite serts,

then the relation matrix for R = S is the max-min product@of the

I Equation{2. 22 defines the max-min composition of R and 5. Max-product
composition is deflined similarly. except that A is replaced by the arithmetic product.
A more derailed discussion of these compositions may be found in [2].

@ In the max-min matrix product. the operations of addition and multiplication
are replaced by V and A . respectively.
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relation matrices for R and 5. For example, the max-min
product of the relation matrices on the left-hand side of (2. 25)
results in the relation matrix R - S shown on the right-hand side

of
R S RS

0.3 0.8 0.5 0.9 6.4 0.8
o = . (2- 25)

0.6 0.9 0.4 1 0.5 0.5

Operations on Fuzzy Sets

The negation not, the connectives and and or, the hedges
very, highly. more or less, and other terms which enter in the
representation of values of linguistic variables may be viewed as
labels of various operations defined on the fuzzy subsets of [7.

The more basic of these operations will be summarized,

The complement of A is denoted 11 A and is defined by
ﬂAQJU(1+pA(y))fy+ (2.26)

The operation of complementation corresponds to negation.
Thus, if = 1s a label for a fuzzy set, then not x should be
interpreted as 7 x. (Strictly speaking, 1 operares on fuzzy
sets, whereas nof operates on their labels. With this
understanding, we shall use 7 and not interchangeably. )

The wunion of tuzzy sets A and B is denoted A+ B and is
defined by

A+B 2 | GV a0/, (2. 27)

The union corresponds to the connective or. Thus, if # and v are

labels of fuzzy sets, then

vorv Dutwv (2.28)
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The intersection of A and B is denoted A{ ] B and is defined
by

ANB & L_ Calyd A pea(3)) ) . (2.29)
The intersection corresponds to the connective and: thus
uand v BuNv. (2. 30)
As an illustration, if
U=142+-410 (2.31)
«=0.8/3+1/54+0.6/6 (2.32)
v=0.7/3+1/4+0.5/6 (2.33)
then
u and v=0.7/34+0.5/6, (2.35)
The product of A and B is denoted AB and is defined by
ABA [ m i /y. (2. 36)
Thus, if
A=0.8/240.9/5 (2.37)
B=0.6/24+0.8/340.6/5 (2. 38)
then
AB=0. 48/24+0. 54/5. (2.39)

Based on (2.36), A%, where a is any positive number, is

defined by

An Q JU (p!_,q(y) )&(’y. (2. 40)
Similarly, if « is a nonnegative real number, then

ad A L apaly)/y. (2. 41)

As an illustration, if A is expressed by (2. 27), then
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At=0.64/2+0. 81/5 (2. 42)

0. 5A=0. 4/2+0. 45/5. (2.43)

In addition to the basic operations just defined, there are

other operations that are of use in the representation of linguistic

hedges. Some of these will be briefly defined. (A more detailed
discussion of these operations may be found in [15]. )

The operation of concentration is defined by
CON(A) 2 A% (2. 44)

Applymng this operation to A results in a fuzzy subset of A such
that the reduction in the magnitude of the grade of membership
of y in A is relatively small for those ¥ which have a high grade
of membership in A and relatively large for the y with low
membership.
The operation of dilation is defined by
DIL(A)2A°", (2. 45)

The effect of this operation is the opposite of that of
concentration.

The operation of contrast intensification is defined by

INT( A (24 for 0SNS5 ) L6
12071 AY, for 0.5 s, (y) <1,

This operation differs from concentration in that it increases the
values of p,(y) which are above 0.5 and diminishes those which
are below this point, Thus, contrast intensification has the effect
of reducing the fuzziness of A. (An entropy-like measure of
fuzziness of a fuzzy set is defined in [16].)

As its name implies, the operation of fuzzification (or,
more specifically, support fuzzification) has the effect of
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transforming a nonfuzzy set into a fuzzy set or increasing the
fuzziness of a fuzzy set. The result of application of a
fuzzification to A will be denoted by F(A4) or A, with the wavy

overbar referred to as a fuzzifier. Thus r==3 means “x 1s

approximately equal to 3.” while x+ =3 means “r is a [uzzy set
which approximates to 3. 7 A {fuzzifier F is characterized by its
kernel K (y), which is the fuzzy set resulting from the

application of F to a singleton 1/y. Thus

K(»a 17}* (2. 47)

In terms of K, the result of applying F to a fuzzy set A is given
by

F(A;K)QL #aCyIK(y) (2. 48)
where g4 (y) K (y) represents the product (in the sense of

(2.41)) of the scalar g, {y) and the fuzzy set K (y), andJ

i
should be interpreted as the union of the family of fuzzy sets

HA(y}K(y), y€ U. Thus (2.48)is analogous to the integral
representation of a linear operator, with K (y) playing the role of
impulse response.

" As an illustration of (2. 48),assume that U, 4.and K (y)are
detined by .

U=1+2+3+4 (2. 49}
A=0.8/140.6/2 (2. 50}
K)y=1/14+0.4/2 (2. 5D

K(2)=1/240.4/1+0. 4/3.
Then,the result of applying F to A is given by
FOA;K)=0.8(1/14+0.4/2)40.6(1/24+0. 4/140. 4/3)
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=0.8/140.32/240.6/240.24/1+0. 24/3
=0.8/1+0.6/2+0.24/3 (2.52)
The operation of fuzzification plays an important role in the
definition of linguistic hedges such as more or less, slightly .much ,
etc. Examples of its uses are given in[15].
Language and Meaning
As was indicated in Section [ ,the values of a linguistic
variable are fuzzy sets whose labels are sentences in a natural or
artificial language. For our purposes, a language [. may be
viewed as a correspondence between a set of terms T and a
universe of discourse {7. (This point of view is described in
greater detail in[4Jand"5]. For simplicity, We assume that T is a
nonfuzzy setr.) This correspondence may be assumed to he
characterized by a fuzzy naming relation N from T to U.which
associates with each term x in 7" and each object y in U/ the
degree uy(x.y) to which = applies to y. For example.if r =
young and vy =23 years, then gy (young, 23y might be 0.9, A
term may be atomic,e. g. ,.or=tall ,or composite.in which case it
is a concatenation of atomic terms.e. g. . x=very tall man.
For a fixed x,the membership function gy (x. y)defines a
fuzzy subset M(x) of U whose membership function is given by
ﬂHf:l(}’)éﬂN(.T;}’)sIE?‘QJ'EU- (2.53)

This fuzzy subset is defined to be the meaning of r. Thus,the
meaning of a term r is the fuzzy subset M (xr)of U for which =
serves as a label. Although x and M(x) are different entities (r is
an element of T",whereas M () is a fuzzy subset of I7) . we shall
write x for M{x},except where there is a need for differentiation

between them., To illustrate, suppose that the meaning of the
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term young is defined by
1, for 3‘525

r * = - I !
pn{young . y) {( 1+(y 525J2] yJor v>>25. (2. 54}

Then we can represent the fuzzy subset of U labeled young as
(see{2.11))

25 1040 ‘},__25 2y !
yaung=L 1/y+ J;S (1+(T] ] / (2. 55)
with the right-hand member of (2. 55) representing the meaning
of young.
Linguistic hedges such as very, much, more or less,ete.
make it possible to modify the meaning of atomic as well as
composite terms and thus serve to increase the range of values of

a linguistic variable. The use of linguistic hedges for this purpose

is discussed in the following section.
3. Linguistic hedges

As stated in Section I ,the values of a linguistic variable are
labels of fuzzy subsets of I which have the form of phrases of
sentences in a natural or artificial language. For example, if U is
the collection of integers

U=0+1+42++-+100 (3. 1)
and age 1s a linguistic variable labeled x,then the values of «
might be young, not young, very young, not very young , old and
not old s not very old, not young and not old, etc.

In general, a value of a linguistic variable is a composite
term x =x,&z* x,, which is a concatenation of atomic terms x,,
+*, 2, These atomic terms may be divided into four categories:
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1) primary terms.which are labels of specified fuzzy subsets
of the universe of discourse {(e. g. ,young and old in the preceding
example);

2)the negation »nor and the connectives and and or;

3) hedges, such as wvery, wmuch, slightly, more or less
(although more or fess is comprised of three words.,it is regarded
&S an atomic term),etc. ;

4} markers.such as parentheses.

A basic problem P, which arises in connection with the use
of linguistic variables is the following; Given the meaning of each
atomic term x;4i =1, ,n,in a2 composite term r =, -1, which
represents a value of a linguistic variable, compute the meaning
of x in the sense of (2.53). This problem is an instance of a
central problem in quantitative fuzzy semantics[4], namely, the
computation of the meaning of a composite term. P, is a special
case of the latter problem because the composite terms
representing the values of a linguistic variable have a relatively
simple grammatical structure which is restricted to the four
categories of atomic terms 1)—~4),

As a preliminary to describing a general approach to the
solution of P;.it will be helpful o consider a subproblem of P,
which involves the computation of the meaning of a composite
term of the form x=hu.where % is a hedge and « is a term with a
specified meaning ;e. g. .x=very tall man ,where h=very and u =
tall man.

Taking the point of view described in [15],a hedge # may be
regarded as an operator which transforms the fuzzy set M (),

representing the meaning of «,into the fuzzy set M (hu). As
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stated already, the hedges serve the function of generating a
larger set of values for a linguistic variable from & small
collection of primary terms. For example, by using the hedge
very in conjunction with not.and,and the primary term rail, we
can generate the fuzzy sets very tall ., very very tall, not very tall,
tall and not very tall , ete,. To define a hedge h as an operator,it is
convenient to employ some of the basic operations defined in
Section 1 ,especially concentration, dilation, and fuzzification.
In what follows, we shall indicate the manner in which this can
be done for the natural hedge very and the artificial hedges plus
and minus. Characterizations of such hedges as more or less,
niuch s slightly, sort of + and essentially may be found in _15].
Although in its everyday use the hedge very does not have a
well-defined meaning, in essence it acts as an intensifier,
generating a subset of the set on which i1t operates. A simple
operation which has this property is that of concentration (see
(2.44)). This suggests that very x, where r ts a4 term, be

defined as the square of x,that is

very x 2 & (3.2
or, more explicitly
very x B L w2y / y. (3. 3)
For example,if (see Fig. 2)
w=old men QJ::“[1+[J’;5”]_Z)_I/J; (3.4)

then

100 _ —2y -2
ri=wvery old men= _[ (1-1-(‘? 556] ) /y. (3.3)
il
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Thus., if the grade of membership of JOHN in the class of oid
men 1s 0. 8, then his grade of membership in the class of very old

men is 0. 64. As another simple example, if

U=1+24+34+445 (3.6)
and
small=1/1+0.8/24+0.6/3+0.4/44+0.2/5 (3.7)
then
very small=1/14+0.64/24+0.36/3+0.16/4+0.04/5,
(3. 8

Viewed as an operator. wvery can be composed with itsell.
Thus
very very = (very x ) =z, (3. 9)
For example, applying (3.9) to (3.7), we obtain {neglecting
small terms)
very very smalfl=1/14+0. 4/2+0.1/3. (3. 10
In some instances, to identify the operand of very we have
to use parentheses or replace a composite term by an atomic one.
For example, it is not grammatical to write

X=very nol exact (3. 11>

b EAY OLD B 4"

Fig. 2. Effect of hedge very,

but if not exace is replaced by the atomic term inexact, then
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r=ypery fnexact (3.12)
is grammatically correct and we can write

x=(" exact)®. (3.13)
Note that

not very exact = 71 (very exact) = T1(exact’) (3. 14)
is5 not the same as (3. 13).

The artificial hedges plus and minus serve the purpose of
providing milder degrees of concentration and dilation than those
associated with the operations CON and DIL (see (2. 44),
(2-45)). Thus, as operators acting on a fuzzy set labeled x, plus
and minus are defined by

plus r B 15 (3.15

minus x B x*7 (3.16)

In consequence of (3.15)and (3.16),we have the approximate
identity
plus plus T=minus very x. (3. 17)
As an illustration, i the hedge Aighly is defined as
highly = minus very very (3.18)
then,equivalently,
highly = plus plus very. (3. 19)
As was stated earlier, the computation of the meaning of
composite terms of the form hx is a preliminary to the problem of
computing the meaning of values of a linguistic variable. We are

NOW in a position to turn our attention to this problem.

4. Computation of the meaning of values of a linguistic variable

Once we know how to compute the meaning of a composite
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term of the form Au. the computation of the meaning of a more
complex composite term, which may involve the rerms not, or,
and and in addition 1o terms of the form Au,becomes a relatively
simple problem which is quite similar to that of the computation
of the value of a Boolean expression. As a simple illustration,
consider the computation of the meaning of the composite term
r=nol very smalil (4. 1)
where the primary term small is defined as
smatl =1/1+0.8/2+0.6/3+0.4/44+0.2/5  (4.2)
with the universe of discourse being
U=1+243+4+4+5. (4. 3)
By (3. 8),the operation of very on small yields
very small =1/1-+0. 64/24-0. 36/34-0. 16/44+0. 04/5
(4. 4)
and by (2. 26),
not very small = 7 (very small)
=0.36/2+0.64/34+0.84/440. 96/5
2=0.4/2+0.6/340. 8/4+1/5. (4.5)
As a slightly more complicated example, consider the
composite term
“ x=not very small and not very very large (4. 6)
where large is defined by
large=0.2/140.4/240. 6/3+0.8/441/5. (4. 7)
In this case,
very large = (large)?
=0.04/1+0.16/2+0.36/3+0. 64/4+1/5
(4. 8)
very very large = ((large)t)*®
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20.1/3+0.4/4+1/5 (4.9}
not very very large ==1/1+1/240.9/3+0.6/4 (4.10)
and hence
naot very small and not very very large
== (0. 4/2+4+0.6/3+40. 3!’4'!'1/5?
N1/1+1/2-+0.9/34+0.6/4)
A=(0.4/240.6/340.6/4). (4.11)
An example of a different nature is provided by the values of
a linguistic variable labeled likefihood. In this case, we assume
that the universe of discourse is given by
U=0+4+0.140.2+0.340.4+0.540.6490.7+0. 84+0.941
(4.12)
in which the elements of U represent probabilities. Suppose that

we wish to compute the meaning of the value

x=highly unlikely (4.13)
in which highly is defined as (see(3. 18))
highly=minus very very (4.14)
and
unlikely=mnort likely (4.15)

with the meaning of the primary term Iikely given by
likely=1/1+1/0. 9+1/0. 8+0.8/0. 7
+0.6/0.64+0.5/0.5+0.3/0. 440. 2/0. 3.
(4. 16)
Ustng (4. 15),we obtain
unlikely=1/0+1/0. 1+1/0. 2+0.8/0. 3+0. 7/0. 4
+0.5/0.54+0.4/0. 640. 2/0. 7 (4. 17)
and hence

very very unlikely
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= (unlikely)*

~1/0+1/0.1+1/0. 24+0.4/0. 3+0. 2/0. 4. (4.18)
Finally, by (4.14)
highly unlikely

=minus very very unlikely

A= (1/06-+1/0.14+1/0.2+0. 4/0. 340, 2/0. 457

2}/041/0.14+1/0. 240.5/0. 340. 3/0. 4. (4.19)

It should be noted that in computing the meaning of
composite terms in the preceding examples we have made implicit
use of the usual precedence rules governing the evaluation of
Boolean expressions. With the addition of hedges, these

precedence rules may be expressed as follows.

Precedence Qperation
First A .not
Second and
Third or

As usual, parentheses may be used to change the precedence
order and ambiguities may be resolved by the use of association
to the right, Thus plus very minus very tall should be interpreted
as

Plus(very (minusCverv(eall)) )).

The technique that was employed for the computation of the
meaning of a composite term is a special case of a more general
approach which is described in [4 Jand [5]. The approach in
question can be applied to the computation of the meaning of
values of a linguistic variable provided the composite terms

representing these values can be generated by a context-free
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grammar. As an illustration, consider a linguistic variable x
whose values are exemplified by small, not small, large, not
large , very small, not very small, small or not very very large,
small and (large or not small) ,not very very small and not very
very large.etc.

The values in question can be generated by a context-free
grammar G = (V4+, V5, S, P)in which the set of terminals V,
comprises the atomic terms small.large.not ,and ,or .very ,etc ;the
nonterminals are denoted 5, A4,8,C.D,and E;and the production

system is given by

S A ' C =D

S —= SorA C—=E

A—+~B D) — veryD

A~ AandB E — veryE

B—~C D — small

B = notC E — large

C—= (5 (4. 20)

Each production in (4. 20)gives rise to a relation berween
the fuzzy sets labeled by the corresponding terminal and
nonterminal symbols. In the case (4. 20) ,these relations are (we
omit the productions which have no effect on the associated fuzzy
sets)

S—=Sor A= 5;=5:+ A
A—= Aand B=> A=A 8
B—=an C= B,="(C,

D — very D= D, =Dj

E = yery E = E;,=Ej

D - small = I =small
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E - large > E;=large (4. 21}
in which the subscripts L and R are used to differentiate between
the symbols on the left-and right-hand sides of a production.

To compute the meaning of a composite term ., it is
necessary to perform a syntactical analysis of x in terms of the
specified grammar G. Then, knowing the syntax tree of . one
can employ the relations given in (4.21) to derive a set of
equations (in triangular form) which upon solution yield the
meaning of x. For example, in the case of the composite term

x=not very small and not very very large
the solution of these equations yields

= {1 small*)(1 (7 large*) (4. 22)
which agrees with(4. 11). Details of this solution may be found in
[4]and [51.

The ability to compute the meaning of values of a linguistic
variable is a prerequisite to the computation of the meaning of
fuzzy conditional statements of the form IF A THEN B,e.g. , IF
x 15 naot very small THEN y is very very large. This problem is

considered in the following section.

5. Fuzzy conditional statements and compositional rule of
inference

i

In classical propositional calculus,™, the expression IF A
THEN B,where A4 and B are propositional variables,is written

as A= B, with the implication = regarded as a connective which

@ A deuziled discussion of the significance of implication and its role in madal
logic may ke found in [187].
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is defined by the truth table.

A B A=8B
T T T
T F F
F T r
F F T
ThUS'r
A=>B="14VE (5. 1)

in the sense that the propositional expressions A= B (A implies
BYand 11 AV B (not A or B) have identical truth tables.

A more general concept, which plays an important role in
our approach, is a fuzzy conditional statement .| IF A THEN B or,
for short, A= B, in which A (the antecedent) and B (the
consequent ) are fuzzy sets rather than propositional variables.
The following are typical examples of such statements

IF farge THEN smali

IF séippery THEN dangerous
which are abbreviations of the statements

IF xis large THEN y is small

IF the road is slippery THEN driving is dangerous.

In essence, statements of this form describe a relation berween
two fuzzy variables. This suggests that a fuzzy conditional
statement be defined as a fuzzy relation in the sense of (2.19)
rather than as a connective in the sense of (5. 1).

To this end, it is expedient 1o define first the Cartesian
product of two fuzzy sets. Specifically, let 4 be a fuzzy subset of
a universe of discourse U,and let B be a fuzzy subset of a
possibly different universe of discourse V. Then,the Cartesian
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product of A and B is denoted by A X B and is defined by
AXBA | 0 A @)/ ), (5.2)

where U XV denotes the Cartesian product of the nonfuzzy sets

[/ and V ;that is,
UXV A {(u,v) |u€U,veV],

Note that when A and B are nonfuzzy, (5.2) reduces to the
conventional definition of the Cartesian product of nonfuzzy sets.
In words, (5. 2) means that AX B i1s a fuzzy set of ordered pairs
Gtv)s wCU,v€V,with the grade of membership of («,v) in A
X B pgiven by g4{u) A pp(v). In this sense, A X B is a fuzzy
relation from U o V,

As a ver simple example, suppose that

U=1+42, (5.3
V=1+4+2+43, (5.4)
B=0.6/14+0.9/24+1/3. (5.6)
Then
AXB=0.6/(1,1D+0.9/(1,2>+1/(1.,3Y+0.6/(2,1)
+0.8/(2,2)40. 8/(2,3). (5.7)

The relation defined by (5. 7)may be conveniently represented by
the relation matrix

1 2 3
1 0.6 0.9 1
2 [o. 6 0.8 0. 3]' -8
The significance of a fuzzy conditional statement of the form
IF A THEN B is made clearer by regarding it as a special case of
the conditional expression IF A THEN B ELSE C,where A and

(B and C) are fuzzy subsets of possibly different universes J and
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V., respectively, In terms of the Cartesian product, the latter

statement is defined as follows.
IF A THEN BELSE C 2AXB+(71 AXC) {(5.9)

in which +stands for the union of the fuzzy relations A X B and
(T AXC).

More generally,if A,.++, A, are fuzzy subsets of U ,and B,,
++, B, are fuzzy subsets of V,then®
IF A, THEN B, ELSE IF A, THEN B,+-ELSE IF A, THEN B,

AA XB+A,XB,+++4,XB, (5.10)

Note that (5.10) reduces to (5.9) if IF A THEN B ELSE C is
interpreted as IF A THEN B ELSE IF 1 A then C. It should
also be noted that by repeated application of (5.9) we obtain

if A then(if B then C else D) ¢lse £

=AXBXCH+AX 1 BXD+ 1 AXE, 5. 11

If we regard IF A THEN B as IF A THEN B ELSE C with
unspecified C,then,depending on the assumption made about C,
various interpretations of IF A THEN B will result. In
particuiar.if we assume that C=V,then IF 4 THEN B (ord=
Bbecomes@

A=>B Bif Athen B AAXB+ (1 AXV), (5.12)

If,in addition,we set A=l in(5.12),we -ﬂbtain as an alternative
definition
A=B AU XB+ (1 AXV). (5.13)

(@ 1t should be noted thar.in the sense ueed in ALGOL ., the right-hand side of
(5. 10)would be expressed as A; X B+ ( 1 A;NN A2} X By +( 1 ANt A,.,
N ALY X 8. when the A; and Biy =1, .n. are nonfuzzy sers.

@ This definition shouald be viewed as tentative in a natuore.
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In the sequel ,we shall assume that C=V ,and hence that A= Bis
defined by (5.12), In effect,the assumption that C =V implies
that, in the absence of an indication to the contrary., the
consequent of 1 A4=>C can be any fuzzy subset of the universe of
discourse. As a very simple illustration of (5. 12) ,suppose that 4
and B are defined by (5. 5)and (5. 6). Then,on substituting{5. §)
in{5. 12),the relation matrix for A=>H8 is found to be
A=B=[G‘ 6 0.9 1 :|
06 0.8 0.8
It should be observed that when A, B,and C are nonfuzzy
sets,we have the identity
IF A THEN B ELSE C =(IF A THEN B)N¢{F 1 4 THEN )
(5. 14)
which holds only approximately for fuzzy A, B, and C. This
indicates that,in relation to(5. 15),the definitions of IF .4 THEN
B ELSE C and IF A THEN B8,as expressed by (5. $)and(5. 12),
are not exactly consistent for fuzzy A,B,and C. It should alsoc be
noted that if 1)U =V .2)x=y,and 3)A=B holds for all points in
U ,then,by (5. 12),
A=8 implies and is implied by ACH (5.15)
exactly if A and B are nonfuzzy and approximately otherwise.
As will be seen in Section W ,fuzzy conditional statements
play a basic role in fuzzy algorithms. More specifically,a typical
problem which is encountered in the course of execution of such
algorithms is the following. We have a fuzzy relation say,R,from
U to V which is defined by a fuzzy conditional statement. Then,
we are given a fuzzy subset of {/,say, r,and have to determine
the fuzzy subset of V,say,y,which is induced in V by z For
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example ,we may have the following two statements.

1) x is very small

2) IF x is small THEN vy is large ELSE y 1s not very large
of which the second defines by (5.9)a fuzzy relation R. The
question , then ,is as follows : What will be the value of yif x is
very small? The answer to this question is provided by the
following rule of inference, which may be regarded as an
extension of the familiar rule of modus ponens.

Compositional Rule of Inference .1t R is a fuzzy relation from
I/ to V,and x is a fuzzy subset of U,then the fuzzy subset y of V
which is induced by x 1s given by the composition (see(2. 22} )of
R and x;that s,

y=x° R (5.16)

in which z plays the role of a unary relation. @

As a simple illustration of (5. 16) ,suppose that R and x are
defined by the relation matrices in(5. 17). Then y is given by the

max-min product of xr and R

x i ¥
0.8 0.9 0.2
[0.2 1 03]~ (0.6 1 0.4|=[0.6 1 0. 4]
0.5 0.8 1

(5.17)
As for the question raised before,suppose that.as in(4. 3),

we have

U=14+24+3+4+5 (5.18)

I M R is visualized as a fuzzy graph. then (5.16) may be viewed as the
expression for the fuzzy ordinate v corresponding o a fuzzy abscissa x.
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with small and large defined by (4.2)and (4. 7). respectively.
Then,substituting smalf for A.large for B and not very large for
C 1m (5 9), we obtain the relation matrix R for the fuzzy
conditional statement I[F small THEN large ELSE not wery
large. The result of the composition of R with r=wvery small is
R

(0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 0.8
0.4 0.4 0.6 0.6 0.8
0.6 0.6 0.6 0.4 0.4
0.8 0.8 0.64 0.36 0.2]

I
(1 0.64 0.36 0.16 0.04]

Yy
=[0.36 0.4 0.6 0.8 1].

There are several aspects of (5.16) that are in need of

(5.19)

comment. First,it should be noted that whey R=A=E8 and r=A
we obtain
y=A°(A=>B)=8 (5. 20)
as an exact identity, whey A, B,and C are nonfuzzy.and an
approximate one, whey 4, B,and C are fuzzy. It is in this sense
that the couipositional inference rule(5. 16) may be viewed as an
approximate extension of modus ponens. ( Note that in
consequence of the way in which A=B is defined in (5.12).the
more different r is from A,the less sharply defined is y. )
Second, (5.16) is analogous to the expression for the

marginal probability in terms of the conditional probability

function ;that is
re= > qip, (5. 21)
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where

g=Pr{X=ux)

ri=Pr{Y=y,)}

pi;=Pri¥=3IX=z}
and X and Y are random variables with values x,,x,,s+and y,, ¥,
=, respectively. However, this analogy does not imply that
{5.16) is a relation between probabilities.

Third,it should be noted that because of the use of the max-
min matrix product in(5. 16),the relation between x and y is not
continuous, Thus,in general,a small change in x would produce
no change in y until a certain threshold is exceeded. This would
not be the case if the composition of » with R were defined as
max-product compoesition.

Fourth,in the compuiation of £ - R one may take advantage

of the distnbutivity of composition over the union of fuzzy sets.
ThUSrif

I=uOrv (5.22)
where # and v are labels of fuzzy sets, then
(orv) e R=u-*RorveKR, (5.23)

For example,if x is small or medium,and R=A=B reads IF x is
not small and not large THEN y is very small.then we can write
(small or medium) < (not small and not large=>very smalil)
=small * (not smail and not large=>very
small)
or medium ° (not small and not large=very smali) (5.24)
As a final comment .it is important to realize that in practical
applications of fuzzy conditional statements to the description of
complex or ill-defined relations. the computations involved in
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(5.9),(5.10),and (5.16) would.in general,be performed in a
highly approximate fashion. Furthermore,an additional source of
imprecision would be the result of representing a fuzzy set as a
value of a linguistic variable. For example ,suppose that a relation
between fuzzy variables x and y is described by the fuzzy
conditional statement IF small THEN {arge ELSE IF medium
THEN medium ELSE IF large THEN wvery small.

Typically, we would assign different linguistic values to x
and compute the corresponding values of y by the use of (5. 16).
Then,on approximating to the computed values of y by linguistic

labels , we would arrive at a table having the form shown below .

Given Inferred
A B I ¥y
small large not small not very large
medium medium very small very very large
large very small  very very small very very large
not very large small or medium

Such a iable constitutes an approximate linguistic
characterization of the relation between x and y which is inferred
from the given fuzzy conditional statement. As was stated
earlier, fuzzy conditional statements play a basic role in the
description and execution of fuzzy algorithms. We turn to this

subject in the following section.
6. Fuzzy algorithms

Roughly speaking, a fuzzy algorithm is an ordered set of

fuzzy instructions which upon execution yield an approximate
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solution w a specified problem. In one form or another fuzzy
algorithms pervade much of what we do. Thus,we employ fuzzy
algorithms both consciously and subconsciously when we walk,
drive a car, search for an object, tie a knot, park a car,cook a
meal, find a number in a telephone directory,ete. Furthermore,
there are many instances of uses of what, in effect, are fuzzy
algorithms in a wide variety of fields,especially in programming.,
operations research, psychology, management science, and
medical diagnosis.

The notion of a fiizzy set and,in particular,the concept of a
fuzzy conditional statement provide a basis for using fuzzy
algorithms in a more systematic and hence more effective ways
than was possible in the past, thus, fuzzy algorithms could
become an important tool for an approximate analysis of systemns
and dectsion processes which are much too complex for the
application of conventional techniques.

A formal characterization of the concept of a fuzzy algorithm
can be given in terms of the notion of a fuzzy Turing machine or
& fuzzy Markoff slgorithm [6]-~[8]. In this section,the main aim
of cur discussion is to relate the concept of a fuzzy algorithm to
the notions introduced in the preceding sections and illustrate by
simple examples some of the uses of such algorithms.

The instructions in a fuzzy algorithm fall into the following
three classes,

1) Assignment Statements:e. g,

TRZH
x = small
x s large

98



x is not large and not very small.
2} Fuzzy Conditional Statements.e. g. »
IF x is ssmall THEN yis large ELSE y is not large
IF x is positive THEN decrease y stightiy
IF x is much greater than 5 THEN stop
IF x is very small THEN go to 7.
Note that in such statements either the antecedent or the
consequent or both may be labels of {uzzy sets.
3) Unconditional Action Statements.e. g. ,
multiply x by »
decrease x slightly
delete the first few occurrences of 1
go to 7
print xr
stop.
Note that some of these instructions are fuzzy and some are not.
The combination of an assignment statement and a fuzzy
conditional statement is executed in accordance with the
compositional rule (5. 16). For example,if at some point in the
execution of a fuzzy algorithm we encounter the instructions
1) x=wery small
2) TIF x is small THEN y is {arge ELSE v is not very large
where small and large are defined by (4. 2) and (4. 7),then the
result of the execution of 1) and 2)will be the value of y given by
(5.19) ,that is,
y=0.36/1+0.4/240.64/3+0.8/4+1/5. (6. 1)
An unconditional but fuzzy action statement is executed

similarly. For example,the instruction
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multiply x by itself a ferwe times (6.2

with few defined as

Jew=1/1+0.8/2-4+0.6/3+0.4/4 (6. 3)
would yield upon execution the fuzzy set
y=1/r*40.8/2*+0.6/x*+0. 4/ 2°. (6. 4)

It is important to cbserve that,in both(6. 1) and (6. 4),the
result of execution is a fuzzy set rather than a single number.
However, when a human subject is presented with a fuzzy
Instruction sﬁch as “take several steps,” with several defined by
(see(2.10}))

several=0.5/340.8/4+1/5+1/6+0.8/740.5/8 (6.5)
the result of execution must be a single number between 3 and 8.
On what basis will such a number be chosen?

As pointed out in{ 6], it is reasonable to assume that the
result of execution will be that element of the fuzzy set which has
the highest grade of membership in it. If such an element is not
unique,as is true of (6. 5),then a rendom or arbitrary choice can
be made among the elements having the highest grade of
membership. Alternatively, an external criterion can be
introduced which linearly orders those elements of the fuzzy set
which have the highest membership,and thus generates a unique
greatest element. For example,in the case of (6. 5) ,if the external
criterion is to minimize the number of steps that have to be
taken, then the subject will pick 5 from the elements with the
highest grade of membership.

An analogous question arises in situations in which a human
subject has to give a “yes”or“no”answer 1o 2 fuzzy question. For
example ,suppose that a subject is presented with the instruction
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IF & is small THEN stop ELSE go to 7 {6.6)
in which small is defined by (4. 2). Now assume that r=3,which
has the grade of membership of 0.6 in small. Should the subject
execute®stopor®go to 7”7 We shall assume that in situations of
this kind the subject will pick that alternative which is more true
than untrue,e. g. ,“x is small"over “r is nat smal!,”since in our
exarnple the degree of truth of the statement®3 is smail”is 0. ¢,
which is greater than that of the statement“3 is not small. "1If
both alternatives have more or less equal truth values,the choice
can be made arbitrarily. For convenience, we shall refer to this
rule of deciding between two alternatives as the rule of the
preponderant alternative,

It is very important tc understand that the questions just
discussed arise only in those situations in which the result of
execution of a fuzzy instruction is required to be a single element
(e, g. »a number)rather than a fuzzy set, Thus,if we allowed the
result of execution of (6. 6}to be fuzzy,then for r=3 we would
obtain the fuzzy set

0. 6/stop+0.4/go to 7
which implies that the execution is carried out in parallel, The
assumption of parailelism is implicit in the compositional rule of
inference and is basic to the understanding of fuzzy algorithms
and their execution by humans and machines.

In what follows, we shall present several examples of fuzzy
algorithms in the light of the concepts discussed in the preceding
sections, It should be stressed that these examples are intended
primarily to illustrate the basic aspects of fuzzy algorithms rather

than demonstrate their effectiveness in the solution of practical
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problems,

It is convenient to classify fuzzy algorithms into several
basic categories, each corresponding to a particular type of
application; definitional and identificational algorithms;
generational algorithms ;relational and behavioral algorithms ;and
decisional algorithms. (It should be noted that an algorithm of a
particular type can include algorithms of other types as
subalgorithms. For example,a definitional algorithm may contain
relational and decisional subalgorithms.) We begin with an

example of a definitional algorithm.

Fuzzy Definitional Algorithms

One of the basic areas of application for fuzzy algorithms lies
in the definition of complex ,ill-defined or fuzzy concepts in terms
of simpler or less fuzzy concepts. The following are examples of
such fuzzy concepts: sparseness of matrices; handwritten
characters; measures of complexity; measures of proximity or
resemblance ; degrees of clustering;criteria of performance; soft
constraints ;rules of various kinds,e. g. ,zoning regulations ;legal
criteria, e. g. , criteria for insanity, obscenity, etc. s and fuzzy
diseases such as arthritis ,arteriosclerosis ,schizophrenia.

Since a fuzzy concept may be viewed as a label for a fuzzy
set.a fuzzy definitional algorithm is,in effect, a finite set of
possibly fuzzy instructions which define a fuzzy set in terms of
other fuzzy sets (and possibly itself, i. e., recursively. ) or
constitute a procedure for computing the grade of membership of
any element of the universe of discourse in the set under
definition. In the latter case,the definational algorithm plays the
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role of an identificational algorithm,that is,an algorithm which
identifies whether or not an element belongs to a set or, more
generally . determines its grade of membership. An example of
such an algorithm is provided by the procedure (see [5]) for
computing the grade of membership of a string in a fuzzy
language generated by a context-free grammar.

As a very simple example of a fuzzy definitional algorithm,
we shall consider the fuzzy concept oval. It should be emphasized
again that the oversimplified definition that will be given is
intended only for illustrative purposes and has no pretense at
being an accurate definition of the concept oval. The instructions
comprising the algorithm OVAL are listed here. The symbol T in
these instructions stands for the object under test. The term call
CONVEX represents a call on a subalgorithm labeled CONVEX,
which is a definitional algorithm for testing whether or not 7 is
convex. An instruction of the form IF 4 THEN B should be
interpreted as IF A THEN B ELSE go to next instruction.

Algorithm OVAL,

1) IF T 1s not closed then T is not ovalistop.

2) IF T is self-intersecting then T is not ovai ;stop.

3) IF T'is not call CONVEX THEN T is not sval;stop.

4) IF does not have two more or less orthogonal axes of

symmetry THEN T is not oval ;stop.

5) IF the major axis of T is not much longer Than the minor

axis THEN T is not oval:stop.

6) T 1s oval ;stop.

Subalgorithm CONVEX: Basically, this subalgorithm

involves a check on whether the curvature of T' at each point
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maintains the same sign as one moves along T in some initially
chosen direction.

1) x=a{some initial peoint on 7).

2) Choose a direction of movement along T.

3) t2=direction of tangent to T at .

4} x'=zx+1(move from x 1o a neighboring point).

5) t' ~zdirection of tangent to T at 1’.

6) a~=angle between ¢ and ¢.

7) a7,

8) t=xdirection of tangent to T at .

9) ’=x+1.

10) ¢’ ==direction of tangent to T at x'.

11) S=-angle between ' and &.

12) IF 2 does not have the same sign as a THEN T is not

convexireturn.

13) IF x'==a THEN T is convex;return.

14 Go to 7).

Comment 1t should be noted that the first three instructions
in OVAL are nonfuzzy. As for instructions 4)and 5),they involve
definitions of concepts such as “more or less orthogonal,” and
“much longer,"which, though fuzzy,are less complex and better
understood than the concept of gval. This exemplifies the main
function of a fuzzy definitional algorithm, namely, to reduce a
new or complex fuzzy concept to simpler or better understood
fuzzy concepts. In a more elaborate version of the algorithm
(VAL ,the answers to 4)and 5)could be the degrees to which the
conditions in these instructions are satisfied. The final result of
the algorithm, then, would be the grade of membership of T in
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the fuzzy set of oval objects.

In this connection, it should be noted that, in virtue of
(5.15), the algorithm OVAL as stated is approximately
equivalent to the expression

oval =closed [ )non-self-intersecting [ convex

[V more or less orthogonal axes of symmetry

(Ymajor axis much larger than minor axis (6. 7)
which defines the fuzzy set oval as the intersection of the fuzzy
and nonfuzzy sets whose labels appear on the right-hand side of
(6. 7). However, one significant difference is that the algorithm
not only defines the right-hand side of (6. 7),but also specifies
the order in which the computations implicit in (6. 7) are to be
performed.

Fuzzy Generational Algorithms

As its designation implies, a fuzzy generational algorithm
serves to generate rather than define a fuzzy set. Possible
applications of generational algorithms include; generation of
handwritten characters and patterns of various kinds; cooking
recipes s generation of music; generation of sentences in a natural
language ; generation of speech,

As a simple illustration of the notion of a generational
algorithm, we shall consider an algorithm for generating the
letter P ,with the height # and the base & of P constituting the
parameters of the algorithm. For simplicity ,* will be generated
as a dotted pattern,with eight dots lying on the vertical line.

Algorithm P (h.b) .

1y i=1,
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2) X (1) =4({irst dot at base).
3) XG+1D=X(i)+Ai/6(put dot approximately k/6 units of
distance above X (7)),

1) i=i+1.

5} IF i=7 THEN make right turn and go to 7).

5) Go w 3,

7) Move by £/6 units;put a dot.

8) Turn by 45°,move by 4/6 units ;put a dot.

9) Turn by 45°,move by A/8 units;put a dot,

10> Turn by 45°,move by A/8 units;put a dot.

11> Turn by 45°,move by A /6 units;put a dot ;stop.

The algorithm as stated is of open-loop type in the sense
that it does not incorporate any feedback. To make the algorithm
less sensitive to errors in execution, we could introduce fuzzy
feedback by conditioning the termination of the algorithm on an
approximate satisfaction of a specified test. For example, if the
last point in step 11) does not fall on the vertical part of P ,we
could return to step 8) and either reduce or increase the angle of
turn in steps 53) ~ 11} to correct for the terminal error. The
flowchart of a cooking recipe for chocolate fudge , which is give
in [19],is a good example of what , in effect, is a fuzzy

generational algorithm with feedback,

Fuzzy Relational and Behavioral Algorithms
A fuzzy relational algorithm serves to describe a relation or
relations berween fuzzy variables. A relational algorithm which
is used for the specific purpose of approximate description of the
behavior of a system will be referred to as a Juzzy behavioral
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algorithm.

A simple example of a relational algorithm labeled R which
involves three parameters zr, y,and z is given, This algorithm
detines a fuzzy ternary relation R in the universe of discourse U/
= 142434+ 445 with small and large defined by (4.2) and
(4. 7).

Algorithm R{(x,vy,z):

1} IF x 1s small and y is large THEN =z is very smal{ ELLSE =z

18 not small.
2) IF xis large THEN (F v is smail THEN =z is wery large
ELSE z is smalf) ELSE z and y are very very smali.

If needed, the meaning of these conditional statements can
be computed by using (5. 9)and (5. 11). The relation R,then,will
be the intersection of the relations defined by instructions 1) and
2).

Another simple example of a relational fuzzy algorithm
F(x.y) which illustrates a different aspect of such algorithms is
the following.

Algorithm Fz,y);

1) IF x is smail and x is increased siightly THEN y will
increase slightly.

2) IF xis small and x is increased substantially THEN y will
increase substantially .

3) IF x is large and x is increased slightly THEN y will
increase moderately. ‘

4) IF x is large and x is increased substantially THEN y will
increase very substantially. '

As in the case of the previous example, the meaning of the
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fuzzy conditional statements in this algorithm can be computed
by the use of the methods discussed in Sections ¥ and V if one
is given the definitions of the primary terms large and small as
well as the hedges slightly,substantially ,and moderately.

As a simple example of a behavioral algorithm ,suppose that
we have a systemn S with two nonfuzzy states (see [3])labeled g,
and g¢;, two fuzzy input values labeled low and high, and two
fuzzy output values labeled large and small, The universe of
discourse for the input and output values is assumed to be the
real line. We assume further that the behavior of $ can be
characterized in an approximate fashion by the algorithm that
will be given. However, to represent the relations between the
inputs, states, and outputs, we use the conventional state

transition tables instead of conditional statements.
Algorithm BEHAVIOR .

Ty Le1 X
By ' 92 9 gz
fory qz 4 large small
high g gy smail large

where

i, input at time ¢

¥, output at time ¢

X, state at time ¢,

On the surface, this table appears to define a conventional
nonfuzzy finite-state system. What is important to recognize,

however, is that in the case of the system under consideration
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the inputs and outputs are fuzzy subsets of the real line. Thus
we could pose the question; What would be the output of S if it
is in state g, and the applied input is very low? In the case of § ,
this question can be answered by an application of the
compositional inference rule(5. 16). On the other hand,the same
question would not be a meaningful one if S is assumed to be a
nonfuzzy finite-state system characterized by the preceding table.

Behavioral fuzzy algorithms can also be used to describe the
more complex forms of behavior resulting from the presence of
random elements in a system. For example, the presence of
random elements in S might result in the following fuzzy-
probabilistic characterization of its behavior .

Xy Trty ¥
By ) q: f qz
! smuall
low qq bikely aq dikely aree o
likely likely*
small large
high q likely? qy unlikely’
' ! likelyt unlikely’

In this table,the term fikely and its modifications by very
and not serve to provide an approximate characterization of
probabilities. For example, IF the input is {oww and the present
state is q;» THEN the next state is fikely to be g,. Similarly, IF
the input is Aigh and the present state is g, THEN the cutput is
very unlikely to be large. H the meaning of likely is defined by
(see (4.16))

likely=1/1+1/0.9+1/0. 840. 8/0. 7+0. 6/0. 6
+0.5/0.540. 3/0.44+0.2/0. 3 (6. 8)
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then
unlikely=10.2/0.74+0. 4/0.64+0.5/0.54+0.7/0. 4

+90.8/0.3+1/0.2+1/0. 1+1/0 (6. 92
very likely==1/1+1/0.94+1/0. 8+0.6/0.71+0.4/0.6
+40.3/0.5+0. 1/0. 4 (6.10)
very unlikely==z 0. 2/0.6-+0.3/0.54+0.5/0. 44+0.6/0. 3
+1/0.2+1/0. 1-+1/0. (6. 11

Fuzzy Decisional Algorithms

A fuzzy decisional algorithm is a fuzzy algorithm which
serves to provide an approximate description of a strategy or
decision rule. Commonplace examples of such algorithms , which
we use for the most part on a subconscious level, are the
algorithms for parking a car, crossing an intersection,
transferring an object,buying a house,etc.

To illustrate the notion of a fuzzy decisional algorithm ., we
shall consider two simple examples drawn from our everyday
eXperiences.

Example —Crossing a traffic intersection: It is convenient to
break down the algorithm in question into several
subalgorithms, each of which applies to a particular type of
intersection. For our purposes,it will be sufficient to describe
only one of these subalgorithms, namely, the subalgorithm
SIGN,which is used when the intersection has a stop sign. As in
the case of other examples in this section. we shall make a
number of simplilying assumptions in order to shorten the
description of the algorithm,

Algorithm INTERSECTION ,
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1)IF signal lights THEN call SIGNAIL ELSE IF stop sign
THEN call SIGN ELSE IF blinking light THEN call BLINKING
flse CALL UNCONTROLLED

Subalgorithm SIGN ;

1) IF no stop sign on your side THEN IF no cars in the
intersection THEN cross at normal speed ELSE wait for cars to
leave the intersection and then cross.

2> TF not close to intersection THEN continue approaching
at normal speed for a few seconds;go to 2).

3) Stow down,

4) IF in a great hurry and no police cars in sight and no cars
in the intersection or its vicinity THEN cross the intersection at
slow speed.

5) IF wery close to intersection THEN stop; go to 7).

6) Continue approaching at very slow speed; go to ).

7) IF no cars approaching or in the intersection THEN
Cross.,

8) Wait a few seconds; go to 7).

It hardly needs saving that a realistic version of this
algorithm would be considerably more complex. The important
point of the example is that such an algorithm could be
constructed along the same lines as the highly simplified version
just described. Furthermore, it shows that a fuzzy algorithm
could serve as an effective means of communicating know-how
and experience.

As a final example, we consider a decisional algorithm for
transferring a blindfolded subject H from an initial position start

to a final position geal under the assumption that there may be
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an obstacle lying between start and goal (see Fig.4). (Highly
sophisticated nonfuzzy algorithms of this type for use by robots
are incorporated in Shakey, the robot built by the Artificial
Intelligence Group at Stanford Research Institute. A description
of this robot is given in {201. )
The algorithm, labeled OBSTACLE, is assumed to be used

by a human controller C who can observe the way in which H
executes his instructions. This fuzzy feedback plays an essential
role in making it possible for C to direct H to goal in spite of the
fuzziness of instructions as well as the errors in their execution
by H. The algorithm OBSTACLE consists of three
subalgorithms : ALIGN,HUG, and STRAIGHT. The function
of STRAIGHT is to transfer H from start to an intermediate goal
I-goal, »and then from [-goal, to goal. (See Fig. 3) The function
of ALIGN is to orient ¥ in a desired direction; the function of
HUG is to guide H along the boundary of the obstacle until the
goal is no longer obstructed.

t poct

-qunll\

HUG

I-gool

slort
Fig. 3. Problem of transferring blindfolded subject from start to goa.

Instead of describing these subalgorithms in terms of fuzzy
conditional statements as we have done in previous examples.,it is

instructive to convey the same information by flowcharts, as
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shown tn Figs. 4~ 6. In the flowchart of ALIGN,e denoctes the
error in alignment., and we assume for simplicity that ¢ has a
constant sign. The flowcharts of HUG and STRAIGHT are sell-
explanatory. Expressed in terms ol fuzzy conditional statements,
the flowchart of STRAIGHT, for example, translates into the
following instructions.

Subalgorithm STRAIGHT .

1) IF not close THEN take a step;go to 1),

2) IF not very close THEN take a smali stepigo to 2),

3) IF not very very close THEN take a very small step;go to
3).

4) Stop.

twa & turn by ;ﬂ

win o fike € W by 15

ERROR 5 too veey hitle £ {utue

Wt very weey Gl
A € close 30 3O
B¢ close 10 O

C = ¢ wery tlose 0 (Q°

510F

- IURN

Fig. 4. Subalgorithm ALIGN.
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STRAKGHT

Fig. 5. Subalgorithm HUG.

(5TaRY )}
YES

NO TAKE

Fig. 6. Subalgorithm STRAIGHT.
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7. Concluding Remarks

In this and the preceding sections of this paper, we have
attempted to develop a conceptual framework for dealing with
systems which are tco complex or too ill-defined to admit of
precise quantitative analysis. What we have done should be
viewed, of course, as merely a first tentative step in this
direction. Clearly, there are many basic as well as detailed
aspects of our approach which we have treated incompletely .if at
all. Among these are qucstions relation to the role of fuzzy
feedback in: the execution of fuzzy algorithms;the execution of
fuzzy algorithms by humans; the conjunction of {fuzzy
instructions; the assessment of the goodness of fuzzy
algorithms; the implications of the compositional rule of
inference and the rule of the preponderant alternative;and the
interplay between fuzziness and probability in the behavior of
humanistic systems.

Nevertheless,even at its present stage of development ,the
method described in this paper can be applied rather effectively to
the formulation and approximate solution of a wide variety of
practical problems, particularly in such fields as economics,
management science, psychology,linguistics,taxonomy . artificial
intelligence ,information retrieval ,medicine ,and biology. This is
particularly true of those problem areas in these fields in which
fuzzy algorithms can be drawn upon to provide a means of

description of ill-defined concepts,relations,and decision rules.
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Part 3:Linguistic variable
and approximate reasoning




- ———————



The Concept of a Linguistic Variable and its
Application to Approximate Reasoning- [

1. Intreduction

One of the fundamental tenets of modern science is that a
phenomenon cannot be claimed to be well understood until it can
be characterized in quantitative terms. ¥ Viewed in this
perspective, much of what constitutes the core of scientific
knowledge may be regarded as a reservoir of concepts and
techniques which can be drawn upon to construct mathematical
models of various types of systems and thereby yield quantitative
information concerning their behavior.

Given our veneration for what is precise,rigorous and quan-
titative ,and our disdain for what is fuzzy,unrigorous and qualita-
tive,it is not surprising that the advent of digital computers has
resulted in a rapid expansion in the use of quantitative methods
throughout most fields of human knowledge. Unquestionably,

computers have proved to be highly effective in dealing with

@ As expressed by Lord Kelvin in 1883{1],“In physical science a first essential
step in the direction of learning any subject is to find principles of numerical reckoning
and practicable methods for measuring some quality connected with it. 1 often say that
when vou can measure what you are speaking about and express it in numbers, you
know something about it;but when you cannot measure it.when FOU CANNOT eXPress it
in numbers. your knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge but you have scarcely.in your thoughts ,advanced to the stare
of science .whatever the matier may be. ”
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mechanistic systems, that is, with inanimate systems whose
behavior is governed by the laws of mechanics,physics .chemistry
and electromagnetism. Unfortunately, the same cannot be said
about humanistic systems ,Pwhich —so far at least —have proved
to be rather impervious to mathematical analysis and computer
simulation. Indeed, it is widely agreed that the use of computers
has not shed much light on the basic issues arising in philosophy,
psychology, literature, law, politics s sociclogy and other human-
oriented fields. Nor have computers added significantly to our
understanding of human thought processes —excepting.perhaps,
sotme examples to the conirary that can be drawn from artificial
intelligence and related fields{2,3,4,5.51].

It may be argued.as we have done in[6]Jand[7], that the
ineffectiveness of computers in dealing with humanistic systems
is a manifestation of what might be called the principle of
incompatibility —a principle which asserts that high precision is
incompatible with high complexity. ® Thus, it may well be the
case that the conventional techniques of system analysis and
. computer simulation—based as they are on precise manipulation
of numerical data—are intrinsically incapable of coming to grips
with the great complexity of human thought processes and

decision-making. The acceptance of this premise suggests that,in

L By a humanistic system we mean a system whose behavior is strongly
influenced by human judgement. perception or emotions. Examples of humanistic
systems are;econcmic systems, political systems. legal systems ,educaticnal systems.
ete. A single individual and his thought processes may also be viewed as a humanistic
system.

@) Stated somewhat mare concretely, the complexity of a system and the
precision with which it can be analyzed bear a roughly inverse relation to one ancther.
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order to be able to make significant assertions about the behavior
of humanistic systems.it may be necessary to abandon the high
standards of rigor and precision that we have become conditioned
to expect of our mathematical analyses of well-structured
mechanistic systems, and become more tolerant of approaches
which are approximate in nature. Indeed, it 1s entirely possible
that only through the use of such approaches could computer
simulation become truly effective as a tool for the analysis of
systems which are too complex or too ill-defined for the
application of conventional quantitative techniques.

In retreating from precision in the face of overpowering
complexity, it is natural to explore the use of what might be
called lingurstic variables,that is,variables whose values are not
numbers but words or sentences in a natural or artificial
language. The motivation for the use of words or sentences
rather than numbers is that linguistic characterizations are,in
general ., less specific than numerical ones. Fox example, in
speaking of age,when we say“John is young, "we are less precise
than when we say. “John is 25. "In this sense, the label young
may be regarded as a linguistic value of the variable Age, with
the understanding that it plays the same role as the numerical
value 25 but is less precise and hence less informative, The same
is true of the linguistic values very young.not young,extremely
young, not very vyoung,etc. as contrasted with the numerical
values 20,21,22,23, .

If the values of a numerical variable are visualized as points
in a plane,then the values of a linguistic variable may be likened

to ball parks with fuzzy boundaries. In fact,it is by virtue of the
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employment of ball parks rather than points that linguistic
variables acquire the ability to serve as a means of approximate
characterization of phenomena which are too complex or oo ill-
defined to be susceptible of description in precise terms, What is
also important, however, is that by the use of a so-cailed
extension principle ,much of the existing mathematical apparatus
of systems analysis can be adapted to the manipulation of
linguistic varables. In this way, we may be able to develop an
approximate calculus of linguistic variables which could be of use
in a wide variety of practical applications.

The totality of values of a linguistic variable constitute its
term-set » which in principle could have an infinite number of
elements. For example,the term-set of the linguistic variable Age
might read
T(Age) =young+not young +very young +not very young +uvery

very young -+ told+not old +very old -+ not very old +

r+not very young and not very old + «+ +middie-aged

+not middie-aged + - +not old and not middle-aged +

s +extremely old—+ -, (1.1}

in which + is used to denote the union rather than the arithmetic

sum. Similarly, the term — set of the linguistic variable
Appearance might be

T'(Appearance) = beautiful + pretty -+ cute + handsome + attractive

+not beautiful +very pretty+very very handsome + more

or less pretry + quite pretty + quite handsome + Jairly

handsome +not very attractive and not very unattractive +

In the case of the linguistic variable Age,the numerical variable
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age whose values are the numbers 0.1.2,3,++,100 constitutes
what may be called the base variable for Age. In terms of this
variable,a linguistic value such as young may be interpreted as a
label for a fuzzy restriction on the values of the base variable.
This fuzzy restriction is what we take to be the meaning of
young.

A fuzzy restriction on the values of the base variable is
characterized by a compatibility function which associates with
each value of the base variable a number in the interval [0,1]
which represents its compatibility with the fuzzy restriction. For
example ,the compatabilities of the numerical ages 22,28 and 35
with the fuzzy restriction labeled young might be 1,0.7 and 0. 2,
respectively. The meaning of voung,then,would be represented
by a graph of the form shown in Fig. 1, which is a plot of the
compatibility function of young with respect to the base vanable
age.

I

compokibility

ot - - - - - -

of -—-—----

og¢
base worighis —/

Fig. 1. Compatibility function for vouny.

The conventional interpretation of the statement “John is

young,”is that John is a member of the class of voung men.
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However .considering that the class of young men is a fuzzy set,
that is.there is no sharp transition from being young to not being
young.the assertion that John is a member of the class of young
men is inconsistent with the precise mathematical definition of*is
a member of. "The concept of a linguistic variable allows us to
get around this difficulty in the following manner.

The name “John" is viewed as a name of a composite
linguistic variable whose components are linguistic variables
named Age,Height Weight,Appearance setc. Then the statement

“John is young”is interpreted as an assrgnment equation(Fig. 2).

JOHN

I

AGE HEWGHT

YOUNG SHORT -»—LINGUISTIC VALUE

AGE { JOHN} = YOUNG

x 15 SMALL —=—= R{x} = SMALL
ESTRICTION OMN &

Fig. 2. Assighment of linguistic values 10 attributes of
John and ».

Age= yvoung
which assigns the value young to the linguistic variable Age. In
turn, the value young is interpreted as a label for a fuzzy
restriction on the base variable age, with the meaning of this

fuzzy restriction defined by its compatibility function. As an aid
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in the understanding of the concept of a linguistic variable .Fig. 3
shows the hierarchical structure of the relation between the
linguistic variable Age.the fuzzy restrictions which represent the
meaning of its values.and the values of the base variable age.

There are several basic aspects of the concept of a linguistic
variable that are in need of elaboration.

" First, it is important to understand that the notion of
compétibility is distinct from that of probability. Thus, the
statement that the compatibility of .say, 28 with voung is 0. 7,has
no relation to the probability of the age-value 28, The correct

interpretation of the compatibility-value 0. 7 is that it

AGE [=—LINGLISFIC vARIABLE

FUIXY RESTRICTHON

VALYES
r OF AGE
vEFY YOung young old
‘l. \\ ...-*"# \\\
1,/ 08/ 06 g ° ' 0608/ 03l |

20 2% 3% 33 L7 55 60 &85 0ge
BASE VARIABLE

Fig. 3. Hierarchical structure of a linguistic variable.

is merely a subjective indication of the extent to which the age-
value 28 fits one’s conception of the label young. As we shall see
in later sections, the rules of manipulation applying to
compatibilities are different from those applying to probabilities,
although there are certain parallels between the two.
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Second ,we shall usually assume that a linguistic variable is
structured in the sense that it is associated with two rules. Rule
(i),a syntactic rule,specilies the manner in which the linguistic
values which are in the term-set of the variable may be
generated. In regard to this rule,our usual assumption will be
that the terms in the term-set of the variable are generated by a
context-free grammar.

The second rule, (ii),.is a semantic rule which specifies a
procedure for computing the meaning of any given linguistic
value. In this connection, we observe that a typical value of a
linguistic variable.e. g. snot very young and not very old ,involves
what might be called the primary terms,e. g. , young and old,
whose meaning is both subjective and context-dependent, We
assume that the meaning of such terms is specified a priori.

In addition to the primary terms, a linguistic value may
involve connectives such as and, or, either, neither. etc, s the
negation nof; and the hedges such as very, more or less.
completely ,quite, fairly ,extremely ,somewhat sete. As we shall see
in later sections,the connectives, the hedges and the negation
may be treated as operators which modify the meaning of their
operands in a specified,context-independent fashion. Thus,if the
meaning of young is defined by the compatibility function whose
form is shown in Fig. 1.then the meaning of very young could be
obtained by squaring the compatibility function of young. while
that of not young would be given by subtracting the compatibility
function of young from unity(Fig. 4). These two rules are special
instances of a more general semantic rule which is described in
Part 1 ,Sec. 2.

128

S E——



§ compalidikity

/M
Nt youny

Yy yousy

age

Fig. 4. Compatibilities of young,nol young .and
TEry YOung.

Third, when we speak of a linguistic variable such as Age,
the underlying base variable ,age,is numerical in nature, Thus,in
this case we can define the meaning of a linguistic value such as
woung by a compatibility function which associates with each age
in the interval [0, 100]a number in the interval [0, 1 Jwhich
represents the compatibility of that age with the label young.

On the other hand, in the case of the linguistic variable
Appearance,we do not have a well-defined base variable;that is,
we do not know how to express the degree of beauty,say,as a
function of some physical measurements. We could still associate
with each member of a group of ladies, for example.a grade of
membership in the class of beautiful women,say 0.9 with Fay,
0.7 with Adele, 0. 8 with Kathy and 0. 9 with Vera, but these
values of the compatibility function would be based on
impressions which we may not be able to articulate or formalize
in explicit terms. In other words, we are defining the
compatibility {function not on a set of mathematically well-
defined objects, but on a set of labeled impressions. Such
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definitions are meaningful to a human but not —at least directly
—to a computer, ¥

As we shall see in later sections.in the first case,where the
base variable is numerical in nature, linguistic variables can be
treated in a reasonably precise fashion by the use of the extension
principle for fuzzy sets. In the second case. their treatment
becomes much more qualitative. In both cases, however, some
computation is involved —to a lesser or greater degree. Thus, it
should be understood that the linguistic approach is not entirely
gualitative in nature. Rather, the computations are performed
behind the scene, and. at the end, linguistic approzimation is
employed to convert numbers into words (Fig. 5).

A particularly important area of application for the concept
of a linguistic variable is that of approximate reasoning .by which
we mean a type of reasoning which is neither very precise nor
very imprecise. As an illustration, the following inference would
be an instance of approximate reasoning;

x 1s small,
x and vy are approximately equal;
therefore,
¥ 1s more or less small.

The concept of a linguistic variable enters into approximate
reasoning as a result of treating Truth as a linguistic variable
whose truth-values form a term-set such as shown below,

T (Truth) =true + not true + very true + completely true +

i) The basic problem which is involved here i= that of abstraction from a set of
samples of elements of & fuzzy set. A discussion of this problem may be found in[87.

136




more or less true + fairly true ¥+ essentially true -+

- + false + very false + neither true nor false +

-
-

bn
ery small__ . very small and not vesy lorge
small l' Qrge
‘.
wry large
la} *
4»

e

{b) X

Fig. 5. {a)Compatibilities of small svery small Jlarge .very large
and not very small and not very large. (b)The problem of
linguistic approximation is that of inding an approximate

linguistic characrerization of a given compatibility function.

The corresponding base variable, then, is assumed to be a
number in the interval[0,1],and the meaning of a primary term
such as true is identified with a fuzzy restriction on the values of
the base variable. As usual,such a restriction is characierized by
a compatibility function which associates a number in the interval
[ 0y 11} with each numerical truth-value. For example, the
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compatibility of the numerical truth-value 0. 7 with the linguistic
truth-value very true might be 0.6, Thus,in the case of truth-
values , the compatibility function is a mapping from the unit
interval to itself. (This will be shown in Part I ,Fig. 13.)

Treating truth as a linguistic variable leads to a fuzzy logic
which may well be a better approximation to the logic involved in
human decision processes than the classical two-valued logic, V
Thus, in fuzzy logic it is meaningful to assert what would be
inadmissibly vague in classical logic,e. g. »

The truth-value of “Berkeley is close to San Francisco.”

is guite true.

The truth-value of“Palo Alto is close to San Francisco,”

is fairly true.

Therefore,
the truth-value of*Palo Alto is more or less
close to Berkeley, "is more or less true.

Another important area of application for the concept of a
linguistic variable lies in the realm of probability theory. If
probability is treated as a linguistic variable,its term-set would
typically be.

T (Probability ) = likely +very likely+unlikely +extremely likely
+ fairly likely + «+ + probable + improbable + pore
or less probable-f .

By legitimizing the use of linguistic probability-values, we

make it possible to respond to a question such as“What is the

probability that it will be a warm day a week from today?”with

(' Expositions of alternative approaches to vagueness may be found in[9~18].
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an answer such as fairly high ,instead ol .say,0. 8. The linguistic
answer would,in general. be much more realistic, considering ,
first, that warm day 1s a fuzzy event, and, second, that our
understanding of weather dynamics is not sufficient to allow us
to make unequivocal assertions about the underlying
probabilities.

In the following sections,the concept of a linguistic variable
and its applications will be discussed in greater detail. To place
the concept of a linguistic variable in a proper perspective, we
shall begin our discussion with a formalization of the notion of a
conventional (nonfuzzy } variable. For our purposes. it will be
helpful to visualize such a variable as a tagged valise with rigid
(hard)sides (Fig. 6). Putting an object into the valise corresponds
to assigning a value to the variable,and the restriction on what
can be put in corresponds to a subset of the universe of discourse
which comprises those points which can be assigned as values to
the variable, In terms of this analogy.a fuzzy variable,which is
defined in Part I ,Sec. 1.may be likened to a tagged valise with
soft rather than rigid sides {Part 1, Fig.1). In this case, the
restriction on what can be put in is fuzzy in nature,and is defined
by a compatibility function which associates with each object a
number in the interval[ 0,1 Jrepresenting the degree of ease with
which that object can be fitted in the valise. For example.given a
valise named X, the compatibility of a coat with X would be 1,
while that of a record-player might be 0. 7.

As will be seen in Part 1 ,Sec. 1,an important concept in
the case of fuzzy variables is that of noninteraction, which is

analogous to the concept of independence in the case of random
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Fig. 6. lllustration of the valise analogy for a unary nonfuzzy

variable.

variables, This concept arises when we deal with two or more
fuzzy variables,each of which may be likened to a compartment
in a soft valise. Such fuzzy variables are interactive if the
assignment of a value to one affects the fuzzy restrictions placed
on the others. This elfect may be likened to the interference
between objects which are put inte different compartments of a
soft valise(Part 1 ,Fig. 3).

A linguistic variable is defined in Part I ,Sec. 2 as a variable
whose values are fuzzy variables. In terms of our valise znalogy,a
linguistic variable corresponds to a hard valise into which we can
put soft valises,with each soft valise carrying a name tag which
describes a fuzzy restriction on what can be put into that valise
{Part 1 ,Fig.5).

The application of the concept of a linguistic variable to the
notion of Truth is discussed in Part 1 ,Sec. 3. Here we describe a
technique for computing the conjunction, disjunction and
negation for linguistic truth-values and lay the groundwork for
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fuzzy logic.

In Part K, Sec. 1, the concept of a linguistic variable is
applied to probabilities, and it is shown rthat linguistic
probabilities can be used for computational purposes. However,
because of the constraint that the numerical probabilities must
add up to unity ,the computations in question involve the solution
of nonlinear programs and hence are not as simple to perform as
computations involving numerical probabilities.

The last section is devoted to a discussion of the so-called
compositional rule of inference and its application to approximate
reasoning. This rule of inference is interpreted as the process of
solving a simultaneous system of socalled relational assignment
equations in which linguistic values are assigned to fuzzy
restrictions. Thus, if a statement such as “x is small” is
interpreted as an assignment of the linguistic value small to the
fuzzy restriction on =z, and the statement “x and y are
approximately equal”is interpreted as the assignment of a fuzzy
refation labeled approrimately equal to the fuzzy restriction on
the ordered pair (., y), then the conclusion“y is more or less
smal] "may be viewed as a linguistic approximation to the solution
of the simultaneous equations

R(x)=small,
R{x.y)=approximately equal ,
in which R(x)and R(x,y)denote the restrictions on x and(x,y),
respectively (Part I ,Fig.5).

The compositional rule of inference leads to a generalized

modus ponens, which may be viewed as an extension of the

familiar rule of inference.If A is true and A implies B.then B is
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true. The section closes with an example of a fuzzy theorem in
elementary geometry and a brief discussion of the use of fuzzy
flowcharts for the representation of definitional fuzzy
algorithms.

The material 1n Secs. 2 and 3 and in Part I, Sec. ] is
intended to provide a mathematical basis for the concept of a
linguistic variable, which is introduced in Part 1, Sec. 2. For
those readers who may not be interested in the mathematical
aspects of the theory,it may be expedient to proceed directly to
Part I ,Sec. 2 and refer where necessary to the definitions and

results described in the preceding sections.
2. The concept of a variable

In the preceding section,our discussion of the concept of a
linguistic variable was informal in nature. To set the stage for a
more formal definition, we shall focus our attention in this
section on the concept of a conventional (nonfuzzyvariable. Then
in Sec. 3 we shall extend the concept of a variable to fuzzy
variables and subsequently will define a linguistic variable as a
variable whose values are fuzzy variables,

Although the concept of a (nonfuzzy ) variable is very
elementary in nature, it is by no means a trivial one, For our
purposes.the following formalization of the concept of a variable
provides a convenient basis for later extensions.

Definition 2. 1. A variable is characterized by a triple (X,U,

R{X;u)),in which X is the name of the variable ;{7 is a universe
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of discourse (finite or infinite set};u is a generic'’ name for the
elements of U;and R(X;u)is a subset of IJ which represents a
restriction® on the values of u imposed by X. For convenience,we
shall usually abbreviate R(X;u) 1o R(X) or R(u) or R{(x),
where x denotes a generic name for the values of X, and will
refer to R(X) simply as the restriction on u or the restriction
imposed by X.

In addition, a variable is associated with an assignment

equation
r=ut R(X) 2.1
or equivalently
z=u.u€ R(X) (2. 2)
which represents the assignment of a value « to x subject to the
restriction R(X). Thus.the assignment equation is satisfied 1{f il
and only if Ju€ R(X).

Ezxample 2.1. As a simple illustration consider a variable
named age. In this case, UV might be taken to be the set of
integers 0,1,2,3,+,and R{X) might be the subset 0,1,2,+,
100G,

More generally,let X,,++,X, be » variables with respective
universes of discourse I, ++,U/,. The ordered n-tuple X = (X,,
oo X, )will be referred to as an n-ary composite (or joint)variable.

The universe of discourse for X is the Cartesian product

D' A generic name i1s a single name tor all elements of a set. For simplicity , we
shall frequently use the same symbol for both a set and the generic name for its
elements.relying on the context {or disambiguation.

@ In conventional terminclogy. R (X ) is the range of X, Our use of the term
restriction is motivated by the role played by R(X) in the case of [uzzy veriables.

137




U=U XU X XU, {2.3)
and the restriction R(X,,>,X,)is an n-ary relation in U, X +++ X
UJ.. This relation may be defined by its characteristic
{membership Hunction g ¢+ U, X v XU ,—= {0,1} ,where
ey d=1 iy, v, YER(X . X)),
=0 otherwise, (2.4)
and u, is a generic name for the elements of U,,i =1, ++,a.

Correspondingly, the =n-ary assignment equation assumes the

form
Caysosanza) = Cuyyoeeyng,) t ROX 0000 X,0 (2.5)
which is understood to mean that
Xi=u;y =1, .n {(2.6)

subject to the restrictionCe,,++,#,) € R(X,,*, X, ) with z,,i=

1,-++yn,denoting a generic name for values of X,.

Example 2.2 Suppose that X, Bage of father,©X, Sage
of son,and [/, AU,={1,2,-,100). Furthermore , suppose that
x12x,+20(z and x, are generic names for values of X, and X,).
Then R(X,,X;)may be defined by

peloy s, ) =1 for 21<Ceu <100, 0,220, 20
=0 elsewhere. 2.7)

Marginal and conditioned restrictions
As in the case of probability distributions,the restriction R

(X, X,)imposed by (X,,++, X, )induces marginal restrictions

{1 The symbol Qstands for “denotes” or is *equal by definition. *
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R(X, ,»,X, Yimposed by composite variables of the form (X, ,
»+,X. ), where the index sequence ¢= (7, ,++,4;) is a subsequence
of the index sequence(1,2,+++,n), VIn effect yRUX, 4o+ 0 X, Dis the
smallest (1. e. , most restrictive Y restriction imposed by (X,-I R
X, Jwhich satisfies the implication
(e su)ER(X, -, X))
= ety o, JER(X; veee s XD (2.8)

Thus,a given &-tuple umé (u;,+=*"vu; dis an element of R(X, ,
oo, X, iff there exists an n-tuple « By YERX o 0 XD
‘whose ¢ th, <<, {, th components are equal to Wi %y Uy
respectively. Expressed in terms of the characteristic functions of

R(X,y*+,X,) and R (X; v+« X)) ,this statement translates into
the equation

R, o X, (1#11 sy A=
Vouig s rex e x st 51, ) (2. 9)
or more compactly
#mxmn(ﬂcqa)=Vu[q.,ﬁmx:(u}a (2.10}
where ¢" is the complement of the index sequence g=(i,,+++,4;)
relative 10 (1,++*,n),u.is the complement of the &-tuple u,, &
(2t »*++ s 2, drelative to the n-tuple 2 8 (uypoee 1, . X, B (X; a0evy
X;)and V sy,denotes the supremum of its operand over the u's

which are in u,;. (Throughout this paper,the symbols V and A

stand for Max and Min,respectively;thus,

@ In the case of a binary relation R (X,, X2).R (X, )and R { X;)are usvally
referred 1o as the domain and range of R(X1. X5,
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for any real,a.b
aVb=Max(a.b)=a il az=b
=h if a<lb (2.11)
and
aAb=Minla.b)=a if asib
=4 if a>s,
Consistent with this notation,the symbol V. should be read as
“supremum over the values of z. ”)Since g can take only two
values — 0 or 1 — (2.10)means that prix o Cthg ) Bs 1 iff there
exists a uyy such that g, (w)=1.

Comment 2.1. There is a simple analogy which is very
helpful in clarifying the notion of a variable and related concepts.
Specifically, a nonfuzzy variable in the sense formalized in
Definition 2.1 may be likened to a tagged valise having rigid
(hard ) sides, with X representing the name on the tag, UJ
representing a list of objects which could be put in a valise,and R
(X ) representing a sublist of U which comprises those objects
which can be put into valise X. [For example, an object like a
hoat would not be in U, while an object like a typewriter might
be in U but not in R(X),and an object like a cigarette box or a
pair of shoes would be in R (X). ]In this interpretation, the
assignment eguation

r=ut R(X)
signifies that an object # which satisfies the restriction R(X) (..
e. »is on the list of objects which can be put intoc X)is put into X
(Fig. 6).

An n-ary composite variable X 8 (X,,-+,X.)corresponds to
a valise, carrying the name-tag X, which has » compartments
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named X,,+-, X, with adjustable partitions between them. The
restrictions R (X,,*+, X,)corresponds to a list of n-tuples of
objects a4+ u,)such that u, can be put in compartment X, «,
in compartment X,,+,and #, in compartment X, simultaneousiy.
(see Fig. 7. )In this connection.it should be noted that n-tuples
on this list could be associated with different arrangements of
partitions. If n=2,for example,then for a particular placement of
the partition we could put a coat in compartment X, and a suit in
compartment X,, while for some other placement we could put
the coat in compartment X, and a box of shoes in compartment
X,. In this event, both (coat, suit) and (shoes, coat) would be
included in the list of pairs of objects which can be put in X

simultaneously.

X /-—.diuﬂd ble pailidion
s

. ” hod

atiect —fem [ fefor[i] |=—

ofal

mme name
Fig. 7. Valise analogy for a binary nonluzzy variable,

In terms of the valise analogy,the n-ary assignment equation
(Zysovs,) = eom) t R(IX, s X))

represents the action of putting #, in X, -+, and u, in X,

stmultaneously, under the restriction that the n-tuple of objects

Cays =+ s, Jmust be on the R(X,, -, X,) list. Furthermore, a

marginal restriction such as R(X, ;-4 X.) may be interpreted as

a list of k-tuples of objects which can be put in compartments
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X, +++ X, simultaneously,in conjunction with every allowable
placement of objects in the remaining compartments,

Comment 2. 2. It should be noted that (2. 9)is analogous to
the expression for a marginal distribution of a probability
distribution, with V corresponding to summation ( or
integration }, However, this analogy should not be construed to
imply that R (X, X, dis in fact a marginal probability
distribution.

It is convenient to view the right-hand side of (2. 9) as the
characteristic function of the projection L of R(X,,-,X,) on U,
Xeee XU . Thus,in symbols,

R(X; s+ X, )=Proj R(X,,+, X} on U; X XU,
(2.12)
or more simply,
R(X, +o+ Xy )=P R(X\ X)),
where P, denotes the operation of projection on U; X «+ XU,
with ¢= (7,47 ).

Exampie 2. 3. In the case of Example 2. 2,we have
R(X)D)=P,R(X,,X;)=1{21,++,100},
R(X;)=P,R{X,+ X, )=1{1,++,80}.

Exampte 2.4. Fig. 8 shows the restrictions on u, and .

induced by R(X . X,).

An alternative way of describing projections is the

(I The term projection as used in the lirerarure is somewhat ambiguous in that in
could denote either the operation of projecting or the result of such an operation. To
avoid this ambiguity in the case of fuzzy relations.we will occasionally employ the term
shadow [19] to denote the relation resulting from applying an operation of projection to
another relation.
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RiX,) (X X2}

RUX,)

Fig. 8 Marginal restrictions induced by B(X,.X,).

following. Viewing R(X,,++*,X,) as a relation in U, X+ XU, .let
g' = (j1+*** s jm ) denote the index sequence complementary to ¢g=
(i vy i}y and ler R (X, X, | iy s ***s W; )OI, more
compactly, R (X, |y, )—denote a restriction in U, X XU,
which is conditioned on u, ,+**,u, . The characteristic function of
this conditioned restriction is defined by

HRiX. o X e, oo, y (uy t“"s!if‘)=}1mx e ;(Iﬁ ALEYTI I
1 4 fur ! ! u

(2.13)
or more simply [see (2.10)],
me{q,mw]:(ﬁcqr)=,¢fmx:(u)

with the understanding that the arguments w#; s+ u, on the
right-hand side of (2.13) are treated as parameters. In
consequence of this understanding. although the characteristic
function of the conditioned restriction is numerically equal to that
of R(X,, . X.,).it defines a relation in U; X XU, rather than
in Uy X e }XU,.

In view of (2.9),(2.12) and (2. 13}, the projection of &
(Xyye9 X0 on U; X+- XU, may be expressed as
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PqR(Xi!“‘an}_'__ U.—w}R(X,I '""Xr§|“:l""’“i“)* (2. 14)
where U,,,w,. denotes the union of the family of restrictions R

. a LE N3 .
(Xioo o X, lu, s+ vu; ) paramerrized by u, = Caey s v oty ).

Consequently, (2.14) implies that the marginal restriction R
(X s X, ) in Uy Xoooe XU, may be expressed as the union of
conditioned restrictions R(X,-] SEP CAE AL R D | NN

ROX; s X)) =U,, R(X, s X, lu, voesn; )y (2.15)
or more compactly,

R(X(q}}z UH{I’,?R(X[;'.; IH(Q".).

Example 2.5. As a simple illustration of (2.15), assume
that U, =U,2{3,5,7.9} and that R(X,,X,) is characterized by
the following relation matrix. [In this matrix,the (¢+7) th entry
is 1 iff the ordered pair (ith element of 7, jth element of {/,)
belongs to R(X,,X,). In effect, the relation matrix of a relation

R constitutes a tabulation of the characteristic function of R. ]

Ri3 5 7 9
3100 1 0
51 0 1 0
711 0 1 1
911 0 0 1

In this case,
R(X,) . X, |u,=3)=1{7},
RIX Xy, =5)=1{3,7},
RiX, ,X,|lu,=73=1{3,7.9},
RIX WX, |ly=9Y=1{3,9},
and hence
RO ={7YUJ{3,. 7} U{3,7,91 U {3.9}
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={3.7.9}.
Interaction and noninteraction

A basic concept that we shall need in later sections is that of
the interaction between two or more variables-a concept which is
analogous to the dependence of random variables. More
specifically,let the vanable X =(X,,++, X,) be associated with
the restriction R(X,, -+, X,),which induces the restrictions R
(X)) RCX,) oD 2ty 5t vrespectively,. Then we have

Definition 2. 2, X, «+, X, are noninteractive variables under
ROX v+ X, il R(X v+, X,) is separable.i. e, .

R(X v o X)=RIX I} X+ XR(X,}, (2.16)
where.for i=1,,n,
R(X,)=Proj) R{(X,,,. X)) on U,
= U, ,R(X;lug,), (2.17)
with,u#, 2 u, and u.,, & complement of «; in (E7RLLITIO N

Example 2. 6. Fig. 3(a) shows two noninteractive variables
X, and X; whose restrictions R(X,) and R(X,) are intervals,in
this case,R(X,, X,) is the Cartesian product of the intervals in
question. In Fig. 9(b),R(X,,X,) is a proper subset of R(X,) X
R(X,);and hence X, and X, are interactive, Note that in Example
2.3 + X,and X, are interactive.

As will be shown in a more general context in part I ,Sec.
1,if X,, -+ X, are noninteractive, then an n-ary assignment
equation

(s =0 u,) t R(X, . X)) (2.18)
can be decomposed into a sequence of » unary assignment

equations
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FHX;]{ 7 —R(X,.X,) = REXIxROX,)

(o} L - Uy
R(X,)
2
4
Hlx:]{ %—H{K“Xﬂc HlK,]lR(K:]
....... L '
(b) I ME——"Y

Fig. 9. (a)X, and X, are noninteractive.
{b)X, and X are interactive.
r=u + R(X)),
x:=u, * R(X,),

r.=u, * R(X,).

where R(X,),i=1,+,n, is the projection of R(X,,
{7,.and by Definition 2. 2,

R(X]'r"'aX")=R(X]}X"‘XR(X.,}.

(2. 19

==, X.) on

(2. 20)

In the case where X .-+, X, are interactive, the sequence of

n unary assignment equations assumes the following form [see
also Part 1 ,Eq. (1. 34)].
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x=u  R(X)), )
.1.‘-3:&!3 t R(X”H])*

»
[} - -
L] - L]

(2.2

Xe=Ht, t ROX, ey sty ).
where R(X; | .y u,_,Ydenotes the induced restriction on
conditioned on #,. ", #,—,. The characteristic function of this
conditioned restriction is expressed by[see(2.13)]

me_lul,---,u,._1nfﬁs)=ﬂmx,.+++.x,.:(ul*"‘aﬂr)r- (2.22)
with the understanding that the arguments u,. **,u,_, on the
right-hand side of (2. 22)play the role of parameters.

Comment 2. 3. In words, (2. 21 Ymeans that,in the case of
interactive variables,once we have assigned a value u, to x,.the
restriction on &, becomes dependent on u,. Then,the restriction
on u, becomes dependent on the values assigned to x, and .,
and, finally . the restriction on «, becomes dependent on #,, ***,
#,-;. Furthermore, (2. 22)implies that the restriction on #, given
2y, 18 essentially the same as the marginal restriction on
Ceeyo vy ;) with @y, ***, 4, treated as parameters. This
illustrated in Fig. 10.

Uz
""""""" R{X, Xz)
‘
SRR, :
RIX|w) ? P
e ——
Ri{X,}

Fig. 10, RUX; 4, 2is the restriction on u. conditioned on «,.
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In terms of the valise analogy{see Comment 2.1}.X,,, X,
are noninteractive if the partitions between the compartments
named X, ,X, are not adjustable. In this case,what is placed in
a compartment X, has no influence on the objects that can be
placed in the other compartments,

In the case where the partitions are adjustable, this is no
longer true,and X,, -, X, become interactive in the sense that
the placement of an object,say u,,in X, affects what can be placed
in the complementary compartments. From this point of view,the
sequence of unary assignment equations (2. 21 )describes the way
in which the restriction on compartment X, is influenced by the
placement of objects uys+=*yu;_yin X+  Xi_).

(Our main purpose in defining the notions of noninteraction,
marginal restriction, conditioned restriction, etc. for nonfuzzy
variables is (a)to indicate that concepts analogous to statistical
independence, marginal distribution, conditional distribution,
etc. +apply alse to nonrandom.nonfuzzy variables;and (b)to set
the stage for similar concepts in the case of fuzzy vanables, As a
preliminary ., we shall turn our attention to some of the relevant
properties of fuzzy sets and formulate an extension principle

which will play an important role in later sections.
3. Fuzzy sets and the extension principle

As will be seen in Part I ,Sec. 1,a fuzzy variable X differs

from a nonfuzzy variable in that it is associated with a restriction
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R (X ) which is a fuzzy subset of the universe of discourse, &
Consequently, as a preliminary to our consideration of the
concept of a fuzzy variable ,we shall review some of the pertinent
properties of fuzzy sets and state an extension principle which
allows the domain of a transformation or a relation in U’ to be
extended from points in U to fuzzy subsets of U,

Fuzzy sets-notation and terminology

A fuzzy subset A of a universe of discourse U is
characterized by a membership function py ¢ U-=[0, 1] which
associates with each element u of U a number g, (u)in the
interval[ 0, 1], with 4 (ut)representing the grade of membership
of z in A. PThe support of A is the set of points in U at which g,
(1 )is positive. The height of A is the supremum of z,(«)over U.
A crossover point of A is a point in U whose grade of membership
in Ais 0. 5.

Example 3.1, Let the universe of discourse be the interval
[0.1],with « interpreted as age. A fuzzy subset of U labeled old
may be defined by a membership function such as

i) =0,  for 0Ka<50, (3.1)

i

[ _ —-2=—-]
m(u)={:l+( 550] ] Jfor 50<u<C100.

In this case,the support of old is the interval[50,100];the height
of vid is effectively unity;and the crossover point of old is 55.

@ More detailed discussions of fuzzy sets and their properties may be lound in
the listed teferences, (A detailed exposition of the fundamentals rogether with many
illustrative examples may be found in the recent text by A. Kaufmann[200),

@ More generally,the range of 24 may be a partially or ordered set¢see[21],

(22])0r & collection of fuzzy sets, The latter case will be discussed in greater detail in
Sec. 6.
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To simplify the representation of fuzzy sets we shall employ
the following notation.

A nonfuzzy finite set such as

U={ﬂ|!'"!ﬂu} (3-2}
will be expressed as
U=wu,+u,+ - +u, (3.3
or
/= 2 i » (3.4)

=1
with the understanding that + denotes the union rather than the
arithmetic sum. Thus, (3. 3)may be viewed as a representation of
{7 as the union of its constituent singletons.
As an extension of (3.3),a fuzzy subset A of U7 will be

expressed as

A= gty 4+ g, (3.5)
Or
A= D) pes (3. 6)
i=1

where g,i =1, ,n,is the grade of membership of g in A. In
cases where the «, are numbers, there might be some ambiguity
regarding the identity of the g and «, components of the string
;. In such cases,we shall employ a separator symbol such as /
for disambiguation , writing

A=m/ut o+ p,/u, (3.7

or

A= D7 wifu,. (3.8)
=1

Example 3. 2. Let U={a.,b,c.d}or,equivalently,
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U=a+b+c+d. (3.9
In this case, a fuzzy subset A of U/ may be represented
unambiguously as
A=0. 3a+54+0. 9+ 0. 5d, (3.1
On the other hand,if
U=1+4+2+--4+100, (3.11)
then we shall write
A=0.3/25+0.9/3 (3.12)
in order to avoid ambiguity.
Example 3.3. In the universe of discourse comprising the
integers 1,2+-+,10,1. .,
U=1+2++410, {3.13)
the fuzzy subset labeled several may be defined as
several=0.5/3+0.8/4+1/5+1/64+0.8/7+0. 5/8.
(3.14)
Example 3.4. In the case of the countable universe of
discourse
U=0+142+--, (3.15)
the fuzzy set labeled small may be expressed as

L

small= Y [1+(T“5}2]r1m, (3.16)

]

Like(3. 3),(3. 5Ymay be interpreted as a representation of a
fuzzy set as the union of its constituent fuzzy singletons wu, (or
#/u:). From the definition of the union[see(3.34}],it follows
that if in the representation of A we have u, =u;,then we can
make the substitution expressed by

Ak, g = (e Vo Y, {(3.17)
For example .,
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A=0.3a+0.8a+0. 5 (3. 18
may be rewritten as
A=(0.3V0.8)a0.5
=0. 8a+0. 55, (3.19)
When the support of a fuzzy set is a continuum rather than a
countable or a finite set.we shall write
A=Iﬂa(u)r’u1 (3. 200
LF
with the understanding that g,(«)is the grade of membership of
u in A,and the integral denotes the union of the fuzzy singletons
palu)/uuclU.
Example 3. 5. In the universe of discourse consisting of the
interval[0,100]),with u=age,the fuzzy subset labeled o/id[whose
membership function is given by (3. 1) Jmay be expressed as

Ik

old = J [1+[”_55”)_2]_1xu. (3. 21)

56
Note that the crosscover point for this set,that is,the point # at

which

Haalu)=0.5, (3. 22)
18 u=55.
A fuzzy set A is said to be normal if its height is unity,that
is,if
SEP palu)=1. (3. 23)
Otherwise A is submormal. In this sense, the set old defined by
(3. 21)is normal,as 1s the set several defined by(3.14). On the
other hand ,the subset of U=1424++410 labeled nor small and
not large and defined by
not small and not large=0.2/24+0.3/34+0. 4/44+0.5/5
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~+0.4/640.3/7+0.2/8 (3. 24)
is subnormal. It should be noted that a subnormal fuzzy set may

be normalized by dividing g, by Supg,(2),

A fuzzy subset of I may be a subset of another fuzzy or
nonfuzzy subset of U/, More specifically , A is a subset of B or is
contained in B iff ()< pp(udor all 4 in U, In symbols,

ACBSua(uys pmplu), u€lU. (3.25)

Exampie 3.6.1f U=a+b+c+d and

A=0, 5a+0. 8+0. 34,

B=0.7a+6+0. 3c+d, (3.26)
then ACB.
Level-sets of a fuzzy set

If A is a fuzzy subset of U/, then an a-level set of A is a
nonfuzzy set denoted by A, which comprises all elements of U
whose grade of membership in A is greater than or equal to a. In
symbols, )

A.={ulp,(u) el (3.27)

A fuzzy set A may be decomposed into its level-sets through
the resolution identity®

1
A= | a4, (3. 28)
1]
or
A= D" aA, (3.29)

where aA,is the preduct of a scalar a with the ser A.[in the sense

) The resclution identity and some of its applications are discussed in greater
y detail in[6Jand[24].
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1
of (3. 39)],andj (or Z ) is the union of the A» with a ranging
0

from 0 to 1.

The resolution identity may be viewed as the resule of
combining together those terms in (3. 5) which fall into the same
level-set. More specifically, suppose that A is represented in the
form

A=0.1/24+0.3/140.5/74+0.9/6+1/9. (3. 30)
Then by using (3.17}, A4 can be rewritten as
A=0.1/240.1/14+0.1/74+0. 1/6+0.1/9
+0.3/1 +0.3/740. 3/6+0.3/9
+0.5/7+0.5/64+0.5/9
+0.9/6 +0.9/9
+1/9
or
A=0.10/724+1/1+1/7+1/6+1/9)
+0.3(1/1+1/7+1/6+1/9)
+0. 50 /7+1/6+1/9)
+0.9(1/64+1/9)
+1(1/9), (3.31)
which is in the form (3.29), with the level-sets given by [see
(3.27)]
Ao 1=2+14+7+6+9,
Ay ;=1+7+6+9,
ac=71T6+9,
Ap =619,
A,=9, (3. 32}
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As will be seen In later sections. the resolution identity—in
combination with the extension principle —provides a convenient
way of generalizing vartous concepts associated with nonfuzzy
sets to fuzzy sets. This, in fact, is the underlying basis for many
of the definitions stated in what follows,

Qperations on fuzzy sets

Among the basic operations which can be performed on

fuzzy sets are the following.

1. The complement of A is denéted by 1 A(or sometimes by
A" and is defined by

- A=J[1—P4(u)]fu.' (3.33)
i

The operation of complementation corresponds to negation.
Thus, if A is a label for a fuzzy set, then not A would be
interpreted as 1 A, (See Example 3. 7 below. )

2. The union of fuzzy sets A and B is denoted by A+ Bor,
more conventionally, by AlJB) and is defined by

A+B=j[pﬂ(u)Vﬁn(u)]/u. (3. 34)
2

The union corresponds to the connective or. Thus, if A and B
are labels of fuzzy sets,then A or B would be interpreted as A+
B,

3. The intersection of A and B is denoted by A B and is
defined by

ANB= J[p,,(u).-"".pn(uJ]z’u. (3.35)
B
The intersection corresponds to the connective and; thus

A and B=ANB. {3.36)
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Comment 3. 1. It should be understood that ¥ (2Max) and

A (AMinYare not the only operations in terms of which the
union and intersection can be defined. (See {25] and [26] {or
discussions of this point. ) In this connection, it is important to
note that when and is identified with Min, as in (3.36), it
represents a “hard” and in the sense that it allows no trade-offs
between its operands. By contrast., an and identified with the
arithmetic preduct, as in (3. 37) below, would act as a “soft”
and. Which of these rwo and possibly other definitions is more
appropriate depends on the context in which and 1s used,

4. The product of A and B is denoted by AA and is defined
by

AB= J,ua(u),uﬁ(u)fu. (3. 37>
f

Thus, A", where a is any positive number, should be interpreted

as
A= J‘ Leealec)] /. (3. 38)
2

Similarly, i «is any nonnegative real number such that « Sup,z,

(H }él gthen

aA= J‘a,u,‘(u}/u. (3. 39)

L

As a special case of (3.38), the operation of concentration is

defined as

CON(AY=A2, (3. 40)
while that of dilation is expressed by
DIL(A)=A%3 (3.41)

As will be seen in Part [, Sec.3, the operations of
156




concentration and dilation are useful in the representation of
linguistic hedges.

Exumple 3.7. I

U=1+42++-4+10,
A=0.8/3+1/5+0.6/6, (3.42)
B=0.7/3+1/44+0.5/6,
then
N A=1/1+1/240.2/3+1/4+0.4/64+1/7+1/8+1/9+1/10,
A+B=0.8/3+1/44+1/54+0.6/6.
ANB=0.7/34+0.5/6,
AB=0.56/340Q, 3/6,
A’=0.64/3+1/54+0. 36/6, (3.43)
0.44=0.32/3+0.4/5+0. 24/6,
CON(B)Y=0.49/3+1/4+0.25/6,
DIL(B)Y=0.84/3+1/4+0.7/6.

5 1 Ay, A, are fuzzy subsets of U/, and w,. . w, are
nonnegative weights adding up to unity, then a conver
combination of A, ++4+ A, is a fuzzy set A whose membership
function is expressed by

#A=W1FA!+"'+W,¢#A”& (3. 44)
where + denotes the arithmetic sum. The concept of a convex
combination is useful in the representation of linguistic hedges
such as essentially. typically, etc., which modify the weights
associated with the components of fuzzy set [27].

6. If Ajv--, A, are fuzzy subsets of U|,-++,U,, respectively,
the Cartesian product of A,,++,A,is denoted by A, X+ X A, and
is defined as a fuzzy subset of U, X -+ XU, whose membership
function is expressed by
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,u,llxu.mn(ul."',u,,)=,u,;l(ul) A Aps (u,). (3.45)

Thus, we can write [see (3.52)]
A Ko XA, = J Cs, ) A ooe A g, )]/ Gty yoon ).
U e,
(3. 46)
Example 3.8. U, =U,=34+5+7,4,=0.5/3+1/5+0.6/7
and A;=1/3+0. 6/5,then
AXA;=0.5/(3,3)+1/(5,3)+0.6/(7,3)
+0.5/(3,5)40.6/(5,5+0.6/(7,5).
(3.47)
7. The operation of fuzzification has, in general, the effect
of transforming a nonfuzzy set into a fuzzy set or increasing the
fuzziness of a fuzzy set. Thus, a fuzzifier F applied to a fuzzy

subset A of { yields a fuzzy subset F(A;K) which is expressed
by
FUK = | g K @), (3. 48)
v
where the fuzzy set K () is the kernel of F, that is, the result of
applying F to a singleton 1/u;
KG)=FQ/u;K); (3.49)
40 YK (1) represents the product [in the sense of (3.39) of a

scalar pa(u) and the fuzzy set K(«); and j is the union of the

family of fuzzy sets g () K {(u), € U, In effect, (3.48) is
analogous to the integral representation of a linear aperator.

with K (#) being the counterpart of the impulse response.
Example 3.9. Assume that {f, 4 and K () are defined by
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U=142+3+4,
A—_"'O'r 8/14_0' 5;29

(3. 50)
K()=1/140.4/2,
K(2)=1/2+0.4/1+0.4/3.
Then
F(A;K)>=0.8¢1/140.4/2)+0. 6¢1/24+0. £/1+0. 4/3)
=0.8/14+0.6/2+0.24/3. (3.51)

The operation of fuzzification plays an important role in the
definition of linguistic hedges such as maore or less, slightlv,
somewhat, much, etc. For exampte, if A Apaositive is the label
for the nonfuzzy class of positive numbers, then slightly positive
is a label for a fuzzy subset of the real line whose membership
function is of the form shown in Fig. 11. In this case, slightly is
a fuzzifier which transforms pesitive into slightly positive.
However, it is not always possible to express the effect of a
fuzzifier 1n the form (3. 48), and slightly is a case in point. A

more detailed discussion of this and related issues may be found

in [27].

4 Membership

Z—Pnsiiive
i
/—Shghl!y posilive

panll '
Fig. 11. Membership functions of positive and slightly positive.

Fuzzy relations
If U is the Cartesian product of »# universes of discourse U,,
»+,U,. then an n-ary fuzzy relation, R, tn U' is a fuzzy subset of
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UJ. As in (3.20), R may be expressed as the union of its
constituent fuzzy singletons pe(u s ste,)/ Cups st} s 2o s

R= j ."—‘R(ul ‘l‘.'.‘lun):‘;(u] 2* st ) {3.52)

UI Kol

where g 1s the membership function of K.
Common examples of (binary)} fuzzy relstions are; much
greater than, resembles, is relevamt to ., is close to, etc. For

example, if U,=U,=(—oo,00),the relation isr close to may be

defined by

is close to 8 J PR e 1L CTIPIS IR (3.53)
o, xu,

where a is a scale factor. Similarly, if U, =U,=14+2+3+4,
then the relation much greater than may be defined by the

relation matrix

R 11 2 3 4
110 .3 0.8 1
3|10 ¢ 0 0.3
4 | O 0 0 0

in which the (i,;j)th element is the value of pg(u,su,) for the ith
value of %, and jth value of u,.

If R is a relation from U to V (or, equivalently. a relation in
UXV)and 5 is a relation from V 1o W, then the composition of
R and § is a fuzzy relation from U to W denoted by R « S and
defined by®

T Equation (3.55) defines the max-min composition of & and 5. Max-product
compesition is defined similarly, except that A is replaced by the arithmetic product,
A more detailed discussion of these compositions may be found in [24].
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ReS= J Vo L€ sv) A pis{o,w) )/ (esw).  (3.55)
r-w
If &7,V and W are finite sets, then the relation matrix for R

> S is the max-min product® of the relation matrices for R and
S. For example, the max-min product of the relation matrices on
the left-hand side of (3.56) is given by the right-hand side of
{3.56),
R S R-$5
.3 0.8 0.5 0.9_ 4 0.8
[0.5 0. 9] ., [0.4 1 ]h[ﬂ.5 0. 9] (3.56)
Projections and cylindrical fuzzy sets
If R is an n-ary fuzzy relation in U, X -« X U, then its
projection (shadow) on U, X« XU, is a k-ary fuazzy relation R, in
U which is defined bf[compare with (2.12)]
R, 8Proj R on U, X XU i,

AP.R

A I [V owcarpm oy nemnaae, 3]/ Gt ovensnt s (3.57)
Uy e xUiy
where ¢ is the index sequence (i), ,i,);u(g) 8 (i v pyg )iq' s
the complement of ¢; and V., is the supremum of ey s sui,)
over the »’s which are in «,. It should be noted that when R is
a nonfuzzy relation, (3.57) reduces to (2. 9).
Example 3. 10. For the fuzzy relation defined by the relation

matrix (3. 54}, we have

R,=1/14+0.8/24+0.3/3

(@ In the max-min matrix product. the operations of additicn and multiplication
are replaced by ¥V and A . respectively.
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and
R,=0.3/24+0.8/3+1/4.

It is clear that distinct fuzzy relations in U7, X «« XU, can
have identical projections on U;-] X e XU,-E. However, given a
fuzzy relation R, in U, X+« XU, , there exists a unique largestV
relation R, in U7, X s XU, whose projection on U*. X XU, s
R,. In consequence of (3.57), the membership function of R, is
given by

I ACTRRTI Ll PRC ST (3. 58)
with the understanding that (3. 58) holds for all #,, ., u, such
that the i)+~ +{, arguments in #® are equal, respectively, to the
first, second, +-+, kth arguments in # This implies that the
value of #x at the point (u,,*,u,) is the same as that at the
point («'(s==su',) provided that «, =u',| oo, =4, . For this
reason, R, will be referred to as the cyéindrical extension of R,

with R, constituting the base of R,. (See Fig.12.)

Fig. 12. R, is the base ol the cylindrical set R,.

7 That iz a relation which comains all other relations whose projection on U,
KU is Ry,
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Suppose that R is an n-ary relation in U, X+ XU, . R, 15 its
projection on {J, X - X{J, , and R, is the cylindrical extension of
R,. Since R, is the largest relation in U, X «-- X {7, whose
projection on U, X« XU, is R,, it follows that R, satisfies the

containment relation

RCR, (3.59)
for all ¢, and hence
RCR, NR,N-NR, (3. 60)
for arbitrary ¢;»+*,¢.[index subsequences of (1.,2,+.n)].
In particular, if we set g, =1,+*=,¢,=n, then (3. 60) reduces
to
RCR,NR,N-+NR,, (3.61)
where Ry, +»», R, are the projections of R on U,, -, U/,
respectively, and R,.+++,R, are their cylindrical extensions. But,
from the definition of the Cartesian product [see (3.45)] it
follow that
RN NR,=R, X XR,, (3. 62)
which leads us to the
Proposition 3. 1. If R is an n-ary fuzzy relation in U, X X
U, and R, -+ R, are its projections on U,, *+,U,, then (see
Fig. 13 for illustration)
RCR, X XR,. (3. 63)
The concept of a cylindrical extension can also be used to
provide an intuitively appealing interpretation of the mmposition
of fuzzy relations. Thus, suppose that R and S are binary fuzzy
relations in {7 XU, and U, X7, respectively. Let R and S be the
cylindrical extensions of R and S in U, XU, XU/;. Then, {rom the
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R HII..IZI
Rz

t —t—— ARy« R, 0OR,
— U
Ry

Fig. 13. Relation between the Cartesian product and intersection

of cylindrical sets.

definition of R + S [see (3.55)] it follows that

R+ S5=ProjRNSon U xU,. (3.64)
If R and S are such that
Proj) R on U;=Proj S on UJ,, (3. 65)

then RS becomes the join®of R and S. A basic property of the
join of R and S may be stated as
Proposition 3. 2. If R and § are fuzzy reflations in U, X1/,
and U, xXU,, respectively, and RS is the join of R and S, then
R=Proj RNS on U, XU, {3.662
and
S=Proj RNS on U, xU,. (3.67)
Thus, R and § can be retriecved from the join of R and 8.
Proof. let pg and ps denote the membership functions of R

and S, respectively. Then the right-hand sides of (3.66) and
(3. 67) translate into

1 The concept of the join of nonfuzzy relations was introduced by E. F. Codd in
[28].
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Vo, Lamlarys e ) N pslug us) ] {3.
and
Vu][ﬁnialmg)f\;ts(ug-ua)]. (3.
In virtue of the distributivity and commurtativity of V
A s (3.68) and (3.69) may be rewritten as
prCey o) ALV, prs(ugory) ] (3.
and
usCata e Y ALV, peCaey 50 ). (3.
Furthermore, the definition of the join implies (3. 65)
hence that
Vo peCuysay) = V., tsCursuey). (3.
From this equality and the definition of Y it follows that
Ry st YISV peug ) =V, peslatssuy) (3.
and
e s Y SV s Qg s t3) = Vo ptlaey sy, (3.
Consequently
prlay v Y ALV ,,E,ttg(ug,ztg):|=ﬂk(ul sliy) (3.
and
Fs(uz,u;}f'n[V..];zg(ul*ug)]=-“s(uzm3); (3.

which translate into (3. 66) and (3.67).Q.E.D.

68)

69)

and

70)

71)

and

72)

73}

74)

75)

76)

A basic property of projections which we shall have an

occasion to use in Part 1, Sec. 1 is the following.

Proposition 3.3. If R is a normal relation [see (3.23)],

then so is every projection of R.

Proof. Let R be an n-ary relation in U, X ++» XU,, and let R,
be its projection {shadow) on U, X XU, s with g= (G, ,4,).
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Since R is normal, we have by (3.23),
V{ul-v-,un}pﬂ(u]*!"' !un)=11 (3- ?7}

or more compactly
Vi) =1.
On the other hand, by the definition of R [see (3.577],

‘ﬂgq(u,"1“‘ ,u.l)= .‘U( {"J e }ﬂg(up e 1“,) »
1

or
Fﬂq(u{q‘i)= Vuw:f‘.ﬂ (u) +

and hence the height of R, is given by

Vumﬂ:@q(um)= v Vu_:q.}.un(u) (3. 78)

Hi
= V.tx(w)
=1. Q. E.D.
The extension principle
The extension principle for fuzzy sets is in essence a basic
identity which allows the domain of the definition of a mapping
or a relation to be extended from points in {/ to fuzzy subsets of
U. More specifically, suppose that f is a mapping from UV to V',
and A is a fuzzy subset of UV expressed as
A= ey pt,. (3.79)
Then the extension principle asserts that ©
fCAY=f(mauy+ ot pu )= fla) + o+ pf (1),
(3. 80)

{1} The extension principle is implicit in a resulr given in[29_. TIa probability
theory. the extension principle is analogous to the expression for the probahilicy
distribution induced by a mapping [30]). In the special case of intervals.the results of
applying the extension principle reduced 1o those of interval analysis[31].
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Thus,the image of A under f can be deduced from the knowledge
of the images of u;, " ,u, under £,
Example 3. 11. Let
U=14+2+--+10,
and let f be the operation of squaring . Let small be a fuzzy
subset of U defined by

small=1/1+1/24+0. 8/34+0.6/4+0. 4/5. (3. 81)
Then,in consequence of (3. 80),we have®
small*=1/14+1/44+0. 8/94-0. 6/16+0. 4/25. (3. 82)

If the support of A is a continuum,that is,
A=j,u14(u)f’u1 (3. 83)
I

then the statement of the extension principle assumes the
following form;

f(A)=f[J#A(u)fu)szd(u)/f(u)* (3. 84
ir ¥

with the understanding that f(«z) is a point in V and g, (u)is its
grade of membership in f(A), which is a fuzzy subset of V.

In some applications it is convenient to use a modified form
of the extension principle which {follows from (3.84) by
decomposing A into its constituent level-sets rather than its fuzzy

singletons [see the resolution identity(3. 28) ]. Thus ,on writing
1

A=J.GA.,, (3. 85)

Q
where A, is an a-level set of A, the statement of the extension

principle assumes the form

& Note that this definition of smal?? differs from that of (3. 38>,
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1 1

f(A)=f[JaA,]Ejaf(A,) (3. 86)

|4} 1]
when the support of A is a continuum ,and
FlAY=f ZaA.) = Zaf(4.) (3.87)

when either the support of A is a countable set or the distinct
level-sets of A form a countable collection.

Comment 3. 2. Written in the form (3.84), the extension
principle extends the domain of definition of f from points in U
to fuzzy subsets of /. By contrast, (3. 86) extends the domain of
definition of f from nonfuzzy subsets of U to fuzzy subsets of U/,
It should be clear, however, that (3.84) and (3.86) are
equivalent ,since (3.86) results from (3. 84)by a regrouping of
terms in the representation of A.

Comment 3.3. The extension principle is analogous to the
superposition principle for linear systems, Under the latter
principle,if I is a linear system and «,, *+,#, are inputs to L,
then the response of L to any linear combination

w=wna o W, (3. 88)
where the w, are constant coefficients,is given by

Lla)y=LGwu ++ +wu)=w Liu, )+ o+, L{u,).

(3. 89)
The important point of difference between (3. 89)and (3. 80)is
that in (3. 80)+is the union rather than the arithmetic sum,and
f is not restricted to linear mappings.

Comment 3. 4. Tt should be noted that when A=u, + + +
u,+the result of applying the extension principle is analogous to
that of forming the n-fold Cartesian product of the algebraic
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system (U, f) with itself. (An extension of the multiplication
table is shown in Table 3. 1. )

Xl 1234 | w2 2vd
L] t] 2134 |12 Zvd
2l 2| 4] 8 I v4 4vB
J| 3| 6] 2)i2 |3 Gvi2
41 1] 9|12 16 | avd | BviE
b2 | lvd] 2¢d | Iv6 | 4v8 [ Iv2vd | 2vB

IvSvb

n

2vd vh

BvIQ vi2
12v20v24
18+30+v36

Grvidvi2ei8v20¢24 v30v36
Table 1. Extension of the multiplication table to

subsets of integers. 1V 2 means 1 or 2.

In many applications of the extension principle ,one encoun-
ters the following problem. We have an »n-ary function, f, which
is a mapping from a Cartesian product U/, X ++ XU, to a space V',
and a fuzzy set (relation)A in U, X +-- XU, which is characterized
by a membership function ges (2 * 5 0, )y with w,,i=1,,n,
denoting a generic point in U, A direct application of the
extension principle (3. 84)to this case yields

f(A)=f( J. FA(“]*"'#HH)!{(HIQ“' 1“,.) (31' 90)

u! X e x'uu
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== jﬂ,{(ul Tl ;u“}f{f(u]!"'?uu)‘
v

However , in many instances what we know is not A but its
projections A,, =+, 4, on U+, U,, respectively [see (3.57)].
The question that arises,then.is: What expression for x4 should
be used in (3.90)7

In such cases, unless otherwise specified we shall assume
that the membership function of A is expressed by

palug e su)=pea ) A g Cd Ao Ng (), (3.91)

where gy si =1, ,n,is the membership function of A,. In view
of (3.45),this is equivalent to assuming that A is the Cartesian
product of its projections, i.e. ,
A=A, XX A,,

which in turn implies that A is the largest set whose projections
on Uy, U, are A, , A, ,respectively. [See(3. 63). ]

Example 3.12. Suppose that,as in Example 3. 11,

U=U,=14+2434+++10
and
Al=g__ﬁ_approximately 2=1/24+0.6/14+0.8/3, (3.92)

A2=§gappmximatety 6=1/6+0.8/54+0.7/7 (3.93)
and
fluy suy) =12, Xuy=arithmetic product of #, and u,.
Using (3.91) and applying the extension principle as
expressed by (3. 90)to this case ,we have
§X§=(1/2+D. 6/14+0.8/3)X(1/6+0.8/5+0.7/7)

=1/124+0.8/104+0.7/144+0. 6 /6 +0. 6/54+ 0. 6/7+
0.8/18+0.8/15+0.7/21
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=0,.6/5+0.6/6+0.6/7+0.8/10+1/12+0.7/14+
0.8/15+0.8/18+0.7/21. (3. 94)
Thus, the arithmetic product of the fuzzy numbers approrimately
2 and gpproximately 6 is a fuzzy number given by (3. 94).
More generally .let * be a binary operation defined on {7 XV
with values in W. Thus, if #€ ¥/ and v&€V ,then
w=u*y,wecW
Now suppose that A and B are fuzzy subsets of I7 and V.
respectively, with
A=pouyt ettty (3. 95)
B=vv 4+ 4v,v,.
By using the extension principle under the assumption(3. 91),the
operation * may be extended to fuzzy subsets of Uand V" by the
defining relation
A* B =l ?#.ﬂ;] * (?v}-v,-)
='2J(#sf\v,-)(st,*vj). (3. 96)

It is easy to verify that for the case where A=2,B=6and » =

Xy as in Example 3.12, the application of (3.96) vields the

expression for 2 X 6,

a—

Comment 3.5. Tt is important to note that the validity of
(3. 96)depends in an essential way on the assumption (3. 91),
that is,
toa s (e sv) = g () A pg().
The implication of this assumption is that z and v are
noninteractive in the sense of Definition 2. 2, Thus,if there is a
constraimnt on (u«,v) which is expressed as a relation R with a

membership function g, then the expression for 4 *» B becomes
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AxB=[{ 3 pa) x( 3] vu;) INR
= E Cee Ao A peeCat, ov, 3 ], % v)). (3.97)
7]

Note that if R is a nonfuzzy relation,then the right-hand side of
(3. 97) will contain only those terms which satisfy the constraint
R,
A simple illustration of a sttuation in which « and v are
interactive is provided by the expression
w=zxX{x+y) (3. 98)
in which + 2 arithmetic sum and X 2 arithmetic product. If
x,y and z are noninteractive, then we can apply the extension
principle in the form (3. 96) to the computation of 4 X (B+C),
where A,B and C are fuzzy subsets of the real line. On the other
hand,if (3. 98) is rewritten as
w=zXx+zXy,s
then the terms z X & and z X y are interactive by virtue of the
common factor z, and hence
AX(B+C)ZFAXB+AXC, (3.99)
A significant conclusion that can be drawn from this
observation is that the product of fuzzy numbers is not
distributive if it is computed by the use of (3.96) . To obtain
equality in (3.99), we may apply the unrestricted form of the
extension principle (3. 96) to the left-hand side of (3.99) ,and
must apply the restricted form (3. 97) to its right-hand side.
Remark 3.1. The extension principle can be applied not
only to functions, but also to relations or, equivalently, to
predicates. We shall not discuss this subject here, since the
application of the extension principle to relations does not play a
172
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significant role in the present paper.
Fuzzy sets with fuzzy membership functions

Our consideration of fuzzy sets with fuzzy membership
functions is motivated by the close association which exists
between the concept of a linguistic truth with truth-values such
as frue, quite true,very true,more or less true, etc. ,on the one
hand, and fuzzy sets in which the grades of membership are
specified in linguistic terms such as low .medium high ,very low.
not low and not high .etc. , on the other.

Thus, suppose that A is a fuzzy subset of a universe of
discourse U ,and the values of the membership function, ., of A
are allowed to be fuzzy subsets of the interval {0, 1], To
differentiate such fuzzy sets from those considered previously,
we shall refer to them as fuzzy sets of rype 2, with the fuzzy sets
whose membership functions are mappings from U tc [0, 1]
classified as type 1. More generally

Definition 3. 1. A fuzzy set is of type ny, n=2,3,+, if its
membership function ranges over fuzzy sets of type n-1 . The
membership function of a fuzzy set of type 1 ranges over the
interval(0,1].

To define such operations as complementation, union.,
intersection, etc, for fuzzy sets of type 2,it is natural to make
use of the extension principle. It is convenient, however, to
accomplish this in two stages; first, by extending the type 1

definitions to fuzzy sets with interval-valued membership
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functions; and second, generalizing from intervals to fuzazy
sets V bythe use of the levelset form of the extension principle
[see (3. 86)]. In what follows, we shall illustrate this technique
by extending to fuzzy sets of type 2 the concept of intersection —
which is defined for fuzzy sets of type 1 by (3. 35).

Qur point of departure is the expression {for the membership
function of the intersection of A and B,where A and B are fuzzy
subsets of type 1 of U,

Hanplay=p () A ppue), u€l/,

Now if p4Ce) and gp(udare intervals in [(0,1] rather than

points in (0,1 ]— that is,for a fixed «,

maay=[a,.a,],

pplu)=_[556,].
where a,.4,, 4, and b, depend on u-then the application of the
extension principle (3. 86) to the function A (Min) yields

[al,azjﬂ[b, *"5‘2]=[ﬂlﬂbl 1y ﬁlbz]- (3. 100}

Thus,if A and B have interval-valued membership functions as
shown in Fig. 14, then their intersection is an interval-valued
curve whose value for each « is given by (3. 100),

Next, ler us consider the case where, for each . (u) and
pple)are fuzzy subsets of the interval [0, 1], For simplicity,we
shall assume that these subsets are conver.that is ,have intervals
as level-sets, In other words,we shall assume that,for each « in

[0, 1], the alevel sets of x4 and ui are interval-valued

11 We are racitly assuming that the fuzzy sets in question are convex,that i= .

have intervals as level-sers(see [28]). Only minor medifications are needed when the
$€18 are not convex.
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membership funcrions. (See Fig. 15).

1 Membership

ol 1]

Fig. 14. Intersection of {uzzy sets with interval-valued

membership functions.

3 Membership

Fig. 15. Level-sets of {fuzzy membership functions g, and p.

By applying the level-set form of the extension principle
(3. 86) to the a-level sets of ¢, and py we are led to the following
definition of the intersection of fuzzy sets of type 2.

Definition 3. 2. Let A and B be fuzzy subsers of type 2 of U/
such that, for each u € U, g, (u) and gy () are convex fuzzy
subsets of type 1 of [0.1],which implies that ,for each « in [0,
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1],the a- level sets of the fuzzy membership functions z, and g
are interval-valued membership functions g," and g

Let the a- level set of the [uzzy membership function of the
intersection of A and B be denoted by sfins.with the a-level sets
#4° and 1® defined for each u by

ﬂga g {U,/UA(I!);}--"I} ¥ (3' 101)

5" Slyfug(vIza)l, (3.102)

where v4(v) denotes the grade of membership of a point v,v €
(0,11, in the fuzzy set p.(u), and likewise for xgz. Then.for each
My

Hans=pa N\ s (3.103)
In other words,the a-level set of the fuzzy membership function
of the intersection of A and B is the minimum [in the sense of
(3. 100> ] of the a-level sets of the fuzzy membership functions of
A and B. Thus, using the resolution identity (3. 28), we can

CHPIEEs panp as

1
Hans= I&(m A pg). (3. 104>
r

For the case where p, and g have finite supports ,that is ,

and gy are of the form
pa=ayo+ - tav,, v, €[0,1].i=1,4,n {3.105)

and

#e=Rwi o+ Bawaw, € [0,1]0 =1, m, (3.106)
where «, and 3; are the grades of membership of v; and w; in g,
and g, respectively, the expression for guns can readily be
derived by employing the extension principle in the form (3. 96).
Thus,by applying (3. 96)to the operation A { 2Min), we obtain
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at once
fane= pa N\ gy (3. 107)
= (qvy+ o Fa,o ) A (Pt e+ 30,0
= ,E; Ca, A B (v Avwe))

as the desived expression for pryns U
Example 3.13. As a simple illustration of (3. 104),suppose
that at a point « the grades of membership of # in 4 and B are
labeled as high and medium . respectively . with high and medium
defined as fuzzy subsets of V=04+0.14+ 0.2+ >+ 1 by the
EXPressions '
high ~ =0.8/0.8-0.8/0.641/1, (3. 108>
meclium =0.6/0. 4--1/0.54+0. 6/0. 6. (3. 109)
The level sets of high and medium are expressed by
highy s=0.840. 941,
high, y=0.8+0.9+1,
high =1,
medivm, =0 440.54+0. 6,
medium,=0. 5,
and consequently the a-level sets of the intersection are given by
widpla) =high, s Amedium,
=(0.84+0.9+1)A (0. 44+0. 540. 6}
=0.4+40.54+0. 6, {3.110)
et s Ced =highos A mediuni,
=(0.8+0.84+]13XA0.5
=0.3 (3.111)

D Acrually .Definition 3. 2 can be deduced from{ 3. 90).
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and
tanae) =high, A medium,
=1A0.5
=0.5 (3.112)
Combining {(3.110), (3. 111) and (3.112), the fuzzy set
representing the grade of membership of # in the intersection of
A and B is found to be
pans{a) =0. 6/(0. 44-0. 5+0.6)+1/0.5  (3.113)
=medium,
which is equivalent to the statement
high \ medium =medium. (3.114)
The same result can be obtained more expeditiously by the
use of (3.107),
Thus ,we have
high Amedium =(0. 8/0.8+0.8/0.9+1/1) A (0. 6/0. 4+
1/0.540.6/0.6)
=0.6/0.4+1/0.54+0.6/0. 6
=medtum. (3.115)
In a similar fashion,we can extend to fuzzy sets of type 2 the
operations of complementation, union, concentration, etc. This
will be done in Part I, Sec. 3,in conjunction with our discussion
of a fuzzy logic in which the truth-values are linguistic in nature,
Remark 3.2. The results derived in Example 3.13 may be
viewed as an instance of a general conclusion that can be drawn
from (3. 100) concerning an extension of the inequality << from
real numbers to fuzzy subsets of the real line. Specifically ,in the
case of real numbers a.6, we have the equivalence
asbs=>a Ab=q. (3.116)
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Using this as a basis for the extension of =<{to intervals,we have
in virtue of (3.100),
[a,ra, )< lb) 08, J=>a,<h H a,53b,. (3.117>
This,in turn,leads us to the following definition,
Definition 3. 3. lL.et A4 and B be convex fuzzy subsets of the
real line, and let A, and B, denote the e-level sets of A and B,
respectively. Then an extension of the inequality <5 w0 convex
fuzzy subsets of the real line is expressed hy®
ASB<=AAB=A (3.118>
A, NANB,—=A, forallein [0,1], (3.119)
where A, A B, is defined by (3. 100).
In the case of Example 3.13 , it is easy to verify by
inspection that
medium S high, [or all « (3. 120}
in the sense of (3. 119),and hence we can conclude at once that
medium N\ high=medium, (3.121)

which is in agreement with (3. 114).
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The Concept of a Linguistic Variable and its
Application to Approximate Reasoning- 1

1. The concept of a fuzzy variable

Proceeding in the development of Part [ of this work, we
are now in a position to generalize the concepts introduced in
Part 1.Sec. 2 to what might be called fuzzy variables. For our
purposes . it will be convenient to formalize the concept of a fuzzy
variable in a way that parallels the characterization of a nonfuzay
variable as expressed by Definition 2.1 of Part 1. Specifically,

Definition 1.1. A fuzzy variable is characterized by a triple
(X JU.R(X;u))s in which X is the name of the variable; {7 is a
universe of discourse (finite or infinite set);u is a generic name
for the elements of Usand R(X;u) is a fuzzy subset of I which
represents a fuzzy restriction on the values of u imposed by X.
[As in the case of nonfuzzy variables, R(X;u) will usually be
abbreviated to R(X) or R(«) or R(x),where x denotes a generic
name for the values of X,and R(X;u) will be referred to as the
restriction on u or the restriction fmposed by X.] The
nonrestricted nonfuzzy variable u constitutes the base variable for
X.

The assignment equation for X has the form

r=ut R(X) (1. 1)
and represents an assignment of a value u# to x subject to the
restriction R(X).
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The degree to which this equation is satisfied will be
referred to as the compatibility of u with R(X) and will be
denoted by ¢(u). By definition,

clu)=ppx, () ucl (1.2
where ppx,(«) is the grade of membership of # in the restriction
R(X).

Comment 1.1. It is important to ocbserve that the
compatibility of « is not the same as the probability of u. Thus,
the compatibility of « with R(X) is merely a measure of the
degree to which u satisfies the restriction R{X),and has no
relation to how probable or improbable # happens to be.

Comment 1. 2. In terms of the valise analogy (see Part | ,
Comment 2. 1),a fuzzy variable may be likened to a tagged valise
with soft sides, with X representing the name on the tag, U/
corresponding to a list of objects which can be put in a valise,
and R(X) representing a sublist of I/ in which each object u is
associated with a number ¢(«) representing the degree of ease
with which # can be fitted in valise X (Fig. 1).

'
[ RI(X)
X
v Clw)
Chair )
( U )
Cool 06
Sof! volise Objec! Shoes Q9
Shirdl 1

Fig. 1. Valise analogy for a unary fuzzy variable.
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In order to simplify the notation it is convenient to use the
same symbol for both X and =z, relying on the context for
disambiguation. We do this in the following example.

Example 1.1. Consider a fuzzy variable named #udge:,
with U=(0,oc Jand R(X) defined by (see Fig. 2)

4 Compalibilify

(17 : 4l SRR Lo R{ Budget )

I_.._........._

] R —
<!

S
&
3
o

Fig. 2. Compatibility function of budget.

[LLYY

B - w— 1000} 27!
R (budget) = ! 1fu+j]m [H(Too—) |IRZE %)

Then,in the assignment eguation
budget=1100 t R(hudget), (1. 4)
the compatibility of 1100 with the restriction imposed by budget
IS
c(1100) = ptrcsutsen (1100)
= (. 80. (1. 5)
As in the case of nonfuzzy variables,if X,,+, X, are fuzzy
variables in U, ,U,,respectively, then X & (X,, -, X, )s an
n-ary composite ( foint ) variable in U = U, X -+ X U,
Correspondingly, in the n-ary assignment equation
(s )= (uys ) 3 R(X,,+,X.), (l. 8)
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x;si =1, ,n,is a generic name for the values of X,; «, is a
generic name for the elements of U,;and R(X)YAR(X,,,X,)is
an n-ary fuzzy relation in UV which represents the restriction
imposed by X & (X,,+,X,). The compatibility of Cu s+, u.)
with R(X,,+,X,)is defined by
Lty s 1) = prpexs Sty o oot st ) s (1. 7)
where gz x, is the membership function of the restriction on « 2
Cy »** sty ).
Example 1.2. Suppose that U, =U, = (— oo, o), X,

Bhorizontal proximitys X, B vertical proximity: and the

restriction on # is expressed by
R(X)= J (1t ad) /Gy sug). (1. 8)
TR

Then the compatibility of the value u=1(2,1) in the assignment

equation
(x)sx)=(2,1) + R(X) (1. 9)
is given by
(2, 1)y =pp (2.1
=0, 16, (1. 10)
Comment 1. 3. In terms of the valise analogy (see

Comment 1. 2) ,an n-ary composite fuzzy variable may be likened
to a soft valise named X with n compartments named X, .+, X,.
The compatibility function ¢Ca;y ++, 1, Yrepresents the degree of
ease with which objects w), -, 4, can be put into respective
compartments X,,++,X, simultaneously (Fig. 3).

A basic question that arises in connection with an n-ary

assignment equation relates to its decomposition into a sequence
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f—Nome

X ~30ft partition

th E, U kSeH volise
S Object
Object, X x:
Nu!ne. Wome »
RIX,,X )
u, v, “c{u,,u,]
Coat | Stees | 08
Coa! Shir} f
Cool Coot 06

Fig. 3. Valise analogy for a binary fuzzy variable.

of » unary assignment equations, as in Part { ,Eq. (2.21). In
the case of fuzzy wvariables, the process of decomposition is
somewhat more involved, and we shall wake it up after defining
marginal and conditioned restrictions.
Moarginal and conditioned restrictions

In Part [ ,S3ec. 2.the concepts of marginal and conditioned
restrictions were intentionally defined in such a way as to make
them easy to extend to fuzzy restrictions. Thus, in the more
general context of {uzzy variables. these concepts can be
formulated in almost exactly the same terms as in Part 1 .Sec. 2.
This is what we shall do in what follows.

Note 1.1. As we have seen in our earlier discussion of the
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notions of marginal and conditioned restrictions in Part I y Sec,
2,it i3 convenient to simplify the representation of n-tuples by
employing the following notation.
Let
G By iy) (1. 11>
be an ordered subsequence of the index sequence(],+,n). E. g. ,
for n=7,¢g=1(2,4,5).
The ordered complement of ¢ is denoted by
¢ =C(Fre s jn). (1. 12>
E.g., for ¢=(2,4,5),¢'=1(1,3.6,7).
A k-tuple of variables such as(v; .- .v,)is denoted by v,,.
Thus
Vi £ (v, o yw,) (1.13)
and similarly
Vi B (v 400y ) (1.14)
For example ,if
Wiy = (V2T 0T )
then
Uiy = UL U2 Vet )
If k=n,we shall write more simply
1= (T a2, ). (1. 15)
This notation will be used in the following without further
explanation.
Definition 1. 2.  An n-ary restriction R(X,. -+, X, }in U7, X
»++ XU, induces a k-ary marginal restriction R(X, ,++. X, )which
is defined as the projection (shadow) of R(X,,»+,X.) on U, e
XU,,. Thus,using the definition of projection [see Part I .Egq.
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(3.57) Jand employing the notation of Note 1. 1, we can express

the membership function of the marginal restriction R{X ,-,
X;i) as

HR{ Xig1) (H(q}] = Vuwrsﬂmx;(n‘). (1. 16)

Example 1.3. For the fuzzy binary variable defined in

Example [. 2, we have

RIBR(X)),
R,BR(X,),
#r (u )=V, (T+ui+add)™!
=(1+ud)"',
MR, = Mg, -

Example 1. 4. Assume that
U, =U,=U,=04+142
and R(X,,X,,X,)is a ternary fuzzy relation in U, X U, XU,
expressed by
R(X,,X;.X3;)=0.8/(0,0,0)40.6/(0,0,1)+0.2/(0,1,0)+
1/¢1,0,2»4+0.7/(1,1,0) 4+ 0.4/¢0,1,1) +
0.9/C1,2,00+0.4/(2,1,1)4+0.8/(1,1,2).
(1.17)
Applying (1.16) to (].17) ,we obtain
ROX, . X)=0.8/(0,0)40. 4/¢(0,1)+1/(1,0)
+0.8/(1.1)+06.9/(1,2)+0.4/(2,1)
(1.18)
and
R(X,)=0.8/0+1/14+0.4/2,
R(X;)=1/0+0.8/140.9/2. (1.19)
Definition 1. 3.  Let R(X,. . X, )be a restriction on (u,,
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=y u,)sand let &f, -+, u) be particular values of By "t Wi
respectively. If in the membership function of R(X,.++, X, )the
values of U sttt o1y, are set equal to u:}l y soe ’“?; vthen the resulting
function of the arguments u; .+ ,u, ,where the index sequence ¢’
= (f1s***s ju 218 complementary to g= {7, >, ;) ,is defined to be
the membership function of a conditioned restriction R(X; ;s

X, | o2+ vuf dor smore simply . R(X i, | u%;,). Thus

HROX, - X
[

o o ) (2 0ol )= ppex ek
LI g TE | L] 1 n

- — ﬂ R _— {.
(Hlt ;u,|u.-{—u.f, vﬂ.',-‘-—ﬂ.';k)t

or more compactly,

Fktxw,llu‘é‘w)(th'})=ﬂﬂ{m(u iu(q.'r:u?q})t (1. 207

The simplicity of the relation between conditioned and
unconditioned restrictions becomes more transparent if the «? are

written without the superseript. Then, (1. 20) becomes

Frz-:le.m.xjmIuj].---.urly (#;] LA ;u_,-m) gﬂmxl,m.x_u(un ety )
or more compactly,

#R{xmw‘j'q,:(umqw)Qﬁkcx;(u). (1. 21)

Note 1.2. In some instances, it is preferable to use an
alternative notation for conditioned restrictions. For example ,if n
=4.¢g=(1,3)and ¢'=(2,4),it may be simpler to write R(u?,
X:suis X) for R(X,, X, |u} u43). This is particularly true when
numerical values are used in place of the subscripted arguments.,
e.g. »5 and 2 in place of «{ and «}. In such cases,in order to avoid
ambiguity we shall write explicitly R(X,, X, |u®=5.,45=2),0r
more simply,R(5,X,,2.X,).

Example 1. 5. In Example 1. 4,we have
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R(X,.X,,00=0.8/(0,00+0.2/(0,12+06.7/(1, 10+ 0.8/(1,2),
R(X\X, 1)=0.6/(0,00+0.4/(0,1>+0.4/(2,1),
R(X,,X;,2)=1/(1,00+0. 8/(1,1},
(1.22)

and.using (1. 16),

R(X,,0)=0.8/04+1/1.

R(X,,1}=0.4/0-+0.8/14+0.4/2, (1.23)

R(X,,2)=0.9/1.

It is useful to observe that an immediate consequence of the
defimitions of marginal and conditioned restrictions is the
following

Proposition 4.1.  Let R{(X,, -\ X; ) be a marginal
restriction induced by R{(X s>+ X} and let R(X, . X, |u; .
e ) orsmore simply s R(X ) |2y ) be a restriction conditioned
o i sty s with g = (i, =y iydand g = (jyo ey j,,) being
complementary index sequences. Then.in consequence of (1.16),
(1. 213 and the definition of the union[see Part 1 ,Eq. (3. 34)],

we can assert that

R(X[q'}}= ER{X{;;!H@})! (1.24)

wig?}

where E stands for the union (rather than the arithmetic sum)

Hia

over the u,,.
Example 1. 6. With reference to Example 1. 3 and Note
1. 24it is easy to verify that
R(X,, X,)=R(X,), X;, 0)+R{IX, X,, N+ (X, . X,,2)
and
R(X))=R(X,. 0)+RX,, 1)+ R(X,2).
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Separability and noninteraction
Definition 1.4 An n-ary restriction R (X, -, X.) is
separabie iff it can be expressed as the Cartesian product of unary
restrictions
R(X,, . X )=R(X )X+ XR(X,) (1. 25)
or,equivalently .as the intersection of cvlindrical extensions [see
Part I ,Eq. (3.62)]
R(X,, X)=RX)DN~-NR(X,). (1. 26)
1 It should be noted that, if R(X,,*+,X,)is normal, then so
are its marginal restrictions (see Part [ , Proposition 3.3). It
follows, then,that the R(X;)in (1. 25) are marginal restrictions
induced by R(X,,+-,X,). For, (1. 25) implies that
Hroxy o X S8ty Y =g G ) A A ppe () s (1. 20)
and hence by Eq. (3.57) of Part 1,
PR(X X )=R(X,)), i=1,,n. (1. 28)
Unless stated to the contrary ,we shall assume henceforth that R
(X, X.)in normal.
Example 1. 7. The relation matrix of the restriction shown
below can be expressed as the max-min dyadic product of a
column vector (a unary relation) and a row vector (a unary

relation ). This implies that the restriction in question in.

separable .
0.3 .8 0.8 0.1 0.8
0.3 0.8 1 0.1
0.2 0.2 0.z 0.1 |og|"% *8 1 01
0.3 0.6 0.6 0.1 . 6

Example 1. 8. The restrictions defined in Definition 1.2
and Example 1. 3 are not separable.
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An immediate consequence of separability is the following

Proposition 4. 2. If R(X, .+, X,) is separable.so is every
marginal restriction induced by R(X;,*+,X,).

Also,in consequence of (1. 25),we can assert the

Proposition 4.3. The separable restriction R(X L} X e X
R(X,) s the largest restriction with marginal restrictions
RCX ), R(X,). _

The concept of separability is closely related to that of
noninteraction of fuzzy variables. More specifically .

Definition 1. 5. The fuzzy variables X,,++, X, are said to be
noninteractive iff the restriction R(X,,,X,)is separable.

It will be recalled that,in the case of nonfuzzy variables,the
justification for characterizing X, ,++,X, as noninteractive is that
if [see Part 1 ,Eq. (2.18)]

R(X v v X)=RX I X XR(X,)D, (1.29)
then the n-ary assignment equation
(xysem s, ) =(eyrrem,) ¢t R(X |y, X,) (1. 30)

can be decomposed into a sequence of n unary assignment

equations
= ? R(X])!
xr,=u, ! R(X,)). (1.31)

In the case of fuzzy variables, a basic consequence of
noninteraction —from which Eq., (2. 19) of Part I follows as a
special case —is expressed by

Proposition 4.4. If the fuzzy variables X,, -, X, are
noninteractive s then the n-ary assignment equation (1. 30) can be
decompased into a sequence of n unary assignment equations
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(1. 31), with the understanding that if ¢ (uy, *s w.) is the
compatibility of Guey o +ov yu,) with R(X,,» X, ) vand if ¢;(2,),i=
1, yn,is the compatibility of u, with R(X,) sthen
clay )= (Y A A (), (1. 32)
Proof. By the definitions of compatibility ,noninteraction and
separability ,we have at once
ety oor st Y =ptp (X oo, X, ) Caty v oo tn)
= HMrx, SCTR VIR AF‘R(X'} (az,)
=c G Y A Ac, (u,). Q.E.D.
(1. 33)
Comment 1.4, Pursuing the valise analogy further (see
Comment ]. 3}, noninteractive fuzzy variables X,, ++,X, may be
likened to n separate soft valises with name-tags X,.+,X,. The
restriction associated with valise X, is characterized by the
compatibility function ¢ (#; ). Then the overall compatibility
function for the valises X,,++,X,is given by (1.32)(Fig. 4).

x# (X, X,)
Sofl wolise
[ ] [ %2 ]
Nome, Nome,,

Fig. 4. Valise analogy for noninteraciive

fuzzy variables.

Comment 1. 5. In terms of the base variables of X,,+, X,
(see Definition 1.1), noninteraction implies that there are no

constraints which jointly involve u,,+**.%,,where w, is the base
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variable for X.,i=1,+,n. For example,if the u; are constrained
by

e tu,=1,
then X,.»+, X, are interactive.i. e. ,are not noninteractive. (See
Part 1 ,Comment 3.5.)

If X,,-=+,X, are interactive,it is still possible to decompose
an n-ary assignment equation into a sequence of » unary
assignment equations. However, the restriction on #, will, in
general ,.depend on the values agsigned to u;***,u,_,. Thus,the »
assignment equations will have the following form [see also Part

I ,Eq. (2.21}];
xy=u, t R(X,),
o=, t R{X,|u),
xy=u,y 1t R(X |uu,), (1.34)
¢ e .
o=, t ROX Jugu,_ ),
where R(X;|u;,++ u;_ ) denotes the restriction on «, conditioned
on i+ ,u,_(see Definition 1. 3).

Example 1. 9, Taking Example 1. 4,assume that ¢,=1,u,=2

and wu,=1{.
Then
RIX\)»=0.8/0+1/140.4/2,
R(X,|a,=1)=1/040.8/14+0.9/2, (1. 35)
RiX,|ey=1,0,=2)=0.9/0,
so thai
o (1)=1,
c(2)=0.9, (1.36)

'f‘:g (G) - {]r gu
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As in the case of (1.31), the justification for (1.34)is
provided by
Proposition 4. 5. If X,,+~, X, are interactive fuzzy variables
subject io the restriction R(X |, X ,)sand ¢, a; }vi=1,"""yn.is
the compatibility of u, with the conditioned restriction R(X; Ju;.
syt )in(1.34) then
ety stt) =, Cety) Ao Ne,(u) (1. 37>
where c iy ut,)is the compatibility of Cuy, o, )with R (X,
s, X0
Proof. By the definition of a conditioned restriction [ see
(1. 20) ]y we have.for all 7,1/
BRIy e, 8 ) = R e x Gl oo a2t (1. 38)
On the other hand, the definition of a marginal restriction
[see (1.16) Jimplies that.for all / and all #,+* .z, , we have
Brix, o X0 (2y o *“f)}’#mx,*---,xm y ety stin ), (14 39)
and hence that

Fﬂ[x‘+: |ﬂl T (u:-l-l -) ﬂ Fﬁrx‘. |45|r:I ) (H,)

BN TS (1. 40)

TR

Combining (1. 40) with the defining equation
‘:'{”f')='”M’,-Ir-1v“-~~,_|?{H*] , {1.41)

we derive

ey v =0 (e ) A Ac.(,). Q.E.D. (1. 42>
This concludes our discussion of some of the properties of
fuzzy variables which are relevant to the concept of a linguistic
variable. In the following section,we shall formalize the concept

of a linguistic variable and explore some of its implications.
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2. The concept of a linguistic variable

In our informal discussion of the concept of a lingustic
variable in Part 1,Sec. 1,we have stated that a linguistic variable
differs from a numerical variable in that its values are not
numbers but words or sentences in ‘a natural or artificial
language. Since words,in general ,are less precise than numbers,
the concept of a linguistic variable serves the purpose of
providing a means of approximate characterization of phenomena
which are too complex or too ill-defined to be amenable to
description in conventional quantitative terms. More specifically,
the fuzzy sets which represent the restrictions associated with the
values of a linguistic variable may be viewed as summaries of
various subclasses of elements in a universe of discourse. This,of
course,is analogous to the role played by words and sentences in
a natural language. For example, the adjective handsome is a
sutnmary of a complex of characteristics of the appearance of an
individual. It may also be viewed as a label for a fuzzy set which
represents a restriction imposed by a {fuzzy variable named
handsome. From this point of view,then,terms very handsome.
not handsome, extremely handsome, quite handsome, etc. , are
names of fuzzy sets which result from operating on the fuzzy set
named handsome with the modifiers named very, not, extremely.
quite,erc. In effect,these fuzzy sets,together with the fuzzy set
labeled handsome,play the role of values of the linguistic variable
Appearance.

An important facet of the concept of a linguistic variable is
that it is a variable of a higher order than a fuzzy variable,in the
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sense that a linguistic variable takes fuzzy variables as its values.
For example,the values of a linguistic variable named Age might
be: young,not young,old.very old,not young and not old, quite
old ,etc. each of which is the name of a fuzzy variable. If X is the
name of such a fuzzy variable, the restriction imposed by X may
be interpreted as the meaning of X. Thus. if the restriction

imposed by the fuzzy variable named old is a fuzzy subset of U=
[0,100]defined by

103

R(old)= j- [1+[“_55“ -
50

then the fuzzy set represented by R(old) may be taken to be the
meaning of old (Fig. 5).

—i
] Ju €L, (2. 1)

jCompatidility

Riotd)
N S

Rlvery old)

% =5 "
Fig. 5. Compatibility functions of old and very old.

Another important facet of the concept of a linguistic
variable is that,in general,a linguistic variable is associated with
two rules; (1)a syntactic rule, which may have the form of a
grammar for generating the names of the values of the variable;
and (2)a semantic rule which defines an algorithmic procedure for

computing the meaning of each value. These rules constitute an

199




essential part of the characterization of a structured linguistic
variable. ©

Since a linguistic variable is a variable of a higher order than
a fuzzy variable,its characterization is necessarily more complex
than that expressed by Definition 1. 1, More specifically »we have

Definition 2.1. A linguistic variable is characterized by a
quintuple (&, T (&), U,.G, M)in which & is the name ol the
variable; " (=% )} (or simply T )denotes the term-ser of 2 ,that is
+the set of names of Iinguistic values of 2", with each value being
a fuzzy variable denoted generically by X and ranging over a
universe of discourse U which is associated with the base variable
w3 is a syatactic rule (which usually has the form of a grammar)
for generating the names, X ,of values of & ;and M is a semantic
rule for associating with each X its meaning , M(X ) ,which is a
fuzzy subset of U. A particular X ,that is,a name generated by G,
is called a term. A term consisting of a word or words which
function as a unit(i, e, ,always occur together)is called an atomic
term. A term which contains one or more atomic terms is a
composite term. A concatenation of components of a composite
term is a subterm. lf X, X,, *are terms in 7', then 7" may be
expressed as the union

T=X,4X,+ . (2. 2)

Where it is necessary to place in evidence that T is generated by
a grammar G, T will be written as T (G).

The meaning, M (X),of a term X is defined to be the

0 1 is primarily the semantic rule thar distinguishes a linguistic variable from
1he more conventional concept of a syntactic variable,
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restriction.R(X) .on the base variable # which is imposed by the

fuzzy variable named X. Thus
MDD AR, (2. 3)

with the understanding that R(X)—and hence M(X)-—may be
viewed as a fuzzy subset of U carrying the name X. The
connection between %, the linguistic value X and the base
variable « is illustrated in Fig. 3 of Part T.

Note 2.1. In order to avoid a profusion of symbols, it is
expedient to assign more than one meaning to some of the
symbols occurring in Definition 2. 1.relying on the context for
disambiguation. Specifically;

{(a) We shall frequently employ the symbol 2" to denote
both the name of the variable and the generic name of its values,
Likewise, X will be used to denote both the generic name of the
values of the variable and the name of the variable itseli.

{b) The same symbol will be used to denote a set and the
name of that set. Thus.the symbols X, M(X) and R(X) will be
used interchangeably ,although strietly speaking X—as the name
of M(X)[or R(X)]—is distinct from M (X ). In other words,
when we say that a term X (e. g. young)lis a value of =# (e, g. .
Age) it should be understood that the actual is M{(X) and that
X is merely the name of the value,

Example 2. 1. Consider a linguistic variable named Age,i.
e. . H =Age,with U=[0,100]. A linguistic value of Age might
be named old, with old being an atomic term. Another value
might be named wvery old,in which case very ofd is a composite
term which contains ofd as an atomic component and has very

and old as subterms. The value of Age named more or less young
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is a composite term which contains young as an atomic term and

in which more or less is a subterm. The term-set associated with

Age may by expressed as

T'(Age)=old+very old +no old+more or less young+

quite young+not very old and not very young+
L) (2.4)

in which each term is the name of a fuzzy variable in the universe

of discourse U=[0,100]. The restriction imposed by a term,say

R (old) yconstitutes the meaning of o/d. Thus,if R(old) is defined

by (2.1),then the meaning of the linguistic value old is given by

10
— —Z==1
M(dd)=j[l+ : 5“) | (2.5)
50 5
or more simply (see Note 2.1),
100 501 —27-)
= Ll
old Jﬂ[w( 2] e (2. 6)

Similarly ,the meaning of a linguistic value such as very old may

be expressed (see Fig.5)

100

M (very old)=very old— I [1+
50

97w @

The assignment equation in the case of a linguistic variable
assumes the form
X =term in T(Z")

=name generated by G (2. 8)

which implies that the meaning assigned to X is expressed by
M(X)=R(term in T(Z"). 2.9
In other words,the meaning of X is given by the application of
the semantic rule M to the value assigned to X by the right-hand
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side of (2. 8). Furthermore,as defined by (2. 3) ,M(X) is identical
to the restriction imposed by X.
Comment 2.1. In accordance with Note 2.1 (a ), the
assignment equation will usually be written as
A" =name in T (&) (2.10)
rather than in the form (2. 8). For example.,if “# = Age.and old
is a term in T(&27) ,we shall write
Age=old, 2. 11)
with the understanding thar old is a restriction on the values of «
defined by (2.1),which is assigned by (2.11) to the linguistic
variable named Age. It is important to note that the equality
symbol in (2. 10)does not represent a symmetric relation —as it
does in the case of arithmetic equality. Thus, it would not be
meaningful to write (2. 11) as
old= Age
To illustrate the concept of a linguistic variable, we shall
consider first a very elementary example in which 7(# )contains
just a few terms and the syntactic and semantic rules are trivially
simple.
Example 2. 2. Consider a linguistic variable named Numiber
which is associated with the finite term-set
T (Number) = few—+several +many, (2. 12)
in which each term represents a restriction on the values of u in
the universe of discourse
U=14+24+3+---+10, (2. 13
These restrictions are assumed to be fuzzy subsets of {7 which are
defined as follows,

Serw=0.4/14+0.8/24+1/3+0. 4/4, (2.14)
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severai=0.5/3-+0.8/4+1/5+1/6+0.8/7+0.5/8,
(2.1
prany=0,4/6+0.7/7+0.8/8+0. 9/9+1/10. (2.16)
Thus
R(few)=M(few)=0,4/14+0.8/2+1/3+0. 4/4, (2.17)
and likewise for the other terms in T". The implication of (2. 17)
is that few is the name of a fuzzy variable which is a value of the
linguistic variable Number. The meaning of few — which is the
same as the restriction imposed by few —is a fuzzy subset of {7
which is defined by the right-hand side of(2.17).

To assign a value such as few to the linguistic variable
Number swe write |

Number= few, (2.18)
with the understanding that what we actually assign to Number
is a fuzzy variable named few.

Example 2. 3. In this case, we assume that we are dealing
with a composite linguistic variable® named (", %) which is
associated with the base variable («,v)ranging over the universe
of discourse U XV ,where

UXV =1042+3+4)X1+2+3+4) (2.19)
={1,D+1,2)+(1,3)+(1,4)

(4. 1)+ (4,20 4+ 4,30+ (4.4), (2.20)
with the understanding that

‘15 Composite linguistic variables will be discussed in greater detail in Sec. 3 in
connection with lingwstie truth variables.

204




iKX= (iy)vinj=1-2,304 (2.21)
Furthermore, we assume that the term-set of (% ,% )comprises
Just two terms:

T =approximately equal-+more or less equal, (2.22)
where approximately equal and more or less equal are names of
binary fuz;zy relations defined by the relation matrice
m 1 0.6 0.4 0.2
approrimately equal = 0.6 1 0.6 0d (2.23)
0.4 0.6 1 0.6

0.2 0.4 0.6 1

and
1 0.8 0.6 0.47
0.8 1 0.8 0.6
more or lesy equal = (2.24)
0.6 8 1 0.8
0.4 0.6 0.8 1 .

In these relation matrices, the (7, ;) th entry represents the

compatibility of the pair ((7, j)with the restriction in question.
For example,the (2, 3)entry in approximately equal-which 1s 0. 6-
is the compatibility of the ordered pair (2, 3} with the binary
restriction named approximately equul.

To assign a value,say approximately equal to(H# .2 ), we
write

(=27, & )Y=approximately equal , (2.25)

where.as in(2. 18),it is understood that what we assign to(=#,
% )is a binary fuzzy relation named approrimately equal . which is
a binary restriction on the values of (u.v)in the universe of
discourse(2. 20).

Comment2. 2. In terms of the valise analogy (see Comment
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1.2).a linguistic variable as defined by Definition 2. 1 may be
likened w a hard valise into which we can put soft valises, as
illustrated in Fig. 6. A soft valise corresponds to a fuzzy variable
which is assigned as a linguistic value to %", with X playing the

role of the name-tag of the soft valise.

Huint
x
|
——Hord valise
u -— Sofl volige
Cbjec)

Fig. 6. Valise analogy for a linguistic variable.

Structured linguistic variables

In both of the above examples the term-set contains only a
small number of terms, so that it is practicable to list the
elements of T (% )and set up a direct association between each
element and its meaning, In the more general case, however,the
number of elements in 7' (" Ymay be infinite., necessitating the
use of an algorithm, rather than a table look-up procedure, for
generating the elements of 7°(.# )as well as for computing their
meaning,

A linguistic variable 2" will be said to be structured il its
term-set, I (%" ), and the function, M, which associates a
meaning with each term in the term-set, can be characterized

algorithmically. In this sense, the syntactic and semantic rules
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associated with a structured linguistic variable may be viewed as
algorithmic procedures for generating the elements of 7°(:#")and
computing the meaning of each term in 7 (&), respectively.
Unless stated to the contrary, we shall assume henceforth that
the linguistic variables we deal with are structured.

Example 2. 4. As a very simple illustration of the role played
by the syntactic and semantic rules in the case of a structured
linguistic variable , we shall consider a variable named Age whose
terms are exemplified by:old, very old,very very old,very very
very old ,etc. Thus,.the term set of Age can be written as

T (Age) =old +very old tvery very old+++. (2.26)

In this simple case,it is clear by inspection that every term
in T'(Age)is of the form old or very verys+very old. To deduce
this rule in a more general way,we proceed as follows.

Let zy denote the concatenation of character strings & and
yie. g s xr=very,y=old, zy =very old. If A and B are sets of
StrINEsS €. g, »

A=z + x4+, (2.27)
B=y 42+, (2.28)
where x; and y; are character strings ,then the concatenation of A
and B is denoted by AB and is defined as the set of strings
AB =(x)tx4 (v +y:+ )
= 2. T.¥, (2.29)
For example,if A=very and B=old+very old ,then
verylold +tvery old y=very old+very very old. (2. 30)
Using this notation, the given expression for 7" (Age), or
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simply T .may be taken to be the solution of the equation™
T'=old+very T, (2. 313
which,in words ,means that every term in 7 is of the form eld or
very followed by some term in T,
Equation (2.31) can be solved by iteration. using the

recursion equation

T =old+very TV .i=0,1,2,, (2.32)
with the initial value of 7" being the empty set 8, Thus

e ,

T'=old.

T =old +very old, (2.3

T =old +very old +very very old,

*

and the solution of (2. 31)is given by

T=T"=oldt‘very old ‘very very old +very very very old + +-.
(2. 34)

For the example under consideration, the syntactic rule,
then,is expressed by (2. 31)and its solution(2. 34). Equivalently,
the syntactic rule can be characterized by the production system
T—=old, (2. 35)

T'—very T, (2. 36)
for which(2. 31)plays the role of an algebraic representation. @In

) As is well known in the theory of regular expressions(see[ 3212 .1he solution
of(2. 31 can be expressed as
T'=(Atrvery+very’ 4 oid,
where L is the null string. This expression for 7° is equivalent 10 chat of (2. 34},
@ A discussion of the algebraic representation of context-{ree grammars ray he
found in[33),[34 Jand[35]. Aigebraic trearment of fuzzy languages is discussed in[6]
and[§8].
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this case.a term in 7 can be generated through a standard
derivation procedure ([ 36 ], [ 37 ]? involving a successive
application of the rewriting rules (2. 35)and ( 2. 36)starting with
the symbol T'. Thus,if T is rewritten as very T and then 7' in
very 1 1s rewritten as old, we obtain the term wery old. In a
similar fashion.the term very very very ofd can be obtained from
T by the derivation chain |
“ T —»very T—>very very T'—very very very T
—>very very very old. (2. 37)
Turning to the semantic rule for Age, we note that to
compute the meaning of a term such as very*--very old we need 10
know the meaning of o/d and the meaning of very. The term old
plays the role of a primary term.that is,a term whose meaning
must be specified as an initial datum in order to provide a basis
for the computation of the meaning of composite terms in 7. As
for the term very, it acts as a linguistic hedge, that is, as a
modifier of the meaning of its operand. If-as very simple
approximation-we assume that very acts as a concentramr[see
Part 1 ,Eq. (3. 40} ],then
very old =CON(oid)

=old®. (2.38) -
Consequently, the semantic rule for Age may be expressed as
Muery very old)Y=old®, (2. 39)

where » is the number of occurrences of very in the term very-
very old and M(very+> very old)is the meaning of very svery old.

Furthermore,if the primary term old is defined as
LMY

old = j [1+(

30

u—50
5

-1
}-—2} T (2. 40)
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then
LD

M (verysvery old) = j [] + (3—5_50}&2]_5";“ s =142,
(2. 41>
This equation provides an explicit semantic rule for the
computation of the meaning of composite terms generated by
(2.31) .from the knowledge of the meaning of the primary term
ald and the hedge very.
Boolean linguistic variables

The linguistic variable considered in Example 2.4 is a
special case of what might be called a Boolean linguistic variable.
Typically, such a variable involves a finite number of primary
terms ,a finite number of hedges .the connectives and and or.and
the negation nor. For example, the term-set of a Boolean
linguistic variable Age might be

T (Age) = young +old +not young +not old +very young -+

very very young+not very young and not very old

+ quite young -Hmore or less old+extremely old+

(2.42)
More formally, a Boolean linguistic variable may be defined
recursively as follows.

Definition2. 2. A Boeolean linguistic variable is a linguistic
variable whose terms, X ,are Boolean expressions in variables of
the form X,,AX,.X or hX ,where h is a linguistic hedge. X, is a
primary term and AX is the name of a fuzzy set resulting from
acting with A on X.

As an illustration,in the case of the linguistic variable Age
whose term-set is defined by (2. 42) ,the term aot very young and
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not very old is of this form,with 2 Svery,X, 2young and X,
Sold. Similarly.in the case of the term very very young.h Buvery
very and X, 8 young.

Boolean linguistic variables are particularly convenient to
deal with because much of our experience in the manipulation and
evaluation of Boolean expressions is transferable to variables of
this type. To illustrate this point. we shall consider a simple
example which involves two primary terms and a single hedge.

Example 2. 5. et Age be a Boolean linguistic variable with
the term-set

T (Age) = young +not young +old +not old +very young +

not young and not old + young or old + young or
(not very young and not very old)+++.  (2.43)

If we identify and with intersection,or with union,not with
complementation and wvery with concentration [see (2.38)], the
meaning of a typical value of Age can be written down by
inspection. For example,

M{not young)= 1 young,
M(not very youngd= 1 (young?),
Mot very young and not very old)= ~ (young®) [ 7 (eld?),
M{(young or old) = young|Jold. (2.44)

In effect,these equations express the meaning of a composite

term as a function of the meanings of its constituent primary

terms. Thus ,if young and old are defined as

T

23
— -1
youngy == J]fu—F J. [l+(u 525}2] Jus (2.45)
{

5
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(L]

ol = | [14—(“—50)_2]_I/’u. (2. 46)

then(see Fig. 7)

i Compatibility
Young Olo
i T
[
| Younq or aid
I
25 50 ¢

Fig. 7. Compatibitity function for young or old.

% K

i
r —2 1
M(younyg or old )= J 1 /u+ L1+(E-51§)2] lu
2

3] 5

+ IJ (142528 ]

S0

V[ 14

#—50
5

The linguistic variable considered in the above example

—
}—2] ‘u. (2.47)

involves just one type of hedge.namely,very. More generally.a
Boolean linguistic variable may involve a finite number of
hedges,as in(2. 42). The procedure for computing the meaning of
a composite term remains the same ,however,once the operations
corresponding to the hedges are defined.

The <question of what constitutes an appropriafe

representation for a particular hedge.e. g. «more or less or quite orx

2iz

[P S P




essentially,is by no means a simple one. WTo illustrate the point,
in some contexts the effect of the hedge more or less may be
approximated by[see Part I ,Eq. (3.41)]

MGnore or less X)=DIL(X)=X"". (2. 48)
For example,if X =old,and old is defined by (2. 46) .then

LM}

_ 5
mare or less old= J [1*{—(“ 550)"2] Ju. (2.49)
30

In many instances,however,more or less acts as a fuzzifier in

the sense of Part I ,Eq. (3.48),rather than as a dilator. As an
illustration ,suppose that the meaning of a primary term recent is
specified as
recent=1/1974+0.8/1973-+0. 7/1972, (2.50)
and that more or less recent is defined as the result of acting with
a fuzzilier F on recent,i, e. ,
more or less recent =F (recent 1 K) (2.51)
where the kernel X of F is defined by
K(1974)=1/19744+10.9/1973,
K{(1973)=1/1973+0.9/1972, (2.52)
K(1972)=1/1972+10. 8/1971.
On substituting the values of K into(3. 48)of Part 1 ,we obtain
the meaning of more or less recent.i.e. ,
maore or less recent =1/197440.9/19734+0. 72/1972+0. 56/1971.
{2:.53)
On the other hand,if the hedg® more or less were assumed to be a

{© A more detailed discussion of linguistic hedges from a fuzzy-set-thecretic
point of view may be found in[ 27Jand [38]. The idea of treating various types of
linguistic hedges as operators on fuzzy sets originated in the course of the author’s
collaboration with Professor G. Lakoff.
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dilator +then we would have
more or less recent =(1/19744+C. 8/1973+0. 7/1972)%°
=1/1974-+0.9/19734+0. 84/1972 (2.54>
which differs from(2. 53Ymainly in the absence of the term 0. 56/
1971, Thus,if this term were of importance in the definition of
more or less recent, then the approximation to more or less by a

dilator would not be a good one.

In Example 2.5, we have deduced the semantic rule by
inspection, taking advantage of our familiarity with the
evaluation of Boolean expressions. To illustrate a more general
technique , we shall consider the same linguistic variable as in
Example 2.10,but use a method [ 39]which is an adaptation of
the approach employed by Knuth in[40]to define the semantics
of contextfree languages,

Example 2.6 [t can readily be verified that the term-set of
Example 2.5 is generated by a context-free grammar G = (Vr,
Vas T4 FP) in which the nonterminals (syntactic categories) are
denoted by T',A.B,C.D.,i.e. ,

Vi=T4+A+B+C+D+E, (2.55)
while the set of terminals (components of terms in T ) is
expressed by

V= young+old +very+not+and+or+1(+), (2.58)

and the production system, P,is given by

T4, C—+D

T—T or A, C—EKE,

A—~E, D= very D,

A+Aagnd B, E-» very E, (2. 57>
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B—~(C, D— young,
B— not C, E— old,
C—{T),
The production system. P, can also be represented in an

algebraic form as the set of equations(see Footnote 3)

T=A+T or A,

A=B+A4 and B,

B=C+ not C,

C=(I'+D+E, (2.58)
= very D+ voung .
= pery E-+old.

The solution of this set of eguations for 7' yields the term
set T as expressed by (2. 43). Similarly,the solutions for 4,8,
C,D and E yield sets of terms which constitute the syntactic
categories denoted by A, B, C, D and E, respectively. The
solution of (2. 58) can be obtained iteratively,as in (2.32).by
using the recursion equation
(T,A,B,C.D.E)Y"'=f((T,A,B,C.D,E))),
1==0,1:+24 (2. 59)
with
(T A.B,C,D,EY=(8,-,8)
where (T,A,B,C,D,E)is a sextuple whose components are the
nonterminals in (2. 58); f is the mapping defined by the system -
of equations (2. 58);8 is the empty set;and (7, A, B.C.D.E) is
the ith iterate of (T, A,B.,C, D, E). The solution of (2.58),
which is the fixed point of f,is given by (T, 4,B,.C,D,E)™,
However,it is true for all i that
(I'A.B.C.D\EYC(T ,A.B.C,D,E), (2.60)
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Fig. 8. Syntax tree for not very young and not very oid.

which means that every component in the sextuple on the left of
(2. 60) is a subset of the corresponding component on the right
of (2. 60). The implication of (2.60),then, is that we generate
more and more terms in each of the syntactic categories T, A, R,
C,D,E as we iterate (2.59) on 4.

In a more conventional fashion,a term in T, say not very
youny and not very old .is generated by G through a succession of
substitutions (derivations ) involving the productions in P, with
each derivation chain starting with 7" and terminating on a term
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generated by G. For example, the derivation chain for the term
not very young and not very old is (see also Example 2. 4},

T—A—A and B—+~B and B—not C and B—not D and B—

not very D and B-»not very young and B—aot very

young and not C—not very young and not E—not very

young and not very E—not very young and not very old.

(2.61)

This derivation chain can be deduced from the syntax (parse)

tree shown in Fig. 8, which exhibits the phrase structure of the

term not very young and not very old in terms of the syntactic

categories 7, A, B, C, D, E. In effect, this procedure for

generating the terms in 7 by the use of the grammar G

constitutes the syntactic rule for the variable Age.

The semantic rule for Age is induced by the syntactic rule
described above in the sense that the meaning of a term in 7 is
determined, in part, by its syntax tree. Specifically, each
production in (2. 57) is associated with a relation between the
fuzzy sets labeled by the corresponding terminal and nonterminal
symbols. The resulting dual system of productions and associated
equations has the appearance shown below ,with the subscripts L
and R serving to differentiate between the symbols on the left-

and right-hand sides of a production (4 Sunion).

T—A =T .=Ag, (2.62)
T—T or A =T, =Tr+ Az, (2.83)
A—+B =A; =B8R, (2.64)
A=A and B = A;=Ag(| By, (2.65)
B—=C =B, =Cg, (2.66)
B—not C =B; =" Cg, (2.67)
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C—(T) =C,=Tgs (2. 68)

C—+D =>C.=Dxg, (2.69)
C-—~E =, =Eg» (2. 700
D—very D =D, =(Dy)?, (2. 71>
E—very E =2 E; =(Eg)?, (2. 72>
D—voung =D =young, (2.73)
E—old =E; =old. (2. 74

This dual system is employed in the following manner to
compute the meaning of a composite term in T

1. The term in question,e. g. , not very young and not very
old ,is parsed by the use of an appropriate parsing algorithm for
G [37],yielding a syntax tree such as shown in Fig. 8. The leaves
of this syntax tree are (a) primary terms whose meaning is
specified a priori; (b ) names of modifiers (i. e., hedges,
connectives negation .ete. ) ;and (¢ )markers such as parentheses
which serve as aids to parsing.

2. Starting from the bottom,the primary terms are assigned
their meaning and ,using the equations of (2. 62) ,the meaning of
nonterminals connected to the leaves is computed. Then the
subtrees which have these nonterminals as their roots are
deleted,leaving the nonterminals in question as the leaves of the
pruned tree. This process is repeated until the meaning of the
term associated with the root of the syntax tree is computed.

In applying this procedure to the syntax tree shown in
Fig. 9, we first assign to young and old the meanings expressed
by (2.45) and (2. 46). Then,using (2. 73) and (2. 74) ,we find

D.= voung (2. 75)
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Fig. §. Computation of the meaning of rot very young and not very old.

and
E, =old. (2.76)
Next,using (2. 71) and (2. 72) ,we obtain
Dy=D:= young* (2.77)
and
E,,= Ei, =old? (2.78)
Continuing in this manner ,we obtain
Ci=D;= young?, (2.79)
Cy=E\;=old*, (2. 80>
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B="7C.= 1 {young?). (2. 81>

B.= "1 Cy= 1(ald®), (2. 82)

A,=B,= 1 (young®). (2. 83)

A:=A; N Bs= 7 (young® > 1 (old?), (2. 84)
and hence

not very young and not very old= 1 (young®}[\ 71 {old?) .,
which agrees with the expression which we had obtained
previously by inspection {see{2. 44) 1,

The basic idea behind the procedure described above is to
relate the meaning of a composite term to that of its constituent
primary terms by means of a system of equations which are
determined by the grammar which generates the terms in T, In
the case of the Boolean linguistic variable of Example 2.5, this
can be done by inspection. More generally, the nature of the
hedges in the linguistic variable and its grammar G might be such
as to make the computation of the meaning of its values a
nontrivial problem,

Graphical reprsentation of a linguistic variable

A linguistic variable may be represented in a graphical form
which is similar to that of an object in the Vienna definition
language [41,42,43], Specifically, a variable 27is represented as
a fan (see Fig. 10) whose root is labeled “#"and whose edges are
labeled with the names of the values of %7 ,i.e. , X, X,,**. The
object attached to the edge labeled X, is the meaning of X, For
example.in the case of the variable named Age,the edges might
be labeled young. old, not young .etc. ;and the meaning of each
such label can be represented as the graph of the membership
function of the fuzzy set which is the meaning of the label in
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guestion (Fig. 11). It is important to note that,in the case of a
structured linguistic variable ,both the labels of the edges and the
objects attached to them are generated algorithmically by the
syntactic and semantic rules which are associated with the

variable.

Fig. 10. Representation of a linguistic variable

as a Vienna definition language object.

More generally,the graph of a linguistic variable may have
the form of a tree rather than a single fan (see Fig. 12). In the
case of a tree,it is understood that the name of a value of the
variable is the concatenation of the names associated with an
upward path from the leaf to the root. For example.in the tree of
Fig. 12, the composite name associated with the path leading
from node 3 to the root is wery tail. quite fat, extremely
intelligent,

This concludes our discussion of some of the basic aspects of
the concept of a linguistic variable, In the following section and
Part 1 ,we shall focus our attention on some of the applications

of this concept.
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AGE

Fig. 11. Representation of the linguistic

variable Age as a Vienna definition language object.

Profile ) i
alremely intelligen
IMelligeni Very inlelligenl
Quile [o!
Very tall
3

Fig-12. Tree representaticn of the linguistic variable Profile.
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3. Linguistic troth variables and fuzzy logic

In everyday discourse, we frequently characterize the degree
of truth of a statement by expressions such as very true, quite
true, more or less true, essentially true, false, completely. false,
etc. The similarity between these expressions and the values of a
linguistic variable suggests that in situations in which the truth
or falsity of an assertion is not well defined, it may be
appropriate to treat Truth as a linguistic variable for which #rue
and false are merely two of the primary terms in its term-set
rather than a pair of extreme potnts in the universe of truth-
values. Such a variable and its values will be called a linguistic
truth variable and linguistic truth-values. respectively.

Treating truth as a linguistic variable leads to a fuzzy
{inguistic logic, or simply fuzzy logic, which is quite different
from the conventional two-valued or even n-valued logic. This
fuzzy logic provides a basis for what might be called approximate
reasoning+ that is, a mode of reasoning in which the truth-values
and the rules of inference are fuzzy rather than precise. In many
ways, approximate reasoning is akin to the reasoning used by
humans in ill-defined or unquantifiable situations. Indeed, it
may well be the case that much — perhaps most — of human
reasoning is approximate rather than precise in nature,

In the sequel, the term proposition will be empioved to
denote statements of the form“x is A,” where « is a name of an
object and A is the name of a possibly fuzzy subset of a universe

of discourse U, e. g., “John is young,”*X is small,”“apple is
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red,"etc. If A is interpreted as a fuzzy predicate,¥V then the
staternent“w« is A” may be paraphrased as “u« has property A.”
Equivalently, “u is A" may be interpreted as an assignment
equation in which a fuzzy set named A is assigned as a value to 2
linguistic variable which denotes an attribute of u, e. g. »

John is young — Age(John)= yourng

X is small —Magnitude( X ) =small

apple i1s red «»Color(apple) =red

A proposition such as “u is A" will be assumed to be

associated with two fuzzy subsets; (1) The meaning of A, M(A).
which is a fuzzy subset of UV named A; and (i1)the treth-value of
“wis A,"or simply truth-value of A, which is denoted by v{A)
and is defined to be a possibly fuzzy subset of a universe of truth-
values, V. In the case of two-valued logic, V=T—+F(T Strue,

F Bfalse). In what follows, unless stated to the contrary, it
will be assumed that V=[0,1].

A truth-value which is a point in [0,1].e.g. v(A)=0. 8,
will be referred to as a numerical truth-value. The numerical
truth-values play the role of the values of the base variable for
the linguistic variable Truth. The linguistic values of Truth will
be referred to as linguistic truth-values. More spectfically, we
shall assume that Truth is the name of a Boolean linguistic

variabie in which the primary term is true, with false defined not

{I» More precisely, a fuzzy predicate may be viewed as the equivalent of the
membership function of a fuzzy set. To simplify our terminology . both A and 2.4 will be
referred to as a fuzzy predicate,
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as the negation of true,® but as its mirror image with respect to
the point 0.5 in [0,1]. Typically, the term-set of Trutk will be
assumed to be the {ollowing .
T (Truth) =true-not true -t very true+ more or less true +
very very true+ essentially true +wvery(not true)
+ not very true + -+ + false + not false + very
Jalse+-+++~++not very true and not very false+
vy (3.1)
in which the terms are the names of the truth-values.

The meaning of the primary term true is assumed to be a
fuzzy subset of the interval V = [0, 1] characterized by a
membership function of the form shown in Fig.13. More
precisely, zrue should be regarded as the name of a fuzzy variable
whose restriction is the fuzzy set depicted in Fig. 13.

A possible approximation to the membership function of true

is provided by the expression

P (D) =0 for 0=lva
_ofv—aj? atl
_2[1——a] for asiv=s 5
—1_of7=1}?
=1 2( 1—a
for “erlgvgl . (3.2)

which has v=(14+a)/2 as its crossover point, (Note that the
support of true is the interval [a, 1].) Correspondingly, for
false, we have(see Fig. 13)

(D As will be seen later{3. 11}, the definition of false as the mirror image of true
is a consequence of defining false as the truth-value of not A under the assumption that
the 1ruth-value of A is true.

225




—True

Fig. 13. Compatibility functions of

linguistic truth-values true and fulse.

Hiate (0) = gt (1 —v) 0 vl 1,
In some instances it is simpler to assume that zrue is a subset
of the {finite universe of truth-values
V=040.140.2440. 941 (3. 3)
rather than of the unit interval V=[0,1]). With this assumption.
true may be defined as, say,
true=0.5/0.7+0.7/0. §4+0.9/0.94+1/1,
where the pair 0.5/0.7, for example, means that the
compatibility of the truth-value 0. 7 with true is 0. 5.
In what follows, our main concern will be with relations of
the general form
v (u is :linguistic value of a Boolean linguistic variable #7)
= linguisti¢c value of 2 Boolean linguistic truth variable .7~

(3.4)

as in
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v(John is tall and dark and handsome)
=not very true and not very false,
where tall and dark and handsome is a linguistic value of a
variable named 2~ & Appearance, and not very true and not very
false 1s that of a hinguistic truth variable # . In abbreviated
form. (3. 4) will usually be written as
v(X)=T,

where X is a linguistic value of % and T is that of 7.

Now suppose that X, X, and X, * X,,where * is a binary
connective, are linguistic values of % with respective truth-
values v (X ), v(X,) and v (X, * X,}. A basic question that
arises in this connection is whether or not it is possible to express
v(X| * X, )as a function of v(X,)and v{X,). that is, write

v(X, » X)) =v(X,) » "v(X,), {3.5)
where *' is a binary connective associated with the linguistic
truth variable .2 % Tt is this question that provides the
motivation for the following discussion.

Logical connectives in fuzzy logic

To construct a basis for fuzzy logic it is necessary to extend
the meaning of such logical operations as negation, disjunction,
conjunction and implication to operands which have linguistic
rather than numerical truth-values. In other words, given
propositions A and B, we have to be able to compute the truth-

value of, say, A and B from the knowledge of the linguistic

(> From an algebraic point of view, v may be regarded as a homomorphic
mapping from T (%), the term-set of < ,00 T (7 ), the term-set of .7 . with »'
representing the operaucn in 705 ) induced by # .
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truth-values of A and B.

In considering this problem it is helpful to observe that, if A
15 a [uzzy subset of a universe of discourse L7 and « €U, then the
two statements

(a) The grade of membership of # in the fuzzy set A is g,
{a ).

(b) The truth-value of the fuzzy predicate A is g Cee).

(3. 6)
are equivalent, Thus, the question “What is the truth-value of A
and B given the linguistic truth-values of A and B?" is similar to
the question to which we had addressed ourselves in Part I,
Sec. 3, namely, “What is the grade of membership of # in AN B
given the fuzzy grades of membership of « in A and B?”

To answer the latter question we made use of the extension
principle, The same procedure will be followed to extend the
meaning of naty and, or and implies to linguistic iruth-values.

Specifically, if v(A) is a point in V=[0,1] representing the

truth-value of the proposition “« is A,"(or simply A), where «
1s an element of a universe of discourse I7, then truth-value of
not ACor 71 Adis given by
vinot AY=1—v{A). (3.7
Now suppose that v(A4) is not a point in [0, 1]but a fuzzy
subset of [0.,1] expressed as
v(A)=u /vyt u v, 3. 8
where the v, are points in {0, 1]and the «; are their grades of
membership in v{A). Then, by applying the extension principle
[Part 1 ,Eq. (3.80)] to {3.7),we obtain the expression for v
(not Adas a fuzzy subset of [0,1].i.e.,
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vinot AY=u, /{1 —v )+ Hu,/{1—v,} (3.9}

In particular, if the truth-value of A4 is true,i.e. .

v{A)=true, (3. 10)
then the truth-value false may be defined as
false Bulnor A), (3.11)

For example, if
true=0.5/7+0.7/0.840.9/0. 9+1/1, (3.12)
then the truth-value of #not A is given by
Salse=v(not A)=0.5/0.340,7/0.24+0.9/0.1+1/0.
Comment 3. 1. It should be noted that if

true=y /v, F 4 /v, (3.13)
then by (3. 33) of Part 1,
not true= (1 —w }/ v+ (11— pm) /v, (3. 14>
By contrast, il
v{A)=true=p /v + o+ 0, /00 s (3.15)

then
false=v(not AY=p,/(1—v )44,/ (L —v,). (3.16)

The same applies to hedges. For example, by the definition of
very [see(2. 38) ],

very true=p /v + /v, (3. 17)
On the other hand, the truth-value of very A is expressed by
v(very A)=p /vl + 2. /0. (3.18)

Turning our attention to binary connectives, let v(A4) and v
(B) be the linguistic truth-values of propositions 4 and B,
respectively. To simplify the notation, we shall adopt the
convention of writing—as in the case where v(A) and v (&) are

points in [0,1]—
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v(A) AviB) for v{A and B}, (3.19)

v(AYVu(B) for v(A or B}, (3. 20)
v(A)=>v(B) for v{A=>R), (3.21)

and
7 v(A) for vina A), (3.22)

with the understanding that A+ V and 7 reduce to Min
(conjunction ), Max (disjunction) and 1-operations when v (A4)
and v{B) are points in [0,1].
Now if v{A)Y and v{B) are linguistic truth-values expressed

as

v(A)=a /v, 4+ +a,/v, {3.23)

v(BY=8/w,++8,./wn (3. 24)
where the v, and w, are points in [0,1]and the a; and 8, are their
respective grades of membership in A and B, then by applying
the extension principle to v(A and B),we obtain

v{A and B)Y=v(A) Avi{B)
={(a,/v,+Fa, /v A (B o+ 8,/ w,)

= 2.0 ABD/G A w). (3. 25)

Thus, the truth-value of A and B is a fuzzy subset of [0,1 Jwhose
support comprises the points v, Aw,yi =1, sn,j=1,++,m with
respective grades of membership (2, A 3;). Note that (3.25)is
equivalent to the expression (3.107 ) of Part 1 for the
membership function of the intersection of fuzzy sets having
fuzzy membership functions.
Example 3. 2, Suppose that
v(A)=true
=0.5/0. 74+0.7/0.840.9/0.9+1/1 (3. 26}
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and
v(B)=not true
=1/0+1/0.1+1/0.2+1/0. 3+1/0.4+1/0.5
+1/0.6+0.5/0. 7+0. 3/0. 8+0.1/0.9. (3. 27)
Then the use of (3. 25)eads to
v(A and B)=true A not true
=1/(04+0.1+0.240.340.440.5-0.6)
+0.5/0.7+0.3/0.840.1/0. 9
=not true. (3. 28)
In a similar fashion,for the truth-value of A or B,we obtain
v(d or By=v(A)Vv(B)
= (&, /v, Fa./v)V (B /w + o+ 6./ w.)
= ?}(a.- A B/ (v ¥ w). (3. 29)
The truth-value of A=>B depends on the manner in which
the connective = is defined for numerical truth-values, Thus,if
we define [see Part 1 ,Eq. (2.24)]
v(A=B)= 1 p(A) Vv(A) Av(B) (3. 30)
for the case where v(A) and v(B) are points in [0,1],then the
application of the extension principle vields {see Part I,
Comment 3. 5)

v(A=>B)=[(a,/v,+++a,/v,)
= (/o + B /wa)]
=I,'E'.j(a;f\ﬂ,)/{1—~v,)v {v: A ;) (3. 31>
for the case where TJ{A‘) and v(B) are fuzzy subsets of [$,1].
Comment 3. 3. It is important to have a clear understanding
of the difference between and in,say,érue and not true.and A in

true A not true. In the former,our concern is with the meaning of
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the term true and not true,and and is defined by the relation

M {true and not trueY =MGrue) (Y MCnot true), (3.32)
where M is the function mapping a term into its meaning (see
Definition 2. 1). By contrast ,in the case of true A not true we are
concerned with the truth-value of true A not true, which is
derived from the equivalence [see (3.19}]

(A and By=v(A) Av(B). (3. 33).

Thus,in (3. 32) () is the operation of intersection of fuzzy sets,
whereas in (3.33), A is that of conjunction. To illustrate the
difference by a simple example,let V=0+4+0,14--+1,and let P
and Q be fuzzy subsets of V defined by

P=0.5/0.34+0.8/0. 740.6/1, (3.34)
Q=0.1/0.3+0.6/0. 7+1/1. (3.35)
Then
PNQR=0.1/0.3+0.6/0.7+0.6/1, (3. 36)
whereas
PAQ=0.5/0.3+0.8/0.7-0. 6/1. (3.37)

Note that the same issue arises in the case of not and 1, as
pointed ocut in. Comment 3. 1.

Comment 3.4, It should be noted that in applying the
extension principle [Part I ,Eq. (3.96)]to the computation of ©
(A and B),v{A or B) and v(A=>8),we are tacitly assuming that
v{A)} and v(B) are noninteractive fuzzy variables in the sense of
Part 1 ,Comment 3. 5. v{A) and v(B) are interactive,then it
15 necessary to apply the extension principle as expressed by
(3. 97) of Part 1 rather than (3. 96). Tt is of interest to cbserve
that the issue of possible interaction between v(A) and v (B)
arises even when v{(A) and v(B)are points in [0, 1 ]rather than
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fuzzy variables.

Comment 3.5. By employing the extension principle to
define the operations A,V , 71 and = on linguistic truth-values,
we are in effect treating fuzzy logic as an extension of
multivalued logic. In the same sense, the classical three-valued
logic may be viewed as an extension of two-valued logic [see
Eqgs. (3. 64) et seq. |-

The expressions for v(not A ),v(A and B),v(A or B) and
v({A=>B) given above become more transparent if we first
decompose v (A) and v (B)into level-sets and then apply the
level-set form of the extension principle [ see (3.86)]to the
operations 7, A,V , and =.In this way.we are led to a simple
graphical rule for computing the truth-values in question (see
Fig. 14). Specifically,let the intervals [a,.a, Jand [#,,6.] be the
a-level sets for v(A) and v(B). Then,by using the extensions of
the operations 71, A and V to intervals,namely [see Part [,
Eq. (3. 100 ]

-](aitdg)=|:1_ﬂgrl"ﬂ]]1 (3. 38)
[dpazjf\[b]962]=[a1hbuﬂzﬁbg]f (3. 39)
Larea: 1V [bb =2,V 8y5a.V 8, ], (3. 40)

we can {ind by inspection the a-level-sets for v( not A) ,v(A and
B) and v(A or B). Having found these level-sets,v{ not A),v{A

and B) and v(A or B)can readily be determined by varying o
from 0 to 1.

As a simple illustration, consider the determination of the

conjunction of linguistic truth-values v (A) Brrue and v (B)

A false,with the membership functions of zrue and faise having
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the form shown in Fig. 15.

| Membership

9 b
Fig. 14. Level-sets of truth-values of A and 8.

We observe that,for all values of a.

Laira ) ALbisb J=[by 6], (3. 41)
which implies that [see Part I ,Eq. (3. 118)]
Le .8, 1<[a; ra, ] (3. 42)
f Membership

b

\ b

2

Fig. 15. Computation of the truth-value

of the conjunction of true and false.

Consequently, merely on the basis of the form of the

membership functions of true and false, we can conclude that

234




true A false= false, (3.43)
which 1s consistent with(3. 25).
Truth tables and linguistic approximation

In two-valued, three-valued and, more generally, »-valued
logics the binary connectives A, Y and =rare usually defined by
a tabulation of the truth-values of A and B, Aor Band A =B in
terms of the truth-values of A and B.

Since in a fuzzy logic the number of truth-values is, in
general, infinite, A , V and =>cannot be defined by tabulation.
However, it may be desirable to tabulate say, A, for a finite set
of truth-values of interest, e, g. « true, not true, false, very true,
very(not true), more or less true, etc. In such a table, for the
entry in the ith row{say not true)and in the jth column(say more
or less true), the (¢,5) th entry would be

(¢ vj)th entry =ith row label (2 not true} A jth column label

( A more or less true). (3. 44)
Given the definition of the primary term zruwe and the
definitions of the modifiers not and more or less, we can compute
the right-hand side of (3. 44), that is,
not true \ more or less true (3. 45)
by using(3. 25). However, the problem is that in most instances
the result of the computation would be a fuzzy subset of the
universe of truth-values which may not correspond to any of the
truth-values in the term-set of Truth. Thus, if we wish to have a
truth table in which the entries are linguistic, we must be
content with an approximation to the exact truth-value of (ith
row label A jth column label), Such an approximation will be

referred to as a linguistic approximation, (See Part 1, Fig. 5.)
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As an illustration. suppose that the universe of truth-values

is expressed as

V=0+0.14+0.2+4++1, (3.46}
and that
true=0.7/0.84+1/0.94+1/1, (3.47)
more or less true=40.5/0. 6+0. 7/0.74+1/0. 84+1/0.941/1
(3. 48)
and
almost true=0, 6/0. 8+1/0. 94+0. 6/1. (3.49)

[n the truth-table for V, assume that the ith row label is
more or less true and the jth column label is almost true. Then,
for the(s, j)th entry in the table, we have

more or less true \ almost true =0.5/0.64+0. 7/0. 741/0. §

+1/0.94+1/1) V (0. 6/0. 8
+1/0.940.6/1)
=0.6/¢.84+1/0.9+1/1.
(3.50)
Now, we observe that the right-hand side of (3.50) is
approximately equal to ¢rue as defined by (3. 47). Consequently,
in the truth table for V., a linguistic approximation to the (7, j)
th entry would be true.
The truth-values unknown and undefined

Among the truth-values that can be associated with the
linguistic variable Truth, there are two that warrant special
attention, namely, the empty set & and the unit interval [0,1]—
which correspond to the least and greatest elements (under set
inclusion Yof the lattice of fuzzy subsets of [0,1]. The imporrance
of these particular truth-values stems from their interpretability
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as the truth-values undefined and unknown, Vrespectively. For
convenience we shall denote these truth-values by & and 7, with

the understanding that # and 7 are defined by

|
ﬁg_[wv (3.51)

and

? 8V =universe of truth-values

=[0,1]

= IOfw. (3.52)

f
Interpreted as grades of membership, undefired and

unknown enter also in the representation of fuzzy sets of type 1.
For such sets, the grade of membership of a point # in UV may
have one of three possible forms: (i) a number in the interval[ 0,
1]: €ii) 8 (undefined); and (iii)? Cunknown). As a simple
example, let

U=a+btctd+te (3.53)
and consider a fuzzy subset of IJ represented as
A=0.1a+0. 95+ c+8d. (3. 54>

In this case, the grade of membership of ¢ in A is unknown and
that of d is undefined. More generally, we may have

A=0. la+0.9%40.8? c+8d, (3. 55)
meaning that the grade of membership of ¢ in A is partially

unknown, with 0. 87 ¢ interpreted as

() The concept of untnawn is related to that of don’ care in the context of
switching circuits [44]. Another related concepr is thar of quasi-teurh-functionality

(46].
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1
0.87 ¢ _g(j 0. 8/1.*] e, (3. 56)
v}

It is important to have a clear understanding of the
difference between 0 and #. When we say that the grade of
membership of a point u in A is #, what we mean is that the
membership function g, ¢ U — [0, 1]is undefined at #. For
example, suppose that U s the set of real numbers and g, 15 a
function defined on integers, with gy () =1 if « is an even
integer and g, (u)}=70if « is an odd integer. Then the grade of
membership of « =1.5 in A is & rather than 0. On the other
hand, if yq were defined on real numbers and gy () =1 iff u is
even, then the grade of membership of 1.5 in A would be 0.

Since we know how 1o compute the truth-values of A and
B, A or B and not B given the linguistic truth-values of 4 and B,
it ts a simple matter to compute v(A and B), v(Aor B) and v

(not B) when v(B)Y=1. Thus, suppose that
i

le}=Jp(v)ft1 (3.57)

and
1
p(B)=2% = J. 1/ 1. (3.58)

By applying the extension principlE, as in (3. 25), we obtain

v{AYA? = | glo) /v A [I;’rm

ik

.:-_-.'-u—.,.-n 'ﬁt-_-:

1
J,rx(t:) (vAw), (3.59)

[4

where
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11
” a j \ (3. 600
" [0 1) 0]

and which upon stmplification reduces to

]
v{AYA® = J [V pente{e) ] /20, (3. 61)
i}

In other words, the truth-value of A und B, where v(B) =
unknown 15 a fuzzy subset of [0, 1] in which the grade of
membership of a point w is given by the supremum of x(v)
(membership function of A) over the interval [w,1].

In a similar fashion, the truth-value of A or B is found to be
expressed by

11

(A or BY= J,u(v)f(va]
LA

1
1

= [ [V toust€) 1/, (2.62)

0

It should be noted that both(3.61) and (3. 62) can readily
be obtained by the graphical procedure described earlier [see
(3. 38)et seq. ]. An example illustrating its application is shown
in Fig. 16.

Turning to the case where v(BY=§¢, we {ind

11
v(AYAG = Jﬁf(vﬂw)

+
L1
]H

= | 0/w

0

=f (3. 63

and likewise for v(AYV 6.
It is instructive to examine what happens to the above
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Membership

\jrp ——v{A}v¥ D

viA)

Fig. 16. Conjunction and disjunction of the truth-

value of A with the truth-value unknown(8 7).

relations when we apply them to the special case of two-valued

logic, that is, to the case where the universe V is of the form

V=0+1, (3. 64)
or, expressed more conventionally.
V=T+F, {3.65)

where T" stands for true and F stands for false. Since ?is V', we
can identify the truth-value unknown with true or jfalse. that is,

* =T+F (3. 66)
The resulting logic has four truth-values. &, 7T, F and T+ F
(87), and is an extension of two-valued logic in the sense of
Comment 3. 5.

Since the universe of truth-values has only two elements, it
is expedient to derive the truth tables for V. A and = in this
four-valued logic directly rather than through specialization of
the general formulae (3.25), (3.29) and (3.31}). Thus, by
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applying the extension principle to A . we find at once

T Ao=4, (3. 67)
TA(T+FE)=TAT+TAF=T+F, (3. 68)
FA(TH+F)=FATH+FAT
=F+F
=F, (3. 69)
(TH+POAT+F)=TATH+TNANF+FAT+FAF
=T+F+F+F
=T+F, (3. 70)

and consequently the extended truth-table for A has the form
shown in Table 1.

Table 1
A d T F T+F
G f & g g
T @ f] F T+F
F # F F F
T+F| &8 T+F F TH+F

Upon suppression of the entry 8, this reads as shown in Tabhle 2.
Table 2

A T F T+F

T T F T+F
F F ¥ ¥
TH+F|T+HF F THF

Similarly . for the operation V we obrain Table3.
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Table 3
Y T F T+F
T T T T
F T ¥ T+F
T+F| T THF T+ F

These tables agree — as they should — with the corresponding
truth tables for Aand Vin conventional three-valued logic[46].

The approach employed above provides some insight into the
definition of = in two-valued logic —a somewhat controversial
issue which motivated the development of modal logic[ 45,47 ].
Specifically, instead of defining = in the conventional fashion,
we may define = as a connective in three-valued logic by the

partial truth table in Table 4,

Table 4
=Y+ F T+F
T|T F
F T

which expresses the intuitively reasonable idea that if A=B is
true and A is false, then the truth-value of B is unknoun. Now
we can raise the question; How should the blank entries in the
above table be filled in order to yield the entry 7" in the (2,3)
position in Table 4 upon the application of the exrension
principle? Thus, denoting the unknown entries in positions(2,1)
and (2,2) by r and y.respectively, we must have
F=2(U+ ) =(F=>T)+ (F=F)
=x+y
=T, (3.71)
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which necessitates that
r=y=T, (3.72>
In this way, we are led to the conventional definition of =>in

two-valued logic. which is expressed by the truth table

- T 5
T T he
F T T

As the above example demonstrates, the notion of the
unknown truth-value in conjunction with the extension principle
helps to clarify some of the concepts and relations in the
conventional two-valued and three-valued logics. These logics
may be viewed, of course, as degenerate cases of a fuzzy logic in
which the truth-value unknown is the entire unit interval rather
than the set 041,

Composite truth variahles and truth-value distributions

In the foregoing discussion, we have limited our atrention to
linguistic truth variables which are unary variables in the sense
of Part 1, Definition 2. 1. In the following, we shall define the
concept of a composite truth variable and dweli briefly on some of
its implications.

Thus, let

L7

-

CFT e, 570 (3.73)
denote an n-ary composite linguistic truth variable in which each
Fivi=1,+,n, is a unary linguistic truth variable associated
with a term-set T',.a universe of discourse V,, and a base variable
v, (see Definition 2.1). For simplicity, we shall sometimes
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employ the symbol .7, in the dual role of (a) the name of the /th
variable in {(3.73), and (b} a generic name for the truth-values
of &“7,, Furthermore, we shall assume that 7', =7T,=+ =T, and
V,=V,=--=V,=[0,1].
Viewed as a composite variable whose component variables
F ey, take values in their respective universes T'yyeee, T,
7~ 18 an n-ary nonfuzzy vartable [see Part 1, Eq. (2.3) o
seg. J. Thus, the restriction R (7 ) imposed by .77 is an n-ary
nonfuzzy relation in T') X «++ X T, which may be represented as an
uncrdered list of ordered n-tuples of the form
RUZ7 )= (true svery true, false s+~ ,quite true)
+ (quite true.drue,very true .'** vvery true)
+ (true true ,more or Less true, s true)
e (3.742
The a-tuples in R (%) will be referred to as truth-value
assignment lists since each such n-tuple may be interpreted as an
assignment of truth-values 16 a list of propositions A4,, ", A4,,
with
A B(A - A) (3.75)
representing a composite proposition. For example, if
A A (Scott is tall, Pat is dark-haired, Tina is very prelly),
then a triple in R(F )of the form (very true, true, very true)

would represent the following truth-value assignments .

v{3cott is tall) =very true, (3.76)
v(Pat is dark-haired) =true. (3.77)
v(Tina is very pretty) =very true. (3.78)

Based on this interpretation of the n-tuples in R(.57), we
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shall frequently refer to R{(.Z ) as a truth-value distribution.
Correspondingly, the restriction R (-f_,l. <y F, ) which s
imposed by the k-ary variable (77, , .77, ), where g = (¢,
i+ )is a subsequence of the index sequence (1, ++,n}, will be
referred to as a marginal truth-value distribution induced by R
(F s+ )[see Part 1, Eq. (2.8)]. Then, using the notation
employed in Part I , Sec. 2 (see also Note 1. 1 in this Part}. the
relation between R (ﬁ*,] reeyZ)and ROF (o, &7, Y may be
expressed compactly as

R(Z L I=R,R(57), (3.79)
where P, denotes the operation of projection on the Cartesian
product T, X+, T,
Example 3. 1. Suppose that E(.7 )is expressed by

R(F VARG |, F ,,.77,)

= (frue quite true,very true)
+ (uery true.true ,very very true)
+ (true, faise .quite true)
+ ( false, false very true). (3. 80)
To obtain R (F,,.57,) we delete the &7, component in each
triple, yielding
R ,.F ) = (true,quite true) + (very true true)
+ (true s false) -+ (false. false). (3. 81)
Similarly, by deleting the -7, components in R(F . . ,), we
obtain
R{(Z ) =true tvery true-t false. (3. 82)
If we view 7 as an n-ary nonfuzzy variable whose values

are linguistic truth-values, the definition of noninteraction (Part
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I . Definition 2. 2) assumes the following form in the case of
linguistic truth variables,

Delinition 3. 1. The components of an n-ary linguistic truth
variable 7~ = (.77, ++,.77,} are A-noninteractive (4 standing for
linguistic } iff the truth-value distribution R (.Z7, +=+, .7 ) Is
separable in the sense that

R(F |, T =REZ )X XRCT ). (3.83)
The implication of this definition is that. if -7 |, +,. %, are -
noninteractive, then the assignment of specific linguistic truth-
values to .77, .++.7", does not affect the truth-values that can be
assigned to the complementary components in (F 7y, =, .5 )

L
T e T

e

Before proceeding to illustrate the concept of A
noninteraction by examples. we shall define another type of
noninteraction which will be referred to as B-noninteraction (8
standing for base variable).

Definition 3. 2. The components of an »n-ary linguistic truth
variable & = (.97, v, F ) are B-nominteractive iff their
respective base variables 1, ,'+,v, are noninteractive in the sense
of Part [, Definition 2.2; that is, the v are not jointly
constrained,

To illustrate the concepts of noninteraction defined above we
shall consider a few simple examples.

Example 3.2, For the truth-value distribution of Example
3.1, we have

R{77 Y =true+tvery true— false,
R(77 )y =quite trie +true -+ false, (3. 84)
R(.77 ) y=wery true+very very true--quite true,
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and thus
R{OF IXR(F IXRUT )= Ctrue quite true very trie)
+ (very iruel, quite true, very
true) - + ( false, false, quite
true)F=R{T 1.7 3437 ),

(3. 85)
which implies that R(.Z,, 7 ,,.7 3) is not separable and hence
G\ v T 347 5 are h-interactive,

Example 3. 3. Consider a composite proposition of the form
(A.not A) and assume for simplicity that T'(.Z Y =¢rue+ faise. In
view of (3.11),1f the truth-value of A is true then thar of not A
is false, and vice versa. Consequently, the truth-value
distribution for the propositions in question must be of the form

R{7 1T )= (true, false) + (false .true) , (3. 86)
which induces
R{ZF ) =R(7 ) =frue+t false. (3. 87)
Now
RCF Y ARCE y=C(true + false) X (true + false)
= (truestrue) + (true s faise)
+ (false ytrue) + (false. false),

(3.88)
and since

R(Z\,F DFERIF )HKRCT )
it follows that %7, and %, are A-interactive.

Example 3.4. The above example can also be used as an
illustration -of S-interaction. Specifically. regardless of the truth-
values assigned 1o A and not A, it follows from the definition of
not [see Part 1 ,Eq. (3. 33}] that the base variables v, and v, are
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constrained by the equation
v, Fup=1. (3.89)

In other waords, in the case of a composite proposition of the
form(A, not A),the sum of the numerical truth-values of 4 and
not A must be unity.

Remark 3.1. It should be noted that, in Example 3. 4. j-
interaction is a consequence of A, being related to A, by
negation. In general, however, Z ,++ .9, may be A-interactive
without being [-interactive.

A useful application of the concept of interaction relates to
the truth-value unknown (see (3. 52)]. Specifically , assuming for
simplicity that V=74 F ,suppose that

A, 8 Pat lives in Berkeley, (3.90)

A, 8 Pat lives in San Francisco, (3.51)

with the understanding that one and only one of these statements

is true. This implies that, although the truth-values of 4,and A,

are unknown (89 =T4F),that is,

w(A) =T +F.
v(A,)=T+F, (3.92>
they are constrained by the relations
v(ADVo(A)="T, (3.93)
v(ADAv(AH=F, (3. 94)

Equivalently, the truth-value distribution associated with (3. 90)
and (3. 91)may be regarded as the solution of the equations
v{ADVu(A,)=T, (3.95)
v{A D Av(A)=F, (3. 96)
which is
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R(G |, 7 )=(T,F)y—(F,T). (3.973
Note that (3. 37 himplies
v(A)=R(F | })=T+F (3.98)
and
v(A))=R(Z ,)=T+F, (3.99)
in agreement with (3.92). Note also that & | and %7, are j-
interactive in the sense of Delinition 3. 2, with V=T+4F,

Now if A, and A, were changed to
A, 2 Pat lived in Berkeley, (3. 100)

A, 5 Pat lived in San Francisco,

(3. 101}
with the possibility that both 4, and A, could be true, then we
would stll have

v(ApDp=7 =T+F, (3.102)

v{A;}=7 =T+F, (3.103)
but the constraint equation would become

(A Ve(A,)=T. (3. 104}

In this case, the truth-value distribution is the solution of
(3. 104), which is given by
R(F |\ T Y= (true,true) + (true, false) + (false true).
{3.105)
An important observation that should be made in connection
with the above examples is that in some cases a truth-value
distribution may be given in an implicit from, e. g. ,» as a solution
of a set of truth-value equations, rather than as an explicit list of
ordered n-tuples of truth-values. In general, this will be the case

where linguistic truth-values are assigned not to each A, in A=

249




(A, ++-+A,),but to Boolean expressions involving two or more of
the components of A.

Another point that should be noted is that truth-vaive
distributions may be nested. As a simple illustration, in the case
of a unary proposition we may have a nested sequence of
assertions of the form

“"““Vera 1s very very intelligent” is very true” is true.”

(3. 106)
Restrictions induced by assertions of this 1ype may be computed
as follows..

Let the base variable in(3.106) be IQ, and let R, (IQ)
denote the restriction on the 1Q of Vera. Then the proposition
“Vera is very very intelligentimplies that

R, (1Q) =very very intelligent. (3. 107)

Now, the proposition ““Vera 1s very very intelligent"is very
true”implies that the grade of membership of Vera in the fuzzy
set R, (1Q) is wery true [see (3.6)]). Let pyoyse denote the
membership function of very true [see(3. 17)].and let #z, denote
that of R,(1Q). Regarding uy as a relation from the range of IQ
to {0,1], let gz denote the inverse relation from [0,1] to the
range of IQ. This relation, then, induces a fuzzy set R, (IQ)
expressed by

R, Q) =g (very true) ,. (3. 108)
which can be computed by the use of the extension principle in
the form given in Part 1, Eq. (3.80). The fuzzy set R, (1Q)
represents the restriction on IQ induced by the assertion ““Vera
is very very intelligent” is very frue.”

Continuing the same argument, the restriction on 1Q
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induced by the assertion “*“Vera is very very intelligeni”is very
true’is true’may be expressed as

R (1Q) =z Cerue) (3.109)

where ' denotes the relation inverse to uz ., which is the
membership function of R, (IQ)given by (3. 108). In this way,
we can compute the restriction induced by a nested sequence of
assertions such as that exemplified by (3. 106).

The basic idea behind the technique sketched above is that

““uis A" is T,”where A is a fuzzy

an assertion of the form

predicate and T is a linguistic truth-value, modifies the

restriction associated with A in accordance with the expression
A'=p3 W (T,

where g3 is the inverse of the membership function of A, and A’

is the restriction induced by the assertion ““u is A" is 7. "
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The Concept of a Linguistic Variable and its
Application to Approximate Reasoning — II

1. Linguistic probabilities and averages over fuzzy sets

In the classical approach to probability theory,an event, 4 ,is
defined as a member of a o-field, o ,of subsets of a sample space
{}. Thus,if P is a normed measure over a measurable space({},
7"} sthe probability of A is defined as P{A),the measure of A4,
and is a number in the interval{0.1].

There are many real-world problems in which one or more
of the basic assumptions which are implicit in the above
definition are viclated. First, the event, A, is frequently ill-
defined ,as in the question,“What is the probability thar it will be
a warm day tomorrow?”In this instance,the event warm day is a
fuzzy event in the sense that there is no sharp dividing line
between its occurrence and nonoccurrence, As shown in[ 48],
such an event may be characterized as a fuzzy subset, A, of the
sample space {3, with x,,the membership function of A,being a
tmeasurable function.

Second, even if A4 is a well-defined nonfuzzy event. its
probability , 7(4) ,may be ill-defined. For example,in response to
the question, “What is the probability that the Dow Jones
average of stock prices will be higher in a month from now?”it

would be patently unreasonable to give an unequivocal numerical
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answer.e, g. »0.7. In this instance,a vague response like“quite
probable, "would be much more commensurate with our lack of
understanding of the dynamics of stock prices,and hence a more
realistic-if less precise-characterization of the probability in
question.

The limitations imposed by the assumption that 4 is weli-
defined may be removed.at least in part, by allowing A to be a
fuzzy event, as was done in [487. Another and perhaps more
important step that can be taken to widen the applicability of
probability theory to ill-defined problems is to allow P to be a
linguistic variable in the sense defined in Part I1,Sec. 3. In what
follows, we shall outline a way in which this can be done and
explore some of the elementary consequences of allowing F to be

a linguistic variable.

Linguistic probabilities

To simplify our exposition, we shall assume that the object
of our concern is a variable, X ,whose universe of discourse .U/ ,is
a finite set

U=u,+u,++u,. (1.1)
Furthermore, we assume that the restriction imposed by X
coincides with U. Thus,any point in U can be assigned as a value
to X,

With each u;. i = 1, ..., n, we associate a [linguistic
probability .59, ,which is a Boolean linguistic variable in the sense
of Part T ,Definition 2.2, with p,,0<{p, <1, representing the
base variable for &7, For concreteness,we shall assume that V,

the universe of discourse associated with “.,is either the unit
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interval{ 041 Jor the finite set
V=040.14--+0, 5+1. (1.27
Using #as a generic pame for the 3, the term-set for #
will typically be the following.
T (5 Y=likely-tnot likely+ unlikely
+uvery fikely+more or less likely
+‘oery uniikely+ -
+ probable - improbable -+ very probable+ +»
+neither very probable nor very improbable 4+
+close to Ot-close to Q. 14 s0e- +close to 14+
+very close te O+very close to 0. 14+, (1.3)
in which likely, probable and close to play the role of primary
terms,

The shape of the membership function of likely will be
assumed to be like that of true [see Part 1 ,Eq. (3.2)]).with not
likely and unlikely defined by

Hoor sinct L P =1 — thig € P )y (1. 4)
and

Pentiiet s P )= fawer. (1 — p), (1.5)
where p is a generic name for the p..

Example 1. 1. A graphic example of the meaning attached to
the terms likely,not likely.very likely and unlikely is shown in |
Fig. 1. In numerical terms.,if the primary term fikely is defined as

likely=10.5/0. 64+0.7/0. 740.9/0.8-+1/0. 9+1/1 (L. 6)
then

not likely=1/(040.14+0.240. 340. 44+0.5)40. 5/0. 6+

0. 3/0.7/40.1/0. 8. (1.7
undikely=1/0+1/0.14+0.9/0. 24+0.7/0. 31G. 5/0. 4(1. &)
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and
very lthely=0.25/0. 6+0.49/0. 74+0.81/0. 841/0. 9+ 1/1.
(1.9

Unlikaly

Nol likely

Fig. 1. Compatibility functions of likely,
not Likely vundikely and very Likely.

The term probabie will be a assumed to be more or less
synonymous with {fkely. The term close to @, where a is a point in
(0, 1], will be abbreviated as ¢ or, alternatively, as “a”,T,

suggesting that « is a “best example"of the fuzzy set “a”. In this

sense,then,
Iike!yéct'me to 1g “17, (1.10)
unﬁke!ygrfme to 'I:!'g 07, (1.11>
and

close 16 0. 8240, 87=0.6/0. 74+1/0.840.6/0.9. (1. 12)

from which if follows that

{© The symbol“a"will be employed in place of @ when the constraints imposed by
typesetting dictate it= use.
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very close to 0. 8 =very®0. 8"
= (“0.8")*[in the sense of Part [, Eq.
(2.38)]
=0.36/0.7+1/0. 8+0. 36/0. 9,

A particular term in 7' (57 )will be denoted by T',,or 7', in
case a double subscript notation is needed. Thus,if T, = very
likely.then T,, would indicate that wvery fikely 15 assigned as a
value to the linguistic variable ;.

The n-ary linguistic variable (2, ..., %,) constitutes a
linguistic probability assignment list associated with X. A
variable X which 1s associated with a linguistic probability
assignment list will be referred to as a Ilinguistic random
variabie. By analogy with linguistic truth-value distributions [see
Part I ,Eq.(3.74)],a collection of probability assignment lists
will be referred to as a linguistic probability distribution.

The assignment of a probability-value 7T, to P, may be
expressed as

P.=T, (1.13)
where P, is used in a dual role as a generic name for the fuzzy
vartables which comprise #,, For example ,we may write

P, =T,

=very likely (1.14)
in which case very likely will be identified as T, (1. e., T,
assighed to P;).

An important characteristic of the linguistic probabilities

Py....P,1s that they are #-interactive in the sense of Part I,

Definition 3. 2, The interaction between the P, is a consequence of

the constraint(+ é:alrithmetic sum
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ptpteeTp=1, (1. 15)
in which the p; are the base variables (i. e., numerical
probabilitiesassociated with the F..

More concretely,let R(p, +++p,=1)denote the nonfuzzy
n-ary relation in [0, 1] X +»» X [0, 1] representing (1.15).
Furthermore,let R(P,)denote the restriction on the values of p,.
Then the restriction imposed by the n-ary fuzzy variable(P,...,
P.Ymay be expressed as

R(Pysene s PI=R(PI) X+ XR(PINR(p1+-+p.=1)
(1. 16)
which implies that,apart from the constraint imposed by(1. 15},
the fuzzy variables P,,..., P, are noninteractive,
Examplel. 2. Suppose that

P =likely
=0.5/0. 840. 8/0. 9+1/1 (1. 17)
and
Py, =unilikely
=1/0+0.8/0.1-+0. 5/0. 2. (1. 18
Then

" R(P) X R(Py) =likely X unlikely
= (0.5/0.8+4+0.8/0.94+1/1) X (1/0/+0. 8/
0.14+0.5/0.2)
=0.5/¢0. 8,0)+0. 8/(0. 9, +1/(1,0}
+0.5/(0. 8,0, 134+0.8/¢0.9,0. 1)
+0.8/(1,0.1)+0.5/(0.8,0. 2)
+0. 5/€0.9,0. 2)+0.5(1,0.2).  {(1.19)
As for R(p;++-++ p,=1).it can be expressed as
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R(pl+pgm1>z;1m,1—&>, B=0,0. 140,00 9,1

{1.20)
and forming the intersection of (1. 19)and(1. 20),we obtain
R(P,,P,)=1/(1,0)+0.8/¢0. 9,1)+0. 5/€0. 8,0. 2)
(1.21)
as the expression for the restriction imposed by (P,, P, ).
Obviously, R{P,. P,)comprises those terms in R{P;) X R(P,)
which satisf{y the constraint{1. 15).
Remarkl. 1. It should be observed that R (P,, P;) as
expressed by (1.21)is a normal restriction [ see Part 1, Eq.

(3.23)]. This will be the case ,more generally ,when the P, are of

the form
Pi=%q,"i=1,..,n (1.22)
and q, +*** +¢,= 1. Note that in Example 1. 2,we have
Pr="1", (1.23)
P,=*0" (1. 24}
and
1+0=1. (1. 25)

Computation with linguistic probabilities
In many of the applications of probability theory,e. g.»in

the calculation of means, variances, etc. . one encounters linear

combinations of the form (+Qarithmetic sum )
z=ap T a.pa (1.26)
where the g, are real numbers and the p, are probability-values in
[0,1]. Computation of the value of z given the a;, and the p,
presents no difficulties when the p, are points in[0,1]. It
becomes , however,a nontrivial problem when the probabilities
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question are linguistic In nature,that is,when
Z=a\Pit+a,l,, (1.27)

where the P, represent hinguistic probabilities with names such as

likely , unlikely, very likely . close to a,etc. Correspondingly, Z is

not a real number-as it is in(1l. 26) —but a fuzzy subset of the

real line Wé (— co,50), with the membership function of Z
being a function of those of the P,.

Assuming that the fuzzy variables P,. ..., P. are
noninteractive [ apart from the constraint expressed by (1.15)],

the restriction imposed by (P,, .... P,)assumes the [orm [see

(1.16)]
R(P+ii s POY=R(PH X XRPINR(pFo+p,=1),

{1.28)

Let p{pys .y po)be the membership function of R(P,, ...,
P.).and let g (p.)be that of R(P.,>,i=1.....n. Then,by applying
the extension principle [Part I .Eq. (3.90)]to (1. 26),we can

A .
express Z as a fuzzy set(+ =arithmetic sum)

Z=JWF(P1h--5‘Pm).{(ﬂ1pl+.u+anpu)1 (1.2%)

which in view of (1. 28)may be written as
Z= IW ,U[(}:H) Jﬂk e fi #,(pﬂ);’((alp|+"'+ﬂnp,,} (1. 30

with the understanding that the p, in(1.30)are subject to the
constraint

Pttt p.=1 (1. 31}
In this way,we can express a linear combination of linguistic

probability-values. as a fuzzy subset of the real line.
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The expression for £ may be cast into other forms which
may be more convenient for computational purposes. Thus,let gz
(z) denote the membetship function of Z, with = € W. Then
(1. 30)implies that

Y=V, s (P A A (), (1. 32>

subject to the constraints
zg=a;pi+ @, pas (1.33)
sttt p=L (1. 34>

In this form,the computation of Z reduces to the solution of a
nonlinear programming problem with linear constraints, In more

explicit terms, this problem may be expressed as. Maximize z

* L & . +
subject to the constraints (+ =arithmetic sum)

mip) =z,
NG PPt - (1. 35)
r=api+ Tt a,pa.
prt et pa=1.
Example 1. 3. As a very simple illustration,assume that
P, =likely (1.236)
and
P,=unliktely, (1.37)
where
1
likely= | puasp)/ (1. 38)
and
unlikely= 7 likely (1. 39)

Thus[see(1.5)]
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Funh'krfy(p)__-#!ﬂdy(l_p)*UQP“H“{;]* €1.40)
Suppose that we wish to compute the expectation ( +

8 arithmetic sum)

Z=a, likelv+a, unlikely. (1. 41)
Using(1. 32),we have

2=V o tiaa, (P1) N prntiva, (P2 » (1.42)

subject to the constraints

z=g, p\ta Pz ‘
ptp=1 (1.43)
Now in view of (1. 40} ,if p,+p;=1,then

Frokety (21D = Huntivetn C P20 + (1. 442

and hence(1. 42)reduces to

plz) =, () )y

2=a1P1+ﬂ2(1_P1)r (1. 45)
or .more explicitly,
. z—ap |
1) = | T | (1. 46

This result implies that the fuzziness in our knowledge of the
probability p, induces a corresponding fuzziness in the
expectation of[[see Fig. 2]
r=a, p,‘ap,.
If the universe of probability-values is assumed to be V =0
+ 0.1+ +0.9+1.then the expression for Z can be obtained
mere directly by using the extension principle in the form given
inn Part 1 ,Eq. (3.97). As an tllustration,assume that
P,=%0.3"=0.8/0.24+1/0. 3+0. 6/0. 4, (1.47)
P,=%0.7"=0.8/0.64+1/0. 7+0. 6/0. 8, (1. 48)
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Fig. 2. Computation of the linguistic value of
gt azp.

and(@garithmetic sum)
Z=a,P,Pa,P, (1. 49)
where the symbol @ is used to avoid confusion with the union.
On substituting (1. 47)and (1. 48)in(1. 49) ,we obtain
Z =a (0.8/0.2+1/0.3+40.6/0.4)
Pa, (0. 8/0.6+1/0. 7+0.6/0. 8)
= (0. 8/0. 2a,+1/0. 3a,+ 0. 6/0. 4a,)
(0. 8/0. 6a,+1/0. Ta,+0. 6/0. 8a,). (1. 50)
In expanding the right-hand side of (1. 50),we have to take
into account the constraint p, -+ p,=1,which means thar a term

of the form

m/pray D/ paa; (1. 51)
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evaluates to
! pra\ @/ praz = A o/ (pra D peas) if py+p.=1
=0 otherwise, (1. 52)
In this way,we obtain
Z=1/(0. 3a,(B0. Ta,}+0. 6/(0. 2¢,F0. 8a,)
+0. 6/(0. 4a,(B0. 6a,), (1.53)
which expresses Z as a fuzzy subset of the real line W=(—oa,
o),
Averages over fuzzy sets
Qut point of departure in the foregoing discussion was the
assumption that with each point u# of a finite® universe of
discourse U is associated a linguistic probability-value P, which is
a component of a |inguistic probability distribution(#,,...,2,).
In this context,a fuzzy subset, A,of U plays the role of a
Sfuzzy event. Let pq(u;)be the grade of membership of «; in A.
Then.if the P, are conventional numerical probabilities, p;,0< p,
%:1,then the probability of A,P(A),is defined as (see[48]; +

éarithmetic sum)
PCAY=p (e ) pr o paa,) po- (1. 54)
It is natural 1o extend this definition to linguistic
probabilities by defining the linguistic probability® of A as
PAY=p,(ut YP oot g (e, ) P, (1. 55)
with the understanding that the right-hand side of (1.55is a

(@ The assurnption that 17 is & finite set is made sclely for the purpose of
simplifying our exposition, More generally L' can be & countable set or a continuum.

@ It should be noted that the computation of the right-hand side of (1. 55)defines
P{A) as a fuzzy subset of [0,1]. In general a linguistic approximation would be needed
to express PLA) as 3 linguistic probability-value.
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linear form in the sense of (1. 27}, In connection with (1.55),1t
should be noted that the constraint
prtetpa=1 (1. 56)
on the underlying probabilities ,together with the fact that
0=t (1551 4i=1, cai 41,

insures that P(A4) is a fuzzy subset of[0,1].
Examplel. 4. As a very simple illustration,assume that
U=ag+b+c, (1.57)
A=0.4a+56+0. 8¢, (1. 58
P,=%0.3"=0.6/0.2+1/0. 3+0. 6/0. 4, (1.59)
P,=%0.6"=0.6/0.5-+1/0. 64+0.6/0.7, (1. 607
P.=%0.1"=0.6/0+1/0.14+90. 6/0. 2. (1.61)

Then (@%arithmetic surn )
P(A)=0.4(0.6/0.241/0. 34+ 0. 6/0. B 0. /0. 5+1/0. 6
+90.6/0.7)(D0. 8(0. 6/0+1/0.14+0.6/0.2), (1.62)
subject to the constraint
ptptps=L (1. 63)
Picking those terms in(1. 62)which satisfy(1. 63) ,we obtain
PCAY=0.6/(0. 4x0. 26B0. 6(30. 8% 0. 2)
+0. 6/(0. 4 X 0. 2650, 76€B0. §:< 0. 1)
+0. 6/(0. 4 X 0. 36P0. 5650. 8 x 0. 2)
+1/(0. 4 X 0. 3¢D0. 6E30C. 8 X 0. 1)
+0. 6/(0. 4 X 0. 3600. 7)
+0. 6/0. 4 X 0. 4650. 5600. 8<0. 1)
+0. 6/(0. 4 X0.4€D0. 6}, (1. 64)
which reduces to
P(A)=0.6/(0.84+0.86+0. 78+0. 82
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+0.74)+1/0. 8. (1. 65)

and which may be roughly approximated as
P(AYy="0. 8" {1. 66}
The linguistic probability of a fuzzy event as expressed by
(1.55)may be viewed as a particular instance of a more general
concept, namely, the {inguistic average or, equivalently, the
linguistic expectation of a function (defined on V) over a fuzzy
subset of U/. More specifically, let f be a real-valued function
defined on {7;let A be a fuzzy subset of {7;and let P,.... P, be
the linguistic probabilities associated with u,,....u, respectively.

Then,the linguistic average of f over A is denoted by Av(f; A)

and is defined by (4 2arithrnﬁ-tic sum}
Av( i A=) pa )Py o+ f ) pa(u )P, (167
A concrete example of (1. 67 ¥is the following. Assume that
individuals named &u,, .... #, are chosen with linguistic
probabilities Py, ..., P,, with P, being a restriction on P,i=1,

.o, Suppose that u, is fined an amount f (), which is scaled

down in proportion to the grade of membership of u, in a class A.
Then,the linguistic average (expected }amount of the fine will be
expressed by(1.67).
Commentl.1. Note that (1.67 ) is basically a linear
combination of the form(]. 27)with
a:=fCu; Y peqCat ). (1. 68>
Thus s to evaluate (1. 67}, we can employ the technique described
earlier for the computation of linear forms in linguistic
probabilities. In particular,it should be noted that,in the special

case where f(#,)=1,the right-hand side of (1. 67 Ybecomes
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Al VP e+ (e )P (1. 69)
and Av{(f;A)reduces to P(A).

In addition to subsuming the expression for P (A4), the
expression for Av{(f;A) subsumes as special cases other types of
averages which occur in various applications. Among them there
are two that may be regarded as degenerate forms of (1. 67)and
which are encountered in many problems of practical interest. In
what follows, we shall dwell briefly on these averages and. for
convenience in exposition,will state their definitions in the form
of answers to questions.

Questionl. 1. What is the number of elements in a given
fuzzy set A? Clearly,this question is not well posed.since in the
case of a fuzzy set the dividing line berween membership and
nonmembership is not sharp. Nevertheless, the concept of the

power of a fuzzy set[49],which is defined as

|A|Q‘JZ;¢A (e ) (1. 70)
appears to be a natural generalization of that of the number of
elements in A.

As an illustration of | A ,su[ipose that L’ is the universe of
residents in a city.and A is the fuzzy set of the unemployed in
that city. If #,(u,) is interpreted as the grade of membership of
an individual, &;,in the class of the unemployed[e. g. » g4 (e, ) =
0.5 if «;is working half-time and is looking for a full-time job].
then | A [may be interpreted as the number of full-time equivalent
unemployed,

Questionl. 2. Suppose that f is a real-valued funetion
defined on U/. What is the average value of f over a fuzzy subset.,
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.rq. 90f Ur?
Using the same notation as in(1.67).let Av{f:Aldenote
the average value of f over A. If A were nonfuzzy, Ay (f; A7

woild be expressed by

Av(f1A) Zoe S ) (1.71)
vifs = —'—W" N .
where %, is the summation over those «; which are in A,and

| Alis the number of the «, which are in A. To extend (1. 71)to
fuzzy sets.we note that(1l. 71)may be rewritien as

Z, . FCe) paud
p> pala;)

e

Av(j;A)= s (1. 72>

where g, is the characteristic function of A. Then, we adopt
(1. 72)as the definition of Av(f;AMor a fuzzy A by interpreting
#a(u;)as the grade of membership of # in A. In this way, we
arrive at an expression for Ay (f; A) which may be viewed as a
special case of (1. 67).

As an illustration of (1. 72),suppose that { is the universe
of residents in a city and A is the fuzzy subset of residents who
are yourig. Furthermore,assume that f{u, )represents the income
of w«,. Then, the average income of young residents in the city
would be expressed by (1. 72),

Comment1. 2. Since the expression for |Alis a linear {form in
the g, Cu,),the power of a fuzzy set of type 2(see Part I,
Definition 3.1) can readily he computed by employing the
technique which we had used earlier to compute P (A). In the
case of Av([f;A).however,we are dealing with a ratio of linear
forms, and hence the computation of Av(f; A)for fuzzy sets of

type 2 presents a more difficult problem.
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In the foregoing discussion,our very limited objective was to
indicate that the concept of a linguistic variable provides a basis
for defining linguistic probabilities and.in conjunction with the
extension principle, may be applied to the computation of linear
forms in such probabilities. We shall not dwell further on this
subject and.in what follows, will turn our attention to a basic

rule of inference in fuzzy logic,
2. Compeositional rule of inference and approximate reasoning

The basic rule of inference in traditional logic is the modus
ponens vaccording to which we can infer the truth of a proposition
B from the truth of A and the tmplication A=>B. For example ,if
A is identified with “John is in a hospital, "and B with *John is
ill , "then if it is true that“John is in a hospital, "it is also true
that“)John is ill. ™

In much of human reasoning, however, modus ponens is
employed in an approximate rather than exact form. Thus,
typically .we know that A is true and that A* =8, where A*is,in
some sense,an approximation to 8. Then.from 4 and A*’=8 we
may infer that B is approximately true.

In what follows, we shall outline a way of formalizing
approximate reasoning based on the concepts introduced in the
preceding sections. However, in a departure from traditional
logic sour main tool will not be the modus ponens,but a so-called
compositional rule of inference of which modus ponens forms a
very special case,

Compositional rule of inference
The compositional rule of inference is merely a
272




generalization of the following familiar procedure. Referring to

Fig. 3,suppose that we have a curve y= f(x) and are given x=

a. Then from y=f(x) and x=a,we can infer ygb=f(a).
Next,let us generalize the above process by assuming that a

is an interval and f{(r) is an interval-valued function such as

shown in Fig. 4. In this instance,to find the interval _yé'b which

1{x)

Fig. 3. Infering y=4 from r=a and y= (1)

Fig. 4, lllustration of the compositional rule of

inference in the case of interval-valued variables.
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corresponds 1o the interval a,we first construct a cylindrical set,
a,with base a[see Part 1 ,Eq. (3.58)]and find its intersection,
I, with the interval-valued curve. Then we project the
intersection on the OY axis,yielding the desired v as the interval
f.

Going one step {urther in our chain of generalizations,
assume that A is a fuzzy subset of the OX axis and ¥ is a fuzzy
relation from OX to OY. Again,forming a cylindrical fuzzy set A
with base A and intersecting it with the fuzzy relation F (see
Fig. 5), we obtain a fuzzy set A{)F which is the analog of the
point of intersection [ in Fig. 3. Then.projecting this set on QY
we obtain y as a fuzzy subset of OY. In this way,from y=f(x)

and .rgfl(fuzzy subset of OX),we infer y as a fuzzy subset,B,of
OY.

x

Fig- 5. lllustration of the compositienal rule

of inference for fuzzy variabies.

More specifically, let 4. gz, 20 and pp denote the
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membership functions of A, A, F and B,respectively. Then,by
the definition of A[see Part I ,Eq. (3.58)]
Al s y)=palx), (2.1
and consequently
panr(x s y)=pqlx ) A prlx.y)
= ()N pely). {2.2)
Projecting A(] Fon the OY axis.we obtain from (2. 2)and
from Eq. (3. 57) of Part I
ey =V i (x) A pp(x o y) (2.3)
as the expression for the membership function of the projection
(shadow)of AN Fon OY. Comparing this expression with the
definition of the composition of A and F {see Part [, Egq.
(3. 55} },we see that B may be represented as
B=A:F, (2. 4)
where < denotes the operation of composition. As stated in Part
I ,8ec. 3,this operation reduces to the max-min matrix product
when A and F have finite supports.
Example 2. 1. Suppose that A and F are defined by
A=0.2/1+1/2+0.3/3 {2.5)
and
F=0.8/(1,134+0.9/(1,2)4+0.2/(1,3) (2.6}
+0.6/(2,1)+1/(2,2)+0. 4/(2,3)
+0.5/(3,12+0.8/(3,2)+1/(3,3).
Expressing A and F in terms of their relation matrices and
forming the matrix product(2. 4),we obtain
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A F B

0.8 0.9 0.2
(0.2 1 0.3]=]0.6 1 o.4|=[0.6 1 0.4]
0.5 0.8 1

(2. 7)

The foregoing comments and examples serve to motivate the
following rule of inference.

Rule 2.1, Let UV and V be two universes of discourse with
base variables # and v.respectively. Let R(u,v),R{(u.v) and R
(v) denote restrictions on u,(u,v) and v,respectively,with the
understanding that R{(«),R{x,v) and R{(v) are fuzzy relations in
U XV and V. Let A and F denote particular fuzzy subsets of U
and U X V. Then the compositional rule of inference asserts that

the solution of the relational assignment equations

Ruw)=A (2.8)
and
Ru.v)=F (2. 9)
ls given by
R(v)=A-F (2.10)

where A ¢« F is the composition of A and F. In this sense,we can
infer R(v)=A » F from R(#)=A and R(u,v)=F.

As a simple illustration of the use of this rule, assume that

U=V=1+2+3+4. (2.11)
A=small=1/11+0.6/24+0.2/3 (2.12)
and
" =approximately equal
=1/(1,1)+1/¢2,2)4+1/(3,3)+1/(4,4)
+0.5/[(1,2)+(2,1)+(2,3)+(3.2)
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+(3,4)+(4,3)]. (2.13)
In other words, A is unary fuzzy relation in U named small and F
is a binary fuzzy relation in U XV named approximately equal.
The relational assignment equations in this case read
Ru)=small, (2. 14>
RCu,v)y=approximately equal (2. 15)
and hence
RivY=small + approximately equal
"1 0.5 0 0°
={1 0.6 0.2 0] L PP T
L 0.5 1 0.5
L O 0 0.5 1.

=[1 0.6 0.5 0.2]
which may be approximated by the linguistic term
R(v)=more or less small (2.17)

if more or less is defined as a fuzzifier [see Part I ,Eq. (3.48)],

with
KQ)=1/1+0.7/2,
K(2y=1/240.7/3,
(2.18)
K(3)=1/3+4+0.7/4,
K)y=1/4.
Note that the application of this fuzzifier to R(x) yields
1 0.7 0.42 0. 14] (2.19)

as an approximation to [1 0.6 0.5 0.2],

In summary, then by using the compositional rule of
inference, we have infered from R (u) = small,and R (u,v) =
approximately equal

R(v)=[1 0.6 0.5 0.2] exactly (2. 20)
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and
R(v)=more or less small as a linguistic approximation.
(2.21)
Stated in English, this approximate inference may be expressed
as
u is small premiss

u and v are approximately equal premiss

v 1s more or less small approximate conclusion.
(2.22)

The general idea behind the method sketched above is the
following. Each fact or a premiss is translated into a relational
assignment equation involving one or more restrictions on the
base variables. These equations are solved for the desired
restrictions by the use of the composition of fuzzy relations. The
solutions to the equations then represent deductions from the
given set of premisses.
modus ponens as a special case
of the compositional rule of inference

As we shall see in what follows, modus ponens may be
viewed as a special case of the compositional rule of inference. To
establish this connection, we shall first extend the notion of
material implication from propositional variables to fuzzy sets.

In traditional logic,the material implication = is defined as
a logical connective for propositional variables. Thus.if 4 and B
are propositional variables, the truth table for A = 8 or,
equivalently ,IF A THEN B,is defined by Table 1(see Part I,
Table 2).
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B T F
A
T T F
F T T

In much of human discourse ,however,the expression IF A
THEN B is used in situations in which A and B are fuzzy sets (or
tuzzy predicates } rather than propositional variables. For
example,in the case of the statement IF John is 2/ THEN Jobn is
cranky,which may be abbreviated as il =>cranky.ill and cranky
are, in effect, names of fuzzy sets. The same is true of the
statement IF apple is red THEN apple is ripe play the role of
fuzzy sets.

To extend the notion of material implication to fuzzy sets ,let
U and V be two possibly different universes of discourse and let
A, 8 and C be fuzzy subsets of U,V and V,respectively. First we
shall define the meaning of the expression IF A THEN B ELSE
C.and then we shall define IF.A THEN B as a special case of IF
A THEN B ELSE C.

Definition 2. 1. The expression IF 4 THEN B ELSE Cis a
binary fuzzy relation in U XV defined by

IF A THEN B ELSE C=AXB+ 1 AXC. (2.23)
That is,if A, B and C are unary fuzzy relations in 7,V and V,
then IF A THEN B ELSE C is a binary fuzzy relation in U/ XV
which is the union of the Cartesian product of A and B[see Part
I ,Eq. (3.45)] and the Cartesian product of the negation of A
and C,
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Now IF A THEN B may be viewed as a special case of IF A
THEN B ELSE C which results when C is allowed to be the

entire universe V. Thus

[F A THEN B 21F A THEN B ELSE V

=AXEB+ "1 AXV, (2.24)
In effect,this amounts to interpreting IF A THEN B as IF A
THEN B ELSE don’t care. ©.

It is helpful to observe that in terms of the relation matrices
of A,B and C,(2.23) may be expressed as the sum of dyadic
products involving 4 and B(and 1 A and C)as column and row
matrices , respectively. Thus,

IF A THEN B ELSE C=[A](B]+ [A][C]. (2.25)

Example 2.2. As a simple illustration (2. 23) and (2. 24),

assume that

U=V=14+2+43, (2.26)
A=small=1/14+0.4/2, (2.27)
B=large=0.4/24+1/3, (2.28)
C=not large=1/1+10. 6/2. (2.29)

Then
IF A THEN BEILSEC =(1/14+0.4/23»x (0. 4/2+1/3)
+(0.6/24+1/3) X (1/1+0.6/2)

{I' An alternarive interpretation that is consistent with Lukasiewicz's deflinition

of implication [46] is expressed by IF 4 THEN BQ' (A X VID (U x B), where the
operation 3 (bounded sum) is defined for fuzzy sets P, Q by pmél A Cuartpgds

with + denoting the arithmetic sum. More generally. IF A THEN B ELSE C Q[ a(A
XVIBWXBINKAXVIDW XCY].
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+0.6(2,2)Y-+0.4/(2,3)+1/(3,

1)
+0.6/(3,2). (2. 30)
which ,represented as a relation matrix,reads
0 0.4 1
IF A THEN BELSEC=|0.6 0.6 0.4 {2.31)
1 0.6 0
Similarly

IF A THEN B =(1/140.4/2) X(0.4/241/3)
+(0.6/2+1/3) X (1/14+1/2+1/3)
=0.4/(1,2Y+1/(1,3)+0.6/(2,1) +
0.6(2,2)4+0.6/(2,3)+1/(3,1y+1/

(3,2)+1/(3,3),
or equivalently
0 0. 4 1
IF ATHEN B=|0.6 0.6 0.6 (2.32)
1 1 1

Comment 2.1. It should be noted that in defining IF A
THEN B by (2.24) we are tacitly assuming that A and B are
noninteractive in the sense that there is no joint constraint
involving the base variables # and v. This would not be the case
in the nonfuzzy statement IF v € 4 THEN « € B, which may be
expressed as IF u€ A THEN v € B, subject to the constraint =
v. Denoting this constraint by R (¢ = v), the relation

representing the statement in question would be

IF «€ A THEN «€ B2 (AXB+ =1 AXVI[R(z=)].
(2. 33)
281

o o il LI v . A sk n kel Ll —_ eme= -



Remark 2.1. In defining A=+ B, we assumed that IF A
THEN B is a special case of [F A THEN B ELSE C resulting
from setting C=V. If we set C equal to #(empty set) rather than
V., the right-hand side of (2.23) reduces to the Cartesian
product A X B — which may be interpreted as A COUPLED
WITH B (rather than A ENTAILS B). Thus, by definition,

A COUPLED WITH B2 Ax B, (2. 34)

and hence

A=B& A COUPLED WITH B plus 7 A COUPLED WITH V.
(2. 35)
Moere generally, an expression of the form
Ay X B +++A,XB, {2. 36)
would be expressed in words as
4, COUPLED WITH B, plus...plus 4, COUPLED WITH B,.

(2.37)

It should be noted that expressions such as (2. 37) may be

employed to represent a fuzzy graph as a union of fuzzy points

(see Fig. 6). For example, a fuzzy graph G may be represented
as

G="2," X0, +"u," X “v, "+ oo %0, " X “v.”, (2. 38)

where the «, and v, are points in U and V, respectively, and

7]

u;,” and “v,”, i=1,....n, represent fuzzy sets named close to
and close to v,[see (1.12)].

Comment 2.2. the connection between (2.24) and the
conventional definition of material implication becomes clearer by
noting that

TAXBC T AXY (2.39)
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Fig. 6. Representation of a fuzzy graph

as a union of fuzzy points.

and hence that (2. 24) may be rewritten as
IF ATHEN B=AXB+ 11 AXB+ 1 AXV
=(A+ 1 A XKB+ 1 AXYV, (2. 40)
Now, if A is a nonfuzzy subset of U/, then

A+ A=Y, (2.41)
and hence IF A THEN B reduces to
[F A THEN B=UXB+4 1 AXV, (2.42)

which is similar in form to the familiar expression for A= B in
the case of propositional variables, namely
A=B=" AV B. (2.43)

Turning to the connection between modus ponens and the
compositional rule of inference, we first -define a generalized
modus ponens as follows,

Definition 2. 2. Let A,, A, and B be fuzzy subsets of U,U/
and V, respectively. Assume that A, is assigned to the
restriction R(uz), and the relation A,=> B [defined by Eq. (3.24)
of Part 1 ] is assigned to the restriction R{x,v). Thus

R{u)=A,, (2. 44>
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Riu.vi=A,=B. (2.45)
As was shown earlier, these relational assignment equations

may be solved for the restriction on v, yielding

R(v)=A, » (A;=>B8). (2. 46)
An expression for this conclusion in the form
A, premiss (2.47}
A,=B implication (2. 48)
A, ¢« (A,=B) conclusion (2. 49)

constitutes the statement of the generalized modus ponens.©
Comment 2.3. The above statement differs from the
traditional modus ponens in two respects: First, A;,A;and B are
allowed to be fuzzy sets, and secaond, A, need not be identical
with A,. To check on what happens when A, =A4,=A and A is
nonfuzzy, we substitute the expression for A,= R in (2. 46),
vielding
A+ (A=B)=A - (AXB4+ 11 AXV)
=AAB+ A (1 ADV,, (2.50)
where » and ¢ stand for row and column, respectively; A, and A,
denote the relation matrices for A expressed as a row matrix and
a column matrix, respectively; and the matrix product is
understood to be taken in the max-min sense.
Now, since A is nonfuzzy,
A(7A)=0, (2.51)
and so long as A is normal [see Part 1, Eq. (3. 23)]

() The generalized modus ponens as defined here is unrelated to probabilistic
rules of inference. A discussion of such rules and related issues may be found in [507].

284



AA =1 (2.52)
Consequently
A (A=B)=18, (2.53)
which agrees with the conclusion yieled by modus ponens.
Example 2.3. As a simple illustration of (2.49), assume
that

U=V=14243, (2. 54)
A,=small=1/1+0.4/2, (2. 55)
A, =more or less small=1/14+0.4/24+0.2/3 (2. 56)
and
B=large=0.4/2+1/3. (2.57)
Then (see (2.32))
O 0.4 1
small=rlarge= 0.6 0.6 0.6 (2.58)
1 1 1

and

more or less small « Gmall=>large)=[1 0.4 0.2]-

0 0.4 1
f 0.6 0.6 0.6
111
=[0.4 0.4 1],
(2. 59)

which may be roughly approximated as more or less large. Thus,
in the case under consideration, the generalized modus ponens

yields
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u 15 more or less small

IF u is small THEN v 1s large

premiss

implication

: approximate conclusion
v 18 more or less large

(2. 60)
Comment 2.4. Because of the way in which A= B is
defined . namely.
A=>B=AXB+ 1 AXV,
the grade of membership of a point (u,v) will be high in A= B8 if
the grade of membership of « is low in A. This gives rise to an
overlap between the terms AXBand 17 AXV when Ais fuzzy,
with the result that [see (2.50)], the inference drawn from A
and A= B is not B but®
A+ (A=B)=B+A- (1 AXV), (2.61)
where the difference term A = ( 7 AXV) represents the effect of
the overlap.
To avoid this phenomenon it may be necessary to define A=
B in a way that differentiates between the numerical truth-values
in [0,1Jand the truth-value unknown [see Part T ,Eq. (3.52)].
Also.it should be noted that for 4 COUPLED WITH B [see
(2. 34)],we do have
A+ (A COUPLED WITH B)=8 (2. 62)
so long as A is a normal fuzzy set.
Fuzzy theorems
By a fuzzy theorem of an assertion we mean a statement,
generally of the form IF A THEN E,whose truth-value is true in

' We zssume that 4 is normal. so that A-A.=1.

286

e s -




an approximate sense and which can be inferred from a set of
axioms by the use of approximate reasoning,e. g. ,by repeated
application of the generalized modus ponens or similar rules.

As an informal illustration of the concept of a fuzzy
theorem, let us consider the theorem in elementar}r- geometry
which asserts that if M,,M, and M; are the midpoints of the sides
of a triangle (see Fig.7), then the lines AM,, BM, and CM,

intersect at a point.

Fig. 7. An elementary theorem in geometry.

Fuzzy Theorem 2.1. Let AB,BC and CA be approximate
straight lines which form an approximate equilateral triangle
with vertices A, B, C (see Fig.8). Let M,, M, and M, be
approximate midpoints of the sides BC,CA and AB,respectively.
Then the approximate straight lines AM,, BM, and CM, form an
approximate triangle T, T, T which is more or less (more or less
small)in relation to ABC.

Before we can proceed to “prove”this fuzzy theorem, we
must make more specific the sense in which the terms
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Fig. 8. A fuzzy theorem in geometry.

approximate straight line, approximate midpoint,etc. should be
understood. To this end, let us agree that by an apprerimate
straight line AB we mean a curve passing through A and B such
that the distance of any point on the curve from the straight line
AB is small in relation to the length of AB. With reference to
Fig. 9,this implies that we are assigning a linguistic value smal!
to the distance d,with the understanding that 4 is interpreted as

a fuzzy variable.

N d

A p— B

Fig. %. Definition of approximately straight line.
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Let (AB)" denote the straight line AR. Then, by an
approximate midpoint of AB we mean a point on AB whose
distance from AMY,the midpoint of (AB)",is small.

Turning to the statement of the fuzzy theorem,let @ be the
intersection of the straight lines (AMY)° and (BM3)°(Fig. 10).
Since M, is assumed to be an approximate midpoint of BC, the
distance of M, from M is small. Consequently, the distance of
any point on (AM,)° from (AM?)° is small. Furthermore, since
the distance of any point on AM, from (AM,)%is smail.it follows
that the distance of any point on AM, from (AM,°)° is more or
Less small.

The same argument applies to the distance of points on BM,
from (BM})°. Then, taking into consideration that the angle
between (AM,)° and (BM,)’.is approximately 120°,the distance
between an intersection of AM, and BM; and O is (more or less)?
small[ that is, more or less (more or less small)]. From this it
follows that the distance of any vertex of the triangle T, T, T,
from O is (more or less)? small. It is in this sense that the triangle
T\ T3 Tiis {more or less)? small in relation to ABC.

The reasoning used above is both approximate and
qualitative in nature. It uses as its point of departure the fact that
AM,,BM,; and CM, intersect at O and employs what, in effect,
are qualitative continuity arguments, Clearly,the “proof” would
be longer and more involved f we had to start from the basic
axioms of Euclidean geometry rather than the nonfuzzy theorem
which served as our point of departure.

At this point, what we can say about fuzzy theorems is

highly preliminary and incomplete in nature. Nonetheless, it
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Fig. 10. llustration of an approximate proof of

the [uzzy theotem.

appears to be an intriguing area for further study and eventually
inay prove to be of use in various types of ill-defined decision
processes,

Graphical representation by jfuzzy flowcharts

As pointed out in [7].in the representation and execution of
fuzzy algorithms it is frequently very convenient to employ
flowcharts for the purpose of defining relations between variables
and assigning values to them.

In what follows, we shall not concern ourselves with the
many complex issues arising in the representation and execution
of fuzzy algorithms., Thus, our limited objective is merely to
clarify the role played by the decision boxes which are associated
with fuzzy rather than nonfuzzy predicates by relating their
function to the assignment of restrictions on base variables.

In the conventional flowchart,a decision box such as A in
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Fig. 11 represents a unary? predicate.A(x) . Thus.transfer from
point 1 to point 2 signifies that A(x) is true,while transfer from
1 to 3 signifies that A(x) is faise.

Fig. 11. A fuzzy decision box.

The concepts introduced in the preceding sections provide us
with a basis for extending the notion of a decision box to fuzzy
sets (or predicates ). Specfically, with reference to Fig. 11,
suppose that A is a fuzzy subset of U/ ,and the question associated
with the decision box is :“Is x A?” as in “Is x smatll?"where x is
a generic name for the input variable. Flowcharts containing
decision boxes of this type will be referred to as fuzzy
flowcharts.

If the answer is simply YES,we assign A to the restriction

(D For simplicity , we shall not consider decision boxes having more than one
inpit and two outputs.
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on r. That is, we set
R(x)=A (2.63)
and transfer x from 1 to 2,
On the other hand,if the answer is NO,we set
R(x)="1 A (2.64)

and transfer r from 1 to 3.

As an illustration,if A-é—smalt,then(z. 63)would read
R(x)=small. (2.65)
If the answer is YES/u«, where 0ss psC1,then we transfer »
to 2 with the conclusion that the grade of membership of x in A
is u. We also transfer r to 3 with the conclusion that the grade of
membershipof rin 7 Ais -2
H the grade of membership, g. is linguistic rather than
numerical, we represent it as a linguistic truth-value. Typically,
then, the answer would have the form YES/true or YES/very
true or YES/more or less true,etc. As before ,we conclude that the
grade of membership of x in A is g, where gis a linguistic truth-
value,and transfer x to 3 with the conclusion that the grade of
membershipof x in 7 Ais 1-4
If we have a chain of decision boxes as in Fig. 12, a
succession of YES answers would transfer x from 1 to n+1 and

would result in the assignment to R{(x) of the intersection of A,.
v "A"-l Thus’

R{x)=A NN A (2. 66)
where (| denotes the intersection of fuzzy sets. (See also
Fig. 13.)

As a simple iltustration,suppose that x= John, A, =tall and
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Fig. 12. A tandem combination of decision boxes.

A, = fat. Then.if the response to the question“Is John tall?”is
YES, and the response to“Is John faz?”is YES, the restriction
imposed by John is expressed by
R{John)=tall fat. (2.867)
It should be noted that “John”is actually the name of a
binary linguistic variable with two components named Height
and Weight. Thus (2.67) is equivalent to the assignment
equations
Height=tall (2. 68)
and
Weight = fat. (2. 69)
As implied by (2.66), a tandem connection of decision boxes

represents the intersection of the fuzzy sets(or,equivalently, the
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Riz)==AN{

Rin}r=ARG

YES l—ll x)s ANB

—f{r]s AN B

Fig. 13. Restrictions associated with various exits

from a fuzzy flowchart.

conjunction of the fuzzy predicates)associated with them. In the
case of nonfuzzy sets,their union may be realized by the scheme
shown in Fig. 14. In this arrangement of decision boxes,it is clear
that transfer from 1 to 2 implies that
Ru)=A+ " A1 B, (2.70)
and since
ANBCA, (2.71)
it follows that(2. 70)may be rewritten as
RG)=A+ANB+ 1 ANB
=A+ 4+ ANB
=A+8, (2.72)
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Fig. 14. A graphical representation of the

disjunction of fuzzy predicates.

since
A+ A=U (2.73)
and
UMNB=R. (2. 74)
The same scheme would not yield the union of fuzzy sets,since
the identity
A+ A=U (2.75)
does not hold exactly if A is fuzzy. Nevertheless,we can agree to
interpret the arrangement of decision boxes in Fig. 14 as one that
represents the union of A and B. In this way.we can remain on
the familiar ground of flowcharts involving nonfuzzy decision
boxes. The flowchart shown in Fig. 16 below illustrates the use
of this convention in the definition of Hippie.
The conventions described above may be used to represent in
a graphical form the assignment of a linguistic value to a
linguistic variable. Of particular use in this connection is a
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tandem combination of decision boxes which represent a series of
bracketing questions which are intended to narrow down the
range of possible values of a variable. As an illustration ,suppose
that x=John and (see Fig. 15)
A, =tall,
A;=very tail, (2. 76)
Az=very very tall,
A,=extremely tall,
If the answer to the first question is YES,we have
Rx)=1all. (2.77)
If the answer to the second question is YES and to the third
question is NO,then
R{John) =wvery tall and not very very tail, (2.78)
which brackets the height of John between very tall and not very
very lall.

By providing a mechanism—as in bracketing- for assigning
linguistic values in stages rather than in one step, fuzzy
flowcharts can be very helpful in the representation of
algorithmic definitions of fuzzy concepts. The basic idea in this
instance is to define a complex or a new fuzzy concept in terms of
simpler or more familiar ones. Since a fuzzy concept may be
viewed as a name for a fuzzy set, what is involved in this
approach is, in effect, the decomposition of a fuzzy set into a
combination of simpler fuzzy sets.

As an illustration, suppose that we wish to define the term

Hippie ,which may be viewed as a name of a fuzzy subset of the
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Toll ond not vecy Yokl

Very loll ond n{ol
very veey lol]

Vary very ol
and nal exlremely tall

Exiremely tofl

Fig. 15. Use of a tandem combinarion ol

decision boxes for purposes of bracketing.

universe of humans. To this end,we employ the fuzzy flowchart®
shown in Fig. 16. In essense,this flowchart defines the fuzzy set
Hippie in terms of the fuzzy sets labeled Long Hair, Bald,

{D It should be understood ,of course,that this highly oversimplified definition is

used merely as an illustration and has no pretense at being accurate, complete ar
realistic.
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Shaved ,Job and Drugs. More specifically,it defines the fuzzy set

Hippie as(+ éunion)

YES

\H‘Q
bRuss >

< ES
>

NO

HIPPIE NOT HPPIE

Fig. 16. Algorithmic definitian of Hippie

presented in the form of a fuzzy flowchart.

Hippie=(Long Hair+ Bald+Shaved) (| Drugs() ™ Job

(2.79)
Suppose that we pose the following questions and receive the
indicated answers.

Does & have Long Hair YES
Does = have a Job? NO
Does x take Drugs? YES
Then we assign to x the restriction
R{x)=Long hair(\ 1 Job{| Drugs,
and since it is contained in the right-hand side of (2.79), we

conclude that & is a Hippie.
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By modifying the fuzzy sets entering into the definition of
Hippie through the use of hedges such as very, more or less,
extremely,etc, vand by allowing the answers to be of the form
YES/u or NO/u, where g is a numerical or linguistic truth-
value,the definition of Hippie can be adjusted to fit more closely
our conception of what we want to define. Furthermore ,we may
use a soft and (see Part | ,Comment 3. 1)to allow some trade-
offs between the characteristics which define a hippie. And,
finally , we may allow our decision boxes to have multiple inputs
and multiple outputs. In this way,a concept such as Hippie can
be defined as completely as one may desire in terms of a set of
constituent concepts each of which, in turn, may be defined
algorithmically, In essence,then.in employing a fuzzy flowchart
to define a fuzzy concept such as Hippie,we are decomposing a
statement of the general form

v(u is ;linguistic value of a Boclean linguistic variable &)=
linguistic value of a Boolean linguistic truth-variable . (2. 80)
into truth-value assignments of the same form, but invelving
simpler or more familiar variables on the left-hand side of
(2. 80).

Concluding remarks

In this as well as in the preceding sections ,our main concern
has centered on the development of a conceptual framework for
what may be called a linguistic approach to the analysis of
complex or ill-defined systems and decision processes. The
substantive differences between this approach and the
conventional quantitative techniques of system analysis raise

many issues and problems which are novel in nature and hence
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require a great deal of additional study and expertmentation. This
is true,in particular,of some of the basic aspects of the concept
of a linguistic variable on which we have dwelt only briefly in our
exposition, namely . linguistic approxtmation, representation of
linguistic hedges, nonnumerical base variables, X-and &
tnteraction, fuzzy theorems, linguistic probability distributions,
fuzzy flowcharts and others.

Although the linguistic approach is orthogonal to what have
become the prevailing attitudes in scientific research,it may well
prove to be a step in the right direction.that is,in the direction of
lesser preoccupation with exact quantitative analyses and greater
‘acceptance of the pervasiveness of imprecision in much of human
thinking and perception. It is our belief that, by accepting this
reality rather than assuming that the opposite is the case,we are
likely to make more real progress in the understanding of the
behavior of humanistic systems than is possible within the

confines of traditional methods.

References

[1] Sir William Thomson, Popuiar Lectures and Addresses, McMillan »
l.ondon, 1891.
[2] E. Feigenbaum,Computers and Thought ,McGraw-Hill,New York ,1963.
[3] M. Minsky and S. Papert, Perceptrons : An Introduction to Computational
Geometry «M. L. T. Press,Cambridge .Mass. , 1969,
[ 4] M. Arbib,The Metaphorical Brain,Wiley-Interscience ,New York,1972.
300

N ol Ll s -



[5]) A. Newell and H. Simon. Human Preblem Solving. Prentice-Hall,
Englewood Cliffs N, J. 1972,
[6] L.. A. Zadeh.Fuzzy languages and their relation to human and machine
intelligence «in Proc. Int. Conf. on Man and Computer .Bordeaux,France,
S. Karger .Basel . 1972.pp. 130~165.
[7] L. A. Zadeh, Qutline of a new approach to the analysis of complex
systems and decision processes,IEEE Trans. Syst. . Man and Cybern.
SMC-3.28~44(January 1973).
[8] R. E. Bellman, R. E. Kalaba and L. A. Zadeh. Abstraction and pettern
classification,J. Math. Anal. Appt. 13.1~7(1966).
{91 M. Black , Reasoning with loose concepts,Dialogue 2,1~ 12(1963).
[16] L. Wittgenstein, Logical form. Proc. Aristotelian Soc. 9, 162 ~ 171
(1529).

[11] M. Scriven. The logic of criteria,.J. Philos. 56,857-868(1959).

[12] H. Khatchadourian, Vagueness, meaning and absurdity, Am. Phil.
Quare. 2,119~129(1965),

[13] R. R. Verma ,Vagueness and the principle of excluded middle , Mind 79,
67~ 77C1970).

[14] J. A. Goguen, The Logic of Tnexact Concepts.Synthese 19, 325~ 373

(1969),
[15] E. Adams, The logic of “Almost All”,J. Philos. Logic 3,3~17¢(1974).
[16] K. Fine, Vagueness, truth and logic, Department of Philosophy.
University of Edinburgh,1973.
[17] B. S. van Frassen, Presuppositions, supervaluations and free logic.in
The Logical Way of Doing Things (K. Lambert.Ed. }, Yale U. P.
New Haven.,Conn. ,1969,

(18] G. Lakoff, Linguistics and natural logic. in Semantics of Natural
Languages. (D. Davidson and G. Harman, Eds.). D. Reidel,
Dordrecht . The Netherlands.197]1.

[19] L. A. Zadeh, Shadows of fuzzy sets, Probl. Transfer Inf. 2,37 ~ 44
(1966).

301




[20} A. Kaufmann, Theory of Fuzzy Sets.Masson,Paris. 1972,

[21] J. Goguen.l-fuzzy sets.). Math. Anal. Appl. 18.145~174(1967).

{22] ].G.Brown,A note on fuzzy sets.Inf. Controf 18.32~39¢1971).

[23] M. Mizumeoto, }. Toveda and K. Tanaka,General formulation of formal

grammars «Jnf. Sci. 4,87~ 100,1972.
[24] L. A. Zadeh ,Similarity relations and fuzzy orderings.Inf, Sci. 3,177 ~
200(1971).

[25] R. E. Bellman and L.. A. Zadeh. Decision-making in a fuzzy
environment . Manage. Sci. 17.B-141-B-164(1970),

[26] R. E. Bellman and M. Giertz.(On the analytic formalism of the theory of

fuzzy sets, Inf. Sci. 5.149~156(1973).

[27] L. A. Zadeh, A fuzzy-set-theoretic interpretation of linguistic hedges..J.

Cybern. 2,4~341(1972),

[28] E. F. Codd, Relational completeness of data base sublanguages, in
Courant computer Science Symposia. Vol. 6, Prentice-Hall, Englewood
Clitfs \N. J. .1971.

[29] L. A, Zadeh.Fuzzy sets,Inf. Control 8,338~ 353,1965.

[30] A. Thomasian .The Structure of Probability Theory With Applications.

McGraw-Hill, New York.1969.

[31] R. E. Moore. Interval Analysis,Prentice-Hall . Englewood Cliffs,N. ], ,
1966.

[32] J. A. Brzozowski. Regular expressions for linear sequential circuits,
IEEE Trans. Electron Comput. JEC-14,148~156(1965),

[33] E. Shamir, Algebraic, Rational and Contexi-Free Power Series in
Noncommuting Variables, in M. Arbib’s Algebraic Theory of
Machines, Languages and Semigroups. Academic, New York. 1968,
pp. 329~ 341.

. [34] A. Blikle.Equational languages .Jnf. Control 21,134 ~147(1972).

[35] D. ). Rosenkrantz, Matrix equation and normal forms for context-free

grammarssJ. Assoc. Comput. Mach. 14,501~ 507, 1967,
[36] J.E. Hopcroft and }. D. Ullman . Formal Languages and Their Relations

302




to Automata »Addison- Wesley « Reading +Mass. +1969.

[37] A. V. Aho and J. D. Ullman. The Theory of Parsing.Translation and
Compiling »Prentice-Hall, Englewood Cliffs,N.J. ,1973.

[38] G. Lakoff, Hedges:a study in meaning criteria and the logic of fuzzy
concepts. in Proc. 8th Reg, Meeting of Chic. Linguist. Soc, Univ, of
Chicago Linguistics Dept. .April 1972,

[39] L. A. Zadeh ,Quantitative fuzzy semantics,Inf. Sci. 3.159~176(1971).

[40] D. Knuth,Semantics of context-free languages, Math. Syst. Theory, 24
127~145(1968).

(417 P. Lucas et al. ., Method and notation for the formal definition of
programming languages, Rept. TR 25. 087, IBM Laboratory, Vienna,
1963.

[42] P. Wegner . The Vienna definition language, ACM Comput. Surv. 4,5~
63,(1972).

[43] J. A. Lee, Computer Semantics, Van Nostrand-Reinhold, New York.
1972,

[44] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New
York,1970.

[45] G. E. Hughes and M. ). Cresswell, An Introduction to Modal Logic.
Methuen.London, 1968.

[46] N. RescherMany-Vatued Logic .McGraw-Hill .New York,1969.

[47] R. Barkan. A functional calculus of first order based on strict

implication.J. Symbol. Logic 11.1~18(1946).

[48] L. A. Zadeh ,Probability measures of fuzzy events,J. Math, Anal. Appl.
23,421~-427(1968).

[49] A. DeLuca and S. Termini, A definition of non-probabilistic entropy in
the setting of fuzzy set theory.[nf. Control 20,201~312(1972).

[50] ). Hintikka and P. Suppes (Eds. ), Aspects of Inductive Logic.North-
Holland , Amsterdam. 1866.

(51] T. Winograd JUnderstanding Natural Language , Academic.New York.
1972,

303



[52] A. Del.uca and S. Termini, Algebraic properties of fuzzy sets.J. Marh,
Anal. Appl. 40,373~ 386(1972).

[53] A. Rosenfeld,Fuzzy groups.J. Math. Anal. Appl. 35,512-517(1871).

[54] L. A.Zadeh.Fuzzy Algorithms./nf. Controi 12,94~102(1968).

[55] E. Santos,Fuzzy algorithms .Jnf. Control 17.326~339{1570).

[56] 8. K. Chang,On the execution of fuzzy programs using finite state
machines . JEEE Trans. Eleciron. Comput. .C-21,241~253(1972).

[57] S. 8. L. Chang and L. A. Zadeh, Fuzzy mapping and control. /EEE
Trans. Syst. +Mean and Cybern. SMC-2,30~34(1972).

[58] E. T. Lee,Fuzzy languages and their relation to automata, Dissertation .,
Dept, of Electr. Eng. and Comput. Sci. ,Univ. of Calif. .Berkeley.1972.

[5¢] R.C. T. Lee,Fuzzy logic and the resolution principle.J. Assoc. Comput.
Mach, 19,109~115(1972).

[60] K. M. Colby, S. Weber and F. D. Hilf, Artificial paranocia.J. Artif.
Intell, 2,1~25(1971).

304

et -



Part 4:Fuzzy-algorithmic
approach and information
granularity







A Fuzzy-Algorithmic Approach to the
Definition of Complex or Imprecise Concepts

1. Introduction

The high standards of precision which prevail in
mathematics , physics , chemistry, engineering and other “hard”
sciences stand in sharp contrast to the imprecision which
pervades much of sociology, psychology, political science,
history, philosophy, linguistics , anthropology , literature, art and
related fields. This marked difference in the standards of
precision is due,of course,to the fact that the*hard” sciences are
concerned in the main with the relatively simple mechanistic
systemns whose behavior can be described in quantitative terms,
whereas the “soft "sciences deal primarily with the much more
complex non-mechanistic systems in which human judgment,
perception and emotions play the dominant role.

Although the conventional mathematical technigques have
been and will continue to be applied to the analvsis of
humanistic? systems it is clear that the great complexity of such

systems calls for approaches that are significantly different in

D By & humanistic system we mean a non-mechsnistic system in which human
behavior plays a major role. Examples of humanistic systems are political systems,
€conomic systems, social systems, religious systems, etc. A single individual and his
thought processes may also be viewed as a humanistic system.
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spirit as well as in substance from the traditional methods —
methods which are highly effective when applied to mechanistic
systems,but are far tpo precise in relation to systems in which
human behavior plays an important role.

In the finguistic approach (Zadeh, 1973, 19754 ) which
represents one such departure from conventional methods —
words or sentences are used in place of numbers to describe
phenomena which are too complex or too ill-defined 1o be
susceptible of characterization in quantitative terms. For
example., if the probability of an event is not known with
precision,then it many be characterized linguistically as,say .quit
likely,not very unlikely highly unlikely,etc. ,where quite likely,
not very unlikely and highly uniikely are interpreted as labels of
fuzzy subsets of the unit interval, © Such subsets may be likened
to ball-parks without sharply defined boundaries which serve to
provide an approximate rather than exact characterization of the
value of a variable.

The use of the linguistic approach in the case of humanistic
systems is dictated by the fact that as the complexity of a system
increases, our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is
reached beyond which complexity, precision and significance can

no longer coexist, The essence of the linguistic approach.then.is

{) As a fuzzy subset of the unit interval,quite Litely would be characterized by its
compatibility or, eyuivalently . membership function g siry: [6,1] 70,1 ]. Thus.
Pvite titriy (0. 8) =0. 9 means that if the prabability of an event is 0. 8,then the degree 10
which 0. 8 is compatible with quite {ibely is 0. 9. Additional details may be found in the
Appendix.
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that it sacrifices precision to gain significancethereby making it
possible to analyze in an approximate manner those humanistic as
well as mechanistic systems which are too complex for the
application of classical techniques,

A key feature of the linguistic approach has to do with its
use of the notion of a primary fuzzy set as a substitute for the
basic notion of a unit of measurement®More specifically ,much of
the power of mathematical techniques for dealing with
mechanistic systems derives from the existence of a set of units
for such basic parameters as length,area, weight , force , current,
heat, ete. In general, such units do not exist in the case of
humanistic systems, and it s this fact that contributes
significantly to the difficulty of analyzing humanistic systems
through the use of techniques which depend so essentially on the
existence of units of measurement.

In the linguistic approach,a role comparable to that of a unit
of measurement is played by one or more primary fuzzy sets from
which other sets can be generated through the use of linguistic
modifiers such as very,quite, more or lessyextremely s essentially,

completely,etc, To illustrate ,consider a property,@say beautiful

D A thorough discussion of the concept of a unit of measurement may be found
in Krantz,Luce,Suppes & Twersky(1571).

@ At this point we do not differentiate between a property(intensiondand the set
which it defines (extension}. For a discussion of this and other issues relating to
concepts. meaning and vagueness see:Carnap (1956}, Hempel {1952), Church {1951 ¥,
Quine (1953),Frege (1952}, Martin <1963}, Black (1963} , Goguen { 1969 3. Fine (1973},
van Frassen (1969}, Lakoff (1971). Tarski (1956, Scriven (1958) , Simon & Siklossy
11972}, Hintikka, Moravesik &. Suppes (18733, Minsky (1968 ), Lukasiewicz { 1970,
Meisil{1972) .and Domotor{196%).
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for which we have neither a unit nor a numerical scale., The
meaning of this property may be defined via exemplification by
associating with each member ,u«,0f a subset of objects in a given
universe of discourse, U, the grade of membership of « in the
fuzzy subset labeled beautiful. For example, the grade of
membership of Fay in the class of beautiful women might be 0. 9,
that of Jillian 0. 85,0f Helen 0. 8,etc. This set of women,then,
would constitute a primary fuzzy set which serves as a reference
for defining the meaning of very beauti ful ,quite beautiful .more or
less beautiful, extremely beautiful, etc. as fuzzy subsets of U, ©
Thus,in terms of these subsets,an assertion of the form“Nora is
very beautiful”, may be interpreted as the assignment of a
linguistic rather than a numerical value to the beauty of Nora. In
this way, the linguistic values beautiful, very beautiful, quite
beautiful, etc, which are generated from the primary fuzzy set
beautiful, play a role which is roughly similar to that of the
multiples of a unit of measurement,when such a unit exists.
Our main purpose in the present paper is to apply the
linguistic approach to the definition of concepts which are too
complex or too imprecise to be susceptible of exact definition. In
general ,such concepts are fuzzy in the sense that they correspond
to classes of objects or constructs which do not have sharply
defined boundaries, For example, the concepts of oval.in love,

young and masculine are fuzzy whereas those of straight line,

{D The computation of the meaning of a term of the form mu, where m is a
modifier and w is a primary term(i, e. a label for a primary fuzzy set)dis discussed in
Zadeh(1972a.6) Lakoff{1972) ,and more briefly,in the Appendix.

310




married , brother and male are not. Note that oval is a more
complex concept that straight line,in love is more complex than
married , friend is more complex than brother,and masculine is
motre complex than male. Indeed, most complex concepts tend to
be fuzzy,and it is in this sense that fuzziness may be regarded as
a concomitant of complexity.

Note 1. 1. In most cases,the question of whether a concept is
fuzzy or not may be resolved by examining the applicability of a
simple modifier such as very to the concept in question. Thus.for
example, very is applicable to masculine but not 1o male.
Similarly , very ill, where i/l is a fuzzy concept,is acceptable,
whereas very dead is not. Also,very much greater is acceptable
(much greater is fuzzy),while very greater (greater is non-fuzzy)
IS not.

How can a fuzzy concept be defined? The conventional
approaches are :(a)giving a dictionary type of definition; (b)
writing an essay;and (¢) approximating to a fuzzy concept by a
non-fuzzy concept and giving a precise definition for the latter.
To illustrate, atypical dictionary definition of a fuzzy concept
such as democracy might read,“A form of government in which
the supreme power is vested in the people and exercised by them
or by their elected agents under a free electoral system, "while a
more detailed definition might occupy a chapter in a text on
political science. A typical example of (¢) is the definition of a
recession (Silk, 1974; Clark, 1974) as a condition which obtains
when the gross national product declines in two successive
quarters. In this case,what is in reality a fuzzy concept is defined

as one which is both non-fuzzy and simple to understand. The

311




price.,of course,is a definition that is oversimplified to a point of
uselessness.

An alternative and more systematic approach which is
described in the sequel is based on the notion of a fuzzy algorithm
{Zadeh, 1968; Santos, 1970; Zadeh, 1971a) . that is,an algorithm
{or a program or a decision table}in which some of the steps
involve the execution of fuzzy instructions, which tn turn may
require the verification of fuzzy conditions. More specifically,in
the fuzzy-algorithmic approach the definition of a fuzzy concept
F is expressed as a fuzzy recognition algorithm® which acts on a
given object # and upon execution yields the degree to which « is
compatible with F or.equivalently,the grade of membership of «
in the fuzzy set labeled F.

As an illustration,suppose that the concept of an economic
recession is defined by a fuzzy algorithm labeled RECESSION.
Then,acting on relevant economic data ,RECESSION would yield
the degree —expressed numerically,e. g. ,0. 8,0r linguistically e.
g. very true— to which the data in question are compatible with
the concept of recession as defined by the algorithm. Similarly,a
fuzzy-algorithmic definition of a disease ,say arthritis,would yield
the degree to which a given patient belongs to the class of
arthritics. Similarly,a fuzzy-algorithmic definition of the concept
of sparseness would yield the dégree to which a given matrix is
sparse. And so on.

As will be seen in the following sections,a fuzzy-algorithmic

@ A recognition algorithm is essentislly an algotithmic representstion of the
membership function of a fuzzy set,
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definition has the form of a branching questionnaire,Q.in which
both the questions and the answers are allowed to be fuzzy in
nature. For example,to a question such as“Is Valentina #2/l?"
(which will be abbreviated as zal/?)the answer might be “quite
tall” ,which may be viewed as being equivalent to the assignment
of the linguistic value quite high to the grade of membership of
Valentina in the class of tall people.

A question, Q,, in Q may be either classificational or
attributional. In the case of classificational questions, Q, is
concerned with the grade of membership of the subject in a fuzzy
set F,, or, equivalently, with the truth-value of the predicate?
which corresponds to F,, For example, Q, may be “Is Rahim
honest?” An answer such as very Aigh would mean that the grade
of membership of the subject in the class of honest people is very
high. Equivalently, an answer of the form very true would be

interpreted as the assignment of the truth-value very true to the

predicate labeled honest evaluated at .r-é Rahim. @

In the case of attributional questions,Q; relates to the value
of an attribute of the subject. For example ,an instance of Q, may
be“How old is Norman?"with the answer being either numerical ,
e. 8. 24 or linguistic, e. g. quite young. Thus,in this case the

answer may be viewed as the assignment of either a numerical or

@ The term predicate (or.more generally. fuzzy predicate) as used here is
essentially synonomous with the membership(or compatibility} function. To simplify the
notation, the label of a predicate and the label of the set which it defines will be used
interchangeahbly,

&' The symbol Qsmm:ls lor denotes or is defined to be or is equal by definition.
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a linguistic value to an attribute of the subject.

The totality of the questions in Q constitutes a basis for Q,
or .more specifically ,the fuzzy concept defined by Q. If all of the
questions in @ are classificational in nature,then the basis for @
defines a collection of fuzzy sets each of which corresponds to a
question in Q. In this case,the questionnaire may be viewed as a
way of defining the fuzzy set corresponding to @ in terms of the
fuzzy sets corresponding to the questions in Q. As a simple
illustration,if the predicate »ig is defined as the conjunction of
the predicates long.wide,and tall,i.e. ,

big=long and wide and tall (1.2
then Q,,Q, and Q; may be expressed{in abbreviated form )as

Q, £ tong? (1. 3)
Q,2 wide? (1. )
Q.2 tall? (1.5

and (1. 2) is equivalent to

big={longMwide{\tall (1.6
where big,long,wide and tall are interpreted as the fuzzy sets
corresponding to Q, Q,, Q, and Q;, respectively, and the
intersection is defined in the fuzzy-ser-theoretic sense. Thus,
(1. 6 yexpresses the fuzzy set &g as a function of the fuzzy sets
long ,wide and tall,which implies that from the knowledge of the
answers to Q;, Q, and Q; one can determine the grade of
membership of the object under test in the fuzzy set éig. For
example,if the answers to specific instances of Q,,Q, and Q; are
true, very true and very true. respectively, then from (1.6) it
follows that the answer to the question big? is frue. A more
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detailed discussion of this aspect of fuzzy-algorithmic definitions
will be presented in section 3.

By their nature,fuzzy-algorithmic definitions are best suited
for the characterization of concepts which are intrinsically fuzzy,
that is, fuzzy to a degree which makes it unrealistic to
approximate to them by non-fuzzy concepts. For example,in law,
insanity and obscenity are intrinsically fuzzy concepts whereas
perjury is not. Similarly,in system theory the concepts of large-
scale,reliable and adaptive are intrinsically fuzzy,whereas those
of observability and controllability are not. In numerical analysis,
the concept of a sparse matrix is intrinsically fuzzy while that of a
bounded error is not. In medicine, most degenerative diseases are
intrinsically fuzzy while the infectious diseases, for the most
part ,are not.

In addition to the intrinsically fuzzy concepts ,there are many
concepts in various fields which though fuzzy in nature are at
present defined in non-fuzzy terms,largely because of a lack of
alternative modes of definition. This is true,for example,of the
concepts of recession and equilibrium in economics ; complexity and
approximation in mathematics; structured programming and
correctness in computer science;stability and linearity in system
theory sarthritis and Aypertension in medicine,ete. It is very likely
that, in time, the use of fuzzy-algorithmic techniques for the
characterization of such concepts will become a fairly commeon
practice,

In what follows, our discussion of fuzzy-algorithmic
definitions will begin with the notion of an atomic question. This

notion will serve as a basis for the definition of a composite
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gquestion, which is turn will lead to the concept of a fuzzy-
algorithmic franching questionnaire. In order to make the
discussion self-contained,a brief summary of the relevant aspects

of the linguistic approach is presented in the Appendix.
2. Atomic questions

Our focus of attention in this section is the concept of what
might be called an atomic question,that is,a question which has
no constituents other than itself, By contrast,a composite question
—as its name implies —is composed of a collection of constituent
questions. The manner in which the constituent questions are
combined to form a composite question as well as other issues
relating 1o the concept of a composite question will be discussed

in section 3.

Example 2.1. The question Q a Is Ruth zal!? is an atomic

question if no other questions have to be asked in order to answer

Q.

The question Q 2 Is x big? where x is some object,is a
composite question if big is defined as the conjunction of long,

wide and high{(as in(l. 2)),and the answer to Q is deduced from
the answers to the constituent questions Qlé Is x long? .Qzé Is

x wide?and Qag Is & high?

A questionnaire is.in effect,a representation of a composite
question, and a branching questionnaire is a representation in
which the order in which the constituent questions are asked is

determined by the answers to the previous questions.
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In what follows.we shall examine the concept of an atomic
question in greater detail with a view to providing a basis for a
systematic representation of fuzzy-algorithmic definitions in the

form of branching questionnaires.

NOTATION AND TERMINOLOGY

Definition 2. 2. An atomic question,Q ,is characterized by a

triple Q A (X.B.A).where X.the object-set .is a set of objects to
which Q applies;B,the body,of Q,is a label of either a class or an
attributezand A.the answer-set,is a set of admissible answers to
the question. Where necessary, specific instances of Q,X and A
will be denoted generically by g,x and a,respectively.® When X

and A are implied ,Q will be written in an abbreviated form as

A
Q = B?
and a specific question together will an admissible answer to it

will be expressed as

Q/A &£ B2 4 (2. 3)

or equivalently

q/a 8 B? a.
The pair Q/A will be referred to as a question/answer pair (or
simply Q/A pair). Graphically ,an atomic question{with implied
x)will be represented in the form of a fan as shown in Fig. 1.
Example 2. 4. Consider a specific instance of a question Q ,e,

g. “Is Nancy well-dressed?” In this case, with the subject

@ To avoid a praliferation of symbols, Q and ¢ will be used interchangeably
when no confusion is likely to arise.
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éI‘~Lam:3..r implied,the specific question may be expressed as

q % well-dressed? (2.5)

where well-dressed is the body of Q. Correspondingly,a specific
Q/A pair might be

g/a 4 well-dressed? true (2. 6)
in which true, as an admissible answer, is an element of the
answer-set A. lf the other elements of the answer-set are false
and borderline ythen A may be expressed as

A=true+borderline+ false (2.7
where+denotes the union rather than the arithmetic sum.

The linguistic truth-values in(2. 8)are, in effect, names of
fuzzy subsets of the unit interval (Zadeh, 19756, ¢). In terms of
their respective membership {functions, these subsets may be

expressed as (see the Appendix)

1
true= L m () /v (2. 8)

Fig. 1. Graphical representation of an

atemic question.

1
borderline= L mlv) /v (2.9

and
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Fig. 2. Membership functions of true sborderiine and false.
1
Jalse= J srlv)/v (2.10)
0

where g, g and g; are the membership functions of true.
borderiine and false, respectively, and an expression such as
(2. 8)means that the fuzzy set labeled true is the union of fuzzy
singletons g (v) /v in which the point v in [0,1]has the grade of
membership g (v) in true. Typical forms of g, g, and g, are
shown in Fig. 2.

Note 2.11. For the represemtation of g, g and g, it Is
frequently convenient to employ standardized functions with
adjustable parameters, e. g., the S and O functions which are
defined below (see Figs 3(a)and 3(b)).

S(vya, 8,7 =0 for v<la 2.12)

—_g' Z
=2[UT‘2, for e<lv<lB

— 2
~1-2{F=| Ay
=1 for v==2Y
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Fig. 3. Plots of § and = functions.

ﬂ{v;ﬁ,?}=5(v;?’-——ﬁ,?’-—-'g— ,?'] for v=1Y (2.13)

=1-8{0:?. 7+ 2 ,748) for v,

In S{vsa,8,7), the parameter #, 8= (a4 Y)/2.1s the
crossover point.that is,the value of v at which S takes the value
0.5. In Il v 8,73, B is the bandwidth, that is, the distance
between the crossover points of 1, while 7 is the point at which H
is unity.

In terms of S and H, g, 2, and z; may be expressed as

(suppressing the argument v)

#=5(a,f,1) (2.14)
t#=I1(# ,0.5) (2.15?
ﬂf—_'l'“S(Or,B-!T) (2. 16}

where the use of the symbol # in (2.15) signifies that the
bandwith of ¥ need not be equal to the value of B in(2. 14).
Note 2. 17. In cases in which the three linguistic truth-values
true borderline and false do not offer a sufficiently wide choice, it
may be convenient to use,in addition,the truth-values rather true
320




and rather false,abbreviated as rt and rf ,respectively.
As a fuzzy subset of [0, 1], rather true may be defined

approXimately as

A .
rather true=not very true and not{ false or borderline}
and its membership function may be approximated by a II
function with ¥ at,say.the crossover point of wery true. Rather

Jalse may be defined similarly in terms of fafse and borderiine.

CLASSIFICATIONAL AND ATTRIBUTIONAL QUESTIONS
A question.Q,is classificational if its body,B,is the label of
a fuzzy or non-fuzzy set.
A question, Q. is attributional f B is the label of an
atiribute, In the case of a classificational question,an answer,a

represents the grade of membership of x in the fuzzy set B. The
. . Fa . ..
answer might be numerical, e. g. ;@ =0. 8,0r linguistic,e. g. ,a

ghigh. Equivalently,the answer may be expressed as the truth-
value of the predicate B(x),%e, g. rtrue, borderiine, false, very
truesetc.

In the case of an attributional question, @=B?, an answer,

as represents the value of the attribute, B, of an object ., e. g. B
a fa : .
= age and r = Haydee, Again, a may be numerical, e. g. a a

. . Ja fa
35, or linguistic, e. g.a = young., a = very young, etc.
Comment 2.18. As defined above, a question Q= (X,B,A)

© Depending on the circumstances, the arguments of a predicate may be
displayed.as in B(x).orsuppressed . .as in B,
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may be viewed as a collection of variables {B{(x)}, r€X. From
this point of view, answering a classificational question
addressed to an x in X corresponds to assigning a value, at x, to
the membership function of the fuzzy set B (or, equivalently,
assigning a truth-value to the fuzzy predicate B(x)). Similarly,
answering an attributional question may be interpreted as the
assignment of a value to the attribute B{x). In either case,
answering a question with body B may be represented as an
assigniment equation
B(x)=a

in which a numerical or a linguistic value a is assigned 1o the
variable B(.r),

Ezxample 2.19. Suppose that X is the set of objects in a
room and Q = red? is a fuzzy classificational question.
Furthermore., suppose that the set of admissible answers is the
interval [0,1], representing the grades of membership of objects
in X in the fuzzy subset red of X, In this case, an answer such as
true 0. 8 to the question “Is the vase red?” may be represented as
the assighment equation

red (vase)=0.8
which implies that the truth-value of the predicate red (z)

Y , .
evaluated at x = vase is 0. 8 or, equivalently, tha: the grade of

membership of the object x A vase in the fuzzy set labeled red is
0. 8.
Example 2.20. Same as Example 2.19 except that the set of
admissible answers, A, is assumed to be expressed by
A =low +ilow® +low'*+ medium -+ medium® 4+ medium"? +
322




high+high*+high'/? (2.2
where high and medium and low are primary fuzzy subsets of the
unit interval which are defined in terms of the S and I functions
by (2.14),(2.15) and (2. 16), and w’ and w'? are abbreviations
for very w and more or less w, respectively. Thus, if w is a

subset of a universe of discourse UJ, then
wis | Gt/ (2.22)
and
W= | () a, (2-23)

which means that the membership functions of w? and w'/? are
equal, respectively, to the square and square root of the
membership function of 1.

Erample 2.24. Same as Example 2.19, but with the
question assumed to be worded as “Is it true that x is red?” and
the set of admissible answers expressed by

A=true-t+true’ +true'*+ false + false’+ false''t 4
borderline +borderline’ +borderline'’? (2. 25)
where true, false and borderiine are defined in the same way as
high, low and medium and may be used in the same manner.

Thus, for example, if the answer to the question “Is it true that

the vase is red?” is trueé? (gvery true ), then the grade of
membership of the vase in the class of red objects is given by rhe
assignment equation.

Hra(vase) =true’ (2. 26)
where the right-hand member of (2. 26) represents a linguistic
truth-value whose meaning is defined by (2.22), and the left-
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hand member is the membership function of the fuzzy set red

A
evaluated at.xr = vase,
Example 2.27. As an illustration of an attributional

question, suppose that X 15 the set of employees in a company

and Q a age? is an attributional question (e. g. “What is the age
of Elizabeth?”). U the set of admissible answers is the set of
integers

A=20+214++++4+60 (2. 27)
then the answer to the question “What is the age of Elizabeth?”
might be

age(Elizabeth) =232
On the other hand, if the admissible answers are linguistic in
nature, €. g- »

A =young+not young-+very young +not very young -+

old +very old+... (2. 28)

then an answer might have the form
age(Elizabeth) =very young
with the understanding that very young is a linguistic value
which is assigned to the linguistic variable age (Elizabeth). It
should be noted that in (2. 28) young and old play the role of
primary fuzzy sets which have a specified meaning, e. g.
Lyomg =1 —5(20,30,40) (2.29)

Haa=5(50,60,70) (2. 30)
where the S and I functions are defined by (2. 12) and (2.13),
and £y, and gy, denote the membership functions of young and
old , respectively. The meaning of the other terms in (2. 28) may
be computed from the definitions of the modifiers not and very,
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Thus *

Eonos yorong =1 — Hyomng (2. 31)
F‘W:vmx=(ﬁ‘m)z (2.32)
Forot very woung = 1— (me)z (2. 33)

and sc on. Note that A may be viewed, in effect, as a

microlanguage with its own syntax and semantics.

NESTED QUESTIONS

Consider an attributional question of the form “How oid is
Francoise?” to which a linguistic answer might be, “Francoise is
young”, with young defined by (2. 29),

At this point, one could ask a classificational question
concerning the answer “Francoise is young”, namely, “Is it true
that (Francoise is young)?” to which a linguistic answer might
be very true. Continuing this process, one could ask the question
“Is it true that ((Francoise is young) is very true)?” to which a
linguistic answer might be more or less true. On further
repetition, we are led to a nested question which, in general
terms, may be expressed as

Is it true that (...(((xris w)is 7,) is ©,) ... i5 £,07 (2. 34)

in which w is an attribute-value and r,,7;,...,r, are numerical or
linguistic truth-values,
How should the meaning of an answer of the form

a2 (o ((Cxis w) s 7,) i 7D is 1) (2. 35)

be interpreted? A clue is furnished by the following example.

Suppose that the answer to the question “Is is true that

(Francoise is young)?” is a numerical truth-value, say 0.5. As
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stated earlier, this implies that the grade of membership of
Francoise in the class of young women is 0. 5. which in turn
implies (by (2.29)) that Francoise is 30 years old. Thus, we
have
(Francoise is young) 1s 0. 5 true=>Francoise is 30 years old.
(2. 36)
More generally, let u be a bast variable for an attribute B

and let g, denote the membership function which defines the
A . .
answer a = young as a fuzzy subset of the universe of discourse,

U, which is associated with the attribute B (e.g. if B gagf:w.
then « is a number in the interval [0,100] and U==[0,100]is the
universe of discourse associated with age). Now suppose that v
is a numerical truth-value of the answer Francoise is young.
Then, the age of Francoise is given by
B(Francoise) =5 ' (v) (2.37)
where g3 is the function inverse to the function . © Thus, in
the particular case where v=0. 5,(2. 29) gives
B{Francoise)= 5 ' (0. 5) (2. 38)
= 30.

At this juncture, we can employ the extension principle (see

. . fa
the Appendix) to compute the meaning of the answer a 2
(Francoise is young) is t, where 7 is a linguistic truth-value

which is characterized by a membership function g, (E.g. if ris

(D If the mapping g = 1J—+[0,1]is not 1-1, mi'is the relation (rather than the
function) that is inverse to g#s. In any case, the graph of g !ie the same as that of sy,
but with the abscissae of ug! being the ordinates of g and vice versa.
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trues then g is given by (2.14).) Thus, substituting t n
(2. 37} ,we obtain
B(Francoise) = a5 ' (7)
=pz' et (2.39
which should be interpreted as the composition®. of the binary
relation g5 ' and the unary relation r. In more general terms, this
result may be stated as the following proposition.

Proposition 2. 40. An answer of the form

A i ]
a={(risw,)isr (2.41)
where r is an object in X, w, is a fuzzy subset of U, and ris a

truth-value (numerical or linguistic), implies the answer

a2 ris w, (2. 42)
where o, is related to zo, and r by

wy =y, o 1. (2. 43)
In (2.43), p;' is the relation inverse to t,» Where z, is the
membership function of w, and the right-hand member of (2. 43)

represents the composition of st.! with the unary relation (fuzzy
set) . (See Appendix. )
Repeated application of Propositien 2. 40 to an answer of the
form (2. 25) leads to the general result
A

a=(..{({({riswDisn)is ). 15 1, )=>a" gx IS W, 41

(2. 44)

{I) The composition of a binary relation R in U) X U; with a unary relation S in U,
is a unary relation R ¢ 8 in U; whose membership function is given by . s(u,) = "v'.z

prluy uz) A psluz), where Y Qmax and A é“min.
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where

Wopr =45 ¢ T (2.45)

wz':#;l] ° T
and e, si=1,...4n, is the membership function of w,.

As a simple illustration of (2.43), a graphical
representation of the composition ,u‘.;]'  t;, is shown in Fig. 4.
Here #t.une is the membership function of w0, = young,, with the
base variable being the numerical age #. 7, is assumed to be very
true, whose membership function is plotted as shown, with v
playing the role of abscissa, The point, & on g, o which has
the abscissa v has the ordinate g, . (v), and, correspondingly,
the point, 8, on g, which has the abscissa v has the ordinate

Foang, (©). Now, from « and # we can construct a point ¥ on
Pyong, With abscissa pol, (v) and ordinate fa.,, .. (v). In this

way, by varying v from 0 to 1,we can generate the plot of Hyoung, *
which is the membership function of w, as defined by (2. 43),

An 1mportant conclusion which is implicit in (2. 44) is that
any nested assertion of the form

((xis wl) 18 rl)... 1S T.,) (2. 46)

may be replaced by an equivalent assertion of the form
XIS T, (2. 47)
which does not contain any truth-values. Thus,the use of truth-
values in(2. 46)serves indirectly the same function as a linguistic
modifier m which transforms w, into mw,.
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Hyourg,

Fig. 4. Composition of g, with 1= very true.

THE RELATION BETWEEN CLASSIFICATIONAL AND
ATTRIBUTIONAL QUESTIONS

In the case of a non-fuzzy classificational question,the answer-
set, A, has only two elements which are usually designated as
{YES,NO},{TRUE,FALSE}or{0,1}. By contrast,the answer-
set of an attributional question is usually a continuum U or a
countable set of linguistic values defined over U. Thus, in
general, an answer to an attributional question conveys
considerably more information than an answer to a nonfuzzy
classificational question.

In the case of fuzzy classificational questions, however, the
answer-set may be the unit interval[0,1]Jor a countable set of
linguistic values defined over[0,1]. In such cases,the distinction
between classificational and attributional questions is much less
pronounced and,in fact.there may be equivalence between them.

To be more specific,let us assume for concreteness that U is
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the real line and F is a fuzzy subset of U. F will be said to be
amodal if its membership function w is strictly monotone, which
implies that the mapping g ¢t U—{0,1]is one-one. If F is not
amodal but is convex® or concave, then F will be said to be
modal. Typically,the membership function of an amodal fuzzy set
has the form shown in Fig. 5,whereas that of a modal set has the

appearance of a peak or a valley(Fig. 6).
Let QcéF? be a classificational question which has the same

body as an ateributional question Q,QF? For example,a specific
question ¢, may be worded as “Is Jeanne young?” while the
wording of g, might be“How young is Jeanne?”Clearly,if young
is an amodal fuzzy set,then from an answer to g. such as“Jeanne

is 0.9 young”"we can deduce the age of Jeanne and,conversely,

from the age of Jeanne,say age 2325‘“’& can deduce her grade of
membership in the fuzzy set young. Thus,when F is an amodal
fuzzy set or, more generally, a fuzzy set whose membership
function is a one-one mapping,the answer to a classificational
question conveys the same information as the answer to an

attributional question.

Now suppose that F is a modal fuzzy set,e.g. F & middle-
aged ,whose membership function has the form shown in Fig. 7.
In this case,from the specification of the grade of membership in

middle-aged ,one cannot deduce the value of the attribute age

@ A fuzzy set Fin U is convex il pr satisfies the inequality ,m:{-l.‘] 1=

mim Cr(niy ) s 7 Cegd )y dor all s vurz in U and all Ain[0.1). A fuzzy set F is concave if its
complement is convex. Additional details may be found in Zadeh(1068).

330




uniquely. Thus.if F is modal, an answer to the classificational
question “1s r F?" e. g., “Is Freda middle-aged?” is less

informative that an answer to the attributional question“What is

the age of Freda?”

My
IAmoduI Amodal

Fig. 5. Amodal fuzzy sets.

Moo

ANV

Fig. 6. Compatibility functions of modal fuzzy sets.

<1
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mwiddle-aged
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]
H
40 40
Fig. 7. Representation of middle-aged as a modal fuzzy ser.

It should be noted that Comment 2.18 implies that a

classificational question QQB? mzy always be regarded as an
attributional guestion whqse body is the label of the membership
function of B, Thus, what the above discussion indicates is that
although it is not true in general that an attributional question is
equivalent to a classificational question with the same body,this

is the case when B is an amodal fuzzy set,
3. Composite questions and their represeatations

The concept of an atomic question which we discussed in the
preceding section provides a basis for the definition of the more
general concept of a composite question. This concept and its
representations will be the focus of our attention in the sequel.

Stated informally.an n-adic composite question Q,with body
B:is a question composed of # constituent questions @,,..., Q,
with bodies B,,...,B, respectively,such that the answer 1o Q is
dependent upon the answers to Qs vw.s Q.. Thus, a monadic
question has a single constituent, a dyadic question has two
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constituents, a #riadic question has three constituents, etc. A
constituent question may be atomic or composite.

An n-adic composite guestion or.simply +an n-adic question.,
Q. is characterized by its relational representation, B(B,,....B,)
(or simply B, when no confusion with the body., B, of Q can
arise), whose tableau has the form shown in Table 1. In this
tableau,r/ and r, range over the admissible answers to Q, and Q.
respectively, with A; and A representing the answer-sets
associated with Q; and Q,and a; and a denoting their generic
elements. Thus,if Q is an n-adic question,then B is a non-fuzzy
(n-+1)-ary relation from the cartesian product A, X ... XA, t0 A.
In particular,if Q is a monadic question, then B is a binary

relation.and if Q is atomic then B is a unary relation.

Tabte 1
Relational representation of Q. (Depending on the circumstances,
the columns of B may be labeled Q,,...,Q,+.Q or B,s....B..B.)

Q[ Qz Q_i Qn Q

Il i ri rl r
ri r3 r} r rs
r! r? ri rr r,
rh re r e Fe

Generally, we shall assume that the entries in B are
linguistic in nature,i. e. are linguistic attribute-values and/or
linguistic truth-values and/or linguistic grades of membership.
Thus.if U, is a universe of discourse associated with A;,then an
answer a!€ A, will,in general ,be a label of a fuzzy subset of U..

The generic elements of U, and U will be denoted by x; and u,
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respectively,and will be referred to as the base variables for A;
and A. When it is necessary to differentiate between attributional
and classificational questions,the universes of discourse for the
latter will be denoted by V instead of U.

Ezample 3. 1. Consider a composite classificational question
Q = big? which is composed of two classificational atornic

i A, Ja .
questions @, = wide? and Q, = long?,and one attributional

atomic guestion Qa*& height?? The answer-sets associated with
Q,,Q,:Q; and Q are assumed to be given by (f,6.¢,¢sm,h are
abbreviations for false, borderline, true, low . medium and high,
respectively)
A=A, =A=f1+b+t (3.2)
A.=l4+mth {3.3)
where .4 and ¢ are fuzzy subsets of the unit interval defined by
(2.8),(2.9)and(2.10),and I,m and A are fuzzy subsets of the
real line defined by expressions of the form(2.16), (2. 15)and
(2. 14)with parameters a«,3,and 7.
The relational tableau for B(B,, ..., B,)is assumed to be

given by (in partially tabulated form)by Table 2.

Table 2
Relational representation of big Cwide.long vheight)

wide? long?  height? big?

¢ f A ¢
t £ m !
¢ ¢ ¢ b
! ¢ ! f
i b h b
t I h b
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wide? long?  height?  big?

¢ f h S
b f l b

f__F it f

There are two tmportant observations to be made concerning
B(B,;, ..., B,). First in general B(B,,....B,)is a relation rather
than a function. In Table 2,this manifests itself by the fact that
the entries in the column labeled &ig ?are not uniquely determined
by the entries in the columns wide?, long? and height?. For
example .corresponding to a' =¢.a*=t and a®*=/,we have both a
=8 and a=f. This implies that,if the answer to wide? is true,to
long? is true and to height? is low,then the answer to big? could
be either borderline or false.

Second, the tableau may not be complete, that is, certain
combinations of the admissible answers to constituent questions
may be missing from the table. For example,a'= f,a* =4 and 4°
= & may not be in the table. This may imply that (a) the
particular combination of answers cannot occur,or{b)the answer
to Q corresponding to the missing entries is not known—which is
equivalent to assuming that the answer is the union of all
admissible answers,i. e. is the answer-set A.

Case (a)implies that there is some interdependence between
the constituent questions in the sense that the knowledge of
answers to some of the constituent questions restricts the
possible answers to others. If the Q, are viewed as variables as in
- (2.18) sthen(a)implies that the Q, are A-interactive in the sense
defined in Zadeh(1975a). Unless stated to the contrary,we shall
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assume that the missing rows imply (a)rather than(b). A more

detailed discussion of this issue will be presented in section 4.

ALTERNATIVE REPRESENTATIONS OF B. ALGEBRAIC
REPRESENTATION

The relational representation,B,of a composite question Q
may in turn be represented in a variety of ways of which the most
useful ones are; (a) the rabular representation, which we have
described already.(b)the algebraic representation ,which we shall
djscuss presently, (¢)the analytic representation,which we shall
discuss following (b)), and (d) the branching questionnaire
representation , which will be discussed in section 4.

In the algebraic representation,the ith row,i=1,2, ,m of

the tableau of B is expressed as a Q/A sequence of the form

Quri Qi Qlr.//Qr, (3. 4)
or,more simply as a Q/A string
rirfesr?/ /e (3. 5)

where it is understood that #{, j=1,,n is an admissible answer
to the constituent question Q,,and r, is an admissible answer to
the composite question Q. B as a whole,then,may be expressed
algebraically as the summation (i, e. the union)of the Q/A strings
corresponding to the rows of the tableau of B. Thus, we may
write

B=ririveri/ /o britdeery/ /e derbatoorn/ Irm (3. 6)

or ,more compactly,
B= D) pletewrt//r., 3.7

Example 3.8, In the algebraic form, the tableau of the
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relational representation defined by Table 2 may be expressed as
B=uh//lt+am//e+el/ /b (3. 9)
+etd !/ fbh//BYtfh/ /b
+efh//fHOf1 fo + ffLf.

As in the case of regular expressions, an important
advantage of representations of the form (3.9) is that the
operations of union (4 )and string concatenation may be treated
in much the same manner as addition and multipkication. Thus,
the terms in (3. 9)may be combined or expanded in accordance

with the replacement rules which are illustrated below by

examples.,
ttf/fFeffl fe=eGfi/e+ f1778) (3. 10)
efile fef/ie= G+ iefi/e (3.117
tfo/ ft+teh/ fe=t{f+bIb//t (3.12)
b/ [t fb/ 1b=1fb// (¢ +5) (3.13)
e+ D0/ /e=tft/ e+ ffe//etthe/ 1t foti /e,
(3. 14>

For example,using the above identities in(3. 9, we can write B

tn a partially factored form as
B=tr(h+m)//t+ed//(b+ )41+ Oh] /b4

SR+ /. S /b (3. 15)

It should be noted that the replacement of the left-hand

member by the right-hand member involves a factorization in

(3.10),(3.11),¢8. 12)and (3. 13} ,and an expansion in (3. 14).

In general . factorization has the effect of rarsing the level of an

expression (in the sense of decreasing the number of operations

that have to be performed for its evaluation)while an expansion

has the opposite effect. For example, the evaluation of the
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arithmetic expression xy + x2z requires three operations, while
that of the factored form x(y+=z)requires only two. In this case,
the representation of B in the normal formP(3. 9)has the lowest
possible level among all algebraic representations involving the

admissible answers to the Q; and Q.

THE MEANING OF B

The question of what constitutes the meaning of B may be
viewed as a special case of the following problem in semantics, %
Suppose that we are given a string of terms (words)W W,--W,
with the meaning of each rerm defined as a subset of a universe
of discourse U. What is the meaning of the composite term W, W,
e W.~—that is, what is the subset of U whose label is W, W,
W7

As a special instance of this problem consider two finite non-

fuzzy sets G and H whose elements are gy,...1g,. and Ajs.uush,

respectively. When we write
C=git...+g., (3.16)
H=h +..4+A, (3.17)

the right-hand side of the equation defines the meaning@of the
label on the left-hand side. Now, if we write the Cartesian

(It This usage of the 1erm normal form is consistent with that of Codd (1371 Jin
his work on relational models of data. A related concepr is that of characteristic set in
the Vienna definition language(Lucas,1968; Wegner.1972).

2 A more detailed discussion of this probletn may be found in Zadeh (19715,
1972a).

&' The term meaning is used here in the sense of denotational semantics {Carnap.,
19565 Hempel 11952, Church, 1951 Quine.1953; Frege . 1952 Martin, 19635,
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product G X H as a string GH ,then the meaning of G X H may be
obtained very simply by expanding the algebraic product of G
and H. Thus,
GXH=CH={({g,+-+g. )+ +h)=gh + -+ g.h,
(3.18)
where g.4; should be interpreted as the ordered pair(g.,4;).
Now suppose that G and H are finite fuzzy sets defined by
G=p/g\+.e.tthn/&m (3.19)
H=uv fh+..+‘v,/h, (3. 200

where £, /g, means that the grade of membership of g,in G is g,
and likewise for H. Then,for the Cartesian product of G and H

we obtain _
CXH=(p/git...+1./8: Y v b+ i+, /h)
=(m Av)) g F o, ALY g0, (32D
where
2 Aoy 2 min (g 0. (3.22)

More generally.let G,,...,G, be fuzzy subsets of U,..., U,
defined by

G,= D, /vl (3.23)

Then |
G XK X Gy =06 G,= 2 (o, Avee Al 3l +oou (3. 24)
which implies that the right-hand member of (3. 24 ) constitutes
the meaning of the string G,+++G,(or.equivalently ,G, X +++ X G,).
Returning to the question of what constitutes the meaning of
B.let us focus our attention on the algebraic representation of B
as expressed by (3.6). I the ! and » in(3. 6)are assumed to be
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fuzzy subsets of U, ..o U, U, then each termt in{3.6}is a
Cartesian product of fuzzy sets in the sense of (3. 24),and B as a
whole is the union of such Cartesian products. Thus, upon the
expansion of each term in accordance with (3. 24)and summing
the results, we obtain the expression for a fuzzy (n + 1 }-ary
refation from U, X ... XU, to U which may be viewed as the
denotational meaning of BY. This fuzzy relation will be denoted
by Bs and will be referred to as the S-representation of B, with
B—standing for base variable—serving to signify that B; is a
fuzzy relation from U, X ..., %< U, to U whereas B is a non-fuzzy
relation from A, X... X A, to A.

In summary,the main points of the foregoing discussion may
be stated as follows.

Proposition 3.25.Let B be an(n+ 1)-ary non-fuzzy relation
from A, X...A,t0 A which constitutes a relational representation
of a composite question Q. If the answers to Q and the
constituent questions in Q are fuzzy subsets of their respective
universes of discourse U,U,,..., U, ,then B induces an(» X 1)-ary
fuzzy relation Bg which may be derived from B by the process of
expansion. The fuzzy relation B, constitutes the denorational

meaning of B in the universe of discourse U, X ... xU,xU. &

(D' In performing the expansion and summation of terms in B, we are tacitly
assuring that the constituent questions Q ,.,,,Q, are S-nont-interactive(Zadeh , 1975a)
in the sense that the base vacables wy. ... .u, are jointly unconsirained.

@ In cases in which the body B, ,of a classification question Q. is a fuzzy subset
of a universe of discourse which does not possess a numerically-valued base variabje(e.
g. Qi beautiful) it may be necessary to define B; by exemglification (Bellman.Kalaba &.

Zadeh, 1966). In general .exemplificational (or ostensive )definitions are human— rather
than machine-ariented.
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Example 3.26. As a very simple illustration of (3.25),

consider a B whose algebraic representation reads

B=ut// 17/t (3.27)

where ¢ (é—rrue} R ¢ éfatse) »and f7¢ gvery false ) are tuzzy
subsets of the universe of discourse

V=04+0.2+0.440.6+0. 841 (3.28
and are defined by

t=0.6/0.8+1/1 (3.29)
f=1/040.6/0.2 (3. 30)

and
ff=1/040. 36/0. 2. (3.31)

On substituting (3. 29) — (3. 31) into #//f% and expanding,
we have
et/ /f? =(0.6/0.8+1/1)(0.6/0. 8+1/1)//(1/0-+0. 36/0. 2)
=0.6/(0.8,0.8,0)4+0.6/(0. 8,1,0)
+0.6/(1,0.8,0)+1/(1,1,0)
+0.36/(0. 8,0.8,0. 2)+0.36/(0.8,1,0. 2)
+0.36/(1,0.8,0. 2)+0.36/(1,1,0. 2). {3.32)
Performing the same operation on the other term in(3.27)
and summing the results,we obtain the desired expression for By
Bp=0. 36/((0.8,0.8,0.2)4<0. 8.1,0, 2)+(1.0. 8.0. 2)
+(1,1,0.2))40.6/({0,0,0. 8)+(0,0. 2,0. 8)
+ (. 2,0,0. 8)+ (0. 2,0. 2,0. 8+ (0.0. 2,1)
+ (0. 2,0.2,12)+1/¢€0,0,1)4(1,1.,0)) (3. 33>
as a ternary fuzzy relation in [0,1]X[0,1]X[0,1]7.
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INTERPOLATION OF B

Knowledge of By is of importance in that it provides a basis
for an interpolation of B,that is,an approximate way of deducing
answers to Q corresponding to entries in B which are not
elements of the answer-sets AlrohAL

To illustrate, suppose that Q is a dyadic classificational
question whose constituent classificational questions Q, and Q,
have the answer-sets

A=A, =A=t+b6+ 1.

Let B be a relational representation of Q and assume that we
wish to find the answer to Q when the answers to Q; and Q. are,
respectively,

a' =not very true (3. 34)
and
at=rather true. (3. 35)

Since @' and a? are not among the entries in the Q, and Q,
columns of the tableau of B, we cannot use B to find the
corresponding entry in the Q column. On the other hand,if we
have By as a fuzzy ternary relation in V|, >V, X V(which is[0,1]
X [0,1] X £0,1]in the case under consideration ). then by
interpolating B we can obtain an approximation to the answer to
Q which corresponds to the answers a' =not very true and a’=
rather true.

Specifically, the desired approximation is given by the

composition of By with the fuzzy sets ¢! and a?,treating @' and &°
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as unary fuzzy relations in [0,1]. Thus,'
Answer to Q=B » a' * &’ (3. 36)
The significance of (3. 36) becomes somewhat clearer if the
right-hand member of (3. 36)is interpreted as the projection on V
of the intersection of By with the cylindrical extensions of &' and
a®. @ Thus, if Byis visualized as a fuzzy surface in V, X V, XV,
then @' and o may be likened to fuzzy points on the coordinate
axes V; and V,.and their cylindrical extensions play the role of
fuzzy planes passing through these points. The intersection of
these planes with the fuzzy surface is a fuzzy point in V, XV, XV
which upon projection on V becomes a fuzzy subset of V
expressed by the right-hand member of (3.36). A two-

dimensional version of this process is shown in Fig. 8.

ANALYTIC REPRESENTATION OF B(B;....,B.)

Consider a composite classificational question Q =B? whose
constituents are classificational questions Q, =B,?,Q,=B.7,...,
Q,=B,? in which the body,B,,of Q,,i=1,...,n,is a specified
fuzzy subset of the universe of discouse V;. Furthermore,assume
that the relation B(B,,...,B,)is a function from A, X ... X A, to
A. This implies that an answer to Q— which may be interpreted
as a specification of the grade of membership of a given object

in B—is a function of the grades of membership of z in Q,»...,

@ Tt is understood that the right-hand member of (3. 36)should be approximated
to by an admissible answer 10 Q.

@ The cylindrical extensions of 2! and a are, respectively. the ternary fuzzy
relations a! X'V XV and V X a? X V. The definition of 1he projection of a fuzzy relation is
given in the Appendix and