Preface

This book is the culmination of an investigation into the applicability of proba-
bilistic methods to tasks requiring automated reasoning under uncertainty. The
result is a computation-minded interpretation of probability theory, an interpreta-
tion that exposes the qualitative nature of this centuries-old formalism, its solid
epistemological foundation, its compatibility with human intuition and, most
importantly, its amenability to network representations and to parallel and distri-
buted computation. From this vantage point I have attempted to provide a
coherent account of probability as a language for reasoning with partial beliefs and
bind it, in a unifying perspective, with other artificial intelligence (AI) approaches
to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems,
and nonmonotonic logic.

Probabilistic Reasoning has been written with a variety of readers in mind. It
should be of interest to scholars and researchers in Al, decision theory, statistics,
logic, philosophy, cognitive psychology, and the management sciences.
Specifically, Al researchers can take an earnest look at probability theory, now that
it is phrased in their language, and probabilists should be challenged by the new
issues that emerge from the Al experiment. In addition, practitioners in the areas
of knowledge-based systems, operations research, engineering, and statistics will
find a variety of theoretical and computational tools that should be of immediate
practical use. Application areas include diagnosis, forecasting, image understand-
ing, multi-sensor fusion, decision support systems, plan recognition, planning and
control, speech recognition — in short, almost any task requiring that conclusions
be drawn from uncertain clues and incomplete information.

The book is also intended as a textbook for graduate-level courses in Al, opera-
tions research, and applied probability. In teaching this material at various levels
of sophistication, I have found that the conceptual tools students acquire by treat-
ing the world probabilistically grow in value, even (perhaps especially) when the
students go on to pursue other formalisms.

To my own surprise, most of these chapters turned out to be fairly self-
contained, demanding only a basic understanding of the results established in pre-
vious chapters.

Chapter 1 identifies the basic Al paradigms of dealing with uncertainty and
highlights the unique qualitative features that make probability theory a loyal
guardian of plausible reasoning. Chapter 2 introduces the basic principles of

vii
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Bayesian inference and discusses some epistemological issues that emerge from
this formalism. Those who have had no previous exposure to probability theory
(some computer science students fall into this category) might wish to consult an
introductory textbook and should follow closely the examples in Chapter 2 and
work the exercises at the end of that chapter. In general, an elementary course in
probability theory or decision analysis should be sufficient for mastering most of
the book.

The casual reader seeking a painless glimpse at the basic issues of uncertainty
should read the less technical sections in each chapter. These are indicated by a
single asterisk (*) in the Contents. Chapters 1, 9, and 10 will prove especially
useful for those seeking a comprehensive look at how the various formalisms are
related, and how they measure up to each other under the acid test of human
intuition.

The more technically oriented reader will want to follow the sections marked
with a double asterisk (**), glancing occasionally at the definitions and results of
other sections. This path leads the reader from traditional Bayesian inference and
its graphical representations, into network propagation techniques (Chapters 4 and
5) and decision analysis (Chapter 6), and then into belief functions (Chapter 9) and
default reasoning (Chapter 10). Knowledge engineers and developers of expert
systems, for example, are advised to go straight to Section 3.3, then read Chapters
4,5,6,7,and 9.

The most advanced sections, dealing with topics closer to current research
frontiers, are marked with a triple asterisk (***). These include the theory of
graphoids (Chapter 3), learning methods (Chapter 8), and probabilistic semantics
for default reasoning (Section 10.2).

The reader should not view these markings as strict delineators. Just as an
advanced ski run has flat stretches and a beginner’s run has a mogul or two, there
will be occasional pointers to human-style reasoning in the midst of technical
discussions, and references to computational issues in the midst of philosophical
discussions. Some reviewers advised me to avoid this hybrid style of writing, but I
felt that retreating toward a more traditional organization would deny the reader
the sense of excitement that led me to these explorations. By confessing the
speculative nature of my own curiosity I hope to encourage further research in
these areas.

I owe a great debt to many people who assisted me with this work. First, I
would like to thank the members of the Cognitive Systems Laboratory at UCLA,
whose work and ideas formed the basis of many of these sections: Avi Dechter,
Rina Dechter, Hector Geffner, Dan Geiger, Moises Goldszmidt, Jin Kim, Iiay
Meiri, Javier Pinto, Prasadram Ramachandra, George Rebane, Igor Roizen, Rony
Ross, and Thomas Verma. Rina and Hector, in particular, are responsible for
wresting me from the security blanket of probability theory into the cold darkness
of constraint networks, belief functions, and nonmonotonic logic.
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My academic and professional colleagues have been generous with their time
and ideas. I have been most influenced by the ideas of Stephen Lauritzen, Glenn
Shafer, and David Spiegelhalter, and my collaborations with Azaria Paz and
Norman Dalkey have been very rewarding. Helpful comments on selected
sections were offered by Emst Adams, Moshe Ben-Bassat, Alan Bundy, Norman
Dalkey, Johan de Kleer, Arthur Dempster, Richard Duda, David Heckerman,
David Etherington, Max Henrion, Robert Goldman, Richard Jeffrey, Henry
Kyburg, Vladimir Lifschitz, John Lowrance, David McAllester, John Pollock,
Gregory Provan, Lenhart Schubert, Ross Shachter, Glenn Shafer and Michael
Wellman.

The National Science Foundation deserves acknowledgment for sponsoring the
research that led to these results, with special thanks to Y.T. Chien, Joe Dekens,
and the late Ken Curtis, who encouraged my research when 1 was still a junior
faculty member seeking an attentive ear. Other sponsors include Lashon Booker of
the Navy Research Laboratory, Abraham Waksman of the Air-Force Office of
Scientific Research, and Richard Weis of Aerojet Electro Systems.

The manuscript was most diligently typed, processed, illustrated and proofed
by Gina George and Jackie Trang, assisted by Nina Roop and Lillian Casey. I
thank the publisher for accommodating my idiosyncracies, and special thanks to a
very special copy editor, Danny Pearl, whose uncompromising stance made these
pages readable.

Finally, I owe a great debt to the rest of my family: to Tammy for reminding
me why it all matters, to Michelle for making me feel useful and even drawing
some of the figures, and especially to my wife Ruth for sheltering me from the
travails of the real world and surrounding me with so much love, support, and
hope.

J.P.
Los Angeles, California
June 1988
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Chapter 1

UNCERTAINTY IN Al SYSTEMS:
AN OVERVIEW

I consider the word probability as meaning
the state of mind with respect to an assertion,
a coming event, or any other matter on which
absolute Knowledge does not exist.

— August De Morgan, 1838

1.1 INTRODUCTION

1.1.1 Why Bother with Uncertainty?

Reasoning about any realistic domain always requires that some simplifications be
made. The very act of preparing knowledge to support reasoning requires that we
leave many facts unknown, unsaid, or crudely summarized. For example, if we
choose to encode knowledge and behavior in rules such as "Birds fly" or "Smoke
suggests fire," the rules will have many exceptions which we cannot afford to
enumerate, and the conditions under which the rules apply (e.g., seeing a bird or
smelling smoke) are usually ambiguously defined or difficult to satisfy precisely in
real life. Reasoning with exceptions is like navigating a minefield: Most steps are
safe, but some can be devastating. If we know their location, we can avoid or
defuse each mine, but suppose we start our journey with a map the size of a
postcard, with no room to mark down the exact location of every mine or the way
they are wired together. An alternative to the extremes of ignoring or enumerating
exceptions is to summarize them, i.e., provide some warning signs to indicate
which areas of the minefield are more dangerous than others. Summarization is
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essential if we wish to find a reasonable compromise between safety and speed of
movement. This book studies a language in which summaries of exceptions in the
minefield of judgment and belief can be represented and processed.

1.1.2 Why Is It a Problem?

One way to summarize exceptions is to assign to each proposition a numerical
measure of uncertainty and then combine these measures according to uniform
syntactic principles, the way truth values are combined in logic. This approach has
been adopted by first-generation expert systems, but it often yields unpredictable
and counterintuitive results, examples of which will soon be presented. As a
matter of fact, it is remarkable that this combination strategy went as far as it did,
since uncertainty measures stand for something totally different than truth values.
Whereas truth values in logic characterize the formulas under discussion,
uncertainty measures characterize invisible facts, i.e., exceptions not covered in
the formulas. Accordingly, while the syntax of the formula is a perfect guide for
combining the visibles, it is nearly useless when it comes to combining the
invisibles. For example, the machinery of Boolean algebra gives us no clue as to
how the exceptions to A — C interact with those of B — C to yield the exceptions
to (A AB) — C. These exceptions may interact in intricate and clandestine ways,
robbing us of the modularity and monotonicity that make classical logic
computationally attractive.

Although formulas interact in intricate ways, in logic too, the interactions are
visible. This enables us to calculate the impact of each new fact in stages, by a
process of derivation that resembles the propagation of a wave: We compute the
impact of the new fact on a set of syntactically related sentences S, store the
results, then propagate the impact from S 1 to another set of sentences S5, and so
on, without having to return to S. Unfortunately, this computational scheme, so
basic to logical deduction, cannot be justified under uncertainty unless one makes
some restrictive assumptions of independence .

Another feature we lose in going from logic to uncertainty is incrementality .
When we have several items of evidence, we would like to account for the impact
of each of them individually: Compute the effect of the first item, then absorb the
added impact of the next item, and so on. This, too, can be done only after making
restrictive assumptions of independence. Thus, it appears that uncertainty forces
us to compute the impact of the entire set of past observations to the entire set of
sentences in one global step—this, of course, is an impossible task.

1.1.3 Approaches to Uncertainty

Al researchers tackling these problems can be classified into three formal schools,
which I will call logicist, neo-calculist, and neo-probabilist. The logicist school
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attempts to deal with uncertainty using nonnumerical techniques, primarily
nonmonotonic logic. The neo-calculist school uses numerical representations of
uncertainty but regards probability calculus as inadequate for the task and thus
invents entirely new calculi, such as the Dempster-Shafer calculus, fuzzy logic,
and certainty factors. The neo-probabilists remain within the traditional
framework of probability theory, while attempting to buttress the theory with
computational facilities needed to perform Al tasks. There is also a school of
researchers taking an informal, heuristic approach {Cohen 1985; Clancey 1985;
Chandrasekaran and Mittal 1983], in which uncertainties are not given explicit
notation but are instead embedded in domain-specific procedures and data
structures.

This taxonomy is rather superficial, capturing the syntactic rather than the
semantic variations among the various approaches. A more fundamental
taxonomy can be drawn along the dimensions of extensional vs. intensional
approaches.t The extensional approach, also known as production systems, rule-
based systems, and procedure-based systems, treats uncertainty as a generalized
truth value attached to formulas and (following the tradition of classical logic)
computes the uncertainty of any formula as a function of the uncertainties of its
subformulas. In the intensional approach, also known as declarative or model-
based, uncertainty is attached to "states of affairs” or subsets of "possible worlds."
Extensional systems are computationally convenient but semantically sloppy,
while intensional systems are semantically clear but computationally clumsy. The
trade-off between semantic clarity and computational efficiency has been the main
issue of concern in past research and has transcended notational boundaries. For
example, it is possible to use probabilities either extensionally (as in
PROSPECTOR [Duda, Hart, and Nilsson 1976]) or intensionally (as in MUNIN
[Andreassen et al. 1987]). Similarly, one can use the Dempster-Shafer notation
either extensionally [Ginsberg 1984] or intensionally [Lowrance, Garvey, and Strat
1986].

1.14 Extensional vs. Intensional Approaches

Extensional systems, a typical representative of which is the certainty-factors
calculus used in MYCIN [Shortliffe 1976], treat uncertainty as a generalized truth
value; that is, the certainty of a formula is defined to be a unique function of the
certainties of its subformulas. Thus, the connectives in the formula serve to select
the appropriate weight-combining function. For example, the certainty of the
conjunction A A B is given by some function (e.g., the minimum or the product) of

1t These terms are due to Perez and Jirousek (1985); the terms syntactic vs. semantic are also
adequate.
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the certainty measures assigned to A and B individually. By contrast, in intensional
systems, a typical representative of which is probability theory, certainty measures
are assigned to sets of worlds, and the connectives combine sets of worlds by set-
theory operations. For example, the probability P(A A B) is given by the weight
assigned to the intersection of two sets of worlds—those in which A is true and
those in which B is true—but P(A A B) cannot be determined from the individual
probabilities P(A) and P(B).

Rules, too, have different roles in these two systems. The rules in extensional
systems provide licenses for certain symbolic activities. For example, a rule
A -5 B may mean "If you see A, then you are given the license to update the
certainty of B by a certain amount which is a function of the rule strength m." The
rules are interpreted as a summary of past performance of the problem solver,
describing the way an agent normally reacts to problem situations or to items of
evidence. In intensional systems, the rules denote elastic constraints about the
world. For example, in the Dempster-Shafer formalism (see Chapter 9) the rule
A =2 B does not describe how an agent reacts to the finding of A, but asserts that
the set of worlds in which A and —B hold simultaneously has low likelihood and
hence should be excluded with probability m. In the Bayesian formalism the rule
A =I5 B is interpreted as a conditional probability expression P (B 1A) = m,
stating that among all worlds satisfying A, those that also satisfy B constitute an m
percent majority. Although there exists a vast difference between these two
interpretations (as will be shown in Chapters 9 and 10), they both represent
summaries of factual or empirical information, rather than summaries of past
decisions. We will survey intensional formalisms in Section 1.3, but first, we will
briefly discuss their extensional rivals.

1.2 EXTENSIONAL SYSTEMS: MERITS,
DEFICIENCIES, AND REMEDIES

1.2.1 Computational Merits

A good way to show the computational merits of extensional systems is to examine
the way rules are handled in the certainty-factors formalism [Shortliffe 1976] and
contrast it with probability theory’s treatment of rules. Figure 1.1 depicts the
combination functions that apply to serial and parallel rules, from which one can
form a rule network. The result is a modular procedure for determining the
certainty of a conclusion, given the credibility of each rule and the certainty of the
premises (i.e., the roots of the network). To complete the calculus we also need to
define combining functions for conjunction and negation. Setting mathematical
details aside, the point to notice is that the same combination function applies
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uniformly to any two rules in the system, regardless of what other rules might be in
the neighborhood.

Rules:
uies A
X
e If A then C (x)
C z
e If B then C (y) >»—o D
e If C then D (2) Y
B
1. Parallel combination
xX+y-—-xy x,y>0

CF(C)= y(x +y)/ (1 —min(x, y)) x, y different sign

X+y+xy xy<0

2. Series combination

- CF(D) =z - max(0, CF(C))

3. Conjunction, negation ...

Figure 1.1. Certainty combination functions used in MYCIN. x, y, and z denote the
credibilities of the rules.

Computationally speaking, this uniformity mirrors the modularity of inference
rules in classical logic. For example, the logical rule "If A then B" has the
following procedural interpretation: "If you see A anywhere in the knowledge
base, then regardless of what other things the knowledge base contains and
regardless of how A was derived, you are given the license to assert B and add it to
the database.” This combination of locality ("regardless of other things”) and
detachment ('regardiess of how it was derived") constitutes the principle of
modularity. The numerical parameters that decorate the combination functions in
Figure 1.1 do not alter this basic principle. The procedural license provided by the
rule A %> B reads as follows: "If you see the certainty of A undergoing a change

04, then regardless of what other things the knowledge base contains and
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regardless of how 8, was triggered, you are given an unqualified license to modify
~ the current certainty of B by some amount 85, which may depend on x, on 84, and
on the current certainty of B."+

To appreciate the power of this interpretation, let us compare it with that given
by an intensional formalism such as probability theory. Interpreting rules as
conditional probability statements, P(B|A) = p, does not give us license to do
anything. Even if we are fortunate enough to find A true in the database, we still
cannot assert a thing about B or P(B), because the meaning of the statement is "If
A is true and A is the only thing that you know, then you can attach to B a
probability p." As soon as other facts K ‘appear in the database, the license to
assert P(B) = p is automatically revoked, and we need to look up P(B!A, K)
instead. The probability statement leaves us totally impotent, unable to initiate
any computation, unless we can verify that everything else in the knowledge base
is irrelevant. This is why verification of irrelevancy is so crucial in intensional
systems.

In truth, such verifications are crucial in extensional systems too, but the
computational convenience of these systems and their striking resemblance to
logical derivation tempt people to neglect the importance of verifying irrelevancy.
We shall now describe the semantic penalties imposed when relevance
considerations are ignored.

1.2.2 Semantic Deficiencies

The price tag attached to extensional systems is that they often yield updating that
is incoherent, i.e., subject to surprises and counterintuitive conclusions. These
problems surface in several ways, most notably

1. improper handling of bidirectional inferences,
2. difficulties in retracting conclusions, and

3. improper treatment of correlated sources of evidence.

We shall describe these problems in order.

THE ROLE OF BIDIRECTIONAL INFERENCES

The ability to use both predictive and diagnostic information is an important
component of plausible reasoning, and improper handling of such information
leads to rather strange results. A common pattern of normal discourse is that of

T The observation that the rules refer to changes rather than absolute values was made by Horvitz and
Heckerman [1986].
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abductive teasoning—if A implies B, then finding the truth value of B makes A
more credible (Polya [1954] called this an induction pattern [see Section 2.3.1]).
This pattern involves reasoning both ways, from A to B and from B to A.
Moreover, it appears that people do not require two separate rules for performing
these inferences; the first rule (e.g., "Fire implies smoke") provides the license to
invoke the second (e.g., "Smoke makes fire more credible"). Extensional systems,
on the other hand, require that the second rule be stated explicitly and, even worse,
that the first rule be removed. Otherwise, a cycle would be created where any
slight evidence in favor of A would be amplified via B and fed back to A, quickly
turning into a stronger confirmation (of A and B), with no apparent factual
justification. The prevailing practice in such systems (e.g., MYCIN) is to cut off
cycles of that sort, permitting only diagnostic reasoning and no predictive
inferences.

Removal of its predictive component prevents the system from exhibiting
another important pattern of plausible reasoning, one that we call explaining away:
If A implies B, C implies B, and B is true, then finding that C is true makes A less
credible. In other words, finding a second explanation for an item of data makes
the first explanation less credible. Such interaction among multiple causes appears
in many applications (see Sections 2.2.4, 2.3.1, 4.3.2, and 10.2). For example,
finding that the smoke could have been produced by a bad muffler makes fire less
credible. Finding that my light bulb emits red light makes it less credible that the
red-hued object in my hand is truly red.

To exhibit this sort of reasoning, a system must use bidirected inferences: from
evidence to hypothesis (or explanation) and from hypothesis to evidence. While it
is sometimes possible to use brute force (e.g., enumerating all exceptions) to
restore "explaining away" without the danger of circular reasoning, we shall see
that any system that succeeds in doing this must sacrifice the principles of
modularity, i.e., locality and detachment. More precisely, every system that
updates beliefs modularly at the natural rule level and that treats all rules equally is
bound to defy prevailing patterns of plausible reasoning.

THE LIMITS OF MODULARITY

The principle of locality is fully realized in the inference rules of classical logic.
The rule "If P then Q" means that if P is found true, we can assert Q with no
further analysis, even if the database contains some other knowledge K. In
plausible reasoning, however, the luxury of ignoring the rest of the database
cannot be maintained. For example, suppose we have a rule R; = "If the ground is
wet, then assume it rained (with certainty c¢)." Validating the truth of "The ground
is wet" does not permit us to increase the certainty of "It rained” because the
knowledge base might contain strange items such as K = "The sprinkler was on
last night." These strange items, called defeaters or suppressors (Section 10.3), are
scmetimes easy to discover (as with K“ = "The neighbor’s grass is dry,” which
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directly opposes "It rained"), but sometimes they hide cleverly behind syntactical
innocence. The neutral fact K = "Sprinkler was on" neither SUpports nor opposes
the possibility of rain, yet K manages to undercut the rule R,. This undercutting
cannot be implemented in an extensional system; once R is invoked, the increase
in the certainty of "It rained" will never be retracted, because no rule would
normally connect "Sprinkler was on" to "It rained.” Imposing such a connection by
proclaiming "Sprinkler was on" as an explicit exception to R defeats the spirit of
modularity by forcing the rule-writer to pack together items of information that are
only remotely related to each other, and it burdens the rules with an unmanageably
large number of exceptions.

Violation of detachment can also be demonstrated in this example. In
deductive logic, if K implies P and P implies Q, then finding K true permits us to
deduce Q by simple chaining; a derived proposition (P) can trigger a rule (P — Q)
with the same vigor as a directly observed proposition can. Chaining does not
apply in plausible reasoning. The system may contain two innocent-looking
rules—"If the ground is wet then it rained" and "If the sprinkler was on then the
ground is wet"—but if you find that the sprinkler was on, you obviously do not
wish to conclude that it rained. On the contrary, finding that the sprinkler was on
only takes away support from "It rained."

As another example, consider the relationships shown in Figure 1.2. Normally
an alarm sound alerts us to the possibility of a burglary. If somebody calls you at
the office and tells you that your alarm went off, you will surely rush home in a
hurry, even though there could be other causes for the alarm sound. If you hear a
radio announcement that there was an earthquake nearby, and if the last false
alarm you recall was triggered by an earthquake, then your certainty of a burglary
will diminish. Again, this requires going both ways, from effect to cause (Radio
— Earthquake), and from cause to effect (Earthquake — Alarm), and then from
effect to cause again (Alarm — Burglary). Notice what pattern of reasoning results
from such a chain, though: We have a rule, "If A (Alarm) then B (Burglary)"; you
listen to the radio, A becomes more credible, and the conclusion B becomes less
credible. Overall, we have "If A > B and A becomes more credible, then B
becomes less credible.” This behavior is clearly contrary to everything we expect
from local belief updating.

In conclusion, we see that the difficulties plaguing classical logic do not stem
from its nonnumeric, binary character. Equally troublesome difficulties emerge
when truth and certainty are measured on a grey scale, whether by point values, by
interval bounds, or by linguistic quantifiers such as "likely" and "credible." There
seems to be a basic struggle between procedural modularity and semantic
coherence, independent of the notation used.

CORRELATED EVIDENCE

Extensional systems, greedily exploiting the licenses provided by locality and
detachment, respond only to the magnitudes of the weights and not to their origins.
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Burglary

Phone
call
Earthquake
Radio
announcement
A—>B

A more credible

B less credible

Figure 1.2. Making the antecedent of a rule more credible can cause the consequent to
become less credible.

As a result they will produce the same conclusions whether the weights originate
from identical or independent sources of information. An example from Henrion
[1986b] about the Chemoby! disaster helps demonstrate the problems encountered
by such a local strategy. Figure 1.3 shows how multiple, independent sources of
evidence would normally increase the credibility of a hypothesis (e.g., Thousands
dead), but the discovery that these sources have a common origin should reduce
the credibility. Extensional systems are too local to recognize the common origin
of the information, and they would update the credibility of the hypothesis as if it
were supported by three independent sources.

1.2.3 Attempted Remedies and their Limitations

The developers of extensional systems have proposed and implemented powerful
techniques to remedy some of the semantic deficiencies we have discussed. The
remedies, most of which focus on the issue of correlated evidence, take two
approaches:

1.  Bounds propagation: Since most correlations are unknown, certainty
measures are combined under two extreme assumptions—that the
components have a high positive correlation, and that they have a high
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THOUSANDS
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INTERVIEW

Figure 1.3. The Chernobyl disaster example (after Henrion) shows why rules

cannot combine locally.

negative correlation. This yields upper and lower bounds on the
combined certainty, which are entered as inputs to subsequent
computations, producing new bounds on the certainty of the
conclusions. This approach has been implemented in INFERNO
[Quinlan 1983] and represents a local approximation to Nilsson’s
probabilistic logic [Nilsson 1986] (see Section 9.3).

User-specified combination functions: A system named RUM
{Bonissone, Gans, and Decker 1987] permits the rule-writer to specify
the combination function that should apply to the rule’s components.
For example, if a, b, and ¢ stand for the weights assigned to propositions
A, B, and C in the rule

AAB—>C,

the user can specify which of the following three combination functions
should be used:

T (a, b) =max(0,a + b —1),
T,(a, b) = ab,

or
T5(a, b) = min(a, b).
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These functions (called T norms) represent the probabilistic
combinations obtained under three extreme cases of correlation between
A and B: highly negative, zero, and highly positive.

Cohen, Shafer, and Shenoy [1987] have proposed a more refined
scheme, where for any pair of values P(A) and P(B), the user is
permitted to specify the value of the resulting probability, P(C).

The difficulties with these correlation-handling techniques are several. First, the
bounds produced by systems such as INFERNO are too wide. For example, if we
are given P(A) = p and P(B|A) = g, then the bounds we obtain for P(8) are

pg<PB)<1-p(l-gq),

which for small p approach the unit interval [0, 1]. Second, to handle the intricate
dependencies that may occur among rules it is not enough to capture pair-wise
correlations; higher-order dependencies are often necessary [Bundy 1985]. Finally,
even if one succeeds in specifying higher-order dependencies, a much more
fundamental limitation exists: Dependencies are dynamic relationships, created
and destroyed as new evidence is obtained. For example, dependency between the
propositions "It rained last night" and "The sprinkler was on" is created once we
find out that the ground is wet. The dependence between a child’s shoe size and
reading ability is destroyed once we find out the child’s age. Thus, correlations and
combination functions specified at the knowledge-building phase may quickly
become obsolete once the program is put into use.

Heckerman [1986a, 1986b] delineated precisely the range of applicability of
extensional systems. He proved that any system that updates certainty weights in a
modular and consistent fashion can be given a probabilistic interpretation in which
the certainty update of a proposition A is some function of the likelihood ratio

_ _P(Evidence 1A)
P(Evidence | =A)

In MYCIN, for example, the certainty factor CF can be interpreted as

A—1

F = .
¢ A+l

Once we have a probabilistic interpretation, it is easy to determine the set of
structures within which the update procedure will be semantically valid. It turns
out that a system of such rules will produce coherent updates if and only if the
rules form a directed tree, i.e., no two rules may stem from the same premise. This
limitation explains why strange results were obtained in the burglary example of
Figure 1.2. There, the alarm event points to two possible explanations, Burglary
and Earthquake, which amounts to two evidential rules stemming from the
premise, Alarm.
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Hajek [1985] and Héjek and Valdes [1987] have developed an algebraic theory
that characterizes an even wider range of the extensional systems and combining
functions, including those based on Dempster-Shafer intervals. The unifying
properties common to all such systems is that they form an ordered Abelian group.
Again, the knowledge base must form a tree so that no evidence is counted twice
via alternative paths of reasoning.

1.3 INTENSIONAL SYSTEMS AND NETWORK
REPRESENTATIONS

We have seen that handling uncertainties is a rather tricky enterprise. It requires a
fine balance between our desire to use the computational permissiveness of
extensional systems and our ability to refrain from committing semantic sins. It is
like crossing a minefield on a wild horse. You can choose a horse with good
instincts, attach certainty weights to it and hope it will keep you out of trouble, but
the danger is real, and highly skilled knowledge engineers are needed to prevent
the fast ride from becoming a disaster. The other extreme is to work your way by
foot with a semantically safe intensional system, such as probability theory, but
then you can hardly move, since every step seems to require that you examine the
entire field afresh. We shall now examine means for making this movement
brisker.

In intensional systems, the syntax consists of declarative statements about
states of affairs and hence mirrors world knowledge rather nicely. For example,
conditional probability statements such as "Most birds fly" are both empirically
testable and conceptually meaningful. Additionally, intensional systems have no
problem handling bidirected inferences and correlated evidence; these emerge as
built-in features of one globally coherent model (see Chapters 2 and 4). However,
since the syntax does not point to any useful procedures, we need to construct
special mechanisms that convert the declarative input into routines that answer
queries. Such a mechanism is offered by techniques based on belief networks,
which will be a central topic of discussion in this book.

1.3.1 Why Networks?

Our goal is to make intensional systems operational by making relevance
relationships explicit, thus curing the impotence of declarative statements such as
P(B1A) = p. As mentioned earlier, the reason one cannot act on the basis of such
declarations is that one must first make sure that other items in the knowledge base
are irrelevant to B and hence can be ignored. The trick, therefore, is to encode
knowledge in such a way that the ignorable is recognizable, or better yet, that the
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unignorable is quickly identified and is readily accessible. Belief networks encode
relevancies as neighboring nodes in a graph, thus ensuring that by consulting the
neighborhood one gains a license to act; what you don’t see locally doesn’t matter.
In effect, what network representations offer is a dynamically updated list of all
currently valid licenses to ignore, and licenses to ignore constitute permissions to
act.

Network representations are not foreign to Al systems. Most reasoning sys-
tems encode relevancies using intricate systems of pointers, i.e., networks of
indices that group facts into structures, such as frames, scripts, causal chains, and
inheritance hierarchies. These structures, though shunned by pure logicians, have
proved to be indispensable in practice, because they place the information required
to perform an inference task close to the propositions involved in the task. Indeed,
many patterns of human reasoning can be explained only by people’s tendency to
follow the pathways laid out by such networks.

The special feature of the networks discussed in this book is that they have
clear semantics. In other words, they are not auxiliary devices contrived to make
reasoning more efficient but are an integral part of the semantics of the knowledge
base, and most of their features can even be derived from the knowledge base.

Belief networks play a central role in two uncertainty formalisms: probability
theory, where they are called Bayesian networks, causal nets, or influence
diagrams, and the Dempster-Shafer theory (see Chapter 9), where they are referred
to as galleries [Lowrance, Garvey, and Strat 19861, qualitative Markov networks
{[Shafer, Shenoy, and Mellouli 1987], or constraint networks [Montanari 1974].
Probabilistic networks will be given formal treatment in Chapter 3 and will serve
as a unifying theme throughout this book. In the next subsection we briefly discuss
the theory of graphoids, which provides formal semantics for graphical representa-
tions in terms of information relevance.

1.3.2 Graphoids and the Formalization of
Relevance and Causality

A central requirement for managing intensional systems is to articulate the
conditions under which one item of information is considered relevant to another,
given what we already know, and to encode knowledge in structures that display
these conditions vividly as the knowledge undergoes changes. Different
formalisms give rise to different definitions of relevance. For example, in
probability theory, relevance is identified with dependence; in database theory,
with induced constraints—two variables are said to be relevant to each other if we
can restrict the range of values permitted for one by constraining the other.

The essence of relevance can be identified with a structure common to all of
these formalisms. It consists of four axioms which convey the simple idea that
when we learn an irrelevant fact, the relevance relationships of all other
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propositions remain unaltered; any information that was irrelevant remains
irrelevant, and that which was relevant remains relevant. Structures that conform
to these axioms are called graphoids [Pearl and Paz 19857 and will be treated more
fully in Chapter 3. Interestingly, both undirected graphs and directed acyclic
graphs conform to the graphoids axioms (hence the name) if we associate the
sentence <'Variable X is irrelevant to variable Y once we know Z" with the
graphical condition "Every path from X to Y is intercepted by the set of nodes
corresponding to Z." (A special definition of intercept is required for directed
graphs [see Section 3.3.1]).

With this perspective in mind, graphs, networks, and diagrams can be viewed
as inference engines devised for efficiently representing and manipulating
relevance relationships. The topology of the network is assembled from a list of
local relevance statements (e.g., direct dependencies). This input list implies
(using the graphoid axioms) a host of additional statements, and the graph ensures
that a substantial portion of the latter can be verified by simple graphical
procedures such as path tracing and path blocking. Such procedures enable one to
determine, at any state of knowledge Z, what information is relevant to the task at
hand and what can be ignored. Permission to ignore, as we saw in Section 1.1, is
the fuel that gives intensional systems the power to act.

The theory of graphoids shows that a belief network can constitute a sound and
complete inference mechanism relative to probabilistic dependencies, i.e., it
identifies, in polynomial time, every conditional independence relationship that
logically follows from those used in the construction of the network (see Section
3.3). Similar results hold for other types of relevance relationships, e.g., partial
correlations and constraint-based dependencies. The essential requirement for
soundness and completeness is that the network be constructed causally, i.e., that
we identify the most relevant predecessors of each variable recursively, in some
total order, say temporal. (Once the network is constructed, the original order can
be forgotten; only the partial order displayed in the network matters.)

It is this soundness and completeness that gives causality such a central role in
this book, and perhaps in knowledge organization in general. However, the
precise relationship between causality as a representation of irrelevancies and
causality as a commitment to a particular inference strategy (e.g., chronological
ignorance [Shoham 1986}) has yet to be fully investigated.

1.4 THE CASE FOR PROBABILITIES

The aim of artificial intelligence is to provide a computational model of intelligent
behavior, most importantly, commonsense reasoning. The aim of probability
theory is to provide a coherent account of how belief should change in light of
partial or uncertain information. Since commonsense reasoning always applies to
incomplete information, one might naturally expect the two disciplines to share
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language, goals, and techniques. However, ever since McCarthy and Hayes [1969]
proclaimed probabilities to be "epistemologically inadequate,” Al researchers have
shunned probability adamantly. Their attitude has been expressed through
commonly heard statements like "The use of probability requires a massive amount
of data,"” "The use of probability requires the enumeration of all possibilities," and
"People are bad probability estimators.” "We do not have those numbers," it is
often claimed, and even if we do, "We find their use inconvenient."

Aside from the obvious corrections to these claims, this book will try to
communicate the idea that "probability is not really about numbers; it is about the
structure of reasoning," as Glenn Shafer recently wrote.t We will emphasize, for
example, that when a physician asserts, "The chances that a patient with disease D
will develop symptom S is p," the thrust of the assertion is not the precise
magnitude of p so much as the specific reason for the physician’s belief, the
context or assumptions under which the belief should be firmly held, and the
sources of information that would cause this belief to change. We will also stress
that probability theory is unique in its ability to process context-sensitive beliefs,
and what makes the processing computationally feasible is that the information
needed for specifying context dependencies can be represented by graphs and
manipulated by local propagation.

1.4.1 Why Should Beliefs Combine Like
Frequencies?

On the surface, there is really no compelling reason that beliefs, being mental
dispositions about unrepeatable and often unobservable events, should combine by
the laws of proportions that govern repeatable trials such as the outcomes of
gambling devices. The primary appeal of probability theory is its ability to express
useful qualitative relationships among beliefs and to process these relationships in
a way that yields imtuitively plausible conclusions, at least in cases where intuitive
judgments are compelling. A summary of such qualitative relationships will be
given in the next subsection. What we wish to stress here is that the fortunate
match between human intuition and the laws of proportions is not a coincidence.
It came about because beliefs are formed not in a vacuum but rather as a
distillation of sensory experiences. For reasons of storage economy and generality
we forget the actual experiences and retain their mental impressions in the forms
of averages, weights, or (more vividly) abstract qualitative relationships that help
us determine future actions. The organization of knowledge and beliefs must
strike a delicate balance between the computational resources these relationships
consume and the frequency of their use. With these considerations in mind, it is

KX

i Personal communication,
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hard to envision how a calculus of beliefs can evolve that is substantially different
from the calculus of proportions and frequencies, namely probability.

1.4.2 The Primitive Relationships of Probability
Language

Although probabilities are expressed in numbers, the merit of probability calculus
rests in providing a means for articulating and manipulating qualitative
relationships that are found useful in normal discourse. The following four
relationships are viewed as the basic primitives of the language:

1. Likelihood ("Tim is more likely to fly than to walk").

2. Conditioning ("If Tim is sick, he can’t fly").

3. Relevance ("Whether Tim flies depends on whether he is sick™).
4

Causation ("Being sick caused Tim’s inability to fly").

LIKELIHOOD

The qualitative relationship of the form "A is more likely than B" has traditionally
been perceived as the prime purpose of using probabilities. The practical
importance of determining whether one event is more likely than another is best
represented by the fact that probability calculus was pioneered and developed by
such ardent gamblers as Cardano (1501-1576) and De Moivre (1667-1754).
However, the importance of likelihood relationships goes beyond gambling
situations or even management decisions. Decisions depending on relative
likelihood of events are important in every reasoning task because likelihood
translates immediately to processing time—the time it takes to verify the truth of a
proposition, to consider the consequence of a rule, or to acquire more information.
A reasoning system unguided by likelihood considerations (my ex-lawyer is a
perfect example of one) would waste precious resources in chasing the unlikely
while neglecting the likely.

Philosophers and decision theorists have labored to obtain an axiomatic basis
for probability theory based solely on this primitive relationship of "more likely,"
namely, to identify conditions under which an ordering of events has a numerical
representation P that satisfies the properties of probability functions [Krantz et al.
1971; Fine 1973; Fishburn 1986]. More recently, the task of devising a
nonnumeric logic for manipulating sentences that contain the qualifier likely has
received considerable attention [Halpern and Rabin 1987; Fagin and Halpern
1988] and has turned out to be a tougher challenge than expected.
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CONDITIONING

Probability theory adopts the autoepistemic phrase "...given that what I know is C"
as a primitive of the language. Syntactically, this is denoted by placing C behind
the conditioning bar in a statement such as P(A | C) = p. This statement combines
the notions of knowledge and belief by attributing to A a degree of belief p, given
the knowledge C. C is also called the context of the belief in A, and the notation
P(A1C) is called Bayes conditionalization. Thomas Bayes (1702—1761) made his
main contribution to the science of probability by associating the English phrase
"...given that T know C” with the now-famous ratio formula

PAIC) = ﬂ},%l .1

[Bayes 1763], which has become a definition of conditional probabilities (see Eq.
(2.8)).

It is by virtue of Bayes conditionalization that probability theory facilitates
nonmonotonic reasoning, i.e., reasoning involving retraction of previous
conclusions (see Section 1.5). For example, it is perfectly acceptable to assert
simultaneously P (Fly(a)|Bird(a)) = HIGH and P(Fly(a)|Bird(a), Sick(a))=
LOW. In other words, if all we know about individual a is that a is a bird, we jump
to the conclusion that @ most likely flies. However, upon learning that a is also
sick, we retract our old conclusion and assert that ¢ most likely cannot fly.

To facilitate such retraction it is necessary both that the original belief be
stated with less than absolute certainty and that the context upon which we
condition beliefs be consulted constantly to see whether belief revision is
warranted. The dynamic of belief revision under changing contexts is not totally
arbitrary but must obey some basic laws of plausibility which, fortunately, are
embedded in the syntactical rules of probability calculus. A typical example of
such a plausibility law is the rule of the hyporhetical middle:

If two diametrically opposed assumptions impart two different degrees of belief onto
a proposition Q, then the unconditional degree of belief merited by Q should be
somewhere between the two.

For example, our belief that Tim flies given that Tim is a bird must be between our
belief that Tim flies given that he is a sick bird and our belief that Tim flies given
that he is a healthy bird. Such a qualitative, commonsense restriction is built into
the syntax of probability calculus via the equality

PBIC)=0PBIC,A)+(1-)PBIC,-A), 1.2)

where o = P(A|C) is some number between O and 1. Other typical patterns of
plausible reasoning are those of abduction and "explaining away," mentioned in
Section 1.2.2 and further elaborated in Section 2.3.1.
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RELEVANCE

Relevance is a relati(;nship indicating a potential change of belief due to a
specified change in knowledge (see Section 1.3.2). Two propositions A and B are
said to be relevant to each other in context C if adding B to C would change the
likelihood of A. Clearly, relevance can be defined in terms of likelihood and
conditioning, but it is a notion more basic than likelihood. For example, a person
might be hesitant to assess the likelihood of two events but feel confident about
Jjudging whether or not the events are relevant to each other. People provide such
Jjudgments swiftly and consistently because—we speculate—relevance relation-
ships are stored explicitly as pointers in one’s knowledge base.

Relevance is also a primitive of the language of probability because the
language permits us to specify relevance relationships directly and qualitatively
before making any numerical assessment. Later on, when numerical assessments
of likelihood are required, they can be added in a consistent fashion, without
disturbing the original relevance structure (see Chapter 3).

CAUSATION

Causation is a ubiquitous notion in man’s conception of his environment, yet it has
traditionally been considered a psychological construct, outside the province of
probability or even the physical sciences [Russell 1913]. In Section 3:3 we present
a new account of causation, according to which it can be given a nontemporal
probabilistic interpretation based solely on the notion of relevance. The temporal
component of causation [Suppes 1970; Shoham 1988] is viewed merely as a
convenient indexing standard chosen to facilitate communication and predictions.

Causation is listed as one of the four basic primitives of the language of
probability because it is an indispensable tool for structuring and specifying
probabilistic knowledge (see Sections 3.3 and 10.4) and because the semantics of
causal relationships are preserved by the syntax of probabilistic manipulations; no
auxiliary devices are needed to force conclusions to conform with people’s
conception of causation. The following is a brief summary of our notion of
causation, to be further developed in Sections 3.3, 8.2, and 10.3.

Causation is a language with which one can talk efficiently about certain
structures of relevance relationships, with the objective of separating the relevant
from the superfluous. For example, to say that a wet pavement was a direct cause
of my slipping and breaking a leg is a concise way of identifying which events
should no longer be considered relevant to my accident, once the wetness of the
pavement is confirmed. The facts that it rained that day, that the rain was
welcomed by farmers, and that my friend also slipped and broke his leg should no
longer be considered relevant to the accident once we establish the truth of Wer
pavement and identify it as the direct cause of the accident.

The asymmetry conveyed by causal directionality is viewed as a notational
device for encoding still more intricate patterns of relevance relationships, such as
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nontransitive and induced dependencies. For example, by designating Rain and
Sprinkler as potential causes of the wet pavement we permit the two causes to be
independent of each other and still both be relevant to Wet pavement (hence
forming a nontransitive relationship). Moreover, by this designation we also
identify the consequences Wet pavement and Accident as potential sources of new
dependencies between the two causes; once a consequence is observed, its causes
can no longer remain independent, because confirming one cause lowers the
likelihood of the other. This connection between nontransitive and induced
dependencies is, again, a built-in feature of the syntax of probability theory—the
syntax ensures that nontransitive dependencies always induce the appropriate
dependencies between causes (see Exercise 3.10).

To summarize, causal directionality conveys the following pattern of
dependency: Two events do not become relevant to each other merely by virtue of
predicting a common consequence, but they do become relevant when the
consequence is actually observed. The opposite is true for two consequences of a
common cause. (Chapter 8 deals with using this asymmetry to identify causal
directionality in nontemporal empirical data.)

14.3 Probability as a Faithful Guardian of
Common Sense

In the preceding subsections we presented qualitative patterns of commonsense
reasoning that are naturally embedded within the syntax of probability calculus.
Among these infuitive patterns are nonmonotonicity (context sensitivity),
abduction, "explaining away," causation, and hypothetical middle. It is possible to
assemble some of these desirable patterns of inference and pose them as axioms
that render probability calculus "inevitable," i.e., to show that any calculus
respecting these desired patterns behaves as if it were driven by a probability
engine. This route was a favorite preoccupation of many philosophers, most
notably Ramsey [1931], de Finetti {1937], Cox [1946], Good [1950], and Savage
[1954]. Cox assembled seven semi-qualitative arguments for the conditional
relation (A | B) (to read, "The plausibility of A conditioned on the evidence B") and
showed that they lead to Bayes’ ratio formula (Eq. (1.1)) and thus to probability
calculus. This axiomatic approach placed probability on firm qualitative ground,
but it has also been the subject of lively debates and refutations (e.g., Savage
[1962], Lindley [1982], and Shafer [1986a]). When posed as a stand-alone
axiomatic system, any chosen subset of reasoning patterns is vulnerable to
criticism because we can always imagine a situation where one of the axioms
ceases to be necessary, thus discrediting the entire system. The interested reader is
referred to the classical literature on the foundations of probability [Fine 1973;
Krantz et al. 1971].
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The approach taken in this book is somewhat different. We take for granted
that probability calculus is unique in the way it handles context-dependent
information and that no competing calculus exists that closely covers so many
qualitative aspects of plausible reasoning. So the calculus is worthy of
exploitation, emulation, or at the very least, serious exploration. We therefore take
probability calculus as an initial model of human reasoning from which more
refined models may originate, if needed. By exploring the limits of using
probability calculus in machine implementations of plausible inference, we hope
to identify conditions under which extensions, refinements, and simplifications are
warranted.

Obviously, there are applications where strict adherence to the dictates of
probability theory would be computationally infeasible, and there compromises
will have to be made. Still, we find it more comfortable to compromise an ideal
theory that is well understood than to search for a new surrogate theory, with only
gut feeling for guidance.

The merits of a theory-based approach are threefold:

1. The theory can be consulted to ensure that compromises are made only
when necessary and that their damage is kept to a minimum.

2.  When system performance does not match expectations, knowing which
compromises were made helps identify the adjustments needed.

3. Compromised theories facilitate scientific communication; one need
specify only the compromises made, treating the rest of the theory as
common knowledge.

HOW BAD ARE THOSE NUMBERS?

People are notoriously bad numerical estimators. They find it hard to assess
absolute probabilities as well as distances, weights, and times. A person would
much rather assert qualitatively that one object is heavier than another than assess
the absolute weight of a given object. Still, the lack of an accurate scale does not
preclude the use of the laws of physics when it comes to deciding which bag is
lighter, the one containing 2000 dimes or the one containing 1000 quarters. It is
quite conceivable that a person has never before seen bags containing thousands of
coins, yet the limited experience gathered from handling small quantities of coins,
teaching us that two dimes are lighter than one quarter, can be amplified by the
laws of physics and extended to situations never seen before. We might assign a
single dime a rough weight estimate of 10 grams, consult our experience and
assign a quarter an estimate of 30 grams, then multiply the two estimates by the
respective numbers of coins and compare the results. The absolute estimates in
this example can be completely off, but as long as their ratio reflects genuine
experience, the conclusions will still be useful. (Deriving these conclusions
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symbolically, using axioms to describe how weights combine, often requires much
more work.) In other words, if we strongly believe in the rules by which exact
quantitics combine, we can use the same combination rules on the rough estimates
at hand.

This heuristic strategy gives reasonably good results for several reasons. First,
by using reliable combination rules, we make the utmost use of the available
knowledge and keep the damage due to imprecision from extending beyond well-
defined boundaries. Second, when we commit ourselves to a particular set of
numbers, no matter how erroneous, the consistency of the model prevents us from
reaching inconsistent conclusions. For example, we will never reach a conclusion
that the 2000-dime bag is lighter than the 1000-quarter bag and a simultaneous
conclusion that 3000 dimes are heavier than 1500 quarters. Finally, and most
importantly for dealing with uncertainty in Al systems, adhering to a coherent
model of reality helps us debug our inferences when they do not match
expectations. In our coin example, if it turns out, contrary to calculations, that the
2000 dimes are not lighter than the 1000 quarters, we know immediately that we
have either wrongly estimated the relative weights of a dime and a quarter or
miscounted the coins in the bags; we need not tamper with the rules of inference or
with their calculus of combination. In general, we know precisely how the model
should be refined or improved.

ON THE USEFULNESS OF NUMBERS

If people prefer to reason qualitatively, why should machines reason with
numbers? Probabilities are summaries of knowledge that is left behind when
information is transferred to a higher level of abstraction. The summaries can be
encoded logically or numerically; logic enjoys the advantages of parsimony and
simplicity, while numbers are more informative and sometimes are necessary.

The minefield metaphor used in Section 1.1 will help illustrate the usefulness
of numerical summarization. Imagine that before we start our journey across the
minefield, we are given access to a complete record of the field, specifying in full
detail the exact location of each mine as recorded six months earlier by the team
that laid these mines. However, since we cannot carry with us the entire record,
we must somehow summarize that information on a miniature map, the size of a
postcard. There are many ways we might summarize the data on the postcard, but
one of the most effective methods is to color the map to reflect the density of mines
in any given area: the darker the color, the higher the density. Viewing dark
colors as high numbers, this is the essence of numerical summarization of
uncertainty. Why is this scheme effective?

Imagine that you start your journey by pursuing what appears to be a rather
safe path to your destination. After two days you reach a roadblock; the path
chosen is not usable and an alternative path must be found. Here is where the
color code begins to show its usefulness. While traversing the original path you
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passed many side roads branching out from the one you chose. At the time, these
junctions were abandoned because your path appeared more promising, but now
that your first choice turned into a disappointment, you must look back at those
branching points and decide which one to pursue next. Had you summarized your
decisions using a bi-valued predicate, say "possible” or "not possible," you would
now be at a loss. Among those marked "possible,” you would not know which one
is actually the least dangerous and the quickest, especially in light of the new
roadblocks you have discovered. The colored map provides exactly this
information.

To make the analogy closer to mental reasoning tasks, let us further imagine
that we can communicate with headquarters and ask them to wire us a more
detailed map of any region under consideration. The question is which map we
should request. In the absence of priority ranking among the viable alternatives,
precious time will be wasted transmitting and examining maps that, in view of the
new road conditions discovered, will again lead to dead ends. The function of
colored maps, and of numeric labels in general, is to prioritize the flow of
information and focus on items more likely to yield beneficial results.

The translation to reasoning tasks is obvious. Raw experiential data is not
amenable to reasoning activities such as prediction and planning; these require that
data be abstracted into a representation with a coarser grain. Probabilities are
summaries of details lost in this abstraction, similar in role to the colors on our
maps. The importance of maintaining such summaries in Al systems can be
appreciated in the context of planning systems, where a major obstacle has been
the impracticability of enumerating all preconditions that might trigger, inhibit, or
enable a given event. (This problem is known as the qualification problem
[McCarthy 1980], a refinement of the infamous frame problem [McCarthy and
Hayes 1969; Brown 1987]). Probabilistic formalisms enable us to summarize the
presumed existence of exceptional conditions without explicating the details of
their interactions unless the need arises. Probability does not offer a complete
solution to the frame problem because it does not provide rules for recomputing
the summaries when unanticipated refinements are warranted. It does, however,
provide a way to express summaries of unexplicated information, procedures for
manipulating these summaries, and criteria for deciding when additional chunks of
knowledge warrant explication.

To show what is still needed, let us examine how an ideal system might reason
about the burglar alarm situation of Figure 1.2. Upon receiving the phone call
from your neighbor, only the burglary hypothesis is triggered; your decision
whether to drive home or stay at work is made solely on the basis of the parameter
P(False alarm), which summarizes all other (unexplicated) causes for an alarm
sound. After a moment’s reflection, the possibility of an April Fools” Day joke
may enter your mind, in which case a two-stage inference chain is assembled,
governed by two probabilistic parameters, P(False alarm) and P(Prank call).
Later, when the possibility of an earthquake enters consideration, the parameter
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P(False alarm) undergoes a partial explication; a fragment of knowledge is
brought over from the remote frame of earthquake experiences and is appended to
the link Burglary — Alarm as an alternative cause or explanation. The catchall
hypothesis All other causes shrinks (to exclude earthquakes), and its parameters
are readjusted. The radio announcement strengthens your suspicion in the
earthquake hypothesis and permits you to properly readjust your decisions without
elaborating the mechanics of the pressure transducer used in the alarm system.
The remote possibility of having forgotten to push the reset button will be invoked
only if it is absolutely needed for explaining some observed or derived
phenomenon, e.g., finding your home burglarized and your alarm system silent.

Systems using probabilistic formalisms have so far drawn inferences from
static knowledge bases, where the set of variables, their relationships, and all
probabilistic parameters are provided by external agents, at predetermined levels
of granularity. This is far from the reasoning pattern just portrayed by our burglary
example, where relationships are explicated, refined, and quantified mechanically
when the need arises. Clearly, what is lacking is the ability to transfer information
back and forth between knowledge strata at different levels of abstraction, the
ability to identify how information in one strata bears on information in another,
and a means of properly adjusting the parameters of each item transferred.f
Research toward the development of such facilities should bring together logic’s
aptitude for handling the visible and probability’s ability to summarize the
invisible.

1.5 QUALITATIVE REASONING WITH
PROBABILITIES

In the preceding section we described some of the merits of using numerical
representations in reasoning tasks. There are applications, however, where
categorical abstractions may suffice and knowledge can be summarized by hard
logical facts, merely distinguishing the possible from the impossible. For example,
when the number of possibilities is small, instead of calculating which option is
preferred we might settle for an indication of which option is still a candidate for
exploration. In such cases we enter the province of logical analysis, and the
problem becomes one of representing exceptions and reflecting nonmonotonic
reasoning. The connection between probability theory and nonmonotonic logic
will be expounded more fully in Chapter 10. Here we merely outline how
probability theory, even stripped of all its numbers, can be useful as a paradigm
facilitating purely qualitative reasoning.

T Variable precision logic [Michalski and Winston 1986] is an attempt to formulate this dynamics.
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1.5.1 Softened Logic vs. Hardened Probabilities

The ills of classical logic have often been attributed to its rigid, binary character.
Indeed, when one tries to explain why logic would not predict the obvious fact that
penguin are birds but do not fly, the first thing that one tends to blame is logic’s
rigid stance toward exceptions to the rule "Birds fly." It is therefore natural to
assume that once we soften the constraints of Boolean logic and allow truth values
to be measured on a grey scale, these problems will disappear. There have been
several such aitempts. Rich [1983] proposed a likelihood-based interpretation of
default rules, managed by certainty-factors calculus. Ginsberg [1984] and
Baldwin [1987] have pursued similar aspirations using the Dempster-Shafer notion
of belief functions (see Chapter 9). While these attempts can produce valuable
results (revealing, for instance, how sensitive a conclusion is to the uncertainty of
its premises), the fundamental problem of monotonicity remains unresolved. For
example, regardless of the certainty calculus used, these analyses always yield an
increase in the belief that penguins can fly if one adds the superfluous information
that penguins are birds and birds normally fly. Identical problems surface in the
use of incidence calculus and softened versions of truth-maintenance systems
[Falkenhainer 1986; D’ Ambrosio 1987].

Evidently, it is not enough to add a soft probabilistic veneer to a system that is
built on hard monotonic logic. The problem with monotonic logic lies not in the
hardness of its truth values, but rather in its inability to process context-dependent
information. Logic does not have a device equivalent to the conditional
probability statement "P(B1A) is high,” whose main function is to define the
context A under which the proposition B can be believed and to make sure that the
only context changes permitted are those that do not change the belief in B (e.g.,
going from A = Birdsto A” = Feathered birds).

Lacking an appropriate logical device for conditionalization, the natural
tendency is to interpret the English sentence "If A then B" as a softened version of
the material implication constraint A > B. A useful consequence of such softening
is the freedom from outright contradictions. For example, while the classical
interpretation of the three rules "Penguins do not fly,” "Penguins are birds,” and
"Birds fly" yields a blatant contradiction, attaching uncertainties to these rules
renders them manageable. They are still managed in the wrong way, however,
because the material-implication interpretation of if—then rules is so fundamentally
wrong that its maladies cannot be rectified simply by allowing exceptions in the
form of shaded truth values. The source of the problem lies in the property of
transitivity, (@ — b, b = ¢) =>a —> ¢, which is inherent to the material-
implication interpretation. On some occasions rule transitivity must be totally
suppressed, not merely weakened, or else strange results will surface. One such
occasion occurs in property inheritance, where subclass specificity should override
superclass properties. Another occurs in causal reasoning, where predictions
should not trigger explanations (e.g., "Sprinkler was on" predicts "Ground is wet,"
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"Ground is wet" suggests "It rained," yet "Sprinkler was on" should not suggest "It
rained"). In such cases, softening the rules weakens the flow of inference through
the rule chain but does not bring it to a dead halt, as it should.

Apparently what is needed is a new interpretation of if—then statements, one
that does not destroy the context sensitivity of probabilistic conditionalization.
McCarthy [1986] remarks that circumscriptiont indeed provides such an
interpretation. In his words:

Since circumscription doesn’t provide numerical probabilities, its probabilistic
interpretation involves probabilities that are either infinitesimal, within an
infinitesimal of one, or intermediate—without any discrimination among the
intermediate values. The circumscriptions give conditional probabilities. Thus we
may treat the probability that a bird can’t fly as an infinitesimal. However, if the rare
event occurs that the bird is a penguin, then the conditional probability that it can fly
is infinitesimal, but we may hear of some rare condition that would allow it to fly
after all.

Rather than contriving new logics and hoping that they match the capabilities of
probability theory, we can start with probability theory, and if we can’t get the
numbers or we find their use inconvenient, we can extract the infinitesimal
approximation as an idealized abstraction of the theory, while preserving its
context-dependent properties. In this way, a nonmonotonic logic should
crystallize that is guaranteed to capture the context-dependent features of natural
defaults.

1.5.2 Probabilities and the Logic of “Almost True”

This program was in fact initiated over twenty years ago by the philosopher Ernest
Adams, who developed a logic of conditionals based on probabilistic semantics
[Adams 1966]. The sentence "If A then B" is interpreted to mean that the
conditional probability of B given A is very close to 1 but is short of actually being
1. An adaptation of Adams’s logic to default schemata of the form
Bird(x) — Fly(x), where x is a variable, is described in Section 10.2. The resuliting
logic is nonmonotonic relative to learning new facts, in accordance with
McCarthy’s desiderata. For example, learning that Tweety is a bird will yield the
conclusion that Tweety can fly. Subsequently learning that Tweety is also a
penguin will yield the opposite conclusion: Tweety can’t fly. Further, learning
that Tweety is black and white will not alter this belief, because black and white is
a typical color combination for penguins. However, and this is where Adams’s
logic falls short of expectations, learning that Tweety is clever would force us to

+ Circumscription is a system developed by McCarthy for nonmonotonic reasoning. With
circumscription, the conclusions are sanctioned relative to the minimal models of the theory.
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retract all previously held beliefs about Tweety’s flying and answer, "I don’t
know." The logic is so conservative that it never jumps to conclusions that some
new rule schemata might invalidate (just in case clever penguins can fly). In other
words, the logic does not capture the usual convention that unless we are told
otherwise, properties are presumed to be irrelevant to each other.

Attempts to enrich Adams’s logic with relevance-based features are reported in
Geffner and Pearl [1987b] and briefly described in Section 10.2.5. The idea is to
follow a default strategy similar to that of belief networks (Section 3.1):
Dependencies exist only if they are mentioned explicitly or if they follow logically
from other explicit dependencies. However, whereas the stratified method of
constructing belief networks ensures that all relevant dependencies were already
encoded in the network, this can no longer be assumed in the case of partially
specified models of isolated default rules. A new logic is needed to capture the
conventions by which we proclaim properties to be irrelevant to each other.

There is another dimension along which probabilistic analysis can assist
current research into nonmonotonic logics—the logics provide no criterion for
testing whether a database comprising default rules is internally consistent. The
prevailing attitude is that once we tolerate exceptions we might as well tolerate
anything [Brachman 1985]. There is a sharp qualitative difference, however,
between exceptions and outright contradictions. For example, the statement "Red
penguins can fly" can be accepted as a description of a world in which redness
defines an abnormal type of penguin, but the statements "Typically, birds fly" and
"Typically, birds do not fly" stand in outright contradiction to each other, and
because there is no world in which the two statements can hold simultaneously,
they will inevitably lead to strange, inconsistent conclusions. While such obvious
contradictions can easily be removed from the database [Touretzky 1986], more
subtle ones might escape detection, e.g., "Birds fly," "Birds are feathered animals,”
"Feathered animals are birds," and "Feathered animals do not fly." Adams’s logic
provides a criterion for detecting such inconsistencies, in the form of three axioms
that should never be violated. These axioms, and their implied graphical test for
consistency, will be discussed in Sections 10.1 and 10.2.

1.6 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

Broad surveys of uncertainty formalisms proposed for Al can be found in Prade
{1983], Thompson [1985], Stephanou and Sage [1987], and the works collected in
Kanal and Lemmer [1986] and Smets et al. [1988]. The February 1987 issue of
Statistical Science, devoted to the calculus of uncertainty in artificial intelligence
and expert systems, includes a lively debate between advocates of the Bayesian
methods and advocates of the Dempster-Shafer approach. The February 1988
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issue of Computational Intelligence offers a similar debate between advocates of
the probabilistic and logicist schools in Al

Systems—primarily expert systems—that provide practical solutions to various
problems of reasoning with uncertainty include MYCIN [Shortliffe 1976],
INTERNIST [Miller, Poole, and Myers 1982; Pople 1982], PROSPECTOR [Duda,
Hart, and Nilsson 1976], MEDAS [Ben-Bassat et al. 1980], INFERNO [Quinlan
1983], RUM (Bonissone, Gans, and Decker 1987], MUM [Cohen et al. 1987],
MDX [Chandrasekaran and Mittal 1983], and MUNIN [Andreassen et al. 1987].
Of these, only MEDAS and MUNIN would be classified as intensional systems;
the rest are extensional (i.e., rule-based) systems. An in-depth study of rule-based
systems, including the uncertainty management technique used in MYCIN, can be
found in Buchanan and Shortliffe [1984] and the survey articles by Davis,
Buchanan, and Shortliffe [1977] and Buchanan and Duda [1983]. Critical
discussions of the use of probabilistic reasoning in medical decisions are given in
Szolovits and Pauker [1978] and Pauker and Kassirer [1987].

Cox’s [1946] argument for the use of probability theory has also been
expounded by Reichenbach [1949] and restated in Horvitz, Heckerman, and
Langlotz [1986] and Cheeseman [1988] for an Al audience. Heckerman [1986b]
has generalized Cox’s argument to measures of confirmation, ie., the impact
evidence has on the belief in a hypothesis. A stronger argument, based entirely on
qualitative axioms, has been developed by Aleliunas [1988], who included the
hypothetical-middle pattern (Section 1.4.2) as one of his axioms.

Arguments based on pragmatic considerations go back to Ramsey [1931] and
de Finetti [1937]. These are often called "Dutch book" arguments, because they
show that a gambler deviating from the rules of probability calculus will, in the
long run, lose against an opponent who adheres to those rules. Lindley {1982]
introduced a pragmatic argument based on the notion of a scoring rule, ie., a
payoff function that depends both on one’s degree of belief in an event and on
whether the event actually occurred (see Exercise 6.9). He showed that under
rather general conditions, an agent can maximize his expected payoffs only by
adopting the axioms of probability theory. Rebuttals to this argument are given in
the discussion following Lindley’s article.

Our treatment of MYCIN’s certainty calculus (Figure 1.1) follows that of
Heckerman [1986a]. A coherent treatment of bidirectional inferences in trees was
given in Pearl [1982] and will be described in Section 4.2. The distinction
between rebutting and undercutting defeaters (Section 1.2.2) was first made in
Poliock [1974], and the example of an object observed in red light is his. A
probabilistic model for such defeaters was proposed by Kim and Pearl [1983] and
implemented in CONVINCE [Kim 1983; Kim and Pearl 1987] (see Section 4.3).
A logic-based model was proposed in Pearl [1988b] and will be described in
Section 10.3.

Bibliographical references for graphoids and nonmonotonic logic are in
Chapters 3 and 10, respectively.



Chapter 2

BAYESIAN INFERENCE

The purpose I tmean is, to show what reason
we have for believing that there are in the
constitution of things fixed laws according to
which events fappen...

— Richard Price, 1763

(Introduction to Bayes’ essay)

2.1 BASIC CONCEPTS

2.1.1 Probabilistic Formulation and Bayesian
Inversion

Bayesian methods provide a formalism for reasoning about partial beliefs under
conditions of uncertainty. In this formalism, propositions are given numerical
parameters signifying the degree of belief accorded them under some body of
knowledge, and the parameters are combined and manipulated according to the
rules of probability theory. For example, if A stands for the statement "Ted
Kennedy will seek the nomination for president in 1992," then P(A |K) stands for a
person’s subjective belief in A given a body of knowledge K, which might include
that person’s assumptions about American politics, specific proclamations made by
Kennedy, and an assessment of Kennedy’s past and personality. In defining belief

29
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expressions, we often simply write P (A) or P (—A), leaving out the symbol K. This
abbreviation is justified when K remains constant, since the main purpose of the
quantifier P is to summarize K without explicating it. However, when the
background information undergoes changes, we need to identify specifically the
assumptions that account for our beliefs and articulate explicitly K or some of its
elements.

In the Bayesian formalism, belief measures obey the three basic axioms of
probability theory:

0<PAA)<L 2.1
P(Sure proposition) = 1 2.2)
P(AorB) = P(A) + P(B) if A and B are mutually exclusive. 2.3)

The third axiom states that the belief assigned to any set of events is the sum of the
beliefs assigned to its nonintersecting components. Hence, since any event A can
be written as the union of the joint events (A and B) and (A and —B), their
associated probabilities are given by

P(Ay=P(A,B)+ P(A, —B), 2.4)

where P(A, B) is short for P(A and B). More generally, if B;, i =1, 2,...,n, is a set
of exhaustive and mutually exclusive propositions (called a partition or a
variable), then P(A) can be computed from P(A, B;), i = 1, 2,...,n, using the sum

PAY=3 P(A,B). (2.5)

For example, the probability of A = "The outcomes of two dice are equal” can be
computed by summing over the joint events (A and B;)i =1, 2,..,6, where B;
stands for the proposition "The outcome of the first die is i," yielding

1 1
P(A)_zijP(A, B)=6x3c=". (2.6)

A direct consequence of Eqs. (2.2) and (2.4) is that a proposition and its negation
must be assigned a total belief of unity,

PA)+P(=A) =1, (2.7)

because one of the two statements is certain to be true.

The basic expressions in the Bayesian formalism are statements about
conditional probabilities—e.g., P(A | B)—which specify the belief in A under the
assumption that B is known with absolute certainty. If P(A|B) = P(A), we say
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that A and B are independent. If P(A!B,C) = P(A|C), we say that A and B are
conditionally independent given C.

Contrary to the traditional practice of defining conditional probabilities in
terms of joint events,

pa1B) = L4 B) 2.8)

P(B)
Bayesian philosophers see the conditional relationship as more basic than that of
joint events, i.e., more compatible with the organization of human knowledge. In
this view, B serves as a pointer to a context or frame of knowledge, and A | B stands
for an event A in the context specified by B (e.g., a symptom A in the context of a
disease B). Consequently, factual knowledge invariably will be encoded in
conditional probability statements, while belief in joint events, if it is ever needed,
will be computed from those statements via the product

P(A,B)=P(AIB) P(B), (2.9)
which is equivalent to Eq. (2.8). For example, it was somewhat unnatural to assess

1
P(A,Bi)=£

directly in Eq. (2.6). The mental process underlying such assessment presumes
that the two outcomes are independent, so to make this assumption explicit the
probability of the joint event (Egquality, B;) should be assessed from the
conditional event (Equality | B;) via the product

1
P(Equality | B))P (B;) =P (Outcome of second die is i |B;)P(B;) = % Xé = EE
As in Eq. (2.5), the probability of any event A can be computed by conditioning
it on any set of exhaustive and mutually exclusive events B;, i = 1, 2, ...,n:

P(A) =Y P(AIB;) P(B)). (2.10)

This decomposition provides the basis for hypothetical or "assumption-based"
reasoning in the Bayesian formalism. It states that the belief in any event A is a
weighted sum over the beliefs in all the distinct ways that A might be realized. For
example, if we wish to calculate the probability that the outcome X of the first die
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will be greater than the outcome Y of the second, we can condition the event
A:X > Y on all possible values of X and obtain

Mo

PA) =Y P <XIX=DPX=1i)
i=1
6 1 i-1 1
=XPU <D =X XTP¥=)
i=1 6 i=1j=1
1ei=l_35
"652 6 127

It is worth reemphasizing that formulas like Eq. (2.10) are always understood
to apply in some larger context K, which defines the assumptions taken as common
knowledge (e.g., the fairness of dice rolling). Eq. (2.10) is really a shorthand
notation for the statement

PAIK)=Y P(AIB; K)P(B;|K). (2.11)

i

Another useful generalization of the product rule (Eq. (2.9)) is the so-called chain
rule formula. It states that if we have a set of n events, E, E,, ...,E,, then the
probability of the joint event (£, E,, ..., E,) can be written as a product of n
conditional probabilities:

P(E\,Eyy .., E)=PELE,_|, ... Ey, E) .. P(E;|E)) P(E}). (2.12)

This product can be derived by repeated application of Eq. (2.9), in any convenient
order.
The heart of Bayesian techniques lies in the celebrated inversion formula,

P(Hle) = ﬂ%ﬂ, (2.13)

which states that the belief we accord a hypothesis H upon obtaining evidence e
can be computed by multiplying our previous belief P(H) by the likelihood
P(eH) that e will materialize if H is true. P(H le) is sometimes called the
posterior probability (or simply posterior), and P(H) is called the prior probability
(or prior). The denominator P(e) of Eq. (2.13) hardly enters into consideration
because it is merely a normalizing constant P(e)= P(e|H)P(H)+
P (e | -H)P (—H), which can be computed by requiring that P(H |¢) and P(—H | e)
sum to unity.
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Whereas a formal mathematician might dismiss Eq. (2.13) as a tautology
stemming from the definition of conditional probabilities,

paipy=LAB) 4 p@iay= LAE) 2.14)
P(B) P(A)

the Bayesian subjectivist regards Eq. (2.13) as a normative rule for updating
beliefs in response to evidence. In other words, while the mathematician views
conditional probabilities as mathematical constructs, as in Eq. (2.14), the Bayes
adherent views them as primitives of the language and as faithful transiations of
the English expression "..., given that I know A." Accordingly, Eq. (2.14) is not a
definition but an empirically verifiable relationship between English expressions.
It asserts, among other things, that the belief a person attributes to B after
discovering A is never lower than that attributed to A A B before discovering A.
Also, the ratio between these two beliefs will increase proportionally with the
degree of surprise [P(A)]™" one associates with the discovery of A.

The importance of Eq. (2.13) is that it expresses a quantity P(H e)—which
people often find hard to assess—in terms of quantities that often can be drawn
directly from our experiential knowledge. For example, if a person at the next
gambling table declares the outcome ‘“Twelve,”” and we wish to know whether he
was rolling a pair of dice or spinning a roulette wheel, our models of the gambling
devices readily yield the quantities P(Twelve |Dice) and P(Twelve | Roulette )—
1/36 for the former and 1/38 for the latter. Similarly, we can judge the prior
probabilities P(Dice) and P(Roulette ) by estimating the number of roulette wheels
and dice tables at the casino. Issuing a direct judgment of P(Dice | Twelve) would
have been much more difficult; only a specialist in such judgments, trained at the
very same casino, could do it reliably.

To complete this brief introduction, we need to discuss the notion of
probabilistic models. A probabilistic model is an encoding of probabilistic
information that permits us to compute the probability of every well-formed
sentence S in accordance with the axioms of Egs. (2.1) through (2.3). Starting with
a set of atomic propositions A, B, C,..., the set of well-formed sentences consists of
all Boolean formulas involving these propositions, €.g., S =(A vB) A—C. The
traditional method of specifying probabilistic models employs a joint distribution
function, namely, a function that assigns nonnegative weights to every elementary
event in the language (an elementary event being a conjunction in which every
atomic proposition or its negation appears once), such that the sum of the weights
adds up to 1. For example, if we have three atomic propositions, A, B, and C, a
joint distribution function should assign nonnegative weights to all eight
combinations: (A ABAC), (AABAC), .., (—A A—B A=C), such that the
eight weights sum to 1.

It is sometimes convenient to view the conjunctive formulas corresponding to
elementary events as points, and to regard other formulas as sets made up of these
points. Since every Boolean formula can be expressed as a disjunction of
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elementary events, and since the elementary events are mutually exclusive, we can
always compute P(S) using the additive axiom (Eq. (2.3)). Conditional
probabilities can be computed the same way, using Eq. (2.14). Thus, any joint
probability function represents a complete probabilistic model.

Joint distribution functions are mathematical constructs of primarily theoretical
use. They allow us to determine quickly whether we have sufficient information to
specify a complete probabilistic model, whether the information we have is
consistent, and at what point additional information is needed. The criterion is
simply to check whether the information available is sufficient for uniquely
determining the probability of every elementary event in the domain, and whether
the probabilities add up to 1.

In practice, however, joint distribution functions are rarely specified explicitly.
In the analysis of continuous random variables, the distribution functions are given
by algebraic expressions such as those describing normal or exponential
distributions, while for discrete variables, indirect representation methods have
been developed, where the overall distribution is inferred from local relationships
among small groups of variables. Network approaches, the most promising of
these representations, provide the basis of discussion throughout this book. Their
use will be illustrated in the following few sections, then given a more formal
treatment in Chapter 3.

2.1.2 Combining Predictive and Diagnostic
Supports

The essence of Bayes’ Rule (Eq. (2.13)) is conveniently portrayed using the odds
and likelihood ratio parameters. Dividing Eq. (2.13) by the complementary form
for P(—H |l e), we obtain

P(Hle) _ _P(elH) _P(H)

P(=Hle) P(el—H) P(—H) @15
Defining the prior odds on H as
ot = 5L = E0 2.16)
and the likelihood ratio as
Leelp) = Ll 2.17)

Ple|—=H)’
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the posterior odds

__PHle)
O(Hle) = Pdle) (2.18)
are given by the product
OH e)=L(elH) O(H). (2.19)

Thus, Bayes’ Rule dictates that the overall strength of belief in a hypothesis H,
based on both our previous knowledge K and the observed evidence e, should be
the product of two factors: the prior odds O(H) and the likelihood ratio L(e | H).
The first factor measures the predictive or prospective support accorded to H by
the background knowledge alone, while the second represents the diagnostic or
retrospective support given to H by the evidence actually observed.

Strictly speaking, the likelihood ratio L(e | H) might depend on the content of
the tacit knowledge base K. However, the power of Bayesian techniques comes
primarily from the fact that in causal reasoning the relationship P(e | H) is fairly
local, namely, given that H is true, the probability of e can be estimated naturally
and is not dependent on many other propositions in the knowledge base. For
example, once we establish that a patient suffers from a given disease H, it is
natural to estimate the probability that he will develop a certain symptom e. The
organization of medical knowledge rests on the paradigm that a symptom is a
stable characteristic of the disease and should therefore be fairly independent of
other factors, such as epidemic conditions, previous diseases, and faulty diagnostic
equipment. For this reason the conditional probabilities P(e {H), as opposed to
P(H le), are the atomic relationships in Bayesian analysis. The former possess
modularity features similar to logical production rules. They convey a degree of
confidence in rules such as "If H then e," a confidence that persists regardless of
what other rules or facts reside in the knowledge base.

EXAMPLE 1: Imagine being awakened one night by the shrill sound of your burglar
alarm. What is your degree of belief that a burglary attempt has taken place? For
illustrative purposes we make the following judgments: (a) There is a 95% chance that an
attempted burglary will trigger the alarm system—>P (Alarm |Burglary) = 0.95; (b) based
on previous false alarms, there is a slight (1 percent) chance that the alarm will be triggered
by a mechanism other than an attempted burglary—(Alarm |No burglary) = 0.01; (c)
previous crime patterns indicate that there is a one in ten thousand chance that a given
house will be burglarized on a given night—P (Burglary) = 107,

Putting these assumptions together using Eq. (2.13), we obtain

O(Burglary | Alarm) = L(Alarm | Burglary) O(Burglary)

_ 095 _10™*

=001 110 0
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So, from
0O(A)

PA) = R 2.20

@) 1+04) ¢ )
we have

0.0095
P(B 1A = ———=——=(.00941.
(Burglary | Alarm) 1500095

Thus, the retrospective support imparted to the burglary hypothesis by the alarm evidence
has increased its degree of belief almost a hundredfold, from one in ten thousand to 94.1 in
ten thousand. The fact that the belief in burglary is still below 1% should not be surprising,
given that the system produces a false alarm almost once every three months. Notice that it
was not necessary to estimate the absolute values of the probabilities P(Alarm |Burglary)
and P(Alarm | No burglary). Only their ratio enters the calculation, so a direct estimate of
this ratio could have been used instead.

2.1.3 Pooling of Evidence

Assume that the alarm system consists of a collection of N burglary detection
devices, each one sensitive to a different physical mechanism (air turbulence,
temperature variation, pressure, radar waves, etc.) and each one producing a
distinct sound.

Let H stand for the event that a burglary took place and let e* stand for the
evidence obtained from the k-th detector, with ef representing an activated
detector and ef representing a silent detector. The reliability (and sensitivity) of
each detector is characterized by the probabilities P(eX |1H) and P(e} |-H), or
more succinctly by their ratio:

Pk 1H)

L(eX |\ Hy=—7—.
(er1H) P(ek | =H)

(2.21)

If some detectors are triggered while others remain silent, we have conflicting
evidence on our hands, and the combined belief in the hypothesis H is computed
by Eq. (2.19):

OH lele?, ..,eMy=L(e',e?, .., Y |1H) OH). 2.22)

Eq. (2.22) could require an enormous data base, because we need to specify the
probabilities of activation for every subset of detectors, conditioned on H and on
—H. Fortunately, reasonable assumptions of conditional independence can reduce
this storage requirement drastically. Assuming that the state of each detector
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depends only on whether a burglary took place and is thereafter independent of the
state of other detectors, we can write

N
P(e',e?, .., eV |H) = TIP(e*1H) (2.23)
k=1
and
N
P(el,e?, .., N 1=H) = TP (e* 1 =H), (2.24)
k=1
which lead to
N
OH el e?, ..., eN)y = OH)]L(e* 1 H). (2.25)
k=1

Thus, the individual characteristics of each detector are sufficient for determining
the combined impact of any group of detectors.

2.14 Recursive Bayesian Updating

One of the attractive features of Bayes’ updating rule is its amenability to recursive
and incremental computation schemes. Let H denote a hypothesis,
e, =e', e?,..e" denote a sequence of data observed in the past, and e denote a
new fact. A brute-force way to calculate the belief in H, P(H |e,, €) would be to
append the new datum e to the past data e, and perform a global computation of
the impact on H of the entire data set e,,; = {e,, ¢}. Such a computation would
be uneconomical for several reasons. First, the entire stream of past data must be
available at all times. Also, as time goes on and the set e, increases, the
computation of P(H le,, ¢) becomes more and more complex. Under certain
conditions, this computation can be significantly curtailed by incremental
updating; once we have computed P(H le,), we can discard the past data and
compute the impact of the new datum by the formula

Pele,, H)
P(Hle,,e)=P(Hle,) T(eIT)—' (2.26)

Thus, comparing Eq. (2.26) and Eq. (2.13), we see that the old belief P(H le,)
assumes the role of the prior probability in the computation of new impact; it
completely summarizes the past experience and for updating need only be
multiplied by the likelihood function P(e le,, H), which measures the probability
of the new datum e, given the hypothesis and the past observations.
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This recursive formulation still would be cumbersome but for the fact that the
likelihood function is often independent of the past data and involves only e and H.
For example, the likelihood that a patient will develop a certain symptom, given
that he definitely suffers from a disease H, is normally independent of what
symptoms the patient had in the past. This conditional independence condition,
which gave rise to the product expression in Egs. (2.23) through (2.25), allows us
to write

P(ele,, HY=P(e!H) and P(ele,, —H)=P(e|—H), 2.27)

and after dividing Eq. (2.26) by the complementary equation for —H, we obtain

O(H e, ) = O(H le,) L(e|H), (2.28)

which also is obtainable from the product form of Eq. (2.25).

Eq. (2.28) describes a simple recursive procedure for updating the posterior
odds—upon the arrival of each new datum e, we multiply the current posterior
odds O(H le,) by the likelihood ratio of e. This procedure sheds new light on the
relationship between the prior odds O(H) and the posterior odds O(H ley); the
latter can be viewed as the prior odds relative to the next observation, while the
former are nothing but posterior odds that have evolved from previous
observations not included in e,.

If we take the logarithm of Eq. (2.28), the incremental nature of the updating
process becomes more apparent. Writing

log O(H le,, ) =log O(H le,) + log L(e |H), (2.29)

we can view the log of the likelihood ratio as a weight, carried by the evidence e,
which additively sways the belief in H one way or the other. Evidence supporting
the hypothesis carries positive weight, and evidence that opposes it carries
negative weight.

The simplicity and appeal of the log-likelihood calculation has led to a wide
variety of applications, especially in intelligence-gathering tasks. For each new
report, an intelligence analyst can estimate the likelihood ratio L. Using a log-log
paper, the contribution of the report can easily be incorporated into the already
accumulated overall belief in H. This method also facilitates retracting or revising
beliefs in case a datum is found to be in error. If the erroneous datum is e, and the
correct one is ¢, then to rectify the error one need only compute the difference
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A=logL(e"|H)y—logL(e|H)

and add A to the accumulated log-odds of Eq. (2.29).

The ability to update beliefs recursively depends heavily on the conditional
independence relation formulated in Egs. (2.23) and (2.24) and will exist only
when knowledge of H (or —/7) renders past observations totally irrelevant with
regard to future observations. It will not be applicable, for example, if the
hypothesis H influences the observations only indirectly, via several causal links.
For instance, suppose that in our burglar alarm example we cannot hear the alarm
sound directly but must rely on the testimony of other people. Because the
burglary hypothesis has an indirect influence on the witnesses, the testimony of
one witness (regarding the alarm) affects our expectation of the next witness’s
testimony even when we are absolutely sure that a burglary has occurred. The two
testimonies will, however, become independent once we know the actual state of
the alarm system. For that reason, decision analysts (e.g., Kelly and Barclay
[1973], Schum and Martin [1982]) have gone to great lengths to retain incremental
updating in the context of "cascaded" inferencing. The issue will be discussed
further in Section 2.2 and will be given full treatment, using network propagation
techniques, in Chapter 4.

2.1.5 Multi-Valued Hypotheses

The assumption of conditional independence in Egs. (2.23) and (2.24) is justified if
both the failure of a detector to react to an attempted burglary and the factors that
can cause it to be activated prematurely depend solely on mechanisms intrinsic to
the individual detection systems, such as low sensitivity and internal noise. But if
false alarms can be caused by external circumstances affecting a select group of
sensors, such as a power failure or an earthquake, then the two hypotheses H =
Burglary and —H = No burglary may be too broad to allow sensor independence,
and additional refinement of the hypothesis space may be necessary. This
condition usually occurs when a proposition or its negation encompasses several
possible states, each associated with a distinct set of evidence. For example, the
hypothesis Burglary encompasses either Break-in through the door or Break-in
through a window, and since each mode of entry has a distinct effect on the
sensors, the modes ought to be spelled out separately. Similarly, the state No
burglary allows the possibilities Ordinary peaceful night, Night with earthquake,
and Attempted entry by the neighbor’s dog, each influencing the sensors in a
unique way. Eq. (2.24) might hold for each of these conditions, but not for their
aggregate, No burglary. For this reason, it is often necessary to refine the
hypothesis space beyond binary propositions and group the hypothesis into multi-
valued variables, where each variable reflects a set of exhaustive and mutually
exclusive hypotheses.
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EXAMPLE 2: We assign the variable H = {H,, H,, H;, H,} to the following set of
conditions:

H | = No burglary, animal entry.

H, = Antempted burglary, window break-in .
H 5 = Attempted burglary, door break-in.
H, = No burglary, no entry.

Each evidence variable E* can also be multi-valued (e.g., et = No sound , e = Low sound,
e = High sound), in which case the causal link between H and E ¥ is quantified by an mxn
matrix M*, where m and n are the number of values that H and E k. respectively, might take,
and the (i, j)-th entry of M* stands for

MY =P(ef 1 H)). (2.30)

For example, the matrix below could represent the sensitivity of the &-th detector to the four
conditions in H:

k k k
[ [} €3
(no sound)  (low sound)  (high sound)

H, 0.5 04 0.1
H, 0.06 0.5 0.44
H, 0.5 0.1 0.4
H, 1 0 0.

Given a set of evidence readings e', e, .., e, ..., e", the overall belief in the i-th
hypothesis H; is (by Eq. (2.13))

P(Hle!, .., e"y=aP(e, .., N THHP(H,), , .31

where o = [P(e",....e"¥)]™" is a normalizing constant to be computed by requiring that Eq.
(2.31) sum to unity (over i).- Assuming conditional independence with respect to each H;,
we obtain

N
PH;le', .., e")y = aP(HDI[JP (e 1 H)]. (2.32)

k=1

Thus, the matrices P(e* | H;) now play the role of the likelihood ratios in Eq. (2.25). If for
each detector reading e* we define the likelihood vecior

A’k = (A',f? )\'k7“~7 x’r(n), (2.33)
A = P(e* 1H)), (2.34)
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then Eq. (2.32) is computed by a simple vector-product process. First the individual
likelihood vectors are multiplied together, term by term, to form an overall likelihood
vector A = A!, ..., A, namely,

N
A; =P H). (2.35)
k=1
Then we obtain the overall belief vector P(H;le Lo el ) by the product
PH;le!, .., ey = oP(H)A,;, (2.36)

which is reminiscent of Eq. (2.25).
Note that only the relative magnitudes of the conditional probabilities in Eq. (2.34)
need be estimated; their absolute magnitudes do not affect the final result because o can be

determined later, via the requirement Y'P(H;le’, ..., eV) = 1.
i

EXAMPLE 3: Let us assume that our alarm system contains two detectors having
identical characteristics, given by the matrix of Example 2. Furthermore, let us represent
the prior probabilities for the hypotheses in Example 2 with the vector
P(H;) = (0.099, 0.009, 0.001, 0.891) and assume that detector 1 was heard to issue a high
sound while detector 2 remained silent. From Eq. (2.34) we have

Al =(0.1,044,04,0), A?=(0.5,0.06,0.5, 1),
A =A% = (0.05, 0.026, 0.2, 0),
P(H,le', e?) = 0.(4.95, 0.238, 0.20, 0)107 = (0.919, 0.0439, 0.0375, 0),
from which we conclude that the chance of an attempted burglary (H, or Hj) is
0.0439 + 0.0375 = 8.14%.
Of course, the updating of belief need not be delayed until all the evidence is collected

but can be carried out incrementally. For example, if we first observe e!'= High sound, our
belief in H calculates to )

P(H;le') = o (0.0099, 0.00396, 0.0004, 0) = (0.694, 0.277, 0.028, 0).

This probability now serves as a prior belief with respect to the next datum, and after we
observe e* = No sound, it updates to

P(H;le', e2Y=a'A? - P(H;le!) = 0/(0.347, 0.0166, 0.014, 0)
= (0.919, 0.0439, 0.0375, 0),

as before. Thus, the quiescent state of detector 2 lowers the probability of an attempted
burglary from 30.5% to 8.14%.
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2.2 HIERARCHICALMODELING

2.2.1 Uncertain Evidence (Cascaded Inference)

One often hears the claim that Bayesian techniques cannot handle uncertain
evidence because the basic building block in these techniques is the relationship
P(A | B), which requires that the conditioning event B be known with certainty. To
see the difficulties that led to this myth, let us modify slightly the alarm scenario.

EXAMPLE 4: Mr. Holmes receives a telephone call from his neighbor Dr. Watson, who
states that he hears the sound of a burglar alarm from the direction of Mr. Holmes’s house.
While preparing to rush home, Mr. Holmes recalls that Dr. Watson is known to be a
tasteless practical joker, and he decides to first call another neighbor, Mrs. Gibbor, who,
despite occasional drinking problems, is far more reliable.

Since the evidence variable S= Sound is now uncertain, we cannot use it as
evidence in Eq. (2.19) but instead must apply Eq. (2.19) to the actual evidence at
hand, W = Dr. Watson’s testimony , and write

OHIW)=LWIH)OH). (2.37)

Unfortunately, the task of estimating L(WIH) will be more difficult than
estimating L(S|H), because it requires mentally tracing a two-step process, as
shown in Figure 2.1. Even if we obtain L(W | H), we will not be able to combine it
with other possible testimonies, say Mrs. Gibbon’s (G), through a simple process
of multiplication as in Eq. (2.35), because those testimonies will no longer be
conditionally independent with respect to H. What Mrs. Gibbon is about to say
depends only on whether an alarm sound can be heard in the neighborhood, not on
whether a burglary actually took place. Thus, we cannot assume
P(G |Burglary, W) = P(G |Burglary); the joint event of a burglary and Dr.
Watson’s testimony constitutes stronger evidence for the occurrence of the alarm
sound than does the burglary alone.

Given the level of detail used in our story, it is more reasonable to assume that
the testimony (W and G) and the hypothesis (H) are mutually independent once
we know whether the alarm sound was actually triggered. In other words, each
neighbor’s testimony depends directly on the alarm sound (S) and is influenced
only indirectly by the possible occurrence of a burglary (H) or by the other
testimony (see Figure 2.1).
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GIBBON’S TESTIMONY

©

-
-
e

BURGLARY ALARM
SOUND

WATSON’S TESTIMONY

Figure 2.1. The alarm sound (S), supported by unreliable testimonies (W and G),
represents an uncertain evidence for a burglary (H).

These considerations can easily be incorporated into the Bayesian formalism.
Using Eq. (2.11), we simply condition and sum Eq. (2.31) over all possible states
of the intermediate variable S and obtain

PH; G, W) = oP(G, WIH)PH,)
= oP(H)YP(G, W | H;, S))P(S; | H,), (2.38)

J

where S, j=1, 2 stands for the two possible states of the alarm system, namely,
Sy = Sound ON and S, = Sound OFF. Moreover, the conditional independence of
G, W, and H; with respect to the mediating variable S allows us to state

P(G, WIH,, S;) = P(GIS)P(W1S)), (2.39)

and Eq. (2.38) becomes

P(H;1G, W) = aP(H)Y.P(G |S)P(W IS))P(S; | H)). (2.40)

J
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The final computation can be interpreted as a three-stage process. First, the local
likelihood vectors P(G|S;) and P(W1S;) are multiplied to obtain a combined
likelihood vector

A(S) =P(elS;) = P(GIS)) PWIS)), (2.41)

where e stands for the total evidence collected (G and W). Second, the vector
A(S) is multiplied by the link matrix M;; = P(S; | H;) to form the likelihood vector
of the top hypothesis A;(H) = P(e |H;). Finally, using the product rule of Eqg.
(2.24), we multiply A;(H) by the prior probability P(H,) to compute the overall
belief in H;.

This process demonstrates the psychological and computational roles of the
mediating variable S. The conditional independence associated with S makes it a
convenient anchoring point from which reasoning "by assumptions” can proceed
effectively, because it decomposes the reasoning task into a set of independent
subtasks. It permits us to use local chunks of information taken from diverse
domains (e.g., P(H,), P(G1S;), PWS)), P(S;1H;)) and fit them together to form a
global inference P(H |e) in stages, using simple, local vector operations. It is this
role which prompts us to posit that conditional independence is not a grace of
nature for which we must wait passively, but rather a psychological necessity
which we satisfy actively by organizing our knowledge in a specific way. An
important tool in such organization is the identification of intermediate variables
that induce conditional independence among observables; if such variables are not
in our vocabulary, we create them. In medical diagnosis, for instance, when some
symptoms directly influence each other, the medical profession invents a name for
that interaction (e.g., "syndrome,” "complication,” "pathological state”) and treats it
as a new auxiliary variable that induces conditional independence; dependency
between any two interacting symptoms is fully attributed to the dependencies of
each on the auxiliary variable. It may be to reap the computational advantages
associated with such independence that we organize most of our knowledge in
causal hierarchies (see Chapter 8).

2.2.2 Virtual (Intangible) Evidence

Let us imagine a new development in the story of Mr. Holmes.

EXAMPLE 5: When Mr. Holmes calls Mrs. Gibbon, he soon realizes that she is
somewhat tipsy. Instead of answering his question directly, she goes on and on about her
latest back operation and about how terribly noisy and crime-ridden the neighborhood has
become. When he finally hangs up, all Mr. Holmes can glean from the conversation is that
there is probably an 80% chance that Mrs. Gibbon did hear an alarm sound from her
window.
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The Holmes-Gibbon conversation is the kind of evidence that is hard to fit into
any formalism. If we try fo estimate the probability P(e|Alarm sound) we will get
ridiculous numbers because it entails anticipating, describing, and assigning
probabilities to all the possible paths Mrs. Gibbon’s conversation might have taken
under the circumstances. Alternatively, if we try to directly estimate
P(Alarm sound | e), we must be careful to clearly specify what other information
was consulted in producing the estimate.

These difficulties arise whenever the task of gathering evidence is delegated to
autonomous interpreters who, for various reasons, cannot explicate their
interpretive process in full detail but nevertheless often produce informative
conclusions that summarize the evidence observed. In our case, Mr. Holmes
provides us with a direct mental judgment, based on Mrs. Gibbon’s testimony, that
the hypothesis Alarm sound should be accorded a confidence measure of 80%. The
interpretation process remains hidden, however, and we cannot tell how much of
the previously obtained evidence was considered in the process. Thus, it is
impossible to integrate this probabilistic judgment with previously established
beliefs unless we make additional assumptions.

The prevailing convention in the Bayesian formalism is to assume that
probabilistic summaries of virtual evidénce are produced independently of
previous information; they are interpreted as local binary relations between the
evidence and the hypothesis upon which it bears, independent of other information
in the system. For this reason, we cannot interpret Mr. Holmes’s summary as
literally stating P(S1G) = 0.80. P(S|G) should be sensitive to variations in crime
rate information—P (H)—or equipment characteristics—P (S |H). The impact of
Gibbon’s testimony should be impervious to such variations. Therefore, the
measure P(S|G) cannot represent the impact the phone conversation has on the
truth of Alarm sound.

The likelihood ratio, on the other hand, meets this locality criterion, and for
that reason probabilistic summaries of virtual evidence are interpreted as
conveying likelihood information.t For example, Mr. Holmes’s summary of
attributing 80% credibility to the Alarm sound event can be interpreted as

P(G |Alarm sound) : P(G |No alarm sound) = 4:1. 2.42)

More generally, if the variable upon which the tacit evidence e impinges most
directly has several possible states, S1, S, ..., S;, ..., we instruct the interpreter to
estimate the relative magnitudes of the terms P(elS;), perhaps by eliciting
estimates of the ratios P(e|S;): P(elS;). Since the absolute magnitudes do not

EN

t It is interesting to note that an identical assumption has been tacitly incorporated into the calculus
of certainty factors [Shortliffe 1976] if one interprets CF to stand for (A — 1)/ (A + 1) [Heckerman
1986b].
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affect the calculations, we can update the beliefs as though this likelihood vector
originated from an ordinary, logically definable event e.

For example, assuming that Mr. Watson’s phone call already contributed a likelihood
ratio of 9:1 in favor of the hypothesis Alarm sound, the combined weight of Watson’s and
Gibbon’s testimonies would yield a likelihood vector A,(S) = P(W, G1S;) = (36, 1). Now
we can integrate this vector into the computation of Eq. (2.28). Using the numbers given in
Example 1, we get

wen=sheps= o5 05) [ F]= [ 15]-

P(H;I1G, W)=aA;H)PH;)=034.25, 1.35) (1074,1-107%)
= (0.00253, 0.99747). (2.43)

It is important to verify that Mr. Holmes’s 80% summarization is indeed based
only on Mrs. Gibbon’s testimony and not on prejudicial beliefs borrowed from the
previous evidence (e.g., Watson’s testimony or crime rate information); otherwise
we are in danger of counting the same information twice. The likelihood ratio is in
fact the only reasonable interpretation of Mr. Holmes’s summarization that reflects
a local binary relationship between the hypothesis and the evidence, unaffected by
previous information {Heckerman 1986b].

An effective way of eliciting pure likelihood ratio estimates is to present the
interpreter with a direct query: "How much more likely are we to obtain such an
evidence under H, compared with the denial of H?" Alternatively, we can ask the
interpreter to imagine that the evidence arrives in some standard state of belief,
then request an estimate of how much the degree of belief in the hypothesis would
be modified because of the evidence. In our example, if Mr. Holmes had a
"neutral” belief in § before conversing with Mrs. Gibbon—P(Alarm) =
P (No alarm) = 1/2,—then the after-conversation estimate P (Alarm 1G) = 80%
would indeed correspond to a likelihood ratio of 4:1 in favor of Alarm. Bayesian
practitioners claim that people are capable of retracing the origins of their beliefs
and of entertaining hypothetical questions such as "What if you didn’t receive
Watson’s call?” or "What is the increase in belief due to Gibbon’s testimony
alone?" This explains why interpretations of virtual evidence often are cast in
terms of absolute probabilities, rather than probability changes or probability
ratios. Evidently, the interpreter begins with some standard level of belief in the
hypothesis (not necessary 50%), mentally assimilates the impact of the observed
evidence, and then reports the updated posterior probability that emerges.
However, it is not the final value but the ratio between the initial value and the
final value that characterizes the impact of the evidence on the hypothesis, as this
ratio is the only quantity that remains impervious to changes in the initial standard
chosen. This issue will be discussed further in Section 2.3.3.
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2.2.3 Predicting Future Events

One of the attractive features of causal models in the Bayesian formulation is the
ease they lend to the prediction of future events such as the denouement of a social
episode, the outcome of a given test, and the prognosis of a given disease. The
need to facilitate such predictive tasks may in fact be the very reason that human
beings have adopted causal schema for encoding experiential knowledge.

EXAMPLE 6: Immediately after his conversation with Mrs. Gibbon, as Mr. Holmes is
preparing to leave his office, he recalls that his daughter is scheduled to arrive home at any
minute. If greeted by an alarm sound, she probably (P = 0.70) would phone him for
instructions. Now he wonders whether he should wait a few more minutes in case she calls.

To estimate the likelihood of our new target event, D = Daughter will call, we
have to add a new causal link to the graph of Figure 2.1. Assuming that hearing an
alarm sound is the only event that would induce Mr. Holmes’s daughter to call, the
new link, shown in Figure 2.2, should emanate from the variable S and be
quantified by the following P(D |§) matrix:

D
will call will not call
T
. on 0.7 0.3
S
, off 0.0 1.0
i1

Accordingly, to compute P(D |All evidence ) we write

P(Dle)y=3YP(DI1S;, e) P(S;le) =Y P(DIS)) P(S,le), (2.44)
J J

which means that the lengthy episodes with Mr. Watson and Mrs. Gibbon impart
their influence on D only via the belief P(S; | e) that they induce on S.

It is instructive to see how P(S;le) can be obtained from the previous
calculation of P(H;le). A natural temptation would be to use the updated belief
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P(H;le) as a new prior probability and, through rote, to write the conditioning
equation

P(S;le) =X P(S;1H;) P(H;e). (2.45)

This equation, however, is valid only in a very special set of circumstances. It
would be wrong in our example because the changes in the belief of H actually
originated from corresponding changes in S; reflecting these back to § would
amount to counting the same evidence twice. The correct conditioning equation
should be

P(S; 1 e)=3P(S; | H,e)P(H; | e) (2.46)

instead of Eq. (2.45). Since P(S;|H;) may be different than P(S;1H;, e), it follows
that the evidence obtained affects not only the belief in H and S but also the
strength of the causal link between H and S. At first glance, this realization makes
Bayesian methods appear to be useless in handling a large number of facts; having
to recalculate all the link matrices each time a new piece of evidence arrives would
be an insurmountable computational burden.

Fortunately, there is a simple way of updating beliefs that circumvents this
difficulty and uses only the original link matrices (see Chapter 4 for elaboration).
The calculation of P(S;e), for instance, can be performed as follows: Treating S
as an intermediate hypothesis, Eq. (2.13) dictates

\

P(S;le) = aP(elS;) P(S) (2.47)

The term P(elS)) is the likelihood vector A;(S), which earlier was calculated as
(36, 1), while the prior P(S)) is given by the matrix multiplication

0.95 0.05

P(S) =ZP(Slei)P(Hi) = (1074, 1—104)[ 0.01 0.99] = (0.0101, 0.9899).

Together, we have

P(S;le) = 0. (36, 1) (0.0101, 0.9899) = (0.2686, 0.7314),

which gives the event S| = Alarm sound on a credibility of 26.86% and gives the
predicted event D = Daughter will call the probability

P(Dle)=SP(DIS,) P(S;le) = (0.2686, 0.7314) [ 0(')7] =0.188. (2.48)
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2.24 Multiple Causes and “Explaining Away”

Consider the following situation:

EXAMPLE 7: As he is debating whether or not to rush home, Mr. Holmes remembers
reading in the instruction manual of his alarm system that the device is sensitive to
earthquakes and can be accidentally (P = 0.20) triggered by one. He realizes that if an
earthquake had occurred, it surely (P = 0.40) would be on the news. So he tums on his
radio and waits for either an announcement over the air or a call from his daughter.

Mr. Holmes perceives two episodes as potential causes for the alarm sound—
an attempted burglary and an earthquake. Though burglaries can be safely
assumed to be independent of earthquakes, a positive radio announcement reduces
the likelihood of a burglary, since it "explains away" the alarm sound. It does this
even though the two causal events are perceived as individual variables (see
Figure 2.2); general knowledge about earthquakes rarely intersects knowledge
about burglaries.

BURGLARY?

WILL CALL?

e 0 @ GIBBON’S TESTIMONY

WATSON’S CALL = TRUE

Figure 2.2. A network depicting predicted events (D), explanatory variables (E and H)
and evidence variables (W, G and R).

This interaction among muitiple causes is a prevailing pattern of human
reasoning. (See Section 1.2.2.) When a physician discovers evidence in favor of
one disease, it reduces the perceived likelihood of other diseases, although the
patient may well be suffering from two or more disorders simultaneously. A
suspect who provides an alternative explanation for being present at the scene of
the crime appears less likely to be guilty, even though the explanation furnished
does not preclude his having committed the crime.
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To model this "sideways" interaction a matrix M should be assessed, giving the
distribution of the consequence variable as a function of every possible
combination of the causal variables. In our example, we should specify
M=P(S|E, H where E stands for the variable E = {Earthquake, No
earthquake} and H stands for the hypothesis variable H = {Burglary, No
Burglary}. Although this matrix is identical in form to the one described in Eq.
(2.30), where several causal variables from example 2 were combined into one
compound variable {H, H,, H3, H,}, treating E and H as two separate entities
has an advantage: it allows us to relate each of the variables to a separate set of
evidence without consulting the other. For example, we can quantify the relation
between E and R = Radio announcement by the probabilities P (R | E) without
having to consider the irrelevant event of burglary, as would be required by
compounding the pair (E, H) into one variable. Moreover, upon confirmation of R,
we can update the beliefs of E and H in two separate steps, mediated by the
updating of S. This more closely resembles the local process used by people in
tracing lines of evidence. (An updating scheme for networks with multiple-parent
nodes is described in Section 4.3.)

If the number of causal factors k is large, estimating M may be troublesome
because in principle it requires a table of size 2%+1 In practice, however, people
conceptualize causal relationships by creating hierarchies of small clusters of
variables, and the interactions among the factors in each cluster are normally
categorized into prestored, prototypical structures, each requiring about &
parameters. Common examples of such prototypical structures are noisy OR-gates
(i.e., any one of the factors is likely to trigger the effect), noisy AND-gates, and
various enabling mechanisms (i.e., factors identified as having no influence of their
own except that they enable other influences to become effective). In Example 7, it
is reasonable to assume that the influences of burglaries and earthquakes on alarm
systems is of the noisy OR-type; accordingly, only two parameters are needed,
one describing the sensitivity of the alarm to earthquakes (in the absence of
burglaries), the other describing its sensitivity to burglaries (in the absence of
carthquakes). These prototypical structures will be treated formally in Section
4.3.2.

2.2.5 Belief Networks and the Role of Causality

In the preceding discussion we twice resorted to the use of diagrams. Figures 2.1
and 2.2 were not, however, presented merely for mnemonic or illustrative
purposes. We will see that they convey important conceptual information, far
more meaningful than the numerical estimates of the probabilities involved. The
formal properties of such diagrams, called Bayesian belief networks, will be
discussed in Section 3.3; here, we briefly outline their salient features.

Formally, Bayesian networks are directed acyclic graphs in which each node
represents a random variable, or uncertain quantity, which can take on two or more
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possible values. The arcs signify the existence of direct causal influences between
the linked variables, and the strengths of these influences are quantified by
conditional probabilities. Informally, the structure of a Bayesian network can be
determined by a simple procedure: We assign a vertex to each variable in the
domain and draw arrows toward each vertex X; from a select set Ily, of vertices
perceived to be direct causes of X;. The strengths of these direct influences are
then quantified by assigning to each variable X; a link matrix P(x; [Ily,), which
represents judgmental estimates of the conditional probabilities of the event
X; = x;, given any value combination Ily, of the parent set Ily . The conjunction of
these local estimates specifies a complete and consistent global model (i.e., a joint
distribution function) on the basis of which all probabilistic queries can be
answered. The overall joint distribution function over the variables X;, ..., X,,, is
given by the product

n \

P(xl, Xy vaey x,,) = l‘l:II P(x,- lHX,-)' (2.49)

So, for example, the joint distribution corresponding to the network of Figure 2.2 is
given by

Ph,e r,s,d,w,g)=Ph)Pe)P@le)P(sle, h) P(d|s) (2.50)
Pw!s)P(gls),

where lowercase symbols stand for the particular values (TRUE or FALSE) of the
corresponding variables.

The advantage of network representation is that it allows people to express
directly the fundamental qualitative relationship of "direct dependency.” The
network then displays a consistent set of additional direct and indirect
dependencies and preserves it as a stable part of the model, independent of the
numerical estimates. For example, Figure 2.2 demonstrates that the radio report
(R) does not change the prospects of Holmes’s daughter phoning (D), once we
verify the actual state of the alarm system (S). This fact is conveyed by the
network topology—showing S blocking the path between R and D—even though it
was not considered explicitly during the construction of the network. It can be
inferred visually from the linkages used to put the network together, and it will
remain part of the model regardless of the numerical estimates of the link matrices.

The directionality of the arrows is essential for displaying nontransitive
dependencies, i.e., § depends on both E and H, yet E and H are marginally
independent (they become dependent only if S or any of its descendants are
known). If the arcs were stripped of their arrows, some of these relationships
would be misrepresented. It is this computational role of identifying what
information is or is not relevant in any given situation that we attribute to the
mental construct of causation. Causality modularizes our knowledge as it is cast
from experience. By displaying the irrelevancies in the domain, causal schemata
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minimize the number of relationships that need to be considered while a model is
constructed, and in effect legitimizes many future local inferences. The prevailing
practice in rule-based expert systems of encoding knowledge by evidential rules
(i.e., if effect then cause) is deficient in this respect. It usually fails to account for
induced dependencies between causes (e.g., an earthquake explaining away the
alarm sound), and if one ventures to encode these by direct rules, the number of
rules becomes unmanageable [Shachter and Heckerman 1987].

In Chapter 3, we will present a formal characterization of dependencies
expressible in both causal and non-causal networks. In Chapters 4 and 5 we will
show that belief networks can also be used as inference engines, where the
network topology provides both the storage locations and the timing information to
sequence the computational steps involved in answering probabilistic queries.
Examples of such queries are "What are the chances of a burglary, given that the
radio announced an earthquake and my daughter did not call?" and "What is the
most likely explanation of Watson’s phone call?" Answers to such queries will be
assembled by local, parallel message-passing processes, with minimal external
supervision. The essential role of causality will be explored further in Chapters 8
and 10. Before advancing to these topics, we will use the next few sections to
further elaborate on the philosophy of Bayesian inference and the role of networks
in shaping human judgment.

2.3 EPISTEMOLOGICAL ISSUES OF BELIEF
UPDATING

2.3.1 Patterns of Plausible Inference:
Polya vs. Bayes?

In our previous discussion we suggested that once we encode knowledge in
probabilistic terms and adhere to the rules of probability calculus, we are
guaranteed never to produce paradoxical or counterintuitive conclusions. This
raises an interesting question about how people produce intuitively acceptable
conclusions using mechanisms that seem to involve only qualitative, nonnumerical
relationships. If such mechanisms work for people, can we simulate them on
digital machines and thus facilitate commonsense reasoning? This is indeed the
ultimate objective of many works in Al, most notably nonmonotonic logics. The
goal is to capture the patterns of plausible reasoning in nonnumerical terms, as
principles governing English sentences that contain linguistic hedges such as
"typically,” "likely," and "surely.” In this subsection we discuss some of the
difficulties associated with using the logical approach instead of the probabilistic
approach. A more detailed discussion will be given in Chapter 10.



2.3 Epistemological Issues of Belief Updating 53

POLYA’S PATTERNS OF PLAUSIBLE INFERENCE

George Polya (1887—-1985) was one of the first mathematicians to attempt a formal
characterization of qualitative human reasoning. In his 1954 book Patterns of
Plausible Inference, Polya argued that the process of discovery, even in as formal a
field as mathematics, is guided by nondeductive inference mechanisms, entailing a
lot of guesswork. "Patterns of plausible inference" was his term for the principles
governing this guesswork.

Among the conspicuous patterns listed by Polya, we find the following four:

1.

Inductive patterns: "The verification of a consequence renders a
conjecture more credible.”

For example, the conjecture "It rained last night" becomes more
credible when we verify the consequence "The ground is wet."

Successive verification of several consequences: "The verification of a
new consequence counts more or less if the new consequence differs
more or less from the former, verified consequences.”

For example, if in trying to substantiate the conjecture "All ravens
are black,” we observe n Australian ravens, all of them black, our
subsequent confidence in the conjecture will be increased substantially
if the (n + 1)-th raven is a black Brazilian raven rather than another
black Australian raven.

Verification of improbable consequences: "The verification of a
consequence counts more or less according as the consequence is more
or less improbable in itself.”

For example, the conjecture "It rained last night” obtains more
support from "The roof is leaking” than from the more common
observation "The grass is wet.”

Inference from analogy: "A conjecture becomes more credible when
an analogous conjecture turns out to be true.”

For example, the conjecture "Of all objects displacing the same
volume, the sphere has the smallest surface" becomes more credible
when we prove the related theorem "Of all curves enclosing the same
area, the circle has the shortest perimeter."

Polya also identified three main sub-patterns of inductive reasoning:

1.
2.

Examining a consequence: same as (1) above.

Examining a possible ground: "Our confidence in a conjecture can
only diminish when a possible ground for the conjecture is exploded.”

Examining a conflicting conjecture: "Our confidence in a conjecture
can only increase when an incompatible rival conjecture is exploded.”
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These patterns can be further refined depending on whether propositions are
verified categorically or just become more credible (Polya called this shaded
verification).

Polya summarized the patterns and subpatterns by the following table:

0] @ 3 “

Demonstrative Shaded . Shade.d Inductive
Demonstrative Inductive
1. Examining a A—>B A—>B A—>B A—>B
consequnce B false B less cr. B more cr. B true
A false A less cr. As.more cr. A more cr.
2. Examining a possible A<B A«B AeB A<B
ground B true B more cr. B less cr. B false
A true A more cr. As. less cr. Aless cr.
3. Examining a conflicting ~ AlB AlB AlB AlB
conjecture B true B more cr. Bless cr. B false
A false Aless cr. As.more cr. A more Cr.

In this table, A — B means that A implies B, cr. is short for "credible,” s. is short
for "somewhat,” and A | B means that A is incompatible with B, ie., A and B cannot
both be true at the same time.

The patterns for "Examining a possible ground" are logically equivalent to
those for "Examining a consequence.” For example, entry (2,2) follows from (1,2)
because A — B is logically equivalent to (—B) — (—A) and "B more cr." is
equivalent to "—B less cr." It still makes sense to restate Tow 2 separately since
people do not readily perceive logical identities as psychological necessities;
redundant inference rules are useful for dealing with logically equivalent but
syntactically different situations.

WHY POLYA PREFERRED PROBABILITIES OVER LOGIC

When stated individually, each pattern in Polya’s table appears plausible and is
supported by many examples. However, after extracting many such conspicuous
primitive patterns, Polya stopped short of proposing them as syllogistic axioms (or
inference rules) for a new logic, capable of manipulating concepts such as
"credible,” "more credible,” and "somewhat credible.” Instead, Polya shelved this
promising prospect and retreated to the safety of probability calculus—from
which, supposedly, all the qualitative patterns of plausible inference should follow
naturally and automatically, leaving no need to express them in symbolic terms.
The reason for Polya’s sharp retreat is explained in Chapter 15 of his book and
is based on the realization that primitive patterns of plausible reasoning, as
reasonable as they appear and as syntactically similar as they are to logical
syllogisms, are of basically different character than those syllogisms. Polya
identified four basic differences between the two modes of reasoning, the most
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important being a feature he called self-sufficiency (today we use the term
monotonicity }—new information, as long as it does not conflict with the premises,
will never change the conclusions reached by demonstrative inferences.

Nothing is needed beyond the premises to validate the conclusion and nothing can
invalidate it if the premises remain solid.

By contrast, credibility levels established by plausible inferences are not "durable,"
as they may change with new information and are sensitive to the entire content of
one’s knowledge base. In Polya’s words:

In opposition to demonstrative inference, plausible inference leaves indeterminate a
highly relevant point: the "strength” or the "weight" of the conclusion. This weight
may depend not only on clarified grounds such as those expressed in the premises,
but also on unclarified unexpressed grounds somewhere in the background of the
person who draws the conclusion.

This is indeed the violation of modularity discussed in Chapter 1. Polya
claimed, however, that in each inferential step the direction of change depends
only on the premises considered at that step. For example, in the inductive pattern
above, the credibility of the hypothesis can only increase with the discovery of its
consequence, regardless of what background information we possess. This, we
shall soon demonstrate, is not entirely correct (see also Figure 1.2). The gap
between demonstrative and plausible inferences is, in fact, wider than that
identified by Polya, i.e., not only the strength of the conclusions but also their
"direction" depends on "unclarified unexpressed grounds somewhere in the
background...."

Notwithstanding this oversight, Polya apparently chose the calculus of
probability as a surrogate for logic because he believed that if things are set up
propetly, probability calculus will preserve all the qualitative patterns of plausible
reasoning and, as a bonus, will provide the correct strengths of the conclusions.
Polya, in fact, showed that all the patterns of his table follow from probability
theory. For example, here is Polya’s probabilistic proof of the inductive pattern

(A > B) & B=—> A more credible: (2.51)

Assume that in knowledge state S, A and B accrue the credibility measures P(A)
and P(B), respectively, and that in state S,, B is known to be true, i.e., P,(B) = 1.
One can defend the validity of Eq. (2.51) by showing that the inequality
P(A1B) > P(A) holds in all cases. Indeed, using Bayes’ Rule (Eq. (2.13)) and the
fact that A — B implies P(B |A) = 1, we obtain

P(BIAP(A) _ P(A)
P(B) T PB)’

P(AIB) = (2.52)
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and, since P(B) < 1, we have
P(A'B)zPA), (2.53)

with equality holding iff either P(A) =0 or P(B) = 1. Thus, it appears as though
probability calculus lends unqualified confirmation to the inductive pattern (Eq.
(2.51)).

Unfortunately, the above proof has a major flaw. The inequality in Eq. (2.53)
is valid only in the rare and uninteresting case when B is the only new piece of
information by which §, differs from §;. To be used as a syllogistic rule of
inference, the inductive pattern of Eq. (2.51) must be universally applicable to any
two knowledge states S| and S,. Yet, if S, differs from S by two facts, say B and
C, Eq. (2.51) no longer holds. An extreme case is when C directly opposes A. For
example, consider the following three events:

A = "It rained last night."
B ="My grass is wet."
C ="My neighbor’s grass is dry."

Any reasonable probabilistic model would yield
P(AIB)>P(A) but  P(AIB,C)<PA).

Although the left-hand side of Eq. (2.51) is satisfied in this example, the right-hand
side of Eq. (2.51) contradicts our expectations whenever S, entails both B and C.

This might be construed as an artificial and harmless example, because the
knowledge base should also contain the rule C — —A, which eventually will
establish the falsity of A after Eq. (2.51) temporarily raises its credibility. A more
convincing criticism would be to demonstrate the failure of Eq. (2.51) when C has
no relation whatsoever to A. For example:

A = "It rained last night."
B ="My grass is wet."
C = "The sprinkler was on last night.”

Here, the falsity of Eq. (2.51) could produce paradoxical and irreversible
consequences. Perhaps it was this realization that prevented Polya from proposing
his patterns as inference rules for a logic of plausible reasoning.

IF BAYES NEVER ERRS, WHY DID POLYA?

It is instructive, at this point, to reiterate the fundamental difference between the
role of premises in logic and that of conditioning events in probability calculus
(see Chapter 1). In logic, the truth of a premise B is all that is required for
deducing the conclusion A. In probability calculus, the expression P(A|B)
specifically identifies B as the only information available—aside from the tacit



2.3 Epistemological Issues of Belief Updating 57

knowledge base K, which we assume to be constant. This distinction is also
reflected in significant computational differences between the two formalisms. The
statement

PAIB)=p
denotes totally different operational semantics than the production rule
If B then A (with certainty p). 2.54)

The latter constitutes a carte blanche to execute a certain transformation on the
database whenever it entails the truth of B, regardless of what other information it
contains. The former permits us to draw certain conclusions (about the probability
of A) only when the database entails B and no other information that can affect A
once we know B.

This difference may explain why the designers of first-generation expert
systems preferred the rule-based approach over straightforward Bayes’
conditioning. The latter seems to require that we inspect the entire database at
each step of the computation to see if it contains any new information that is
relevant to A and not fully accounted for in B. In subsequent chapters, we shall see
that networks provide an effective scheme for indexing this information so that
local inspections are sufficient. On the other hand, systems based on rules such as
Eq. (2.54) invariably run into the same paradoxical difficulties that plagued Polya’s
patterns. For example, such systems would draw the same conclusion from Eq.
(2.54) whether B was established by C” = "My shoes are muddy" or by C = "The
sprinkler was on last night." This is a clear violation of common sense. Section
10.3 provides a remedy to this problem, within the framework of rule-based
systems.

It is also interesting to inquire why Polya’s patterns are considered plausible if
they are not supported by probability theory and they lead to paradoxical
conclusions. The answer lies in the type of assumptions we all make when asked to
judge the plausibility of an argument. Apparently, the inductive pattern (Eq.
(2.51)) appears plausible to most people, because we tacitly assume that the truth
of B is the only relevant change known to have taken place in the world. In other
words, unless otherwise stated, all belief values, especially of events that precede
B, are presumed to persist unaltered. Since changes in the belief of other
propositions (e.g., "The sprinkler was on") are not mentioned in Eq. (2.51), we
presume that in the transition from S; to S, the truth of B ("The grass is wet") was
established by direct observation or reliable testimony and not as a consequence of
other, unmentioned changes.

So far, we have discussed the difficulties associated with the nonmodularity of
plausible inferences, i.e., the impropriety of drawing conclusions from certain
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truths in the database without checking other truths that may reside there. The
following discussion will focus on an even tougher problem, query sensitivity,
which stems not from neglecting facts that were learned but from neglecting to
specify which facts could have been learned. In other words, plausible reasoning,
unlike logical deduction, is sensitive not only to the information at hand but also to
the query process by which the information was obtained.

232 The Three Prisoners Paradox: When
the Bare Facts Won't Do

Three prisoners, A, B, and C, have been tried for murder, and their verdicts will be
read and their sentences executed tomorrow morning. They know only that one of
them will be declared guilty and will be hanged to die while the other two will be
set free; the identity of the condemned prisoner is revealed to the very reliable
prison guard, but not to the prisoners themselves.

In the middle of the night, Prisoner A calls the guard over and makes the
following request: '"Please give this letter to one of my friends—to one who is to
be released. You and I know that at least one of them will be freed.” The guard
takes the leiter and promises to do as told. An hour later Prisoner A calls the guard
again and asks, "Can you tell me which of my friends you gave the letter to? It
should give me no clue regarding my own status because, regardless of my fate,
each of my friends had an equal chance of receiving my letter." The guard
answers, "I gave the letter to Prisoner B; he will be released tomorrow." Prisoner A
returns to his bed and thinks, "Before I talked to the guard, my chances of being
executed were one in three. Now that he has told me that B will be released, only
C and 1 remain, and my chances of dying have gone from 33.3% to 50%. What did
I do wrong? I made certain not to ask for any information relevant to my own
fate....”

SEARCHING FOR THE BARE FACTS

So far, we have the classical Three Prisoners story as described in many books of
mathematical puzzles (e.g., Gardner [1961]). Students are asked to test which of
the two values, 1/3 or 1/2, reflects prisoner A’s updated chances of perishing at
dawn.T Let us attempt to resolve the issue using formal probability theory.

+ A survey conducted in the author’s class in 1984 showed 23 students in favor of 1/2 and 3 students
in favor of 1/3. (The proportion was reversed in 1987, when class notes became available.)
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Let I stand for the proposition "Prisoner B will be declared innocent,” and let
G, stand for the proposition "Prisoner A will be declared guilty.” Our task is to
compute the probability of G, given all the information obtained from the guard,
i.e., to compute P(G, |1g). Since G4 oI, we have P(Ig1G4) =1, and we can
write

PUplGa) P(Gy) P(Gy) 13
Py) TPy 23

P(Gylig) = =1/2. (2.55)

Thus, when facts are wrongly formulated, even the tools of probability calculus are
insufficient safeguards against drawing counterintuitive or false conclusions,
(Readers who are not convinced that the answer 50% is false are invited to
eavesdrop on Prisoner A’s further reflections: "... Worse yet, by sheer symmetry,
my chances of dying would also have risen to 50% if the guard had named C
instead of B—so my chances must have been 50% to begin with. I must be
hallucinating....")

The fallacy in the preceding formulation arose from omitting the full context in
which the answer was obtained by Prisoner A. By context we mean the entire
range of answers one could possibly obtain (as in Eq. (2.30)), not just the answer
actually obtained. In our example, it is important to know not only that the guard
said, "B will be released,” but also that the only other possible reply was "C will be
released.” Had the guard’s answer, "B will be released,” been a reply to the query
"Will B die tomorrow?" the preceding analysis would have been correct.

A useful way of ensuring that we have considered the full context is to
condition our analysis on events actually observed, not on their implications. In
our example, the information in

Iz = "B will be declared innocent."
was inferred from a more direct observation,
I"p = "Guard said that B will be declared innocent.”

If we compute P(G4 11 g) instead of P(Gy4 | 13), we get the correct answer:

P53 1GA)P(G .
PGy I'p) = ¢ BP(]’f))( ) _ 1/21/21/3 =1/3. (2.56)
B

The calculations in Eq. (2.56) differ from those in Eq. (2.55) in two ways. First, G4
subsumed 7z but does not subsume [, because it is possible for A to be the
condemned man and hear the guard report, "C will be released.” Second, P(I"p) is
1/2, whereas P(Iz) was 2/3. These differences exist because I p implies Iz but not
vice versa; even if B is to be released, the guard can truthfully report, "C will be
released”—if A is slated to die.
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The lesson of the Three Prisoners paradox is that we cannot assess the impact
of new information by considering only propositions implied by the information;
we must also consider what information could have been reported.

THE THOUSAND PRISONER PROBLEM

Here is an extreme example, in which knowledge of the query context is even
more important. Imagine you are one of one thousand prisoners awaiting
sentencing with the knowledge that only one of you has been condemned. By
sheer luck, you find a computer printout (with a court seal on it) listing 998
prisoners; each name is marked "innocent,” and yours is not among them. Should
your chances of dying increase from 1/ 1000 to 1/2? Most people would say yes,
and rightly so.

Imagine, however, that while poring anxiously over the list you discover the
query that produced it: "Print the names of any 998 innocent right-handed
prisoners.” If you are the only left-handed person around, would you not breathe a
sigh of relief? Again, most people would.

Though the discovery of the query adds no logical conclusions to our
knowledge base, it alters drastically the relative likelihood of events that remain
unsettled. In other words, the range of possibilities is the same before and after
you discover the query: Either you or the other unlisted prisoner will die. Yet the
query renders the death of the other prisoner much more likely, because while you
can blame your exclusion from the list on being left-handed, the other prisoner has
no explanation except being found guilty. If the list contained 999 names marked
"innocent," knowledge of the query would have no impact on your beliefs, because
the only possible conclusion would be that you had been found guilty.

Again we see the computational virtues and epistemological weaknesses of
crisp logic: It allows us to dispose of the query once we learn its ramifications but
prevents the ramifications learned from altering the likelihood of uncertain events.
Indeed, if we wish to determine merely which events are possible we need not
retain the queries; the bare information will suffice. But if we are concerned also
with the relative likelihood of these possible events, then the query process is
necessary. If the process is unknown, then several likely processes can be
conjectured and their average computed (see next subsection).

But first, let us return to the jail cell. Mathematically, the discovery of the
query should restore your confidence of innocence to its original value of 99.9%,
but psychologically you are more frightened than you were before you found the
list. In your intuition, the realization that you are one of the only two potentially
guilty individuals evidently carries more weight than Bayesian arithmetic does.
Still, intuition is a multifaceted resource, and pondering further, you should muster
intuitive support for the Bayesian conclusion as well: Finding the query after
seeing the list should have the same effect as seeing the list after the query. In the
second case, once you know the query, the list is useless to you, because it can
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contain neither your name nor the name of the guilty prisoner. Consequently, your
chances of being found guilty should revert to 1/1000.

WHAT IF WE DON'T KNOW THE QUERY?

In the Three Prisoners story, we assumed that if both B and C were pardoned, the
guard would give the letter to one or the other with equal (/%) probability. What if
we do not know the process by which the letter recipient is chosen, when A is
condemned? The conditional probability P(/"g!G,) can vary from O (the guard
avoids B), to 1 (the guard avoids C). Likewise, the marginal probability P(I 'p) can
vary from % to %. Treating ¢ = P(I '3 1G,) as a variable, Eq. (2.56) can be written
as follows:

PI'p1G,) P(Ga)
P(I'p1Ga) P(Gy) + P75 1Gp) P(Gp) + P 1Gc) P(Ge)

P(Gyll'g) =

- q% -4 (2.57)
g%4+0+1-%4 1+4¢
Thus, as g varies from 0 to 1, P(G4 | I ) varies from 0 to /4.

Philosophers disagree on how to treat ignorance of this sort. Some favor the
use of probability intervals, where the upper and lower probabilities represent the
boundaries of our convictions, while others prefer an interpolation rule that selects
a single probability model having some desirable properties. The Dempster-Shafer
(D-S) formalism (see Chapter 9) is an example of the interval-based approach,
while maximum-entropy techniques [Tribus 1969, Jaynes 1979] represent the
single model approach.

Bayesian technique lies somewhere in between. For example, in the absence
of information about the selection process used by the guard, several plausible
models of the process are articulated, and their likelihoods are assessed. In our
example, we may treat the critical parameter ¢ as a random variable ranging from
0 to 1 and assess a probability distribution f(g) on g, reflecting the likelihood that
the guard will exhibit a bias ¢ in favor of selecting B. This method yields a unique
distribution on the variables previously considered, via

1
PGA1) =] —— fiq) da, (2.58)
o 1 t+4q

but the method simultaneously maintains a distinction between conclusions based
on definite models and conclusions based on uncertain models. For example, the
knowledge that the choice between B and C is made at random is modeled by
g =%, while total lack of knowledge about the process is represented by
flg) =1, 0<g¢<0. The first model yields P(G4 |I73) = %, as shown in Eq. (2.56),
and the second yields P(G4117p) = 1 —log,2 = .307. Though both models yield
point values for P(G4117g), they differ substantially in the way they allow new
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facts to be assimilated. Suppose Prisoner A recalls that the guard had a fistfight
with C yesterday. This fact can easily be incorporated if g is a random variable (by
updating f (¢)), but not if ¢ is a fixed value. The problem of representing
uncertainty about probabilities will be discussed further in Section 7.3.

2.3.3 Jeffrey’s Rule and the Problem of Autonomous
Inference Agents

The Three Prisoners puzzle shows that before we can determine the implications of
a new fact in our knowledge base, we must know the process by which the fact was
learned—in particular, what other facts could have been gathered in that process.
Such detailed knowledge is not always available; we often must respond to new
information without having the slightest idea how it was collected. These
situations occur when the gathering of information is delegated to autonomous
agents, each using private procedures which for various reasons cannot be
explicated in full detail.

OBSERVATION BY CANDLE LIGHT

Richard Jeffrey was the first to recognize the importance of this problem, and he
devised a rule for handling it [Jeffrey 1965]. The autonomous agents used in
Jeffrey’s original example are our sensory organs, as described in the following
passage:

The agent inspects a piece of cloth by candlelight and gets the impression that it is
green, although he concedes that it might be blue or, even (but very improbably),
violet. If G, B and V are the propositions that the cloth is green, biue and violet,
respectively, then the outcome of the observation might be that, whereas originally
his degrees of belief in G, B and V were 0.30, 0.30 and 0.40, his degrees of belief in
those same propositions after the observation are 0.70, 0.25 and 0.05. If there were a
proposition E in his preference ranking fi.c., knowledge base] which described the
precise quality of his visual experience in looking at the cloth, one would say that
what the agent learned from the observation was that E is true. If his original
subjective probability assignment was prob, his new assignment should then be
probg, and we would have

prob G = 30 probB =30 probV =.40

representing his opinions about the color of the cloth before the observation, but
would have

prob(G |E)=.70 prob(B |E)=.25 prob(VIE)=.05

representing his opinions about the color of the cloth after the observation.... When
the agent looks at the piece of cloth by candlelight there is a particular complex
pattern of physical stimulation of his retina, on the basis of which his beliefs about
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the possible colors of the cloth change in the indicated ways. However, the pattern
of stimulation need not be describable in the language he speaks; and even if it is,
there is every reason to suppose that the agent is quite unaware of what that pattern
is, and is quite incapable of uttering or identifying a correct description of it. Thus, a
complete description of the pattern of stimulation includes a record of the firing
times of all the rods and cones in the outer layer of retinal neurons during the period
of the observation. Even if the agent is an expert physiologist, he will be unable to
produce or recognize a correct record of this sort on the basis of his experience
during the observation.

With this story in mind, Jeffrey wonders how the new information should be
used to influence other propositions that depend on the color of the cloth:

Then the problem is this: Given that a passage of experience has led the agent to
change his degrees of belief in certain propositions B, B, ..., B, from their original
values,

prob By, prob B, ..., prob B,

to new values,

PROB B,, PROB B, ..., PROB B,,

how should these changes be propagated over the rest of the structure of his beliefs?
If the original probability measure was prob, and the new one is PROB, and if Ais a
proposition in the agent’s preference ranking [i.e., knowledge base] but is not one of

" the n propositions whose probabilities were directly affected by the passage of
experience, how shall PROB A be determined?

Jeffrey’s solution is based on the critical assumption that the propositions B
selected to summarize the experience possess a special property: "..while the
observation changed the agent’s degree of belief in B and in certain other
propositions, it did not change the conditional degree of belief in any propositions
on the evidence B or on the evidence B" (italics added). Thus, if By, B,, ..., B, are
exhaustive and mutually exclusive propositions (like Green, Blue, and Violet in
the candlelight example), Jeffrey maintains that, for every proposition A not
"directly affected by the passage of experience,” we should write

PROB (A IB))=prob(A1B;) i=1,2,..,n. (2.59)
This, together with the additivity of PROB, leads directly to
PROB(A) = ¥, prob (A |B;) PROB(B)), (2.60)
i

a formula now known as Jeffrey's Rule of updating, or the rule of probability
kinematics.
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The convenience of the rule is enticing in a way that is reminiscent of the
logical rules of deduction; we need not know anything about how prob(B;) was
updated to PROB(B;)—only the net result matters. We simply take PROB(B;) as a
new set of priors and apply the textbook formula of Eq. (2.10). Unfortunately, the
rule is applicable only in situations where the criterion of Eq. (2.59) holds, and this
condition, as we shall soon see, is not easy to test.

Traditional probabilistic analysis gives us a way to decide when Egs. (2.59) and
(2.60) are applicable, based on Bayes’ conditioning. If we denote by e the
evidence actually observed and equate PROB(A) with prob(Ale), we get the
Bayes conditionalization formula,

prob(A le) =Y, prob(A |B;,e) prob(B;le), (2.61)

which coincides with Eq. (2.60) only when A and e are conditionally independent
given B;, i.e., only when

prob(A |B;, €) = prob(A |B;). (2.62)

However, philosophers might argue that it sometimes makes no sense to equate
PROB(A) with prob(A le) or even to talk about prob(Ale), e being an elusive,
non-propositional experience. Indeed, the textbook definition of conditional
probability, P(Ale) = P(A, e)/ P(e), suggests that before P(Ale) can be
computed one must have the joint probability P(A, €), so e must already be
integrated in one’s knowledge base as a proposition that might later be an object of
attention. This condition clearly is not met in the candlelight story; the sensory
experience responsible for the color judgment cannot have been anticipated in
anyone’s knowledge base. In such cases, so the argument goes, Bayes
conditionalization is not applicable and should give way to the more general
Jeffrey’s Rule. Likewise, the conditional independence criterion of Eq. (2.62) isa
quality ascertainable only by Bayes conditionalization and therefore is clearly
inadequate for delineating the class of propositions A to which Jeffrey’s Rule
applies.

While no alternate criterion for testing Eq. (2.59) is formulated in Jeffrey’s
book, some hint is provided by the requirement that A "is not one of the n
propositions whose probabilities were directly affected by the passage of
experience.” Jeffrey apparently believed that the question of whether a proposition
A is affected directly or indirectly can be decided on qualitative grounds, prior to
defining joint distributions. In this sense, he pioneered the idea that dependence
relationships are the fundamental building blocks of probabilistic knowledge, more
basic than numerical distributions (a position that will be developed further in
Chapter 3).

In a subsequent publication [Jeffrey 1968], Jeffrey replaced the notion of
directness with that of a basis, where a basis B for an observation is defined as the
set of propositions B1, B»,..., B, that satisfy Eq. (2.59) for every A not in B. T his



2.3 Epistemological Issues of Belief Updating 65

way, the validity of Eq. (2.60) is automatically guaranteed to hold for every A not
in B, but from a practical viewpoint the problem of determining the basis
associated with a given observation remains unresolved.

To demonstrate the type of information required for determining the
applicability of Jeffrey’s Rule, let us return to the candlelight example and assign
two alternative meanings to proposition A.

Casel e —B — A: Assume that the proposition A stands for the statement "The
cloth will be sold the next day,” and we know the chances of selling the cloth
depend solely on its color:

P(A |Green) =040, P(A |Blue)=0.40, and
P (A Violet) = 0.80. (2.63)

Eq. (2.60), then, allows us to calculate the updated belief in the salability of the
cloth, based only on the color inspection (see Figure 2.3). Prior to the test, our
belief in selling the cloth measured

prob(A) = (0.4)(0.3) + (0.4)(0.3) + (0.8)(0.4) =0.56,
and once the test results become known, our belief should change to

PROB(A) = (0.4)(0.7) + (0.4)(0.25) + (0.8)(0.05) = 0.42 .

cloth color

¢ (4)

salability

Figure 2.3. A network representing the conditional independence of A and e, given B.

Bayes conditionalization would yield the same result, because the salability of the
cloth depending only on its color is interpreted as A and e being conditionally
independent, and therefore

P(A1Color, e) = P(A|Color), (2.64)
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which legitimizes Jeffrey’s assumption that
PROB(A|B;) = prob(A|B)),

as long as we identify PROB(A |B;) with P(A1B;, e). In other words, modern
Bayesians take the liberty of writing equations such as Eq. (2.64) even though
P(A | Color, e) is available nowhere and cannot be computed numerically. The
equation does convey the qualitative information expressed in the story—that
color is the only factor relevant to salability—and it thus draws legitimacy not
from numerical probability values but from a more reliable knowledge source:
people’s qualitative reasoning about dependencies.

Note that Jeffrey’s Rule is equivalent to the Bayesian treatment of virtual
evidence (Section 2.2.2), using the likelihood vector

PROBB) 070 025 0.05
. A | .) = = ’
AB)YPEIB) =0~ " =030 030" 040
= 0,(2.330, 0.833, 0.125). (2.65)

Indeed, in Section 2.2.2 we saw that the likelihood vector requires no absolute
probability assessments and therefore avoids the difficulties associated with non-
propositional evidence (e.g., the visual stimulus in the candlelight story). We also
argued that the assumption of conditional independence means that the liketihood
vector is the only stable component in the relation between the evidence and the
impacted variable B, making it more reliable to assess than the final product
PROB(B;). Thus, an alternate way of viewing the impact of sensory experience on
one’s knowledge is to replace the former by a likelihood vector impinging on the
basis B. (A similar idea was advanced by Field [1978].)

To demonstrate the volatility of the assumption in Eq. (2.59), let us choose an
example where it is obviously violated.

Case 2 A — e — B: Imagine that the main interest of our candlelight observer
lies not in the color of the cloth but rather in the chemical composition of the
candle wax. The agent inspects the color of the cloth, adjusts his belief from
prob(B;) to PROB(B;), and then wonders how to update prob(A), where A is the
proposition that the wax is a notoriously cheap brand known to produce flames
deficient in violet content.

Are we justified in using Jeffrey’s Rule? Since the color of the cloth (B;) is of
no relevance to A prior to the observation, we have prob(A |B;) = prob A. If we
blindly apply Eq. (2.60), we obtain a paradoxical result,

PROB (A) = Y, prob(A) PROB (B;) = prob (A) , (2.66)
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which states that no matter how violet or greenish the cloth looks under the
candlelight, the observer’s belief regarding the makeup of the wax ought to remain
unaltered.

Is there any information in the story that should warn us against applying
Jeffrey’s Rule here? Modern Bayesians claim that even though we lack the
knowledge required for precise description of the measurement process, our
qualitative understanding of the process is sufficient to alert us to the falsity of
P(A|B;, ) =P (A |B;) and thus protect us from drawing a false conclusion like
Eq. (2.66). Colloquially, we say that in Case 1, the color of the cloth "stood
between" the evidence and A (the salability of the cloth), while in Case 2 it was the
evidence that mediated between the colors and A (the brand of wax), as shown in
Figure 2.4.

wax content

cloth color

flame spectrum e

Figure 2.4. A network representing an evidence (e) mediating between A and B.

One might argue that Jeffrey’s original account also prevents us from applying
his rule to Case 2 because A presumably should qualify as "one of the n
propositions whose probabilities were directly affected by the passage of
experience." But the criterion by which this passage of experience can be termed
"direct” is rather hard to define. In other words, it is hard to see how the visual
experience bears directly on the nature of the wax (A4) when it is the flame that
mediates between the two (see Figure 2.4). If anything, B seems more directly
affected by e than A is; the agent’s judgment about the color was reported first, and
color bears a closer semantic relation to visual experience than wax chemistry
does.

If the road map outlining one’s passage of experience is so crucial for
understanding the structure of stories (i.e., which propositions should be affected
by the evidence and how), it is unfortunate that the philosophical literature on
probability kinematics does not provide a more complete analysis of this crucial
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source of information. Evidently, some believed that this road map is so deeply
entrenched in human intuition that no further explication is required.

Neo-Bayesian philosophers go one step beyond Jeffrey. They say any
assertions one wishes to make about "passage of experience” ought to be
explicated formally, using the familiar syntax of probability calculus. For
example, one’s intuition that A is not directly affected by the passage of experience
ought to be written in the format of Eq. (2.62), treating e as a genuine propositional
entity. On the surface, this requirement seems vacuous. If one interprets Eq.
(2.62) merely as a notation for expressing intuitions about the "passage of
experience," then Bayes conditionalization—P(A |e)—ceases to be a statement
about the numeric magnitudes of P(A) and P(Ale) and becomes no more
informative than the verbal, intuitive sentences it purports to replace. However,
there is a profound significance to the use of the P(* |*) syntax instead of some
other notation. '

First, it embodies the claim that passages of experience have traffic laws of
their own and that these laws are similar, if not identical, to those governing Bayes
conditionalization. For example, one traffic law states that it is inconsistent for an
agent to assert, "B stands between e and a pair of propositions {A{, A, }" without
also asserting, "B and A, together stand between e and A,." This consistency
requirement holds both in Bayes conditionalization and in the road map metaphor.
Thus, even if one insists that statements such as Eq. (2.62) represent qualitative
facts about the passage of experience, not conditional probabilities, by agreeing to
manipulate these sentences by the rules of Bayes conditionalization one is
guaranteed never to violate any of the traffic laws that govern the roadmaps of
experience. The question of whether graphical representation of dependencies can
yield similar guarantees is treated in Chapter 3.

Second, the use of the P (* |*) syntax to define criteria such as Eq. (2.62)
suggests procedures a person should use to test mentally the validity of the
criterion in any given situation. Eq. (2.62) instructs a person to imagine first that
the cloth has a definite color, say B; = Green, then test whether any visual
experience e.could significantly sway the belief in A one way or the other. In Case
1 the answer is clearly no, because the salability was proclaimed to be a function
only of the cloth color. In Case 2, however, this mental exercise would evoke
some vivid scenarios that could sway our belief. For example, a green cloth that
appears totally violet under the candlelight would induce a different opinion about
the candle’s wax than a green cloth that appears totally yellow under candlelight.
Thus, Bayes conditionalization has syntactic and psychological merits beyond the
numerical definition

PAIB) = ﬂp‘%ﬁl

that appears in most textbooks on probability theory.
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Case 2 carries two messages. First, we demonstrated again that even when we
cannot describe precisely the observed evidence e, the qualitative elements of the
story are sufficient for judging whether the situation meets Jeffrey’s criterion, or the
conditional independence requirement P (A |B;, e)=P(A |B;). Second, we
demonstrated that Jeffrey’s Rule is invalid not only when A is directly affected by
the passage of experience; it is enough that A branches off someplace on the path
from e to B, as in Figure 2.4. A more striking example is provided by the diamond
structure of Figure 2.5. Here, B is clearly more directly affected by e than A is, as
B stands between e and A, yet Eq. (2.62) will be violated.

S\
AN

o

Figure 2.5. A is not affected directly by the passage of experience, yet the observation e
changes the conditional degree of belief in A given B.

So far, we have used the diagrams in Figures 2.3 through 2.5 primarily as
mnemonic devices to distinguish among the cases discussed and to make an
occasional association with Jeffrey’s "passage of experience” notion. However, the
preceding discussion also demonstrates a rather useful pattern produced by
graphical representations (Figures 2.3 through 2.5): Jeffrey’s Rule is applicable if
and only if B separates A from e. This may be what Jeffrey meant by requiring that
A not be "one of the n propositions whose probabilities were directly affected by
the passage of experience.”" The notion of separation and its relation to
information independence will be given formal treatment in Chapter 3.

SUMMARY

Jeffrey’s Rule of belief updating was devised to replace Bayes conditioning in
cases where the evidence cannot be articulated propositionally. Our analysis
shows that to determine whether the rule is valid in any specific case, one must
have topological knowledge about one’s belief structure, namely, which beliefs are
directly related and which are only indirectly related. If such knowledge is
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available, it can be faithfully represented by the syntax of conditional
independence sentences, and traditional Bayes’ methods can be used to update
beliefs. Thus, the question arises whether it is ever necessary to avoid
conditionalization in formal belief updating.

Since simple criteria based on graphical considerations lead to conclusions that
match our intuition, perhaps human intuition itself can be represented by networks
of relations, and perhaps intuitive judgments are really mental tracings of those
networks. These suggestions motivate the discussion of dependency graphs in
Chapter 3.

2.4 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The Ttalian mathematician Gerolamo Cardano (1501-1576) is believed to be the
first to have formulated the notion of probability in gambling in terms of the
number of distinguishable ways that events may occur. This development marks a
radical (if somewhat tardy) change in cultural attitudes toward uncertainty.
Although fascination with the unpredictability of gambling devices goes back to
the time of the Pharaohs [David 1962], these devices were not perceived as
possessing inherent elements of uncertainty; instead, they were seen as means of
communicating with a source of knowledge (e.g., deity) that was basically
deterministic [Hacking 1975].

Cardano’s "objective" view of probability developed into a rather sophisticated
mathematical theory of combinatorics, in the hands of Fermat (1601-1665), Pascal
(1623-1662), Huygens (1629-1695), James Bernoulli (1654-1705), DeMoivre
(1667- 1754), and LaPlace (1749-1827), until in 1837 Denis Poisson gave it a new
twist by defining probability as a limit of a long-run relative frequency. Emile
Borel (1871-1956) and A. N. Kolmogorov are credited with developing the
modern axiomatic foundations of mathematical probability, of which Egs. (2.1)
through (2.3) are a simplified version [Kolmogorov 1950]. Kolmogorov’s
axiomatization of probability is responsible for the unfortunate tradition of treating
Eq. (2.8) as a definition of conditional probability, rather than a theorem that
follows from more primitive axioms about conditioning.

In parallel to these mathematical developments, an alternative view of
probability came into being with Bernoulli’s suggestion that probability is a
"degree of confidence” that an individual attaches to an uncertain event. This
concept, aided by Bayes’ Rule [Bayes 1763], blossomed in the writings of LaPlace
and De Morgan and later in the works of Keynes [1921] and Jeffreys [1939].
However, the established communities of statisticians and mathematical
probabilists viewed this "subjectivist" intrusion with suspicion. It was not until the
1950s, with the development of statistical decision theory (see Section 6.5), that
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Bayesian methods gained their current momentum. The two defining attributes of
the Bayesian school are (1) willingness to accept subjective opinions as an
expedient substitute for raw data and (2) adherence to Bayes conditionalization as
the primary mechanism for updating beliefs in light of new information. The
articles in Kyburg and Smokler [1980] deal with the philosophical underpinning of
the Bayesian revival.

A critical analysis of Bayes conditionalization can be found in Shafer [1982,
1985, 1986b] : According to Shafer, it was DeMoivre who first formulated the
idea that the occurrence of one event can change the probability of another and
who proved the multiplication rule of Eq. (2.9) using the method of expectation.
Bayes gave a version of DeMoivre’s proof for his rule (Eq. (2.13)), while
interpreting it as providing the subjective probabilities of past events. Exercise 2.2
gives a modern version of the example used in Bayes’ original essay [Bayes 1763].
Alternatives to Bayes conditioning—including Jeffrey’s rule and Dempster’s rule
(see Chapter 9)—have been discussed by Diaconis and Zabell [1986]. Jeffrey’s rule
constitutes the minimum entropy extension of prob (), and Lemmer and Barth
[1982] first proposed it for belief updating in expert systems. The formal identity
between Jeffrey’s rule and virtual conditionalization (as in Eq. (2.65)) renders the
two semantically equivalent, i.e., beliefs updated by Jeffrey’s rule cannot be
distinguished from those updated by Bayes’ conditionalization on some virtual
evidence. Another alternative to Bayes’ conditionalization, called imaging, was
introduced by Lewis [1976] and was used to represent counterfactual conditionals.

The Three Prisoners story is one of many well-known puzzles that illustrate the
need for specifying the query process in tasks involving inference from
observations (see Exercise 2.6). Shafer [1985] calls this query process a protocol
and views it as a disadvantage of Bayes conditioning, since we must assign
probabilities for all possible ways information may be obtained. Our discussion in
Sections 2.3.2 attempts to convince the reader that formalisms that ignore the
query process altogether (see Chapter 9 for examples) are bound to be insensitive
to an important component of human reasoning. In the Thousand Prisoners story,
for example, such systems will not attach any significance to discovering the query
after seeing the list; beliefs will remain the same, based solely on the one-in-two
model (see Exercise 9.7).

Our treatment of virtual evidence (Section 2.2.2), using the vector of
likelihood-ratios, sidesteps the requirement of specifying a full protocol in advance
(see Exercise 2.7). This option expands the repertoire of Bayes analysis by
permitting us to assimilate evidence by means other than straight conditioning, and
it simultaneously facilitates the manipulation of belief updates within the
traditional syntax of probability calculus.

There are, of course, items of information that cannot and should not be
handled as evidential data, but must be treated as constraints on—or
specificational adjustments to—the probabilistic model we currently possess.
Conditional sentences are typical examples of such information. For example, the
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sentence "If Joe goes to the party Mary will not go" must be treated as a meta-level
constraint in the form of conditional probability and not as evidence to be
conditioned upon (see Exercises 10.1 and 10.2). On the other hand, the sentence
"Joe and Mary will not both go to the party,” though logically equivalent to the
previous sentence, is a form of information that can be treated as evidence for
conditionalization. The difference is that conditionalization changes the
probability of Joe’s going to the party while constraint-based updating leaves this
probability intact. The purpose of the English word if is to convey a distinction
between these two modes of assimilating information and to instruct the listener to
refrain from straight conditioning.

The papers in Harper et al. [1981] provide a cross section of the philosophical
literature dealing with conditionals. Section 10.2 illustrates how conditional
information can be absorbed in the form of specification constraints, following the
work of Adams [1975].
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Exercises

2.1. There are three urns labeled one, two, and threce. These urns contain,
respectively, three white and three black balls, four white and two black
balls and one white and two black balls. An experiment consists of
selecting an urn at random, then drawing a ball from it.

a.  Find the probability of selecting urn 2 and drawing a black ball.
b.  Find the probability of drawing a black ball.

c. Find the conditional probability that urn 2 was selected, given that
a black ball was drawn.

It may be helpful to label the possible outcomes (1, B), (1, W), (2, B),
2, W), 3. B), 3, W).

2.2, A billiard table has unit length, measured from left to right. A ball is
rolled on this table, and when it stops, a partition is placed at its stopping
position, a distance x from the left end of the table. A second ball is now
rolled between the left end of the table and the partition, and its stopping
position, y, is measured.

a.  Answer qualitatively: How does knowledge of y affect our belief
about x? Is x more likely to be near y, far from y, or near the
midpoint between y and 1?7

b.  Justify your answer for (a) by quantitative analysis. Assume the
stopping position is uniformly distributed over the feasible range.

2.3. Let the hypothesis variable H = {H,, H,, H;, H4} stand for the
following set of exhaustive and mutually exclusive conditions

H = No burglary, animal entry.

H, = Attempted burglary, window break-in.
Hy = Attempted burglary, door break-in.
H, = No burglary, no entry.
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with prior probabilities P(H;) = (0.099, 0.009, 0.001, 0.891). Let the
alarm system contain two detectors, E 1 and E?, with the following
sensitivity matrices:

el e q & e
H, | 05 04 01 H, |08 01 01
H, | 006 05 044 H, | 08 01 01
Hy | 05 01 04 Hy | 0.1 01 08
H, | 10 0 0 H, | 09 005 005.

a.  What is the probability of burglary if detector E' is OFF (E' = e{)
and E2 is HIGH (E* = €3)?
b.  Repeat problem (a) under the following conditions:

e A reliable witness claims to have heard detector E 1 but she
cannot tell whether it was High sound (e}) or Low sound (ed).

e A second reliable witness claims detector £2 was definitely not
in High sound state but there is a slight (5%) chance that it
issued a Low sound (e%).

c. You are considering adding to your alarm system a new detector
E?, with the following sensitivity matrix:

OFF | ON

H, | 01 | 09
H, | 09 | 01
Hs | 09 | 01
Hy | 1 0

What is the probability that E? will be activated under the
conditions described in problem (b)?
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2.7.
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You are considering installing a monitor E* at your office,
connected directly to detector E!. The relation between E' and E*
is characterized by the matrix

E*=OFF | E*=0ON

E' = OFF 0.9 0.1
E' =Low 0.2 0.8
E' = HIGH 0.1 09.

What is the probability that E* will turn on under the conditions of
problem (b).

Verify which entries in Table 1 are unconditionally supported by
probability theory and which must be qualified with additional
assumptions about context.

Which of the entries are violated in the Three Prisoners story.

How would Jeffrey’s rule handle the Three Prisoners problem?

I have three cups and one ball. T put the ball under one of the cups and
mix up the cups. You must pick the cup with the ball under it. You
choose one. Then I remove one of the other cups, one that does not have
a ball under it. Now I give yot the chance to change your choice of cups.
Should you do it? How is this puzzle related to the Three Prisoners story?

a.

Formulate Case 2 of the candlelight story using a Bayesian
approach, and determine what additional information is required for
computing P(A le). (Recall: e is non-propositional, so the absolute
value of P(e | ) is meaningless).

Assume reasonable values for the missing information and compute
P(Ale).



Chapter 3

MARKOV AND BAYESIAN
NETWORKS:

Two Graphical Representations of
Probabilistic Knowledge

Probability is not really about numbers;
it is about the structure of reasoning.
— G. Shafer

In this chapter, we shall seek effective graphic representations of the dependencies
embedded in probabilistic models. First, we will uncover a set of axioms for the
probabilistic relation "X is independent of Y, given Z" and offer the set as a formal
definition for the notion of informational dependency. Given an initial set of
independence relationships, the axioms permit us to infer new independencies by
nonnumeric, logical manipulations. Using this axiomatic basis, we will identify
structural properties of probabilistic models that can be captured by graphical
representations and compare two such representations, Markov networks and Baye-
sian networks. A Markov network is an undirected graph whose links represent
symmetrical probabilistic dependencies, while a Bayesian network is a directed
acyclic graph whose arrows represent causal influences or class-property relation-
ships. After establishing formal semantics for both network types, we shall explore
their power and limitations as knowledge representation schemes in inference sys-
tems.

77
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3.1 FROM NUMERICAL TO GRAPHICAL
REPRESENTATIONS

3.1.1 Introduction

Scholarly textbooks on probability theory have created the impression that to
construct an adequate representation of probabilistic knowledge, we must literally
define a joint distribution function P(xi,..,x,) on all propositions and their
combinations, this function serving as the primary basis for all inferred judgments.
While useful for maintaining consistency and proving mathematical theorems, this
view of probability theory is totally inadequate for representing human reasoning.

Consider, for example, the problem of encoding an arbitrary joint distribution,

P(xy,..., x,), for n propositional variables. To store P(xy,..., x,) explicitly would
require a table with 2" entries, an unthinkably large number by any standard. Even
if we found some economical way of storing P(x,..., X,) —or rules for generating
it—there would remain the problem of computing from it the probabilities of
propositions people consider interesting. For example, computing the marginal
probability P(x;) would require summing P(x,..., x,) over all 271 combinations
of the remaining n—1 variables. Similarly, computing the conditional probability
P(x; | x;) via its textbook definition
P(x;, x;)
P 1 xp)= P(x)
would entail dividing two marginal probabilities, each a result of summation over
an exponentially large number of variable combinations. Human performance
shows the opposite pattern of complexity: probabilistic judgments on a small
number of propositions (especially two-component conditional statements such as
the likelihood that a patient suffering from a given disease will develop a certain
type of complication) are issued swiftly and reliably, while judging the likelihood
of a conjunction of propositions entails much difficulty and hesitancy. This
suggests that the elementary building blocks of human knowledge are not entries
of a joint-distribution table. Rather, they are low-order marginal and conditional
probabilities defined over small clusters of propositions.

Another problem with purely numerical representations of probabilistic
information is their lack of psychological meaningfulness. The numerical
representation can produce coherent probability measures for all propositional
sentences, but it often leads to computations that a human reasoner would not use.
As a result, the process leading from the premises to the conclusions cannot be
followed, tested, or justified by the users, or even the designers, of the reasoning
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system. Even simple tasks such as computing the impact of a piece of evidence
E = e on a hypothesis H = & via

Z P(XI,..., xn)
i+ X;#H,E
P(h 1 e)= sz,e;’) _ e
Z P(xl,...,x,,)
x; : Xi#E

require a horrendous number of meaningless arithmetic operations, unsupported by
familiar mental processes.

THE QUALITATIVE NOTION OF DEPENDENCE

The most striking inadequacy of traditional theories of probability lies in the way
these theories address the notion of independence. The traditional definition of
independence uses equality of numerical quantities, as in P(x, y) = P(x) - P(y),
suggesting that one must test whether the joint distribution of X and Y is equal to
the product of their marginals in order to determine whether X and Y are
independent. By contrast, people can easily and confidently detect dependencies,
even though they may not be able to provide precise numerical estimates of
probabilities.

A person who is reluctant to estimate the probability of being burglarized the
next day or of having a nuclear war within five years can nevertheless state with
ease whether the two events are dependent, namely, whether knowing the truth of
one proposition will alter the belief in the other. Likewise, people tend to judge
the three-place relationship of conditional dependency (i.e., X influences Y, given
Z) with clarity, conviction, and consistency. For example, knowing the time of the
last pickup from a bus stop is undeniably relevant for assessing how long we must
wait for the next bus. However, once we learn the whereabouts of the next bus, the
previous knowledge no longer provides useful information. These commonsense
judgments are issued qualitatively, without reference to numerical probabilities,
and could not possibly rely on arithmetic manipulation of precise probabilities.

Evidently, the notions of relevance and dependence are far more basic to
human reasoning than the numerical values attached to probability judgments. In a
commonsense reasoning system, therefore, the language used for representing
probabilistic information should allow assertions about dependency relationships
to be expressed qualitatively, directly, and explicitly. The verification of
dependencies should not require lengthy numerical manipulations but should be
accomplished swiftly with a few primitive operations on the salient features of the
representation scheme. Once asserted, these dependency relationships should
remain a part of the representation scheme, impervious to variations in numerical
inputs. For example, one should be able to assert categorically that a nuclear
disaster is independent of a home burglary; the system should retain and reaffirm
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this independence despite changes in the estimated likelihoods of these and other
events in the system.

Making effective use of information about dependencies is essential in
reasoning. If we have acquired a body of knowledge K and now wish to assess the
truth of proposition A, it is important to know whether it is worthwhile to consult
another proposition B, which is not in K. In other words, before we examine B, we
need to know if its truth value can generate new information that is relevant to A
and is not available from K. Without this knowledge, an inference engine might
spend precious time on derivations bearing no relevance to the task at hand.
Relevance information, if available, can confine the engine’s attention to
derivations that truly are needed for the target conclusion. But how can we encode
relevance information in a symbolic system?

Explicit encoding is clearly impractical; the number of (A, B, K) combinations
needed is astronomical, because relevance and dependency are relationships that
vary depending on the information available at any given time. Acquisition of
new facts may destroy existing dependencies as well as create new ones. For
example, learning a child’s age destroys the dependency between height and
reading ability, and learning that a patient suffers from a given symptom creates
new dependencies among the diseases that could account for the symptom. The
first kind of change will be called normal as it fits the normal picture that learning
reduces dependencies, and the second will be called induced as it permits learned
facts to induce new dependencies. What logic would facilitate these two modes of
reasoning?

In probability theory, the notion of informational relevance is given
quantitative underpinning through the device of conditional independence, which
successfully captures our intuition about how dependencies should change in
response to new facts. A proposition A is said to be independent of B, given the
information K, if

P(AIB,K)=PA|K),

namely, if once K is given, the probability of A will not be affected by the
discovery of B. This formulation can represent both normal and induced
dependencies: A and B could be marginally dependent (i.e., dependent when K is
unknown) and become conditionally independent given K; conversely, A and B
could be marginally independent and become dependent given K. Thus, in
principle, probability theory could provide the machinery for identifying the
propositions that are relevant to each other under a given state of knowledge.

But we have already argued that it is unreasonable to expect people or
machines seeking relevance information to resort to numerical equality tests.
Human behavior suggests that relevance information is inferred qualitatively from
the organizational structure of human memory, not calculated from numerical
values assigned to its components. Accordingly, it would be interesting to explore
how assertions about relevance can be inferred qualitatively, and whether
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assertions equivalent to those made about probabilistic dependencies can be
derived logically without reference to numerical quantities. This task will be
discussed in Section 3.1.2, which establishes an axiomatic basis for probabilistic
dependencies and examines whether the set of axioms matches our intuitive notion
of informational relevancy.

WHY GRAPHS?

A logic of dependency might be useful for verifying whether a set of dependencies
asserted by an agent is consistent and whether a new dependency follows from the
initial set. We could not guarantee, however, that the verification would be
tractable or that any sequence of inferences would match mental steps taken by
humans. To facilitate psychological meaningfulness, we must make sure most
derivations in the logic correspond to simple local operations on structures
depicting commonsense associations. We call such structures dependency graphs.

The nodes in these graphs represent propositional variables, and the arcs
represent local dependencies among conceptually related propositions. Graph
representations meet our earlier requirements of explicitness, saliency, and
stability. The links in the graph permit us to express directly and qualitatively the
dependence relationships, and the graph topology displays these relationships
explicitly and preserves them, under any assignment of numerical parameters.

It is not surprising, therefore, that graphs are the most common metaphor for
conceptual dependencies. Models of human memory are often portrayed in terms
of associational graphs (e.g., semantic networks [Woods 1975], constraint
networks [Montanari 1974], inference networks [Duda, Hart, and Nilsson 1976],
conceptual dependencies [Schank 1972], and conceptual structures [Sowa 1984]).
Graph concepts are so entrenched in our language (e.g., "threads of thoughts,"
"lines of reasoning,"” "connected ideas,” "far-fetched arguments") that one wonders
if people can reason any other way except by tracing links and arrows and paths in
some mental representation of concepts and relations. The next question to ask is
what aspects of informational relevance and probabilistic dependence can be
represented graphically. In other words, what types of dependencies and
independencies are deducible from the topological properties of a graph? This
question will be addressed in Sections 3.2 (undirected graphs) and 3.3 (directed
graphs).

Despite the prevailing use of graphs as metaphors for communicating and
reasoning about dependencies, the task of capturing informational dependencies
by graphs is not at all trivial. We have no problem configuring a graph which
represents phenomena with explicit notions of neighborhood or adjacency (e.g.,
families, electronic circuits, communication networks). However, in modeling
conceptual relations, such as causation, association, and relevance, it is often hard
to distinguish direct neighbors from indirect neighbors; constructing a graph for
the relation therefore becomes more delicate. The notion of conditional
independence in probability theory is a perfect example. For a given probability
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distribution P and any three variables X, Y, Z, it is straightforward to verify
whether knowing Z renders X independent of Y, but P does not dictate which
variables should be regarded as direct neighbors. Thus, many different topologies
might be used to display P’s dependencies. We shall also see that some useful
properties of dependencies and relevancies cannot be represented graphically. The
challenge is to devise graphical schemes that minimize these deficiencies; Markov
and Bayesian networks are two such schemes.

CHAPTER OVERVIEW

This chapter is organized as follows: Section 3.1.2 uncovers a set of axioms for
the probabilistic relation "X is independent of Y, given Z" and offers the set as a
formal definition for the notion of informational dependency. Sections 3.1.3 and
3.1.4 examine those properties of dependencies that can be captured by graphical
representations. Sections 3.2 and 3.3 compare two such representations, Markov
networks and Bayesian networks. For both network types, we shall establish (1) a
formal description of the dependencies portrayed by the networks, (2) an
axiomatic description of the class of dependencies that can be captured by the
network, (3) methods of constructing the network from either hard data or
subjective judgments, and (4) a summary of properties relevant to the network’s
use as a knowledge representation scheme.

3.1.2 An Axiomatic Basis for Probabilistic
Dependencies

NOTATION AND DEFINITIONS

We will consider a finite set U of discrete random variables (also called partitions
or attributes), where each variable X € U may take on values from a finite domain
Dy. We will use capital letters for variable names (e.g., X, Y, Z) and lowercase
letters (e.g., x, y, z) for specific values taken by variables. Sets of variables will be
denoted by boldfaced capital letters (e.g., X, ¥, Z), and assignments of values to
the variables in these sets (also called configurations), will be denoted by
boldfaced lowercase letters (e.g., x, y, z). For example, if Z stands for the set of
variables {X, Y}, then z represents the configuration {x,y}: x € Dx,y € Dy.
When the distinction between variables and sets of variables requires special
emphasis, Greek letters o, f3, ¥ ,... will be used to represent individual variables.

We shall repeatedly use the short notation P(x) for the probabilities
P(X =x),x € Dy, and we will write P(z) for the set of variables Z = {X, Y},
meaning

PZ=79=PX=x,Y=y) x € Dx,y € Dy.
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(In the rare event that we run out of symbols, variable names will be used as
arguments of probability statements, e.g., P(X, Y), which is equivalent to P(x, y).)

DEFINITION: Let U = {a, B, ...} be a finite set of variables with discrete values.
Let P(*) be a joint probability function over the variables in U, and let X, Y, and Z
stand for any three subsets of variables in U. X and Y are said to be conditionally
independent given Z if

P(xly, z) = P(x\z) whenever P(y, z)>0. 3.1

Eq. (3.1) is a terse way of saying the following: for any configuration x of the
variables in the set X and for any configurations y and z of the variables in Y and Z
satisfying P(Y =y, Z = z) > 0, we have

PX=x|Y=y,Z=7=PX=xZ=2). (3.2)

We will use the notation I(X,Z,Y)p or simply I(X,Z,Y) to denote the
conditional independence of X and Y given Z; thus,

I(X, Z, Y)p iff P(xly, z) = P(x|2) (3.3)

for all values x, y, and z such that P(y, z) > 0. Unconditional independence (also
called marginal independence ) will be denoted by I(X, &, Y), i.e.,

I(X, &, Y) iff P(xly) = P(x) whenever P(y) > 0. 3.4)

Note that I(X, Z, Y) implies the conditional independence of all pairs of variables
o€ X and B € ¥, but the converse is not necessarily true.

The following is a partial list of (equivalent) properties satisfied by the
conditional independence relation /(X, Z, Y) [Lauritzen 1982]:

IX,Z2,Y) < P(x,yl2) =P(xlz2) P(y12), (3.5q)
IX,Z2,Y) < af’ glP(x,y,Z)=f(x,Z)g(Y:Z), (3-5b)
IX,Z,Y)<>P(x,y,2)=P(xiz2) P(y, 2). (3.5¢0)

The proof of these properties can be derived by elementary means from Eq. (3.3)
and the basic axioms of probability theory. The properties are based on the
numeric representation of P and therefore would be inadequate as an axiomatic
system.
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AXIOMATIC CHARACTERIZATION

We now ask what logical conditions, void of any reference to numerical forms,
should constrain the relationship I(X, Z, ¥) if in some probability model P it stands
for the statement "X is independent of ¥, given that we know Z."

THEOREM 1: Let X, Y, and Z be three disjoint subsets of variables from U. If
I(X, Z, Y) stands for the relation “X is independent of Y, given Z” in some
probabilistic model P, then I must satisfy the following four independent
conditions:

o Symmetry:
IX,2,Y)<1I1},2,X) (3.6a)

e Decomposition:
IX,Z,YUW) = IX,Z,Y) & IX,Z, W) (3.6b)

o Weak Union:
IX,Z,YOW) = IX,ZUW,Y) (3.6¢)

e Contraction:
IX,Z,Y)&IX,ZUY,W) = IX, Z, YU W). (3.64)

If P is strictly positive, then a fifth condition holds:

o Intersection:
IX,ZUW,Y) & IX,ZOY, W)= IX,Z,YUW) (3.6¢)

REMARKS:

1. The symbol U in ¥ U W represents a union of variable sets and should
not be confused with logical disjunction. More specifically, it stands for
the conjunction of events asserted by instantiating the set union Y U W.
For example, I(X, &, Y U W) stands for

PX=x,Y=y, W=w)=PX=x)PY=y,W=w) Yx,yw

A simpler notation, (X, @, YW), will occasionally be used.

2. The requirement that the arguments of /(-) be disjoint was made for the
sake of future clarity. Theorem 1 holds for overlapping subsets as well,
except that an additional axiom,

IX, Z,Z), (3.61)
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is required to facilitate the derivations. From Egs. (3.6a) through (3.6d)
and Eq. (3.6f) one can prove the theorem

IX,Z,Yy==IX-2,Z,Y-2),

stating that the parts of X and Y that do not overlap Z are sufficient to
determine whether /(X, Z, Y) holds. Thus, once /() is defined on the set
of disjoint triplets (X, ¥, Z) it is also defined on the set of all triplets.
Note that both (X, Z, Z) and I(X, Z, ©) follow from Eq. (3.3).

3. The proof of Theorem 1 can be derived from Eq. (3.3) and from the
basic axioms of probability theory [Dawid 1979]. That Eqs. (3.6a)
through (3.6¢) are logically independent can be demonstrated by letting
U contain four elements and showing that it is always possible to
contrive a subset / of triplets (from the subsets of U) that violates one
property and satisfies the other four.

INTUITIVE INTERPRETATION OF THE AXIOMS

Egs. (3.6a) through (3.6¢) can be interpreted as follows: The symmetry axiom
states that in any state of knowledge Z, if Y tells us nothing new about X, then X
tells us nothing new about Y. The decomposition axiom asserts that if two
combined items of information are judged irrelevant to X, then each separate item
is irrelevant as well. The weak union axiom states that learning irrelevant
information W cannot help the irrelevant information ¥ become relevant to X. The
contraction axiom states that if we judge W irrelevant to X after learning some
irrelevant information Y, then W must have been irrelevant before we learned Y.
Together, the weak union and contraction properties mean that irrelevant
information should not alter the relevance of other propositions in the system;
what was relevant remains relevant, and what was irrelevant remains irrelevant.
The intersection axiom states that unless Y affects X when W is held constant or W
affects X when Y is held constant, neither W nor Y nor their combination can
affect X.

GRAPHICAL INTERPRETATIONS

The operational significance of these axioms and their role as inference rules can
best be explained with a graph metaphor. Let I(X, Z, Y) stand for the phrase "Z
separates X from ¥," i.e., "The removal of a set Z of nodes from the graph (together
with their associated edges) would render the nodes in X disconnected from those
in Y." The validity of Egs. (3.6a) through (3.6¢) is clearly depicted by the chain
X —Z—~Y W and by the schematics of Figure 3.1.
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Figure 3.1. Graphical interpretation of the axioms governing conditional independence.

Symmetry simply states that if Z separates X from Y, it also separates Y from X.
Decomposition asserts that if Z separates X from the compound set § =Y U W, it
also separates X from every subset of S. Weak union provides conditions under
which a separating set Z can be augmented by additional elements W and still
separate X from Y. The condition is that the added subset W should come from the
section of space that was initially separated from X by Z. Contraction provides
conditions for reducing the size of the separating set; it permits the deletion of a
subset Y from the separator Z U Y if the remaining part, Z, separates the deleted
part, ¥, from X. Intersection states that if within some set of variables
S =XuYUZuUW, X can be separated from the rest of S by two different subsets,
S, and 8, (ie., §; =ZUY and S; = Z U W), then the intersection of S; and S, is
sufficient to separate X from the rest of S.
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THE INTERSECTION AXIOM AND STRICTLY
POSITIVE DISTRIBUTIONS

The intersection axiom is the only one that requires P(x) > 0 for all x, and it will
not hold if the variables in U are constrained by logical dependencies. For
instance, if Y stands for the proposition "The water temperature is above freezing"
and W stands for "The water temperature is above 32°F," then knowing the truth of
either proposition clearly renders the other superfluous. Contrary to the
intersection axiom, however, ¥ and W might still be relevant to a third proposition
X ("We will enjoy swimming in that water," for example). The intersection axiom
will hold if we regard these logical constraints as having some small probability €
of being violated.

The assumption P =2 £ > 0 means every event or combination of events, no
matter how outrageous, has some chance of being true. When examining empirical
facts, making this assumption is not as strange as it seems. For example, it is
possible for the water temperature to be above freezing but below 32°F (if it is
very salty, for instance). Once we accept such a possibility we must reject the
statement that knowing either of these facts renders the other superfluous relative
to any X. If X represents our concern about swimming in the water, then the
temperature becomes the relevant fact, and whether it is frozen is irrelevant. On
the other hand, if our interest is ice fishing, the frozenness, not the temperature, is
relevant. This is exactly what Eq. (3.6e) claims: if two properties exert influence
on X, then (at a sufficiently high level of detail) it is impossible that each of the two
properties will render the other irrelevant. Such symmetrical exclusion is possible
only with analytical or definitional properties (e.g., Y = "The water temperature is
above 32°F," W = "The water temperature is not equal to or lower than 32°F") and
not with properties defined by independent empirical tests.

GRAPHS VS. GRAPHOIDS

Decomposition and weak union are strikingly similar to vertex separation in
graphs, but are much weaker. In graphs, two sets of vertices are said to be
separated if there exists no path between an element of one set and an element of
the other. The decomposition property (Eq. (3.6b)), on the other hand, reflects only
one-way implication; a variable X may be independent of each individual variable
in set Y and still be dependent on the entire set. For example, let ¥ be the
outcomes of a set of fair coins, and let X be a variable that gets the value 1
whenever an even number of coins turn up ‘‘heads’’ and gets 0 otherwise. X is
independent of every element and every proper subset of Y, yet X is completely
determined by the entire set Y. Weak union is also weaker than vertex separation.
If Z is a cutset of vertices that separates X from Y in some graph, then enlarging Z
keeps X and Y separated. Weak union, on the other hand, severely restricts the
conditions under which a separating set Z can be enlarged with elements W; it
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states that W should be chosen from a set that, like Y, is already separated from X
by Z.

Any three-place relation I(-) that satisfies Eqs. (3.6a) through (3.6d) is called a
semi-graphoid. If it also obeys Eq. (3.6e), it is called a graphoid [Pearl and Paz
1985]. Eqs. (3.6a) through (3.6d) are satisfied by many dependency models.
Besides vertex separation in undirected graphs, they also hold in directed graphs
(see Section 3.3), and they govern information dependencies based on partial
correlations [Pearl and Paz 1985], embedded multi-valued dependencies (EMVDs)
in relational databases [Fagin 1977], and qualitative constraints [Shafer, Shenoy,
and Mellouli 1987]. Because of this generality, the semi-graphoid axioms have
been proposed as the basis of information dependencies.

Qualitative formulations of dependencies are accompanied by extra properties,
whereas the probabilistic formulation seems to be completely characterized by
these four axioms and therefore is more general. This observation can be expressed
more formally.

COMPLETENESS CONJECTURE [Pearl and Paz 1985]: The set of axioms in
Egs. (3.6a) through (3.6d) is complete when I is interpreted as a conditional
independence relation. In other words, for every three-place relation I satisfying
Egs. (3.6a) through (3.6d), there exists a probability model P such that

Pxly,z)=P(xlz) if IX,ZY).

If the intersection axiom (Eqs. (3.6e)) also is satisfied, then there exists a positive P
satisfying the above relation.

While no proof has yet been found for this conjecture, all known properties of
conditional independence (those valid for all P) have been shown to be derivable
from Egs. (3.6a) through (3.6d). A thorough treatment of the completeness
problem, as well as completeness results for special types of probabilistic
dependencies, are given by Geiger and Pearl [1988a].

WHY AXIOMATIC CHARACTERIZATION?

Axiomatizing the notion of probabilistic dependence is useful for three reasons.
First, it allows us to conjecture and derive interesting and powerful theorems that
may or may not be obvious from the numerical representation of probabilities. For
example, the chaining rule [Lauritzen 1982],

IX, Y, 2) & [(XVY, Z, W) => [(X, Y, W),

follows directly from Eqgs. (3.6a) through (3.6d) and is important for recursively
constructing directed graph representations (see Section 3.3). Another interesting
theorem is the mixing rule [Dawid 1979],

IX,Z,YUW)&IY, Z,W) = IXUW,ZY),



3.1 From Numerical to Graphical Representations 89

which also follows from Egs. (3.6a) through (3.6d). The mixing rule, with
symmetry and decomposition, constitutes a complete axiomatization of marginal
independencies, i.e., independence statements where the knowledge set Z is fixed
[Geiger and Pearl 1988a). The rule states that for each of the variables X, ¥, W to
be independent of the other two, it is enough that just one of them be independent
of the other two and that the remaining pair be mutually independent.
Generalizing recursively to n variables, the rule states that for n variables to be
mutually independent, it is enough that one of them be independent of the other
n — 1, and that the remaining n — 1 be mutually independent.

Second, the axioms can be viewed as qualitative inference rules used to derive
new independencies from some initial set. For example, an expert might provide
us with an initial set X of qualitative independence judgments in the form of
triplets (X, Z, Y), and we may wish to test whether a new triplet 6 =(X", 2", Y")
follows from X. This task, called the membership problem [Beeri 1980] may in
principle be undecidable, because to test whether ¢ follows from £ we must test
whether ¢ holds in every distribution that satisfies X, and the number of
distributions is infinite. If, however, we can derive ¢ by repeated application of
sound axioms, we can guarantee that ¢ follows from X without searching the vast
space of probability distributions. If, in addition, the set of axioms is complete, we
are also guaranteed that every ¢ that follows from X eventually will be derived
from X by repeated application of the axioms. In other words, the decidability of
the membership problem hinges upon finding a complete set of axioms for
conditional independence. Closely related to the membership problem is the task
of verifying whether a mixed set X” of dependencies and independencies is
consistent, namely, whether no subset of X” implies the negation of another. Thus,
with a sound and efficient inference mechanism we can test and maintain
consistency in a database of dependency information.

Finally, an axiomatic system provides a parsimonious and convenient code for
comparing the features of several formalisms of dependency (e.g., probabilistic vs.
qualitative) as well as the expressive power of various representations of such
formalisms. In Sections 3.2 and 3.3, for example, we will use the axioms to
compare the expressive powers of directed and undirected graphs, and to reveal
what types of dependencies cannot be captured by graphical representations.

SUMMARY

The probabilistic relation of conditional independence possesses a set of
qualitative properties that are consistent with our intuitive notion of "X is
irrelevant to Y, once we learn Z." These properties, which are also satisfied by
vertex separation in graphs, are captured by the axioms in Eq. (3.6). The defining
axioms convey the idea that when we learn an irrelevant fact, the relevance
relationships among other propositions remain unaltered; any information that was
relevant remains relevant, and irrelevant information remains irrelevant. The
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axioms established can be used as inference rules for deriving new independencies
and for defining the common features among various formalisms of dependence.

3.1.3 On Representing Dependencies by
Undirected Graphs

WHAT'S IN A MISSING LINK?

Suppose we have a collection U = {0, B,...} of interacting elements, and we decide
to represent their interactions by an undirected graph G, in which the nodes
correspond to individual elements of U. Naturally, we would like to display
independence between two elements as a lack of connection between their
corresponding nodes in G; conversely, dependent elements should correspond to
connected nodes in G. This requirement alone, however, does not take full
advantage of the expressive power of graphical representation. It treats all
connected components of G as equivalent and does not attribute any special
significance to the structure of each connected component.

Clearly, if graph topology is to convey meaning beyond connectedness, a
semantic distinction must be drawn between direct connection and indirect
connection. This means that the absence of a direct link between two elements o
and P should reflect an interaction that is conditional, i.e., it may become stronger,
weaker, or zero, depending on the state of other elements in the system, especially
those that lie on the paths connecting o and B and thus mediate between them.

As an example, consider a group of two males {M;, M,} and two females
{F1, F,} who occasionally engage in pairwise heterosexual activities. The lack of
direct contact between the two males and between the two females can be
represented by the diamond-shaped graph of Figure 3.2, which can also be used to
represent conditional dependencies between various propositions. For example, if
by m; (or f;) we denote the proposition that male M; (or female F;) will carry a
certain disease within a year, then the topology of the network in Figure 3.2 asserts
that f; and f, are independent given m; and m,, namely, once we know for sure
whether M, and M, will carry the disease, knowing the truth of f; ought not
change our belief in f5.1

+ This assumes, of course, that we are dealing with a known disease whose spreading mechanism is
well understood. Otherwise, while we are still learning the disease characteristic, knowledge of f;
may help decide the more basic question of whether the disease is contagious at all, and this
information will and should have an effect on f5.
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Figure 3.2. An undirected graph representing interactions among four individuals.

This conditional independence reflects a model whereby the disease spreads
only by direct contact. Note that the links in this network are undirected, namely,
either partner might be the originator of the disease. This does not exclude
asymmetric interactions (e.g., the disease may be more easily transferable from
males to females than the other way around). Such information, if available, will
be contained in the numerical parameters that eventually will characterize the
links in the network—they will be described in Section 3.2.3.

In summary, the semantics of the graph topology are defined by the meaning of
the missing links, which tells us what other elements mediate the interactions
between nonadjacent elements. This process of mediation will now be compared
to the probabilistic relation of conditional independence (X, Z, Y), Eq. (3.1),
which formalizes the intuitive statement "Knowing Y tells me nothing new about X
if I already know Z."

DEPENDENCY MODELS AND DEPENDENCY MAPS

Let U = {a, B,...} be a finite set of elements (e.g., propositions or variables), and
let X, Y, and Z stand for three disjoint subsets of elements in U. Let M be a
dependency model, that is to say, a rule that assigns truth values to the three-place
predicate I1(X, Z, Y)y, or in other words determines a subset / of triplets (X, Z, Y)
for which the assertion "X is independent of Y given Z" is true. Any probability
distribution P is a dependency model, because for any triplet (X, Z, ¥) we can test
the validity of I(X, Z, Y) using Eq. (3.1). Our task is to characterize the set of
dependency models capturable by graphs, including models that provide no
explicit notion of adjacency. In other words, we are given the means to test
whether a given subset Z of elements intervenes in a relation between the elements
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of X and those of ¥, but it is up to us to decide how to connect the elements in a
graph that encodes these interventions.

An undirected graph G = (V, E) is characterized by a set V of nodes (or
vertices) and a set E of edges that connect certain pairs of nodes in V. By a
graphical representation of a dependency model M, we mean a direct
correspondence between the elements in U (of M) and the set of vertices in V (of
G), such that the topology of G reflects some properties of M. When this
correspondence is established, we will make no distinction between U and V but
will write G = (U, E).

Ideally, if a subset Z of nodes in a graph G intercepts all paths between the
nodes of X and those of ¥ (written < X | Z | Y > ;), then this interception should
correspond to conditional independence between X and Y given Z, namely,

<XI1ZI1Y>; = IX, Z, YY)y,
and conversely,

IX,Z,Y)y = <X1Z1Y>g

This correspondence would provide a clear graphical representation for the notion
that X does not affect Y directly, that the variables in Z mediate between them.
Unfortunately, we are about to see that these two requirements are too strong;
there often is no way of using vertex separation in a graph to display all
dependencies and independencies embodied in a dependency model, even if the
model portrays simple, everyday experiences.

DEFINITION: An undirected graph G is a dependency map (or D-map) of M if
there is a one-to-one correspondence between the elements of U and the nodes V
of G, such that for all disjoint subsets X, Y, Z of elements we have

IX,Z,Y)y = <XIZI1Y>. 3.7
Similarly, G is an independency map (or I-map) of M if
IX,Z2,Y)y < <XI|ZI1Y>q. 3.8

G is said to be a perfect map of M if it is both a D-map and an I-map.

A D-map guarantees that vertices found to be connected are indeed dependent
in M (from the contrapositive form of Eq. (3.7)); it may, however, display a pair of
dependent variables as a pair of separated vertices. An [-map, conversely,
guarantees that vertices found to be separated correspond to independent variables
but does not guarantee that all those shown to be connected are in fact dependent.
Empty graphs are trivial D-maps, while complete graphs are trivial /-maps.
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It is clear that many reasonable models of dependency have no perfect maps.
An example is a model in which I (X, Z, Y) exhibits induced dependencies, i.e.,
totally unrelated propositions become relevant to each other when we learn new
facts. Such a model, implying both I (X, Z,, Y); and —I(X, Z; U Z,, Y),, cannot
have a graph representation that is both an /-map and a D-map, because graph
separation always satisfies

<X1Z |\ Y>, = <XIZ UL | Y>,

for any two subsets Z; and Z, of vertices. Thus, being a D-map requires G to
display Z, as a cutset separating X and Y, while G’s being an I-map prevents
Z, UZ, from separating X and Y. No graph can satisfy both requirements
simultaneously.

This weakness in the expressive power of undirected graphs severely limits
their ability to represent informational dependencies. Consider an experiment with
two coins and a bell that rings whenever the outcomes of the two coins are the
same. If we ignore the bell, the coin outcomes, X and Y, are mutually independent,
ie.,I(X, &, Y),but if we notice the bell (Z), then learning the outcome of one coin
should change our opinion about the other coin, i.e., = I (X, Z, Y). How can we
graphically represent the simple dependencies between the coins and the bell, or
between any two causes leading to a common consequence? If we take the naive
approach and assign links to (Z, X) and (Z, Y), leaving X and Y unlinked, we get
the graph X—Z—Y. This graph is not an I-map because it (wrongly) asserts that X
and Y are independent given Z. If we add a link between X and Y we get the trivial
I-map of a complete graph, which no longer reflects the obvious fact that the two
coins are genuinely independent (the bell being a passive device that does not
affect their interaction). In Section 3.3, we will show that such dependencies can
be represented completely with the richer language of directed graphs. For now,
let us further examine the representational capabilities of undirected graphs.

Our inability to provide graphical representations for some models of
dependency (e.g., induced dependency) raises the need to delineate the class of
models that do lend themselves to graphical representation. This we do in the
following section by establishing an axiomatic characterization of the family of
relations that are isomorphic to vertex separation in graphs.

3.1.4 Axiomatic Characterization of Graph-
Isomorph Dependencies

DEFINITION: A dependency model M is said to be a graph-isomorph if there
exists an undirected graph G = (U, E) that is a perfect map of M, i.e., for every
three disjoint subsets X, Y, and Z of U, we have

IX,Z2,Y)y < <XIZIY > 3.9
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THEOREM 2 [Pearl and Paz 1985]: A necessary and sufficient condition for a
dependency model M to be a graph-isomorph is that I(X, Z,Y)y satisfies the
following five independent axioms (the subscript M is dropped for clarity ):

o Symmetry:
IX,Z2,Y)y<= I(Y,Z,X) 3.10a)
® Decomposition:
IX,ZYUW)=IX,Z,Y)&IX, Z, W) (3.10p)
o Intersection:
IX,ZUWDN&IX,ZOY, W)=I1(X,Z, YUW) (3.10¢)
e Strong union:
IX, Z2,Y) =IX,ZUW,Y) 3.104)
o Transitivity:
IX,2,Y) =1X,Z,Vorl(Y,Z,Y). (3.10¢)
REMARKS:
1. v is a singleton element of U, and all three arguments of I(-) must
represent disjoint subsets.
2. The axioms are clearly satisfied for vertex separation in graphs. Eq.
(3.10e¢) is the contrapositive form of connectedness transitivity, stating
that if X is connected to some vertex Y and 7y is connected to ¥, then X
must also be connected to Y. Eq. (3.10d) states that if Z is a vertex cutset
separating X from Y, then removing additional vertices W from the
graph leaves X and Y still separated. Eq. (3.10c) states that if X is
separated from W with Y removed and X is separated from Y with W
removed, then X must be separated from both Y and W.
3. Egs. (3.10¢) and (3.10d) imply the converse of Eq. (3.10b), meaning / is

completely defined by the set of triplets (o, Z, B) in which o and {3 are
individual elements of U:

IX,2,Y) <= (VoeX)(VBe Y)I(o, Z B).

Equivalently, we can express the axioms in Eq. (3.10) in terms of such
triplets. Note that the union axiom, Eq. (3.10d), is unconditional and
therefore stronger than Eq. (3.6¢), which is required for probabilistic
dependencies. Eq. (3.10d) provides a simple way to construct a unique
graph G, that is an I-map of M: starting with a complete graph, we
delete every edge (a, B) for which I(a., Z, ) holds.
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Proof:

1. The "necessary” part follows from the observation that all five axioms are
satisfied by vertex separation in graphs. The logical independence of the five
axioms can be demonstrated by letting U contain four elements and showing
that it is always possible to contrive a subset / of triplets that violates one axiom
and satisfies the other four.

2. To prove sufficiency, we must show that for any set I of triplets (X, Z, Y)
satisfying Eqgs. (3.10a) through (3.10e), there exists a graph G such that
X, Z,Y)is in [ iff Z is a cutset in G that separates X from Y. We show that
Gy = (U, Ey) is such a graph, where (o, B)¢E, iff I(x, Z, B). In view of
Remark 3 above, it is sufficient to show that

I, 8, B = <alSIp>¢, where o, e UandS U,

since the converse follows automatically from the construction of G.

This is proved by finite descending induction:

i. For |S| = n-2, the theorem holds automatically, because of the way G, is
constructed.

iil.  Assume the theorem holds for all S of size I1S| =k <n-2. Let §” be any set of
size 18| = k—1. For k < n—2, there exists an element vy outside §” U o U B, and
using Eq. (3.10d), we have I(a, S°, B) = I(a, $" U, B).

iii. By Eq. (3.10e) we have either I(a, §”, y) or I(v, S”, B).
iv.  Applying Eq. (3.104) to either alternative in (iii) gives I{o, S" U B, V).

v.  The middle arguments §”wyand S” U B in (ii) and (iv) are both of size £, so by
the induction hypothesis we have <alS U YIB>, and <alS U BIy>g, .

vi. By Eq. (3.10c¢), the intersection property for vertex separation in graphs, (iv)
and (v) imply <alS°1B>¢, . QED.

Having a complete characterization for vertex separation in graphs allows us to
test whether a given model of dependency lends itself to graphical representation.
In fact, it is now easy to show that probabilistic models may violate both of the last
two axioms. Eq. (3.10d) is clearly violated in the coins and bell example of the
preceding subsection. Transitivity (Eq. (3.10e)) is violated in the same example,
for if one of the coins is not fair, the bell’s response is dependent on the outcome
of each coin separately; yet the two coins are independent of each other. Finally,
Eq. (3.10c¢) is violated whenever ¥ and W logically constrain one another, as in the
earlier water temperature example.

Having failed to provide isomorphic graphical representations for even the
most elementary models of informational dependency, we settle for the following
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compromise: instead of complete graph isomorphism, we will consider only I-
maps, i.e., graphs that faithfully display every dependency. However,
acknowledging that some independencies will escape representation, we shall
insist that their number be kept at a minimum-—in other words, that the graphs
contain no superfiuous edges.

3.2 MARKOV NETWORKS

When a connection is drawn between such seemingly unrelated objects as
probability distributions and graphs, it is natural to raise the following three
questions:

1. Given a probability distribution P, can we construct an I-map G of P that
has the minimum number of edges?

2. Given a pair (P, G), can we test whether G is an /-map of P?

3. Given a graph G, can we construct a probability distribution P such that
G is a perfect map of P?

The theory of Markov fields provides satisfactory answers to Question 2 for strictly
positive P [Isham 1981; Lauritzen 1982]. This treatment is rather complex and
relies heavily on the numerical representation of probabilities. We shall start with
Question 1 and show the following:

e Question 1 has a simple unique solution for strictly positive
distributions.

e The solution to Question 2 follows directly from the solution to
Question 1.

e The solutions are obtained by nonnumerical analysis, based solely on
Egs. (3.6a) through (3.6¢) in Section 3.1.2.

Question 3 recently was answered affirmatively [Geiger and Pearl 1988a] and will
be treated briefly in Section 3.2.3. Sections 3.2.3 and 3.2.4 focus on finding a
probabilistic interpretation for a graph G such that the dependencies shown inG
reflect empirical knowledge about a given domain.

3.2.1 Definitions and Formal Properties

DEFINITION: A graph G is a minimal I-map of a dependency model M if
deleting any edge of G would make G cease to be an I-map. We call such a graph
a Markov network of M.
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THEOREM 3 [Pearl and Paz 1985]: Every dependency model M satisfying
symmetry, decomposition, and intersection (Eq. (3.6)) has a unique minimal I-map
Gy = (U, Ey) produced by connecting only those pairs (o, B) for which
Ho, U~ o B, By is FALSE, i.e.,

(o, Bye Ey if 1o, U—0—B, By 3.11)

The proof is given in Appendix 3-A.

DEFINITION: A Markov blanket BL;(0) of an element o.€ U is any subset S of
elements for which

I, S, U-S—-0o) and 0. ¢ S. (3.12)

A set is called a Markov boundary of o, denoted B (o), if it is a minimal Markov
blanket of a, i.e., none of its proper subsets satisfy Eq. (3.12).

The boundary B,(o) is to be interpreted as the smallest set of elements that
shields o from the influence of all other elements. Note that B;(0) is nonempty
because I (X, S, &) guarantees that the set § = U — a satisfies Eq. (3.12).

THEOREM 4 [Pearl and Paz 1985]: Every element a.€ U in a dependency model
satisfying symmetry, decomposition, intersection, and weak union (Eq. (3.6)) has a
unique Markov boundary B;(Q). Moreover, B;(Q) coincides with the set of vertices
B, (o) adjacent to o in the minimal I-map G .

The proof of Theorem 4 is given in Appendix 3-B. Since B;(0) coincides with
Bg, (o), the following two interpretations of direct neighbors are identical:
neighborhood as a blanket that shields o from the influence of all other variables,
and neighborhood as a permanent bond of mutual influence between two variables,
a bond that cannot be weakened by other elements in the system. Models
satisfying the conditions of Theorem 4 are calied pseudo-graphoids, i.e., graphoids
lacking the contraction property (Eq. (3.64)).

Since every strictly positive distribution defines a pseudo-graphoid, we can
derive two corollaries.

COROLLARY 1: The set of Markov boundaries B/(0) induced by a strictly
positive probability distribution forms a neighbor system, i.e., a collection
Bj = (B,(00) : o€ U} of subsets of U such that for all pairs o, B e Uwe have

(i) o e By(o) and
(if) ove Bi(B) iff Be Bi(a).
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COROLLARY 2: The Markov network Gg of any strictly positive distribution
can be constructed by connecting each variable o. to all members of its Markov
boundary B(0).

Corollary 2 is useful because often it is the Markov boundaries B;(o) that are
given to us when we request the factors that affect o most directly. These factors
may be the immediate consequences of an event, the justifications for an action, or
the salient properties that characterize a class of objects or a concept. Moreover,
since either construction will yield an /-map, many global independence
relationships can be validated by separation tests on graphs constructed from local
information.

TESTING I-MAPNESS

We are now in a position to answer Question 2 from the beginning of this
subsection: can we test whether a given graph G is an I-map of a distribution P
(i.e., test the I-mapness of G)? We assume that P is not given explicitly but is
represented by a procedure that answers queries of the type “‘Is I(X, Z, Y) true in
P

THEOREM 5: Given a strictly positive probability distribution P on U and a
graph G = (U, E), the following three conditions are equivalent:

1. Gisanl-map of P.
2. G is a supergraph of the Markov network G, of P, i.e.,

(0,B)e E  whenever —I(a, U—o—B, B).

3. G is locally Markov with respect to P, i.e., for every variable o.€ U we
have I(o, Bg(o), U — o~ Bg(®), where Bg(Q) is the set of vertices
adjacent to o.in G.

Proof: The implication (ii) => (i) follows from the /-mapness of G, (Theorem 3), and (i)
=> (iii) follows from the definition of /-mapness. It remains to show (iii) => (ii), but this
follows from the identity of B;(ct) and B (o) (Theorem 4). Q.E.D.

Properties (ii) and (iii) provide local procedures for testing /-mapness without
examining every cutset in G. To show the essential role played by the assumption
of strict positivity let us demonstrate the insufficiency of local tests when variables
are subjected to functional constraints. Imagine four random variables constrained
by equality, i.e., X =Y = Z = W. Any single variable is a Markov boundary of any
other, because knowing the first variable determines the value of the second.
Consequently, the graph shown in Figure 3.3a would qualify under the Markov
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boundary condition (Property iii of Theorem 5). This graph is not an /-map of the
distribution, however, because the pair (X, Y) is not independent of the pair (Z, W).
Worse yet, since any pair of variables is rendered independent given the values of
the other pair, I(ct, U— o — 3, B) holds for every pair (o, B). Thus, were we to
construct G by the edge-deletion method of Eq. (3.11), we would get an empty
graph (Figure 3.3b), which obviously is not an /-map of the distribution.

(a) (b)

Figure 3.3. Failure of local tests for I-mapness under equality constraints X=Y=272=W.
(a) A graph qualifying under the Markov boundary test. (b) An empty graph
qualifying under the edge-deletion test (Eq. (3.11)).

It can be shown that even if we connect each variable to the union of all its
Markov boundaries, we will not get an /-map when categorical constraints are
present. Thus, there appears to be no local test for /-mapness of undirected graphs
that works for extreme probability distributions. We shall see in Section 3.3 that
directed graphs do not suffer from this deficiency; local tests for /-mapness and
minimal /-mapness exist even for distributions that reflect categorical constraints.
It should be noted that the tests in (ii) and (iii), while local, still involve all the
varibles in U and therefore may require exponentially complex procedures,
especially when P is given as a table. Fortunately, in most practical applications
we start with the graph representation G and use the probability model P merely as
a theoretical abstraction to justify the operations conducted on G.

We see that representations of probabilistic independencies using undirected
graphs rest heavily on the intersection and weak union axioms, Egs. (3.6e) and
(3.6¢). In contrast, we shall see in Section 3.3 that directed graph representations
rely on the contraction and weak union axioms, with intersection playing only a
minor role.
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3.2.2 Illustrations

GRAPHOIDS AND THEIR MARKOV NETWORKS

To see the toles of the various axioms of Eq. (3.6), consider a set of four integers
U=1{(,2,3,4)},and let ] be the set of twelve triplets listed below:

I=1{1,23),(,3,4), 2,34, {1,2},3,4),
(1, {2, 3}, 4, 2, {1, 3}, 4) , symmetrical images }.

All other triplets are assumed to be dependent, i.e., outside /. It is easy to see that /
satisfies the other axioms of Eq. (3.6) but does not satisfy contraction; [ contains
(1, 2, 3) and (1, {2, 3}, 4) but not (1, 2, {3, 4)). Thus, (from Theorem 1) [ is
supported by no probability model, but (from Theorem 3) it has a unique minimal
I-map Gy, shown in Figure 3.4. Moreover, Theorem 4 ensures that G, can be
constructed in two different ways, either by deleting the edges (1, 4) and (2, 4)
from the complete graph, in accordance with Eq. (3.11), or by computing from 7
the Markov boundary of each element, in accordance with Eq. (3.12), yielding

B,(1) = (2,3}, B,2)={1,3}, B,(3) = {1, 2,4}, B4 ={3}.

Figure 3.4. The minimal I-map, G, of 1.
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Now consider a modified list /” containing only the last two triplets of / (and
their symmetrical images):

I"=1{(1, {2, 3}, 4), 2, {1, 3}, 4), symmetrical images).

I” is a semi-graphoid (it satisfies Egs. (3.6a) through (3.64)) but not a graphoid,
because the absence of the triplet ({1,2}, 3,4) violates the intersection axiom (Eq.
(3.6¢)). Hence, I” can represent a probability model but not a strictly positive one.
Indeed, if we try to construct G, by the usual criterion of edge-deletion (Eq.
(3.11)), we get the graph in Figure 3.4, but it is no longer an I-map of I; it shows 3
separating 1 from 4, but (1, 3, 4) is not in /”. In fact, the only /-maps of /” are the
three graphs in Figure 3.5, and the minimal /-map clearly is not unique.

1 1 1
2 3 2 3 2 3
4
4 4 4
(@) (b) ©

Figure 3.5. The three I-maps of I".

Now consider the list

I7=1{(1,2,3),(1,3,4), (2,3, 4), ({1, 2}, 3, 4), symmetrical images ).

s

17" satisfies Egs. (3.6a), (3.6b), and (3.6¢), but not the weak union axiom (Eq.
(3.6¢)). From Theorem 3 we can still construct a unique /-map for I” using the
edge-deletion method, but because no triplet of the form (o, U -~ o — B, B) appears
in 1, the only I-map for this list is the complete graph. Moreover, the Markov
boundaries of /”” do not form a neighbor set (B;-(4) = 3, B;(2) = {1, 3, 4}, so
2 & B;-(4) while 4 € B;-(2)). Thus, we see that the lack of weak union prevents us
from constructing an /-map by the Markov boundary method.

Since I does not obey the contraction property (Eq. (3.6d)), no probabilistic
model can induce this set of independence relationships unless we add the triplet
(1,2,4) to 1. If I were a list of statements given by a domain expert, it would be



102 Markov and Bayesian Networks

possible to invoke Eq. (3.6a) through (3.6¢) to alert the expert to the inconsistency
caused by the absence of (1, 2, 4). The incompleteness of I” and I~ would be
easier to detect by graphical means because they interfere with the formation of
G and could be identified by a system attempting to construct it.

CONCEPTUAL DEPENDENCIES AND THEIR
MARKOV NETWORKS

Consider the task of constructing a Markov network to represent the belief about
whether agent A will be late for a meeting. Assume the agent identifies the
following variables as having influence on the main question of being late to a
meeting:

1. The time shown on the watch of Passerby 1.

2. The time shown on the watch of Passerby 2.

3. The correct time.

4. The time it takes to travel to the meeting place.
5

The arrival time at the meeting place.

The construction of G can proceed by one of two methods:
e The edge-deletion method.

e The Markov boundary method.

Following Eq. (3.11), the first method requires that for every pair of variables
(o, B) we determine whether fixing the values of all other variables in the system
will render our belief in o sensitive to B. We know, for example, that the reading
on Passerby 1’s watch (1) will vary with the actual time (3) even if all other
variables are known. On that basis, we can connect node 1 to node 3 and, by
proceeding this way through all pairs of variables, construct the graph of Figure
3.6. The unusual edge (3, 4) reflects the reasoning that if we fix the arrival time
(5), the travel time (4) must depend on the current time (3).

The Markov boundary method requires that for every variable o in the system,
we identify a minimal set of variables sufficient to render the belief in o, insensitive
to all other variables in the system. It is a commonsense task, for instance, to
decide that once we know the current time (3), no other variable can affect what
we expect to read on passerby 1’s watch (1). Similarly, to estimate our arrival time
(5), we need only know the current time (3) and how long it takes to travel (4),
independent of the watch readings (1) and (2). On the basis of these
considerations, we can connect 1 to 3, 5 to 4 and 3, and so on. After we find
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(1) watch - 1 (2) watch - 2

(4) travel time

(3) current time

(5) arrival time

Figure 3.6. The Markov network representing the prediction of A’s arrival time.

the immediate neighbors of any four variables in the system, the graph G, will
emerge, identical to that of Figure 3.6.

Once established, G can be used as an inference instrument. For example, we
need not state explicitly that knowing the current time (3) renders the time on
Passerby 1°s watch (1) irrelevant for estimating the travel time (4) (i.e., I(1,3,4));
we can infer the information from the fact that 3 is a cutset in G, separating 1
from 4. Deriving such conclusions by syntactic manipulation of Egs. (3.6a)
through (3.6¢) probably would be more complicated. Additionally, the graphical
representation can help maintain consistency and completeness during the
knowledge-building phase. One need ascertain only that the relevance boundaries
identified by the expert form a neighbor system.

SUMMARY

The essential qualities of conditional independence are captured by five logical
axioms: symmetry (Eq. (3.6a)), decomposition (Eq. (3.6b)), weak union (Eq.
(3.6¢)), contraction (Eq. (3.6d)), and intersection (Eq. (3.6¢)). Intersection holds
only for strictly positive distributions (i.e., reflecting no functional or definitional
constraints) and is essential to the construction of undirected graphs. Symmetry,
decomposition, and intersection enable us to construct a minimal graph G,
(Markov network), in which every cutset corresponds to a genuine independence
condition. The weak union axiom is needed to guarantee that the set of neighbors
that G, assigns to each variable o is the smallest set required to shield o from the
effects of all other variables.
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The Markov network representation of conditional independence offers a sound
inference mechanism for deducing, at any state of knowledge, which propositional
variables are relevant to each other. If we identify the Markov boundaries
associated with each proposition in the system and treat them as neighborhood
relations defining a graph Gy, then we can correctly identify independence
relationships by testing whether the set of known propositions constitutes a cutset
in Go.

Not all probabilistic dependencies can be captured by undirected graphs. For
example, a dependency may be induced and non-transitive (see the coins and bell
example of Section 3.1.3), but graph separation is strictly normal and transitive.
For this reason directed graphs are finding wider application in reasoning systems
[Duda, Hart, and Nilsson 1976; Howard and Matheson 1981; Pearl 1986¢]. A
systematic treatment of directed graph representations is given in Section 3.3.

3.2.3 Markov Network as a Knowledge Base

QUANTIFYING THE LINKS

So far, we have established the semantics of Markov networks in terms of the
purely qualitative notion of conditional independence, i.e., a variable is proclaimed
independent of all its non-neighbors once we know the values of its neighbors.
However, if the network is to convey information useful for decisions and
inference, we must also provide quantitative assessments of the strength of each
link. In Figure 3.2, for example, if we know that the couple (M, F) meet less
frequently than the couple (M, F1), then the first link should be weaker than the
second to show weaker dependency between the propositions 7, and f5.

The assigning of weights to the links of the graph must be handled with
caution. If the weights are to be used in translating evidential data into meaningful
probabilistic inferences, we must be certain that the model is both consistent and
complete. Consistency guarantees that we do not overload the graph with too
many parameters—overspecification can lead to contradictory conclusions,
depending on which parameter is consulted first—and completeness protects us
from underspecifying the model and thus guarantees that routines designed to
generate conclusions will not get deadlocked for lack of information.

An attractive feature of the traditional joint-distribution representation of
probabilities is the ease with which one can synthesize consistent probability
models or detect inconsistencies in models. In this representation, to create a
complete and consistent model, one need only assign to the elementary events (i.e.,
conjunctions of atomic propositions) nonnegative weights summing to one. The
synthesis process in the graph representation is more hazardous. For example,
assume that in Figure 3.2 we want to express the dependencies between the
variables {M;, M,, Fi, F,} by specifying the four pairwise probabilities
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PM,y, F\),P(Fi,M,),P(M,, F,), and P(F,, M). Unless the parameters given
satisfy some nonobvious relationship, no probability model will support all four
inputs, and we will get inconsistencies. Moreover, it is not clear that we can put
all numerical inputs together without violating the qualitative dependency
relationships shown in the graph. On the other hand, if we specify the pairwise
probabilities of only three pairs, incompleteness will result; many models will
conform to the input specification, and we will be unable to provide answers to
many useful queries.

The theory of Markov fields [Isham 1981, Lauritzen 1982] provides a safe
method (called Gibbs’ potential) for constructing a complete and consistent
quantitative model while preserving the dependency structure of an arbitrary graph
G. The method consists of four steps:

1. Identify the cliquest of G, namely, the largest subgraphs whose nodes
are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility function g;(c;),
which measures the relative degree of compatibility associated with the
value assignment c; to the variables included in C;.

3. Form the product II g;(c;) of the compatibility functions over all the
cliques. !

4. Normalize the product over all possible value combinations of the
variables in the system

P(.XI,..., xn) =K Hgi(ci)s (3°13)

where
1

.....

The normalized product P in Eq. (3.13) constitutes a joint distribution that
embodies all the conditional independencies portrayed by the graph G, i.e., G is an
I-map of P (see Theorem 6, below).

To illustrate the mechanics of this method, let us return to the example of
Figure 3.2 and assume that the likelihood of two members of the i-th couple having
the same state of disease is measured by a compatibility parameter o;, and the
likelihood that exactly one partner of the couple will carry the disease is assigned a

T We use the term cligue for the more common term maximal clique .
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compatibility parameter ;. The dependency graph in this case has four cliques,
corresponding to the four edges

Ci={M,F),Cy={M;, F,},
C;={M,,Fi}, and C4={M,, F,},

and the compatibility functions g; are given by

] % if iy =X,
8ilxi,, x;,) = B if x, #x,, 3.14)

where x;, and x;, are the states of disease associated with the male and female,
respectively, of couple C;. The overall probability distribution function is given
by the normalized product

PM{ My, F,Fy)=Kg (M, F)g,(My, F3)g:(My, Fy) g4(M2, F)

Iy =xip | 1= 1lx;y — x5!

=K TIp; o , (3.15)

where K is a constant that makes P sum to unity over all states of the system, i.e.,

K1 =TI (o +B) + oY B +11 Bizﬁ. (3.16)
i i Ty B;

For example, the state in which only the males carry the disease,
(my, =f1, M2, —f2), will have a probability measure KB;B,B;B4 because the male
and female of each couple are in unequal states of disease. The state
(my, f1, —=my, —f2), on the other hand, has the probability Ko, B,B;0 because
couples C; and Cy4 are both homogeneous.

To show that P is consistent with the dependency structure of G, we note that
any product of the form of Eq. (3.15) can be expressed either as the product
fM,F,F,) g(F,Fy,,M,) or as f'(F;,M,M;) g"(M,,M,, F,). Thus,
invoking Eq. (3.5¢), we conclude that IM,F;UF,, M), and
I(FI,Ml UMz,Fz)p.

The next theorem ensures the generality of this construction method.

THEOREM 6 [Hammersley and Clifford 1971]: A probability function P formed
by a normalized product of nonnegative functions on the cliques of G is a Markov
field relative to G, i.e., G is an I-map of P.
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Proof: G is guaranteed to be an I-map if P is locally Markov relative to G (Theorem 5). It
is sufficient, therefore, to show that-the neighbors in G of each variable o constitute a
Markov blanket of o relative to P, i.e., that (o, Bg(o), U— a— Bg(o)) or (using Eq.
(3.5¢)) that

P(a, Bg(), U - a-Bg(o) = f1(a, Bg(0)) f2(U — o). (3.17)

Let J,, stand for the set of indices marking all cliques in G that include o, J, = {j:o e C; }.
Since P is in product form, we can write

J j€Ja jeJa

The first product in Eq. (3.18) contains only variables that are adjacent to o in G; otherwise,
C; would not be a clique. According to the definition of J, the second product does not
involve o. Thus, Eq. (3.17) is established. Q.E.D.

The converse of Theorem 6 also holds: any Markov field can be expressed in
product form as in Eq. (3.13). The theorem and its converse also hold for extreme
probabilities, although the proof given relies on the locally Markov property
(condition iii of Theorem 5) and therefore is restricted to positive probabilities.
Theorem 6 still does not guarantee that every conditional dependency shown in the
graph will be embodied in P if P is constructed by the product form of Eq. (3.13),
but a more recent result gives us this guarantee, i.e., every undirected graph G has
a distribution P such that G is a perfect map of P [Geiger and Pear] 1988a]. Thus,
we can answer ves to Question 3 of the introduction to this section.

INTERPRETING THE LINK PARAMETERS

The preceding method of modeling guarantees consistency and completeness, but
it leaves much to be desired. In particular, it is difficult to assign meanings to the
parameters of the compatibility functions. If a model’s parameters are to lead to
meaningful inferences or decisions, they must come either from direct
measurements or from an expert who can relate them to actual human experience.
Both options encounter difficulties in the Markov network formulation.

Let us assume we have a huge record of medical tests conducted on
homogeneous subjects, and the record includes a full account of their sexual
habits. Can we extract from it the desired compatibility functions g;(M, F)? The
difficulty is that any disease pattern we observe on a given couple is a function not
only of the relations between the male and female of this couple but also of
interaction between this couple and the rest of the population. In other words, our
measurements invariably are taken in a noisy environment; in our case, this means
a large network of interactions surrounds the one that is tested.

To further appreciate the difficulties associated with context- dependent
measurements, let us take an ideal case and assume that our record is based solely
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on groups of four interacting individuals (as in Figure 3.2), with each group
isolated from the rest of the world and all groups having the same sexual pattern.
In other words, we are given the joint probability P (M, F, F,, M), or a close
approximation to it, and we are asked to infer the compatibility functions g;.
Clearly it is not an easy task, even in this ideal case; using the data provided by P
we must solve a set of simultaneous nonlinear equations for g;, such as Eq. (3.13)
or Eq. (3.15). In addition, the solution we obtain for g; will not be applicable to
new situations in which, say, the frequency of interaction is different. Thus, we see
why the compatibility parameters cannot be given meaningful experiential
interpretation.

For a parameter to be meaningful, it must be an abstraction of some invariant
property of one’s experience. In our example, the relation between frequency of
contact and transference of the disease from one partner to another, under
conditions of perfect isolation from the rest of the world, is meaningful. In
probabilistic terminology, the quantities P(f, Im, = m;) and P(f; | —m;, = my)
and their relations to the frequency of interaction of couple {M, F} are
perceived as invariant characteristics of the disease, generalizable across contexts.
It is with these quantities, therefore, that an expert would choose to encode
experiential knowledge, and it is these quantities that an expert is most willing to
assess. Moreover, were we conducting a clean scientific experiment, these are the
quantities we would choose to measure.

Unfortunately, the Markov network formulation does not allow the direct
specification of such judgmental input. Judgments about low-order conditional
probabilities (e.g., P (m1 ! f1, — m»)) can be taken only as constraints that the joint
probability distribution (Eq. (3.13)) must satisfy; from them, we might be able to
calculate the actual values of the compatibility parameters. But this is a rather
tedious computation, especially if the number of variables is large (imagine a
group of n interacting couples), and the computation must be performed at the
knowledge-acquisition phase to ensure that the expert provides a consistent and
complete set of constraints.

3.2.4 Decomposable Models

Some dependency models do not suffer from the quantification difficulty described
in the preceding section; instead, the compatibility functions are directly related to
the low-order marginal probabilities on the variables in each clique. Such
decomposable models have the useful property that the cliques of their Markov
networks form a tree.

MARKOV TREES

To understand why tree topologies have this desirable feature, let us consider a
distribution P having a Markov network in the form of a chain

X1—X—X5—X 4.
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From the chain rule of basic probability theory (Eq. (2.12)) we know that every
distribution function P (x,,..., x,) can be represented as a product:

Py, v, X ) =P Px21x1) . Py 1 X1, ooy X1). 3.19)

Thus, if we expand P in the order dictated by the chain, we can write

P(xy, x5, %3, X4) =Px) POralx) P(xslxy, x3) Plxglxy, xa, x3),

and using the conditional independencies encoded in the chain, we obtain

P(xy, x5, x3,x4) =P (x1) POy 1xp) P(x3lxg) Pxglxs).

The joint probability P is expressible in terms of a product of three functions, each
involving a pair of adjacent variables. Moreover, the functions are the very
pairwise conditional probabilities that should carry conceptual meaning, according
to our earlier discussion. This scheme leaves the choice of ordering quite flexible.
For example, if we expand P in the order (X3, X5, X4, X1), we get

P (x3, X3, x4, x1) = P(x3) P (x21x3) P(x41x3, x2) P (x| x3, X2, x4)

=P(x3) P(xp1x3) P(xglxs) Pxglxz),

again yielding a product of edge probabilities. The only requirement is this: as we
order the variables from left to right, every variable except the first should have at
least one of its graph neighbors to its left. The ordering (X, X4, X5, X3), for
example, would not yield the desired product form because X, is positioned to the
left of its only neighbor, X 5.

Given a tree-structured Markov network, there are two ways to find its
product-form distribution by inspection: directed trees and product division.

®
=)}

Figure 3.7. An undirected tree of seven variables.
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Consider the tree of Figure 3.7, where the variables X ,..., X; are marked 1,...,7 for
short. If we arbitrarily choose node 3 as a root and assign to the links arrows
pointing away from the root, we get the directed tree of Figure 3.8, where every
non-root node has a single arrow coming from its unique parent. We can now
write the product distribution by inspection, going from parents to children:

P(A,..D=PBYPAIZHPRIZHPHAIHPBIHPGIHP(TI4H. (3.20)

1 5
3 4

>- 6

) 7

Figure 3.8. A directed tree with root 3.

The conditioning (right) variable in each term of the product is a direct parent of
the conditioned (left) variable.

The second method for expressing the joint distribution is to divide the product
of the marginal distributions on the edges (i.e., cliques) by the product of the
distributions of the intermediate nodes (i.e., the intersections of the cliques). The
distribution corresponding to the tree of Figure 3.8 will be written

_ PA,HP2,3)PB,.HPA S5HPAL.6)PHA. T
N P(3) P(3) P4 P& P&

P, ..7 , (321

which is identical to Eq. (3.20). Each variable in the denominator appears one
more time than it appears in the numerator.
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JOIN TREES

Trees are not the only distributions amenable to product forms. Consider, for
example, the structure of Figure 3.9a. Applying the chain rule in the order
(A, B, C, D, E), and using the independencies embedded in the graph, we obtain

P(a, b, c,d, e)=P(a)P(bla) P(cla, b) P(dla, b, c) Pela, b, c, d)
=P(a) P(bla) P(cla, b) P(d b, c) P(elc)

_ P, b, c)Pb,c,d) P, e)
- P(b, ¢) P(c)

(3.22)

(@) (b) ©

Figure 3.9. Two join trees, (b) and (c), constructed from the cliques of the graph in (a).

Eq. (3.22) again displays the same pattern as Eq. (3.21): the numerator is a product
of the distributions of the cliques, and the denominator is a product of the
distributions of their intersections. Note that C is a node common to all three
cliques—{A, B, C}, {B, C, D}, and {C, E}— yet P(c) appears only once in the
denominator. The reason will become clear in the ensuing discussion, where we
will justify the general formula for clique trees.

The unique feature of the graph in Figure 3.94 that enables us to obtain a
product-form distribution is the fact that the cliques in this graph can be joined to
form a tree, as seen in Figure 3.9b and Figure 3.9¢. More precisely, there is a tree
that is an /-map of P, with vertices corresponding to the cliques of G. Indeed,
writing C; = {A, B, C},C, = {B,C, D}, and C5 = {C, E}, we see that C5 and C,
are independent given C,, and we draw the /-map C—C,—C5 of Figare 3.9b.
Since €3 and C, are independent given C;, we can also use the I-map €C,—C,—C;
of Figure 3.9c. This nonuniqueness of the minimal /-maps, an apparent
contradiction to Theorem 3, stems from the overlapping of C;, C,, and C5, which
induces equality constraints and occasionally leads to violation of the intersection

axiom (Eq. (3.6¢)).
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Now we shall present a theorem about chordal graphs [Beeri et. al. 1983] in
order to further articulate the concept of a clique tree.

DEFINITION: An undirected graph G = (V, E) is said to be chordal if every
cycle of length four or more has a chord, i.e., an edge joining two nonconsecutive
vertices.

THEOREM 7: Let G be an undirected graph G =(V, E). The following four
conditions are equivalent:

1. Gischordal.

2. The edges of G can be directed acyclically so that every pair of
converging arrows emanates from two adjacent vertices.

3. Allvertices of G can be deleted by arranging them in separate piles, one
for each clique, and then repeatedly applying the following two
operations:

o Delete a vertex that occurs in only one pile.

e Delete a pile if all its vertices appear in another pile.

4. There is a tree T (called a join tree) with the cliques of G as vertices,
such that for every vertex v of G, if we remove from T all cliques not
containing v, the remaining subtree stays connected. In other words,
any two cliques containing v are either adjacent in T or connected by a
path made entirely of cliques that contain v.

The four conditions of Theorem 7 are clearly satisfied in the graph of Figure
3.9a, and none are satisfied in the graph of Figure 3.2 (the diamond is the smallest
nonchordal graph). Tarjan and Yannakakis [1984] offer an efficient two-step
algorithm for both testing chordality of a graph and triangulating it (i.e., filling in
the missing links that would make a non-chordal graph chordal).

GRAPH TRIANGULATION (FILL-IN) ALGORITHM

1. Compute an ordering for the nodes, using a maximum cardinality
search, i.e., number vertices from 1 to |V, in increasing order, always
assigning the next number to the vertex having the largest set of
previously numbered neighbors (breaking ties arbitrarily).

2. From n=1VI| to n =1, recursively fill in edges between any two
nonadjacent parents of n, i.e., neighbors of n having lower ranks than n
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(including neighbors linked to # in previous steps). If no edges are
added the graph is chordal; otherwise, the new filled graph is chordal.

Given a graph G =(V, E) we can construct a join tree using the following
procedure.

ASSEMBLING A JOIN TREE

1. Use the fill-in algorithm to generate a chordal graph G~ (if G is chordal,
G=G).

2. Identify all cliques in G°. Since any vertex and its parent set (lower
ranked nodes connected to it) form a clique in G°, the maximum number
of cliques is | V1.

3. Order the cliques C;, C,,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C; (j<1i)
sharing the highest number of vertices with C;.

EXAMPLE: Consider the graph in Figure 3.92. One maximum cardinality ordering is
(A,B,C,D,E). Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added. The cliques are ranked
C,, C,, and C; as shown in Figure 3.9b. C; = {C, E} shares only vertex C with its
predecessors C, and C|, so either one can be chosen as the parent of C3;. These two choices
yield the join trees of Figures 3.95 and 3.9¢.

Now suppose we wish to assemble a join tree for the same graph with the edge (B, C)
missing. The ordering (A4, B, C, D, E) is still a maximum cardinality ordering, but now
when we discover that the preceeding neighbors of node D (i.e., B and C) are nonadjacent,
we should fill in edge (B, C). This renders the graph chordal, and the rest of the procedure
yields the same join trees as in Figures 3.9 and 3.9¢.

DECOMPOSABLE DISTRIBUTIONS

DEFINITION: A probability model P is said to be decomposable if it has a
minimal I-map that is chordal. P is said to be decomposable relative to a graph G
if the following two conditions are met:

i. GisanlI-map of P.
ii. Gischordal.
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LEMMA 1: If P is decomposable relative to G, then any join tree T of the cliques
of G is an I-map relative to P. In other words, if Cx, Cy, and Cy are three disjoint
sets of vertices in T, and X, Y, and Z are their corresponding sets of variables in G,
then 1(X,Z,Y)p whenever Cz; separates Cxy from Cy in T (written

< Cyl Cz1 Cy > ).

Proof: Since (X, Z, Y) may not be disjoint, we will prove I(X, Z, Y), by showing that
I1(X-Z, Z, Y-Z), holds the two assertions are equivalent, according to Remark 2 of
Theorem 1. Moreover, since G is an I-map of P, it is enough to show that Z is a cutset in G,
separating X-Z from Y-Z. Thus, we need to show

KCxl 1 Cy>p = <X-ZIZIY-Z>, (3.23)

which we shall prove by contradiction in two parts:

Part 1: If the right-hand side of Eq. (3.23) is false, then there exists a path
O, Vi, Yas-s Ya» P in G that goes from some element ot e X ~ Z to some element Be Y~ Z
without intersecting Z, namely,

(a’ Yl)e E (’Yl’ ’Yi+1) € E: (’Yns B) € Eand‘Yl ¢ Z
foralli=1,2,..,n.

Proof of Part 1: Let C, denote the set of all cliques that contain some vertex v, and
consider the set of cliques

§={C,WC, LC—Cy}.

We now argue that those vertices of T corresponding to the elements of § form a connected
sub-tree. Indeed, T was constructed so that pulling out the variables in C; would leave the
vertices of every C, comnnected. Moreover, the existence of an edge (Y, 7Y,;) in G
guarantees that every clique containing ¥; shares an element (y;) with each clique containing
(Vi» Yi+1); Each clique containing (Y, ¥;,1), in turn, shares an element (Y;,;) with every
clique containing 7;,;. Consequently, the vertices corresponding to the elements of C,, and
C,,,, are connected in T, even after the variables in C; are deleted.

Part 2: Part 1 asserts the existence of a path in T from some vertex in C, = Cy to some
vertex in Cg < Cy, bypassing all vertices of Cz, thus contradicting the antecedent of Eq.
(3.23). QED.

We are now in a position to demonstrate that decomposable models have a
joint distribution function expressible in product form. Essentially, the
demonstration relies on property iv of Theorem 7, which allows us to arrange the
cliques of G as a tree and apply to them the chain rule formula (Eq. (3.19)), as we
have done to the individual variables in Eq. (3.20).
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THEOREM 8: If P is decomposable relative to G, then the joint distribution of P
can be written as a product of the distributions of the cliques of G divided by a
product of the distributions of their intersections.

Proof: Let T be the join tree of the cliques of G, and let (C;, C;,..., C;,...) be an ordering
of the cliques that is consistent with 7, i.e., for every i > j we have a unique predecessor
Jj(@) <isuchthat Cj; is adjacent to C; in T. Clearly, C;; separates C; from C,, C,,...,C;_,
in any such ordering. Applying the chain rule formula to the cliques of G, we obtain

P(xl,xz,..., x")=HP(ci | Clyus ci_1)=nP(Ci | cj(i)) (3.24)
= HP(Ci ] ;M Cj(,')) (3.25)
P(c:
I (3.26)
i P(Ci M cj(i))

Eq. (3.24) follows from the /-mapness of T (Lemma 1), and Eq. (3.25) follows from the I-
mapness of G, since the variables that C;(;, does not share with C; are separated from those
in C; by the variables common to both C; and C;(;. In Figure 3.9a, for example, A is
separated from D by {B, C}. QE.D.

To render P decomposable relative to some graph G, it is enough that G be any
I-map of P; it need not be minimal. Thus, if we wish to express P as a product of
marginal distributions of clusters of variables, and the Markov network G, of P
happens to be non-chordal, it is possible to make G, chordal by filling in the
missing chords and expressing P as a product of distributions defined on the
cliques of the resulting graph. For example, if the Markov network of a certain
model is given by the graph of Figure 3.9a with edge (BC) missing (as in Figure
3.2), G, is not chordal, and we cannot express P as a product of the pairwise
distributions P(a, b), P(a, c), P(c, d), P(d, b), and P(e, d). However, by filling in
the link (B, C) we create a chordal I-map G of P (Theorem 5), and we can express
P as a product of distributions on the cliques of G, as in Eq. (3.22). It is true that
the condition I(B, AD, C) is not explicit in the expression of Eq. (3.22) and can be
encoded only by careful numerical crafting of the distributions P(a, b, ¢) and
P(b, ¢, d). However, once encoded, the tree structure of the cliques of G facilitates
convenient, recursive updating of probabilities [Lauritzen and Spiegelhalter 1988],
as will be shown in Section 4.4.1. Moreover, in situations where the cluster
distributions are obtained by statistical measurements, the graph triangulation
method can help the experimenter select the right variable clusters for
measurement [Goldman and Rivest 1986]. For example, in the model depicted by
Figure 3.2, graph triangulation would prompt the experimenter to tabulate
measurements of variable triplets (such as {M, Fy, F,} and {M,, Fy, F,}) as
well as variable pairs.
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3.3 BAYESIAN NETWORKS

The main weakness of Markov networks is their inability to represent induced and
non-transitive dependencies; two independent variables will be directly connected
by an edge, merely because some other variable depends on both. As a result,
many useful independencies go unrepresented in the network. To overcome this
deficiency, Bayesian networks use the richer language of directed graphs, where
the directions of the arrows permit us to distinguish genuine dependencies from
spurious dependencies induced by hypothetical observations. Reiterating the
example of Section 3.1.3, if the sound of a bell is functionally determined by the
outcomes of two coins, we will use the network coin 1 — bell « coin 2, without
connecting coin I to coin 2. This network reflects the natural perception of causal
influences; the arrows indicate that the sound of the bell is determined by the coin
outcomes, which are mutually independent.

These arrows endow special status on paths that traverse converging arrows,
like the path leading from coin I to coin 2 through bell. Such a path should not be
interpreted as forming a connection between the variables at the tails of the
arrows; the connection should be considered nonexistent, or blocked, until the
variable bell (or any of its descendents) is instantiated. This direction-dependent
criterion of connectivity, called d-separation, captures the induced dependency
relationship among the three variables: the outcomes of the two coins are
marginally independent, but they become mutually dependent when we learn the
outcome of the bell (or any external evidence bearing on that outcome). The d-
separation criterion is replaced by the usual cutset criterion of Markov networks
whenever the arrows are diverging (height < age — reading ability) or cascaded
(weather — wheat crop — wheat price).

A formal definition of the d-separation criterion for general directed acyclic
graphs (DAGs) is given in Section 3.3.1. The criterion permits us to determine by
inspection which sets of variables are considered independent of each other given
a third set, thus making any DAG an unambiguous representation of dependency.
In Section 3.3.2 we examine the possibility of using DAGs as minimal /-maps for
probabilistic models, in much the same way that undirected graphs were used as
minimal I-maps for Markov networks. Such minimal /-map DAGs will be called
Bayesian networks.

In keeping with our treatment of Markov networks at the beginning of Section
3.2, we now address the following questions regarding Bayesian networks:

1. Given a probability distribution P, can we construct an edge-minimal
DAG D that is an /-map of P?

2. Given a pair (P, D) can we test whether D is a (ninimal) /-map of P'?

3. Given a DAG D, can we construct a probability distribution P such that
D is a perfect map of P?
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Once again, the first two questions have simple solutions obtained by nonnumeric
analysis and based solely on the axioms of conditional independence (Eq. (3.6)).
This time, however, the semi-graphoid axioms, Egs. (3.6a) through (3.64), are used
in the derivations, with the intersection axiom, Eq. (3.6¢), playing only a minor
role. Thus, the directionality of the arrows gives Bayesian networks another
advantage over Markov networks; the requirement of strict positivity (i.e., the
axiom of intersection) is no longer necessary for constructing an /-map from local
dependencies. Hence, the network can serve as an inference instrument for logical
and functional dependencies, too.

An even bigger advantage, perhaps, of the directed graph representations, is
that they make it easy to quantify the links with local, conceptually meaningful
parameters that turn the network as a whole into a globally consistent knowledge
base. This feature is discussed in Section 3.3.2. Finally, in Section 3.3.3 we
compare Bayesian networks with Markov networks for expressive power and
range of applicability.

3.3.1 Dependence Semantics for Bayesian
Networks

Bayesian networks are DAGs in which the nodes represent variables, the arcs
signify the existence of direct causal influences between the linked variables, and
the strengths of these influences are expressed by forward conditional
probabilities.

The semantics of Bayesian networks demands a clear correspondence between
the topology of a DAG and the dependence relationships portrayed by it. With
Markov networks this correspondence was based on a simple separation criterion:
If the removal of some subset Z of nodes from the network rendered nodes X and Y
disconnected, then X and ¥ were proclaimed to be independent given Z, i.e.,

<XIZIY>; => IX,Z,Y).

DAGs use a slightly more complex separability criterion, called d-separation,
which takes into consideration the directionality of the arrows in the graph.

DEFINITION: IfX, Y, and Z are three disjoint subsets of nodes in a DAG D, then
Z is said to d-separate X from Y, denoted < X | Z 1 Y >p, if there is no path
between a node in X and a node in Y along which the following two conditions
hold: (1) every node with converging arrows is in Z or has a descendent in Z and
(2) every other node is outside Z.



118 Markov and Bayesian Networks

If a path satisfies the condition above, it is said to be active; otherwise, it is
said to be blocked by Z. In Figure 3.10, for example, X = {2} and ¥ = {3} are d-
separated by Z = {1}; the path 213 is blocked by 1€ Z, and the path
2 — 4 « 3 is blocked because 4 and all its descendants are outside Z. X and Y are
not d-separated by Z” = {1, 5}, however, because the path 2 — 4 « 3 is rendered
active: learning the value of the consequence 5 renders 5’s causes, 2 and 3,
dependent.

Figure 3.10. A DAG depicting d-separation; node 1 blocks the path 2-1-3, while node 5
activates the path 2-4-3.

The procedure for testing d-separation is only slightly more complicated than
the conventional test for cutset separation in undirected graphs, and it can be
handled by visual inspection. The only difference is that pathways along
converging arrows, representing predicted events, are considered blocked until
activated by evidential information. This is a basic pattern of diagnostic
reasoning; for example, two inputs of a logic gate are presumed independent, but if
the output becomes known, what we learn about one input has bearing on the
other.
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BAYESIAN NETWORKS AS I-MAPS

DEFINITION: A DAG D is said to be an I-map of a dependency model M if every
d-separation condition displayed in D corresponds to a valid conditional
independence relationship in M, i.e., if for every three disjoint sets of vertices X, Y,
and Z we have

<XI1ZIY>, = IX,Z Y)y.

A DAG is a minimal I-map of M if none of its arrows can be deleted without
destroying its I-mapness.

DEFINITION Given a probability distribution P on a set of variables U, a DAG
=, E ) is called a Bayesian network of P iff D is a minimal I-map of P.

We now address the task of constructing a Bayesian network for any given
distribution P.

DEFINITION: Let M be a dependency model defined on a set
U={X,,X,,..., X,} of elements, and let d be an ordering (X, X»,..., X;,...) of the
elements of U. The boundary strata of M relative to d is an ordered set of subsets
of U, (By, Bs,..., B;,...), such that each B; is a Markov boundary of X; with respect
to the set Uy = {Xy, X5,..., X;_1}, i.e., B; is a minimal set satisfying B; c Uy, and
IX;, B;, Uy — B;). The DAG created by designating each B; as parents of vertex
X; is called a boundary DAG of M relative to d.

THEOREM 9: [Verma 1986]: Let M be any semi-graphoid (i.e., any dependency
model satisfying the axioms of Egs. (3.6a) through (3.6d)). If D is a boundary
DAG of M relative to any ordering d, then D is a minimal I-map of M.

Theorem 9 is the key to constructing and testing Bayesian networks, as will be
shown via three corollaries. The first corollary follows from the fact that every
probability distribution P is a semi-graphoid (see Theorem 1).

COROLLARY 3: Given a probability distribution P(x;, X,,..., X,) and any
ordering d of the variables, the DAG created by designating as parents of X; any
minimal set Iy, of predecessors satisfying

Px;IMy) = PO 1xyses Xim1) 5 Ty, € (X5, X5, Xy } (3.27)

is a Bayesian network of P. If P is strictly positive, then all of the parent sets are
unique (see Theorem 4) and the Bayesian network is unique (given d).
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Although the structure of a Bayesian network depends strongly on the node
ordering used in constructing it, each network nevertheless is an I-map of the
underlying distribution P. This means that all conditional independencies
portrayed in the network (via d-separation) are valid in P and hence are
independent of the construction ordering. An immediate corollary of this
observation yields an order-independent definition of Bayesian networks and a
solution to Question 2 from the beginning of this section.

COROLLARY 4: Given a DAGD and a probability distribution P, a necessary
and sufficient condition for D to be a Bayesian network of P is that each variable X
be conditionally independent of all its non-descendants, given its parents Ty, and
that no proper subset of Ix satisfy this condition.

The "necessary” part holds because every parent set Il d-separates X from all
its non-descendants. The "sufficient” part holds because X’s independence of all its
non-descendants means X is also independent of its predecessors in a particular
ordering d (as required by Corollary 3).

COROLLARY 5: If a Bayesian network D is constructed by the boundary-strata
method in some ordering d, then any ordering d” consistent with the direction of
arrows in D will give rise to the same network topology.

Corollary 5 follows from Corollary 4, which ensures that the set ITy, will
satisfy Eq. (3.27) in any new ordering as long as the new set of X;’s predecessors
does not contain any of X;’s old descendants. Thus, once the network is
constructed, the original order can be forgotten; only the partial ordering displayed
in the network matters.

Another interesting corollary of Theorem 9 is a generalization of the celebrated
Markov chain property, which is used extensively in the probabilistic analysis of
random walks, time-series data, and other stochastic processes {Feller 1968;
Meditch 1969; Abend, Hartley, and Kanal 1965]. The property states the
following: if in a sequence of n trials X, X2,..., X, the outcome of any trial X
(where 2 < k < n) depends only on the outcome of the directly preceding trial X;,
then. the outcome of X, depends only on its predecessor and successor, X;_; and
Xk+1' Formally,

1K Xpo, X1 00 Xpd) = 1Ky Xpmy Xpr1, Xy -0 Xia Xpez 0 Xn) -

(The converse holds only in strictly positive distributions, ie., graphoids.)
Theorem 9 generalizes the Markov chain property to non-probabilistic
dependencies and to structures that are not chains, and, as the following corollary
shows, the d-separation criterion uniquely determines a Markov blanket for any
node X in a given Bayesian network (see Eq. (3.12)).
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COROLLARY 6: In any Bayesian network, the union of the following three types
of neighbors is sufficient for forming a Markov blanket of a node X: the direct
parents of X, the direct successors of X, and all direct parents of X's direct
SUCCessors.

Thus, if the network consists of a single path (i.e., is a Markov chain), the
Markov blanket of any nonterminal node consists of its two immediate neighbors,
as expected. In a tree, the Markov blanket consists of the (unique) father and the
immediate successors. In Figure 3.10, however, the Markov blanket of node 3 is
{1, 4,2}. The reason the sets defined by Corollary 6 are Markov blankets but
generally are not Markov boundaries is that alternative orderings might give X a
different set of neighbors.

BAYESIAN NETWORKS AS A LOGIC OF DEPENDENCIES

A Bayesian network can be viewed as an inference instrument for deducing new
independence relationships from those used in constructing the network. The
topology of the network is assembled from a list of independence statements that
comprise the boundary strata. This input list implies a host of additional
statements, many of which can be deduced from the network by graphical criteria
such as d-separation. For example, the network in Figure 3.10 was constructed
from the boundary strata

(B, = {1}, B; = {1}, B4 = {2, 3}, Bs = {4}),
representing the independency list
L={I12,1,D),13,1,2),1(4,23,1),I(5, 4, 123)}.

New independence relationships, all of them valid consequences of L, can be
deduced from the network—e.g., I(5, 23, 1) and I(3, 124, 5). This raises the
following questions:

1. Can d-separation be improved? Can a more sophisticated criterion
reveal additional independencies that are valid consequences of the
input information?

2. Are there valid consequences that escape graphical representation
altogether?

The answer to both questions is no; every valid consequence of the input
information L must show up as a d-separation condition in the DAG built from L.
This follows from the next theorem.
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THEOREM 10: [Geiger and Pearl 1988a]. For any DAG D there exists a
probability distribution P such that D is a perfect map of P relative to d-
separation, i.e., P embodies all the independencies portrayed in D, and no others.

Theorem 10 makes it impossible for some valid consequence G of the input list
to escape detection by d-separation. Any such ¢ is valid in all distributions that
obey the input, and hence a probability P as specified in Theorem 10 (a probability
that ought to violate G) cannot exist.

COROLLARY 7: Given a list L of independence relationships in the form of a
boundary strata, a Bayesian network combined with the d-separation criterion
constitutes a polynomially sound and complete inference mechanism relative to
the closure of L, ie., it identifies in polynomial time every conditional
independence relationship that follows logically from those in L.

Note, however, that a prerequisite of completeness is that the input be a
boundary strata, i.e., that it identify recursively a Markov boundary for each
element, in some order d. The tractability (and even the decidability) of the
general membership problem, relative to an arbitrary noncausal input list of
conditional independence statements, hinges upon the completeness conjecture
stated in Section 3.1.2. Evidently, there are subtle computational advantages to
organizing information in chronologically ordered strata. Whether this feature
lends importance to causal schemata in knowledge organization is an interesting
topic which we will leave for speculation.

3.32 Bayesian Network as a Knowledge Base

STRUCTURING THE NETWORK

In principle, given any joint distribution P(x{ ,.., X,) and an ordering d on the
variables in U, Corollary 4 prescribes a simple recursive procedure for
constructing a Bayesian network. We start by choosing X; as a root and assign to
it the marginal probability P(x1) dictated by P(x,..., X,). Next, we form a node to
represent X»; if X, is dependent on X4, a link from X; to X, is established and
quantified by P(x, lxy). Otherwise, we leave X, and X, unconnected and assign
the prior probability P(x,) to node X,. At the i-th stage, we form the node X;,
draw a group of directed links to X; from a parent set Iy, defined by Eq. (3.27),
and quantify this group of links by the conditional probability P(x;!Hy,). The
result is a directed acyclic graph that represents many of the independencies
embedded in P(x1,..., X,), i.c., all the independencies that follow logically from the
definitions of the parent sets (Eq. (3.27)).
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Conversely, the conditional probabilities P(x; |IIy,) on the links of the DAG
should contain all the information necessary for reconstructing the original
distribution function. Writing the chain rule formula in the ordering d and using
Eq. (3.27), we get the product

Py, X9, X)) = Py L1y X1) Py 1 X295, X1)

s P(xalxg, x) P(xplx ) P(xy)

=TI P(x; 1M0y). (3.28)

For example, the distribution corresponding to the DAG of Figure 3.11 can be
written by inspection:

P(xy, x3, X3, X4, X5, Xg) (3.29)

=Plxglxs) P(xs1xg, x3) P(xglxy, x2) P(x31xy) POralxy) Pxq).

X

Figure 3.11. A Bayesian network representing the distribution P(xglxs) P(xslx,,x3)
Pxglxs,x) Plslx ) Plxylxy) Pxy).

In practice, however, a numerical representation for P (x1,...,x,) is rarely available.
Instead we normally have only intuitive understanding of the major constraints in
the domain. The graph can still be configured as before, but the parent sets 11y,
must be identified by human judgment.

The parents of X; are those variables judged to be direct causes of X; or to have
direct influence on X;. The informal notions of causation and influence replace the
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formal notion of directional conditional independence as defined in Eq. (3.27). An
important feature of the network representation is that it permits people to express
directly the fundamental, qualitative relationships of direct influence; the network
augments these with derived relationships of indirect influence and preserves them,
even if the numerical assignments are just sloppy estimates. In Figure 3.11, for
example, the model builder did not state that X can tell us nothing new about X
once we know X, and X3, but the relationship is logically implied by other inputs
and will remain part of the model, regardless of the numbers assigned to the links.

The addition to the network of any new node Y requires that the knowledge
provider identify a set Ily of variables that bear directly on Y, assess the strength of
this relationship, and make no commitment regarding the effect of Y on variables
outside IIy. Even though each judgment is performed locally, their sum is
guaranteed to be complete and consistent, as we shall see next.

QUANTIFYING THE LINKS

Suppose we are given a DAG D in which the arrows pointing to each node X;
emanate from a set Iy, of parent nodes judged to have direct influence on X;. To
specify consistently the strengths of these influences, one need only assess the
conditional probabilities P(x; TIx,) by some functions F;(x;, Ily,) and make sure
these assessments satisfy

Y Filx;, g) =1, (3.30)

Xi
where 0 < F;(x;, Iy,) < 1 and the summation ranges over the domain of X;. This
specification is complete and consistent because the product form

Po(x1, o ) = 1 Fi(x;, Ty, (3.31)
1

constitutes a joint probability distribution that supports the assessed quantities. In
other words, if we compute the conditional probabilities P,(x; IMIy,) dictated by
P, (x1, ..., X,), the original assessments F;(x;, Iy, ) will be recovered:

Po(x15s X)
P (x;, HX,-) x; € (g ully)
P xilg)="—"F— = = F; (x;, Oy,). (3.32)
' P, (1x) '
Y Pa(X1ses Xp)
xj ¢ Iy,

Moreover, all the independencies dictated by the choices of IIy, (corresponding to
those in Eq. (3.27)) are embodied in P,.
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Building models this way is much easier than quantifying Markov networks.
The parameters requested from the model builder are the conditional probabilities
that quantify many conceptual relationships in one’s mind, e.g., cause-effect or
frame-slot relations, they are psychologically meaningful and can be obtained by
direct measurement. The thinking required for assessing the parameters of
P(x;111y) is estimating the likelihood that the event X; = x; will occur, given any
instantiation of the variables in Iy (for example, the likelihood that a patient will
develop a certain symptom, assuming that he suffers from a given combination of
disorders). These kinds of assessments are natural because they point to familiar
frames (e.g., diseases) by which people organize empirical knowledge.

DAGs constructed by this method will be called Bayesian belief networks or
causal networks interchangeably, the former emphasizing the judgmental origin
and probabilistic nature of the quantifiers and the latter reflecting the directionality
of the links. Such networks have a long and rich tradition, starting with the
geneticist Sewal Wright in 1921. He developed a method called path analysis
" [Wright 1934], which later became an established representation of causal models
in economics [Wold 1964], sociology [Blalock 1971; Kenny 1979], and
psychology [Duncan 1975). Influence diagrams represent another component in
this tradition [Howard and Matheson 1981; Shachter 1986]; developed for decision
analysis, they contain both event nodes and action nodes (see Chapter 6).
Recursive models is the name given to such networks by statisticians seeking
meaningful and effective decompositions of contingency tables [Lauritzen 1982;
Wermuth and Lauritzen 1983; Kiiveri, Speed, and Carlin 1984].

In the strictest sense, Bayesian networks are not graphs but hypergraphs,
because describing the dependency of a given node on its k parents requires a
function of k+1 arguments; in general, it cannot be specified by k two-place
functions on the individual links. Still, the directionality of the arrows and the fact
that many parents remain unlinked convey important information that would be
lost if we used the standard hypergraph representation and specified only the list of
dependent subsets.

If the number of parents £ is large, estimating P(x | Ix,) may be troublesome.
In principle, it requires a table of size 2% (for binary variables), but in practice (as
noted in Section 2.2) people structure causal relationships into small prototypical
clusters of variables; each requiring about & parameters. Common examples of
such structures are noisy OR-gates (i.e., any variable is likely to trigger the effect),
noisy AND-gates, and various enabling mechanisms (i.e., variables having no
influence of their own except that they enable other influences to take effect).
Detailed analysis of the noisy-OR-gate model is given in Section 4.3.2.

THE ROLE OF CAUSALITY

Note that the topology of a Bayesian network can be exiremely sensitive to the
node ordering d. What is a tree in one ordering might become a complete graph if
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that ordering is reversed. For example, if X, ..., X, stands for the outcomes of n
independent coins, and X,,,; represents the output of a detector triggered when any
coin comes up heads, then the Bayesian network will be an inverted tree of n
arrows pointing from each of the variables X, ..., X,, to X,,,;. On the other hand,
if the detector’s outcome is chosen to be the first variable, say X, then the
resulting Bayesian network will be a complete graph.

This sensitivity to order may seem paradoxical at first; d can be chosen
arbitrarily, whereas people have fairly uniform conceptual structures, e.g., they
agree on whether two propositions are directly or indirectly related. This
consensus about the structure of dependencies shows the dominant role causality
plays in the formation of these structures. In other words, the standard ordering
imposed by the direction of causation indirectly induces identical topologies on
the networks that people adopt to encode experiential knowledge. Were it not for
the social convention of adopting a standard ordering of events that conforms to
the flow of time and causation, human communication as we know it might be
impossible. Why, then, do we use temporal ordering to organize our memory? It
may be because information about temporal precedence is more readily available
than other indexing information, or it may be that networks constructed with
temporal ordering are inherently more parsimonious (i.e., they display more
independencies.) Experience with expert systems applications does not entirely
rule out the second possibility [Shachter and Heckerman 1987]. More on this
subject can be found in Chapter 8.

3.3.3 How Expressive Are Bayesian Networks?

One might expect the introduction of directionality into the language of graphs to
render directed graphs more expressive, ie., capable of portraying more
conditional independencies. We saw, indeed, that the d-separation criterion
permits us to display induced and non-transitive dependencies that were excluded
from the Markov network vocabulary. So we might ask how DAGs compare for
expressive power with undirected graphs and probability models. Two questions
arise:

1. Can all dependencies that are representable by a Markov network also
be represented by a Bayesian network?

2. How well can Bayesian networks represent the type of dependencies
induced by probabilistic models?

The answer to the first question is clearly no. For instance, the dependency
structure of a diamond-shaped Markov network (e.g., Figure 3.1) with edges (AB),
(AC), (CD), and (BD) asserts two independence relationships: I(A, BC, D) and
I(B, AD, C). No Bayesian network can express these two relationships
simultaneously and exclusively. If we direct the arrows from A to D, we get
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I(A, BC, D) but not I1(B, AD, C); if we direct the arrows from B to C, we get
I(B, AD, C) but not I(A, BC, D). In view of property iv of Theorem 7, it is clear
that this difficulty will always be encountered in non-chordal graphs. No matter
how we direct the arrows, there will always be a pair of nonadjacent parents
sharing a common child, a configuration that yields independence in Markov
networks and dependence in Bayesian networks.

On the other hand, property iv of Theorem 7 also asserts that every chordal
graph can be oriented so that the tails of every pair of converging arrows are
adjacent. Hence, every dependency model that is isomorphic to a chordal graph is
also isomorphic to a DAG. We conclude that the class of probabilistic
dependencies that can be represented by both a DAG and an undirected graph are
those that form decomposable models, i.e., probability distributions that have
perfect maps in chordal graphs. These relationships are shown schematically in
Figure 3.12.

DAGS Chordal Graphs Undirected

O Graphs

Probabilisitic
Dependencies

Markov
Fields

Causal Models
Decomposable Models

Figure 3.12. Correspondence between probabilistic models and their graphical
representations.

The answer to Question 2 is also no. Clearly, no graphical representation can
distinguish connectivity between sets from connectivity among their elements. In
other words, in both directed and undirected graphs, separation between two sets
of vertices is defined in terms of pairwise separation between their corresponding
individual elements. In probability theory, on the other hand, independence of
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elements does not imply independence of sets (see Eq. (3.6D)), as the coins and bell
example demonstrated. When the two coins are fair, any two variables are
mutually independent, but every variable is (deterministically) dependent on the
other two.

CAUSAL MODELS AND THEIR DEPENDENCY STRUCTURE

Despite these shortcomings, we will see that the DAG representation is more
flexible than the undirected graph representation, and it captures a larger set of
probabilistic independencies, especially those that are conceptually meaningful.
To show this, we offer a partial axiomatic characterization of DAG dependencies
that indicates clearly where they differ from undirected graph dependencies (Eq.
(3.10)) and from probabilistic dependencies (Eq. (3.6)).

DEFINITION: A dependency model M is said to be causal (or a DAG isomorph)
if there is a DAG D that is a perfect map of M relative to d-separation, ie.,

IX, Z, V) <> <XIZIY> ). (3.33)

THEOREM 11: A necessary condition for a dependency model M to be a DAG
isomorph is that I(X, Z, Y)y satisfies the following independent axioms (the
subscript M is dropped for clarity):

Symmetry:

IX,Z2,Y) <> I(Y, Z,X). (3.34a)
Composition/Decomposition:

IX,Z,YUW) < IX,Z,Y)&IX,Z W) (3.34b)
Intersection:

IX,ZOWYN&IX,ZOY,W)=IX,Z,YUW) (3.34¢)
Weak union:

IX,Z,YOUW)=IX,ZUW,Y). (3.344d)
Contraction:

IX,ZUYYW&IX,Z,Y)=1X,Z, YUW). (3.34¢)
Weak transitivity:

IX,ZYN&IX,ZUY,Y)=IX,Z,7) orI(y, Z, Y). (3.34f)
Chordality:

I, yud, B & I(Y, a LB, &) =>I(a, v, B) or I(o, 5, B). (3.34g)
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REMARKS:

1. Symmetry, intersection, weak union, and contraction are identical to the
axioms governing probabilistic dependencies (Eq. (3.6)). Composition,
weak transitivity, and chordality are constraints that go beyond Eq.
(3.6). Thus, not every probabilistic model is a DAG isomorph.

2. Comparing Eq. (3.34) to the axioms defining separation in undirected
graphs (Eq. (3.10)), we note that (Eq. (3.10)) implies all axioms in (Eq.
(3.34)) except chordality (Eq. (3.34g)). Weak union is implied by strong
union, composition and contraction are implied by intersection and
strong union, and weak transitivity is implied by transitivity.

WEAK TRANSITIVITY

Weak transitivity (Eq. (3.34f)) means that if two sets of variables X and Y, are both
unconditionally and conditionally independent given a singleton variable v, it is
impossible for both X and Y to be dependent on Y. Contrapositively, if X and Y are
each dependent on v, then they must be dependent on each other in some way,
either marginally or conditionally given y. This restriction, which may be violated
in some probability models, remains in effect when we associate independence
with d-separation in DAGs.

THEOREM 12: d-separation in DAGs is weakly transitive.

Proof: If both X and Y are d-connected to Yy in some DAG, then there must be an
unblocked path from X to y and an unblocked path from ¥ to y. These two paths form at
least one bidirected path from X to ¥ via y. If that path traverses y along converging arrows,
it should be unblocked when we instantiate ¥, so X and ¥ cannot be d-separated given Y.

Conversely, if the arrows meeting at y do not converge, the path from X to Y is unblocked
when vis uninstantiated, so X and ¥ cannot be marginally d-separated. Q.E.D.

Probability theory does not insist on weak transitivity, as it allows the
following four conditions to exist simultaneously:

I(X, @, Y)P I(X9 Yv Y)P —'I(X9 @, Y)P’ —|I(Yy @, Y)P

For example, let X and Y be singleton binary variables, X, Y € {TRUE, FALSE},
and let y be a ternary variable, ye {1, 2, 3}. Choosing

P(x, y,Y)=PxIy) P(yly) P(y),
P(X = TRUE 1Y) = (1/2, 1/4, 1/8),
P(ylY = TRUE) = (1/3, 1/3, 1/3),
P(Y = FALSE) = (1/2, 1/2, 0)
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renders Y dependent on both X and Y, yet X and Y are mutually independent, both
conditionally (given y) and unconditionally. Thus, although DAGs seem more
capable than undirected graphs of displaying non-transitive dependencies, even
DAGs require some weak form of transitivity and cannot capture totally non-
transitive probabilistic dependencies. It can be shown, however, that if all
variables are either normally distributed or binary, all probabilistic dependencies
must be weakly transitive (see Exercise 3.10).

CHORDALITY AND AUXILIARY VARIABLES

The chordality axiom (Eq. (3.34f)) excludes dependency models that are
isomorphic to non-chordal graphs (such as the one in Figure 3.13q), since these
cannot be completely captured by DAGs (see Figure 3.12). In essence, Eq. (3.34f)
insists that we either add the appropriate chords to any long cycle (length > 4), thus
disobeying the antecedent of Eq. (3.34), or nullify some of its links, thus satisfying
the consequent of Eq. (3.34)).

Though DAGs cannot represent non-chordal dependencies, this deficiency can
be eliminated by introducing auxiliary variables. Consider the diamond-shaped
graph of Figure 3.13a, which asserts two independence relationships:
I(A, BC, D)and I (B, AD, C).

A A
B C B C
1
> S E
D
(@) (b) ©

Figure 3.13. The dependencies of an undirected graph (a) are represented by a DAG (c)
using an auxilliary node E.

Introducing an auxiliary variable E as shown in Figure 3.13b creates a DAG
model of five variables whose dependencies are represented by the joint
distribution function

P(a,b,c,d,e)=P(eld, c) P(dIb)P(cla) P(bla) P(a).
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Now imagine that we clamp the auxiliary variable £ to some fixed value E = ¢, as
in Figure 3.13c. The dependency structure that the clamped DAG induces on
A, B, C, D is identical to the original structure (Figure 3.13q). Indeed, applying
the d-separation criterion to Figure 3.12c uncovers the two original
independencies: I(A, BC, D) and I (B, AD, C). The marginal distribution of the
original variables conditioned upon E = ¢ is given by

P(a, b, c,d, ey)

Pa,b,c,dIE=¢1)= P
1

=K P(e,ld,c) P(db)P(cla)P(bla)P(a)

=81, ¢) g2(d, b) g5(a, c) g4(a, b).

Using the analysis of Section 3.2.3, we see that this distribution is equivalent to the
one portrayed by Figure 3.13¢. Thus, the introduction of auxiliary variables
permits us to dispose of the chordality restriction of Eq. (3.34f) and renders the
DAG representation superior to that of undirected graphs; every dependency
model expressible by the latter is also expressible by the former.

Weak transitivity and chordality are not the only dependencies that are
sanctioned by probability theory but are not representable by DAGs. For example,
one can show that the following axiom must hold in DAGs:

1X,X,2)& Z,Y,X\)&IW,Z,X)—I(X, D, W).
But its denial,
I,X,D)&IZ,Y,X)&IW,Z,X) & -I(X, D, W),

is sanctioned by probability theory (see Exercise 3.7). The question arises whether
the class of properties specific to DAGs can be characterized axiomatically the
way that of undirected graphs was (Theorem 2). The answer is probably no. The
results of Geiger [1987] strongly suggest that the number of axioms required for a
complete characterization of the d-separation in DAGs is unbounded.

3.4 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The idea of using graphical representations for probabilistic information can be
traced to the geneticist Sewal Wright [1921], who developed the method of path
analysis "as an aid in the biometric analysis of certain classes of data.” The method
came under severe attack (e.g., Niles [1922]) and was shunned by statisticians
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during the first half of the 20th century (an era ruled by hard data and quantitative
analysis), until it was discovered by economists, psychologists, and sociologists
(see Section 7.2). The 1960s saw a reversal of this outlook, with statisticians such
as Vorobev [1962], Goodman [1970], and Haberman [1974] realizing that some
decomposition properties of statistical tables (called log-linear models) can best be
expressed in graphical terms. These explorations led to an appreciation of the
desirable properties of join trees, which were later recognized by database
researchers [Beeri et al. 1983]. Lemmer {1983] has suggested the use of trees of
Jocal events groups (LEGs) for Bayesian updating, and Spiegelhalter [1986]
proposed the fill-in algorithm to transform Bayesian networks into join trees.
Other mathematical properties of chordal graphs are given in Golumbic [1970].

The development of Markov fields progressed in parallel, but from an opposite
direction. Here, the network topology was presumed to be given (usually a
geometrical arrangement of physical elements in space), and the problem was to
characterize the probabilistic behavior of a system complying with the
dependencies prescribed by the network. A survey of Markov fields can be found
in Isham [1981]. Lauritzen [1982] applied the theory of Markov fields to the
analysis of statistical tables and derived Theorems 3, 4, and 5 for independencies
embedded in strictly positive probability distributions. Application of Markov
fields to pattern recognition and vision are reported in Abend, Hartley, and Kanal
[1965], Kanal [1981], and Geman and Geman [1984].

Since graphoids are a central theme of this chapter, and since the theory is still
in its embryonic stage, we take the liberty now of presenting an extended history
of this development.

The theory of graphoids was conceived in the summer of 1985, when Azaria
Paz visited UCLA and he and I began collaborating on the problem of graphical
representations. Inspired by Lauritzen’s lecture notes on contingency tables
[Lauritzen 1982}, I sought axiomatic conditions on a dependency model M that
would include probabilistic dependencies as a special case, such that the graph
construction of Eq. (3.11) would yield an [-map of M. 1 posed the problem to
Professor Paz, we labored for a few weeks, and he came up with a proof of what
later became Theorem 3. Surprisingly, only three axioms were needed: symmetry,
decomposition, and intersection. These, unfortunately, were not sufficient for
Corollary 4, which Lauritzen listed among the properties of Markov fields. We
then set out to discover what additional axioms were needed to ensure that the
graph obtained by the edge-deletion method be identical to that built by the
Markov boundary method. This led to Theorem 4, and to the identification of
weak union as the final axiom we needed to fully characterize the graphical
properties of Markov fields. The prospects of providing similar characterization
for graph separation led to Theorem 2.

Strangely, the contraction axiom was not needed for Theorem 3 or for Theorem
4, but when added to the other four axioms of Eq. (3.6) it enabled us to derive all
properties of probabilistic dependencies that we managed to dream up. Hence, we
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posed the completeness of these axioms as a conjecture, and coined the name
graphoid.

Around this time, Thomas Verma began examining the validity of d-separation
in DAGs (Theorem 9). I had introduced this criterion as a theorem without proof
[Pearl 1986c], since my attempts to demonstrate its general validity got entangled
in messy probability formulas. I therefore suggested that Tom try a "clean" proof,
using the graphoid axioms only, and to our surprise he managed to do it without
the intersection axioms [Verma 1986]. This led to semi-graphoids, and to directed
graph representations of both probabilistic and logical dependencies; we finally
understood how important the contraction property is for causal modeling. The
generality of this result made us confident that dependency theorists dealing with
databases and qualitative dependencies will eventually adopt DAGs as a
representation scheme for their semi-graphoids, e.g., EMVD [Fagin 1977].

In December 1985, Glenn Shafer mentioned a possible connection between
graphoids and previous work of A. P. Dawid. As it turned out, Dawid had
presented axioms equivalent to Egs. (3.6.a) through (3.6.d) as early as 1979
[Dawid 1979] but apparently was not concerned with their completeness or their
relation to graphical representations. Smith [1987] has recognized the generality
of Dawid’s axioms and has used them to prove Corollaries 4 and 5 without
resorting to probabilistic manipulations (unlike the proofs of Howard and
Matheson [1981]).

The power of the d-separation criterion would have remained only partially
appreciated without Geiger’s proof of Theorem 10. Aside from showing that d-
separation cannot be improved, the theorem legitimizes the use of DAGs as a
representation scheme for probabilistic dependencies; a model builder who uses
the language of DAGs to express dependencies is shielded from inconsistencies.
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Exercises

3.1.

3.2.

Show that Egs. (3.6a) through (3.6d) imply the chaining rule

IXY,ZD)&IXY,Z, W)= (X,Y, W)

and show that this rule cannot replace Eq. (3.6d) in the set of axioms.

Show which axioms of Eq. (3.6) are satisfied by the following dependency
models:

a.  Let U be the set of nodes in an undirected graph G, and let X, ¥, and
Z be three disjoint sets of nodes in G. (X, Z, Y);,, iff all shortest
paths between a node X € X and a node Y €Y are intercepted by
some node in Z.

b. Let U be the set of nodes in an undirected graph G, and let X, ¥, and
Z be three disjoint sets of nodes in G. I (X, Z, Y),,, iff all shortest

paths between X and Y are intercepted by Z.

C. Let U be the set of points in a three-dimensional Euclidean space,
and let X, ¥, and Z be three disjoint regions of U. I (X, Z, Y)y, iff
every ray of light from a point in X to some point in ¥ is intercepted
by Z.

d. Let U be the set of n-dimensional vectors, and let X, Y, and Z be
three disjoint sets of such vectors. Let Sy, Sy, and S be the linear
subspaces spanned by X, Y, and Z, respectively. (X, Z, Y)y,, iff the
closest distance between Sy and S is equal to the closest distance
between Sy and Sz y.

e. Let U be a set of random variables, let P be a probability
distribution on those variables, and let X, ¥, and Z be three disjoint
subsets of U. I (X, Z, Y)y, iff

Px,2)>0 & P(y,2)>0 = P(x,y,2)>0.
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33. Let U= {X, 7, Z, W}, and let P(x, y, z, w) be given by the following
table:

2 12113 %

all other tuples 0

a.  Show that the graph G given below is a minimal /-map of P.

X

w

b.  Show that P cannot be expressed as a product of functions on the
cliques of G.

c. Find a tree I-map of P and express P as a product of functions on its
edges.

d. Draw all the Bayesian networks of P in the orderings (X, Y, Z, W)
and (W, X, Y, Z) and compute their parameters.
34.  a Find the graphoid closure I* of the setI = {(1, D, 2), (12, 3, 4)}.
b.  Construct the Markov network of I”.

c. Construct the Bayesian networks of I/ corresponding to the
following 3 orderings: (1, 2, 3,4), (4, 3,2, 1),(1, 4, 2, 3).

Note: The graphoid closure I” is the smallest superset of / that is
consistent with the axioms of Egs. (3.6a) through (3.5¢).
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3.5, We wish to construct a Bayesian network for a Markov field of an N XN
grid in the plane. Find the set of parents of a typical node (e.g., row 3,
column 3), in the following two orderings:

(a) (b)
1 2 6 7 cee 1 2 3 4 5". N-1 N
3 5 8 vee 2N ven N+2 {N+1
4 9 vee 2N +1 vee 3N
L ] [ 2 L ] * [ ] [ ] [ ] * * [ ] ®
[ ] * [ ] L] [ ) * L] L] L ] L ] * L]
* [ ] * [ ] L ] L ] L] L ] > L] * [ )

3.6. a. Find the Markov network G of a probabilistic model P for which
the following DAG is a perfect-map:

1

LT

b 3
b 5

6<\/'7

8

b. Find an undirected graph G such that P (in problem (@) is
decomposable relative to G.

C. Draw a join tree of G.

d.  Find an algebraic representation of P such that P > 0 for all events.

3.7. (After D. Geiger)
a.  Prove that the following axiom holds for all DAGs:
10y, 04, 03) & 1(0, Oz, Og) & I (04, 03, 0y) = 1(0ty, D, 04)

(hint: use the definition of d-separation and prove by contradiction).
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3.8.

3.9.

3.10.

3.11.

137

b. Generalize your arguments and prove that the following axiom
holds as well:

1(0g, oy, 03) & 1(0, 0, 04) & -+ &I(0,, Oy, Oyyp)

& (041, O, 0) = 1(0, DOy yy)

(where n > 3).

C. Construct a probability distribution that violates the axiom problem

(a).

(After D. Geiger). Let P be a zero-mean normal distribution over n
variables X, ..., X,, with a covariance matrix I" = (pyj), where

py=E[X;"X;]and E[X7]=1 (1<ij<n).

a. Prove the following propositions:

I(Xl', @, X])P < P,j = 0’
T (X, Xps Xj)p <=0 = Pic " Pjes

b.  Inlight of Exercises 3.7a and 3.8a construct a normal distribution P
such that no DAG is a perfect map of P.

a.  Show that the axioms of Egs. (3.34a) through (3.34g) do not
preclude the occurrence of

IX D0, 0)&-IXY,ZD)&IXY, D, Wy&-I{Y, Z,W).

b.  Show a DAG satisfying the conditions above (in d-separation) and
X, Y, Z, and W are singleton nodes. (The DAG may have more than
four nodes.)

c. Discuss the significance of problem (b) vis a vis the prospects of
defining causal directionality in terms of dependencies.

Show that weak transitivity holds in
(a) every probability distribution over binary variables and
(b) every normal distribution.

A recursive diagram [Wermuth and Lauritzen 1983] is a DAG
constructed as follows: the elements of U are ordered X1, ..., X, and the
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parents set S; of each X; is defined by §; = {X;: j <iand = I1(X;, (X1, .y
X;-1}-X;, X;) }, namely, X; is a parent of X; if it remains dependent on
X;, given all other predecessors {X1, ..., X;_1}— X; of X;.

a.

Show that any recursive diagram constructed for a graphoid (i.e., a
dependency model satisfying (3.6.a) to (3.6.¢)) coincides with the
Bayesian network constructed under the same ordering.

Show that for semi-graphoids (i.e., dependency models satisfying
(3.6.a) to (3.6.d)) a recursive diagram is a subgraph of any
Bayesian network constructed under the same ordering.

Find a probability distribution for which the Bayesian network isa
chain but the recursive diagram has only one arc.

A recursive diagram R of a semi-graphoid M, has the shape of a
linear chain of five nodes 1 — 2 — 3 — 4 — 5. Using the
same node ordering, draw all the DAGS that are minimal /-maps of
R.
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Appendix 3-A

Proof of Theorem 3

THEOREM 3 [Pearl and Paz 1985]: Every dependency model M satisfying
symmetry, decomposition, and intersection (see Eq. (3.6)) has a (unique) minimal
I-map Gy = (U, Ey) produced by connecting only those pairs (a, B) for which
I(o,U—-o.— B, Bl is FALSE, i.e.,

(0, B) e E; iff 1(0, U=0—B, By (3.11)

Proof*

1. We first prove that G is an I-map (ie., <XISI¥Y>4 => I(X, S, ¥)) using
descending induction:

i. Let n=I1Ul. For 18| = n—-2 the I-mapness of G, is guaranteed by its
method of construction, Eq. (3.11).

il Assume the theorem holds for every §” with size 1S =k <n-2,and let §

be any set such that 1S =4-1 and <XIS1Y>g,. We distinguish two
subcases: XU SuUY=Uand XU SUY=zU.

iii. IFXuUSuwY=Utheneither |1X|>2or |Yi=2. Assume, without loss of
generality, that 1¥Y1 22, ie. Y=Y Uy From <XIS|Y>;, and obvious
properties of vertex separation in graphs, we conclude <XI|S§ U Y1Y >,
and <XISUY’l y>¢,. The two separating sets, S Uy and S U Y, are at
least 1S1 + I = kin size; therefore, by induction on the hypothesis,

IX,Suyv,Y) & IX,SuY,y.

Applying the intersection property (Eq. (3.6e)) yields the desired result:
IX, S, Y).
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If XUSuUY=U, then there exists at least one element 3 that is not in
XU S UY, and for any such & two obvious properties of graph separation
hold:

<XISUSIY>g,
and

either <XISUYI8>;, or <3ISUXIY>g, or both.

The separating sets above are at least |S| + 1 = k in size; therefore, by
induction on the hypothesis,

IX,8U8,Y) & IX,SUY,9)
or
IX,SudY) & IB SuXY).

Applying the intersection property (Eq. (3.6¢)) to either case yields
I(X, 8, Y), which establishes the /-mapness of G,.

Next we show that G, is edge-minimal and unique, i.e., that no edge can be
deleted from G, without destroying its /-mapness. Indeed, deleting an edge
(o,B) € E leaves o separated from B by the complementary set U—a~B, and if
the resulting graph is still an I-map, we can conclude I(0, U-0—f, B). However,
from the method of constructing G, and from (o, )€ E, we know that
(e, U-0—P, B) is not in I. Thus, no edge can be removed from G, and its
minimality and uniqueness are established. Q.E.D.

Note that the weak union property (Eq. (3.6¢)} is not needed for the proof.
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Appendix 3-B

Proof of Theorem 4

THEOREM 4: [Pearl and Paz 1985]: Every element o€ U in a dependency
model satisfying symmetry, decomposition, intersection, and weak union (Eq.
(3.6)) has a unique Markov boundary Bj(o). Moreover, B(Q) coincides with the
set of vertices B¢, (00 adjacent to o in the minimal I-map G.

Proof:

i

ii.

iii.

iv.

Let BL" (o) stand for the set of all Markov blankets satisfying Eq. (3.12). B,(0) is
unique because the intersection property (Eq. (3.6e)) renders BL* (o) closed under
intersection. Moreover, B;(0) equals the intersection of all members of BL* (o).

Conversely, every Markov blanket BL € BL* (o) remains in BL (¢t) after we add to it
an arbitrary set of elements S§” not containing o. This follows from the weak union
property (Eq. (3.6¢)). In particular, if there is an element B outside B;(o) L o then
U-o—B is in BL* (o).

From (ii) we conclude that for every element B+ o outside B;(c), we have
I(a, U-0—B, B), meaning B cannot be connected to ocin G4. Thus,

Bg, (o) SB(a).
To prove that Bg, (o) actually coincides with Bj(0) it is sufficient to show that

Bg,(a1) is in BL"(0), but this follows from the fact that G, as an /-map, must satisfy
Eq. (3.12). Q.E.D.



Chapter 4

BELIEF UPDATING BY NETWORK
PROPAGATION

Oh, would that my mind could let fall its dead ideas,
as the tree does its withered leaves.
— André Gide

This chapter deals with fusing and propagating the impact of new evidence and
beliefs through Bayesian networks so that each proposition eventually will be
assigned a certainty measure consistent with the axioms of probability theory. We
start in Section 4.1 by arguing that any viable model of human reasoning should be
able to perform this task with a self-activated propagation mechanism, i.e., with an
array of simple and autonomous processors, communicating locally via the links
provided by the network itself. The impact of each new piece of evidence is
viewed as a perturbation that propagates through the network via message-passing
between neighboring variables, with minimal external supervision. In Section 4.2
we show that these objectives can be fully realized with causal trees, i.e., Bayesian
networks in which each node has at most one parent. In Section 4.3 we extend the
result to causal polytrees, i.e., trees with arbitrary arrow orientation, and thus
allow multiple roots and multiple parents. In both cases, we identify belief param-
eters, communication messages, and updating rules to guarantee that equilibrium
will be reached in time proportional to the longest path in the network and that at
equilibrium each proposition will be accorded a belief measure equal to its poste-
rior probability, given all the available evidence. In Section 4.3.2, we illustrate
this propagation method’s evidence-pooling and credit-assignment policies with a
canonical model, where multiple causes are assumed to interact disjunctively.
Several approaches to achieving autonomous propagation in multiply connected
networks are discussed in Section 4.4, including clustering, conditioning, and sto-
chastic simulation. Finally, Section 4.5 extends the inferential repertoire of Baye-
sian networks to include answering Boolean queries under propositional con-
straints, with a special emphasis on conjunctive queries.

143
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4.1 AUTONOMOUS PROPAGATION AS A
COMPUTATIONAL PARADIGM

Since a fully specified Bayesian network constitutes a complete probabilistic
model of the variables in a domain (i.e., it specifies a joint distribution over the
variables), the network contains the information needed to answer all probabilistic
queries about these variables. The queries might be requests to interpret specific
input data or, if utility information is provided, requests to recommend the best
course of action. Interpretation requires instantiating a set of variables
corresponding to the input data, calculating their impact on the probabilities of
variables designated as hypotheses, and finally, selecting the most likely
combinations of these hypotheses.

In principle, once we have a joint distribution function P, the interpretation
task can be performed mechanically using purely algebraic methods. For example,
the impact of the observation X; = x; on another variable X; can be obtained from
the conditional probabilities P (x; | x;) for each value x; in the domain of X;. Using
the textbook definition

P(x;, x;)
P lxp) =— =
P(x)
we compute P (x;, x;) by summing the joint distribution P (xy,..,, x,) over all

variables except X; and X;. The summation can be executed in any order, but
exponential savings can sometimes be realized by selecting a judicious ordering.

Network representations provide a valuable guide for making this selection.
Summing over a variable, say X, amounts to eliminating X; from the network
while maintaining the proper dependencies among remaining variables—adding
links between those neighbors of X that were d-separated by X, and calculating
the conditional probabilities associated with the new links. Since the size of a link
matrix increases exponentially with the number of arrows that converge on a given
variable, it is important to eliminate variables in an order that minimizes the
number of converging arrows created throughout the process. Techniques for
finding a good elimination ordering have been developed in the operations
research literature [Bertelé and Brioschi 1972] and have been used for
manipulating influence diagrams [Shachter 1986] (see Chapter 6). Such
techniques do not, of course, avoid the exponential worst-case complexity of the
interpretation task (the problem is NP-complete [Cooper 1987]), but they exploit
the structural properties of sparse networks.

However, node elimination has several shortcomings. First, the process
requires full supervision by a monitor that must access all parts of the network and
use external computational facilities to decide, at any given stage, which variable
should be eliminated next. The use of such a global supervisor is foreign to human
reasoning because it requires faculties beyond most humans, e.g., comprehending
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the entire structure of the network and quickly diverting attention from one section
of the network to another. Our limited short-term memory, narrow range of
attention, and inability to shift rapidly between alternative lines of reasoning
suggest that our reasoning process is fairly local, progressing incrementally along
preestablished pathways. Second, elimination techniques literally cover their
tracks; they provide the final impact of a piece of evidence on a single hypothesis,
but do not calculate the impact of the evidence on the nodes eliminated in the
process. In many applications, we wish to know the updated belief of every
variable in the network. Third, and perhaps most important, the elementary steps
in the process of node elimination often have no conceptual correlates. They
create and calculate spurious dependencies among variables normally perceived to
be independent, and the dependencies are hard to explain in qualitative terms.
Finally, elimination techniques are basically sequential, and there is growing
interest in reasoning models that permit unsupervised parallelism. The interest is
motivated both by technological advances in paraliel computation and by the need
to develop viable models of human reasoning. The speed and ease with which
people perform some low-level interpretive functions, such as recognizing scenes,
reading text, and even understanding stories, strongly suggest that such processes
involve a significant amount of parallelism and that most of the processing is done
at the knowledge level itself [Shastri and Feldman 1984].

4.1.1 Constraint Propagation and Rule-based
Computation

We can model such phenomena by viewing a belief network not merely as a
passive code for storing factual knowledge but also as a computational architecture
for reasoning about that knowledge. This means the links in the network should be
treated as the only mechanisms that direct and propel the flow of data through the
process of querying and updating beliefs. Accordingly, we assume that each node
in the network is given a separate processor, which maintains the parameters of
belief for the host variable and manages the communication links to and from
neighboring, conceptually related variables. The communication lines are
assumed to be open at all times, i.e., each processor may, at any time, interrogate
its neighbors and compare their parameters to its own. If the compared quantities
satisfy some local constraints, no activity takes place. However, if any constraint
is violated, the responsible node is activated and the violating parameter
corrected. This, of course, activates similar revisions at neighboring nodes and
initiates a multidirectional propagation that will continue until equilibrium is
reached.

EXAMPLE 1: To illustrate the process of constraint propagation, consider the graph
coloring problem depicted by Figure 4.1. Each node in the graph must be assigned one of
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three colors, {1, 2, 3}, in such a way that no two adjacent nodes will have identical colors.
The constraints in this problem are local; no node can assume a color seen at any of its
neighbors. A local approach would be to assign a processor to each node and have it
compare its current color to the colors of its neighbors. ‘If equality is discovered, the
processor should choose a new color, different (if possible) from the neighbors’ colors. We
assume there is no synchronization, so all possible activation schedules could be realized.

A A A A A
0. O
B D B D B D B D B D
@} f
@ ©, ©; ©, 3
Cc C C C C
(a) ) © (@ )

Figure 4.1. Demonstrating constraint propagation in the graph coloring problem.

Figure 4.1.a shows the initial state of the system: all nodes are colored 1. Figure 4.1b shows
the configuration after the nodes are activated in the order A, B, C, D: a stable solution is
established once C selects the color 2. If, instead, the activation schedule happens to be
A, C, B, D, and if C selects the color 3, a deadlock occurs (Figure 4.1¢): B cannot find a
color different from all its neighbors. A way out of such deadlock is to instruct each
processor to change its color arbitrarily if no better one can be found. Indeed, if B changes
its color to 2 (temporarily conflicting with A, as in Figure 4.14d), it forces A to choose the
color 3, thus realizing a global solution (Figure 4.1¢).

Even if a global solution exists, there is no guarantee, in general, that it will be found by
repeated local relaxations. However, if the escape from deadlock is totally random, the
probability of reaching a solution within a given time ¢ approaches 1 as ¢ increases. Note
also that if the node activation is both parallel and synchronous, the system can fall into an
indefinite dynamic loop without reaching a solution. For example, starting with the state of
Figure 4.1a, all processors may simultaneously choose the color 2, then 3, etc. Such
pathological behavior will not occur in the networks that we shall deal with.

One of the main reasons for adopting this distributed computation paradigm in
evidential reasoning tasks is that it automatically exploits the independencies
embodied in the network, via subtask decomposition, to gain a substantial
reduction in complexity. For example, if the Markov neighbors of some variable X
have successfully computed their combined distribution function, X can compute
its own distribution without interacting with any variable outside its neighborhood
(see Eq. (3.12)). Moreover, if the network has a tree structure, then X can compute
its distribution by consulting each of its neighbors separately. If any of X's
neighbors undergo change, X updates its own distribution and reports the update to
the other neighbors, and so on until, at the network’s periphery, we meet evidential
variables whose probabilities are predetermined and the process halts.
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The second reason to adopt this distributed paradigm is that it leads to a
"transparent” revision process, in which the intermediate steps can be given an
intuitively meaningful interpretation. Because a distributed process allows each
computational step to obtain input only from neighboring, semantically related
variables, and because the activation of these steps proceeds along semantically
familiar pathways, people find it easy to give meaningful interpretation to the
individual steps and thus gain confidence in the final result. It is also possible to
generate qualitative justifications mechanically by tracing the sequence of
operations along the activated pathways and giving them causal or diagnostic
interpretations using appropriate verbal expressions.

The ability to update beliefs by an autonomous propagation mechanism also
has a profound effect on sequential implementations of evidential reasoning. Of
course, when this architecture is simulated on sequential machines, the notion of
autonomous processors working simultaneously is only a metaphor, but it signifies
the complete separation of the stored knowledge from the control mechanism.
This separation is the proclaimed, if rarely achieved, goal of rule-based systems. It
guarantees the utmost flexibility for a sequential controller; the computations can
be performed in any order, with no need to remember or verify which parts of the
network have already been updated. Thus, belief updating may be activated by
changes occurring in logically related propositions (spreading activation), by
requests for evidence arriving from a central supervisor (goal-directed activation ),
by a predetermined schedule, or entirely at random. The communication and
interaction among individual processors can be simulated using a blackboard
architecture [Lesser and Erman 1977], where each proposition is designated
specific areas of memory to access and modify.

Finally, the uniformity of this propagation scheme makes it easy to formulate
in object-oriented languages: the nodes are objects of the same generic type, and
the belief parameters are the messages by which interacting objects communicate.
The programmer need only specify how a single object reacts to changes occurring
at its neighbors; he need not provide timing information or say where to store
partial results.

Constraint propagation mechanisms have a special appeal for Al researchers
because they are similar in many respects to logical inference rules. We already
have seen that an inference rule of the form "If premise A, then action B"
constitutes a very attractive unit of computation for three reasons:

1. The triggering mechanism is local, i.e., it grants a license to initiate the
action whenever the premise A is true in the knowledge base K,
regardless of the other information that K contains.

2. The action is computationally simple and normally involves only a
minor adjustment in the knowledge base.

3. Both the triggering mechanism and the action are conceptually
meaningful and are therefore easy to program, modify, and explain.
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Almost identical features hold in the constraint propagation formalism. Each
processor receives a permanent license to act whenever a certain condition
develops among its neighbors. The action is simple, since it involves only local
perturbation of the processor’s parameters. Both the activation and the action are
meaningful because they engage semantically related propositions. Thus,
whenever a problem can be solved by a constraint propagation mechanism, it is
also easy to formulate in a pure production-rule formalism.

4.1.2 Why Probabilistic Reasoning Seems
to Resist Propagation

While constraint propagation mechanisms have been essential to many Al
applications, e.g., vision [Rosenfeld, Hummel, and Zucker 1976; Waltz 1972] and
truth maintenance [McAllester 1980], their use in evidential reasoning,
surprisingly, has been limited to non-Bayesian formalisms [Lowrance 1982;
Quinlan 1983; Shastri and Feldman 1984]. There have been several reasons for
this, all based on the essential difference between the probabilistic statement
P(A|B) = p and the logical rule B — A (see Sections 1.1.4,1.3.1, and 2.3.1).

First, the conditional probabilities characterizing the links in the network do
not seem to impose definitive constraints on the probabilities that can be assigned
to the nodes. Consider a pair of nodes A and B linked by an arrow B — A and
quantified by the conditional probabilities P(a|b) and P(al—b). The quantifier
P(alb) restricts the belief accorded to a only in a very special set of
circumstances, namely, when b is known with absolute certainty to be true and
when no other evidential data is available. Normally, all internal nodes in the
network will be subject to some uncertainty. Thus, if processor A inspects its
neighbor B and finds it in a state of uncertainty with P(b) < 1, it still cannot
proceed with a definite action on P(a). A natural recourse would be to compute
the weighted average

P(@)=P@b)P®d) + Pal=b) P(=b).

After the arrival of some evidence e, however, the posterior distributions A and B
are no longer governed by P(a | b) but rather by P(a 15, €), via

P(ale) = P(alb,e) P(ble) + P(al-b, e) P (—ble),

which may be a totally different relationship. (To take an extreme example, if e
fully confirms or denies a, the overall probability of a becomes totally insensitive
to P(alb).) The result is that any arbitrary assignment of beliefs to the
propositions a and b can be consistent with the value of P(a ib) that was initially
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assigned to the link connecting them; consequently, among these parameters, no
violation of a constraint can be detected locally.

Second, the disparity between P(a|b, ¢) and P(alb) suggests that once a new
piece of evidence is introduced, the original weights on the link no longer retain
their intended meaning; hence, they should not remain fixed but should undergo
constant adjustment as new evidence arrives. This requires enormous
computational overhead and an external unit to perform the adjustment, so it
defeats the whole purpose of local propagation.

Finally, the presence of both top-down (predictive) and bottom-up (diagnostic)
inferences in evidential reasoning has caused apprehensions that pathological
instability, deadlock, and circular reasoning will develop once we allow the
propagation process to run its course unsupervised [Lowrance 1982]. Indeed, if a
stronger belief in a given hypothesis means a greater expectation of the occurrence
of its various manifestations, and if, in turn, a greater certainty in the occurrence of
these manifestations adds further credence to the hypothesis, how can one avoid
infinite updating loops when the processors responsible for these propositions
begin to communicate with one another?

EXAMPLE 2: You spread a rumor about person X to your neighbor N;. A few days
later, you hear the same rumor from N;. Should you increase your belief in the rumor now
that N, acknowledges it, or should you determine first whether N; heard it from another
source besides you? It is clear that if you were N, ’s only source of information, your belief
should not change, but if N, independently confirmed the validity of the rumor, you have
good reason to increase your belief in it.

Similar considerations apply to communicating processors that represent
interdependent propositions. Imagine that a processor F, representing the event
Fire, communicates asynchronously with a second processor S, representing the
event Smoke. At time ¢, some evidence (e.g., the distant sound of a fire engine)
gives a slight confirmation to F, thus causing the probability of Fire to increase
from P(F) to P{(F). At a later time, ¢,, processor S may decide to interrogate F;
upon finding P(F), it revises the probability of Smoke from P(S) to P,(S) in
natural anticipation of smoke. Still later, at 75, processor F is activated, and upon
finding an increased belief P,(S) in Smoke, it increases P{(F) to an even higher
value, P3(F). This feedback process may continue indefinitely, the two processors
drawing steady mutual reinforcement void of any empirical basis, until eventually
the two propositions, Fire and Smoke, appear to be firmly believed.

Such dangers are not unique to probabilistic reasoning, but should be
considered in any hierarchical model of cognition where mutual reinforcement
takes place between lower and higher levels of processing, e.g., connectionist
models of reading [Rumelhart and McClelland 1982] and language production
[Dell 1985].
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To prevent these phenomena, we need a mechanism to keep track of the
sources of belief, so that evidence is not counted twice and so that the impact of
one piece of evidence is not fed back to its source. Unfortunately, source
identification requires an overview of the entire network, and the question arises
whether it can be represented and adjusted locally as an integral part of the
propagation process.

This chapter demonstrates that in a large class of networks, coherent and stable
probabilistic reasoning can be accomplished by local propagation mechanisms,
keeping the weights on the links constant throughout the process. This is done by
characterizing the belief in a proposition by a list of parameters, each representing
the degree of support the host proposition obtains from one of its neighbors. In the
next two sections we show that maintaining such a record of the sources of belief
facilitates local updating of beliefs, and that the network relaxes to a stable
equilibrium, consistent with the axioms of probability theory, in time proportional
to the network diameter. Such a record of parameters is also postulated as a
mechanism that permits people to retrace rationales and assemble explanations for
currently held beliefs.

4.2 BELIEF PROPAGATION IN CAUSAL TREES

4.2.1 Notation

We shall first consider tree-structured causal networks, i.e., those in which every
node except the one called root has exactly one incoming link. We allow each
node to represent a multi-valued variable, comprising a collection of mutually
exclusive hypotheses (e.g., the identity of an organism: Orgy, Org,, ..) or
observations (e.g., a patient’s temperature: High, Medium, Low). Let variables be
labeled by capital letters (A, B,...,X, Y, Z) and their possible values by the
corresponding lowercase letters (g, b,..., X, y, z). In dealing with propositional
variables, the symbols + and — will be used to denote the affirmation and denial,
respectively, of propositions. For example, +a stands for A = TRUE, and —a
stands for A = FALSE. Each directed link X — Y is quantified by a fixed
conditional probability matrix M, in which the (x, y) entry is given by

M, APGIX)APY =yIX =x) @.1)

ylx:

-y

{
v | PO1Ix) POalxy)y .. POanlxp)
P(yylxy) P(yalxa) - PQglxr)

P(yl.lxm) P(yZ‘xm) P@nlixm)
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Normally, the directionality of the arrow designates X as the set of causal
hypotheses and Y as the set of consequences or manifestations of these hypotheses.

EXAMPLE 3: In a certain trial there are three suspects, one of whom has definitely
committed a murder. The murder weapon, showing some fingerprints, was later found by
police. Let X identify the last user of the weapon, namely, the killer. Let Y identify the last
holder of the weapon, i.e., the person whose fingerprints were left on the weapon, and let Z
represent the possible readings that may be obtained in a fingerprint laboratory.

The relations between these three variables normally would be expressed by the chain
X—>Y—Z; X generates expectations about ¥, and Y generates’ expectations about Z, but X
has no influence on Z once we know the value of Y.

To represent the commonsense knowledge that the killer is normally the last person to
hold the weapon, we use a 3 x 3 conditional probability matrix:

080ifx=y x,y=1,2,3
M, ,=P@ylx)= ' 4.2)
0.10ifx#y x,y=1,2,3.

To represent the reliability of the laboratory test, we use a matrix M, 1y = P(zly), satisfying

YP@zly)=1 fory=1,2,3.

Each entry in this matrix represents an if-then rule of the following type: "If the fingerprint
is of Suspect y, then expect a reading of type z, with certainty P(z |y)."

Note that this convention is at variance with that used in many expert systems
(e.g., MYCIN), where rules point from evidence to hypothesis (e.g., if symptom,
then disease), thus denoting a flow of mental inference. By contrast, the arrows in
Bayesian networks point from causes to effects, or from conditions to
consequences, thus denoting a flow of constraints attributed to the physical world.
The reason for this choice is that people often prefer to encode experiential
knowledge in causal schemata [Tversky and Kahneman 1977], and as a
consequence, rules expressed in causal form are assessed more reliably.

Incoming information may be of two types: specific evidence or virtual
evidence. Specific evidence corresponds to direct observations that affect the
belief in some variables in the network. Virtual evidence corresponds to
judgments based on undisclosed observations that are outside the network but have

1 It appears that frames used to index human memory by and large are organized to evoke
expectations rather than explanations. The reason could be because expectation-evoking frames
normally consist of more stable relationships. For example, P(ylz) in Example 1 would vary
drastically with the proportion of people who have type y fingerprints. P(zly), on the other hand,
depends merely on the similarity between the type of fingerprint that Suspect y has and the readings
observed in the lab; it is perceived to be a stable local property of the laboratory procedure,
independent of other information regarding Suspect y.
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bearing on variables in the network. Such evidence is modeled by dummy nodes
representing the undisclosed observations, connected by unquantified (dummy)
links to the variables affected by the observations. These links will carry
information one way only, from the evidence to the variables affected by it.

For example, if it is impractical for the fingerprint laboratory to disclose all
possible readings (in variable Z) or if the laboratory chose to base its finding on
human judgment, Z will be represented by a dummy node, and the link Y —Z will
specify the degree to which each suspect is likely to bear the fingerprint pattern
examined. For example, the laboratory examiner may issue a report in the form of
a list (0.80, 0.60, 0.50), stating that she is 80% sure that the fingerprint belongs to
Suspect 1, 60% sure that it belongs to Suspect 2, and 50% sure that it belongs to
Suspect 3. If the examiner was totally unbiased before the test, such a profile of
belief can be established only if the likelihood ratio is

P (Zopserved ly = 1) : P(Zopserved ly =2) : P(Zopserved ly = 3)=8:6: 5,

which will be our standard way to characterize the impact of virtual evidence (see
Sections 2.2.2 and 2.3.3). Because these numbers need not sum to unity, each
judgment can be formed independently of the others—each suspect’s fingerprints
can be compared separately with those found on the weapon.

All incoming evidence, both specific and virtual, will be denoted by € and will
be regarded as emanating from a set E of instantiated variables, i.e., variables
whose values are known. For example, if the laboratory examination is the only
evidence available in Example 3, we shall write E = {Z} and e = {Z = Z phserved 1+
If several facts become known, say, A = TRUE, B = FALSE and X =x, then
E={A,B,X}and e = {+a, —=b, X = x}.

For the sake of clarity, we will distinguish between the fixed conditional
probabilities that label the links, e.g., P(y1x), and the dynamic values of the
updated node probabilities, e.g., P(xle). The latter will be denoted by BEL(x),
which reflects the overall belief accorded to proposition X = x by all evidence so
far received. Thus,

BEL(x)AP(xle),

where e is the value combination of all instantiated variables.

Since we will be dealing with discrete variables, functions such as A(x), P(x),
and BEL(x) can be regarded as lists, or vectors, with each component
corresponding to a different value of X. For example, if the domain of X is
Dy = {Hot, Medium, Cold}, we can write

BEL(x) = (BEL(X = Hot), BEL(X = Medium), BEL(X = Cold))
= (0.1, 0.2,0.7).
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The product f(x) g(x) of two such vectors will stand for term-by-term
multiplication, e.g.,

(1,2,3)(3,2, 1) = (1x3,2x2,3x1)(3,4,3).

Inner products (or dot products) will be denoted by a dot ., e.g.,
fxyegx)=(1,2,3)¢(3,2,)=1%x3+2x2+3x1=10.
The dot symbol « will also be used to indicate matrix products, e.g.,
f@x) e My 8 3 fx) My,
x

The summation will always be taken over the repeated index, thus eliminating the
need for transposing matrices or distinguishing between row and column vectors.
‘We shall use the symbol o to denote a normalizing constant, e.g.,

o1, 1,3)=(0.2,0.2, 0.6),
and the symbol [3 to denote an arbitrary constant, e.g.,
KBf (x) =B f(x) and
off (x) = of (x).
A vector of 1s will be written 1; for example,

BEL(x) =al =a(l, 1, 1, 1) = (0.25, 0.25, 0.25, 0.25) .

4.2.2 Propagation in Chains

Consider the simplest of all tree-structured networks, namely, a network consisting
of two nodes and a single link, X — Y. If evidence e = {Y =y} is observed, then
from Bayes’ Rule, the belief distribution of X is given by

BEL(x)=P(xle)=aP(x)A(x), (4.3)

where o = [P(e)]™, P(x) is the prior probability of X, and A(x) is the likelihood
vector

Mx)=Pelx)=P(Y =ylx)=M,, . 4.4)

In short, A(x) is simply the y’s column of the link matrix M, as in Eq. (4.1). Since
this matrix is stored at node Y, A(x) can be computed at Y and transmitted as a
message to X, enabling X to compute its belief distribution BEL(x).
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If Y is not observed directly but is supported by indirect observation e = {Z=z}
of a descendant Z of ¥, we have the chain X — Y — Z, and we can still write

BEL(x) AP(xle) = o P(x) Mx) .

The likelihood vector A(x) can no longer be directly obtained from the matrix
M., however, but must reflect the matrix M;, as well. Conditioning and

summing on the values of Y, we can write
Mx) = P(elx) =Y Plely, x) P(y lx) = 3 P(ely) P(y Ix)
¥ y
=Myix® A*(.y)a (4-5)

using the fact that Y separates X from Z. Thus, we have shown that node X can still
calculate its likelihood vector A(x) if it somehow gains access to the vector AY).

Generalizing to the chain of Figure 4.2, every node can calculate the correct
current value of its A vector if it learns the correct A vector of its successor.

M\‘It M,\'lu M)‘!.\‘ M:?_\‘
P s @4@%/@%‘4@4%/@_, _ _ Evidence €
At) Au) Ax) A Mz)

Figure 4.2. Each node in a causal chain can calculate its A from the A of its successor.

Since the chain ends with an observed variable whose value is determined
externally, the A vector of all variables can be determined recursively. If the chain
ends with an unobserved variable Z and we set A (z) = 1 for all z, Egs. (4.3) and
(4.5) are still valid, because every variable will obtain A=1 and all belief
distributions will coincide with the prior distributions. Assuming that each node
constantly inspects the A of its child and updates its own A accordingly, we are
guaranteed that every variable along the chain will obtain its correct A, properly
reflecting any changes that might have occurred in e. This updating process is
analogous to the way soldiers are counted.
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EXAMPLE 4: A platoon of soldiers is marching at night in enemy territory. The leader
wants to know how many soldiers remain under his command. He sends a "count” signal to
the soldier behind him. This person, in turn, looks behind, and if someone is there, he
passes on the "count” signal; if no one is left behind him, he returns the signal "1" to the
soldier in front of him. The soldier in front receives the "1," adds 1 (for himself) and sends
"2" to the soldier in front of him, and so on. The leader eventually receives the correct
count. (See Figure 4.3.) In fact, the leader need not be at the head of the platoon. He can
initiate a "count" command to both his front and his back, wait for responses from both
sides, and add the values received (see Figure 4.4).

Leader 4 3 2 1
O O O O
s/
/ e o , </ e
count count count count

Figure 4.3. Distributed soldier-counting.

2 Leader

Figure 4.4. Distributed soldier-counting with leader in line.

This common procedure suffers because the leader may not be aware of any missing
soldiers until he decides to count, and even then the count gets back to him only after
communication delays to and from the end of the line. This problem can be overcome by
instructing each soldier to constantly update and communicate the messages without
waiting for the "count" signal, or more efficiently, to initiate communication as soon as a
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change is seen in the immediate environment. Thus, no communication takes place under
normal conditions, but when any soldier suddenly finds himself at either the front or the end
of the line, he will initiate a message-passing process that propagates toward the leader and
eventually terminates at the leader (who is now passive) with the correct count (see Figure
4.5).

initiate 1 2 Leader 3 2 1 initiate

t /O @) /O O /O
kR AR R R

inspect inspect inspect inspect inspect

Figure 4.5. Soldier-counting initiated by changes at endpoints.

To draw the analogy closer to belief updating, let’s remove the leader and force every
soldier to be constantly aware of the current total count. In such a system, the messages,
instead of stopping at any particular individual, should continue to propagate toward the
periphery; the forward-moving messages should propagate all the way to the front of the
line, and the backward-moving messages should propagate to the end of the line. Every
soldier follows the same rule: receive a count from the person behind, add 1, and transmit
the result to the person in front; receive a count from the person in front, add 1, and transmit
to the one behind (see Figure 4.6). Note that each soldier must maintain and communicate
two separate parameters, the back count and the front count; the overall count (the sum of
the two) is not a message that can sustain the propagation.

Yo Ses

Figure 4.6. Leaderless soldier-counting using dual-parameter communication.
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BIDIRECTIONAL PROPAGATION

The need for dual-parameter communication also exists in belief updating, where
new evidence can emerge from both a descendant of a node and its ancestor. For
example, in the chain of Figure 4.7, variables are instantiated at both the head and
the tail of the chain, and we may wish to calculate BEL(x) as a function of the
values, e™ and e, that these variables take.t

Figure 4.7. A causal chain with evidential data at its head (e*) and tail (€”).

In Eq. (4.3), AM(x) was defined by P(e!x), e being the total evidence available.
We now find it more convenient to handle the impact of ¢~ and e* by two separate
vectors,

Mx) =Pe 1x) (4.6a)

and
tx)=P(xle™). (4.6b)

Expressing the total belief distribution BEL(x) in terms of A(x) and m(x), with X
separating e* from e~, we have

BEL(x)AP(xlet,e)=0.P(e* Ix,e ) P(xle) =0 P(e* lx) P(xle)
= o m(x) Mx) ,

which is identical to Eq. (4.3) with nt(x) replacing P(x).
To illustrate how information about m(x) propagates from e* down the chain,
let us condition Eq. (4.65) on the values of the parent variable U:

wx)=P(xle®)=Y P(xtu, e")Pule®).
Since U separates X from e, we obtain

m(x) =Y P(xlu) Tt(uj =nu)sM,,, .

S 4.7

+ " might represent the background knowledge one has about T, in which case the prior probability
P(t) will be identical to P(tle*).
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We see that the forward propagation of 7’s parameters is similar to the backward
propagation of A’s parameters; both involve vector multiplication by the
appropriate link matrix. Each node can now compute its own 1 and A after
obtaining the 7 of its parent and the A of its child. (See Figure 4.8.)

n(t) (u) x) y)
O2O202020)
<« <« <«— <«
M) Au) Mx) A Az)

Figure 4.8. Belief calculation using bidirected message passing in causal chains.

EXAMPLE 5: Referring to the trial story of Example 3, let © = {Z = z} represent the
experience of examining the fingerprints left on the murder weapon, and let e* stand for all
other testimony heard in the trial. So, T(x) = P(x le*) stands for our prior certainty that the
x-th suspect is the killer, (y) = P(y le") stands for our prior certainty (before examining
the fingerprints) that the y-th suspect was the last person to hold the weapon, and
A(y)=P(e ly) represents the report issued by the fingerprint laboratory. Taking
7(x) = (0.8, 0.1, 0.1) and using the matrix of Eq. (4.2), we get

0.8 0.1 0.1
n(y) = (0.8,0.1,0.1)» [0.1 0.8 0.1} = (0.66, 0.17, 0.17) .
0.1 0.1 0.8

Prior to inspection of the fingerprints, all As are unit vectors 1 and the message profile on
the chain is as shown in Figure 4.9.

X
e My
T
+n(_\.) w(x) BEL(x) A(x) ") T0.8 0.0 0.1 :7t0') n(y) BEL(Y) My)
20y (o 1 L SRS e T Y
o1l Lol L] {4t (L0 0V 08y oz Loa] [

Figure 4.9. Initial beliefs and messages in Example 5.
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Now assume that a laboratory report arrives, summarized by A(y) = B(0.8, 0.6, 0.5).
Node Y updates its belief to read

BEL(y) = o Ay) n(y) = (0.8, 0.6, 0.5) (0.66, 0.17, 0.17)
=(0.738, 0.142, 0.119)

and delivers to X its A(y) vector. Upon receiving this message, node X computes its new
A(x) vector,

0.8 0.1 0.1 0.8 0.75
Ax)y=M,,«Xy) =B {0108 0.1{ « [06] =B |061],
0.1 0.1 0.8 0.5 0.54

and its new belief distribution becomes

BEL(x) = ot M(x) m(x) = o(0.75, 0.61, 0.54) (0.8, 0.1, 0.1)
= (0.840, 0.085, 0.076) .

The messages are distributed as in Figure 4.10.

X M, .. Y z
s
) n(x) BEL(x) Mx) ). e () BEL(¥)A(Y) o
+ ([ 0.8] [ 0.840]} 0.78)| " 0.8 0.1 0.1} ") 0.66] [0.738][0.8 } _se_rvalixi
¢ 01| 0.085]0.61=—|01 08 0.li——10 17| | 0.142] 0.6fz=" € 147
0.1] | 0.076]| 0.54] )‘(“'),;OLI,O,I,OLSJ A0 [017) | 0.119][ 0.5) AO)- =

Figure 4.10. Beliefs and messages in Example 5, after obtaining the laboratory report

AY).

Now assume that Suspect 1 produces a very strong alibi, which (discounting fingerprint
information) reduces the odds that he could have committed the crime from 0.80 to 0.28,
thus yielding a revised prior probability of

n(x) = (0.28, 0.36, 0.36) .

This change propagates toward Y and results in a revised n(y):

0.
(y) = n(x) « M, = (0.28, 0.36, 0.36) » {0.
0.

—— 00
e N an]
— 00
coo

1
.1] = (0.30, 0.35, 0.35) .
8
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Each processor can now compute the revised total belief of its variable, taking into account
the evidential impact of the fingerprint findings:

BEL(x) = am(x)A(x) = a0.28, 0.36, 0.36) (0.75, 0.61, 0.54)
= 0(0.210, 0.220, 0.194)
= (0.343, 0.349, 0.308),
BEL(y) = oan(y)My) = ¢(0.30, 0.35, 0.35) (0.80, 0.60, 0.50)
= 0(0.240, 0.021, 0.175)
= (0.384, 0.336, 0.280) .
Thus, Suspect 2 now becomes the strongest candidate for being the killer (with

P(X =2) = 0.349), though Suspect 1 is still most likely to be the owner of the fingerprint
(with P(Y = 1) = 0.384). The final message distribution is shown in Figure 4.11.

>
~
N

7). BEL(X) AMI) iyt o . n(y) BEL(Y) M) - -
™) |F0.28] [0.343][ 0.75] "2 T0.8 0.1 0.1 PO o Searo8] |
e’ 11036/ | 0349} 0.61|r==| 01 08 0.1l——11 535/ | 0336 0.6]=="

0.36] | 0.308) | 0.54]| X)L 0.1 0.1 0 ) 0.35] | 0.280] 0.5]| A7) -

| | Observation
—e  ={Z=z}
1

Figure 4.11. Beliefs and messages in Example 5, incorporating alibi information 7(x).

Note how the separation between causal and evidential support (i.e., between
the 7s and the As) prevents feedback, circular reasoning, and indefinite relaxations
of the type discussed in Section 4.1.1. Suspect 1’s alibi renders him less likely (by
a factor of 0.384/0.738) to be the owner of the incriminating fingerprints, but this
reduction is not fed back to further influence his likelihood of being the killer (this
would amount to counting the alibi information twice) because A(x) and A(y) are
unaffected by changes occurring in m(x). Keeping these two modes of support
orthogonal to each other ensures stable updating in a single pass.

The local computations performed by each processor are essentially constraint
relaxations of the type discussed in Example 1, with two additional features: the
constraints are equalities, and they can always be satisfied locally. If the state of
each processor is defined by its associated 7 and A vectors, then the updating
procedure can be written as a collection of local inference rules, identical in form
and spirit to those used in constraint relaxation and logical deduction. For



4.2 Belief Propagation in Causal Trees 161

example, assuming the content of w and A is stored in two registers, called IT and
A, the behavior of processor X in Figure 4.8 is specified by three inference rules:

If (X =Yy, andA()=A@y) then AX)=Ay)-M,,, (4.8)
If (U— Xy, andTIU)=n(@) then TIX)=M,,, 1), (4.9)
If AX)=Ax)and [I(X) =m(x) then BEL(x) = oA(x) m(x). (4.10)

The first rule, for instance, reads:

If the rule "If X = x then Y = y" was assigned the certainty M, |,, and the current
content of A(Y) is A(y), then put ¥ A(y) M, |, into A(X).

y

Eqgs. (4.8) through (4.10) are depicted in Figure 4.12. The reasons for
formulating simple updating equations like Eqs. (4.5) and (4.7) as inference rules
is to demonstrate their similarity to logical deductions. Like deductive rules of
inference, they can be invoked at any time and in any order; postponing the
activation of a rule or invoking it repeatedly may delay equilibrium but will not
alter the final result. Like deductive rules of inference, the actions specified by
Egs. (4.8) through (4.10) are determined solely by the premises, independent of the
rest of the database. But these rules, unlike deductive rules, are non-monotonic in
the sense that the conclusions (e.g., the belief measures BEL(x)) may undergo
changes as new evidence arrives. Thus, Polya’s aspirations of formulating patterns
of plausible reasoning as rules of inference (see Section 2.3.1) are partially
realized, and the pitfalls of his original patterns avoided, by distinguishing causal
supports () from evidential supports (A). Knowing that a neighboring proposition
Y =y has become "more credible” or "less credible" is insufficient to trigger an
action in X; we must first ascertain whether it is A(y) or ©(y) that has changed.
This distinction is expressed in logical terms in Section 10.3.

The scheme described in Figures 4.9 through 4.12 requires that each processor
gain access to matrices of both incoming and outgoing links. This may be
inconvenient both for hardware implementation and rule-based programming. An
alternative scheme, depicted in Figure 4.13, requires that each processor store just
one matrix corresponding to the incoming link. Here, each processor receives as
input the m of its parent and the A of its own variable. Upon activation, each
processor computes its own T (to be delivered to its child) and the A of its parent
(to be delivered to the parent). This convention will be used throughout the rest of
this chapter because it closely reflects the basic construction of Bayesian networks,
whereby each node is characterized by its relation to its parents.



162 Belief Updating By Network Propagation

X
() x)
- >
BEL (x)
— Mylx ———(_-—777
M) Mx) M)

Figure 4.12. Structure of individual processor, containing two link matrices.

X
e
m(u) (x) T(x)
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_ BEL (x)
— p—
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Figure 4.13. Structure of individual processor, containing a single link matrix.

4.2.3 Propagation in Trees

We now examine a general tree-structured network where a node might have
several children and one parent. The propagation scheme in trees is very similar to
that of chains, with two distinctions: Each node must combine the impacts of A-
messages obtained from several children, and each node should distribute a
separate T-message to each of its children.
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Figure 4.14. Fragment of causal tree, showing incoming (solid arrows) and outgoing
(broken arrows) messages at node X.

Consider the tree fragment depicted in Figure 4.14. The belief in the various
values of X depends on two distinct sets of evidence: evidence from the sub-tree
rooted at X, and evidence from the rest of the tree. But the influence of the latter
source of information on X is completely summarized by its effect on U, since U
separates X from all variables except X 's descendants. More formally, leiting ex
stand for the evidence contained in the tree rooted at X and letting ex stand for the
evidence contained in the rest of the network, we have

P(xlu, ex)=P(xlu). (4.11)
This also leads to the usual conditional independence among siblings,
P, viw)=Pxlu)Piviu), 4.12)

since the proposition V = v is part of e¥.

DATA FUSION

Assume we wish to find the belief induced on X by some evidence e = ex U e}.
Bayes’ Rule, together with Eq. (4.11), yields the product rule

BEL(x)=P(xley, ex) = aPlexley, x) P(xie")
= o Plex|x) P(xle¥), (4.13)

where o = [P(ex | e}})]'1 is a normalizing constant.
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Eq. (4.13) provides an interesting generalization of the celebrated Bayes
product formula,

P(xle)= o P(elx) P(x), 4.14)

by identifying a surrogate—P (x | e )—for the prior probability term P (x)—with
every intermediate node in the tree. In recursive Bayesian updating (see Section
2.1.4), the posterior probability can be used as a new prior, relative to the next item
of evidence, only when the items of evidence are conditionally independent, given
the updated variable X. Such recursive updating cannot be applied to networks
because only variables that are separated from each other by X are conditionally
independent. In general, it is not permissible to use the total posterior belief,
updated by Eq. (4.13), as a new multiplicative prior for the calculation. Eq. (4.13)
is significant because it shows that a product rule analogous to Eq. (4.14) can be
applied recursively to any node in the tree, even when the observations are not
conditionally independent, but the recursive, multiplicative role of the prior
probability has been taken over by that portion of belief contributed by evidence
from the sub-tree above the updated variable, excluding the data collected from its
descendants. The root is the only node that requires a prior probability estimation,
and since it has no network above it, e}, should be interpreted as the background
knowledge remaining unexplicated.

Eq. (4.13) suggests that the probability distribution of every variable in the tree
can be computed if the node corresponding to that variable contains the vectors

A(x) = Plexix) (4.15)
and

n(x) = P(xled) . (4.16)

Here, m(x) represents the causal or predictive support attributed to the assertion
"X = x" by all non-descendants of X, mediated by X’s parent, and A(x) represents
the diagnostic or retrospective support that "X = x" receives from X’s descendants.
The total strength of belief in "X = x" can be obtained by fusing these two supports
via the product

BEL(x) = oMx) m(x). 4.17)

To see how information from several descendants fuses at node X, we partition the
data set ey in Eq. (4.15) into disjoint subsets, one for each child of X. Referring to
Figure 4.14, for example, the tree rooted at X can be partitioned into the root, X,
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and two sub-trees, one rooted at Y and the other at Z. Thus, if X itself is not
instantiated, we can write ex = ey U ez, and since X separates its children, we have

AMx) = P(ex 1x)
= P(ey, ez1x)

=P(eylx)P(ezlx). (4.18)

So A(x) can be formed as a product of terms such as P(eylx), if these terms are
delivered to X as messages from its children. Denoting these messages by
subscripted A’s,

Ar(x) = P(ey 1x) (4.192)
and
Az(x) = P(ez1x), (4.19b)
we have the product rule:
AX) = Ap(x) Ag(x) . (4.20)

This product rule also applies when X itself is instantiated (X =x") if we model the
new data by adding to X a dummy child D that delivers the message

1 if x=x’
MO =8x =10 it Y2y

EXAMPLE 6: In the fingerprint story of Example 5, imagine that we receive reports
from two independent laboratories, Az, )=PB (0.80, 0.60, 0.50) and Az, ) =8
(0.30, 0.50, 0.90). The overall diagnostic support A(y) attributable to the three possible
values of Y is

A(y) = B(0.80, 0.60, 0.50) (0.30, 0.50, 0.90) = 3(0.24, 0.30, 0.45) ,

and this, combined with the previous causal support m(y) = (0.156, 0.412, 0.422), yields an
overall belief of

BEL(y) = 0(0.24, 0.30, 0.45) (0.156, 0.422, 0.422)
= (0.106, 0.358, 0.536) .

What happens if Suspect 2 confesses, reliably, that he was the last weapon holder? We
model this confession as a third report Az, ) = (0, 1, 0) which, by the product rule of Eq.
(4.20), completely overrides the other two and yields A(y) = B(0, 1, 0) and BEL(y) =
O, 1, 0).
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Now we shall see if X can compute its 7(x) vector from information available
at its parent U (see Figure 4.14).
Conditioning on the values of U we get

m(x) = P(xle})

= YP(xlex, u)P(ulex)

=Y P(xlu)P(ulex) .

P(x |u) is the matrix stored on the link U — X, and P(u le}) can be calculated by
U and delivered to X as the message

nx(u) = Pulex), 4.21)
yielding

nx) = TP (¢ lu)mg(u) = My, o Tx (). (4.22)

Substituting Eqgs. (4.20) and (4.22) in Eq. (4.17) we have

BEL(x) = 0y (OAz(0) TP (x lu)mix (u) . 4.23)

Thus, node X can calculate its own beliefs if it has received the messages Ay(x) and
Az(x) from its children Y and Z and the message Ty (u) from its parent U.

PROPAGATION MECHANISM

Our next task is to determine how the influence of new information will spread
through the network. In other words, we imagine that each node eventually
receives from its neighbors the 11—\ messages needed to calculate its own belief, as
in Eq. (4.23), and we must determine how that node calculates the T—A messages
that its neighbors expect to receive from it. If the calculations can be accomplished
by local computations, and if we let each node perform the calculations often
enough, then the proper belief distributions are guaranteed to be reached,
eventually, at every node.

Consider first the message Ax (i) A P(ex | u) that node X must send to its parent
U (see Figure 4.14). If the value of X is known, say X = x”, then Ayx(u) reduces to
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P(x’lu), which is column x” of the matrix M, |,. If X is not known, we condition
P(exlu)onX = x and get

Ax(u) =Y P(ex tu, x)P(xlu)
=Y P(ex|x)P(xlu)
= Y MXPx lu)

=M, » ). (4.24)

Thus, the message going to the parent U can be calculated from the messages
received from the children and the matrix stored on the link from the parent. Note
that Eq. (4.24) also holds if X itself is instantiated (say to X = x”) because in such a
case A(x) = 0, ,-, and Eq. (4.24) yields Ax(u) = P(x "l u) as required.

Now, consider the message that node X should send to one of its children, say
Y:

Ty(x) = P(xley) = P(xlef, e3).
Using Bayes’ Rule, we get

Ty(x) = aP(ez ! x, eX)P(xle3)
=0oP(ezlx)P(xlex)
= oAz(x)m(x)
= 0AZ(O)Y P (x lu)my(u) . 4.25)

The second equality follows from the fact that X separates e from e, the third
equality follows from the definition of m(x) (Eq. (4.16)), and the fourth follows
from Eq. (4.22). Thus, the message sent from X to Y is calculated using the
message it receives from its other child Z (in general, the messages it receives from
all its children, except ¥) and the message X receives from its parent /. This is
precisely how double-counting of evidence is prevented.

Figure 4.15 summarizes the calculations for node X.
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Figure 4.15. The internal structure of a single processor performing belief updating for
the variable X.

By Eqgs. (4.23) and (4.25),

BELx) (4.26)

Ty(x) = o 0

so it might be advantageous for node X, instead of sending each child a different
message, to send all its children the value of its current belief, BEL(x), and let each
child recover its respective T message by dividing BEL(x) by the value of the last
message sent to X (caution should be exercised whenever A(x) is zero or is very
close to zero). There is no need, of course, to normalize the T messages prior to
transmission; only the BEL(-) expressions require normalization. The sole purpose
of the normalization constant o in Egs. (4.25) and (4.26) is to preserve the
probabilistic meaning of these messages. It is a good engineering practice to
encode the T and A messages so that the smallest component of each will attain the
value 1.
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SUMMARY OF PROPAGATION RULES FOR TREES

We shall now summarize the steps involved in tree propagation by specifying the
activities of a typical node X having m children, Y, ¥,,..., ¥,,, and a parent U.
The belief distribution of variable X can be computed if three types of parameters
are made available:

1. The current strength of the causal support, mwy(u), contributed by the
parent of X,

Tx(w)=P (uie).

2. The current strength of the diagnostic support, 7\.yj (x), contributed by the
Jj-th child of X,

kyj(x) =P (ey, 1x).

3. The fixed conditional probability matrix P(x |u) that relates the variable
X to its immediate parent U.

Using these parameters, local belief updating can be accomplished in three
steps, to be executed in any order.

Step 1—Belief updating: When node X is activated to update its parameters, it
simultaneously inspects the my(#) message communicated by its parent and the
messages Ay, (x), Ay, (x),... communicated by each of its children. Using this input,
it updates its belief measure to

BEL(x) = o0 Mx) 1t(x), “4.27a)
where
AMx) =11 ?»Yj x), (4.27b)
J
w(x) =3 P(x lu) mx(u), 4.27¢)

and o is a normalizing constant rendering Y BEL(x) = 1.

X

Step 2—Bottom-up propagation: Using the A messages received, node X
computes a new message, Ax(u), which is sent to its parent U:

Ax(u) = Ax) P(xtu). (4.28)
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Step 3—Top-down propagation: X computes new T messages to be sent to each
of its children. For example, the new 7y (x) message that X sends to its j-th child
Y; is computed by

Ty, (x) = o 7(x) ]};I] Ay, (x) . 4.29)

The computations in Egs. (4.27), (4.28), and (4.29) preserve the probabilistic
meaning of the parameters. In particular,

Ax(u) = P(exu), (4.30)
Ty(x) =P(xley), (4.31)
BEL(x)=P(xle) . (4.32)

Terminal and evidence nodes in the tree require special treatment. We must
distinguish four cases:

1. Anticipatory node—a leaf node that has not been instantiated. For such
variables, BEL should be equal to m, and we should therefore set
A=(1,1,..,1).

2. Evidence node—a variable with instantiated value. Following Eq.
(4.6a), if the j-th value of X is observed to be true, we set
A(x) =(0,..., 0,1,0,..., 0) with 1 at the j-th position.

3. Dummy node—a node Y representing virtual or judgmental evidence
bearing on X. We do not specify A(y) or ni(y) but instead post a Ay(x)
message to X, where Ay(x) = P P(Observationlx), B being any
convenient constant.

4. Root node—The boundary condition for the root node is established by
setting Tt (root) equal to the prior probability of the root variable.

EXAMPLE 7: To illustrate these computations let us redo Example 5, using tree
propagation on the network of Figure 4.16.
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Figure 4.16. Belief updating in Example 7 using tree propagation. The alibi is modeled
as a dummy node E generating a A message 1:10:10.

As before, let us assume that our belief in the identity of the killer, based on all testimony
heard so far, amounts to =m(x)=(0.8, 0.1, 0.1). Before we obtain any fingerprint
information, Figure 4.16a shows Y as an anticipatory node with My) = (1, 1, 1), which
means Ay(x) = Mx) = (1, 1, 1) and BEL(x) = n(x). ©(y) can be calculated from Eq. (4.22)
(using 7y (x) = n(x)), yielding

|

1

8

= (0.66, 0.17, 0.17) = BEL (y) .

—— 00
ooeo

1
.8
1

Soo

0.
() =Ty(x)eM,,, =(0.8,0.1,0.1) « [0.
0.

Assume that a laboratory report arrives summarizing the test results (a piece of virtual
evidence Z) by the message Az(y) = A(y) = B(0.8, 0.6, 0.5), as in Figure 4.16b. Node Y
updates its belief,

BEL(y) = oh(y)n(y) = (0.8, 0.6, 0.5)(0.66, 0.17, 0.17) = (0.738, 0.142, 0.119) ,

and based on Eq. (4.28), Y computes a new message, Ay (x), for X:

0.8 0.1 0.1 0.8
A(x) =M, e M) =B [0.1 0.8 0.1| « [0.6] = B(0.75, 0.61, 0.54) .
0.1 0.1 0.8 0.5
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Upon receiving this message, node X sets A(x) = Ay(x) and recomputes its belief to

BEL(x) = aA(x)m(x) = 0(0.75, 0.61, 0.54)(0.8, 0.1, 0.1)
= (0.84, 0.085, 0.076) .

Now assume that Suspect 1 produces a very strong alibi, supporting his innocence ten times
more than his guilt, i.e., P(Alibi |X # 1) : P(Alibi 1X = 1) = 10 : 1. To fuse this information
with all previous evidence, we link a new evidence node E directly to X and post the
message Az(x)=B(1, 10, 10) on the link (see Figure 4.16¢). Az(x) combines with Ay(x) to
yield

AMx) = Ag(x) Ay(x) = B(0.75, 6.10, 5.40) ,
BEL(x) = oA(x)1(x) = a(0.75, 6.10, 5.40)(0.8, 0.1, 0.1)
= (0.343, 0.349, 0.308) ,

and generates the message Ty(x) = oAp(x)n(x) = « (0.8, 1.0, 1.0) for Y. Upon receiving
Tty (x), processor Y updates its causal support ni(y) to (see Eq. 4.27)

y) = my(x) e M, = (0.8, 1.0, 1.0) «

0.8 0.1 0.1

0.1 0.8 0.1] =(0.30, 0.35, 0.35),
0.1 0.1 0.8

and BEL(y) becomes

BEL(y) = oA(y)n(y) = (0.8, 0.6, 0.5)(0.30, 0.35, 0.35)
= (0.384, 0.336, 0.280) .

Finally, since ¥ has only one child—Z—Eq. (4.29) reduces to mz(y) = ®(y) (see also Eq.
(4.26)). The purpose of propagating beliefs top-down to sensory nodes such as Z is twofold:
to guide data-acquisition strategies toward the most informative sources (see Section 6.4)
and to facilitate explanations for the system’s choices.

Note that BEL (x) cannot be taken as an updated prior of x for the purpose of calculating
BEL(y). In other words, it is wrong to update BEL (y) via the textbook formula

BEL(y) = YP(y Ix) BEL(x) (4.33)

(see discussion of Jeffrey’s Rule, Section 2.3.3), because BEL(x) was affected by
information transmitted from Y, and feeding this information back to Y would amount to
counting the same evidence twice. Only the Tty(x) portion of BEL(x) is fed back to ¥; it is
based on evidence (E) not yet considered in A(y). Another way to view this is that once
information is obtained from Z, the initial value of the link matrix P(y|x) no longer
represents the dependence between X and Y, so P(ylx, z) should replace P(ylx) in
Eq. (4.33).

Note also that the activation steps need not be sequential but may be executed in
parallel when several pieces of evidence arrive simultaneously. In the extreme case, we can
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imagine that all processors are activated simultaneously by a common clock. For example,
if the lab report and the alibi arrive together, then in the first clock cycle X and Y will
simultaneously update their beliefs to

BEL(x) = 0(0.08, 0.10, 0.10) = (0.285, 0.357, 0.357) and
BEL(y) = (0.738, 0.142, 0.111)

and produce the messages

my(x) = 0(0.08, 0.10, 0.10) and Ay(x) = B(0.75, 0.61, 0.54) ,

respectively. In the second clock cycle, X and Y will simultaneously update their beliefs to

BEL(x) = (0.342, 0.349, 0.308) and BEL(y) = (0.384, 0.336, 0.280)

and produce the same y(x) and Ay(x) as before. From now on, the same beliefs and the
same messages will be produced in every clock cycle unless additional evidence becomes
available.

ILLUSTRATING THE FLOW OF BELIEF

Figure 4.17 shows six successive stages of belief propagation through a simple
binary tree, assuming the updating is triggered by changes in the belief parameters
of neighboring processors. Initially, the tree is in equilibrium, and all terminal
nodes are anticipatory (Figure 4.17a). As soon as two data nodes are activated,
white tokens are placed on the links from the nodes to their parents (Figure 4.17b).
In the next phase, the parents, activated by these tokens, absorb them and
manufacture enough tokens for their neighbors: white tokens for their parents and
black ones for their children (Figure 4.17¢). (The links from which the absorbed
tokens originated do not receive new tokens because a T-message is not affected by
a A-message crossing the same link.) The root node now receives two white
tokens, one from each of its descendants, triggering the production of two black
tokens for top-down delivery (Figure 4.17d). The process continues in this fashion
for six cycles, at which point all tokens are absorbed and the network reaches a
new equilibrium. As soon as a leaf node posts a token for its parent, the leaf is
ready to receive new data. If the new data arrives before the token was observed
by the parent, a new token replaces the old one. In this fashion the inference
network can track a changing environment and provide coherent interpretation of
signals emanating simultaneously from multiple sources.
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Figure 4.17. The impact of new data propagates through a tree by a message-passing

process.

This updating scheme has the following properties:

1.

The local computations it requires are efficient in both storage space and
time. For a tree with m children per parent and n values per node, each
processor should store n’+mn+2n teal numbers and perform
212 +mn +2n multiplications per update.

The local computations and the final belief distribution are entirely
independent of the control mechanism that activates the individual
operations. These operations can be activated by either data-driven or
goal-driven (e.g., requests for evidence) control strategies, by a central
clock, or at random.

New information is diffused through the network in a single pass.
Instabilities and indefinite relaxations are eliminated by maintaining a
two-parameter system (% and A) to decouple causal support from
diagnostic support. The time required for completing the diffusion (in
parallel) is proportional to the diameter of the network.
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4.3 BELIEF PROPAGATION IN CAUSAL
POLYTREES (SINGLY CONNECTED
NETWORKS)

The tree structures treated in the preceding section require that exactly one
variable be considered a cause of another given variable. This restriction
simplifies computations, but its representational power is rather limited, since it
forces us to form a single node from all causes sharing a common consequence. By
contrast, when people see many potential causes for a given observation, they
weigh one cause against another as independent variables, each pointing to a
specialized area of knowledge. As an illustration, consider the situation discussed
in Example 7 of Chapter 2:

Mr. Holmes receives a phone call at work from his neighbor notifying him that she
heard a burglar alarm sound from the direction of his home. As he is preparing to
rush home, Mr. Holmes recalls that the alarm recently was triggered by an
earthquake. Driving home, he hears a radio newscast reporting an earthquake 200
miles away.

Mr. Holmes perceives two episodes as potential causes for the alarm sound—
an attempted burglary and an earthquake. Even though burglaries can safely be
assumed independent of earthquakes, the radio announcement still reduces the
likelihood of a burglary, as it "explains away" the alarm sound. Moreover, the two
causal events are perceived as individual variables pointing to separate frames of
knowledge (crime-related information seldom evokes associations of earthquakes),
so it would be unnatural to lump the two events together into a single node.

Treating E = Earthquake and B = Burglary as two separate entities (as in
Figure 2.2) allows us to relate each of them to a separate set of evidence without
consulting the other. For example, if R = The radio announcement and S = The
alarm sound, we can quantify the relation between E and R by the probabilities
P(R|E) without having to consider the irrelevant event of burglary, as would be
required if the pair (E, B) were combined into one variable. Moreover, if R is
confirmed, a natural way to update the beliefs of E and B would be in two separate
steps, mediated by updating S. E and B are presumed to be independent unless
evidence supporting S is obtained (e.g., the neighbor’s phone call); when this
happens, E and B find themselves competing for a fixed amount of evidential
support—information favoring one explanation (e.g., the radio report) would
weaken the other explanation by undermining its connection with the mediator S.

This competitive interplay among multiple explanations is a prevailing feature
of human reasoning and has been discussed in previous chapters (see Sections
1.2.2 and 2.2.4). When a physician discovers evidence in favor of one disease, it
reduces the likelihood of other diseases that could explain the patient’s symptoms,
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although the patient might well be suffering from two or more disorders
simultaneously. When we find our driveway wet, the discovery that the sprinkler
was on all night weakens the likelihood that it rained at night. The same maxim
also governs the interplay of other frame-like (though not necesarily causal)
explanations. For example, the sentence "Tweety tasted wonderful” provides a
clue that Tweety, the celebrated non-flying bird from the Al literature (see Chapter
10), is not a penguin after all; a more likely explanation for Tweety’s reluctance to
fly is that she is broiled.

This section extends our propagation scheme to Bayesian networks where a
node may have multiple parents, thus permitting "sideways" interactions via
common successors. The networks are, however, required to be singly connected,
namely, no more than one path exists between any two nodes, as in Figure 4.18a.
We call such networks causal polytrees because they can be viewed as a collection
of several causal trees fused together at the nodes where arrows converge head to
head: The absence of loops in the underlying network permits us to develop a
local updating scheme similar to that used for causal trees. The derivation of the
propagation rules, likewise, will correspond to the derivation of Egs. (4.27)
through (4.29). The impatient reader is advised to skip directly to the Summary,
Eqs. (4.47) through (4.53).

(@)

Figure 4.18. (a) A fragment of a polytree and (b) the parents and children of a typical
node X.
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4.3.1 Propagation Rules

Consider a typical fragment of a singly connected network (Figure 18b), consisting
of a node X, the set of all X’s parents, U = {U,..., U,}, and the set of all X’s
children, ¥ = {Y4,..., Y,,}. As before, let e be the total evidence obtained, ex be
the evidence connected to X through its children (Y), and e} be the evidence
connected to X through its parents (U), so that
BEL(x) = oP(ex | x)P(x le%)
= OA(X)TX). 4.34)

ex and e¥ can be further decomposed into

ex = [e}}yl,..., e;}ym]
and

ey = [eﬁlx,..., e{;ﬂx] ,

where eyy, stands for evidence contained in the subnetwork on the kead side of the
link X—Y;, and ej;x stands for evidence contained in the subnetwork on the tail
side of the link U;—X. _

To avoid cumbersome notation, we will treat all evidence as virtual, i.e.,
obtained from dummy children of variables whose values are known. Thus, all
instantiated nodes in the networks are assumed to be leaf nodes. Now,

Ax) A P(ex x)
=P(exy, ..., exy, 1 x)

= P(exy, |x) - P(exy, |x) = P(exy, 1x)

- T ). 4.35)
=1

where

kyj (x) = P(exy, 1 x). (4.36)
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Also,
n(x) AP(xle})
=P(xlef x,.... el,x)

= 3 PCclug,tty) P, Uy €5 x50ms €0,%)

= Y Plug,...u,) Py led x) P(uslef,x) = Pu,lefx)

because each pair {U;, ef;x} is independent of the other U’s and their evidence
sets.

Let
Tty () = P(u; lefix). 4.37)
Then
)= Y POclug,, t)Tg(u )y () = Ty (i)
= 3Pl Trxas) (4.38)
u i=1

Substituting Eq. (4.36) and Eq. (4.38) in Eq. (4.34), we get
BEL(x)=o [ﬁkyj (x)} [ZP (x! u)ﬁnx(u,-)} . 4.39)
j=1 u i=1

Thus, node X can calculate its own beliefs if it receives the messages ij (x) from
its children and 7y (y;) from its parents.

To prescribe how the influence of new information will spread through the
network, we need to specify how a typical node, say X, will compute its outgoing
messages Ax(%;), i = 1,..., n, and Ty, (x), j = 1,..., m, from the incoming messages
Kyj(x), j=1,.,mandmx(u), i =1,..n

UPDATING A
Consider the message Ax(x;), which node X must send its parent U;. By Eqg. (4.36),

Ax(u;) = P(eyx | w). (4.40)
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In deriving Ax(x;) it is convenient temporarily to treat all parents (except U,) as

a single compound variable,
V=U—Ui= {Ul seney Ui—19 Ui+1 seees U,,} . (4.41)

connected to X via a single link V—X, as in Figure 4.19.

Figure 4.19. Variables, messages, and evidence sets used in the derivation of Ax(u;).

The evidence ey x governing Ax(#;) can now be decomposed into two
components:

eux = levx, ex} (4.42)

where

evx =\UJelx - (4.43)

ki
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Substituting Eq. (4.42) into Eq. (4.40) gives
Ax(u;) = Plevy, ex ;)
=¥ P(e‘tx, exlu, v, x) P(v, x| u;)

x Vv

(conditioning on x and v)
=Y Y Plexlx) P(evx1v) Py, x 1u;)
X Vv
(since X separates eyy from ex and V separates ejy from U;)

P let;
=B§?P(e}lx)—%(—:)ﬁ)‘P(x|v,u,-)P(vIu,-)

(by Bayes’ Rule)

=By Y Plex!x) P(vledy) P(x1v, u;)
x v
(since U; and V are marginally independent)

Restoring the meaning of V from Egs. (4.41) and (4.43), we have
Pxlv, u)=Pxlu),

P(vle&):l'IP(ukle{}X)= I1 P(”k‘dlkx):r[ﬂx(uk),
ki k#i ki
and Ax(u;) becomes

M) =B M) X PlwIl Tox (u) » (4.44)

uy: k#i

where A(x) is given in Eq. (4.35). As before, Ax(u;) is not affected by Ty (1;); the
two messages pass along the same arc (in the opposite direction) without
interacting.

In the derivation above we assumed that X itself is not instantiated and
therefore is not part of the evidence set eyx in Eq. (4.42). This assumption does
not affect the generality of Eq. (4.44) because the fact that X is an evidence node
attaining the value x” can always be represented by instantiating a (dummy) child
node Z, and thus delivering a message Az(x) to X, where

1 x=x"

Az(x) = 6x,x’ =lo x=x"
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UPDATING =

Consider the message 7y (x), which node X must send to its child ¥;. By Eq.
(4.37),

Ty (x) = P(x Ie;}yj) .

e}}Yi stands for the entire body of evidence e, excluding evidence found in the
subnetwork on the head side of the link X—Y;,

+ -
eXYj —-e—eXYj.

Thus, Ty, (x) is equal to BEL(x) when the evidence exy, is suppressed.
Equivalently, the expression for my,(x) can be obtained from BEL(x), Eq. (4.39),
setting kyj (x) = 1. This leads to

Ty.(x) = o IT )\'Yk @) m(x), (4.45)
/ k#j

where 7(x) is given in Eq. (4.38). Alternatively, nyj(x) can be obtained from
BEL(x), writing

BEL®) _ pry (v (4.46)

Tty (x) = o
! Ay, (x) hyy) = 1.

BOUNDARY CONDITIONS

The boundary conditions are established as follows:

1. Root nodes: 1f X is a node with no parents, we set T(x) equal to the prior
probability P(x).

2. Auwicipatory nodes: If X is a childless node that has not been
instantiated, we set A(x) = (1,1,...,1).

3. Evidence nodes: If evidence X =x" is obtained (X being any node in the
network, not necessarily a leaf node), we set A(x)=3,, =
(0,...,0,1,0,...,0) with 1 at the x"-th position. Alternatively, the evidence
X=x" can be simulated by adding to X the auxiliary child node Z,
directing a message Az(x) = §, ,- toward X.

Egs. (4.44) and (4.45) demonstrate that the outgoing messages, nyj(x) and Ax(w;),
are determined from the incoming messages available to X. They also demonstrate
that perturbation of the causal parameter ® does not affect the diagnostic parameter
A on the same link, and vice versa. The two are orthogonal to each other since
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they depend on two disjoint sets of data. Therefore, any perturbation of beliefs in
response to new evidence propagates through the network and is absorbed at
peripheral nodes without reflection.t A new equilibrium state will be reached
after a finite number of updates—if they are conducted in parallel, the number will
be equal to the diameter of the network.

Eq. (4.44) also reveals that if no data are observed below X (i.e., all As pointing
to X are unit vectors), then all As emanating from X are unit vectors, regardless of
the incoming 7 messages. So, evidence gathered at a particular node does not
influence any of its spouses until their common child gathers diagnostic support.
This reflects the d-separation conditions established in Section 3.3.2 and matches
our intuition regarding multiple causes. In Mr. Holmes’ case, for example, prior to
the neighbor’s telephone call, seismic data indicating an earthquake would not
have influenced the likelihood of a burglary.

SUMMARY OF PROPAGATION RULES FOR POLYTREES

The steps involved in polytree propagation are similar to those used with trees. We
shall now summarize these steps by considering a typical node X having m
children, Y,..., Yy, and n parents, Uy,..., U,, as in Figure 4.18b.

The belief distribution of variable X can be computed if three types of
parameters are made available:

1. The current strength of the causal support T contributed by each
incoming link U;—X:

() = P lefx) - 4.47)

2. The current strength of the diagnostic support, A, contributed by each
outgoing link X — ¥ '

Ay, (x) = P(exy, Ix). (4.48)

3. The fixed conditional-probability matrix P(xluy,..., 4,) that relates the
variable X to its immediate parents.

Using these parameters, local belief updating can be accomplished in three steps,
to be executed in any order.

Step 1—Belief updating: When node X is activated, it simultaneously inspects

the messages Tx(#;), i =1,..,n communicated by its parents and the messages

+ A peripheral node is either a root with a single child or a leaf with a single parent. Every polytree
must have at least two peripheral nodes.
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kyj (x), j =1,..., m communicated by its children. Using this input, it updates its
belief measure to

BEL(x) = o0 Mx) T(x), (4.49)
where
AMx)=11 Kyj (x), (4.50)
j
nx)= Y, P&lug,.., u,) Hux@,), 4.51)

and o is a normalizing constant rendering Y, BEL(x) = 1.
X

Step 2—Bottom-up propagation: Using the messages received, node X computes
new A messages to be sent to its parents. For example, the new message Ay(y;) that
X sends to its parents U, is computed by

Ax() =B AMx) X Plxluy,.., u,) gnx(uk) . (4.52)

uy ki
Step 3—Top-down propagation: Each node computes new T messages to be sent
to its children. For example, the new my,(x) message that X sends to its child Y is

computed by

Ty, (x) = o

]}—I' Kyk(x)} z P(x I Uiyeny u,,) H TCX(u,-) (4.53)
# Uty Up !
—o BEL(x)

Ay, )

Numerical examples illustrating these propagation rules in polytrees are given
in Section 4.5.3 (see also Section 5.2.1).

The presence of multiple parents introduces an added dimension of
complexity; although the computations in Eqgs. (4.51) through (4.53) are still local,
the summation ranges over all value combinations of the parent variables, which
are exponential in n. If the number of parents is small, the summation can be
performed by enumeration. However, if there are more than four or five parents,
approximation techniques must be invoked that make use of the special structure
of the link matrix P(x [uy,..., 4,).

In Chapter 2, we remarked that when »n is large, we must use prototypical
models of child-to-parents interaction, involving disjunctions and conjunctions
(noisy OR- and AND-gates), in order to specify the link matrix. Here we see that
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considerations of computational complexity also dictate such usage. In the next
section, we shall see that some of these prototypical models enable us to compute
Egs. (4.51) through (4.53) in closed form, thus reducing the computation of the
outgoing messages to simple products of about n parameters.

4.32 Canonical Models of Multicausal
Interactions

The original formulation of Bayesian networks (Section 3.4) required, for each
variable X, that one assess the conditional probability P(x |u), where Uis aset of
variables judged to be direct causes of X. We have also noticed that the individual
elements of U often point to disparate frames of knowledge, making it difficult to
assess P(x1u). If U, and U, represent frames of knowledge truly foreign to one
another (e.g., burglaries and earthquakes) except that they share X; as a common
consequence (e.g., triggering the alarm), one cannot expect to find the matrix
P(x|uy, up) prestored in memory. No reasoning system could spare the space
required to permanently store the strength of connection between every
conceivable event and every combination of conditions that might trigger that
event. A more reasonable organization scheme would be to let each frame hold
separately the weights associated with each of its likely consequences. Then,
should a situation evoke more than one frame, the system can compute the weights
of their common results "on the fly," using some universal combination rule. For
example, in our burglary alarm scenario, it is reasonable to expect people to have
some prestored idea of the likelihood that a burglary will trigger an alarm or that
an earthquake will trigger it, but not of the likelihood that the combination,
burglary and earthquake, will trigger it. A physician is expected to have
prepackaged estimates of the chances that an individual disease will be
accompanied by high fever, but when asked to estimate the likelihood of high
fever given some rare combination of diseases, the physician cannot refer to
prestored knowledge. Rather, she must resort to some canonical model of disease
combinations in general, which most likely is also domain-independent, ie.,
applicable to a wide class of interacting causes.

DISJUNCTIVE INTERACTION (THE NOISY OR-GATE)

One of the most common models of this type is disjunctive interaction (the "noisy
OR-gate" of Chapter 2), which leads to a very convenient and widely applicable
rule of combination. Disjunctive interaction occurs when any member of a set of
conditions is likely to cause a certain event and this likelihood does not diminish
when several of these conditions prevail simultaneously. For example, if each
individual disease is likely to cause high fever, then a patient suffering from
several of these diseases simultaneously would only be more likely to develop high
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fever. Moreover, if the patient is also suffering from a disease that in isolation is
not normally accompanied by high fever, this added information does not reduce
the patient’s likelihood of developing high fever from the other diseases.

Disjunctive interactions can be approximated by an elegant mathematical
model based on two assumptions: accountability and exception independence.

Accountability requires that an event E be presumed false (i.e., P(E) = 0) if all
conditions listed as causes of E are false. In the burglary alarm example, this
assumption requires that we list explicitly the main conditions likely to trigger the
alarm and lump together all those conditions that we prefer to keep implicit under
the heading "All other causes.”

Exception independence asserts that if an event E is a typical consequence of
either one of two causal conditions ¢ and c¢,, then the mechanism that may inhibit
the occurrence of E under c; is independent of the mechanism that may inhibit E
under c,. Each exception to normal behavior acts as an independent variable. For
example, the mechanism that inhibits the activation of the alarm during an
earthquake could be low vertical acceleration, while the mechanism acting during
a burglary could be the burglar’s skill and sophistication. Since these two can
safely be presumed independent of each other, exception independence holds. A
power failure, on the other hand, would inhibit the alarm activation in both frames
and thus would violate exception independence if it is a likely event.

These two assumptions are represented schematically in Figure 4.20. The
event X represents a prediction or a consequence and is viewed as the output of a
logical OR-gate. Each input to the OR-gate is the output of an AND-gate
representing the conjunction of a causal explanation of X, U;, and the negation of
its specific inhibitory mechanism /;. (Readers familiar with the IN and OUT
justifiers in truth maintenance systems [Doyle 1979] or with the abnormal
predicate in circumscription [McCarthy 1986] should note their resemblance to the
U; and I; variables in Figure 4.20.)

The inputs U = (U, Us,,..., U,) are the parents of X in the Bayesian networks,
and they normally represent explanations, hypotheses, conjectures, causal factors,
or enabling conditions that may account for the occurrence of X. The inhibitors
I,..., I, represent exceptions or abnormalities that interfere with the normal
relationship between U and X. These are normally not represented by nodes in
Bayesian networks but are summarized implicitly by the link matrix
P(xluy,..., u,). Here we explicate their structure and display them as root nodes in
order to justify an especially useful form of the link matrix.

CONSTRUCTING THE LINK MATRIX

Denote by g, the probability that the k-th inhibitor is active. If U; is the only
parent that is TRUE, X will be TRUE iff the inhibitor associated with U; remains
inactive. Hence, we have

P(X = TRUE\U; = TRUE, U, = FALSE k#i)=1—gq,.
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i u
—®

AND Explanations
or Conditions

Exceptions
or Inhibitors

A |

Figure 4.20. The noisy OR-gate. A canonical model of disjunctive interactions among
multiple causes U ... U, predicting the same effect X.
Thus, the parameter
ci=1-g

represents the degree to which an isolated explanation U; = TRUE can endorse the
consequent event X = TRUE.
Let

uz(ul, Userns un) u; € {07 1}

represent any assignment of truth values to the parent set U. The assumption of
exception independence permits a closed-form calculation of the probability
distribution of X given any assignment state u. If T, represents the subset of
parents that are TRUE,

T, = {i:U; = TRUE},
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then X is FALSE iff all inhibitors associated with T, are active. Thus, we can write

PX =FALSE\u) = 11 ¢,

ieT,
or
II g if x=0
Paluwy= <™ (4.54)
1— H Qi lf X = 1,
ieT,

where x =0 and x =1 represent the events X = FALSE and X =TRUE,
respectively. Eq. (4.54) constitutes a full specification for the link matrix. It also
represents a general scheme for approximating a link matrix P(xlu) from
individual parent-child relationships, in cases with negligible cross-interaction.

COMPUTING BEL(x)
Following Egs. (4.49) through Eq. (4.54), we write

BEL(x) = 0. Mx) Y, P(x lw) TI Ty (u;)

0‘7%2(,1} fli)l;lnx(uk) if x=0
= w S (4.55)
ar Y (1- 1} q:) l;InX(uk) if x=1,
» ieT,

where A(x) = (Ag, A;) represents the combined evidential support contributed by
X’s children and my (u;) represents the message X receives from its i-th parent (i.e.,
the probability distribution of the i-th parent given all evidence from the
subnetwork at the tail of the link U; — X).

The summation in Eq. (4.55) can be obtained in closed form by ecursive
summation over the individual U’s. Denoting by +u; and —u; the propositions
U; = TRUE and U; = FALSE, and letting

Tix = Ty (+u;) = 1 =y (—w;) ,
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we define

I, A% (I g) 1;[ Ty () = Y, ,

I gm I {a-m
iET,,q IX] [iéT,,( an)

ieT,
and summing over the two states, +u; and —u;, of one of the U’s, say U, we obtain

I,

[‘Ij Ty (+u;) +nX(_1uj)] > ‘Iilgjﬂx(uk)

- ieT,—j

[Qj Tx + 1 _an] Wy =0 - Iy, .

Thus, summing over ; has the effect of pulling out a factor (1 —¢; Tx) and leaving
behind the same form with u — u; instead of u, where

u—u; = (U1 ey U1y Ul u,} -

Applying this recursively T gives

I, =T (gmx + 1 - Tx) - (4.56)
Hence,
o holl (1 - ¢; Ti) ifx =0
BEL{x) = ! 4.57)

(X,)\,] [I—H(l—ci Tfix)] ifx=1.

Thus, we see that the overall belief distribution of a variable X can be formed by a

multiplication over the individual contributions of X’s parents (and X’s children,

via AMx) = (Ao, M)). The product ¢; mx can be interpreted as the degree of

predictive endorsement that the parent U; lends to the proposition X = TRUE,

hence the product TI(1 — ¢; T;x) represents the overall endorsement withheld by all
1

+ This derivation is due to Charles Kalme. Another way of verifying Eq. (4.56) is to use the formula
M(g; +b;) = X, T1 @) ( TL b;), substituting a; = ¢;Tix and b; = 1-mx.
i e i€Ty ieT,
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parents. When each c¢; ;y endorsement is small, Eq. (4.57) can be approximated
by

_ A
g%li(;f(l))l = t LI (4.58)

1

demonstrating that the combined endorsement by all parents is additive over the
individual endorsements.

COMPUTING THE Vs
Using Eq. (4.44) we write

AW =BY Mx) 3 Pxlw) g;[inx(uk) . (4.59)

u-u;

The second summation in Eq. (4.59) is identical in form to that of Eq. (4.55),
except that u; is now excluded from the summation. Accordingly, using the
formula Eq. (4.56) for IT",,, we get

)\'X(ui) = B 2 }\‘(x) F(xa ui)7
where

q; 11 (1 — ¢ ry) if x=0
Fe, +uy={
1—qu(1—ck1'ckX) if x=1
ki

and

F(x, ) = F(x, +u;)
gi=1

Inserting this in Eq. (4.59) yields

Blhoq Iy + Ay (1 —q; II7)]  if w; = +uy
M) = Blag I + A (1 -117)] if u; =—u, 4.60)

where

H/i = ]}-I (1 = Cg ﬂkx) (4.61)
#1
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represents the overall endorsement withheld by all parents except U;. A more
concise formula for encoding Ax(y;) is

Ats) = B [xl — g0~ o) n’,] 4 =0, 1.

INTUITIVE INTERPRETATION AND CREDIT
ASSIGNMENT POLICY

Since only the ratios
Ax(+u)

d L A
XU Ay (uy) me T

kel
Ao
enter the updating rules, we can write Eq. (4.60) as
gl + (1 —qll’y) Ly
Lxy, = p p
n;+ (1 -11) Lx

IT; ci(lx — })]
Tlr - dg-D

=1 (4.62)
Note that Ly = 1 implies Lyy, = 1, so if X gathers no evidential support, U; will
neither receive evidential support from X nor be affected in any way by the other
parents. This phenomenon is true in general (see Eq. (4.44)), and it reaffirms our
intuition that causal frames should remain uncoupled until their common slots
receive indication of empirical confirmation or denial. However, the noisy-OR-
gate model has one more condition under which causal frames remain uncoupled,

namely, when X is completely denied. This can be seen by substituting Lx = 0 in
Eq. (4.62)), yielding

Lyy, =1-¢ =g

independent of ¢; or Ty, k #i. Thus, the denial of a common effect X results in
each causal factor receiving a constant support ¢; < 1, regardless of the existence
of other factors (g; is usually very small, so Lyy, = ¢; means the withholding of
support from U;). From a network analysis viewpoint, this phenomenon means
that any negatively instantiated variable X acts as an absorption barrier, similar to
an anticipatory variable. The messages Ty converging onto such a variable are
totally absorbed and do not generate new A messages. Negatively instantiated
variables can even turn multiply connected networks into polytrees (see the
example in Section 4.5.3, Figure 4.37).

There is another condition under which U; receives no evidential support from
X, namely, when at least one of the other parents, say Uy, extends a full
endorsement to X by having ¢;Tx = 1. Under this condition IT"; =0, and again,
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Ax(+u;) | Ax(—u;) = 1 regardless of ¢;, meaning the connection between X and U,
is totally disrupted by U,. This fits intuition; once we find a satisfactory
explanation for a suspected symptom, that symptom no longer imparts
confirmation to other explanations, no matter how sure we are of the symptom.
For example, once I learn that the ignition wires in my car are disconnected, I no
longer hypothesize a faulty battery no matter how sure I am that my car will not
start. Explanations act as logical valves shutting off each other’s flow of evidential
support when they become confirmed. When two or more explanations achieve
¢ Tux = 1, none of them can receive evidential support from X because the IT"; of
each one, and of any other explanation of X, becomes zero. In fact, achieving
¢y = 1 means the k-th explanations no longer need X’s support; it is firmly
established by other sources of information, and from that position its sole effect
would be to undermine the flow of support from X to every other explanation. In
Chapter 10, we shall formulate this undermining effect in the framework of default
logic.

6 Ay (+up) | e
S| | M) g
4
Evidential weight
passed to U, :
(normalized) 5
1
O I
4

-1 0 1 2 3 4 5 6 7 8 9

% -1 Evidential weight at X

Figure 4.21. The support that a partially confirmed event lends to its i-th explanation, U,
as a function of the evidential weight accrued at X, and the amount of credit
I1"; left unclaimed by alternative explanations.



192 Belief Updating By Network Propagation

Figure 4.21 depicts the relationship between the likelihood ratios Lyy, and Ly
for several values of IT°;. It shows that for a given value of I17;, there is a
maximum amount of evidential support that can be transferred from X to U;. That
amount (see Eq. (4.62)) is equal to

C; H’i

= 4.63
1-10 (4.63)

LXU,- = 1 +

and it is reached when Ly = oo, namely, when X = TRUE is confirmed with
absolute certainty. Thus, IT"; can be thought of as the maximum amount of
residual credit left unclaimed by all alternative explanations combined.

An interesting situation develops when the a priori probabilities Ty are
extremely small. Under this condition, each cause individually provides only a
small endorsement to the event X = TRUE. Yet when the truth of X is confirmed,
the relative likelihoods of the various causes are determined by the relative
magnitudes of their ¢, Ty products. To see this, we write

BEL(+u) T Lxu
BEL(+u}) Tx LXUJ- ’

Since My << lrendersII; = lin Eq. (4.61), Eq. (4.63) yields

BEL(+M,) ~ C; Tix
BEL(+uj) - Cjan.

If we make the further assumption that only one of the causes can be true (single
cause assumption), we get the formula

C; x
BEL(+u)=—" ".

ch Tx
k

Thus, the amount of credit deserved by explanation U; is given by the product
c;Tx, i-e., the endorsement offered by the explanation weighted by the probability
that it is in fact TRUE.

To further demonstrate how parents compete for the evidential support
provided by X let us assume that X is not confirmed with certainty, i.e., Lx is finite.
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Making the rare-endorsement assumption
gfux << 1 for k=#i

and expanding Eq. (4.62) in Taylor’s series, we obtain

LXU,- -1 = [LX - 1:| C; [1 —‘E Cknkx] . (4.64)

ki

The term Ly — 1 can be identified with the overall evidential weight received by
the proposition X = TRUE. Accordingly, Eq. (4.64) demonstrates that the
evidential weight received from X by the i-th parent depends on three factors:

1. Ly — 1 =the total evidential weight accrued at X.

2. ¢; = the degree to which U; endorses X (if U; is TRUE).

3. 1= cxmx = the amount of residual credit left unclaimed by all other
ki
parents.

Thus, the struggle for a share of X’s support is settled by the following policy: he
who risks the strongest endorsement in a prediction earns the greatest credit when
that prediction materializes. Note that while parents compete for credit from their
child’s success, the same is not true for children; the more a child endorses a
parent, the greater the benefit to its brethren. This distinction is further examined
in Section 10.3.

OTHER CANONICAL MODELS

The basic noisy-OR-gate model of the preceeding subsection is too restrictive in
some applications, and more elaborate interactions among the causal conditions
are sometimes needed. For example, conditions might interact conjunctively
rather than disjunctively. The basic structure of such models remains the same,
however: Boolean combinations of explicated conditions. The unexplicated
conditions are summarized probabilistically under the assumption of exception
independence.

The assumption of exception independence can easily be relaxed to represent
global abnormality conditions, i.e., conditions that would inhibit the response
event X even when several causal factors are triggered. For example, a power
failure would inhibit the alarm from sounding under simultaneous burglary and
earthquake conditions. To incorporate global inhibition in the model of Figure
4.20 we simply add another AND-gate between the OR-gate and the response
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variable X, as in Figure 4.22a. When the global inhibitor / is ON, X will be OFF,
regardless of other causal factors.

| |
| . . |

N

Global
DO Enabler
inhibitor ) Ioe 3 (e.g., reset button)
(e.g., power failure) w
X X
(a) (b)

Figure 4.22. Canonical models of global inhibition (a) and enabling mechanisms (b).

In this fashion, we can also model various enabling mechanisms, ie.,
conditions that have no influence of their own (on X) except to enable other
influences to take effect. For example, if the alarm system has a reset button which
Mr. Holmes occasionally forgets to push, setting this button is an enabling
condition, as in Figure 4.22b.

SUMMARY

Canonical models can be thought of as default strategies for completing the
specification of a Bayesian network whenever detailed interactions among causes
are unavailable, too numerous to elicit, or too complex to be treated precisely. In
particular, the disjunctive model of interacting causes has several advantages: it
requires the specification of only n parameters (for a family of n parents), it
executes the propagation routine in only 7 steps (for each node with n parents), and
it leads to conclusions that match our intuition about how credit should be assigned
among competing explanations. Having explicated the assumptions behind
disjunctive interaction, i.e., accountability and exception independence, we can
scrutinize the model’s range of adequacy at a very basic level, and once this test is
passed, the adequacy of the credit assignment policy is guaranteed.
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44 COPING WITH LOOPS

Loops are undirected cycles in the underlying network, i.e., the network without
the arrows.¥ When loops are present, the network is no longer singly connected,
and local propagation schemes will invariably run into trouble. The reason is both
architectural and semantic. If we ignore the existence of loops and permit the
nodes to continue communicating with each other as if the network were singly
connected, messages may circulate indefinitely around these loops, and the process
may not converge to a stable equilibrium. This problem is usually encountered in
non-probabilistic systems (such as Example 1), where each message can cause a
discrete change in the state of the receiving processor (e.g., choosing a different
color), a change that can be reversed each time its impact circulates around the
loop. Such osciliations do not normally occur in probabilistic networks because of
the stochastic nature of the link matrices, which tend to bring all messages toward
some stable equilibrium as time goes on. However, this asymptotic equilibrium is
not coherent, in the sense that it does not represent the posterior probabilities of all
nodes of the network. The reason for this is simple: all of our propagation
equations were based on some conditional independence assumptions that might
be violated in multiply connected networks. For example, the product in Eq. (4.51)
was based on the assumption that all parents of a node X are mutually independent
as long as none of their common descendants is instantiated. This assumption will
no longer be valid if some parents of X share a common ancestor. Even our basic
fusion equation (Eq. (4.13)) was based on a clear distinction between causal and
diagnostic evidence, the two being separated by X; the distinction gets blurred in
multiply connected networks because ey may influence X’s parent via pathways
that sidestep X. (Asymptotic relaxation can still be used as a method of
approximation. See Exercise 4.7.)

This section introduces three coherent methods of handling loops while
retaining some of the flavor of local computation: clustering, conditioning, and
stochastic simulation. Clustering involves forming compound variables in such a
way that the resulting network of clusters is singly connected. Conditioning
involves breaking the communication pathways along the loops by instantiating a
select group of variables. Stochastic simulation involves assigning each variable a
definite value and having each processor inspect the current state of its neighbors,
compute the belief distribution of its host variable, and select one value at random
from the computed distribution. Beliefs are then computed by recording the
percentage of times that each processor selects a given value.

+ Directed cycles, like those representing feedback in electronic circuits or econometric models, are
not allowed in Bayesian networks and will not be discussed in this book.
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The operation of the three schemes will be illustrated with a simple example
borrowed from Spiegelhalter [1986], originally by Cooper [1984]:

Metastatic cancer is a possible cause of a brain tumor and is also an explanation for
increased total serum calcium. In turn, either of these could explain a patient falling
into a coma. Severe headache is also possibly associated with a brain tumor.

Figure 4.23 shows the Bayesian network representing these relationships. As
in the preceeding sections, we use uppercase letters to represent propositional
variables and lowercase letters for their associated propositions. For example,
C € {1, 0} represents the dichotomy between having a brain tumor and not having
one. +c stands for the assertion C =1 or "Brain tumor is present,” and —¢ stands
for the negation of +¢,ie.,C = 0.

Metastatic cancer

Increased total

{ Q Brain tumor
serum calcium

Coma Severe headaches

Figure 4.23. A Bayesian network describing causal influences among five variables.

Table 1 expresses the influences in terms of conditional probability
distributions. Each variable is characterized by a link matrix, specifying the
probability distribution of that variable given the state of its parents.i The root
variable, having no parent, is characterized by its prior distribution.

+ The probabilities are for illustration purposes only, and are not meant to realistically reflect current
medical knowledge. Additionally, the variable "Coma" should be interpreted to mean "Lapsing
occasionally into coma"; otherwise it would preclude headaches.
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Table 1.
P(a): P(+a)=.20
P(bla): P(+bl+a)= .80 P(+bl=a)=.20
P(cla): P(+cl+a)=.20 P(+cl—a)=.05

P(dlb,c): P(+dl+b,+c)=.80 P(+d|=b +c)= .80
P(+dl+b,—c)=.80 P(+d|=b,—c)=.05
P(elc): P(+el+c)=.80 P(+el—=c )= .60

Given this information, our task is to compute the posterior probability of every
proposition in the system, given that a patient is suffering from severe headaches
(+¢) but has not fallen into a coma (—d), i.e.,e = {E = 1, D =0}.

44.1 Clustering Methods

A straightforward way of handling the network of Figure 4.23 would be to collapse
B and C into a single node representing the compound variable Z = {B, C'} with
the values

z € {(+b, +c), (=b, +c), (+b, —¢), (=b, =)} . (4.65)

Pd b, c)

Figure 4.24. Clustering B and C turns the network of Figure 4.23 into a tree.

This results in the tree structure shown in Figure 4.24. Since the cardinality of
variable Z is 4, the matrices on all three links must have either four rows or four
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columns. This does not mean, however, that the enlarged matrices should be
stored explicitly at their corresponding nodes; often they can be generated from
the smaller matrices of Table 1. For example, the matrix P(z |a) can be generated
as the product

P(zla)=P(b,cla) =P(bla) P(cla)

_ |(0.16,0.04, 0.64,0.16) if A=1
= 1(0.01, 0.04,0.19,0.76) if A=0,

and P (e | z) can be generated by simply ignoring the b component of z:
P(elz) =P(elb,c)=Plelc).

Still, the process of belief updating will proceed as though the four components of
Z were independent entities.

The propagation of belief updates is conducted in the same fashion as with
ordinary trees. The only differences are the increased dimensionality of the 7 and
A messages and the need to reaggregate BEL(z) in case we wish to find BEL(b) or
BEL(c). ‘

EXAMPLE: As an illustration, let us calculate the belief distribution of all variables in
Figure 4.23, given the evidence e = {—d, +¢ }. Initially, the T messages are given by

nza) = ma) = (0.20, 0.80),

nip(z) = mp(z) = 7(z) = ), P(z1a) ma)

[(0.20 -0.16 + 0.80 - 0.01), (0.20 - 0.04 + 0.80 - 0.04),

(0.20 - 0.64 + 0.80 - 0.19) (0.20 - 0.16 + 0.80 - 0.76)

[0.04, 0.04, 0.28, 0.64] ,

and the A’s are all unit vectors. Once D and E are instantiated, they generate

Ap(z) = P(—d |2) = (0.20, 0.20, 0.20, 0.95),
Az(z) = P(+e|2) = (0.80, 0.80, 0.60, 0.60),
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and these prompt node Z to compute
Mz) = Ap(z) Ae(z) = (0.16, 0.16, 0.12, 0.57),
BEL(z) = a.ni(z) Mz)
= (0.04 - 0.16, 0.04 - 0.16, 0.28 - 0.12, 0.64 - 0.57)
= (0.0156, 0.0156, 0.0817, 0.887),
and generate
Tz(z) = o m(z) Ap(z) = a(0.04 - 0.20, 0.04 - 0.20, 0.28 - 0.20, 0.64 - 0.95)
= (0.0118, 0.0018, 0.0823, 0.8941),
7p(z) = A n(z) Ag(z) = 0(0.04 - 0.80, 0.04 - 0.80, 0.28 - 0.60, 0.64 - 0.60)
= (0.0519, 0.0519, 0.2727, 0.6233),

Az(a) =3, P(zla) Mz) = [(0.16 -0.16 + 0.04 - 0.16 + 0.64 - 0.12 + 0.16 - 0.57),

(0.01-0.16 +0.04-0.16 + 0.19-0.12 + 0.76 - 0.57)

= (0.2,0464).

Node A now computes its belief distribution,
BELa) = a.ma) Aza) = 1(0.20 - 0.20, 0.80 - 0.464) = (0.097, 0.903),

and the propagation process halts. To find BEL(b) and BEL(c) we write

BEL(b) =Y ,BELIZ = (b, c)] = [(0.0156 +0.0817), (0.0156 + 0.887)]

= (0.097, 0.903),

BEL(c) = Y, BEL{Z = (b, c)] = [(0.0156 +0.0156), (0.0817 + 0.887)]
b

= (0.031, 0.969) .

SELECTING THE CLUSTERS

Every Bayesian network can be structured as a tree of clusters if we do not limit
the size of the clusters. In the extreme case, we can lump together all non-leaf
variables as one compound variable (see Figure 4.25a), which will yield a star
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structure as in Figure 4.25b. This approach was taken by Cooper [1984] and Peng
and Reggia [1986] in their medical diagnosis systems, where each state of the
compound variable was regarded as a possible explanation of the findings
obtained. Unfortunately, the exponential cardinality and structureless nature of the
compound variable make it difficult to compute, much less explain, the beliefs
accrued by individual hypotheses within this variable.

D, D, D, Dy

(b)

Figure 4.25. Clustering the network (a) into atree ( b) and a polytree (c).

A less dramatic clustering scheme is shown in Figure 4.25c. Here, the
formation of the two clusters

Z,=1{D,,D3,D4} and Z; ={M, My, M3}

renders the network of Figure 4.25a a polytree, where the propagation techniques
of Section 4.3 are applicable. Ad hoc techniques are currently being used to choose
a clustering structure; little work has been done in the area of finding the optimal
structure given some criterion of performance.

One of the most popular methods of clustering is based on join trees (see
Section 2.4). If the clusters are allowed to overlap each other until they cover all
the links of the original network, then the interdependencies between any two
clusters are mediated solely by the variables they share. If we insist that these
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clusters continue to grow until their interdependencies form a tree structure, then
the tree propagation scheme of Section 4.2 will be applicable.

We know from the discussion in Section 3.2.4 that if a probabilistic model P is
decomposable with respect to a chordal graph G, the cliques of G can be arranged
in a tree that is an /-map of P. This provides a simple, systematic method of
forming clusters of variables for the purpose of propagating the impact of evidence
in an arbitrary Bayesian network Np:

1. Form the Markov network G of Ny by connecting all parents that share a
common child and removing the arrows from the links (G is an /-map of
Np).

2. Form a chordal supergraph G* of G, using the graph-triangulation
algorithm of Section 3.2.4 [Tarjan and Yannakakis 1984].

3. Identify the cliques of G~ as compound variables, and connect them by
links to form a join tree 7.

4. Treat evidence nodes in Np as dummy variables, transmitting A-
messages toward one of the clique nodes in T of which the evidence
nodes are members.

5. Propagate the impact of these messages throughout 7, and project the
appropriate beliefs back to the individual variables of Nj.

Figure 4.26. The Markov network of the model in Figure 4.23.
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We illustrate this method on the model of Figure 4.23. The corresponding
Markov network is formed by adding the link (B, C) between the two parents of D
and removing all arrows (Figure 4.26). G is chordal and has three cliques:

Z, ={AB,C}, Zy={B,C,D}, Zy={C E}.

These cliques can be connected in two join tree structures (as in Figure 3.9), one of
which is shown in Figure 4.27. The directionality of the arrows was chosen to
match the directionality of the original network, Figure 4.23. The evidence
variables D and E appear in Z, and Z3, respectively, so dummy links are formed
toward these two cliques, carrying A-messages that exclude those states of Z, and
Z that are incompatible with D = 0 and E = 1.

Figure 4.27. A join tree clustering of the network in Figure 4.26, with two dummy nodes
representing the observed findings.

To facilitate the propagation we need to find the matrices that correspond to
links between any two adjacent cliques in a join tree. Since the interdependencies
between cliques Z; and Z; are mediated solely by the shared variable Z; N Z;, we
have (see Egs. (3.24) through (3.26))

M., =Pz lz;) = P(z;1z; N zp).

Thus, if Z; is a parent of Z; in T, the link between the two cliques can be computed
from the Condltlonal probability of the group of variables unique to Z;, conditioned
on the variables that Z; shares with its parent Z;. In our example, since Z, shares
{B, C} with Z;, we have

M, P(z,1z,) = P(b,c,d\b,c)=P(db, c). (4.66)

2lzy =
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Although the M,,,, matrix should, in principle, measure 8 by 8, the
requirement that the values assigned to B and C by Z, be identical to those
assigned by Z; renders M, ., fully characterized by the four parameters in
P(dlb, c), as in Table 1. The computations will proceed as though the link matrix
measured 8 by 8 and the messages traversing this link were eight-dimensional.

Let us demonstrate now how the evidence {—d, +e} propagates its impact
through the join tree of Figure 4.27. Before this evidence is observed the
probabilities and w-messages are given by

mz1) =Tgz,(z1) =Nz, (z2) =P(z;)=P(a, b,c)=Pbla)P(cla) P(a). (4.67)

The A-messages are all unit vectors. Eq. (4.67) stands for the eight-component
vector shown in the 7(z ) column of Table 2.

Table 2.
a b, ¢ Pbla) P(cla) Pa) T(zq)
1 1 1 0.80 0.20 0.20 0.032
1 1 0 0.80 (1-0.20) 0.20 0.128
1 0 1| (-080) 0.20 0.20 0.008
1 0 0] (1-080) (1-020 0.20 0.032
0 1 1 0.20 0.05 (1-0.20) | 0.008
0 1 0 0.20 (1-0.05) (1-0.20) | 0.152
0 0 1] (1-020 (0.05) (1-020) | 0.032
0 0 04 (1-020 (1-005 (1-0.20) | 0.608

In practice, these components can be generated upon demand, using the formula of
Eq. (4.67), from the five parameters given in Table 1. The same applies to the prior
probabilities of the other cliques:

™zy) =Y, P(z2121) P(zy) =3 P(d1b, c) P(a, b, c) = P(dI|b, c) P(b, c),
A a

Mz3) =Y P(z31z) P(zy) =Y, P(elc) P(a, b, c) = P(elc) P(c).
A a,b

P(b, c) and P(c) can be computed by summing over the appropriate terms of 7(z;).
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When the evidence D =0 arrives, it sets up a A-message for Z, which
eliminates all states of Z, incompatible with D = 0, i.e.,

oo [0 i n=Ce
p(Z) =11 if 2z, = (b, ¢, —d).

Similarly, E = 1 generates

O lf Z3 = (ca _-'e)
Ag(z3) = [1 if 23 = (c, +e).

These messages prompt Z, and Z3 to generate corresponding A messages for Z,,
Az,(z1) =M, 1, «Ap(z) = P(—d b, ¢),
Az, (z1) =My, « Aglz3) = P(+elc),

permitting Z, to compute its belief distribution:

BEL(z1) = 0. Az,(z1) Az,(z1) ™(z1)
= P(—d!b, c) P(+elc) P(bla) P(cla) P(a).

The computation yields an eight-dimensional vector from which BEL(a), BEL(b),
and BEL(c) can be computed by the appropriate summations.

The close similarity between this computation and the one conducted using
Z = {B, C} as the only cluster should not be surprising. Although the new clusters
have more dimensions, most of the computations within clusters are still conducted
using the set {B, C} as a mediator for A, D, and E. Taking advantage of this fact,
Lauritzen and Spiegelhalter [1988] have suggested a variation of the join tree
method whereby the compound variables used in the propagation phase are the
intersection sets between any two adjacent cliques in the join tree.

442 The Method of Conditioning (Reasoning by
Assumptions)

Conditioning is based on our ability to change the connectivity of a network and
render it singly connected by instantiating a selected group of variables. In Figure
4.23, for example, instantiating A to any value would block the pathway B—A—C
and would render the rest of the network singly connected, so that the propagation
techniques of Section 4.3 would be applicable. Thus, if we wish to propagate the
impact of an observed fact, say E = 1, to the entire network, we first assume A = 0
(as in Figure 4.284a), propagate the impact of +e to the variables B, C, and D,
repeat the propagation under the assumption A =1 (as in Figure 4.28b), and
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finally, average the two results weighted by the posterior probabilities
PA=1lE=1) and P(A=0IE =1). We can also execute the propagation in
parallel by letting each node receive, compuie, and transmit two sets of
parameters, one for each value of the conditioning variable A. Conditioning
provides a working solution in many cases, but like clustering, if the network is
highly connected it may suffer from a combinatorial explosion—the message size
grows exponentially with the number of nodes required for breaking up the loops
in the network.

Pb l—a) P(cl—a) P 1+a) P(c | +a)

(a) (b)

Figure 4.28. The muitiply connected network of Figure 4.23 is decomposed into two
polytrees corresponding to the two instantiations of A.

The use of conditioning to facilitate propagation is not foreign to human
reasoning. When we find it hard to estimate the likelihood of a given outcome, we
often make hypothetical assumptions that render the estimation simpler, and then
negate the assumptions to see if the results vary substantially. One pervasive
pattern of plausible reasoning is the maxim that if two diametrically opposed
assumptions impart different degrees of confidence onto a proposition Q, then the
unconditional degree of confidence merited by Q should be somewhere between
them (see Section 1.4.2). The terms hypothetical reasoning, assumption-based
reasoning , reasoning by cases, and envisioning refer to the same basic mechanism
of selecting a key variable, binding it to some values, deriving the consequences of
each binding separately, and integrating the consequences.

Conditioning draws its legitimacy from the ever-faithful rule of total
probabilities, which for any three variables, X, ¥, and Z, permits us to write

P(ylz)=3 P(ylx, z) P(xlz).
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In our example, if we wish to compute the belief distribution associated with the
variable B given the evidence E = e, we can choose A as the conditioning variable
and write

BEL(b) = P(ble) =Y, P(bla, e) Pale). (4.68)

The first term in the summation stands for the belief distribution of B that one
would calculate by propagating the impact of E = e through a network clamped at
A = a. Since this clamping of A renders the network singly connected (see Figure
4.28), the computation can be performed swiftly. Note that C would be an equally
good choice as a conditioning variable, but D would be a bad choice, since
instantiating this variable would not block the pathway A—D—C (by the d-
separation criterion of Section 3.4).

The second term in the summation, P(ale), can be regarded as a mixing
weight, because it is used to weigh the beliefs obtained under the two conditioning
values of A and combine them additively into the correct belief distribution:

BEL(b) = BEL(b!a) P(+ale) + BEL(b|—a) [1 —P(+a Ie)].
This weight can easily be computed at the evidence node E using Bayes’ Rule:
P(ale)=aP(ela) P(a).

The first term on the right is the conditional probability associated with E prior
to the observation: it can be obtained by propagating the impact of A = a through a
singly connected network onto E. The second term is simply the prior probability
of A, which can be passed to every node of the network before any evidence
arrives.

In general, if the evidence comprises several instantiated nodes E!, EZ..., then
the overall mixing weight P(ale’, e?,...) can be computed recursively; every
instantiated node E’, in its turn, computes the new mixing weight
P(alel,..., e}, ¢') from the old one P(ale'...., ¢!~} and passes it along to all the
other variables. This computation is, again, best done by the product

P(alel,..e, ey =P la e, e ) Pale', .., e™),

because the two terms on the right are available to E' at the moment of its
instantiation: the first stands for the current BEL(e') distributions (corresponding
to the two conditioning values of A), and the second is the previous mixing weight.

EXAMPLE: To show how conditioning works, let us return to the problem of Figure
423 and compute the belief distributions of A, B, and C given the evidence {—d, +e}.
Initially, we compute the belief distribution for B, C, D, and E under the two conditions
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A =1 and A =0 by propagating these two values down the polytrees of Figure 4.28.

Denoting the two conditions above by superscripts 1 and 0, we write
' (b) = P(bla) = (0.80, 0.20),
7' (c) = P(c!a) = (0.20, 0.80),

BEL'(+d) =Y. P(+d1b, c) ' (D) 7' (c)
b.c
= [0.80 -0.80-0.20 + 0.80(1 —0.80) 0.20 + 0.80 - 0.80(1 — 0.20)
+ 0.05(1 - 0.80) (1 — 0.20)]
= 0.68,

BEL'(+e) =w'(+e) =Y, P(+elc)w'(c) = 0.80 - 0.20 + 0.60 - 0.80 = 0.64,

7%(b) = P(b 1—a) = (0.20, 0.80),
n°(c) = P(c | —a) = (0.05, 0.95),

BEL®(+d) = n’(+d) = Y, P(+d b, ¢) 1°(b) n°(c)
b.c
= {0.80 -0.20 - 0.05 + 0.80 - (1 — 0.20) 0.05 + 0.80 - 0.20(1 — 0.05)
+0.05(1 - 0.20) (1 - 0.05)]

=0.23,

BEL (+e) = °(+e) = 3, P(+elc) n’(c) = 0.80 - 0.05 + 0.60 - 0.95 = 0.61.

This initial message profile is shown in Figure 4.29. Each node stores its two belief

distributions BEL® and BEL', together with the initial mixing weight

w=w!, w® = Pa) = (0.20, 0.80).
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A=1 A=1 A=0 A=0
l; 18 2 J,J' 14, 2 05y l
BEL'(+b)=8| B BEL'(+c)=2| C BEL°+b)=2| B BELY+c)=8| C
wl=2 wi=2 wl=8 wl=38
\.8 21 \ 2 \.2 ~0}
BEL'(+d)=68| p |BEL'(+e)=64 E BEL°(+d)=23| D BELOW =61 £
wi=2 wi=2 wi=38 w =8

Figure 4.29. Initial beliefs, messages, and weights under two assumptions.

Now imagine the evidence E = 1 is observed. E computes and sends to all other nodes
the new mixing weight:

wg = P(al+e) = aP(+ela) P(a)
=qa [BEL‘(+e) w!, BEL®(+e) w"]
= [0.64 -0.20, 0.61 -o.so]

= (0.208, 0.792).

Simultaneously, E posts the messages Ak(c) and Ao(c) for C, where (since
P(elc,a)=Plelc))

AL(c) = A3(c) = P(+elc) = (0.80, 0.60).

Node C now computes two Tp(c) messages for D, 7)(c) and nH(c), corresponding to the
two conditioning values of A:

nh(c) = BEL'(c) = aln!(c) Aglc) = 0'(0.20, 0.80) (0.80, 0.60)
=(0.25, 0.75),

1%(c) = BEL®(c) = o®=°(c) Ag(c) = 0°(0.05, 0.95) (0.80, 0.60)
= (0.066, 0.934).

This results in the belief distributions

BEL'(d) = Y, P(d b, ¢) &' (b) mp(c) = (0.6875, 0.3125),
b,

BEL°(d) =Y, P(d b, ¢) 1°(b) TH(c) = (0.24, 0.76) .
b.,c
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At this point, the propagation of these two sets of messages halts, because as long as D is
an anticipatory node, the pathway C—D-—8B is blocked at D (see Figure 4.30).

A=1 A=1 A=0 A=0

R 2y l l $2 .05 l

¥
BEL'=08 | B BEL'=0.25 BEL®=0.20 BEL®=0.066 | ¢
w=0.208 w!=0.208 w0=0.792 w®=0.792
.
BEL =06875| p & E BEL=024 | p
w!=0.208 w9=0.792

Figure 4.30. Updated beliefs, messages, and weights after observing E = 1.

The arrival of the next piece of evidence, D = 0, prompts D to compute the new
mixing weight wg 1, and then initiate a new message-passing process by generating A, (b)
and Ap(c):

wgp = Plal+e, ~d) =0 P(—dla, +e) P(al+e)
= [BELI(—'d) wk, BELY(—d) wg]

=0, (0.3125 - 0.208, 0.76 - 0.792) = (0.0975, 0.9025),

Ab(e) = % P(—d b, c)mh(b) = {(0.2 0.8+0.2:0.2), (0.2-0.8 +0.95 -0.2)]
= (0.20, 0.35)

Ad(c) = % P(—d b, c)nd(b) = [(0.2 0.2+0.2-0.8), (0.2-0.2 + 0.95 - 0.8)]
= (0.20, 0.8),

Ab(b) = 3 P(—d1b, c) mhic) = [(0.2 -0.25 +0.2-0.75), (0.2 - 0.25 + 0.95 - 0.75)}
= (0.2, 0.76)

Ay (b) = X P(—=d1b, c) md(c) = [(0.2 -0.066 + 0.2 - 0.934), (0.2 - 0.066 + 0.95 - 0.934)]

= (0.2, 0.9).
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A=1 A=1 A=0 A=0
lys AzJ,i l¢.2 .054,1
BEL'=0512 | B BEL'=0.16 c BEL’=0.053 | B BEL°=0.017| ¢
w!=0.0975 w'=0.0975 w=.9025" w? =0.9025

.2/.76{ w! /.‘2/.35 _2/_9\ wl /z/_g
%;\ // ; N/

Figure 4.31. Updated beliefs, messages, and weights after observing E =1 and D =0.
Beliefs are computed by the combination BEL = w! BEL' + w® BEL®.

At this point, all belief distributions can be computed at their corresponding nodes, as in
Figure 4.31:

BEL(b) =w} p BEL'(b) + w} p BEL(b),
BEL(c)= wk p BEL'(c) + w} p BELY(c),
where
BEL'(b) = a! ' (b) Ay (k) = 01(0.8 - 0.2, 0.2 - 0.76) = (0.512, 0.488),
BEL°(b) = o (b)) A% (b) = 0(0.2- 0.2, 0.8 - 0.9) = (0.053, 0.947),

BEL!(c) = o ®'(c) AL(c) Ap(c) = 01(0.2 - 0.2 - 0.80, 0.8 - 0.35 - 0.60)
=(0.16, 0.84),
BELY(¢c) = o 1°(c) A3 (c) Ag(e) = of(0.05 - 0.2 - 0.80, 0.95 - 0.8 - 0.60)
=(0.017, 0.983).
These yield

BEL(b) = (0.096, 0.904),
BEL(c) = (0.031, 0.964).

BEL(a), of course, is equal to the current mixing weight wg p = (0.0975, 0.9025).

44.3 Stochastic Simulation

Stochastic simulation is a method of computing probabilities by counting how
frequently events occur in a series of simulation runs. If a causal model of a
domain is available, the model can be used to generate random samples of
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hypothetical scenarios that are likely to develop in the domain. The probability of
any event or combination of events can then be computed by counting the
percentage of samples in which the event is true.

Metastatic cancer

Increased total

! Brain tumor
serum calcium @ O

Coma Severe headaches

Figure 4.32. The Bayesian network used to demonstrate stochastic simulation (same as in
Figure 4.23).

For example, in the causal model of Figure 4.32, we can generate hypothetical
samples of patients by the following procedure: We draw a random value a for A,
using the probability P(a). Given a,, we draw random values b, and c; for the
variables B and C, using the probabilities P(bla;) and P{cla,), respectively.
Given b; and c;, we draw random values d; and e; for D and E, using
P(lby,c;) and P{elc,), respectively. The combination of values
(@, by, c1,d,, ey) represents one sample of a patient scenario. The process now
repeats from A down to D and E, each run generating a quintuple that represents
one patient.

Stochastic simulation shows considerable potential as a probabilistic inference
engine that combines evidence correctly but is computationally tractable. Unlike
numerical schemes, the computational effort is unaffected by the presence of
dependencies within the causal model; simulating the occurrence of an event given
the states of its causes requires the same computational effort regardless of whether
the causes are correlated. In our example above, simulating the event D given the
states of events B and C was straightforward, even though B and C are correlated
(via A). Thus, the presence of loops in the network does not affect the
computation.

Stochastic simulation carries a special appeal for Al researchers in that it
develops probabilistic reasoning as a direct extension of deterministic logical
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inference. It represents probabilities explicitly as "frequencies” in a sample of
truth values, and these values, unlike numerical probabilities, can be derived by
familiar theorem-proving techniques and combined by standard logical
connectives. Nor is the technique foreign to human reasoning; assessing
uncertainties by mental sampling of possible scenarios is a very natural heuristic
and an important component of human judgment.

Another advantage offered by simulation techniques is their inherent
parallelism. If we associate a processor with each of the propositional variables
explicit in the model, then the simultaneous occurrence of events within each
scenario can be produced by concurrently activating the processors responsible for
these events. For example, the occurrence of the event A = 1, "The patient has
metastatic cancer,” could in one run trigger simultaneously events (B = 1, C = 1),
while in a different run the combination (B = 1, C = 0) may occur. Though the
propagation schemes developed in Sections 4.2 and 4.3 also provide parallelism,
the simulation approach enjoys the added advantage of message simplicity.
Instead of relaying probability distributions, the messages passing between
processors are the actual values assigned to the corresponding variables. ¥

Henrion [1986a] has suggested a scheme, called logic sampling, which uses a
Bayesian network as a scenario generator and assigns random values to all system
variables in each simulation run in a top-down fashion. Belief distributions are
calculated by averaging the frequency of events over those cases in which the
evidence variables agree with the data observed. This scheme retains the merits of
causal modeling in that it conducts the simulation along the flow of causation, so
that each step can be given a conceptually meaningful interpretation. Since the
simulation proceeds only forward in time, however, there is no way to account for
evidence known to have occurred (e.g., —d, +¢) until the variables corresponding
to these observations are sampled. If they match the observed data, the run is
counted; otherwise, it must be discarded. The result is that the scheme requires too
many simulation runs. In cases comprising large numbers of observations (e.g.,
20), all but a small fraction (e.g., 10_6) of the simulations may be discarded,
especially when a rare combination of data occurs.

A better way to account for the evidence would be to permanently clamp the
evidence variables to the values observed, and then conduct a stochastic
simulation on the clamped network. The question that remains is how to propagate
the random values coherently through the network, now that boundary conditions
are imposed on both the top and bottom nodes, i.e., on premises as well as
consequences.

This section describes such a propagation method, involving a two-phase
cycle:  local numerical computation followed by logical sampling. The first

+ This conforms to the connectionist paradigm of reasoning [Rumelhart and McClelland 1986], in
which processors are presumed to communicate by merely passing their levels of activity.
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phase involves computing, for some variable X, the conditional distribution given
the states of all its neighboring variables. The second phase involves sampling the
computed distribution and instantiating X to the value selected by the sampling.
The cycle then repeats itself by sequentially scanning all the variables in the
system. We shall illustrate the simulation scheme using the medical example of
Figure 4.32. Then we shall prove the correctness of the formula used in these
computations and discuss methods for implementing the sampling scheme in
parallel.

ILLUSTRATING THE SIMULATION SCHEME

Given the information in Table 1, our task is to compute the posterior probability
of every proposition in the system, given that a patient is observed to be suffering
from severe headaches (+¢) but has not fallen into a coma (—d), i.e., £ =1 and
D = 0. The first step is to instantiate all the unobserved variables to some arbitrary
initial state, say A = B = C = 1, and then let each variable in turn choose another
state in accordance with the variable’s conditional probability, given the current
state of the other variables. For example, if we denote by w, the state of all
variables except A (i.e., wy = { B=1, C=1, D=0, E=1}), then the next value of
A will be chosen by tossing a coin that favors 1 over 0 by a ratio of P(+a lw,) to
P(—a |WA).

In the next subsection, we shall show that P(x{wy), the distribution of each
variable X conditioned on the values wy of all other variables in the system, can be
calculated by purely local computations. It is given as the product of the link
matrix of X and the link matrices of its children:

P(alwy)=P(a'b,c,d, e)=aP(a)P(bla) P(cla), (4.69a)
Pblwg)=P(bla,c,d, e)=aPbla)Pd|b,c), (4.69b)
P(clwc)=P(cla, b, d, e)=aP(cla) P(dIb, c) P(elc), (4.69¢)

where the o’s are normalizing constants that make the respective probabilities sum
to unity. The probabilities associated with D and E are not needed because these
variables are assumed to be fixed at D = 0 and E = 1. Note that a variable X can
determine its transition probability P(xIwx) by inspecting only neighboring
variables, i.e., those belonging to X’s Markov blanket (see Section 3.3.1, Corollary
6). For example, A must inspect only B and C, while B must inspect only A, C,
and D.

EXAMPLE: For demonstration purposes, we will activate the variables sequentially, in
the order A, B, C, acknowledging that any other schedule would be equally adequate.
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ACTIVATING A
Step 1: Node A inspects its children B and C; finding both at 1, it computes (using
Eq. (4.69a))
PA=1lw)=P@A=11B=1,C=1)=aP(a)P(+bla)P(+cla)
=0 x0.20 x 0.80x0.20
= o x0.032,
P(A =0lwy) = P(A =01B=1, C=1) = 0 P(—a) P(+b1=a) P(+c|—a)
=ax0.80 x 0.20 x 0.05
= o x 0.008,
o = [0.032 + 0.008] " =25,

yielding
P4 =1lw,) =25 x 0.032 = 0.80,
P(A =0lw,) =25 x 0.008 = 0.20.

Step 2: Node A consults a random number generator that issues 1s with 80% probability
and Os with 20% probability. Assuming the value sampled is 1, A adopts this value, and
control shifts to node B.

ACTIVATING B

Step 1: Node B inspecis its neighbors; finding them with values A =1,C=1,and D =0,
it computes (using Eq. (4.69b))

PB=1lw) PB=114=1C
c

1,D=0) _oP(+hla) P(—dl+b, +c)
P(B =0lwg) PB=01A=1, D

=0) oP(=bla)P(—dl—b, +c)

_ 0.80 x (1-0.80) _ 4
(1-0.80)(1-0.80) 1’
Step 2:

As A did in its turn, B samples a random number generator favoring 1 by a 4 to 1 ratio.
Assuming, this time, that the value sampled is 0, B adopts the value 0 and gives control to
C.

ACTIVATING C
Step 1: The neighbors of C are at the state
we={A=1,B=0,D=0,E=1}.
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Therefore, from Eq. (4.69c¢):

P(+clwe) — P(+cl+a) P(—di=b, +c) P(+el+c)
P(—ciwe) " P(—cl+a) P(—d|—b, —c) P(+el—=c)

_ 020 x (1-0.80) 0.80 _ 1
T (1-0.20)(1-0.050.60 1425

Step 2: C samples a random number generator favoring 0 by a 14.25 to 1 ratio. Assuming
the value 0 is sampled, C adopts the value 0 and gives control to A.

ANSWERING QUERIES

The cycle now repeats itself in the order A, B, C until a query is posted, e.g., "What is the
posterior distribution of A?" Such a query can be answered by computing the percentage of
times A registered the value 1 or by taking the average of the conditional probabilities
P(A=11lw,) computed by A. The latter method usually yields faster convergence.

To illustrate, the value of P(A = 11w,) computed in the next activation of A would be

PA=11B=0,C=0)=aP(@)(=bla)P(—cl+a)
=o 0.20 (1 -0.80) (1 -0.20)
=a 0.032,
PA=01B=0,C=0)= aP(-a) 13(—|b |=a) P(—c | —a)
=a 0.8(;)7()17 —0.20) (1 - 0.05)
= o 0.608,

o = (0.032 + 0.608)! = 1.5625,
P(A=11B=0, C=0) = 0.05,
P(A=01B=0, C=0) = 0.95.

If a query "P(+al—d, +e) = 7" arrives at this point, A samples the computed distribution
(i.e., P(a) = 0.05) and upon selecting a value 0 provides the estimate

1+0=
2

P(+al—d, +e) = 0.5.

The second method gives

P(+al—d, +¢) = 080;& = 0425 .
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The exact value of P(+al—d, +e) happens to be 0.097 (see the calculations in Sections
4.4.1 and 4.4.2); it takes over 100 runs for P to come within 1% of this value.

The convergence of P to the correct value of the posterior probability is
guaranteed, under certain conditions, by a theorem of Feller [1950] regarding the
existence of a limiting distribution for Markov chains. In each simulation run the
system’s configuration changes from state i to state j, and the change is governed
by the transition probability P(x! wy) of the activated variable. The essence of
Feller’s theorem is this: if for any pair (i, j) of configurations there is a positive
probability of reaching j from i in a finite number of transitions, then regardless of
the initial configuration, the probability that the system will be found at a given
state approaches a limit, which is determined by the stationarity condition

P() =Y PGP li), (4.70)

where P(j |1) is the probability of reaching state j from state i in one transition. In
our case, the reachability condition is guaranteed if all link probabilities are
positive, because every configuration then has a positive probability of being
realized in one run (over all variables). Thus, the fact that the transition
probabilities P(x | wy) satisfy Eq. (4.70) relative to distribution P is sufficient to
guarantee that the asymptotic probability distribution—and hence P—will
converge to P. In other words, as time progresses the system is guaranteed to reach
a steady state, in the sense that regardless of the initial instantiation, the
probability that the system will enter any global state w is given by the joint
distribution P(wy) specified by the link matrices. The case where some link
probabilities are zero corresponds to reducible Markov chains and limits the
applicability of stochastic simulation schemes (see the concluding subsection).

This simulation scheme can also be used to find the most likely interpretation
of the observed data, i.e., a joint assignment w* of values to all variables that has
the highest posterior probability of all possible assignments, given the evidence.
This will be discussed in Chapter 5.

JUSTIFYING THE COMPUTATIONS

We shall now prove the correctness of the product formula (Eq. (4.69)) used for
computing the transition probabilities P(xlwy). Clearly, the conditional
distribution of X given the state of all remaining variables is sensitive not to every
variable in the system but only to those in the neighborhood of X, namely, the
variables that if known would render X independent of all other variables in the
system. Such a neighborhood, called a Markov blanket Bx of X, was identified in
Section 3.3.1 (Corollary 6) as comprised of three types of neighbors: direct
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parents, direct successors, and all direct parents of direct successors. In Figure
4.32, for example, the Markov blankets for each variable are given as follows:

BA={BvC}v BB={A1C,D}s
B-={A,B,D,E}, B, =1{B,C}, By ={C}.

Yet, replacing P (x | wy) with P(x | by) will not be very helpful unless the latter can
be easily computed from the link matrices surrounding X. Next we shall show that
P(x 1wy) consists of a product of m+1 link matrices, where m is the number of X’s
children.

Figure 4.33. The Markov neighborhood of X, including parents (U, U,), children
(Y, Y,), and mates (M |, M,).
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Consider a typical neighborhood of variable X in some Bayesian network, as
shown in Figure 4.33: Define the following set of variables:

1. X'sparents, Ux = {Uy,..., Up}.
2. X’schildren, Yy = {Y1,..., ¥Yin ).
3. Fy, the set of parents of Y.
4

Wy = W — X, the set of all variables except X.

THEOREM 1: The probability distribution of each variable X in the network,
conditioned on the state of all other variables, is given by the product

P(x lwy) = 0. P(x luy) TT P{y; 1 f;(0)], 4.71)
j

where o, is a normalizing constant, independent of x, and x, Wx, Ux, ¥;, and f;(x)
denote any consistent instantiations of X, Wx, Ux, ¥}, and F ;, respectively.

Thus, P(x|wy) can be computed simply by taking the product of the
instantiated link matrix stored at node X and those stored at Xs children. In Figure
4.33, for example, we have

P(xlwy) =P (xluy, uy) Py, lx, my) P(yalx, us, y1, ma).

Proof: If we index the system’s variables W= (X, X5..., Xj5-) by an ordering
consistent with the arrow orientation of the network, then the joint distribution of W can be
written as a product (see Eq. (3.28), Chapter 3):

P(W) = P(xl, X2yees X,‘,...) = H P(X,' lHX[)’
where ITy, stands for the values attained by X,’s parents. Now consider a typical variable
X e W, having n parents Uy and m children Yy = {Yy,.., Y, }. x appears in exactly m+1

factors of the product above; once in the factor P (x luyx) and once in each P(y;|f;) factor
corresponding to the j-th child of X. Thus, we can write

P(w) = P(x, we) = P(x ) TTPO; 1500 TL PO 1Ty,

where

K= {k: Xke WX—YX}'
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Since x does not appear in the rightmost product (over k), this product can be regarded
as a constant 0" relative to x, and we can write

P(x, wy) = P(xluy) I;I O, 15000
Moreover, since

P(wx) =3 P(x, wy)

is also a constant relative to x, we have

P s
Pxlwy) = IE'XT:;) = o P(x luy) IjIP(yj 1f;(x)),

which proves the theorem. Q.E.D.

The main significance of Theorem 1 is that P(x {wy) is computed as a product
of parameters that are stored locally with the specification of the model. Thus, the
parameters are readily available, and the computations are extremely simple.

CONCURRENT SIMULATION WITH DISTRIBUTED CONTROL

The simulation process can also be executed in parallel, but some scheduling is
required to keep neighboring processors from operating at the same time. To see
why this is necessary, imagine two neighboring processors, X and Y, entering the
computation phase at the same time 7;. X observes the value y, of Y and calculates
P(x1y,); at the same time, Y observes the value x; of X and calculates P(y Ix;).
At a later time, ¢,, they enter the simulation phase with X instantiated to a sample
X, drawn from P(x|y;) and Y instantiated to a sample y, drawn from P(y |x;).
The new values x, and y, are not compatible with the distribution P. P was
consuited to match y, with x; (and x, with y;), but now that X has changed its
value to x;, y, no longer represents a proper probabilistic match to x.

To formalize this notion, note that a prerequisite to coherent relaxation is that
the distribution of X and Y be stationary, as in Eq. (4.70). In other words, if at time
¢y, X and Y are distributed by P(x, y), then the values of X and Y at time ¢, must
also be distributed by P(x, y). This requirement is met when only one variable



220 Belief Updating By Network Propagation

changes at any given time, because then we can write (assuming Y is the changing
variable)

PXy=x Yy=y)= %,P(Xz =x,Y,=ylX;=x"Y =y)Px",y)
=P¥;=ylX;=x)PX; =x)
=PX,=x,Y,=y)=P, ), 4.72)

which implies stationary distribution. If, however, X and Y change their values
simultaneously, we have

P(Xy=x,Y,=y)=P¥=y1X; =x) P(X2 =X)
= ,Z’P(Xz =X, Y2 =y|X1 =x', Yl =y')P(x',y')
xy

=2 PX,=x1Y;=y)P(Y1 =ylX, =x )P’ y)
Xy

_ g P&y) PGLY)
xy P Px")
which represents stationary distribution only in the pathological case where X; and
Y, are independent.

This analysis, extended to the case of multiple variables, allows us to
determine which variables can be activated simultaneously. Let the set of
concurrently activated variables be Z = {Zy, Z,..., Z,}, and assume that each Z;
variable chooses a new value z;” by sampling the distribution P(z; |s;), where §; is
the subset of variables inspected by Z; prior to switching. If Wz stands for the set
of unchanged variables, then under the requirement of stationary distribution,

P,y 4.73)

Pz, wz) =Pz, wz)
or
Pz lwg) = P(zlwg), 4.74)

because P(wz) remains unchanged in the transition.
Since the values z~ of the Z variables are drawn independently from P(z; 1s;),
Eq. (4.74) translates to

=

1P(Zi =2z [Si) = P(Zl, ZDseens ZnIWZ) . (4.75)

I

This requirement is satisfied whenever each §; is a Markov blanket of Z;,

P(Zi | Si) = P(Zi | WZ',), (4.76)
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and, simultaneously, each S; shields Z; from all other Z’s,

P(Zi 'Si) = P(Zi ls,- /\Zj) i=1, 2, ey B (4.77)
J#i

To meet both Eq. (4.76) and Eq. (4.77), it is clear that if §; contains any of the Z;’s,
then §; —Z; must also shield Z; from all other Z’s. However, if we assume that
each §; already is the smallest Markov blanket permitted by the network, we must
conclude that no Z;’s should be a member of any of the S;’s. Thus, any set of
variables licensed to be activated simultaneously must not contain a pair of
variables belonging to the same Markov blanket.

A convenient way to enforce this requirement is to add dummy links between
mates (i.e., nodes sharing a child), taking care that no two adjacent nodes in the
augmented network are activated concurrently. The question now arises how to
schedule the activation of the processors so that the following conditions hold:

1. No two adjacent processors are activated at the same time.
2. Every processor gets activated sufficiently often.

3. The activation commands are generated in distributed fashion, with no
external supervision.

This problem is a version of the "dining philosophers" dilemma originally posed by
Dijkstra [1972] and later solved independently by Gafni and Bertsekas [1981] and
Chandy and Misra [1984]. The solution is a distributed control policy called edge
reversal, involving the following steps:

1. The links of the network are assigned arbitrary acyclic arrow
orientation. (This orientation bears no relation to the causal ordering
governing the construction of Bayesian networks.)

2. Each processor inspects the orientation of the arrows on its incident
links and waits until all arrows point inward, i.e., until the processor
becomes a sink.

3. Once a processor becomes a sink, it is activated, and when it completes
the computation, it reverses the direction of all its incident arrows (i.e.,
it becomes a source).

It is easily seen that no two neighbors can be activated at the same time. What
is more remarkable about this edge reversal policy, however, is that no processor
ever gets "deprived"; every processor fires at least once before the orientation
returns to its initial state and the cycle repeats itself. This feature is important
because it constitutes a necessary condition for the convergence of the entire
process [Geman and Geman 1984].
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Figure 4.34. Concurrent activation under the edge-reversal policy. Sinks fire and reverse
their edges, thus ensuring that no two neighbors fire concurrently.

Figure 4.34 applies this policy to the Bayesian network of Figure 4.32 by
marking with circles the nodes activated at each step of the process. Initially, the
dummy edge BC is added to designate these mates as neighbors, and the
orientation of Figure 4.34a is assigned, where C is the only sink. Once C is
activated, the arrows pointing to C are reversed (by C), whereupon B and E
become sinks and fire. After three steps (Figure 4.34d), the orientation is back
where it started, and the cycle repeats. Note that every processor fires once during
the cycle and that we twice (Figures 4.34b and 4.34¢) had two processors firing
simultaneously. The problem of achieving maximum concurrency with edge
reversal was analyzed by Barbosa [1986], who showed that the difference in the
number of firings of any two nodes in the network cannot exceed a constant equal
to the distance between them.

CONCLUSIONS

Stochastic simulation offers a viable inferencing technique for evidential reasoning
tasks by virtue of its local and concurrent character. Although hundreds of runs
may be necessary for achieving reasonable levels of accuracy, each run requires
only | V| +| E| computational steps, where | V| is the number of vertices
in the model and | E | is the number of edges. Unlike purely numerical
techniques, which sometimes entail exponential complexity, the length of
computation is determined mainly by the required degree of accuracy, not by the
dependencies embodied in the model. It is postulated, therefore, that stochastic
simulation will be found practical in applications involving complex models with
highly interdependent variables and in applications where "ballpark” estimates of
probabilities will suffice.

The method has a drawback, however: the rate of convergence deteriorates
when variables are constrained by functional dependencies. For example, if X and
Y are a pair of adjacent variables constrained by equality, X =Y, then starting the
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simulation in a state where X =Y =0 will leave X and ¥ clamped to O forever.
Likewise, starting with X =Y = 1 will leave them clamped to 1 even though states
having X =Y = 0 may be more probable. If we permit the equality to be violated
with small probability p, this clamping phenomenon disappears, but the rate of
convergence still seems to be proportional to 1/p [Chin and Cooper 1987]. While
the theory of Markov chains [Feller 1950] guarantees that the simulation counts
obtained by stochastic simulation will converge to the correct posterior
probabilities associated with each proposition, the theory requires that every
conceivable state has a nonzero probability of occurring, and this requirement is
violated under logical or functional constraints.

One way to speed up the convergence rate is to treat clusters of tightly
constrained elements as singleton variables, conduct the simulation runs on the
clustered network, and then compute the internal distribution of the elements
within each cluster. If such clusters cannot be identified in advance, the stochastic
simulation method should be restricted to Henrion’s scheme of forward simulation,
i.e., each variable reacts only to the state of its direct parents, ignoring the states of
other neighbors. This will render the method robust to functional dependencies
but may necessitate a large number of runs to match rare sets of observations. A
method combining the merits of both the forward-driven and the neighborhood-
driven simulation schemes has not yet been identified.

45 WHAT ELSE CAN BAYESIAN NETWORKS

COMPUTE?

4.5.1 Answering Queries

Since a quantified Bayesian network represents a complete probabilistic model of
the domain, and since one can easily use such a network to derive the joint
probability distribution P(x,..., x,) for all variables involved, it is clear that the
network contains sufficient information for computing answers to all queries
regarding the variables X,,..., X,,. In other words, if g(xy,...,, x,) stands for any
Boolean combination of the propositions X; = x1, X5 = x3,...,, X,, = x,,, then an
answer of the form P(g) can always be computed from the joint distribution
represented by the network. For example, if all variables are propositional, and ¢
stands for the truth value of [(X, = TRUE) A (X3 = TRUE)] v (X4 = TRUE), then
P(g) can be calculated by summing P(x,,..., x,) over all elementary events
(x1 AXa,..., A X,) entailed by the event g. Our goal is to find an efficient network
representation for that calculation.

So far, the propagation scheme developed in this chapter has been aimed at
computing the belief function BEL for each node in the network, which amounts to
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answering queries involving single propositions, e.g., P(X; = x;). While a method
of computing more elaborate probabilities can, in principle, be derived from the
basic rules of probability theory, the focus of our discussion will be to answer
queries at the knowledge level itself, ie., using autonomous message-passing
processes similar to those used for belief updating.

Consider the query g = (x, V X3) A X being presented to the Bayesian network
of Figure 4.35a, and assume that all variables are propositional. We can regard the
partition {g, —¢} as another propositional variable Q and represent it by adding a
seventh node to the network, with the set of parents Sp = {X», X3, X 61
Alternatively, we can add two nodes, Q “and Q, to the network, with @ "= X, v X;
and Q = O’ A X, as in Figure 4.35.b.

(a) ' (b

Figure 4.35. Adding a query subnetwork to a) permits  the calculation of
P(xy v x3) Axel.
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The conditional-probability assessments P(x; |S;) required for the added links are
simply the logical constraints represented by the Boolean formulae

, _ [1if a7 =x2vxs
Plg"lx2, x3) = 1q jf q # Xy VX3,
LN |1 if a=g"Axs
P(qlq’ xe)= g q#q° Axg.

Computing an answer to the query "Is g true?” amounts to computing the
belief distribution associated with the node Q and can be accomplished by the
propagation techniques developed earlier in this chapter. Note that adding guery
nodes to the network does not alter its basic message-passing pathways. The joints
at nodes Q “ and Q of Figure 4.35b are "blocked,” so they do not introduce new
communication links between the original variables X ,..., X¢. Thus, while adding
the query variable O may require an extra computation for deriving BEL(g), it
does not perturb the belief parameters already computed. If the network is at
equilibrium at query time, we can take the precomputed A and 7 parameters and
use them to assist the computation of BEL(g).

4.5.2 Introducing Constraints

Queries presented to a reasoning system often include a "what if " question, where
after the "if" we find a categorical constraint on the combination of values that
some variables can attain. For example, "Would the project be completed in time,
given the following limitation on resources?” The evidential information
discussed in the preceding sections also represented a form of constraints, but
these were of a very simple type, in which a group of variables were forced to
assume a specific set of values. Constraints can be more elaborate, involving both
disjunctions and conjunctions of events.

Such constraints can be introduced either as links among the variables
involved or as auxiliary instantiated variables attached to the existing network.
For example, the constraint

C: either X or X5 is true

can be imposed on the network in Figure 4.35 by introducing an auxiliary variable
C =X, v X5 and permanently instantiating node C to the value TRUE (see Figure
4.36).



226 Belief Updating By Network Propagation

Xy
X, X
/
/
/X4 \
, -
, OR_~ ¥ X5\
% \\OR
Q" & Vo
N ¥ N
“_ AND _ -7 %
N C =TRUE
#
]

Figure 4.36. Adding an instantiated node C permits the calculation of constrained queries

PQ 10C).

These auxiliary constraint nodes play the same role as evidence nodes did in
Section 4.2. For example, to answer the conditional query "Is Q true, given that
either X, or X5 is true?" we simply attach two auxiliary nodes to the original
network—a query node Q (as in Figure 4.35b) and a constraint node C (as in
Figure 4.36)—and compute the belief atributed to node Q under the hypothetical
evidence e = {C = TRUE}.

Note that constraint nodes, since they are instantiated, normally will perturb
the pathway topology of the original network and will therefore normally require
more elaborate computations than query nodes. In particular, the A and &
parameters stored in the network at query time will have to be recomputed.

4.5.3 Answering Conjunctive Queries

Conjunctive queries play an important role in composite explanations (see Chapter
5), where it is required to compute the degree of belief that several events exist
concurrently. Such queries, characterized by the form

q= A (X, = xi), (4.78)
iely
can be answered by the auxiliary node method described in Section 4.5.1, but
because of the special nature of the conjunctive connective, a more direct method
often may be preferred.
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To compute the probability of a conjunctive query
g=X1=x)AXy=x) A A X, = xp), 4.79)
it is convenient to use the chain rule
P(@) =P, Xty X)) PGt 1 Xpeasees X1) * - Plxa lx ) P(xy). (4.80)

Each factor in Eq. (4.80) amounts to the belief in a proposition X; = x;, treating all
previous propositions (X; = x;) - - (X,_; = x;_) as evidence. Thus, P(g) can be
computed by taking the product of m belief measures, each being the result of an
evidence-propagation exercise like the ones described in the preceding sections.
Of course, there is no need to propagate the impact of each instantiation to the
entire network; the m—A messages should be transmitted only to those variables
included in q.

As an illustration, let us consider the diagnosis network of Figure 4.37 (after
Peng and Reggia [1986]), where the nodes at the top row, {Di, D,, D3, D4},
represent four hypothetical diseases and the nodes at the bottom row,
{M{,M,, M3, M,}, represent four manifestations (or symptoms) of these
diseases. The interaction among the possible causes of any given symptom is
assumed to be of the "noisy-OR-gate" type (see Section 4.3.2), and the probability
that a given symptom M; will be observed in the presence of the disease set
D={D;lielp}is

where g,; stands for

q;j = P(M; absent10nly D; present). 4.82)

The link parameters g;; = 1 — ¢;; are shown in the network of Figure 4.37, together
with the prior probabilities of the individual diseases, ®; = P(D; = TRUE).

Assume we wish to find the probability that a patient will contract disease D
and will simultaneously develop symptoms {M, M3} and not symptoms
{M,, M,}. This amounts to computing P(g) where ¢ is a conjunctive query:

g = (d, = TRUE) A (m, = TRUE) A (m3 = TRUE)
A (my = FALSE) A (m4 = FALSE)

= +d| A+m A +m3 Ay A—y. (4.83)
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Figure 4.37. A causal network representing four diseases and four symptoms. The
parameters shown represent the probabilities of exceptions, ;.

Since the network in Figure 4.37 becomes singly connected upon the
instantiation of D1, it is convenient to compute P(g) in the following order:

P(q) =P(—1m4l+m3, —my, +my, +d1)

P(+m3 |—-|m2, +my, +d1)

P(—1m2|+m1, +d1)P(+m1 I+d1)P(+d1). (4.84)

After D is instantiated to TRUE, the topology of the network is shown in
Figure 4.38, where the links Dy — M; carry Ty, (dy) = (1, 0) and all A’s are unit
vectors. The link D, —> M, carries the message Ty (dr) = (Mo, 1 —TMy) =
(0.1, 0.9), and P(+m | +d;) is readily calculated as (see Eq. (4.55), Eq. (4.57) or
the detailed derivation in Appendix 4-A)

P+ml+d) =(1—q11 g21) 1 T+ (1—quy 1-(1-72)
=(1-08-0.1)01+ (1~ 0.8)0.9 = 0.272. (4.85)
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M, M, M, M,

Figure 4.38. The network of Figure 4.37 after instantiating D | and prior to instantiating
node M ;.

We now instantiate M, to TRUE, yielding the network of Figure 4.39, with all
uninstantiated symptoms transmitting A’s that are unit vectors. Since the joints at
My and M, are blocked, this last instantiation has no effeci on M,; the link
Dy — M, still carries Ty, (+ds) =74 =02, and we get (see the detailed
derivation in Appendix 4-A)

P(=myl+my, +d1) =qnqu -1 T +qp-1-(1—my)
=09-05-1-02+09-1-0.8
= .0.81. (4.86)

0.92/0.2

7

+d,

+m1 MZ M3 M4

Figure 4.39. Messages generated after instantiating node M ;.
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Setting M, = TRUE, however, also generates the messages Ay, (d») and Ty, (d>),
which eventually will be needed at node M ,:

My, (d2) = [(1 —q11 921) (1 —CIU)]

= [(1 -0.8-0.1),(1- 0.8)] =(0.92, 0.2),

T, (ds) = O [xMx(+d2> T g, () (1 = th)]

= 0(0.92- 0.1, 0.2 - 0.9) = (0.338, 0.662).

In a similar fashion, instantiating M, to FALSE and M 3 to TRUE yields

P(+m3 |—|m2, +my, +d1) =P(+m3|+d1)
=(1-73 (1-g13) + 73 (1 - 413 933)
=(1-02)(1-02)+02(1- 0.2-0.1)
=0.836 (4.87)

and loads the network with the messages

Mg, (da) = [q12 Gazs qn] = (0.9-0.5,0.9) = (0.45 - 0.9),
Ty, (ds) = O [xM2(+d4) g, Apr, (—dg) (1 = m)]
=0 [0.45 -0.2,09- 0.8] = (0.111, 0.889),
KMz(d3) = [(1 —qg13933), 1 - q13)] = [(1 -02-0.D, (- 0.2)] = (0.98, 0.8),
T, () = 0 [ g, (+d3) T Dy, (=) (1 -m)|
=0 [(0.98 -0.2,0.8 - 0.8] =0 [0.196, 0.64] =(0.23, 0.77),

as in Figure 4.40.
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0.98/0.8

+m —my +m; M4

Figure 4.40. Messages generated after instantiating M, M 5, and M 3.

Having obtained all the T messages on the arrows pointing toward M, we can
compute the last factor in the product of Eg. (4.84) (see Eqs. (4.55) and (4.56) in
Section 4.3):

P [—1m4|+m3, My, +ny, +d1]

SO (FE NGO VA

= I [gis s + 1 —my4]
=234
= [0.7 -0.338 + 0.662] X [0.8 -0.23 + 0.77] X [0.2 -0.111 + 0.889

=0.781. (4.88)

We now collect the factors from Eqs. (4.85) through (4.88) and, using Eq. (4.84),
produce the final result:

P(g) =0.781 x 0.836 x 0.81 x 0.272 x 0.01 = 1.439 x 1073,

The belief attributable to a conjunctive query can also be computed in
distributed fashion, with minimal external supervision. Once the order of
instantiation is determined, we feed the network with the query list Q =
(—my, +ms3, +my, —m |, +d;) and an answer variable BEL(Q), initially set at
BEL(Q) = 1. Each node X inspects the Q list to see if the rightmost item is a
‘proposition matched by X. When this happens, the matched node

1) is activated,

2) removes the rightmost item from the query list,
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3) multiplies BEL(Q) by the current belief in the removed proposition,
4) instantiates its value to that specified by the removed proposition, and

5) transmits to its neighbors the appropriate A-7 messages together with
the shortened query list and the modified parameter BEL(Q).

In our example, node D; will be the first to be activated. It will instantiate its
value to d; = TRUE and will transmit to M, M,, and M3 the parameters
Ty, (dy) = Ty, (d1) = Ty, (dy) = (1, 0), together with the shortened query list
Q = (—my, +msz, —my, +my) and BEL(Q) = BEL(+d1) =T = 0.01. Nodes M2
and M5 are not activated by these messages, and they transmit the list to their
neighbors unmodified. Node M, however, having found a match with the
rightmost element on the query list, is activated. It truncates the query list to
Q = (—my, +my, —m,), computes BEL(+m;) =0.272 as in Eq. (4.85), sets
BEL(Q) to 0.01 x 0.272=2.72 X 10, and transmits Ay, (d;) to D,. The
truncated Q list and BEL(Q) travel in the network unmodified until they reach
node M ,; thus, the process is repeated until at the last stage, node M, removes the
last element —m, from Q. At this point, M, performs the last modification of
BEL(Q), multiplying it by BEL(—m,), and the process terminates with the correct
value of P(g).

4.6 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The analysis of evidence in a hierarchy of hypotheses can be traced to the
prominent American jurist John H. Wigmore (1863 - 1943), who also developed a
graphical representation for inference and argumentation in legal reasoning
[Wigmore 1913]. Aided by Bayesian analysis, interest in cascaded inference has
gained momentum both in judicial reasoning [Schum and Martin 1982; Friedman
1986] and in intelligence analysis [Kelly and Barclay 1973; Schum 1987]. Early
attempts to formulate hierarchical inferences in causal networks can also be found
in Good [1961], which studied networks of binary variables defined by Eq. (3.27)
and having multiple causes that interact under a noisy-OR-gate model.

The propagation method for trees (Section 4.2) is based on Pearl [1982]. The
method was extended to polytrees (Section 4.3.1) by Kim [Kim and Pearl 1983},
and was used in a decision-aiding system named CONVINCE [Kim 1984; Kim and
Pearl 1987]. CONVINCE handles loops by giving the network a polytree
approximation in a manner similar to the maximum-weight spanning tree method
of Section 8.2. The term polytree was suggested by George Rebane and is
equivalent to singly connected network or generalized Chow tree, as used in Kim
and Pearl [1983]. The term influence diagrams [Howard and Matheson 1981]
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denotes Bayesian networks that also contain decision and value nodes (see Chapter
6). Influence diagrams have traditionally been evaluated by the method of node
elimination [Shachter 1986].

The noisy-OR-gate model of Section 8.3.2 was proposed in Pearl [1986¢] and
independently analyzed by Peng and Reggia [1986]. The method of clustering
(Section 4.4.1) was inspired by Spiegelhalter [1986] and is further developed in
Lauritzen and Spiegelhalter [1988] using propagation in the filled-in undirected
graph. An adaptation. of this method to constraint satisfaction problems is
described in Dechter and Pearl [1987b]. The method of conditioning (Section
4.4.2) was reported in Pearl [1986b], and a similar method for constraint
satisfaction problems is described in Dechter and Pearl [1987a, 1987c].

Section 4.4.3 is based on Pearl [1987a] and was motivated by Henrion [1986b].
The scheme for distributed control of concurrent simulation was adopted through
discussions with Eli Gafni and Valmir Barbosa (who, during his oral examination,
pointed out both the danger of concurrently activating neighboring variables and
the remarkable features of the edge-reversal policy).
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Exercises

4.1. A language L has a four-character vocabulary V = {g, A, B, C} where € is
the empty symbol. The probability that character v; will be followed by
v; is given by the following matrix:

el Y% Y% Y% Y
Al 0 YU %
Povilvo= gl y y% oy
clv% % % %

In transmitting messages from L, some characters may be corrupted by
noise and be confused with others. The probability that the transmitted
character v; will be interpreted as vy is given by the following confusion

matrix: *
Vi
vi| € A B C
€ 9 1 0 0
A 1 8 1 0
Pilvy=""p 1o 1 8 1
C 0 1 1 8.

The string, €, €, B, C, A, €, € is received, and it is known that the
transmitted string begins and ends with €.

a.  Find the probability that the i-th transmitted symbol is C, for i = 1,
2,.., 7.

b.  Find the probability that the string transmitted is the one received.

¢. Find the probability that no message (a string of €’s) was
transmitted.

4.2, Solve Exercise 2.3 of Chapter 2 by message propagation.
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4.3. In the burglary story of Chapter 2, compute the reduction in
BEL (Burglary) due to the radio announcement, assuming the following

relations:
A+ s) =4:1, (+ b = Burglary)
P(+s! +b, —e)=.90, (+ e = Earthquake)
P(+ sl =b, +¢)=.20, (R = Radio announcement)
P(+e)=107, (+ s = Alarm sound)
Ar(+e)=10":1
P(+b) =10

Assume a noisy-OR-gate model for P (s e, b).

44, Having observed the symptoms (+ m,, —m,, + m3, + m4) in the problem
of Figure 4.37, find BEL (d) using the method of conditioning (condition
onDy).

4.5, Find a join-tree representation for the network in Figure 4.37, and solve

Exercise 4.4 in that representation.

4.6. Continue the stochastic simulation process of Section 4.4.3 to 5,000 runs,
and show that P (+ a | —d, + ¢) converges to 0.097.

4.7. Solve Exercise 4.4 by ignoring the loops, i.e., propagate the A and &
messages using the equations developed for singly connected networks,
until you reach a stable equilibrium. Assess the merit of this technique as
a possible approximation method.
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Appendix 4-A

Auxilliary Derivations for Section 4.5.3

DERIVATION OF EQ.(4.85)

Using Ty, (dy) = (71, 1 = 1yp) = (1, 0) in Eq. (4.55), we have

P(+mil +d))=BEL(m;=1)=(1-m )1 -m)A-1)
+ (1 -mm (1 -g21)
+ (1 =T —g11) + T (1 - 411921)
=0+0+1(1-m)(—gu)+ 1701 -g11921)
=(1-01)(1-0.8)+0.11-0.8x0.1)=0.272. (4.85)

DERIVATION OF EQ. (4.86)
Using ®ty,(+d1) = Ty = 1 and 7y, (+d4) = T4y = 0.2 in Eq. (4.55), we have

P(=myl +my, +dy) = BELM, = 0) = (1 = )1 - p)1
+ (1 -T2 G2
+ (1 - M) g1o + T2 Taz 412 G42
=0+0+1xX(A-T) g +1XTyqg1n94

=(1-0.2)09 +02x%x09x0.5=0.81. (4.86)
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DERIVATION OF Ay, (dy)
From Eq. (4.60):

A _ Mgl + M- IL)  w =1
xW) = 1y M+ A (1= T1,) u; =0,

where
IL'=T[1-1-g)my ]
ki

Rewriting in our notation for an instantiated node X = M;, we have

O -0 -gum, ] Mj=0 4=0
qi'jg[l“(l_%i)nki] M;=0 uy=1
My, (dy) = '
-1~ -gumg]  Myj=1 =0
l‘qijgi[l_(l—%)nki] Mi=1 yu=1.
For example,

le(d2)={ 1-gy [(1-(1-g4)-117, I-[1-(1-¢,)]1}
=1 =929, 1-g11).

237



Chapter 5

DISTRIBUTED REVISION OF
COMPOSITE BELIEFS

In the human mind, one-sidedness has always been the rule,
and many-sidedness the exception. Hence, even in revolu-
tion of opinion, one part of the truth usually sets while
another rises.

— John Stuart Mill

5.1 INTRODUCTION

People’s beliefs normally are cast in categorical terms and often involve a set of
propositions which, stated together, offer a satisfactory explanation of the observed
data. For example, a physician might state, "This patient apparently suffers from
two simultaneous disorders A and B which, due to condition C , caused the
deterioration of organ D." Except for the hedging term “apparently,” this
composite statement conveys a sense of unreserved commitment to a set of four
hypotheses. The individual components in the explanation are meshed together by
mutually reinforced cause-effect relationships, forming a cohesive whole; the
removal of any one component from the discourse would render the entire
explanation incomplete.

Such cohesiveness suggests that a great amount of refuting evidence would
have to be gathered before the current interpretation would require revision.
Moreover, a revision, once activated, is likely to change the entire interpretation,
not merely its level of plausibility. Another characteristic of coherent explanations

239
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is that they do not impute degrees of certainty to any individual hypothesis in the
argument. Nor do they convey information about alternative, "second-best"
combinations of hypotheses.

Rarely do we even consult the certainty of the accepted composite explanation;
most everyday activities are predicated upon beliefs that, though provisional, do
not seem to be muddled with varying shades of uncertainty. Consider for example
the sentence "John decided to have a bowl of cereal, but when he found the
cupboard empty, he figured out that Mary must have finished the cereal for
breakfast."” We normally perform routine actions, such as reaching for the
cupboard, without the slightest hesitation or reservation, thus reflecting our
adherence to firmly held beliefs, such as the belief that we will find cereal there.
When we observe new facts that refute current beliefs, a process of belief revision
takes place; new beliefs replace old ones and are firmly held until they, in turn, are
refuted.

These behavioral features are somewhat at variance with the analysis in
Chapter 4. There, we focused on the task of belief updating , i.., assigning to each
hypothesis in a network a degree of belief BEL, which changes smoothly and
incrementally with each new item of evidence. This chapter applies Bayesian
analysis and belief networks to another task: revision of belief commitments,
where by belief commitment we mean the categorical but tentative acceptance of a
subset of hypotheses that together constitute the most satisfactory explanation of
the evidence at hand. In probabilistic terms, that task amounts to finding the most
probable instantiation of all hypothesis variables, given the observed data. The
resulting output is an optimal list of jointly accepted propositions, a list that may
change abruptly as more evidence is obtained.

In pure form, this optimization task is intractable because enumerating and
rating all possible instantiations is computationally prohibitive. Instead, heuristic
techniques have been developed for various applications. In pattern recognition,
the problem is known as the multimembership problem [Ben-Bassat 1980]; in
medical diagnosis, it is known as multiple disorders [Ben-Bassat et al. 1980; Pople
1982; Reggia, Nau, and Wang 1983; Cooper 1984; Peng and Reggia 1986]; in
circuit diagnosis, as multiple faults [Reiter 1987a; deKlieer and Williams 1986];
and in truth maintenance, as multiple extensions [Doyle 1979].

Our approach is to introduce distributed computation as the basis for belief
revision. As in belief updating (Chapter 4), we wish to view the impact of each
new piece of evidence as a perturbation that propagates through the network from
concept to neighboring concept with minimal external supervision. At
equilibrium, each variable should be bound to a fixed value that together with all
other value assignments is the best interpretation of the evidence. The reasons for
adopting this distributed message-passing paradigm are the same as those
introduced in our discussion of belief updating: to exploit the independencies
embodied in sparsely constrained systems, to facilitate the use of object-oriented
programming and the generation of meaningful verbal explanations, and to present
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a feasible model of the way humans revise their beliefs. We will seek idealized
models in which distributed revision can be executed coherently, study in detail
the propagation rules dictated by the models, and then posit these rules as
universal strategies of belief revision.

We will show that in singly connected networks, the most satisfactory
explanation can be found in linear time by a message-passing algorithm similar to
the one used in belief updating. In multiply connected networks, the problem may
be exponentially difficult, but if the network is sparse, clustering and conditioning
methods can be used to render the interpretation task tractable. In general,
assembling the most believable combination of hypotheses is no more complex
than computing the degree of belief for any individual hypothesis.

This chapter contains seven sections. Section 5.2 compares belief updating
with belief revision using a simple example from circuit diagnosis. Section 5.3
develops propagation rules for belief revision in singly connected networks and
compares the rules to those governing belief updating. It then extends the
propagation scheme to multiply connected networks using  clustering,
conditioning, and stochastic relaxation. Section 5.4 applies belief revision to the
diagnosis of systems with multiple faults and demonstrates the advantages of
distributed computation. Section 5.5 illustrates the method of conditioning with a
simple medical diagnosis example, involving four diseases and four symptoms.
Section 5.6 relates the revision process to previous philosophical work on belief
acceptance and to current work on nonmonotonic reasoning. It discusses the
adequacy of the ‘‘most probable’’ criterion and touches on the issue of
consistency in belief revision.

5.2 ILLUSTRATING THE PROPAGATION
SCHEME

The simple circuit of Figure 5.1 will be used to illustrate the nature of the
propagation scheme, the semantics of the messages involved, and the difference
between belief updating and belief revision. The circuit consists of three AND-
gates in tandem. X, X,, and X are binary input variables X; € {0, 1}),Y; is the
circuit’s output (Y3 =X; AX, AX3),and Y, and Y 2 are intermediate, unobserved
variables (¥; = Y;_; AX;). Under normal operation all inputs are ON, and so is the
output Y3. A failure occurs (Y3 = 0) when any of the inputs is OFF (the circuits
are assumed to be operational). The problem is to infer which input is faulty,
given the simultaneous observations {¥Y; =0, X, = 1} and assuming that failures
are independent events with prior probabilities

gi=1-p;=PX; =0), i=123. (CAY)
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The Bayesian network corresponding to this circuit diagram is shown in Figure
5.1b. Since the output of each component is functionally determined by the state
of its two inputs, X; and ¥;_; are identified as the parents of Y;,i=1,2,3, and the
conditional probabilities which characterize these child-parents relationships are
given by

1 fyi=y0Ax
Pilyi-1, %) = 0 OthelI'WiSle.l ' (5.2)

Yo=1 - V4
{—.Xl

o 0

q2
Y, D " v
—o X, @ 41/174
&)
V.o O /‘“
—® X3 1—P1P2/P1Pz‘

SR

3

(@) (b (©)

Figure 5.1. (a) Logic circuit used to demonstrate the process of belief updating. (b) The
Bayesian network corresponding to the circuit in (a). (c} Profile of =-
messages in the initial state of the network; the h-messages (not shown) are
unit vectors.

5.2.1 Belief Updating (A Review)

In the initial, quiescent state (Figure 5.1c), all A’s are unit vectors, A = (1, 1), since
no variable has any observed descendant and there exists, therefore, no evidence
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favoring the state 1 over the state 0. The ® messages on the links are computed
from Eqgs. (4.53), (5.1), and (5.2) and are given by

i A=
Ty, (6) = L‘f Y (5.3)
=0
Ty, (1) = L‘ji nol (5.4)
and 1- =0
_ PiP2 Y2
s 02) = {Plpz y2=1 (5.5

These messages simply describe the prior probabilities of the corresponding
variables. The belief measures can be computed using Eq. (4.49); they, too, stand
for the prior probabilities associated with each variable. For example,

_ 192 x2=0
BEL(x,) = [Pz Xy =1 (5.6)
and 1- =0
PiP2P3 Y3
BEL = 5.7
03) [P1P2P3 y3=1 (57)

Now imagine that two observations are conducted simultaneously, yielding
Y3 =0and X, = 1. The first observation implies that at least one input is faulty,
while the second exonerates X,, leaving either X, or X;—or both—as possible
culprits. The problem is small enough to permit the global computation of all
probabilities. For example, the probability that input X, is faulty is given by

+
P(X,=0le)=BEL(x; =0)= — 2229193 41 = 5g
9193 +q1p3+p1q3  1—pip;3

while

4193 +P143 q3
9193 +q1P3 +p1g3 1-pip;

P(X; =0le) = BEL(xs = 0) = (5.9)

These results can be derived through distributed computation, using the
propagation equations of Chapter 4. Figure 5.2 illustrates three stages of the
propagation process triggered by the two observations, assuming that a processor
is assigned to each variable and that each processor is activated when a change
occurs in its incoming messages. Each diagram displays the messages updated at
the corresponding stage; the top-down arrows represent T-messages, and bottom-
up arrows represent A-messages.
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q:2
Y, N4
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/ X2=1
) q3
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Figure 5.2. Propagation of updated messages after observing X,=1 and Y,=0.
(a) Messages generated immediately after the observations. (b) Messages
generated by the activation of Y. ( ¢) Messages generated by the activation of
Y, and¥s;.

In Figure 5.2a the instantiation of Y3 and X, triggers the updating of three
messages: Ay, (X3), Ay,(¥2), and Ty, (x,). Their magnitudes are computed locally
from Egs. (4.52) and (4.53), using the n-values in Egs. (5.3) through (5.5), giving

Ty, (.Xz) = (0’ 1)’ (5.10)
Ay, (x3) = (1, 1=p1p2), (5.11)

and
Ar,(02) = (1, q3). (5.12)

At the next phase of propagation (Figure 5.2b), Y, is activated, and it generates
three new messages:  Ay,(¥1), Ay, (x2), and Ty, (2)- The first message
incorporates the changes observed in both Ay, (y;) and Ty, (x,), while the last two



5.2 lilustrating the Propagation Scheme 245

reflect the recent changes in Ay,(y2) and Tty,(x2), respectively. The magnitudes of
these messages are given by

Ar,01) = (1, g3), (5.13)
Ay,(x2) = (1, 1-pyp3), (5.14)

and
Ty, (02) = (41, p1)- (5.15)

The final phase of propagation is depicted in Figure 5.2c. Processors Y; and
Y5 are activated simultaneously, and they generate the messages Ay, vo), Ay, (x1),
and Ay, (x3). The first message is superfluous since Y is ‘‘clamped’’ to 1. The last
two are computed via Eq. (4.52), giving

Ay, (x1) = pody, (1) = pa(l, g3) (5.16)
and

Ay, (x3) = pa(l, q)). (5.17)

These equations represent the probabilities of the total evidence observed,
conditioned on the two possible values, 0 and 1, of the variables X; and X,
respectively. For example, under the assumption X; =0 the probability of the
total evidence e = {X, = 1, Y3 = 0} is P2, while under the assumption X, = 1 that
probability becomes p,q; (X5 must be faulty if Y3 = 0). The essential information
conveyed by Eq. (5.16) is the ratio p, /pags =1/qs.

From these final values of the A-r messages the belief distribution BEL can be
computed for each variable in the system (Eq. (4.49)). For example, for X 1 we
obtain

BEL(x;) = o Ty, (x) 7»}'1 (x)=alg1, p1) (A, g3)

q1 P143
g1 +p193° qi +p1g3 |

=0(g1,p193) = (5.18)

as in Eq. (5.8).

5.2.2 Belief Revision

The aim of belief revision is not to associate a measure of belief with each
individual proposition, but rather to identify a composite set of propositions—one



246 Distributed Revision of Composite Beliefs

from each variable—that best explains the evidence at hand. In the example of
Figure 5.1a, the aim is to find a consistent assignment of values to the set of
uninstantiated variables, {X;, X3,Y,}, that best explains the evidence
e=1{Y;=0,X,=1}. Since ¥, is functionally dependent on X, the space of
consistent assignments is determined by the values assigned to X; and X3, but
because (X; = 1, X3 = 1) is incompatible with Y5 = 0, the cheice is among three
candidates:

I={X;=0,X3=0}, I,={X,=0X;=1},
or
I3={X1 =1,X3=0}.

Such assignments will be referred to interchangeably as explanations , extensions,
and interpretations .
Basic probabilistic considerations dictate

q143

P le) = T-pips’ (5.19)
P(,le)= T%}%;
and
P(lsle) = 1—’1‘—;;—3.
If we assume for simplicity that
%2> q1>q2>q3, (5.20)

then I, = {X; =0, X3 = 1} is identified as the "best" explanation of the evidence
e. However, this optimal assignment cannot be obtained simply by optimizing the
belief distributions of the individual variables. For example, taking ¢, = .45 and
q3 = .4, we get (via Egs. (5.8) and (5.9))

BEL(x, =0)=.672 > BEL(x; =1) = 328
and
BEL(x3 =0) =.597 > BEL(x3 = 1) = .403.

Yet, choosing the most probable value of each variable separately yields the
assignment [, = {X; =0, X3 =0}, which is the least probable explanation—
P(I,le) = 268, while P(I; |e) = 403 and P(/3 le) = .328.
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Now we shall demonstrate how the optimal explanation can be assembled by a
distributed message-passing scheme similar to that used in belief updating (Figure
5.2). Clearly the messages used in this scheme should carry a summarized
description of the entire network, sufficient to guarantee that locally optimal
choices constitute a globally optimal explanation. For example, in Figure 5.1q, the
final messages passed to processor X; should locally determine the choice X, = 0;
simultaneously, those passed to X5 should dictate X 3 =1

To meet this goal, we associate with each variable X a new function BEL*(x),
which for each value x represents the probability of the best interpretation of the
proposition X =x, i.e., an assignment of values to all variables that attains the
highest probability, given X =x. For example, in Figure 5.15, the best
interpretation of the proposition Y,=0 is the assignment
{X1=0,X,=1,X5 =1}, with probability qp,p3, while the proposition ¥, = 1
is best interpreted by the no-fault condition {X 1=1, X;=1,X3 =1}, with
probability p;p,ps3. Thus, the BEL* function associated with Y, will be

q1p2p3 if y2=0

pipaps if yy =1, (5.2

BEL*(y,) =

and, since g, < p (see Eq. (5.20)), the local choice ¥2 = 1is guaranteed to be part
of the globally optimal explanation.

BEL¥* can be computed using a local message-passing scheme similar to that of
belief updating. The propagation dynamics are identical to those depicted in
Figure 5.2, except that the information carried by the messages has different
meaning and the computations paralleling those of Eqgs. (4.52) and (4.53) involve
maximization rather than summation.

The ability to assemble a globally optimal solution through local computation
rests on the many conditional independence relations embodied in the system, as
reflected in the network topology. These relations permit us to decompose the task
of finding a best overall explanation into smaller subtasks of finding best
explanations in subparts of the network, then combining them together. In Figure
5.1b, for example, the task of finding the best explanation for ¥, =0 can be
decomposed into two independent subtasks:

1. Find a best sub-explanation for Y, = 0 in the tqil subgraph of the link
Y; > Y3 (ie., comprising {X{, Y, X, }).

2. Find a best sub-explanation for ¥, = 0 in the head subgraph of the link
Y, = Y3 (i.e., comprising {¥3, X5}).

The fact that these two subgraphs are joined only by the link Y, — ¥,
guarantees that the overall best explanation (for Y, = 0) is composed precisely of
the two sub-explanations found in (1) and (2) above. Moreover, the degree of
support that the overall best explanation extends to Y. 2 =0 can be computed
locally from the degrees of support extended by the two sub-explanations. Thus,
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we can compute both BEL*(Y, = 0) and BEL™(Y, = 1) locally and decide the best
value for Y, by choosing the one with the highest value of BEL™ (in this case
Y,=1).

The messages carrying these degrees of support across an arbitrary link X—=Y
will be denoted by Ay(x) and 7y(x), formally defined as

Ap(x) = max P(wiy | x, €) (5.22)
and
Ty(x) = max P(x, wiyle), (5.23)
Wiy

where wxy and wxy stand, respectively, for any head-extension and tail-extension
of {X = x, e}, relative to the link X — Y. For example, in Figure 5.3a, e = &, and
the best tail-extension of Y, =0iswi,y, = {X;=0,Y, =0, X, = 1}, with

Ty, (2 =0)=P(¥,=0,X,=0,Y,=0,X, = 1) =q1ps, (5.24)
while the best head-extension is wy,y, = {¥Y3 =0, X3 =1}, with
Ay, (32 =0)=P(¥3=0,X3=11Y,=0)=ps. (5.25)
By similar considerations we obtain
Ty,2=1)=P¥,=1,X,=1Y,=1X,=1)=pip2 (5.26)
and
Ay, (2 =1)=P(¥3=1,X;=11Y; = 1) =ps, (5.27)
thus yielding the messages
Ty,02) =p2(q1, P1) (5.28)
and
A, 02 =p3(L, D). (5.29)

In Section 5.3, we shall demonstrate the following:

1. The m'—A" messages defined above can be propagated by local
computations, simply by replacing the summations in Egs. (4.52) and
(4.53) with maximizations over the same set of variables, as in Egs.
(5.44) and (5.47), Section 5.3.
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2. The BEL" functions can be computed from the T"—A" messages using
simple products, e.g.,

BEL" (x) = B my(x) Ap(x), (5.30)

or using a modification of Egs. (4.49) and (4.51) with maximization
replacing the summation (see Eq. (5.43)).

The rest of this section provides a qualitative description of how the best
explanations in the Figure 5.1 example are found through a message-passing
process. A quantitative account will be postponed until the propagation rules are
established in Section 5.3 (see Eqs. (5.43), (5.45), and (5.47) or, more generally,
Egs. (5.50) through (5.52)).

Initially, all A's are unit vectors, and the t° messages are given in Figure 5.3a.

Figure 5.3. ©* —A* message propagation under belief revision. The observation
{Ys=0,X, =1} causes a switch from the initial default explanation
{Xi1=X2=X3=1} in (a) to a new, stable (and maximally probable)
explanation {X, =0,X,=1,X5 =1} in (d). The intermediate states in (b)
and (c) yield temporary belief commitments based on incomplete transient
information.
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These T° messages are almost identical to the T messages of Figure 5.1c, except
for n;3@2) (see Egs. (5.5), (5.24), and (5.26)). The difference stems from the fact
that while 7y, (y,) represents the total probability of all tail-extensions of
Y, =y, n;3(yz) represents the probability *of only one such tail-extension,
namely, the most probable one. The pointers —> indicate the current commitments
made on the basis of BEL™ (see Eq. (5.30)), which at this stage represent the
default state {X, =X, = X3 = 1}. Note, however, that the initial ©° values
represent not just the currently accepted explanation, but a whole set of possible
system behaviors, each one a best explanation for some possible future observation
of the formY =yorX = x.

When nodes Y3 and X, are instantiated (Figure 5.3b), they set up new A"
messages, which temporarily lead to suboptimal and inconsistent belief
commitments, such as {X;=1,Y;=1,Y,=0,X3= 1} in Figure 5.3b and
{(X;=1,Y,=0,Y,=0,X3= 1} in Figure 5.3c. Eventually, however, all
messages are absorbed at the peripheral nodes, and a new consistent explanation
emerges, {X;=0,Y; = 0,Y,=0,X; =1}, which also is globally optimal.
Furthermore, the propagation process can be activated concurrently. It subsides in
time proportional to the network diameter, and at equilibrium the belief committed
to every proposition X = x is consistent with the overall best explanation.

5.3 BELIEF REVISION IN SINGLY
CONNECTED NETWORKS

Let W stand for the set of all variables considered, including those in e. Any
assignment of values to the variables in W that is consistent with e will be called
an extension, explanation, or interpretation of e. Our problem is to find an
extension w* that maximizes the conditional probability P(wle). In other words,
W = w" is the most-probable-explanation (MPE) of the evidence at hand if

P(w" le) = max P(wle). (5.31)

The task of finding w* will be performed locally, by letting each variable X
compute the function

BEL™(x) = max P(x, w'x le), (5.32)
Wx
where W'y = W—X. Thus, BEL"(x) stands for the probability of the most

probable extension of e that also is consistent with the hypothetical assignment
X = x. Unlike BEL(x), BEL™ (x) need not sum to unity over x.
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The propagation scheme presented in the nexti subsection is based on the
following philosophy: For every value x of a singleton variable X, there is a best
extension of the complementary variables W’y. Because there are so many
independence relationships embedded in the network, the problem of finding the
best extension of X = x can be decomposed into finding the best complementary
extension to each of the neighboring variables, then using this information to
choose the best value of X. This process of decomposition—which resembles the
principle of optimality in dynamic programming—can be applied recursively until,
at the network’s periphery, we meet evidence variables whose values are
predetermined, and the process halts.

5.3.1 Deriving the Propagation Rules

We consider again a fragment of a singly connected network, as in Figure 5.4, and
denote by Wxy and Wyy the subset of variables contained in the respective
subgraphs Gy and Gyy. The removal of any node X would partition the network
into the subgraphs G¥ and Gy containing two sets of variables (W% and Wy) and
possibly two sets of evidence (e} and ey, respectively).

Figure 5.4. Fragment of a singly connected network with multiple parents illustrating
graph partitioning and message parameters.
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Using this notation, we can write

P(w"le) = max P(wx, wx, xlex, ex ). (5.33)
X, W§,wx

The conditional independence of Wy and Wy, given X, and the entailments
ey < Wy and ex ¢ Wy, yield

. P(wx, wx, x)
Pwle) = max ——— ——
xwiwy  Plex, ex)

=B max P(wxlx)P(xlwg)P(w%), (5.349)

P
XLWx.Wx

where 8 = [P(e¥, ex)]™! is a constant, independent of the uninstantiated variables
in W and having no influence on the maximization in Eq. (5.34). From here on we
will use the symbol B to represent any constant that need not be computed because
it does not affect the choice of w".

Eq. (5.34) can be rewritten as a maximum, over x, of two factors:

P(w" le) = p max [max P(wk | x)] [max P(x! wHP(wi)]

=B max A () T (x), (5.35)
where
A (x) = max P(wx 1x) (5.36)
and
T (x) = max P(x, wy). 5.37)

Thus, if for each x an oracle could give us the MPE values of the variables in Wy,
together with the MPE values of the variables in W3, we would be able to
determine the best value of X by computing A"(x) and " () and then maximizing
their product, AT (x).

We can express A" (x) and 7" (x) in such a way that they can be computed at
node X from similar parameters available at X’s neighbors. Writing

Wi=Wo UWn Wi=Wix Wix
Whx=Wix-U Wix=Wix-V,
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we obtain
A" (x) = max P(wxy | x) max P(wy, 1x)=Ay* (X)Az* (x) (5.38)

Wxy Wxz
and
T (x) = max P(x, w}),
w}

max  P(x, wix, wix)
+ +
Wux, Wyx

max  P(x, u, wh, v, wi)
u, v, wi, wi

it

max [P(xlu, v, wi, wi) P(u, v, wi, wi)]
u,v, wh, wi

= max [P(xlu, v) P(u, v, wh, wi)]
u, v, Wi, wy

=max [P(x lu, v) max P(u, wj;-y max P(v, W]
U, v Wi Wi

(because U and Wiy are independent of V and Wix)

=max P(x lu, v) my(u) my(v), (5.39)

where Ay(x) (and, correspondingly, Az(x)) can be regarded as a message that a
child Y sends to its parent X:

Ay(x) = max P(wiy | x). (5.40)
Similarly,
Tix(u) = max P(u, wi ) (5.41)
wix

can be regarded as a message that a parent U sends to its child X. Note the
similarities between A" (and 11") and A (and ) in Egs. (4.47) and (4.48).

Clearly, if these A" and n" messages are available to X, we can compute its best
value x* using Egs. (5.35) through (5.37). What we must show now is that X, upon
receiving these messages, can send back to its neighbors the appropriate Ax(u),
Ax(v), my(x), and T3 (x) messages, while preserving their probabilistic definitions
according to Egs. (5.40) and (5.41).

UPDATING =*
Rewriting Eq. (5.32) as
BEL"(x) = P(x, wi", wy'le) 5.42)
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and using Eqgs. (5.36) through (5.41), we have

BEL"(x) = BA (x) " (x)
=B Ap(x) Az(x) max P(xlu, v) me(u) mx(v). (5.43)

Comparing this expression to the definition of Ty(x), we get

ny(x) = max P(x, w}y) = max P(x, wy,wxz)
wiy W, Wxz

= Ay(x) max P(xlu, v) my(u) mx(v). (5.44)

Alternatively, Ty(x) can be obtained from BEL™(x) by setting Ay(x) = 1 for all x.
Thus,

ny(x) = B BEL"(x) = M (5.45)
Apx)=1 Ay(x)

The division by Ay(x) in Eq. (5.45) amounts to discounting the contribution of all
variables in Gxy. Note that Ty(x), unlike Ty(x), need not sum to unity over x.

UPDATING \'
Starting with the definition

Ax(u) = max P(wyx lu), (5.46)

Wux
we partition Wy into its constituents,
Wix=XUWx UWzUWixUV
and obtain

Ax(u)= ~ max  P(x,Wxy, Wxz, V,Wix)
X, Wy, Wxz . Wvx,V

= max P(wxy, Wxz | Wix x, v, u) P(x, v, wixlu)

XV, Ww's

= max [Ay(x) Az(x) P(x |4, v) max P(v, wix lu)).



5.3 Belief Revision in Singly Connected Networks 255

Finally, using the marginal independence of U and W{y, we have

Ax(u)= max Ay () Az(x) P(x lu, v) mx(v)]. (5.47)

5.3.2 Summary of Propagation Rules

In general, if X has n parents, Uy, U,,..., U,, and m children, Y, Y>,..., ¥,,, then
nqde X receives the messages n;(ui), i=1,.,n from its parents and
Ay, (x), j=1,..., m from its children.

n;(u,-) stands for the probability of the most probable tail-extension of the
proposition U; = u; relative to the link U; — X. This sub-extension is
sometimes called an explanation or a causal argument.

K;j (x) stands for the conditional probability of the most probable head-extension of

the proposition X = x relative to the link X —Y,. This sub-extension is
sometimes called a prognosis or a forecast.

Using these n +m messages together with the fixed probability P(x luy, ..., u,),
X can identify its best value and further propagate these messages using the
following three steps:

Step 1—Updating BEL": When node X is activated to update its parameters, it

simultaneously inspects the my(x;) and k;j(x) messages communicated by each of
its parents and children and forms the product

F(x, uy, ..., u,) = 'H1 K;j(x)P(xlul, vy Up) 'H1 Ty (u;). (5.48)
i= i=

This F function enableg X to compute its BEL"(x) function and simultaneously
identify the best value x~ from the domain of X:

x* =max™! BEL™(x), (5.49)
X
where
BEL*(x) = B max F(x, uj,..., U,) (5.50)
up:1skzn

and B is a constant that is independent of x and need not be computed in practice.
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Step 2—Updating L": Using the F function computed in Step 1, node X computes
the parent-bound messages by performing n vector maximizations, one for each
parent:

Ax(u) = makx.[F(x, Uiy oy Uy) [ ()] i=1,.,n (5.51)
x, Uy ki

Step 3—Updating n*: Using the BEL™(x) function computed in Step 1, node X
computes the children-bound messages,

nZu)=B§%?Q1, (5.52)
7\-Yj(x)

and posts these on the links to Yy,..., ¥,,,.
These steps are identical to those governing belief updating (Egs. (4.49)
through (4.53)), with maximization replacing the summation. They can be viewed

as tensor operations, using max for inner-product, ie., <AB>; = max A; By,
J

each outgoing message is computed by taking the max-inner-products of the tensor
P(x1luy,.., u,) with all incoming messages posted on the other links.}

The boundary conditions are identical to those of belief updating and are
summarized below for the sake of completeness:

1. Anticipatory node: Representing an uninstantiated variable with no
successors. For such a node X, we set k;j x)=(q{,1,.., .

2. Evidence node: Representing an instantiated variable. If variable X
assumes the value x”°, we introduce a dummy child Z with

e 1 fx=x
Az(x) = 0 otherwise.

This implies that if X has children, Y1,...,Y,,, each child should receive
the same message, n;j (x) = Az(x), from X.

3. Root node: Representing a variable with no parents. For each root
variable X, we introduce a dummy parent U, permanently instantiated to

+ L.Booker, personal communication.
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1, and set the conditional probability on the link U — X to the prior
probability of X, i.e., P(x lu) = P(x) = *(x).

These boundary conditions ensure that the messages defined in Egs. (5.40) and
(5.41) retain their correct semantics on peripheral nodes.

5.3.3 Reaching Equilibrium and Assembling a
Composite Solution

To prove that the propagation process terminates, consider a parallel and
autonomous control scheme whereby each processor is activated whenever any of
its incoming messages changes value. Note that, since the network is singly
connected, every path eventually must end at either a root node having a single
child or a leaf node having a single parent. Such single-port nodes act as
absorption barriers; updating messages received through these ports get absorbed
and do not cause subsequent updating of the outgoing messages. Thus, the effect
of each new piece of evidence subsides in time proportional to the longest path in
the network.

To prove that at equilibrium, the selected x* values indeed represent the most
likely interpretation of the evidence at hand, we can reason by induction on the
depth of the underlying tree, taking an arbitrary node X as the root. The A" or 1t
messages emanating from each leaf node of such a tree certainly comply with
Eqgs. (5.40) and (5.41). Assuming that the A" (or ") messages at any node of depth
k of the tree comply with their definitions of Egs. (5.40) and (5.41), the derivation
of Egs. (5.42) through (5.47) guarantees that they will continue to comply at depth
k-1, and so on. Finally, at the root node, B BEL"(x™) actually coincides with
P(w" le), as in Eq. (5.33), which means that BEL"(x) computed from Eq. (5.50)

must give x the same rating as does max P(x, w'y le) (see Eq. (5.32)). This proves
Wx

that each local choice of x” is part of some optimal extension w".

Had the choice of each x” value been unique, the assembly of x* values
necessarily would constitute the (unique) most probable extension w". However,
when several X = x assignments yield the same optimal BEL"(x), a pointer system
must be used to ensure that the tiebreaking rule is not arbitrary but coheres with
choices made at neighboring nodes.

For example, in the circuit of Figure 5.1, had we assumed g1 =q3 <%, the
optimal interpretations {X; =1, X3 =0} and {X, =0, X3 =1} would have been
equally meritorious, yielding BEL"(X3 = 0) = g3 p; = BEL"(X5 = 1) = ps q,, as
reflected in the ='(x;) and 7»;3 (x3) messages of Figure 5.3d; similarly,
BEL* (X, =0) = qp3 =BEL* (X, =1) =pi193. Breaking the ties arbitrarily, in
such cases, might result in choosing a suboptimal extension {X{=0,X3=0}, 0r
even an inconsistent one {X| = 1, X3 = 1}. To enforce a selection of values within
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the same optimal extension, local pointers should be saved to mark the neighbors’
values at which the maximization is achieved. (In singly connected networks the
relevant neighborhood consists of parents, children and spouses, i.e., parents of
common children [see Chapter 3].) For example, in the maximization required for
calculating 7\.;3 (x3) in Figure 5.3d we have (see Eq. (5.47))

Ay, (x3) = ;nz;x A (33) P(yslyy, x3) Ty, (v2)
2:)3

- max P(Y3 =01y, x3)q, if y,=0
T, |P(Y3=01ys,x3)p; if yp=1

lqu if y2=O,X3=0
a 1Xq1 if y2=0,X3=1

= max .
va |1Xp1 if y2=1,x3=0

Oxp; if yo=1,x3=1

_ max (¢, p)=p; if x3=0 (3=1)
max (0,q)=¢q; if x3=1 (2 =0)

=(p1,q1) at y;=(1,0).

Establishing this correspondence between x; and y, amounts to node Y3
maintaining a pointer from Y, =1 to X3 = 0 and another pointer from ¥, =0 to
X5 = 1, to indicate that these two value pairs are compatible members of the same
optimal extension.

When we face the choice of x3, we compare the value of BEL™(x3 = 0) with
that of BEL" (x5 = 1) and obtain the equality

BEL™(x3) = Ay, (x3) T (x3) = (p193, 93p1) = p1g3(L, D).

However, the choice x3 = 0 must be accompanied by the choice y> =1, and the
choice x5 = 1, by y5 = 0. By a similar analysis at node Yy, such choices of y5 will
be bound to the values of x; = 1 and x] = 0, respectively, thus ensuring that the
choice x] = 1 will always be accompanied by x3 =0,andx] =0,byx; = 1.
Having these pointers available at each node provides a simple mechanism for
retrieving the overall optimal extension: we solve for x”* at some arbitrary node X
and then recursively follow the pointers attached to x*. Additionally, we can
retrieve an optimal extension compatible with any instantiation (say, the second
best) of some chosen variable Y and, by comparing the merits of several such
extensions, can identify the globally second-best explanation [Geffner and Pearl
1987a]. Another use of the pointer mechanism is facilitating sensitivity analysis.
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To determine the merit of testing an unknown variable, we can simply follow the
links attached to each of its possible instantiations and examine the variable’s
impact on other propositions in the system.

5.3.4 Comparison to Belief Updating

The propagation procedure described in this section bears many similarities to that
used in belief updating (Egs. (4.49) through (4.53)). In both cases, coherent global
equilibria are obtained by local computations in time proportional to the network’s
diameter. Additionally, the messages ©° and A" bear both formal and semantic
similarities to their © and A counterparts, and the local computations required for
updating them are of roughly the same order of complexity.

There are, however, major differences between the two procedures. First,
belief updating involves summation, whereas in belief revision, maximization is
the dominant operation. Second, belief updating encounters more absorption
centers than belief revision does. In the former process, every anticipatory node
acts as an absorption barrier, blocking the passage of messages between its parents.
This is clearly shown in Eq. (4.52); substituting A(x) = 1 yields Ax(u) = 1, which
means that evidence in favor of one parent (V) has no bearing on another parent
(U) as long as their common child (X) receives no evidential support (A(x) = 1).
This matches our intuition about how frames should interact; data about one frame
(e.g., seismic data indicating an earthquake has occurred) should not evoke a
change of belief in another unrelated frame (e.g., the possibility of a burglary in
my home) merely because the two occurrences may give rise to a common
consequence sometime in the future (e.g., triggering my burglar alarm). This
frame-to-frame isolation does not hold for belief revision, as can be seen from Eq.
(5.47). BEven if Ay(x) = A3(x) = 1, Ax(u) still is sensitive to Ty (v).

Such endless frame-to-frame propagation raises psychological and
computational problems. Psychologically, in an attempt to explain a given
phenomenon, the mere act of imagining the likely consequences of the hypotheses
at hand would conjure remotely related hypotheses that could also cause the
imagined consequence. We do not ordinarily reason that way, though; in trying to
explain the cause of a car accident, we do not raise the possibility of lung cancer
merely because accidents and lung cancer both can lead to the same eventual
consequence—death. Computationally, it appears that in large systems, the task of
finding the most satisfactory explanation would require insurmountable effort; the
propagation process would spread across loosely coupled frames until every
variable in the system reexamined its selected value x".

These considerations, together with other epistemological issues (see Section
5.6), require that the set of variables w over which P is maximized be
circumscribed in advance to a privileged set called explanation corpus. In
addition to the evidence e, W should contain only those variables that are
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ancestors of e and have a significant impact on pending decisions. For example, if
Y, is the only observed variable in Figure 5.1, then the explanation corpus will
consist of W = {X, X,, Y} }; the variables X; and Y; will be excluded. If, in
addition, X; and X, are outputs of two complex digital circuits and our only
concern is to find out whether any of these circuits should be replaced, then the
ancestors of X; and X, also should be excluded from W. In other words, if there is
no practical utility in finding why a particular circuit is faulty, then it is both
wasteful and erroneous to enter these ancestors into W (see Section 5.6).

Circumscribing an explanation corpus separates the variables in the system
into two groups, W and its complement W~. The computation of w”™ now involves
both maximization over W and summation over W

P(w" le) = max P(wle) =max ¥, P(wlw’, &) P(w’le).

The propagation rules also should be mixed. Variables in W should follow the
revision rules of Egs. (5.48) through (5.52), while variables in W~ should follow
the updating rules of Eqs. (4.52) and (4.53). The interaction between the A —n*
messages produced by W and the A-m messages produced by W” should conform
to the probabilistic semantics of these messages and will not be elaborated here.

5.3.5 Coping with Loops

When the network contains loops, i.e., cycles in the undirected network, the
assumptions leading to the propagation equations (Egs. (5.48) through (5.52)) are
no longer valid, and one of the methods described in Section 4.4 should be
employed, namely, clustering, conditioning, or stochastic simulation.

The adaptation of clustering to belief revision is straightforward; we form
compound variables in such a way that the resulting network is singly connected,
and then apply the propagation scheme of Section 5.3. The propagation rules for
the clustered networks are identical to those derived in Eqs. (5.48) through (5.52).

An extreme example of clustering would be to represent all ancestors of the
observed findings by a single compound variable. For example, if X and X, are
the observed variables in the network of Figure 5.5a, we can define the compound
variable Z = {X, X,, X3, X5} and obtain the tree X, « Z — X¢. Assigning a
value to the compound variable Z would constitute an explanation for the findings
observed. Indeed, this is the approach taken by Cooper [1984] and by Peng and
Reggia [1986]. Since finding the best explanation requires searching through the
vast domain of possible values associated with the compound variable, admissible
heuristic strategies had to be devised, similar to the A* algorithm [Hart, Nilsson,
and Raphael 1968]. Unfortunately, the complexity of such algorithms still is
exponential [Pearl 1984], since they do not exploit the interdependencies among



5.3 Belief Revision in Singly Connected Networks 261

the variables in Z. Another disadvantage of this technique is the loss of conceptual
flavor; the optimization procedure does not reflect familiar mental processes, so it
is hard to construct meaningful arguments to defend the final conclusions. The
join tree method discussed in Section 4.4.1 promises to overcome these
shortcomings, especially in networks involving small loops.

The use of conditioning for belief revision is similar to the use discussed in
Section 4.4.2. In Figure 5.5, for example, instantiating node X; to some value
would block all pathways through X; and would render the rest of the network
singly connected, amenable to the propagation technique of this section. Thus, if
we wish to find the most likely interpretation of some evidence e, say
e = (X = 1}, we first assume X; = O (as in Figure 5.5b), propagate A" and =" to
find the best interpretation I under this assumption, repeat the propagation to find
the best interpretation /; under the assumption X; =1 (as in Figure 5.5¢), and
finally, choose from the two interpretations the one with the highest probability.
For example, if Iy and I, are realized by the vectors

IO = (Xl = 0’ xg, xg’ xg’ x(S)) and (5'53)

1 .1 .1 .1
Il = (Xl = l,xz,X3,X4,x5),

X, = X, = X,=1 X, =1
Xl

X,=0 Xy=1

Xs —

X, X3

X, Xg=1 Xg=1

(a) ®) ©

Figure 5.5. [Instantiating variable X | renders the network in (a) singly connected.

then the best interpretation is determined by comparing the two products
Plgle)=aPXg=11x)P(x21x8, x3) P(xY1X, =0, x9)
P(x31X, =0)P(x31X, =0) P(X; =0)
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and

P, le) = P(Xg = 11x}) P(xb 1x}, x3) Py 1X 1 = 1, x})
P& IX, =DPx3IX; =1)PX, =1),

where o = [P(e)]™! is a constant. Since all the factors in the above product are
available from the initial specification of the links’ probabilities, the comparison
can be conducted with simple computations.

Such globally supervised comparisons of products are the basic computational
steps used in the search methods of Peng and Reggia [1986] and Cooper [1984].
However, we use them to compare only two candidates from the space of 2’
possible value combinations. Most of the interpretation work is conducted by
local propagation, selecting the appropriate match for each of the two assumptions
X, =0and X; = 1. Thus, we see that even in multiply connected networks, local
propagation provides a computationally effective and conceptually meaningful
method of trimming the space of interpretations to a manageable size.

The effectiveness of conditioning depends heavily on the topological properties
of the network. Since the amount of time each propagation phase takes varies
linearly with the number of variables in the system (n), the overall worst-case
complexity of the optimal interpretation problem is exponential with the size of
the cycle cutset that we can identify. Identical complexity considerations apply to
the task of belief updating (see Chapter 4), so finding the globally best explanation
is no more complex than finding the degree of belief for any individual
proposition.

A third method of sidestepping the loop problem is by using stochastic
simulation, which amounts to generating a random sample of scenarios agreeing
with the evidence, then selecting the most probable scenario from that sample.
This is accomplished in distributed fashion by having each processor inspect the
current state of its neighbors, compute the belief distribution of its host variable,
and then randomly select one value from that distribution. The most likely
interpretation is then found by identifying either the global state that has been
selected most frequently or the one possessing the highest joint probability—
which is computed by taking the product of n conditional probabilities, as in
Eq. (3.28). Simulated-annealing methods can also be used to speed up the process
of reaching the optimal state [Kirkpatrick, Gelatt, and Vechi 1983].

It is important to reemphasize that the difficulties associated with loops are not
unique to probabilistic formulations but are inherent to any problem in which
globally defined solutions are produced by local computations, whether the
formulation is probabilistic, deterministic, logical, numerical, or a hybrid thereof.
Identical computational issues arise in the Dempster-Shafer formalism [Shenoy
and Shafer 1986], in constraint satisfaction problems [Dechter and Pearl 1985,
1987a], and in truth maintenance [Doyle 1979; de Kleer and Williams 1986],
database management [Beeri et al. 1983], matrix inversion [Tarjan 1976], and
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distributed optimization [Barbosa 1986]. The importance of network repre-
sentation is that it reveals the common core of these difficulties and provides an
abstraction that encourages the exchange of solution strategies across domains.

5.4 DIAGNOSIS OF SYSTEMS WITH
MULTIPLE FAULTS

54.1 An Example: Electronic Circuit

To illustrate the belief revision scheme, we will consider in detail an example
treated by de Kleer and Williams [1986], Davis [1984], and Genesereth [1984].
The problem is, given the digital circuit depicted in Figure 5.6, to find the set of
malfunctioning components that are most likely to have caused the observed
behavior: F=10,G=12.

X
A=3 — -
M, 61 | M, [ F=10
[12]
B=2 — Y
= —— M
g=% — 2 [6]
3 M, V4 1 M, G =12
E= —
(6] [12]

Figure 5.6. A circuit containing three multipliers, M, M,, and M 5, and two adders, M ,
and M 5.

The causal network corresponding to this circuit is shown in Figure 5.7. The
nodes of this network represent both observable points and the status of
components. The circuit components appear as root variables constraining the
relationship between input and output.
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Il 12

+ {' mapped to
M pr—

X =fUy15)

I

I,

M € {GOOD , BAD }

Figure 5.8. The mapping used to convert circuits into causal networks.
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The link probabilities for the mapped circuit fragments depicted in Figure 5.8
are given by

1 f M=GOOD and x=f(I,1,)
Pxl,I,,M)=1 0 if M=GOOD and x#f(, 1) (5.54)
1 if M=BAD and x any value,
Ry
where Ry is a large constant representing the range of possible values of X, and f
stands for the function computed by M.* This mapping conforms to the
assumption normally made in circuit diagnosis that good behavior does not
guarantee good components [de Kleer and Williams 1986].

54.2 Initialization

Initially, the value of the input is known, and no other observation has been made.
" Therefore, for every input /€ {A, B, C, D, E} we have

(I = measured value) = 1
7" (I # measured value) = 0.

The status of the components is not known, but we assume a priori that

7" (M; = BAD) = g; (5.55)
and

T (M; = GOOD) =z’21)~>= 1-g;,

oA
where g; is some small value representing the prior probability of failure of the i-th
component and p; is simply an abbreviation for 1 — ¢;.

For the purpose of this example, we shall make the reasonable assumption that
components of the same type have the same prior probability of failure, while the
probability of failure for multipliers is greater than for adders. In other words, we
assume that

91 =492 =43 >44 =45
and

RX=RY=RZ=RF=RG>1' (5.56)

1t In this example we use capital letters both for variable names and for variable values, writing
P(xlIy,15, M) instead of P(xliy, iy, m), to facilitate a closer correspondence between the
formulas and the diagrams.
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We start by propagating downward the effects of the prior probabilities. For
example, 7 (x) is computed from Eq. (5.52):

T(x) = max P(x1A, C, M) Tx(A) Rx(C) Ty (M |). (5.57)

Since A and C are fixed at (A =3, C =2), 7" (x) can be rewritten as

n(x) = %axp(xlA =3, C=2,M)T@A=3)n(C=2)n M), (558

wherein we have replaced the mty with . For x = 6, assuming p; > > ¢ / Rx, the

maximum is achieved with M; = GOOD. For x # 6, the maximum is achieved

with M, = BAD, because according to the link probabilities, it is impossible to

have a multiplier working correctly with inputs 3 and 2 and not have output of 6.
Using similar arguments, we compute the following parameters:

* _ P1 x=6
T = g/ Ry x#6,
. o _ | P2 y=6
TO)= g, /Ry ¥ 26,
=, _ | P3 z=6
T2 =14 /Ry z#6. (5.59)

The rest of the messages are computed as follows. Since F and G are anticipatory
nodes, we have

M) =M Gy =1,
where F; and G; range over all possible values of F and G, respectively.
The message Ag(y) can be computed from Eq. (5.51):
A6() = max PGy, z, Ms) t6(Ms) ().
1Z2Ms
Regardless of the value of y, the maximum will always be achieved by choosing
G =y +z,z==6and M5 = GOOD. This yields
7\"(‘G(‘y) =pPs5P3s

which is equivalent to

Ao =1,

for y; ranging over all the possible values of y. The same holds for Ae(2), Ar(y),
and Ap(x).
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Returning to the top-down propagation, we can now compute T (F):

T(F=12) = max P(F=121x,y,M4) 75 () Tr(y) (M)
XY, M 4

= max PF=121x,y M) T xX)T AT (My), (5.60)
XY, M 4

where all the parameters are known. The maximum occurs at the normal-operation
values of X, Y, and M, :

N (F=12) = P(F=121x=6,y=6,M ,=GOOD) & (x=6) & (y=6) (M 4=GOOD)

=p1P2Ps-

For F # 12 we get

492

q1
, T s s 5.61
R, Da Ry P2DP4,P1 P2 (5.61)

n*(F¢12)=max P R_
F

where the three alternatives correspond to the failure of M,, M, and My,
respectively. Since we are assuming g4 <g; =g, and Rx = Ry = Rp, we can
eliminate the third alternative. A similar procedure is used to compute n'(G). To
find out which extension is the best at this point, we compute BEL" (s) for each
variable § and select the value s~ at which BEL*(s) peaks.T Of course, if there is
no observed failure, the answer will be that all components are operating properly.

5.4.3 Fault Interpretation

Once the first two tests are made, finding F = 10 and G = 12, new messages begin
to propagate concurrently along the links. For simplicity, we will follow only those
messages that will affect the labeling of M,, i.e., those passing through the path
darkened in Figure 5.9. The message Ag(y) is computed from

Ae(y) = rA141axP(G =121y, z, Ms) ng(2) me(Ms).
5,2

+ For ways of dealing with multiple solutions, see Section 5.3.3.
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Figure 5.9. Messages affecting the labeling of M 4, after G and F are observed.

For y = 6, the maximum is achieved at z = 6 and M 5 = GOOD, so
Ag(y =6) =p3ps -

If y#6, then z#6 or Ms = BAD. Since mg(z #6) = g3, Tg (Ms = BAD) = gs,
and g5 > g5, we get

Ac(y #6) =q3 ps .

Now Y computes messages for its neighbors and sends to F the message (),
computed as

TEY) = T ) AGO)-
The message that M4 receives is computed from
Ae(M,) =max P(F =101 x, y, My) p(x) Tp(y)
xy

=max P(F=101x, y, My) T x) & 3) As(Y).
X,y
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For M4 = GOOD, the maximum must occur when x = 4 and y = 6, or when
x =6andy = 4. In other words,

Ar(M, = GOOD) =max {n'(x =4) T (y = 6) AG(y = 6),
TE=6T (=40 =4}

= max aL 293
= Ry P2P3Ps,P1 RyR; Ps
which, under the assumptions in Eq. (5.56), becomes
* qi
Ar(M4 = GOOD) = R. P2P3Ps - (5.62)
X

This reflects the fact that the most likely interpretation under M4 = GOOD pegs
M as the only faulty component.
For M4 = BAD, the maximum is achieved with x = y = 6, resulting in

E3 1
Ar(M4 =BAD) = R P1P2P3Ps >
F

since M4 = BAD explains the observed behavior by itself.
At this point, we can compute BEL™(M ) to find My}, i.e., the most probable
status of M ,:

BEL™(M,) = [ BEL*(M, = GOOD), BEL" (M 4, = BAD)]
=B[N (M, = GOOD) n" (M, = GOOD),
A'(M, =BAD) T (M, = BAD) ], (5.63)
SO

M, = max"! BEL"(M,)
My

q1 .
R_ p2P3paps if My =GOOD
X

- mﬁx‘ q4
* R, P1P2P3Ds if M, =BAD
F
= GOOD, (5.64)

since g, was assumed to be greater than g .
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Even at this early stage of the propagation, we already can label M, as GOOD
and be confident that this label will remain part of the globaily optimal solution.
Apparently, the )" message arriving at M4 already contains information (gathered
during the initialization phase) that is sufficient to alert M, to the existence of a
more likely culprit—the multiplier M ;.

Pursuing the propagation through the rest of the network, the optimal status of
all the other components is determined. The resulting pattern of messages for all
component nodes is depicted in the four leftmost columns of Figure 5.10. The

component n'(s) | A(s) after observing optimal A’ (s) after observing optimal
status s priors F=10and G =12 label F=10,G=12,X=6, label
Y=4,andZ=6
94 4295
M= D -
1 = GO0 2 Rr P2pP3ps Ry Ro D3 P4
M| =BAD M) = GOOD
M, = BAD 1 1 492 ﬂp;p
= -— - 3P4
1 q1 Ry p1p3Ps Ry Ry Rg
q1
My =GOOD | pa ——Pipaps 0
Rx
M5 =GOOD |——————————— M5 =BAD
1 43
= R i
M, = BAD g2 Ry RZP1P4P5
491 42495
M3 =GOOD — y
3 pP3 Rx P2pPapPs Rngl’lIM
M3 = GOOD M3 = GOOD
I 492 1 49245
M3 =BAD —_— T T o
3 q3 Rz RyP1P4[75 Ry RyR(;p]m
q: 4295
M, =GO0OD — -
4 Pa Ry P2pP3Ps RYRG[’IPB
M3 = GOOD M = GOOD
1 1 4924s
M4 = BAD 4 — i S S
4 94 RFﬂll’szPs Rr RYRGIHP;
* 491
M5 =G0OOD | ps R, Papaps 0
X
M} =GOOD |b— 1 M5 =BAD
M = BAD L Y |
5= qs Rc Ry 1P3pPs

Figure 5.10. The pattern of final messages at component nodes.
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optimal status of any component node is determined by simply comparing the
A" 7" product for each of its possible statuses. For example, to determine the

optimal status of M,, we compare the product Z—; p2p3psp1  Wwith

RL PaP3PaPsq, and conclude that M7, the optimal status of M, is BAD, since
X

the first term is greater than the second under the current assumptions about P and
R.

For the sake of completeness, the fifth column of Figure 5.10 shows the A"
messages resulting from the additional observations X =6, Y =4, and Z = 6. The
7 messages do not change. The reader may verify that with the new information,
the best diagnosis establishes with certainty that components M, and M5 are
faulty.

544 Finding the Second-Best Interpretation

The parameters computed by the propagation process enable us to associate with
every instantiation X = x of any node X, a tree that encodes the best interpretation
of the observations, consistent with that instantiation. The instantiation X = x is
also associated with a weight, BEL™ (x), which stands for the probability of its best
interpretation. As we suggested in the previous section, when a new measurement
Z = z is obtained, we can immediately obtain the best interpretation that accounts
for the new enhanced set of observations, simply by retrieving the interpretation
associated with the pointer structure rooted at Z = z. To assess that interpretation,
we need not examine the messages that eventually emanate from Z; these are used
only for updating the rest of the network to prepare it for accommodating future
findings.

The first question that arises is whether the system can retrieve multiple
optimal interpretations, i.e., multiple extensions with the same maximum weight.
This can be accomplished in a straightforward way, as described in Section 5.3.3:
While performing the maximizations for computing the messages, save pointers
indicating all values at which the maximum is achieved. Subsequently, before
comrmitting to optimal labels, follow the pointers to ensure that the labels are
consistent with the labels of the neighbors.

A second question of interest is whether other useful interpretations can be
retrieved from the pointer structures stored in the network. We already have seen
that this net contains all those interpretations that are optimal relative to individual
node instantiations. It follows that every second-best interpretation also is
retrievable, because each such interpretation constitutes the best extension of some
variable that has a different value than it had in the best configuration.

For instance, given the observations of F and G in Figure 5.6, the best
interpretation is {M; = BAD}, while the second-best is {M, = BAD}. These
interpretations correspond to the pointer structures rooted at M, = BAD and
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M, = BAD, respectively. The root M4 =BAD is identified by selecting the
proposition with the second highest BEL”™ value, after BEL" (M, = BAD). In fact,
a third-best interpretation, {M, = M5 = BAD}, also is retrievable, either from
M, =BAD or from Ms=BAD, but in general, it is not guaranteed that
interpretations beyond the second-best will be retrievable. Indeed, another third-
best interpretation, {M; = M4 = BAD }, will not be retrievable, since it is the best
extension of neither M; = BAD nor M4 = BAD. This interpretation, however, is
nonminimal, because each of its two proper subsets perfectly explains the circuit
behavior.

Notice that while the process for selecting an overall best interpretation is local
(simply selecting the pointer structure rooted at the last observation), the retrieval
of a second-best interpretation is not. It requires that we maintain a table storing
the second-best value of each variable; then, when the “‘entry point’’ of a second-
best interpretation is sought, the highest BEL™ () is looked up in the table, and its
associated link is found.

5.5 APPLICATION TO MEDICAL DIAGNOSIS

The computational effectiveness of the propagation scheme developed in Section
5.3 becomes especially important when applied to nondeterministic systems, such
as those used in medical diagnosis. Deterministic systems like the circuit analyzed
in Section 5.4 can be diagnosed using set-covering [Reggia, Nau, and Wang 1983]
or truth-maintenance [deKleer and Williams 1986] techniques. These identify sets
of faults that are minimal, i.e., that contain no proper subset of faults that explain
equally well the symptoms observed. Minimality helps limit the search to
explanations that are not subsumed by others. However, when the system itself is
nondeterministic, the notion of minimality is no longer helpful, because it is often
possible to improve a given diagnosis by postulating a larger set of faults—the
extent to which a diagnosis explains or ‘‘covers’” a set of symptoms is a matter of
degree.

Systems that take into account both probabilistic information about fault
likelihood and uncertainty about system behavior and still return an optimal (most
likely) diagnosis require substantially more computation [Cooper 1984; Peng and
Reggia 1986]. Such systems normally employ a branch-and-bound search
algorithm which often runs in exponential time and overlooks structural properties
of the diagnosed system that could make the search significantly faster, if not
superfluous. Also, though the outcome is globally optimal, it is hard to justify in
meaningful terms because the global process of searching for that outcome is very
different from the local mental process exercised by human diagnosticians.

To illustrate the effectiveness of message-passing schemes, let us reconsider the
medical diagnosis example treated in Section 4.5.3.
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5.5.1 The Causal Model

Consider the network of Figure 5.11, where the nodes at the top row,
{D,,D,, D3, D,}, represent four hypothetical diseases, and the nodes at the
bottom row, {M,, M,, M5, M,}, represent four manifestations (or symptoms) of
those diseases. The numerical parameters shown on the links of Figure 5.11
represent the strengths of causal connections between diseases and symptoms:

c¢;j = P(M; observed | Only D; present) . (5.65)

= 0.01 N, = 0.10 T3 = 0.20 Ty = 0.20

D,

Ml M2 M3 M4

T F T F

Figure 5.11. A network representing causal relations between four diseases and four
manifestations. The link parameters, c;;, measure the strengths of causal
connection.

All four diseases are assumed to be independent. Their prior probabilities,
n; = P(D; = TRUE), are shown in Figure 5.11. When several diseases give rise to
the same symptom, their combined effect is assumed to be governed by the noisy-
OR-gate model analyzed in Section 4.3.2.

Given this model, we imagine a patient exhibiting the symptom set {M, M3}
but not {M,, M4}. Our task is to find the disease combination that best explains
the observed findings, namely, to find the TRUE-FALSE assignment for the
variables D, D,, D, , and D4 that constitutes the most probable extension of the
evidence

e = {M, = TRUE, M, = FALSE, M5 = TRUE, M, = FALSE}.

Let D; and M; denote the propositional variables associated with disease D;
and manifestation M;, respectively; each may assume a TRUE or FALSE value.
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For each propositional variable X, we let +x and —x denote the propositions
X =TRUE and X = FALSE, respectively. For example,

P(—m;|+d;))AP(M; = FALSE | D, = TRUE)

would stand for the probability that a patient with disease D; will not develop

symptom M.
Let X stand for some manifestation variable and let {U,,..., U,} represent its
parents’ set. The combined parent-to-child relationship P(xluj,..., u,) is

determined by the set of parameters c;y on the individual links, as in Eq. (4.54).
So,

P(—OC'MI,..., u,,) = 1—; qix (5.66)
iely

and

P(+xluy,yuy) =1~ l'; qix» (5.67)
where

gix =1—cx (5.68)

and
Iy = {i:U, = TRUE}. (5.69)

Substituting in Eq. (5.48), the function F(x, u,,..., u,) attains the form

m no
Fx, g ) = | 1= I gy | T Ay () T 7, (5.70)
‘ ielr j= i=
mo no
F(—\x, Ujy.ons u,,) = H qix H }"Y] (—Lx) H TCX(u,-). (5.71)
ielr Jj=1 i=1

These product forms permit the calculation of the ©'—A" messages according to
Egs. (5.49) through (5.52). In particular, for every negatively instantiated
symptom node X we have

Ax(+u;)

] =d4ix, 5.72
(i) gix (5.72)

independently of my(w), for all k#i. For every disease node X, where
P(xluy,..., u,) coincides with the prior probability w(x), Eq. (5.44) yields

Ty, (x) = T(x) kn# Ay, (). (5.73)
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5.5.2 Message Propagation

For convenience, let us adopt the following notation:

Nji = Mag, (+di) 1 d, (=), (5.74)
T = T, (+di) | g, (—dly). (5.75)

+d,

+m1 -y +m3 =4

Figure 5.12. A* messages after instantiating D | and all four symptoms.

The network in Figure 5.11 becomes singly connected} upon the instantiation
of D,. We shall first instantiate D; to TRUE, find its best extension, and then
repeat the process under the assumption D, = FALSE. Figure 5.12 shows the
initial messages posted by the instantiated variables {+d, e}:

Az =(1=-g11921)/ (1—-¢qq;)=(1-080.1)/(1 -0.8) = 4.6,

My =(1-913g)/ (1-q13)=(1-0201)/(1-0.2) = 1.225,

A =qa =05, iz = g34 = 0.8,
Aas = qas =02, Ay =g =0.7.

+  Our particular pattern of evidence renders the network virtually singly connected, because all loops
are blocked at M, and M 4. Conditioning on D ; is done for illustrative purposes only.
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The last four values are direct consequences of Eq. (5.72).

At the second phase, each D; processor inspects the A” messages posted on its
links and performs the operation specified in Eq. (5.73). This leads to the message
distribution shown in Figure 5.13, with

Ty = 7t27»12 / (1 —752) =0.511, T = 7527\42 /(- sz) =0.077,
M3y = ﬂ37\,33 /(1 —753) = 0.305, Ti33 = TC37L43 /(1- TC3) = 0.200,
Ty = 1'547\/24 /(1 —154) = 0.125, Ty = 71:47\.44 /(- n4) = 0.050.

dy =F d3=F dy=F

+m —My +ms =My

Figure 5.13. 7* messages after activating all D nodes.

The x™ value chosen by each of the D; processors is FALSE (see Eq. (5.49)),
because for each i = 2, 3, 4 we have

T

BEL*(+d;) 4
——— =11 <1.

BEL*(—d;) J=t = 1-m;
For example, processor D, receives Ay, = 4.6 and Ay = 0.7, 50

BEL'(+dy) Ma-hap M 4.6-07-0.1
BEL(—d>) (1-m) 0.9

=0.358 < 1. (5.76)

The messages T,q, M3, and Ty, eventually will be absorbed at node D, while
T4, T34, and T4y are now posted on the ports entering node M,. Since M, is
instantiated to —m,, the A* messages generated by M4 during the next activation
phase remain unchanged (Figure 5.14), and the process halts with the current w
values: D, =D, =D, = FALSE.
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+d, +d

+m 1 —M +m 3

—y

Figure 5.14. \* messages after activating M . The best explanation is d¥ = d¥ = df =
FALSE.

Let us now retract the assumption D; = TRUE and poSit the converse,

D, = FALSE. The messages ;; = T, = My3 = 0 are posted on all links emanating
from node D, and are translated to Ay = o0, A33 =0, and Ay, = g4y = .5. This

means D, and D5 will switch simultaneously and permanently to TRUE, while D 4,
by virtue of

BEL"(+d,)

, =Dhog " Agg "Tq /(1 — 5.77
BEL' (—d,) 24 " Aag Ty /(1 - Ty) (5.77)

=0.50-0.20-0.20/0.80 = .025 < 1,

tentatively remains FALSE, as illustrated in Figure 5.15.

—
RN "™
+m ' ((¥) +ms -y

Figure 5.15. A* messages after instantiating D, to FALSE. The best explanation is
{d¥ =d* =TRUE, d¥ = FALSE}.



278 Distributed Revision of Composite Beliefs

During the next activation phase (Figure 5.16), D, and D; post the messages
Tlps = T3, = oo, which M, inspects for possible updating of A,,. These new messages
will not cause any change in A4, because, according to Egs. (5.51) and (5.66), the
ratio A, remains

P(—mgyl+dy, d,, d3)
T P(—myl—dy, ds, d3)

Asa

=q44;

independently of m,, and ms. Thus, under the current premise —d,, the best
interpretation of the observed symptoms is {+d,, +d3, —d,}, which, in view of the
network topology, is to be expected.

+m -y +m3 —My

Figure 5.16. Message profile after activating M,. The best explanation remains
{df =d¥ = TRUE, df = FALSE}.

5.5.3 Choosing the Best Interpretation

We have seen that the assumption +d yields the interpretation {—d,, —d3, —d4},
while —d, yields {+d,, +d3, —ds}. Now we must decide which of the two
interpretations is more plausible, i.e., which has the highest posterior probability
given the evidence at hand, e = {+m, —my, +m3, =m4}. A direct way to decide
between the two candidates is to calculate the two posterior probabilities, P(I* le)
and P(I_le), where [* = {+d1, —|d2, —|d3, 'ﬂd4} andI” = {“‘Idl, +d2, +d3, —|d4}
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These calculations are quite simple, because instantiating the D variables separates
the M variables from each other, so that the posterior probabilities involve only
products of P(M; | Parents of M;) over the individual symptoms and a product of
the prior probabilities over the individual diseases. For example,

P(I*le) = . PU*) Pell*)

=om{l-m)(1-m3) (1 -7g) (1 —g11) g12(1 —q13)
= 0.01-0.90 - 0.80 - 0.80 - 0.20 - 0.90 - 0.80
= 8.2944 x 1074, (5.78)

P ley=aP{)P(eil”)

=0 (1 -7p) Tm3(1 - 1) (1 = g21) (1 = ¢33) 924934
=00.99-0.10-0.20-0.80-0.90 - 0.90 - 0.70 - 0.80
=a7.186 x 107, (5.79)

Since o = [P(e)]”! is a constant, we conclude that /= is the most plausible
interpretation of the evidence e.

5.5.4 Generating Explanations

The propagation pattern of the A* and ©° messages can also be instrumental in
generating verbal explanations mechanically. When belief in a certain proposition
is supported (or undermined) from several directions, the ©* and A" messages can
be consulted to determine the factors most influential in the selection of x".
Tracing the most influential ©"—A" messages back to the generating evidence
yields a skeleton subgraph from which verbal explanation can be structured. For
example, the messages of Figure 5.15 and Figure 5.16 could be summarized thus:

Since we have ruled out disease D, the only possible explanation for observing
symptoms M| and M is that the patient suffers simultaneously from D, and Dj.
The fact that M, and M 4 both came out negative indicates that disease D 4 is absent.
Moreover, even if M4 were positive, it would be completely explained away by D,
and D 3.

The last sentence is a result of testing a positive instantiation of M, and
realizing that the (o) T° messages from D, and D are so strong that M, cannot
deliver a A4, high enough to switch D4 to TRUE.

A special explanation might be warranted in cases of conflicting evidence, i.e.,
when strongly supporting and strongly opposing messages simultaneously impinge
on the same proposition. For example, the proposition D, = TRUE in Figure 5.12
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receives strong support from A, = 4.6 and strong opposition from 7, = 0.1. The
two messages balance each other out and yield a BEL”(+d,) that is very close to
BEL™ (—d5) (see Eq. (5.76)). The following explanation is appropriate:

Although symptom M | strongly suggests D, it is partly explained by D1 (which we
assumed to be TRUE), and in view of the rarity of D, this patient probably does not
suffer from D .

5.5.5 Reversibility vs. Perseverance

It is interesting to note that there is a definite threshold value, m; = 0.0804, at
which the interpretations /* and I~ are equiprobable. This means that as evidence
in favor of +d; accumulates and 7; increases beyond 0.0804, the system will
switch abruptly from interpretation /~ to interpretation /*. This abrupt change of
view is a collective phenomenon characteristic of massively parallel systems and
is reminiscent of the way people’s beliefs undergo a complete reversal in response
to a minor clue. Note, though, that the transition is reversible, i.e., as ; decreases,
the system will switch back to the I~ mterpretatlon at exactly the same threshold
value, T; = 0.0804. No hysteresis occurs because w" is globally optimal (although
the computations are performed locally) and is therefore a unique function of all
system parameters.

This perfect reversibility differs from human behavior. Once we commit our
belief to a particular interpretation, it often takes stronger evidence to make us
change our mind than it took to get us there in the first place. Simply discrediting
a piece of evidence does not by itself make us abandon the beliefs that the
evidence induced [Ross and Anderson 1982; Harman 1986]. This phenomenon is
especially pronounced in perceptual tasks; once we adopt one view of Necker’s
cube or Escher’s stairway, it takes a real effort to break loose our perceptions and
adopt alternative interpretations. Hysteresis of this kind is characteristic of
systems with local feedback, like the one responsible for magnetic hysteresis in
metals. If the magnetic spin of one atom points to the north, it sets up a magnetic
field that encourages neighboring atoms to follow suit; when the neighbors’ spins
eventually turn to the north, they generate a magnetic field that further locks the
original atom in its northward orientation.

The hysteresis that characterizes human belief revision may have several
sources. One possibility is that neighboring concepts create local feedback loops;
if T suspect fire, I expect smoke, and the very expectation of smoke reinforces my
suspicion of fire—as though I actually saw smoke. This is a rather poor
explanation because it suggests that even in simple cases like the fire and smoke
example, people will confuse hypothetical predictions with genuine evidence. A
more reasonable explanation is that the message-passing process_ used is by and
large feedback-free, resembling that of Section 5.3, where the 7" and A" on the
same link are orthogonal to one another. However, in complex situations, where
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loops are rampant, people simply cannot afford the computational overhead
required by conditioning or clustering. As an approximation, humans delegate the
optimization task to local processes and continue to pass messages as though the
belief network were singly connected. Interpretations made under these conditions
are locally, not globally, optimal, and this yields irreversible belief revision.
Another possible source of belief perseverance is the difficulty of keeping track
of all justifications of one’s beliefs and tracing back all the evidence, past and
present, upon which the beliefs are founded [Harman 1986]. For computational
reasons, people simply forget the evidence and remember the conclusion. More
formally, propositional networks such as those treated in this paper are not
maintained as stable mental constructs, but are created and destroyed dynamically
to meet temporary needs. Connections may be formed for the immediate purpose
of explaining some strange piece of evidence or supporting a hypothesis of short-
term importance. Once the evidence is imparted onto other propositions, we tend
to break the mediating connection, forget the evidence itself, and retain only the
conclusion. When that evidence is later discredited, the connection to the induced
conclusions is a distant memory, while the discrediting information itself may not
be perceived to be of sufficient practical importance to reestablish old connections.

5.6 THE NATURE OF EXPLANATIONS

5.6.1 Accepting vs. Assessing Beliefs

The method described in this chapter is a bridge between probabilistic reasoning
and nonmonotonic logic. Like the latter, the method provides systematic rules that
lead from a set of factual sentences (the evidence) to a set of conclusion sentences
(the a