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PREFACE

This self-contained book, consisting of seven chapters, is devoted to

Kalman filter theory applied to the training and use of neural networks,

and some applications of learning algorithms derived in this way.

It is organized as follows:

� Chapter 1 presents an introductory treatment of Kalman filters, with

emphasis on basic Kalman filter theory, the Rauch–Tung–Striebel

smoother, and the extended Kalman filter.

� Chapter 2 presents the theoretical basis of a powerful learning

algorithm for the training of feedforward and recurrent multilayered

perceptrons, based on the decoupled extended Kalman filter (DEKF);

the theory presented here also includes a novel technique called

multistreaming.

� Chapters 3 and 4 present applications of the DEKF learning algo-

rithm to the study of image sequences and the dynamic reconstruc-

tion of chaotic processes, respectively.

� Chapter 5 studies the dual estimation problem, which refers to the

problem of simultaneously estimating the state of a nonlinear

dynamical system and the model that gives rise to the underlying

dynamics of the system.

� Chapter 6 studies how to learn stochastic nonlinear dynamics. This

difficult learning task is solved in an elegant manner by combining

two algorithms:

1. The expectation-maximization (EM) algorithm, which provides

an iterative procedure for maximum-likelihood estimation with

missing hidden variables.

2. The extended Kalman smoothing (EKS) algorithm for a refined

estimation of the state.

xi



� Chapter 7 studies yet another novel idea – the unscented Kalman

filter – the performance of which is superior to that of the extended

Kalman filter.

Except for Chapter 1, all the other chapters present illustrative applica-

tions of the learning algorithms described here, some of which involve the

use of simulated as well as real-life data.

Much of the material presented here has not appeared in book form

before. This volume should be of serious interest to researchers in neural

networks and nonlinear dynamical systems.

SIMON HAYKIN

Communications Research Laboratory,

McMaster University, Hamilton, Ontario, Canada
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CONTROL DESIGN

Nikias and Shao = SIGNAL PROCESSING WITH ALPHA-STABLE
DISTRIBUTIONS AND APPLICATIONS

Passino and Burgess = STABILITY ANALYSIS OF DISCRETE EVENT SYSTEMS

Sánchez-Peña and Sznaler = ROBUST SYSTEMS THEORY AND
APPLICATIONS

Sandberg, Lo, Fancourt, Principe, Katagiri, and Haykin = NONLINEAR
DYNAMICAL SYSTEMS: Feedforward Neural Network Perspectives
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KALMAN FILTERS

Simon Haykin
Communications Research Laboratory, McMaster University,

Hamilton, Ontario, Canada

(haykin@mcmaster.ca)

1.1 INTRODUCTION

The celebrated Kalman filter, rooted in the state-space formulation of

linear dynamical systems, provides a recursive solution to the linear

optimal filtering problem. It applies to stationary as well as nonstationary

environments. The solution is recursive in that each updated estimate of

the state is computed from the previous estimate and the new input data,

so only the previous estimate requires storage. In addition to eliminating

the need for storing the entire past observed data, the Kalman filter is

computationally more efficient than computing the estimate directly from

the entire past observed data at each step of the filtering process.

In this chapter, we present an introductory treatment of Kalman filters

to pave the way for their application in subsequent chapters of the book.

We have chosen to follow the original paper by Kalman [1] for the

1
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derivation; see also the books by Lewis [2] and Grewal and Andrews [3].

The derivation is not only elegant but also highly insightful.

Consider a linear, discrete-time dynamical system described by the

block diagram shown in Figure 1.1. The concept of state is fundamental to

this description. The state vector or simply state, denoted by xk, is defined

as the minimal set of data that is sufficient to uniquely describe the

unforced dynamical behavior of the system; the subscript k denotes

discrete time. In other words, the state is the least amount of data on

the past behavior of the system that is needed to predict its future behavior.

Typically, the state xk is unknown. To estimate it, we use a set of observed

data, denoted by the vector yk.

In mathematical terms, the block diagram of Figure 1.1 embodies the

following pair of equations:

1. Process equation

xkþ1 ¼ Fkþ1;kxk þ wk; ð1:1Þ

where Fkþ1;k is the transition matrix taking the state xk from time k

to time k þ 1. The process noise wk is assumed to be additive, white,

and Gaussian, with zero mean and with covariance matrix defined

by

E½wnwT
k � ¼

Qk for n ¼ k;
0 for n 6¼ k;

�
ð1:2Þ

where the superscript T denotes matrix transposition. The dimension

of the state space is denoted by M.

Figure 1.1 Signal-flow graph representation of a linear, discrete-time
dynamical system.
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2. Measurement equation

yk ¼ Hkxk þ vk; ð1:3Þ

where yk is the observable at time k and Hk is the measurement

matrix. The measurement noise vk is assumed to be additive, white,

and Gaussian, with zero mean and with covariance matrix defined

by

E½vnvT
k � ¼

Rk for n ¼ k;
0 for n 6¼ k:

�
ð1:4Þ

Moreover, the measurement noise vk is uncorrelated with the

process noise wk . The dimension of the measurement space is

denoted by N.

The Kalman filtering problem, namely, the problem of jointly solving

the process and measurement equations for the unknown state in an

optimum manner may now be formally stated as follows:

� Use the entire observed data, consisting of the vectors y1; y2; . . . ; yk ,

to find for each k 	 1 the minimum mean-square error estimate of

the state xi.

The problem is called filtering if i ¼ k, prediction if i > k, and smoothing

if 1 
 i < k.

1.2 OPTIMUM ESTIMATES

Before proceeding to derive the Kalman filter, we find it useful to review

some concepts basic to optimum estimation. To simplify matters, this

review is presented in the context of scalar random variables; general-

ization of the theory to vector random variables is a straightforward matter.

Suppose we are given the observable

yk ¼ xk þ vk;

where xk is an unknown signal and vk is an additive noise component. Let

x̂xk denote the a posteriori estimate of the signal xk , given the observations

y1; y2; . . . ; yk . In general, the estimate x̂xk is different from the unknown

1.2 OPTIMUM ESTIMATES 3



signal xk . To derive this estimate in an optimum manner, we need a cost

(loss) function for incorrect estimates. The cost function should satisfy two

requirements:

� The cost function is nonnegative.

� The cost function is a nondecreasing function of the estimation error

~xxk defined by

~xxk ¼ xk � x̂xk :

These two requirements are satisfied by the mean-square error

defined by

Jk ¼ E½ðxk � x̂xkÞ
2
�

¼ E½~xx2
k �;

where E is the expectation operator. The dependence of the cost

function Jk on time k emphasizes the nonstationary nature of the

recursive estimation process.

To derive an optimal value for the estimate x̂xk , we may invoke two

theorems taken from stochastic process theory [1, 4]:

Theorem 1.1 Conditional mean estimator If the stochastic processes

fxkg and fykg are jointly Gaussian, then the optimum estimate x̂xk that

minimizes the mean-square error Jk is the conditional mean estimator:

x̂xk ¼ E½xk jy1; y2; . . . ; yk �:

Theorem 1.2 Principle of orthogonality Let the stochastic processes

fxkg and fykg be of zero means; that is,

E½xk � ¼ E½yk � ¼ 0 for all k:

Then:

(i) the stochastic process fxkg and fykg are jointly Gaussian; or

(ii) if the optimal estimate x̂xk is restricted to be a linear function of

the observables and the cost function is the mean-square error,

(iii) then the optimum estimate x̂xk, given the observables y1,

y2; . . . ; yk, is the orthogonal projection of xk on the space

spanned by these observables.
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With these two theorems at hand, the derivation of the Kalman filter

follows.

1.3 KALMAN FILTER

Suppose that a measurement on a linear dynamical system, described by

Eqs. (1.1) and (1.3), has been made at time k. The requirement is to use

the information contained in the new measurement yk to update the

estimate of the unknown state xk . Let x̂x�
k denote a priori estimate of the

state, which is already available at time k. With a linear estimator as the

objective, we may express the a posteriori estimate x̂xk as a linear

combination of the a priori estimate and the new measurement, as

shown by

x̂xk ¼ G
ð1Þ
k x̂x�k þ Gkyk; ð1:5Þ

where the multiplying matrix factors G
ð1Þ
k and Gk are to be determined. To

find these two matrices, we invoke the principle of orthogonality stated

under Theorem 1.2. The state-error vector is defined by

~xxk ¼ xk � x̂xk : ð1:6Þ

Applying the principle of orthogonality to the situation at hand, we may

thus write

E½~xxkyT
i � ¼ 0 for i ¼ 1; 2; . . . ; k � 1: ð1:7Þ

Using Eqs. (1.3), (1.5), and (1.6) in (1.7), we get

E½ðxk � G
ð1Þ
k x̂x�k � GkHkxk � GkwkÞy

T
i � ¼ 0 for i ¼ 1; 2; . . . ; k � 1:

ð1:8Þ

Since the process noise wk and measurement noise vk are uncorrelated, it

follows that

E½wkyT
i � ¼ 0:

1.3 KALMAN FILTER 5



Using this relation and rearranging terms, we may rewrite Eq. (8) as

E½ðI � GkHk � G
ð1Þ
k ÞxkyT

i þ G
ð1Þ
k ðxk � x̂x�

k Þy
T
i � ¼ 0; ð1:9Þ

where I is the identity matrix. From the principle of orthogonality, we now

note that

E½ðxk � x̂x�k Þy
T
i � ¼ 0:

Accordingly, Eq. (1.9) simplifies to

ðI � GkHk � G
ð1Þ
k ÞE½xkyT

i � ¼ 0 for i ¼ 1; 2; . . . ; k � 1: ð1:10Þ

For arbitrary values of the state xk and observable yi, Eq. (1.10) can only

be satisfied if the scaling factors G
ð1Þ
k and Gk are related as follows:

I � GkHk � G
ð1Þ
k ¼ 0;

or, equivalently, G
ð1Þ
k is defined in terms of Gk as

G
ð1Þ
k ¼ I � GkHk : ð1:11Þ

Substituting Eq. (1.11) into (1.5), we may express the a posteriori estimate

of the state at time k as

x̂xk ¼ x̂x�
k þ Gkðyk � Hk x̂x�

k Þ; ð1:12Þ

in light of which, the matrix Gk is called the Kalman gain.

There now remains the problem of deriving an explicit formula for Gk.

Since, from the principle of orthogonality, we have

E½ðxk � x̂xkÞy
T
k � ¼ 0; ð1:13Þ

it follows that

E½ðxk � x̂xkÞŷy
T
k � ¼ 0; ð1:14Þ
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where ŷyT
k is an estimate of yk given the previous measurement

y1; y2; . . . ; yk�1. Define the innovations process

~yyk ¼ yk � ŷyk : ð1:15Þ

The innovation process represents a measure of the ‘‘new’’ information

contained in yk ; it may also be expressed as

~yyk ¼ yk � Hk x̂x�k

¼ Hkxk þ vk � Hk x̂x�
k

¼ Hk ~xx
�
k þ vk : ð1:16Þ

Hence, subtracting Eq. (1.14) from (1.13) and then using the definition of

Eq. (1.15), we may write

E½ðxk � x̂xkÞ~yy
T
k � ¼ 0: ð1:17Þ

Using Eqs. (1.3) and (1.12), we may express the state-error vector xk � x̂xk

as

xk � x̂xk ¼ ~xx�k � GkðHk ~xx
�
k þ vkÞ

¼ ðI � GkHkÞ~xx
�
k � Gkvk : ð1:18Þ

Hence, substituting Eqs. (1.16) and (1.18) into (1.17), we get

E½fðI � GkHkÞ~xx
�
k � GkvkgðHk ~xx

�
k þ vkÞ� ¼ 0: ð1:19Þ

Since the measurement noise vk is independent of the state xk and

therefore the error ~xx�
k , the expectation of Eq. (1.19) reduces to

ðI � GkHkÞE½~xxk ~xx
T�
k �HT

k � GkE½vkvT
k � ¼ 0: ð1:20Þ

Define the a priori covariance matrix

P�
k ¼ E½ðxk � x̂x�

k Þðxk � x̂x�
k Þ

T
�

¼ E½~xx�k � ~xxT�
k �: ð1:21Þ

1.3 KALMAN FILTER 7



Then, invoking the covariance definitions of Eqs. (1.4) and (1.21), we may

rewrite Eq. (1.20) as

ðI � GkHkÞP
�
k HT

k � GkRk ¼ 0:

Solving this equation for Gk, we get the desired formula

Gk ¼ P�
k HT

k ½HkP�
k HT

k þ Rk �
�1; ð1:22Þ

where the symbol ½���1 denotes the inverse of the matrix inside the square

brackets. Equation (1.22) is the desired formula for computing the Kalman

gain Gk , which is defined in terms of the a priori covariance matrix P�
k .

To complete the recursive estimation procedure, we consider the error

covariance propagation, which describes the effects of time on the

covariance matrices of estimation errors. This propagation involves two

stages of computation:

1. The a priori covariance matrix P�
k at time k is defined by Eq. (1.21).

Given P�
k , compute the a posteriori covariance matrix Pk , which, at

time k, is defined by

Pk ¼ E½~xxk ~xx
T
k �

¼ E½ðxk � x̂xkÞðxk � x̂xkÞ
T
�: ð1:23Þ

2. Given the ‘‘old’’ a posteriori covariance matrix, Pk�1, compute the

‘‘updated’’ a priori covariance matrix P�
k .

To proceed with stage 1, we substitute Eq. (1.18) into (1.23) and note

that the noise process vk is independent of the a priori estimation error ~xx�k .

We thus obtain1

Pk ¼ ðI � GkHkÞE½~xx
�
k ~xxT�

k �ðI � GkHkÞ
T
þ GkE½vkvT

k �G
T
k

¼ ðI � GkHkÞP
�
k ðI � GkHkÞ

T
þ GkRkGT

k : ð1:24Þ

1Equation (1.24) is referred to as the ‘‘Joseph’’ version of the covariance update equation

[5].
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Expanding terms in Eq. (1.24) and then using Eq. (1.22), we may

reformulate the dependence of the a posteriori covariance matrix Pk on

the a priori covariance matrix P�
k in the simplified form

Pk ¼ ðI � GkHkÞP
�
k � ðI � GkHkÞP

�
k HT

k GT
k þ GkRkGT

k

¼ ðI � GkHkÞP
�
k � GkRkGT

k þ GkRkGT
k

¼ ðI � GkHkÞP
�
k : ð1:25Þ

For the second stage of error covariance propagation, we first recognize

that the a priori estimate of the state is defined in terms of the ‘‘old’’ a

posteriori estimate as follows:

x̂x�k ¼ Fk;k�1x̂xk�1: ð1:26Þ

We may therefore use Eqs. (1.1) and (1.26) to express the a priori

estimation error in yet another form:

~xx�k ¼ xk � x̂x-
k

¼ ðFk;k�1xk�1 þ wk�1Þ � ðFk;k�1x̂xk�1Þ

¼ Fk;k�1ðxk�1 � x̂xk�1Þ þ wk�1

¼ Fk;k�1 ~xxk�1 þ wk�1: ð1:27Þ

Accordingly, using Eq. (1.27) in (1.21) and noting that the process noise

wk is independent of ~xxk�1, we get

P�
k ¼ Fk;k�1E½~xxk�1 ~xx

T
k�1�F

T
k;k�1 þ E½wk�1wT

k�1�

¼ Fk;k�1Pk�1FT
k;k�1 þ Qk�1; ð1:28Þ

which defines the dependence of the a priori covariance matrix P�
k on the

‘‘old’’ a posteriori covariance matrix Pk�1.

With Eqs. (1.26), (1.28), (1.22), (1.12), and (1.25) at hand, we may now

summarize the recursive estimation of state as shown in Table 1.1. This

table also includes the initialization. In the absence of any observed data at

time k ¼ 0, we may choose the initial estimate of the state as

x̂x0 ¼ E½x0�; ð1:29Þ
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and the initial value of the a posteriori covariance matrix as

P0 ¼ E½ðx0 � E½x0�Þðx0 � E½x0�Þ
T
�: ð1:30Þ

This choice for the initial conditions not only is intuitively satisfying but

also has the advantage of yielding an unbiased estimate of the state xk .

1.4 DIVERGENCE PHENOMENON: SQUARE-ROOT FILTERING

The Kalman filter is prone to serious numerical difficulties that are well

documented in the literature [6]. For example, the a posteriori covariance

matrix Pk is defined as the difference between two matrices P�
k and

Table 1.1 Summary of the Kalman filter

State-space model

xkþ1 ¼ Fkþ1;kxk þ wk;

yk ¼ Hkxk þ vk;

where wk and vk are independent, zero-mean, Gaussian noise processes of

covariance matrices Qk and Rk, respectively.

Initialization: For k ¼ 0, set

x̂x0 ¼ E½x0�;

P0 ¼ E ½ðx0 � E½x0�Þðx0 � E½x0�Þ
T
�:

Computation: For k ¼ 1; 2; . . . , compute:

State estimate propagation

x̂x�
k ¼ Fk;k�1x̂x�

k�1;

Error covariance propagation

P�
k ¼ Fk;k�1Pk�1FT

k;k�1 þ Qk�1;

Kalman gain matrix

Gk ¼ P�
k HT

k HkP�
k HT

k þ Rk

� ��1
;

State estimate update

x̂xk ¼ x̂x�
k þ Gk yk � Hk x̂x�

k

� �
;

Error covariance update

Pk ¼ ðI � GkHkÞP
�
k :
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GkHkP�
k ; see Eq. (1.25). Hence, unless the numerical accuracy of the

algorithm is high enough, the matrix Pk resulting from this computation

may not be nonnegative-definite. Such a situation is clearly unacceptable,

because Pk represents a covariance matrix. The unstable behavior of the

Kalman filter, which results from numerical inaccuracies due to the use of

finite-wordlength arithmetic, is called the divergence phenomenon.

A refined method of overcoming the divergence phenomenon is to use

numerically stable unitary transformations at every iteration of the Kalman

filtering algorithm [6]. In particular, the matrix Pk is propagated in a

square-root form by using the Cholesky factorization:

Pk ¼ P
1=2
k P

T=2
k ; ð1:31Þ

where P
1=2
k is reserved for a lower-triangular matrix, and P

T=2
k is its

transpose. In linear algebra, the Cholesky factor P
1=2
k is commonly referred

to as the square root of the matrix Pk . Accordingly, any variant of the

Kalman filtering algorithm based on the Cholesky factorization is referred

to as square-root filtering. The important point to note here is that the

matrix product P
1=2
k P

T=2
k is much less likely to become indefinite, because

the product of any square matrix and its transpose is always positive-

definite. Indeed, even in the presence of roundoff errors, the numerical

conditioning of the Cholesky factor P
1=2
k is generally much better than that

of Pk itself.

1.5 RAUCH–TUNG–STRIEBEL SMOOTHER

In Section 1.3, we addressed the optimum linear filtering problem. The

solution to the linear prediction problem follows in a straightforward

manner from the basic theory of Section 1.3. In this section, we consider

the optimum smoothing problem.

To proceed, suppose that we are given a set of data over the time

interval 0 < k 
 N . Smoothing is a non-real-time operation in that it

involves estimation of the state xk for 0 < k 
 N, using all the available

data, past as well as future. In what follows, we assume that the final time

N is fixed.

To determine the optimum state estimates x̂xk for 0 < k 
 N, we need to

account for past data yj defined by 0 < j 
 k, and future data yj defined by

k < j 
 N . The estimation pertaining to the past data, which we refer to as

forward filtering theory, was presented in Section 1.3. To deal with the

1.5 RAUCH–TUNG–STRIEBEL SMOOTHER 11



issue of state estimation pertaining to the future data, we use backward

filtering, which starts at the final time N and runs backwards. Let x̂x
f
k and

x̂xb
k denote the state estimates obtained from the forward and backward

recursions, respectively. Given these two estimates, the next issue to be

considered is how to combine them into an overall smoothed estimate x̂xk ,

which accounts for data over the entire time interval. Note that the symbol

x̂xk used for the smoothed estimate in this section is not to be confused with

the filtered (i.e., a posteriori) estimate used in Section 1.3.

We begin by rewriting the process equation (1.1) as a recursion for

decreasing k, as shown by

xk ¼ F�1
kþ1;kxkþ1 � F�1

kþ1;kwk; ð1:32Þ

where F�1
kþ1;k is the inverse of the transition matrix Fkþ1;k . The rationale

for backward filtering is depicted in Figure 1.2a, where the recursion

begins at the final time N . This rationale is to be contrasted with that of

forward filtering depicted in Figure 1.2b. Note that the a priori estimate

x̂xb�
k and the a posteriori estimate x̂xb

k for backward filtering occur to the

right and left of time k in Figure 1.2a, respectively. This situation is the

exact opposite to that occurring in the case of forward filtering depicted in

Figure 1.2b.

To simplify the presentation, we introduce the two definitions:

Sk ¼ ½Pb
k �
�1; ð1:33Þ

S�
k ¼ ½Pb�

k �
�1; ð1:34Þ

Figure 1.2 Illustrating the smoother time-updates for (a ) backward filtering
and (b) forward filtering.
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and the two intermediate variables

ẑzk ¼ ½Pb
k �
�1x̂xb

k ¼ Sk x̂xb
k; ð1:35Þ

ẑz�k ¼ ½Pb�
k �

�1x̂xb�
k ¼ S�

k x̂xb�
k : ð1:36Þ

Then, building on the rationale of Figure 1.2a, we may derive the

following updates for the backward filter [2]:

1. Measurement updates

Sk ¼ S�
k þ HkR�1

k Hk; ð1:37Þ

ẑzk ¼ ẑz�k þ HT
k R�1

k yk; ð1:38Þ

where yk is the observable defined by the measurement equation

(1.3), Hk is the measurement matrix, and R�1
k is the inverse of the

covariance matrix of the measurement noise vk .

2. Time updates

Gb
k ¼ Skþ1½Skþ1 þ Q�1

k �
�1; ð1:39Þ

S�
k ¼ FT

kþ1;kðI � Gb
kÞSkþ1Fkþ1;k; ð1:40Þ

ẑz�k ¼ FT
kþ1;kðI � Gb

kÞẑzkþ1; ð1:41Þ

where Gb
k is the Kalman gain for backward filtering and Q�1

k is the

inverse of the covariance matrix of the process noise wk . The

backward filter defined by the measurement and time updates of

Eqs. (1.37)–(1.41) is the information formulation of the Kalman

filter. The information filter is distinguished from the basic Kalman

filter in that it propagates the inverse of the error covariance matrix

rather than the error covariance matrix itself.

Given observable data over the interval 0 < k 
 N for fixed N, suppose

we have obtained the following two estimates:

� The forward a posteriori estimate x̂x
f
k by operating the Kalman filter

on data yj for 0 < j 
 k.

� The backward a priori estimate x̂xb�
k by operating the information

filter on data yj for k < j 
 N.
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With these two estimates and their respective error covariance matrices at

hand, the next issue of interest is how to determine the smoothed estimate

x̂xk and its error covariance matrix, which incorporate the overall data over

the entire time interval 0 < k 
 N .

Recognizing that the process noise wk and measurement noise vk are

independent, we may formulate the error covariance matrix of the a

posteriori smoothed estimate x̂xk as follows:

Pk ¼ ½½P
f
k �
�1

þ ½Pb�
k �

�1
�
�1

¼ ½½P
f
k �
�1

þ S�
k �

�1: ð1:42Þ

To proceed further, we invoke the matrix inversion lemma, which may be

stated as follows [7]. Let A and B be two positive-definite matrices related

by

A ¼ B�1 þ CD�1CT ;

where D is another positive-definite matrix and C is a matrix with

compatible dimensions. The matrix inversion lemma states that we may

express the inverse of the matrix A as follows:

A�1 ¼ B � BC½D þ CT BC�
�1CT B:

For the problem at hand, we set

A ¼ P�1
k ;

B ¼ P
f
k;

C ¼ I;

D ¼ ½S�
k �

�1;

where I is the identity matrix. Then, applying the matrix inversion lemma

to Eq. (1.42), we obtain

Pk ¼ P
f
k � P

f
k ½P

b�
k þ P

f
k �

�1P
f
k

¼ P
f
k � P

f
k S�

k ½I þ P
f
k S�

k �
�1P

f
k : ð1:43Þ

From Eq. (1.43), we find that the a posteriori smoothed error covariance

matrix Pk is smaller than or equal to the a posteriori error covariance
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matrix P
f
k produced by the Kalman filter, which is naturally due to the fact

that smoothing uses additional information contained in the future data.

This point is borne out by Figure 1.3, which depicts the variations of Pk ,

P
f
k , and Pb�

k with k for a one-dimensional situation.

The a posteriori smoothed estimate of the state is defined by

x̂xk ¼ Pkð½P
f
k �
�1x̂x

f
k þ ½Pb�

k �
�1x̂xb�

k Þ: ð1:44Þ

Using Eqs. (1.36) and (1.43) in (1.44) yields, after simplification,

x̂xk ¼ x̂x
f
k þ ðPkz�k � Gk x̂x

f
k Þ; ð1:45Þ

where the smoother gain is defined by

Gk ¼ P
f
k S�

k ½I þ P
f
k S�

k �
�1; ð1:46Þ

which is not to be confused with the Kalman gain of Eq. (1.22).

The optimum smoother just derived consists of three components:

� A forward filter in the form of a Kalman filter.

� A backward filter in the form of an information filter.

� A separate smoother, which combines results embodied in the

forward and backward filters.

The Rauch–Tung–Striebel smoother, however, is more efficient than the

three-part smoother in that it incorporates the backward filter and separate

Figure 1.3 Illustrating the error covariance for forward filtering, backward
filtering, and smoothing.
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smoother into a single entity [8, 9]. Specifically, the measurement update

of the Rauch–Tung–Striebel smoother is defined by

Pk ¼ P
f
k � AkðP

f �
kþ1 � Pkþ1ÞA

T
k ; ð1:47Þ

where Ak is the new gain matrix:

Ak ¼ P
f
k FT

kþ1;k ½P
f �
kþ1�

�1: ð1:48Þ

The corresponding time update is defined by

x̂xk ¼ x̂x
f
k þ Akðx̂xkþ1 � x̂x

f �
kþ1Þ ð1:49Þ

The Rauch–Tung–Striebel smoother thus proceeds as follows:

1. The Kalman filter is applied to the observable data in a forward

manner, that is, k ¼ 0; 1; 2; . . . , in accordance with the basic theory

summarized in Table 1.1.

2. The recursive smoother is applied to the observable data in a

backward manner, that is, k ¼ N � 1;N � 2; . . . , in accordance

with Eqs. (1.47)–(1.49).

3. The initial conditions are defined by

PN ¼ P
f
N ; ð1:50Þ

x̂xk ¼ x̂x
f
k : ð1:51Þ

Table 1.2 summarizes the computations involved in the Rauch–Tung–

Striebel smoother.

1.6 EXTENDED KALMAN FILTER

The Kalman filtering problem considered up to this point in the discussion

has addressed the estimation of a state vector in a linear model of a

dynamical system. If, however, the model is nonlinear, we may extend the

use of Kalman filtering through a linearization procedure. The resulting

filter is referred to as the extended Kalman filter (EKF) [10–12]. Such an
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extension is feasible by virtue of the fact that the Kalman filter is described

in terms of difference equations in the case of discrete-time systems.

To set the stage for a development of the extended Kalman filter,

consider a nonlinear dynamical system described by the state-space model

xkþ1 ¼ fðk; xkÞ þ wk; ð1:52Þ

yk ¼ hðk; xkÞ þ vk; ð1:53Þ

Table 1.2 Summary of the Rauch–Tung–Striebel smoother

State-space model

xkþ1 ¼ Fkþ1;kxk þ wk

yk ¼ Hkxk þ vk

where wk and vk are independent, zero-mean, Gaussian noise processes of

covariance matrices Qk and Rk, respectively.

Forward filter

Initialization: For k ¼ 0, set

x̂x0 ¼ E½x0�;

P0 ¼ E½ðx0 � E½x0�ðx0 � E½x0�Þ
T
�:

Computation: For k ¼ 1; 2; . . . , compute

x̂x
f �
k ¼ Fk;k�1x̂x

f �
k�1;

P
f �
k ¼ Fk;k�1P

f
k�1FT

k;k�1 þ Qk�1;

G
f
k ¼ P

f �
k HT

k ½HkP
f �
k HT

k þ Rk �
�1;

x̂x
f
k ¼ x̂x

f �
k þ G

f
k ðyk � Hk x̂x

f �
k Þ:

Recursive smoother

Initialization: For k ¼ N, set

PN ¼ P
f
N ;

x̂xk ¼ x̂x
f
k :

Computation: For k ¼ N � 1;N � 2, compute

Ak ¼ P
f
k FT

kþ1;k ½P
f �
kþ1�

�1;

Pk ¼ P
f
k � AkðP

f �
kþ1 � Pkþ1ÞA

T
k ;

x̂xk ¼ x̂x
f
k þ Ak x̂xkþ1 � x̂x

f �
kþ1

� �
:

1.6 EXTENDED KALMAN FILTER 17



where, as before, wk and vk are independent zero-mean white Gaussian

noise processes with covariance matrices Rk and Qk, respectively. Here,

however, the functional fðk; xkÞ denotes a nonlinear transition matrix

function that is possibly time-variant. Likewise, the functional hðk; xkÞ

denotes a nonlinear measurement matrix that may be time-variant, too.

The basic idea of the extended Kalman filter is to linearize the state-

space model of Eqs. (1.52) and (1.53) at each time instant around the most

recent state estimate, which is taken to be either x̂xk or x̂x�
k , depending on

which particular functional is being considered. Once a linear model is

obtained, the standard Kalman filter equations are applied.

More explicitly, the approximation proceeds in two stages.

Stage 1 The following two matrices are constructed:

Fkþ1;k ¼
@fðk; xÞ

@x

����
x¼x̂xk

; ð1:54Þ

Hk ¼
@hðk; xkÞ

@x

����
x¼x̂x�

k

: ð1:55Þ

That is, the ijth entry of Fkþ1;k is equal to the partial derivative of the ith

component of Fðk; xÞ with respect to the jth component of x. Likewise, the ijth

entry of Hk is equal to the partial derivative of the ith component of Hðk; xÞ with

respect to the jth component of x. In the former case, the derivatives are evaluated

at x̂xk , while in the latter case, the derivatives are evaluated at x̂x�
k . The entries of

the matrices Fkþ1;k and Hk are all known (i.e., computable), by having x̂xk and x̂x�
k

available at time k.

Stage 2 Once the matrices Fkþ1;k and Hk are evaluated, they are then employed

in a first-order Taylor approximation of the nonlinear functions Fðk; xkÞ and

Hðk; xkÞ around x̂xk and x̂x�
k , respectively. Specifically, Fðk; xkÞ and Hðk; xkÞ are

approximated as follows

Fðk; xkÞ � Fðx; x̂xkÞ þ Fkþ1;kðx; x̂xkÞ; ð1:56Þ

Hðk; xkÞ � Hðx; x̂x�
k Þ þ Hkþ1;kðx; x̂x�

k Þ: ð1:57Þ

With the above approximate expressions at hand, we may now proceed to

approximate the nonlinear state equations (1.52) and (1.53) as shown by,

respectively,

xkþ1 � Fkþ1;kxk þ wk þ dk;

�yyk � Hkxk þ vk ;
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where we have introduced two new quantities:

�yyk ¼ yk � fhðx; x̂x�
k Þ � Hk x̂x�

k g; ð1:58Þ

dk ¼ fðx; x̂xkÞ � Fkþ1;k x̂xk : ð1:59Þ

The entries in the term �yyk are all known at time k, and, therefore, �yyk can be

regarded as an observation vector at time n. Likewise, the entries in the term dk

are all known at time k.

Table 1.3 Extended Kalman filter

State-space model

xkþ1 ¼ fðk; xkÞ þ wk;

yk ¼ hðk; xkÞ þ vk ;

where wk and vk are independent, zero mean, Gaussian noise processes of

covariance matrices Qk and Rk, respectively.

Definitions

Fkþ1;k ¼
@fðk; xÞ

@x
jx¼xk

;

Hk ¼
@hðk; xÞ

@x
jx¼x�

k
:

Initialization: For k ¼ 0, set

x̂x0 ¼ E½x0�;

P0 ¼ E½ðx0 � E½x0�Þðx0 � E½x0�Þ
T
�:

Computation: For k ¼ 1; 2; . . . , compute:

State estimate propagation

x̂x�
k ¼ fðk; x̂xk�1Þ;

Error covariance propagation

P�
k ¼ Fk;k�1Pk�1FT

k;k�1 þ Qk�1;

Kalman gain matrix

Gk ¼ P�
k HT

k HkP�
k HT

k þ Rk

� ��1
;

State estimate update

x̂xk ¼ x̂x�
k þ Gkyk � hðk; x̂x�

k Þ;

Error covariance update

Pk ¼ ðI � GkHkÞP
�
k :
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Given the linearized state-space model of Eqs. (1.58) and (1.59), we

may then proceed and apply the Kalman filter theory of Section 1.3 to

derive the extended Kalman filter. Table 1.2 summarizes the recursions

involved in computing the extended Kalman filter.

1.7 SUMMARY

The basic Kalman filter is a linear, discrete-time, finite-dimensional

system, which is endowed with a recursive structure that makes a digital

computer well suited for its implementation. A key property of the

Kalman filter is that it is the minimum mean-square (variance) estimator

of the state of a linear dynamical system.

The Kalman filter, summarized in Table 1.1, applies to a linear

dynamical system, the state space model of which consists of two

equations:

� The process equation that defines the evolution of the state with time.

� The measurement equation that defines the observable in terms of the

state.

The model is stochastic owing to the additive presence of process noise

and measurement noise, which are assumed to be Gaussian with zero

mean and known covariance matrices.

The Rauch–Tung–Striebel smoother, summarized in Table 1.2, builds

on the Kalman filter to solve the optimum smoothing problem in an

efficient manner. This smoother consists of two components: a forward

filter based on the basic Kalman filter, and a combined backward filter and

smoother.

Applications of Kalman filter theory may be extended to nonlinear

dynamical systems, as summarized in Table 1.3. The derivation of the

extended Kalman filter hinges on linearization of the nonlinear state-space

model on the assumption that deviation from linearity is of first order.
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PARAMETER-BASED
KALMAN FILTER TRAINING:

THEORY AND
IMPLEMENTATION

Gintaras V. Puskorius and Lee A. Feldkamp
Ford Research Laboratory, Ford Motor Company, Dearborn, Michigan, U.S.A.

(gpuskori@ford.com, lfeldkam@ford.com)

2.1 INTRODUCTION

Although the rediscovery in the mid 1980s of the backpropagation

algorithm by Rumelhart, Hinton, and Williams [1] has long been

viewed as a landmark event in the history of neural network computing

and has led to a sustained resurgence of activity, the relative ineffective-

ness of this simple gradient method has motivated many researchers to

develop enhanced training procedures. In fact, the neural network litera-

ture has been inundated with papers proposing alternative training
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methods that are claimed to exhibit superior capabilities in terms of

training speed, mapping accuracy, generalization, and overall performance

relative to standard backpropagation and related methods.

Amongst the most promising and enduring of enhanced training

methods are those whose weight update procedures are based upon

second-order derivative information (whereas standard backpropagation

exclusively utilizes first-derivative information). A variety of second-order

methods began to be developed and appeared in the published neural

network literature shortly after the seminal article on backpropagation was

published. The vast majority of these methods can be characterized as

batch update methods, where a single weight update is based on a matrix

of second derivatives that is approximated on the basis of many training

patterns. Popular second-order methods have included weight updates

based on quasi-Newton, Levenburg–Marquardt, and conjugate gradient

techniques. Although these methods have shown promise, they are often

plagued by convergence to poor local optima, which can be partially

attributed to the lack of a stochastic component in the weight update

procedures. Note that, unlike these second-order methods, weight updates

using standard backpropagation can either be performed in batch or

instance-by-instance mode.

The extended Kalman filter (EKF) forms the basis of a second-order

neural network training method that is a practical and effective alternative

to the batch-oriented, second-order methods mentioned above. The

essence of the recursive EKF procedure is that, during training, in addition

to evolving the weights of a network architecture in a sequential (as

opposed to batch) fashion, an approximate error covariance matrix that

encodes second-order information about the training problem is also

maintained and evolved. The global EKF (GEKF) training algorithm

was introduced by Singhal and Wu [2] in the late 1980s, and has served as

the basis for the development and enhancement of a family of computa-

tionally effective neural network training methods that has enabled the

application of feedforward and recurrent neural networks to problems in

control, signal processing, and pattern recognition.

In their work, Singhal and Wu developed a second-order, sequential

training algorithm for static multilayered perceptron networks that was

shown to be substantially more effective (orders of magnitude) in terms of

number of training epochs than standard backpropagation for a series of

pattern classification problems. However, the computational complexity

of GEKF scales as the square of the number of weights, due to the

development and use of second-order information that correlates every

pair of network weights, and was thus found to be impractical for all but
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the simplest network architectures, given the state of standard computing

hardware in the early 1990s.

In response to the then-intractable computational complexity of GEKF,

we developed a family of training procedures, which we named the

decoupled EKF algorithm [3]. Whereas the GEKF procedure develops

and maintains correlations between each pair of network weights, the

DEKF family provides an approximation to GEKF by developing and

maintaining second-order information only between weights that belong to

mutually exclusive groups. We have concentrated on what appear to be

some relatively natural groupings; for example, the node-decoupled

(NDEKF) procedure models only the interactions between weights that

provide inputs to the same node. In one limit of a separate group for each

network weight, we obtain the fully decoupled EKF procedure, which

tends to be only slightly more effective than standard backpropagation. In

the other extreme of a single group for all weights, DEKF reduces exactly

to the GEKF procedure of Singhal and Wu.

In our work, we have successfully applied NDEKF to a wide range of

network architectures and classes of training problems. We have demon-

strated that NDEKF is extremely effective at training feedforward as well

as recurrent network architectures, for problems ranging from pattern

classification to the on-line training of neural network controllers for

engine idle speed control [4, 5]. We have demonstrated the effective use of

dynamic derivatives computed by both forward methods, for example

those based on real-time-recurrent learning (RTRL) [6, 7], as well as by

truncated backpropagation through time (BPTT(h)) [8] with the param-

eter-based DEKF methods, and have extended this family of methods to

optimize cost functions other than sum of squared errors [9], which we

describe below in Sections 2.7.2 and 2.7.3.

Of the various extensions and enhancements of EKF training that we

have developed, perhaps the most enabling is one that allows for EKF

procedures to perform a single update of a network’s weights on the basis

of more than a single training instance [10–12]. As mentioned above, EKF

algorithms are intrinsically sequential procedures, where, at any given

time during training, a network’s weight values are updated on the basis of

one and only one training instance. When EKF methods or any other

sequential procedures are used to train networks with distributed repre-

sentations, as in the case of multilayered perceptrons and time-lagged

recurrent neural networks, there is a tendency for the training procedure to

concentrate on the most recently observed training patterns, to the

detriment of training patterns that had been observed and processed a

long time in the past. This situation, which has been called the recency
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phenomenon, is particularly troublesome for training of recurrent neural

networks and=or neural network controllers, where the temporal order of

presentation of data during training must be respected. It is likely that

sequential training procedures will perform greedily for these systems, for

example by merely changing a network’s output bias during training to

accommodate a new region of operation. On the other hand, the off-line

training of static networks can circumvent difficulties associated with the

recency effect by employing a scrambling of the sequence of data

presentation during training.

The recency phenomenon can be at least partially mitigated in these

circumstances by providing a mechanism that allows for multiple training

instances, preferably from different operating regions, to be simulta-

neously considered for each weight vector update. Multistream EKF

training is an extension of EKF training methods that allows for multiple

training instances to be batched, while remaining consistent with the

Kalman methods.

We begin with a brief discussion of the types of feedforward and

recurrent network architectures that we are going to consider for training

by EKF methods. We then discuss the global EKF training method,

followed by recommendations for setting of parameters for EKF methods,

including the relationship of the choice of learning rate to the initialization

of the error covariance matrix. We then provide treatments of the

decoupled extended Kalman filter (DEKF) method as well as the multi-

stream procedure that can be applied with any level of decoupling. We

discuss at length a variety of issues related to computer implementation,

including derivative calculations, computationally efficient formulations,

methods for avoiding matrix inversions, and square-root filtering for

computational stability. This is followed by a number of special topics,

including training with constrained weights and alternative cost functions.

We then provide an overview of applications of EKF methods to a series of

problems in control, diagnosis, and modeling of automotive powertrain

systems. We conclude the chapter with a discussion of the virtues and

limitations of EKF training methods, and provide a series of guidelines for

implementation and use.

2.2 NETWORK ARCHITECTURES

We consider in this chapter two types of network architecture: the well-

known feedforward layered network and its dynamic extension, the

recurrent multilayered perceptron (RMLP). A block-diagram representa-

26 2 PARAMETER-BASED KALMAN FILTER TRAINING



tion of these types of networks is given in Figure 2.1. Figure 2.2 shows an

example network, denoted as a 3-3-3-2 network, with three inputs, two

hidden layers of three nodes each, and an output layer of two nodes.

Figure 2.3 shows a similar network, but modified to include interlayer,

time-delayed recurrent connections. We denote this as a 3-3R-3R-2R

RMLP, where the letter ‘‘R’’ denotes a recurrent layer. In this case, both

hidden layers as well as the output layer are recurrent. The essential

difference between the two types of networks is the recurrent network’s

ability to encode temporal information. Once trained, the feedforward

Figure 2.1 Block-diagram representation of two hidden layer networks. (a )
depicts a feedforward layered neural network that provides a static
mapping between the input vector uk and the output vector yk. (b) depicts
a recurrent multilayered perceptron (RMLP) with two hidden layers. In this
case, we assume that there are time-delayed recurrent connections
between the outputs and inputs of all nodes within a layer. The signals vi

k

denote the node activations for the ith layer. Both of these block repre-
sentations assume that bias connections are included in the feedforward
connections.

Figure 2.2 A schematic diagram of a 3-3-3-2 feedforward network archi-
tecture corresponding to the block diagram of Figure 2.1a.
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network merely carries out a static mapping from input signals uk to

outputs yk , such that the output is independent of the history in which

input signals are presented. On the other hand, a trained RMLP provides a

dynamic mapping, such that the output yk is not only a function of the

current input pattern uk , but also implicitly a function of the entire history

of inputs through the time-delayed recurrent node activations, given by the

vectors vi
k�1, where i indexes layer number.

2.3 THE EKF PROCEDURE

We begin with the equations that serve as the basis for the derivation of the

EKF family of neural network training algorithms. A neural network’s

behavior can be described by the following nonlinear discrete-time

system:

wkþ1 ¼ wk þvk ð2:1Þ

yk ¼ hkðwk; uk; vk�1Þ þ nk : ð2:2Þ

The first of these, known as the process equation, merely specifies that the

state of the ideal neural network is characterized as a stationary process

corrupted by process noise vk , where the state of the system is given by

the network’s weight parameter values wk . The second equation, known as

the observation or measurement equation, represents the network’s desired

Figure 2.3. A schematic diagram of a 3-3R-3R-2R recurrent network archi-
tecture corresponding to the block diagram of Figure 2.1b. Note the
presence of time delay operators and recurrent connections between
the nodes of a layer.
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response vector yk as a nonlinear function of the input vector uk, the

weight parameter vector wk, and, for recurrent networks, the recurrent

node activations vk ; this equation is augmented by random measurement

noise nk . The measurement noise nk is typically characterized as zero-

mean, white noise with covariance given by E½nkn
T
l � ¼ dk;lRk. Similarly,

the process noise vk is also characterized as zero-mean, white noise with

covariance given by E½vkv
T
l � ¼ dk;lQk.

2.3.1 Global EKF Training

The training problem using Kalman filter theory can now be described as

finding the minimum mean-squared error estimate of the state w using all

observed data so far. We assume a network architecture with M weights

and No output nodes and cost function components. The EKF solution to

the training problem is given by the following recursion (see Chapter 1):

Ak ¼ ½Rk þ HT
k PkHk �

�1; ð2:3Þ

Kk ¼ PkHkAk; ð2:4Þ

ŵwkþ1 ¼ ŵwk þ Kkjk; ð2:5Þ

Pkþ1 ¼ Pk � KkHT
k Pk þ Qk : ð2:6Þ

The vector ŵwk represents the estimate of the state (i.e., weights) of the

system at update step k. This estimate is a function of the Kalman gain

matrix Kk and the error vector jk ¼ yk � ŷyk, where yk is the target vector

and ŷyk is the network’s output vector for the kth presentation of a training

pattern. The Kalman gain matrix is a function of the approximate error

covariance matrix Pk , a matrix of derivatives of the network’s outputs with

respect to all trainable weight parameters Hk , and a global scaling matrix

Ak . The matrix Hk may be computed via static backpropagation or

backpropagation through time for feedforward and recurrent networks,

respectively (described below in Section 2.6.1). The scaling matrix Ak is a

function of the measurement noise covariance matrix Rk , as well as of the

matrices Hk and Pk . Finally, the approximate error covariance matrix Pk

evolves recursively with the weight vector estimate; this matrix encodes

second derivative information about the training problem, and is augmen-

ted by the covariance matrix of the process noise Qk . This algorithm

attempts to find weight values that minimize the sum of squared errorP
k j

T
k jk . Note that the algorithm requires that the measurement and
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process noise covariance matrices, Rk and Qk, be specified for all training

instances. Similarly, the approximate error covariance matrix Pk must be

initialized at the beginning of training. We consider these issues below in

Section 2.3.3.

GEKF training is carried out in a sequential fashion as shown in the

signal flow diagram of Figure 2.4. One step of training involves the

following steps:

1. An input training pattern uk is propagated through the network to

produce an output vector ŷyk. Note that the forward propagation is a

function of the recurrent node activations vk�1 from the previous time

step for RMLPs. The error vector jk is computed in this step as well.

2. The derivative matrix Hk is obtained by backpropagation. In this

case, there is a separate backpropagation for each component of the

output vector ŷyk, and the backpropagation phase will involve a time

history of recurrent node activations for RMLPs.

3. The Kalman gain matrix is computed as a function of the derivative

matrix Hk , the approximate error covariance matrix Pk , and the

measurement covariance noise matrix Rk . Note that this step

includes the computation of the global scaling matrix Ak .

4. The network weight vector is updated using the Kalman gain matrix

Kk , the error vector jk, and the current values of the weight vector ŵwk.

Figure 2.4 Signal flow diagram for EKF neural network training. The first two
steps, comprising the forward- and backpropagation operations, will
depend on whether or not the network being trained has recurrent
connections. On the other hand, the EKF calculations encoded by steps
(3)–(5) are independent of network type.
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5. The approximate error covariance matrix is updated using the

Kalman gain matrix Kk , the derivative matrix Hk , and the current

values of the approximate error covariance matrix Pk . Although not

shown, this step also includes augmentation of the error covariance

matrix by the covariance matrix of the process noise Qk .

2.3.2 Learning Rate and Scaled Cost Function

We noted above that Rk is the covariance matrix of the measurement noise

and that this matrix must be specified for each training pattern. Generally

speaking, training problems that are characterized by noisy measurement

data usually require that the elements of Rk be scaled larger than for those

problems with relatively noise-free training data. In [5, 7, 12], we interpret

this measurement error covariance matrix to represent an inverse learning

rate: Rk ¼ Z�1
k S�1

k , where the training cost function at time step k is now

given by ek ¼ 1
2
jT

k Skjk, and Sk allows the various network output

components to be scaled nonuniformly. Thus, the global scaling matrix

Ak of equation (2.3) can be written as

Ak ¼
1

Zk

S�1
k þ HT

k PkHk

� ��1

: ð2:7Þ

The use of the weighting matrix Sk in Eq. (2.7) poses numerical

difficulties when the matrix is singular.1 We reformulate the GEKF

algorithm to eliminate this difficulty by distributing the square root of

the weighting matrix into both the derivative matrices as Hk* ¼ HkS
1=2
k and

the error vector as jk* ¼ S
1=2
k jk . The matrices Hk* thus contain the scaled

derivatives of network outputs with respect to the weights of the network.

The rescaled extended Kalman recursion is then given by

Ak* ¼
1

Zk

I þ ðHk*Þ
T PkHk*

� ��1

; ð2:8Þ

Kk* ¼ PkHk*Ak*; ð2:9Þ

ŵwkþ1 ¼ ŵwk þ Kk*jk*; ð2:10Þ

Pkþ1 ¼ Pk � Kk*ðHk*Þ
T Pk þ Qk : ð2:11Þ

Note that this rescaling does not change the evolution of either the weight

vector or the approximate error covariance matrix, and eliminates the need

1This may occur when we utilize penalty functions to impose explicit constraints on

network outputs. For example, when a constraint is not violated, we set the corresponding

diagonal element of Sk to zero, thereby rendering the matrix singular.
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to compute the inverse of the weighting matrix Sk for each training

pattern. For the sake of clarity in the remainder of this chapter, we shall

assume a uniform scaling of output signals, Sk ¼ I, which implies

Rk ¼ Z�1
k I, and drop the asterisk notation.

2.3.3 Parameter Settings

EKF training algorithms require the setting of a number of parameters. In

practice, we have employed the following rough guidelines. First, we

typically assume that the input–output data have been scaled and trans-

formed to reasonable ranges (e.g., zero mean, unit variance for all

continuous input and output variables). We also assume that weight

values are initialized to small random values drawn from a zero-mean

uniform or normal distribution. The approximate error covariance matrix

is initialized to reflect the fact that no a priori knowledge was used to

initialize the weights; this is accomplished by setting P0 ¼ E�1I, where E is

a small number (of the order of 0.001–0.01). As noted above, we assume

uniform scaling of outputs: Sk ¼ I. Then, training data that are character-

ized by noisy measurements usually require small values for the learning

rate Zk to achieve good training performance; we typically bound the

learning rate to values between 0.001 and 1. Finally, the covariance matrix

Qk of the process noise is represented by a scaled identity matrix qkI, with

the scale factor qk ranging from as small as zero (to represent no process

noise) to values of the order of 0.1. This factor is generally annealed from

a large value to a limiting value of the order of 10�6. This annealing

process helps to accelerate convergence and, by keeping a nonzero value

for the process noise term, helps to avoid divergence of the error

covariance update in Eqs. (2.6) and (2.11).

We show here that the setting of the learning rate, the process noise

covariance matrix, and the initialization of the approximate error covar-

iance matrix are interdependent, and that an arbitrary scaling can be

applied to Rk , Pk , and Qk without altering the evolution of the weight

vector ŵw in Eqs. (2.5) and (2.10). First consider the Kalman gain of Eqs.

(2.4) and (2.9). An arbitrary positive scaling factor m can be applied to Rk

and Pk without altering the contents of Kk :

Kk ¼ PkHk ½Rk þ HT
k PkHk �

�1

¼ mPkHk ½mRk þ HT
k mPkHk �

�1

¼ P
y

kHk ½R
y

k þ HT
k P

y

kHk �
�1

¼ P
y

kHkA
y

k;

32 2 PARAMETER-BASED KALMAN FILTER TRAINING



where we have defined R
y

k ¼ mRk, P
y

k ¼ mPk , and A
y

k ¼ m�1Ak . Similarly,

the approximate error covariance update becomes

P
y

kþ1 ¼ mPkþ1

¼ mPk � KkHT
k mPk þ mQk

¼ P
y

k � KkHT
k P

y

k þ Q
y

k :

This implies that a training trial characterized by the parameter settings

Rk ¼ Z�1I, P0 ¼ E�1I, and Qk ¼ qI, would behave identically to a

training trial with scaled versions of these parameter settings: Rk ¼

mZ�1I, P0 ¼ mE�1I, and Qk ¼ mqI. Thus, for any given EKF training

problem, there is no one best set of parameter settings, but a continuum of

related settings that must take into account the properties of the training

data for good performance. This also implies that only two effective

parameters need to be set. Regardless of the training problem considered,

we have typically chosen the initial error covariance matrix to be

P0 ¼ E�1I, with E ¼ 0:01 and 0.001 for sigmoidal and linear activation

functions, respectively. This leaves us to specify values for Zk and Qk,

which are likely to be problem-dependent.

2.4 DECOUPLED EKF (DEKF)

The computational requirements of GEKF are dominated by the need to

store and update the approximate error covariance matrix Pk at each time

step. For a network architecture with No outputs and M weights, GEKF’s

computational complexity is OðNoM2Þ and its storage requirements are

OðM2Þ. The parameter-based DEKF algorithm is derived from GEKF by

assuming that the interactions between certain weight estimates can be

ignored. This simplification introduces many zeroes into the matrix Pk . If

the weights are decoupled so that the weight groups are mutually exclusive

of one another, then Pk can be arranged into block-diagonal form. Let g

refer to the number of such weight groups. Then, for group i, the vector ŵwi
k

refers to the estimated weight parameters, Hi
k is the submatrix of

derivatives of network outputs with respect to the ith group’s weights,

Pi
k is the weight group’s approximate error covariance matrix, and Ki

k is its

Kalman gain matrix. The concatenation of the vectors ŵwi
k forms the vector

ŵwk . Similarly, the global derivative matrix Hk is composed via concatena-
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tion of the individual submatrices Hi
k . The DEKF algorithm for the ith

weight group is given by

Ak ¼ Rk þ
Pg
j¼1

ðH
j
kÞ

T P
j
kH

j
k

" #�1

; ð2:12Þ

Ki
k ¼ Pi

kHi
kAk; ð2:13Þ

ŵwi
kþ1 ¼ ŵwi

k þ Ki
kjk; ð2:14Þ

Pi
kþ1 ¼ Pi

k � Ki
kðH

i
kÞ

T Pi
k þ Qi

k : ð2:15Þ

A single global sealing matrix Ak , computed with contributions from all of

the approximate error covariance matrices and derivative matrices, is used

to compute the Kalman gain matrices, Ki
k . These gain matrices are used to

update the error covariance matrices for all weight groups, and are

combined with the global error vector jk for updating the weight vectors.

In the limit of a single weight group (g ¼ 1), the DEKF algorithm reduces

exactly to the GEKF algorithm.

The computational complexity and storage requirements for DEKF can

be significantly less than those of GEKF. For g disjoint weight groups, the

computational complexity of DEKF becomes OðN2
o M þ No

Pg
i¼1 M2

i Þ,

where Mi is the number of weights in group i, while the storage

requirements become Oð
Pg

i¼1 M2
i Þ. Note that this complexity analysis

does not include the computational requirements for the matrix of

derivatives, which is independent of the level of decoupling. It should

be noted that in the case of training recurrent networks or networks as

feedback controllers, the computational complexity of the derivative

calculations can be significant.

We have found that decoupling of the weights of the network by node

(i.e., each weight group is composed of a single node’s weight) is rather

natural and leads to compact and efficient computer implementations.

Furthermore, this level of decoupling typically exhibits substantial compu-

tational savings relative to GEKF, often with little sacrifice in network

performance after completion of training. We refer to this level of

decoupling as node-decoupled EKF or NDEKF. Other forms of decoupl-

ing considered have been fully decoupled EKF, in which each individual

weight constitutes a unique group (thereby resulting in an error covariance

matrix that has diagonal structure), and layer-decoupled EKF, in which

weights are grouped by the layer to which they belong [13]. We show an

example of the effect of all four levels of decoupling on the structure of
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the approximate error covariance matrix in Figure 2.5. For the remainder

of this chapter, we explicitly consider only two different levels of

decoupling for EKF training: global and node-decoupled EKF.

2.5 MULTISTREAM TRAINING

Up to this point, we have considered forms of EKF training in which a

single weight-vector update is performed on the basis of the presentation

of a single input–output training pattern. However, there may be situations

for which a coordinated weight update, on the basis of multiple training

Figure 2.5 Block-diagonal representation of the approximate error covar-
iance matrix Pk for the RMLP network shown in Figure 2.3 for four different
levels of decoupling. This network has two recurrent layers with three nodes
each and each node with seven incoming connections. The output layer is
also recurrent, but its two nodes only have six connections each. Only the
shaded portions of these matrices are updated and maintained for the
various forms of decoupling shown. Note that we achieve a reduction by
nearly a factor of 8 in computational complexity for the case of node
decoupling relative to GEKF in this example.
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patterns, would be advantageous. We consider in this section an abstract

example of such a situation, and describe the means by which the EKF

method can be naturally extended to simultaneously handle multiple

training instances for a single weight update.2

Consider the standard recurrent network training problem: training on a

sequence of input–output pairs. If the sequence is in some sense homo-

geneous, then one or more linear passes through the data may well

produce good results. However, in many training problems, especially

those in which external inputs are present, the data sequence is hetero-

geneous. For example, regions of rapid variation of inputs and outputs

may be followed by regions of slow change. Alternatively, a sequence of

outputs that centers about one level may be followed by one that centers

about a different level. In any case, the tendency always exists in a

straightforward training process for the network weights to be adapted

unduly in favor of the currently presented training data. This recency effect

is analogous to the difficulty that may arise in training feedforward

networks if the data are repeatedly presented in the same order.

In this latter case, an effective solution is to scramble the order of

presentation; another is to use a batch update algorithm. For recurrent

networks, the direct analog of scrambling the presentation order is to

present randomly selected subsequences, making an update only for the

last input–output pair of the subsequence (when the network would be

expected to be independent of its initialization at the beginning of the

sequence). A full batch update would involve running the network through

the entire data set, computing the required derivatives that correspond to

each input–output pair, and making an update based on the entire set of

errors.

The multistream procedure largely circumvents the recency effect by

combining features of both scrambling and batch updates. Like full batch

methods, multistream training [10–12] is based on the principle that each

weight update should attempt to satisfy simultaneously the demands from

multiple input–output pairs. However, it retains the useful stochastic

aspects of sequential updating, and requires much less computation time

between updates. We now describe the mechanics of multistream training.

2In the case of purely linear systems, there is no advantage in batching up a collection of

training instances for a single weight update via Kalman filter methods, since all weight

updates are completely consistent with previously observed data. On the other hand,

derivative calculations and the extended Kalman recursion for nonlinear networks utilize

first-order approximations, so that weight updates are no longer guaranteed to be consistent

with all previously processed data.
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In a typical training problem, we deal with one or more files, each of

which contains a sequence of data. Breaking the overall data into multiple

files is typical in practical problems, where the data may be acquired in

different sessions, for distinct modes of system operation, or under

different operating conditions.

In each cycle of training, we choose a specified number Ns of randomly

selected starting points in a chosen set of files. Each such starting point is

the beginning of a stream. In the multistream procedure we progress

sequentially through each stream, carrying out weight updates according

to the set of current points. Copies of recurrent node outputs must be

maintained separately for each stream. Derivatives are also computed

separately for each stream, generally by truncated backpropagation

through time (BPTT(h)) as discussed in Section 2.6.1 below. Because

we generally have no prior information with which to initialize the

recurrent network, we typically set all state nodes to values of zero at

the start of each stream. Accordingly, the network is executed but updates

are suspended for a specified number Np of time steps, called the priming

length, at the beginning of each stream. Updates are performed until a

specified number Nt of time steps, called the trajectory length, have been

processed. Hence, Nt � Np updates are performed in each training cycle.

If we take Ns ¼ 1 and Nt � Np ¼ 1, we recover the order-scrambling

procedure described above; Nt may be identified with the subsequence

length. On the other hand, we recover the batch procedure if we take Ns

equal to the number of time steps for which updates are to be performed,

assemble streams systematically to end at the chosen Ns steps, and again

take Nt � Np ¼ 1.

Generally speaking, apart from the computational overhead involved,

we find that performance tends to improve as the number of streams is

increased. Various strategies are possible for file selection. If the number

of files is small, it is convenient to choose Ns equal to a multiple of the

number of files and to select each file the same number of times. If the

number of files is too large to make this practical, then we tend to select

files randomly. In this case, each set of Nt � Np updates is based on only a

subset of the files, so it seems reasonable not to make the trajectory length

Nt too large.

An important consideration is how to carry out the EKF update

procedure. If gradient updates were being used, we would simply average

the updates that would have been performed had the streams been treated

separately. In the case of EKF training, however, averaging separate

updates is incorrect. Instead, we treat this problem as that of training a

single, shared-weight network with NoNs outputs. From the standpoint of
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the EKF method, we are simply training a multiple-output network in

which the number of original outputs is multiplied by the number of

streams. The nature of the Kalman recursion, because of the global scaling

matrix Ak , is then to produce weight updates that are not a simple average

of the weight updates that would be computed separately for each output,

as is the case for a simple gradient descent weight update. Note that we are

still minimizing the same sum of squared error cost function.

In single-stream EKF training, we place derivatives of network outputs

with respect to network weights in the matrix Hk constructed from No

column vectors, each of dimension equal to the number of trainable

weights, Nw. In multistream training, the number of columns is corre-

spondingly increased to NoNs. Similarly, the vector of errors jk has NoNs

elements. Apart from these augmentations of Hk and jk, the form of the

Kalman recursion is unchanged.

Given these considerations, we define the decoupled multistream EKF

recursion as follows. We shall alter the temporal indexing by specifying a

range of training patterns that indicate how the multi-stream recursion

should be interpreted. We define l ¼ k þ Ns � 1 and allow the range k : l

to specify the batch of training patterns for which a single weight vector

update will be performed. Then, the matrix Hi
k: l is the concatenation of

the derivative matrices for the ith group of weights and for training

patterns that have been assigned to the range k : l. Similarly, the augmen-

ted error vector is denoted by j k: l . We construct the derivative matrices

and error vector, respectively, by

H k: l ¼ ðHkHkþ1Hkþ2 
 
 
Hl�1HlÞ;

j k: l ¼ ðjT
k j

T
kþ1j

T
kþ2 
 
 
 j

T
l�1j

T
l Þ

T :

We use a similar notation for the measurement error covariance matrix

R k: l and the global scaling matrix A k: l, both square matrices of dimension

NoNs, and for the Kalman gain matrices Ki
k: l, with size Mi � NoNs. The

multistream DEKF recursion is then given by

A k: l ¼ R k: l þ
Pg
j¼1

ðH
j
k: lÞ

T P
j
kH

j
k: l

" #�1

; ð2:16Þ

Ki
k: l ¼ Pi

kHi
k: lA k: l; ð2:17Þ

ŵwi
kþNs

¼ ŵwi
k þ Ki

k: lj k: l; ð2:18Þ

Pi
kþNs

¼ Pi
k � Ki

k: lðH
i
k: lÞ

T Pi
k þ Qi

k : ð2:19Þ
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Note that this formulation reduces correctly to the original DEKF

recursion in the limit of a single stream, and that multistream GEKF is

given in the case of a single weight group. We provide a block diagram

representation of the multistream GEKF procedure in Figure 2.6. Note that

the steps of training are very similar to the single-stream case, with the

exception of multiple forward-propagation and backpropagation steps, and

the concatenation operations for the derivative matrices and error vectors.

Let us consider the computational implications of the multistream

method. The sizes of the approximate error covariance matrices Pi
k and

the weight vectors wi
k are independent of the chosen number of streams.

On the other hand, we noted above the increase in size for the derivative

matrices Hi
k: l, as well as of the Kalman gain matrices Ki

k: l. However, the

computation required to obtain Hi
k: l and to compute updates to Pi

k is the

same as for Ns separate updates. The major additional computational

burden is the inversion required to obtain the matrix A k: l whose dimen-

sion is Ns times larger than in the single-stream case. Even this cost tends

to be small compared with that associated with the Pi
k matrices, as long as

Figure 2.6 Signal flow diagram for multistream EKF neural network training.
The first two steps are comprised of multiple forward- and backpropagation
operations, determined by the number of streams Ns selected; these steps
also depend on whether or not the network being trained has recurrent
connections. On the other hand, once the derivative matrix H k : l and error
vector j k : l are formed, the EKF steps encoded by steps (3)–(5) are inde-
pendent of number of streams and network type.
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NoNs is smaller than the number of network weights (GEKF) or the

maximum number of weights in a group (DEKF).

If the number of streams chosen is so large as to make the inversion of

A k: l impractical, the inversion may be avoided by using one of the

alternative EKF formulations described below in Section 2.6.3.

2.5.1 Some Insight into the Multistream Technique

A simple means of motivating how multiple training instances can be used

simultaneously for a single weight update via the EKF procedure is to

consider the training of a single linear node. In this case, the application of

EKF training is equivalent to that of the recursive least-squares (RLS)

algorithm. Assume that a training data set is represented by m unique

training patterns. The kth training pattern is represented by a d-dimen-

sional input vector uk, where we assume that all input vectors include a

constant bias component of value equal to 1, and a 1-dimensional output

target yk . The simple linear model for this system is given by

ŷyk ¼ uT
k wf ; ð2:20Þ

where wf is the single node’s d-dimensional weight vector. The weight

vector wf can be found by applying m iterations of the RLS procedure as

follows:

ak ¼ ½1 þ uT
k Pkuk �

�1; ð2:21Þ

kk ¼ Pkukak; ð2:22Þ

wkþ1 ¼ wk þ kkðyk � ŷykÞ; ð2:23Þ

Pkþ1 ¼ Pk � kkuT
k Pk; ð2:24Þ

where the diagonal elements of P0 are initialized to large positive values,

and w0 to a vector of small random values. Also, wf ¼ wm after a single

presentation of all training data (i.e., after a single epoch).

We recover a batch, least-squares solution to this single-node training

problem via an extreme application of the multistream concept, where we

associate m unique streams with each of the m training instances. In this

case, we arrange the input vectors into a matrix U of size d � m, where

each column corresponds to a unique training pattern. Similarly, we

arrange the target values into a single m-dimensional column vector y,

40 2 PARAMETER-BASED KALMAN FILTER TRAINING



where elements of y are ordered identically with the matrix U. As before,

we select the initial weight vector w0 to consist of randomly chosen

values, and we select P0 ¼ E�1I, with E small. Given the choice of initial

weight vector, we can compute the network output for each training

pattern, and arrange all the results using the matrix notation

ŷy0 ¼ UT w0: ð2:25Þ

A single weight update step of the Kalman filter recursion applied to this

m-dimensional output problem at the beginning of training can be written

as

A0 ¼ ½I þ UT P0U�
�1; ð2:26Þ

K0 ¼ P0UA0; ð2:27Þ

w1 ¼ w0 þ K0ðy � ŷy0Þ; ð2:28Þ

where we have chosen not to include the error covariance update here for

reasons that will soon become clear. At the beginning of training, we

recognize that P0 is large, and we assume that the training data set is

scaled so that UT P0U � I. This allows A0 to be approximated by

A0 
 E½EI þ UT U�
�1; ð2:29Þ

since P0 is diagonal. Given this approximation, we can write the Kalman

gain matrix as

K0 ¼ U½EI þ UT U�
�1: ð2:30Þ

We now substitute Eqs. (2.25) and (2.30) into Eq. (2.28) to derive the

weight vector after one time step of this m-stream Kalman filter procedure:

w1 ¼ w0 þ U½EI þ UT U�
�1
½y � UT w0�

¼ w0 � U½EI þ UT U�
�1UT w0 þ U½EI þ UT U�

�1y: ð2:31Þ

If we apply the matrix equality limE!0 U½EI þ UT U�
�1UT ¼ I , we obtain

the pseudoinverse solution:

wf ¼ w1 ¼ ½UUT �
�1Uy; ð2:32Þ
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where we have made use of

lim
E!0

U½EI þ UT U�
�1UT ¼ I; ð2:33Þ

lim
E!0

U½EI þ UT U�
�1UT ¼ ½UUT �

�1UUT ; ð2:34Þ

lim
E!0

U½EI þ UT U�
�1

¼ ½UUT �
�1U: ð2:35Þ

Thus, one step of the multistream Kalman recursion recovers very

closely the least-squares solution. If m is too large to make the inversion

operation practical, we could instead divide the problem into subsets and

perform the procedure sequentially for each subset, arriving eventually at

nearly the same result (in this case, however, the covariance update needs

to be performed).

As illustrated in this one-node example, the multistream EKF update is

not an average of the individual updates, but rather is coordinated through

the global scaling matrix A. It is intuitively clear that this coordination is

most valuable when the various streams place contrasting demands on the

network.

2.5.2 Advantages and Extensions of Multistream Training

Discussions of the training of networks with external recurrence often

distinguish between series–parallel and parallel configurations. In the

former, target values are substituted for the corresponding network outputs

during the training process. This scheme, which is also known as teacher

forcing, helps the network to get ‘‘on track’’ and stay there during training.

Unfortunately, it may also compromise the performance of the network

when, in use, it must depend on its own output. Hence, it is not uncommon

to begin with the series–parallel configuration, then switch to the parallel

configuration as the network learns the task. Multistream training seems to

lessen the need for the series–parallel scheme; the response of the training

process to the demands of multiple streams tends to keep the network from

getting too far off-track. In this respect, multistream training seems

particularly well suited for training networks with internal recurrence

(e.g., recurrent multilayered perceptrons), where the opportunity to use

teacher forcing is limited, because correct values for most if not all outputs

of recurrent nodes are unknown.

Though our presentation has concentrated on multistreaming simply as

an enhanced training technique, one can also exploit the fact that the
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streams used to provide input–output data need not arise homogeneously,

that is, from the same training task. Indeed, we have demonstrated that a

single fixed-weight, recurrent neural network, trained by multistream EKF,

can carry out multiple tasks in a control context, namely, to act as a

stabilizing controller for multiple distinct and unrelated systems, without

explicit knowledge of system identity [14]. This work demonstrated that

the trained network was capable of exhibiting what could be considered to

be adaptive behavior: the network, acting as a controller, observed the

behavior of the system (through the system’s output), implicitly identified

which system the network was being subjected to, and then took actions to

stabilize the system. We view this somewhat unexpected behavior as being

the direct result of combining an effective training procedure with

enabling representational capabilities that recurrent networks provide.

2.6 COMPUTATIONAL CONSIDERATIONS

We discuss here a number of topics related to implementation of the

various EKF training procedures from a computational perspective. In

particular, we consider issues related to computation of derivatives that are

critical to the EKF methods, followed by discussions of computationally

efficient formulations, methods for avoiding matrix inversions, and the

use of square-root filtering as an alternative means of insuring stable

performance.

2.6.1 Derivative Calculations

We discussed above both the global and decoupled versions of the EKF

algorithm, where we consider the global EKF to be a limiting form of

decoupled EKF (i.e., DEKF with a single weight group). In addition, we

have described the multistream EKF procedure as a means of batching

training instances, and have noted that multistreaming can be used with

any form of decoupled EKF training, for both feedforward and recurrent

networks. The various EKF procedures can all be compactly described by

the DEKF recursion of Eqs. (2.12)–(2.15), where we have assumed that

the derivative matrices Hi
k are given. However, the implications for

computationally efficient and clear implementations of the various forms

of EKF training depend upon the derivative calculations, which are

dictated by whether a network architecture is static or dynamic (i.e.,

feedforward or recurrent), and whether or not multistreaming is used. Here
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we provide insight into the nature of derivative calculations for training of

both static and dynamic networks with EKF methods (see [12] for

implementation details).

We assume the convention that a network’s weights are organized by

node, regardless of the degree of decoupling, which allows us to naturally

partition the matrix of derivatives of network outputs with respect to

weight parameters, Hk , into a set of G submatrices Hi
k , where G is the

number of nodes of the network. Then, each matrix Hi
k denotes the matrix

of derivatives of network outputs with respect to the weights associated

with the ith node of the network. For feedforward networks, these

submatrices can be written as the outer product of two vectors [3],

Hi
k ¼ ui

kðc
i
kÞ

T ;

where ui
k is the ith node’s input vector and ci

k is a vector of partial

derivatives of the network’s outputs with respect to the ith node’s net input,

defined as the dot product of the weight vector wi
k with the corresponding

input vector ui
k. Note that the vectors ci

k are computed via the back-

propagation process, where the dimension of each of these vectors is

determined by the number of network outputs. In contrast to the standard

backpropagation algorithm, which begins the derivative calculation

process (i.e., backpropagation) with error signals for each of the network’s

outputs, and effectively combines these error signals (for multiple-output

problems) during the backpropagation process, the EKF methods begin

the process with signals of unity for each network output and back-

propagate a separate signal for each unique network output.

In the case of recurrent networks, we assume the use of truncated

backpropagation through time for calculation of derivatives, with a

truncation depth of h steps; this process is denoted by BPTT(h). Now,

each submatrix Hi
k can no longer be expressed as a simple outer product

of two vectors; rather, each of these submatrices is expressed as the sum of

a series of outer products:

Hi
k ¼

Ph
j¼1

H
i;j
k ¼

Ph
j¼1

u
i;j
k ðc

i;j
k Þ

T ;

where the matrix H
i;j
k is the contribution from the jth step of back-

propagation to the computation of the total derivative matrix for the ith

node; the vector u
i;j
k is the vector of inputs to the ith node at the jth step of

backpropagation; and ci;j
k is the vector of backpropagated derivatives of
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network outputs with respect to the ith node’s net input at the jth step of

backpropagation. Here, we have chosen arbitrarily to have j increase as we

step back in time.

Finally, consider multi-stream training, where we assume that the

training problem involves a recurrent network architecture, with deriva-

tives computed by BPTT(h) (feedforward networks are subsumed by the

case of h ¼ 1). We again assume an No-component cost function with Ns

streams, and define l ¼ k þ Ns � 1. Then, each submatrix Hi
k: l becomes a

concatenation of a series of submatrices, each of which is expressed as the

sum of a series of outer products:

Hi
k: l ¼

Ph
j¼1

H
i;j;1
k

Ph
j¼1

H
i;j;2
k 
 
 


Ph
j¼1

H
i;j;Ns

k

" #
ð2:36Þ

¼
Ph
j¼1

u
i;j;1
k ðci;j;1

k Þ
T Ph

j¼1

u
i;j;2
k ðci;j;2

k Þ
T

 
 

Ph
j¼1

u
i;j;Ns

k ðc
i;j;Ns

k Þ
T

" #
: ð2:37Þ

Here we have expressed each submatrix Hi
k: l as an Mi � ðNoNsÞ matrix,

where Mi is the number of weights corresponding to the networks ith

node. The submatrices H
i;j;m
k are of size Mi � No, corresponding to a

single training stream. For purposes of a compact representation, we

express each matrix Hi
k: l as a sum of matrices (as opposed to a

concatenation) by forming vectors Ci;j;m
k from the vectors ci;j;m

k in the

following fashion. The vector Ci;j;m
k is of length NoNs with components

set to zero everywhere except for in the mth (out of Ns) block of length No,

where this subvector is set equal to the vector ci;j;m
k . Then,

Hi
k: l ¼

Ph
j¼1

PNs

m¼1

u
i;j;m
k ðCi;j;m

k Þ
T :

Note that the matrix is expressed in this fashion for notational convenience

and consistency, and that we would make use of the sparse nature of the

vector Ci;j;m
k in implementation.

2.6.2 Computationally Efficient Formulations for
Multiple-Output Problems

We now consider implications for the computational complexity of EKF

training due to expressing the derivative calculations as a series of vector
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outer products as shown above. We consider the simple case of feed-

forward networks trained by node-decoupled EKF (NDEKF) in which

each node’s weights comprise a unique group for purposes of the error

covariance update. The NDEKF recursion can then be written as

Ak ¼ Rk þ
PG
j¼1

a j
kc

j
kðc

j
kÞ

T

" #�1

; ð2:38Þ

Ki
k ¼ vi

kðg
i
kÞ

T ; ð2:39Þ

ŵwi
kþ1 ¼ ŵwi

k þ ½ðci
kÞ

T
ðAkjkÞ�v

i
k; ð2:40Þ

Pi
kþ1 ¼ Pi

k � bi
kvi

kðv
i
kÞ

T
þ Qi

k; ð2:41Þ

where we have used the following equations in intermediate steps:

vi
k ¼ Pi

kui
k; ð2:42Þ

gi
k ¼ Akc

i
k; ð2:43Þ

ai
k ¼ ðui

kÞ
T vi

k; ð2:44Þ

bi
k ¼ ðgi

kÞ
Tci

k : ð2:45Þ

Based upon this partitioning of the derivative matrix Hk , we find that the

computational complexity of NDEKF is reduced from OðN2
o Mþ

No

PG
i¼1 M2

i Þ to OðN2
o G þ

PG
i¼1 M2

i Þ, indicating a distinct advantage for

feedforward networks with multiple output nodes. On the other hand, the

partitioning of the derivative matrix does not provide any computational

advantage for GEKF training of feedforward networks.

2.6.3 Avoiding Matrix Inversions

A complicating factor for effective implementation of EKF training

schemes is the need to perform matrix inversions for those problems

with multiple cost function components. We typically perform these types

of calculations with matrix inversion routines based on singular-value

decomposition [15]. Although these techniques have served us well over

the years, we recognize that this often discourages ‘‘quick-and-dirty’’

implementations and may pose a large obstacle to hardware implementa-

tion.

Two classes of methods have been developed that allow EKF training to

be performed for multiple-output problems without explicitly resorting to

matrix inversion routines. The first class [16] depends on the partitioning
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of the derivative matrices described above. This method computes the

global scaling matrix Ak by recursively applying the matrix inversion

lemma. This procedure provides results that are mathematically identical

to conventional matrix inversion procedures, regardless of the degree of

decoupling employed. In addition, it can be employed for training of any

form of network, static or dynamic, as well as for the multistream

procedure. On the other hand, we have found that this method often

requires the use of double-precision arithmetic to produce results that are

statistically identical to EKF implementations based on explicit matrix

inversion methods.

The second class, developed by Plumer [17], treats each output

component individually in an iterative procedure. This sequential update

procedure accumulates the weight vector update as each output compo-

nent is processed, and only applies the weight vector update after all

output signals have been processed. The error covariance matrix is

updated in a sequential fashion. Plumer’s sequential-update form of

EKF turns out to be exactly equivalent to the batch form of GFKF

given above in which all output signals are processed simultaneously.

However, for decoupled EKF training, it turns out that sequential updates

only approximate the updates obtained via the simultaneous DEKF

recursion of Eqs. (2.12)–(2.15), though this has been reported to not

pose any problems during training.

The sequential DEKF method is compactly given by a set of equations

that are similar to the simultaneous DEKF equations. We again assume a

decoupling with g mutually exclusive groups of weights, with a limit of

g ¼ 1 reducing to the global version, and use the superscript i to refer to

the individual weight groups. We handle the multistream case by labeling

each cost function component from l ¼ 1 to NoNs, where No and Ns refer

to the number of network outputs and number of processing streams,

respectively. A single weight vector update with the sequential multi-

stream DEKF procedure requires an initialization step of Dŵwi
k;0 ¼ 0 and

Pi
k;0 ¼ Pi

k , where Dŵwi
k;l is used to accumulate the update to the weight

vector. Then, the sequential multistream DEKF procedure is compactly

represented by the following equations:

ak;l ¼ rk;l þ
Pg
j¼1

ðhi
k;lÞ

T Pi
k;l�1hi

k;l

" #�1

; ð2:46Þ

ki
k;l ¼ Pi

k;l�1hi
k;lak;l; ð2:47Þ

Dŵwi
k;l ¼ Dŵwi

k;l�1 þ ki
k;lxk;l � ki

k;l½ðh
i
k;lÞ

TDŵwi
k;l�1�; ð2:48Þ

Pi
k;l ¼ Pi

k;l�1 � ki
k;lðh

i
k;lÞ

T Pi
k;l�1: ð2:49Þ
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Note that the scalar rk;l is the lth diagonal element of the measurement

covariance matrix Rk in the simultaneous form of DEKF, that the scalar

xk;l is the lth error signal, and that the vector hi
k;l is the lth column of the

augmented derivative matrix Hi
k . After all output signals of all training

streams have been processed, the weight vectors and error covariance

matrices for all weight groups are updated by

ŵwi
kþ1 ¼ ŵwi

k þ Dŵwi
k;NoNs

; ð2:50Þ

Pi
kþ1 ¼ Pi

k;NoNs
þ Qi

k : ð2:51Þ

Structurally, these equations for sequential updates are nearly identical to

those of the simultaneous update, with the exception of an additional

correction term in the delta-weight update equation; this term is necessary

to account for the fact that the weight estimate changes at each step of this

sequential multiple-output recursion.

2.6.4 Square-Root Filtering

2.6.4.1 Without Artificial Process Noise Sun and Marko [18] have

described the use of square-root filtering as a numerically stable, alternative

method to performing the approximate error covariance matrix update

given by the Riccati equation (2.6). The square-root filter methods are well

known in the signal processing community [19], and were developed so as

to guarantee that the positive-definiteness of the matrix is maintained

throughout training. However, this insurance is accompanied by increased

computational complexity. Below, we summarize the square-root formula-

tion for the case of no artificial process noise, with proper treatment of the

EKF learning rate as given in Eq. (2.7) (we again assume Sk ¼ IÞ.

The square-root covariance filter update is based on the matrix

factorization lemma, which states that for any pair of J � K matrices

B1 and B2, with J � K, the relation B1B1
T ¼ B2B2

T holds if and only if

there exists a unitary matrix Y such that B2 ¼ B1Y. With this in mind, the

covariance update equations (2.3) and (2.6) can be written in matrix

form as

R
1=2
k HT

k P
1=2
k

0 P
1=2
k

" #
R

1=2
k 0

P
1=2
k Hk P

1=2
k

" #

¼
A

�1=2
k 0

PkHkA
1=2
k P

1=2
kþ1

" #
A

�1=2
k A

1=2
k HT

k Pk

0 P
1=2
kþ1

" #
: ð2:52Þ
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Now, the idea is to find a unitary transformation Y such that

A
�1=2
k 0

PkHkA
1=2
k P

1=2
kþ1

" #
¼

R
1=2
k HT

k P
1=2
k

0 P
1=2
k

" #
Y: ð2:53Þ

This is easily accomplished by applying a series of 2 � 2 Givens rota-

tions to annihilate the elements of the submatrix HT
k P

1=2
k , thereby yielding

the left-hand-side matrix. Given this result of the square-root filtering

procedure, we can perform the network weight update via the following

additional steps: (1) compute A
1=2
k by inverting A

�1=2
k ; (2) compute the

Kalman gain matrix by Kk ¼ ðPkHkA
1=2
k ÞA

1=2
k ; (3) perform the weight

update via Eq. (2.5).

2.6.4.2 With Artificial Noise In our original work [3] on EKF-based

training, we introduced the use of artificial process noise as a simple and

easily controlled mechanism to help assure that the approximate error

covariance matrix Pk would retain the necessary property of nonnegative-

definiteness, thereby allowing us to avoid the more computationally

complicated square-root formulations. In addition to controlling the

proper evolution of Pk , we have also found that artificial process noise,

when carefully applied, helps to accelerate the training process and, more

importantly, leads to solutions superior to those found without artificial

process noise. We emphasize that the use of artificial process noise is not

ad hoc, but appears due to the process noise term in Eq. (2.1) (i.e., the

covariance matrix Qk in Eq. (2.6) disappears only when vk ¼ 0 for all k).

We have continued to use this feature in our implementations as an

effective means for escaping poor local minima, and have not experienced

problems with divergence. Other researchers with independent implemen-

tations of various forms of EKF [13, 17, 20] for neural network training

have also found the use of artificial process noise to be beneficial.

Furthermore, other gradient-based training algorithms have effectively

exploited weight noise (e.g., see [21]).

We now demonstrate that the square-root filtering formulation of Eq.

(2.53) is easily extended to include artificial process noise, and that the use

of artificial process noise and square-root filtering are not mutually

exclusive. Again, we wish to express the error covariance update in a
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factorized form, but we now augment the left-hand-side of Eq. (2.52) to

include the square root of the process-noise covariance matrix:

Rk þ HT
k PkHk HT

k Pk

PkHk Pk þ Qk

" #

¼
R

1=2
k HT

k P
1=2
k 0

0 P
1=2
k Q

1=2
k

" # R
1=2
k 0

P
1=2
k Hk P

1=2
k

0 Q
1=2
k

2
664

3
775:

ð2:54Þ

Similarly, the right-hand side of Eq. (2.52) is augmented by blocks of

zeroes, so that the matrices are of the same size as those of the right-hand

side of Eq. (2.54):

A�1
k HT

k Pk

PkHk Pkþ1 þ PkHkAkHT
k Pk

" #

¼
A

�1=2
k 0 0

PkHkA
1=2
k P

1=2
kþ1 0

" # A
1=2
k A

1=2
k HT

k Pk

0 P
1=2
kþ1

0 0

2
64

3
75: ð2:55Þ

Here, Eqs. (2.54) and (2.55) are equivalent to one another, and Eq. (2.53)

is appropriately modified to

A
1=2
k 0 0

PkHkA
1=2
k P

1=2
kþ1 0

" #
¼

R
1=2
k HT

k P
1=2
k 0

0 P
1=2
k Q

1=2
k

" #
Y: ð2:56Þ

Thus, square-root filtering can easily accommodate the artificial process-

noise extension, where the matrices HT
k P

1=2
k and Q

1=2
k are both annihilated

via a sequence of Givens rotations. Note that this extension involves

substantial additional computational costs beyond those incurred when

Qk ¼ 0. For a network with M weights and No outputs, the use of artificial

process noise introduces OðM3Þ additional computations for the annihila-

tion of Q
1=2
k , whereas the annihilation of the matrix HT

k P
1=2
k only involves

OðM2NoÞ computations (here we assume M �MoÞ.
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2.7 OTHER EXTENSIONS AND ENHANCEMENTS

2.7.1 EKF Training with Constrained Weights

Due to the second-order properties of the EKF training procedure, we

have observed that, for certain problems, networks trained by EKF tend to

develop large weight values (e.g., between 10 and 100 in magnitude). We

view this capability as a double-edged sword: on the one hand, some

problems may require that large weight values be developed, and the EKF

procedures are effective at finding solutions for these problems. On the

other hand, trained networks may need to be deployed with execution

performed in fixed-point arithmetic, which requires that limits be imposed

on the range of values of network inputs, outputs and weights. For

nonlinear sigmoidal nodes, the node outputs are usually limited to

values between �1 and þ1, and input signals can usually be linearly

transformed so that they fall within this range. On the other hand, the EKF

procedures as described above place no limit on the weight values. We

describe here a natural mechanism, imposed during training, that limits the

range of weight values. In addition to allowing for fixed-point deployment

of trained networks, this weight-limiting mechanism may also promote

better network generalization.

We wish to set constraints on weight values during the training process

while maintaining rigorous consistency with the EKF recursion. We can

accomplish this by converting the unconstrained nonlinear optimization

problem into one of optimization with constraints. The general idea is to

treat each of the network’s weight values as the output of a monotonically

increasing function fð
Þ with saturating limits at the function’s extremes

(e.g., a sigmoid function). Thus, the EKF recursion is performed in an

unconstrained space, while the network’s weight values are nonlinear

transformations of the corresponding unconstrained values that evolve

during the training process. This transformation requires that the

EKF recursion be modified to take into account the function fð
Þ as

applied to the parameters (i.e., unconstrained weight values) that evolve

during training.

Assume that the vector of network’s weights wk is constrained to take

on values in the range �a to þa and that each component w
i;j
k (the jth

weight of the ith node) of the constrained weight vector is related to an

unconstrained value ~ww
i;j
k via a function w

i;j
k ¼ fð ~wwi;j

k ; aÞ. We formulate the

EKF recursion so that weight updates are performed in the unconstrained

weight space, while the steps of forward propagation and backpropagation

of derivatives are performed in the constrained weight space.
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The training steps are carried out as follows. At time step k, an input

vector is propagated through the network, and the network outputs are

computed and stored in the vector ŷyk. The error vector jk is also formed as

defined above. Subsequently, the derivatives of each component of ŷyk with

respect to each node’s weight vector wi
k are computed and stored into the

matrices Hi
k , where the component H

i;j;l
k contains the derivative of the lth

component of ŷyk with respect to the jth weight of the ith node. In order to

perform the EKF recursion in the unconstrained space, we must perform

three steps in addition to those that are normally carried out. First, we

transform weight values from the constrained space via ~ww
i;j
k ¼ f�1

ðw
i;j
k ; aÞ

for all trainable weights of all nodes of the network, which yields the

vectors ~wwi
k . Second, the derivatives that have been previously computed

with respect to weights in the constrained space must be transformed to

derivatives with respect to weights in the unconstrained space. This is

easily performed by the following transformation for each derivative

component:

~HH
i;j;l
k ¼ H

i;j;l
k

@oi;j
k

@ ~wwi;j
k

¼ H
i;j;l
k

@fð ~wwi;j
k ; aÞ

@ ~wwi;j
k

: ð2:57Þ

The EKF weight update procedure of Eqs. (2.8)–(2.11) is then applied

using the unconstrained weights and derivatives with respect to uncon-

strained weights. Note that no transformation is applied to either the

scaling matrix Sk or the error vector jk before they are used in the update.

Finally, after the weight updates are performed, the unconstrained weights

are transformed back to the constrained space by w
i;j
k ¼ fð ~wwi;j

k ; aÞ for all

weights of all nodes in the network.

We now consider specific forms for the function fð ~wwi;j
k ; aÞ that trans-

forms weight values from an unconstrained space to a constrained space.

We require that the function obey the following properties:

1. fð ~wwi;j
k ; aÞ is monotonically increasing.

2. fð0; aÞ ¼ 0.

3. fð�1; aÞ ¼ �a.

4. fðþ1; aÞ ¼ þa.

5.
@w

i;j
k

@ ~wwi;j
k

j ~wwi;j
k
¼0 ¼ 1:

6. lima!1 fð ~wwi;j
k ; aÞ ¼ ~ww

i;j
k ¼ w

i;j
k .
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Property 5 imposes a constraint on the gain of the transformation, while

property 6 imposes the constraint that in the limit of large a, the

constrained optimization problem operates identically to the unconstrained

problem. This last constraint also implies that lima!1ð@w
i;j
k =@ ~ww

i;j
k Þ ¼ 1.

One candidate function is a symmetric saturating linear transformation

where w
i;j
k ¼ ~ww

i;j
k when �a � ~ww

i;j
k � a, and is otherwise equal to either

saturating value. The major disadvantage with this constraint function is

that its inverse is multivalued outside the linear range. Thus, once the

training process pushes the constrained weight value into the saturated

region, the derivative of constrained weight with respect to unconstrained

weight becomes zero, and no further training of that particular weight

value will occur due to the zero-valued derivative.

Alternatively, we may consider various forms of symmetric sigmoid

functions that are everywhere differentiable and have well-defined

inverses. The Elliott sigmoid [22] conveniently does not involve trans-

cendental functions. We choose to consider a generalization of this

monotonic and symmetric saturating function given by

w
i;j
k ¼ fð ~wwi;j

k ; aÞ ¼
a ~wwi;j

k

bþ j ~ww
i;j
k j

¼
~ww

i;j
k

b=aþ j ~ww
i;j
k j=a

; ð2:58Þ

where b is a positive quantity that determines the function’s gain. We must

choose the value of b so that the derivative of fð ~wwi;j
k ; aÞ with respect to

~ww
i;j
k , evaluated at ~ww

i;j
k ¼ 0, is equal to 1. This condition can be shown to be

satisfied by the choice b ¼ a. Thus, the constraint function we choose is

given by

w
i;j
k ¼ fð ~wwi;j

k ; aÞ ¼
a ~wwi;j

k

aþ j ~ww
i;j
k j

¼
~ww

i;j
k

1 þ j ~ww
i;j
k j=a

: ð2:59Þ

By inspection, we see that this function satisfies the various requirements.

For example, for large a (i.e., as a ! 1Þ, w
i;j
k ! ~ww

i;j
k ; for smaller values

of a, when j ~ww
i;j
k j � a;w

i;j
k ! a sgnð ~ww

i;j
k Þ. The inverse of this function is

easily found to be given by

~ww
i;j
k ¼ f�1

ðw
i;j
k ; aÞ ¼

aw
i;j
k

a� jw
i;j
k j

¼
w

i;j
k

1 � jw
i;j
k j=a

: ð2:60Þ

In this case, for a � w
i;j
k , ~ww

i;j
k ! w

i;j
k ; similarly, as w

i;j
k ! a; ~wwi;j

k ! 1. As

a final note, the derivative of constrained weight with respect to uncon-
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strained weight, which is needed for computing the proper derivatives in

the EKF recursion, can be expressed in many different ways, some of

which are given by

@w
i;j
k

@ ~wwi;j
k

¼
a

aþ j ~ww
i;j
k j

 !2

¼
a� jw

i;j
k j

a

 !2

¼ 1 �
jw

i;j
k j

a

 !2

¼
w

i;j
k

~ww
i;j
k

 !2

: ð2:61Þ

2.7.2 EKF Training with an Entropic Cost Function

As defined above, the EKF training algorithm assumes that a quadratic

function of some error signal is being minimized over all network outputs

and all training patterns. However, other cost functions are often useful or

necessary. One such function that has been found to be particularly

appropriate for pattern classification problems, and for which a sound

statistical basis exists, is a cost function based on minimizing cross-

entropy [23]. We consider a prototypical problem in which a network is

trained to act as a pattern classifier; here network outputs encode binary

pattern classifications. We assume that target values of �1 are provided for

each training pattern. Then the contribution to the total entropic cost

function at time step n is given by

ek ¼
PNo

l¼1

e
l
k ¼

PNo

l¼1

ð1 þ yl
kÞ log

1 þ yl
k

1 þ ŷyl
k

þ ð1 � yl
kÞ log

1 � yl
k

1 � ŷyl
k

� �
: ð2:62Þ

Since the components of the vector yk are constrained to be either þ1 or

�1, we note that only one of the two components for each output l will be

nonzero. This allows the cost function to be expressed as

ek jyl
k
¼�1 ¼

PNo

l¼1

e
l
k ¼

PNo

l¼1

2 log
2

1 þ yl
k ŷyl

k

: ð2:63Þ

The EKF training procedure assumes that at each time step k a

quadratic cost function is being minimized, which we write as

Ck ¼
PNo

l¼1ðz
l
k � ẑzl

kÞ
2
¼
PNo

l¼1ðx
l
kÞ

2, where zl
k and ẑzl

k are target and

output values, respectively. (We assume here the case of Sk ¼ I; this

procedure is easily extended to nonuniform weighting matrices.) At this

point, we would like to find appropriate transformations between the

fzl
k; ẑzl

kg and fyl
k; ŷyl

kg so that Ck and ek are equivalent, thereby allowing us
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to use the EKF procedure to minimize the entropic cost function. We first

note that both the quadratic and entropic cost functions are calculated by

summing individual cost function components from all targets and output

nodes. We immediately see that this leads to the equality ðxl
kÞ

2
¼ el

k for all

No outputs, which implies zl
k � ẑzl

k ¼ ðel
kÞ

1=2. At this point, we assume that

we can assign all target values zl
k ¼ 0;3 so that xl

k ¼ �ẑzl
k ¼ ðel

kÞ
1=2. Now

the EKF recursion can be applied to minimize the entropic cost function,

since Ck ¼ SNo

l¼1ðx
l
kÞ

2
¼ SNo

l¼1½ðe
l
kÞ

1=2
�
2
¼ SNo

l¼1e
l
k ¼ ek .

The remainder of the derivation is straightforward. The EKF recursion

in the case of the entropic cost function requires that derivatives of

ẑzl
k ¼ ð�el

kÞ
1=2 be computed for all No outputs and all weight parameters,

which are subsequently stored in the matrices Hi
k . Applying the chain rule,

these derivatives are expressed as a function of the derivatives of network

outputs with respect to weight parameters:

H
i;j;l
k ¼

@ẑzl
k

@w
i;j
k

�����
yl

k
¼�1

¼ �
@ðel

kÞ
1=2

@w
i;j
k

¼
1

ðel
kÞ

1=2
ðyl

k þ ŷyl
kÞ

@ŷyl
k

@w
i;j
k

: ð2:64Þ

Note that the effect of the relative entropy cost function on the calculation

of derivatives is handled entirely in the initialization of the backpropaga-

tion process, where the term 1=½ðel
kÞ

1=2
ðyl

k þ ŷyl
kÞ� is used for each of the No

output nodes to start the backpropagation process, rather than starting with

a value of unity for each output node as in the nominal formulation.

In general, the EKF procedure can be modified in the manner just

described for a wide range of cost functions, provided that they meet at

least three simple requirements. First, the cost function must be a

differentiable function of network outputs. Second, the cost function

should be expressed as a sum of contributions, where there is a separate

target value for each individual component. Third, each component of the

cost function must be non-negative.

2.7.3 EKF Training with Scalar Errors

When applied to a multiple-output training problem, the EKF formulation

in Eqs. (2.3)–(2.6) requires a separate backpropagation for each output

and a matrix inversion. In this section, we describe an approximation to

3The idea of using a modified target value of zero with the actual targets appearing in

expressions for system outputs can be applied to the EKF formulation of Eqs. (2.3)–(2.6)

without any change in its underlying behavior.
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the EKF neural network training procedure that allows us to treat such

problems with single-output training complexity. In this approximation,

we require only the computation of derivatives of a scalar quantity with

respect to trainable weights, thereby reducing the backpropagation compu-

tation and eliminating the need for a matrix inversion in the multiple-

output EKF recursion.

For the sake of simplicity, we consider here the prototypical network

training problem for which network outputs directly encode signals for

which targets are defined. The square root of the contribution to the total

cost function at time step k is given by

~yyk ¼ C
1=2
k ¼

PNo

l¼1

jyl
k � ŷyl

k j
2

� �1=2

; ð2:65Þ

where we are again treating the simple case of uniform scaling of network

errors (i.e., Sk ¼ I). The goal here is to train a network so that the sum of

squares of this scalar error measure is minimized over time. As in the case

of the entropic cost function, we consider the target for training to be zero

for all training instances, and the scalar error signal used in the Kalman

recursion to be given by xk ¼ 0 � ~yyk. The EKF recursion requires that the

derivatives of the scalar observation ~yyk be computed with respect to all

weight parameters. The derivative of the scalar error with respect to the jth

weight of the ith node is given by

H
i;j;1
k ¼

@~yyk

@w
i;j
k

¼
PNo

l¼1

@~yyk

@ŷyl
k

@ŷyl
k

@w
i;j
k

¼
PNo

l¼1

yl
k � ŷyl

k

xk

@ŷyl
k

@w
i;j
k

: ð2:66Þ

In this scalar formulation, the derivative calculations via backpropagation

are initialized with the terms ðyl
k � ŷyl

kÞ=xk for all No network output nodes

(as opposed to initializing the backpropagation calculations with values of

unity for the nominal EKF recursion of Eqs. (2.3)–(2.6)). Furthermore,

only one quantity is backpropagated, rather than No quantities for the

nominal formulation. Note that this scalar approximation reduces exactly

to the nominal EKF algorithm in the limit of a single-output problem:

~yyk ¼ ðjy1
k � ŷy1

k j
2Þ

1=2
¼ jy1

k � ŷy1
k j; ð2:67Þ

xk ¼ 0 � jy1
k � ŷy1

k j; ð2:68Þ

H
i;j;1
k ¼

@~yyk

@w
i;j
k

¼ �sgnðy1
k � ŷy1

kÞ
@ŷy1

k

@w
i;j
k

: ð2:69Þ
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Consider the case y1
k � ŷy1

k . Then, the error signal is given by xk ¼ y1
k � ŷy1

k.

Similarly, @~yyk=@w ¼ @ŷy1
k=@w, since @~yyk=@y1

k ¼ 1. Otherwise, when y1
k > ŷy1

k ,

the error signal is given by xk ¼ �ðy1
k � ŷy1

kÞ, and @~yyk=@w ¼ �@ŷy1
k=@w,

since @~yyk=@ŷy1
k ¼ �1. Since both the error and the derivatives are the

negatives of what the nominal EKF recursion provides, the effects of

negation cancel one another. Thus, in either case, the scalar formulation

for a single-output problem is exactly equivalent to that of the EKF

procedure of Eqs. (2.3)–(2.6).

Because the procedure described here is an approximation to the base

procedure, we suspect that classes of problems exist for which it is not as

effective; further work will be required to clarify this question. In this

regard, we note that once criteria are available to guide the decision of

whether to scalarize or not, one may also consider a hybrid approach to

problems with many outputs. In this approach, selected outputs would be

combined as described above to produce scalar error variables; the latter

would then be treated with the original procedure.

2.8 AUTOMOTIVE APPLICATIONS OF EKF TRAINING

The general area of automotive powertrain control, diagnosis, and model-

ing has offered substantial opportunity for the application of neural

network methods. These opportunities are driven by the steadily increas-

ing demands that are placed on the performance of vehicle control and

diagnostic systems as a consequence of global competition and govern-

ment mandates. Modern automotive powertrain control systems involve

several interacting subsystems, any one of which can involve significant

engineering challenges. We summarize the application of EKF training to

three signal processing problems related to automotive diagnostics and

emissions modeling, as well as its application to two automotive control

problems. In all five cases, we have found EKF training of recurrent neural

networks to be an enabler for developing effective solutions to these

problems.

Figure 2.7 provides a diagrammatic representation of these five neural

network applications and how they potentially interact with one another.

We observe that the neural network controllers for engine idle speed and

air=fuel (A=F) ratio control produce signals that affect the operation of the

engine, while the remaining neural network models are used to describe

various aspects of engine operation as a function of measurable engine

outputs.
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2.8.1 Air=Fuel Ratio Control

At a very basic level, the role of the A=F controller is to supply fuel to the

engine such that it matches the amount of air pumped into the engine via

the throttle and idle speed bypass valve. This is accomplished with an

electronic feedback control system that utilizes a heated exhaust gas

oxygen (HEGO) sensor whose role is to indicate whether the engine-out

exhaust is rich (i.e., too much fuel) or lean (too much air). Depending on

the measured state of the exhaust gases, as well as engine operating

conditions such as engine speed and load, the A=F control is changed so

as to drive the system toward stoichiometry. Since the HEGO sensor is

largely considered to be a binary sensor (i.e., it produces high=low voltage

Figure 2.7 Block-diagram representation of neural network applications for
automotive engine control and diagnosis. Solid boxes represent physical
components of the engine system, double-lined solid boxes represent
neural network models or diagnostic processes, and double-lined dashed
boxes represent neural network controllers. For the sake of simplicity, we
have not shown all relevant sensors and their corresponding signals (e.g.,
engine coolant temperature).
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levels for rich=lean operations, respectively), and since there are time-

varying transport delays, the closed-loop A=F control strategy often takes

the form of a jump=ramp strategy, which effectively causes the HEGO

output to oscillate between the two voltage levels. We have demonstrated

that an open-loop recurrent neural network controller can be trained to

provide a correction signal to the closed-loop A=F control in the face of

transient conditions (i.e., dynamic changes in engine speed and load),

thereby eliminating large deviations from stoichiometry. This is accom-

plished by using an auxiliary universal EGO (UEGO) sensor, which

provides a continuous measure of A=F ratio (as opposed to the rich= lean

indication provided by the HEGO), during the in-vehicle training process.

Deviations of measured A=F ratio from stoichiometric A=F ratio provide

the error signal for the EKF training process; however, the measured A=F

ratio is not used as an input, and since the A=F control does not have a

major effect on engine operating conditions when operated near stoichio-

metry, then this can be viewed as a problem of training an open-loop

controller. Nevertheless, we use recurrent network controllers to provide

the capability of representing the condition-dependent dynamics asso-

ciated with the operation of the engine system under A=F control, and

must take care to properly compute derivatives with BPTT(h).

2.8.2 Idle Speed Control

A second engine control task is that of maintaining smooth engine

operation at idle conditions. In this case, no air is provided to the intake

manifold of the engine via the throttle; in order to keep the engine

running, a bypass air valve is used to regulate the flow of air into the

engine. The role of the idle speed control system is to maintain a relatively

low (for purposes of fuel economy) and constant engine speed, in the face

of disturbances that place and remove additional loads on the engine (e.g.,

shifting from neutral to drive, activating the air conditioning system, and

locking up the power steering); feedforward signals encoding these events

are provided as input to the idle speed controller. The control range of the

bypass air signal is large (more than 1000 rpm under idle conditions), but

its effect is delayed by a time inversely proportional to engine speed. The

spark advance command, which regulates the timing of ignition, has an

immediate effect on engine speed, but over a small range (on order of

100 rpm). Thus, an effective engine idle speed controller coordinates the

two controls to maintain a constant engine speed. The error signals for the

EKF training process are a weighted sum of squared deviations of engine
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speed from a desired speed, combined with constraints on the controls

expressed as squared error signals. We have used recurrent neural

networks, trained by on-line EKF methods, to develop effective idle

speed control strategies, and have documented this work in [5]. Note

that unlike the case of the A=F controller, this is an example of a closed-

loop controller, since the bypass air and spark advance controls affect

engine speed, which is used as a controller input.

2.8.3 Sensor-Catalyst Modeling

A particularly critical component of a vehicle’s emissions control system is

the catalytic converter. The role of the catalytic converter is to chemically

transform noxious and environmentally damaging engine-out emissions,

which are the byproduct of the engine’s combustion process, to environ-

mentally benign chemical compounds. An ideal three-way catalytic

converter should completely perform the following three tasks during

continuous vehicle operation: (1) oxidation of hydrocarbon (HC) exhaust

gases to carbon dioxide (CO2) and water (H2O); (2) oxidation of carbon

monoxide (CO) to CO2; and (3) reduction of nitrogen oxides (NOx) to

nitrogen (N2) and oxygen (O2). In practice, it is possible to achieve high

conversion efficiencies for all three types of exhaust gases only when the

engine is operating near stoichiometry. An effective A=F control strategy

enables such conversion.

However, even in the presence of effective A=F control, vehicle-out

(i.e., tailpipe) emissions may be unreasonably high if the catalytic

converter has been damaged. Government regulations require that the

performance of a vehicle’s catalytic converter be continuously monitored

to detect when conversion efficiencies have dropped below some thresh-

old. Unfortunately, it is currently infeasible to equip vehicles with sensors

that can measure the various exhaust gas species directly. Instead, catalytic

converter monitors are based on comparing the output of a HEGO sensor

that is exposed to engine-out emissions with the output of a second sensor

that is mounted downstream of the catalytic converter and is exposed to

the tailpipe emissions. This approach is based on the observation that the

postcatalyst HEGO sensor switches infrequently, relative to the precatalyst

HEGO sensor, when the catalyst is operating efficiently. Similarly, the

average rate of switching of the postcatalyst sensor increases as catalyst

efficiency decreases (due to decreasing oxygen storage capability).

A catalyst monitor can be developed based on a neural network model

of the dynamic operation of the postcatalyst HEGO sensor as a function of
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the precatalyst HEGO sensor and engine operating conditions [12] for a

catalyst of nominal conversion efficiency. This is a difficult task, espe-

cially given the nonlinear responses of the various components and the

condition-dependent time delays, which can range from less than 0.1 s at

high engine speeds to more than 1 s at low speeds. We employed a RMLP

network with structure 15-20R-15R-10R-1 and a sparse tapped delay line

representation to directly capture the long-term temporal characteristics of

the precatalyst HEGO sensor. Because of the size of the network (over

1,500 weights) and the number of training samples (63,000), we chose to

employ decoupled EKF training. The trained network effectively repre-

sented the condition-dependent time delays and nonlinearities of the

system, as shown in [12].

2.8.4 Engine Misfire Detection

Engine misfire is broadly defined as the condition in which a substantial

fraction of a cylinder’s air–fuel mixture fails to ignite. Frequent misfire

will lead to a deterioration of the catalytic converter, ultimately resulting in

unacceptable levels of emitted pollutants. Consequently, government

mandates require that onboard misfire detection capability be provided

for nearly all engine operating conditions.

While there are many ways of detecting engine misfire, all currently

practical methods rely on observing engine crankshaft dynamics with a

position sensor located at one end of the shaft. Briefly stated, one looks for

a crankshaft acceleration deficit following a cylinder firing and attempts to

determine whether such a deficit is attributable to a lack of power provided

on the most recent firing stroke.

Since every engine firing must be evaluated, the natural ‘‘clock’’ for

misfire detection is based on crankshaft rotation, rather than on time. For

an n-cylinder engine, there are n engine firings, or events, per engine

cycle, which requires two engine revolutions. The actual time interval

between events varies considerably, from 20 ms at 750 rpm to 2.5 ms at

6000 rpm for an eight-cylinder engine. Engine speed, as required for

control, is typically derived from measured intervals between marks on a

timing wheel. As used in misfire detection, an acceleration value is

calculated from the difference between successive intervals.

A serious problem associated with measuring crankshaft acceleration is

the presence of complex torsional dynamics of the crankshaft, even in the

absence of misfire. This is due to the finite stiffness of the crankshaft. The

magnitude of acceleration induced by such torsional vibrations may be
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large enough to dwarf acceleration deficits from misfire. Further, the

torsional vibrations are themselves altered by misfire, so that normal

engine firings followed by misfire may be misinterpreted.

We have approached the misfire detection problem with recurrent

neural networks trained by GEKF [12] to act as dynamic pattern

classifiers. We use as inputs engine speed, engine load, crankshaft

acceleration, and a binary flag to identify the beginning of the cylinder

firing sequence. The training target is a binary signal, according to

whether a misfire had been artificially induced for the current cylinder

during the previous engine cycle. This phasing enables the network to

make use of information contained in measured accelerations that follow

the engine event being classified. We find that trained networks make

remarkably few classification errors, most of which occur during moments

of rapid acceleration or deceleration.

2.8.5 Vehicle Emissions Estimation

Increasing levels of pollutants in the atmosphere – observed despite the

imposition of stricter emission standards and technological improvements

in emissions control systems – have led to models being developed to

predict emissions inventories. These are typically based on the emissions

levels that are mandated by the government for a particular driving

schedule and a given model year. It has been found that the emissions

inventories based on these mandated levels do not accurately reflect those

that are actually found to exist. That is, actual emission rates depend

heavily upon driving patterns, and real-world driving patterns are not

comprehensively represented by the mandated driving schedules. To better

assess the emissions that occur in practice and to predict emissions

inventories, experiments have been conducted using instrumented vehicles

that are driven in actual traffic. Unfortunately, such vehicles are costly and

are difficult to operate and maintain.

We have found that recurrent neural networks can be trained to estimate

instantaneous engine-out emissions from a small number of easily

measured engine variables. Under the assumption of a properly operating

fuel control system and catalytic converter, this leads to estimates of

tailpipe emissions as well. This capability then allows one to estimate the

sensitivity of emissions to driving style (e.g., aggressive versus conserva-

tive). Once trained, the network requires only information already avail-

able to the powertrain processor. Because of engine dynamics, we have

found the use of recurrent networks trained by EKF methods to enable
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accurate estimation of instantaneous emissions levels. We provide a

detailed description of this application in [24].

2.9 DISCUSSION

We have presented in this chapter an overview of neural network training

methods based on the principles of extended Kalman filtering. We

summarize our findings by considering the virtues and limitations of

these methods, and provide guidelines for implementation.

2.9.1 Virtues of EKF Training

The EKF family of training algorithms develops and employs second-

order information during the training process using only first-order

approximations. The use of second-order information, as embedded in

the approximate error covariance matrix, which co-evolves with the weight

vector during training, provides enhanced capabilities relative to first-order

methods, both in terms of training speed and quality of solution. The

amount of second-order information utilized is controlled by the level of

decoupling, which is chosen on the basis of computational considerations.

Thus, the computational complexity of the EKF methods can be scaled to

meet the needs of specific applications.

We have found that EKF methods have enabled the training of recurrent

neural networks, for both modeling and control of nonlinear dynamical

systems. The sequential nature of the EKF provides advantages relative to

batch second-order methods, since weight updates can be performed on an

instance-by-instance basis with EKF training. On the other hand, the

ability to batch multiple training instances with multistream EKF training

provides a level of scalability in addition to that provided by decoupling.

The sequential nature of the EKF, in both single- and multistream

operation, provides a stochastic component that allows for more effective

search of the weight space, especially when used in combination with

artificial process noise.

The EKF methods are easily implemented in software, and there is

substantial promise for hardware implementation as well. Methods for

avoiding matrix inversions in the EKF have been developed, thereby

enabling easy implementations. Finally, we believe that the greatest virtue

of EKF training of neural networks is its established and proven applic-

ability to a wide range of difficult modeling and control problems.
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2.9.2 Limitations of EKF Training

Perhaps the most significant limitation of EKF training is its limited

applicability to cost functions other then minimizing sum of squared error.

Although we have shown that other cost functions can be used (e.g.

entropic measures), we are nevertheless restricted to those optimization

problems that can be converted to minimizing a sum of squared error

criterion. On the other hand, many problems, particularly in control,

require other optimization criteria. For example, in a portfolio optimiza-

tion problem, we should like to maximize the total return over time.

Converting such an optimization criterion to a sum of squared errors

criterion is usually not straightforward. However, we do not view the sum

of squared-error optimization criterion as a limitation for most problems

that can be viewed as belonging to the class of traditional supervised

training problems.

The EKF procedures described in this chapter are derived on the basis

of a first-order linearization of the nonlinear system; this may provide a

limitation in the form of large errors in the weight estimates and

covariance matrix, since the second-order information is effectively

developed by taking outer products of the gradients. Chapter 7 introduces

the unscented Kalman filter (UKF) as an alternative to the EKF. The UKF

is expected to provide a more accurate means of developing the required

second-order information than the EKF, without increasing the computa-

tional complexity.

2.9.3 Guidelines for Implementation and Use

1. Decoupling should be used when computation is a concern (e.g., for

on-line applications). Node and layer decoupling are the two most

appropriate choices. Otherwise, we recommend the use of global

EKF, regardless of network architecture, as it should be expected to

find better solutions than any of the decoupled versions because of

the use of full second-order information.

2. Effectively, two parameter values need to be chosen for training of

networks with EKF methods. We assume that the approximate error

covariance matrices are always initialized with diagonal value of 100

and 1,000 for weights corresponding to nonlinear and linear nodes,

respectively. Then, the user of these methods must set values for the

learning rate and process-noise term according to characteristics of

the training problem.
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3. Training of recurrent networks, either as supervised training tasks or

for controller training, can often be improved by multistreaming.

The choice of the number of streams is dictated by problem

characteristics.

4. Matrix inversions can be avoided by use of sequential EKF update

procedures. In the case of decoupling, the order in which outputs are

processed can affect training performance in detail. We recommend

that outputs be processed in random order when these methods are

used.

5. Square-root filtering can be employed to insure computational

stability for the error covariance update equation. However, the

use of square-root filtering with artificial process noise for covar-

iance updates results in a substantial increase in computational

complexity. We have noted that nonzero artificial process noise

benefits training, by providing a mechanism to escape poor local

minima and a mechanism that maintains stable covariance updates

when using the Riccati update equation. We recommend that square-

root filtering only be employed when no artificial process noise is

used (and only for GEKF).

6. The EKF procedures can be modified to allow for alternative cost

functions (e.g., entropic cost functions) and for weight constraints to

be imposed during training, which thereby allow networks to be

deployed in fixed-point arithmetic.
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3.1 INTRODUCTION

In Chapter 2, Puskorius and Feldkamp described a procedure for the

supervised training of a recurrent multilayer perceptron – the node-

decoupled extended Kalman filter (NDEKF) algorithm. We now use this

model to deal with high-dimensional signals: moving visual images. Many

complexities arise in visual processing that are not present in one-

dimensional prediction problems: the scene may be cluttered with back-
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ground objects, the object of interest may be occluded, and the system

may have to deal with tracking differently shaped objects at different

times. The problem we have dealt with initially is tracking objects that

vary in both shape and location. Tracking differently shaped objects is

challenging for a system that begins by performing local feature extrac-

tion, because the features of two different objects may appear identical

locally even though the objects differ in global shape (e.g., squares versus

rectangles). However, adequate tracking may still be achievable without a

perfect three-dimensional model of the object, using locally extracted

features as a starting point, provided there is continuity between image

frames.

Our neural network model is able to make use of short-term continuity

to track a range of different geometric shapes (circles, squares, and

triangles). We evaluate the model’s abilities in three experiments. In the

first experiment, the model was trained on images of two different moving

shapes, where each shape had its own characteristic movement trajectory.

In the second experiment, the training set was made more difficult by

adding a third object, which also had a unique motion trajectory. In the

third and final experiment, the restriction of one direction of motion per

shape was lifted. Thus, the model experienced the same shape traveling in

different trajectories, as well as different shapes traveling in the same

trajectory. Even under these conditions, the model was able to learn to

track a given shape for many time steps and anticipate both its shape and

location many time steps into the future.

3.2 NEUROBIOLOGICAL AND PERCEPTUAL FOUNDATIONS

The architecture of our model is motivated by two key anatomical features

of the mammalian neocortex, the extensive use of feedback connections,

and the hierarchical multiscale structure. We discuss briefly the evidence

for, and benefits of, each of these in turn.

Feedback is a ubiquitous feature of the brain, both between and within

cortical areas. Whenever two cortical areas are interconnected, the

connections tend to be bidirectional [1]. Additionally, within every

neocortical area, neurons within the superficial layers are richly inter-

connected laterally via a network of horizontal connections [2]. The dense

web of feedback connections within the visual system has been shown to

be important in suppressing background stimuli and amplifying salient or

foreground stimuli [3]. Feedback is also likely to play an important role in

processing sequences. Clearly, we view the world as a continuously
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varying sequence rather than as a disconnected collection of snapshots.

Seeing the world in this way allows recent experience to play a role in the

anticipation or prediction of what will come next. The generation of

predictions in a perceptual system may serve at least two important

functions: (1) To the extent that an incoming sensory signal is consistent

with expectations, intelligent filtering may be done to increase the signal-

to-noise ratio and resolve ambiguities using context. (2) When the signal

violates expectations, an organism can react quickly to such changing or

salient conditions by de-emphasizing the expected part of the signal and

devoting more processing capacity to the unexpected information. Top-

down connections between processing layers, or lateral connections within

layers, or both, might be used to accomplish this. Lateral connections

allow for local constraints about moving contours to guide one’s expecta-

tions, and this is the basis for our model.

Prediction in a high-dimensional space is computationally complex in a

fully connected network architecture. The problem requires a more

constrained network architecture that will reduce the number of free

parameters. The visual system has done just that. In the earliest stages

of processing, cells’ receptive fields span only a few degrees of visual

angle, while in higher visual areas, cells’ receptive fields span almost the

entire visual field (for a review, see [4]). Therefore, we designed our model

network with a similar hierarchical architecture, in which the first layer of

units were connected to relatively small, local regions of the image and a

subsequent layer spanned the entire visual field (see Figure 3.1).

3.3 NETWORK DESCRIPTION

Prediction in a high-dimensional space such as a 50 � 50 pixel image,

using a fully connected recurrent network is not feasible, because the

number of connections is typically one or more orders of magnitude larger

than the dimensionality of the input, and the NDEKF training procedure

requires adapting these parameters for typically hundreds to thousands of

iterations. The problem requires a more constrained network architecture

that will reduce the number of free parameters. Motivated by the

hierarchical architecture of real visual systems, we designed our model

network with a similar hierarchical architecture in which the first layer of

units were connected to relatively small, local 5 � 5 pixel regions of the

image and a subsequent layer spanned the entire visual field (see Figure

3.1).
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A four-layer network of size 100-16-8R-100, as depicted in Figures

3.1a and 3.1b, was used in the following experiments. Training images of

size 10 � 10, which are arranged in a vector format of size 100 � 1, were

used to form the input to the networks. As depicted in Figure 3.1a, the

input image is divided into four non-overlapping receptive fields of size

5 � 5. Further, the 16 units in the first hidden layer are divided into four

banks of four units each. Each of the four units within a bank receive

inputs from one of the four receptive fields. This describes how the

10 � 10 image is connected to the 16 units in the first hidden layer. Each

of these 16 units feed into a second hidden layer of 8 units. The second

hidden layer has recurrent connections (note that recurrence is only within

the layer and not between layers).

Figure 3.1 A diagram of the network used. The numbers in the boxes
indicate the number of units in each layer or module, except in the input
layer, where the receptive fields are numbered 1; . . . ; 4. Local receptive
fields of size 5 � 5 at the input are fed to the four banks of four units in the first
hidden layer. The second layer of eight units then combines these local
features learned by the first hidden layer. Note the recurrence in the second
hidden layer.
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Thus, the input layer of the network is connected to small and local

regions of the image. The first layer processes these local receptive fields

separately, in an effort to extract relevant local features. These features are

then combined by the second hidden layer to predict the next image in the

sequence. The predicted image is represented at the output layer. The

prediction error is then used in the EKF equations to update the weights.

This process is repeated over several epochs through the training image

sequences until a sufficiently small incremental mean-squared error is

obtained.

3.4 EXPERIMENT 1

In the first experiment, the model is trained on images of two different

moving shapes, where each shape has its own characteristic movement,

that is, shape and direction of movement are perfectly correlated. The

sequence of eight 10 � 10 pixel images in Figure 3.2a is used to train a

four-layered (100-16-8R-100) network to make one-step predictions of the

image sequence. In the first four time steps, a circle moves upward within

the image; and in the last four time steps, a triangle moves downward

Figure 3.2 Experiment 1: one-step and iterated prediction of image
sequence. (a) Training sequence used. (b) One-step prediction. (c) multi-
step prediction. In (b) and (c), the three rows correspond to input, predic-
tion, and error, respectively.

3.4 EXPERIMENT 1 73



within the image. At each time step, the network is presented with one of

the eight 10 � 10 images as input (divided into four 5 � 5 receptive fields

as described above), and generates in its output layer a prediction of the

input at the next time step, but it is always given the correct input at the

next time step. Training was stopped after 20 epochs through the training

sequence. Figure 3.2b shows the network operating in one-step prediction

mode on the training sequence after training. It makes excellent predic-

tions of the object shape and also its motion. Figure 3.2c shows the

network operating in an autonomous mode after being shown only the first

image of the sequence. In this multistep prediction case, the network is

only given external input at the first time step in the sequence. Beyond the

first time step, the network is given its prediction from time t � 1 as its

input at time t, which could potentially lead to a buildup of prediction

errors over many time steps. This shows that the network has recon-

structed the entire dynamics, to which it was exposed during training,

when provided with only the first image. This is indeed a difficult task. It

is seen that as the iterative prediction proceeds, the residual errors (the

third row in Figure 3.2c) are amplified at each step.

3.5 EXPERIMENT 2

Next, an ND-EKF network with the same 100-16-8R-100 architecture

used in Experiment 1 was trained with three sequences, each consisting of

four images, in the following order:

� circle moving right and up;

� triangle moving right and down;

� square moving right and up.

During training, at the beginning of each sequence, the network states

were initialized to zero, so that the network would not learn the order of

presentation of the sequences. The network was therefore expected to

learn the motions associated with each of the three shapes, and not the

order of presentation of the shapes.

During testing, the order of presentation of the three sequences varied,

as shown in Figure 3.3a. The trained network does well at the task of one-

step prediction, only failing momentarily at transition points where we

switch between sequences. It is important to note that one-step prediction,

in this case, is a difficult and challenging task because the network has to

determine (1) what shape is present and (2) which direction it is moving

in, without direct knowledge of inputs some time in the past. In order to
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make good predictions, it must rely on its recurrent or feedback connec-

tions, which play a crucial role in the present model.

We also tested the model on a set of occluded images – images with

regions that are intentionally zeroed. Remarkably, the network makes

correct one-step predictions, even in the presence of occlusions as shown

in Figure 3.3b. In addition, the predictions do not contain occlusions; that

is, they are correctly filled in, demonstrating the robustness of the model

to occlusions. In Figure 3.3c, when the network is presented with

Figure 3.3 Experiment 2: one-step prediction of image sequences using
the trained network. (a) Various combinations of sequences used in training.
(b) Same sequences as in (a), but with occlusions. (c) Prediction on some
sequences not seen during training. The three rows in each image corre-
spond to input, prediction, and error, respectively.
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sequences that it had not been exposed to during training, a larger residual

error is obtained, as expected. However, the network is still capable of

identifying the shape and motion, although not as accurately as before.

3.6 EXPERIMENT 3

In Experiment 1, the network was presented with short sequences (four

images) of only two shapes (circle and triangle), and in experiment 2 an

extra shape (square) was added. In Experiment 3, to make the learning

task even more challenging, the length of the sequences was increased to

10 and the restriction of one direction of motion per shape was lifted.

Specifically, each shape was permitted to move right and either up or

down. Thus, the network was exposed to different shapes traveling in

similar directions and also the same shape traveling in different directions,

increasing the total number of images presented to the network from 8

images in Experiment 1 and 12 images in Experiment 2 to 100 images in

this experiment. In effect, there is a substantial increase in the number of

learning patterns, and thus a substantial increase in the complexity of the

learning task. However, since the number of weights in the network is

limited and remains the same as in the other experiments, the network

cannot simply memorize the sequences.

We trained a network of the same 100-16-8R-100 architecture on six

sequences, each consisting of 10 images (see Fig. 3.4) in the following order:

� circle moving right and up;

� square moving right and down;

� triangle moving right and up;

� circle moving right and down;

� square moving right and up;

� triangle moving right and down.

Training was performed in a similar manner as Experiment 2. During

testing, the order of presentation of the six sequences was varied; several

examples are shown in Figure 3.5. As in the previous experiments, even

with the larger number of training patterns, the network is able to predict

the correct motion of the shapes, only failing during transitions between

shapes. It is able to distinguish between the same shapes moving in

different directions as well as different shapes moving in the same

direction, using context available via the recurrent connections.
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The failure of the model to make accurate predictions at transitions

between shapes can also be seen in the residual error that is obtained

during prediction. The residual error in the predicted image is quantified

by calculating the mean-squared prediction error, as shown in Figure 3.6.

The figure shows how the mean-squared prediction error varies as the

prediction continues. Note the transient increase in error at transitions

between shapes.

3.7 DISCUSSION

In this chapter, we have dealt with time-series prediction of high-dimen-

sional signals: moving visual images. This situation is much more

Figure 3.4 Experiment 3: six image sequences used for training.
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complicated than a one-dimensional case, in that the system has to deal

with simultaneous shape and motion prediction. The network was trained

by the EKF method to perform one-step prediction of image sequences in

a specific order. Then, during testing, the order of the sequences was

varied and the network was asked to predict the correct shape and location

of the next image in the sequence. The complexity of the problem was

increased from Experiment 1 to 3 as we introduced occlusions, increased

both the length of the training sequences and the number of shapes

presented, and allowed shape and motion to vary independently. In all

Figure 3.5 Experiment 3: one-step prediction of image sequences using
the trained network. The three rows in each image correspond to input,
prediction, and error, respectively.
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cases, the network was able to predict the correct motion of the shapes,

failing only momentarily at transitions between shapes.

The network described here is a first step toward modeling the

mechanisms by which the human brain might simultaneously recognize

and track moving stimuli. Any attempt to model both shape and motion

processing simultaneously within a single network may seem to be at odds

with the well-established finding that shape and spatial information are

processed in separate pathways of the visual system [5]. An extreme

version of this view posits that form-related features are processed strictly

by the ventral ‘‘what’’ pathway and motion features are processed strictly

Figure 3.6 Mean-squared prediction error in one-step prediction of image
sequences using the trained network. The three rows in each image
correspond to input, prediction, and error, respectively. The graphs show
how the mean-squared prediction error varies as the prediction progresses.
Notice the increase in error at transitions between shapes.
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by the dorsal ‘‘where’’ pathway. Anatomically, however, there are cross-

connections between the two pathways at several points [6]. Furthermore,

there is ample behavioral evidence that the processes of shape and motion

perception are not completely separate. For example, it has long been

established that we are able to infer shape from motion (see e.g., [7]).

Conversely, under certain conditions, object recognition can be shown to

drive motion perception [8]. In addition, Stone [9] has shown that viewers

are much better at recognizing objects when they are moving in char-

acteristic, familiar trajectories as compared with unfamiliar trajectories.

These data suggest that when shape and motion are tightly correlated,

viewers will learn to use them together to recognize objects. This is

exactly what happens in our model.

To accomplish temporal processing in our model, we have incorporated

within-layer recurrent connections in the architecture used here. Another

possibility would be to incorporate top-down recurrent connections. A key

anatomical feature of the visual system is top-down feedback between

visual areas [3]. Top-down connections could allow global expectations

about the three-dimensional shape of a moving object to guide predictions.

Thus, an important direction for future work is to extend the model to

allow top-down feedback. Rao and Ballard [10] have proposed an

alternative neural network implementation of the EKF that employs top-

down feedback between layers, and have applied their model to both static

images and time-varying image sequences [10, 11]. Other models of

cortical feedback for modeling the generation of expectations have also

been proposed (see, e.g., [12, 13]).

Natural visual systems can deal with an enormous space of possible

images, under widely varying viewing conditions. Another important

direction for future work is to extend our model to deal with more realistic

images. Many additional complexities arise in natural images that were not

present in the artificial image sequences used here. For example, the

simultaneous presence of both foreground and background objects may

hinder the prediction accuracy. Natural visual systems likely use atten-

tional filtering and binding strategies to alleviate this problem; for

example, Moran and Desimone [14] have observed cells that show a

suppressed neural response to a preferred stimulus if unattended and in the

presence of an attended stimulus. Another simplification of our images is

that shape remained constant for many time frames, whereas for real three-

dimensional objects, the shape projected onto a two-dimensional image

may change dramatically over time, because of rotations as well as non-

rigid motions (e.g. bending). Humans are able to infer three-dimensional

shape from non-rigid motion, even from highly impoverished stimuli such
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as moving light displays [7]. It is likely that the architecture described here

could handle changes in shape, provided shape changes predictably and

gradually over time.
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4.1 INTRODUCTION

In this chapter, we consider another application of the extended Kalman

filter recurrent multilayer perceptron (EKF-RMLP) scheme: the modeling

of a chaotic time series or one that could be potentially chaotic.

The generation of a chaotic process is governed by a coupled set of

nonlinear differential or difference equations. The hallmark of a chaotic

process is sensitivity to initial conditions, which means that if the starting

point of motion is perturbed by a very small increment, the deviation in
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the resulting waveform, compared to the original waveform, increases

exponentially with time. Consequently, unlike an ordinary deterministic

process, a chaotic process is predictable only in the short term.

Specifically, we consider five data sets categorized as follows:

� The logistic map, Ikeda map, and Lorenz attractor, whose dynamics

are governed by known equations; the corresponding time series can

therefore be numerically generated by using the known equations of

motion.

� Laser intensity pulsations and sea clutter (i.e., radar backscatter from

an ocean surface) whose underlying equations of motion are

unknown; in this second case, the data are obtained from real-life

experiments.

Table 4.1 shows a summary of the data sets used for model validation.

The table also shows the lengths of the data sets used, and their division

into the training and test sets, respectively. Also shown is a partial

summary of the dynamic invariants for each of the data sets used and

the size of network used for modeling the dynamics for each set.

4.2 CHAOTIC (DYNAMIC) INVARIANTS

The correlation dimension is a measure of the complexity of a chaotic

process [1]. This chaotic invariant is always a fractal number, which is one

reason for referring to a chaotic process as a ‘‘strange’’ attractor. The other

Table 4.1 Summary of data sets used in the study

Network

size

Training

length

Testing

length

Sampling

frequency

fsðHzÞ

Largest

Lyapunov

exponent

lmax

(nats=sample)

Correlation

dimension

DML

Logistic 6-4R-2R-1 5,000 25,000 1 0.69 1.04

Ikeda 6-6R-5R-1 5,000 25,000 1 0.354 1.51

Lorenz 3-8R-7R-1 5,000 25,000 40 0.040 2.09

NH3 laser 9-10R-8R-1 1,000 9,000 1a 0.147 2.01

Sea clutter 6-8R-7R-1 40,000 10,000 1000 0.228 4.69

aThe sampling frequency for the laser data was not known. It was assumed to be 1 Hz for the

Lyapunov exponent calculations.
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chaotic invariants, the Lyapunov exponents, are, in part, responsible for

sensitivity of the process to initial conditions, the occurrence of which

requires having at least one positive Lyapunov exponent. The horizon of

predictability (HOP) of the process is determined essentially by the largest

positive Lyapunov exponent [1]. Another useful parameter of a chaotic

process is the Kaplan–York dimension or Lyapunov dimension, which is

defined in terms of a Lyapunov spectrum by

DKY ¼ K þ

PK

i¼1

li

jlKþ1j
; ð4:1Þ

where the li are the Lyapunov exponents arranged in decreasing order and

K is the largest integer for which the following inequalities hold

PK

i¼1

li � 0 and
PKþ1

i¼1

li < 0:

Typically, the Kaplan–Yorke dimension is close in numerical value to the

correlation dimension. Yet another byproduct of the Lyapunov spectrum is

the Kolmogorov entropy, which provides a measure of information

generated due to sensitivity to initial conditions. It can be calculated as

the sum of all the positive Lyapunov exponents of the process. The chaotic

invariants were estimated as follows:

1. The correlation dimension was estimated using an algorithm based

on the method of maximum likelihood [2] – hence the notation DML

for the correlation dimension.

2. The Lyapunov exponents were estimated using an algorithm, invol-

ving the QR - decomposition applied to a Jacobian that pertains to

the underlying dynamics of the time series.

3. The Kolmogorov entropy was estimated directly from the time series

using an algorithm based on the method of maximum likelihood

[2] – hence the notation KEML for the Kolmogorov entropy so

estimated. The indirect estimate of the Kolmogorov entropy from

the Lyapunov spectrum is denoted by KELE.
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4.3 DYNAMIC RECONSTRUCTION

The attractor of a dynamical system is constructed by plotting the

evolution of the state vector in state space. This construction is possible

when we have access to every state variable of the system. In practical

situations dealing with dynamical systems of unknown state-space equa-

tions, however, all that we have available is a set of measurements taken

from the system. Given such a situation, we may raise the following

question: Is it possible to reconstruct the attractor of a system (with many

state variables) using a single time series of measurements? The answer to

this question is an emphatic yes; it was first illustrated by Packard et al.

[3], and then given a firm mathematical foundation by Takens [4] and

Mañé [5]. In essence, the celebrated Takens embedding theorem guaran-

tees that by applying the delay coordinate method to the measurement

time series, the original dynamics could be reconstructed, under certain

assumptions. In the delay coordinate method (sometimes referred to as the

method of delays), delay coordinate vectors are formed using time-delayed

values of the measurements, as shown here:

sðnÞ ¼ ½sðnÞ; sðn 	 tÞ; . . . ; sðn 	 ðdE 	 2ÞtÞ; sðn 	 ðdE 	 1ÞtÞ
T ;

where dE is called the embedding dimension and t is known as the

embedding delay, taken to be some suitable multiple of the sampling time

ts. By means of such an embedding, it is possible to reconstruct the true

dynamics using only one measurement. Takens’ theorem assumes the

existence of dE and t such that mapping from sðnÞ to sðn þ tÞ is possible.

The concept of dynamic reconstruction using delay coordinate embedding

is very elegant, because we can use it to build a model of a nonlinear

dynamical system, given a set of measured data on the system. We can use

it to ‘‘reverse-engineer’’ the dynamics, i.e., use the time series to deduce

characteristics of the physical system that was responsible for its genera-

tion. Put it another way, the reconstruction of the dynamics from a time

series is in reality an ill-posed inverse problem. The direct problem is:

given the dynamics, describe the iterates; and the inverse problem is: given

the iterates, describe the dynamics. The inverse problem is ill-posed

because, depending on the quality of the data, a solution may not be

stable, may not be unique, or may not even exist. One way to make the

problem well-posed is to include prior knowledge about the input–output

mapping. In effect, the use of delay coordinate embedding inserts some

prior knowledge into the model, since the embedding parameters are

determined from the data.
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To estimate the embedding delay t, we used the method of mutual

information proposed by Fraser [6]. According to this method, the

embedding delay is determined by finding the particular delay for which

the mutual information between the observable time series and its delayed

version is minimized for the first time. Given such an embedding delay, we

can construct a delay coordinate vector whose adjacent samples are as

statistically independent as possible.

To estimate the embedding dimension dE, we use the method of false

nearest neighbors [1]; the embedding dimension is the smallest integer

dimension that unfolds the attractor.

4.4 MODELING NUMERICALLY GENERATED CHAOTIC
TIME SERIES

4.4.1 Logistic Map

In this experiment, the EKF-RMLP-based modeling scheme is applied to

the logistic map (also known as the quadratic map), which was first used

as a model of population growth. The logistic map is described by the

difference equation:

xðk þ 1Þ ¼ axðkÞ½1 	 xðkÞ
; ð4:2Þ

where the nonlinearity parameter a is chosen to be 4.0 so that the

produced behavior is chaotic. The logistic map exhibits deterministic

chaos in the interval a 2 (3.5699, 4]. An initial value of xð0Þ ¼ 0:5 was

used, and 35,000 points were generated, of which the first 5000 points

were discarded, leaving a data set of 30,000 samples. A training set,

consisting of the first 5000 samples, was used to train an RMLP on a one-

step prediction task by means of the EKF method. An RMLP configura-

tion of 6-4R-2R-1, which has a total of 61 weights including the bias

terms, was selected for this modeling problem. The training converged

after only 5 epochs and a sufficiently low MSE was achieved as shown in

Figure 4.1.

Open-Loop Evaluation A test set, consisting of the unexposed

25,000 samples, was used to evaluate the performance of the network at

the task of one-step prediction as well as recursive prediction. Figure 4.2a

shows the one-step prediction performance of the network on a short

portion of the test data. It is visually observed that the two curves are
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almost identical. Also, for numerical one-step performance evaluation,

signal-to-error ratio (SER) is used. This measure, expressed in decibels, is

defined by

SER ¼ 10 log10

MSS

MSE
; ð4:3Þ

where MSS is the mean-squared value of the actual test data and MSE is

the mean-squared value of the prediction error at the output. MSS is found

to be 0.374 for the 25,000-testing sequence and MSE is found to be

1:09 � 10	5 for the trained RMLP network prediction error. This gives an

SER of 45.36 dB, which is certainly impressive because it means that the

power of the one-step prediction error over 25,000 test samples is many

times smaller than the power of the signal.

Closed-Loop Evaluation To evaluate the autonomous behavior of

the network, its node outputs are first initialized to zero, it is then seeded

with points selected from the test data, and then passed through a priming

phase where it operates in the one-step mode for pl ¼ 30 steps. At the end

of priming, the network’s output is fed back to its input, and autonomous

Figure 4.1 Training MSE versus epochs for the logistic map.
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operation begins. At this point, the network is operating on its own

without further inputs, and the task that is asked of the network is indeed

challenging. The autonomous behavior of the network, which begins after

priming, is shown in Figure 4.2b, and it is observed that the predictions

closely follow the actual data for about 5 steps on average [which is close

to the theoretical horizon of predictability (HOP) of 5 calculated from the

Lyapunov spectrum], after which they start to deviate significantly. Figure

4.3 plots the one-step prediction of the logistic map for three different

starting points

The overall trajectory of the predicted signal, in the long term, has a

structure that is very similar to the actual logistic map. The similarity is

clearly seen by observing their attractors, which are shown in Figures 4.2c

and 4.2d. For numerical autonomous performance evaluation, the dyna-

mical invariants of both the actual data and the model-generated data are

compared in Table 4.2. For the logistic map, dL ¼ 1; it therefore has only

one Lyapunov exponent, which happens to be 0.69 nats=sample. This

means that the sum of Lyapunov exponents is not negative, thus violating

one of the conditions in the Kaplan–Yorke method, and it is for this reason

that the Kaplan–Yorke dimension DKY could not be calculated. However,

by comparing the other calculated invariants, it is seen that the Lyapunov

exponent and the correlation dimension of the two signals are in close

agreement with each other. In addition, the Kolmogorov entropy values for

the two signals also match very closely. The theoretical horizons of

predictability of the two signals are also in agreement with each other.

These results demonstrate very convincingly that the original dynamics

have been accurately modeled by the trained RMLP. Furthermore, the

robustness of the model is tested by starting the predictions from various

locations on the test data, corresponding to indices of N0 ¼ 3060, 5060,

and 10,060. The results, shown in Figure 4.4, clearly indicate that the

RMLP network is able to reconstruct the logistic series beginning from

any location, chosen at random.

Table 4.2 Comparison of chaotic invariants of logistic map

KELE KEML

l1

Time series dE t dL DML DKY (nats=sample) (nats=sample) HOP

(samples)

Actual logistic 6 5 1 1.04 —a 0.69 0.69 0.64 5

Reconstructed 6 12 1 1.00 —a 0.61 0.61 0.65 6

aSince the sum of Lyapunov exponents is not negative, DKY could not be calculated.
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4.4.2 Ikeda Map

This second experiment uses the Ikeda map (which is substantially more

complicated than the logistic map) to test the performance of the EKF-

RMLP modeling scheme. The Ikeda map is a complex-valued map and is

generated using the following difference equations:

mðkÞ ¼ 0:4 	
6:0

1 þ x2
1ðkÞ þ x2

2ðkÞ
; ð4:4Þ

x1ðk þ 1Þ ¼ 1:0 þ mfx1ðkÞ cos½mðkÞ
 	 x2ðkÞ sin½mðkÞ
g; ð4:5Þ

x2ðk þ 1Þ ¼ 1:0 þ mfx1ðkÞ þ x2ðkÞ cos½mðkÞ
g; ð4:6Þ

where x1 and x2 are the real and imaginary components, respectively, of x

and the parameter m is carefully chosen to be 0.7 so that the produced

behavior is chaotic. The initial values of x1ð0Þ ¼ 0:5 and x2ð0Þ ¼ 0:5 were

selected and, as pointed out earlier, a data set of 30,000 samples was

Figure 4.3 One-step prediction of logistic map from different starting
points. Note that A ¼ initialization and B ¼ one-step phase.
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generated. In this experiment, only the x1 component of the Ikeda map is

used, for which the embedding parameters of dE ¼ 6 and t ¼ 10 were

determined. The first 5000 samples of this data set were used to train an

RMLP with the EKF algorithm at one-step prediction. During training, a

truncation depth td ¼ 10 was used for the backpropagation through-time

(BPTT) derivative calculations. The RMLP configuration of 6-6R-5R-1,

which has a total of 144 weights including the bias terms, was chosen to

model the Ikeda series. The training converged after only 15 epochs, and a

sufficiently low incremental training mean-squared error was achieved, as

shown in Figure 4.5.

Open-Loop Evaluation The test set, consisting of the unexposed

25,000 samples of data, is used for performance evaluation, and Figure

4.6a shows one-step performance of the network on a short portion of the

test data. It is indeed difficult to distinguish between the actual and

predicted signals, thus visually verifying the goodness of the predictions.

Figure 4.4 Iterative prediction of logistic map from different starting points,
corresponding to N0 ¼ 3060, 5060, and 10,060, respectively, with pl ¼ 30.
Note that A ¼ initialization, B ¼ priming phase, and C ¼ autonomous phase.
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For a numerical measure, the mean-squared value of the 25,000 sample

Ikeda test series was calculated to be MSS ¼ 0:564 and the mean-squared

prediction error of MSE ¼ 1:4 � 10	4 was produced by the trained

RMLP network, thus giving an SER of 36.02 dB.

Closed-Loop Evaluation To begin autonomous prediction, a delay

vector consisting of 6 taps spaced by 10 samples apart is constructed as

dictated by the embedding parameters dE and t. The RMLP is initialized

with a delay vector, constructed from the test samples, and passed through

a priming phase with pl ¼ 60, after which the network operates in closed-

loop mode. The autonomous continuation from where the training data

end is shown in Figure 4.6b. Note that the predictions follow closely for

about 10 steps on average, which is in agreement with the theoretical

horizon of predictability of 11 calculated by from the Lyapunov spectrum.

A length of 25,000 autonomous samples were generated using the trained

EKF-RMLP model, and the reconstructed attractor is plotted in Figure

4.6d. The reconstructed attractor has exactly the same form as the original

attractor, which is plotted in Figure 4.6c using the actual Ikeda samples.

These figures clearly demonstrate that the RMLP network has captured the

underlying dynamics of the Ikeda map series. For numerical performance

Figure 4.5 Training MSE versus epochs for the Ikeda map.
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evaluation, the correlation dimension, Lyapunov exponents and Kolmo-

gorov entropy of both the actual Ikeda series and the autonomously

generated samples are calculated. Table 4.3, which summarizes the results,

shows that the dynamic invariants of both the actual and reconstructed

signals are in very close agreement with each other. This illustrates that the

true dynamics of the data were captured by the trained network. Figure 4.7

plots the one-step prediction of the Ikeda map for three different starting

points. The reconstruction produced here is robust and stable, regardless

of the position of the initializing delay vector on the test data, as

demonstrated in Figure 4.8, which shows autonomous operation starting

at indices of N0 ¼ 3120, 10,120, and 17,120, respectively.

Noisy Ikeda Series It was shown above that the noise-free Ikeda

series can be modeled by the RMLP scheme. In a real environment,

observables signals are usually corrupted by additive noise, which makes

the problem more difficult. Thus, to make the modeling task more

challenging than it already is, computer-generated noise is added to the

Ikeda series such that the resulting signal-to-noise ratios (SNRs) of two

sets of the noisy observables signals are 25 dB and 10 dB, respectively.

Figure 4.7 One-step prediction of Ikeda series from different starting points.
Note that A ¼ initialization and B ¼ one-step phase.
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The attractors of the noisy signals are shown in the left-hand parts of

Figures 4.9a and 4.9b, respectively. The increase in noise level was more

substantial for the 10 dB case, and this corrupted the signal very

significantly. It is apparent from Figure 4.9b that the intricate details of

the attractor trajectories are lost owing to the high level of noise.

The noisy signals were used to train two distinct 6-6R-5R-1 networks

using the first 5000 samples in the same fashion as in the noise-free case.

The right-hand plots of Figures 4.9a and 4.9b show the attractors of the

autonomously generated Ikeda series produced by the two trained RMLP

networks. Whereas the network trained with a 25 dB SNR was able to

capture the Ikeda dynamics, the network trained with a 10 dB SNR was

unable to do so. This shows that because of the substantial amount of

noise in the 10 dB case, the network was unable to capture dynamics of the

Ikeda series. However, for the 25 dB case, the network was not only able

to capture the predictable part of the Ikeda series but also filtered the

noise. Table 4.3 displays the chaotic invariants of the original and

Figure 4.8 Iterative prediction of Ikeda series from different starting points,
corresponding to indices of N0 ¼ 3120, 10,120 and 17,120, respectively, with
pl ¼ 60. Note that A ¼ initialization, B ¼ priming phase and C ¼ auto-
nomous phase.
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reconstructed signals for both levels of noise. The addition of noise has the

effect of increasing the number of active degrees of freedom, and thus the

number of Lyapunov exponents increases in a corresponding way. The

invariants of the reconstructed signal corresponding to the 25 dB SNR

case match more closely with the original noise-free Ikeda invariants as

compared with the noisy invariants. However, for the failed reconstruction

in the 10 dB case, there is a large disagreement between the reconstructed

invariants and the actual invariants, which is to be expected. In fact, some

of the invariants could not even be calculated.

Figure 4.9 Dynamic reconstruction of the noisy Ikeda map. (a) Autono-
mous performance for Ikeda map with 25 dB SNR. (b) Autonomous perfor-
mance for Ikeda map with 10 dB SNR. Plots on the left to noisy original
signals, and those on the right to reconstructed signals.
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Evaluation of one-step prediction for the more challenging noisy cases

was also done. Table 4.4 summarizes the one-step SER results collected

over a number of distinct test cases. For example, the first column of the

table shows how a network trained with clean training data performs on

test data with various levels of noise. It is important to note that it is

difficult to achieve an SER larger than the SNR of the test data. The best

overall generalization results are obtained when the network is trained

with 25 dB SNR.

4.4.3 Lorenz Attractor

The Lorenz attractor is more challenging than the Ikeda or logistic map; it

is described by a coupled set of three nonlinear differential equations:

_xx ¼ s½ yðnÞ 	 xðnÞ
; ð4:7aÞ

_yy ¼ xðnÞ½r 	 zðnÞ
 	 yðnÞ; ð4:7bÞ

_zz ¼ xðnÞyðnÞ 	 bzðnÞ; ð4:7cÞ

where the fixed parameters r ¼ 45:92, s ¼ 16, and b ¼ 4 are used, and _xx
means the derivative of x with respect to time t. As before, a data set of

30,000 samples was generated at 40 Hz, of which the first 5000 samples

were used to train the RMLP model and the remaining 25,000 were used

for testing. For the experimental Lorenz series, an embedding dimension

of dE ¼ 3 and a delay of t ¼ 4 were calculated. An RMLP network

configuration of 3-8R-7R-1, consisting of 216 weights including the

biases, was trained with the EKF algorithm, and the convergence of the

training MSE is shown in Figure 4.10.

Open-Loop Evaluation The results shown in Figure 4.11 were

arrived at in only 10 epochs of working through the training set. The

Table 4.4 SER results for several test cases for the Ikeda series

Training noise

Testing noise Clean 25 dB SNR 10 dB SNR

Clean 36.0 27.1 16.3

25 dB SNR 14.1 18.1 14.9

10 dB SNR 1.7 5.8 6.6
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plot of one-step prediction over a portion of the test data is depicted in

Figure 4.11a. The one-step MSE over 25,000 samples of test data was

calculated to be 1:57 � 10	5, which corresponds to an SER value of

40.2 dB.

Closed-Loop Evaluation The autonomous continuation, from where

the test data end, is shown in Figure 4.11b, which demonstrates that the

network has learned the dynamics of the Lorenz attractor very well. The

iterated predictions follow the trajectory very closely for about 80 time

steps on average, and then demonstrate chaotic divergence, as expected.

This is in close agreement with the theoretical horizon of predictability of

97 calculated from the Lyapunov spectrum. A further testament to the

success of the EKF-RMLP model is that the reconstructed attractor, shown

in Figure 4.11d, is similar in shape to the attractor of the original series,

which is shown in Figure 4.11c, demonstrating that the network has

indeed captured the dynamics well. In addition, the dynamic invariants of

the original and reconstructed series are compared in Table 4.5, which

shows close agreement between their respective correlation dimension,

Lyapunov spectrum, and Kolmogorov entropy, thus indicating the strong

presence of the original dynamics in the reconstructed signal. Figure 4.12

Figure 4.10 Training MSE versus epochs for the Lorenz series.
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plots one-step predictions of the Lorenz time series for three different

starting points. The reconstruction of the Lorenz series was indeed very

robust and stable, regardless of the starting position on the test series, as

demonstrated in Figure 4.13, which shows autonomous operation starting

at indices of N0 ¼ 3042, 10,042, and 17,042, respectively.

Noisy Lorenz Series To make the problem even more challenging than

it already is, a significant level of noise was added to the clean Lorenz

series just as was done for the Ikeda map. An RMLP network architecture

was selected similar to the noise-free case, and two distinct networks were

trained using the noisy Lorenz signals with 25 dB SNR and 10 dB SNR,

respectively. The networks were trained with a learning rate of pr ¼ 0:001

for 15 epochs through the first 5000 samples, as was done for the noise-

free case. Then, both one-step prediction and autonomous prediction

results were obtained with the remaining unexposed 25,000 samples.

Figures 4.14a and 4.15b show that excellent dynamic reconstruction of the

Lorenz series was possible even in the presence of 25 dB and 10 dB SNR,

Figure 4.12 One-step prediction of Lorenz series from different starting
points. Note that A ¼ initialization and B ¼ one-step phase.
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respectively, despite the fact that the additive noise corrupts the attractors

considerably. Moreover, comparison of the dynamic invariants of the noisy

and reconstructed signals in Table 4.5 reveals that the reconstructed

signals and their invariants are reasonably close to the noise-free signal

and the iterated predictions are smoother in comparison to the noisy

signals, as shown in Figs. 4.15a and 4.15b.

It was shown earlier that dynamic reconstruction of the Ikeda map was

not possible for the case of 10 dB SNR. In order to explain this, the

normalized frequency spectra of both the Ikeda map and Lorenz series are

plotted in Figure 4.16. This figure illustrates how much more significantly

the Ikeda spectrum is corrupted by 10 dB noise as compared with the

Lorenz spectrum. Whereas the Ikeda spectrum is completely drowned at

10 dB SNR, the Lorenz spectrum is still discernible, and as such its

dynamic reconstruction was possible. Another way of explaining the

Figure 4.13 Iterative prediction of Lorenz series from different starting
points, corresponding to indices of N0 ¼ 3042, 10,042, and 17,042, respec-
tively with pl ¼ 30. Note that A ¼ initialization, B ¼ priming phase, and
C ¼ autonomous phase.
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reason for the robust behavior of the Lorenz attractor to the presence of

additive noise is to recall that the correlation dimension of the Lorenz

attractor is greater than that of the Ikeda map; see Table 4.1. Accordingly,

the Lorenz attractor is more complex than the Ikeda map – hence the

greater robustness of the Lorenz attractor to noise.

Evaluation of one-step performance for the more challenging noisy

cases was also done. Table 4.6 summarizes the one-step SER results

collected over a number of distinct test cases. For example, the first

column of the table shows how a network trained with clean training data

performs on test data with various levels of noise. The best overall

generalization results are obtained when the network is trained with

25 dB SNR.

Figure 4.14 Dynamic reconstruction of the noisy Lorenz series. (a) Autono-
mous performance for Lorenz series with 25 dB SNR. (b) Autonomous
performance for Lorenz series with 10 dB SNR. Plots on the left pertain to
the original data, and those on the right to reconstructed data.
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4.5 NONLINEAR DYNAMIC MODELING OF REAL-WORLD
TIME SERIES

4.5.1 Laser Intensity Pulsations

In the first experiment with real-world data, a series recorded from a far-

infrared laser in a chaotic state is used. This data set was provided as part

of a data package used in the Santa Fe Institute Time Series Prediction and

Analysis Competition [7]. During the time of the competition, only the

first 1000 samples were provided, and the goal was to predict the following

Figure 4.15 Iterative prediction of noisy Lorenz series with (a) 25 dB and (b)
10 dB SNR. Note that A ¼ initialization, B ¼ priming phase and C ¼ auto-
nomous phase.
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100 samples as accurately as possible. Now, however, the full data set

consisting of 10,000 samples is available. The first 1100 samples are

plotted in Figure 4.17. The data consist of high-frequency pulsations,

which gradually rise in amplitude and suddenly collapse from a high to

low amplitude. The rapid decays of oscillations in this data set occur with

no periodicity, and are a challenge to model. During these collapses, the

Figure 4.16 Lorenz and Ikeda series: normalized frequency spectra.

Table 4.6 SER results for several test cases for the Lorenz series

Training noise

Testing noise Clean 25 dB SNR 10 dB SNR

Clean 40.2 30.5 36.8

25 dB SNR 17.8 23.1 17.2

10 dB SNR 3.5 9.3 3.8
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signal abruptly jumps from one region of the attractor to another distinct

region, and these transitions are the most difficult parts of this series to

model.

To remain consistent with what was done in the SFI competition, only

the first 1000 samples were presented to the network, while the remaining

9000 samples of data were reserved for testing purposes and not shown to

the network. The optimal embedding delay was found to be t ¼ 2 and the

embedding dimension to be dE ¼ 9. A network architecture of 9-10R-8R-

1, consisting of 361 weights including the biases, was used to model this

data. The network was trained through the first 1000 points for 50 epochs.

Open-Loop Evaluation The network makes excellent one-step

predictions as shown in Figure 4.18a, with very low prediction errors in

most regions. The accuracy of prediction drops slightly during the sudden

signal collapses, but then increases quickly as the network adapts. The

SER value for the one-step prediction performance on the unexposed 9000

samples of the test set was calculated to be 26.05 dB.

Closed-Loop Evaluation The iterated predictions of the network are

also very remarkable. The autonomous continuation from sample 1000,

where the training data end, is shown in Figure 4.18b. This was achieved

by first initializing the network with a delay vector, consisting of 9 taps,

each spaced 2 samples apart, from the beginning of the training set and

then priming for pl ¼ 982 steps, after which the network operates in an

autonomous mode. Since the network was initialized with the first samples

of the actual data, autonomous operation does not begin until the point

ð9 � 2Þ þ 982 ¼ 1000, as shown in Figure 4.19. The autonomous output

of the network closely follows the original series for about 60 steps (which

is higher than the average horizon of predictability of 26 calculated from

the Lyapunov spectrum) after which it begins to diverge. Figure 4.20

shows the one-step prediction of the laser time series with three different

starting points.

Figure 4.17 First 1100 samples of original laser series.
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Figure 4.21 shows that the network is capable of stable and robust

reconstruction even when it is initialized from different starting points on

the test set, corresponding to indices of N0 ¼ 48, 1048, and 4048,

respectively. Note that the network has not seen this data set before, and

is still able to predict the signal collapses up to an impressive degree of

accuracy. Figure 4.22, which shows the 9000-sample iterated output of the

network, demonstrates that the chaotic pulsations have been learned by the

Figure 4.19 Iterated prediction of the laser data beginning at sample 1000,
using pl ¼ 982. Note that A ¼ initialization, B ¼ priming phase, and C¼

autonomous phase. Phase C is enlarged in Figure 4.18b.

Figure 4.20 One-step prediction of laser series with different starting points.
Note that A ¼ initialization and B ¼ one-step phase.
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network from just the first 1000 samples. The attractor of the original

series is plotted in Figure 4.18c using the actual laser data. The attractor in

Figure 4.18d is plotted using the reconstructed points as produced by the

trained RMLP network. It is clear from the attractor of the reconstructed

signal that the dynamics of the laser data has been faithfully captured by

the EKF trained RMLP network. Table 4.7 shows that the correlation

dimension, Lyapunov exponents, and Kolmogorov entropy of the recon-

structed signal are in close agreement with those obtained from the

original data, thus indicating a faithful reconstruction of the original

dynamics. The correlation dimension of NH3 laser pulsations calculated

here is consistent with what is reported by Hubner et al. [8].

Longer Training Length In another experiment, the same-sized

network was trained on the first 5000 points, as compared with the first

1000 used above. The iterated output produced by the network is shown

in Figure 4.23. Since the network was exposed to more of the signal

Figure 4.21 Iterative prediction of laser series from different starting points,
corresponding to indices of N0 ¼ 48, 1048, and 4048, respectively, with
pl ¼ 30. Note that A ¼ initialization, B ¼ printing phase, and C ¼ auto-
nomous phase.

4.5 NONLINEAR DYNAMIC MODELING 111



Figure 4.22 9000 samples of iterated output of the RMLP trained on the first
1000 samples.

Table 4.7 Comparison of chaotic invariants of laser series

l1 l2 l3 KELE KEML

HOP

Time series dE t dL DML DKY (nats=sample) (nats=sample) (samples)

Actual laser 9 2 3 2.01 2.19 0.147 	0.039 	0.547 0.147 0.195 26

Reconstructed 9 2 3 1.90 2.13 0.115 	0.037 	0.602 0.115 0.133 34

Figure 4.23 9000 samples of iterated output of the RMLP trained on the first
5000 samples.

Figure 4.24 Last 9000 samples of the actual laser series.
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dynamics, in this case, the iterated output of the network demonstrates

more frequent chaotic collapses and is closer in appearance to the actual

signal shown in Figure 4.24.

4.5.2 Sea Clutter Data

Sea clutter, or sea echo, refers to the radar backscatter from an ocean

surface. Radars operating in a maritime environment have a serious

limitation imposed on their performance by unwanted sea clutter. There-

fore, a problem of fundamental interest in the radar literature is the

modeling of sea clutter to design optimum target detectors.

For many years, clutter echoes in radar systems were modeled as a

stochastic process. However, in recent years, some researchers have

concluded that the generation of sea clutter is governed by deterministic

chaos [9 – 13]. These claims, in varying degrees, have been largely based

on the estimation of chaotic invariants of sea clutter, namely, the correla-

tion dimension, Lyapunov exponents, Kaplan-Yorke dimension, and the

Kolmogorov entropy, the latter two are derived from the Lyapunov

exponents. But, recently, serious concerns have been raised on the

discriminative power of the state-of-the-art algorithms currently available

for distinguishing between sea clutter and different forms of surrogate data

derived from the original data; the surrogate data are known to be

stochastic by purposely introducing randomization into their generation.

By estimating the correlation dimension and Lyapunov exponents, it is

found that there is little difference between the chaotic invariants of sea

clutter and those of their surrogate counterparts [14, 15], which casts doubt

on deterministic chaos being the nonlinear dynamical model foe sea clutter.

In [14], it is pointed out physical realities dictate the presence of noise

not just in the measurement equation (owing to instrument errors) but also

in the process equation (owing to the rate of variability of the forces

affecting the ocean dynamics). According to Sugihara [16], there is

unavoidable practical difficulty in disentangling the process noise from

the measurement noise when we try to reconstruct an invariant measure

such as the Lyapunov exponents. This may explain the reason for the

inability of chaotic-invariant estimation algorithms to distinguish between

sea clutter and its surrogates.

Our primary interest in this chapter is in dynamic reconstruction. In this

context, we may raise the following question: Can the EKF-RMLP be

configured to perform dynamic reconstruction on sea clutter in a robust

manner? In what follows, an attempt to answer this question is presented;
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the answer has bearing on whether sea clutter is chaotic or not. Figure 4.25

shows the in-phase component of typical sea clutter, recorded by an

instrument-quality radar on the East Coast of Canada, with the radar

operating in a dwelling mode at a low grazing angle. The data consist of

50,000 samples, of which the first 40,000 are used for network training,

while the remaining 10,000 samples are reserved for testing. An embed-

ding dimension of dE ¼ 6 and embedding delay of t ¼ 10 were calculated

for sea clutter.

Open-Loop Evaluation The results for the modeling of sea clutter by

the EKF-RMLP method are shown in Figure 4.26. A 6-8R-7R-1 network

trained with pr ¼ 0:5 was used. The SER over the unexposed 10,000 test

samples was found to be 36.65 dB, which is certainly impressive, since in

the EKF-RMLP based method presented here, the synaptic weights

remain fixed after the training was completed.

Closed-Loop Evaluation The iterated continuation from where the

training data end, corresponding to an index of N0 ¼ 0, is shown in Figure

Figure 4.25 In-phase component of typical sea-clutter data.
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4.26b. Observe that the prediction is close to the actual data for roughly

less than 10 steps (which is significantly less than the average theoretical

horizon of predictability of 17 calculated from the Lyapunov spectrum),

after which it diverges into a distinct trajectory of its own. The network,

when iterated in this fashion for several thousand steps, produces an

output whose attractor is plotted in Figure 4.26d. It is difficult to compare

the reconstructed attractor with the original attractor in Figure 4.26c

because we are looking at a five-dimensional attractor in three dimensions.

Since it is impossible to plot attractors in five dimensions, we may

determine the success of dynamic reconstruction by a numerical compar-

ison of the dynamic invariants of the reconstructed signal with those of the

actual signal. As shown in Table 4.8, the Lyapunov exponents of the

reconstructed signal are in close agreement with those obtained from the

actual data. In addition, the correlation dimension and Kolmogorov

entropy of both signals are also close, except for the slightly lower than

expected value of DML for the reconstructed signal. Furthermore, DKY and

Figure 4.27 One-step prediction of sea clutter from different starting points.
Note that A ¼ initialization and B ¼ one-step mode of operation.
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KELE are close to DML and KEML, respectively. Figure 4.27 plots one-step

predictions of sea clutter for three different starting points.

Stability and Robustness Furthermore, the more difficult case of

autonomous prediction from different starting points chosen from the test

data is shown in Figure 4.28. This shows that stable reconstruction is also

possible from indices of N0 ¼ 5160, 6160, and 7160 on the test data. The

dynamic invariants calculated from signals reconstructed at these indices

are in close agreement with the actual Table 4.8. Again, there seems to be

a slight disagreement in the values of DML.

This shows that the EKF-RMLP scheme was able to reconstruct sea-

clutter dynamics on several occasions in a reasonable manner, depending

on the data used. However, it is important to point out that robust

reconstruction was not possible from all initialization points – for this

and other types of networks used. The different types of reconstruction

Figure 4.28 Iterative prediction of sea clutter from different starting points,
corresponding to indices of N0 ¼ 5160, 6160, and 7160, respectively, with
pl ¼ 100. Note that A ¼ initialization, B ¼ priming phase, and C ¼ auto-
nomous phase.
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failures encountered are illustrated in Figure 4.29. In the first type of

reconstruction failure, the output becomes constant after a few steps. In

other words, the output behaves as a fixed-point attractor. In the second

type of failure, the output becomes periodic after a few time steps. In the

third type of failure, the output breaks down after a few steps of good

prediction. How do we explain the reconstruction failures of Figure 4.29?

Dynamic reconstruction, in accordance with Taken’s embedding theorem

tolerates a moderate level of measurement noise, but the process equation

has to be noise-free. The presence of dynamical noise in the process

equation is therefore in violation of Taken’s theorem — hence the

difficulty in devising a robust dynamic reconstruction system for sea

clutter.

4.6 DISCUSSION

Takens’ theorem provides the theoretical basis for an experimental

approach for the autoregressive modeling of a nonlinear dynamical

system. Specifically, the state evolution of the system with a d-dimen-

sional state space can be reconstructed by observing 2d þ 1 time lags of a

single output of the system for an arbitrary delay. The theorem requires

that the observable time series be noiseless and of infinite length.

Unfortunately, neither of these two conditions can be satisfied in practice.

To mitigate these difficulties, the recommended procedure is to do the

following:

� Use an ‘‘optimum’’ time delay for the delay coordinate method, for

which the adjacent samples are as statistically independent as

practically possible.

For the experimental study presented here, we minimized the mutual

information between the observable time series and its delayed version as

the basis for estimating the optimum time delay.

In this chapter, we have presented experimental results demonstrating

the ability of the EKF-RMLP scheme to reconstruct the dynamics of

chaotic processes in accordance with Takens’ embedding theorem. The

results presented for (1) the numerically generated logistic map, Ikeda

map, and Lorenz attractor, and (2) the experimentally generated laser

pulsations are indeed remarkable in that the reconstructed data closely

match all the important chaotic characteristics of the original time series.

Moreover, the dynamic reconstruction performed here is not only stable

4.6 DISCUSSION 119



120 4 CHAOTIC DYNAMICS



but also robust with respect to the choice of initial conditions and the

presence of additive noise.

The results of this study also show that dynamic reconstruction of sea

clutter is possible using the EKF-RMLP-based method depending on the

data set used, but unfortunately as the results obtained with the EKF-MLP

method were prone to numerous failures and therefore not as robust as one

would expect from a good model. The results of this study clearly

demonstrate that the dynamics of sea clutter is difficult to reconstruct.

We attribute the difficulty to the unavoidable presence of dynamical noise

in the process equation.
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DUAL EXTENDED KALMAN
FILTER METHODS

Eric A. Wan and Alex T. Nelson
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5.1 INTRODUCTION

The Extended Kalman Filter (EKF) provides an efficient method for

generating approximate maximum-likelihood estimates of the state of a

discrete-time nonlinear dynamical system (see Chapter 1). The filter

involves a recursive procedure to optimally combine noisy observations

with predictions from the known dynamic model. A second use of the

EKF involves estimating the parameters of a model (e.g., neural network)

given clean training data of input and output data (see Chapter 2). In this

case, the EKF represents a modified-Newton type of algorithm for on-line

system identification. In this chapter, we consider the dual estimation

problem, in which both the states of the dynamical system and its

parameters are estimated simultaneously, given only noisy observations.
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To be more specific, we consider the problem of learning both the

hidden states xk and parameters w of a discrete-time nonlinear dynamical

system,

xkþ1 ¼ Fðxk;uk;wÞ þ vk;

yk ¼ Hðxk;wÞ þ nk;
ð5:1Þ

where both the system states xk and the set of model parameters w for the

dynamical system must be simultaneously estimated from only the

observed noisy signal yk . The process noise vk drives the dynamical

system, observation noise is given by nk, and uk corresponds to observed

exogenous inputs. The model structure, Fð�Þ and Hð�Þ, may represent

multilayer neural networks, in which case w are the weights.

The problem of dual estimation can be motivated either from the need

for a model to estimate the signal or (in other applications) from the need

for good signal estimates to estimate the model. In general, applications

can be divided into the tasks of modeling, estimation, and prediction. In

estimation, all noisy data up to the current time is used to approximate the

current value of the clean state. Prediction is concerned with using all

available data to approximate a future value of the clean state. Modeling

(sometimes referred to as identification) is the process of approximating

the underlying dynamics that generated the states, again given only the

noisy observations. Specific applications may include noise reduction

(e.g., speech or image enhancement), or prediction of financial and

economic time series. Alternatively, the model may correspond to the

explicit equations derived from first principles of a robotic or vehicle

system. In this case, w corresponds to a set of unknown parameters.

Applications include adaptive control, where parameters are used in the

design process and the estimated states are used for feedback.

Heuristically, dual estimation methods work by alternating between

using the model to estimate the signal, and using the signal to estimate the

model. This process may be either iterative or sequential. Iterative

schemes work by repeatedly estimating the signal using the current

model and all available data, and then estimating the model using the

estimates and all the data (see Fig. 5.1a). Iterative schemes are necessarily

restricted to off-line applications, where a batch of data has been

previously collected for processing. In contrast, sequential approaches

use each individual measurement as soon as it becomes available to update

both the signal and model estimates. This characteristic makes these

algorithms useful in either on-line or off-line applications (see Fig. 5.1b).
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The vast majority of work on dual estimation has been for linear

models. In fact, one of the first applications of the EKF combines both the

state vector xk and unknown parameters w in a joint bilinear state-space

representation. An EKF is then applied to the resulting nonlinear estima-

tion problem [1, 2]; we refer to this approach as the joint extended Kalman

filter. Additional improvements and analysis of this approach are provided

in [3, 4]. An alternative approach, proposed in [5], uses two separate

Kalman filters: one for signal estimation, and another for model estima-

tion. The signal filter uses the current estimate of w, and the weight filter

uses the signal estimates x̂xk to minimize a prediction error cost. In [6], this

dual Kalman approach is placed in a general family of recursive prediction

error algorithms. Apart from these sequential approaches, some iterative

methods developed for linear models include maximum-likelihood

approaches [7–9] and expectation-maximization (EM) algorithms [10–

13]. These algorithms are suitable only for off-line applications, although

sequential EM methods have been suggested.

Fewer papers have appeared in the literature that are explicitly

concerned with dual estimation for nonlinear models. One algorithm

(proposed in [14]) alternates between applying a robust form of the

Figure 5.1 Two approaches to the dual estimation problem. (a ) Iterative
approaches use large blocks of data repeatedly. (b) Sequential ap-
proaches are designed to pass over the data one point at a time.
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EKF to estimate the time-series and using these estimates to train a neural

network via gradient descent. A joint EKF is used in [15] to model

partially unknown dynamics in a model reference adaptive control frame-

work. Furthermore, iterative EM approaches to the dual estimation

problem have been investigated for radial basis function networks [16]

and other nonlinear models [17]; see also Chapter 6. Errors-in-variables

(EIV) models appear in the nonlinear statistical regression literature [18],

and are used for regressing on variables related by a nonlinear function,

but measured with some error. However, errors-in-variables is an iterative

approach involving batch computation; it tends not to be practical for

dynamical systems because the computational requirements increase in

proportion to N2, where N is the length of the data. A heuristic method

known as Clearning minimizes a simplified approximation to the EIV cost

function. While it allows for sequential estimation, the simplification can

lead to severely biased results [19]. The dual EKF [19] is a nonlinear

extension of the linear dual Kalman approach of [5], and recursive

prediction error algorithm of [6]. Application of the algorithm to speech

enhancement appears in [20], while extensions to other cost functions

have been developed in [21] and [22]. The crucial, but often overlooked

issue of sequential variance estimation is also addressed in [22].

Overview The goal of this chapter is to present a unified probabilistic

and algorithmic framework for nonlinear dual estimation methods. In the

next section, we start with the basic dual EKF prediction error method.

This approach is the most intuitive, and involves simply running two EKF

filters in parallel. The section also provides a quick review of the EKF for

both state and weight estimation, and introduces some of the complica-

tions in coupling the two. An example in noisy time-series prediction is

also given. In Section 5.3, we develop a general probabilistic framework

for dual estimation. This allows us to relate the various methods that have

been presented in the literature, and also provides a general algorithmic

approach leading to a number of different dual EKF algorithms. Results on

additional example data sets are presented in Section 5.5.

5.2 DUAL EKF–PREDICTION ERROR

In this section, we present the basic dual EKF prediction error algorithm.

For completeness, we start with a quick review of the EKF for state

estimation, followed by a review of EKF weight estimation (see Chapters
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1 and 2 for more details). We then discuss coupling the state and weight

filters to form the dual EKF algorithm.

5.2.1 EKF–State Estimation

For a linear state-space system with known model and Gaussian noise, the

Kalman filter [23] generates optimal estimates and predictions of the state

xk . Essentially, the filter recursively updates the (posterior) mean x̂xk and

covariance Pxk
of the state by combining the predicted mean x̂x�

k and

covariance P�
xk

with the current noisy measurement yk . These estimates are

optimal in both the MMSE and MAP senses. Maximum-likelihood signal

estimates are obtained by letting the initial covariance Px0
approach

infinity, thus causing the filter to ignore the value of the initial state x̂x0.

For nonlinear systems, the extended Kalman filter provides approxi-

mate maximum-likelihood estimates. The mean and covariance of the state

are again recursively updated; however, a first-order linearization of the

dynamics is necessary in order to analytically propagate the Gaussian

random-variable representation. Effectively, the nonlinear dynamics are

approximated by a time-varying linear system, and the linear Kalman

filters equations are applied. The full set of equations are given in Table

5.1. While there are more accurate methods for dealing with the nonlinear

dynamics (e.g., particle filters [24, 25], second-order EKF, etc.), the

standard EKF remains the most popular approach owing to its simplicity.

Chapter 7 investigates the use of the unscented Kalman filter as a

potentially superior alternative to the EKF [26–29].

Another interpretation of Kalman filtering is that of an optimization

algorithm that recursively determines the state xk in order to minimize a

cost function. It can be shown that the cost function consists of a weighted

prediction error and estimation error components given by

J ðxk
1Þ ¼

Pk
t¼1

½yt � Hðxt;wÞ�
T
ðRnÞ

�1
½yt � Hðxt;wÞ�

�
þ ðxt � x�t Þ

T
ðRvÞ

�1
ðxt � x�

t Þg ð5:10Þ

where x�t ¼ Fðxt�1;wÞ is the predicted state, and Rn and Rv are the

additive noise and innovations noise covariances, respectively. This inter-

pretation will be useful when dealing with alternate forms of the dual EKF

in Section 5.3.3.
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5.2.2 EKF–Weight Estimation

As proposed initially in [30], and further developed in [31] and [32], the

EKF can also be used for estimating the parameters of nonlinear models

(i.e., training neural networks) from clean data. Consider the general

problem of learning a mapping using a parameterized nonlinear function

Gðxk;wÞ. Typically, a training set is provided with sample pairs consisting

of known input and desired output, fxk; dkg. The error in the model is

defined as ek ¼ dk � Gðxk;wÞ, and the goal of learning involves solving

for the parameters w in order to minimize the expected squared error. The

EKF may be used to estimate the parameters by writing a new state-space

representation

wkþ1 ¼ wk þ rk; ð5:11Þ

dk ¼ Gðxk;wkÞ þ ek; ð5:12Þ

where the parameters wk correspond to a stationary process with identity

state transition matrix, driven by process noise rk . The output dk

Table 5.1 Extended Kalman filter (EKF) equations

Initialize with:

x̂x0 ¼ E½x0�; ð5:2Þ

Px0
¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ

T
�: ð5:3Þ

For k 2 1; . . . ;1gf , the time-update equations of the extended Kalman filter are

x̂x�
k ¼ Fðx̂xk�1; uk;wÞ; ð5:4Þ

P�
xk
¼ Ak�1Pxk�1

AT
k�1 þ Rv; ð5:5Þ

and the measurement-update equations are

Kx
k ¼ P�

xk
CT

k ðCkP�
xk

CT
k þ RnÞ

�1; ð5:6Þ

x̂xk ¼ x̂x�
k þ Kx

k ½yk � Hðx̂x�
k ;wÞ�; ð5:7Þ

Pxk
¼ ðI � Kx

kCkÞP
�
xk
; ð5:8Þ

where

Ak ¼
D @Fðx; uk;wÞ

@x

����
x̂xk

; Ck ¼
D @Hðx;wÞ

@x

����
x̂xk

; ð5:9Þ

and where Rv and Rn are the covariances of vk and nk, respectively.
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corresponds to a nonlinear observation on wk . The EKF can then be

applied directly, with the equations given in Table 5.2. In the linear case,

the relationship between the Kalman filter (KF) and the popular recursive

least-squares (RLS) is given [33] and [34]. In the nonlinear case, the EKF

training corresponds to a modified-Newton optimization method [22].

As an optimization approach, the EKF minimizes the prediction error

cost:

J ðwÞ ¼
Pk
t¼1

½dt � Gðxt;wÞ�
T
ðReÞ

�1
½dt � Gðxt;wÞ�: ð5:21Þ

If the ‘‘noise’’ covariance Re is a constant diagonal matrix, then, in fact, it

cancels out of the algorithm (this can be shown explicitly), and hence can

be set arbitrarily (e.g., Re ¼ 0:5I). Alternatively, Re can be set to specify a

weighted MSE cost. The innovations covariance E½rkrT
k � ¼ Rr

k , on the

other hand, affects the convergence rate and tracking performance.

Roughly speaking, the larger the covariance, the more quickly older

data are discarded. There are several options on how to choose Rr
k :


 Set Rr
k to an arbitrary diagonal value, and anneal this towards zeroes

as training continues.

Table 5.2 The extended Kalman weight filter equations

Initialize with:

ŵw0 ¼ E½w� ð5:13Þ

Pw0
¼ E½ðw � ŵw0Þðw � ŵw0Þ

T
� ð5:14Þ

For k 2 1; . . . ;1f g, the time update equations of the Kalman filter are:

ŵw�
k ¼ ŵwk�1 ð5:15Þ

P�
wk

¼ Pwk�1
þ Rr

k�1 ð5:16Þ

and the measurement update equations:

Kw
k ¼ P�

wk
ðCw

k Þ
T
ðCw

k P�
wk
ðCw

k Þ
T
þ ReÞ

�1
ð5:17Þ

ŵwk ¼ ŵw�
k þ Kw

k ðdk � Gðŵw�
k ; xk�1ÞÞ ð5:18Þ

Pwk
¼ ðI � Kw

k Cw
k ÞP

�
wk
: ð5:19Þ

where

Cw
k ¼

D @Gðxk�1;wÞ
T

@w

����
w¼ŵw�

k

ð5:20Þ
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 Set Rr
k ¼ ðl�1

� 1ÞPwk
, where l 2 ð0; 1� is often referred to as the

‘‘forgetting factor.’’ This provides for an approximate exponentially

decaying weighting on past data and is described more fully in [22].


 Set Rr
k ¼ ð1 � aÞRr

k�1 þ aKw
k ½dk � Gðxk; ŵwÞ�½dk�Gðxk; ŵwÞ�

T
ðKw

k Þ
T ,

which is a Robbins–Monro stochastic approximation scheme for

estimating the innovations [6]. The method assumes that the covari-

ance of the Kalman update model is consistent with the actual update

model.

Typically, Rr
k is also constrained to be a diagonal matrix, which implies an

independence assumption on the parameters.

Study of the various trade-offs between these different approaches is

still an area of open research. For the experiments performed in this

chapter, the forgetting factor approach is used.

Returning to the dynamic system of Eq. (5.1), the EKF weight filter can

be used to estimate the model parameters for either F or H. To learn the

state dynamics, we simply make the substitutions G ! F and dk ! xkþ1.

To learn the measurement function, we make the substitutions G ! H

and dk ! yk . Note that for both cases, it is assumed that the noise-free

state xk is available for training.

5.2.3 Dual Estimation

When the clean state is not available, a dual estimation approach is

required. In this section, we introduce the basic dual EKF algorithm,

which combines the Kalman state and weight filters. Recall that the task is

to estimate both the state and model from only noisy observations.

Essentially, two EKFs are run concurrently. At every time step, an EKF

state filter estimates the state using the current model estimate ŵwk , while

the EKF weight filter estimates the weights using the current state estimate

x̂xk . The system is shown schematically in Figure 5.2. In order to simplify

the presentation of the equations, we consider the slightly less general

state-space model:

xkþ1 ¼ Fðxk;uk;wÞ þ vk; ð5:22Þ

yk ¼ Cxk þ nk; C ¼ ½1 0 . . . 0�; ð5:23Þ

in which we take the scalar observation yk to be one of the states. Thus, we

only need to consider estimating the parameters associated with a single
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nonlinear function F. The dual EKF equations for this system are

presented in Table 5.3. Note that for clarity, we have specified the

equations for the additive white-noise case. The case of colored measure-

ment noise nk is treated in Appendix B.

Recurrent Derivative Computation While the dual EKF equations

appear to be a simple concatenation of the previous state and weight EKF

equations, there is actually a necessary modification of the linearization

Cw
k ¼ C@x̂x�

k =@ŵw�
k associated with the weight filter. This is due to the fact

that the signal filter, whose parameters are being estimated by the weight

filter, has a recurrent architecture, i.e., x̂xk is a function of x̂xk�1, and both

are functions of w.1 Thus, the linearization must be computed using

recurrent derivatives with a routine similar to real-time recurrent learning

xk-1 Measurement
Update EKFx

Measurement
Update EKFw

x xk

yk

k

www kk-1

Time Update EKFx

Time Update EKFw

(measurement)

k

−

−

∧ ∧ ∧

∧∧∧

Figure 5.2 The dual extended Kalman filter. The algorithm consists of two
EKFs that run concurrently. The top EKF generates state estimates, and
requires ŵwk�1 for the time update. The bottom EKF generates weight
estimates, and requires x̂xk�1 for the measurement update.

1 Note that a linearization is also required for the state EKF, but this derivative,

@Fðx̂xk�1; ŵw�
k Þ=@x̂xk�1, can be computed with a simple technique (such as backpropagation)

because ŵw�
k is not itself a function of x̂xk�1.
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(RTRL) [35]. Taking the derivative of the signal filter equations results in

the following system of recursive equations:

@x̂x�
kþ1

@ŵw
¼

@Fðx̂x; ŵwÞ

@x̂xk

@x̂xk

@ŵw
þ
@Fðx̂x; ŵwÞ

@ŵwk

; ð5:35Þ

@x̂xk

@ŵw
¼ ðI � Kx

kCÞ
@x̂x�

k

@ŵw
þ
@Kx

k

@ŵw
ðyk � Cx̂x�k Þ; ð5:36Þ

Table 5.3 The dual extended Kalman filter equations. The definitions of k

and Cw
k depend on the particular form of the weight filter being used. See

the text for details

Initialize with:

ŵw0 ¼ E½w�; Pw0
¼ E½ðw � ŵw0Þðw � ŵw0Þ

T
�;

x̂x0 ¼ E½x0�; Px0
¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ

T
�:

For k 2 1; . . . ;1gf , the time-update equations for the weight filter are

ŵw�
k ¼ ŵwk�1; ð5:24Þ

P�
wk

¼ Pwk�1
þ Rr

k�1 ¼ l�1Pwk�1
; ð5:25Þ

and those for the state filter are

x̂x�
k ¼ Fðx̂xk�1uk ; ŵw�

k Þ; ð5:26Þ

P�
xk
¼ Ak�1Pxk�1

AT
k�1 þ Rv: ð5:27Þ

The measurement-update equations for the state filter are

Kx
k ¼ P�

xk
CT

ðCP�
xk

CT
þ RnÞ

�1; ð5:28Þ

x̂xk ¼ x̂x�
k þ Kx

kðyk � Cx̂x�
k Þ; ð5:29Þ

Pxk
¼ ðI � Kx

kCÞP�
xk
; ð5:30Þ

and those for the weight filter are

Kw
k ¼ P�

wk
ðCw

k Þ
T
½Cw

k P�
wk
ðCw

k Þ
T
þ Re�

�1; ð5:31Þ

ŵwk ¼ ŵw�
k þ Kw

k �

where

Ak�1 ¼
D @Fðx; ŵw�

k Þ

@x

����
x̂xk�1

; k ¼ ðyk � Cx̂x�
k Þ; Cw

k ¼
D
�
@ k

@w
¼ C

@x̂x�
k

@w

����
w¼ŵw�

k

:

ð5:34Þ
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where @Fðx̂x; ŵwÞ=@x̂xk and @Fðx̂x; ŵwÞ=@ŵwk are evaluated at ŵwk and contain

static linearizations of the nonlinear function.

The last term in Eq. (5.36) may be dropped if we assume that the

Kalman gain Kx
k is independent of w. Although this greatly simplifies the

algorithm, the exact computation of @Kx
k=@ŵw may be computed, as shown

in Appendix A. Whether the computational expense in calculating the

recursive derivatives (especially that of calculating @Kx
k=@ŵw) is worth the

improvement in performance is clearly a design issue. Experimentally,

the recursive derivatives appear to be more critical when the signal is

highly nonlinear, or is corrupted by a high level of noise.

Example As an example application, consider the noisy time-series

fxkg
N
1 generated by a nonlinear autoregression:

xk ¼ f ðxk�1; . . . xk�M ;wÞ þ vk;

yk ¼ xk þ nk 8k 2 f1; . . . ;Ng:
ð5:37Þ

The observations of the series yk contain measurement noise nk in addition

to the signal. The dual EKF requires reformulating this model into a state-

space representation. One such representation is given by

xk ¼ Fðxk�1;wÞ þ Bvk; ð5:38Þ

xk

xk�1

..

.

xk�Mþ1

2
66664

3
77775 ¼

f ðxk�1; . . . ; xk�M ;wÞ

1 0 0 0

0 . .
.

0 ..
.

0 0 1 0

2
64

3
75 �

xk�1

..

.

xk�M

2
664

3
775

2
66664

3
77775þ

1

0

..

.

0

2
66664

3
77775vk;

yk ¼ Cxk þ nk;

¼ ½1 0 . . . 0�xk þ nk; ð5:39Þ

where the state xk is chosen to be lagged values of the time series, and the

state transition function Fð�Þ has its first element given by f ð�Þ, with the

remaining elements corresponding to shifted values of the previous state.

The results of a controlled time-series experiment are shown in Figure

5.3. The clean signal, shown by the thin curve in Figure 5.3a, is generated

by a neural network (10-5-1) with chaotic dynamics, driven by white

Gaussian-process noise (s2
v ¼ 0:36). Colored noise generated by a linear

autoregressive model is added at 3 dB signal-to-noise ratio (SNR) to

produce the noisy data indicated by þ symbols. Figure 5.3b shows the
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Figure 5.3 The dual EKF estimate (heavy curve) of a signal generated by a
neural network (thin curve) and corrupted by adding colored noise at 3 dB
(þ). For clarity, the last 150 points of a 20,000-point series are shown. Only the
noisy data are available: both the signal and weights are estimated by the
dual EKF. (a ) Clean neural network signal and noisy measurements. (b) Dual
EKF estimates versus EKF estimates. (c ) Estimates with full and static deriva-
tives. (d ) MSE profiles of EKF versus dual EKF.
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time series estimated by the dual EKF. The algorithm estimates both the

clean time series and the neural network weights. The algorithm is run

sequentially over 20,000 points of data; for clarity, only the last 150 points

are shown. For comparison, the estimates using an EKF with the known

neural network model are also shown. The MSE for the dual EKF,

computed over the final 1000 points of the series, is 0.2171, whereas

the EKF produces an MSE of 0.2153, indicating that the dual algorithm

has successfully learned both the model and the states estimates.2

Figure 5.3c shows the estimate when the static approximation to

recursive derivatives is used. In this example, this static derivative actually

provides a slight advantage, with an MSE of 0.2122. The difference,

however, is not statistically significant. Finally, Figure 5.3d assesses the

convergence behavior of the algorithm. The mean-squared error (MSE) is

computed over 500 point segments of the time series at 50 point intervals

to produce the MSE profile (dashed line). For comparison, the solid line is

the MSE profile of the EKF signal estimation algorithm, which uses the

true neural network model. The dual EKF appears to converge to the

optimal solution after only about 2000 points.

5.3 A PROBABILISTIC PERSPECTIVE

In this section, we present a unified framework for dual estimation. We

start by developing a probabilistic perspective, which leads to a number of

possible cost functions that can be used in the estimation process. Various

approaches in the literature, which may differ in their actual optimization

procedure, can then be related based on the underlying cost function. We

then show how a Kalman-based optimization procedure can be used to

provide a common algorithmic framework for minimizing each of the cost

functions.

MAP Estimation Dual estimation can be cast as a maximum a poster-

iori (MAP) solution. The statistical information contained in the sequence

of data fykg
N
1 about the signal and parameters is embodied by the joint

conditional probability density of the sequence of states fxkg
N
1 and weights

2 A surprising result is that the dual EKF sometimes actually outperforms the EKF, even

though the EKF appears to have an unfair advantage of knowing the true model. Our

explanation is that the EKF, even with the known model, is still an approximate estimation

algorithm. While the dual EKF also learns an approximate model, this model can actually

be better matched to the state estimation approximation.
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w, given the noisy data fykg
N
1 . For notational convenience, define the

column vectors xN
1 and yN

1 , with elements from fxkg
N
1 and fykg

N
1 ,

respectively. The joint conditional density function is written as

rxN
1

wjyN
1
ðX ¼ xN

1 ; W ¼ wjY ¼ yN
1 Þ; ð5:40Þ

where X, Y, and W are the vectors of random variables associated with

xN
1 , yN

1 , and w, respectively. This joint density is abbreviated as rxN
1

wjyN
1
.

The MAP estimation approach consists of determining instances of the

states and weights that maximize this conditional density. For Gaussian

distributions, the MAP estimate also corresponds to the minimum mean-

squared error (MMSE) estimator. More generally, as long as the density is

unimodal and symmetric around the mean, the MAP estimate provides the

Bayes estimate for a broad class of loss functions [36].

Taking MAP as the starting point allows dual estimation approaches to

be divided into two basic classes. The first, referred to here as joint

estimation methods, attempt to maximize rxN
1

wjyN
1

directly. We can write

this optimization problem explicitly as

ðx̂xN
1 ; ŵwÞ ¼ arg max

xN
1
;w
rxN

1
wjyN

1
: ð5:41Þ

The second class of methods, which will be referred to as marginal

estimation methods, operate by expanding the joint density as

rxN
1

wjyN
1
¼ rxN

1
jwyN

1
rwjyN

1
ð5:42Þ

and maximizing the two terms separately, that is,

x̂xN
1 ¼ arg max

xN
1

rxN
1
jwyN

1
; ŵw ¼ arg max

w
rwjyN

1
: ð5:43Þ

The cost functions associated with joint and marginal approaches will be

discussed in the following sections.
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5.3.1 Joint Estimation Methods

Using Bayes’ rule, the joint conditional density can be expressed as

rxN
1

wjyN
1
¼

ryN
1
jxN

1
wrxN

1
w

ryN
1

¼
ryN

1
jxN

1
wrxN

1
jwrw

ryN
1

: ð5:44Þ

Although fykg
N
1 is statistically dependent on fxkg

N
1 and w, the prior ryN

1
is

nonetheless functionally independent of fxkg
N
1 and w. Therefore, rxN

1
wjyN

1

can be maximized by maximizing the terms in the numerator alone.

Furthermore, if no prior information is available on the weights, rw can be

dropped, leaving the maximization of

ryN
1

xN
1
jw ¼ ryN

1
jxN

1
wrxN

1
jw ð5:45Þ

with respect to fxkg
N
1 and w.

To derive the corresponding cost function, we assume vk and nk are

both zero-mean white Gaussian noise processes. It can then be shown (see

[22]), that

ryN
1

xN
1
jw ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN ðs2

nÞ
N

q exp �
PN
k¼1

ðyk � CxkÞ
2

2s2
n

" #

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞN jRvjN
q exp �

PN
k¼1

1

2
ðxk � x�

k Þ
T
ðRvÞ

�1
ðxk � x�k Þ

� �
;

ð5:46Þ

where

x�
k ¼

D
E½xk jfxtg

k�1
1 ;w� ¼ Fðxk�1;wÞ: ð5:47Þ
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Here we have used the structure given in Eq. (5.37) to compute the

prediction x�k using the model Fð�;wÞ. Taking the logarithm, the corre-

sponding cost function is given by

J ¼
PN
k¼1

logð2ps2
nÞ þ

ðyk � CxkÞ
2

s2
n

"
ð5:48Þ

þ logð2pjRvjÞ þ ðxk � x�k Þ
T
ðRvÞ

�1
ðxk � x�

k Þ

�
: ð5:49Þ

This cost function can be minimized with respect to any of the unknown

quantities (including the variances, which we will consider in Section 5.4).

For the time being, consider only the optimization of fxkg
N
1 and w.

Because the log terms in the above cost are independent of the signal

and weights, they can be dropped, providing a more specialized cost

function:

J jðxN
1 ;wÞ ¼

PN
k¼1

ðyk � CxkÞ
2

s2
n

þ ðxk � x�k Þ
T
ðRvÞ

�1
ðxk � x�

k Þ

" #
: ð5:50Þ

The first term is a soft constraint keeping fxkg
N
1 close to the observations

fykg
N
1 . The smaller the measurement noise variance s2

n, the stronger this

constraint will be. The second term keeps the state estimates and model

estimates mutually consistent with the model structure. This constraint

will be strong when the state is highly deterministic (i.e., Rv is small).

J jðxN
1 ;wÞ should be minimized with respect to both fxkg

N
1 and w to find

the estimates that maximize the joint density ryN
1

xN
1
jw. This is a difficult

optimization problem because of the high degree of coupling between the

unknown quantities fxkg
N
1 and w. In general, we can classify approaches as

being either direct or decoupled. In direct approaches, both the signal and

the state are determined jointly as a multivariate optimization problem.

Decoupled approaches optimize one variable at a time while the other

variable is fixed, and then alternating. Direct algorithms include the joint

EKF algorithm (see Section 5.1), which attempts to minimize the cost

sequentially by combining the signal and weights into a single (joint) state

vector. The decoupled approaches are elaborated below.

Decoupled Estimation To minimize J jðxN
1 ;wÞ with respect to the

signal, the cost function is evaluated using the current estimate ŵw of the
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weights to generate the predictions. The simplest approach is to substitute

the predictions x̂x�k ¼
D Fðxk�1; ŵwÞ directly into Eq. (5.50), obtaining

J jðxN
1 ; ŵwÞ ¼

PN
k¼1

ðyk � CxkÞ
2

s2
n

þ ðxk � x̂x�k Þ
T
ðRvÞ

�1
ðxk � x̂x�

k Þ

" #
: ð5:51Þ

This cost function is then minimized with respect to fxkg
N
1 . To minimize

the joint cost function with respect to the weights, J jðxN
1 ;wÞ is evaluated

using the current signal estimate fx̂xkg
N
1 and the associated (redefined)

predictions x̂x�k ¼
D Fðx̂xk�1;wÞ. Again, this results in a straightforward

substitution in Eq. (5.50):

J jðx̂xN
1 ;wÞ ¼

PN
k¼1

ðyk � Cx̂xkÞ
2

s2
n

þ ðx̂xk � x̂x�k Þ
T
ðRvÞ

�1
ðx̂xk � x̂x�

k Þ

" #
: ð5:52Þ

An alternative simplified cost function can be used if it is assumed that

only x̂x�
k is a function of the weights:

J
j
i ðx̂x

N
1 ;wÞ ¼

PN
k¼1

ðx̂xk � x̂x�k Þ
T
ðRvÞ

�1
ðx̂xk � x̂x�

k Þ: ð5:53Þ

This is essentially a type of prediction error cost, where the model is

trained to predict the estimated state. Effectively, the method maximizes

rxN
1
jw, evaluated at xN

1 ¼ x̂xN
1 . A potential problem with this approach is

that it is not directly constrained by the actual data fykg
N
1 . An inaccurate

(yet self-consistent) pair of estimates ðx̂xN
1 ; ŵwÞ could conceivably be

obtained as a solution. Nonetheless, this is essentially the approach used

in [14] for robust prediction of time series containing outliers.

In the decoupled approach to joint estimation, by separately minimizing

each cost with respect to its argument, the values are found that maximize

(at least locally) the joint conditional density function. Algorithms that fall

into this class include a sequential two-observation form of the dual EKF

algorithm [21], and the errors-in-variables (EIV) method applied to batch-

style minimization [18, 19]. An alternative approach, referred to as error

coupling, makes the extra step of taking the errors in the estimates into

account. However, this error-coupled approach (investigated in [22]) does

not appear to perform reliably, and is not described further in this chapter.
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5.3.2 Marginal Estimation Methods

Recall that in marginal estimation, the joint density function is expanded

as

rxN
1

wjyN
1
¼ rxN

1
jwyN

1
rwjyN

1
; ð5:54Þ

and x̂xN
1 is found by maximizing the first factor on the right-hand side,

while ŵw is found by maximizing the second factor. Note that only the first

factor (rxN
1
jwyN

1
) is dependent on the state. Hence, maximizing this factor

for the state will yield the same solution as when maximizing the joint

density (assuming the optimal weights have been found). However,

because both factors also depend on w, maximizing the second (rwjyN
1
)

alone with respect to w is not the same as maximizing the joint density

rxN
1

wjyN
1

with respect to w. Nonetheless, the resulting estimates ŵw are

consistent and unbiased, if conditions of sufficient excitation are met [37].

The marginal estimation approach is exemplified by the maximum-

likelihood approaches [8, 9] and EM approaches [11, 12]. Motivation for

these methods usually comes from considering only the marginal density

rwjyN
1

to be the relevant quantity to maximize, rather than the joint density

rxN
1

wjyN
1
. However, in order to maximize the marginal density, it is

necessary to generate signal estimates that are invariably produced by

maximizing the first term rxN
1
jwyN

1
.

Maximum-Likelihood Cost To derive a cost function for weight

estimation, we further expand the marginal density as

rwjyN
1
¼

ryN
1
jwrw

ryN
1

: ð5:55Þ

If there is no prior information on w, maximizing this posterior density is

equivalent to maximizing the likelihood function ryN
1
jw. Assuming Gaus-

sian statistics, the chain rule for conditional probabilities can be used to

express this likelihood function as:

ryN
1
jw ¼

QN
k¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

ek

q exp �
ðyk � ykjk�1Þ

2

2s2
ek

" #
; ð5:56Þ
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where

ykjk�1 ¼
D

E½yk j yt

� �k�1

1
;w� ð5:57Þ

is the conditional mean (and optimal prediction), and s2
ek

is the predic-

tion error variance. Taking the logarithm yields the following maximum-

likelihood cost function:

J mlðwÞ ¼
PN
k¼1

logð2ps2
ek
Þ þ

ðyk � ykjk�1Þ
2

s2
ek

" #
: ð5:58Þ

Note that the log-likelihood function takes the same form whether the

measurement noise is colored or white. In evaluating this cost function,

the term ykjk�1 ¼ Cx̂x�k must be computed. Thus, the signal estimate must

be determined as a step to weight estimation. For linear models, this can

be done exactly using an ordinary Kalman filter. For nonlinear models,

however, the expectation is approximated by an extended Kalman filter,

which equivalently attempts to minimize the joint cost J jðxk
1; ŵwÞ defined in

Section 5.3.1 by Eq. (5.51).

An iterative maximum-likelihood approach for linear models is

described in [7] and [8]; this chapter presents a sequential maximum-

likelihood approach for nonlinear models, developed in [21].

Prediction Error Cost Often the variance s2
ek

in the maximum-like-

lihood cost is assumed (incorrectly) to be independent of the weights w

and the time index k. Under this assumption, the log likelihood can be

maximized by minimizing the squared prediction error cost function:

J peðwÞ ¼
PN
k¼1

ðyk � ykjk�1Þ
2: ð5:59Þ

The basic dual EKF algorithm described in the previous section minimizes

this simplified cost function with respect to the weights w, and is an

example of a recursive prediction error algorithm [6, 19]. While ques-

tionable from a theoretical perspective, these algorithms have been shown

in the literature to be quite useful. In addition, they benefit from reduced

computational cost, because the derivative of the variance s2
ek

with respect

to w is not computed.

5.3 A PROBABILISTIC PERSPECTIVE 141



EM Algorithm Another approach to maximizing rwjyN
1

is offered by the

expectation-maximization (EM) algorithm [10, 12, 38]. The EM algorithm

can be derived by first expanding the log-likelihood as

log ryN
1
jw ¼ log ryN

1
xN

1
jw � log rxN

1
jwyN

1
: ð5:60Þ

Taking the conditional expectation of both sides using the conditional

density rxN
1
jwyN

1
gives

logryN
1
jw ¼ EXjYW½logryN

1
xN

1
jwjy

N
1 ; ŵw� � EXjYW½logrxN

1
jwyN

1
jyN

1 ; ŵw�;

ð5:61Þ

where the expectation over X of the left-hand side has no effect, because X

does not appear in logryN
1
jw. Note that the expectation is conditional on a

previous estimate of the weights, ŵw. The second term on the right is

concave by Jensen’s inequality [39],3 so choosing w to maximize the first

term on the right-hand side alone will always increase the log-likelihood

on the left-hand side. Thus, the EM algorithm repeatedly maximizes

EXjYW½log ryN
1

xN
1
jwjy

N
1 ; ŵw� with respect to w, each time setting ŵw to the new

maximizing value. The procedure results in maximizing the original

marginal density ryN
1
jw .

For the white-noise case, it can be shown (see [12, 22]) that the EM cost

function is

J em ¼ EXjYW

PN
k¼1

logð2ps2
nÞ þ

ðyk � CxkÞ
2

s2
n

("

þ logð2pjRvjÞ þ ðxk � x�k Þ
T
ðRvÞ

�1
ðxk � x�

k Þ

)
z

�����yN
1 ; ŵw

#
; ð5:62Þ

where x�
k ¼

D Fðxk�1;wÞ, as before. The evaluation of this expectation is

computable on a term-by-term basis (see [12] for the linear case).

However, for the sake of simplicity, we present here the resulting

3 Jensen’s inequality states that E½gðxÞ� � gðE½x�Þ for a concave function gð�Þ.
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expression for the special case of time-series estimation, represented in

Eq. (5.37). As shown in [22], the expectation evaluates to

J em ¼ N logð4p2s2
vs

2
nÞ þ

PN
k¼1

ðyk � x̂xkjN Þ
2
þ pkjN

s2
n

"

þ
ðx̂xkjN � x̂x�kjN Þ

2
þ pkjN � 2p

y

kjN þ p�kjN

s2
v

#
; ð5:63Þ

where x̂xkjN and pkjN are defined as the conditional mean and variance of xk

given ŵw and all the data, fykg
N
1 . The terms x̂x�kjN and p�kjN are the conditional

mean and variance of x�k ¼ f ðxk�1;wÞ, given all the data. The additional

term p
y

kjN represents the cross-variance of xk and x�k , conditioned on all the

data. Again we see that determining state estimates is a necessary step to

determining the weights. In this case, the estimates x̂xkjN are found by

minimizing the joint cost J jðxN
1 ; ŵwÞ, which can be approximated using an

extended Kalman smoother. A sequential version of EM can be imple-

mented by replacing x̂xkjN with the usual causal estimates x̂xk , found using

the EKF.

Summary of Cost Functions The various cost functions given in this

section are summarized in Table 5.4. No explicit signal estimation cost is

given for the marginal estimation methods, because signal estimation is

only an implicit step of the marginal approach, and uses the joint cost

J jðxN
1 ; ŵwÞ. These cost functions, combined with specific optimization

methods, lead to the variety of algorithms that appear in the literature.

Table 5.4 Summary of dual estimation cost functions

Symbol Name of cost Density Eq.

Joint J jðxN
1 ;wÞ Joint rxN

1
wjyN

1
(5.50)

J jðxN
1 ; ŵwÞ Joint signal rxN

1
wjyN

1
(5.51)

J jðx̂xN
1 ;wÞ Joint weight rxN

1
wjyN

1
(5.52)

J
j
i ðx̂x

N
1 ;wÞ Joint weight (independent) rxN

1
jw (5.53)

Marginal J peðwÞ Prediction error �rwjyN
1

(5.59)

J mlðwÞ Maximum likelihood rwjyN
1

(5.58)

J emðwÞ EM n.a. (5.62)
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In the next section, we shall show how each of these cost functions can be

minimized using a general dual EKF-based approach.

5.3.3 Dual EKF Algorithms

In this section, we show how the dual EKF algorithm can be modified to

minimize any of the cost functions discussed earlier. Recall that the basic

dual EKF as presented in Section 5.2.3 minimized the prediction error cost

of Eq. (5.59). As was shown in the last section, all approaches use the

same joint cost function for the state-estimation component. Thus, the

state EKF remains unchanged. Only the weight EKF must be modified.

We shall show that this involves simply redefining the error term k .

To develop the method, consider again the general state-space formula-

tion for weight estimation (Eq. (5.11)):

wkþ1 ¼ wk þ rk; ð5:64Þ

dk ¼ Gðxk;wkÞ þ ek : ð5:65Þ

We may reformulate this state-space representation as

wk ¼ wk�1 þ rk; ð5:66Þ

0 ¼ � k;þek; ð5:67Þ

where k ¼ dk � Gðxk;wkÞ and the target ‘‘observation’’ is fixed at zero.

This observed error formulation yields the exact same set of Kalman

equations as before, and hence minimizes the same prediction error cost,

J ðwÞ ¼
Pk

t¼1½dt � Gðxt;wÞ�
T
ðReÞ

�1
½dt � Gðxt;wÞ� ¼

Pk
t¼1 Jt. However,

if we consider the modified-Newton algorithm interpretation, it can be

shown [22] that the EKF weight filter is also equivalent to the recursion

ŵwk ¼ ŵw�
k þ Pwk

ðCw
k Þ

T
ðReÞ

�1
ð0 þ kÞ; ð5:68Þ

where

Cw
k ¼

4 @ð� kÞ

@w

����
T

w¼wk

ð5:69Þ
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and

P�1
wk

¼ ðl�1Pwk�1
Þ
�1

þ ðCw
k Þ

T
ðReÞ

�1Cw
k : ð5:72Þ

The weight update in Eq. (5.68) is of the form

ŵwk ¼ ŵw�
k � SkHwJ ðŵw�

k Þ
T ; ð5:73Þ

where HwJ is the gradient of the cost J with respect to w, and Sk is a

symmetric matrix that approximates the inverse Hessian of the cost. Both

the gradient and Hessian are evaluated at the previous value of the weight

estimate. Thus, we see that by using the observed error formulation, it is

possible to redefine the error term k , which in turn allows us to minimize

an arbitrary cost function that can be expressed as a sum of instantaneous

terms Jk ¼ T
k k . This basic idea was presented by Puskorius and Feld-

kamp [40] for minimizing an entropic cost function; see also Chapter 2.

Note that Jk ¼ T
k k does not uniquely specify k, which can be vector-

valued. The error must be chosen such that the gradient and inverse

Hessian approximations (Eqs. (5.70) and (5.72)) are consistent with the

desired batch cost.

In the following sections, we give the exact specification of the error

term (and corresponding gradient Cw
k ) necessary to modify the dual EKF

algorithm to minimize the different cost functions. The original set of dual

EKF equations given in Table 5.3 remains the same, with only k being

redefined. Note that for each case, the full evaluation of Cw
k requires taking

recursive gradients. The procedure for this is analogous to that taken in

Section 5.2.3. Furthermore, we restrict ourselves to the autoregressive

time-series model with state-space representation given in Eqs. (5.38) and

(5.39).

Joint Estimation Forms The corresponding weight cost function (see

also Eq. (5.52)) and error terms are given in Table 5.5. Note that this

represents a special two-observation form of the weight filter, where

x̂x�t ¼ f ðx̂xt�1;wÞ; ek ¼
4
ðyk � x̂xkÞ;

~̂xx̂xxk ¼
4
ðx̂xk � x̂xÞ

�
k ;

Note that this dual EKF algorithm represents a sequential form of the

decoupled approach to joint optimization; that is, the two EKFs minimize

the overall joint cost function by alternately optimizing one argument at a
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time while the other argument is fixed. A direct approach found using the

joint EKF is described later in Section 5.3.4.

Marginal Estimation Forms–Maximum-Likelihood Cost The

corresponding weight cost function (see Eq. (5.58)) and error terms are

given in Table 5.6, where

ek ¼ yk � x̂x�k ; le;k ¼
s2
e;k

3e2
k � 2s2

e;k
:

Note that the prediction error variance is given by

s2
ek
¼ E½ðyk � ykjk�1Þ

2
jfytg

k�1
1 ;w� ð5:75aÞ

¼ E½ðnk þ xk � x̂x�k Þ
2
jfytg

k�1
1 ;w� ð5:75bÞ

¼ s2
n þ CP�

k CT ; ð5:75cÞ

where P�
k is computed by the Kalman signal filter (see [22] for a

discussion of the selection and interpretation of le;k).

Table 5.6 Maximum-likelihood cost function observed
error terms for dual EKF weight filter

J mlðwÞ ¼
PN
k¼1

logð2ps2
ek
Þ þ

ðyk � x̂x�k Þ
2

s2
ek

" #
;

ek ¼
4 ðle;kÞ

1=2

s�1
ek
ek

" #
; Cw

k ¼
� 1

2

ðle;k Þ
�1=2

s2
ek

HT
wðs

2
ek
Þ

� 1
sek

HT
wek þ

ek

2ðs2
ek
Þ
3=2 HT

wðs
2
ek
Þ

2
64

3
75:

Table 5.5 Joint cost function observed error terms for the dual EKF
weight filter

J jðx̂xk
1;wÞ ¼

Pk
t¼1

ðyt � x̂xtÞ
2

s2
n

þ
ðx̂xt � x̂x�t Þ

2

s2
v

" #
; ð5:74Þ

k ¼
4 s�1

n ek

s�1
v

~̂xx̂xxk

" #
; with Cw

k ¼ �
s�1

n HT
wek

s�1
v HT

w
~̂xx̂xxk �

" #
:
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Marginal Estimation Forms–Prediction Error Cost If s2
ek

is

assumed to be independent of w, then we are left with the formulas

corresponding to the original basic dual EKF algorithm (for the time-series

case); see Table 5.7.

Marginal Estimation Forms–EM Cost The dual EKF can be modi-

fied to implement a sequential EM algorithm. Note that the M-step, which

relates to the weight filter, corresponds to a generalized M-step, in which

the cost function is decreased (but not necessarily minimized) at each

iteration. The formulation is given in Table 5.8, where ~̂xx̂xxkjk ¼ x̂xk � x̂x�kjk .

Note that J em
k ðwÞ was specified by dropping terms in Eq. (5.63) that are

independent of the weights (see [22]). While x̂xk are found by the usual

state EKF, the variance terms p
y

kjk , and p�
kjk, as well as x̂x�kjk (a noncausal

prediction), are not typically computed in the normal implementation of

the state EKF. To compute these, the state vector is augmented by one

additional lagged value of the signal:

xþk ¼
xk

xk�M

� �
¼

xk

xk�1

� �
; ð5:78Þ

Table 5.7 Prediction error cost function observed error terms for the dual
EKF weight filter

J peðwÞ ¼
PN
k¼1

e2
k ¼ ðyk � x̂x�k Þ

2; ð5:76Þ

k ¼
4
ek ¼ ðyk � x̂x�k Þ; Cw

k ¼ �Hwek ¼ C
@x̂x�

k

@w

����
w¼ŵw�

k

:

Table 5.8 EM cost function observed error terms for the dual EKF weight
filter

J em
k ðwÞ ¼

ðx̂xk � x̂x�kjkÞ
2
� 2p

y

kjk þ p�
kjk

s2
v

; ð5:77Þ

k ¼

s�1
v

~̂xx̂xxkjkffiffiffiffiffiffiffi
�2

p
s�1
v ð p

y

kjkÞ
1=2

s�1
v ð p�

kjkÞ
1=2

2
664

3
775; Cw

k ¼

� 1
sv
HT

w
~̂xx̂xxkjk

�

ffiffiffiffiffiffiffi
�2

p
ð p

y

kjkÞ
�1=2

2sv
HT

wp
y

kjk

�
ð p�

kjkÞ
�1=2

2sv
HT

wp�
kjk

2
66666664

3
77777775
:
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The state Kalman filter is then modified by adding a final zero element to

the vectors B and C (see Eqs. (5.38) and (5.39)), and the linearized state

transition matrix is redefined as

Ak ¼
4 HT

x f

I 0

" #
:

Now the estimate x̂xþk will contain x̂xk�1jk in its last M elements. As shown

in [22], the variance terms are then approximated by

p�kjk ¼ CAk�1jkðPk�1jkÞA
T
k�1jkCT ; p

y

kjk ¼ CðP
]
kÞA

T
k�1jkCT ; ð5:79Þ

where the covariance Pk�1jk is provided as the lower right block of the

augmented covariance Pþ
k , and P

]
k is the upper right block of Pþ

k . The

usual error covariance Pk is provided in the upper left block of Pþ
k .

Furthermore, Ak�1jk is found by linearizing f ð�Þ at x̂xk�1jk . The noncausal

prediction x̂x�kjk ¼ E½ f ðxk�1;wÞjfytg
k
1; ŵw� � f ðx̂xk�1jk;wÞ.

Finally, the necessary gradient terms in the dual EKF algorithm can be

evaluated as follows:

HT
w
~̂xx̂xxkjk ¼ �Hwx̂x�kjk ¼ �Hw f ðx̂xk�1jk;wÞ; ð5:80Þ

which is evaluated at ŵwk . The ith element of the gradient vector Hwp�
kjk is

constructed from the expression

@p�kjk

@wðiÞ
¼ C

@Ak�1jk

@wðiÞ
ðPk�1jkÞA

T
k�1jk þ Ak�1jkðPk�1jkÞ

@AT
k�1jk

@wðiÞ

" #
CT ; ð5:81Þ

and the elements of the gradient Hwp
y

kjk are given by

@p
y

kjk

@wðiÞ
¼ C

@Ak�1jk

@wðiÞ
ðP

]
kÞ

T

� �
CT : ð5:82Þ

Note that all components in the cost function are recursive functions of ŵw,

but not of w. Hence, no recurrent derivative computations are required for

the EM algorithm. Furthermore, it can be shown that the actual error

variances p�
kjk and p

y

kjk (not their gradients) cancel out in the formula for

Cw
k , and thus should be replaced with large constant values to obtain a

good Hessian approximation.
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5.3.4 Joint EKF

In the previous section, the dual EKF was modified to minimize the joint

cost function. This implementation represented a decoupled type of

approach, in which separate state-space representations were used to

estimate xk and w. An alternative direct approach is given by the joint

EKF, which generates simultaneous MAP estimates of xk and w. This is

accomplished by defining a new joint state-space representation with

concatenated state:

zk ¼
xk

wk

� �
: ð5:83Þ

It is clear that maximizing the density rzk jy
k
1

is equivalent to maximizing

rxk wjyk
1
. Hence, the MAP-optimal estimate of zk will contain the values of

xk and wk that minimize the batch cost J ðxk
1;wÞ. Running the single EKF

with this state vector provides a sequential estimation algorithm. The joint

EKF first appeared in the literature for the estimation of linear systems (in

which there is a bilinear relation between the states and weights) [1, 2].

The general equations for nonlinear systems are given in Table 5.9.

Note that because the gradient of f ðzÞ with respect to w is taken with the

other elements (namely, x̂xk) fixed, it will not involve recursive derivatives of

x̂xk with respect to w. This fact is cited in [3] and [6] as a potential source of

convergence problems for the joint EKF. Additional results and citations in

[5] corroborate the difficulties of the approach, although the cause of

divergence is linked there to the linearization of the coupled system, rather

than the lack of recurrent derivatives (note that no divergence problems

were encountered in preparing the experimental results in this chapter).

Although the use of recurrent derivatives is suggested in [3] and [6], there

is no theoretical justification for this. In summary, the joint EKF provides

an alternative to the dual EKF for sequential minimization of the joint cost

function. Note that the joint EKF cannot be readily adapted to minimize

other cost functions discussed in this chapter.

5.4 DUAL EKF VARIANCE ESTIMATION

The implementation of the EKF requires the noise variance, s2
v and s2

n as

parameters in the algorithm. Often these can be determined from physical

knowledge of the problem (e.g., sensor accuracy or ambient noise
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measurements). However, if the variances are unknown, their values can

be estimated within the dual EKF framework using cost functions similar

to those derived in Section 5.3. A full treatment of the variance estimation

filter is presented in [22]; here we focus on the maximum-likelihood cost

function

J mlðs2Þ ¼
PN
k¼1

logð2ps2
ek
Þ þ

ðyk � ykjk�1Þ
2

s2
ek

" #
: ð5:94Þ

Note that this cost function is identical to the weight-estimation cost

function, except that the argument is changed to emphasize the estimation

of the unknown variances.

Table 5.9 The joint extended Kalman filter equations (time-series case)

Initialize with

ẑz0 ¼ E½z0�; ð5:84Þ

P0 ¼ E½ðz0 � ẑz0Þðz0 � ẑz0Þ
T
�: ð5:85Þ

For k 2 1; . . . ;1gf , the time-update equations of the Kalman filter are

ẑz�k ¼ �FFðẑzk�1Þ; ð5:86Þ

P�
k ¼ �AAk�1Pk�1

�AAT
k�1 þ

�VVk; ð5:87Þ

and the measurement update equations are

�KKk ¼ P�
k
�CCT ð �CCP�

k
�CCT þ s2

nÞ
�1; ð5:88Þ

ẑzk ¼ ẑz�k þ �KKkðyk �
�CCẑz�k Þ; ð5:89Þ

Pk ¼ ðI � �KKk
�CCÞP�

k ; ð5:90Þ

where

�VVk ¼
4

Cov
Bvk

uk

� �
¼

Bs2
vB

T 0

0 Rr

" #
; ð5:91Þ

�FFðzk�1Þ ¼
4 Fðxk�1;wk�1Þ

I � wk�1

� �
; �CC ¼

D
½C 0 . . . 0�; ð5:92Þ

�AAk ¼
4 @ �FFðzÞ

@z

����
z¼ẑzk

¼

@f ðx̂xk;wÞ
T

@x
I 0

2
4

3
5 @f ðx̂xk ;wÞ

T

@w
0 0

2
4

3
5

0 I

2
664

3
775: ð5:93Þ
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As with the weight filter, a modified-Newton algorithm can be found for

each variance by using an observed error form of the Kalman filter and

modeling the variances as

s2
kþ1 ¼ s2

k þ rk; ð5:95Þ

0 ¼ k þ ek; ð5:96Þ

which gives a one-dimensional state-space representation. However, a

peculiar difficulty in the estimation of variances is that these quantities

must be positive-valued. Because this constraint is not built explicitly into

the cost functions, it is conceivable that negative values can be obtained.

One solution to this problem (inspired by [41]) is to estimate l ¼
4

logðs2Þ

instead. Negative values of l map to small positive values of s2, and

l ¼ �1 maps to s2 ¼ 0. The logarithm is a monotonic function, so a one-

to-one mapping exists between the optimal value of l and the optimal

value of s2. An additional benefit of the logarithmic function is that it

expands the dynamic range near s2 ¼ 0, where the solution is more likely

to reside; this can improve the numerical properties of the optimization.

Of course, this new formulation requires computing the gradients and

Hessians of the cost J with respect to l. Fortunately, the change is fairly

straightforward; these expressions are simple functions of the derivatives

with respect to s2. The variance estimation filter is given in Table 5.10.

Note that the dimension of the state space is 1 in the case of variance

estimation, while the observation k is generally multidimensional. For

this reason, the covariance form of the KF is more efficient than the forms

shown earlier for signal or weight estimation, which employ the matrix

inversion lemma and use a Kalman gain term. This form of the variance

filter is used in the experiments in the next section.

In Table 5.10, the mean ykjk�1k
and variance s2

ek
are computed in the

same way as before (see Eq. (5.75)), except that the unknown variance s2

is now an additional conditioning argument in the expectations. Hence, the

derivatives are

@ykjk�1k

@s2
¼ �

@x̂x�k
@s2

; ð5:103Þ

@s2
ek

@s2
¼

@s2
n

@s2
þ
@Pk�ð1; 1Þ

@s2
; ð5:104Þ

where P�
k ð1; 1Þ is the upper left element of the matrix, and @s2

n=@s
2 is

either 1 or 0, depending on whether s2 is s2
n or s2

v. The other derivatives
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are computed by taking the derivative of the Kalman filter equations with

respect to either variance term (represented by s2). This results in the

following system of recursive equations:

@x̂x�kþ1

@s2
¼

@Fðx̂x; ŵwÞ

@x̂xk

@x̂xk

@s2
; ð5:105Þ

@x̂xk

@s2
¼ ðI � Kx

kCÞ
@x̂x

�

k

@s2
þ
@Kx

k

@s2
ð yk � Cx̂x�k Þ; ð5:106Þ

where @Fðx̂x; ŵwÞ=@x̂xk is evaluated at ŵwk , and represents a static linearization

of the neural network. Note that ½@Fðx̂x; ŵwÞ=@ŵwk �½@ŵw=@s2� does not appear

in Eq. (5.105), under the assumption that @ŵw=@s2 ¼ 0. The last term in

Table 5.10 Variance estimation filter of the dual EKF

Initialize with

ŝs2
0 ¼ E½s2�; ps0

¼ E½ðs2 � ŝs2
0Þðs

2 � ŝs2
0Þ

T
�:

For k 2 1; . . . ;1f g, the time-update equations for the variance filter are

ŝs2�
k ¼ ŝs2

k�1; ð5:97Þ

p�
sk

¼ psk�1
þ s2

u; s2
u ¼

1

l
� 1

� �
psk�1

; ð5:98Þ

and the measurement equations are

psk
¼ ð p�

sk
Þ
�1

þ ðCs
k Þ

Ts�2
r Cs

k ðŝs
2�
k Þ

2
þ ðCs

k Þ
Ts�2

r k ŝs
2�
k

h i�1

; ð5:99Þ

l̂l�k ¼ logðŝs2�
k Þ; ð5:100Þ

l̂lk ¼ l̂l�k þ psk
ðCs

k Þ
Ts�2

r k ŝs
2�
k ; ð5:101Þ

ŝs2
k ¼ el̂lk : ð5:102Þ

The observed error term and gradient are

k ¼
4 ðle;kÞ

1=2

s�1
ek
ek

� �
; Cs

k ¼

�
1

2

ðle;kÞ
�1=2

s2
ek

@s2
ek

@s2

�
1

sek

@ek

@s2
þ

ek

2ðs2
ek
Þ
ð3=2Þ

@s2
ek

@s2

2
6664

3
7775;

where s2 represents either s2
n or s2

v, and where
@ek

@s2
¼ �

@ykjk�1k

@s2
:
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Eq. (5.106) may be dropped if we assume that the Kalman gain Kx is

independent of s2. However, for accurate computation of the recursive

derivatives, @Kx
k=@s

2 must be calculated; this is shown along with the

derivative @P�
k ð1; 1Þ=@s2 in Appendix A.

5.5 APPLICATIONS

In this section, we present the results of using the dual EKF methods on a

number of different applications.

5.5.1 Noisy Time-Series Estimation and Prediction

For the first example, we return to the noisy time-series example of

Section 5.2. Figure 5.4 compares the performance of the various dual EKF

and joint EKF methods presented in this chapter. Box plots are used to

show the mean, median, and quartile values based on 10 different runs

(note that the higher mean for the maximum-likelihood cost is a

consequence of a single outlier). The figure also compares performances

for both known variances and estimated variances. The results in the

example are fairly consistent with our findings on a number of controlled

Figure 5.4Perfor mance of the dual EKF and joint EKF on a chaotic neuralnetwork time series described by Eqs. (5.37). MSE values are computed fortheÞnal 1000 points of the series. For each cost function, the horizontal linesindicate the median, upper and lower quartile values, and range of theoverall NMSE. The mean values are linked by thin lines, and the algorithmwith the lowest mean MSE is indicated by a superimposed circle.
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experiments using different time series and parameter settings [22]. For

both white and colored noises, the maximum-likelihood weight-estimation

cost J mlðwÞ generally produces the best results, but often exhibits

instability. This fact is analyzed in [22], and reduces the desirability of

using this cost function. The joint cost function J jðwÞ has better stability

properties and produces excellent results for colored measurement noise.

For white noise, the prediction error cost performs nearly as well as

J mlðwÞ, but without stability problems. Hence, the dual EKF cost func-

tions J peðwÞ and J jðwÞ are generally the best choices for white and colored

measurement noise, respectively. The joint EKF and dual EKF perform

similarly in many cases, although the joint EKF is considerably less robust

to inaccuracies in the assumed model structure and noise variances.

Chaotic Hénon Map As a second time-series example, we consider

modeling the long-term behavior of the chaotic Hénon map:

akþ1 ¼ 1 � 1:4a2
k þ bk; ð5:107Þ

bkþ1 ¼ 0:3bk : ð5:108Þ

To obtain a one-dimensional time series for the following experiment, the

signal is defined as xk ¼ ak . The phase plot of xkþ1 versus xk (Fig. 5.5a)

shows the chaotic attractor. A neural network (5-7-1) can easily be trained

as a single-step predictor on this clean signal. The network is then

iterated–feeding back the predictions of the network as future inputs–to

produce the attractor shown in Figure 5.5b. However, if the signal is

corrupted by white noise at 10 dB SNR (Fig. 5.5c), and a neural network

with the same architecture is trained on these noisy data, the dynamics are

not adequately captured. The iterated predictions exhibit limit-cycle

behavior with far less complexity.

In contrast, using the dual EKF to train the neural network on the noisy

data captures significantly more of the chaotic dynamics, as shown in

Figure 5.5d. Here, J peðwÞ is used for weight estimation, and the maxi-

mum-likelihood cost is used for estimating s2
v . The measurement-noise

variance is assumed to be known. Parameter covariances are initialized at

0.1, and the initial signal covariance is Px0
¼ I. Forgetting factors are

lw ¼ 0:9999 and ls2
v
¼ 0:9993. Although the attractor is not reproduced

with total fidelity, its general structure has been extracted from the noisy

data.

This example also illustrates an interesting interpretation of dual EKF

prediction training. During the training process, estimations from the

output of the predictor are fed back as inputs, which are optimally
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weighted by the Kalman gain with the next noisy observation. The

effective recurrent learning that takes place is analogous to compromise

methods [42], which use the same principle of combining new observa-

tions with output predictions during training, in order to improve robust-

ness of iterated performance.

5.5.2 Economic Forecasting–Index of Industrial Production

Economic and financial data are inherently noisy. As an example, we

consider the index of industrial production (IP). As with most macro-
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Figure 5.5 Phase plots of xkþ1 versus xk for the original Hénon series (a ), the
series generated by a neural network trained on xk (b), the series generated
by a neural network trained on yk (c ), and the series generated by a neural
network trained on yk , using the dual EKF (d ).
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economic series, the IP is a composite index of many different economic

indicators, each of which is generally measured by a survey of some kind.

The monthly IP data are shown in Figure 5.6a for January 1950 to January

1990. To remove the trend, the differences between the log2 values for

Figure 5.6 (a ) Index of industrial production (IP) in the United States from
January 1940 through March 2000. Data available from Federal Reserve
[43]. (b) Monthly rate of return of the IP in the United States, 1950–1990. (c )
The dual KF prediction for a typical run (middle), along with the signal
estimates (dotted line). (d ) The prediction residual.
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adjacent months are computed; this is called the IP monthly rate of return,

and is shown in Figure 5.6b.

An important baseline approach is to predict the IP from its past values,

using a standard linear autoregressive model. Results with an AR-14

model are reported by Moody et al. [44]. For comparison, both a linear

AR-14 model and neural network (14 input, 4 hidden unit) model are

tested using the dual EKF methods. Consistent with experiments reported

in [44], data from January 1950 to December 1979 are used for a training

set, and the remainder of the data is reserved for testing. The dual KF (or

dual EKF) is iterated over the training set for several epochs, and the

resultant model–consisting of ŵw; ŝs2
v , and ŝs2

n–is used with a standard KF

(or EKF) to produce causal predictions on the test set.

All experiments are repeated 10 times with different initial weights ŵw0

to produce the boxplots in Figure 5.7a. The advantage of dual estimation

on linear models in comparison to the benchmark AR-14 model trained

with least-squares (LS) is clear. For the nonlinear model, overtraining is a

serious concern, because the algorithm is being run repeatedly over a very

short training set (only 360 points). This effect is shown in Figure 5.7.

Based on experience with other types of data (which may not have been

optimal in this case) all runs were halted after only 5 training epochs.

Nevertheless, the dual EKF with J jðwÞ cost produces significantly better

results.

Although better results are reported on this problem in [44] using

models with external inputs from other series, the dual EKF single-time-

series results are quite competitive. Future work to incorporate additional

inputs would, of course, be a straightforward extension within the dual

EKF framework.

5.5.3 Speech Enhancement

Speech enhancement is concerned with the processing of noisy speech in

order to improve the quality or intelligibility of the signal. Applications

range from front-ends for automatic speech recognition systems, to

telecommunications in aviation, military, teleconferencing, and cellular

environments. While there exist a broad array of traditional enhancement

techniques (e.g., spectral subtraction, signal-subspace embedding, time-

domain iterative approaches, etc. [45]), such methods frequently result in

audible distortion of the signal, and are somewhat unsatisfactory in real-

world noisy environments. Different neural-network-based approaches are

reviewed in [45].
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The dual estimation algorithms presented in this chapter have the

advantage of generating estimates using only the noisy signal itself. To

address its nonstationarity, the noisy speech is segmented into short

overlapping windows. The dual estimation algorithms are then iterated

over each window to generate the signal estimate. Parameters learned from

one window are used to initialize the algorithm for the next window.

Effectively, a sequence of time-series models is trained on the specific

Figure 5.7 (a ) Boxplots of the prediction NMSE on the test set (1980-1990).
(b) and (c ) show the average convergence behavior of linear and neural
network model structures, respectively.
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noisy speech signal of interest, resulting in a nonstationary model that can

be used to remove noise from the given signal.

A number of controlled experiments using 8 kHz sampled speech have

been performed in order to compare the different algorithms (joint EKF

versus dual EKF with various costs). It was generally concluded that the

best results were obtained with the dual EKF with J mlðwÞ cost, using a 10-

4-1 neural network (versus a linear model), and window length set at 512

samples (overlap of 64 points). Preferred nominal settings were found to

be: Px0
¼ I; Pw0

¼ 0:01I; ps0
¼ 0:1; lw ¼ 0:9997, and ls2

v
¼ 0:9993.

The process-noise variance s2
v is estimated with the dual EKF using

J mlðs2
vÞ, and is given a lower limit (e.g., 10�8) to avoid potential

divergence of the filters during silence periods. While, in practice, the

additive-noise variance s2
n could be estimated as well, we used the

common procedure of estimating this from the start of the recording

(512 points) where no speech is assumed present. In addition, linear AR-

12 (or 10) filters were used to model colored additive noise. Using the

settings found from these controlled experiments, several enhancement

applications are reviewed below.

SpEAR Database The dual-EKF algorithm was applied to a portion of

CSLU’s Speech Enhancement Assessment Resource (SpEAR [47]). As

opposed to artificially adding noise, the database is constructed by

acoustically combining prerecorded speech (e.g., TIMIT) and noise

(e.g., SPIB database [48]). Synchronous playback and recording in a

room is used to provide exact time-aligned references to the clean speech

such that objective measures can still be calculated. Table 5.11 presents

sample results in terms of average segmental SNR.4

Car Phone Speech In this example, the dual EKF is used to process

an actual recording of a woman talking on her cellular telephone while

driving on the highway. The signal contains a significant level of road and

engine noise, in addition to the distortion introduced by the telephone

channel. The results appear in Figure 5.8, along with the noisy signal.

4 Segmental SNR is considered to be a more perceptually relevant measure than standard

SNR, and is computed as the average of the SNRs computed within 240-point windows, or

frames of speech: SSNR¼ (# frames)�1
P

i max (SNRi, �10 dB). Here, SNRi is the SNR

of the ith frame (weighted by a Hanning window), which is thresholded from below at

�10 dB. The thresholding reduces the contribution of portions of the series where no

speech is present (i.e., where the SNR is strongly negative) [49], and is expected to

improve the measure’s perceptual relevance.
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Spectrograms of both the noisy speech and estimated speech are included

to aid in the comparison. The noise reduction is most successful in

nonspeech portions of the signal, but is also apparent in the visibility of

formants of the estimated signal, which are obscured in the noisy signal.

The perceptual quality of the result is quite good, with an absence of the

‘‘musical noise’’ artifacts often present in spectral subtraction results.

Seminar Recording The next example comes from an actual record-

ing made of a lecture at the Oregon Graduate Institute. In this instance, the

audio recording equipment was configured improperly, resulting in a very

loud buzzing noise throughout the entire recording. The noise has a

fundamental frequency of 60 Hz (indicating that improper grounding was

the likely culprit), but many other harmonics and frequencies are present

as well owing to some additional nonlinear clipping. As suggested by

Figure 5.9, the SNR is extremely low, making for an unusually difficult

audio enhancement problem.

Digit Recognition As the final example, we consider the application

of speech enhancement for use as a front-end to automatic speech

recognition (ASR) systems. The effectiveness of the dual EKF in this

Table 5.11 Dual EKF enhancement results using a portion of the SpEAR
databasea

Male voice

(segmental SNR)

Female voice

(segmental SNR)

Noise Before After Static Before After Static

F-16 �2.27 2.65 1.69 0.16 4.51 3.46

Factory �1:63 2.58 2.48 1.07 4.19 4.24

Volvo 1.60 5.60 6.42 4.10 6.78 8.10

Pink �2.59 1.44 1.06 �0.23 4.39 3.54

White �1:35 2.87 2.68 1.05 4.96 5.05

Bursting 1.60 5.05 4.24 7.82 9.36 9.61

a Different noise sources are used for the same male and female speaker. All results are in

dB, and represent the segmental SNR averaged over the length of the waveform. Results

labeled ‘‘static’’ were obtained using the static approximation to the derivatives. For

reference, in this range of values, an improvement of 3 dB in segmental SNR relates to

approximately an improvement of 5 dB in normal SNR.

5 The authors wish to thank Edward Kaiser for his invaluable assistance in this experiment.
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application is demonstrated using a speech corpus and ASR system5

developed at the Oregon Graduate Institute’s Center for Spoken Language

Understanding (CSLU). The speech corpus consists of zip-codes,

addresses, and other digits read over the telephone by various people; the

Figure 5.8 Enhancement of car phone speech. The noisy waveform
appears in (a ), with its spectrogram in (b). The spectrogram and waveform
of the dual EKF result are shown in (c ) and (d ), respectively. To make the
spectrograms easier to view, the spectral tilt is removed, and their histo-
grams are equalized according to the range of intensities of the enhanced
speech spectrogram.
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ASR system is a speaker-independent digit recognizer, trained exclusively

to recognize numbers from zero to nine when read over the phone.

A subset of 599 sentences was used in this experiment. As seen in Table

5.12, the recognition rates on the clean telephone speech are quite good.

However, adding white Gaussian noise to the speech at 6 dB significantly

reduces the performance. In addition to the dual EKF, a standard spectral

subtraction routine and an enhancement algorithm built into the speech

codec TIA=EIA=IS-718 for digital cellular phones (published by the

Figure 5.9 Enhancement of high-noise seminar recording. The noisy wave-
form appears in (a ), with its spectrogram in (b). The spectrogram and
waveform of the dual EKF result are shown in (c ) and (d ), respectively.
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Telecommunications Industry Association) was used for comparison. As

shown by Table 5.12, the dual EKF outperforms both the IS-718 and

spectral subtraction recognition rates by a significant amount.

5.6 CONCLUSIONS

This chapter has detailed a unified approach to dual estimation based on a

maximum a posteriori perspective. By maximizing the joint conditional

density rxN
1
;wjyN

1
, the most probable values of the signal and parameters are

sought, given the noisy observations. This probabilistic perspective

elucidates the relationships between various dual estimation methods

proposed in the literature, and allows their categorization in terms of

methods that maximize the joint conditional density function directly, and

those that maximize a related marginal conditional density function.

Cost functions associated with the joint and marginal densities have

been derived under a Gaussian assumption. This approach offers a number

of insights about previously developed methods. For example, the predic-

tion error cost is viewed as an approximation to the maximum-likelihood

cost; moreover, both are classified as marginal estimation cost functions.

Thus, the recursive prediction error method of [5] and [6] is quite different

from the joint EKF approach of [1] and [2], which minimizes a joint

estimation cost.6 Furthermore, the joint EKF and errors-in-variables algo-

rithms are shown to offer two different ways of minimizing the same joint

cost function; one is a sequential method and the other is iterative.

The dual EKF algorithm has been presented, which uses two extended

Kalman filters run concurrently–one for state estimation and one for

Table 5.12 Automatic speech recognition rates for clean
recordings of telephone speech (spoken digits), as compared
with the same speech corrupted by white noise, and subse-
quently processed by spectral subtraction (SSUB), a cellular
phone enhancement standard (IS-718), and the dual EKF

Correct words Correct sentences

Clean 96.37% 85.81% (514=599)

Noisy 59.21% 21.37% (128=599)

SSUB 77.45% 38.06% (228=599)

IS-718 67.32% 29.22% (175=599)

Dual EKF 82.19% 52.92% (317/599)

6 This fact is overlooked in [6], which emphasizes the similarity of these two algorithms.
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weight estimation. By modification of the weight filter into an observed

error form, it is possible to minimize each of the cost functions that are

developed.7 This provided a common algorithmic platform for the

implementation of a broad variety of methods. In general, the dual EKF

algorithm represents a sequential approach, which is applicable to both

linear and nonlinear models, and which can be used in the presence of

white or colored measurement noise. In addition, the algorithm has been

extended to provide estimation of noise variance parameters within the

same theoretical framework; this contribution is crucial in applications for

which this information is not otherwise available.

Finally, a number of examples have been presented to illustrate the

performance of the dual EKF methods. The ability of the dual EKF to

capture the underlying dynamics of a noisy time series has been illustrated

using the chaotic Hénon map. The application of the algorithm to the IP

series demonstrates its potential in a real-world prediction context. On

speech enhancement problems, the lack of musical noise in the enhanced

speech underscores the advantages of a time-domain approach; the

usefulness of the dual EKF as a front-end to a speech recognizer has

also been demonstrated. In general, the state-space formulation of the

algorithm makes it applicable to a much wider variety of contexts than has

been explored here. The intent of this chapter was to show the utility of the

dual EKF as a fundamental method for solving a range of problems in

signal processing and modeling.
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APPENDIX A: RECURRENT DERIVATIVE OF THE KALMAN GAIN

(1) With Respect to the Weights

In the state-estimation filter, the derivative of the Kalman gain with respect

to the weights w is computed as follows. Denoting the derivative of Kx
k

7 Note that Kalman algorithms are approximate MAP optimization procedures for

nonlinear systems. Hence, future work considers alternative optimization procedures

(e.g., unscented Kalman filters [29]), which can still be cast within the same theoretically

motivated dual estimation framework.
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with respect to the ith element of ŵw by @Kx
k=@ŵwðiÞ (the ith column of

@Kx
k=@ŵw) gives

@Kx
k

@ŵwðiÞ
¼

I � Kx
kC

CP�
xk

CT
þ s2

n

@P�
xk

@ŵwðiÞ
CT ; ð5:109Þ

where the derivatives of the error covariances are

@P�
xk

@ŵwðiÞ
¼

@Ak�1

@ŵwðiÞ
Pxk�1

AT
k�1 þ Ak�1

@Pxk�1

@ŵwðiÞ
AT

k�1 þ Ak�1Pxk�1

@AT
k�1

@ŵwðiÞ
; ð5:110Þ

@Pxk�1

@ŵwðiÞ
¼ �

@Kx
k�1

@ŵwðiÞ
CP�

k�1 þ ðI � Kx
k�1CÞ

@P�
xk�1

@ŵwðiÞ
: ð5:111Þ

Note that Ak�1 depends not only on the weights ŵw, but also on the point of

linearization, x̂xk�1. Therefore,

@Ak�1

@ŵwðiÞ
¼

@2F

@x̂xk�1@ŵwðiÞ
þ

@2F

ð@x̂xk�1Þ
2

@x̂xk�1

@ŵwðiÞ
; ð5:112Þ

where the first term is the static derivative of Ak�1 ¼ @F=@xk�1 with x̂xk�1

fixed, and the second term includes the recurrent derivative of x̂xk�1. The

term @2F=ð@x̂xk�1Þ
2 actually represents a three-dimensional tensor (rather

than a matrix), and care must be taken with this calculation. However,

when Ak�1 takes on a sparse structure, as with time-series applications, its

derivative with respect to x contains mostly zeroes, and is in fact entirely

zero for linear models.

(2) With Respect to the Variances

In the variance-estimation filter, the derivatives @Kx
k=@s

2 may be calcu-

lated as follows:

@Kx
k

@s2
¼

I � Kx
kC

CP�
k CT

þ s2
n

@P�
xk

@s2
CT ; ð5:113Þ
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where

@P�
xk

@s2
¼

@Ak�1

@s2
Pk�1AT

k�1 þ Ak�1

@Pxk�1

@s2
AT

k�1 þ Ak�1Pk�1

@Ak�1

@s2
; ð5:114Þ

@Pxk�1

@s2
¼ �

@Kx
k�1

@s2
CP�

k�1 þ ðI � Kx
k�1CÞ

@P�
xk�1

@s2
: ð5:115Þ

Because Ak�1 depends on the linearization point, x̂xk�1, its derivative is

@Ak�1

@s2
¼

@Ak�1

@x̂xk�1

@x̂xk�1

@s2
; ð5:116Þ

where again the derivative @ŵw=@s2 is assumed to be zero.

APPENDIX B: DUAL EKF WITH COLORED MEASUREMENT NOISE

In this appendix, we give dual EKF equations for additive colored noise.

Colored noise is modeled as a linear AR process:

nk ¼
PMn

i¼1

aðiÞ
n nk�i þ vn;k; ð5:128Þ

where the parameters a
ðiÞ
n are assumed to be known, and vnk is a white

Gaussian process with (possibly unknown) variance s2
vn

. The noise nk can

now be thought of as a second signal added to the first, but with the

distinction that it has been generated by a known system. Note that the

constraint yk ¼ xk þ nk , requires that the estimates x̂xk and n̂nk must also

sum to yk . To enforce this constraint, both the signal and noise are

incorporated into a combined state-space representation:

k ¼ Fcð k�1;w; anÞ þ Bcvc;k; ð5:129Þ

xk

nk

� �
¼

Fðxk�1;wÞ

An � nk�1

� �
þ

B 0

0 Bn

� �
vk

vn;k

� �
; ð5:130Þ

yk ¼ Ccjk;

yk ¼ ½C Cn�
xk

nk

� �
;
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where

An ¼
4

a
ð1Þ
n a

ð2Þ
n . . . a

ðMnÞ
n

1 0 0 0

0 . .
.

0 ..
.

0 0 1 0

2
6664

3
7775; Cn ¼ BT

n ¼ ½1 0 . . . 0�:

The effective measurement noise is zero, and the process noise vc;k is

white, as required, with covariance

Vc ¼
s2
v 0

0 s2
vn

� �
:

Because nk can be viewed as a second signal, it should be estimated on

an equal footing with xk . Consider, therefore, maximizing rxN
1

nN
1

wjyN
1

(where nN
1 is a vector comprising elements in fnkg

N
1 ) instead of rxN

1
wjyN

1
.

We can write this term as

rxN
1

nN
1

wjyN
1
¼

ryN
1

xN
1

nN
1
jwrw

ryN
1

; ð5:131Þ

and (in the absence of prior information about w) maximize ryN
1

xN
1

nN
1
jw

alone. As before, the cost functions that result from this approach can be

categorized as joint or marginal costs, and their derivations are similar to

those for the white noise case. The associated dual EKF algorithm for

colored noise is given in Table 5.13. Minimization of different cost

function is again achieved by simply redefining the error term. These

modifications are presented without derivation below.

Joint Estimation Forms

The corresponding weight cost function and error terms for a decoupled

approach is given in Table 5.14.
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Marginal Estimation–Maximum-Likelihood Cost

The corresponding weight cost function, and error terms are given in

Table 5.15, where

ek ¼
4

yk � ðx̂x�k þ n̂n�k Þ; le;k ¼
s2
e;k

3e2
k � 2s2

e;k

Table 5.13 The dual extended Kalman filter equations for colored
measurement noise. The definitions of k and Cw

k will depend on the cost
function used for weight estimation

Initialize with

ŵw0 ¼ E½w�; Pw0
¼ E½ðw � ŵw0Þðw � ŵw0Þ

T
�;

ĵj0 ¼ E½j0�; Pj0
¼ E½ðj0 � ĵj0Þðj0 � ĵj0Þ

T
�:

For k 2 1; . . . ;1f g, the time-update equations for the weight filter are

ŵw�
k ¼ ŵwk�1; ð5:117Þ

P�
wk

¼ Pwk�1
þ Rr

k�1; ð5:118Þ

and those for the signal filter are

ĵj�k ¼ Fðĵjk�1; ŵw�
k Þ; ð5:119Þ

P�
jk
¼ Ak�1Pjk�1

AT
k�1 þ BcRv

cBT
c : ð5:120Þ

The measurement-update equations for the signal filter are

K
j
k ¼ P�

jk
CT

c ðCcP�
jk

CT
c Þ

�1; ð5:121Þ

ĵjk ¼ ĵj�k þ K
j
kðyk � Ccĵj

�
k Þ; ð5:122Þ

Pjk
¼ ðI � K

j
kCÞP�

jk
; ð5:123Þ

and those for the weight filter are

Kw
k ¼ P�

wk
ðCw

k Þ
T
½Cw

k P�
wk
ðCw

k Þ
T
þ Re�

�1; ð5:124Þ

ŵwk ¼ ŵw�
k þ Kw

k � k; ð5:125Þ

Pwk
¼ ðI � Kw

k Cw
k ÞP

�
wk
; ð5:126Þ

where

Ak�1 ¼
4 @Fðj; ŵw�

k ; anÞ

@j

����
ĵjk�1

; k ¼ yk � Ccĵj
�
k ; Cw

k ¼
4

�
@ k

@w
¼ Cc

@ĵj�k
@w

����
w¼ŵw�

k
:

ð5:127Þ
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Marginal Estimation Forms–Prediction Error Cost

If s2
ek

is assumed to be independent of w, then we have the prediction error

cost shown in Table 5.16. Note that an alternative prediction error form

may be derived by including Hwn̂n�
k in the calculation of Cw

k . However, the

performance appears superior if this term is neglected.

Table 5.15 Maximum-likelihood cost function: observed error
terms for the dual EKF weight filter

J ml
c ðwÞ ¼

PN
k¼1

logð2ps2
ek
Þ þ

ðyk � x̂x�k � n̂n�
k Þ

2

s2
ek

" #
;

k ¼
4 ðle;kÞ

s�1
ek
ek

" #1=2

; Cw
k ¼

�
1

2

ðle;kÞ
�1=2

s2
ek

HT
wðs

2
ek
Þ

�
1

sek

HT
wek þ

ek

2ðs2
ek
Þ
3=2

HT
wðs

2
ek
Þ

2
6664

3
7775:

Table 5.16 Colored-noise prediction-error cost function:
observed error terms for the dual EKF weight filter

J pe
c ðwÞ ¼

PN
k¼1

e2
k ¼

PN
k¼1

ðyk � x̂x�k � n̂n�
k Þ

2; ð5:133Þ

k ¼
4

yk � n̂nk � x̂x�k ; Cw
k ¼ �Hwx̂x�k :

Table 5.14 Colored-noise joint cost function: observed error terms
for the dual EKF weight filter

J ðx̂xk
1; n̂nk

1;wÞ þ
Pk
t¼1

ðx̂xt � x̂x�t Þ
2

s2
v

þ
ðn̂nt � n̂n�

t Þ
2

s2
vn

" #
; or Jk ¼

Pk
t¼1

~̂xx̂xx2
k

s2
v

þ
~̂nn̂nn2

k

s2
vn

 !
;

k ¼
4

s�1
v

~̂xx̂xxk

s�1
vn

~̂nn̂nnk

2
4

3
5; Cw

k ¼ �
s�1
v HT

w
~̂xx̂xxk

s�1
vn
HT

w
~̂nn̂nnk

2
4

3
5:

ð5:132Þ
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Marginal Estimation–EM Cost

The cost and observed error terms for weight estimation with colored

noise are identical to those for the white-noise case, shown in Table 5.8. In

this case, the on-line statistics are found by augmenting the combined state

vector with one additional lagged value for both the signal and noise.

Specifically,

jþk ¼

xk

xk�M

nk

nk�Mn

2
664

3
775 ¼

xk

xk�1

nk

nk�1

2
664

3
775; ð5:134Þ

so that the estimate ĵjþk produced by a Kalman filter will contain x̂xk�1jk in

elements 2; . . . ; 1 þ M , and n̂nk�1jk in its last Mn elements. Furthermore,

the error variances p�
kjk and p

y

kjk can be obtained from the covariance Pþ
c;k

of jþk produced by the KF.
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6.1 LEARNING STOCHASTIC NONLINEAR DYNAMICS

Since the advent of cybernetics, dynamical systems have been an

important modeling tool in fields ranging from engineering to the physical

and social sciences. Most realistic dynamical systems models have two

essential features. First, they are stochastic – the observed outputs are a

noisy function of the inputs, and the dynamics itself may be driven by

some unobserved noise process. Second, they can be characterized by
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some finite-dimensional internal state that, while not directly observable,

summarizes at any time all information about the past behavior of the

process relevant to predicting its future evolution.

From a modeling standpoint, stochasticity is essential to allow a model

with a few fixed parameters to generate a rich variety of time-series

outputs.1 Explicitly modeling the internal state makes it possible to

decouple the internal dynamics from the observation process. For exam-

ple, to model a sequence of video images of a balloon floating in the wind,

it would be computationally very costly to directly predict the array of

camera pixel intensities from a sequence of arrays of previous pixel

intensities. It seems much more sensible to attempt to infer the true state of

the balloon (its position, velocity, and orientation) and decouple the

process that governs the balloon dynamics from the observation process

that maps the actual balloon state to an array of measured pixel intensities.

Often we are able to write down equations governing these dynamical

systems directly, based on prior knowledge of the problem structure and

the sources of noise – for example, from the physics of the situation. In

such cases, we may want to infer the hidden state of the system from a

sequence of observations of the system’s inputs and outputs. Solving this

inference or state-estimation problem is essential for tasks such as tracking

or the design of state-feedback controllers, and there exist well-known

algorithms for this.

However, in many cases, the exact parameter values, or even the gross

structure of the dynamical system itself, may be unknown. In such cases,

the dynamics of the system have to be learned or identified from

sequences of observations only. Learning may be a necessary precursor

if the ultimate goal is effective state inference. But learning nonlinear

state-based models is also useful in its own right, even when we are not

explicitly interested in the internal states of the model, for tasks such as

prediction (extrapolation), time-series classification, outlier detection, and

filling-in of missing observations (imputation). This chapter addresses the

problem of learning time-series models when the internal state is hidden.

Below, we briefly review the two fundamental algorithms that form the

basis of our learning procedure. In section 6.2, we introduce our algorithm

1There are, of course, completely deterministic but chaotic systems with this property. If

we separate the noise processes in our models from the deterministic portions of the

dynamics and observations, we can think of the noises as another deterministic (but highly

chaotic) system that depends on initial conditions and exogenous inputs that we do not

know. Indeed, when we run simulations using a psuedo-random-number generator started

with a particular seed, this is precisely what we are doing.
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and derive its learning rules. Section 6.3 presents results of using the

algorithm to identify nonlinear dynamical systems. Finally, we present

some conclusions and potential extensions to the algorithm in Sections 6.4

and 6.5.

6.1.1 State Inference and Model Learning

Two remarkable algorithms from the 1960s – one developed in engineer-

ing and the other in statistics – form the basis of modern techniques in

state estimation and model learning. The Kalman filter, introduced by

Kalman and Bucy in 1961 [1], was developed in a setting where the

physical model of the dynamical system of interest was readily available;

its goal is optimal state estimation in systems with known parameters. The

expectation–maximization (EM) algorithm, pioneered by Baum and

colleagues [2] and later generalized and named by Dempster et al. [3],

was developed to learn parameters of statistical models in the presence of

incomplete data or hidden variables.

In this chapter, we bring together these two algorithms in order to learn

the dynamics of stochastic nonlinear systems with hidden states. Our goal

is twofold: both to develop a method for identifying the dynamics of

nonlinear systems whose hidden states we wish to infer, and to develop a

general nonlinear time-series modeling tool. We examine inference and

learning in discrete-time2 stochastic nonlinear dynamical systems with

hidden states xk , external inputs uk , and noisy outputs yk . (All lower-case

characters (except indices) denote vectors. Matrices are represented by

upper-case characters.) The systems are parametrized by a set of tunable

matrices, vectors, and scalars, which we shall collectively denote as y. The

inputs, outputs, and states are related to each other by

xkþ1 ¼ f ðxk; ukÞ þ wk; ð6:1aÞ

yk ¼ gðxk; ukÞ þ vk; ð6:1bÞ

2Continuous-time dynamical systems (in which derivatives are specified as functions of the

current state and inputs) can be converted into discrete-time systems by sampling their

outputs and using ‘‘zero-order holds’’ on their inputs. In particular, for a continuous-time

linear system _xxðtÞ ¼ AcxðtÞ þ BcuðtÞ sampled at interval t, the corresponding dynamics and

input driving matrices so that xkþ1 ¼ Axk þ Buk are A ¼
P1

k¼0
Ak

ct
k=k! ¼ expðActÞ and

B ¼ A�1
c ðA� I ÞBc.
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where wk and vk are zero-mean Gaussian noise processes. The state vector

x evolves according to a nonlinear but stationary Markov dynamics3

driven by the inputs u and by the noise source w. The outputs y are

nonlinear, noisy but stationary and instantaneous functions of the current

state and current input. The vector-valued nonlinearities f and g are

assumed to be differentiable, but otherwise arbitrary. The goal is to

develop an algorithm that can be used to model the probability density

of output sequences (or the conditional density of outputs given inputs)

using only a finite number of example time series. The crux of the problem

is that both the hidden state trajectory and the parameters are unknown.

Models of this kind have been examined for decades in systems and

control engineering. They can also be viewed within the framework of

probabilistic graphical models, which use graph theory to represent the

conditional dependencies between a set of variables [4, 5]. A probabilistic

graphical model has a node for each (possibly vector-valued) random

variable, with directed arcs representing stochastic dependences. Absent

connections indicate conditional independence. In particular, nodes are

conditionally independent from their non-descendents, given their parents

– where parents, children, descendents, etc, are defined with respect to the

directionality of the arcs (i.e., arcs go from parent to child). We can

capture the dependences in Eqs. (6.1a,b) compactly by drawing the

graphical model shown in Figure 6.1.

One of the appealing features of probabilistic graphical models is that

they explicitly diagram the mechanism that we assume generated the data.

This generative model starts by picking randomly the values of the nodes

that have no parents. It then picks randomly the values of their children

Figure 6.1 A probabilistic graphical model for stochastic dynamical
systems with hidden states xk , inputs uk , and observables yk .

3Stationarity means here that neither f nor the covariance of the noise process wk , depend

on time; that is, the dynamics are time-invariant. Markov refers to the fact that given the

current state, the next state does not depend on the past history of the states.
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given the parents’ values, and so on. The random choices for each child

given its parents are made according to some assumed noise model. The

combination of the graphical model and the assumed noise model at each

node fully specify a probability distribution over all variables in the model.

Graphical models have helped clarify the relationship between dyna-

mical systems and other probabilistic models such as hidden Markov

models and factor analysis [6]. Graphical models have also made it

possible to develop probabilistic inference algorithms that are vastly

more general than the Kalman filter.

If we knew the parameters, the operation of interest would be to infer

the hidden state sequence. The uncertainty in this sequence would be

encoded by computing the posterior distributions of the hidden state

variables given the sequence of observations. The Kalman filter (reviewed

in Chapter 1) provides a solution to this problem in the case where f and g

are linear. If, on the other hand, we had access to the hidden state

trajectories as well as to the observables, then the problem would be

one of model-fitting, i.e. estimating the parameters of f and g and the

noise covariances. Given observations of the (no longer hidden) states and

outputs, f and g can be obtained as the solution to a possibly nonlinear

regression problem, and the noise covariances can be obtained from the

residuals of the regression. How should we proceed when both the system

model and the hidden states are unknown?

The classical approach to solving this problem is to treat the parameters

y as ‘‘extra’’ hidden variables, and to apply an extended Kalman filtering

(EKF) algorithm (see Chapter 1) to the nonlinear system with the state

vector augmented by the parameters [7, 8]. For stationary models, the

dynamics of the parameter portion of this extended state vector are set to

the identity function. The approach can be made inherently on-line, which

may be important in certain applications. Furthermore, it provides an

estimate of the covariance of the parameters at each time step. Finally, its

objective, probabilistically speaking, is to find an optimum in the joint

space of parameters and hidden state sequences.

In contrast, the algorithm we present is a batch algorithm (although, as

we discuss in Section 6.4.2, online extensions are possible), and does not

attempt to estimate the covariance of the parameters. Like other instances

of the EM algorithm, which we describe below, its goal is to integrate over

the uncertain estimates of the unknown hidden states and optimize the

resulting marginal likelihood of the parameters given the observed data.

An extended Kalman smoother (EKS) is used to estimate the approximate

state distribution in the E-step, and a radial basis function (RBF) network

[9, 10] is used for nonlinear regression in the M-step. It is important not to
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confuse this use of the extended Kalman algorithm, namely, to estimate

just the hidden state as part of the E-step of EM, with the use that we

described in the previous paragraph, namely to simultaneously estimate

parameters and hidden states.

6.1.2 The Kalman Filter

Linear dynamical systems with additive white Gaussian noises are the

most basic models to examine when considering the state-estimation

problem, because they admit exact and efficient inference. (Here, and in

what follows, we call a system linear if both the state evolution function

and the state-to-output observation function are linear, and nonlinear

otherwise.) The linear dynamics and observation processes correspond

to matrix operations, which we denote by A;B and C;D, respectively,

giving the classic state-space formulation of input-driven linear dynamical

systems:

xkþ1 ¼ Axk þ Buk þ wk; ð6:2aÞ

yk ¼ Cxk þ Duk þ vk : ð6:2bÞ

The Gaussian noise vectors w and v have zero mean and covariances Q

and R respectively. If the prior probability distribution pðx1Þ over initial

states is taken to be Gaussian, then the joint probabilities of all states and

outputs at future times are also Gaussian, since the Gaussian distribution is

closed under the linear operations applied by state evolution and output

mapping and under the convolution applied by additive Gaussian noise.

Thus, all distributions over hidden state variables are fully described by

their means and covariance matrices. The algorithm for exactly computing

the posterior mean and covariance for xk given some sequence of

observations consists of two parts: a forward recursion, which uses the

observations from y1 to yk , known as the Kalman filter [11], and a

backward recursion, which uses the observations from yT to ykþ1. The

combined forward and backward recursions are known as the Kalman or

Rauch–Tung–Streibel (RTS) smoother [12]. These algorithms are

reviewed in detail in Chapter 1.

There are three key insights to understanding the Kalman filter. The

first is that the Kalman filter is simply a method for implementing Bayes’

rule. Consider the very general setting where we have a prior pðxÞ on some
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state variable and an observation model pðyjxÞ for the noisy outputs given

the state. Bayes’ rule gives us the state-inference procedure:

pðxjyÞ ¼
pðyjxÞpðxÞ

pðyÞ
¼

pðyjxÞpðxÞ

Z
; ð6:3aÞ

Z ¼ pðyÞ ¼

ð
x

pðyjxÞpðxÞ dx; ð6:3bÞ

where the normalizer Z is the unconditional density of the observation. All

we need to do in order to convert our prior on the state into a posterior is

to multiply by the likelihood from the observation equation, and then

renormalize.

The second insight is that there is no need to invert the output or

dynamics functions, as long as we work with easily normalizable

distributions over hidden states. We see this by applying Bayes’ rule to

the linear Gaussian case for a single time step.4 We start with a Gaussian

belief nðxk�1, Vk�1Þ on the current hidden state, use the dynamics to

convert this to a prior nðxþ, VþÞ on the next state, and then condition on

the observation to convert this prior into a posterior nðxk, VkÞ. This gives

the classic Kalman filtering equations:

pðxk�1Þ ¼nðxþ;VþÞ; ð6:4aÞ

xþ ¼ Axk�1; Vþ ¼ AVk�1A> þ Q; ð6:4bÞ

pðyk jxkÞ ¼nðCxk;RÞ; ð6:4cÞ

pðxk jykÞ ¼nðxk;VkÞ; ð6:4dÞ

xk ¼ xþ þ Kðyk � CxþÞ; Vk ¼ ðI � KCÞVþ; ð6:4eÞ

K ¼ VþC>ðCVþC> þ RÞ
�1: ð6:4f Þ

The posterior is again Gaussian and analytically tractable. Notice that

neither the dynamics matrix A nor the observation matrix C needed to be

inverted.

The third insight is that the state-estimation procedures can be imple-

mented recursively. The posterior from the previous time step is run

through the dynamics model and becomes our prior for the current time

step. We then convert this prior into a new posterior by using the current

observation.

4Some notation: A multivariate normal (Gaussian) distribution with mean m and covariance

matrix S is written as nðm;SÞ. The same Gaussian evaluated at the point z is denoted by

nðm;SÞjz. The determinant of a matrix is denoted by jAj and matrix inversion by A�1. The

symbol 	 means ‘‘distributed according to.’’
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For the general case of a nonlinear system with non-Gaussian noise,

state estimation is much more complex. In particular, mapping through

arbitrary nonlinearities f and g can result in arbitrary state distributions,

and the integrals required for Bayes’ rule can become intractable. Several

methods have been proposed to overcome this intractability, each provid-

ing a distinct approximate solution to the inference problem. Assuming f

and g are differentiable and the noise is Gaussian, one approach is to

locally linearize the nonlinear system about the current state estimate so

that applying the Kalman filter to the linearized system the approximate

state distribution remains Gaussian. Such algorithms are known as

extended Kalman filters (EKF) [13, 14]. The EKF has been used both

in the classical setting of state estimation for nonlinear dynamical systems

and also as a basis for on-line learning algorithms for feedforward neural

networks [15] and radial basis function networks [16, 17]. For more

details, see Chapter 2.

State inference in nonlinear systems can also be achieved by propagat-

ing a set of random samples in state space through f and g, while at each

time step re-weighting them using the likelihood pðyjxÞ. We shall refer to

algorithms that use this general strategy as particle filters [18], although

variants of this sampling approach are known as sequential importance

sampling, bootstrap filters [19], Monte Carlo filters [20], condensation

[21], and dynamic mixture models [22, 23]. A recent survey of these

methods is provided in [24]. A third approximate state-inference method,

known as the unscented filter [25–27], deterministically chooses a set of

balanced points and propagates them through the nonlinearities in order to

recursively approximate a Gaussian state distribution; for more details, see

Chapter 7. Finally, there are algorithms for approximate inference and

learning based on mean field theory and variational methods [28, 29].

Although we have chosen to make local linearization (EKS) the basis of

our algorithms below, it is possible to formulate the same learning algorithms

using any approximate inference method (e.g., the unscented filter).

6.1.3 The EM Algorithm

The EM or expectation–maximization algorithm [3, 30] is a widely

applicable iterative parameter re-estimation procedure. The objective of

the EM algorithm is to maximize the likelihood of the observed data

PðY jyÞ in the presence of hidden5 variables X . (We shall denote the entire

5Hidden variables are often also called latent variables; we shall use both terms. They can

also be thought of as missing data for the problem or as auxiliary parameters of the model.
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sequence of observed data by Y ¼ fy1; . . . ; ytg, observed inputs by

U ¼ fu1; . . . ; uT g, the sequence of hidden variables by X ¼ fx1; . . . ; xtg,

and the parameters of the model by y.) Maximizing the likelihood as a

function of y is equivalent to maximizing the log-likelihood:

LðyÞ ¼ log PðY jU ; yÞ ¼ log

ð
X

PðX ;Y jU ; yÞ dX: ð6:5Þ

Using any distribution QðX Þ over the hidden variables, we can obtain a

lower bound on L:

log

ð
X

PðY ;X jU ; yÞ dX ¼ log

ð
X

QðX Þ
PðX ; Y jU ; yÞ

QðX Þ
dX ð6:6aÞ




ð
X

QðX Þ log
PðX ; Y jU ; yÞ

QðX Þ
dX ð6:6bÞ

¼

ð
X

QðX Þ log PðX ; Y jU ; yÞ dX

�

ð
X

QðX Þ log QðX Þ dX ð6:6cÞ

¼ FðQ; yÞ; ð6:6d Þ

where the middle inequality (6.6b) is known as Jensen’s inequality and can

be proved using the concavity of the log function. If we define the energy

of a global configuration ðX ;Y Þ to be �log PðX ;Y jU ; yÞ, then the lower

bound FðQ; yÞ � LðyÞ is the negative of a quantity known in statistical

physics as the free energy: the expected energy under Q minus the entropy

of Q [31]. The EM algorithm alternates between maximizing F with

respect to the distribution Q and the parameters y, respectively, holding

the other fixed. Starting from some initial parameters y0 we alternately

apply:

E-step: Qkþ1  arg max
Q

FðQ; ykÞ; ð6:7aÞ

M-step: ykþ1  arg max
y
FðQkþ1; yÞ: ð6:7bÞ

It is easy to show that the maximum in the E-step results when Q is exactly

the conditional distribution of X , Q*kþ1ðX Þ ¼ PðX jY ;U ; ykÞ, at which

point the bound becomes an equality: FðQ*kþ1; ykÞ ¼ LðykÞ. The maxi-
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mum in the M-step is obtained by maximizing the first term in (6.6c),

since the entropy of Q does not depend on y:

M-step: y*kþ1  arg max
y

ð
X

PðX jY ;U ; ykÞ log PðX ;Y jU ; yÞ dX :

ð6:8Þ

This is the expression most often associated with the EM algorithm, but it

obscures the elegant interpretation [31] of EM as coordinate ascent in F

(see Fig. 6.2). Since F ¼ L at the beginning of each M-step, and since the

E-step does not change y, we are guaranteed not to decrease the likelihood

after each combined EM step. (While this is obviously true of ‘‘complete’’

EM algorithms as described above, it may also be true for ‘‘incomplete’’ or

‘‘sparse’’ variants in which approximations are used during the E- and=or

M-steps so long as F always goes up; see also the earlier work in [32].)

For example, this can take the form of a gradient M- step algorithm (where

we increase PðY jyÞ with respect to y but do not strictly maximize it), or

any E-step which improves the bound F without saturating it [31].)

In dynamical systems with hidden states, the E-step corresponds

exactly to solving the smoothing problem: estimating the hidden state

trajectory given both the observations=inputs and the parameter values.

The M-step involves system identification using the state estimates from

the smoother. Therefore, at the heart of the EM learning procedure is the

following idea: use the solutions to the filtering=smoothing problem to

estimate the unknown hidden states given the observations and the current

Figure 6.2 The EM algorithm can be thought of as coordinate ascent in the
functional FðQðX Þ, yÞ (see text). The E-step maximizes F with respect to QðX Þ
given fixed y (horizontal moves), while the M-step maximizes F with respect
to y given fixed QðX Þ (vertical moves).
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model parameters. Then use this fictitious complete data to solve for new

model parameters. Given the estimated states obtained from the inference

algorithm, it is usually easy to solve for new parameters. For example,

when working with linear Gaussian models, this typically involves

minimizing quadratic forms, which can be done with linear regression.

This process is repeated, using these new model parameters to infer the

hidden states again, and so on. Keep in mind that our goal is to maximize

the log-likelihood (6.5) (or equivalently maximize the total likelihood) of

the observed data with respect to the model parameters. This means

integrating (or summing) over all the ways in which the model could have

produced the data (i.e., hidden state sequences). As a consequence of

using the EM algorithm to do this maximization, we find ourselves

needing to compute (and maximize) the expected log-likelihood of the

joint data (6.8), where the expectation is taken over the distribution of

hidden values predicted by the current model parameters and the observa-

tions.

In the past, the EM algorithm has been applied to learning linear

dynamical systems in specific cases, such as ‘‘multiple-indicator multiple-

cause’’ (MIMC) models with a single latent variable [33] or state-space

models with the observation matrix known [34]), as well as more generally

[35]. This chapter applies the EM algorithm to learning nonlinear

dynamical systems, and is an extension of our earlier work [36]. Since

then, there has been similar work applying EM to nonlinear dynamical

systems [37, 38]. Whereas other work uses sampling for the E-step and

gradient M-steps, our algorithm uses the RBF networks to obtain a

computationally efficient and exact M-step.

The EM algorithm has four important advantages over classical

approaches. First, it provides a straightforward and principled method

for handing missing inputs or outputs. (Indeed this was the original

motivation for Shumway and Stoffer’s application of the EM algorithm

to learning partially unknown linear dynamical systems [34].) Second, EM

generalizes readily to more complex models with combinations of discrete

and real-valued hidden variables. For example, one can formulate EM for

a mixture of nonlinear dynamical systems [39, 40]. Third, whereas it is

often very difficult to prove or analyze stability within the classical on-line

approach, the EM algorithm is always attempting to maximize the like-

lihood, which acts as a Lyapunov function for stable learning. Fourth, the

EM framework facilitates Bayesian extensions to learning – for example,

through the use of variational approximations [29].
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6.2 COMBINING EKS AND EM

In the next sections, we shall describe the basic components of our EM

learning algorithm. For the expectation step of the algorithm, we infer an

approximate conditional distribution of the hidden states using Extended

Kalman Smoothing (Section 6.2.1). For the maximization step, we first

discuss the general case (Section 6.2.2), and then describe the particular

case where the nonlinearities are represented using Gaussian radial basis

function (RBF) networks (Section 6.2.3). Since, as with all EM or

likelihood ascent algorithms, our algorithm is not guaranteed to find the

globally optimum solutions, good initialization is a key factor in practical

success. We typically use a variant of factor analysis followed by

estimation of a purely linear dynamical system as the starting point for

training our nonlinear models (Section 6.2.4).

6.2.1 Extended Kalman smoothing (E-step)

Given a system described by Eqs. (6.1a,b), the E-step of an EM learning

algorithm needs to infer the hidden states from a history of observed

inputs and outputs. The quantities at the heart of this inference problem

are two conditional densities

Pðxk ju1; . . . ; uT ; y1; . . . ; yT Þ; 1 � k � T ; ð6:9Þ

Pðxk; xkþ1ju1; . . . ; uT ; y1; . . . ; yT Þ; 1 � k � T � 1: ð6:10Þ

For nonlinear systems, these conditional densities are in general non-

Gaussian, and can in fact be quite complex. For all but a very few

nonlinear systems, exact inference equations cannot be written down in

closed form. Furthermore, for many nonlinear systems of interest, exact

inference is intractable (even numerically), meaning that, in principle, the

amount of computation required grows exponentially in the length of the

time series observed. The intuition behind all extended Kalman algorithms

is that they approximate a stationary nonlinear dynamical system with a

non-stationary (time-varying) but linear system. In particular, extended

Kalman smoothing (EKS) simply applies regular Kalman smoothing to a

local linearization of the nonlinear system. At every point ~xx in x space, the

derivatives of the vector-valued functions f and g define the matrices,

A~xx �
@f

@x

����
x¼~xx

and C~xx �
@g

@x

����
x¼~xx

;
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respectively. The dynamics are linearized about x̂xk , the mean of the current

filtered (not smoothed) state estimate at time t. The output equation can be

similarly linearized. These linearizations yield

xkþ1 � f ðx̂xk; ukÞ þ Ax̂xk
ðxk � x̂xkÞ þ w; ð6:11Þ

yk � gðx̂xk; ukÞ þ Cx̂xk
ðxk � x̂xkÞ þ v: ð6:12Þ

If the noise distributions and the prior distribution of the hidden state at

k ¼ 1 are Gaussian, then, in this progressively linearized system, the

conditional distribution of the hidden state at any time k given the history

of inputs and outputs will also be Gaussian. Thus, Kalman smoothing can

be used on the linearized system to infer this conditional distribution; this

is illustrated in Figure 6.3.

Notice that although the algorithm performs smoothing (in other words,

it takes into account all observations, including future ones, when

inferring the state at any time), the linearization is only done in the

forward direction. Why not re-linearize about the backwards estimates

during the RTS recursions? While, in principle, this approach might give

better results, it is difficult to implement in practice because it requires the

dynamics functions to be uniquely invertible, which it often is not true.

Unlike the normal (linear) Kalman smoother, in the EKS, the error

covariances for the state estimates and the Kalman gain matrices do

Figure 6.3 Illustration of the information used in extended Kalman smooth-
ing (EKS), which infers the hidden state distribution during the E-step of our
algorithm. The nonlinear model is linearized about the current state esti-
mate at each time, and then Kalman smoothing is used on the linearized
system to infer Gaussian state estimates.
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depend on the observed data, not just on the time index t. Furthermore, it

is no longer necessarily true that if the system is stationary, the Kalman

gain will converge to a value that makes the smoother act as the optimal

Wiener filter in the steady state.

6.2.2 Learning Model Parameters (M-step)

The M-step of our EM algorithm re-estimates the parameters of the model

given the observed inputs, outputs, and the conditional distributions over

the hidden states. For the model we have described, the parameters define

the nonlinearities f and g, and the noise covariances Q and R (as well as

the mean and covariance of the initial state, x1).

Two complications can arise in the M-step. First, fully re-estimating f

and g in each M-step may be computationally expensive. For example, if

they are represented by neural network regressors, a single full M-step

would be a lengthy training procedure using backpropagation, conjugate

gradients, or some other optimization method. To avoid this, one could use

partial M-steps that increase but do not maximize the expected log-

likelihood (6.8) – for example, each consisting of one or a few gradient

steps. However, this will in general make the fitting procedure much

slower.

The second complication is that f and g have to be trained using the

uncertain state-estimates output by the EKS algorithm. This makes it

difficult to apply standard curve-fitting or regression techniques. Consider

fitting f , which takes as inputs xk and uk and outputs xkþ1. For each t, the

conditional density estimated by EKS is a full-covariance Gaussian in ðxk ,

xkþ1Þ space. So f has to be fit not to a set of data points but instead to a

mixture of full-covariance Gaussians in input–output space (Gaussian

‘‘clouds’’ of data). Ideally, to follow the EM framework, this conditional

density should be integrated over during the fitting process. Integrating

over this type of data is nontrivial for almost any form of f . One simple but

inefficient approach to bypass this problem is to draw a large sample from

these Gaussian clouds of data and then fit f to these samples in the usual

way. A similar situation occurs with the fitting of the output function g.

We present an alternative approach, which is to choose the form of the

function approximator to make the integration easier. As we shall show,

using Gaussian radial basis function (RBF) networks [9, 10] to model f

and g allows us to do the integrals exactly and efficiently. With this choice

of representation, both of the above complications vanish.
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6.2.3 Fitting Radial Basis Functions to Gaussian Clouds

We shall present a general formulation of an RBF network from which it

should be clear how to fit special forms for f and g. Consider the

following nonlinear mapping from input vectors x and u to an output

vector z:

z ¼
PI
i¼1

hiriðxÞ þ Axþ Buþ bþ w; ð6:13Þ

where w is a zero-mean Gaussian noise variable with covariance Q, and ri

are scalar valved RBFs defined below. This general mapping can be used

in several ways to represent dynamical systems, depending on which of

the input to hidden to output mappings are assumed to be nonlinear. Three

examples are: (1) representing f using (6.13) with the substitutions

x xk , u uk , and z xkþ1; (2) representing f using x ðxk; ukÞ,

u ;, and z xkþ1; and (3) representing g using the substitutions

x xk , u uk , and z yk . (Indeed, for different simulations, we shall

use different forms.) The parameters are the I coefficients hi of the RBFs;

the matrices A and B multiplying inputs x and u, respectively; and an

output bias vector b, and the noise covariance Q. Each RBF is assumed to

be a Gaussian in x space, with center ci and width given by the covariance

matrix Si:

riðxÞ ¼ j2pSij
�1=2 exp½� 1

2
ðx� ciÞ

>
S�1

i ðx� ciÞ�; ð6:14Þ

where jSij is the determinant of the matrix Si. For now, we assume that the

centers and widths of the RBFs are fixed, although we discuss learning

their locations in Section 6.4.

The goal is to fit this RBF model to data (u; x; z). The complication is

that the data set comes in the form of a mixture of Gaussian distributions.

Here we show how to analytically integrate over this mixture distribution

to fit the RBF model.

Assume the data set is

Pðx; z; uÞ ¼
1

J

P
j

njðx; zÞdðu� ujÞ: ð6:15Þ

That is, we observe samples from the u variables, each paired with a

Gaussian ‘‘cloud’’ of data, nj, over ðx; zÞ. The Gaussian nj has mean mj

and covariance matrix Cj.
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Let ẑzyðx; uÞ ¼
PI

i¼1 hiriðxÞ þ Axþ Buþ b, where y is the set of para-

meters. The log-likelihood of a single fully observed data point under the

model would be

� 1
2
½z� ẑzyðx; uÞ�>Q�1½z� ẑzyðx; uÞ� � 1

2
ln jQj þ const:

Since the ðx; zÞ values in the data set are uncertain, the maximum expected

log-likelihood RBF fit to the mixture of Gaussian data is obtained by

minimizing the following integrated quadratic form:

min
y;Q

P
j

ð
x

ð
z

njðx; zÞ½z� ẑzyðx; ujÞ�
>Q�1½z� ẑzyðx; ujÞ� dx dzþ J ln jQj

( )
:

ð6:16Þ

We rewrite this in a slightly different notation, using angular brackets h�ij
to denote expectation over nj, and defining

y � ½h1; h2; . . . ; hI ;A;B; b�;

F � ½r1ðxÞ; r2ðxÞ; . . . ; rI ðxÞ; x>; u>; 1�>:

Then, the objective is written as

min
y;Q

P
j

hðz� yFÞ>Q�1ðz� yFÞij þ J ln jQj

( )
: ð6:17Þ

Taking derivatives with respect to y, premultiplying by �Q�1, and setting

the result to zero gives the linear equations
P

jhðz� yFÞFT ij ¼ 0, which

we can solve for y and Q:

ŷy ¼
P

j

hzF>ij

 ! P
j

hFF>ij

 !�1

; Q̂Q ¼
1

J

P
j

hzz>ij � ŷy
P

j

hFz>ij

 !
:

ð6:18Þ

In other words, given the expectations in the angular brackets, the optimal

parameters can be solved for via a set of linear equations. In the Appendix,

we show that these expectations can be computed analytically and

efficiently, which means that we can take full and exact M-steps. The

derivation is somewhat laborious, but the intuition is very simple: the
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Gaussian RBFs multiply the Gaussian densities nj to form new unnor-

malized Gaussians in (x; y) space. Expectations under these new

Gaussians are easy to compute. This fitting algorithm is illustrated in

Figure 6.4.

Note that among the four advantages we mentioned previously for the

EM algorithm – ability to handle missing observations, generalizability to

extensions of the basic model, Bayesian approximations, and guaranteed

stability through a Lyapunov function – we have had to forgo one. There is

no guarantee that extended Kalman smoothing increases the lower bound

on the true likelihood, and therefore stability cannot be assured. In

practice, the algorithm is rarely found to become unstable, and the

approximation works well: in our experiments, the likelihoods increased

monotonically and good density models were learned. Nonetheless, it may

be desirable to derive guaranteed-stable algorithms for certain special

cases using lower-bound preserving variational approximations [29] or

other approaches that can provide such proofs.

The ability to fully integrate over uncertain state estimates provides

practical benefits as well as being theoretically pleasing. We have

compared fitting our RBF networks using only the means of the state

estimates with performing the full integration as derived above. When

using only the means, we found it necessary to introduce a ridge

Figure 6.4 Illustration of the regression technique employed during the M-
step. A fit to a mixture of Gaussian densities is required; if Gaussian RBF
networks are used, then this fit can be solved analytically. The dashed line
shows a regular RBF fit to the centers of the four Gaussian densities, while the
solid line shows the analytical RBF fit using the covariance information. The
dotted lines below show the support of the RBF kernels.
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regression (weight decay) parameter in the M-step to penalize the very

large coefficients that would otherwise occur based on precise cancella-

tions between inputs. Since the model is linear in the parameters, this ridge

regression regularizer is like adding white noise to the radial basis outputs

riðxÞ (i.e., after the RBF kernels have been applied).6 By linearization, this

is approximately equivalent to Gaussian noise at the inputs x with a

covariance determined by the derivatives of the RBFs at the input

locations. The uncertain state estimates provide exactly this sort of

noise, and thus automatically regularize the RBF fit in the M-step. This

naturally avoids the need to introduce a penalty on large coefficients, and

improves generalization.

6.2.4 Initialization of Models and Choosing Locations
for RBF Kernels

The practical success of our algorithm depends on two design choices that

need to be made at the beginning of the training procedure. The first is to

judiciously select the placement of the RBF kernels in the representation

of the state dynamics and=or output function. The second is to sensibly

initialize the parameters of the model so that iterative improvement with

the EM algorithm (which finds only local maxima of the likelihood

function) finds a good solution.

In models with low-dimensional hidden states, placement of RBF

kernel centers can be done by gridding the state space and placing one

kernel on each grid point. Since the scaling of the state variables is given

by the covariance matrix of the state dynamics noise wk in Eq. (6.1a)

which, without loss of generality, we have set to I , it is possible to

determine both a suitable size for the gridding region over the state space,

and a suitable scaling of the RBF kernels themselves. However, the

number of kernels in such a grid increases exponentially with the grid

dimension, so, for more than three or four state variables, gridding the

state space is impractical. In these cases, we first use a simple initializa-

tion, such as a linear dynamical system, to infer the hidden states, and then

place RBF kernels on a randomly chosen subset of the inferred state

means.7 We set the widths (variances) of the RBF kernels once we have

6Consider a simple scalar linear regression example yj ¼ yzj, which can be solved by

minimizing
P

jðyj � yzjÞ
2. If each zj has mean �zzj and variance l, the expected value of this

cost function is
P

jðyj � y�zzjÞ
2
þ Jly2, which is exactly ridge regression with l controlling

the amount of regularization.
7In order to properly cover the portions of the state space that are most frequently used, we

require a minimum distance between RBF kernel centers. Thus, in practice, we reject

centers that fall too close together.
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the spacing of their centers by attempting to make neighboring kernels

cross when their outputs are half of their peak value. This ensures that,

with all the coefficients set approximately equal, the RBF network will

have an almost ‘‘flat’’ output across the space.8

These heuristics can be used both for fixed assignments of centers and

widths, and as initialization to an adaptive RBF placement procedure. In

Section 6.4.1, we discuss techniques for adapting both the positions of the

RBF centers and their widths during training of the model.

For systems with nonlinear dynamics but approximately linear output

functions, we initialize using maximum-likelihood factor analysis (FA)

trained on the collection of output observations (or conditional factor

analysis for models with inputs). Factor analysis is a very simple model,

which assumes that the output variables are generated by linearly

combining a small number of independent Gaussian hidden state variables

and then adding independent Gaussian noise to each output variable [6].

One can think of factor analysis as a special case of linear dynamical

systems with Gaussian noise where the states are not related in time (i.e.,

A ¼ 0). We used the weight matrix (called the loading matrix) learned by

factor analysis to initialize the observation matrix C in the dynamical

system. By doing time-independent inference through the factor analysis

model, we can also obtain approximate estimates for the state at each time.

These estimates can be used to initialize the nonlinear RBF regressor by

fitting the estimates at one time step as a function of those at the previous

time step. (We also sometimes do a few iterations of training using a

purely linear dynamical system before initializing the nonlinear RBF

network.) Since such systems are nonlinear flows embedded in linear

manifolds, this initialization estimates the embedding manifold using a

linear statistical technique (FA) and the flow using a nonlinear regression

based on projections into the estimated manifold.

If the output function is nonlinear but the dynamics are approximately

linear, then a mixture of factor analyzers (MFA) can be trained on the

output observations [41, 42]. A mixture of factor analyzers is a model that

assumes that the data were generated from several Gaussian clusters with

differing means, with the covariance within each cluster being modeled by

a factor analyzer. Systems with nonlinear output function but linear

dynamics capture linear flows in a nonlinear embedding manifold, and

8One way to see this is to consider Gaussian RBFs in an n-dimensional grid (i.e., a square

lattice), all with heights 1. The RBF centers define a hypercube, the distance between

neighboring RBFs being 2d, where d is chosen such that e�d2=ð2s2Þ ¼ 1
2
. At the centers of

the hypercubes, there are 2n contributions from neighboring Gaussians, each of which is a

distance
ffiffiffi
n
p

d, and so contributes ð1
2
Þ
n to the height. Therefore, the height at the interiors is

approximately equal to the height at the corners.
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the goal of the MFA initialization is to capture the nonlinear shape of the

output manifold. Estimating the dynamics is difficult (since the hidden

states of the individual analyzers in the mixture cannot be combined easily

into a single internal state representation), but is still possible.9 A

summary of the algorithm including these initialization techniques is

shown in Figure 6.5.

Ideally, Bayesian methods would be used to control the complexity of

the model by estimating the internal state dimension and optimal number

of RBF centers. However, in general, only approximate techniques such as

cross-validation or variational approximations can be implemented in

practice (see Section 6.4.4). Currently, we have set these complexity

parameters either by hand or with cross-validation.

6.3 RESULTS

We tested how well our algorithm could learn the dynamics of a nonlinear

system by observing only the system inputs and outputs. We investigated

the behavior on simple one- and two-dimensional state-space problems

whose nonlinear dynamics were known, as well as on a weather time-

series problem involving real temperature data.

6.3.1 One- and Two-Dimensional Nonlinear State-Space
Models

In order to be able to compare our algorithm’s learned internal state

representation with a ground truth state representation, we first tested it on

Figure 6.5 Summary of the main steps of the NLDS-EM algorithm.

9As an approximate solution to the problem of getting a single hidden state from a MFA,

we can use the following procedure: (1) Estimate the ‘‘similarity’’ between analyzer centers

using average separation in time between data points for which they are active. (2) Use

standard embedding techniques such as multidimensional scaling (MDS) [43] to place the

MFA centers in a Euclidean space of dimension k. (3) Time-independent state inference for

each observation now consists of the responsibility-weighted low-dimensional MFA

centers, where the responsibilities are the posterior probabilities of each analyzer given

the observation under the MFA.
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synthetic data generated by nonlinear dynamics whose form was known.

The systems we considered consisted of three inputs and four observables

at each time, with either one or two hidden state variables. The relation of

the state from one time step to the next was given by a variety of nonlinear

functions followed by Gaussian noise. The outputs were a linear function

of the state and inputs plus Gaussian noise. The inputs affected the state

only through a linear driving function. The true and learned state transition

functions for these systems, as well as sample outputs in response to

Gaussian noise inputs and internal driving noise, are shown in Figures

6.6c,d, 6.7c, and 6.8c.

We initialized each nonlinear model with a linear dynamical model

trained with EM, which, in turn, we initialized with a variant of factor

analysis (see Section 6.2.4). The one-dimensional state-space models were

given 11 RBFs in x space, which were uniformly spaced. (The range of

maximum and minimum x values was automatically determined from the

density of inferred points.) Two-dimensional state-space models were

given 25 RBFs spaced in a 5� 5 grid uniformly over the range of inferred

Figure 6.6 Example of fitting a system with nonlinear dynamics and linear
observation function. The panels show the fitting of a nonlinear system with
a one-dimensional hidden state and 4 noisy outputs driven by Gaussian
noise inputs and internal state noise. (a) The true dynamics function (line)
and states (dots) used to generate the training data (the inset is the
histogram of internal states). (b) The learned dynamics function and
states inferred on the training data (the inset is the histogram of inferred
internal states). (c) The first component of the observable time series from
the training data. (d) The first component of fantasy data generated from
the learned model (on the same scale as c).
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states. After the initialization was over, the algorithm discovered the

nonlinearities in the dynamics within less than 5 iterations of EM (see

Figs. 6.6a,b, 6.7a,b, and 6.8a,b.

After training the models on input–output observations from the

dynamics, we examined the learned internal state representation and

Figure 6.7 More examples of fitting systems with nonlinear dynamics and
linear observation functions. Each of the five rows shows the fitting of a
nonlinear system with a one-dimensional hidden state and four noisy
outputs driven by Gaussian noise inputs and internal-state noise. (a) The
true dynamics function (line) and states (dots) used to generate the training
data. (b) The learned dynamics function and states inferred on the training
data. (c) The first component of the observable time series: training data on
the top and fantasy data generated from the learned model on the
bottom. The nonlinear dynamics can produce quasi-periodic outputs in
response to white driving noise.
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compared it with the known structure of the generating system. As the

figures show, the algorithm recovers the form of the nonlinear dynamics

quite well. We are also able to generate ‘‘fantasy’’ data from the models

once they have been learned by exciting them with Gaussian noise of

similar variance to that applied during training. The resulting observation

streams look qualitatively very similar to the time series from the true

systems.

We can quantify this quality of fit by comparing the log-likelihood of

the training sequences and novel test sequences under our nonlinear model

with the likelihood under a basic linear dynamical system model or a static

model such as factor analysis. Figure 6.9 presents this comparison. The

nonlinear dynamical system had significantly superior likelihood on both

training and test data for all the example systems. (Notice that for system

E, the linear dynamical system is much better than factor analysis because

of the strong hysteresis (mode-locking) in the system. Thus, the output at

the previous time step is an excellent predictor of the current output.)

6.3.2 Weather Data

As an example of a real system with a nonlinear output function as well as

important dynamics, we trained our model on records of the daily

maximum and minimum temperatures in Melbourne, Australia, over the

period 1981–1990.10 We used a model with two internal state variables,

Figure 6.8 Multidimensional example of fitting a system with nonlinear
dynamics and linear observation functions. The true system is piecewise-
linear across the state space. The plots show the fitting of a nonlinear system
with a two-dimensional hidden state and 4 noisy outputs driven by Gaussian
noise inputs and internal state noise. (a) The true dynamics vector field
(arrows) and states (dots) used to generate the training data. (b) The
learned dynamics vector field and states inferred on the training data. (c)
The first component of the observable time series: training data on the top
and fantasy data generated from the learned model on the bottom.

10This data is available on the world wide web from the Australian Bureau of Meteorology

at http:==www.bom.gov.au=climate.
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three outputs, and no inputs. During the training phase, the three outputs

were the minimum and maximum daily temperature as well as a real

valued output indicating the time of the year (month) in the range [0, 12].

The model was trained on 1500 days of temperature records, or just over

four seasons. We tested on the remaining 2150 days by showing the model

only the minimum and maximum daily temperatures and attempting to

predict the time of year (month). The prediction was performed by using

the EKS algorithm to do state inference given only the two available

observation streams. Once state inference was performed, the learned

output function of the model could be used to predict the time of year.

This prediction problem inherently requires the use of information from

previous and=or future times, since the static relationship between

temperature and season is ambiguous during spring=fall. Figure 6.10

shows the results of this prediction after training; the algorithm has

discovered a relationship between the hidden state and the observations

that allows it to perform reasonable prediction for this task. Also shown

Figure 6.9 Differences in log-likelihood assigned by various models to
training and test data from the systems in Figures 6.6 and 6.7. Each adjacent
group of five bars shows the log-likelihood of the five examples (A–E) under
factor analysis (FA), linear dynamical systems (LDS), and our nonlinear
dynamical system model (NLDS). Results on training data appear on the
left and results on test data on the right; taller bars represent better models.
Log-likelihoods are offset so that FA on the training data is zero. Error bars
represent the 68% quantile about the median across 100 repetitions of
training or testing. For NLDS, the exact likelihood cannot be computed;
what is shown is the pseudo-likelihood computed by EKS.

198 6 LEARNING NONLINEAR DYNAMICAL SYSTEMS USING EM



are the model predictions of minimum and maximum temperatures given

the inferred state.

Although not explicitly part of the generative model, the learned system

implicitly parameterizes a relationship between time of year and tempera-

ture. We can discover this relationship by evaluating the nonlinear output

function at many points in the state space. Each evaluation yields a triple

of month, minimum temperature and maximum temperature. These triples

can then be plotted against each other as in Figure 6.11 to show that the

model has discovered Melbourne’s seasonal temperature variations.

Figure 6.10 Model of maximum and minimum daily temperatures in
Melbourne, Australia from 1981 to 1990. Left of vertical line: A system with
two hidden states governed by linear dynamics and a non-linear output
function was trained on observation vectors of a three-dimensional time
series consisting of maximum and minimum temperatures for each day as
well as the (real-valued) month of the year. Training points are shown as
triangles (maximum temperature), squares (minimum temperature) and a
solid line (sawtooth wave below). Right of vertical line: After training, the
system can infer its internal state from only the temperature observations.
Having inferred its internal state it can predict the month of the year as a
missing output (line below). The solid lines in the upper plots show the
model’s prediction of minimum and maximum temperature given the
inferred state at the time.
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6.4 EXTENSIONS

6.4.1 Learning the Means and Widths of the RBFs

It is possible to relax the assumption that the Gaussian radial basis

functions have fixed centers and widths, although this results in a some-

what more complicated and slower fitting algorithm. To derive learning

rules for the RBF centers ci and width matrices Si, we need to consider

how they play into the cost function (6.17) through the RBF kernel (6.14).

We take derivatives with respect to the expectation of the cost function c,

and exchange the order of the expectation and the derivative:

@c

@ci

	 

¼

@c

@ri

@ri

@ci

	 

¼ 2hðyF� zÞ

>
Q�1hiriðxÞS

�1
i ðx� ciÞi: ð6:19Þ

Recalling that F ¼ ½r1ðxÞ r2ðxÞ . . . rI ðxÞ x> u> 1�>, it is clear

that ci figures nonlinearly in several places in this equation, and therefore

it is not possible to solve for ci in closed form. We can, however, use the

above gradient to move the center ci to decrease the cost, which

corresponds to taking a partial M-step with respect to ci. Equation

(6.19) requires the computation of three third-order expectations in

Figure 6.11 Prediction of maximum and minimum daily temperatures
based on time of year. The model from Figure 6.10 implicitly learns a
relationship between time of year and minimum=maximum temperature.
This relationship is not directly invertible, but the temporal information used
by extended Kalman smoothing correctly infers month given temperature
as shown in Figure 6.10.

200 6 LEARNING NONLINEAR DYNAMICAL SYSTEMS USING EM



addition to the first- and second-order expectations needed to optimize y
and Q: hriðxÞrkðxÞxlij, hriðxÞxkxlij; and hriðxÞzkxlij. Similarly, differentiat-

ing the cost with respect to S�1
i gives

@c

@S�1
i

	 

¼

@c

@ri

@ri

@S�1
i

	 

¼ h½ðyF� zÞ

>
Q�1hi�riðxÞ½Si � ðx� ciÞðx� ciÞ

>
�i:

ð6:20Þ

We now need three fourth-order expectations as well: hriðxÞrkðxÞxlxmij,

hriðxÞkxlxmij, and hriðxÞzkxlxmij.

These additional expectations increase both the storage and computa-

tion time of the algorithm – a cost that may not be compensated by the

added advantage of moving of centers and widths by small gradient steps.

One heuristic is to place centers and widths using unsupervised techniques

such as the EM algorithm for Gaussian mixtures, which considers solely

the input density and not the output nonlinearity. Alternatively, some of

these higher-order expectations can be approximated using, for example,

hriðxÞi � riðhxiÞ.

6.4.2 On-line Learning

One of the major limitations of the algorithm that we have presented in

this chapter is that it is a batch algorithm; that is, it assumes that we use

the entire sequence of observations to estimate the model parameters.

Fortunately, it is relatively straightforward to derive an on-line version of

the algorithm, which updates parameters as it receives observations. This

is achieved using the recursive least-squares (RLS) algorithm, which is in

fact just a special case of the discrete Kalman filter (see, e.g., [8, 44]).

The key observation is that the cost minimized in the M-step of the

algorithm (6.17) is a quadratic function of the parameters y. RLS is simply

a way of solving quadratic problems on-line. Using k to index time step,

the resulting algorithm for scalar z is as follows:

yk ¼ yk�1 þ ðhzFik � yk�1hFF
>
ikÞPk; ð6:21Þ

Pk ¼ Pk�1 �
Pk�1hFF

>
ikPk�1

1þ hF>Pk�1Fik
; ð6:22Þ

Qk ¼ Qk�1 þ
1

k
½hz2ik � ykhFzik � Qk�1�: ð6:23Þ
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Let us ignore the expectations for now. Initializing y0 ¼ 0, Q0 ¼ I, and P0

very large, it is easy to show that, after a few iterations, the estimates of yk

will rapidly converge to the exact values obtained by the least-squares

solution. The estimate of Q will converge to the correct values plus a bias

incurred by the fact that the early estimates of Q were based on residuals

from yk rather than limk!1 yk . Pk is a recursive estimate of

ð
Pk

j¼1hFFijÞ
�1, obtained by using the matrix inversion lemma.

There is an important way in which this on-line algorithm is an

approximation to the batch EM algorithm we have described for nonlinear

state-space models. The expectations h�ik in the online algorithm are

computed by running a single step of the extended Kalman filter using the

previous parameters yk�1. In the batch EM algorithm, the expectations are

computed by running an extended Kalman smoother over the entire

sequence using the current parameter estimate. Moreover, these expecta-

tions are used to re-estimate the parameters, the smoother is then re-run,

the parameters are re-re-estimated, and so on, to perform the usual

iterations of EM. In general, we can expect that, unless the time series

is nonstationary, the parameter estimates obtained by the batch algorithm

after convergence will model the data better than those obtained by the on-

line algorithm.

Interestingly, the updates for the RLS on-line algorithm described here

are very similar to the parameter updates used a dual extended Kalman

filter approach to system identification [45] (see Chapter 5 and Section

6.5.5). This similarity is not coincidental, since, as mentioned, the Kalman

filter can be derived as a generalization of the RLS algorithm. In fact, this

similarity can be exploited in an elegant manner to derive an on-line

algorithm for parameter estimation for nonstationary nonlinear dynamical

systems.

6.4.3 Nonstationarity

To handle nonstationary time series, we assume that the parameters can

drift according to a Gaussian random walk with covariance Sy:

yk ¼ yk�1 þ Ek; where Ek 	nð0;SyÞ:

As before, we have the following function relating the z variables to the

parameters y and nonlinear kernels F:

zk ¼ ykFk þ wk; where wk 	nð0;QÞ;
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which we can view as the observation model for a ‘‘state variable’’ yk with

time-varying ‘‘output matrix’’ Fk . Since both the dynamics and observa-

tion models are linear in y and the noise is Gaussian, we can apply the

following Kalman filter to recursively compute the distribution of drifting

parameters y:

ŷyk ¼ ŷyk�1 þ
ðhzFik � ŷyk�1hFF

>
ikÞPkjk�1

Qk�1 þ hF
>Pkjk�1Fik

; ð6:24Þ

Pkjk�1 ¼ Pk�1 þ Sy; ð6:25Þ

Pk ¼ Pkjk�1 �
Pkjk�1hFF

>
ikPkjk�1

Qk�1 þ hF
>Pkjk�1Fik

; ð6:26Þ

Qk ¼ Qk�1 þ lðhz2ik � ŷykhFzik � Qk�1Þ: ð6:27Þ

There are two important things to note. First, these equations describe an

ordinary Kalman filter, except that both the ‘‘output’’ z and ‘‘output

matrix’’ Fk are jointly uncertain with a Gaussian distribution. Second,

we have also assumed that the output noise covariance can drift by

introducing a forgetting factor l in its re-estimation equation. As before,

the expectations are computed by running one step of the EKF over the

hidden variables using yk�1.

While we derived this on-line algorithm starting from the batch EM

algorithm, what we have ended up with appears almost identical to the

dual extended Kalman filter (discussed in Chapter 5). Indeed, we have two

Kalman filters – one extended and one ordinary – running in parallel,

estimating the hidden states and parameters, respectively.

We can also view this on-line algorithm as an approximation to the

Bayesian posterior over parameters and hidden variables. The true poster-

ior would be some complicated distribution over the x; z, and y para-

meters. Here, we have recursively approximated it with two independent

Gaussians – one over (x; z) and one over y. The approximated posterior for

yk has mean ŷyk and covariance Pk .

6.4.4 Using Bayesian Methods for Model Selection and
Complexity Control

Like any other maximum-likelihood procedure, the EM algorithm

described in this chapter has the potential to overfit the data set – that

is, to find spurious patterns in noise in the data, thereby generalizing
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poorly. In our implementation, we used some ridge regression, that is, a

weight decay regularizer on the hi parameters, which seemed to work well

in practice but required some heuristics for setting regularization para-

meters. (Although, as mentioned previously, integrating over the hidden

variables acts as a sort of modulated input noise, and so, in effect,

performs ridge regression, which can eliminate the need for explicit

regularization.)

A second closely related problem faced by maximum-likelihood

methods is that there is no built-in procedure for doing model selection.

That is, the value of the maximum of the likelihood is not a suitable way to

choose between different model structures. For example, consider the

problems of choosing the dimensionality of the state space x and choosing

the number of basis functions I . Higher dimensions of x and more basis

functions should always, in principle, result in higher maxima of the

likelihood, which means that more complex models will always be

preferred to simpler ones. But this, of course, leads to overfitting.

Bayesian methods provide a very general framework for simultaneously

handling the overfitting and model selection problems in a consistent

manner. The key idea of the Bayesian approach is to avoid maximization

wherever possible. Instead, possible models, structures, parameters – in

short, all settings of unknown quantities – should be weighted by their

posterior probabilities, and predictions should be made according to this

weighted posterior.

For our nonlinear dynamical system, we can, for example, treat the

parameters y as an unknown. Then the model’s prediction of the output at

time k þ 1 is

pð ykþ1ju1:kþ1; y1:kÞ ¼

ð
dy pð ykþ1jukþ1; y1:k; u1:k; yÞpðyj y1:k; u1:kÞ

¼

ð
dy pðyj y1:k; u1:kÞ

ð
dxkþ1pð ykþ1jukþ1; xkþ1; yÞ

� pðxkþ1ju1:kþ1; y1:k; yÞ;

where the first integral on the last line is over the posterior distribution of

the parameters and the second integral is over the posterior distribution of

the hidden variables.

The posterior distribution over parameters can be obtained recursively

from Bayes’ rule:

pðyj y1:k; u1:kÞ ¼
pð yk ju1:k; y1:k�1; yÞpðyjU1:k�1; y1:k�1Þ

pð yk ju1:k; y1:k�1Þ
:
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The dual extended Kalman filter, the joint extended Kalman filter, and the

nonstationary on-line algorithm from Section 6.4.3 are all coarse approx-

imations of these Bayesian recursions.

The above equations are all implicitly conditioned on some choice of

model structure sm, that is, the dimension of x and the number of basis

functions. Although the Bayesian modeling philosophy advocates aver-

aging predictions of different model structures, if necessary it is also

possible to use Bayes’ rule to choose between model structures according

to their probabilities:

Pðsmj y1:k; u1:kÞ ¼
pð y1:k ju1:k; smÞPðsmÞP

n pð y1:k ju1:k; snÞPðsnÞ
:

Tractable approximations to the required integrals can be obtained in

several ways. We highlight three ideas, without going into much detail; an

adequate solution to this problem for nonlinear dynamical systems

requires further research. The first idea is the use of Markov-chain

Monte Carlo (MCMC) techniques to sample over both parameters and

hidden variables. Sampling can be an efficient way of computing high-

dimensional integrals if the samples are concentrated in regions where

parameters and states have high probability. MCMC methods such as

Gibbs sampling have been used for linear dynamical systems [46, 47],

while a promising method for nonlinear systems is particle filtering [18,

24], in which samples (‘‘particles’’) can be used to represent the joint

distribution over parameters and hidden states at each time step. The

second idea is the use of so-called ‘‘automatic relevance determination’’

(ARD [48, 49]). This consists of using a zero-mean Gaussian prior on

each parameter with tunable variances. Since these variances are para-

meters that control the prior distribution of the model parameters, they are

referred to as hyperparameters. Optimizing these variance hyperpara-

meters while integrating over the parameters results in ‘‘irrelevant’’

parameters being eliminated from the model. This occurs when the

variance controlling a particular parameter goes to zero. ARD for RBF

networks with a center on each data point has been used by Tipping [50]

successfully for nonlinear regression, and given the name ‘‘relevance

vector machine’’ in analogy to support vector machines. The third idea is

the use of variational methods to lower-bound the model structure

posterior probabilities. In exactly the same way that EM can be thought

of as forming a lower bound on the likelihood using a distribution over the

hidden variables, variational Bayesian methods lower-bound the evidence

using a distribution over both hidden variables and parameters. Variational

Bayesian methods have been used in [51] to infer the structure of linear
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dynamical systems, although the generalization to nonlinear systems of

the kind described in this chapter is not straightforward.

Of course, in principle, the Bayesian approach would advocate aver-

aging over all possible choices of ci, Si, I ;Q, etc. It is easy to see how this

can rapidly get very unwieldy.

6.5 DISCUSSION

6.5.1 Identifiability and Expressive Power

As we saw from the experiments described above, the algorithm that we

have presented is capable of learning good density models for a variety of

nonlinear time series. Specifying the class of nonlinear systems that our

algorithm can model well defines its expressive power. A related question

is: What is the ability of this model, in principle, to recover the actual

parameters of specific nonlinear systems? This is the question of model

identifiability. These two questions are intimately tied, since they both

describe the mapping between actual nonlinear systems and model

parameter settings.

There are three trivial degeneracies that make our model technically

unidentifiable, but should not concern us. First, it is always possible to

permute the dimensions in the state space and, by permuting the domain of

the output mapping and dynamics in the corresponding fashion, obtain an

exactly equivalent model. Second, the state variables can be rescaled or, in

fact, transformed by any invertible linear mapping. This transformation

can be absorbed by the output and dynamics functions, yielding a model

with identical input–output behavior. Without loss of generality, we always

set the covariance of the state evolution noise to be the identity matrix,

which both sets the scale of the state space and disallows certain state

transformations without reducing the expressive power of the model.

Third, we take the observation noise to be uncorrelated with the state

noise and both noises to be zero-mean, since, again without loss of

generality, these can be absorbed into the f and g functions.11

There exist other forms of unidentifiability that are more difficult to

overcome. For example, if both f and g are nonlinear, then (at least in the

noise-free case), for any arbitrary invertible transformation of the state,

11Imagine that the joint noise covariance was nonzero: hwkv
>
k i ¼ S. Replacing A with

A0 ¼ A� SR�1C gives a new noise process w0 with covariance Q0 ¼ Q� SR�1S> that is

uncorrelated with v, leaving the input–output behavior invariant. Similarly, any nonzero

noise means can be absorbed into the b terms in the functions f and g.
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there exist transformations of f and g that result in identical input–output

behavior. In this case, it would he very hard to detect that the recovered

model is indeed a faithful model of the actual system, since the estimated

and actual states would appear to be unrelated.

Clearly, not all systems can be modeled by assuming that f is linear and

g is nonlinear. Similarly, not all systems can be modeled by assuming that

f is nonlinear and g is linear. For example, consider the case where the

observations yk and ykþn are statistically independent, but each observa-

tion lies on a curved low-dimensional manifold in a high-dimensional

space. Modeling this would require a nonlinear g as in nonlinear factor

analysis, but an f ¼ 0. Therefore, choosing either f or g to be linear

restricts the expressive power of the model.

Unlike the state noise covariance Q, assuming that the observation

noise covariance R is diagonal does restrict the expressive power of the

model. This is easy to see for the case where the dimension of the state

space is small and the dimension of the observation vector is large. A full

covariance R can capture all correlations between observations at a single

time step, while a diagonal R model cannot.

For nonlinear dynamical systems, the Gaussian-noise assumption is not

as restrictive as it may initially appear. This is because the nonlinearity can

be used to turn Gaussian noise into non-Gaussian noise [6].

Of course, we have restricted our expressive power by using an RBF

network, especially one in which the means and centers of the RBFs are

fixed. One could try to appeal to universal approximation theorems to

make the claim that one could, in principle, model any nonlinear

dynamical system. But this would be misleading in the light of the

noise assumptions and the fact that only a finite and usually small

number of RBFs are going to be used in practice.

6.5.2 Embedded Flows

There are two ways to think about the dynamical models we have

investigated, shown in Figure 6.12. One is as a nonlinear Markov process

(flow) xk that has been embedded (or potentially projected) into a manifold

yk . From this perspective, the function f controls the evolution of the

stochastic process, and the function g specifies the nonlinear embedding

(or projection) operation.12

12To simplify presentation, we shall neglect driving inputs uk in this section, although the

arguments extend as well to systems with inputs.
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Another way to think of the same model is as a nonlinear version of a

latent-variable model such as factor analysis (but possibly with external

inputs as well) in which the latent variables or factors evolve through time

rather than being drawn independently for each observation. The nonlinear

factor analysis model is represented by g and the time evolution of the

latent variables by f .

If the state space is of lower dimension than the observation space and

the observation noise is additive, then a useful geometrical intuition

applies. In such cases, we have observed a flow inside an embedded

manifold. The observation function g specifies the structure (shape) of the

manifold, while the dynamics f specifies the flow within the manifold.

Armed with this intuition, the learning problem looks as if it might be

decoupled into two separate stages: first find the manifold by doing some

sort of density modeling on the collection of observed outputs (ignoring

their time order); second, find the flow (dynamics) by projecting the

observations into the manifold and doing nonlinear regression from one

time step to the next. This intuition is partly true, and indeed provides the

basis for many of the practical and effective initialization schemes that we

have tried. However, the crucial point as far as the design of learning

algorithms is concerned is that the two learning problems interact in a way

that makes the problem easier. Once we know something about the

dynamics, this information gives some prior knowledge when trying to

learn the manifold shape. For example, if the dynamics suggest that the

next state will be near a certain point, we can use this information to do

better than naive projection when we locate a noisy observation on the

manifold. Conversely, knowing something about the manifold allows us to

estimate the dynamics more effectively.

Figure 6.12 Two interpretations of the graphical model for stochastic
(non)linear dynamical systems (see text). (a) A Markov process embedded
in a manifold. (b) Nonlinear factor analysis through time.
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We discuss separately two special cases of flows in manifolds: systems

with linear output functions but nonlinear dynamics, and systems with

linear dynamics but nonlinear output function.

When the output function g is linear and the dynamics f is nonlinear

(Fig. 6.13), the observed sequence forms a nonlinear flow in a linear

subspace of the observation space. The manifold estimation is made

easier, even with high levels of observation noise, by the fact that its shape

is known to be a hyperplane. All that is required is to find its orientation

and the character of the output noise. Time-invariant analysis of the

observations by algorithms such as factor analysis is an excellent way to

initialize estimates of the hyperplane and noises. However, during learn-

ing, we may have cause to tilt the hyperplane to make the dynamics fit

better, or conversely cause to modify the dynamics to make the hyperplane

model better.

This setting is actually more expressive than it might seem initially.

Consider a nonlinear output function gðxÞ that is ‘‘invertible’’ in the sense

that it be written in the form gðxÞ ¼ C ~ggðxÞ for invertible ~gg and non-square

matrix C. Any such nonlinear output function can be made strictly linear if

we transform to a new state variable ~xx:

~xx ¼ ~ggðxÞ ) ~xxkþ1 ¼
~ff ð~xxk;wkÞ ¼ ~ggð f ð ~gg�1ð~xxÞÞ þ wkÞ; ð6:28aÞ

yk ¼ C ~xxk þ vk ¼ gðxkÞ þ vk; ð6:28bÞ

Figure 6.13 Linear and nonlinear dynamical systems represent flow fields
embedded in manifolds. For systems with linear output functions, such as
the one illustrated, the manifold is a hyperplane while the dynamics may be
complex. For systems with nonlinear output functions the shape of the
embedding manifold is also curved.
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which gives an equivalent model but with a purely linear output process,

and potentially nonadditive dynamics noise.

For nonlinear output functions g paired with linear dynamics f , the

observation sequence forms a matrix (linear) flow in a nonlinear manifold:

xkþ1 ¼ Axk þ wk; ð6:29aÞ

yk ¼ gðxkÞ þ vk : ð6:29bÞ

The manifold learning is harder now, because we must estimate a thin,

curved subspace of the observation space in the presence of noise.

However, once we have learned this manifold approximately, we project

the observations into it and learn only linear dynamics. The win comes

from the following fact: in the locations where the projected dynamics do

not look linear, we know that we should bend the manifold to make the

dynamics more linear. Thus, not only the shape of the outputs (ignoring

time) but also the linearity of the dynamics give us clues to learning the

manifold.

6.5.3 Stability

Stability is a key issue in the study of any dynamical system. Here we have

to consider stability at two levels: the stability of the learning procedure,

and the stability of the learned nonlinear dynamical system.

Since every step of the EM algorithm is guaranteed to increase the log-

likelihood until convergence, it has a built-in Lyapunov function for stable

learning. However, as we have pointed out, our use of extended Kalman

smoothing in the E-step of the algorithm represents an approximation to

the exact E-step, and therefore we have to forego any guarantees of

stability of learning. While we rarely had problems with stability of

learning, this is sure to be problem-specific, depending both on the quality

of the EKS approximation and on how close the true system dynamics is

to the boundary of stability. In contrast to the EKS approximations, certain

variational approximations [29] transform the intractable Lyapunov func-

tion into a tractable one, and therefore preserve stability of learning. It is

not clear how to apply these variational approximations to nonlinear

dynamics, although this would clearly be an interesting area of research.

Stability of the learned nonlinear dynamical system can be analyzed by

making use of some linear systems theory. We know that, for discrete-time

linear dynamical systems, if all eigenvalues of the A matrix lie inside the

unit circle, then the system is globally stable. The nonlinear dynamics of
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our RBF network f can be decomposed into two parts (cf. Eq. (6.13)): a

linear component given by A, and a nonlinear component given byP
i hiriðxÞ. Clearly, for the system to be globally stable, A has to satisfy

the eigenvalue criterion for linear systems. Moreover, if the RBF coeffi-

cients for both f and g have bounded norm (i.e., maxi jhij < �hhÞ and the

RBF is bounded, with mini detðSiÞ > smin > 0 and maxij jci � cjj < �cc,

then the nonlinear system is stable in the following sense. The conditions

on Si and h mean that����P
i

hiriðxÞ

���� < I �hh

ð2pÞd=2 ffiffiffiffiffiffiffiffi
smin

p � k:

Therefore, the noise-free nonlinear component of the dynamics alone will

always maintain the state within a sphere of radius k around �cc. So, if the

linear component is stable, then for any sequence of bounded inputs, the

output sequence of the noise-free system will be bounded. Intuitively,

although unstable behavior might occur in the region of RBF support,

once x leaves this region it is drawn back in by A.

For the on-line EM learning algorithm, the hidden state dynamics and

the parameter re-estimation dynamics will interact, and therefore a

stability analysis would be quite challenging. However, since there is no

stability guarantee for the batch EKS-EM algorithm, it seems very

unlikely that a simple form of the on-line algorithm could be provably

stable.

6.5.4 Takens’ Theorem and Hidden States

It has long been known that for linear systems, there is an equivalence

between so called state-space formulations involving hidden variables and

direct vector autoregressive models of the time series. In 1980, Takens

proved a remarkable theorem [52] that tells us that, for almost any

deterministic nonlinear dynamical system with a d-dimensional state

space, the state can be effectively reconstructed by observing 2d þ 1

time lags of any one of its outputs. In particular, Takens showed that such

a lag vector will be a smooth embedding (diffeomorphism) of the true

state, if one exists. This notion of finding an ‘‘embedding’’ for the state has

been used to justify a nonlinear regression approach to learning nonlinear

dynamical systems. That is, if you suspect that the system is nonlinear and

that it has d state dimensions, then instead of building a state-space model,

you can do away with representing states and just build an autoregressive

(AR) model directly on the observations that nonlinearly relates previous
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outputs and the current output. (Chapter 4 discusses the case of chaotic

dynamics.) This view begs the question: Do we need our models to have

hidden states at all?

While no constructive realization for Takens’ theorem exists in general,

there are very strong results for linear systems. For purely linear systems,

we can appeal to the Cayley–Hamilton theorem13 to show that the hidden

state can always be eliminated to obtain an equivalent vector autoregres-

sive model by taking only d time lags of the output. Furthermore, there is

a construction that allows this conversion to be performed explicitly.14

Takens’ theorem offers us a similar guarantee for elimination of hidden

states in nonlinear dynamical systems, as long as we take 2d þ 1 output

lags. (However, no similar recipe exists for explicitly converting to an

autoregressive form). These results appear to make hidden states unne-

cessary.

The problem with this view is that it does not generalize well to many

realistic high-dimensional and noisy scenarios. Consider the example

mentioned in the introduction. While it is mathematically true that the

pixels in the video frame of a balloon floating in the wind are a (highly

nonlinear) function of the pixels in the previous video frames, it would be

ludicrous from the modeling perspective to build an AR model of the

video images. This would require a number of parameters of the order of

the number of pixels squared. Furthermore, unlike the noise-free case of

Takens’ theorem, when the dynamics are noisy, the optimal prediction of

the observation would have to depend on the entire history of past

observations. Any truncation of this history throws away potentially

valuable information about the unobserved state. The state-space formula-

tion of nonlinear dynamical systems allows us to overcome both of these

limitations of nonlinear autoregressive models. That is, it allows us to have

compact representations of dynamics, and to integrate uncertain informa-

tion over time. The price paid for this is that it requires inference over the

hidden state.

13Any square matrix A of size n satisfies its own characteristic equation. Equivalently, any

matrix power Am for m 
 n can be written as a linear combination of lower matrix powers

I ;A;A2; . . . ;An�1.
14Start with the system xkþ1 ¼ Axk þ wk , yk ¼ Cxk þ vk . Create a d-dimensionl lag vector

zk ¼ ½yk; ykþ1; . . . ; ykþd�1� that holds the current and d � 1 future outputs. Write

zk ¼ Gxk þ nk for G ¼ ½CI;CA;CA2; . . . ;CAd�1� and Gaussian noise n (although with

nondiagonal covariance). The Cayley–Hamilton theorem assures us that G is full rank, and

thus we need not take any more lags. Given the lag vector zk, we can solve the system

zk ¼ Gxk for xk ; write this solution as Gþzk . Using the original observation equation d

times, to solve for yk ; . . . ; ykþd�1 in terms of zk , we can write an autoregression for zk as

zkþ1 ¼ GþAGzk þ mk for Gaussian noise m.
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6.5.5 Should Parameters and Hidden States be Treated
Differently?

The maximum-likelihood framework on which the EM algorithm is based

makes a distinction between parameters and hidden variables: it attempts

to integrate over hidden variables to maximize the likelihood as a function

of parameters. This leads to the two-step approach, which computes

sufficient statistics over the hidden variables in the E-step and optimizes

parameters in the M-step. In contrast, a fully Bayesian approach to

learning nonlinear dynamical state-space models would treat both

hidden variables and parameters as unknown and attempt to compute or

approximate the joint posterior distribution over them – in effect integ-

rating over both.

It is important to compare these approaches to system identification

with more traditional ones. We highlight two such approaches: joint EKF

approaches and dual EKF approaches.

In joint EKF approaches [7, 8], an augmented hidden state space is

constructed that comprises the original hidden state space and the

parameters. Since parameters and hidden states interact, even for linear

dynamical systems this approach results in nonlinear dynamics over the

augmented hidden states. Initializing a Gaussian prior distribution both

over parameters and over states, an extended Kalman filter is then used to

recursively update the joint distribution over states and parameters based

on the observations, pðX ; yjY Þ. This approach has the advantage that it can

model uncertainties in the parameters and correlations between parameters

and hidden variables. In fact, this approach treats parameters and state

variables completely symmetrically, and can be thought of as iteratively

implementing a Gaussian approximation to the recursive Bayes’ rule

computations. Nonstationarity can be easily built in by giving the

parameters (e.g., random-walk) dynamics. Although it has some very

appealing properties, this approach is known to suffer from instability

problems, which is the reason why dual EKF approaches have been

proposed.

In dual EKF approaches (see Chapter 5), two interacting but distinct

extended Kalman filters run simultaneously. One computes a Gaussian

approximation of the state posterior given a parameter estimate and the

observations: pðX jŷyold; Y Þ, while the other computes a Gaussian approx-

imation of the parameter posterior given the estimated states pðyjX̂Xold;Y Þ.

The two EKFs interact by each feeding its estimate (i.e., the posterior

means X̂X and ŷy) into the other. One can think of the dual EKF as

performing approximate coordinate ascent in pðX ; yjY Þ by iteratively
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maximizing pðX jŷyold;Y Þ and pðyjX̂Xold; Y ) under the assumption that each

conditional is Gaussian. Since the only interaction between parameters

and hidden variables occurs through their respective means, the procedure

has the flavor of mean-field methods in physics and neural networks [53].

Like these methods, it is also likely to suffer from the overconfidence

problem – namely, since the parameter estimate does not take into account

the uncertainty in the states, the parameter covariance will be overly

narrow, and likewise for the states.

For large systems, both joint and dual EKF methods suffer from the fact

that the parameter covariance matrix is quadratic in the number of

parameters. This problem is more pronounced for the joint EKF, since it

considers the concatenated state space. Furthermore, both joint and dual

EKF methods rely on Gaussian approximations to parameter distributions.

This can sometimes be problematic – for example, consider retaining

positive-definiteness of a noise covariance matrix under the assumption

that its parameters are Gaussian-distributed.

6.6 CONCLUSIONS

This chapter has brought together two classic algorithms – one from

statistics and another from systems engineering – to address the learning

of stochastic nonlinear dynamical systems. We have shown that by pairing

the extended Kalman smoothing algorithm for approximate state estima-

tion in the E-step with a radial basis function learning model that permits

exact analytic solution of the M-step, the EM algorithm is capable of

learning a nonlinear dynamical model from data. As a side-effect we have

derived an algorithm for training a radial basis function network to fit data

in the form of a mixture of Gaussians. We have also derived an on-line

version of the algorithm and a version for dealing with nonstationary time

series.

We have demonstrated the algorithm on a series of synthetic and

realistic nonlinear dynamical systems, and have shown that it is able to

learn accurate models from only observations of inputs and outputs.

Initialization of model parameters and placement of the radial basis

kernels are important to the practical success of the algorithm. We have

discussed techniques for making these choices, and have provided gradient

rules for adapting the centers and widths of the basis functions.

The main strength of our algorithm is that by making a specific choice

of nonlinear estimator (Gaussian radial basis networks), we are able to

exactly account for the uncertain state estimates generated during infer-

ence. Furthermore, the parameter-update procedures still only require the
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solution of systems of linear equations. However, we rely on the standard,

but potentially inaccurate, extended Kalman smoother for approximate

inference. For certain problems where local linearization is an extremely

poor approximation, greater accuracy may be achieved using other

approximate inference techniques such as the unscented filter (see Chapter

7). Another area worthy of further investigation is how to initialize the

parameters more effectively when the data lie on a nonlinear manifold; in

these cases, factor analysis provides an inadequate static model.

The belief network literature has recently been dominated by two

methods for approximate inference: Markov-chain Monte Carlo [54]

and variational approximations [29]. To the best of our knowledge, [36]

and [45] were the first instances where extended Kalman smoothing was

used to perform approximate inference in the E-step of EM. While EKS

does not have the theoretical guarantees of variational methods (which are

also approximate, but monotonically optimize a computable objective

function during learning), its simplicity has gained it wide acceptance in

the estimation and control literatures as a method for doing inference in

nonlinear dynamical systems. Our practical success in modeling a variety

of nonlinear time series suggests that the combination of extended Kalman

algorithms and the EM algorithm can provide powerful tools for learning

nonlinear dynamical systems.
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APPENDIX: EXPECTATIONS REQUIRED TO FIT THE RBFs

The expectations that we need to compute for Eq. (6.78) are hxij, hzij,

hxx>ij, hzz>ij, hxz>ij, hriðxÞij, hxriðxÞij, hzpiðxÞij; and hriðxÞrlðxÞij. Start-

ing with some of the easier ones that do not depend on the RBF kernel r,

we have

hxij ¼ mx
j ; hzij ¼ mz

j ;

hxx>ij ¼ mx
jm

x;>
j þ Cxx

j ; hzz>ij ¼ mz
jm

z;>
n þ Czz

j ;

hxz>ij ¼ mx
jm

z;>
j þ Cxz

j :
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Observe that when we multiply the Gaussian RBF kernel riðxÞ (Eq. (6.14))

and nj, we get a Gaussian density over ðx; zÞ with mean and covariance

mij ¼ Cij C�1
j mj þ

S�1
i ci

0

� �
 �
; Cij ¼ C�1

j þ
S�1

i 0

0 0

� �
 ��1

;

and an extra constant (due to lack of normalization),

bij ¼ ð2pÞ
�dx=2
jSij
�1=2jCjj

�1=2jCijj
1=2 expð� 1

2
dijÞ;

where

dij ¼ c>i S�1
i ci þ m>j C�1

j mj � m>ij C�1
ij mij:

Using bij and mij, we can evaluate the other expectations:

hriðxÞij ¼ bij; hxriðxÞij ¼ bijm
x
ij; hzriðxÞij ¼ bijm

z
ij:

Finally,

hriðxÞrlðxÞij ¼ ð2pÞ
�dx jCjj

�1=2jSij
�1=2jSlj

�1=2jCiljj
1=2 expð1

2
giljÞ;

where

Cilj ¼ C�1
j þ

S�1
i þ S�1

l 0

0 0

" # !�1

;

milj ¼ Cilj C�1
j mj þ

S�1
i ci þ S�1

l cl

0

" # !
;

gilj ¼ c>i S�1
i ci þ c>l S�1

l cl þ m>j C�1
j mj � m>iljC

�1
ilj milj:
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THE UNSCENTED
KALMAN FILTER

Eric A. Wan and Rudolph van der Merwe
Department of Electrical and Computer Engineering, Oregon Graduate Institute of

Science and Technology, Beaverton, Oregon, U.S.A.

7.1 INTRODUCTION

In this book, the extended Kalman filter (EKF) has been used as the

standard technique for performing recursive nonlinear estimation. The

EKF algorithm, however, provides only an approximation to optimal

nonlinear estimation. In this chapter, we point out the underlying assump-

tions and flaws in the EKF, and present an alternative filter with

performance superior to that of the EKF. This algorithm, referred to as

the unscented Kalman filter (UKF), was first proposed by Julier et al.

[1–3], and further developed by Wan and van der Merwe [4–7].

The basic difference between the EKF and UKF stems from the manner

in which Gaussian random variables (GRV) are represented for propagat-

ing through system dynamics. In the EKF, the state distribution is
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approximated by a GRV, which is then propagated analytically through the

first-order linearization of the nonlinear system. This can introduce large

errors in the true posterior mean and covariance of the transformed GRV,

which may lead to suboptimal performance and sometimes divergence of

the filter. The UKF address this problem by using a deterministic sampling

approach. The state distribution is again approximated by a GRV, but is

now represented using a minimal set of carefully chosen sample points.

These sample points completely capture the true mean and covariance of

the GRV, and, when propagated through the true nonlinear system,

captures the posterior mean and covariance accurately to second order

(Taylor series expansion) for any nonlinearity. The EKF, in contrast, only

achieves first-order accuracy. No explicit Jacobian or Hessian calculations

are necessary for the UKF. Remarkably, the computational complexity of

the UKF is the same order as that of the EKF.

Julier and Uhlman demonstrated the substantial performance gains of

the UKF in the context of state estimation for nonlinear control. A number

of theoretical results were also derived. This chapter reviews this work,

and presents extensions to a broader class of nonlinear estimation

problems, including nonlinear system identification, training of neural

networks, and dual estimation problems. Additional material includes the

development of an unscented Kalman smoother (UKS), specification of

efficient recursive square-root implementations, and a novel use of the

UKF to improve particle filters [6].

In presenting the UKF, we shall cover a number of application areas of

nonlinear estimation in which the EKF has been applied. General

application areas may be divided into state estimation, parameter estima-

tion (e.g., learning the weights of a neural network), and dual estimation

(e.g., the expectation–maximization (EM) algorithm). Each of these areas

place specific requirements on the UKF or EKF, and will be developed in

turn. An overview of the framework for these areas is briefly reviewed

next.

State Estimation The basic framework for the EKF involves estima-

tion of the state of a discrete-time nonlinear dynamical system,

xkþ1 ¼ Fðxk; uk; vkÞ; ð7:1Þ

yk ¼ Hðxk; nkÞ; ð7:2Þ

where xk represents the unobserved state of the system, uk is a known

exogeneous input, and yk is the observed measurement signal. The process
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noise vk drives the dynamic system, and the observation noise is given by

nk . Note that we are not assuming additivity of the noise sources. The

system dynamical model F and H are assumed known. A simple block

diagram of this system is shown in Figure 7.1. In state estimation, the EKF

is the standard method of choice to achieve a recursive (approximate)

maximum-likelihood estimate of the state xk . For completeness, we shall

review the EKF and its underlying assumptions in Section 7.2 to help

motivate the presentation of the UKF for state estimation in Section 7.3.

Parameter Estimation Parameter estimation, sometimes referred to

as system identification or machine learning, involves determining a

nonlinear mapping

yk ¼ Gðxk;wÞ; ð7:3Þ

where xk is the input, yk is the output, and the nonlinear map Gð�Þ is

parameterized by the vector w. The nonlinear map, for example, may be a

feedforward or recurrent neural network (w are the weights), with

numerous applications in regression, classification, and dynamic model-

ing. Learning corresponds to estimating the parameters w. Typically, a

training set is provided with sample pairs consisting of known input and

desired outputs, fxk , dkg. The error of the machine is defined as ek ¼

dk � Gðxk;wÞ, and the goal of learning involves solving for the para-

meters w in order to minimize the expectation of some given function of

the error.

While a number of optimization approaches exist (e.g., gradient descent

using backpropagation), the EKF may be used to estimate the parameters

by writing a new state-space representation,

wkþ1 ¼ wk þ rk; ð7:4Þ

dk ¼ Gðxk;wkÞ þ ek; ð7:5Þ

Input

Process noise Measurement noise

Output

State

Figure 7.1 Discrete-time nonlinear dynamical system.
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where the parameters wk correspond to a stationary process with identity

state transition matrix, driven by process noise rk (the choice of variance

determines convergence and tracking performance and will be discussed

in further detail in Section 7.4). The output dk corresponds to a nonlinear

observation on wk . The EKF can then be applied directly as an efficient

‘‘second-order’’ technique for learning the parameters. The use of the EKF

for training neural networks has been developed by Singhal and Wu [8]

and Puskorious and Feldkamp [9], and is covered in Chapter 2 of this

book. The use of the UKF in this role is developed in Section 7.4.

Dual Estimation A special case of machine learning arises when the

input xk is unobserved, and requires coupling both state estimation and

parameter estimation. For these dual estimation problems, we again

consider a discrete-time nonlinear dynamical system,

xkþ1 ¼ Fðxk;uk; vk;wÞ; ð7:6Þ

yk ¼ Hðxk;nk;wÞ; ð7:7Þ

where both the system states xk and the set of model parameters w for the

dynamical system must be simultaneously estimated from only the

observed noisy signal yk . Example applications include adaptive nonlinear

control, noise reduction (e.g., speech or image enhancement), determining

the underlying price of financial time series, etc. A general theoretical and

algorithmic framework for dual Kalman-based estimation has been

presented in Chapter 5. An expectation–maximization approach has also

been covered in Chapter 6. Approaches to dual estimation utilizing the

UKF are developed in Section 7.5.

In the next section, we review optimal estimation to explain the basic

assumptions and flaws with the EKF. This will motivate the use of the

UKF as a method to amend these flaws. A detailed development of the

UKF is given in Section 7.3. The remainder of the chapter will then be

divided based on the application areas reviewed above. We conclude the

chapter in Section 7.6 with the unscented particle filter, in which the UKF

is used to improve sequential Monte-Carlo-based filtering methods.

Appendix A provides a derivation of the accuracy of the UKF. Appendix

B details an efficient square-root implementation of the UKF.

7.2 OPTIMAL RECURSIVE ESTIMATION AND THE EKF

Given observations yk , the goal is to estimate the state xk . We make no

assumptions about the nature of the system dynamics at this point. The
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optimal estimate in the minimum mean-squared error (MMSE) sense is

given by the conditional mean:

x̂xk ¼ E½xk jY
k
0�; ð7:8Þ

where Yk
0 is the sequence of observations up to time k. Evaluation of this

expectation requires knowledge of the a posteriori density pðxk jY
k
0Þ.

1

Given this density, we can determine not only the MMSE estimator, but

any ‘‘best’’ estimator under a specified performance criterion. The

problem of determining the a posteriori density is in general referred to

as the Bayesian approach, and can be evaluated recursively according to

the following relations:

pðxk jY
k
0Þ ¼

pðxk jY
k�1
0 Þpðyk jxkÞ

pðyk jY
k�1
0 Þ

; ð7:9Þ

where

pðxk jY
k�1
0 Þ ¼

ð
pðxk jxk�1Þpðxk�1jY

k�1
0 Þ dxk�1; ð7:10Þ

and the normalizing constant pðyk jY
k
0Þ is given by

pðyk jY
k�1
0 Þ ¼

ð
pðxk jY

k�1
0 Þpðyk jxkÞ dxk : ð7:11Þ

This recursion specifies the current state density as a function of the

previous density and the most recent measurement data. The state-space

model comes into play by specifying the state transition probability

pðxk jxk�1Þ and measurement probability or likelihood, pðyk jxxÞ. Specifi-

cally, pðxk jxk�1Þ is determined by the process noise density pðvkÞ with the

state-update equation

xkþ1 ¼ Fðxk; uk; vkÞ: ð7:12Þ

For example, given an additive noise model with Gaussian density,

pðvkÞ ¼ nð0;RvÞ, then pðxk jxk�1Þ ¼ nðFðxk�1, uk�1Þ, Rv). Similarly,

1Note that we do not write the implicit dependence on the observed input uk , since it is not

a random variable.
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pðyk jxxÞ is determined by the observation noise density pðnkÞ and the

measurement equation

yk ¼ Hðxk; nkÞ: ð7:13Þ

In principle, knowledge of these densities and the initial condition

pðx0jy0Þ ¼ pðy0jx0Þpðx0Þ=pðy0Þ determines pðxk jY
k
0Þ for all k. Unfortu-

nately, the multidimensional integration indicated by Eqs. (7.9)–(7.11)

makes a closed-form solution intractable for most systems. The only

general approach is to apply Monte Carlo sampling techniques that

essentially convert integrals to finite sums, which converge to the true

solution in the limit. The particle filter discussed in the last section of this

chapter is an example of such an approach.

If we make the basic assumption that all densities remain Gaussian,

then the Bayesian recursion can be greatly simplified. In this case, only the

conditional mean x̂xk ¼ E½xk jY
k
0� and covariance Pxk

need to be evaluated.

It is straightforward to show that this leads to the recursive estimation

x̂xk ¼ ðprediction of xkÞ þ Kk ½yk � ðprediction of ykÞ�; ð7:14Þ

Pxk
¼ P�

xk
�KkP~yyk

K
T
k : ð7:15Þ

While this is a linear recursion, we have not assumed linearity of the

model. The optimal terms in this recursion are given by

x̂x�k ¼ E½Fðxk�1; uk�1; vk�1Þ�; ð7:16Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

; ð7:17Þ

ŷy�k ¼ E½Hðx�k ; nkÞ�; ð7:18Þ

where the optimal prediction (i.e., prior mean) of xk is written as x̂x�k , and

corresponds to the expectation of a nonlinear function of the random

variables xk�1 and vk�1 (with a similar interpretation for the optimal

prediction ŷy�k ). The optimal gain term Kk is expressed as a function of

posterior covariance matrices (with ~yyk ¼ yk � ŷy�k Þ. Note that evaluation of

the covariance terms also require taking expectations of a nonlinear

function of the prior state variable. P�
xk

is the prediction of the covariance

of xk , and P~yyk
is the covariance of ~yyk .

The celebrated Kalman filter [10] calculates all terms in these equations

exactly in the linear case, and can be viewed as an efficient method for
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analytically propagating a GRV through linear system dynamics. For

nonlinear models, however, the EKF approximates the optimal terms as

x̂x�k 
 Fðx̂xk�1;uk�1; �vvÞ; ð7:19Þ

Kk 
 P̂Pxk yk
P̂P�1
~yyk ~yyk

; ð7:20Þ

ŷy�k 
 Hðx̂x�k ; �nnÞ; ð7:21Þ

where predictions are approximated simply as functions of the prior

mean value (no expectation taken).2 The covariances are determined by

linearizing the dynamical equations ðxkþ1 
 Axk þ Buuk þ Bvk , yk 


Cxk þ Dnk), and then determining the posterior covariance matrices

analytically for the linear system. In other words, in the EKF, the state

distribution is approximated by a GRV, which is then propagated analy-

tically through the ‘‘first-order’’ linearization of the nonlinear system. The

explicit equations for the EKF are given in Table 7.1. As such, the EKF

2The noise means are denoted by n ¼ E½n� and v ¼ E½v�, and are usually assumed to equal

zero.

Table 7.1 Extended Kalman filter (EKF) equations

Initialize with

x̂x0 ¼ E½x0�; ð7:22Þ

Px0
¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ

T
�: ð7:23Þ

For k 2 f1; . . . ;1g, the time-update equations of the extended Kalman filter are

x̂x�k ¼ Fðx̂xk�1; uk�1; �vvÞ; ð7:24Þ

P�
xk
¼ Ak�1Pxk�1

AT
k�1 þ BkRvBT

k ; ð7:25Þ

and the measurement-update equations are

Kk ¼ P�
xk

CT
k ðCkP�

xk
CT

k þ DkRnDT
k Þ

�1; ð7:26Þ

x̂xk ¼ x̂x�k þKk ½yk � Hðx̂x�k ; �nnÞ�; ð7:27Þ

Pxk
¼ ðI �KkCkÞP

�
xk
; ð7:28Þ

where

Ak ¼
D @Fðx; uk; �vvÞ

@x

����
x̂xk

; Bk ¼
D @Fðx̂x�k ; uk ; vÞ

@v

����
�vv

;

Ck ¼
D @Hðx; �nnÞ

@x

����
x̂xk

; Dk ¼
D @Hðx̂x�k ; nÞ

@n

����
�nn

;

ð7:29Þ

and where Rv and Rn are the covariances of vk and nk, respectively.
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can be viewed as providing ‘‘first-order’’ approximations to the optimal

terms.3 These approximations, however, can introduce large errors in the

true posterior mean and covariance of the transformed (Gaussian) random

variable, which may lead to suboptimal performance and sometimes

divergence of the filter.4 It is these ‘‘flaws’’ that will be addressed in the

next section using the UKF.

7.3 THE UNSCENTED KALMAN FILTER

The UKF addresses the approximation issues of the EKF. The state

distribution is again represented by a GRV, but is now specified using a

minimal set of carefully chosen sample points. These sample points

completely capture the true mean and covariance of the GRV, and when

propagated through the true nonlinear system, capture the posterior mean

and covariance accurately to the second order (Taylor series expansion)

for any nonlinearity. To elaborate on this, we begin by explaining the

unscented transformation.

Unscented Transformation The unscented transformation (UT) is a

method for calculating the statistics of a random variable which undergoes

a nonlinear transformation [3]. Consider propagating a random variable x

(dimension L) through a nonlinear function, y ¼ f ðxÞ. Assume x has mean

�xx and covariance Px. To calculate the statistics of y, we form a matrix XX of

2L þ 1 sigma vectors X i according to the following:

X0 ¼ �xx;

X i ¼ �xx þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPx

p
Þi; i ¼ 1; . . . ; L;

X i ¼ �xx � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPx

p
Þi�L; i ¼ L þ 1; . . . ; 2L;

ð7:30Þ

3While ‘‘second-order’’ versions of the EKF exist, their increased implementation and

computational complexity tend to prohibit their use.
4A popular technique to improve the ‘‘first-order’’ approach is the iterated EKF, which

effectively iterates the EKF equations at the current time step by redefining the nominal

state estimate and re-linearizing the measurement equations. It is capable of providing

better performance than the basic EKF, especially in the case of significant nonlinearity in

the measurement function [11]. We have not performed a comparison to the UKF at this

time, though a similar procedure may also be adapted to iterate the UKF.
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where l ¼ a2ðL þ kÞ � L is a scaling parameter. The constant a deter-

mines the spread of the sigma points around �xx, and is usually set to a small

positive value (e.g., 1 � a � 10�4Þ. The constant k is a secondary scaling

parameter, which is usually set to 3 � L (see [1] for details), and b is used

to incorporate prior knowledge of the distribution of x (for Gaussian

distributions, b ¼ 2 is optimal). ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPxÞ

p
i

is the ith column of the

matrix square root (e.g., lower-triangular Cholesky factorization). These

sigma vectors are propagated through the nonlinear function

Yi ¼ f ðX iÞ; i ¼ 0; . . . ; 2L; ð7:31Þ

and the mean and covariance for y are approximated using a weighted

sample mean and covariance of the posterior sigma points,

�yy 

P2L

i¼0

W
ðmÞ
i Yi; ð7:32Þ

Py 

P2L

i¼0

W
ðcÞ
i ðYi � �yyÞðYi � �yyÞT ; ð7:33Þ

with weights Wi given by

W
ðmÞ
0 ¼

l
L þ l

;

W
ðcÞ
0 ¼

l
L þ l

þ 1 � a2 þ b

W
ðmÞ
i ¼ W

ðcÞ
i ¼

1

2ðL þ lÞ
; i ¼ 1; . . . ; 2L:

ð7:34Þ

A block diagram illustrating the steps in performing the UT is shown in

Figure 7.2. Note that this method differs substantially from general Monte

Carlo sampling methods, which require orders of magnitude more sample

points in an attempt to propagate an accurate (possibly non-Gaussian)

distribution of the state. The deceptively simple approach taken with the

UT results in approximations that are accurate to the third order for

Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approx-

imations are accurate to at least the second order, with the accuracy of

third- and higher-order moments being determined by the choice of a and

b. The proof of this is provided in Appendix A. Valuable insight into the

UT can also be gained by relating it to a numerical technique called
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Gaussian quadrature numerical evaluation of integrals. Ito and Xiong [12]

recently showed the relation between the UT and the Gauss–Hermite

quadrature rule5 in the context of state estimation. A close similarity also

exists between the UT and the central difference interpolation filtering

(CDF) techniques developed separately by Ito and Xiong [12] and

Nørgaard, Poulsen, and Ravn [13]. In [7] van der Merwe and Wan show

how the UKF and CDF can be unified in a general family of derivative-

free Kalman filters for nonlinear estimation.

A simple example is shown in Figure 7.3 for a two-dimensional system:

Figure 7.3a shows the true mean and covariance propagation using Monte

Carlo sampling; Figure 7.3b shows the results using a linearization

approach as would be done in the EKF; Figure 7.3c shows the perfor-

mance of the UT (note that only five sigma points are required). The

superior performance of the UT is clear.

Unscented Kalman Filter The unscented Kalman filter (UKF) is a

straightforward extension of the UT to the recursive estimation in Eq.

(7.14), where the state RV is redefined as the concatenation of the original

state and noise variables: xa
k ¼ ½xT

k vT
k nT

k �
T . The UT sigma point

selection scheme, Eq. (7.30), is applied to this new augmented state RV

to calculate the corresponding sigma matrix, XXa
k . The UKF equations are

Figure 7.2 Block diagram of the UT.

5In the scalar case, the Gauss–Hermite rule is given by
Ð1
�1

f ðxÞð2pÞ�1=2
e�x2

dx ¼Pm
i¼1 wi f ðxiÞ, where the equality holds for all polynomials, f ð�Þ, of degree up to 2m � 1

and the quadrature points xi and weights wi are determined according to the rule type (see

[12] for details). For higher dimensions, the Gauss–Hermite rule requires on the order of

m L functional evaluations, where L is the dimension of the state. For the scalar case, the

UTwith a ¼ 1, b ¼ 0, and k ¼ 2 coincides with the three-point Gauss–Hermite quadrature

rule.
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given in Table 7.2. Note that no explicit calculations of Jacobians or

Hessians are necessary to implement this algorithm. Furthermore, the

overall number of computations is of the same order as the EKF.

Implementation Variations For the special (but often encountered)

case where the process and measurement noise are purely additive, the

computational complexity of the UKF can be reduced. In such a case, the

system state need not be augmented with the noise RVs. This reduces the

dimension of the sigma points as well as the total number of sigma points

used. The covariances of the noise source are then incorporated into the

state covariance using a simple additive procedure. This implementation is

given in Table 7.3. The complexity of the algorithm is of order L3, where L

is the dimension of the state. This is the same complexity as the EKF. The

most costly operation is in forming the sample prior covariance matrix P�
k .

Depending on the form of F, this may be simplified; for example, for

univariate time series or with parameter estimation (see Section 7.4), the

complexity reduces to order L2.

Figure 7.3 Example of the UT for mean and covariance propagation:
(a) actual; (b) first-order linearization (EFK); (c) UT.
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Table 7.2 Unscented Kalman filter (UKF) equations

Initialize with

x̂x0 ¼ E½x0�; ð7:35Þ

P0 ¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�; ð7:36Þ

x̂xa
0 ¼ E½xa� ¼ ½x̂xT

0 0 0�T ; ð7:37Þ

Pa
0 ¼ E½ðxa

0 � x̂xa
0Þðx

a
0 � x̂xa

0Þ
T
� ¼

P0 0 0

0 Rv 0

0 0 Rn

2
4

3
5: ð7:38Þ

For k 2 f1; . . . ;1g,

calculate the sigma points:

XX a
k�1 ¼ ½x̂xa

k�1 x̂xa
k�1 þ g

ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

p
x̂xa

k�1 � g
ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

p
�: ð7:39Þ

The time-update equations are

XX x
kjk�1 ¼ FðXX x

k�1; uk�1; ðX
v
k�1Þ; ð7:40Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X x

i;kjk�1; ð7:41Þ

P�
k ¼

P2L

i¼0

W
ðcÞ
i ðX x

i;kjk�1 � x̂x�k ÞðX
x
i;kjk�1 � x̂x�k Þ

T ; ð7:42Þ

YY kjk�1 ¼ HðXX x
kjk�1;XX

n
k�1Þ; ð7:43Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Yi;kjk�1; ð7:44Þ

and the measurement-update equations are

P~yyk ~yyk
¼
P2L

i¼0

W
ðcÞ
i ðYi;kjk�1 � ŷy�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:45Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:46Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

; ð7:47Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ; ð7:48Þ

Pk ¼ P�
k �KkP~yyk ~yyk

Kk
T ; ð7:49Þ

where

xa ¼ ½xT vT nT �
T ; XX a ¼ ½ðXX xÞ

T
ðXX vÞ

T
ðXX nÞ

T
�
T ; g ¼

ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
;

l is the composite scaling parameter, L is the dimension of the augmented state,

Rv is the process-noise covariance, Rn is the measurement-noise covariance, and

Wi are the weights as calculated in Eq. (7.34).
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Table 7.3 UKF – additive (zero mean) noise case

Initialize with

x̂x0 ¼ E½x0�; ð7:50Þ

P0 ¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�: ð7:51Þ

For k 2 f1; . . . ;1g,

calculate the sigma points:

XX k�1 ¼ ½x̂xk�1 x̂xk�1 þ g
ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
x̂xk�1 � g

ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
�: ð7:52Þ

The time-update equations are

XX *kjk�1 ¼ FðXX k�1; uk�1Þ; ð7:53Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X*i;kjk�1 ð7:54Þ

P�
k ¼

P2L

i¼0

W
ðcÞ
i ðX*i;kjk�1 � x̂x�k ÞðX*i;kjk�1 � x̂x�k Þ

T
þ Rv; ð7:55Þ

ðaugment sigma pointsÞ6

XX kjk�1 ¼ ½XX *kjk�1 XX *0;kjk�1 þ g
ffiffiffiffiffiffi
Rv

p
X*0;kjk�1 � g

ffiffiffiffiffiffi
Rv

p
� ð7:56Þ

YY kjk�1 ¼ HðXX kjk�1Þ; ð7:57Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Yi;kjk�1; ð7:58Þ

and the measurement-update equations are

P~yyk ~yyk
¼
P2L

i¼0

W
ðcÞ
i ðYi;kjk�1 � ŷy�k ÞðYi;kjk�1 � ŷy�k Þ

T
þ Rn; ð7:59Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T
ð7:60Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

ð7:61Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ ð7:62Þ

Pk ¼ P�
k �KkP~yyk ~yyk

Kk
T ; ð7:63Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
; l is the composite scaling parameter, L is the dimension of

the state, Rv is the process-noise covariance, Rn is the measurement-noise

covariance and Wi are the weights as calculated in Eq. (7.34).

6Here we augment the sigma points with additional points derived from the matrix square

root of the process noise covariance. This requires setting L ! 2L and recalculating the

various weights Wi accordingly. Alternatively, we may redraw a complete new set of sigma

points, i.e., XX kjk�1 ¼ ½x̂x�k x̂x�k þ g
ffiffiffiffiffiffi
P�

k

p
x̂x�k � g

ffiffiffiffiffiffi
P�

k

p
�. This alternative approach results

in fewer sigma points being used, but also discards any odd-moments information captured

by the original propagated sigma points.

7.3 THE UNSCENTED KALMAN FILTER 233



A number of variations for numerical purposes are also possible. For

example, the matrix square root, which can be implemented directly using

a Cholesky factorization, is in general of order 1
6

L3. However, the

covariance matrices are expressed recursively, and thus the square root

can be computed in only order M � L2 (where M is the dimension of the

output yk) by performing a recursive update to the Cholesky factorization.

Details of an efficient recursive square-root UKF implementation are

given in Appendix B.

7.3.1 State-Estimation Examples

The UKF was originally designed for state estimation applied to nonlinear

control applications requiring full-state feedback [1–3]. We provide an

example for a double inverted pendulum control system. In addition, we

provide a new application example corresponding to noisy time-series

estimation with neural networks.

Double Inverted Pendulum A double inverted pendulum (see Fig.

7.4) has states corresponding to cart position and velocity, and top and

bottom pendulum angle and angular velocity, x ¼ ½x; _xx; y1;
_yy1; y2;

_yy2�. The

system parameters correspond to the length and mass of each pendulum,

and the cart mass, w ¼ ½l1; l2;m1;m2;M �. The dynamical equations are

ðM þ m1 þ m2Þ€xx � ðm1 þ 2m2Þl1
€yy1 cos y1 � m2l2

€yy2 cos y2

¼ u þ ðm1 þ 2m2Þl1ð
_yy1Þ

2 sin y1 þ m2l2ð
_yy2Þ

2 sin y2; ð7:64Þ

� ðm1 þ 2m2Þl1 €xx cos y1 þ 4ð1
3

m1 þ m2Þðl1Þ
2 €yy1 þ 2m2l1l2

€yy2 cosðy2 � y1Þ

¼ ðm1 þ 2m2Þgl1 sin y1 þ 2m2l1l2ð
_yy2Þ

2 sinðy2 � y1Þ; ð7:65Þ

� m2 €xxl2 cos y2 þ 2m2l1l2
€yy1 cosðy2 � y1Þ þ

4
3

m2ðl2Þ
2 €yy2

¼ m2gl2 sin y2 � 2m2l1l2ð
_yy1Þ

2 sinðy2 � y1Þ: ð7:66Þ

Figure 7.4 Double inverted pendulum.
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These continuous-time dynamics are discretized with a sampling period

of 0.02 seconds. The pendulum is stabilized by applying a control force u

to the cart. In this case, we use a state-dependent Ricatti equation (SDRE)

controller to stabilize the system.7 A state estimator is run outside the

control loop in order to compare the EKF with the UKF (i.e., the estimated

states are not used in the feedback control for evaluation purposes). The

observation corresponds to noisy measurements of the cart position, cart

velocity, and angle of the top pendulum. This is a challenging problem,

since no measurements are made for the bottom pendulum, nor for the

angular velocity of the top pendulum. For this experiment, the pendulum

is initialized in a jack-knife position (þ25�=�25�), with a cart offset of

0.5 meters. The resulting state estimates are shown in Figure 7.5. Clearly,

the UKF is better able to track the unobserved states.8 If the estimated

states are used for feedback in the control loop, the UKF system is still

able to stabilize the pendulum, while the EKF system crashes. We shall

return to the double inverted pendulum problem later in this chapter for

both model estimation and dual estimation.

Noisy Time-Series Estimation In this example, the UKF is used to

estimate an underlying clean time series corrupted by additive Gaussian

white noise. The time-series used is the Mackey–Glass-30 chaotic series

[15, 16]. The clean time-series is first modeled as a nonlinear autoregres-

sion

xk ¼ f ðxk�1; . . . xk�M ;wÞ þ vk; ð7:67Þ

where the model f (parameterised by w) was approximated by training a

feedforward neural network on the clean sequence. The residual error after

convergence was taken to be the process-noise variance.

Next, white Gaussian noise was added to the clean Mackey–Glass

series to generate a noisy time series yk ¼ xk þ nk . The corresponding

7An SDRE controller [11] is designed by formulating the dynamical equations as

xkþ1 ¼ AðxkÞxk þ BðxkÞuk : Note, this representation is not a linearization, but rather a

reformulation of the nonlinear dynamics into a pseudo-linear form. Based on this

state-space representation, we design an optimal LQR controller, uk ¼

�R�1BT ðxkÞPðxkÞxk � KðxkÞxk , where PðxkÞ is a solution of the standard Ricatti

equations using state-dependent matrices AðxkÞ and BðxkÞ. The procedure is repeated at

every time step at the current state xk , and provides local asymptotic stability of the plant

[14]. The approach has been found to be far more robust than LQR controllers based on

standard linearization techniques.
8Note that if all six states are observed with noise, then the performances of the EKF and

UKF are comparable.
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state-space representation is given by

xkþ1 ¼ Fðxk;wÞ þ Bvk;

xkþ1

xk

..

.

xk�M

2
66664

3
77775 ¼

f ðxk; . . . ; xk�Mþ1;wÞ

1 0 0 0

0 . .
.

0 ..
.

0 0 1 0

2
64

3
75

xk

..

.

xk�Mþ1

2
664

3
775

2
66664

3
77775þ

1

0

..

.

0

2
66664

3
77775vk;

yk ¼ ½1 0 . . . 0�xk þ nk : ð7:68Þ

In the estimation problem, the noisy time-series yk is the only observed

input to either the EKF or UKF algorithms (both utilize the known neural

network model). Figure 7.6 shows a subsegment of the estimates gener-

ated by both the EKF and the UKF (the original noisy time series has a

3 dB SNR). The superior performance of the UKF is clearly visible.

Figure 7.5 State estimation for the double inverted pendulum problem.
Only three noisy states are observed: cart position, cart velocity, and the
angle of the top pendulum. (10 dB SNR; a ¼ 1, b ¼ 0, k ¼ 0.)
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7.3.2 The Unscented Kalman Smoother

As has been discussed, the Kalman filter is a recursive algorithm providing

the conditional expectation of the state xk given all observations Yk
0 up to

the current time k. In contrast, the Kalman smoother estimates the state

given all observations past and future, YN
0 , where N is the final time.

Kalman smoothers are commonly used for applications such as trajectory

planning, noncausal noise reduction, and the E-step in the EM algorithm
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Figure 7.6 Estimation of Mackey–Glass time series using a known model: (a)
with the EKF; (b) with the UKF. (c) shows a comparison of estimation errors for
the complete sequence.
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[17, 18]. A thorough treatment of the Kalman smoother in the linear case

is given in [19]. The basic idea is to run a Kalman filter forward in time to

estimate the mean and covariance ðx̂x
f
k , P

f
k Þ of the state, given past data. A

second Kalman filter is then run backward in time to produce a backward-

time predicted mean and covariance ðx̂x�b
k , P�b

k ), given the future data.

These two estimates are then combined, producing the following

smoothed statistics, given all the data:

ðPs
kÞ
�1

¼ ðP
f
k Þ
�1
þ ðP�b

k Þ
�1; ð7:69Þ

x̂xs
k ¼ Ps

k ½ðP
�b
k Þ

�1x̂x�b
k þ ðP

f
k Þ

�1x̂x
f
k �: ð7:70Þ

For the nonlinear case, the EKF replaces the Kalman filter. The use of

the EKF for the forward filter is straightforward. However, implementation

of the backward filter is achieved by using the following linearized

backward-time system:

xk�1 ¼ A�1xk þ A�1Bvk ð7:71Þ

that is, the forward nonlinear dynamics are linearized, and then inverted

for the backward model. A linear Kalman filter is then applied.

Our proposed unscented Kalman smoother (UKS) replaces the EKF

with the UKF. In addition, we consider using a nonlinear backward model

as well, either derived from first principles or by training a backward

predictor using a neural network model, as illustrated for the time-series

case in Figure 7.7. The nonlinear backward model allows us to take full

advantage of the UKF, which requires no linearization step.

To illustrate performance, we reconsider the noisy Mackey–Glass time-

series problem of the previous section, as well as a second time series

generated using a chaotic autoregressive neural network. Table 7.4

compares smoother performance. In this case, the network models are

trained on the clean time series, and then tested on the noisy data using the

standard extended Kalman smoother with linearized backward model

x̂

Time series

Figure 7.7 Forward=backward neural network prediction training.
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(EKS1), an extended Kalman smoother with a second nonlinear backward

model (EKS2), and the unscented Kalman smoother (UKS). The forward

(F), backward (B), and smoothed (S) estimation errors are reported.

Again, the performance benefits of the unscented approach are clear.

7.4 UKF PARAMETER ESTIMATION

Recall that parameter estimation involves learning a nonlinear mapping

yk ¼ Gðxk;wÞ, where w corresponds to the set of unknown parameters.

Gð�Þ may be a neural network or another parameterized function. The EKF

may be used to estimate the parameters by writing a new state-space

representation

wkþ1 ¼ wk þ rk; ð7:73Þ

dk ¼ Gðxk;wkÞ þ ek; ð7:74Þ

where wk corresponds to a stationary process with identity state transition

matrix, driven by process noise rk . The desired output dk corresponds to a

nonlinear observation on wk . In the linear case, the relationship between

the Kalman Filter (KF) and the popular recursive least-squares (RLS) is

given in [20] and [25]. In the nonlinear case, the EKF training corresponds

to a modified-Newton method [22] (see also Chapter 2).

Table 7.4 Comparison of smoother performance

Mackey–Glass

Normalized MSE

Algorithm F B S

EKS1 0.20 0.70 0.27

EKS2 0.20 0.31 0.19

UKS 0.10 0.24 0.08

Chaotic AR–NN

Normalized MSE

Algorithm F B S

EKS1 0.35 0.32 0.28

EKS2 0.35 0.22 0.23

UKS 0.23 0.21 0.16
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From an optimization perspective, the following prediction error cost is

minimized:

J ðwÞ ¼
Pk
t¼1

½dt � Gðxt;wÞ�TðReÞ
�1
½dt � Gðxt;wÞ�: ð7:75Þ

Thus, if the ‘‘noise’’ covariance Re is a constant diagonal matrix, then, in

fact, it cancels out of the algorithm (this can be shown explicitly), and

hence can be set arbitrarily (e.g., Re ¼ 0:5I). Alternatively, Re can be set

to specify a weighted MSE cost. The innovations covariance

E½rkrT
k � ¼ Rr

k , on the other hand, affects the convergence rate and tracking

performance. Roughly speaking, the larger the covariance, the more

quickly older data is discarded. There are several options on how to

choose Rr
k .

� Set Rr
k to an arbitrary ‘‘fixed’’ diagonal value, which may then be

‘‘annealed’’ towards zero as training continues.

� Set Rr
k ¼ ðl�1

RLS � 1ÞPwk
, where lRLS 2 ð0; 1� is often referred to as

the ‘‘forgetting factor,’’ as defined in the recursive least-squares

(RLS) algorithm [21]. This provides for an approximate exponen-

tially decaying weighting on past data, and is described more fully in

[22]. Note that lRLS should not be confused with l used for sigma-

point calculation.

� Set

Rr
k ¼ ð1 � aRMÞR

r
k�1 þ aRMKw

k ½dk � Gðxk; ŵwÞ�

� ½dk � Gðxk; ŵwÞ�T ðKw
k Þ

T ;

which is a Robbins–Monro stochastic approximation scheme for

estimating the innovations [23]. The method assumes that the

covariance of the Kalman update model is consistent with the

actual update model. Typically, Rr
k is also constrained to be a

diagonal matrix, which implies an independence assumption on

the parameters. Note that a similar update may also be used for Re
k.

Our experience indicates that the ‘‘Robbins–Monro’’ method provides the

fastest rate of absolute convergence and lowest final MMSE values (see

the experiments in the next section). The ‘‘fixed’’ Rr
k in combination with

annealing can also achieve good final MMSE performance, but requires

more monitoring and a greater prior knowledge of the noise levels. For

problems where the MMSE is zero, the covariance should be lower-

bounded to prevent the algorithm from stalling and potential numerical
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problems. The ‘‘forgetting-factor’’ and ‘‘fixed’’ Rr
k methods are most

appropriate for on-line learning problems in which tracking of time-

varying parameters is necessary. In this case, the parameter covariance

stays lower-bounded, allowing the most recent data to be emphasized. This

leads to some misadjustment, but also keeps the Kalman gain sufficiently

large to maintain good tracking. In general, study of the various trade-offs

between these different approaches is still an area of open research.

The UKF represents an alternative to the EKF for parameter estimation.

However, as the state transition function is linear, the advantage of the

UKF may not be as obvious. Note that the observation function is still

nonlinear. Furthermore, the EKF essentially builds up an approximation to

the expected Hessian by taking outer products of the gradient. The UKF,

however, may provide a more accurate estimate through direct approx-

imation of the expectation of the Hessian. While both the EKF and UKF

can be expected to achieve similar final MMSE performance, their

covergence properties may differ. In addition, a distinct advantage of the

UKF occurs when either the architecture or error metric is such that

differentiation with respect to the parameters is not easily derived, as is

necessary in the EKF. The UKF effectively evaluates both the Jacobian

and Hessian precisely through its sigma-point propagation, without the

need to perform any analytical differentiation.

Specific equations for UKF parameter estimation are given in Table 7.5.

Simplifications have been made relative to the state UKF, accounting for

the specific form of the state transition function. In Table 7.5, we have

provided two options on how the function output d̂dk is achieved. In the

first option, the output is given as

d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1 
 E½Gðxk;wkÞ�; ð7:89Þ

corresponding to the direct interpretation of the UKF equations. The

output is the expected value (mean) of a function of the random variable

wk . In the second option, we have

d̂dk ¼ Gðxk; ŵw�
k Þ; ð7:90Þ

corresponding to the typical interpretation, in which the output is the

function with the current ‘‘best’’ set of parameters. This option yields

convergence performance that is indistinguishable from the EKF. The first

option, however, has different convergence characteristics, and requires
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further explanation. In the state-space approach to parameter estimation,

absolute convergence is achieved when the parameter covariance Pwk
goes

to zero (this also forces the Kalman gain to zero). At this point, the output

for either option is identical. However, prior to this, the finite covariance

provides a form of averaging on the output of the function, which in turn

prevents the parameters from going to the minimum of the error surface.

Thus, the method may help avoid falling into a local minimum. Further-

more, it provides a form of built-in regularization for short or noisy data

Table 7.5 UKF parameter estimation

Initialize with

ŵw0 ¼ E½w�; ð7:76Þ

Pw0
¼ E½ðw � ŵw0Þðw � ŵw0Þ

T
�: ð7:77Þ

For k 2 f1; . . . ;1g,

The time update and sigma-point calculation are given by

ŵw�
k ¼ ŵwk�1; ð7:78Þ

P�
wk
¼ Pwk�1

þ Rr
k�1; ð7:79Þ

WWkjk�1 ¼ ½ŵw�
k ŵw�

k þ g
ffiffiffiffiffiffiffi
P�

wk

q
ŵw�

k � g
ffiffiffiffiffiffiffi
P�

wk

q
�; ð7:80Þ

DDkjk�1 ¼ Gðxk ;WWkjk�1Þ; ð7:81Þ

option 1: d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1; ð7:82Þ

option 2: d̂dk ¼ Gðxk ; ŵw�
k Þ: ð7:83Þ

and the measurement-update equations are

P ~ddk
~ddk
¼
P2L

i¼0

W
ðcÞ
i ðDi;kjk�1 � d̂dkÞðDi;kjk�1 � d̂dkÞ

T
þ Re

k; ð7:84Þ

Pwk dk
¼
P2L

i¼0

W
ðcÞ
i ðW i;kjk�1 � ŵw�

k ÞðDi;kjk�1 � d̂dkÞ
T ; ð7:85Þ

Kk ¼ Pwk dk
P�1
~ddk
~ddk
; ð7:86Þ

ŵwk ¼ ŵw�
k þKkðdk � d̂dkÞ; ð7:87Þ

Pwk
¼ P�

wk
�KkP ~ddk

~ddk
K

T
k ; ð7:88Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
; l is the composite scaling parameter, L is the dimension of

the state, Rr is the process-noise covariance, Re is the measurement-noise

covariance, and Wi are the weights as calculated in Eq. (7.34).
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sets that are prone to overfitting (exact specification of the level of

regularization requires further study).

Note that the complexity of the UKF algorithm is still of order L3 (L is

the number of parameters), owing to the need to compute a matrix square

root at each time step. An order L2 complexity (same as the EKF) can be

achieved by using a recursive square-root formulation as given in

Appendix B.

7.4.1 Parameter Estimation Examples

We have performed a number of experiments to illustrate the performance

of the UKF parameter-estimation approach. The first set of experiments

corresponds to benchmark problems for neural network training, and serve

to illustrate some of the differences between the EKF and UKF, as well as

the different options discussed above. Two parametric optimization

problems are also included, corresponding to model estimation of the

double pendulum, and the benchmark ‘‘Rosenbrock’s Banana’’ optimiza-

tion problem.

Benchmark NN Regression and Time-Series Problems The

Mackay robot-arm dataset [24, 25] and the Ikeda chaotic time series

[26] are used as benchmark problems to compare neural network training.

Figure 7.8 illustrates the differences in learning curves for the EKF versus

UKF (option 1). Note the slightly lower final MSE performance of the

UKF weight training. If option 2 for the UKF output is used (see Eq.

(7.82), then the learning curves for the EKF and UKF are indistinguish-

able; this has been found to be consistent with all experiments; therefore,

we shall not show explicit learning curves for the UKF with option 2.

Figure 7.9 illustrates performance differences based on the choice of

processing noise covariance Rr
k . The Mackey–Glass and Ikeda time series

are used. The plots show only comparisons for the UKF (differences are

similar for the EKF). In general, the Robbins–Monro method is the most

robust approach, with the fastest rate of convergence. In some examples,

we have seen faster convergence with the ‘‘annealed’’ approach; however,

this also requires additional insight and heuristic methods to monitor the

learning. We should reiterate that the ‘‘fixed’’ and ‘‘lambda’’ approaches

are more appropriate for on-line tracking problems.

Four-Regions Classification In the next example, we consider a

benchmark pattern classification problem having four interlocking regions
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[8]. A three-layer feedforward network (MLP) with 2-10-10-4 nodes is

trained using inputs randomly drawn within the pattern space, S ¼

½�1;�1� � ½1; 1�, with the desired output value of þ0:8 if the pattern

fell within the assigned region and �0:8 otherwise. Figure 7.10 illustrates

the classification task, learning curves for the UKF and EKF, and the final

classification regions. For the learning curve, each epoch represents 100

randomly drawn input samples. The test set evaluated on each epoch

corresponds to a uniform grid of 10,000 points. Again, we see the superior

performance of the UKF.

Double Inverted Pendulum Returning to the double inverted pen-

dulum (Section 7.3.1), we consider learning the system parameters,

w ¼ ½l1; l2;m1;m2;M �. These parameter values are treated as unknown

(all initialized to 1.0). The full state, x ¼ ½x; _xx; y1;
_yy1; y2;

_yy2�, is observed.

Figure 7.8 (a) MacKay robot-arm problem: comparison of learning curves
for the EKF and UKF training, 2-12-2 MLP, annealing noise estimation. (b)
Ikeda chaotic time series: comparison of learning curves for the EKF and UKF
training, 10-7-1 MLP, Robbins–Monro noise estimation.
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Figure 7.11 shows the total model MSE versus iteration comparing EKF

with UKF. Each iteration represents a pendulum crash with different initial

conditions for the state (no control is applied). The final converged

parameter estimates are as follows:

l1 l2 m1 m2 M

True model 0.50 0.75 0.75 0.50 1.50

UKF estimate 0.50 0.75 0.75 0.50 1.49

EKF estimate 0.50 0.75 0.68 0.45 1.35

In this case, the EKF has converged to a biased solution, possibly

corresponding to a local minimum in the error surface.
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Figure 7.9 Neural network parameter estimation using different methods
for noise estimation. (a) Ikeda chaotic time series. (b) Mackey–Glass chao-
tic time series. (UKF settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is the state
dimension.)
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Figure 7.10 Singhal and Wu’s four-region classification problem. (a) True
mapping. (b) Learning curves on the test set. (c) NN classification: EKF-
trained. (d ) NN classification: UKF-trained. (UKF settings: a ¼ 10�4, b ¼ 2,
k ¼ 3 � L, where L is the state dimension; 2-10-10-4 MLP; Robbins–Monro;
1 epoch ¼ 100 random examples.)
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Figure 7.11 Inverted double pendulum parameter estimation. (UKF
settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is the state dimension; Robbins–
Monro.)
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Rosenbrock’s Banana Function For the last parameter estimation

example, we turn to a pure optimization problem. The Banana function

[27] can be thought of as a two-dimensional surface with a saddle-like

curvature that bends around the origin. Specifically, we wish to find the

values of x1 and x2 that minimize the function

f ðx1; x2Þ ¼ 100ðx2 � x2
1Þ

2
þ ð1 � x1Þ

2: ð7:91Þ

The true minimum is at x1 ¼ 1 and x2 ¼ 1. The Banana function is a well-

known test problem used to compare the convergence rates of competing

minimization techniques.

In order to use the UKF or EKF, the basic parameter estimation

equations need to be reformulated to minimize a non-MSE cost function.

To do this we write the state-space equations in observed error form [28]:

wk ¼ wk�1 þ rk; ð7:92Þ

0 ¼ � k þ ek; ð7:93Þ

where the target ‘‘observation’’ is fixed at zero, and k is an error term

resulting in the optimization of the sum of instantaneous costs Jk ¼
T
k k .

The MSE cost is optimized by setting k ¼ dk � Gðxk;wkÞ. However,

arbitrary costs (e.g., cross-entropy) can also be minimized simply by

specifying k appropriately. Further discussion of this approach has been

given in Chapter 5. Reformulation of the UKF equations requires chan-

ging only the effective output to k , and setting the desired response to

zero.

For the example at hand, we set k ¼ ½10ðx2 � x1Þ 1 � x1�
T . Further-

more, since this optimization problem is a special case of ‘‘noiseless’’

parameter estimation where the actual error can be minimized to zero, we

make use of Eq. (7.89) (option 2) to calculate the output of the UKF

algorithm. This will allow the UKF to reach the true minimum of the error

surface more rapidly.9 We also set the scaling parameter a to a small value,

which we have found to be appropriate again for zero MSE problems.

Under these circumstances, the performances of the UKF and EKF are

indistinguishable, as illustrated in Figure 7.12. Overall, the performances

9Note that the use of option 1, where the expected value of the function is used as the

output, essentially involves averaging of the output based on the current parameter

covariance. This shows convergence in the case where zero MSE is possible, since

convergence of the state covariance to zero would also be necessary through proper

annealing of the state noise innovations Rr.
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of the two filters are comparable or superior to those of a number of

alternative optimization approaches (e.g., Davidson–Fletcher–Powell,

Levenburg–Marquardt, etc. See ‘‘optdemo’’ in Matlab). The main purpose

of this example was to illustrate the versatility of the UKF to general

optimization problems.

7.5 UKF DUAL ESTIMATION

Recall that the dual estimation problem consists of simultaneously

estimating the clean state xk and the model parameters w from the

noisy data yk (see Eq. (7.7)). A number of algorithmic approaches exist

for this problem, including joint and dual EKF methods (recursive

prediction error and maximum-likelihood versions), and expectation–

maximization (EM) approaches. A thorough coverage of these algorithms
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Figure 7.12 Rosenbrock’s ‘‘Banana’’ optimization problem. (a) Function
value. (b) Model error. (UKF settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is
the state dimension; Fixed.)
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is given in Chapters 5 and 6. In this section, we present results for the dual

UKF (prediction error) and joint UKF methods.

In the dual extended Kalman filter [29], a separate state-space repre-

sentation is used for the signal and the weights. Two EKFs are run

simultaneously for signal and weight estimation. At every time step, the

current estimate of the weights is used in the signal filter, and the current

estimate of the signal state is used in the weight filter. In the dual UKF

algorithm, both state and weight estimation are done with the UKF.

In the joint extended Kalman filter [30], the signal-state and weight

vectors are concatenated into a single, joint state vector: ½xT
k wT

k �
T .

Estimation is done recursively by writing the state-space equations for

the joint state as

xkþ1

wkþ1

� �
¼

Fðxk;uk;wkÞ

Iwk

� �
þ

Bvk

rk

� �
: ð7:94Þ

yk ¼ ½1 0 . . . 0�
xk

wk

� �
þ nk; ð7:95Þ

and running an EKF on the joint state space to produce simultaneous

estimates of the states xk and w. Again, our approach is to use the UKF

instead of the EKF.

7.5.1 Dual Estimation Experiments

Noisy Time-Series We present results on two time-series to provide a

clear illustration of the use of the UKF over the EKF. The first series is

again the Mackey–Glass-30 chaotic series with additive noise

(SNR 
 3 dB). The second time series (also chaotic) comes from an

autoregressive neural network with random weights driven by Gaussian

process noise and also corrupted by additive white Gaussian noise

(SNR 
 3 dB). A standard 6-10-1 MLP with tanh hidden activation

functions and a linear output layer was used for all the filters in the

Mackey–Glass problem. A 5-3-1 MLP was used for the second problem.

The process- and measurement-noise variances associated with the state

were assumed to be known. Note that, in contrast to the state estimation

example in the previous section, only the noisy time series is observed. A

clean reference is never provided for training.

Example training curves for the different dual and joint Kalman-based

estimation methods are shown in Figure 7.13. A final estimate for the

Mackey–Glass series is also shown for the dual UKF. The superior

performance of the UKF-based algorithms is clear.
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Figure 7.13 Comparative learning curves and results for the dual estima-
tion experiments. Curves are averaged over 10 and 3 runs, respectively,
using different initial weights. ‘‘Fixed’’ innovation covariances are used in
the joint algorithms. ‘‘Annealed’’ covariances are used for the weight filter
in the dual algorithms. (a) Chaotic AR neural network. (b) Mackey–Glass
chaotic time series. (c) Estimation of Mackey–Glass time series: dual UKF.
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Mode Estimation This example illustrates the use of the joint UKF for

estimating the modes of a mass-and-spring system (see Fig. 7.14). This

work was performed at the University of Washington by Mark Campbell

and Shelby Brunke. While the system is linear, direct estimation of the

natural frequencies o1 and o2 jointly with the states is a nonlinear

estimation problem. Figure 7.15 compares the performance of the EKF

and UKF. Note that the EKF does not converge to the true value for o2.

For this experiment, the input process noise SNR is approximately 100 dB,

and the measured positions y1 and y2 have additive noise at a 60 dB SNR

(these settings effectively turn the task into a pure parameter-estimation

Figure 7.14 Mass-and-spring system.

Figure 7.15 Linear mode prediction.
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problem). A fixed innovations Rr was used for the parameter estimation in

the joint algorithms. Sampling was done at the Nyquist rate (based on o2),

which emphasizes the effect of linearization in the EKF. For faster

sampling rates, the performance of the EKF and UKF become more

similar.

F15 Flight Simulation In this example (also performed at the Univer-

sity of Washington), joint estimation is done on an F15 aircraft model

[31]. The simulation includes vehicle nonlinear dynamics, and engine and

sensor noise modeling, as well as atmospheric modeling (densities,

pressure, etc.) based on look-up tables. Also incorporated are aerodynamic

forces based on data from Wright Patterson AFB. A closed-loop system

using a gain-scheduled TECS controller is used to control the model [32].

A simulated mission was used to test the UKF estimator, and involved a

quick descent, short tactical run, 180� turn, and ascent, with a possible

failure in the stabilitator (horizontal control surface on the tail of the

aircraft). Measurements consisted of the states with additive noise (20 dB

SNR). Turbulence was approximately 1 m=s RMS. During the mission, the

joint UKF estimated the 12 states (positions, orientations, and their

derivatives) as well as parameters corresponding to aerodynamic forces

and moments. This was done ‘‘off-line’’; that is, the estimated states were

not used within the control loop. Illustrative results are shown in Figure

7.16 for estimation of the altitude, velocity, and lift parameter (overall lift

force on the aircraft). The left column shows the mission without a failure.

The right column includes a 50% stabilitator failure at 65 seconds. Note

that even with this failure, the UKF is still capable of tracking the state and

parameters. It should be pointed out that the ‘‘black-box’’ nature of the

simulator was not conducive to taking Jacobians necessary for running the

EKF. Hence, implementation of the EKF for comparison was not

performed.

Double Inverted Pendulum For the final dual estimation example,

we again consider the double inverted pendulum, but this time we estimate

both the states and system parameters using the joint UKF. Observations

correspond to noisy measurements of the six states. Estimated states are

then fed back for closed-loop control. In addition, parameter estimates are

used at every time step to design the controller using the SDRE approach.

Figure 7.17 illustrates performance of this adaptive control system by

showing the evolution of the estimated and actual states. At the start of the

simulation, both the states and parameters are unknown (the control

system is unstable at this point). However, within one trial, the UKF
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enables convergence and stabilization of the pendulum without a single

crash.

7.6 THE UNSCENTED PARTICLE FILTER

The particle filter is a sequential Monte Carlo method that allows for a

complete representation of the state distribution using sequential impor-

tance sampling and resampling [33–35]. Whereas the standard EKF and

UKF make a Gaussian assumption to simplify the optimal recursive

Bayesian estimation (see Section 7.2), particle filters make no assumptions

on the form of the probability densities in question; that is, they employ

full nonlinear, non-Gaussian estimation. In this section, we present a

method that utilizes the UKF to augment and improve the standard particle

filter, specifically through generation of the importance proposal distribu-

tion. This chapter will review the background fundamentals necessary to

introduce particle filtering, and the extension based on the UKF. The

Figure 7.16 F15 model joint estimation (note that the estimated and true
values of the state are indistinguishable at this resolution).
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material is based on work done by van der Merwe, de Freitas, Doucet, and

Wan in [6], which also provides a more thorough review and treatment of

particle filters in general.

Monte Carlo Simulation and Sequential Importance Sampling
Particle filtering is based on Monte Carlo simulation with sequential

importance sampling (SIS). The overall goal is to directly implement

optimal Bayesian estimation (see Eqs. (7.9)–(7.11)) by recursively approx-

imating the complete posterior state density. In Monte Carlo simulation, a

set of weighted particles (samples), drawn from the posterior distribution,

is used to map integrals to discrete sums. More precisely, the posterior

filtering density can be approximated by the following empirical estimate:

p̂pðxk jY
k
0Þ ¼

1

N

PN
i¼1

dðxk � XX
ðiÞ
k Þ;

Figure 7.17 Double Inverted Pendulum joint estimation. Estimated states
(a) and parameters (b). Only y1 and y2 are plotted (in radians).
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where the random samples fXX
ðiÞ
k ; i ¼ 1; . . . ;Ng, are drawn from pðxk jY

k
0Þ

and dð�Þ denotes the Dirac delta function. The posterior filtering density

pðxk jY
k
0Þ is a marginal of the full posterior density given by pðXk

0jY
k
0Þ.

Consequently, any expectations of the form

EðgðxkÞÞ ¼

ð
gðxkÞpðxk jY

k
0Þ dxk ð7:96Þ

may be approximated by the following estimate:

EðgðxkÞÞ 

1

N

PN
i¼1

gðXX
ðiÞ
k Þ: ð7:97Þ

For example, letting gðxÞ ¼ x yields the optimal MMSE estimate

x̂xk ¼ E½xk jY
k
0�. The particles XX

ðiÞ
k are assumed to be independent and

identically distributed (i.i.d) for the approximation to hold. As N goes

to infinity, the estimate converges to the true expectation almost surely.

Sampling from the filtering posterior is only a special case of Monte Carlo

simulation, which in general deals with the complete posterior density

pðXk
0jY

k
0Þ. We shall use this more general form to derive the particle filter

algorithm.

It is often impossible to sample directly from the posterior density

function. However, we can circumvent this difficulty by making use of

importance sampling and alternatively sampling from a known proposal

distribution qðXk
0jY

k
0Þ. The exact form of this distribution is a critical

design issue, and is usually chosen in order to facilitate easy sampling.

The details of this are discussed later. Given this proposal distribution, we

can make use of the following substitution:

EðgkðX
k
0ÞÞ ¼

ð
gkðX

k
0Þ

pðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ dXk

0

¼

ð
gkðX

k
0Þ

pðYk
0jX

k
0ÞpðX

k
0Þ

pðYk
0ÞqðX

k
0jY

k
0Þ

qðXk
0jY

k
0Þ dXk

0

¼

ð
gkðX

k
0Þ

wkðX
k
0Þ

pðYk
0Þ

qðXk
0jY

k
0Þ dXk

0;

where the variables wkðX
k
0Þ are known as the unnormalized importance

weights,

wk ¼
pðYk

0jX
k
0ÞpðX

k
0Þ

qðXk
0jY

k
0Þ

: ð7:98Þ
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We can get rid of the unknown normalizing density pðYk
0Þ as follows:

EðgkðX
k
0ÞÞ ¼

1

pðYk
0Þ

ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0

¼

Ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0Ð
pðYk

0jX
k
0ÞpðX

k
0Þ

qðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ

dXk
0

¼

Ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0Ð
wkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0

¼
Eqð�jYk

0Þ
ðwkðX

k
0ÞgkðX

k
0ÞÞ

Eqð�jYk
0Þ
ðwkðX

k
0ÞÞ

;

where the notation Eqð�jYk
0Þ

has been used to emphasize that the expecta-

tions are taken over the proposal distribution qð�jYk
0Þ.

A sequential update to the importance weights is achieved by expand-

ing the proposal distribution as qðXk
0jY

k
0Þ ¼ qðXk�1

0 jYk�1
0 Þqðxk jX

k�1
0 , Yk

0Þ,

where we are making the assumption that the current state is not

dependent on future observations. Furthermore, under the assumption

that the states correspond to a Markov process and that the observations

are conditionally independent given the states, we can arrive at the

recursive update:

wk ¼ wk�1

pðyk jxkÞpðxk jxk�1Þ

qðxk jX
k�1
0 ;Yk

0Þ
: ð7:99Þ

Equation (7.99) provides a mechanism to sequentially update the impor-

tance weights given an appropriate choice of proposal distribution,

qðxk jX
k�1
0 , Yk

0Þ. Since we can sample from the proposal distribution and

evalute the likelihood pðyk jxkÞ and transition probabilities pðxk jxk�1Þ; all

we need to do is generate a prior set of samples and iteratively compute

the importance weights. This procedure then allows us to evaluate the

expectations of interest by the following estimate:

EðgðXk
0ÞÞ 


N�1
PN
i¼1

gðXX
ðiÞ
0:kÞwkðXX

ðiÞ
0:kÞ

N�1
PN
i¼1

wkðXX
ðiÞ
0:kÞ

¼
PN
i¼1

gðXX
ðiÞ
0:kÞ ~wwkðXX

ðiÞ
0:kÞ; ð7:100Þ
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where the normalized importance weights ~ww
ðiÞ
k ¼ w

ðiÞ
k =
PN

j¼1 w
ðjÞ
k and XX

ðiÞ
0:k

denotes the ith sample trajectory drawn from the proposal distribution

qðxk jX
k�1
0 , Yk

0Þ. This estimate asymptotically converges if the expectation

and variance of gðXk
0Þ and wk exist and are bounded, and if the support of

the proposal distribution includes the support of the posterior distribution.

Thus, as N tends to infinity, the posterior density function can be

approximated arbitrarily well by the point-mass estimate

p̂pðXk
0jY

k
0Þ ¼

PN
i¼1

~ww
ðiÞ
k dðXk

0 � XX
ðiÞ
0:kÞ ð7:101Þ

and the posterior filtering density by

p̂pðxk jY
k
0Þ ¼

PN
i¼1

~ww
ðiÞ
k dðxk � XX

ðiÞ
k Þ: ð7:102Þ

In the case of filtering, we do not need to keep the whole history of the

sample trajectories, in that only the current set of samples at time k is

needed to calculate expectations of the form given in Eq. (7.96) and

(7.97). To do this, we simply set, gðXk
0Þ ¼ gðxkÞ. These point-mass

estimates can approximate any general distribution arbitrarily well, limited

only by the number of particles used and how well the above-mentioned

importance sampling conditions are met. In contrast, the posterior distri-

bution calculated by the EKF is a minimum-variance Gaussian approx-

imation to the true distribution, which inherently cannot capture complex

structure such as multimodalities, skewness, or other higher-order

moments.

Resampling and MCMC Step The sequential importance sampling

(SIS) algorithm discussed so far has a serious limitation: the variance of

the importance weights increases stochastically over time. Typically, after

a few iterations, one of the normalized importance weights tends to unity,

while the remaining weights tend to zero. A large number of samples are

thus effectively removed from the sample set because their importance

weights become numerically insignificant. To avoid this degeneracy, a

resampling or selection stage may be used to eliminate samples with low

importance weights and multiply samples with high importance weights.

This is often followed by a Markov-chain Monte Carlo (MCMC) move

step, which introduces sample variety without affecting the posterior

distribution they represent.
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A selection scheme associates to each particle XX
ðiÞ
k a number of

‘‘children,’’ Ni, such that
PN

i¼1 Ni ¼ N . Several selection schemes have

been proposed in the literature, including sampling-importance resam-

pling ðSIRÞ [36–38], residual resampling [25, 39], and minimum-variance

sampling [34].

Sampling-importance resampling (SIR) involves mapping the Dirac

random measure fXX
ðiÞ
k , ~ww

ðiÞ
k g into an equally weighted random measure

fXX
ðjÞ
k , N�1g. In other words, we produce N new samples all with weighting

1=N . This can be accomplished by sampling uniformly from the discrete

set fXX
ðiÞ
k ; i ¼ 1; . . . ;Ng with probabilities f ~ww

ðiÞ
k ; i ¼ 1; . . . ;Ng. Figure 7.18

gives a graphical representation of this process. This procedure effectively

replicates the original XX
ðiÞ
k particle Ni times ðNi may be zero).

In residual resampling [25, 39] a two-step process is used, which makes

use of SIR. In the first step, the number of children are deterministicly set

using the floor function, NA
i ¼ bN ~ww

ðiÞ
t c. Each XX

ðiÞ
k particle is replicated NA

i

times. In the second step, SIR is used to select the remaining
�NNt ¼ N �

PN
i¼1 NA

i samples, with new weights w
0ðiÞ
t ¼ �NN�1

t ð ~ww
ðiÞ
t N � NA

i Þ.

These samples form a second set NB
i , such that �NNt ¼

PN
i¼1 NB

i , and are

drawn as described previously. The total number of children of each

particle is then set to Ni ¼ NA
i þ NB

i . This procedure is computationally

cheaper than pure SIR, and also has lower sample variance. Thus, residual

resampling is used for all experiments in Section 7.6.2 (in general, we

have found that the specific choice of resampling scheme does not

significantly affect the performance of the particle filter).

After the selection=resampling step at time k, we obtain N particles

distributed approximately according to the posterior distribution. Since the

selection step favors the creation of multiple copies of the ‘‘fittest’’

Figure 7.18 Resampling process, whereby a random measure fxðiÞk , ~wwðiÞ
k g is

mapped into an equally weighted random measure fxðjÞk , N�1g. The index i is
drawn from a uniform distribution.
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particle, many particles may end up having no children ðNi ¼ 0Þ, whereas

others might end up having a large number of children, the extreme case

being Ni ¼ N for a particular value i. In this case, there is a severe

depletion of samples. Therefore, an additional procedure is often required

to introduce sample variety after the selection step without affecting the

validity of the approximation inferred. This is achieved by performing a

single MCMC step on each particle. The basic idea is that if the particles

are already distributed according to the posterior pðxk jY
k
0Þ (which is the

case), then applying a Markov-chain transition kernel with the same

invariant distribution to each particle results in a set of new particles

distributed according to the posterior of interest. However, the new

particles may move to more interesting areas of the state space. Details

of the MCMC step are given in [6]. For our experiments in Section 7.6.2,

we found an MCMC step to be unnecessary. However, this cannot be

assumed in general.

7.6.1 The Particle Filter Algorithm

The pseudo-code of a generic particle filter is presented in Table 7.6. In

implementing this algorithm, the choice of the proposal distribution

qðxk jX
k�1
0 , Yk

0Þ is the most critical design issue. The optimal proposal

distribution (which minimizes the variance on the importance weights) is

given by [40–43]

qðxk jX
k�1
0 ;Yk

0Þ ¼ pðxk jX
k�1
0 ;Yk

0Þ; ð7:103Þ

that is, the true conditional state density given the previous state history

and all observations. Sampling from this is, of course, impractical for

arbitrary densities (recall the motivation for using importance sampling in

the first place). Consequently, the transition prior is the most popular

choice of proposal distribution [35, 44–47]:10

qðxk jX
k�1
0 ;Yk

0Þ¼
�

pðxk jxk�1Þ: ð7:104Þ

For example, if an additive Gaussian process noise model is used, the

transition prior is simply

pðxk jxk�1Þ ¼ nðFð�xxk�1; 0Þ;Rv
k�1Þ: ð7:105Þ

10The notation ¼
�

denotes ‘‘chosen as,’’ to indicate a subtle difference versus ‘‘approxima-

tion’’.
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The effectiveness of this approximation depends on how close the

proposal distribution is to the true posterior distribution. If there is not

sufficient overlap, only a few particles will have significant importance

weights when their likelihood are evaluated.

The EKF and UKF Particle Filter An improvement in the choice of

proposal distribution over the simple transition prior, which also address

the problem of sample depletion, can be accomplished by moving the

Table 7.6 Algorithm for the generic particle filter

1. Initialization: k ¼ 0

� For i ¼ 1; . . . ;N, draw the states XX
ðiÞ
0 from the prior pðx0Þ.

2. For k ¼ 1; 2; . . .
(a) Importance sampling step

� For i ¼ 1; . . . ;N, sample XX
ðiÞ
k � qðxk jx

ðiÞ
0:k�1, Yk

0).

� For i ¼ 1; . . . ;N, evaluate the importance weights up to a

normalizing constant:

w
ðiÞ
k ¼ w

ðiÞ
k�1

pðyk jXX
ðiÞ
k ÞpðXX

ðiÞ
k jXX

ðiÞ
k�1Þ

qðXX
ðiÞ
k jXX

ðiÞ
0:k�1;Yk

0Þ
: ð7:106Þ

� For i ¼ 1; . . . ;N, normalize the importance weights:

~ww
ðiÞ
k ¼ w

ðiÞ
k

PN
j¼1

w
ðjÞ
k

 !�1

:

(b) Selection step ðresamplingÞ

� Multiply=suppress samples XX
ðiÞ
k with high=low importance weights

~ww
ðiÞ
k , respectively, to obtain N random samples XX

ðiÞ
k approximately

distributed according to pðx
ðiÞ
k jY

k
0Þ.

� For i ¼ 1; . . . ;N, set w
ðiÞ
k ¼ ~ww

ðiÞ
k ¼ N�1.

(c) MCMC move step ðoptionalÞ

(d) Output: The output of the algorithm is a set of samples that can be used to

approximate the posterior distribution as follows:

p̂pðxk jY
k
0Þ ¼

1

N

PN
i¼1

dðxk � XX
ðiÞ
k Þ:

The optimal MMSE estimator is given as

x̂xk ¼ Eðxk jY
k
0Þ 


1

N

PN
i¼1

XX
ðiÞ
k :

Similar expectations of the function gðxkÞ can also be calculated as a

sample average.
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particles towards the regions of high likelihood, based on the most recent

observations yk (see Fig. 7.19). An effective approach to accomplish this,

is to use an EKF generated Gaussian approximation to the optimal

proposal, that is,

qðxk jX
k�1
0 ;Yk

0Þ¼
�

qnðxk jY
k
0Þ; ð7:107Þ

which is accomplished by using a separate EKF to generate and propagate

a Gaussian proposal distribution for each particle,

qnðx
ðiÞ
k jY

k
0Þ ¼ nð�xx

ðiÞ
k ;P

ðiÞ
k Þ; i ¼ 1; . . . ;N : ð7:108Þ

That is, at time k one uses the EKF equations, with the new data, to

compute the mean and covariance of the importance distribution for each

particle from the previous time step k � 1. Next, we redraw the ith particle

(at time k) from this new updated distribution. While still making a

Gaussian assumption, the approach provides a better approximation to the

optimal conditional proposal distribution and has been shown to improve

performance on a number of applications [33, 48].

By replacing the EKF with the UKF, we can more accurately propagate

the mean and covariance of the Gaussian approximation to the state

distribution. Distributions generated by the UKF will have a greater

support overlap with the true posterior distribution than the overlap

achieved by the EKF estimates. In addition, scaling parameters used for

sigma-point selection can be optimised to capture certain characteristic of

the prior distribution if known; e.g. the algorithm can be modified to work

with distributions that have heavier tails than Gaussian distributions such

as Cauchy or Student-t distributions. The new filter that results from using

a UKF for proposal distribution generation within a particle filter frame-

work is called the unscented particle filter (UPF). Referring to the

Figure 7.19 Including the most current observation into the proposal
distribution, allows us to move the samples in the prior to regions of high
likelihood. This is of paramount importance if the likelihood happens to lie in
one of the tails of the prior distribution, or if it is too narrow (low measure-
ment error).
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algorithm in Table 7.6 for the generic particle filter, the first item in the

importance sampling step,

� For i ¼ 1; . . . ;N, sample XX
ðiÞ
k � qðxk jx

ðiÞ
0:k�1, Yk

0),

is replaced with the following UKF update:

� For i ¼ 1; . . . ;N :

– Update the prior ðk � 1Þ distribution for each particle with the

UKF:

� Calculate sigma points:

XX
ðiÞa
k�1 ¼ ½ �XXX

ðiÞa
k�1

�XXX
ðiÞa
k�1 þ g

ffiffiffiffiffiffiffiffiffiffi
P
ðiÞa
k�1

q
�XXX
ðiÞa
k�1 � g

ffiffiffiffiffiffiffiffiffiffi
P
ðiÞa
k�1

q
�: ð7:109Þ

� Propagate particle into future (time update):

XX
ðiÞx
kjk�1 ¼ FðXX

ðiÞx
k�1; uk;XX

ðiÞv
k�1Þ; �XXX

ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðmÞ
j X

ðiÞx
j;kjk�1;

ð7:110Þ

P
ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðcÞ
j ðX

ðiÞx
j;kjk�1 � �XXX

ðiÞ
kjk�1ÞðX

ðiÞx
j;kjk�1 � �XXX

ðiÞ
kjk�1Þ

T

ð7:111Þ

YY
ðiÞ
kjk�1 ¼ HðXX

ðiÞx
kjk�1;XX

ðiÞn
k�1Þ;

�yy
ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðmÞ
j Y

ðiÞ
j;kjk�1: ð7:112Þ

� Incorporate new observation (measurement update):

P~yyk ~yyk
¼
P2L

j¼0

W
ðcÞ
j ðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1ÞðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1Þ

T ;

ð7:113Þ

Pxk yk
¼
P2L

J¼0

W
ðcÞ
j ðX

ðiÞ
j;kjk�1 � �XXX

ðiÞ
kjk�1ÞðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1Þ

T ;

ð7:114Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

;

�XXX
ðiÞ
k ¼ �XXX

ðiÞ
kjk�1 þ Kkðyk � �yy

ðiÞ
kjk�1Þ; ð7:115Þ

P
ðiÞ
k ¼ P

ðiÞ
kjk�1 � KkP~yyk ~yyk

KT
k : ð7:116Þ

– Sample XX
ðiÞ
k � qðx

ðiÞ
k jx

ðiÞ
0:k�1, Yk

0Þ 
 nð �XXX
ðiÞ
k , P

ðiÞ
k Þ.

All other steps in the particle filter formulation remain unchanged.
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7.6.2 UPF Experiments

The performance of the UPF is evaluated on two estimation problems. The

first problem is a synthetic scalar estimation problem and the second is a

real-world problem concerning the pricing of financial instruments.

Synthetic Experiment For this experiment, a time series was gener-

ated by the following process model:

xkþ1 ¼ 1 þ sinðoptÞ þ f1xk þ vk; ð7:117Þ

where vk is a Gamma Gað3; 2Þ random variable modeling the process

noise, and o ¼ 0:04 and f1 ¼ 0:5 are scalar parameters. A nonstationary

observation model,

yk ¼
f2x2

k þ nk; t � 30;

f3xk � 2 þ nk t > 30;

�
ð7:118Þ

is used, with f2 ¼ 0:2 and f3 ¼ 0:5. The observation noise, nk , is drawn

from a Gaussian distribution nð0; 0:00001Þ. Given only the noisy

observations yk , the different filters were used to estimate the underlying

clean state sequence xk for k ¼ 1 . . . 60. The experiment was repeated 100

times with random re-initialization for each run. All of the particle filters

used 200 particles and residual resampling. The UKF parameters were set

to a ¼ 1, b ¼ 0 and k ¼ 2. These parameters are optimal for the scalar

case. Table 7.7 summarizes the performance of the different filters. The

table shows the means and variances of the mean-square error (MSE) of

the state estimates. Figure 7.20 compares the estimates generated from a

Table 7.7 State-estimation experiment results: the mean and variance of
the MSE were calculated over 100 independent runs

MSE

Algorithm Mean Variance

Extended Kalman filter (EKF) 0.374 0.015

Unscented Kalman filter (UKF) 0.280 0.012

Particle filter: generic 0.424 0.053

Particle filter: MCMC move step 0.417 0.055

Particle filter: EKF proposal 0.310 0.016

Particle filter: EKF proposal and MCMC move step 0.307 0.015

Particle filter: UKF proposal (‘‘unscented particle filter’’) 0.070 0.006

Particle filter: UKF proposal and MCMC move step 0.074 0.008
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single run of the different particle filters. The superior performance of the

unscented particle filter (UPF) is clear.

Pricing Financial Options Derivatives are financial instruments

whose value depends on some basic underlying cash product, such as

interest rates, equity indices, commodities, foreign exchange, or bonds

[49]. A call option allows the holder to buy a cash product, at a specified

date in the future, for a price determined in advance. The price at which

the option is exercised is known as the strike price, while the date in which

the option lapses is often referred to as the maturity time. Put options, on

the other hand, allow the holder to sell the underlying cash product. In

their seminal work [50], Black and Scholes derived the following industry

standard equations for pricing European call and put options:

C ¼ Sncðd1Þ � Xe�rtmncðd2Þ; ð7:119Þ

P ¼ �Sncð�d1Þ þ Xe�rtmncð�d2Þ; ð7:120Þ
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Figure 7.20 Plot of estimates generated by the different filters on the
synthetic state-estimation experiment.
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where C denotes the price of a call option, P the price of a put option, S

the current value of the underlying cash product, X the desired strike

price, tm the time to maturity, and ncð:Þ the cumulative normal distribu-

tion, and d1 and d2 are given by

d1 ¼
lnðS=X Þ þ ðr þ s2=2Þtm

s
ffiffiffiffi
tm

p ;

d2 ¼ d1 � s
ffiffiffiffi
tm

p
;

where s is the (unknown) volatility of the cash product and r is the risk-

free interest rate.

The volatility, s; is usually estimated from a small moving window of

data over the most recent 50–180 days [49]. The risk-free interest rate r is

often estimated by monitoring interest rates in the bond markets. Our

approach is to treat r and s as the hidden states, and C and P as the output

t

Figure 7.21 Probability smile for options on the FTSE-100 index (1994).
Although the volatility smile indicates that the option with strike price
equal to 3225 is underpriced, the shape of the probability gives us a
warning against the hypothesis that the option is under-priced. Posterior
mean estimates were obtained with the Black–Scholes model and particle
filter (�), a fourth-order polynomial fit (�), and hypothesized volatility (�).
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observations. S and tm are treated as known control signals (input

observations). This represents a parameter estimation problem, with the

nonlinear observation given by Eqs. (7.119) or (7.120). This allows us to

compute daily complete probability distributions for r and s and to decide

whether the current value of an option in the market is being either over-

priced or under-priced. See [51] and [52] for details.

As an example, Figure 7.21 shows the implied probability density

function of each volatility against several strike prices using five pairs of

call and put option contracts on the British FTSE-100 index (from

February 1994 to December 1994). Figure 7.22 shows the estimated

volatility and interest rate for a contract with a strike price of 3225. In

Table 7.8, we compare the one-step-ahead normalized square errors on a

pair of options with strike price 2925. The square errors were only

measured over the last 100 days of trading, so as to allow the algorithms

to converge. The experiment was repeated 100 times with 100 particles in

each particle filter (the mean value is reported; all variance were essen-

tially zero). In this example, both the EKF and UKF approaches to

improving the proposal distribution lead to a significant improvement

over the standard particle filters. The main advantage of the UKF over the

Figure 7.22 Estimated interest rate and volatility.
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EKF is the ease of implementation, which avoids the need to analytically

differentiate the Black–Scholes equations.

7.7 CONCLUSIONS

The EKF has been widely accepted as a standard tool in the control and

machine-learning communities. In this chapter, we have presented an

alternative to the EKF using the unscented Kalman filter. The UKF

addresses many of the approximation issues of the EKF, and consistently

achieves an equal or better level of performance at a comparable level of

complexity. The performance benefits of the UKF-based algorithms have

been demonstrated in a number of application domains, including state

estimation, dual estimation, and parameter estimation.

There are a number of clear advantages to the UKF. First, the mean and

covariance of the state estimate is calculated to second order or better, as

opposed to first order in the EKF. This provides for a more accurate

implementation of the optimal recursive estimation equations, which is the

basis for both the EKF and UKF. While equations specifying the UKF

may appear more complicated than the EKF, the actual computational

complexity is equivalent. For state estimation, both algorithms are in

Table 7.8 One-step-ahead normalized square errors over
100 runs. The trivial prediction is obtained by assuming that
the price on the following day corresponds to the current
price

Option type Algorithm Mean NSE

Call Trivial 0.078

Extended Kalman filter (EKF) 0.037

Unscented Kalman filter (UKF) 0.037

Particle filter: generic 0.037

Particle filter: EKF proposal 0.009

Unscented particle filter 0.009

Put Trivial 0.035

Extended Kalman filter (EKF) 0.023

Unscented Kalman filter (UKF) 0.023

Particle filter: generic 0.023

Particle filter: EKF proposal 0.007

Unscented particle filter 0.008
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general of order L3 (where L is the dimension of the state). For parameter

estimation, both algorithms are of order L2 (where L is the number of

parameters). An efficient recursive square-root implementation (see

Appendix B) was necessary to achieve the level of complexity in the

parameter-estimation case. Furthermore, a distinct advantage of the UKF

is its ease of implementation. In contrast to the EKF, no analytical

derivatives (Jacobians or Hessians) need to be calculated. The utility of

this is especially valuable in situations where the system is a ‘‘black box’’

model in which the internal dynamic equations are unavailable. In order to

apply an EKF to such systems, derivatives must be found either from a

principled analytical re-derivation of the system, or through costly and

often inaccurate numerical methods (e.g., by perturbation). In contrast, the

UKF relies on only functional evaluations (inputs and outputs) through the

use of deterministically drawn samples from the prior distribution of the

state random variable. From a coding perspective, this also allows for a

much more general and modular implementation.

Even though the UKF has clear advantages over the EKF, there are still

a number of limitations. As in the EKF, it makes a Gaussian assumption

on the probability density of the state random variable. Often this

assumption is valid, and numerous real-world applications have been

successfully implemented based on this assumption. However, for certain

problems (e.g., multimodal object tracking), a Gaussian assumption will

not suffice, and the UKF (or EKF) cannot be applied with confidence. In

such examples, one has to resort to more powerful, but also more

computationally expensive, filtering paradigms such as particle filters

(see Section 7.6). Finally, another implementation limitation leading to

some uncertainty, is the necessity to choose the three unscented transfor-

mation parameters (i.e., a; b, and k). While we have attempted to provide

some guidelines on how to choose these parameters, the optimal selection

clearly depends on the specifics of the problem at hand, and is not fully

understood. In general, the choice of settings does not appear critical for

state estimation, but has a greater affect on performance and convergence

properties for parameter estimation. Our current work focuses on addres-

sing this issue through developing a unified and adaptive way of

calculating the optimal value of these parameters. Other areas of open

research include utilizing the UKF for estimation of noise covariances,

extension of the UKF to recurrent architectures that may require dynamic

derivatives (see Chapter 2 and 5), and the use of the UKF and smoother in

the expectation–maximization algorithm (see Chapter 6). Clearly, we have

only begun to scratch the surface of the numerous applications that can

benefit with use of the UKF.
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APPENDIX A: ACCURACY OF THE UNSCENTED
TRANSFORMATION

In this appendix, we show how the unscented transformation achieves

second-order accuracy in the prediction of the posterior mean and

covariance of a random variable that undergoes a nonlinear transforma-

tion. For the purpose of this analysis, we assume that all nonlinear

transformations are analytic across the domain of all possible values of

x. This condition implies that the nonlinear function can be expressed as a

multidimensional Taylor series consisting of an arbitrary number of terms.

As the number of terms in the sum tend to infinity, the residual of the

series tends to zero. This implies that the series always converges to the

true value of the function.

If we consider the prior variable x as being perturbed about a mean �xx by

a zero-mean disturbance dx with covariance Px, then the Taylor series

expansion of the nonlinear transformation f ðxÞ about �xx is

f ðxÞ ¼ f ð�xx þ dxÞ ¼
P1
n¼0

ðdx � HxÞ
n
f ðxÞ

n!

� �
x¼�xx

: ð7:121Þ

If we define the operator Dn
dx f as

Dn
dx f ¼

D
½ðdx � HxÞ

n
f ðxÞ�x¼�xx; ð7:122Þ

then the Taylor series expansion of the nonlinear transformation y ¼ f ðxÞ

can be written as

y ¼ f ðxÞ ¼ f ð�xxÞ þ Ddx f þ
1

2
D2

dx f þ
1

3!
D3

dx f þ
1

4!
D4

dx f þ � � � : ð7:123Þ

Accuracy of the Mean

The true mean of y is given by

�yy ¼ E½y� ¼ E½ f ðxÞ� ð7:124Þ

¼ E f ð�xxÞ þ Ddx f þ
1

2
D2

dx f þ
1

3!
D3

dx f þ
1

4!
D3

dx f þ � � �

� �
: ð7:125Þ
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If we assume that x is a symmetrically distributed11 random variable, then

all odd moments will be zero. Also note that E½dx dxT � ¼ Px. Given this,

the mean can be reduced further to

�yy ¼ f ð�xxÞ þ
1

2
½ðHT PxHÞf ðxÞ�x¼�xx þ E

1

4!
D4

dx f þ
1

6!
D6

dx f þ � � �

� �
: ð7:126Þ

The UT calculates the posterior mean from the propagated sigma points

using Eq. (7.32). The sigma points are given by

X i ¼ �xx ! ð
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
Þsi;

¼ �xx ! ~ssi

where si denotes the ith column12 of the matrix square root of Px. This

implies that
PL

i¼1ðsis
T
i Þ ¼ Px. Given this formulation of the sigma points,

we can again write the propagation of each point through the nonlinear

function as a Taylor series expansion about �xx:

Yi ¼ f ðX iÞ ¼ f ð�xxÞ þ D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � � :

Using Eq. (7.32), the UT predicted mean is

�yyUT ¼
l

L þ l
f ð�xxÞ þ

1

2ðL þ lÞ
P2L

i¼1

� f ð�xxÞ þ D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � �

� �

¼ f ð�xxÞ þ
1

2ðL þ lÞ
P2L

i¼1

D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � �

� �
:

Since the sigma points are symmetrically distributed around �xx, all the odd

moments are zero. This results in the simplification

�yyUT ¼ f ð�xxÞ þ
1

2ðL þ lÞ
P2L

i¼1

1

2
D2

~ssi
f þ

1

4!
D4

~ssi
f þ

1

6!
D6

~ssi
f þ � � �

� �
;

11This includes probability distributions such as Gaussian, Student-t, etc.
12See Section 7.3 for details of exactly how the sigma points are calculated.
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and since

1

2ðL þ lÞ
P2L

i¼1

1

2
D2

~ssi
f ¼

1

2ðL þ lÞ
ðHf Þ

T P2L

i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
sis

T
i

ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
Þ

� �
ðHf Þ

¼
L þ l

2ðL þ lÞ
ðHf Þ

T 1

2

P2L

i¼1

sis
T
i

� �
ðHf Þ

¼
1

2
½ðHT PxHÞ f ðxÞ�x¼�xx;

the UT predicted mean can be further simplified to

�yyUT ¼ f ð�xxÞ þ
1

2
½ðHT PxHÞ f ðxÞ�x¼�xx

þ
1

2ðL þ lÞ
P2L

i¼1

1

4!
D4

~ssi
f þ

1

6!
D6

~ssi
f þ � � �

� �
: ð7:127Þ

When we compare Eqs. (7.127) and (7.126), we can clearly see that the

true posterior mean and the mean calculated by the UT agrees exactly to

the third order and that errors are only introduced in the first and higher-

order terms. The magnitudes of these errors depends on the choice of the

composite scaling parameter l as well as the higher-order derivatives of f .

In contrast, a linearization approach calculates the posterior mean as

�yyLIN ¼ f ð�xxÞ; ð7:128Þ

which only agrees with the true posterior mean up to the first order. Julier

and Uhlman [2] show that, on a term-by-term basis, the errors in the

higher-order terms of the UT are consistently smaller than those for

linearization.

Accuracy of the Covariance

The true posterior covariance is given by

Py ¼ E½ðy � �yyT Þðy � �yyT Þ
T
� ¼ E½yyT � � �yy�yyT ð7:129Þ
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where the expectation is taken over the distribution of y. Substituting Eqs.

(7.123) and (7.125) into (7.129), and recalling that all odd moments of dx

are zero owing to symmetry, we can write the true posterior covariance as

Py ¼ AxPxA
T
x ¼

1

4
f½ðHT PxHÞf ðxÞ�½ðH

T PxHÞfðxÞ�
T
gx¼x

þ E
P1
i¼1

P1
j¼1

1

i!j!
Di

dx f ðD
j

dx f Þ
T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

�

�P1
i¼1

P1
j¼1

1

ð2iÞ!ð2jÞ!
E½D2i

x f �E½D2j
sx f �T �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

;

�
ð7:130Þ

where Ax is the Jacobian matrix of f ðxÞ evaluated at �xx. It can be shown

(using a similar approach as for the posterior mean) that the posterior

covariance calculated by the UT is given by

ðPyÞUT ¼ AxPxA
T
x �

1

4
½ðHT PxHÞ f ðxÞ�½ðHT PxHÞ f ðxÞ�T
� �

x¼�xx

þ
1

2ðL þ lÞ
P2L

k¼1

P1
i¼1

P1
j¼1

1

i!j!
Di

~ssk
f ðD

j
~ssk

f Þ
T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

�
P1
i¼1

P1
j¼1

1

ð2iÞ!ð2jÞ!4ðL þ lÞ2
P2L

k¼1

P2L

m¼1

D2i
~ssk

f ðD
2j

~ssm
f Þ

T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

: ð7:131Þ

Comparing Eqs. (7.130) and (7.131), it is clear that the UT again

calculates the posterior covariance accurately to the first two terms, with

errors only introduced in the fourth- and higher-order moments. Julier and

Uhlmann [2] show how the absolute term-by-term errors of these higher-

order moments are again consistently smaller for the UT than for the

linearized case that truncates the Taylor series after the first term, that is,

ðPyÞLIN ¼ AxPxA
T
x : ð7:132Þ

For this derivation, we have assumed the value of the b parameter in the

UT to be zero. If prior knowledge about the shape of the prior distribution

of x is known, b can be set to a non-zero value that minimizes the error in
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some of the higher ð# 4Þ order moments. Julier [53] shows how the error

in the kurtosis of the posterior distribution is minimized for a Gaussian x

when b ¼ 2.

APPENDIX B: EFFICIENT SQUARE-ROOT UKF IMPLEMENTATIONS

In the standard Kalman implementation, the state (or parameter) covar-

iance Pk is recursively calculated. The UKF requires taking the matrix

square-root SkST
k ¼ Pk , at each time step, which is Oð1

6
L3Þ using a

Cholesky factorization. In the square-root UKF (SR-UKF), Sk will be

propagated directly, avoiding the need to refactorize at each time step. The

algorithm will in general still be OðL3Þ for state estimation, but with

improved numerical properties (e.g., guaranteed positive-semidefiniteness

of the state covariances), similar to those of standard square-root Kalman

filters [20]. However, for the special state-space formulation of parameter

estimation, an OðL2Þ implementation becomes possible (equivalent

complexity to EKF parameter estimation).

The square-root form of the UKF makes use of three powerful linear-

algebra techniques,13 QR decomposition, Cholesky factor updating, and

efficient least squares, which we briefly review below:

� QR decomposition The QR decomposition or factorization of a

matrix A 2 RL�N is given by, AT ¼ QR, where Q 2 RN�N is

orthogonal, R 2 RN�L is upper-triangular, and N # L. The upper-

triangular part of R, ~RR, is the transpose of the Cholesky factor of

P ¼ AAT , that is, ~RR ¼ ST , such that ~RRT ~RR ¼ AAT . We use the

shorthand notation qrf�g to donate a QR decomposition of a matrix

where only ~RR is returned. The computational complexity of a QR

decomposition is oðNL2Þ. Note that performing a Cholesky factor-

ization directly on P ¼ AAT is Oð1
6

L3Þ plus OðNL2Þ to form AAT .

� Cholesky factor updating If S is the original lower-triangular

Cholesky factor of P ¼ AAT , then the Cholesky factor of the rank-

1 update (or downdate) P !
ffiffiffi
n

p
uuT is denoted by S ¼

cholupdatefS; u;!ng. If u is a matrix and not a vector, then the

result is M consecutive updates of the Cholesky factor using the M

columns of u. This algorithm (available in Matlab as cholupdate)

is only OðL2Þ per update.

13See [54] for theoretical and implementation details.
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� Efficient least squares The solution to the equation ðAAT Þx ¼ AT b

also corresponds to the solution of the overdetermined least-squares

problem Ax ¼ b. This can be solved efficiently using a QR decom-

position with pivoting (implemented in Matlab’s ‘‘=’’ operator).

The complete specifications for the new square-root filters are given in

Table 7.9 for state estimation and Table 7.10 for parameter estimation.

Below we describe the key parts of the square-root algorithms, and how

they contrast with the standard implementations. Experimental results and

further discussion are presented in [7] and [55].

Square-Root State Estimation

As in the original UKF, the filter is initialized by calculating the matrix

square root of the state covariance once via a Cholesky factorization, Eq.

(7.133). However, the propagated and updated Cholesky factor is then

used in subsequent iterations to directly form the sigma points. In Eq.

(7.138) the time update of the Cholesky factor, S�, is calculated using a

QR decomposition of the compound matrix containing the weighted

propagated sigma points and the matrix square root of the additive process

noise covariance. The subsequent Cholesky update (or downdate) in Eq.

(7.137) is necessary since the zeroth weight, W
ðcÞ
0 , may be negative. These

two steps replace the time-update of P� in Eq. (7.55), and is also OðL3Þ.

The same two-step approach is applied to the calculation of the

Cholesky factor, S�yy, of the observation error covariance in Eqs. (7.142)

and (7.143). This step is OðLM2Þ, where M is the observation dimension.

In contrast to the way that Kalman gain is calculated in the standard UKF

(see Eq. (7.61)), we now use two nested inverse (or least-squares)

solutions to the following expansion of Eq. (7.60): KkðS~yyk
ST
~yyk
Þ ¼ Pxk yk

.

Since S�yy is square and triangular, efficient ‘‘back-substitutions’’

can be used to solve for Kk directly without the need for a matrix

inversion.

Finally, the posterior measurement update of the Cholesky factor of the

state covariance is calculated in Eq. (7.147) by applying M sequential

Cholesky downdates to S�k . The downdate vectors are the columns of

U ¼ KkS�yyk
. This replaces the posterior update of Pk in Eq. (7.63), and is

also OðLM 2Þ.

Square-Root Parameter Estimation

The parameter-estimation algorithm follows a similar framework to that of

the state-estimation square-root UKF. However, an OðML2Þ algorithm, as
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opposed to OðL3Þ, is possible by taking advantage of the linear state

transition function. Specifically, the time update of the state covariance is

given simply by P�
wk
¼ Pwk�1

þ Rr
k�1 (see Section 7.4 for a discussion on

selecting Rr
k�1). In the square-root filters Swk

may thus be updated directly

in Eq. (7.150) using one of two options: (1) S�wk
¼ l�1=2

RLS Swk�1
, correspond-

Table 7.9 Square-Root UKF for state estimation

Initialize with

x̂x0 ¼ E½x0�; S0 ¼ chol E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�

� �
: ð7:133Þ

For k 2 f1; . . . ;1g,

The sigma-point calculation and time update are given by

XX k�1 ¼ ½x̂xk�1 x̂xk�1 þ gSk x̂xk�1 � gSk �; ð7:134Þ

XX*kjk�1 ¼ FðXX k�1; uk�1Þ; ð7:135Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X*i;kjk�1; ð7:136Þ

S�k ¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðXX*1:2L;kjk�1 � x̂x�k Þ

ffiffiffiffiffiffi
Rv

p
� �� �

ð7:137Þ

S�k ¼ cholupdatefS�k ;X*0;k � x̂x�k ;W
ðcÞ
0 g; ð7:138Þ

ðaugment sigma pointsÞ14

XX kjk�1 ¼ ½XX*kjk�1 X*0;kjk�1 þ g
ffiffiffiffiffiffi
Rv

p
XX*0;kjk�1 � g

ffiffiffiffiffiffi
Rv

p
� ð7:139Þ

YYkjk�1 ¼ HðXX kjk�1Þ ð7:140Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Y i;kjk�1; ð7:141Þ

and the measurement update equations are

S~yyk
¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðYY1:2L;k � ŷykÞ

ffiffiffiffiffiffi
Rn

k

p� �� �
; ð7:142Þ

S~yyk
¼ cholupdatefS~yyk

;Y0;k � ŷyk ;W
ðcÞ
0 g ð7:143Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:144Þ

Kk ¼ ðPxk yk
=ST

~yyk
Þ=S~yyk

; ð7:145Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ;

U ¼ KkS~yyk
; ð7:146Þ

Sk ¼ cholupdatefS�k ;U;�1g; ð7:147Þ

14Alternatively, redraw a new set of sigma points that incorporate the additive process

noise, i.e., XX kjk�1 ¼ ½x̂x�k x̂x�k þ gS�k x̂x�k � gS�k �.
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ing to an exponential weighting on past data; (2) S�wk
¼ Swk�1

þ Drk�1
,

where the diagonal matrix Drk�1
; is chosen to approximate the effects of

annealing a diagonal process noise covariance Rr
k .15 Both options avoid

the costly OðL3Þ QR and Cholesky-based updates necessary in the state-

estimation filter.

Table 7.10 Square-root UKF for parameter estimation

Initialize with

ŵw0 ¼ E½w�; Sw0
¼ cholfE½ðw � ŵw0Þðw � ŵw0Þ

T
�g: ð7:148Þ

For k 2 f1; . . . ;1g,

The time update and sigma point calculation are given by

ŵw�
k ¼ ŵwk�1; ð7:149Þ

S�wk
¼ l�1=2

RLS Swk�1
or S�wk

¼ Swk�1
þ Drk�1

; ð7:150Þ

WWkjk�1 ¼ ½ŵw�
k ŵw�

k þ gS�wk
ŵw�

k � gS�wk
�; ð7:151Þ

DDkjk�1 ¼ Gðxk;WWkjk�1Þ; ð7:152Þ

d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1; ð7:153Þ

and the measurement-update equations are

Sdk
¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðDD1:2L;k � d̂dkÞ

ffiffiffiffiffiffi
Re

p
� �� �

; ð7:154Þ

Sdk
¼ cholupdatefSdk

;D0;k � d̂dk ;W
ðcÞ
0 g; ð7:155Þ

Pwk dk
¼
P2L

i¼0

W
ðcÞ
i ðW i;kjk�1 � ŵw�

k ÞðDi;kjk�1 � d̂dkÞ
T ; ð7:156Þ

Kk ¼ ðPwk dk
=ST

dk
Þ=Sdk

; ð7:157Þ

ŵwk ¼ ŵw�
k þKkðdk � d̂dkÞ; ð7:156Þ

U ¼ KkSdk
; ð7:158Þ

Swk
¼ cholupdatefS�wk

;U;�1g; ð7:159Þ

where

Drk�1
¼ �DiagfSwk�1

g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiagfSwk�1

g2 þ DiagfRr
k�1g:

q

15This update ensures that the main diagonal of P�
wk

is exact. However, additional off-

diagonal cross-terms Swk�1
DT

rk�1
þ Drk�1

ST
wk�1

are also introduced (though the effect appears

negligible).
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Sensor-catalyst modeling, 60

Sequential DEKF, 47

Sequential importance sampling, 255

Sequential update, 47

Shape and motion perception, 80
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Singular-value decomposition, 46
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Speech enhancement, 157
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Unscented filter, 182
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