
M A N N I N G

V. K. Cody Bumgardner
FOREWORD BY Jay Pipes

OpenStack in Action
Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

OpenStack in Action

V. K. CODY BUMGARDNER

M A N N I N G
SHELTER ISLAND
Licensed to tracy moore <nordick.an@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Susan Conant, Cynthia Kane
20 Baldwin Road Technical development editor: Bill Bruns
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Technical proofreaders: Alain Couniot, David Pombal

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617292163
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
Licensed to tracy moore <nordick.an@gmail.com>

brief contents

PART 1 GETTING STARTED ..1

1 ■ Introducing OpenStack 3
2 ■ Taking an OpenStack test-drive 20
3 ■ Learning basic OpenStack operations 55
4 ■ Understanding private cloud building blocks 84

PART 2 WALKING THROUGH A MANUAL DEPLOYMENT.............111

5 ■ Walking through a Controller deployment 113
6 ■ Walking through a Networking deployment 161
7 ■ Walking through a Block Storage deployment 195
8 ■ Walking through a Compute deployment 216

PART 3 BUILDING A PRODUCTION ENVIRONMENT 239

9 ■ Architecting your OpenStack 241
10 ■ Deploying Ceph 259
11 ■ Automated HA OpenStack deployment with Fuel 277
12 ■ Cloud orchestration using OpenStack 303
v

Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

contents
foreword xiii
preface xv
acknowledgements xvii
about this book xviii

PART 1 GETTING STARTED..1

1 Introducing OpenStack 3
1.1 What is OpenStack? 6

1.2 Understanding cloud computing and OpenStack 9
Abstraction and the OpenStack API 10

1.3 Relating OpenStack to the computational
resources it controls 11
OpenStack and hypervisors 11 ■ OpenStack and network
services 14 ■ OpenStack and storage 15 ■ OpenStack and
cloud terminology 17

1.4 Introducing OpenStack components 18

1.5 History of OpenStack 18

1.6 Summary 19
vii

Licensed to tracy moore <nordick.an@gmail.com>

CONTENTSviii
2 Taking an OpenStack test-drive 20
2.1 What is DevStack? 22

2.2 Deploying DevStack 23
Creating the server 25 ■ Preparing the server environment 26
Preparing DevStack 28 ■ Executing DevStack 29

2.3 Using the OpenStack Dashboard 36
Overview screen 38 ■ Access & Security screen 38
Images & Snapshots screen 41 ■ Volumes screen 44
Instances screen 47

2.4 Accessing your first private cloud server 51
Assigning a floating IP to an instance 53 ■ Permitting
network traffic to your floating IP 53

2.5 Summary 54

3 Learning basic OpenStack operations 55
3.1 Using the OpenStack CLI 56

3.2 Using the OpenStack APIs 58

3.3 Tenant model operations 59
The tenant model 61 ■ Creating tenants, users, and
roles 62 ■ Tenant networks 65

3.4 Quotas 78
Tenant quotas 79 ■ Tenant-user quotas 80
Additional quotas 82

3.5 Summary 83

4 Understanding private cloud building blocks 84
4.1 How are OpenStack components related? 85

Understanding component communication 85
Distributed computing model 91

4.2 How is OpenStack related to vendor technologies? 95
Using vendor storage systems with OpenStack 96
Using vendor network systems with OpenStack 101

4.3 Why walk through a manual deployment? 108

4.4 Summary 109
Licensed to tracy moore <nordick.an@gmail.com>

CONTENTS ix
PART 2 WALKING THROUGH A MANUAL DEPLOYMENT111

5 Walking through a Controller deployment 113
5.1 Deploying controller prerequisites 116

Preparing the environment 116 ■ Configuring the network
interface 117 ■ Updating packages 120 ■ Installing software
dependencies 121

5.2 Deploying shared services 124
Deploying the Identity Service (Keystone) 125 ■ Deploying the
Image Service (Glance) 135

5.3 Deploying the Block Storage (Cinder) service 142
Creating the Cinder data store 143 ■ Configuring a Cinder
Keystone user 144 ■ Creating the Cinder service and
endpoint 145 ■ Installing Cinder 146

5.4 Deploying the Networking (Neutron) service 147
Creating the Neutron data store 148 ■ Configuring a Neutron
Keystone user 149 ■ Installing Neutron 151

5.5 Deploying the Compute (Nova) service 152
Creating the Nova data store 153 ■ Configuring a Nova
Keystone user 154 ■ Assigning a role to the nova user 154
Creating the Nova service and endpoint 155 ■ Installing
the Nova controller 156

5.6 Deploying the Dashboard (Horizon) service 158
Installing Horizon 158 ■ Accessing Horizon 159
Debugging Horizon 160

5.7 Summary 160

6 Walking through a Networking deployment 161
6.1 Deploying network prerequisites 163

Preparing the environment 164 ■ Configuring the network
interfaces 164 ■ Updating packages 167 ■ Software and
configuration dependencies 168 ■ Installing Open
vSwitch 171 ■ Configuring Open vSwitch 174

6.2 Installing Neutron 177
Installing Neutron components 177 ■ Configuring
Neutron 178 ■ Configuring the Neutron ML2
plug-in 178 ■ Configuring the Neutron L3 agent 179
Licensed to tracy moore <nordick.an@gmail.com>

CONTENTSx
Configuring the Neutron DHCP agent 180 ■ Configuring
the Neutron Metadata agent 180 ■ Restarting and verifying
Neutron agents 181 ■ Creating Neutron networks 182
Relating Linux, OVS, and Neutron 191 ■ Checking
Horizon 193

6.3 Summary 194

7 Walking through a Block Storage deployment 195
7.1 Deploying Block Storage prerequisites 197

Preparing the environment 198 ■ Configuring the network
interface 198 ■ Updating packages 201 ■ Installing and
configuring the Logical Volume Manager 202

7.2 Deploying Cinder 206
Installing Cinder 208 ■ Configuring Cinder 209
Restarting and verifying the Cinder agents 210

7.3 Testing Cinder 211
Create a Cinder volume: command line 211 ■ Create a
Cinder volume: Dashboard 213

7.4 Summary 215

8 Walking through a Compute deployment 216
8.1 Deploying Compute prerequisites 219

Preparing the environment 219 ■ Configuring the
network interface 219 ■ Updating packages 222
Software and configuration dependencies 222
Installing Open vSwitch 223 ■ Configuring Open
vSwitch 225

8.2 Installing a hypervisor 226
Verifying your host as a hypervisor platform 226
Using KVM 227

8.3 Installing Neutron on Compute nodes 229
Installing the Neutron software 230 ■ Configuring
Neutron 230 ■ Configuring the Neutron ML2 plug-in 231

8.4 Installing Nova on compute nodes 231
Installing the Nova software 231 ■ Configuring core Nova
components 232 ■ Checking Horizon 233

8.5 Testing Nova 234
Creating an instance (VM): command line 234

8.6 Summary 238
Licensed to tracy moore <nordick.an@gmail.com>

CONTENTS xi
PART 3 BUILDING A PRODUCTION ENVIRONMENT........... 239

9 Architecting your OpenStack 241
9.1 Replacement of existing virtual server platforms 242

Making deployment choices 245 ■ What kind of network
are you? 246 ■ What type of storage are you? 247 ■ What
kind of server are you? 250

9.2 Why build a private cloud? 251
Public cloud economy-of-scale myth 251 ■ Global scale
or tight control 252 ■ Keeping data gravity private 252
Hybrid moments 253

9.3 Building a private cloud 254
OpenStack deployment tools 254 ■ Networking in your
private cloud 255 ■ Storage in your private cloud 257

9.4 Summary 258

10 Deploying Ceph 259
10.1 Preparing Ceph nodes 260

Node authentication and authorization 261 ■ Deploying
Ceph software 264

10.2 Creating a Ceph cluster 265
Creating the initial configuration 265 ■ Deploying Ceph
software 266 ■ Deploying the initial configuration 267

10.3 Adding OSD resources 268
Readying OSD devices 269 ■ Creating OSDs 271

10.4 Basic Ceph operations 273
Ceph pools 273 ■ Benchmarking a Ceph cluster 274

10.5 Summary 276

11 Automated HA OpenStack deployment with Fuel 277
11.1 Preparing your environment 279

Network hardware 279 ■ Server hardware 282

11.2 Deploying Fuel 290
Installing Fuel 290

11.3 Web-based basic Fuel OpenStack deployment 293
Server discovery 294 ■ Creating a Fuel deployment
environment 295 ■ Configuring the network for the
Licensed to tracy moore <nordick.an@gmail.com>

CONTENTSxii
environment 296 ■ Allocating hosts to your environment 298
Final settings and verification 301 ■ Deploying changes 302

11.4 Summary 302

12 Cloud orchestration using OpenStack 303
12.1 OpenStack Heat 304

Heat templates 304 ■ A Heat demonstration 307

12.2 Ubuntu Juju 312
Preparing OpenStack for Juju 312 ■ Installing Juju 314
Deploying the charms CLI 317 ■ Deploying the Juju GUI 319

12.3 Summary 325

appendix Installing Linux 326
index 347
Licensed to tracy moore <nordick.an@gmail.com>

foreword
It’s difficult for me to believe that it’s already been five years since I was looking over
the original source code of the Nova project. The code had just been released by the
Anso Labs team who created it for NASA. Rackspace, where I worked at the time, was
seeking a new code base to act as the next generation of the Rackspace Cloud. A few
months later, Rackspace open-sourced the code for its Rackspace Cloud Files platform
as the Swift project. Nova and Swift became the first two pillars of the nascent Open-
Stack project.

 Since that time, both projects have undergone substantial change. Swift’s core
team and code base have remained remarkably stable, though the project has added a
number of features and seen numerous enhancements in performance and scalabil-
ity. On the other hand, when compared with its humble beginnings, Nova’s source
code is nearly unrecognizable. New code bases like Glance, Cinder, Keystone, and
Neutron were constructed to deliver functionality that originally was handled by Nova.

 At the same time that this new source code emerged to handle functionality essen-
tial to managing large computing infrastructure, a new kind of open source commu-
nity was beginning to take form. Open source developers and advocates with
experience in operating system distribution and packaging, configuration manage-
ment, database design, automation, networking, and storage systems flocked to con-
tribute to OpenStack projects.

 Our community grew (and continues to grow) at breakneck pace, quickly becom-
ing one of the largest, most active and influential open source communities on the
planet. The OpenStack Foundation was created to handle the governance challenges
that accompany the growth of a successful community. Design summits and confer-
ences have grown to host more than 3,500 contributors per year all around the planet.
xiii

Licensed to tracy moore <nordick.an@gmail.com>

FOREWORDxiv
A world-class continuous integration and build system was created by the community
to support the massive growth in both source code and number of contributors. This
automated build system’s size and scope now rival or exceed those of much older
open source communities like the Apache and Eclipse foundations.

 The OpenStack ecosystem has been the fertile ground from which new companies
like SwiftStack and Piston Cloud emerged. Existing companies like HP, Mirantis, and
Red Hat found the OpenStack landscape to be similarly fruitful, and they continue to
drive innovation across the now dozens of projects that comprise the big tent of the
OpenStack community.

 This expansion of the OpenStack community has brought with it a bewildering
complexity to how distributed software components are deployed and how they inter-
operate. Those who deploy OpenStack “in the wild” need to understand a broad set of
concepts from networking and storage to virtualization and configuration manage-
ment. Obtaining the necessary knowledge and skills has been and remains one of the
key challenges facing those who wish to build cloud platforms using OpenStack. This
book, OpenStack in Action, will provide readers with the knowledge they need to deploy
and run OpenStack.

 The author leads the audience through the complexity of an OpenStack deploy-
ment, demonstrating three ways to deploy the software: via a scripted tool called
DevStack, via manual installation of operating system packages, and via the Fuel
OpenStack installer. In each section, concepts around networking and storage setup
are thoroughly explained, allowing readers to gradually dip their toes into the cloud
computing waters and, by the end of the book, feel comfortable diving into the deep
end of the pool.

 Besides excellent coverage of OpenStack technology, the author also explains how
to go about evaluating if and how your organization will benefit from cloud comput-
ing. The cloud does not magically solve the manual and time-consuming human-
based process problems that exist in many organizations. But, when implemented
smartly and for the right reasons, the cloud can transform an IT organization and dra-
matically improve the services they provide. In chapter 9, Mr. Bumgardner leads a dis-
cussion that should be required reading for any IT director who is considering
replacing existing virtualized IT infrastructure with OpenStack or constructing a new
private cloud offering for their internal customers.

 In short, OpenStack in Action serves as an excellent primer on the complex world of
cloud computing and the OpenStack software ecosystem. Read it. Absorb it. And
become a “Stacker” at heart!

JAY PIPES

MEMBER, OPENSTACK TECHNICAL COMMITTEE

DIRECTOR OF ENGINEERING

MIRANTIS, INC.
Licensed to tracy moore <nordick.an@gmail.com>

preface
My first exposure to OpenStack came in the summer of 2011 while I was working at
the University of Kentucky. My coworker and friend, Brent Salisbury, and I were
invited to meet with a Fortune 50 technology company to discuss a product develop-
ment project. During our meeting, the project’s executive sponsor gave us the option
to work with existing commercial tools or investigate the use of a community project
called OpenStack. Naturally, we chose to work with the framework we knew nothing
about, and so began our OpenStack journey. Nothing came of the product develop-
ment project, but the OpenStack encounter, as it turned out, became a turning point
in our professional, and in my case academic, careers. Brent left the university and
cofounded a startup that was acquired by Docker, where he currently works. I, on the
other hand, transferred from a master’s to a doctoral program and wrote this book.

 By early 2013, the Grizzly release of OpenStack somewhat resembled current ver-
sions, but instabilities due to rapid feature inclusion prevented us from considering
OpenStack production-ready for our enterprise environment. But although I was not
ready to put my neck on the line with OpenStack for the enterprise, research comput-
ing was another story. As part of a graduate independent study class, I documented
the use cases, architecture, and strategy around using OpenStack in research comput-
ing. In addition, I described the process and eventual adoption of the platform as a
private cloud for our enterprise.

 I used figure 1 in my original academic report to represent the component-level dis-
tribution of OpenStack. I suspect cooking an elephant, much like eating one, must be
done a piece at a time. Far too often in technology, we accept technological isolation as
an organizationally sound practice—“I am a storage guy,” or “I am a network girl”—but
this is paramount to someone only eating one part of the elephant. In this book I’ve
xv

Licensed to tracy moore <nordick.an@gmail.com>

PREFACExvi
tried to mix recognizable morsels with new concepts for easier digestion. Although you
might not want to taste elephant feet, you’d better know, at least in principle, how they
work if you are going to be successful in your adoption of cloud computing.

 I’m writing this preface exactly two years to the day after I first spoke with a Man-
ning acquisitions editor. When I started this project, there were fewer than 500 Open-
Stack contributors, and now there are thousands. Not only has OpenStack become
one of the fastest-growing open source communities ever, it has been adopted by the
biggest organizations in the world. More importantly, at least for you, OpenStack is
now mature and ready to serve as a foundation for your organization’s private cloud.

Figure 1 This image is from a sixteenth-
century edition of Libro de Arte Coquinaria
(Book on the Art of Cookery) by Maestro
Martino.
Licensed to tracy moore <nordick.an@gmail.com>

acknowledgments
This book would have never existed without the encouragement of my doctoral advi-
sor and friend, Professor Victor W. Marek. The pushing was always welcome, the confi-
dence was always needed, and the responsibility is mine to pay forward.

 I would never have imagined the effort that it takes to produce a book if I hadn’t
experienced it myself. Whether or not this effort produced the desired result will be
decided by my readers, but there should be no doubt that an army of reviewers, edi-
tors, and other contributors spent many hours in the pursuit of a high-quality book.
Having contributed to and reviewed other books from other publishers as I wrote this
book, I can honestly say that Manning does everything they can to produce the very
best work possible. I especially want to thank Susan Conant, my development editor
for most of this book, for her tireless work, continually pushing for improvements.
Thanks also to publisher Marjan Bace and everyone on the editorial and production
teams, including Mary Piergies, Cynthia Kane, Andy Carroll, Katie Tennant, and many
others who worked behind the scenes. Finally, I want to thank the following individu-
als, who read drafts of this book and provided suggestions: Andy Kirsch, Chris Snow,
Fernando Rodrigues, Hafizur Rahman, Jeff Lim, Kosmas Chatzimichalis, Matt Hart-
ing, Mayur Patil, Michael Hamrah, Peeyush Maharshi, and Toby Lazar.

 Special thanks go to you, Sarah, my wife, who between caring for our two small
children and supporting my work travel, graduate work, this book, and other work,
took on far more than your share. Although the papers, presentations, and books
have my first name on them, they will also always carry the name we share. Sarah, Syd-
ney, and Jack, I’m sorry for the lost time and energy. I hope you can be as proud of me
as I am of you. I love you all.
xvii

Licensed to tracy moore <nordick.an@gmail.com>

about this book
The primary topic of this book is deploying enterprise private clouds using Open-
Stack. In this context, I discuss private clouds as pools of infrastructure resources, or
infrastructure as a service (IaaS), that are owned and managed by the organizations they
serve. In contrast, public cloud IaaS resources are owned and operated by third-party
service providers.

 Financially, one can think of private clouds as primarily a capital expense, whereas
public clouds are typically operational ones. The distinction is easy to understand,
given that in private cloud deployments, organizations typically purchase or lease a
fixed infrastructure for the duration of its serviceable life, regardless of actual usage.
In public cloud deployments, cost is typically directly related to hourly occupancy (on
or off) and communication costs.

 The organizational adoption of private and public clouds is often related to the
size and scope of those organizations’ IT responsibilities. Enterprise IT departments,
whose responsibility it is to centrally provide technical architectures and resources for
the rest of the organization, have a vested interest in using a private cloud. A multi-
tenant, fully orchestrated, private cloud provides great resource-management effi-
ciency to enterprise IT. In this regard, enterprise IT becomes a cloud broker. In
contrast, departmental IT units often lack the data center facilities and personnel to
cost-effectively deploy private clouds. Often, due to their relatively small resource
requirements, departments can take advantage of public cloud resources. If they’re
available, departments can also take advantage of private cloud resources managed by
their enterprise IT units. Using both private and public clouds based on workload
results in a hybrid cloud.
xviii

Licensed to tracy moore <nordick.an@gmail.com>

ABOUT THIS BOOK xix
 Despite the differences in clouds and the types of organizations that are best posi-
tioned to take advantage of them, the clouds themselves can be built using the same
technologies. Although the ingredients that make up cloud resources might be the
same, the recipes and methods of consumption can be very different.

 OpenStack is a powerful framework for constructing both private and public
clouds. Fundamentally, OpenStack abstracts and provides a common API for the hard-
ware and software used in building clouds. The framework provides two very impor-
tant things:

 Abstraction of hardware and software resources, which prevents vendor lock-in
of any particular component

 A common API across resources, which allows for complete orchestration of
connected components

The first aspect is nice from a financial perspective, but the second is the key to a mod-
ern IT transformation. For enterprise IT, OpenStack brings the same level of transfor-
mational efficiency to cloud deployment.

Why OpenStack in Action?
This book is intended as a step-by-step, bottom-up guide for constructing computa-
tional clouds of resources. My intended audience includes researchers, administra-
tors, and students interested in the deployment of an OpenStack environment. There
are no technical prerequisites beyond a basic operational knowledge of Linux, and
the material is suited to people with very different backgrounds and technical abili-
ties. Similarly, OpenStack is suited for many use cases.

 Despite separate use cases utilizing the same OpenStack framework, the require-
ments and design of private clouds can vary greatly from those of service providers.
Enterprises are interested in providing private resource clouds for their organizations.
These private clouds don’t just represent additional services; they can represent a
transformation in the way organizations provide computational resources.

 This book comprises

 An introduction to OpenStack through the automated deployment of a single-
node development environment

 A deeper understanding of OpenStack through a step-by-step manual deploy-
ment of a multi-node environment

 The impacts of private cloud technologies (OpenStack, Ceph, Juju, and the
like) from the perspective of IT operations

 The deployment of a production OpenStack environment using vendor-
provided automated deployment and management tools

The architecture covered in the book is appropriate for small (5-node) to large enter-
prise (100-node) private cloud deployments. In addition, chapter 12 walks you
through the use of application orchestration tools like OpenStack Heat and Ubuntu
Juju on your newly constructed private cloud.
Licensed to tracy moore <nordick.an@gmail.com>

ABOUT THIS BOOKxx
 This book is about building an understanding of private cloud technologies, the
deployment and operation of those technologies, and the long-term impact of cloud
orchestration on traditional IT roles. This book will provide you with the ability to
develop a convincing argument for the deployment of an OpenStack private cloud in
your enterprise and will help you develop the technical knowledge to deploy your
private cloud. Configurations and operational scripts demonstrated in the book are
also available through the GitHub repository for the book at https://github.com/
codybum/OpenStackInAction.

 The most important thing for you to understand is that an OpenStack private
cloud is not simply another virtualization tool. OpenStack is a framework that utilizes
existing virtualization tools to construct and manage clouds. You’ll learn how to think
about cloud construction, deployment, and organization. On the technical side, you’ll
gain an understanding of the components of OpenStack and supporting technolo-
gies—specifically, OpenStack Compute, Networking, Block Storage, Dashboard, and
API components.

Roadmap
The book is divided into three parts, where part 1 (chapters 1–4) gets you started, part 2
(chapters 5–8) provides a deep dive into the ecosystem, and part 3 (chapters 9–12)
prepares you for using OpenStack in a production environment.

 Chapter 1 introduces the OpenStack cloud operating system, the motivations for
developing the framework, and what OpenStack can do for your organization.

 In chapter 2 you’ll jump right in and take a test drive with OpenStack, using a
rapid deployment tool and minimal infrastructure. This test drive is not just to dem-
onstrate the OpenStack Dashboard user experience; it will also provide you with
a known working model to use while you learn the OpenStack framework. By the
end of chapter 2, you’ll be provisioning virtual machines under your own OpenStack
environment.

 Chapter 3 makes use of the environment you constructed in chapter 2 and intro-
duces the OpenStack command-line interface (CLI). In this chapter, you’ll walk
through basic OpenStack operations as you create new tenants (projects), users, roles,
and internal networks.

 In chapter 4 you’ll progress from using OpenStack to understanding the compo-
nent-level functions and their interactions with each other in the overall OpenStack
framework. You’ll learn about several cloud design methodologies, which will prepare
you for your own multi-node deployment. This chapter covers how OpenStack com-
ponents work together and the relationship between OpenStack components and
vendor resources.

 Chapters 5–8 cover deep dives related to specific OpenStack projects, devoting
a chapter to each of the major projects. These chapters will walk you through a
manual deployment of OpenStack in a multi-node environment. Through these
chapters, you’ll gain a great understanding of how and why things work as they do in
Licensed to tracy moore <nordick.an@gmail.com>

ABOUT THIS BOOK xxi
the OpenStack ecosystem. In addition, this manual deployment will give you valuable
troubleshooting experience.

 Chapter 9 covers architectural, organizational, and strategic decisions relating to a
production OpenStack deployment. Chapter 10 covers the basic deployment and
operation of Ceph storage. Chapter 11 will walk you through the automated HA
deployment of OpenStack using Fuel. Finally, chapter 12 covers cloud orchestration
using OpenStack Heat and Ubuntu Juju.

Who should read this book?
The book is suited for infrastructure specialists, engineers, architects, and support
personnel interested in deploying a private cloud environment using OpenStack.
Although the book has strategic value for those in executive and strategic roles, the
message is tailored for a technical reader. There are no technical prerequisites
beyond a basic operational knowledge of Linux.

Code conventions and downloads
All code in the book is presented in a fixed-width font like this to separate it from
ordinary text. Code annotations accompany many of the listings, highlighting impor-
tant concepts. In some cases, numbered bullets link to explanations that follow the
listing.

 You can download the code for the examples in the book from the publisher’s web-
site at www.manning.com/books/openstack-in-action and also from https://github
.com/codybum/OpenStackInAction.

Author Online
The purchase of OpenStack in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/openstack-
in-action. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

About the author
Cody Bumgardner (http://codybum.com) has been in the IT industry for over 20
years, during which he has worked in technical, managerial, and sales roles in the
Licensed to tracy moore <nordick.an@gmail.com>

ABOUT THIS BOOKxxii
areas of IT architecture, software development, networking, research, systems, and
security. Over the last several years, he has focused on researching, implementing, and
speaking about cloud computing and computational economics. He is also currently a
PhD candidate in Computer Science at the University of Kentucky (UK), focusing on
computational economics and distributed resource management. Cody currently
serves as the Chief Technology Architect (CTA) of a large public land-grant university.
As CTA, he developed a five-year university strategy and roadmap for cloud comput-
ing. This roadmap outlined the introduction of disruptive cloud technologies along
with the related transformations of the IT workforce. The plan centered around the
deployment of an enterprise OpenStack private cloud, supporting over 40,000 users
in academic, research, and health care (academic) divisions. Cody is responsible for
the architecture, financial model, deployment, and long-term strategy of the Open-
Stack private cloud, research computing, and other cloud computing initiatives.

About the cover
The figure on the cover of OpenStack in Action is captioned “Milkmaid from Cou-
tances.” The illustration is taken from a collection of works by many artists, edited by
Louis Curmer and published in Paris in 1841. The title of the collection is Les Français
peints par eux-mêmes, which translates as The French People Painted by Themselves. Each
illustration is finely drawn and colored by hand, and the rich variety of drawings in the
collection reminds us vividly of how culturally apart the world’s regions, towns, vil-
lages, and neighborhoods were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was easy
to identify where they lived and what their trade or station in life was just by their
dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time,
has faded away. It’s now hard to tell apart the inhabitants of different continents, let
alone different towns or regions. Perhaps we have traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.
Licensed to tracy moore <nordick.an@gmail.com>

Part 1

Getting started

The first part of this book is an introduction to the OpenStack framework:
how and why you’ll want to use it. OpenStack components are decomposed,
and relationships to underlying resources (compute, storage, network, and so
on) are explained. You’ll deploy OpenStack on a single node using the DevStack
deployment tool. Along the way, this part will help you start thinking about how
OpenStack could be used in your environment and develop your interest in the
framework enough to gain a deeper understanding of how things work under
the covers.
Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

Introducing OpenStack
Only a few decades ago, many large computer hardware companies had their own
fabrication facilities and maintained competitive advantage by making specialty
processors, but as costs rose, fewer companies produced the volume of chips
needed to remain profitable. Merchant chip fabricators emerged, able to produce
general-purpose processors at scale, and drove down costs significantly. Having just
a few computer chip manufacturers encouraged standardized desktop and server
platforms around the Intel x86 instruction set, and eventually led to commodity
hardware in the client-server market.

 The rapid growth of the World Wide Web during the dot-com years of the early
2000s created huge data centers filled with this commodity hardware. But although
the commodity hardware was powerful and inexpensive, its architecture was often
like that found in desktop computing, which was not designed with centralized

This chapter covers
 OpenStack and the cloud ecosystem

 Reasons to choose OpenStack

 What OpenStack can do for you and your
organization

 Key components of OpenStack
3

Licensed to tracy moore <nordick.an@gmail.com>

4 CHAPTER 1 Introducing OpenStack
management in mind. No tools existed to manage commodity hardware as a collec-
tion of resources. To make matters worse, servers during this period generally lacked
hardware management capabilities (secondary management cards), just like their
desktop cousins. Unlike mainframes and large symmetric multiprocessing (SMP)
machines, these commodity servers, like desktops, required layers of management
software to coordinate otherwise independent resources.

 During this period, many management frameworks were developed internally by
both public and private organizations to manage commodity resources. Figure 1.1
shows collections of interconnected resources spread across several data centers. With
management frameworks, these common resources could be used interchangeably,
based on availability or user requirements. While it’s unclear exactly who coined the
term, those able to harness the power of commodity computing through management
frameworks would say they had a “cloud” of resources.

 Out of many commercial and open source cloud management packages to be
developed during this period, the OpenStack project was one of the most popular.
OpenStack provides a common platform for controlling clouds of servers, storage,
networks, and even application resources. OpenStack is managed through a web-
based interface, a command-line interface (CLI), and an application programming
interface (API). Not only does this platform control resources, it does so without
requiring you to choose a specific hardware or software vendor. Vendor-specific

Data center
Mumbi

Data center
Paris

Data center
New York

Data center
San Francisco

Data center

Applications

Platform
Switch

Hypervisor OS

Physical

A A A

Data centers
have racks

Each rack has
resources

Figure 1.1 Cloud of interconnected
commodity resources
Licensed to tracy moore <nordick.an@gmail.com>

5

components can be replaced with minimum effort. OpenStack provides value for a
wide range of people in IT organizations.

 One way to think about OpenStack is in the context of the Amazon buying experi-
ence. Users log in to Amazon and purchase products, and products are delivered.
Behind the scenes, an orchestra of highly optimized steps are taken to get products to
your door as quickly and inexpensively as possible. Twelve years after Amazon was
founded, Amazon Web Services (AWS) was launched. AWS brought the Amazon expe-
rience to computing resource delivery. A server request that might take weeks from a
local IT department could be fulfilled with a credit card and a few mouse clicks with
AWS. OpenStack aims to provide the same level of orchestrated efficiency demon-
strated by Amazon and other service providers to your organization.

 What is OpenStack?

 For cloud/system/storage/network administrators—OpenStack controls many types
of commercial and open source hardware and software, providing a cloud man-
agement layer on top of vendor-specific resources. Repetitive manual tasks like
disk and network provisioning are automated with the OpenStack framework.
In fact, the entire process of provisioning virtual machines and even applica-
tions can be automated using the OpenStack framework.

 For the developer—OpenStack is a platform that can be used not only as an
Amazon-like service for procuring resources (virtual machines, storage, and so
on) used in development environments, but also as a cloud orchestration plat-
form for deploying extensible applications based on application templates.
Imagine the ability to describe the infrastructure (X servers with Y RAM) and
software dependencies (MySQL, Apache2, and so on) of your application, and
having the OpenStack framework deploy those resources for you.

 For the end user—OpenStack is a self-service system for infrastructure and appli-
cations. Users can do everything from simply provisioning virtual machines
(VMs) like with AWS, to constructing advanced virtual networks and applica-
tions, all within an isolated tenant (project) space. Tenants, also known as pro-
jects, are the way that OpenStack isolates assignments of resources. Tenant
isolation includes storage, network, and VM isolation, so end users can be given
much more freedom than in traditional virtual server environments. Imagine
end users being assigned a quota of resources that they could easily provision
how and when they want.

Virtual machines and tenants
Throughout the book, the term virtual machine (VM) will refer to an instance of an
emulated physical machine (server). Virtual machines perform the same functions as
physical machines and, from the perspective of the operating system, are intended
to be indistinguishable from physical hardware. VMs are used for a variety of reasons,
but most virtualization motivations boil down to the flexibility of controlling things
through software outweighing the performance penalty. From a high-level view, you
Licensed to tracy moore <nordick.an@gmail.com>

6 CHAPTER 1 Introducing OpenStack
The OpenStack foundation has hundreds of official corporate sponsors and a com-
munity of tens of thousands of people in over 130 countries. Like Linux, many people
will be attracted to OpenStack as a community-supported alternative to commercial
products. But what they’ll soon learn is that when it comes to cloud frameworks, there
are few that compare to OpenStack in terms of depth and breadth of services. Perhaps
more importantly, there might not be another product, commercial or otherwise, that
the average system administrator, developer, or architect can use on their own and
that can provide a greater benefit to their organization.

1.1 What is OpenStack?
Let’s expand on the definition of OpenStack as a framework for managing, defining,
and utilizing cloud resources. The official OpenStack website (www.openstack.org)
describes the framework as “open source software for creating private and public
clouds.” It goes on to say, “OpenStack Software delivers a massively scalable cloud
operating system.” If you have experience in server virtualization, you may quickly, yet
incorrectly, conclude that OpenStack is just another way to provide virtual machines.
Although this is a service enabled by the OpenStack framework, it’s by no means
OpenStack’s definitive function.

 Figure 1.2 shows several of the resource components that OpenStack coordinates
to create public and private clouds. As the figure illustrates, OpenStack doesn’t
replace these resource providers; it simply manages them, through control points
built into the framework.

 An experienced systems administrator might take the description of OpenStack as
a “cloud operating system” with great skepticism. It’s not like administrators run
around to hundreds of servers with a boot disk, and load OpenStack on bare metal,
like a traditional operating system. Nevertheless, through its management of
resources, OpenStack shares operating systems characteristics, but in the context of
cloud computing.

 With an OpenStack cloud you can

 Harness the resources of physical and virtual servers, networks, and storage systems
 Efficiently manage clouds of resources through tenants, quotas, and user roles
 Provide a common interface to control resources regardless of the underlying

vendor subsystem

(continued)
can think of OpenStack as bringing the same level of operational efficiency to your
data center that the software hypervisor brought to the server.

As you’ll learn in this book, the word tenant has a specific meaning in OpenStack. It’s
sufficient at this point to consider a tenant to be a quota-limited collection of
resources used by VMs that are logically isolated from each other. For example, if a
user misconfigures the network in tenant A, tenant B is unaffected.
Licensed to tracy moore <nordick.an@gmail.com>

7What is OpenStack?
At first glance, OpenStack doesn’t look like a traditional operating system, but then
again, the “cloud” doesn’t look like a normal computer. One must take a step back
and consider the fundamental benefits of an operating system.

 Before there were operating systems or even hardware-level abstraction languages
(assembly), programs were written in the language (binary machine code) of a spe-
cific computer. Then traditional operating systems came along and, among other
things, allowed users to standardize not just application code, but also the manage-
ment functions of the hardware. Administrators could now manage hardware
instances using a common interface, developers could write code for a common sys-
tem, and users only had to learn a single user interface. This held true regardless of
underlying hardware, as long as the operating system remained the same. In the evo-
lution of computers, the development and proliferation of operating systems gave rise
to the field of systems engineering and administration.

 Figure 1.3 shows the many layers of abstraction in modern computational systems.
 No doubt, in the past there were developers who didn’t like the idea of losing

direct control over hardware through the use of an operating system, just as some sys-
tems administrators don’t like the idea of losing control over the underlying hardware
and operating systems through server virtualization. In each of these transitions, from

External
network

Private or
public cloud

OpenStack manages physical
and virtual resources.

Storage

Physical Virtual

Server

NetworkFigure 1.2 OpenStack is a cloud
operating system.
Licensed to tracy moore <nordick.an@gmail.com>

8 CHAPTER 1 Introducing OpenStack
machine code to assembly to the virtual layer, we didn’t lose the underlying layer; it
was simply standardized through abstraction. We still have highly optimized hardware,
we still have operating systems, and often we have a layer of hardware virtualization
between those layers.

 Wide adoption of a new abstraction layer typically occurs when the benefits of opti-
mizing beyond the standard approach outweigh the cost of translating (virtualization)
between those layers. This is to say, when the overall utility of a computational envi-
ronment can be increased by sacrificing raw performance for usability, then a layer of
abstraction is typically adopted. This phenomenon is most clearly demonstrated by
central processing units (CPUs) that conform to the same instruction set for decades,
while radically changing their internal architectures.

 When most people think of CPUs, they don’t think of virtualization and execution
variability on the hardware level, but this is the case. Many of the instructions on x86
processors are virtualized inside the processors themselves, where some complex leg-
acy instruction is executed through a series of simpler, yet faster, instructions. The
complexity of instruction-level optimization is beyond the scope of this book, but it’s
important to understand that even when using bare metal, some form of virtualization
is at play, even on the processor level. Now, instead of focusing on losing control,
imagine taking it through the use of a common framework for managing, monitoring,
and deploying private and public clouds of infrastructure and applications. Once you
take this evolutionary step forward, you have OpenStack.

Common layers of abstraction

Common access methods per layer

Processor-
specific

architecture

Machine
code

Instruction
set

architecture

Operating
system

Virtual
layer

OpenStack

Assembly Bytecode Vendor
API

OpenStack
API

Figure 1.3 Layers of computational abstraction

Decades of CPU abstraction and virtualization
The Intel x86 instruction set was introduced with the Intel 8086 CPU in 1978, as a
backward-compatible alternative to the Intel 8080. The x86 instruction set defined
assembly instructions that would remain available regardless of processor changes.
Since then, new “processor extensions” were added and clock cycles were
increased, but the existing instructions remained.
Licensed to tracy moore <nordick.an@gmail.com>

9Understanding cloud computing and OpenStack

1.2 Understanding cloud computing and OpenStack
This book focuses on deploying private enterprise clouds using OpenStack. In this
context, I’ll describe private clouds as pools of infrastructure resources (VMs, storage,
and so on), also known as infrastructure as a service (IaaS), owned and managed by the
organizations they serve. In contrast, public cloud IaaS resources are owned and oper-
ated by third-party service providers, like Amazon AWS, Microsoft Azure, and the like.
The goal of this book is to help you bring the ease and efficiencies of public cloud
offerings to your enterprise.

Whether organizations opt for private or public clouds is often related to the size and
scope of those organizations’ IT responsibilities. Enterprise IT departments, with the
responsibility to centrally provide the technical architecture and resources for the rest
of the organization, have a vested interest in leveraging a private cloud. A multi-tenant
(where data, configuration, and user management are logically isolated per tenant),
fully orchestrated private cloud provides enterprise IT the ability to become a private
cloud broker.

As the demand for faster processors increased, so did the desire to ensure software
interoperability between processor generations. CPU designers needed the flexibility
to optimize at lower levels of abstraction, while maintaining instruction-level compat-
ibility (standardization). Designers didn’t worry about keeping the underlying hard-
ware the same, which allowed them to greatly increase the clock speed of processors
between generations. In 1995, the Pentium Pro introduced the idea of micro-op
decoding. Instead of a specific instruction taking a single clock cycle, it might be
translated into several simple instructions, which could take many cycles.

In addition to micro-ops, the Pentium Pro processor introduced optimizations through
out-of-order execution of instructions and memory virtualization (addressing 36 bits
of memory with a 32-bit bus). But this was all completely abstracted from the devel-
oper, allowing the same applications to run on several generations of processors
from multiple vendors. This method of maintaining instruction-level compatibility con-
tinues to this day with the current generation of x86_64 processors.

The economics of private vs. public clouds
Financially, one can think of private clouds as primarily capital expenses, whereas
public clouds are typically operational expenses. The distinction is easy to under-
stand given that in private cloud deployments, organizations typically purchase or
lease a fixed infrastructure for the duration of its serviceable life, regardless of actual
usage. In public clouds, the cost is typically directly related to hourly occupancy (if
it’s on and provisioned, you pay; if it’s off and destroyed, you don’t) and communica-
tion costs.
Licensed to tracy moore <nordick.an@gmail.com>

10 CHAPTER 1 Introducing OpenStack

In contrast, departmental IT units often lack the data center facilities and personnel
to cost-effectively deploy private clouds. Due to their relatively small resource require-
ments, departmental IT units can often take advantage of public cloud resources, or
also take advantage of private cloud resources managed by their enterprise IT units, if
any are available.

 If you use both private and public clouds based on workload, that combination is
referred to as a hybrid cloud. Both public and private clouds are built using the same
technologies, but although the building blocks might be the same, the motivations for
using private and public clouds can be very different. For instance, users often use a
private cloud for security compliance reasons. It’s common for a public cloud to be
used for workloads that are cyclic in nature or that require a global scale that would be
very costly for an enterprise to provide.

 Although this book focuses on using OpenStack for private clouds, many of the les-
sons learned translate directly to public cloud provider services that are based on the
OpenStack API.

1.2.1 Abstraction and the OpenStack API

Fundamentally, OpenStack abstracts and provides a common API for controlling hard-
ware and software resources provided by a wide range of vendors. The framework pro-
vides two very important things:

 Abstraction of hardware and software resources, which prevents vendor lock-in
for any particular component. This is accomplished by managing resources
through OpenStack, not directly using the vendor component. The drawback is
that not all vendor features are supported by OpenStack, but common required
features are.

 A common API across resources, which allows for complete orchestration of
connected components.

Multi-tenancy and full orchestration
Multi-tenant refers to the ability of a cloud platform to manage computational
resources on a departmental level. For instance, a marketing department could be
allocated a portion of shared resources (X VMs, Y storage, and so on), and from this
resource allocation the department could provision resources without interacting with
the central organization (think of the Amazon purchase model). Likewise, fully orches-
trated describes the ability to allocate resources in relation to application dependen-
cies. For instance, an accounting application along with its web and database server
dependencies could be programmatically deployed in this environment. So not only
could the marketing department manage its own resources, platform orchestration
could be used to deploy both the infrastructure (VMs) and applications (MySQL,
Apache2, custom application, and so on) inside a dedicated tenant.
Licensed to tracy moore <nordick.an@gmail.com>

11Relating OpenStack to the computational resources it controls

While the first point is nice from a financial perspective, the second is the key to a
modern IT transformation.

 The next section will relate OpenStack to other technologies that you might be
familiar with.

1.3 Relating OpenStack to the
computational resources it controls
You’ve read all about the great things that OpenStack provides, but how does it work?
Perhaps the easiest way to grasp how OpenStack works is to relate the framework to
common technologies found in an enterprise environment.

 In this section, you’ll learn how OpenStack is related to the foundational resources
(compute, storage, network, and so on) that it controls. As you’ll see, OpenStack gen-
erally doesn’t provide the actual resource; it simply controls lower-level resources. Fig-
ure 1.4 shows how OpenStack manages providers of resources, which in turn are used
by virtual machines.

 In the following subsections, you’ll see the details related to specific resource com-
ponents: server virtualization, via the control of hypervisors; networking, via the con-
trol of vendor-provided hardware and OpenStack services; block and object storage,
via the control of vendor and OpenStack services. Finally, we’ll look at OpenStack ser-
vices in relation to common cloud terms. As you’ll see, OpenStack is a framework that
coordinates resources and services, regardless of the underlying technology vendor.

1.3.1 OpenStack and hypervisors

A hypervisor or virtual machine monitor (VMM) is software that manages the emulation of
physical hardware for virtual machines. OpenStack is not a hypervisor, but it does con-
trol hypervisor operations. Many hypervisors are supported under the OpenStack
framework, including XenServer/XCP, KVM, QEMU, LXC, ESXi, Hyper-V, BareMetal,

OK, what’s the catch?
OpenStack provides support for a wide range of functions that are both scalable and
abstracted from the underlying hardware. What OpenStack (or any other cloud frame-
work) can’t do is conform to all of your current practices. To take advantage of the
power of cloud computing, you might have to change some of your own business and
architectural practices.

If your architectural standards are based on using <insert propriety vendor feature>
to do <some function> for all servers in your data center, this approach may be in
conflict with a vendor-abstracted cloud deployment. If your business practice is to cre-
ate virtual machines for users on request, you’re missing the point of cloud self-
service. If end-user requests can be effectively automated, or end users can provision
resources themselves, then you’re harnessing the power of cloud computing.
Licensed to tracy moore <nordick.an@gmail.com>

12 CHAPTER 1 Introducing OpenStack
and others (see the hypervisor support matrix: https://wiki.openstack.org/wiki/
HypervisorSupportMatrix). You’re likely familiar with VMware ESX, VMware ESXi,
and Microsoft Hyper-V, which at the current time are the dominant hypervisors in
enterprise virtualization space. Because of licensing restrictions, cost, and other fac-
tors, there has been less OpenStack community support for commercial hypervisors
than for open source alternatives.

 Figure 1.5 shows OpenStack managing resources that are virtualized by a hypervi-
sor on physical hardware. OpenStack coordinates the management of many hypervisor
resources and virtual machines in an OpenStack cluster.

 The majority of people and organizations, regardless of deployment size, use either
XenServer or KVM hypervisors, which currently support the widest range of features.
XenServer, a Citrix product, is technically an open source hypervisor, but commercial
support is available through Citrix. KVM is included as part of the Linux kernel, so
many Linux distribution maintainers provide commercial KVM support, including
Red Hat, Ubuntu, and SUSE, to name a few.

ARE YOU CERTIFIED? As large providers started designing public IaaS offer-
ings based on the OpenStack framework, they soon realized that their cus-
tomers would require Microsoft certification for Windows hosts running

OpenStack services
OpenStack Dashboard
provides UI to services

OpenStack manages
the resources

Vendors provide
resources…

…used by virtual
machines

Compute

Vendor
hypervisor

Vendor storage
system

Storage

VM
compute

VM
volume

Vendor
network

Networking

VM
network

Figure 1.4 OpenStack resource management model
Licensed to tracy moore <nordick.an@gmail.com>

13Relating OpenStack to the computational resources it controls
under their hypervisors. At the time, Citrix had gone through the Microsoft
certification process with XenServer and fulfilled those requirements. But
despite Citrix having a competing platform in the form of CloudStack, many
organizations used XenServer as their OpenStack hypervisor. Since that time
several Linux distribution providers have gone through the Microsoft certifi-
cation process and now fully support Windows guests on the KVM hypervisor,
including hypervisors controlled by OpenStack.

Throughout this book, the Kernel-based Virtual Machine (KVM) will be used. KVM
has been part of the Linux kernel since the 2.6.20 release in early 2007, and it’s fully
supported by OpenStack. KVM also provides paravirtualization, which must be either
supported natively by the operating system or added through the use of hypervisor-
specific drivers installed on the virtualized operating system image. The traditional
problem with open source hypervisors is that there’s a steep learning curve for
deploying and maintaining them, often requiring experience in system, network, and
application administration. In organizations lucky enough to have centrally sup-
ported virtualized resources, the resource request process must pass through the
organization’s network, systems, security, and financial elements in the provisioning
process. This typically leaves users with three choices:

 Self-support using community code—Using community support for community-
maintained software, you take responsibility for the design, development, and
operation of your deployment.

OpenStack
Compute

Manages the
hypervisor

Server
hardware

Virtual
hardware

Compute

VM
compute

CPU
Disk

RAM
Net

Figure 1.5 OpenStack manages
the hypervisor
Licensed to tracy moore <nordick.an@gmail.com>

14 CHAPTER 1 Introducing OpenStack
 Commercial support using community code—Using vendor support for community-
maintained software, you and/or the vendor are responsible for your deployment.

 Commercial support using a vendor branch of a community project—Using vendor-
provided support and software, you are typically responsible for operation and
vendor management in relation to your deployment.

Although several vendors support OpenStack and KVM commercially, many internal
clouds are built for workloads that don’t require commercial support or certifica-
tion, so OpenStack support of KVM without commercial support is a very popular
option. This book covers material that’s useful regardless of your deployment and
support path.

1.3.2 OpenStack and network services

OpenStack isn’t a virtual switch, but it does manage several physical and virtual net-
work devices and virtual overlay networks. Unlike the OpenStack control of hypervi-
sors, which is limited to the services provided by the hypervisor alone, OpenStack
directly provides network services like DHCP, routing, and so on. But much like hyper-
visor management, OpenStack is agnostic to the underlying vendor technology, which
could be a commercial or open source technology.

 More importantly, a backend technology change like moving from one type of
network or vendor to another doesn’t necessitate client configuration changes. Given
the great deal of proprietary hardware, software, and user interfaces involved in net-
working, it’s often not trivial to switch from one vendor or technology to another.
With OpenStack, those interfaces are abstracted by the OpenStack API, as shown in
figure 1.6.

 OpenStack can manage many types of network technology (mechanisms), includ-
ing those provided by Arista Networks, Cisco Nexus, Linux bridging, Open vSwitch
(OVS), and others. Throughout this book we use networking services provided by

Linux containers
Recently, there has been great interest in the use of operating-system-level virtualiza-
tion in place of infrastructure-level visualization for providing OpenStack instances.
Operating-system-level virtualization provides the ability to run multiple isolated OS
instances (containers) on a single server. But it isn’t a hypervisor technology—it oper-
ates on the system level where containers share the same kernel. You can think of
containers as providing virtual separation where needed, without the emulation over-
head of full virtualization.

The two most popular operating-system-level virtualization projects are Docker
(https://www.docker.com/) and Rocket (https://github.com/coreos/rkt). Although it
can be argued that containers are better suited for application runtime delivery than
OS-level instances, technologies based on containers will undoubtedly be widely
adopted for building clouds.
Licensed to tracy moore <nordick.an@gmail.com>

15Relating OpenStack to the computational resources it controls
OpenStack and OVS. OVS is a common
switch choice for OpenStack that you can
easily obtain and replicate in your environ-
ment without specific hardware require-
ments. Along with the network
mechanisms, there are several network
types (VLANs, tunnels, and so on) sup-
ported by OpenStack, and those are cov-
ered in chapter 6.

1.3.3 OpenStack and storage

OpenStack isn’t a storage array, at least not
in the way you’d generally think of storage.
OpenStack doesn’t physically provide the
storage used by virtual machines.

 If you’ve ever used a file share (NFS,
CIFS, and the like), you were using “file-
based” storage. This type of storage is easy
for humans to navigate and computers to
access, but it’s generally an abstraction of
another type of storage: block storage. You
can think of operating systems or filesys-
tems as being the primary users of block storage.

 There’s also another type of storage that people in systems roles might not be
familiar with: object-based storage. This type of storage is generally accessed through
software APIs (for example, GET /obj=xxx). Object-based storage is a further abstrac-
tion of file and block storage, but without the restrictions of either. Object-based stor-
age can be easily distributed and replicated between many participating nodes. Unlike
block storage, which must quickly be accessed by a VM, distributed object storage is
much more latent and wouldn’t be used for things like VM volumes (which are actively
attached to an instance). It’s common to use object storage to store backups of vol-
umes and images (containing operating systems) to be applied to volumes when
they’re created.

 Let’s first address how OpenStack works with block storage, and then we’ll talk
about object storage.

BLOCK STORAGE

OpenStack doesn’t currently manage file-based storage for end users. In figure 1.7,
you can see that OpenStack manages block (VM) storage much like it manages the
hypervisor and network.

 This figure shows a complete picture from a basic VM resource-management pro-
spective. OpenStack can manage many vendor-provided storage solutions, including
solutions from Ceph, Dell, EMC, HP, IBM, NetApp, and others. As it does with hypervisor

OpenStack

Vendor
network

VM
network

VM
compute

Networking

Server
hardware

Figure 1.6 OpenStack manages the network
Licensed to tracy moore <nordick.an@gmail.com>

16 CHAPTER 1 Introducing OpenStack
and network components, OpenStack pro-
vides you with the flexibility to switch
between storage vendors and technologies
without changing the client configuration.

OBJECT STORAGE

Although OpenStack isn’t a storage array
for block storage (used to boot VMs), it
does have the native ability to provide
object storage. Other than physical hard-
ware running a supported version of
Linux, no other software is required for
OpenStack to provide a distributed object
storage cluster. This type of storage can be
used to store volume backups, and it’s also
common to use object storage for large
amounts of data that can be easily isolated
into binary objects. Figure 1.8 shows a
basic object server deployment that’s all
contained in the OpenStack environment.

Vendor
network

VM
network

VM
compute

Vendor storage
system

VM
volume

Server
hardware

OpenStack

StorageNetworking

Figure 1.7 OpenStack manages
block (VM) storage.

OpenStack

Proxy
node

Storage
node

Storage
node

Storage
node

Figure 1.8 OpenStack provides object-based
(API) storage.
Licensed to tracy moore <nordick.an@gmail.com>

17Relating OpenStack to the computational resources it controls
Object storage doesn’t have to be in a single location. In fact, nodes (proxy and stor-
age) could be in several locations that replicate between each other.

 The traditional use case for object storage is to store data that will be accessed by
an application, such as a document or file that will be used by an application on a
user’s behalf. There are several use cases for object storage in OpenStack environ-
ments. For example, it’s common to use this type of storage as a repository for VM
images. This isn’t to say that the VMs use this storage directly, but they’re provisioned
from data maintained in this system. This is reasonable because the provisioning pro-
cess won’t need low-latency access to random data. Object storage might also be used
to back up a snapshot of an existing VM for a long-term backup.

1.3.4 OpenStack and cloud terminology

OpenStack is a framework for cloud construction and is used to construct both public
and private clouds. Aside from the public and private cloud definitions, there are the
“as-a-service” cloud destinations. Which as-a-service is OpenStack? OpenStack can be
used as the foundation for several as-a-service clouds.

 Suppose you’re interested in providing your enterprise with an Amazon-like expe-
rience for acquiring VMs and storage resources. This would be considered infrastruc-
ture as a service (IaaS). In this context, users are given direct access to provision
individual virtual machines, which users directly manage. Although the physical com-
ponents that make up the cloud are hidden from the user, virtual components are
directly accessible. The responsibility of OpenStack is to control resources that pro-
vide end users with the infrastructure.

 Now suppose your cloud users are not given direct access to IaaS features and are
only given access to application orchestration functions provided or supported by
OpenStack. In this context, OpenStack could be considered the back end of a platform
as a service (PaaS) offering. The underlying physical and virtual infrastructure compo-
nents are hidden from the user. Consider the case where a development team
requires an isolated application landscape (application-layer deployment on IaaS) for
software testing. Through cloud orchestration, OpenStack could be used on the back
end in the deployment of the described testing platform.

 Now suppose your company provides a service to its customers using either IaaS or
PaaS provided by OpenStack. In this context, OpenStack serves as the back end com-
ponent of software as a service (SaaS). As you can see, OpenStack can be used as a fun-
damental component in many layers of cloud computing.

 Now that you have a better idea of what OpenStack does and how it does it, it’s
time to introduce you to the components of OpenStack that do the work. The next
section introduces the individual components of OpenStack and their role in the
overall framework.
Licensed to tracy moore <nordick.an@gmail.com>

18 CHAPTER 1 Introducing OpenStack
1.4 Introducing OpenStack components
I introduced the basic capabilities of OpenStack in section 1.1; in this section we’ll
look at the fundamental components that make up the framework.

 Table 1.1 lists several of OpenStack’s components or core projects. There are many
more projects in various stages of development, but these are the foundational com-
ponents of OpenStack. The most up-to-date roadmap of OpenStack’s services can be
found on the OpenStack Roadmap page: www.openstack.org/software/roadmap/.

Now that you know a bit about what OpenStack is and does, let’s take a quick look at
where it came from.

1.5 History of OpenStack
On his first day in office in 2009, US President Barack Obama signed a memorandum
to all federal agencies directing them to break down barriers to transparency, partici-
pation, and collaboration between the federal government and the people it serves.
The memorandum became known as the Open Government Directive.

 One hundred and twenty days after the directive was issued, NASA announced its
Open Government framework, which outlined the sharing of a tool called Nebula.
Nebula was developed to speed the delivery of IaaS resources to NASA scientists and
researchers. At the same time, the cloud computing provider Rackspace announced it
would open-source its object storage platform, Swift.

Table 1.1 Core projects

Project Code name Description

Compute Nova Manages VM resources, including CPU, memory, disk, and net-
work interfaces.

Networking Neutron Provides resources used by the VM network interface, including
IP addressing, routing, and software-defined networking (SDN).

Object Storage Swift Provides object-level storage, accessible via a RESTful API.

Block Storage Cinder Provides block-level (traditional disk) storage to VMs.

Identity Keystone Manages role-based access control (RBAC) for OpenStack
components. Provides authorization services.

Image Service Glance Manages VM disk images. Provides image delivery to VMs and
snapshot (backup) services.

Dashboard Horizon Provides a web-based GUI for working with OpenStack.

Telemetry Ceilometer Provides collection for metering and monitoring OpenStack
components.

Orchestration Heat Provides template-based cloud application orchestration for
OpenStack environments.
Licensed to tracy moore <nordick.an@gmail.com>

19Summary
 In July 2010, Rackspace and NASA, along with 25 other companies, launched the
OpenStack project. Over the past five years there have been ten releases. OpenStack
releases are shown in table 1.2.

OpenStack has maintained a six-month release cycle, which is coordinated with Open-
Stack Summits. The project has grown from 25 participating companies to over 200,
with thousands of participating users in over 130 countries.

1.6 Summary
 IaaS clouds are collections of commodity resources, which are coordinated

through management frameworks.
 OpenStack is a management framework that provides end-user self-service coor-

dination of IaaS and application orchestration (PaaS/SaaS).
 OpenStack controls existing commercial and community technologies like

hypervisors, storage systems, and networking hardware and software.
 OpenStack is composed of a collection of projects, each with a specific purpose.
 Each OpenStack project has a related code name.

Table 1.2 OpenStack releases

Name Date Core components

Austin October 2010 Nova, Swift

Bexar February 2011 Nova, Glance, Swift

Cactus April 2011 Nova, Glance, Swift

Diablo September 2011 Nova, Glance, Swift

Essex April 2012 Nova, Glance, Swift, Horizon, Keystone

Folsom September 2012 Nova, Glance, Swift, Horizon, Keystone, Quantum, Cinder

Grizzly April 2013 Nova, Glance, Swift, Horizon, Keystone, Quantum, Cinder

Havana October 2013 Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Ceilometer, Heat

Icehouse April 2014 Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Ceilometer, Heat, Trove

Juno October 2014 Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Ceilometer, Heat, Trove, Sahara

Kilo April 2015 Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Ceilometer, Heat, Trove, Sahara, Ironic

Liberty October 2015 Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Ceilometer, Heat, Marconi, Trove, Sahara, Ironic, Searchlight,
Designate, Zaqar, DBaaS, Barbican, Manila
Licensed to tracy moore <nordick.an@gmail.com>

Taking an OpenStack
test-drive
In chapter 1 you learned many of the benefits of OpenStack and how OpenStack
fits into the cloud ecosystem. But now that you have an idea of what OpenStack can
do for you, you may wonder what it looks like. What will the experience be like for
your users? This chapter lets you test-drive OpenStack through the use of DevStack,
a rapid OpenStack deployment tool, and answers these questions.

 DevStack lets you interact with OpenStack on a small scale that’s representative
of a much larger deployment. You can quickly deploy or “stack” (as fellow Open-
Stackers call it) components and evaluate them for production use cases. DevStack

This chapter covers
 Using DevStack to take a test-drive with OpenStack

 Preparing an environment for DevStack

 Configuring and deploying DevStack

 Interacting with the OpenStack Dashboard

 Understanding the OpenStack tenant (project) model

 Creating virtual machines with OpenStack
20

Licensed to tracy moore <nordick.an@gmail.com>

21
helps you deploy the same OpenStack components found in large multiserver envi-
ronments on a single server, as shown in figure 2.1. Without knowing a great deal
about OpenStack and without the need for a bunch of hardware, you can use
DevStack to get the OpenStack experience, just on a smaller scale.

 The figure shows several components, including Cinder, Nova, and Neutron,
deployed on an arbitrary number of nodes. OpenStack uses codenames for its compo-
nents, so the codename Cinder refers to storage components, Nova to compute
components, and Neutron to network components. At this point it’s not important that
you know the OpenStack components, the codenames, or what they do; this is
explained in detail in chapter 4. What you need to know now is that OpenStack is
made up of several core components that can be distributed among nodes (servers)
based on the intended design. Information related to OpenStack design is also cov-
ered in chapter 9.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Controller
(server 0)

Neutron
(server 2)

VM

Cinder
(server 3)

Nova
(server 1)

Figure 2.1 Multiserver OpenStack
Licensed to tracy moore <nordick.an@gmail.com>

22 CHAPTER 2 Taking an OpenStack test-drive
2.1 What is DevStack?
DevStack was created to make the job of deploying OpenStack in test and develop-
ment environments quicker, easier, and more understandable, but the ease with
which it allows users to deploy OpenStack makes it a natural starting point for learn-
ing the framework. DevStack is a collection of documented Bash (command-line inter-
preter) shell scripts that are used to prepare an environment for, configure, and
deploy OpenStack. The choice of using a shell-scripting language for DevStack was
deliberate. The code is intended to be read by humans and computers alike, and it’s
used as a source of documentation by developers. Developers of OpenStack compo-
nents can document dependencies outside of raw code segments, and users can
understand how these dependencies must be provided in a working system.

 Despite the daunting size and complexity of the OpenStack framework, DevStack
makes things look easy. Figure 2.2 may look like an oversimplification, but it’s an accu-
rate illustration of the function of DevStack.

 Users with very little experience with virtualization, storage, networking, or—
frankly—Linux, can quickly get a single-server OpenStack environment working. In
many ways, DevStack does for OpenStack what OpenStack can do for infrastructure
(as you learned in chapter 1): it simplifies and abstracts it.

 But I don’t want to give the impression that DevStack will be used for deploying
OpenStack in production. In fact, in OpenStack circles it’s common to hear the
phrase, “Friends don’t let friends run DevStack in production.” In chapters 5 through
8, we’ll explore manual deployments of OpenStack. This manual exercise will allow

DevStack server
 (fresh Linux install)

Execute
DevStack

Before:

Install OpenStack software
and related dependencies

DevStack server
 (OpenStack deployment)

After:

Configure OpenStack components
to work with each other

Figure 2.2 DevStack will install and configure OpenStack on a single node automatically.
Licensed to tracy moore <nordick.an@gmail.com>

23Deploying DevStack
you to learn about the configuration options and components of OpenStack and
develop your ability to troubleshoot OpenStack deployments. In chapter 11, we’ll
cover an automated deployment of OpenStack that’s intended to be used in a produc-
tion environment.

 In this chapter, you’ll prepare an environment and deploy OpenStack using
DevStack. You don’t need to know much about Linux, storage, or networking to
deploy a working single-server OpenStack environment. Using this deployment, we’ll
walk through ways you can interact with OpenStack, and this will give you some famil-
iarity with both the components and the overall system. Then we’ll discuss the Open-
Stack tenant model, which is how OpenStack logically separates, controls, and assigns
resources to projects. In OpenStack terminology, tenant and project can be used inter-
changeably. Finally, you’ll take what you’ve learned and create a virtual machine in a
virtualization environment.

 Let’s get started stacking!

2.2 Deploying DevStack
As the name suggests, DevStack is a development tool, and its related OpenStack code
is under constant development. The support packages used by DevStack to deploy
OpenStack code are also under development. When DevStack works, it works beauti-
fully, but when it fails, things get ugly, and first-time users get very frustrated. Although
a large part of this chapter is dedicated to deploying OpenStack using DevStack,
there’s no way of knowing from day to day if a set of instructions will work with the lat-
est versions of DevStack and OpenStack. The same DevStack instructions might fail on
Monday but work on Friday.

 To reduce reader frustration, a companion virtual machine (VM) that contains a
DevStack-deployed OpenStack instance is provided for this book. This VM can be used
to test-drive OpenStack with limited hardware resources and effort. In the event that
DevStack doesn’t work for you, simply make use of the companion VM. You can always
try DevStack again when you have a better grasp of the overall OpenStack framework.

If you end up using the companion VM, follow the instructions found in the sidebar
entitled “Instructions for using the companion VM,” and then skip to section 2.3.

What version of OpenStack does the companion VM use?
The companion VM, along with examples in the first and second parts of this book,
use the Icehouse release of OpenStack. Although Icehouse was already several revi-
sions old at the time of writing, it was still the most widely deployed and arguably
stable version of OpenStack. In addition, there are several Linux distributions and
OpenStack production deployment tools that maintain the Icehouse release in long-
term support. The third part of the book covers production deployment tools, which
can be used to deploy several versions of OpenStack, including Icehouse or the
most recent.
Licensed to tracy moore <nordick.an@gmail.com>

24 CHAPTER 2 Taking an OpenStack test-drive

ARE YOU A VAGRANT USER? Although covering the use of Vagrant is outside the
scope of this book, there are several community projects that use Vagrant to
deploy DevStack on VirtualBox (such as devstack-vagrant at https://github.com/
openstack-dev/devstack-vagrant and vagrant_devstack at https://github.com/
bcwaldon/vagrant_devstack).

It’s recommended that you attempt to deploy OpenStack using DevStack, as outlined
in the following steps. This process will provide you with quick access to the framework,
while you build a foundational understanding of OpenStack components. Although
DevStack can be used to get started quickly, the documented scripts hide nothing from
you, and each OpenStack component is configurable based on your needs. It’s even
possible to use DevStack to deploy a multiserver OpenStack environment.

Instructions for using the companion VM
Follow these steps:

1 Go to http://manning.com/bumgardner/ and download the VM image under
Links.

2 Make sure you have VirtualBox installed (this VM image was tested with ver-
sion 4.3.30).

3 Unzip the file devstack_icehouse_openstackinaction.
4 Double click the dev_stack_icehouse_openstackinaction.vbox file (or use

command-line arguments—see the VirtualBox docs for details).
5 VirtualBox should now be launched, and you should see the

devstack_icehouse_openstackinaction VM.
6 Start the devstack_icehouse_openstackinaction VM.
7 In the VM configuration, several ports are forwarded from the VM to your local

host (IP=127.0.0.1). These ports include 2222 for SSH access to the VM
and 8080 for access to the OpenStack Dashboard.

8 Once the VM is started, log in to the VM using the sysop ID and password
u$osuser01 (for example, ssh -u sysop@127.0.0.1 -p 2222).

9 Once on the console, switch to the stack user: sudo -i -u stack.
10 Execute the rejoin script: sudo /opt/devstack/rejoin-stack.sh.
11 You’ll now see screens related to the output of OpenStack components. To

select a specific screen, hold and release Control-+, and then press " (double-
quotes). You’ll be presented with a list of screens.

Here are a couple of tips for accessing OpenStack:

 If you want to access the VM for working with the OpenStack CLI, use the
instructions found in section 3.1, keeping in mind that the internal address of
the OpenStack VM instance is 10.0.2.32.

 If you want to access the VM for working with the Dashboard, access the
URL http://127.0.0.1:8080 with the username admin and the password
devstack.
Licensed to tracy moore <nordick.an@gmail.com>

25Deploying DevStack
 In this chapter, we’ll focus on deploying all components to a single server. This
approach reduces the configuration problems you might experience before you fully
understand the OpenStack component distribution model, which is discussed in
chapter 3. Once you understand the interaction of components on a single server,
deploying a multiserver configuration is far more understandable. In part 2 of this
book, we’ll discuss manual deployments, and in part 3 we’ll cover automated deploy-
ments of multiserver OpenStack configurations.

 To get started, you’ll need a single physical or virtual server running a supported
distribution of Linux.

2.2.1 Creating the server

For your DevStack deployment, you’ll want to start with a fresh install of Linux. That
will ensure that dependency conflicts are avoided altogether. I recommend using
Ubuntu 14.04 (Trusty Tahr), which is one of the most widely documented and tested
Linux distributions for working with OpenStack.

 The examples presented in this chapter are based on Ubuntu 14.04, but users with
experience in other distributions should be able to adapt the examples. Scripts and
configuration files for this and other chapters can be found in the source code for this
book: https://github.com/codybum/OpenStackInAction.

 I recommend using physical hardware for the deployment if possible. Although it’s
possible to run OpenStack “nested” in a virtual environment, the VMs deployed in this
nested OpenStack environment are notably slow. In this context, I define a VM as vir-
tual hardware running a full operating system. I say that OpenStack (the hypervisor)
is nested if you’re trying to use a VM to virtualize another VM. If no hardware is avail-
able, the deployment process will be the same, with the exception of the noted perfor-
mance issues. A walk-through guide for a basic install of Ubuntu 14.04 can be found
in the appendix.

LINUX DISTRIBUTIONS Although Ubuntu is widely used, Fedora and CentOS/
RHEL are also well documented. Additional Linux flavors such as OpenSUSE
and Debian provide OpenStack packages and are known to work.

OpenStack on VMs (nested virtualization)
Hypervisors, or virtual machine monitors (VMMs), live between physical hardware and
virtual machines. The hypervisor emulates the operations of the physical hardware,
letting the operating system think that it has exclusive access to the underlying sys-
tem. Hypervisors can take advantage of CPU virtualization extensions, allowing spe-
cific operations that would normally be emulated in software to be offloaded to the
CPU directly. This greatly increases performance.

OpenStack manages the hypervisor to provide virtual infrastructure. When the hyper-
visor managed by OpenStack is run on a VM, CPU visualization extensions are gen-
erally not available. All instructions that would normally be offloaded to hardware are
emulated (via QEMU, an open source hypervisor) in software. Pure software emula-
tion of hardware is extremely slow and shouldn’t be used in practice.
Licensed to tracy moore <nordick.an@gmail.com>

26 CHAPTER 2 Taking an OpenStack test-drive
2.2.2 Preparing the server environment

As you might have gathered from figure 2.2, DevStack will install and configure the
entire OpenStack suite for you. The process of deploying the OpenStack framework,
regardless of the method, is called stacking. The stacking process will retrieve and con-
figure OpenStack software and related package dependencies from online reposito-
ries. OpenStack dependencies will be satisfied by the Advanced Packaging Tool
(APT), which along with packages is provided by the Linux distribution.

You’ll use the sudo command to execute commands with the security privileges of the
root user. According to Wikipedia, the name sudo is a concatenation of “su” (substitute
user) and “do.” Sudo privileges give the user the ability to execute a command with
the security privileges of another user. The other user is typically the root user, so sudo
privileges are exactly what you need. The user you created when you installed your
operating system would have the appropriate privileges.

 In the following examples, the sysop user will be used as the normal user with sudo
privileges. The first time you use the sudo command, you’ll be prompted again for
your password, but don’t be confused: this is the same password you used for your nor-
mal account. Subsequent sudo commands executed within a timeout period (which,
for Ubuntu 14.04, is 15 minutes) won’t prompt for a password.

 The APT database used to determine package availability and dependencies is
maintained locally, so by the time you install your Linux distribution, it’s already out
of date. Your first step in preparing the environment is to update your APT package
information from online sources. From a shell prompt, update your APT packages as
shown in the following listing. This process won’t update any packages, but any pack-
age installed after the update will be current.

sysop@devstack:~$ sudo apt-get -y update
[sudo] password for sysop:
Hit http://us.archive.ubuntu.com precise Release.gpg
...
Fetched 3,933 kB in 1s (2,143 kB/s)
Reading package lists... Done

Listing 2.1 Updating packages

What user are you running as?
Right now, you should be running as a user with sudo privileges, but not as the root
user. There are various permissions issues related to using the root user with a
default Ubuntu 14.04 install and DevStack, so it shouldn’t be used.

Once the environment is prepared, you can create and then switch to the stack user
for the deployment of DevStack. Specific user types used in this chapter will be
explained later in this section.

Updates local
package
information
Licensed to tracy moore <nordick.an@gmail.com>

27Deploying DevStack
Your local package database is now up to date, as the first line of code synchronizes
the local package information with the newest online sources. After the update, it’s
recommended that you upgrade packages with the following command.

sudo apt-get -y upgrade

This upgrade step isn’t necessary from the DevStack component standpoint, but a
DevStack dependency could depend on a kernel update, which would require an
update and reboot. If you proceed with the upgrade step, it’s critical you reboot after
the upgrade.

 DevStack doesn’t use the APT system to install OpenStack components, despite the
packages being available in its repository. This choice is understandable given the
need for component flexibility in a development and testing system. For example, you
might run several OpenStack components from a stable release, along with a few oth-
ers from a development branch. This level of modularity isn’t generally possible with
package management systems.

 In place of using a package management system provided by the Linux distribu-
tion, DevStack retrieves OpenStack components directly from online OpenStack
repositories. Git, a source revision control utility, is used to access OpenStack reposito-
ries, so your next step is to install the git client, as shown in the next listing. The client
will be used both to retrieve the DevStack scripts and later by DevStack to retrieve
OpenStack components.

sysop@devstack:~$ sudo apt-get -y install git
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

git-man liberror-perl
Suggested packages:

git-daemon-run git-daemon-sysvinit git-doc git-el git-arch
git-cvs git-svn git-email git-gui gitk gitweb

The following NEW packages will be installed:
git git-man liberror-perl

0 upgraded, 3 newly installed, 0 to remove and 112 not upgraded.
...
Unpacking git (from .../git_1%3a1.7.9.5-1_amd64.deb) ...
Processing triggers for man-db ...
Setting up liberror-perl (0.17-1) ...
Setting up git-man (1:1.7.9.5-1) ...
Setting up git (1:1.7.9.5-1) ...

Now that the git client is installed, you can proceed with retrieving the DevStack
scripts.

Listing 2.2 Upgrading packages

Listing 2.3 Installing git

Installing git from the
package management
system
Licensed to tracy moore <nordick.an@gmail.com>

28 CHAPTER 2 Taking an OpenStack test-drive

st
2.2.3 Preparing DevStack

The following examples describe the deployment of DevStack and OpenStack using
the very latest versions. As previously mentioned, one can’t be sure from day to day
whether the latest DevStack code will properly deploy the latest version of OpenStack.
If you experience trouble with your DevStack deployment, use the companion VM.
You can always give DevStack another try at a later time.

 Using git, retrieve the latest release of DevStack, as shown in the following listing.

sysop@devstack:~$ sudo git clone \
https://github.com/openstack-dev/devstack.git \
/opt/devstack/

Cloning into '/opt/devstack'...
remote: Counting objects: 28734, done.
remote: Total 28734 (delta 0), reused 0 (delta 0), pack-reused 28734
Receiving objects: 100% (28734/28734), 9.86 MiB | 5.29 MiB/s, done.
Resolving deltas: 100% (19949/19949), done.
Checking connectivity... done.

WANT TO USE A SPECIFIC DEVSTACK BRANCH? Use the -b <branch name>
option with git to specify a specific DevStack branch. A list of current
DevStack branches can be found on GitHub at https://github.com/
openstack-dev/devstack/branches.

You should now have a clone (copy) of the DevStack scripts in the /opt/devstack
directory.

DON’T STACK AS ROOT If you try to stack as the root user with DevStack, the
process will fail with an error scolding you for running the script as the root
user. In general, you only want to run as root or with root privileges when ele-
vated administrative rights are required. One could argue that using root in a
development setting is of little risk, but you do want to “practice how you
expect to play,” so it’s a good idea to keep development as close as possible to
production. At any rate, stacking as root isn’t allowed by DevStack, so you
need to prepare the environment to stack as another user.

The next step is to set appropriate directory permissions and create a new service
account (under which services will run) for OpenStack, as shown in the next listing.
This process will create the stack user and set ownership of all DevStack files to that user.

sysop@devstack:~$ cd /opt/devstack/
sysop@devstack:/opt/devstack$ sudo \

chmod u+x tools/create-stack-user.sh
sysop@devstack:/opt/devstack$ sudo \

tools/create-stack-user.sh

Listing 2.4 Retrieving DevStack scripts

Listing 2.5 Preparing DevStack directory

Retrieving DevStack from
the current branch

Enters devstack directory

Makes create-stack-user.sh
tool executable

Creates
ack user
Licensed to tracy moore <nordick.an@gmail.com>

29Deploying DevStack
Creating a group called stack
Creating a user called stack
Giving stack user passwordless sudo privileges
sysop@devstack:/opt/devstack$ sudo \

chown -R stack:stack /opt/devstack/

Your directory has now been prepared with appropriate permissions, and a new user
has been created. Your next steps are to switch to the stack account you just created,
create a DevStack configuration file, and then stack (deploy) your configuration.

2.2.4 Executing DevStack

DevStack was designed for development and for testing OpenStack components, so
there are many possible configurations. DevStack is controlled through the use of
configuration options maintained in the local.conf file. You now must create a
local.conf file in the devstack directory.

 For the remainder of the installation, you need to switch to the stack user, as follows.

sysop@devstack:/opt/devstack$ sudo \
-i -u stack

stack@devstack:~$ cd /opt/devstack/

At this point you should be in the /opt/devstack directory and running as the stack
user. In a previous step, you assigned ownership of this directory to the stack user, so
there shouldn’t be any problems related to directory permissions.

WHAT USER ARE YOU RUNNING AS NOW? Regardless of the user you started out
with, you should now be using the stack user. From this point forward, even if
you need to log out or reboot (more on that in this section), you’ll want to
run as the stack user because DevStack can’t be run as root. If you need to run
as the stack user, follow the instructions in listing 2.6.

Using the stack user, you’ll now create a local.conf file. I show file creation using the
Vim text editor, which is a commonly used console-based editor. Given the large num-
ber of configuration and log files used in OpenStack, I recommend finding an editor
you feel comfortable using.

Listing 2.6 Switching to stack user

Makes stack user owner
of all files in directory

Switches to stack user

Find a comfortable text editor
I can’t overstate the importance of finding a text editor that you can use efficiently.
You can configure OpenStack to do almost anything, but with that power comes con-
figuration responsibility. You need to pick a text editor just as you’d choose shoes
for a long walk. If it hurts when you start the journey, it will be painful; if you’re com-
fortable, you won’t even notice the effort.

There’s a nice Stack Overflow post about Linux text editors here: http://stackoverflow
.com/questions/ 2898/text-editor-for-linux-besides-vi.
Licensed to tracy moore <nordick.an@gmail.com>

30 CHAPTER 2 Taking an OpenStack test-drive
CONFIGURING DEVSTACK OPTIONS

In this section, you’ll build your local.conf file, which is used by DevStack to configure
your deployment.

 Using your favorite text editor, open your local.conf file as follows.

sysop@devstack:/opt/devstack$ vim local.conf

Inside your editor, copy the contents of listing 2.8 to the local.conf file. Although it’s a
good idea to be familiar with local.conf options, these configurations are specific to
DevStack and won’t be directly used in a production environment.

[[local|localrc]]

Credentials
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=token

#Enable/Disable Services
disable_service n-net
enable_service q-svc
enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
enable_service neutron
enable_service tempest
HOST_IP=10.0.2.32

#NEUTRON CONFIG
#Q_USE_DEBUG_COMMAND=True

#CINDER CONFIG
VOLUME_BACKING_FILE_SIZE=102400M

#GENERAL CONFIG
API_RATE_LIMIT=False

Output
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=False
SCREEN_LOGDIR=/opt/stack/logs

CHECK YOUR DIRECTORY Make sure that you create the local.conf file inside
the devstack directory.

Listing 2.7 Creating local.conf

Listing 2.8 Your local.conf

Using Vim to edit
the local.conf file

local.conf header uses the format
[[<phase> | <config-file-name]].

Assigns passwords for each supporting
service and service token and password.

Disables Nova networking (n-net) and
replaces it with Neutron networking services.

IP address of the host running DevStack.
Change this to your specific IP address.

Default file used to store volumes in
DevStack is very small. This line
increases total volume size.

Consolidates logs and sets
logging to verbose.
Licensed to tracy moore <nordick.an@gmail.com>

31Deploying DevStack
RUNNING THE STACK

At this point you’re ready to run the DevStack build script, stack.sh. This script will
read your local.conf configuration and deploy OpenStack components accordingly.
The stacking process could take a long time, depending on the speed of the DevStack
server and network connectivity. On a fast server with good network connectivity,
stacking will take about 15 minutes.

 Execute stack.sh as follows.

./stack.sh

Stacking, with or without problems, will generate thousands of lines of output. The last
line of output from a successful stack.sh execution will display “stack.sh completed in
<second count> seconds,” indicating the number of seconds elapsed during the process.

MY STACK DIDN’T FINISH Don’t panic! There are several reasons for the
DevStack process to fail, including updates that require a reboot or bad con-
figuration. First, check your local.conf configuration and make sure there’s
nothing wrong there. Then follow the instructions in listing 2.14 to unstack
and re-stack. Many problems can be corrected through the unstack and re-
stack process.

Even if everything works as expected, it’s hard to make heads or tails of the screen out-
put during a stack. In local.conf you configured a central logging location:
/opt/stack/logs. This directory is full of verbose logs, which capture the screen out-
put of the entire process for each component. Fortunately, you’re provided a sum-
mary log (stack.sh.log.summary) that shows each major step. A summary log for a
stack using the local.conf configuration in listing 2.8 is shown next.

Installing package prerequisites
Installing OpenStack project source
Installing Tempest
Starting RabbitMQ
Configuring and starting MySQL

Listing 2.9 Stacking

Listing 2.10 Stack summary log

Want to use a specific OpenStack release with DevStack?
You can specify the release or branch of OpenStack that DevStack will use for each
component in the local.conf file. For example, to specify the OpenStack branch for
Nova, your local.conf file should contain the line NOVA_BRANCH=<nova branch>.

Current OpenStack Nova branches can be found here: https://github.com/openstack
/nova/branches.

Executes stack script
Licensed to tracy moore <nordick.an@gmail.com>

32 CHAPTER 2 Taking an OpenStack test-drive
Enabling MySQL query logging
Starting Keystone
Configuring and starting Horizon
Configuring Glance
Configuring Neutron
Configuring Cinder
Configuring Nova
Starting Glance
Uploading images
Starting Nova API
Starting Neutron
Creating initial neutron network elements
Starting Nova
Starting Cinder
Configuring Heat
Starting Heat
Initializing Tempest
stack.sh completed in 565 seconds.

DEVSTACK COMPONENTS DON’T RUN AS LINUX SERVICES DevStack doesn’t start
OpenStack components as Linux services—it runs as screens. After success-
fully running stack.sh, if you want to restart any OpenStack service, access the
screen console using the command screen -r. To restart the Nova network,
go to the Nova network screen, which is screen 9, using the Ctrl-A command
followed by 9. Then kill the Nova network using Ctrl-C, and restart it by pres-
sing the up arrow and Enter.

TESTING THE STACK
Stop and take a deep breath. If all has gone well, you should have a fully functional
OpenStack deployment at your fingertips. It may be tempting to skip over this testing
section and jump right in, but wait! Skipping testing arouses contempt in the system’s
heart, and something will invariably break.

READ ME NOW Upon completing your stack, you’ve just deployed literally
hundreds of interoperating components, a huge tree of dependencies, and a
web of integrations. From an engineering perspective, it’s amazing that com-
puters work at all (look up dynamic random-access memory—DRAM—as an
example), much less a single computer running a fully orchestrated cloud
platform. Save yourself the pain and agony of fighting a potentially broken
stack, and work through the testing section now; it will be worth it.

The good news is that testing requires little configuration. The bad news is that it
takes some time to go through all the tests. You’ll run two test suites: the DevStack exer-
cises and OpenStack Tempest.

 DevStack exercises, as the name suggests, are specific to DevStack and have been
included with DevStack since early releases. The exercises are intended to be run
against a DevStack environment after the stacking process has completed, and they
provide basic testing of primary functions.
Licensed to tracy moore <nordick.an@gmail.com>

33Deploying DevStack
 In comparison to the DevStack exercises, OpenStack Tempest is an 800-pound
gorilla ready to inflict all manner of torture on your OpenStack deployment. Tempest
works on single-server DevStack deployments or 1000-node clouds. In this section,
we’ll focus on passing the DevStack exercises and then run some basic Tempest tests.

DEVSTACK EXERCISES FOR CHECKING AND TEMPEST FOR VALIDATION DevStack
exercises do a sufficient job of checking core OpenStack services for a
DevStack deployment. In fact, due to the constraints of a single-server deploy-
ment, it’s likely that Tempest validation will fail on DevStack even when the
exercises succeed (Tempest can’t test multi-node operations on a single
node). But for production deployments, Tempest can be a very powerful vali-
dation tool.

Go ahead and run the exercise suite found in the devstack directory, as follows.

stack@devstack:/opt/devstack$./exercise.sh
...
<lots of screen output>
...

SUCCESS: End DevStack Exercise:

===
SKIP marconi
SKIP sahara
SKIP swift
SKIP trove
PASS aggregates
PASS boot_from_volume
PASS bundle
PASS client-args
PASS euca
PASS floating_ips
PASS horizon
PASS neutron-adv-test
PASS sec_groups
PASS volumes
FAILED client-env
===

With a bit of luck, all of the exercises run against your system will PASS, with the excep-
tion of client-env. Because you haven’t configured your shell variables yet, the client-
env test will fail, but this is fine. You won’t be working with the CLI commands until
chapter 3.

 If a particular test fails, the test can be run again from within the devstack/exer-
cises directory. If the test continues to fail, follow the process shown in listing 2.14,
and repeat the DevStack execution process, starting at the beginning of this section.

Listing 2.11 Running DevStack exercises
Licensed to tracy moore <nordick.an@gmail.com>

34 CHAPTER 2 Taking an OpenStack test-drive
 If all of your exercises pass, you have the option of running the Tempest test suite.
The Tempest project page states “Tempest was originally designed to primarily run
against a full OpenStack deployment. Due to that focus, some issues may occur when
running Tempest against devstack.” You don’t have to run the full test suite; specific
tests can be run individually.

cd /opt/stack/tempest
nosetests tempest/scenario/test_network_basic_ops.py
..
--
Ran 2 tests in 247.376s

OK

The full Tempest suite contains thousands of tests and can take a very long time (20
minutes on a fast server) to run on virtual or low-resource machines. Listing 2.13 dem-
onstrates how to run a full Tempest test. Please keep in mind that under DevStack, you
can expect several failures. In the example, approximately 8% of the Tempest tests
failed against a single-server DevStack deployment of OpenStack, despite passing the
exercises tests.

devstack@devstack:~/devstack$ /opt/stack/tempest/run_tempest.sh
No virtual environment found...create one? (Y/n) Y
Creating venv... done.
Installing dependencies with pip (this can take a while)...
Downloading/unpacking pip>=1.4

Downloading pip-1.5.2.tar.gz (1.1Mb): 1.1Mb downloaded
...
<loads of screen output>
...
setUpClass (tempest.api.compute.admin.test_fixed_ips_negative

FixedIPsNegativeTestXml)
SKIP 0.00

FixedIPsNegativeTestJson)
SKIP 0.00
tempest.api.compute.admin.test_availability_zone.AZAdminTestXML

test_get_availability_zone_list[gate]
OK 1.93

test_get_availability_zone_list_detail[gate]
OK 1.07

test_get_availability_zone_list_with_non_admin_user[gate]
OK 1.94
...
<loads of screen output>
...

Ran 2376 tests in 1756.624s
FAILED (failures=19)

Listing 2.12 Running single OpenStack Tempest test

Listing 2.13 Running the full OpenStack Tempest suite
Licensed to tracy moore <nordick.an@gmail.com>

35Deploying DevStack
At this point you should be comfortable with the stacking and testing process.
 If you experienced any problems or would like to experiment with some DevStack

options, you can start the process over without reloading your operating system. To
start over at any point in the process, follow the unstack and stack steps shown in list-
ing 2.14. This process will take you back to where you were at the start of the subsec-
tion “Running the stack,” just before listing 2.9.

./unstack.sh

./clean.sh
sudo rm -rf /opt/stack
sudo reboot

STACKING SUMMARY

Given the use of DevStack in development and testing, it stands to reason that you’d
want a consistently configured demonstration environment. When developers are test-
ing a specific feature, they don’t want to have to manually create a sample user envi-
ronment with each stack.

 As mentioned in chapter 1, OpenStack distributes resources based on tenants or
projects. OpenStack allows for multi-tenancy on the same deployment environment
(think of a hotel or condominium). Multi-tenancy means that multiple users, depart-
ments, or even organizations can share the same OpenStack deployment without inter-
fering with each other’s configuration. I’ll explain the OpenStack tenancy model in
more depth in chapter 3, but for now it’s sufficient to know that DevStack creates sam-
ple tenants/projects, roles, and user accounts for you. The admin account, as the name
suggests, has administrative access to your newly stacked OpenStack deployment. The
demo account has access to the Demo project, with access rights representative of a nor-
mal OpenStack user. Initially, both accounts use the default password of devstack.

 You’ve now deployed OpenStack components on a single server using DevStack.
Along with providing a test-drive of OpenStack services, you can also use this deploy-
ment as a working reference as you manually deploy OpenStack components in the
second part of this book. You can now move on to interacting with OpenStack.\

Listing 2.14 Unstacking and stacking

Rebooting DevStack
DevStack isn’t intended for production, so features like services starting automati-
cally after reboot don’t work. If you reboot your system and want to continue with the
same configuration you had before rebooting, you must take some manual steps.

When the stack.sh script is run, it populates the stack-screenrc file with the com-
mands used to start each OpenStack component at the time of stacking. After you
reboot, you must run the rejoin-stack.sh script. The rejoin-stack script reads stack-
screenrc and restarts the services.
Licensed to tracy moore <nordick.an@gmail.com>

36 CHAPTER 2 Taking an OpenStack test-drive
2.3 Using the OpenStack Dashboard
There are three primary ways to interface with OpenStack:

 OpenStack Dashboard—A web-based GUI, introduced in this section
 OpenStack CLI—Component-specific command-line interfaces, introduced in

chapter 3
 OpenStack APIs—RESTful (web) services, briefly introduced in chapter 3

Regardless of interface method, all interactions will make their way back to the Open-
Stack APIs.

 For most people, their first hands-on exposure to OpenStack will be through the
Dashboard. In fact, the majority of end users will use the Dashboard exclusively, so
that’s the access method we’ll discuss
here. System administrators and pro-
grammers will need to understand
how to access the CLI and APIs, and
we’ll cover those subjects in chapter 3.

 Go ahead and access the Dash-
board by entering the following URL
into your browser: http://<your host
ip>. You should be presented with the
login screen shown in figure 2.3,
where you can enter the following
user name and password:

 User name—demo
 Password—devstack

The demo user simulates an unprivi-
leged user. If you don’t see the login
screen, it’s likely that an error
occurred during the stacking process,
and you should review section 2.2.4.

(continued)
Because you’re using Cinder for volume (block storage) management, you must addi-
tionally set up the loopback volume using the losetup command. From the same
directory that you ran ./stack.sh from, run the following commands:

sudo losetup -f /opt/stack/data/stack-volumes-backing-file
/opt/devstack/rejoin-stack.sh &

Figure 2.3 Dashboard login screen
Licensed to tracy moore <nordick.an@gmail.com>

37Using the OpenStack Dashboard

The Dashboard is laid out in a two-column design, as shown in figure 2.4. The left col-
umn is fixed in size, and the right is dynamically sized based on your browser window.
As you can see, the left column contains the Project tab, links to other management
screens, project selection drop-downs, and the Admin tab if you’re an admin. After
you log in, you’ll be taken directly to the Overview screen, which is the one shown in
figure 2.4. We’ll discuss many of the different screens in the following subsections.

MY DASHBOARD DOESN’T LOOK LIKE THAT If you’re using the companion VM,
the Dashboard should look the same as figure 2.4. But if you completed the
DevStack process, you’ll be using the very latest OpenStack version, and likely
things will look a little different. Despite the different appearances, though,
the examples in the next few chapters should work fine.

Checking the port
You can save a great deal of time troubleshooting socket-based services (HTTP, SSH,
and the like) by simply logging in to the server running the service, checking if the port
is listening for a connection, and then working your way up from there.

One widely distributed tool that checks if a port is listening is curl. To check if port
80 (the HTTP port) is listening for web requests on IP 10.0.2.32, you’d issue the fol-
lowing command: curl 10.0.2.32:80. If something is listening on that port, the out-
put that would normally be sent to the browser will be returned to the console.

Modern browsers often block malformed data, so the server could be failing on a spe-
cific error that you’d never see in the browser. If the connection is rejected, you’ll
know (assuming you don’t have a local firewall problem) that the service that should
be running on that port has not started. If the service for that port hasn’t started, you
should check the logs for the service.

Figure 2.4 Overview screen
Licensed to tracy moore <nordick.an@gmail.com>

38 CHAPTER 2 Taking an OpenStack test-drive
2.3.1 Overview screen

The Overview screen displays the current user’s utili-
zation based on their current project quota. A user
might be part of several projects, with various quotas.
The Management toolbar, shown in figure 2.5, lists all
management screens available to the user in the cur-
rent project.

 Management screens are divided up into several
sections, including Manage Compute, Manage Net-
work, Manage Object Store, and Manage Orchestra-
tion. Tabs for each are included on the Management
toolbar. The Object Store and Orchestration head-
ings and screens are not shown or covered in this sec-
tion, but we’ll cover these topics in the third part of
the book. Object storage, while very useful, isn’t
directly related to creating virtual machines. Orches-
tration, the automated combining of virtual hardware
and software to deploy applications, is a very interest-
ing topic. Cloud orchestration is so important that I
devote all of chapter 12 to the topic.

 In order to log in to the Dashboard, you must have a role in an existing project.
When you log in to the Dashboard, one of your existing projects will be selected for
you, and any project-level configuration will be related to that project. Your currently
selected project is indicated by a drop-down menu on the left side of the top toolbar.
DevStack will create two projects, demo and invisible_to_admin. To switch projects, click
on the project drop-down menu.

 Let’s jump into the management tabs you’ll use to manage your cloud resources. It
might seem natural to jump right to the Instances screen, where new VMs (instances)
are created. But although this is tempting, there will be plenty of time for throwing
around VMs like confetti, so let’s start with a few foundational components. Let’s start
with the Access & Security screen and work our way up.

VM VS. INSTANCE As far as this book is concerned, the terms “instance” and
“VM” can be used interchangeably. The term VM will be used throughout the
book in both text and illustrations to describe OpenStack instances. But
because OpenStack can be configured to provision both bare-metal and
Linux containers as instances, it’s worth understanding the distinction.

2.3.2 Access & Security screen

The Access & Security screen isn’t the most interesting area, unless, of course, you’re a
security person. But if you pay attention here, you can save yourself a great deal of
frustration later.

Figure 2.5 Management toolbar
Licensed to tracy moore <nordick.an@gmail.com>

39Using the OpenStack Dashboard
Take a look at the Access & Security screen shown in figure 2.6. The first three tabs
along the top of the screen (Security Groups, Key Pairs, and Floating IPs) are related
to how VMs are accessed. The API Access tab is also found on this page, but it isn’t
related to the other tabs for the most part.

 Imagine that you have a VM instance that is network policy inaccessible (PI). In this con-
text, PI refers to the inability to access an instance over the network based on some
access-limiting network policy, such as a global rule that denies all network access by
default. In OpenStack, security groups define rules (access lists) to describe access
(both incoming and outgoing) on the network level. A security group can be created
for an individual instance, or collections of instances can share the same security group.

 DevStack creates a default security group for you. The default group contains rules
that allow all IPv4 and IPv6 traffic in (ingress) and out (egress) of a virtual machine. If
you applied this default configuration to the PI virtual machine, you’d have no VM-
specific network restrictions. In short, security groups are like personal firewalls for
specific groups or instances of VMs.

Figure 2.6 Access & Security screen

Per VM security groups
While at first it might seem like security groups are just a way of configuring a VM’s
local firewall (such as Iptables or Windows Firewall), this isn’t the case. Security rules
are generally enforced on the physical node running OpenStack Networking, and
there are several options (drivers) for enforcing security groups, including offloading
to physical firewalls.

The examples demonstrated in this book are based on a hybrid driver (OVS-
HybridIptablesFirewallDriver) that enforces security rules on the virtual switch level.
For now it’s sufficient to understand that this functionality is part of OpenStack Net-
working; we’ll discuss it in more detail in chapter 6.
Licensed to tracy moore <nordick.an@gmail.com>

40 CHAPTER 2 Taking an OpenStack test-drive
Suppose you apply the default (open) security rules to your hypothetical PI VM. Now
that you’re no longer restricted on the network, you can access the VM via SSH.
There’s just one problem: what certificate or password do you use for authentication?
If you suppose that the VM’s source image contains a password or certificate known to
you, you’ll obviously be fine, but that isn’t generally realistic. You’ll be creating VMs
from images and snapshots; some will be available to all projects, and others will be
private to a specific project.

 Let’s assume the PI VM was created from a common image. Credentials can be sup-
plied to VMs created from a common image in two ways:

 Credentials (certificates and local passwords) are contained on the image and
shared with users.

 Credentials are injected when the VM is created or they already exist on the VM
image.

The security people are now clutching their chests at the idea of the first way. Sharing
a root password or certificate for all VMs makes taping passwords to your monitor
seem benign in comparison. For this reason, OpenStack provides the ability to inject
credentials into VMs at the time of creation. The Key Pairs tab is used to create new or
import existing certificates, to be used for user authentication on VMs.

 Let’s now assume you were able to access the PI VM using a certificate from the Key
Pairs tab. Your VM was created on a network (subnet) that OpenStack Network man-
ages, but this network is private (see Request For Comments (RFC) 1918 at
www.ietf.org/rfc.html) and only accessible inside your organization. If you want to
access the VM from outside of your organization, the VM must be related (either
directly assigned or linked in some way) to a public (see RFC 791) network address.
You could assign a public address directly to the VM, but aside from security concerns
related to exposing a VM publicly, there are a limited number of IPv4 addresses (see
the sidebar, “IPv4 exhaustion”). OpenStack provides the ability to expose VMs to
external networks through the use of floating IPs, which can be allocated through the
Floating IPs tab. Floating IP stands for floating Internet Protocol address, which means an
address that can be assigned or floated between instances as needed. Floating
addresses don’t have to be public, but for the sake of this example, let’s say you
assigned a public floating IP to the PI VM. You now have the required access (security
groups), credentials (key pairs), and connectivity (floating IPs) to connect to the VM.

IPv4 exhaustion
In ancient internet times, public Internet Protocol Version 4 (IPv4) addresses were
assigned to all devices. By 1981, when the final RFC 791 (Internet Protocol) was rat-
ified for the IPv4 specification, the exhaustion of the 2^32 (4,294,967,296) speci-
fied addresses was already being predicted. In 1996, RFC 1918 (Address Allocation
for Private Internets) described additional address space that could be used for pri-
vate networks.
Licensed to tracy moore <nordick.an@gmail.com>

41Using the OpenStack Dashboard
You should now have a good understanding of how access and security are handled in
OpenStack, at least on the VM level. The examples in this section are based on a hypo-
thetical VM, and we’ll continue this exercise in the next subsection, where we’ll talk
about images and snapshots.

2.3.3 Images & Snapshots screen

If you’re familiar with virtualization technologies such as XenServer, KVM, VMware, or
Hyper-V, your idea of VM creation might be to start with creating the virtual hardware and
then loading the software. But as was previously explained, OpenStack is on a higher level
of abstraction than a traditional hypervisor. The VM (Instance) screen doesn’t provide a
way to attach virtual media, and based on the expected usage of OpenStack, it shouldn’t.
Users are expected to either import VM images pre-made for OpenStack (such as Ubuntu
at https://cloud-images.ubuntu.com/ and CentOS at http://cloud.centos.org/centos/)
or select an existing image. OpenStack images can be thought of as bundles of data that
OpenStack applies to virtual hardware to provide a VM.

CLOUD IMAGES OpenStack can support any OS your underlying hypervisor
supports. However, images typically used with OpenStack, as well as public
cloud providers like Amazon EC2, contain additional tools used in the provi-
sioning and operation of the underlying VM environment. One of these tools
is cloud-init (https://help.ubuntu.com/community/CloudInit), which allows
cloud frameworks to provide the operating system information related to
resource assignments (host name, IP address, and so on).

This isn’t to say that there’s no way to boot a VM from an installation ISO (Interna-
tional Standards Organization 9660/13346) image and create a new image based on
that installation. In fact, OpenStack has made specific provisions, like booting from
ISO, to accommodate the use of commercial license–restricted operating systems, like
Microsoft Windows. Many image formats, including RAW, VHD, VMDK, VDI, ISO,

If you compare IP addresses to telephone numbers, it’s easy to draw the distinction
between public and private addresses. Two companies can’t have the same tele-
phone number, just as they can’t share the same public IP address space. But two
companies can use the exact same private address space, just as two companies
could use the exact same internal numbering scheme for phone extensions. In both
cases, you can’t remotely reach a private address or extension without first routing
to a public address or phone number. In the private space, you might have thousands
of private addresses or extensions behind a single public address.

In 1998, RFC 2460 (Internet Protocol Version 6 (IPv6)) was developed, and it speci-
fied the direct addressability of a mind-boggling 3.4 × 101038 objects. There are far
more IPv6 addresses than grains of sand on Earth (10 × 1024), so it should have the
“Internet of Things” covered. Most devices and operating systems now support
IPv6, but its native deployment is still limited due in part to the use of private
address ranges.
Licensed to tracy moore <nordick.an@gmail.com>

42 CHAPTER 2 Taking an OpenStack test-drive
QCOW, AKI, ARI, and AMI, are natively supported by OpenStack. But although many
images are supported, there are several OpenStack-specific image requirements for
full functionality, so it’s recommended you start with pre-built images.

 The name of the Images & Snapshots management screen would suggest that
images and snapshots are technically different things, but there’s very little technical
difference between the two. It’s common to think of images as “VMs waiting to hap-
pen,” void of user data. You can think of snapshots as pictures or “snapshots in time” of
existing VMs and their related data. You can also think of snapshots as backups, but
given that we also create VMs (instances) from snapshots, the distinctions between
images and snapshots are blurred.

 There’s a transitive relationship between images and snapshots: image => VM, VM =>
snapshot, so image => snapshot. Thus, in OpenStack, images = snapshots + metadata. Fig-
ure 2.7 illustrates how an image becomes a VM, a VM a snapshot, and a snapshot a VM.

 On the Images & Snapshots management screen shown in figure 2.8 you have the
ability to do the following:

 Create images—You can import an image by uploading a file or specifying a loca-
tion on the web. You must specify an image format supported by OpenStack.

 Create volumes—You can create a volume (a bootable disk) from either an image
or a snapshot. This action prepares the storage component for the VM
(instance) creation process (it acquires resources, clones data, and consumes
block storage), but it doesn’t actually create the instance.

OpenStack image formats
When dealing with image files, you might notice various file extensions, related to file
formats. The following list describes image formats supported by OpenStack:

 RAW—An unstructured format. The extension could be “raw” or you could
simply have an image with no extension.

 VHD (Virtual Hard Disk)—Originally a Microsoft virtual disk format, but the
image specification has been licensed to other vendors.

 VMDK (Virtual Machine Disk)—Originally a VMware format, but it has since
been placed in the public domain. This is a very common disk format.

 VDI (Virtual Disk Image or VirtualBox Disk Image)—An Oracle VirtualBox-
specific image container.

 ISO—An archival format for optical images. It’s mostly used in the creation of
VMs from install disks.

 QCOW (QEMU Copy On Write)—A machine image format used by the hosted
virtual machine monitor QEMU.

 AKI—An Amazon kernel image.
 ARI—An Amazon ramdisk image.
 AMI—An Amazon machine image.

There are also specifications for container formats for images, but OpenStack
doesn’t currently support containers.
Licensed to tracy moore <nordick.an@gmail.com>

43Using the OpenStack Dashboard
Image VM 0

Launch
instance

Create
snapshot

New VM

New VM

Disk image has data
to create new VMs

Snapshot has data
to create new VMs

VM 1

VM 0

VM 0

Snapshot
of VM 0

Snapshot
of VM 0

Launch
instance

Figure 2.7 Image-snapshot relationships

Figure 2.8 Images & Snapshots screen
Licensed to tracy moore <nordick.an@gmail.com>

44 CHAPTER 2 Taking an OpenStack test-drive
Take another look at figure 2.8. The Images & Snapshots screen has two sections:

 Images—Operating system configurations and data for creating new VMs.
 Volume Snapshots—Exact replicas of data contained in the volume of a VM.

These can be used as backups or to create a new VM with the data and configu-
ration of an existing VM.

The Volume Snapshots section is used for creating volumes from snapshots or delet-
ing snapshots. We’ll cover volume creation shortly, and volume deletion should be
self-explanatory.

 In the Images section, the images and snapshots are listed. The Public tab shows
the images that are available to anyone in this OpenStack deployment. The image
named cirros-0.3.1-x86_64-uec was created by the DevStack process for testing. In
contrast, any snapshots or images you create while in a specific project, unless they’re
explicitly specified as public, will be listed under the Project tab. By clicking the
Launch button, you can create a new instance based on an available image. We’ll dis-
cuss instance creation shortly, in section 2.3.5.

 For now, let’s take a look at how you can create a new image. If you click the Create
Image button, you’ll be presented the pop-up window shown in figure 2.9.

 As previously described, you need to provide an image source, format, and mini-
mum requirements. Once you click Create Image, OpenStack will make the image
available for use.

 Now let’s take a look at the storage mechanism for OpenStack instances (VMs).

2.3.4 Volumes screen

You’re almost to the fun part—accessing your own private cloud VM. There’s only one
more introductory section to go. For the purposes of this introduction, I could even
have skipped the Volumes screen, because DevStack prepares this for you. But due to
the fundamental differences between how OpenStack deals with storage and just
about anything else you might be using, you need to understand the process.

 OpenStack volumes provide block-level storage (storage that can be used to boot
an operating system) to VMs. It isn’t important at this point that you know the differ-
ences between block and other types of storage; it’s sufficient to understand that this
type of storage is required to boot an instance (VM).

 Figure 2.10 shows the Volume management screen. In this screen you can create,
modify, or delete OpenStack volumes. You can see an existing volume that’s currently
in use and attached to the Test_Instance instance. This volume was created automati-
cally during the Test_Instance creation process. There’s only one volume attached to
Test_Instance, so if you were to log in to the instance and perform a directory listing,
you’d be performing operations on this volume.

 For a machine to boot, you must have a virtual volume somehow attached to a vir-
tual machine, and the volume must at some point be backed by physical storage. Let’s
create a new volume, attach it to Test_Instance, and then talk about what’s technically
going on.
Licensed to tracy moore <nordick.an@gmail.com>

45Using the OpenStack Dashboard
Figure 2.9 Creating an image

Figure 2.10 Volumes screen
Licensed to tracy moore <nordick.an@gmail.com>

46 CHAPTER 2 Taking an OpenStack test-drive
To create a new volume, click Create Volume. You’ll be presented with the pop-up
window shown in figure 2.11. During volume creation, you specify volume name, type,
size, and source.

HOW MUCH SPACE DO YOU HAVE? Way back in listing 2.8, which showed the
local.conf file, you had the option to specify the VOLUME_BACKING_FILE_SIZE.
This value, which is specific to DevStack, controls the total size of storage
available to you. By default this value is set to 10240M (10 GB), so unless you’ve
increased this value, don’t exceed 10 GB of total volume storage, including
storage pertaining to instances.

The volume type is initially blank, because DevStack doesn’t create a default volume
type. Volume types are optional attributes used to give users information about the
backend storage (such as SSD, SAS, or Backup). The volume type could also be used to
specify the survivability of a particular class of storage. In many instances, your back-
end storage will be the same, so there will be no need to create a volume type.

 The volume source, if not specified, will provide an empty volume. This type of vol-
ume would be used to add additional storage to an existing instance, or it could be
assigned to an instance that was being created from a bootable installer (ISO) image.
You also have the option to select an existing image or specific snapshot as your vol-
ume source. This will clone the source data to a new volume that’s the same size as or
larger than the source image. Specifying the volume source as an image or snapshot

Figure 2.11 Create Volume screen
Licensed to tracy moore <nordick.an@gmail.com>

47Using the OpenStack Dashboard
in the Create Volume screen (figure 2.11) is the same as creating a volume using the
buttons in the Images & Snapshots screen (figure 2.8).

 Next we’ll walk through the process of creating an instance (VM).

2.3.5 Instances screen

At this point you might not be an expert, but you should understand enough Open-
Stack terminology and technology to create an OpenStack instance. Before you start,
keep in mind the warning in the previous subsection not to request a larger volume
than you have capacity.

 Figure 2.12 shows the Instances management screen. Each instance and its current
state is listed, as are options to create new instances, reboot, snapshot, and terminate
(delete) existing instances, and many other options.

Block vs. file vs. object storage
Long-term persistent storage can be provided by several devices, including spinning
disk, solid state disk, or tape. Although there are several types of storage devices, typ-
ical storage access methods can be grouped into three categories:

 Block—Abstracted at the memory level. For example, the computer fetches
memory range 0–1000.

 File—Abstracted at the network share level. For example, a user fetches a
file from share nfs://somecomputer.testco.com/file.txt.

 Object—Abstracted at the API level. For example, an application fetches an
object/file from the API with GET /bucket/0000.

Figure 2.12 Instances screen
Licensed to tracy moore <nordick.an@gmail.com>

48 CHAPTER 2 Taking an OpenStack test-drive
You can create a new instance by clicking Launch Instance. You’ll be presented with
the pop-up window shown in figure 2.13.

LAUNCH INSTANCE SCREEN: DETAILS TAB

The Details tab in the Launch Instance screen is used to set the availability zone,
instance name, flavor, instance count, instance boot source, image name, devise size,
and device name:

 Availability Zone—In your DevStack deployment, there will be only one Avail-
ability Zone configured and available. However, in a production deployment
you might have several zones, depending on your deployment. Zones are gener-
ally used to separate OpenStack deployments by data center or purpose.

Figure 2.13 Launch Instance screen
Licensed to tracy moore <nordick.an@gmail.com>

49Using the OpenStack Dashboard
 Instance Name—This is the name of your instance, which is both a reference for
your instance in OpenStack and the host name of the instance.

 Flavor—OpenStack flavors specify the virtual resource size of the instance.
DevStack will have created several flavors, but the values are configurable.

 Instance Count—It’s possible to create more than one instance at a time by set-
ting the Instance Count value.

 Instance Boot Source—There are several options to choose from under Instance
Boot Source, but for this example you can choose “Boot from image,” because
it will create a volume for you based on an existing image.

 Image Name—As previously mentioned, DevStack will have made available at
least one image under Image Name.

 Device Size—Specify your device size.
 Device Name—Specify the name of the boot device for your instance.

Once you’ve set these values, you can move on to the Access & Security tab.

LAUNCH INSTANCE SCREEN: ACCESS & SECURITY TAB

The Access & Security tab, shown in figure 2.14, is where you set the access and secu-
rity options we first discussed in section 2.3.2. DevStack will have provided you with
working defaults, as shown in the figure, so you can choose the Networking tab.

LAUNCH INSTANCE SCREEN: NETWORKING TAB

We haven’t really talked about networks, but fear not. OpenStack Networking is cov-
ered in later chapters, including an in-depth discussion in chapter 6.

Figure 2.14 Access & Security tab
Licensed to tracy moore <nordick.an@gmail.com>

50 CHAPTER 2 Taking an OpenStack test-drive
In the Networking tab (figure 2.15), click the + button on the right side of the private
network, under Available Networks. Once you do so, the private network should move
up to the Selected Networks box, as shown in figure 2.16.

OK. Cross your fingers and click Launch. With any luck, once the instance creation
process completes, your new instance will be visible on the Instances screen, as shown
in figure 2.17.

 If everything worked according to plan, the Status of your new instance
(Test_Instance_2) will be Active. If something went wrong, the Status will show Error,
but unfortunately the Dashboard provides little in the way of diagnostics. If you expe-
rience an error, you can try reducing the size of your requested virtual machine; a

Figure 2.15 Networking tab

Figure 2.16 Network selected
Licensed to tracy moore <nordick.an@gmail.com>

51Accessing your first private cloud server
common mistake is to exceed the amount of storage space available for creating
volumes. If problems persist, you can take a look at the screen logs for each service,
located in /opt/stack/logs, or you can observe the screen logs directly using the com-
mand screen -r. Both of these methods of observing OpenStack component logs are
described in section, “Running the stack.”

 No doubt you’re ready to access the instance you just created. This will be espe-
cially true if you experienced an error and have spent time wading through logs to
finally bring up an instance with an active status. In the next section, we’ll walk
through the process of accessing your new server.

2.4 Accessing your first private cloud server
We’ve reached the moment you’ve been waiting for—it’s time to log into that VM. You
can do that through the Instance Console.

 To access the Instance Console, click the Instances link on the Management toolbar,
shown previously in figure 2.5. On the Instances screen, click the name of the instance
you’re interested in, and you’ll be taken to the Instance Detail screen. Now choose the
Console tab, and you should see a console like the one shown in figure 2.18.

 Assuming you used the cirros image provided by DevStack to create your instance,
you should be able to log in using the “cirros” user and the password “cubswin:”.

Figure 2.17 A new instance on the Instances screen
Licensed to tracy moore <nordick.an@gmail.com>

52 CHAPTER 2 Taking an OpenStack test-drive

Now that you can access your instance from the console, what about connecting to
your host over the network? The Instances screen says the IP address is 10.0.0.4, but
you can’t SSH or even ping the server, so what gives? If you’ve worked with other virtu-
alization platforms, the network was likely flat. In this context, flat refers to the net-
work topology where your VM connects directly to a network when a virtual interface
is added. You can configure OpenStack to behave in this way, but as you’ll learn
throughout this book, OpenStack networking can do much more.

 For now, it’s sufficient to understand that the instance address 10.0.0.4 refers to
the internal OpenStack IP address of the instance. This means that if you create
another instance on this internal network, the two instances can communicate using
the internal address. External network access is covered next.

Figure 2.18 Instance Console

NAT translation
If you want to be able to communicate from your new VM to outside of your OpenStack
network, you can translate requests from your VM to an outside network using the
following command:

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

After issuing this command, internet communications such as ping 8.8.8.8 should
work, assuming your OpenStack node already has connectivity.
Licensed to tracy moore <nordick.an@gmail.com>

53Accessing your first private cloud server
2.4.1 Assigning a floating IP to an instance

The final demonstration in this chapter shows how you can assign a floating IP to an
instance. In simplistic terms, you can think of a floating IP as an external (to Open-
Stack) network representation of an instance. As explained in the previous section,
the instance address is for communication inside an OpenStack network. If you want
to communicate with the instance from networks outside OpenStack, you typically
assign a floating IP. The floating IP will be the external network representation of your
instance.

 To assign a floating IP, go to the Instances screen, click on the More button associ-
ated with your instance, and select Associate Floating IP. The Manage Floating IP Asso-
ciations pop-up window will appear, as shown in figure 2.19.

You’ll want to select an address from the IP Address drop-down menu. If you see No IP
addresses available in the drop-down, click on the + button and Allocate a new IP from
the Public Pool. Once you’ve selected an address from the IP Address drop-down menu,
click Associate, and your instance will be assigned a floating IP.

 In the example shown in figure 2.19, I assigned the floating IP 192.168.1.4 to the
instance with the existing IP 10.0.0.1. If you access the instance using the console, you
won’t see any changes, because the operating environment of the instance is unaware of
the floating IP provided by OpenStack Networking. This can be confusing, but just keep
in mind that there’s a one-to-one relationship between the existing and floating IPs.

2.4.2 Permitting network traffic to your floating IP

There’s one final step you must take to make your instance with its new floating IP
accessible to the local network on your OpenStack server (so you can SSH into it). You
must configure the default security group (or whatever group you applied to your
instance) to allow network traffic to access your instance.

Figure 2.19 Manage Floating IP Associations
Licensed to tracy moore <nordick.an@gmail.com>

54 CHAPTER 2 Taking an OpenStack test-drive
 To do this, go to the Access & Security screen, previously shown in figure 2.6. Click
Manage Rules. Then click Add Rule. From the Rule dropdown, select SSH and click
Add. You should now be able to SSH into your instance using your assigned floating IP.

2.5 Summary
 OpenStack is a distributed cloud framework, but all components can be

installed on a single server.
 DevStack is a collection of scripts that can be used to deploy a development

instance of OpenStack on one or more servers.
 Component deployment through DevStack is controlled by a central configura-

tion file.
 DevStack exercises or OpenStack Tempest can be used to test a DevStack

deployment.
 OpenStack can be accessed from a web-based dashboard, a command-line

interface, or web-based RESTful APIs.
 OpenStack instances are deployed based on volume, network, and security

group specifications.
Licensed to tracy moore <nordick.an@gmail.com>

Learning basic
OpenStack operations
This chapter builds on the deployment from chapter 2 by demonstrating basic
operations you’ll encounter as an OpenStack administrator or user. Chapter 2 was
more focused on end-user interaction with OpenStack, so those examples were
based on the Dashboard, which is easy to use and can be used to perform many
user and administrative functions. This chapter focuses on operational exercises, so
examples are based on the OpenStack command-line interface (CLI).

This chapter covers
 Managing the OpenStack CLI to manipulate your

deployment

 Exploring the OpenStack tenant model by building a new
tenant

 Setting up basic tenant networking with intra-tenant
configuration

 Using OpenStack networking for internal and external
network configuration

 Modifying tenant quotas to control resource allocation
55

Licensed to tracy moore <nordick.an@gmail.com>

56 CHAPTER 3 Learning basic OpenStack operations
 If you have systems administration experience, you’ll certainly appreciate the abil-
ity to script a repetitive function, such as creating a thousand users. The OpenStack
APIs can also be used for these tasks, and they’ll be briefly introduced. As you’ll dis-
cover, if you can perform an operation with the CLI, you can easily perform the same
operation with an API directly. For the examples in this chapter, we’ll stick with using
the CLI, but this chapter is constructed so that you can walk through the examples
using either an API or the Dashboard once you understand the concepts demon-
strated through the CLI.

 The CLI also has the added benefit of using separate applications for each Open-
Stack component. While at first this might seem like a bad thing, it will help you better
understand which component is responsible for what.

 The basic OpenStack operations covered in this chapter can be applied to a
DevStack deployment, like the one in chapter 2, or to a very large multiserver produc-
tion deployment. In chapter 2 you used the Demo tenant (project) and the demo user.
These and other objects were created by DevStack, but tenants, users, networks, and
other objects won’t be created for you automatically in manual deployment. In this
chapter, we’ll walk through the process of creating the necessary objects to take a test-
drive in a tenant you create. By the end of the chapter, you’ll know how to separate
resource assignments using the OpenStack tenant model.

 The chapter starts by introducing the OpenStack CLI. Then we’ll progress through
the process of creating a tenant, user, and networks. Finally, you’ll learn about quota
management from the tenant perspective. As you walk through the examples, take
note of the CLI applications used in each step. You’ll not only learn basic OpenStack
operations, but you should get a better understanding of which OpenStack compo-
nents provide what functions. In chapter 4 we’ll cover OpenStack component rela-
tions in more detail.

3.1 Using the OpenStack CLI
Let’s take a brief look at how you can interact with OpenStack on the command line.
Before you can run CLI commands, you must first set the appropriate environment
variables in your shell. Environment variables tell the CLI how and where to identify
you. You can provide input for these variables directly to the CLI, but for the sake of
clarity, all examples will be shown with the appropriate environment variables in place.

 To set these variables, run the commands shown in the next listing in your shell.
Each time you log in to a session, you’ll have to set your environment variables.

source /opt/stack/python-novaclient/tools/nova.bash_completion
source openrc demo demo

Listing 3.1 Set environmental variables

Sets variables for shell completion so that pressing tab after
entering “something /bo” completes “something /boot”

Run this command from ~/devstack directory. When
you run OpenStack CLI commands, your identity will
be (user) <demo> in (tenant) <demo>.
Licensed to tracy moore <nordick.an@gmail.com>

57Using the OpenStack CLI
To make sure your variables have been properly set, you should test if you can run an
OpenStack CLI command. In your shell, run the nova image-list command, as shown
in listing 3.2. This CLI command reads the environment variables you just set and uses
them as identification. If you’re properly identified and have rights to do so, the CLI
will query OpenStack Compute (Nova) for your currently available image-list.

devstack@devstack:~/devstack$ source \
/opt/stack/python-novaclient/tools/nova.bash_completion

devstack@devstack:~/devstack$ source openrc demo demo
devstack@devstack:~/devstack$ nova image-list
+---+---------------------------------+--------+--------+
| ID| Name | Status | Server |
+---+---------------------------------+--------+--------+
4.	Ubuntu 12.04	ACTIVE	
f.	cirros-0.3.1-x86_64-uec	ACTIVE	
a.	cirros-0.3.1-x86_64-uec-kernel	ACTIVE	
a.	cirros-0.3.1-x86_64-uec-ramdisk	ACTIVE	
+---+---------------------------------+--------+--------+

You should now be able to run OpenStack CLI commands as the demo user in the demo
tenant. This is the same user you used in chapter 2, so any changes you make using
the CLI will be reflected in the Dashboard.

 Using the command in listing 3.3, you can create a new OpenStack instance, just
like you did in the Dashboard. As mentioned in chapter 2, an OpenStack instance is a
VM for the purposes of this book.

nova boot \
--flavor <flavor_id> \
--image <image_id> \
<instance name>

Listing 3.2 Setting variables and executing a first CLI command

Listing 3.3 Launching an instance from the CLI

Setting environment variables manually
If you’re an experienced user or you’re not using DevStack, you can manually set your
environmental variables by running the following commands and substituting your val-
ues for the ones in these examples:

export OS_USERNAME=admin
export OS_PASSWORD=devstack
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://10.0.2.32:5000/v2.0

These example commands will set the current shell user as the OpenStack admin
user of the admin tenant.

10.0.2.32

This simple
command will list
your Nova images.

Tells Nova that you want to boot/create an instance

Specifies <flavor_id> (size) as shown
by the command nova flavor-list

Specifies <image_id> as
shown by the command
nova image-list

Specifies name of

your instance

Licensed to tracy moore <nordick.an@gmail.com>

58 CHAPTER 3 Learning basic OpenStack operations
When you run this command, you’ll get results something like the following:

nova boot \
--flavor 3 \
--image 48ab76e9-c3f2-4963-8e9b-6b22a0e9c0cf \
Test_Instance_3
+---+---------------------------------+--------+--------+

+--------------------------------------+----------------+
| Property | Value |
+--------------------------------------+----------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
...
...
+--------------------------------------+----------------+

You can do everything with the OpenStack CLI that you can using the Dashboard, and
more. In the preceding example, you performed the Nova boot command, which pro-
visioned a new VM. To get help with more-advanced Nova commands, use the follow-
ing command: nova help COMMAND (replacing COMMAND with the command you’re
interested in). There are similar command-line utilities for Keystone, Glance, Neu-
tron, and so on.

 You now have a basic idea of how the OpenStack CLI works. In later chapters,
you’ll mostly be working with the CLI, so learning how things work in DevStack should
be helpful if things don’t work as expected later.

 Before we move on to the tenant examples, let’s take a look at the mechanics of
the OpenStack APIs.

3.2 Using the OpenStack APIs
At this point you might be wondering, “How does the OpenStack CLI work?” The
answer to this is that the CLI applications call APIs specific to OpenStack components.
The component-specific APIs interface with a number of sources, including other APIs
and relational databases. This also holds true for the Dashboard, which you used in
chapter 2. All OpenStack interactions eventually lead back to the OpenStack API layer.

 It could certainly be argued that the inherent vendor neutrality provided by the
OpenStack APIs is OpenStack’s greatest benefit. An entire book could be devoted to
working with the OpenStack APIs. People who integrate external systems or debug
OpenStack code will find themselves looking at the API layer. The thing to keep in
mind is that all roads lead to the OpenStack APIs. If you have further interest in them,
see the sidebar, “Debug CLI/Expose API.”
Licensed to tracy moore <nordick.an@gmail.com>

59Tenant model operations
 To get started using the OpenStack APIs directly, you can follow the example in list-
ing 3.4. This command will query the OpenStack APIs for information, which will be
returned in JavaScript Object Notation (JSON) format. Python is used to parse the
JSON so it can be read on your screen.

curl -s -X POST http://10.0.2.32:5000/v2.0/tokens \
-d '{"auth": {"passwordCredentials": \
{"username":"demo", "password":"devstack"}, \
"tenantName":"demo"}}' -H "Content-type: application/json" | \
python -m json.tool

Now that you understand the mechanics of the OpenStack CLI and APIs, you’re ready
to put these skills to use. In the next section we’ll walk through creating a new tenant
(project) using the CLI. This is an operational function you’ll perform for each new
department, user, or project you want to separate from a more general tenant.

3.3 Tenant model operations
OpenStack is natively multi-tenant-aware. As mentioned in chapter 2, you can think of
your OpenStack deployment as a hotel. A person can’t be a resident of a hotel unless
they have a room, so you can think of tenants as hotel rooms. Instead of beds and a TV,
Hotel OpenStack provides computational resources. Just as a hotel room is configu-
rable (single or double beds, a suite or a room, and so on), so are tenants. The num-
ber of resources (vCPU, RAM, storage, and the like), images (tenant-specific software
images), and the configuration of the network are all based on tenant-specific config-
urations. Users are independent of tenants, but users may hold roles for specific ten-
ants. A single user might hold the role of administrator in multiple tenants. Every
time a new user is added to OpenStack, they must be assigned a tenant. Every time a

Listing 3.4 Executing a first API command

Substitute
your IP for
10.0.2.32.

Debug CLI/Expose API
Every CLI command will output its API command if the debug flag is set. To enable
debugging for a specific CLI command, pass the --debug argument before any other
variables as shown here:

devstack@devstack:~$ nova --debug image-list

REQ: curl -i 'http://10.0.2.32:5000/v2.0/tokens'
-X POST -H "Content-Type: application/json"
-H "Accept: application/json"
-H "User-Agent: python-novaclient"
-d '{"auth": {"tenantName": "admin", "passwordCredentials":
{"username": "admin", "password": "devstack"}}}'

...
Licensed to tracy moore <nordick.an@gmail.com>

60 CHAPTER 3 Learning basic OpenStack operations
new instance (VM) is created, it must be created in a tenant. Management of all Open-
Stack resources is based on the management of tenant resources.

 Because your access to OpenStack resources is based on tenant configurations, you
must understand how to create new tenants, users, roles, and quotas. In chapter 2 you
used DevStack, which created a few sample tenants and users for you. In the next few
subsections, you’ll walk through creating a new tenant and all the related objects that
go with it, from scratch. As an OpenStack administrator, this will be a common task. A
department or even a project might be a new tenant. Tenants will be the fundamental
way that you divide and manage configurations and resources in OpenStack.

General

Hotel OpenStack

Tenants = project hotel rooms

As a new user
is assigned
to a tenant …

A tenant
named General

… and the same
user can have a
different role in
a different tenant.

… and given
a certain role …

Configurable tenants

New user
John Doe

Welcome

Another

User:
John Doe
Role: member

OpenStack roles:
admin
member
…

A tenant
named Another

User:
John Doe
Role: admin

Figure 3.1 The relation of tenants, users, and roles in OpenStack Identity (Keystone). Tenants can
thought of as projects or departments. Like hotel rooms, they're available in different configurations.
Licensed to tracy moore <nordick.an@gmail.com>

61Tenant model operations
3.3.1 The tenant model

Before you start the process of creating tenant and user identity objects, you need to
get an idea of how these items are related. Using our Hotel OpenStack analogy, fig-
ure 3.1 shows the interplay among tenants, members, and roles in OpenStack. You
can see that a role is a designation independent of a tenant until a user is assigned a
role in a tenant. You can see that user is an admin in the General tenant and a Member
in the Another tenant. Notice that both users and roles have one-to-many relation-
ships with tenants. As you move forward in this chapter’s examples, you’ll create sev-
eral of the components shown in this figure.

 As you can see in figure 3.1, tenants are the way OpenStack organizes role assign-
ments. In OpenStack all resource configuration (users with roles, instances, networks,
and so on) is organized based on tenant separation. In OpenStack jargon, the term
tenant can be used synonymously with project, so think of using a tenant for a particular
project or organizational division. It’s worth noting that roles are defined outside of
tenants, but users are created with an initial tenant assignment. It would be reason-
able for a user to be created in a departmental tenant (for example, John Doe is cre-
ated in the General tenant) and be assigned a role in another tenant (John Doe is a
Member of Another tenant). This means that every tenant can have a specific user with
the role Member, but that specific user would only have one home tenant.

 I’ll use the OpenStack CLI to demonstrate examples in this section. I could just as
easily use the Dashboard, but demonstrations using the CLI can often be more clearly
explained because the CLI forces you to direct your request to the specific CLI applica-
tion that deals with that function. When using the Dashboard, it’s hard to tell which
component is controlling what. Once you understand the process through the CLI,
using the Dashboard will be trivial.

USING DEVSTACK FROM CHAPTER 2 The examples covered in this chapter are
executed on the OpenStack instance deployed by DevStack, as described in
chapter 2. If you already have your OpenStack instance from chapter 2 set up,
you’re ready to run the examples in this chapter.

In listing 3.1 you set your environment variables to represent the Demo user in the Demo
tenant. Because you’ll be creating a new tenant, you’ll need to set your environment vari-
ables to represent the Admin user in the Admin tenant, as shown in the following listing.

source /opt/stack/python-novaclient/tools/nova.bash_completion
source openrc admin admin

Listing 3.5 Prepare your shell session as admin

Set variables for shell “completion” (so that pressing Tab after
entering “something /bo” completes “something /boot”).

Run this command from ~/devstack directory.
Command will set environmental variables so that
when you run OpenStack CLI commands, your
identity will be <user: admin> in <tenant:admin>.
Licensed to tracy moore <nordick.an@gmail.com>

62 CHAPTER 3 Learning basic OpenStack operations
ADMIN OR DEMO In the previous subsection, you set environmental variables
to refer to the demo user. Under Linux, running as the root user when it’s not
necessary is considered bad practice because it’s too easy to make possibly dis-
ruptive changes by accident. You can consider unnecessarily running com-
mands as the admin user to be a similarly bad practice in OpenStack.

3.3.2 Creating tenants, users, and roles

In this section, you’ll create a new tenant and user. You’ll then assign a role to your
new user in your new tenant.

CREATING A TENANT

Use the command shown in the following listing to create your new tenant.

keystone tenant-create --name General

When you run the command, you’ll see output like the following:

+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	
enabled	True
id	9932bc0607014caeab4c3d2b94d5a40c
name	General
+-------------+----------------------------------+

You’ve now created a new tenant that will be referenced when creating other Open-
Stack objects. Take note of the tenant ID generated in this process; you’ll need this ID
for the next steps. Figure 3.2 illustrates the tenant you just created. The admin and
Member roles were created as part of the DevStack deployment of OpenStack. The
sidebar “Listing tenants and roles” explains how to list all tenants and roles for a par-
ticular OpenStack deployment.

Listing 3.6 Creating a new tenant

General

OpenStack Identity Service
(code name: Keystone)

New tenant
created

Roles:
admin
Member
…

Figure 3.2 The created tenant
Licensed to tracy moore <nordick.an@gmail.com>

63Tenant model operations

CREATING A USER

Now that the tenant has been created, you can create a new user, as shown in the next
listing.

keystone user-create

--name=johndoe

--pass=openstack1

--tenant-id 9932bc0607014caeab4c3d2b94d5a40c

--email=johndoe@testco.com

Listing 3.7 Creating a new user

Listing tenants and roles
You can list all tenants on the system as follows:

devstack@devstack:~/devstack$ keystone tenant-list
+----------------------------------+--------------------+---------+
| id | name | enabled |
+----------------------------------+--------------------+---------+
9932bc0607014caeab4c3d2b94d5a40c	General	True
b1c52f4025d244f883dd47f61791d5cf	admin	True
166c9cab0722409d8dbc2085acea70d4	alt_demo	True
324d7477c2514b60ac0ae417ce3cefc0	demo	True
fafc5f46aaca4018acf8d05370f2af57	invisible_to_admin	True
81548fee3bb84e7db93ad4c917291473	service	True
+----------------------------------+--------------------+---------+

You can similarly list all roles on the system with the following command:

devstack@devstack:~/devstack$ keystone role-list
+----------------------------------+---------------+
| id | name |
+----------------------------------+---------------+
4b303a1c20d64deaa6cb9c4dfacc33a9	Member
291d6a3008c642ba8439e42c95de22d0	ResellerAdmin
9fe2ff9ee4384b1894a90878d3e92bab	_member_
714aaa9d30794920afe25af4791511a1	admin
b2b1621ddc7741bd8ab90221907285e0	anotherrole
b4183a4790e14ffdaa4995a24e08b7a2	service
+----------------------------------+---------------+

Tells OpenStack Identity (Keystone) to
create new user

Sets username as johndoe

Sets password for johndoe as openstack1

Sets default tenant for
johndoe to General

Sets johndoe’s email to
johndoe@testco.com
Licensed to tracy moore <nordick.an@gmail.com>

64 CHAPTER 3 Learning basic OpenStack operations
When you run the command, you’ll get output like the following:

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	johndoe@testco.com
enabled	True
id	21b27d5f7ba04817894d290b660f3f44
name	johndoe
tenantId	9932bc0607014caeab4c3d2b94d5a40c
+----------+----------------------------------+

You’ve now created a new user. Take note of the user ID
generated in this process because it will be needed in the
next step. Figure 3.3 now includes the user you just cre-
ated in the General tenant.

You now need to add a role to your new user in your new tenant. We’ll do that next.

ASSIGNING A ROLE

In order to assign a role to a user in a specific tenant, you need to define the tenant-
id, user-id, and role-id.

 You can use the General tenant, which was created at the beginning of this section,
and the johndoe user, which was created in the previous step. You want to allow the
user johndoe to be able to create instances in the General tenant, and to do this you
must assign the Memberrole-id to johndoe in the General tenant.

 To find the Memberrole-id, you need to query OpenStack Identity roles, as
shown in the following listing.

keystone role-list

Listing 3.8 Listing OpenStack roles

Listing users in a tenant
You can list all users in a tenant with the following command:

devstack@devstack:~/devstack$ keystone user-list \
--tenant-id 9932bc0607014caeab4c3d2b94d5a40c

+-------------+---------+---------+--------------------+
| id | name | enabled | email |
+-------------+---------+---------+--------------------+
| 21b2...3f44 | johndoe | True | johndoe@testco.com |

+-------------+---------+---------+--------------------+

Specify
tenant-id for
tenant; in this
case, General

Lists all roles on this OpenStack deployment

General

User:
John Doe

Figure 3.3 The created user
Licensed to tracy moore <nordick.an@gmail.com>

65Tenant model operations
The list of roles will look something like this:

+----------------------------------+---------------+
| id | name |
+----------------------------------+---------------+
4b303a1c20d64deaa6cb9c4dfacc33a9	Member
291d6a3008c642ba8439e42c95de22d0	ResellerAdmin
9fe2ff9ee4384b1894a90878d3e92bab	_member_
714aaa9d30794920afe25af4791511a1	admin
b2b1621ddc7741bd8ab90221907285e0	anotherrole
b4183a4790e14ffdaa4995a24e08b7a2	service
+----------------------------------+---------------+

You now have all of the information you need to assign your newly created user as a
Member of your newly created tenant. Run the command shown in the following list-
ing, substituting the appropriate IDs for your system.

keystone user-role-add \
--tenant-id 9932bc0607014caeab4c3d2b94d5a40c \
--user-id 21b27d5f7ba04817894d290b660f3f44 \
--role-id 4b303a1c20d64deaa6cb9c4dfacc33a9

This command will generate no output if it’s successful.
 You’ve now assigned a role to a user in a tenant.

Figure 3.4 illustrates the role you just assigned to the
johndoe user in the General tenant.

 At this point you can access the OpenStack Dash-
board and log in using the johndoe user and openstack1
password. When you do, you’ll be taken to the General
tenant/project management screen. If you try to create a
new instance, you’ll notice that no networks exist. You’ll
create a new tenant network next.

3.3.3 Tenant networks

OpenStack Networking (Neutron) is both loved and hated. To make sure you have
more of the former experience than the latter, you should get your feet wet as soon as
possible. In this section, we’ll run through some simple tenant network configurations.

 First, though, you need to understand the basic differences between how tradi-
tional “flat” networks are configured for virtual and physical machines and how Open-
Stack Networking will be demonstrated. The term flat refers to the absence of a virtual
routing tier as part of the virtual server platform; in traditional configurations, the VM
has direct access to a network, as if you plugged a physical device into a physical net-
work switch. Figure 3.5 illustrates a flat network connected to a physical router.

Listing 3.9 Adding a role

Tells OpenStack Identity (Keystone) to
add a role for a user to a tenant

Assigns tenant-id
Assigns user-id
Assigns role-id

General

User:
John Doe
Role: admin

Figure 3.4 The assigned role
Licensed to tracy moore <nordick.an@gmail.com>

66 CHAPTER 3 Learning basic OpenStack operations
In this type of deployment, all network services (Dynamic Host Configuration Proto-
col (DHCP), load balancing, routing, and so on) beyond simply switching (Open Sys-
tem Interconnection (OSI) Model, Layer 2), must be provided outside of the virtual
environment. For most systems administrators, this type of configuration will be very
familiar, but this is not how we’ll demonstrate the power of OpenStack. You can make
OpenStack Networking behave like a traditional flat network, but that approach will
limit the benefits of the OpenStack framework.

 In this section, you’ll build an OpenStack tenant network from scratch. Figure 3.6
illustrates the differences between a more traditional network and the type of network
you’ll build.

 Note that compared to the traditional flat network, the OpenStack tenant network
includes an additional router that resides within the virtual environment. The addi-
tion of the virtual router in the tenant separates the internal network , shown as
GENERAL_NETWORK, from the external network , shown as PUBLIC_NETWORK. VMs com-
municate with each other using the internal network, and the virtual router, shown as
GENERAL_ROUTER, uses the external network for communication outside the tenant.

WAN:
public address

Physical
router

LAN:
private address

Internet

Hypervisor

VM

Figure 3.5 Traditional routed
network

WAN:
public address

Public network:
192.168.1.0/24

Internet

Physical
router

General

OpenStack Networking
(Neutron)

General
router

VM

General network:
172.24.220.0/24

Figure 3.6 OpenStack tenant network
Licensed to tracy moore <nordick.an@gmail.com>

67Tenant model operations
SET YOUR ENVIRONMENT VARIABLES The configurations in the following sub-
sections require that the OpenStack CLI environmental variables are set. To
set the environment variables, execute the commands shown in listing 3.5.

NETWORK (NEUTRON) CONSOLE

Neutron commands can be entered through the Neutron console (which is like a
command line for a network router or switch) or directly through the CLI. The con-
sole is very handy if you know what you’re doing, and it’s a natural choice for those
familiar with the Neutron command set. But for the sake of clarity, I’ll demonstrate
each action as a separate command using CLI commands. There are many things you
can do with the Neutron CLI and console that you can’t do in the Dashboard.

 The distinction between the Neutron console and Neutron CLI will be made clear
in the following subsections. While the examples in this chapter are executed using
the CLI, you’ll still need to know how to access the Neutron console. As you can see
from the following listing, it’s a simple matter of using the neutron command.

devstack@devstack:~/devstack$ neutron
(neutron) help

Shell commands (type help <topic>):
===================================
...
(neutron)

You can now access the Neutron interactive console. Any CLI configurations can be
made in the interactive console or directly on the command line. That’s how you’ll
create a new network.

CREATING INTERNAL NETWORKS

The first step in creating a tenant-based network is to configure the internal network
that will be used directly by instances in your tenant. The internal network works on
ISO Layer 2 (L2), so for the network types this is the virtual equivalent of providing a
network switch to be used exclusively for a particular tenant. The next listing shows
the code used to create a new network for your tenant.

devstack@devstack:~/devstack$ neutron net-create \
--tenant-id 9932bc0607014caeab4c3d2b94d5a40c \
GENERAL_NETWORK

Listing 3.10 Accessing the Neutron console

Listing 3.11 Creating an internal network

Using neutron command
without arguments will
take you to console

All subcommands will be listed here

Tells OpenStack Networking (Neutron)
to create new network

Specifies tenant
where the network
should be createdSpecifies name of

the tenant network
Licensed to tracy moore <nordick.an@gmail.com>

68 CHAPTER 3 Learning basic OpenStack operations
You’ll see output like the following when you create the network:

Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	35a387fd-892f-47ad-a226-e8d0f2f0636b
name	GENERAL_NETWORK
provider:network_type	local
provider:physical_network	
provider:segmentation_id	
shared	False
status	ACTIVE
subnets	
tenant_id	9932bc0607014caeab4c3d2b94d5a40c
+---------------------------+--------------------------------------+

Figure 3.7 illustrates the GENERAL_NETWORK created for
your tenant. The figure shows the network connected to
a VM, which will be accurate once you create a new
instance and attach the network you just created.

 You’ve now created an internal network. The next
step is to create an internal subnet for this network.

CREATING INTERNAL SUBNETS

The internal network you just created inside your ten-
ant is completely isolated from other tenants. This is a
strange concept to those who work with physical servers,
or even to those who generally expose their virtual
machines directly to physical networks. Most people are
used to connecting their servers to the network, and
network services are generally provided on a data cen-
ter or enterprise level. We don’t typically think about
networking and computation being controlled under
the same framework.

 As previously mentioned, OpenStack can be configured to work in a flat network
configuration, but there are many advantages to letting OpenStack manage the net-
work stack. In this section, you’ll create a subnet for your tenant; this can be thought of
as an ISO Layer 3 (L3) provisioning of your tenant. You might be thinking to yourself,
“What are you talking about? You can’t just provision L3 services on the network!” or
perhaps, “I already have L3 services centralized in my data center. I don’t want Open-
Stack to do this for me!” By the end of this section, or perhaps by the end of the book,
you’ll have your own answers to these questions. For the time being, just trust that the
OpenStack experience includes benefits that are either enriched or not otherwise pos-
sible without the advanced network virtualization provided by OpenStack Networking.

 What does it mean to create a new subnet for a specific network? Basically, you
describe the network you want to work with, and then describe the address ranges you

OpenStack Networking
(Neutron)

VM

General

General
network

Figure 3.7 The newly created
internal network
Licensed to tracy moore <nordick.an@gmail.com>

69Tenant model operations
plan on using on that network. In this case, you’ll assign the new subnet to the
GENERAL_NETWORK in the General tenant. You must also provide an address range for
the subnet. In this context, the term subnet refers to both an OpenStack subnet, which
is defined as part of the OpenStack network, and the IP subnet, which is defined as
part of the OpenStack subnet creation process. You can use your own address range as
long as it doesn’t exist in the tenant or a shared tenant. One of the interesting things
about OpenStack is that you could use the same address range for every internal sub-
net in every tenant.

 The following listing shows the command used to create a subnet.

neutron subnet-create \
--tenant-id 9932bc0607014caeab4c3d2b94d5a40c \
GENERAL_NETWORK \
172.24.220.0/24

When you run this command, you’ll see output like the following:

Created a new subnet:
+------------------+---+
| Field | Value |
+------------------+---+
allocation_pools	{"start":"172.24.220.2","end":"172.24.220.254"}
cidr	172.24.220.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	172.24.220.1
host_routes	
id	40d39310-44a3-45a8-90ce-b04b19eb5bb7
ip_version	4
name	
network_id	35a387fd-892f-47ad-a226-e8d0f2f0636b
tenant_id	9932bc0607014caeab4c3d2b94d5a40c
+------------------+---+

Listing 3.12 Creating an internal subnet for a network

Tells OpenStack Networking (Neutron)
to create new subnet

Specifies tenant where the
subnet should be created

Specifies name of network
where the subnet should
be created notation

Specifies subnet range to be used on
internal network in CIDR notation

Classless Inter-Domain Routing (CIDR)
CIDR is a compact way to represent subnets.

For internal subnets, most people use a private class C address range, which was
actually a class C of the original public classful ranges. In the case of a class C range,
8 bits are used for the subnet mask, so there are 2^8 = 256 addresses, but CIDR
is expressed in the form <First address>/<Size of host bit field>, where 32 bits – 8
bits = 24 bits.
Licensed to tracy moore <nordick.an@gmail.com>

70 CHAPTER 3 Learning basic OpenStack operations
You now have a new subnet assigned to your GENERAL
_NETWORK. Figure 3.8 illustrates the assignment of the sub-
net to the GENERAL_NETWORK. This subnet is still isolated,
but you’re one step closer to connecting your private net-
work with a public network.

 Next, you need to add a router to the subnet you just
created. Make a note of your subnet ID, because it will be
needed in the following sections.

CREATING ROUTERS

Routers, put simply, route traffic between interfaces. In
this case, you have an isolated network on your tenant
and you want to be able to communicate with other ten-
ant networks or networks outside of OpenStack. The fol-
lowing listing shows how to create a new tenant router.

neutron router-create \
--tenant-id 9932bc0607014caeab4c3d2b94d5a40c \
GENERAL_ROUTER

When you create the router, you’ll see output like the following:

Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	df3b3d29-104f-46ca-8b8d-50658aea3f24
name	GENERAL_ROUTER
status	ACTIVE
tenant_id	9932bc0607014caeab4c3d2b94d5a40c
+-----------------------+--------------------------------------+

Listing 3.13 Creating a router

(continued)
This might seem confusing, but luckily there are many online subnet calculators you
can use if you aren’t up on your binary math.

Tells OpenStack Networking (Neutron)
to create new router

Specifies tenant
where subnet
should be createdSpecifies name of router

General

General network:
172.24.220.0/24

OpenStack Networking
(Neutron)

VM

Figure 3.8 The newly
created internal subnet
Licensed to tracy moore <nordick.an@gmail.com>

71Tenant model operations
Figure 3.9 illustrates the router you created in your tenant.
 You have a new router, but your tenant router and subnet aren’t yet connected.

The following listing shows how to connect your subnet to your router.

neutron router-interface-add \

df3b3d29-104f-46ca-8b8d-50658aea3f24 \

40d39310-44a3-45a8-90ce-b04b19eb5bb7

When the router is created, you’ll see output like the following (IDs are autogene-
rated, so yours will be unique):

Added interface 0a1a97e3-ad63-45bf-a55f-c7cd6c8cf4b4 to
router df3b3d29-104f-46ca-8b8d-50658aea3f24

Figure 3.10 illustrates the new GENERAL_ROUTER connected to your internal network,
GENERAL_NETWORK.

 The process of adding a router to a subnet will actually create a port on the local
virtual switch. You can think of a port as a device plugged into your virtual network
port. In this case, the device is the GENERAL_ROUTER, the network is the
GENERAL_NETWORK, and the subnet is 172.24.220.0/24.

DHCP AGENTS In past versions of OpenStack Networking, you had to manu-
ally add Dynamic Host Configuration Protocol (DHCP) agents to your net-
work—the DHCP agent is used to provide your instances with an IP address. In
current versions, the agent is automatically added for you the first time you
create an instance, but in advanced configurations it’s still handy to know that
agents (of all kinds) can be manipulated through Neutron.

Listing 3.14 Adding a router to the internal subnet

Tells OpenStack Networking (Neutron)
to add internal subnet to router

Specifies router ID
Specifies subnet ID

General

General network:
172.24.220.0/24

OpenStack Networking
(Neutron)

VM

General
router

Figure 3.10 The new router
connected to the internal network

General

General network:
172.24.220.0/24

OpenStack Networking
(Neutron)

VM

General
router

Figure 3.9 The newly
created internal router
Licensed to tracy moore <nordick.an@gmail.com>

72 CHAPTER 3 Learning basic OpenStack operations

Specifies
tenant r
The router will use the address specified during subnet creation (defaulting to the first
available address), and unless you’ve already created an instance on this network, this
will be the first port (device) on this network. If you create an instance, you should be
able to communicate with the router address of 172.24.220.1, but you won’t yet be able
to route packets to other networks. A router isn’t much good when it’s only connected
to one network, so your next step is to connect the router to a public network.

CONNECTING A ROUTER TO A PUBLIC NETWORK

Before you can add a public interface, you need to find it. In previous steps, you cre-
ated an internal network, internal subnet, and router, so you knew their ID values. If
you’re working with the OpenStack deployment produced by DevStack in chapter 2, a
public interface will already exist, and the following listing shows how you can list your
external networks.

neutron net-external-list

The preceding command will produce output like the following. If no external net-
works exist, jump ahead to the next subsection, “Creating an external network,” and
create a new external network.

(neutron) net-external-list
+----------------+--------+--+
| id | name | subnets |
+----------------+--------+--+
| 4eed3f..34b23d | public | e9643dc8...df4d34099109 192.168.1.0/24 |
+----------------+--------+--+

You’ve now listed all public networks; make a note of the network ID. In the example,
there will be a single public network, but in a production environment, there could be
many. You can select the appropriate network ID, based on the desired subnet in the
listing. The network ID will be used along with the previously referenced router ID to
add the existing public network to your router.

 In listing 3.14 you used the command router-interface-add to connect your
internal network to your router. You could use the same command to add the public
network, but you’re going to designate this public network as the router gateway so
you’ll use the router-gateway-set command. The router gateway will be used to
translate (route) traffic from internal OpenStack networks to external networks.

 Add the public network as the gateway for the router using the following command.

neutron router-gateway-set \
df3b3d29-104f-46ca-8b8d-50658aea3f24 \

4eed3f65-2f43-4641-b80a-7c09ce34b23d

Listing 3.15 Listing external networks

Listing 3.16 Add existing external network as router gateway

ID and subnet fields have been
shortened to fit on page

Tells OpenStack Networking (Neutron) to add
existing external network as router gateway ID of

outer
Specifies ID of existing
external network
Licensed to tracy moore <nordick.an@gmail.com>

73Tenant model operations
The preceding command will produce the following output:

Set gateway for router df3b3d29-104f-4
6ca-8b8d-50658aea3f24

Figure 3.11 illustrates the external PUBLIC
_NETWORK you added to GENERAL_ROUTER as
a network gateway.

CREATING AN EXTERNAL NETWORK

The configurations in the following sub-
sections require that OpenStack CLI envi-
ronmental variables are set as shown in
listing 3.5.

 In the subsection “Creating internal
networks,” you created a network that was
specifically for your tenant. In this subsec-
tion, you’ll create a public network that
can be used by multiple tenants. This pub-
lic network can be attached to a private
router as a network gateway, as described
in the previous section.

In listing 3.15 you saw how to list networks that were designated as “external.” If you’re
working from the DevStack deployment from chapter 2, an external network will
already exist. This isn’t a problem, because you can have many external networks in
OpenStack Networking.

 Only the admin user can create external networks, and if not specified, the new
external network will be created in the admin tenant. Create a new external network as
shown in the following listing.

Using the DevStack network from chapter 2
The examples covered in this section will be executed on an OpenStack instance
deployed by DevStack, as described in chapter 2. The deployment performed in that
chapter provided the necessary network configuration to allow the addition of external
networks. If you already have your OpenStack instance from chapter 2, you’re ready
to complete the examples in this section.

In upcoming chapters, you’ll learn to manually make the network configurations that
the previous DevStack deployment made for you.

General

General network:
172.24.220.0/24

OpenStack Networking
(Neutron)

VM

General
router

Public network:
192.168.1.0/24

Figure 3.11 An existing network assigned
as a router gateway
Licensed to tracy moore <nordick.an@gmail.com>

74 CHAPTER 3 Learning basic OpenStack operations

Spec
netw

n

neutron net-create \
new_public

--router:external=True

When the network is created, you’ll see output like this:

Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	8701c5f1-7852-4468-9dae-ff8a205296aa
name	new_public
provider:network_type	local
provider:physical_network	
provider:segmentation_id	
router:external	True
shared	False
status	ACTIVE
subnets	
tenant_id	b1c52f4025d244f883dd47f61791d5cf
+---------------------------+--------------------------------------+

CONFIRMING THE NETWORK’S TENANT If you want to confirm that the network
was created in the admin tenant, you can retrieve all tenant IDs as shown in
the sidebar “Listing tenants and roles” in the subsection “Creating a tenant.”

You now have a network that’s designated as an external
network, as shown in figure 3.12. This network will be in
the admin tenant, and would not currently be visible in the
General tenant.

 Before you can use this network as a gateway for your
tenant router, you must first add a subnet to the external
network you just created. You’ll do that next.

Listing 3.17 Creating an external network

Tells OpenStack Networking (Neutron)
to create new network

ifies
ork

ame Designates this network as an external network

OpenStack Networking
(Neutron)

Admin

New pubic
network

Figure 3.12 Created external network
Licensed to tracy moore <nordick.an@gmail.com>

75Tenant model operations

f
able

Defi
subne

C
form
CREATING AN EXTERNAL SUBNET

You must now create an external subnet, shown next.

neutron subnet-create \
--gateway 192.168.2.1 \
--allocation-pool start=192.168.2.2,end=192.168.2.254 \
new_public \
192.168.2.0/24 \
--enable_dhcp=False

When the subnet is created, you’ll see output like the following:

Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "192.168.2.2", "end": "192.168.2.254"}
cidr	192.168.2.0/24
dns_nameservers	
enable_dhcp	False
gateway_ip	192.168.2.1
host_routes	
id	2cfa7201-d7f3-4e0c-983b-4c9f3fcf3caa
ip_version	4
name	
network_id	8701c5f1-7852-4468-9dae-ff8a205296aa
tenant_id	b1c52f4025d244f883dd47f61791d5cf
+------------------+--+

You now have the subnet 192.168.2.0/24 assigned to the
external new_public network. The subnet and external
network you just created, as shown in figure 3.13, can now
be used by an OpenStack Networking router as a gateway.

Listing 3.18 Creating an external subnet

Tells OpenStack Networking (Neutron)
to create new subnet Sets gateway address to

first available address

Defines range o
addresses avail
for allocation in
subnet

Defines external
network where subnet
will be assigned

nes
t in
IDR

at Specifies that OpenStack shouldn’t
provide DHCP services for this subnet

OpenStack Networking
(Neutron)

Admin

New public
network:

192.168.2.0/24

Figure 3.13 The newly
created external subnet
Licensed to tracy moore <nordick.an@gmail.com>

76 CHAPTER 3 Learning basic OpenStack operations
Figure 3.14 shows your current state, assuming you followed the examples in the previ-
ous subsections.

 Even if your network doesn’t resemble the figure, the main idea here is to illustrate
that there are two possible external networks that could be assigned as gateways for
the tenant router. new_public and PUBLIC_NETWORKS are separate virtual networks
and have been assigned different subnets. Currently the PUBLIC_NETWORK is assigned
as the gateway for your GENERAL_ROUTER. This means that any instance network traffic
that’s not directly network-connected to your tenant (such as access to the internet or
other tenants) will use this (gateway) network as its link to the outside world.

REMOVE FLOATING ADDRESSES Floating addresses are external IP addresses
that have a one-to-one relationship with internal IP addresses assigned to
instances. Floating IP addresses must be removed from instances and be deal-
located before removing the router gateway. Floating addresses are directly
associated with the external network, so any attempt to remove an external
network with these associations still in place will result in failure.

General

OpenStack Networking
(Neutron)

General
router

VM

General network:
172.24.220.0/24

Admin

Public network:
192.168.1.0/24

New public
network:

192.158.2.0/24 Figure 3.14 External
gateways for tenants

Listing routers
To list all the routers in the system, use the neutron router-list command, like
this:

devstack@devstack:~/devstack$ neutron router-list
+--------+----------------+---+
| id | name | external_gateway_info |
+--------+----------------+---+
| df..24 | GENERAL_ROUTER | {"network_id": "4e..3d", "enable_snat": ..|
+--------+----------------+---+
Licensed to tracy moore <nordick.an@gmail.com>

77Tenant model operations
Let’s assume you want to change the current gateway from PUBLIC_NETWORK to
new_public. You must first remove the old gateway, and then add the new one. The
following listing shows how to clear the existing gateway.

neutron router-gateway-clear \
df3b3d29-104f-46ca-8b8d-50658aea3f24

When the gateway is removed, you’ll get the following confirmation:

Removed gateway from router df3b3d29-104f-46ca-8b8d-50658aea3f24

Once the existing gateway has been removed, your tenant will be configured in the
state shown in figure 3.15, where no external networks are connected to the tenant.

Your tenant network configuration is now back to where it was before you added the
existing external network as a gateway in the previous section. You can now add the
new_public external network as a gateway instead of PUBLIC_NETWORK. The following
listing shows the commands required to complete the network configuration.

neutron router-gateway-set \
df3b3d29-104f-46ca-8b8d-50658aea3f24 \

8701c5f1-7852-4468-9dae-ff8a205296aa

Listing 3.19 Clearing a router gateway

Listing 3.20 Adding a new external network as the router gateway

Tells OpenStack Networking (Neutron) to
clear currently assigned gateway from router

Specifies router ID where
you want gateway removed

General

OpenStack Networking
(Neutron)

General
router

VM

General network:
172.24.220.0/24

Admin

Public network:
192.168.1.0/24

New public
network:

192.158.2.0/24 Figure 3.15 Removed
router gateway

Tells OpenStack Networking (Neutron) to add
new external network as router gateway

Specifies ID of tenant router

Specifies ID of external network

to be assigned as gateway

Licensed to tracy moore <nordick.an@gmail.com>

78 CHAPTER 3 Learning basic OpenStack operations
When the gateway is set, you’ll see output like the following:

Set gateway for router
df3b3d29-104f-46ca-8b8d-50658aea3f24

Figure 3.16 illustrates the assignment of the new network, new_public, as the gateway
for the GENERAL_ROUTER in the General tenant. You can confirm this setting by run-
ning the neutron router-show <router-id> command, where <router-id> is the ID
of the GENERAL_ROUTER. The command will return the external_gateway_info,
which lists the currently assigned gateway network. Optionally, you can log in to the
OpenStack Dashboard and look at your tenant network. The PUBLIC_NETWORK will no
longer be there, and it will be replaced by the new_public network.

You’ve now learned how to create tenants, users, and networks. The tenant model
allows multiple users to operate under the same environment without affecting each
other. As an OpenStack administrator, you wouldn’t want a single tenant to be able to
use more resources than their share, so OpenStack implements a quota system for sev-
eral of the major components, including Compute, Block Storage (Cinder), Object
Storage (Swift), and Networking services. In this book, we’ll work with Block Storage,
not Object Storage, so all references to Storage identify Cinder, not Swift.

 We’ll look at quotas next.

3.4 Quotas
Quotas are applied on the tenant and tenant-user level to limit the amount of resources
any one tenant can use. When you create a new tenant, a default quota is applied. Like-
wise, when you add users to your tenant, the tenant quota is applied to them. By default,
all users have the same quota as the tenant quota, but you have the option of reducing
a user’s quota in a tenant independently of the overall tenant quota.

General

OpenStack Networking
(Neutron)

General
router

VM

General network:
172.24.220.0/24

Admin

Public network:
192.168.1.0/24

New public
network:

192.158.2.0/24
Figure 3.16 The new
network assigned as a
router gateway
Licensed to tracy moore <nordick.an@gmail.com>

79Quotas
 Consider the case where you have an application administrator and database
administrator sharing the same tenant for a project. You might want to assign half of
the tenant resource to each user. On the other hand, if you increase a user’s quota in
a tenant in excess of the tenant quota, the tenant quota will increase to match the new
user value.

 Quota management is an important operational component for an OpenStack
administrator to understand. In the rest of this subsection, you’ll work through some
CLI exercises to display and update quotas for tenants and tenant users via the Com-
pute component. As with the majority of tenant configurations, you can also make
these changes through the Dashboard or directly with an API.

3.4.1 Tenant quotas

In order to modify quota settings, you’ll need to know the tenant ID you want to work
with and a user ID that’s currently in that tenant. The following example shows how
you can list all tenants on the system and find the tenant ID:

devstack@devstack:~/devstack$ keystone tenant-list
+----------------------------------+--------------------+---------+
| id | name | enabled |
+----------------------------------+--------------------+---------+
9932bc0607014caeab4c3d2b94d5a40c	General	True
b1c52f4025d244f883dd47f61791d5cf	admin	True
166c9cab0722409d8dbc2085acea70d4	alt_demo	True
324d7477c2514b60ac0ae417ce3cefc0	demo	True
fafc5f46aaca4018acf8d05370f2af57	invisible_to_admin	True
81548fee3bb84e7db93ad4c917291473	service	True
+----------------------------------+--------------------+---------+

The following listing shows the command you can use to show the quota settings for a
particular tenant.

nova quota-show \
--tenant 9932bc0607014caeab4c3d2b94d5a40c

The quota information will be displayed as follows. (Consult the OpenStack opera-
tions manual for current quota items and unit values: http://docs.openstack.org
/openstack-ops/content/projects_users.html.)

+-----------------------------+-------+
| Quota | Limit |
+-----------------------------+-------+
instances	10
cores	10
ram	51200
floating_ips	10

Listing 3.21 Showing the Compute quota for a tenant

Tells OpenStack Compute (Nova)
to show quota information

Specifies tenant ID for quota query
Licensed to tracy moore <nordick.an@gmail.com>

80 CHAPTER 3 Learning basic OpenStack operations
fixed_ips	-1
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100
security_groups	10
security_group_rules	20
+-----------------------------+-------+

You now know the quota for a particular tenant. To retrieve the default quota assigned
to new tenants, simply omit the tenant ID from the command (nova quota-show).

 Now suppose you’re an OpenStack administrator and you’ve created a tenant for a
department in your company. This department has just been tasked with deploying a
new application, which will require resources that exceed their existing tenant quota.
In this case, you’d want to increase the quota for the entire tenant. The command for
doing this is shown in the following listing.

nova quota-update \
--<quota_key> <quota_value> \
<tenant-id>

A list of quota keys can be obtained by displaying the quota values, as shown previously
in listing 3.21. In the following example, the cores<quota_key> is updated:

devstack@devstack:~/devstack$ nova quota-update \
--cores 20 \
9932bc0607014caeab4c3d2b94d5a40c

You’ve now successfully updated your tenant quota, and your users can now start
assigning additional resources. If you rerun the command shown in listing 3.21, you’ll
see that the quota has been updated.

 Next we’ll look at how you can work with quotas on the tenant-user level. As you’ll
soon see, the ability to apply quotas on the user level for a specific tenant can be very
useful in managing resource utilization.

3.4.2 Tenant-user quotas

In some cases, there might be only a single user in a tenant. In these cases, you’d only
need quota management on the tenant level. But what if there are multiple users in
one tenant? OpenStack provides the ability to manage quotas for individual users on a

Listing 3.22 Updating the Compute quota for tenant

Tells Compute that you want to
update quota values

Assigns new quota value
to a specific quota itemSpecifies tenant whose

quota you want to update

Sets <quota-key> to cores
and <quota-value> to 20

Specifies ID for General tenant
Licensed to tracy moore <nordick.an@gmail.com>

81Quotas
tenant level. This means that an individual user can have separate quotas for each ten-
ant of which they are a member.

 Suppose that one of your users with a role on a specific tenant is only responsible
for a single instance. Despite being responsible for only one instance, this user has on
several occasions added additional instances to this tenant. The additional instances
count against the overall tenant quota, so although the user in question should only
have one instance, they might actually have several. To prevent this from happening,
you can adjust the user’s quota for the tenant, and not the entire tenant quota. The
following listing displays the existing quota for a particular user.

nova quota-show \
--user <user_id> \
--tenant <tenant_id>

The following example shows the user ID related to johndoe, which you created in the
subsection “Creating a user,” and the tenant ID related to the General tenant, which
you created in the subsection “Creating a tenant.” Your actual IDs will differ from the
examples listed here.

devstack@devstack:~/devstack$ nova quota-show \
--user 21b27d5f7ba04817894d290b660f3f44 \
--tenant 9932bc0607014caeab4c3d2b94d5a40c

+-----------------------------+-------+
| Quota | Limit |
+-----------------------------+-------+
instances	10
cores	10
ram	51200
floating_ips	10
fixed_ips	-1
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100
security_groups	10
security_group_rules	20
+-----------------------------+-------+

As you can see, the user quotas are the same size as the original tenant quota. By default,
users added to a tenant can use all resources assigned to that tenant. For this tenant, you
updated the cores value in a previous example, but that only updated the tenant quota,
which, as you can see, doesn’t automatically increase a user’s tenant quota.

 Assume that user johndoe is a problem user that you want to restrict to running a
single instance in the General tenant. The next listing shows the command you can
use to do this.

Listing 3.23 Showing the Compute quota for a tenant user

Specifies user ID in a tenant for query

Specifies tenant ID for query

Specifies tenant
ID for General

Specifies user ID
for johndoe
Licensed to tracy moore <nordick.an@gmail.com>

82 CHAPTER 3 Learning basic OpenStack operations

Spec
user

nova quota-update \
--user <user_id> \
--<quota_key> <quota_value> \
<tenant_id>

In the following example, the user johndoe is configured an instance-quota-metric lim-
itation of 1 instance (instance - quota = 1) in the General tenant:

devstack@devstack:~/devstack$ nova quota-update \
--user 21b27d5f7ba04817894d290b660f3f44 \
--instances 1 \
9932bc0607014caeab4c3d2b94d5a40c

You have now restricted the user johndoe to running a single instance. You might fur-
ther want to restrict the resources this user can utilize for their individual instance,
such as limiting the number of cores to 4.

3.4.3 Additional quotas

There are additional quota systems for OpenStack Storage and Networking. The
arguments for these quota systems are more or less the same, but the quota keys will
be different.

 You need to access each quota system through the CLI command assigned to the
related system component. For OpenStack Compute the command is nova, for Stor-
age it’s cinder, and for Networking it’s neutron. The following two listings illustrate
accessing quota information for OpenStack Storage and Networking.

devstack@devstack:~/devstack$ cinder quota-show \
9932bc0607014caeab4c3d2b94d5a40c

+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

The following example demonstrates how to display the current Neutron quota for a
specific tenant.

Listing 3.24 Updating the Compute quota for a tenant user

Listing 3.25 Showing Storage tenant quota

ifies
’s ID

Assigns a new quota value to a
quota item for a specific user

Specifies tenant ID

Specifies user-id related
to johndoe user

Specifies tenant-id related
to General tenant

Sets <quota-key> to "instances"
and <quota-value> to 1 instance

Tells Storage (Cinder)
to show current quota

Specifies tenant
for query
Licensed to tracy moore <nordick.an@gmail.com>

83Summary

devstack@devstack:~/devstack$ neutron quota-show \
9932bc0607014caeab4c3d2b94d5a40c

+---------------------+-------+
| Field | Value |
+---------------------+-------+
floatingip	50
network	10
port	50
router	10
security_group	10
security_group_rule	100
subnet	10
+---------------------+-------+

As you can see, the CLI commands for Storage and Networking quotas are very simi-
lar to the ones you used with Compute. You can also use the Dashboard for quota
configuration.

3.5 Summary
 The Dashboard is intended for end users.
 The CLI and APIs are intended for administration, scripting, and repetitive

tasks.
 Anything you can do with the Dashboard, you can do with the CLI or an API.
 The CLI can be configured to output the API-level calls that are used for a spe-

cific command.
 Resources managed by OpenStack are reserved and provisioned based on ten-

ants (projects).
 The terms tenant and project are used interchangeably in OpenStack, but pro-

jects related to resources, users, and rights shouldn’t be confused with Open-
Stack projects like Compute, Network, and so on.

 Roles determine the rights of a user in a specific tenant.
 Users are assigned a home tenant, but they might hold many roles in other

tenants.
 Tenant networks and subnets are generally isolated private networks for a spe-

cific tenant.
 Public networks and subnets are generally shared between tenants and are used

for external (public) network access.
 Layer 3 services (DHCP, metadata services, and the like) can be provisioned on

networks.
 Virtual routers are used to route network traffic from tenant (private) networks

to public networks.
 Quotas are assigned to both tenants and to specific users in a tenant.

Listing 3.26 Showing Networking tenant quota

Tells Networking
(Neutron) to show
current quota

Specifies tenant
for query
Licensed to tracy moore <nordick.an@gmail.com>

Understanding private
cloud building blocks
In chapter 1 you were introduced to OpenStack. You learned how OpenStack fits
into the cloud ecosystem, reasons for adopting the technology, and the focus of this
book. In chapter 2 you went from those high-level concepts directly into a hands-on
test-drive of the OpenStack framework using DevStack. In chapter 3 you worked
through some examples that you might encounter working as an OpenStack opera-
tor and gained further insight into the structure of the framework.

 In this chapter, we’ll shift back to the high-level concepts. If the first chapter was
to introduce and inform you, the second to get you excited about the technology,
and the third to make you operationally comfortable, the fourth gives you a foun-
dational understanding of what’s really going on inside the OpenStack framework.

This chapter covers
 Understanding OpenStack core project interoperability

 Exploring the relationship between vendor hardware and
OpenStack

 Learning from a manual OpenStack install
84

Licensed to tracy moore <nordick.an@gmail.com>

85How are OpenStack components related?
 This chapter won’t be as thought-provoking as chapter 1 or as fun as chapters 2
and 3. But regardless of whether you’re a system administrator, developer, IT archi-
tect, or even a CTO, this is the most important chapter for your understanding of the
OpenStack framework. If you’ll be dealing with OpenStack in the trenches, this chap-
ter will build your OpenStack foundation, which will be deepened in chapters 5
through 8. If you’ll be working with OpenStack on a high level, even if you’re simply
responsible for a vendor-managed solution, this chapter will help you understand the
collection of interacting components that make up an OpenStack deployment.

 What are you waiting for? Let’s get started!

4.1 How are OpenStack components related?
Since the first public release of OpenStack in 2010, the framework has grown from a few
core components to nearly ten. There are now hundreds of OpenStack-related pro-
jects, each with various levels of interoperability. These projects range from OpenStack
library dependencies to projects where the OpenStack framework is the dependency.

 In an effort to provide structure around the diverse set of projects, the OpenStack
Foundation created several project designations, including core, incubated, library,
gating, supporting, and related. These project designations and their descriptions can
be found in table 4.1.

Incubated projects, once fully developed and accepted, will eventually function in the
same way core projects do. Library functions will be abstracted (not observable) by
core project interaction. Gating and supporting projects aren’t used to provide
resources in a deployed system, so you don’t need to worry about those. That leaves
the related projects, which as the name implies, have some affiliation with OpenStack,
even if the affiliation is self-nominated.

4.1.1 Understanding component communication

Often when someone refers to “OpenStack,” they’re referring to projects with a “core”
designation. Core projects can use the OpenStack trademark and must pass all “must-
pass” tests, as defined by the OpenStack Foundation. Simply put, core components

Table 4.1 Project designations

Project designation Description

Core Official OpenStack projects (most people use these)

Incubated Core projects in development (on track to become core)

Library Dependencies of core projects

Gating Integration test suites and deployment tools

Supporting Documentation and development infrastructure

Related Unofficial projects (self-associated projects)
Licensed to tracy moore <nordick.an@gmail.com>

86 CHAPTER 4 Understanding private cloud building blocks
are those that almost everyone will use in an OpenStack deployment. Projects like
Compute, Networking, Storage, shared services, and Dashboard are examples of pro-
jects with a core designation, as shown in table 4.2.

In addition to various project designations, there are also several topologies in which
you can deploy project components. If more of a specific resource (Storage, Compute,
Networking, and so on) is required, more component-specific servers can be added.
We’ll discuss the project designations and their related components in section 4.1.2.

DASHBOARD AUTHENTICATION COMMUNICATION

Let’s jump right in and take a look at how core components communicate. We’ll walk
through the process of accessing the OpenStack Dashboard, reviewing the VM cre-
ation options, and creating a virtual machine.

 You must first provide the Dashboard with your login credentials and obtain an
authentication token. The authentication token is saved as a cookie in your web
browser and used with subsequent requests. As shown in figure 4.1, you obtain an
authentication token from the Identity Service. While you can use the Dashboard
(instead of the CLI or APIs) to navigate through the rest of this example, we won’t
show the interaction with the Dashboard. Even during the login process, the Dash-
board just displays interactions between the web browser and the OpenStack APIs.
We’re primarily concerned with component interaction on the API level.

Table 4.2 Core projects

Project Codename Description

Compute Nova Manages virtual machine (VM) resources, including CPU,
memory, disk, and network interfaces

Networking Neutron Provides resources used by VM network interfaces,
including IP addressing, routing, and software-defined
networking (SDN)

Object Storage Swift Provides object-level storage accessible via RESTful APIs

Block Storage Cinder Provides block-level (traditional disk) storage to VMs

Identity Service
(shared service)

Keystone Manages role-based access control (RBAC) for Open-
Stack components; provides authorization services

Image Service
(shared service)

Glance Manages VM disk images; provides image delivery to
VMs and snapshot (backup) services

Telemetry Service
(shared service)

Ceilometer Centralized collection for metering and monitoring Open-
Stack components

Orchestration Service
(shared service)

Heat Template-based cloud application orchestration for Open-
Stack environments

Database Service
(shared service)

Trove Provides users with relational and non-relational data-
base services

Dashboard Horizon Provides a web-based GUI for working with OpenStack
Licensed to tracy moore <nordick.an@gmail.com>

87How are OpenStack components related?

Once you have your authentication token, you can take the second step and access the
Compute component to create your virtual machine (VM).

RESOURCE QUERY AND REQUEST COMMUNICATION
As explained in chapter 3, OpenStack works on a tenant model. If the OpenStack
deployment is a hotel of resources, you can think of tenants as rooms in the hotel.
Each tenant (room) is assigned a resource quota (a number of towels, beds, and so
on). OpenStack users (guests) are assigned to tenants (rooms) through the use of
roles. The identity information is kept by the Identity component, and the quota
information is maintained by the Compute component.

 In the Dashboard, when you click Launch Instance, the Compute component is
queried to determine what resources and configurations are available in your current
tenant. Based on the available options, you describe the VM you want and submit the
configuration for creation.

 The communication between components during a VM creation request is shown
in figure 4.2. Because the creation of a VM isn’t instantaneous, the process is executed
asynchronously, so after you submit a VM for provisioning, you’re returned to the
Dashboard. In the Dashboard, your browser will periodically update the VM status
information.

RESOURCE PROVISIONING COMMUNICATION

When VM creation requests are submitted, the Compute service component will inter-
act with other components to provision the requested VM. The first thing that hap-
pens is that the VM object record is registered with the Compute service component.
This object record contains information about the VM status and configuration—the
VM object isn’t the VM instance, only a record describing the instance.

 When components communicate in the VM creation process, they reference com-
mon objects, like this VM object. For instance, the Compute service component might
request a storage assignment from the Storage service component. The Storage ser-
vice component would then provision the requested storage and provide a reference
to a Storage object, which would then be referenced in the VM object record.

4. Use this token
 for authentication.

Identity

Keystone

Welcome to the
OpenStack dashboard

1. Log in
<username>

<password>

2. Is the user who
 they say they are?

3. Yes. Here’s an
 authentication
 token.

Figure 4.1 Dashboard login
Licensed to tracy moore <nordick.an@gmail.com>

88 CHAPTER 4 Understanding private cloud building blocks
As shown in figure 4.3, the Compute service component communicates with other
core components to provision and assign resources to the VM object. Compute will
first request infrastructure components like Storage and Networking. When the vir-
tual infrastructure has been assigned to the VM and referenced in the VM object, the
Image Service will prepare the virtual storage volume with the requested image or
snapshot. At this point the VM creation process is complete and the Compute compo-
nent can spawn the VM.

 As demonstrated in the previous figures, core components work in concert to pro-
vide OpenStack services. OpenStack interactions, even those in the Dashboard, even-
tually find their way to the OpenStack APIs.

 As you’ll see next, related projects often use API calls exclusively to interact with
OpenStack.

RELATED PROJECT COMMUNICATION

Let’s take a look at how Ubuntu Juju, a related project, interacts with OpenStack. Juju
is a cloud automation package that uses OpenStack for virtual infrastructure. Juju
automates the deployment and configuration of applications on virtual infrastructure
using application-specific charms.

1. What resources are
 available to create
 VMs?

2. You have a quota
 of X units of (CPU,
 RAM, Storage) resource,
 access to private and public
 networks, and an image for
 Ubuntu Linux 12.04.

Available
resources?

CPU/RAM/storage,
networks, image

Create myVM
CPU: 2, RAM: 863

Storage: 40GB private
network

Ubuntu Linux image

Provisioning
myVM…

Compute

Nova

3. Create myVM using
 resources indicated

4. Start process of
 provisioning myVM

Compute

Nova

Figure 4.2 Resource query and request
Licensed to tracy moore <nordick.an@gmail.com>

89How are OpenStack components related?
For the lack of a better description, Juju charms are collections of installation scripts
that define how services and applications integrate into virtual infrastructure. Because
infrastructure, including networks and storage, can be provisioned programmatically
using OpenStack, Juju can deploy entire application suites from a charm. Simply put,
Juju turns newly provisioned VM instances into applications. We discuss this process in
detail in later chapters, but essentially you tell an application charm how large you
want your instances to be and how many instances you want, and it does the work to
deploy your applications.

 The first step in using Juju in your OpenStack deployment is to deploy what Juju
calls its bootstrap, using the Juju CLI. The bootstrap is a VM that Juju uses to control its
automation processes. The deployment of the bootstrap, from a component perspec-
tive, is similar to what you’ve seen in recent figures (see figures 4.1, 4.2, and 4.3). The
difference here is that in place of the web browser making the request, it’s the Juju
application.

JUJU NODES FROM THE OPENSTACK PERSPECTIVE Juju nodes run the Ubuntu
Linux operating system and include Juju-specific automation tools. From the
OpenStack perspective, a Juju node is no different than any other VM
provided by OpenStack. As a related project, Juju makes use of resources pro-
vided by OpenStack, but that’s where the integration ends.

1. Create myMV with
 CPU:2, RAM: 8GB.

Compute

Nova

Networking

Storage

Neutron

Cinder
2. I need 40 GB for myVM.

3. Ok. 40 GB allocated.

4. I need a virtual adapter on
 private network for myVM.

5. Ok. Adapter assigned to myVM
 and placed on private network.

7. Ok. Image cloned
 to volume on myVM

6. I need Ubuntu Linux 12.04
 image cloned to 40 GB
 volume on myVM.

Image

Glance

Figure 4.3 Provisioning of resources
Licensed to tracy moore <nordick.an@gmail.com>

90 CHAPTER 4 Understanding private cloud building blocks
Once the bootstrap node has been started, Juju commands will be issued to the boot-
strap node, not directly to OpenStack APIs. The reason for this is that the provisioning
process is asynchronous, as mentioned earlier, and it’s sometimes time-consuming.
You don’t want to maintain a connection from the desktop to the OpenStack deploy-
ment while a 20-VM application is deployed.

 In chapter 12 you’ll walk through deploying WordPress using Juju as an orchestra-
tion tool and OpenStack as the back end. Let’s take a look at how Juju uses the boot-
strap VM to orchestrate application deployment. Consider an example where you use
Juju and OpenStack to deploy a load-balanced WordPress application with a clustered
MySQL back end. In this case, you have three types of service nodes: load-balancing,
WordPress (Apache/PHP), and MySQL DB. Using the Juju charm developed for
WordPress, you describe the number of nodes for each service, their virtual size (CPU,
RAM, and so on), and how the nodes relate. You submit this charm to your bootstrap
node, which then interacts with OpenStack to provision the application. This process
is shown in figure 4.4.

Let’s assume that OpenStack, through the direction of the bootstrap node, success-
fully provisions all the required virtual infrastructure. At this point you have a collec-
tion of VMs, but no applications. The bootstrap node polls OpenStack, watching for its
requested VMs to come online. Once the VMs are online, it will start a process outside
the OpenStack framework to complete the install. As shown in figure 4.5, the boot-
strap node will communicate directly with the newly provisioned VMs. From this point
forward, OpenStack simply provides the virtual infrastructure and is unaware of the
application roles assigned to each VM.

 We’ve now discussed how the components of OpenStack communicate on the log-
ical level. In the figures, we’ve illustrated component communication, as if everything
was communicating inside a single big node (physical instance). In practice, however,
OpenStack components will be distributed across many physical commodity servers in
a multi-node topology.

2. OK. I will start
 the process.

1. I want to create a
 WordPress cluster.

3. Provision load
 balancer, application,
 and database nodes.

4. OK. I will start
the process.Bootstrap

VM

OpenStack APIs

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Figure 4.4 OpenStack interacting with a related project
Licensed to tracy moore <nordick.an@gmail.com>

91How are OpenStack components related?
4.1.2 Distributed computing model

Let’s take a look at the OpenStack component distribution model. In distributed com-
puting, there are several component distribution methods.

 In a mesh distribution, control and data are distributed on the node level, and no
central authority exists. This method is fully distributed, but maintaining concurrency
across nodes is more difficult than in a central-control model. Mesh distributions are
most often used when workloads are self-contained and require little coordination
beyond collecting results.

 On the other end of the spectrum, a hub-and-spoke distribution passes all control
and data through a central node, like spokes around a hub. Hub-and-spoke topologies
are generally limited in scale, due to the aggregation of both the control and data
plane to a central node. Hub-and-spoke is most often used for workloads with a high
degree of node-to-node communication and coordination.

 The OpenStack distribution model shares characteristics of both mesh and hub-
and-spoke distributions. Like mesh, once OpenStack provisions the virtual infrastruc-
ture, the infrastructure will continue to function without the involvement of a central
controller. But like hub-and-spoke, component interaction is coordinated through a
central API service. The node that maintains the API services is known as the OpenStack

Install MySQL and
configure an active/passive

DB cluster using hosts
DB_0 and DB_1.

Install Apache,
PHP, and WordPress
using the database
cluster DB_0/DB_1.

Install HAProxy
and load-balance

web traffic for
Web_0–Web_N.

Bootstrap
VM

Web_0 LB_1DB_0

Web_N

Virtual
servers

LB_1DB_1

Figure 4.5 Juju bootstrap controls the VMs
Licensed to tracy moore <nordick.an@gmail.com>

92 CHAPTER 4 Understanding private cloud building blocks
controller. The controller coordinates component requests and serves as the primary
interface for an OpenStack deployment.

GENERAL DISTRIBUTED COMPONENT MODEL

Briefly, let’s suspend our thinking around the idea of OpenStack components, and
focus on the hybrid mesh and hub-and-spoke distribution model implemented by
OpenStack. Figure 4.6 illustrates the interaction of nodes in the OpenStack distribu-
tion model. The client contacts the controller to make service requests. The control-
ler, while not an operational dependency of the nodes, is aware of the system-wide
status and inventory. The controller selects the appropriate nodes for the job and dis-
tributes the request.

OPENSTACK’S DISTRIBUTED COMPONENT MODEL

The general distributed component model presented in figure 4.6 is representative of
the way OpenStack components communicate. Let’s discuss one final abstract exam-
ple of this model before we look at OpenStack specifics. Suppose a distributed compo-
nent model, like the one shown in figure 4.6, was implemented in a content
management system, like the ones used to stream movies on demand. Consider two
movies streaming simultaneously to two users. The initial requests to stream a movie
were made from the clients to a controller, and the controller directed two nodes to
stream the two movies to the clients. Now, suppose that while the movies are stream-
ing, the controller experiences a catastrophic failure. The movie streams wouldn’t be
interrupted, and neither the clients nor the nodes would be aware of this event. In
this type of distributed model, new requests can’t be fulfilled until a controller is avail-
able, but existing operations will continue.

Is The Godfather
available for streaming?

Here it is!

Hey!
Node 1! Check for

The Godfather under Drama.
Node 2!

Check under Action.

Node 1

It’s not under
Action.

Node 2

Node 3Controller

Figure 4.6 Distributed component model
Licensed to tracy moore <nordick.an@gmail.com>

93How are OpenStack components related?
 Now let’s think about how OpenStack components behave. This time we’ll think
about components in relation to the OpenStack distribution model. The control por-
tion of the component will reside on the control node, and the provisioning compo-
nents will be distributed on the resource nodes. Figure 4.7 introduces OpenStack
components into the distributed model.

DISTRIBUTED COMPONENT INTERACTION IN VM PROVISIONING

In the OpenStack distributed model, many resource nodes can exist for a single con-
troller. OpenStack components are actually collections of services. As previously
stated, some services run on controller nodes and some on resource nodes. Depend-
ing on the component, there might be several services that run on the controller and
several more on resource nodes. For the Compute component alone, there are six
controller services. In comparison, the Compute resource nodes generally run a sin-
gle Compute component.

 Let’s take a look at what happens when a VM request is made. Figure 4.8 illustrates
the node-level interaction of distributed OpenStack components required to create a
VM. From a component perspective, nothing has changed from the previous figures.
What we want to demonstrate is how OpenStack components communicate when
components are distributed on multiple nodes.

VM-LEVEL COMPONENT COMMUNICATION

In a multi-node deployment, you’ll have multiple nodes for each primary node type
(compute, storage, network). The ratio of compute, network, and storage nodes will
be dependent on your requirements for these resources. Specific node types might

Controller

Physical
servers

Resource
nodes

Networking
API

Storage
API

Compute
API

Networking Compute Storage

Node 1 Node 2 Node 3

Figure 4.7 Distributed
OpenStack model
Licensed to tracy moore <nordick.an@gmail.com>

94 CHAPTER 4 Understanding private cloud building blocks
additionally be connected to other vendor components, such as storage nodes to ven-
dor storage systems and network nodes to vendor network devices. The way specific
vendor resources are used by OpenStack is explained in section 4.2.

 We’ve described OpenStack component relations from the component communi-
cation level and the distributed services level. Now we’ll take a look at what’s going on
from the perspective of the VM.

 Virtual machines, as the name implies, are virtualized representations of resources
that would be available on a single physical machine. A VM runs an operating system
(OS), just like a physical system, and any OS running on a general-purpose VM will
expect virtual hardware to behave exactly like physical hardware resources. This is to
say, the OS reads and writes to network and storage devices the same way it writes to
CPU registers or RAM. When a physical machine runs a hypervisor, the hypervisor does
the work of translating multiple virtual address spaces to a single physical address
space. In a distributed OpenStack component, not only do you have virtual resources,
but they’re also distributed on separate physical nodes. You need to understand how
the distribution of resources relates to what is seen by the VMs.

Controller

I need a virtual
network interface on
the “private” network

for myVM.

Networking
API

Storage
API

Compute
API

Networking

Web browser

I want to create a VM named myVM
with {CPU: 2; RAM: 8 GB; storage: 40 GB}
on the “private” network. Please load the

Ubuntu Linux 12.04 image on myVM.

OK. I'll start provisioning myVM.
I see you have

available resources.
Please create a VM of size

{CPU: 2; RAM: 8 GB}
on your hypervisor.

I see you have
available storage.

Please provision and
assign a 40 GB

volume to myVM.

I see you provide network
services for the “private”
network. Please create a

virtual interface for myVM.
Assign it to the “private”

network.

Here's the info for
that 40 GB volume. Make
sure myVM can see the
volume as a local disk.

Here's the info to get myVM on the
“private” network. Create a tunnel

interface for myVM from your
node to my node. I'll provide

the VM network services.

I need a 40 GB
volume for myVM.

Compute Storage

Figure 4.8 Distributed
component interaction
Licensed to tracy moore <nordick.an@gmail.com>

95How is OpenStack related to vendor technologies?
Although VM resources are provided by multiple component-specific nodes, from
the perspective of the VM all resources are provided by a single piece of hardware.
Figure 4.9 illustrates how resources from component-specific resource nodes are
combined to create a single VM.

 You can think of the VM as living on a specific compute node, but the actual data
will live on a storage node, and data communicated (Layer 3) by the VM lives (passes
through) the network node.

DISTRIBUTED VIRTUAL ROUTING (DVR) Until recent releases of OpenStack, L3
network functions like routing were typically performed by a small number of
dedicated network nodes. The Neutron/DVR subproject has emerged to man-
age the distribution of routing across compute and dedicated network nodes.

The OpenStack distributed architecture and component design allows for very efficient
deployment of virtual infrastructure. The OpenStack framework provides you with the
ability to manage many nodes across component-node types from a single system.

4.2 How is OpenStack related to vendor technologies?
For many years, the vendors that provided compute, storage, and network hardware
focused on marketing faster and more capable hardware. More recently, though,
hardware has been viewed as a commodity, software has become more interoperable,

Networking

Eth0
private

Compute Storage

8 GB
RAM

2
CPU

40 GB
storage

Physical
servers

Virtual
server

myVM

Two virtual CPUs and 8 GB of RAM
provisioned from the hypervisor
on the compute node. The instructions
executed on myVM will be physically
executed by hardware on the
compute node.

One virtual network interface
(eth0) provisioned as a port
(tap) on the compute node
virtual switch. The compute
node will connect to the
network node over a Generic
Routing Encapsulation (GRE)
tunnel. From the perspective
of myVM, the network interface
is on the same Layer 2 broadcast
domain as the network node.
The network node will provide
all Layer 3 services (routing,
addressing, tunneling, and
so on) on the Layer 2
network for myVM.

40 GB of storage
provisioned from the storage
node, connected via iSCSI to
the compute node. Storage
will exist physically on the
storage node. The compute
node through its hypervisor
will assign the volume to
myVM. Once attached to myVM,
the storage will appear to the
OS to be local block storage.

Figure 4.9 Component-VM relations
Licensed to tracy moore <nordick.an@gmail.com>

96 CHAPTER 4 Understanding private cloud building blocks
and vendors have begun to provide services such as cloud computing instead of just
hardware and software, offering consumers much more flexible choices.

 One of the greatest benefits provided by the OpenStack framework is vendor neu-
trality. By interfacing with the OpenStack APIs, you are assured a minimum level of
functionality regardless of the underlying hardware vendor you’re using. OpenStack
doesn’t free you from vendors altogether—you still need underlying servers, storage,
and network resources. But OpenStack allows you to make vendor choices based on
performance and price without taking into account sunk costs on vendor-specific
implementations and the lock-in of feature sets. Not only can you use existing hard-
ware and software with OpenStack, future purchases can be based on what OpenStack
provides, not vendor-specific features.

 In this section, we’ll discuss how OpenStack deals with vendor-specific integra-
tions. The term vendor is used loosely in this context and can refer to either open
source technologies or commercial products. In OpenStack it’s up to the vendor or
support community to develop the vendor-technology integration. Different Open-
Stack components have different ways of dealing with this integration, as you’ll see in
the following sections.

4.2.1 Using vendor storage systems with OpenStack

Let’s look at the types of vendor storage supported by OpenStack Block Storage (Cin-
der) and see how this integration is achieved. Figure 4.10 shows a logical view of stor-
age resource assignments and management.

 This figure shows the CPU and RAM portions of a VM being provided by a commod-
ity server. It also shows that the storage assigned to the VM is not on the commodity
server; it’s provided by a separate storage system. As you’ll soon learn, there are many
ways to provide that virtual block device to a VM.

STORAGE SYSTEM IN DEVSTACK In chapter 2 you walked through deploying
DevStack, but you didn’t do any specific configuration for storage. In that
single-node DevStack deployment, the storage resources were consumed
from the same computer as the compute resources. However, in multi-node
production deployments, compute and storage resources are isolated on spe-
cific storage and compute nodes and/or appliances.

The use of storage vendors and technologies isn’t limited to OpenStack Block Storage
(Cinder) and could even be used with OpenStack Object Storage (Swift). We’ll look at
Cinder because the storage it manages is used as part of a VM, and this chapter focuses
on the integration between OpenStack and vendor components. This is not to say that
OpenStack Object Storage is any less complex, just that it’s more self-contained and
isn’t used directly by a running VM (and thus is less relevant in this chapter).

HOW STORAGE IS USED BY VMS

In OpenStack and other environments that provide infrastructure as a service (IaaS),
virtual block storage devices are provisioned and assigned to VMs. The operating
Licensed to tracy moore <nordick.an@gmail.com>

97How is OpenStack related to vendor technologies?
systems running in the VMs manage the filesystems on their virtual block devices or
volumes.

 You might be wondering, “If the compute portion of a VM is provided by a server
and the storage is provided by a separate server or storage appliance, how are they
connected to provide a single VM?” The simple answer is that all resources eventually
make their way to the VM as virtual hardware, which is then connected together on
the hypervisor level. Take a look at figure 4.11, which shows a technical view of the log-
ical view shown previously in figure 4.10.

 In this figure, a vendor storage system is directly connected to a compute node
(connected through Peripheral Component Interconnect Express (PCI-E), Ethernet,
Fiber Channel (FC), Fiber Channel over Ethernet (FCoE), or vendor-specific commu-
nication link). The compute node and the storage system communicate using a storage
transport protocol such as Internet Small Computer System Interface (iSCSI), Network
File System (NFS), or a vendor-specific protocol. In short, storage can be provided to
the compute node running the hypervisor using many different methods, and it’s the
compute node’s job to present those resources to the virtual machine.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

OpenStack assigns
the VM’s compute
resource to commodity
server hardware.

Storage for the
VM is assigned to
a separate virtual
block device.

Server
hardware

NetApp
SANDELL

Net RAMCPU Disk

VM

Figure 4.10 OpenStack and
vendor storage system
Licensed to tracy moore <nordick.an@gmail.com>

98 CHAPTER 4 Understanding private cloud building blocks
Looking once again at figure 4.11, you can see that regardless of how the storage is
provided, the storage resources assigned to a specific VM end up managed as virtual
hardware on the same node that provides CPU and RAM resources to that VM.

 Let’s summarize what you’ve learned so far about OpenStack and vendor storage
systems:

 Operating systems use block storage devices for their filesystems.
 Hypervisors on compute nodes provide virtual block (OS-bootable) devices to

VMs.
 There are many ways to provide storage resources to a compute node running a

hypervisor.
 Vendor storage systems can be used to provide storage resources to compute

nodes.
 OpenStack manages the relationship between the hypervisor, the compute

node, and the storage system.

 In the next section you’ll learn just how OpenStack manages these resources.

HOW OPENSTACK SUPPORTS VENDOR STORAGE

You might be thinking, “OK, I understand how the storage is used, but how is it man-
aged by OpenStack?” Cinder is a modular system allowing developers to create plug-
ins (drivers) to support any storage technology and vendor. These modules might be
developed by a product development team in a corporation or a community effort.

 Figure 4.12 shows Cinder using a plug-in to manage a vendor storage system.
 As you learned earlier in this chapter, individual OpenStack components have spe-

cific responsibilities. In the case of Cinder, its responsibility is to translate the request
for storage from OpenStack Compute into an actionable request using the vendor-
specific API of a storage system.

Vendor storage resources
are provided directly to the
VM as virtual hardware,
managed by the hypervisor.

Storage transport
protocol

DELL

Net RAMCPU Disk

VM

Backend
technology

Figure 4.11 Vendor storage used by hypervisor
Licensed to tracy moore <nordick.an@gmail.com>

99How is OpenStack related to vendor technologies?
Obviously, if you’re going to translate one language or API to another, you need a min-
imum number of defined functions that can be related to each other. For each Open-
Stack release, there are a minimum number of required features and statistical
reports for each plug-in. If plug-ins aren’t maintained between releases, and addi-
tional functions and reports are required, they’re deprecated in subsequent releases.
The current lists of minimum features and reports (at the time of writing) are found
in tables 4.3 and 4.4. The most current list of plug-in requirements can be found on
the GitHub repository: http://docs.openstack.org/developer/cinder/devref/drivers
.html. However, as of the time of this writing, the list of Cinder plug-in minimum fea-
tures hasn’t changed since the Icehouse release.

Table 4.3 Minimum features

Feature name Description

Volume create/delete Creates/deletes a volume for a VM on a backend storage system

Volume attach/detach Attaches/detaches a volume to/from a VM on a backend storage system

Snapshot create/delete Takes a running snapshot of a volume on a backend storage system

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

NetApp
SANDELL

RAMCPU

VM

Storage vendor API

Vendor plug-in

Net

Server
hardware

Disk

Figure 4.12 Cinder manages vendor storage.
Licensed to tracy moore <nordick.an@gmail.com>

100 CHAPTER 4 Understanding private cloud building blocks
EXAMPLES OF VENDOR STORAGE IN OPENSTACK As previously stated, support
for vendor storage is provided by plug-ins in Cinder. Plug-ins have already
been developed by and for many vendors, including Coraid, Dell, EMC, Glus-
terFS, HDS, HP, Huawei, IBM, NetApp, Nexenta, Ceph, Scality, SolidFire,
VMware, Microsoft, Zadara, and Oracle. In addition to commercial vendors,
Cinder also supports storage provided by Linux Logical Volume Manager
(LVM) and NFS mounts. An up-to-date Cinder support matrix can be found
here: https://wiki.openstack.org/wiki/CinderSupportMatrix.

UNKNOWN OR INFINITE FREE SPACE In table 4.4, under free_capacity_gb, you’ll
notice that the values unknown and infinite can be used as free space values.
Situations where these values are necessary might exist, but from a general
operations perspective you should be aware that these are valid values for a
storage driver.

Volume from snapshot Creates a new volume from a previous snapshot on a backend storage
system

Get volume stats Reports the statistics on a specific volume

Image to volume Copies image to a volume that can be used by a VM

Volume to image Copies a volume used by a VM to a binary image

Clone volume Clones one VM volume to another VM volume

Extend volume Extends the size of a VM volume without destroying the data on the existing
volume

Table 4.4 Minimum reporting statistics

Statistic name Example Description

driver_version 1.0a Version of the vendor-specific driver for the reporting plug-in.

free_capacity_gb 1000 Amount of free space in gigabytes. If unknown or infinite,
the keywords “unknown” or “infinite” are reported.

reserved_percentage 10 Percentage of space that is reserved but not yet used (thin
provisioned volume allocation, not actual usage).

storage_protocol iSCSI Reports the storage protocol: iSCSI, FC, NFS, etc.

total_capacity_gb 102400 Amount of total capacity in gigabytes. If unknown or infinite,
the keywords “unknown” or “infinite” are reported.

vendor_name Dell Name of the vendor that provides the backend storage
system.

volume_backend_name Equ_vol00 Name of the volume on the vendor backend. This is needed
for statistical reporting and troubleshooting.

Table 4.3 Minimum features (continued)

Feature name Description
Licensed to tracy moore <nordick.an@gmail.com>

101How is OpenStack related to vendor technologies?
4.2.2 Using vendor network systems with OpenStack

In OpenStack, it’s common for compute resources to be provided by server hardware,
storage resources by vendor storage systems, and networks by one or more vendors
simultaneously. Obviously, if a VM is running on a specific server, that server is provid-
ing all of the computational resources (CPU, RAM, I/O, and so on) for that VM.
Because a server can support more than one VM, this relationship is one-to-many from
the perspective of the server and one-to-one from the perspective of the VM. That is to
say that from a computation standpoint, the only resources consumed will come from
the server hosting the VM.

 As discussed in the previous section, although storage resources are technically
removed from the compute node, from the perspective of the VM this is also a one-to-
one relationship. In general, you’ll have a single node running on a single volume
that appears to the VM to be from a single container of virtual hardware.

 Figure 4.13 shows the logical view of network resource assignments and manage-
ment first introduced in chapter 1.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

OpenStack manages
vendor networks.

DELL

Net RAMCPU Disk

VM

Vendor network

Figure 4.13 OpenStack
and vendor networking
Licensed to tracy moore <nordick.an@gmail.com>

102 CHAPTER 4 Understanding private cloud building blocks
This figure represents a simplistic view of networking that suggests network resources
are to be consumed in the same one-to-one way as compute and storage. Unfortu-
nately, networking is not that simple. What the figure doesn’t show are the layers of
management that go into connecting two endpoints on a network. This section
describes OpenStack Networking (Neutron) and how it manages vendor networks.

 We’ll look first at how VMs use networking.

HOW NETWORKING IS USED BY VMS

Obviously, a network isn’t very useful with a single VM, so you can expect that there will
be, at a minimum, two VMs/nodes communicating. The way in which two nodes com-
municate depends on their relation to one another in the overall network. Table 4.5
summarizes several communication cases experienced in traditional virtual environ-
ments. These are described as traditional cases because software-defined networking
(SDN), regardless of vendor, has blurred the lines of this paradigm.

In the intra-host case, traffic is kept on the physical host and never reaches the vendor
network. The hypervisor can use its virtual switch (network) to pass traffic from one
host to another.

 In contrast, in both the inter-host-internal and inter-host-external cases, the hyper-
visor nodes and overall virtualization platform completely offload node communica-
tion to the vendor network.

 Figure 4.14 shows the traditional method of communication for nodes on the
same host. As of the time of writing, legacy Nova networking and the default distrib-
uted switch in VMware vSphere work this way.

 The figure shows three nodes on the same physical host. The two nodes on VLAN_1
communicate inside the host and don’t touch the vendor network. But communica-
tion between the two nodes on separate VLANs, VLAN_1 and VLAN_2, is offloaded to
the vendor network. The vendor network is completely in charge of making sure this
communication makes it to the intended destination, even when the endpoints are on
the same node. The detail needed to cover how the networking works in these cases is
beyond the scope of this chapter. What you need to understand is that OpenStack
abstracts a great deal of complexity from the vendor network. Complex vendor-
specific configurations are managed through plug-ins.

Table 4.5 Node communication cases

Case Description

Intra-host Communication on the same VLAN (L2 network) on the same physical
host

Inter-host-internal Communication between nodes on the same VLAN, but different hosts

Inter-host-external Communication between OpenStack hosts and endpoints on unknown
external networks (internet)
Licensed to tracy moore <nordick.an@gmail.com>

103How is OpenStack related to vendor technologies?
By now it should be clear that vendor networking is more complicated than simply pro-
visioning resources, which is what vendor storage systems do. Take a look at figure 4.15,
which shows two hosts communicating using a vendor network. Of course, you could
configure OpenStack to behave like a traditional virtualization framework and simply
offload all the communication to the vendor network, but this is undesirable for a
cloud platform. The details of why it’s undesirable are beyond the scope of this chap-
ter, but suffice it to say that this approach will not scale and will be a limiting factor in
how you manage and provision resources.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Three nodes
live on same
physical host.

Communication between
the nodes on separate
VLANs is offloaded to
the vendor network.

The two nodes on
VLAN1 communicate
to each other inside
the host without
touching the vendor
network.

DELL

Net RAMCPU Disk

VM1

Net RAMCPU Disk

VM2

Net RAMCPU Disk

VM3

VLAN1

VLAN2

Vendor
network

Figure 4.14 Traditional
intra-host communication
Licensed to tracy moore <nordick.an@gmail.com>

104 CHAPTER 4 Understanding private cloud building blocks
Suppose you want to manage the network in figure 4.16 with the same level of granu-
larity you manage compute and storage resources. In this model, OpenStack Network-
ing (Neutron) interfaces directly with vendor network components, which allows
Neutron and its supported host to make their own network decisions.

 Let’s summarize what you’ve learned so far about OpenStack and vendor network-
ing systems:

 Traditional hypervisors and virtualization frameworks unintelligently offload
many functions to vendor networking.

 Traditional hypervisors and virtualization frameworks have little or no knowl-
edge of how networking was performed, even for their own VMs.

 Managing vendor networking is more complicated than controlling a one-to-
one relationship, like with vendor storage.

 Neutron is the codename for OpenStack Networking.

Net RAMCPU Disk

VM2

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Two hosts
communicating
using a vendor
network.

Net RAMCPU Disk

VMVendor
network

This approach
will not scale.

!

DELL

Figure 4.15 Vendor networking
host-to-host
Licensed to tracy moore <nordick.an@gmail.com>

105How is OpenStack related to vendor technologies?
 Neutron integrates with vendor networking components to make networking
decisions for OpenStack.

We’ll take a look at how Neutron interfaces with vendor network components in the
next section.

HOW OPENSTACK SUPPORTS VENDOR NETWORKING

Just as Cinder uses vendor-specific plug-ins to communicate with vendor storage sys-
tems, Neutron uses plug-ins to manage vendor networking. As previously stated, plug-
ins translate between OpenStack APIs and vendor-specific APIs. The relationship
between Neutron and the vendor network is shown in figure 4.16.

 You might wonder just what is being managed on the vendor network. The answer
to this question is it depends. There are many networking vendors who produce many
types of networking devices. These devices must interoperate at least on the level of
network communication. After all, what good is a network if you can’t communicate
between networks and devices?

 Software-defined networking (SDN) supports the idea of a separation of network
management and communication functions. Because OpenStack Networking is a type

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

DELL

RAMCPU Disk

VM

Network
vendor API

Vendor
plug-in

Vendor
network

Net
Figure 4.16 Neutron
manages vendor networking.
Licensed to tracy moore <nordick.an@gmail.com>

106 CHAPTER 4 Understanding private cloud building blocks
of SDN, this so-called separation of the control plane and data plane is at the heart of
OpenStack Networking when dealing with vendor hardware and software.

OPENSTACK NETWORKING ALSO PROVIDES L3 SERVICES In the context of ven-
dor networking, OpenStack functions as a network controller. But it’s worth
noting that OpenStack networking does provide L3 services in the form of vir-
tual routing, DHCP, and other services.

Figure 4.17 shows Neutron managing network devices in the control plane through
the use of vendor-specific plug-ins. As you can see, the data plane never touches Neu-
tron. In fact, Neutron might have no low-level insight into how the communication
between the two nodes is happening. But Neutron knows that both nodes are on the
specific network hardware that it manages, so Neutron can configure the endpoints to
communicate, regardless of how the communication navigates the data plane.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

The control plane
(management) never
touches the data plane
(communication).

DELL

RAMCPU Disk

VM

RAMCPU Disk

VM

API

API

Data
plane

Control planes

Vendor
plug-in

Vendor
network

Vendor
network Net

NetFigure 4.17 The control and
data planes with OpenStack
Networking
Licensed to tracy moore <nordick.an@gmail.com>

107How is OpenStack related to vendor technologies?
In the next section, you’ll learn about the types of vendor networking used in OpenStack.

EXAMPLES OF VENDOR NETWORKING IN OPENSTACK

In early versions of OpenStack, networking was provided in a traditional way, with net-
working being managed by OpenStack Compute (Nova). As demand for network con-
trol outside the scope of OpenStack Compute grew, OpenStack Networking
(originally Quantum, and later Neutron) was developed as a separate project.

 As previously described, Neutron manages vendor networking using vendor-
specific plug-ins. As the community added more and more support for vendor net-
working, the need for further modularity through a standard plug-in module was
identified. The benefits of modular plug-ins include reduced redundant code, easier
vendor integration, and standardization of core network functions.

 With the release of OpenStack Havana in late 2013, the Neutron Modular Layer 2
(ML2) plug-in was introduced. The ML2 plug-in is divided into type and mechanism
drivers. Figure 4.18 shows the hierarchy of the ML2 plug-in with the type and mecha-
nism drivers.

 The type drivers, as the name suggests, are related to the type of network the plug-
in manages. You can think of the type driver as how Neutron manages the endpoints.
For example, Neutron could specify a tunnel be created between endpoints without
knowing anything about the network between the endpoints. This gets us back to the
discussion about the separation of control and data planes.

 The mechanism drivers are responsible for managing the virtual and physical net-
work devices that are attached to endpoints. These drivers create, update, and delete
network and port resources based on the requirements of the type driver.

Understanding SDN and OpenStack Networking
This is a very complicated topic, and you’ll probably want to go back and reread this
section a few times. You aren’t expected to fully understand SDN, but it’s important
that you understand the basic role of Neutron in relation to vendor networking.
Chances are that your local network expert (unless this is you), doesn’t know
any more about SDN, and by relation OpenStack Networking, than you do. Open-
Stack/Neutron works on the control plane to manage communication between VMs
that it manages, but it doesn’t control the data plane related to communication
between endpoints.

This is a new way of thinking about networking that really turns the traditional network
world on its head. I've just introduced the topic in this section to give you some
insight into how OpenStack can manage vendor networks without you having to hand
over your enterprise or data center to OpenStack control. As previously stated, Open-
Stack can be configured to work very traditionally in terms of network integration, but
the framework is well positioned to take advantage of the SDN model and technolo-
gies. The Open Networking Foundation (www.opennetworking.org) was founded to
promote SDN and is a good starting point for gaining a deeper understanding of SDN.
Licensed to tracy moore <nordick.an@gmail.com>

108 CHAPTER 4 Understanding private cloud building blocks
The goal of the ML2 plug-in is to replace many of the monolithic plug-ins that exist today.

EXAMPLES OF VENDOR NETWORKING IN OPENSTACK Neutron plug-ins have
been developed for many vendors, including Arista, Cisco, Nicira/VMware,
NEC, Brocade, IBM, and Juniper. In addition, ML2 drivers have been devel-
oped for Big Switch/Floodlight, Arista, Mellanox, Cisco, Brocade, Nicira/
VMware, and NEC.

The next section will touch on what you’ve learned in the first part of this book and
what will be covered in the second part.

4.3 Why walk through a manual deployment?
In chapter 1 you were introduced to OpenStack. In that introduction you learned how
OpenStack fits into the cloud ecosystem, why you might want to adopt the technology,
and what the focus of this book will be. In chapter 2, motivated by the fantastic possi-
bilities described in the first chapter, you took a limited test-drive of the OpenStack
framework, working through some exercises that didn’t require an in-depth knowl-
edge of the framework. Chapter 3 presented more examples, but this time from
an operational perspective, giving you further insight into the structure of the
framework. Finally, in this chapter you learned how OpenStack works through its
framework of components and interoperates with vendor hardware and software.

 You’ve covered a great deal in four chapters. If you completed all of the exercises
and have a working DevStack deployment, congratulate yourself! You might (unfortu-
nately) already be considered an OpenStack expert in many organizations. But
although the first part of this book may be sufficient to make you look like an expert,
there’s much more to learn before you take the leap to a multi-node production
deployment.

Networking

Neutron

API extension

GRE VXLAN VLAN Arista Cisco Linux
bridge OVS L2 pop

Mechanism driver

ML2 plug-in

Type driver

Figure 4.18 Network management with the Neutron ML2 plug-in
Licensed to tracy moore <nordick.an@gmail.com>

109Summary
 Part 2 of this book covers deploying OpenStack manually, going through each
command and configuration, and explaining both the steps involved and what they
mean. If your view is more high-level, or you plan on relying on a vendor for your
OpenStack support, you can skip to part 3, where we’ll cover topics related to design,
implementation, and even the economics of OpenStack production deployments.
This being said, even if you expect a fully managed OpenStack solution to be provided
by a vendor, there’s certainly value in knowing what’s going on under the covers. I rec-
ommend at least reviewing part 2, even if you don’t plan on personally deploying a
production OpenStack environment.

4.4 Summary
 OpenStack is a framework that consists of many projects.
 OpenStack project designations range from core (integral parts of OpenStack)

to related (projects that have some relation).
 OpenStack works using a collection of distributed core components.
 Core components communicate with each other using their respective APIs.
 OpenStack can manage vendor-provided hardware and software.
 OpenStack manages vendor-provided hardware and software through compo-

nent plug-ins.
Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

Part 2

Walking through
a manual deployment

In the second part of the book, you’ll step through a manual deployment of
several core OpenStack components. Although it’s important that you under-
stand the underlying component interactions that make up OpenStack, this part
of the book is not intended as a blueprint for OpenStack deployment. The
OpenStack foundation does a good job of providing detailed documentation
(http://docs.openstack.org/) for each software release. The goal of this part of
the book is to build your confidence in the underlying system, through low-level
exposure of the components and configurations. The intent here is to help
you understand the underlying OpenStack architecture well enough to make
informed decisions when designing a production deployment.
Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

Walking through
a Controller deployment
In the first two chapters, you were introduced to OpenStack and took a test-drive of
the framework using the Horizon web interface. Chapter 3 introduced you to some
basic operational tasks using the command-line interface (CLI). In chapter 4 you
learned how OpenStack components are related and distributed in a multi-node
environment. That first part of the book was designed to help you gain an under-
standing of what OpenStack can do, to get you comfortable with the operation of
the framework, and to give you a foundational understanding of how the compo-
nents of the framework interact. In this second part of the book, you’ll take a deep
dive into the components themselves.

 By the end of this part of the book, you’ll have gained a familiarity with the con-
figuration, use, and placement of individual OpenStack core components.

This chapter covers
 Installing controller prerequisites

 Deploying shared services

 Configuring controller-side Block Storage, Networking,
Compute, and Dashboard services
113

Licensed to tracy moore <nordick.an@gmail.com>

114 CHAPTER 5 Walking through a Controller deployment
THIS BOOK IS NOT … This book does not focus on best practices for Open-
Stack operation or architecture. These topics, while important, are very much
dependent on both the release version of OpenStack and the requirements of
the user. The purpose of this book is to help you build a foundational under-
standing of the OpenStack framework that will transcend individual require-
ments and persist through many future releases of OpenStack.

The first part of the book was based on a single-node deployment of OpenStack using
DevStack to install and configure the OpenStack components and dependencies.
This second part of the book is based on a multi-node manual deployment of Open-
Stack, so DevStack won’t be used. In this part of the book, you’ll install component
software using a package management system provided by the Linux distribution and
configure the components manually. Through this process, you’ll gain an under-
standing of the dependencies, configuration, relationships, and use of individual
OpenStack components.

Controller

Keystone Glance Horizon

Identity Image Dashboard

Networking

Public network Internal network

StorageCompute

NovaNeutron Cinder

Networking

Client network

StorageCompute

NovaNeutron Cinder

Controller node is the
primary interface for an
OpenStack deployment …

Network node provides
network resources for
VMs. It bridges the
gap between internal
OpenStack and
external networks.

Storage node provides
and manages storage
resources for VMs.

Compute node provides
compute resources for VMs.
Code execution happens here.
VMs managed by OpenStack
live here.

… and hosts controller and shared
 services, maintains services,
 and coordinates requests.

Figure 5.1 Multi-node architecture
Licensed to tracy moore <nordick.an@gmail.com>

115
Figure 5.1 shows the architecture that you’ll re-create in this part of the book.
In the figure you can see four nodes:

 Controller—The node that hosts controller and other shared services. This node
maintains the server-side API services. The controller coordinates component
requests and serves as the primary interface for an OpenStack deployment.

 Network—The node that provides network resources for virtual machines.
This node bridges the gap between internal OpenStack networks and external
networks.

 Storage—The node that provides and manages storage resources for virtual
machines.

 Compute—The node that provides compute resources for virtual machines.
Code execution will occur on these nodes. You can think of virtual machines
managed by OpenStack as living on these nodes.

As explained in chapter 4, in the OpenStack distribution model, resource nodes get
instructions from the controller (see figure 5.1). As you can see in figure 5.2, you’ll be
building out different portions of a multi-node deployment in each chapter. In this
chapter, you’ll build the controller node (shown at the top of the figure). In subse-
quent chapters, you’ll build out the other nodes (network, storage, and compute) to
complete a manual multi-node deployment of OpenStack.

Controller

Keystone

Chapter 5

Chapter 6 Chapter 7

Glance Horizon

Identity Image Dashboard

Networking StorageCompute

NovaNeutron Cinder

Networking StorageCompute

Chapter 8

NovaNeutron Cinder

Figure 5.2 Deployment roadmap
Licensed to tracy moore <nordick.an@gmail.com>

116 CHAPTER 5 Walking through a Controller deployment
5.1 Deploying controller prerequisites
Before continuing in this chapter, you must have access to a freshly installed Ubuntu
14.04 physical or virtual node. An installation tutorial for Ubuntu 14.04 is provided in
the appendix.

WHAT OS DISTRIBUTION SHOULD I USE? The examples in the second part of the
book (chapters 5 through 8) are intended to be used with the Ubuntu 14.04
Long Term Support (LTS) version of Ubuntu Server. This version of Ubuntu
includes the Icehouse release of OpenStack and guarantees support until
April 2019.

In the chapter 2 deployment, DevStack installed and configured OpenStack depen-
dencies for you. In this chapter, you’ll manually install these dependencies. Luckily,
you can use a package management system to install the software (no compiling
required), but you must still manually configure the components.

PROCEED WITH CARE Working in a multi-node environment greatly increases
deployment and troubleshooting complexity. A small, seemingly unrelated,
mistake in the configuration of one component or dependency can cause
issues that are very hard to track down. Read each section carefully, making
sure you understand what you’re installing and configuring.

Several of the following examples include a verification step, which shouldn’t be
skipped. If a configuration can’t be verified, retrace your steps to the previous verified
point and start over. This practice will save you a great deal of frustration.

5.1.1 Preparing the environment

Aside from network configuration, the environment preparation is similar for all
nodes. The manual deployment described in chapters 5 through 8 is based on four
physical nodes: controller, network, storage, and compute.

 If additional nodes are available, additional resource nodes (compute, network, or
storage) can be added to the deployment simply by repeating the configuration for
that resource. If you want to add an additional compute node, simply repeat the steps
in chapter 8, which discusses configuring the compute node. Likewise, if you have
fewer nodes, you can combine services like network and compute on a single node.
For the sake of clarity, the examples in this part of the book isolate core OpenStack
services on independent nodes. As you know from chapter 2, you can put OpenStack
on a single node, but multi-node is where the real fun (and benefit) begins.

 It’s time to get started. Give yourself some time with this chapter. The controller
install can take a while because you’ll be configuring all the backend services as you
bring up the controller. Once you have a working controller, setting up the resource
nodes (network, storage, and compute) takes less time.
Licensed to tracy moore <nordick.an@gmail.com>

117Deploying controller prerequisites
5.1.2 Configuring the network interface

You’ll want to configure the network interface on the controller node so one interface
is used for client-facing traffic and another is used for internal OpenStack manage-
ment. Technically, you could use a single interface on the controller, but as you’ll soon
learn, OpenStack allows you to specify several networks (public, internal, and admin)
for OpenStack operation.

REVIEWING THE NETWORK

The first step in configuring the network interfaces is to determine what physical
interfaces exist on your server. Then you can configure interfaces to be used in your
OpenStack environment. You can list the interfaces with the ifconfig -a command,
as shown in the following listing.

$ ifconfig -a
em1 Link encap:Ethernet HWaddr b8:2a:72:d3:09:46

inet addr:10.33.2.50 Bcast:10.33.2.255
inet6 addr: fe80::ba2a:72ff:fed3:946/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:950 errors:0 dropped:0 overruns:0 frame:0
TX packets:117 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:396512 (396.5 KB) TX bytes:17351 (17.3 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d3:09:47
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:38

You might see many interfaces, but for now we’ll focus on interfaces em1 and em2,
which will be used for the public and internal networks. On the example controller,
em1 will be used as the public interface and em2 will be used as the internal interface.
An address to be used as the OpenStack public address has already been assigned on
em1, and interface em2 will be used as the internal interface. Specific network
addresses, VLANs, and interface functions are explained in the next section.

 Next, you need to configure the physical interfaces on your controller node.

CONFIGURING THE NETWORK

Under Ubuntu, the interface configuration is maintained in the /etc/network/inter-
faces file. If you’re using another Linux distribution, you’ll need to check the network
interface configuration(s) for your specific distribution and version.

 You’ll build a working configuration for the controller node based on the italicized
addresses in table 5.1.

Listing 5.1 Listing the interfaces
Licensed to tracy moore <nordick.an@gmail.com>

118 CHAPTER 5 Walking through a Controller deployment

The terms in the Function column are explained here:

 Public interface—Accessed by tenant users, Horizon, and public API calls.
 Node address—Primary address of the node. This address doesn’t need to be

public, but for the sake of simplicity, we’ll put the public interface for the con-
troller and the node interfaces for the resource nodes on the same network.

 OpenStack Internal—Interface used to carry OpenStack component traffic
between component nodes including AMPQ, internal API, and so on.

NETWORK INTERFACE NAME Network interface names vary based on the order
and location of the hardware in the server. For instance, Lan-On-Mother-
board interfaces are reported in the format em<port number> (ethernet-on-
motherboard <1,2 ..>), whereas PCI add-in interfaces are reported in the for-
mat p<slot number>p<port number>_<virtual function instance>.

In order to modify the network configuration, or any privileged configuration, you
must use sudo privileges (sudo vi /etc/network/interfaces). As you may know, the
sudo command allows normal users (if they’re in the sudo group) to execute com-
mands with elevated privileges.

 The following listing shows the network interface configuration example. Modify
your interface configuration, based on the values found in table 5.1, or you can use
your own address scheme.

The loopback network interface
auto lo
iface lo inet loopback

The Public/Node network interface

Table 5.1 Network address table

Node Function Interface IP address/subnet mask

Controller Public interface/node address em1 10.33.2.50/24

Controller OpenStack internal em2 192.168.0.50/24

Network Node address em1 10.33.2.51/24

Network OpenStack internal em2 192.168.0.51/24

Network VM interface/network p2p1 None: Assigned to OpenStack
Networking

Storage Node address em1 10.33.2.52/24

Storage OpenStack internal em2 192.168.0.52/25

Compute Node address em1 10.33.2.53/24

Compute OpenStack internal em2 192.168.0.53/24

Listing 5.2 Modifying interface configuration in /etc/network/interfaces
Licensed to tracy moore <nordick.an@gmail.com>

119Deploying controller prerequisites
auto em1
iface em1 inet static

address 10.33.2.50
netmask 255.255.255.0
network 10.33.2.0
broadcast 10.33.2.255
gateway 10.33.2.1
dns-nameservers 8.8.8.8
dns-search testco.com

The OpenStack Internal Interface
auto em2
iface em2 inet static

address 192.168.0.50
netmask 255.255.255.0

You should now refresh your network settings to update any changes in your network
configuration. First, though, if you changed the address of the primary interface, you
should reboot the server at this point, because you’ll lose connectivity to the system
after the refresh. If you didn’t change the settings of your primary interface, you
shouldn’t experience an interruption.

 The following listing shows the command used to refresh the network settings,
along with the output.

$ sudo ifdown em2 && sudo ifup em2

Your network configuration should now be active. The interface will automatically be
brought online based on your configuration. This process can be repeated for each
interface that requires a configuration refresh.

 In order to confirm that the configuration was applied, you should once again
check your interfaces, as shown in the following listing.

$ifconfig -a
em1 Link encap:Ethernet HWaddr b8:2a:72:d3:09:46

inet addr:10.33.2.50 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed3:946/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3014 errors:0 dropped:0 overruns:0 frame:0
TX packets:656 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2829516 (2.8 MB) TX bytes:94684 (94.6 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d3:09:47
inet addr:192.168.0.50 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed3:947/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0

Listing 5.3 Refreshing networking settings

Listing 5.4 Checking the network for updates
Licensed to tracy moore <nordick.an@gmail.com>

120 CHAPTER 5 Walking through a Controller deployment
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:64 (64.0 B) TX bytes:532 (532.0 B)
Interrupt:38

At this point you should be able to remotely access the controller server, and the con-
troller server should have internet access. The remainder of the install can be per-
formed either remotely using SSH or directly from the console.

5.1.3 Updating packages

Ubuntu 14.04 LTS includes the Icehouse (2014.1) release of OpenStack, which
includes the following components:

 Nova—The OpenStack Compute project, which works as an IaaS cloud fabric
controller

 Glance—Provides services for VM images, discovery, retrieval, and registration
 Swift—Provides highly scalable, distributed, object store services
 Horizon—The OpenStack Dashboard project, which provides a web-based

admin and user GUI

 Keystone—Provides identity, token, catalog, and policy services for the Open-
Stack suite

 Neutron—Provides network management services for OpenStack components
 Cinder—Provides block storage as a service to OpenStack Compute
 Ceilometer—Provides a central point of record for resource utilization metrics
 Heat—Provides application-level orchestration of OpenStack resources

I WANT TO USE A DIFFERENT OS OR OPENSTACK VERSION You might be inclined
to use a different Linux distribution or release that provides a more current
OpenStack version. However, it’s highly recommended that you stick with the
versions specified. Once you understand OpenStack on fundamental and
operational levels, you can always migrate to new releases.

The Ubuntu Linux distribution uses the APT system for package management. The
APT package index is a database of all available packages defined in the
/etc/apt/sources.list file. You should make sure the local database is synchronized
with the latest packages available in the repository for your specific Linux distribution.
Prior to installing OpenStack, you should also upgrade any repository items, includ-
ing the Linux kernel, that might be out of date.

 The following listing demonstrates how to update and upgrade packages on your
server.

sudo apt-get -y update
sudo apt-get -y upgrade

Listing 5.5 Updating and upgrading packages
Licensed to tracy moore <nordick.an@gmail.com>

121Deploying controller prerequisites
Once you’ve updated and upgraded the packages, you should reboot the server to
refresh any packages or configurations that might have changed.

sudo reboot

Now it’s time to install the OpenStack software dependencies.

5.1.4 Installing software dependencies

In the context of OpenStack, a dependency is software that’s not part of the OpenStack
project but is required by OpenStack components. This includes software used to run
OpenStack code (Python and modules), the queueing system (RabbitMQ), and the
database platform (MySQL), among other things.

 In this section, you’ll walk through the deployment of OpenStack software depen-
dencies. You’ll start with the installation of RabbitMQ.

INSTALLING RABBITMQ
RabbitMQ is an Advanced Message Queuing Protocol (AMQP) –compliant queuing
system that allows for guaranteed delivery and ordering of messages in large distrib-
uted systems. OpenStack uses the RabbitMQ messaging service as its default queuing
system, allowing OpenStack component functions that require quick and ordered
messages to communicate.

 You can use APT or an equivalent package management system for your Linux dis-
tribution to install RabbitMQ. The following listing demonstrates the installation
using APT.

sudo apt-get -y install rabbitmq-server

When you run the preceding command, you’ll see output like the following:

...
The following extra packages will be installed:

erlang-asn1 erlang-base erlang-corba ...
libltdl7 libodbc1 libsctp1 lksctp-tools ...

...
Setting up rabbitmq-server (3.2.4-1) ...
Adding group `rabbitmq' (GID 118) ...
Done.
Adding system user `rabbitmq' (UID 111) ...
Adding new user `rabbitmq' (UID 111) with group `rabbitmq' ...
Not creating home directory `/var/lib/rabbitmq'.
* Starting message broker rabbitmq-server

If you see the error [* FAILED - check /var/log/rabbitmq/startup...], make sure
your hostname in /etc/hostname matches the host entry found in /etc/hosts and
restart if necessary.

Listing 5.6 Rebooting the server

Listing 5.7 Installing RabbitMQ
Licensed to tracy moore <nordick.an@gmail.com>

122 CHAPTER 5 Walking through a Controller deployment
 RabbitMQ automatically creates a user named guest, with administrative privi-
leges. You’ll want to change the password for the guest account; the following exam-
ple changes the password to openstack1.

$ sudo rabbitmqctl change_password guest openstack1
Changing password for user "guest" ...
...done.

You must now verify that RabbitMQ is running properly.

$sudo rabbitmqctl status
Status of node rabbit@controller ...
[{pid,2452},
{running_applications,[{rabbit,"RabbitMQ","3.2.4"},

{mnesia,"MNESIA CXC 138 12","4.11"},
{os_mon,"CPO CXC 138 46","2.2.14"},
{xmerl,"XML parser","1.3.5"},
{sasl,"SASL CXC 138 11","2.3.4"},
{stdlib,"ERTS CXC 138 10","1.19.4"},
{kernel,"ERTS CXC 138 10","2.16.4"}]},

...

...done.

You now have a fully functional deployment of RabbitMQ ready for OpenStack use.

INSTALLING MYSQL
OpenStack uses a traditional relational database to store configurations and status
information. By default, OpenStack is configured to use an embedded SQLite data-
base for all components, but because of the performance and general accessibility of
MySQL, I’ll show you how to configure components to use MySQL in place of SQLite.
This will allow you to use a MySQL server for your backend configuration and status
data store. All OpenStack components deployed in chapters 5 through 8 that use a
database will use the central database deployed in this step.

 Using APT or an equivalent package management system for your Linux distribu-
tion, install MySQL as demonstrated in the following listing.

$ sudo apt-get -y install python-mysqldb mysql-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:

python-mysqldb-dbg
...

The following NEW packages will be installed:
...

Listing 5.8 Configuring the RabbitMQ guest password

Listing 5.9 Verifying the RabbitMQ status

Listing 5.10 Installing MySQL binaries
Licensed to tracy moore <nordick.an@gmail.com>

123Deploying controller prerequisites
mysql-server python-mysqldb
...
Setting up libaio1:amd64 (0.3.109-3) ...
Setting up libmysqlclient18:amd64 (5.5.29-0ubuntu1) ...
Setting up libnet-daemon-perl (0.48-1) ...
Setting up libplrpc-perl (0.2020-2) ...
Setting up libdbi-perl (1.622-1) ...
Setting up libdbd-mysql-perl (4.021-1) ...
Setting up mysql-client-core-5.5 (5.5.38-0ubuntu1) ...
Setting up libterm-readkey-perl (2.30-4build4) ...
Setting up mysql-client-5.5 (5.5.38-0ubuntu1) ...
Setting up mysql-server-core-5.5 (5.5.38-0ubuntu1) ...
Setting up mysql-server-5.5 (5.5.38-0ubuntu1) ...
Setting up libhtml-template-perl (2.91-1) ...
Setting up python-mysqldb (1.2.3-1ubuntu1) ...
Setting up mysql-server (5.5.38-0ubuntu1) ...
Setting up mysql-server (5.5.38-0ubuntu0.14.04.1) ...
Setting up python-mysqldb (1.2.3-1build1) ...

When prompted, enter openstack1 as the root MySQL password. You are, of course,
free to select any password you want as long as you consistently use the same password
in all the examples—the examples will assume you use this password.

 In order for external services (those on other nodes using the internal network) to
contact the local MySQL instance, you must change the address that MySQL binds to
on startup. Using your favorite text editor, open /etc/mysql/my.cnf and change the
bind-address to 0.0.0.0 as follows.

Instead of skip-networking the default is now to listen
#only on localhost which is more compatible and is not
#less secure.

#bind-address = 127.0.0.1
#Bind to Internal Address of Controller
bind-address = 0.0.0.0

MYSQL PERFORMANCE Explaining the performance tuning of MySQL is
beyond the scope of this book, but you need to be aware of the impact MySQL
can have on OpenStack performance. Because state and configuration infor-
mation is maintained in MySQL, a poorly performing MySQL server can
greatly impact many aspects of OpenStack performance. In multi-user and
production environments, it’s recommended that you take the time to under-
stand and configure settings in /etc/mysql/my.cnf related to performance.

You’ll now want to restart MySQL and check its operation.

sudo service mysql restart
sudo service mysql status
mysqladmin -u root -h localhost -p status

Listing 5.11 Modifying /etc/mysql/my.cnf

Listing 5.12 Restart and verify that MySQL is running and accessible
Licensed to tracy moore <nordick.an@gmail.com>

124 CHAPTER 5 Walking through a Controller deployment
When you run these commands, it will look something like this:

$ sudo service mysql restart
[mysql stop/waiting
mysql start/running, process 17396

$ service mysql status
mysql start/running, process 17396

$ mysqladmin -u root -h localhost -p status
Enter password: <enter openstack1 as set in previous step>
Uptime: 193 Threads: 1 Questions: 571 Slow queries: 0
Opens: 421 Flush tables: 1 Open tables: 41
Queries per second avg: 2.958

At this point you should have a running MySQL instance. If the instance fails to start
and there were no errors during the install process, you should check the
/etc/mysql/my.cnf file for any inadvertent typos resulting from the [bind-address =
0.0.0.0] modification.

ACCESSING THE MYSQL CONSOLE

The MySQL console is typically accessed from the MySQL client application. The
mysql command takes several arguments, including -u <username>, -h <hostname>,
and -p <password>.

 You can either leave the password blank and then be prompted, or enter it as part
of the command. There must be no spaces between the -p argument and the pass-
word. For example, if your password is openstack1, the command to access the
MySQL console would be mysql -u root -popenstack1.

 The following listing shows the login with a password prompt.

$ mysql -u root -p
Enter password: <enter mysql root password>
...
<verbose text removed>
...
mysql>

Now that you’ve confirmed that MySQL is running and you’re able to access the con-
sole, you’re ready to move forward with the component install. Refer back to listing
5.13 throughout part 2 of the book whenever you need to create databases and grant
user rights.

5.2 Deploying shared services
OpenStack shared services are those services that span Compute, Storage, and Net-
work services and are shared by OpenStack components. These are the official Open-
Stack shared services:

Listing 5.13 Logging in to the MySQL server as root
Licensed to tracy moore <nordick.an@gmail.com>

125Deploying shared services
 Identity Service (Keystone)—Provides identity, token, catalog, and policy services
for the OpenStack suite.

 Image Service (Glance)—Provides services for VM image discovery, retrieval, and
registration.

 Telemetry Service (Ceilometer)—Provides a central service for monitoring and mea-
surement information in the OpenStack suite.

 Orchestration Service (Heat)—Enables applications to be deployed using scripts
from VM resources managed by OpenStack.

 Database Service (Trove)—Provides cloud-based relational and non-relational
database services using OpenStack resources.

In chapters 5 through 8, we’ll limit our walk-through to the first two of these shared
services (Identity and Image Services), which are required for basic VM provisioning.
Through the deployment of these two services, you should gain enough understand-
ing to deploy the other optional services, should you choose. Several of these optional
services are covered in detail in the third part of the book.

5.2.1 Deploying the Identity Service (Keystone)

OpenStack Identity Service, as the name implies, is the system of record for all identi-
ties (users, roles, tenants, and so on) across the OpenStack framework. It provides a
common shared identity service for authentication, authorization, and resource
inventory for all OpenStack components. This service can be configured to integrate
with existing backend services such as Microsoft Active Directory (AD) and Light-
weight Directory Access Protocol (LDAP), or it can operate independently. It supports
multiple forms of authentication, including username and password, token-based cre-
dentials, and AWS-style (REST) logins.

 Users with administrative roles will use the Identity Service (Keystone) to manage
user identities across all OpenStack components, performing the following tasks:

 Creating users, tenants, and roles
 Assigning resource rights based on role-based access control (RBAC) policies
 Configuring authentication and authorization

Users with non-administrative roles will primarily interact with Keystone for authenti-
cation and authorization.

 Keystone maintains the following objects:

 Users—As you might expect, these are the users of the system, such as the admin
or guest user.

 Tenants —These are the projects (tenants) that are used to group resources,
rights, and users together.

 Roles—These define what a user can do in a particular tenant.
Licensed to tracy moore <nordick.an@gmail.com>

126 CHAPTER 5 Walking through a Controller deployment
 Services—This is the list of service components registered with a Keystone
instance, such as the Compute, Network, Image, and Storage services. You can
think of this as the listing of services provided by an OpenStack deployment.

 Endpoints—These are the URL locations of service-specific APIs registered with a
particular Keystone server. You can think of this as the contact information for
services provided by an OpenStack deployment.

In the following sections, you’ll install the Keystone packages from the repository and
then configure the service.

INSTALLING IDENTITY SERVICE (KEYSTONE)
The first step is to install the Keystone package with related dependencies with the fol-
lowing command.

sudo apt-get -y install keystone

When you run the preceding command, you’ll get output like the following:

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

dbconfig-common python-keystone python-keystoneclient
python-passlib python-prettytable

Suggested packages:
python-memcached

The following NEW packages will be installed:
dbconfig-common keystone python-keystone
python-keystoneclient python-passlib python-prettytable

0 upgraded, 6 newly installed, 0 to remove and 0 not
upgraded. Need to get 751 kB of archives.
After this operation, 3,682 kB of additional disk space will
be used.
Preconfiguring packages ...
. . .
keystone start/running, process 6692

openstack@openstack1:~$ id keystone
uid=114(keystone) gid=124(keystone) groups=124(keystone)

The install process will retrieve the Keystone binaries, set up an account for the Key-
stone service named keystone, and place the default configuration files in the
/etc/keystone directory.

CONFIGURING THE KEYSTONE DATA STORE

By default, Keystone settings are stored locally in a SQLite database. In this case, you’ll
be deploying a multi-node system, so SQLite isn’t appropriate because you can’t
remotely access the SQLite database and performance is limited. In place of SQLite,
you’ll use MySQL.

Listing 5.14 Installing the Keystone package
Licensed to tracy moore <nordick.an@gmail.com>

127Deploying shared services
 The first step is to log in to the database server as described in subsection “Access-
ing the MySQL console.” For the remainder of this part of the book, MySQL accounts
will be identified with “_dbu” appended to the service name, such as keystone_dbu, for
the keystone service. You want to create the keystone database and the MySQL user
keystone_dbu, and then grant that user access to the keystone database.

 In MySQL, the user creation and rights authorization functions can be completed
in the same step. The command keystone_dbu.* TO $keystone'@'\%' specifies that
the MySQL user keystone_dbu has access to all objects under the keystone database
from any remote address.

 The following listing shows the commands for creating the database, creating the
user, and granting access.

mysql> CREATE DATABASE keystone;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL ON keystone_dbu.* TO 'keystone'@'localhost' \
-> IDENTIFIED BY 'openstack1';

Query OK, 0 rows affected (0.00 sec)

You can verify that the database was created by issuing the next command.

show grants for 'keystone_dbu'@'localhost';

In the following command output, you can see that the MySQL user keystone_dbu
now has access to the keystone database:

+--+
| Grants for keystone@%
+--+
| GRANT USAGE ON *.* TO 'keystone_dbu'@'localhost' *removed password*
| GRANT ALL PRIVILEGES ON `keystone`.* TO 'keystone'@'localhost'
+--+
2 rows in set (0.00 sec)

You now want to exit the MySQL shell. To exit the shell at any time, type quit at the
mysql> prompt and press Enter.

SQL ACCESS AND RIGHTS CHANGE In the previous database creation example,
you might have noticed that the rights assigned not only allowed access to the
database from the localhost, but also from any host. This is to allow compo-
nents on remote servers to access the database directly. In a production envi-
ronment, you’d want to either distribute database resources to local hosts or
allow specific hosts database-level access, not all hosts.

Listing 5.15 Creating a database and granting access

Listing 5.16 Verifying the database and user
Licensed to tracy moore <nordick.an@gmail.com>

128 CHAPTER 5 Walking through a Controller deployment
By default, Keystone’s data store is SQLite, so now you need to configure it to
use MySQL. Keystone is configured via a primary configuration file, /etc/keystone/
keystone.conf. To change the data store to MySQL, change the connection line under
the [sql] section in /etc/keystone/keystone.conf as follows.

[sql]
#connection = sqlite:////var/lib/keystone/keystone.db
connection = mysql://keystone_dbu:openstack1@localhost:3306/keystone
mysql_sql_mode=TRADITIONAL

The format of the MySQL connection string is [db_username]:[db_username
_password]@[db_hostname]:[db_port]/[db_name].

 The changes won’t become active until Keystone has been restarted. The process
for restarting Keystone is shown in the following listing.

$ sudo service keystone restart
keystone stop/waiting
keystone start/running, process 7868

At this point you’ve configured a MySQL user and database for the Keystone service.
You’ve also configured Keystone to use MySQL and have restarted the service. But
before you can use Keystone, you’ll need to initialize the database with the Keystone
schema, as shown in the next section.

INITIALIZING THE KEYSTONE DATABASE
You’ve created the Keystone database and configured the service to use it, but the
database is empty, so you need to initialize it. The initialization process builds a data-
base schema at the location configured in the /etc/keystone/keystone.conf file.

 You can initialize the Keystone database with the following command. There will
be no output if it’s successful.

sudo keystone-manage db_sync

You now have a Keystone service running with a MySQL backend data store. Next, you
need to create OpenStack objects (users, roles, tenants, and so on) using Keystone.

INITIALIZING KEYSTONE VARIABLES

The next step is to populate Keystone with users, tenants, and roles. In order to gain
access to the Keystone service, you must first set a few temporary environmental vari-
ables that Keystone will use for authentication.

 Using your favorite text editor, create a file named keystone.auth in your home
directory with the data shown in the following listing.

Listing 5.17 Modifying /etc/keystone/keystone.conf

Listing 5.18 Restarting Keystone

Listing 5.19 Initializing the data store
Licensed to tracy moore <nordick.an@gmail.com>

129Deploying shared services

#This file contains environmental variables used to access Keystone

Host address
HOST_IP=192.168.0.50 #The Management Address

Keystone definitions
KEYSTONE_REGION=RegionOne
ADMIN_PASSWORD=admin_pass
SERVICE_PASSWORD=service_pass
export SERVICE_TOKEN="ADMIN"
export SERVICE_ENDPOINT="http://192.168.0.50:35357/v2.0"
SERVICE_TENANT_NAME=service

Once the file is created, you’ll use the source command to run the keystone.auth
script and then use the set command to verify that your environmental variables have
been set. The following listing shows how to run the script and verify the variables.

$ source ~/keystone.auth
$ set | grep SERVICE
SERVICE_ENDPOINT=http://192.168.0.50:35357/v2.0
SERVICE_PASSWORD=service_pass
SERVICE_TENANT_NAME=service
SERVICE_TOKEN=ADMIN

You can now do a quick check to see if Keystone is functional. Run the command
keystone discover to display known Keystone servers and API versions.

$ keystone discover
Keystone found at http://localhost:35357

- supports version v3.0 (stable) here http://localhost:35357/v3/
No handlers could be found for logger "keystoneclient.generic.client"

- supports version v2.0 (stable) here http://localhost:35357/v2.0/
- and s3tokens: OpenStack S3 API
- and OS-EP-FILTER: OpenStack Keystone Endpoint Filter API
- and OS-FEDERATION: OpenStack Federation APIs
- and OS-KSADM: OpenStack Keystone Admin
- and OS-SIMPLE-CERT: OpenStack Simple Certificate API
- and OS-EC2: OpenStack EC2 API

At this point you should see the Keystone service that was just installed. If you see no
errors, you’re ready to start preparing Keystone for other OpenStack services.

CREATING KEYSTONE SERVICES AND ENDPOINTS

Services for which Keystone will manage authorization and authentication must be
specified. Because the process for creating Keystone services and endpoints will be the
same across all OpenStack components, you can now create them for components
that you’ll install in later chapters.

Listing 5.20 Creating keystone.auth

Listing 5.21 Setting and confirming keystone.auth variables

Listing 5.22 Checking Keystone operation
Licensed to tracy moore <nordick.an@gmail.com>

130 CHAPTER 5 Walking through a Controller deployment
 In OpenStack, many services can be distributed across many nodes, but not all
OpenStack deployments run all possible OpenStack services. To identify a service
that’s available in a particular deployment, you must register the service in Keystone,
identifying the type of service and where it can be found in the deployment.

 In practice, you identify a service by creating (registering) a new service with Key-
stone. The service location is specified by creating an endpoint for the new service in
Keystone. Keystone will maintain a list of all active services and their endpoints.

 Your first step is to create the service and endpoint for Keystone itself using the fol-
lowing command.

keystone service-create --name=keystone \
--type=identity --description="Identity Service"

When you run the preceding command, you’ll get output like the following:

+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Identity Service
id	541cffe246434a2e8d97653303df4ffd
name	keystone
type	identity
+-------------+----------------------------------+

At this point the service has been created in Keystone and has been assigned a service
ID that will be referenced in the creation of the endpoint.

 In section 5.15.5 you learned that OpenStack allows you to specify several types of
networks for component communication. You specify a network by assigning a URL
(address) when you register an endpoint. The differences between these endpoints
are the API functions exposed on each interface. Which API functions are exposed on
which assignment varies based on the particular service. These are the possible end-
point assignments:

 publicurl—Intended for end-user communication, such as CLI and Dash-
board communication.

 internalurl—Intended for component-to-component communication, such
as a resource service (nova-compute) communicating with its corresponding
controller service (nova-server).

 adminurl—Intended for communicating with services using the admin user, such
as bootstrapping the initial configuration of Keystone using the admin account.

In addition to specifying publicurl, internalurl, or adminurl, you must also provide
a region when creating endpoints. Regions are considered discrete OpenStack envi-
ronments with unique API endpoints and services, but they all share a single Keystone

Listing 5.23 Creating the Keystone service
Licensed to tracy moore <nordick.an@gmail.com>

131Deploying shared services
instance. Figure 5.3 shows how OpenStack deployments are divided into regions that
share a central Keystone instance.

 The examples in this book are based on a single region deployment. The examples
assign the name of RegionOne for all region configuration settings. The publicurl will
correspond to the public address of the controller listed in table 5.1. The internalurl
and adminurl correspond to the controller’s internal address found in the same table.

 You now want to create the Keystone endpoint, as follows.

keystone endpoint-create \
--region RegionOne \
--service=keystone \
--publicurl=http://10.33.2.50:5000/v2.0 \
--internalurl=http://192.168.0.50:5000/v2.0 \
--adminurl=http://192.168.0.50:35357/v2.0

When you run the preceding command, you’ll see output like the following:

Listing 5.24 Creating the Keystone endpoint

Regions share a single
Keystone instance, but
have unique services
and endpoints.

Keystone maintains a
list of all active services
and their locations.

Region:
nova internalurl
nova adminurl
nova publicurl
other services
…

 One
x.x.x.y:abcd
x.x.x.y:abcd
z.z.z.y:abcd
y.y.y.z:abcd

Region 1 Region 2

 Two
a.a.a.b:abcd
a.a.a.b:abcd
c.c.c.d:abcd
d.d.d.b:abcd

Internal admin network

Public network Public network

Horizon

Client

Figure 5.3 Regions and endpoints
Licensed to tracy moore <nordick.an@gmail.com>

132 CHAPTER 5 Walking through a Controller deployment
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
adminurl	http://192.168.0.50:35357/v2.0
id	ad3ef29c0e2d40efb20e11eca2f2ff5d
internalurl	http://192.168.0.50:5000/v2.0
publicurl	http://10.33.2.50:5000/v2.0
region	RegionOne
service_id	8c066ff224a34d1aa354abe73708b804
+-------------+----------------------------------+

You’ve now created an endpoint for the Keystone service. The next step is to create a
tenant, which will be used as a configuration container for additional configurations.

CREATING TENANTS

The first tenants you’ll want to create are the admin and service tenants. The admin
tenant will be a tenant for the admin user. The service tenant will be the tenant
that stores user and configuration information about services. You’ll reference the
service tenant at points in the install process where you create new services.

 You can create the admin tenant as follows.

$ keystone tenant-create --name=admin --description "Admin Tenant"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Admin Tenant
enabled	True
id	55bd141d9a29489d938bb492a1b2884c
name	admin
+-------------+----------------------------------+

The following listing shows how you can create the service tenant.

$ keystone tenant-create --name=service \
--description="Service Tenant"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Service Tenant
enabled	True
id	b3c5ebecb36d4bb2916fecd8aed3aa1a
name	service
+-------------+----------------------------------+

You now have an admin tenant and a service tenant. Your next step is to create users.

Listing 5.25 Creating the admin tenant

Listing 5.26 Creating the service tenant
Licensed to tracy moore <nordick.an@gmail.com>

133Deploying shared services
CREATING USERS

After tenants have been created, you’ll want to create the admin user as follows.

$ keystone user-create --name=admin \
--pass=openstack1 \
--email=admin@testco.com

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	admin@testco.com
enabled	True
id	8f39cacece9b4a01b51bdef57468a76e
name	admin
username	admin
+----------+----------------------------------+

You now have an admin user. Once you deploy OpenStack services, you’ll use this
account to administer your deployment.

CREATING ROLES

Keystone roles are assigned to each user per tenant, and they specify the privileges for
that user in the particular tenant. After users have been created, you’ll want to create
the roles for those users.

 The following listing shows how you can create the admin role.

$ keystone role-create --name=admin
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | d566b73857234f45ab1b3cb90c560da3 |
| name | admin |
+----------+----------------------------------+

You’ll want to create a Member role so that you can assign users to tenants without mak-
ing them administrators of the tenant. The Member role is also the default role used by
the OpenStack Dashboard, so it must be configured.

$ keystone role-create --name=Member
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 45f75b4422774a25be07cbab055c50d8 |
| name | Member |
+----------+----------------------------------+

Listing 5.27 Creating the admin user

Listing 5.28 Creating the admin role

Listing 5.29 Creating the Member role
Licensed to tracy moore <nordick.an@gmail.com>

134 CHAPTER 5 Walking through a Controller deployment
You’ve now created some roles, but they haven’t yet been assigned to any users and
tenants. The next step is to assign a role to a user in a particular tenant.

ASSIGNING ROLES

You now need to assign the user admin the admin role in the admin tenant. This is done
by referencing the user, role, and tenant with the Keystone command user-role-add,
as follows. This command has no output if it’s successful.

keystone user-role-add --user=admin --role=admin --tenant=admin

You’ve now assigned the Keystone role of admin to the admin user in the admin tenant.
Don’t worry, most assignments will be more descriptive than admin > admin > admin.

DEVELOPMENT OF OPENSTACK MANAGEMENT TOOLS In previous OpenStack
releases, you had to reference long IDs, not names, when making role assign-
ments. Make sure you check the command-line utilities for new commands
and command alternatives with each OpenStack release.

The next thing to do is verify the role that you assigned.

LISTING ROLES

To verify that the admin user has been assigned the appropriate roles in the admin ten-
ant, you can use the keystone user-role-list command to list all roles of a particu-
lar user.

$ keystone user-role-list --user=admin --tenant=admin
+----------------------------------+----------------------+
| id | name |
+----------------------------------+----------------------+
| 42639ba997424e7d8fbf24353bff2a08 | admin |
+----------------------------------+----------------------+

Object IDs in OpenStack are both long and unique to each instance created, so the
user_id and tenant_id information has been truncated in the displayed output.

 Congratulations! You’ve now completed all manual steps in a Keystone deploy-
ment and you’ve verified its proper operation.

CHECK KEYSTONE SERVICE LOGS Before you move forward, take a look at the
Keystone logs (/var/log/keystone) for any errors or other obvious problems
(such as trace output from failures). You can also find logs for all OpenStack
services under /var/log/upstart/.

If you had no difficulty deploying OpenStack using DevStack in chapter 2, you’ll likely
have a greater appreciation for DevStack after installing this first component . If you

Listing 5.30 Assigning the admin role

Listing 5.31 Verify admin roles in admin tenant
Licensed to tracy moore <nordick.an@gmail.com>

135Deploying shared services
did have trouble with DevStack, the benefits of this manual walk-through portion of
the book should now be clear.

 In the next section, you’ll walk through the installation of your last shared-service
component, Glance. After that, you’ll move on to core component installation.

5.2.2 Deploying the Image Service (Glance)

Virtual machine images are copies of previously configured VM instances. These
images can be cloned and applied to new VMs as the VMs are created. This process
saves the user from having to deploy the operating system and other software when
deploying VMs.

 Glance is the module of OpenStack that’s used to discover, deploy, and manage VM
images in the OpenStack environment. By default, Glance will take advantage of
RabbitMQ services, which allow OpenStack components to remotely communicate
with Glance without communicating through the controller.

 In the following sections, you’ll manually configure the required Glance service
and the Glance endpoint in Keystone. You’ll also create MySQL tables and grant
MySQL rights so the Glance service can use it as a central data store.

CREATING THE GLANCE DATA STORE

You now need to create the Glance database, which database will be used to store con-
figuration and state information about images. Then you can grant the MySQL user
glance_dbu access to the new database.

 In MySQL, user creation and rights authorization functions can be completed in
the same step. First, log in to the database server as root, as described in the subsection
“Accessing the MySQL console.” Then use the MySQL GRANT command, as follows.

CREATE DATABASE glance;
GRANT ALL ON glance.* TO 'glance_dbu'@'localhost' \

IDENTIFIED BY 'openstack1';

You can check that the grants were successful:

mysql> SHOW GRANTS FOR 'glance_dbu'@'localhost';
+---+
| Grants for glance_dbu@localhost |
+---+
| GRANT USAGE ON *.* TO 'glance_dbu'@'localhost' <removed password> |
| GRANT ALL PRIVILEGES ON `glance`.* TO 'glance_dbu'@'localhost' |
+---+
2 rows in set (0.00 sec)

To exit the MySQL shell, type quit and press Enter.
 In the example, the glance_dbu.* TO 'glance_dbu'@'localhost' part means that

the MySQL user glance is being given access to all objects under the Glance database
from the localhost.

Listing 5.32 Creating the database and granting access
Licensed to tracy moore <nordick.an@gmail.com>

136 CHAPTER 5 Walking through a Controller deployment
 The local system user glance will be created in the subsection “Installing Glance”;
the account referenced in this section is an internal MySQL account. The Glance ser-
vice will be run under the local glance account, whereas the MySQL glance_dbu
account will be used strictly for accessing the Glance database table you created under
MySQL.

 In the next sections, you’ll configure the Glance user, service, and endpoint in Key-
stone. This will allow the Glance component to be recognized and operate in your
deployment.

CONFIGURING A GLANCE KEYSTONE USER

You must create a Keystone service user account for Glance. This account will be used
by the Glance service to validate tokens and authenticate and authorize other user
requests. For Glance to be visible to the system, you must create a service and an end-
point in Keystone.

 Create the glance user in Keystone as follows.

$ keystone user-create --name=glance \
--pass="openstack1" \
--email=glance@testco.com

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	glance@testco.com
enabled	True
id	2ec6f7d7fbc64da090770be764d9c6a8
name	glance
username	glance
+----------+----------------------------------+

You can now assign the admin role to the glance user. The following listing shows
how you can use the glance Keystone username, the service Keystone tenant name,
and the admin Keystone role name to assign the admin role to the glance user in the
service tenant.

keystone user-role-add --user=glance --role-id=admin --tenant=service

If the command is successful, there won’t be any output.
 Next, check to make sure the user was created and that the proper roles were

assigned.

keystone user-role-list --user=glance --tenant=service
+----------------------------------+-------+
| id | name |
+----------------------------------+-------+
| 42639ba997424e7d8fbf24353bff2a08 | admin |
+----------------------------------+-------+

Listing 5.33 Creating a glance user

Listing 5.34 Assigning admin role to glance user in service tenant
Licensed to tracy moore <nordick.an@gmail.com>

137Deploying shared services
Information on user_id and tenant_id has been truncated in the preceding output.
 You’re now ready to move forward with creating the service and endpoint.

CREATING THE GLANCE SERVICE AND ENDPOINT

You can now create the service and endpoint for the Glance Image Service. Endpoint
and service information is maintained by Keystone, as described in section 5.2.1. Reg-
istering the service allows it to be known by the OpenStack deployment, and register-
ing the endpoint defines the API locations for the service.

 During the service-creation process, you must provide parameters that describe your
service. For instance, in the following example, notice the --type=image parameter,
which specifies to Keystone that this is an image service. The name and description are
really for the benefit of readability; the type is the value used for service differentiation.

$ keystone service-create --name=glance --type=image \
--description="Image Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Image Service
enabled	True
id	ff29dcdc693e4e55b3720a4da2771da8
name	glance
type	image
+-------------+----------------------------------+

To create the endpoint, you must provide the Glance service name you just generated,
along with the region, publicurl, internalurl, and adminurl. As previously men-
tioned, this book assumes a single region deployment, so you’ll use RegionOne for all
region settings. The publicurl will correspond to the public address listed in table 5.1.
The internalurl and adminurl will correspond to the OpenStack internal address of
the controller in the same table. The command and its output is shown in the following
listing.

$ keystone endpoint-create \
> --region RegionOne \
> --service=glance \
> --publicurl=http://10.33.2.50:9292 \
> --internalurl=http://192.168.0.50:9292 \
> --adminurl=http://192.168.0.50:9292
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
| adminurl | http://192.168.0.50:9292 |
| id | aaeaaf52c3c94b2eaf3bc33bd16db0b3 |
| internalurl | http://192.168.0.50:9292 |
| publicurl | http://10.33.2.50:9292 |

Listing 5.35 Creating the Glance service

Listing 5.36 Creating the Glance endpoint
Licensed to tracy moore <nordick.an@gmail.com>

138 CHAPTER 5 Walking through a Controller deployment
| region | RegionOne |
| service_id | ff29dcdc693e4e55b3720a4da2771da8 |
+-------------+----------------------------------+

Now that the Keystone configuration for Glance is complete, you can proceed with
installing the Glance package.

INSTALLING GLANCE
You’re now ready to install the Glance binaries on the controller. The following listing
shows how that’s done.

$ sudo apt-get -y install glance glance-api \
glance-registry python-glanceclient \
glance-common

The following extra packages will be installed:
libgmp10 libyaml-0-2 python-amqplib python-anyjson

python-boto python-crypto python-dateutil python-glance
python-httplib2 python-json-patch python-json-pointer

python-jsonschema python-kombu python-oslo-config
python-swiftclient python-warlock python-xattr python-yaml
...
Adding system user `glance' (UID 109) ...
Adding new user `glance' (UID 109) with group `glance' ...
...
ldconfig deferred processing now taking place

The files etc/glance/glance-api.conf and /etc/glance/glance-registry.conf require
modifications to set the MySQL information.

 The following listing shows the changes for /etc/glance/glance-api.conf

[DEFAULT]
rpc_backend = rabbit
rabbit_host = 192.168.0.50
rabbit_password = openstack1

[database]
#sqlite_db = /var/lib/glance/glance.sqlite
connection = mysql://glance_dbu:openstack1@localhost/glance
mysql_sql_mode = TRADITIONAL
...

As you can see, in /etc/glance/glance-api.conf you need to configure both the
MySQL information B and the rpc_backend settings C.

Listing 5.37 Installing Glance binaries

Listing 5.38 Modifying /etc/glance/glance-api.conf

Configures MySQL
information

B

Configures backend
settingC
Licensed to tracy moore <nordick.an@gmail.com>

139Deploying shared services

Now you can modify glance-registry.conf. Here you only need to make the changes to
the [database] section.

[database]
#sqlite_db = /var/lib/glance/glance.sqlite
connection = mysql://glance_dbu:openstack1@localhost/glance
mysql_sql_mode = TRADITIONAL

In order to update the configuration, you must restart the glance-api and glance-
registry services.

$ sudo service glance-api restart
glance-api stop/waiting
glance-api start/running, process 5372

$ sudo service glance-registry restart
glance-registry stop/waiting
glance-registry start/running, process 5417

Now that you’ve configured the Glance service with the required database and
account information, you need to initialize the Glance database with the following
command. There will be no output if it’s successful.

sudo glance-manage db_sync

The Glance module should now be initialized, and Glance should be ready to manage
images.

Listing 5.39 Modifying /etc/glance/glance-registry.conf

Listing 5.40 Restarting glance-api and glance-registry

Listing 5.41 Initializing the data store

Where does Glance store data?
Glance can be configured to use several backends as data stores, including the local
filesystem, Cinder, and Swift (OpenStack object storage). By default, the following
parameter in /etc/glance/glance-api.conf sets the /var/lib/glance/images directory
as the Glance repository:

Directory that the Filesystem backend store
writes image data to
filesystem_store_datadir = /var/lib/glance/images/
Licensed to tracy moore <nordick.an@gmail.com>

140 CHAPTER 5 Walking through a Controller deployment

IMAGE MANAGEMENT

To test Glance, you can download a prebuilt image and register it with Glance. For
testing purposes, we’ll use a publicly available Ubuntu Cloud Image, which has been
developed specifically to run on cloud environments like OpenStack.

 The command for downloading it is shown in the following listing. You’re free to
use any Glance-supported image type, but keep in mind that KVM paravirtualization
drivers might need to be added to any stock images.

wget http://cdn.download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img

UBUNTU IMAGE You can follow the instructions in listing 5.43 to add any
image, like this Ubuntu one: http://uec-images.ubuntu.com/trusty/current
/trusty-server-cloudimg-amd64-disk1.img.

Once the image downloads, you can use it to create a Glance image, as shown in list-
ing 5.43. There are several image container and disk formats, and you’ll want to store
this image in the qcow2 format, which is commonly used with KVM environments. The
image container itself is in OVF, which is specified on the command line. Disk and con-
tainer formats can vary based on the disk image. As of the Grizzly OpenStack release,
all containers will be treated as bare, so if you’re unsure of the container format, bare
is a safe option.

 Tables 5.2 and 5.3 list supported disk and container formats as documented on the
OpenStack site.

Listing 5.42 Downloading a prebuilt image

Table 5.2 Disk formats

Format Description

raw This is an unstructured disk image format.

vhd This is the VHD disk format, a common disk format used by virtual machine monitors
from VMware, Xen, Microsoft, VirtualBox, and others.

UTF8 error
If during db_sync you experience the error CRITICAL glance [-] ValueError:
Tables "migrate_version" have non utf8 collation, please make sure all
tables are CHARSET=utf8, take the following action, which converts the table
encoding (CHARSET) to Unicode (utf8):

$ mysql --user=root --password=openstack1 glance

mysql> alter table migrate_version convert to \
character set utf8 collate utf8_unicode_ci;

Query OK, 1 row affected (0.25 sec)
Records: 1 Duplicates: 0 Warnings: 0
Licensed to tracy moore <nordick.an@gmail.com>

141Deploying shared services
KEYSTONE AUTHENTICATION The previous commands you’ve run were authen-
ticated through service credentials provided by environment variables set dur-
ing the Keystone install. For the following commands, you’ll need to either
provide Keystone user credentials through the command line or set environ-
mental variables for user authentication. For the sake of clarity, we’ll use the
command-line authentication option for the remainder of the book where
user credentials are required.

The following listing shows the creation of a Glance image.

$ glance --os-username=admin --os-password openstack1 \
> --os-tenant-name=admin \
> --os-auth-url=http://10.33.2.50:5000/v2.0 \
> image-create \
> --name="Cirros 0.3.2" \
> --is-public=true \
> --disk-format=qcow2 \

vmdk This is another common disk format supported by many common VM monitors.

vdi This is a disk format supported by VirtualBox VM monitor and the QEMU emulator.

iso This is an archive format for the data contents of an optical disc (such as a CD-ROM).

qcow This is a disk format supported by the QEMU emulator that can expand dynamically and
that supports copy-on-write.

aki This indicates that what is stored in Glance is an Amazon kernel image.

ari This indicates that what is stored in Glance is an Amazon ramdisk image.

ami This indicates that what is stored in Glance is an Amazon machine image.

Table 5.3 Container formats

Format Description

bare This indicates there is no container or metadata envelope for the image.

ovf This is the OVF container format.

aki This indicates that what is stored in Glance is an Amazon kernel image.

ari This indicates that what is stored in Glance is an Amazon ramdisk image.

ami This indicates that what is stored in Glance is an Amazon machine image.

ova This indicates that what is stored in Glance is an OVA TAR file.

Listing 5.43 Creating a Glance image

Table 5.2 Disk formats (continued)

Format Description
Licensed to tracy moore <nordick.an@gmail.com>

142 CHAPTER 5 Walking through a Controller deployment
> --container-format=bare \
> --file cirros-0.3.2-x86_64-disk.img
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
| checksum | 64d7c1cd2b6f60c92c14662941cb7913 |
| container_format | bare |
| created_at | 2014-09-05T14:04:09 |
| deleted | False |
| deleted_at | None |
| disk_format | qcow2 |
| id | e02a73ef-ba28-453a-9fa3-fb63c1a5b15c |
| is_public | True |
| min_disk | 0 |
| min_ram | 0 |
| name | Cirros 0.3.2 |
| owner | None |
| protected | False |
| size | 13167616 |
| status | active |
| updated_at | 2014-09-05T14:04:09 |
| virtual_size | None |
+------------------+--------------------------------------+

You’ve now uploaded, registered, and made available an image to be served from the
Glance service.

 At this point aside from listing the available images, you don’t have a good way to
test Glance like you did Keystone, because you don’t have the rest of the components
to deploy a virtual machine. Unfortunately, you’ll need to work your way through
chapter 8 before you can fully test Glance.

GLANCE SERVICE CHECK Before you move forward, take a look at the Glance
logs (/var/log/glance) for any errors or other obvious problems (such as
trace output from failure). You can also find logs for all OpenStack services
under /var/log/upstart/. On startup, the Glance API will likely complain of
unconfigured options (sheepdog, rdb, gridfs, swift, and so on), which is fine.
Keep an eye out for repeated warnings and errors that occur after startup.

Congratulations! You’ve completed the shared services section. You’re well on your
way to completing the controller configuration steps of your OpenStack deployment.
In the following sections, you’ll start the controller-side (server-side) configuration of
other core services. Starting with the Storage service, then Network, and finally Com-
pute, you’ll complete the controller deployment.

5.3 Deploying the Block Storage (Cinder) service
Cinder is the module of OpenStack used to provide block (volume) storage to VM
images in the OpenStack environment. It manages the process of provisioning
remotely available storage to VMs running on compute nodes. This relationship is
shown in figure 5.4, where VM Compute and VM Volume are provided by two separate
Licensed to tracy moore <nordick.an@gmail.com>

143Deploying the Block Storage (Cinder) service
physical resources, Compute hardware and Cinder resource node. This separation might
seem strange, but for the time being just accept that the benefits of flexibility out-
weigh the complexity and performance drawbacks for most use cases.

 By default, Cinder will take advantage of RabbitMQ services, which allow other cli-
ent components, like Nova, to remotely communicate with Cinder without passing
communication through the controller. You’ll manually configure the required Cin-
der service and endpoint in Keystone. You’ll also manually create a MySQL database
and tables, and assign MySQL rights so that database can be used as a central Cinder
data store.

5.3.1 Creating the Cinder data store

To create the Cinder data store, you first need to log in to the MySQL database
instance on your controller as root (this was described in section “Accessing the

Net RAMCPU Disk

VM

Networking Storage

Neutron Cinder

Controller

Keystone Glance Horizon

Identity Image Dashboard

Networking StorageCompute

NovaNeutron Cinder

Storage

Cinder

Cinder manages the provisioning
of remotely available storage to
VMs running on compute nodes.

Cinder assigns block storage
directly to the VM.

Compute

Nova

Figure 5.4 Cinder providing
VM volume storage
Licensed to tracy moore <nordick.an@gmail.com>

144 CHAPTER 5 Walking through a Controller deployment
MySQL console”). You next need to create the Cinder database and then grant the
MySQL user cinder_dbu access to the new database. In MySQL, user-creation and
rights-authorization functions can be completed in the same step. The MySQL GRANT
command cinder_dbu.* TO 'cinder_dbu'@'localhost' gives the MySQL user
cinder_dbu access to all objects under the Cinder database from the localhost.

CREATE DATABASE cinder;
GRANT ALL ON cinder.* TO 'cinder_dbu'@'%' \

IDENTIFIED BY 'openstack1';

You’ll want to double-check that your database was created and that the cinder_dbu
user has the appropriate rights. You can check rights with the SHOW GRANTS command:

mysql> SHOW GRANTS FOR 'cinder_dbu'@'%';
+---+
| Grants for cinder_dbu@localhost |
+---+
|GRANT USAGE ON *.* TO 'cinder_dbu'@'%'<removed password> |
|GRANT ALL PRIVILEGES ON `cinder`.* TO 'cinder_dbu'@'%' |
+---+
2 rows in set (0.00 sec)

To exit the MySQL shell, type quit and press Enter.

5.3.2 Configuring a Cinder Keystone user

You must create a Keystone service user account for Cinder. The following listing cre-
ates the cinder user, which is used by the Cinder service. Please make a note of the
cinder Keystone user ID that’s returned after object creation because it will be used in
the next section.

$ keystone user-create --name=cinder \
--pass="openstack1" \
--email=cinder@testco.com

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	cinder@testco.com
enabled	True
id	86f8b74446084fdfb44b66781cc72fa9
name	cinder
username	cinder
+----------+----------------------------------+

Next, you’ll use the cinder Keystone username, the service Keystone tenant name,
and the admin Keystone role name to assign the admin role to the cinder user in the
service tenant. This command produces no output if it’s successful.

Listing 5.44 Create the Cinder database and grant access

Listing 5.45 Creating a cinder user
Licensed to tracy moore <nordick.an@gmail.com>

145Deploying the Block Storage (Cinder) service

keystone user-role-add --user=cinder --role-id=admin --tenant=service

You can now check to make sure the user was created and that the proper roles were
assigned:

keystone user-role-list --user=cinder --tenant=service
+----------------------------------+-------+
| id | name |
+----------------------------------+-------+
| ae2a897f8a1e4762a7f0f8da596511ce | admin |
+----------------------------------+-------+

Information on user_id and tenant_id has been truncated in the displayed output.
 You’re now ready to move forward with the service and endpoint creation.

5.3.3 Creating the Cinder service and endpoint

You can now create the service and endpoint for the Cinder service. In the following
listing, you specify the type of service as a storage volume using the argument
--type=volume.

$ keystone service-create --name=cinder --type=volume \
--description="Block Storage"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Block Storage
enabled	True
id	939010f014bf406693e70bfc4862e8cd
name	cinder
type	volume
+-------------+----------------------------------+

To create the endpoint, you must provide the Cinder service name you just generated,
along with the region, publicurl, internalurl, and adminurl. This book describes
a single-region deployment, so you’ll use RegionOne for all region settings. The
publicurl will correspond to the public address in table 5.1, and the internalurl and
adminurl correspond to the OpenStack internal address of the controller found in the
same table. The following listing shows the endpoint creation. Make sure you enter the
following information exactly as shown, including percent signs and backslashes.

$ keystone endpoint-create \
> --region RegionOne \
> --service=cinder \
> --publicurl=http://10.33.2.50:8776/v1/%\(tenant_id\)s \

Listing 5.46 Assigning admin role to cinder user in service tenant

Listing 5.47 Creating a Cinder service

Listing 5.48 Creating a Cinder endpoint
Licensed to tracy moore <nordick.an@gmail.com>

146 CHAPTER 5 Walking through a Controller deployment
> --internalurl=http://192.168.0.50:8776/v1/%\(tenant_id\)s \
> --adminurl=http://192.168.0.50:8776/v1/%\(tenant_id\)s
+-------------+---+
| Property | Value |
+-------------+---+
| adminurl | http://192.168.0.50:8776/v1/%(tenant_id)s |
| id | 2cf277bd14b94566b306ff303c2ab993 |
| internalurl | http://192.168.0.50:8776/v1/%(tenant_id)s |
| publicurl | http://10.33.2.50:8776/v1/%(tenant_id)s |
| region | RegionOne |
| service_id | 939010f014bf406693e70bfc4862e8cd |
+-------------+---+

The Keystone configuration for Cinder has now been completed. You can move for-
ward with the package installation.

5.3.4 Installing Cinder

You’re now ready to install the Cinder binaries on the controller.

$ sudo apt-get -y install cinder-api cinder-scheduler \
Processing triggers for ureadahead (0.100.0-16) ...
Setting up python-concurrent.futures (2.1.6-3) ...
Setting up python-networkx (1.8.1-0ubuntu3) ...
Setting up python-taskflow (0.1.3-0ubuntu3) ...
...
INFO migrate.versioning.api [-] 21 -> 22...
INFO migrate.versioning.api [-] done
Setting up cinder-api (1:2014.1.1-0ubuntu2) ...
cinder-api start/running, process 16558
Setting up cinder-scheduler (1:2014.1.1-0ubuntu2) ...
cinder-scheduler start/running, process 16601

You must now modify the main Cinder configuration file (etc/cinder/cinder.conf),
providing queue, database, and Keystone information.

[DEFAULT]
rpc_backend = rabbit
rabbit_host = 192.168.0.50
rabbit_password = openstack1

[database]
connection = mysql://cinder_dbu:openstack1@localhost/cinder

[keystone_authtoken]
auth_uri = http://192.168.0.50:35357
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = cinder

Listing 5.49 Installing Cinder

Listing 5.50 Modifying /etc/cinder/cinder.conf
Licensed to tracy moore <nordick.an@gmail.com>

147Deploying the Networking (Neutron) service
In order to update the configuration, you must restart Cinder with the following two
commands.

sudo service cinder-scheduler restart
sudo service cinder-api restart

Now that you’ve configured the Cinder service with the required queue, database, and
Keystone information, you need to initialize the Cinder database.

$ sudo cinder-manage db sync
INFO migrate.versioning.api [-] 0 -> 1...
INFO migrate.versioning.api [-] done
...
INFO migrate.versioning.api [-] 21 -> 22...
INFO migrate.versioning.api [-] done

Congratulations! The Cinder module should now be initialized, and Cinder is ready
to manage block storage. Unfortunately, you won’t be able to fully test the component
deployment until you’ve configured the resource portion of this service in chapter 8
and are ready to launch a VM using your manual deployment.

CINDER SERVICE CHECK Before you move forward, take a look at the Cinder
logs (/var/log/cinder) for any errors or other obvious problems (such as
trace output from failures). You can also find logs for all OpenStack services
under /var/log/upstart/.

OK, you’ve installed the basic shared service and the controller-side portions of the
Cinder service. Next you need to continue installing controller-side components for
Networking and Compute.

5.4 Deploying the Networking (Neutron) service
OpenStack Neutron is the core of the cloud network service. Neutron APIs form the
primary interface used to manage network services inside OpenStack.

 Figure 5.5 shows Neutron managing both the VM network interface on the VM and
the routing and switching for the network that the VM network is attached to. Simply
put, Neutron manages all physical and virtual components required to connect, cre-
ate, and extend networks between VMs and public network interfaces (gateways out-
side OpenStack networking).

Listing 5.51 Restarting Cinder

Listing 5.52 Initializing the data store
Licensed to tracy moore <nordick.an@gmail.com>

148 CHAPTER 5 Walking through a Controller deployment

5.4.1 Creating the Neutron data store

Once again, you need to log in to the MySQL console as root (as described in the sub-
section “Accessing the MySQL console”). Then you can create the Neutron database
and grant the MySQL user neutron access to the new database.

 In MySQL, the user-creation and rights-authorization functions can be completed
in the same step, as shown in the following listing. The MySQL GRANT command
neutron.* TO 'neutron_dbu'@'localhost' specifies that the MySQL user neutron
_dbu has access to all objects under the Neutron database from the localhost. Like-
wise, the command neutron.* TO 'neutron_dbu'@'%' means that rights have been
granted to the neutron_dbu user from any host.

Net RAMCPU Disk

VM

Controller

Keystone Glance Horizon

Identity Image Dashboard

StorageCompute

Nova Cinder

Neutron manages all physical and
virtual components required to
connect, create, and extend
networks between VMs and
public network interfaces.

Neutron assigns network
connectivity resources
to the VM.

Networking

Public network

Neutron

Networking

Client network

Neutron

Storage

Cinder

Compute

Nova

Figure 5.5 Neutron managing OpenStack Networking
Licensed to tracy moore <nordick.an@gmail.com>

149Deploying the Networking (Neutron) service

CREATE DATABASE neutron;
GRANT ALL ON neutron.* TO 'neutron_dbu'@'localhost' IDENTIFIED BY 'openstack1';
GRANT ALL ON neutron.* TO 'neutron_dbu'@'%' IDENTIFIED BY 'openstack1';

You’ll want to double-check that your database was created and that the neutron_dbu
user has appropriate rights:

mysql> SHOW GRANTS FOR 'neutron_dbu'@'%';
+---+
| Grants for neutron@% |
+---+
|GRANT USAGE ON *.* TO 'neutron_dbu'@'%'<removed password> |
|GRANT ALL PRIVILEGES ON `neutron`.* TO 'neutron_dbu'@'%' |
+---+
2 rows in set (0.00 sec)

5.4.2 Configuring a Neutron Keystone user

You can now create the Keystone neutron user. Please make note of the neutron Key-
stone user ID that’s returned after object creation.

$ keystone user-create --name=neutron \
--pass="openstack1" \
--email=neutron@testco.com

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	neutron@testco.com
enabled	True
id	e817903594c843f7a79e1404a6f2a82c
name	neutron
username	neutron
+----------+----------------------------------+

ASSIGNING A ROLE TO THE NEUTRON USER

You can now use the neutron Keystone username, service Keystone tenant name,
and admin Keystone role name to assign the admin role to the neutron user. The fol-
lowing listing shows this command; there's no output if it’s successful.

keystone user-role-add \
--user=neutron \
--role=admin \
--tenant=service

You can now check to make sure the user has been created and that the appropriate
roles have been assigned:

Listing 5.53 Creating a database and granting access

Listing 5.54 Creating a neutron user

Listing 5.55 Assigning the admin role to the neutron user in the service tenant
Licensed to tracy moore <nordick.an@gmail.com>

150 CHAPTER 5 Walking through a Controller deployment
keystone user-role-list --user=neutron --tenant=service
+----------------------------------+-------+
| id | name |
+----------------------------------+-------+
| 42639ba997424e7d8fbf24353bff2a08 | admin |
+----------------------------------+-------+

Information on the user ID and tenant ID has been truncated in the displayed output.
 You’re now ready to move forward with creating the service and endpoint.

CREATING THE NEUTRON SERVICE AND ENDPOINT

The next step is to create the service and endpoint for the Neutron network service.
This service is specified as the network service by the parameter --type=network.

$ keystone service-create --name=neutron --type=network \
--description="OpenStack Networking Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	OpenStack Networking Service
enabled	True
id	7d92cd9f66c34cd882b88be2f486e123
name	neutron
type	network
+-------------+----------------------------------+

To create the endpoint, you must provide the Neutron service name you just gener-
ated, along with your region, publicurl, internalurl, and adminurl. This book
describes a single-region deployment, so you’ll use RegionOne for all region settings.
The publicurl will correspond to the public address found in table 5.1. The
internalurl and adminurl correspond to the OpenStack internal address for the con-
troller found in the same table. The following listing shows the endpoint creation

$ keystone endpoint-create \
> --region RegionOne \
> --service=neutron \
> --publicurl=http://10.33.2.50:9696 \
> --internalurl=http://192.168.0.50:9696 \
> --adminurl=http://192.168.0.50:9696
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
| adminurl | http://192.168.0.50:9696 |
| id | 678fa049587a4f9b8b758c6158b67599 |
| internalurl | http://192.168.0.50:9696 |
| publicurl | http://10.33.2.50:9696 |
| region | RegionOne |
| service_id | 7d92cd9f66c34cd882b88be2f486e123 |
+-------------+----------------------------------+

Listing 5.56 Creating the Neutron service

Listing 5.57 Creating the Neutron endpoint
Licensed to tracy moore <nordick.an@gmail.com>

151Deploying the Networking (Neutron) service
Keystone configuration for Neutron has now been completed. You can go ahead and
install the Neutron packages.

5.4.3 Installing Neutron

In this section, you’ll prepare the Neutron network service for operation. First, you
install Neutron with the following command.

$ sudo apt-get install -y neutron-server
...
Adding system user `neutron' (UID 115) ...
Adding new user `neutron' (UID 115) with group `neutron' ...
...
neutron-server start/running, process 8058
Processing triggers for ureadahead ...

The next step is configuration. First you must modify the /etc/neutron/neutron
.conf file. You need to change the default admin information, logging verbosity, and
RabbitMQ password to match your deployment parameters. You don’t want to delete
the entire /etc/neutron/neutron.conf file. Just replace the default values with the
values specified in the following listing.

[DEFAULT]
core_plugin = neutron.plugins.ml2.plugin.Ml2Plugin
service_plugins = router,firewall,lbaas,vpnaas,metering
allow_overlapping_ips = True
...
nova_url = http://192.168.0.50:8774/v2
nova_admin_username = admin
nova_admin_password = openstack1
nova_admin_tenant_id = 55bd141d9a29489d938bb492a1b2884c
nova_admin_auth_url = http://10.33.2.50:35357/v2.0
...
[keystone_authtoken]
auth_uri = http://10.33.2.50:5000
auth_protocol = http
admin_tenant_name = service
admin_user = neutron
admin_password = openstack1
...
[database]
connection = mysql://neutron_dbu:openstack1@localhost/neutron

Now that the core Neutron components are configured, you need to configure the
Neutron Modular Layer 2 (ML2) plug-in. The ML2 plug-in, which combines several
deprecated standalone plug-ins, is a standard framework for managing multiple OSI
Layer 2 technologies commonly used in OpenStack deployments. In the walk-through

Listing 5.58 Install Neutron

Listing 5.59 Modifying /etc/neutron/neutron.conf

Configures
Neutron to use
the ML2 plug-in

Enables the service
plug-ins. At a minimum,
the router plug-in will
be required for the
example deployment.

Tells Neutron how to
communicate with Nova.
You can use the service
tenant_id that was
generated in listing 5.26.
Licensed to tracy moore <nordick.an@gmail.com>

152 CHAPTER 5 Walking through a Controller deployment
examples in chapter 6, the ML2 plug-in will allow Neutron to control the Open
vSwitch (virtual switch) on your compute nodes. The following configurations tell
Neutron/ML2 how it should manage your Layer 2 connectivity.

 In this step you’ll configure the ML2 plug-in in the /etc/neutron/plugins/ml2/
ml2_conf.ini file.

[ml2]
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[securitygroup]
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

enable_security_group = True

The final step is to restart Neutron with your new configuration.

$ sudo service neutron-server restart
neutron-server stop/waiting
neutron-server start/running, process 24590

You’ll want to check the Neutron log to make sure the service started and is listening
for requests. The primary Neutron log is the /var/log/Neutron/server.log file. In this
file you should see a line containing “INFO [Neutron.service] Neutron service started,
listening on 0.0.0.0:9696” if the service started successfully. If a service doesn’t pro-
duce a log file, you can additionally check the service upstart log found in the
/var/log/upstart/Neutron-server.log file, which should provide additional debug
information.

 Congratulations! You’ve now completed the controller-side configuration of Open-
Stack networking. In the next section, you’ll perform the controller-side configura-
tion of the final core component, OpenStack Compute.

5.5 Deploying the Compute (Nova) service
You could consider the OpenStack Nova component as the core of the cloud frame-
work controller. Although each component has its own set of APIs, the Nova API forms
the primary interface used to manage pools of resources. Figure 5.6 shows how Nova
both manages local compute (CPU and MEM) resources and orchestrates the provi-
sioning of secondary resources (network and storage).

Listing 5.60 Modifying /etc/neutron/plugins/ml2/ml2_conf.ini

Listing 5.61 Restarting Neutron
Licensed to tracy moore <nordick.an@gmail.com>

153Deploying the Compute (Nova) service
Nova supports a wide variety of hypervisors as well as bare-metal configurations. As
shown in figure 5.6, Nova works with its own resource nodes along with Neutron and
Cinder to bring together resources to run a virtual machine.

5.5.1 Creating the Nova data store

In this section, you’ll create the Nova database and then grant the MySQL nova_dbu
user access to the new database. Once again, you need to log in to the MySQL console
as root to do this (see the subsection “Accessing the MySQL console” for details).

 Recall that in MySQL, user-creation and rights-authorization functions can be
completed in the same step. The MySQL GRANT command $nova.* TO 'nova_dbu'@
'localhost' grants the MySQL user nova_dbu access to all objects under the Nova

Net RAMCPU Disk

VM

Controller

Keystone Glance Horizon

Identity Image Dashboard

Nova manages local compute
resources and orchestrates
provisioning of network
and storage.

Network resources are
assigned by Neutron using
hypervisor run by Nova.

Storage resources are
assigned by Cinder using
hypervisor run by Nova.

Nova provides
compute resources.

Networking StorageCompute

NovaNeutron Cinder

Networking StorageCompute

NovaNeutron Cinder

Figure 5.6 Nova managing resources
Licensed to tracy moore <nordick.an@gmail.com>

154 CHAPTER 5 Walking through a Controller deployment
database from the localhost. In addition, you’ll grant access to any host for the MySQL
user nova_dbu, because this is required for remote Nova nodes to access a central DB.

 The commands in the following listing create the database and grant the required
access.

CREATE DATABASE nova;
GRANT ALL ON nova.* TO 'nova_dbu'@'localhost' IDENTIFIED BY 'openstack1';
GRANT ALL ON nova.* TO 'nova_dbu'@'%' IDENTIFIED BY 'openstack1';

5.5.2 Configuring a Nova Keystone user

Next you need to create the Keystone nova user.

$ keystone user-create --name=nova \
--pass="openstack1" \
--email=nova@testco.com

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	nova@testco.com
enabled	True
id	44fe95fbaf524c09ae633f405d9d66ca
name	nova
username	nova
+----------+----------------------------------+

5.5.3 Assigning a role to the nova user

You now must assign the admin role to the nova user. The following listing shows how
you can use the nova Keystone username, service Keystone tenant name, and admin
Keystone role name to assign the admin role to the nova user. This command returns
no output if it’s successful.

keystone user-role-add --user=nova --role=admin --tenant=service

You can now check to make sure that the user has been created and that appropriate
roles have been assigned.

$ keystone user-role-list --user=nova --tenant=service
+----------------------------------+-------+
| id | name |
+----------------------------------+-------+
| 42639ba997424e7d8fbf24353bff2a08 | admin |
+----------------------------------+-------+

Listing 5.62 Create database and grant access

Listing 5.63 Creating the nova user

Listing 5.64 Assigning admin role to nova user in service tenant

Listing 5.65 Checking role assignment
Licensed to tracy moore <nordick.an@gmail.com>

155Deploying the Compute (Nova) service
Information on user_id and tenant_id has been truncated in the displayed output.
 You’re now ready to create the service and endpoint.

5.5.4 Creating the Nova service and endpoint

Next you need to create the service and endpoint for the Nova service. The service
will be designated as a Compute service by specifying the type=compute parameter, as
shown in the following listing.

$ keystone service-create --name=nova --type=compute \
> --description="OpenStack Compute Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
| description | OpenStack Compute Service |
| enabled | True |
| id | 122f7e4cbd4a48cc81018af2fd27f84c |
| name | nova |
| type | compute |
+-------------+----------------------------------+

To create the endpoint, you must provide the Nova service name you just generated,
along with your region, publicurl, internalurl, and adminurl. As mentioned
before, this book describes a single-region deployment, so you’ll use RegionOne for all
region settings. The publicurl will correspond to your public address found in table
XREF _101. The internalurl and adminurl correspond to the OpenStack internal
address of the controller found in the same table.

$ keystone endpoint-create --region RegionOne \
> --service=nova \
> --publicurl='http://10.33.2.50:8774/v2/$(tenant_id)s' \
> --internalurl='http://192.168.0.50:8774/v2/$(tenant_id)s' \
> --adminurl='http://192.168.0.50:8774/v2/$(tenant_id)s'
+-------------+---+
| Property | Value |
+-------------+---+
| adminurl | http://192.168.0.50:8774/v2/$(tenant_id)s |
| id | b9f064fdff014ada8c46814715082928 |
| internalurl | http://192.168.0.50:8774/v2/$(tenant_id)s |
| publicurl | http://10.33.2.50:8774/v2/$(tenant_id)s |
| region | RegionOne |
| service_id | 122f7e4cbd4a48cc81018af2fd27f84c |
+-------------+---+

You’re now ready to install the core Nova components.

Listing 5.66 Creating the Nova service

Listing 5.67 Creating the Nova endpoint
Licensed to tracy moore <nordick.an@gmail.com>

156 CHAPTER 5 Walking through a Controller deployment
5.5.5 Installing the Nova controller

In this section, you’ll prepare the Nova controller for operation by installing and con-
figuring required packages.

sudo apt-get -y install nova-api nova-cert nova-conductor nova-consoleauth \
nova-novncproxy nova-scheduler python-novaclient

...
Adding system user `nova' (UID 114) ...
Adding new user `nova' (UID 114) with group `nova' ...
...
nova-api start/running, process 28367
nova-cert start/running, process 28433
nova-conductor start/running, process 28490
nova-consoleauth start/running, process 28558
nova-novncproxy start/running, process 28664
nova-scheduler start/running, process 28710
...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place
Processing triggers for ureadahead ...

The next configuration is one of the most critical of the entire controller install.
Because Nova pulls together several of the core and shared services, you need to pro-
vide Nova with information pertaining to your deployment. If you aren’t careful, a
misconfiguration of Nova could lead to component failure in the overall system, even
if you have working core components.

 You’ll add configuration to the /etc/nova/nova.conf file, which will reference the
other core OpenStack services. Add the following configuration to the existing file.

[DEFAULT]
rpc_backend = rabbit
rabbit_host = 192.168.0.50
rabbit_password = openstack1

my_ip = 192.168.0.50
vncserver_listen = 0.0.0.0
vncserver_proxyclient_address = 0.0.0.0

auth_strategy=keystone
service_neutron_metadata_proxy = true
neutron_metadata_proxy_shared_secret = openstack1

network_api_class = nova.network.neutronv2.api.API
neutron_url = http://192.168.0.50:9696
neutron_auth_strategy = keystone
neutron_admin_tenant_name = service
neutron_admin_username = neutron
neutron_admin_password = openstack1
neutron_admin_auth_url = http://192.168.0.50:35357/v2.0

Listing 5.68 Install Nova controller

Listing 5.69 /etc/nova/nova.conf
Licensed to tracy moore <nordick.an@gmail.com>

157Deploying the Compute (Nova) service
linuxnet_interface_driver =
nova.network.linux_net.LinuxOVSInterfaceDriver

firewall_driver = nova.virt.firewall.NoopFirewallDriver
security_group_api = neutron

[database]
connection = mysql://nova_dbu:openstack1@localhost/nova

[keystone_authtoken]
auth_uri = http://192.168.0.50:35357
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = nova

Next you need to create the Nova tables in the database. The provided nova-manage
script uses the /etc/nova/nova.conf file for configuration. You can just execute the
Nova script as follows.

$ sudo nova-manage db sync
INFO migrate.versioning.api [-] 215 -> 216...
...
INFO migrate.versioning.api [-] 232 -> 233...
INFO migrate.versioning.api [-] done

If you experience an error, please review the database settings you changed in the pre-
vious step.

 Finally, you must restart all Nova services..

$ cd /usr/bin/; for i in $(ls nova-*); \
do sudo service $i restart; done

nova-api stop/waiting
nova-api start/running, process 5467
nova-cert stop/waiting
nova-cert start/running, process 5479
nova-conductor stop/waiting
nova-conductor start/running, process 5491
nova-consoleauth stop/waiting
nova-consoleauth start/running, process 5503
nova-novncproxy stop/waiting
nova-novncproxy start/running, process 5532
nova-scheduler stop/waiting
nova-scheduler start/running, process 5547

To confirm that all services are running properly, execute the nova-manage command
and check on the status and state of each service. The status should be enabled and
the state should show :-).

Listing 5.70 Executing nova-manage

Listing 5.71 Restarting services
Licensed to tracy moore <nordick.an@gmail.com>

158 CHAPTER 5 Walking through a Controller deployment

$ sudo nova-manage service list
Binary Host Zone Status State Updated_At
nova-cert controller internal enabled :-) 2014-08-

08 15:34:24
nova-conductor controller internal enabled :-) 2014-08-

08 15:34:24
nova-scheduler controller internal enabled :-) 2014-08-

08 15:34:24
nova-consoleauth controller internal enabled :-) 2014-08-

08 15:34:24

For each service, there’s an associated log that can be found in /var/log/nova/. The
format for the log is *service name*.log (for example, /var/log/nova-api.log would
be the log for nova-api). If any service doesn’t restart, you should check its associated
log for any errors, and then check the /etc/nova/nova.conf configuration file (shown
in listing 5.69). If a service doesn’t produce a log file, you can additionally check the
service upstart log found in the /var/log/upstart/ directory with the same log naming
convention.

5.6 Deploying the Dashboard (Horizon) service
The final step of the controller install is deploying the web-based Dashboard. The
Horizon module provides a graphical user interface (GUI) for both user and adminis-
tration functions related to OpenStack components. This will likely be the primary
interface used by end users when installing and configuring resources.

5.6.1 Installing Horizon

The Horizon install is fairly straightforward and should work well as long as the rest of
the components are properly configured. Horizon makes use of the Apache web
server and Python modules. During the install, modules will be added and Apache will
be restarted.

$sudo apt-get install -y openstack-dashboard memcached python-memcache
...
Starting memcached: memcached.
Processing triggers for ureadahead ...
Processing triggers for ufw ...
Setting up apache2-mpm-worker (2.2.22-6ubuntu5) ...
* Starting web server apache2 [OK]

Setting up apache2 (2.2.22-6ubuntu5) ...
Setting up libapache2-mod-wsgi (3.4-0ubuntu3) ...
* Restarting web server apache2 ... waiting . [OK]

Setting up openstack-dashboard (1:2013.1.1-0ubuntu1) ...
* Reloading web server config [OK]

Setting up openstack-dashboard-ubuntu-theme (1:2013.1.1-0ubuntu1) ...

Listing 5.72 Listing Nova services

Listing 5.73 Installing Horizon
Licensed to tracy moore <nordick.an@gmail.com>

159Deploying the Dashboard (Horizon) service
* Reloading web server config [OK]
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

The install process should have added the site http://10.33.2.50/horizon. If you can’t
reach the site, check the Apache error log found in the /var/log/apache2/error.log
file for any problems that would prevent startup.

 Optionally, you can remove the Ubuntu theme, which has been reported to cause
problems with some modules:

sudo apt-get -y remove --purge openstack-dashboard-ubuntu-theme

5.6.2 Accessing Horizon

The OpenStack Dashboard should now be available at http://10.33.2.50/horizon. You
can log in as the admin user with the password openstack1.

 At this point you can’t do much with the Dashboard because no resource nodes
have been added, but it’s a good idea to try logging in now to make sure that compo-
nents are reported in the Dashboard. Once you’re logged in to Horizon, select the
Admin tab on the left toolbar. Next, click System Info and look under the Services tab,
which should look something like figure 5.7.

Figure 5.7 Dashboard System Info
Licensed to tracy moore <nordick.an@gmail.com>

160 CHAPTER 5 Walking through a Controller deployment
5.6.3 Debugging Horizon

If you experience any problems with Horizon, you can enable Horizon debugging by
editing the local_settings.py file as follows.

Enable Debugging Dashboard
**/usr/share/openstack-dashboard/openstack_dashboard/local/local_settings.py

#DEBUG = False
DEBUG = True
$ sudo service apache2 restart
* Restarting web server apache2

**

Once the Dashboard is in debug mode, the error logs will be recorded in the Apache
log: /var/log/apache2/error.log.

 If you experience problems along the way, try retracing your steps, verifying ser-
vices and logs along the way.

5.7 Summary
 Each OpenStack service has a related backend database that is used as a back-

end configuration and state data store.
 OpenStack services have related Keystone user accounts. These accounts are

used by the service to validate tokens, authenticate, and authorize other user
requests.

 OpenStack services are registered with Keystone providing a service catalog.
Service endpoints are registered with Keystone to provide API location informa-
tion for services.

 You learned how to manually deploy Keystone, Glance, Cinder, Neutron, and
Nova controller components.

 You learned how to manually deploy the Horizon Dashboard.

Listing 5.74 Enabling debugging in Horizon
Licensed to tracy moore <nordick.an@gmail.com>

Walking through
a Networking deployment
In chapter 5 you walked through the deployment of an OpenStack controller node,
which provides the server-side management of OpenStack services. During the con-
troller deployment, you made controller-side configurations for several OpenStack
core services, including Networking, Compute, and Storage. We discussed the con-
figurations for each core service in relation to the controller, but the services them-
selves weren’t covered in detail.

 Chapters 6 through 8 will walk you through the deployment of core OpenStack
services on resource nodes. Resource nodes are nodes that provide a specific resource
in relation to an OpenStack service. For instance, a server running OpenStack
Compute (Nova) services (and all prerequisite requirements) would be considered

This chapter covers
 Network node prerequisites

 Deploying OpenStack Networking core

 Setting up OpenStack Networking ML2 plug-in

 Configuring OpenStack Networking DHCP, Metadata, L3,
and OVS agents
161

Licensed to tracy moore <nordick.an@gmail.com>

162 CHAPTER 6 Walking through a Networking deployment
a compute resource node. As you learned in chapter 2, it’s possible for a specific node to
provide multiple services, including Compute (Nova), Network (Neutron), and Block
Storage (Cinder). But just like an exclusive node was used for the controller in chap-
ter 5, exclusive resource nodes will be used for demonstration in chapters 6 (Network-
ing), 7 (Block Storage), and 8 (Compute).

 Take another look at the multi-node architecture introduced in chapter 5, shown
in figure 6.1.

 In this chapter, you’ll manually deploy the Networking components in the lower
right of the figure on a standalone node.

Controller

Keystone Glance Horizon

Identity Image Dashboard

Networking

Public network:
10.33.2.0/24

Internal network:
192.168.0.0/24

StorageCompute

NovaNeutron Cinder

Networking StorageCompute

NovaNeutron Cinder

Network node provides
network resources for
VMs. It bridges the
gap between internal
OpenStack and
external networks. br-int

em2em1 em2

em2

em2

OVS KVM LVM

Client network

p2p1

br-int

br-ex

Figure 6.1 Multi-node architecture
Licensed to tracy moore <nordick.an@gmail.com>

163Deploying network prerequisites
Figure 6.2 shows your current status on your way to a working manual deployment. In
this chapter, you’ll first prepare the server to function as a network device. Next, you’ll
install and configure Neutron OSI Layer 2 (switching) components. Finally, you’ll
install and configure Neutron services that function on OSI Layer 3 (DHCP, Metadata,
and so on). Network resources configured in this chapter will be used directly by VMs
provided by OpenStack.

For many people, this chapter will be the most difficult. Even if you have a deep back-
ground in traditional networking, you’ll have to stop and think about how OpenStack
Networking works. Overlay networks, or networks on top of other networks, are in
many ways the network equivalent of the abstraction of virtual machines from bare-
metal servers. This may be your first exposure to mesh/overlay/distributed network-
ing, but these technologies are not exclusive to OpenStack. You’ll learn more about
overlay networks and their use in OpenStack in this chapter, but taking the time to
understand the fundamental changes will be useful across many technologies.

6.1 Deploying network prerequisites
In the chapter 2 deployment, DevStack installed and configured OpenStack depen-
dencies for you. In this chapter, you’ll manually install these dependencies. Luckily,

Networking

Neutron

Controller

Keystone

Chapter 5

Chapter 6 Chapter 7

Glance Horizon

Identity Image Dashboard

Networking StorageCompute

NovaNeutron Cinder

StorageCompute

Chapter 8

Nova Cinder

Figure 6.2 Deployment roadmap
Licensed to tracy moore <nordick.an@gmail.com>

164 CHAPTER 6 Walking through a Networking deployment
you can use a package management system to install the software: there’s no compil-
ing required, but you must still manually configure many of the components.

PROCEED WITH CARE Working in a multi-node environment greatly increases
deployment complexity. A small, seemingly unrelated, mistake in the configu-
ration of one component or dependency can cause issues that are very hard
to track down. Read each section carefully, making sure you understand what
you’re installing or configuring.

Many of the examples in this chapter include a verification step, which I highly recom-
mend you follow. If a configuration can’t be verified, retrace your steps to the last ver-
ified point and start over. This practice will save you a great deal of frustration.

6.1.1 Preparing the environment

With the exception of the network configuration, environment preparation will be
similar to preparing the controller node you deployed in chapter 5. Make sure you
pay close attention to the network interfaces and addresses in the configurations. It’s
easy to make a typo, and often hard to track down problems when you do.

6.1.2 Configuring the network interfaces

You want to configure the network with three interfaces:

 Node interface—Traffic not directly related to OpenStack. This interface will be
used for administrative tasks like SSH console access, software updates, and even
node-level monitoring.

 Internal interface—Traffic related to OpenStack component-to-component com-
munication. This includes API and AMPQ type traffic.

 VM interface—Traffic related to OpenStack VM-to-VM and VM-to-external com-
munication.

First, you’ll want to determine what interfaces already exist on the system.

REVIEWING THE NETWORK

The following command will list the interfaces on your server.

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3
inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:9580 errors:0 dropped:0 overruns:0 frame:0
TX packets:1357 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:8716454 (8.7 MB) TX bytes:183958 (183.9 KB)
Interrupt:35

Listing 6.1 List interfaces
Licensed to tracy moore <nordick.an@gmail.com>

165Deploying network prerequisites
em2 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c4
inet6 addr: fe80::ba2a:72ff:fed5:21c4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7732 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:494848 (494.8 KB) TX bytes:680 (680.0 B)
Interrupt:38

...
p2p1 Link encap:Ethernet HWaddr a0:36:9f:44:e2:70

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

You might have configured your node interface, em1, during the initial installation.
You’ll use the em1 interface to communicate with this node. Take a look at the two
other interfaces, em2 and p2p1. On the example systems used in writing this book, the
em2 interface will be used for internal OpenStack traffic and the add-on 10G adapter,
whereas p2p1 will be used for VM communication.

 Next you’ll review the network configuration for the example nodes, and you’ll
configure controller interfaces.

CONFIGURING THE NETWORK

Under Ubuntu, the interface configuration is maintained in the /etc/network/inter-
faces file. We’ll build a working configuration based on the italicized addresses in
table 6.1.

Table 6.1 Network address table

Node Function Interface IP address

Controller Pubic interface/node address em1 10.33.2.50/24

Controller OpenStack internal em2 192.168.0.50/24

Network Node address em1 10.33.2.51/24

Network OpenStack internal em2 192.168.0.51/24

Network VM network p2p1 None: assigned to OpenStack
Networking

Storage Node address em1 10.33.2.52/24

Storage OpenStack internal em2 192.168.0.52/24

Compute Node address em1 10.33.2.53/24

Compute OpenStack internal em2 192.168.0.53/24
Licensed to tracy moore <nordick.an@gmail.com>

166 CHAPTER 6 Walking through a Networking deployment
In order to modify the network configuration, or any privileged configuration, you
must use sudo privileges (sudo vi /etc/network/interfaces). Any text editor can be
used in this process.

 Modify your interfaces file as shown next.

The loopback network interface
auto lo
iface lo inet loopback

The OpenStack Node Interface
auto em1
iface em1 inet static

address 10.33.2.51
netmask 255.255.255.0
network 10.33.2.0
broadcast 10.33.2.255
gateway 10.33.2.1
dns-nameservers 8.8.8.8
dns-search testco.com

The OpenStack Internal Interface
auto em2
iface em2 inet static

address 192.168.0.51
netmask 255.255.255.0

The VM network interface
auto p2p1
iface p2p1 inet manual

In your network configuration interface, em1 will be used for node administration,
such as SSH sessions to the actual server B. OpenStack shouldn’t use this interface
directly. The em2 interface will be used primarily for AMPQ and API traffic between
resource nodes and the controller C. The p2p1 interface will be managed by Neu-
tron. This interface will primarily carry virtual machine traffic between resource
nodes and external networks D.

 You should now refresh the network interfaces for which the configuration was
changed. If you didn’t change the settings of your primary interface, you shouldn’t
experience an interruption. If you changed the address of the primary interface, it’s
recommended you reboot the server at this point.

 You can refresh the network configuration for a particular interface as shown here
for interfaces em2 and p2p1.

sudo ifdown em2 && sudo ifup em2
sudo ifdown p2p1 && sudo ifup p2p1

Listing 6.2 Modify interface config /etc/network/interfaces

Listing 6.3 Refreshing Networking settings

em1 is the public
interface used for
node administration.

B

em2 is used primarily for AMPQ
and API traffic between resource
nodes and the controller.

C

p2p1 virtual machine traffic
between resource nodes and
external networks

D

Licensed to tracy moore <nordick.an@gmail.com>

167Deploying network prerequisites
The network configuration, from an operating system standpoint, should now be
active. The interface will automatically be brought online based on your configura-
tion. This process can be repeated for each interface that requires a configuration
refresh. In order to confirm that the configuration was applied, you can once again
check your interfaces.

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3
inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:10159 errors:0 dropped:0 overruns:0 frame:0
TX packets:1672 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:8803690 (8.8 MB) TX bytes:247972 (247.9 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c4
inet addr:192.168.0.51 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7913 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:506432 (506.4 KB) TX bytes:680 (680.0 B)
Interrupt:38

...
p2p1 Link encap:Ethernet HWaddr a0:36:9f:44:e2:70

inet6 addr: fe80::a236:9fff:fe44:e270/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)

At this point you should be able to remotely access the network server, and the server
should have internet access. The remainder of the install can be performed remotely
using SSH or directly from the console.

6.1.3 Updating packages

The APT package index is a database of all available packages defined in the
/etc/apt/sources.list file. You need to make sure your local database is synchronized
with the latest packages available in the repository for your specific Linux distribution.
Prior to installation, you should also upgrade any repository items, including the
Linux kernel, that might be out of date.

Listing 6.4 Check network for updates
Licensed to tracy moore <nordick.an@gmail.com>

168 CHAPTER 6 Walking through a Networking deployment

sudo apt-get -y update
sudo apt-get -y upgrade

You now need to reboot the server to refresh any packages or configurations that
might have changed.

sudo reboot

As of Ubuntu Server 14.04 (Trusty Tahr), the following OpenStack components are
officially supported and included with the base distribution:

 Nova—Project name for OpenStack Compute; it works as an IaaS cloud fabric
controller

 Glance—Provides services for virtual machine image, discovery, retrieval, and
registration

 Swift—Provides highly scalable, distributed, object store services
 Horizon—Project name for OpenStack Dashboard; it provides a web-based

admin/user GUI

 Keystone—Provides identity, token, catalog, and policy services for the Open-
Stack suite

 Neutron—Provides network management services for OpenStack components
 Cinder—Provides block storage as a service to OpenStack Compute

6.1.4 Software and configuration dependencies

In this section, you’ll install a few software dependencies and make a few configura-
tion changes in preparation for the install.

INSTALLING LINUX BRIDGE AND VLAN UTILITIES

You’ll want to install the package bridge-utils, which provides a set of applications for
working with network bridges on the system (OS) level. Network bridging on the OS
level is critical to the operation of OpenStack Networking. For the time being, it’s suf-
ficient to think about network bridges under Linux as simply placing multiple inter-
faces on the same network segment (the same isolated VLAN). The default operation
of Linux network bridging is to act like a switch, so you can certainly think of it this way.

 In addition, you may want to install the vlan package, which provides the network
subsystem the ability to work with Virtual Local Area Networks (VLANs) as defined by
IEEE 802.1Q. VLANs allow you to segregate network traffic using VLAN IDs on virtual
interfaces. This allows a single physical interface managed by your OS to isolate multi-
ple networks using virtual interfaces. VLAN configuration won’t be used in the exam-
ples, but you should be aware of the technology.

Listing 6.5 Update and upgrade packages

Listing 6.6 Reboot server
Licensed to tracy moore <nordick.an@gmail.com>

169Deploying network prerequisites
USING VLANS WITH NEUTRON Instructions for installing the vlan package are
included in listing 5.114 because the vast majority of deployments will make
use of IEEE 802.1Q VLANs to deliver multiple networks to Neutron nodes. But,
for the sake of clarity, the examples in this book will not use VLAN interfaces.
Once you understand OpenStack Networking, the adoption of VLANs on the
OS level is trivial.

In summary, VLANs isolate traffic and interfaces, whereas Linux bridges aggregate traffic
and interfaces.

$ sudo apt-get -y install vlan bridge-utils
...
Setting up bridge-utils (1.5-6ubuntu2) ...
Setting up vlan (1.9-3ubuntu10) ...

You now have the ability to create VLANs and Linux bridges.

SERVER-TO-ROUTER CONFIGURATION

OpenStack manages resources for providing virtual machines. One of those resources
is the network used by the virtual machine to communicate with other virtual and
physical machines. For OpenStack Networking to provide network services, at least
one resource node that performs the functions of a network devices (routing, switch-
ing, and so on) must exist. You want this node to act as a router and switch for net-
work traffic.

 By default, the Linux kernel isn’t set to allow the routing of traffic between inter-
faces. The command sysctl is used to modify kernel parameters, such as those
related to basic network functions. You need to make several modifications to your
kernel settings using this tool.

 The first modification is related to the forwarding or routing (kernel IP forward-
ing) of traffic between network interfaces by the Linux kernel. You want traffic arriving
on one interface to be forwarded or routed to another interface if the kernel deter-
mines that the destination network can be found on another interface maintained
by the kernel. Take a look at figure 6.3, which shows a server with two interfaces.

 By default, the incoming packet shown in the figure will be dropped by interface
INT_0 because the address of this interface isn’t the destination of the packet. But
you want the server to inspect the packet’s destination address, look in the server
routing table, and, if a route is found, forward the packet to the appropriate inter-
face. The sysctl setting net.ipv4.ip_forward instructing the kernel to forward traf-
fic can be seen in listing 5.113.

 In addition to enabling kernel IP forwarding, you also have to make a few other
less-common kernel configuration changes. In the world of networking, there’s some-
thing called asymmetric routing, where outgoing and incoming traffic paths/routes are
not the same. There are legitimate reasons to do such things (such as terrestrial

Listing 6.7 Install vlan and bridge-utils
Licensed to tracy moore <nordick.an@gmail.com>

170 CHAPTER 6 Walking through a Networking deployment
upload and satellite download; see www.google.com/patents/US6038594), but more
often than not this ability was exploited by distributed denial of service (DDOS)
attacks. RFC 3704, “Ingress Filtering for Multihomed Networks,” also known as reverse-
path filtering, was introduced to limit the impact of these DDOS attacks. By default, if
the Linux kernel can’t determine the source route of a packet, it will be dropped.
OpenStack Networking is a complex platform that encompasses many layers of net-
work resources, where the network resources themselves don’t have a complete pic-
ture of the network. You must configure the kernel to disable reverse-path filtering,
which leaves path management up to OpenStack.

 The sysctl setting net.ipv4.conf.all.rp_filter that’s used to disable reverse-
path filtering for all existing interfaces is shown in listing 5.113. The sysctl setting
net.ipv4.conf.default.rp_filter is used to disable reverse-path filtering for all
future interfaces.

 Apply the settings in the following listing to your OpenStack Network node.

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

To enable the sysctl kernel changes without restarting the server, invoke the sysctl
-p command.

$ sudo sysctl -p
net.ipv4.conf.default.rp_filter = 0
net.ipv4.conf.all.rp_filter = 0
net.ipv4.ip_forward = 1

Listing 6.8 Modify /etc/sysctl.conf

Listing 6.9 Execute the sysctl command

192.168.0.1/24

Packet =
<src:xxx,dst:192.168.1.2>

192.168.1.1/24Server

Route table

Destination

192.168.0.0
192.168.1.0

Use Iface

INT_0
INT_1

Server

INT_0 INT_1

Figure 6.3 Linux IP routing
Licensed to tracy moore <nordick.an@gmail.com>

171Deploying network prerequisites
The interfaces should now forward IPv4 traffic, and reverse-path filtering should be
disabled.

 In the next section, you’ll add advanced network features to your user with the
Open vSwitch package.

6.1.5 Installing Open vSwitch

OpenStack Networking takes advantage of the open source distributed virtual-switching
package, Open vSwitch (OVS). OVS provides the same data-switching functions as a
physical switch (L2 traffic on port A destined to port B is switched to port B), but it
runs in software on servers.

The examples in this book, from a network-switching standpoint, make exclusive use
of the OVS switching platform.

 At this point you have a server that can act like a basic network router (via IP ker-
nel forwarding) and a basic switch (via Linux network bridging). You’ll now add
advanced switching capabilities to your server by installing OVS. OVS could be the
topic of an entire book, but it’s sufficient to say that the switching features provided by
OVS rival offerings provided by standalone network vendors.

What does a switch do?
To understand what a switch does, you must first look at an Ethernet hub (you’re
likely using Ethernet in some form on all of your wired and wireless devices). “What
is a hub?” you ask.

Circa early 1990s, there were several competing OSI Layer 1 (physical) Ethernet
topologies. One such topology, IEEE 10Base2, worked (and looked) much like the
cable TV in your house, where you could take a single cable and add network connec-
tions by splicing in T connectors (think splitters). Another common topology was
10BaseT (RJ45 connector twisted pair), which is the grandfather of what most of us
think of as “Ethernet” today. The good thing about 10BaseT was that you could
extend the network without interrupting network service; the bad thing was that this
physical topology required a device to terminate the cable segments together. This
device was called a hub, and it also operated at the OSI Layer 1 (physical) level. If
data was transmitted by a device on port A, it would be physically transmitted to all
other ports on the hub.

Aside from the obvious security concerns related to transmitting all data to all ports,
the operation of a hub wouldn’t scale. Imagine thousands of devices connected to
hundreds of interconnected switches. All traffic was flooded to all ports. To solve this
issue, network switches were developed. Manufacturers of Network Interface Cards
(NICs) assigned a unique Ethernet Hardware Address (EHA) to every card. Switches
kept track of the EHA addresses, commonly known as Media Access Control (MAC)
addresses, on each port of the switch. If a packet with the destination MAC=xyz was
transmitted to port A, and the switch had a record of xyz on port B, the packet was
transmitted (switched) to port B. Switches operate on OSI Layer 2 (Link Layer) and
switch traffic based on MAC destinations.
Licensed to tracy moore <nordick.an@gmail.com>

172 CHAPTER 6 Walking through a Networking deployment
You can turn your server into an advanced switch with the following OVS install
instructions.

$ sudo apt-get -y install openvswitch-switch
...
Setting up openvswitch-common ...
Setting up openvswitch-switch ...
openvswitch-switch start/running

The Open vSwitch install process will install a new OVS kernel module. In addition,
the OVS kernel module will reference and load additional kernel models (GRE,
VXLAN, and so on) as necessary to build network overlays.

Listing 6.10 Install OVS

OVS is not a strict OpenStack network dependency
Without a doubt, OVS is used often with OpenStack Networking. But it’s not implicitly
required by the framework. The following diagram, first introduced in chapter 4,
shows where OVS fits into the OpenStack Network architecture.

You could use basic Linux bridging (the previously discussed virtual switch) or even
a physical switch instead of OVS, as long as it’s supported by a vendor-specific Neu-
tron plug-in or module.

Networking

Neutron

API extension

GRE VXLAN VLAN Arista Cisco Linux
bridge OVS L2 pop

Mechanism driver

ML2 plug-in

Type driver

OVS is an L2 mechanism

What is a network overlay?
For a minute, forget what you know about traditional networking. Forget the concept
of servers on the same switch (VLAN/network) being on the same “network.” Imagine
that you have a way to place any VM on any network, regardless of its physical loca-
tion or underlying network topology. This is the value proposition for overlay networks.
Licensed to tracy moore <nordick.an@gmail.com>

173Deploying network prerequisites

KNOW THY KERNEL Ubuntu 14.04 LTS is the first Ubuntu release to ship with
kernel support for OVS overlay networking technologies (GRE, VXLAN, and
the like). In previous versions, additional steps had to be taken to build
appropriate kernel modules. If you’re using another version of Ubuntu or
another distribution altogether, make absolutely sure OVS kernel modules
are loaded as shown in listing 5.116.

You want to be absolutely sure the Open vSwitch kernel modules were loaded. You can
use the lsmod command in the following listing to confirm the presence of OVS kernel
modules.

$ sudo lsmod | grep openvswitch
Module Size Used by
openvswitch 66901 0
gre 13796 1 openvswitch
vxlan 37619 1 openvswitch
libcrc32c 12644 1 openvswitch

The output of the lsmod command should now show several resident modules related
to OVS:

 openvswitch—This is the OVS module itself, which provides the interface
between the kernel and OVS services.

 gre—Designated as “used by” the openvswitch module, it enables GRE func-
tionality on the kernel level.

 vxlan—Just like the GRE module, vxlan is used to provide VXLAN functions on
the kernel level.

 libcrc32c—Provides kernel-level support for cyclic redundancy check (CRC)
algorithms, including hardware offloading using Intel’s CRC32C CPU instruc-
tions. Hardware offloading is important for the high-performance calculation
of network flow hashes and other CRC functions common to network headers
and data frames.

Having GRE and VXLAN support on the kernel level means that the transports used to
create overlay networks are understood by the system kernel, and by relation the
Linux network subsystem.

Listing 6.11 Verify OVS kernel modules

At this point it’s sufficient to think about an overlay network as a fully meshed virtual
private network (VPN) between all participating endpoints (all servers being on the
same L2 network segment regardless of location). To create a network such as this,
you’ll need technologies to tunnel traffic between endpoints. GRE, VXLAN, and other
protocols provide the tunneling transports used by overlay networks. As usual, Open-
Stack simply manages these components. A network overlay is simply a method of
extending L2 networks between hosts “overlaid” on top of other networks.
Licensed to tracy moore <nordick.an@gmail.com>

174 CHAPTER 6 Walking through a Networking deployment

If you think the kernel module should have loaded, but you still don’t see it, restart
the system and see if it loads on restart. Additionally, you can try to load the kernel
module with the command modprobe openvswitch. Check the kernel log, /var/log/
kern/log, for any errors related to loading OVS kernel modules. OVS won’t function
for your purposes without the appropriate resident kernel modules.

6.1.6 Configuring Open vSwitch

You now need to add an internal br-int bridge and an external br-ex OVS bridge.
 The br-int bridge interface will be used for communication within Neutron-

managed networks. Virtual machines communicating within internal OpenStack
Neutron-created networks will use this bridge for communication. This interface
shouldn’t be confused with the internal interface on the operating system level.

sudo ovs-vsctl add-br br-int

Now that br-int has been created, create the external bridge interface, br-ex. The
external bridge interface will be used to bridge OVS-managed internal Neutron net-
works with physical external networks.

sudo ovs-vsctl add-br br-ex

You’ll also want to confirm that the bridges were successfully added to OVS and that
they’re visible to the underlying networking subsystem. You can do that with the fol-
lowing commands.

Listing 6.12 Configure internal OVS bridge

Listing 6.13 Configure external OVS bridge

No modules? DKMS to the rescue!
Dynamic Kernel Module Support (DKMS) was developed to make it easier to provide
kernel-level drivers outside of the mainline kernel. DKMS has historically been used
by OVS to provide kernel drivers for things such as overlay network devices (such as
GRE and VXLAN), that were not included directly in the Linux kernel. The kernel that
ships with Ubuntu 14.04 includes support for overlay devices built into the kernel,
but depending on your distribution and release, you might not have a kernel with built-
in support for the required network overlay technologies.

The following command will deploy the appropriate dependencies and build the OVS
datapath module using the DKMS framework:

sudo apt-get -y install openvswitch-datapath-dkms

Only run this command if the modules couldn’t be validated as shown in listing
5.116.
Licensed to tracy moore <nordick.an@gmail.com>

175Deploying network prerequisites

$ sudo ovs-vsctl show
8cff16ee-40a7-40fa-b4aa-fd6f1f864560

Bridge br-int
Port br-int

Interface br-int
type: internal

Bridge br-ex
Port br-ex

Interface br-ex
type: internal

ovs_version: "2.0.2"

$ ifconfig -a
br-ex Link encap:Ethernet HWaddr d6:0c:1d:a8:56:4f

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

br-int Link encap:Ethernet HWaddr e2:d9:b2:e2:00:4f
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

...
em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3

inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:13483 errors:0 dropped:0 overruns:0 frame:0
TX packets:2763 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:12625608 (12.6 MB) TX bytes:424893 (424.8 KB)
Interrupt:35

...
ovs-system Link encap:Ethernet HWaddr 96:90:8d:92:19:ab

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Notice the addition of the br-ex B and br-int C bridges in your interface list. The
new bridges will be used by OVS and the Neutron OVS module for internal and exter-
nal traffic. In addition, the ovs-system interface D was added. This is the OVS data-
path interface, but you won’t have to worry about working with this interface; it’s

Listing 6.14 Verify OVS configuration

Listing 6.15 Verify OVS OS integration

br-ex bridgeB

br-int bridgeC

ovs-system
interfaceD
Licensed to tracy moore <nordick.an@gmail.com>

176 CHAPTER 6 Walking through a Networking deployment
simply an artifact of Linux kernel integration. Nevertheless, the presence of this inter-
face is an indication that the OVS kernel modules are active.

 At this point you have an operational OVS deployment and two bridges. The br-
int (internal) bridge will be used by Neutron to attach virtual interfaces to the net-
work bridge. These tap interfaces will be used as endpoints for the Generic Routing
Encapsulation (GRE) tunnels. GRE tunnels are used to create point-to-point network
connections (think VPN) between endpoints over the Internet Protocol (IP), and Neu-
tron will configure GRE tunnels between compute and network nodes using OVS.
These tunnels will provide a mesh of virtual networks between all possible resource
locations and network drains in the topology. This mesh provides the functional
equivalence of a single isolated OSI L2 network for the virtual machines on the same
virtual network. The internal bridge won’t need to be associated with a physical inter-
face or be placed in an OS-level “UP” state to work.

 The br-ex (external) bridge will be used to connect the OVS bridges and Neutron-
derived virtual interfaces to the physical network. You must associate the external
bridge with your VM interface as follows.

sudo ovs-vsctl add-port br-ex p2p1
sudo ovs-vsctl br-set-external-id br-ex bridge-id br-ex

Now check that the p2p1 interface was added to the br-ex bridge.

$ sudo ovs-vsctl show
8cff16ee-40a7-40fa-b4aa-fd6f1f864560

Bridge br-int
Port br-int

Interface br-int
type: internal

Bridge br-ex
Port br-ex

Interface br-ex
type: internal

Port "p2p1"
Interface "p2p1"

ovs_version: "2.0.1"

Notice the p2p1 interface C listed as a port on the br-ex bridge B. This means that
the p2p1 interface is virtually connected to the OVS br-ex bridge interface.

 Currently the br-ex and br-int bridges aren’t connected. Neutron will configure
ports on both the internal and external bridges, including taps between the two. Neu-
tron will do all of the OVS configuration from this point forward.

Listing 6.16 Add interface p2p1 (VM) to bridge br-ex

Listing 6.17 Verify OVS configuration

br-ex bridgeB

p2p1 interfaceC
Licensed to tracy moore <nordick.an@gmail.com>

177Installing Neutron
6.2 Installing Neutron
In this section, you’ll prepare the Neutron ML2 plug-in, L3 agent, DHCP agent, and
Metadata agent for operation. The ML2 plug-in is installed on every physical node
where Neutron interacts with OVS.

 You’ll install the ML2 plug-in and agent on all compute and network nodes. The
ML2 plug-in will be used to build Layer 2 (data link layer, Ethernet layer, and so on)
configurations and tunnels between network endpoints managed by OpenStack. You
can think of these tunnels as virtual network cables connecting separate switches or
VMs together.

 The L3, Metadata, and DHCP agents are only installed on the network nodes. The
L3 agent will provide Layer 3 routing of IP traffic on the established L2 network. Simi-
larly, the Metadata and DHCP agents provide L3 services on the L2 network.

 The agents and plug-in provide the following services:

 ML2 plug-in—The ML2 plug-in is the link between Neutron and OSI L2 services.
The plug-in manages local ports and taps, and it generates remote connections
over GRE tunnels. This agent will be installed on network and compute nodes.
The plug-in will be configured to work with OVS.

 L3 agent—This agent provides Layer 3 routing services and is deployed on net-
work nodes.

 DHCP agent—This agent provides DHCP services for Neutron-managed networks
using DNSmasq. Normally this agent will be installed on a network node.

 Metadata agent—This agent provides cloud-init services for booting VMs and is
typically installed on the network node.

6.2.1 Installing Neutron components

You’re now ready to install Neutron software as follows.

$ sudo apt-get -y install neutron-plugin-ml2 \
neutron-plugin-openvswitch-agent neutron-l3-agent \
neutron-dhcp-agent
...
Adding system user `neutron' (UID 109) ...
Adding new user `neutron' (UID 109) with group `neutron' ...
...
Setting up neutron-dhcp-agent ...
neutron-dhcp-agent start/running, process 14910
Setting up neutron-l3-agent ...
neutron-l3-agent start/running, process 14955
Setting up neutron-plugin-ml2 ...
Setting up neutron-plugin-openvswitch-agent ...
neutron-plugin-openvswitch-agent start/running, process 14994

Neutron plug-ins and agents should now be installed. You can continue on with the
Neutron configuration.

Listing 6.18 Install Neutron components
Licensed to tracy moore <nordick.an@gmail.com>

178 CHAPTER 6 Walking through a Networking deployment
6.2.2 Configuring Neutron

The next step is configuration. First, you must modify the /etc/neutron/neutron
.conf file to define the service authentication, management communication, core net-
work plug-in, and service strategies. In addition, you’ll provide configuration and cre-
dentials to allow the Neutron client instance to communicate with the Neutron
controller, which you deployed in chapter 5. Modify your neutron.conf file based on
the values shown below. If any of these values doesn’t exist, add it.

[DEFAULT]
verbose = True
auth_strategy = keystone

rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = 192.168.0.50
rabbit_password = openstack1

core_plugin = neutron.plugins.ml2.plugin.Ml2Plugin
allow_overlapping_ips = True
service_plugins = router,firewall,lbaas,vpnaas,metering

nova_url = http://127.0.0.1:8774/v2
nova_admin_username = admin
nova_admin_password = openstack1
nova_admin_tenant_id = b3c5ebecb36d4bb2916fecd8aed3aa1a
nova_admin_auth_url = http://10.33.2.50:35357/v2.0

[keystone_authtoken]
auth_url = http://10.33.2.50:35357/v2.0
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = neutron

[database]
connection = mysql://neutron_dbu:openstack1@192.168.0.50/neutron

Now that the core Neutron components are configured, you must configure the Neu-
tron agents, which will allow Neutron to control network services.

6.2.3 Configuring the Neutron ML2 plug-in

The Neutron OVS agent allows Neutron to control the OVS switch.
 This configuration can be made in the /etc/neutron/plugins/ml2/ml2_conf.ini

file. The following listing provides the database information, along with ML2-specific
switch configuration.

[ml2]
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch

Listing 6.19 Modify /etc/neutron/neutron.conf

Listing 6.20 Modify /etc/neutron/plugins/ml2/ml2_conf.ini
Licensed to tracy moore <nordick.an@gmail.com>

179Installing Neutron
[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ovs]
local_ip = 192.168.0.51
tunnel_type = gre
enable_tunneling = True

[securitygroup]
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

Your Neutron ML2 plug-in configuration is now complete. Clear the log file, and then
restart the service:

sudo rm /var/log/neutron/openvswitch-agent.log
sudo service neutron-plugin-openvswitch-agent restart

Your Neutron ML2 plug-in agent log should now look something like the following:

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
Agent initialized
successfully, now running...

You now have OSI L2 Neutron integration using OVS. In the next section, you’ll con-
figure the OSI L3 Neutron services.

6.2.4 Configuring the Neutron L3 agent

Next, you need to configure the Neutron L3 agent. This agent provides L3 services,
such as routing, for VMs. The L3 agent will be configured to use Linux namespaces.

Go ahead and configure your L3 agent.

[DEFAULT]
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces = True
verbose = True

Listing 6.21 Modify /etc/neutron/l3_agent.ini

What is Linux namespace isolation?
There’s a feature built into the Linux kernel called namespace isolation. This feature
allows you to separate processes and resources into multiple namespaces so that
they don’t interfere with each other. This is done internally by assigning namespace
identifiers to each process and resource. From a network perspective, namespaces
can be used to isolate network interfaces, firewall rules, routing tables, and so on.
This is the underlying way in which multiple tenant networks, residing on the same
Linux server, can have the same address ranges.
Licensed to tracy moore <nordick.an@gmail.com>

180 CHAPTER 6 Walking through a Networking deployment
The L3 agent is now configured and will use Linux namespaces.
 Clear the log file, and then restart the service:

sudo rm /var/log/neutron/l3-agent.log
sudo service neutron-l3-agent restart

Your Neutron L3 agent log should look something like the following:

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
L3 agent started

6.2.5 Configuring the Neutron DHCP agent

You’ll next want to configure the DHCP agent, which provides DHCP services for VM
images. Modify your dhcp_agent.ini as shown in the following listing.

[DEFAULT]
...
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
use_namespaces = True
...

The DHCP agent is now configured and will use Linux namespaces. Clear the log file,
and then restart the service:

sudo rm /var/log/neutron/dhcp-agent.log
sudo service neutron-dhcp-agent restart

Your Neutron DHCP agent log should look something like this:

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
DHCP agent started Synchronizing state
Synchronizing state complete

6.2.6 Configuring the Neutron Metadata agent

You’ll next want to configure the Metadata agent, which provides environmental
information to VM images. Cloud-init, which was originally created by Amazon for E2
services, is used to inject system-level settings on VM startup. To use Metadata services,
you must use an image with a cloud-init–compatible agent installed and enabled.

 Cloud-init is supported in most modern Linux distributions. Either download an
image that has cloud-init preinstalled or install the package from your distribution.

 Modify your metadata_agent.ini file to include the following information.

Listing 6.22 Modify /etc/neutron/dhcp_agent.ini
Licensed to tracy moore <nordick.an@gmail.com>

181Installing Neutron

[DEFAULT]
auth_url = http://10.33.2.50:35357/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = neutron
nova_metadata_ip = 192.168.0.50
metadata_proxy_shared_secret = openstack1

The Neutron Metadata agent is now configured and will use Linux namespaces. Clear
the log file, and then restart the service:

sudo rm /var/log/neutron/metadata-agent.log
sudo service neutron-metadata-agent restart

Your Neutron Metadata agent log should look something like this:

Logging enabled!
(11074) wsgi starting up on http:///:v/
Connected to AMQP server on 192.168.0.50:5672

6.2.7 Restarting and verifying Neutron agents

It’s a good idea at this point to restart all Neutron services, as shown in the following
listing. Alternatively, you could simply restart the server.

$ cd /etc/init.d/; for i in $(ls neutron-*); \
do sudo service $i restart; done
neutron-dhcp-agent stop/waiting
neutron-dhcp-agent start/running, process 16259
neutron-l3-agent stop/waiting
neutron-l3-agent start/running, process 16273
neutron-metadata-agent stop/waiting
neutron-metadata-agent start/running, process 16283
neutron-ovs-cleanup stop/waiting
neutron-ovs-cleanup start/running

You’ll want to check the Neutron logs to make sure each service started successfully
and is listening for requests. The logs can be found in the /var/log/neutron or
/var/log/upstart/neutron-* directory.

 Review the logs, checking for connections to the AMQP (RabbitMQ) server, and
ensure there are no errors. The log files should exist even if they’re empty. Ensure
that there are no errors about unsupported OVS tunnels in the file /var/log/
neutron/openvswitch-agent.log. If you experience such errors, restart the operating
system and see if reloading the kernel modules and OVS takes care of the problem.

Listing 6.23 Modify /etc/neutron/metadata_agent.ini

Listing 6.24 Restart Neutron agents
Licensed to tracy moore <nordick.an@gmail.com>

182 CHAPTER 6 Walking through a Networking deployment
 If you continue to experience problems starting Neutron services, you can increase
the verbosity of the services through the /etc/neutron/neutron.conf file or the corre-
sponding agent file.

6.2.8 Creating Neutron networks

In chapter 3 you were introduced to OpenStack Networking. This section reviews
items presented in that chapter as they relate to the components you’ve deployed in
this chapter.

 Before you start creating networks using OpenStack Networking, you need to
recall the basic differences between traditional “flat” networks, typically used for vir-
tual and physical machines, and how OpenStack Networking works.

 The term flat in flat network alludes to the absence of a virtual routing tier; the VM has
direct access to a network, just as if you plugged a physical device into a physical network
switch. Figure 6.4 shows an example of a flat network connected to a physical router.

In this type of deployment, all network services (DHCP, load balancing, routing, and
so on) beyond simple switching (OSI Model, Layer 2) must be provided outside of the
virtual environment. For most systems administrators, this type of configuration will
be very familiar, but this is not how we’re going to demonstrate the power of Open-
Stack. You can make OpenStack Networking behave like a traditional flat network, but
this approach will limit the benefits of the OpenStack framework.

 In this section, you’ll build a tenant network from scratch. Figure 6.5 illustrates an
OpenStack tenant network, with virtual isolation from the physical external network.

WAN:
public address

Physical
router

LAN:
private address

Internet

Hypervisor

VM

Figure 6.4 Traditional
flat network

Set your environment variables
The configurations in the following subsections require OpenStack authentication. In
the previous examples, command-line arguments were provided for credentials. For
the sake of simplicity, though, the following examples will use environment variables
instead of command-line arguments.

To set your environment variables, execute the following commands in your shell:

$ export OS_USERNAME=admin
$ export OS_PASSWORD=openstack1
$ export OS_TENANT_NAME=admin

$ export OS_AUTH_URL=http://10.33.2.50:5000/v2.0
Licensed to tracy moore <nordick.an@gmail.com>

183Installing Neutron
NETWORK (NEUTRON) CONSOLE

Neutron commands can be entered through the Neutron console (which is like a
command line for a network router or switch) or directly through the CLI. The con-
sole is very handy if you know what you’re doing, and it’s a natural choice for those
familiar with the Neutron command set. For the sake of clarity, however, this book
demonstrates each action as a separate command, using CLI commands.

 The distinction between the Neutron console and the Neutron CLI will be made
clear in the following subsections. There are many things you can do with the Neutron
CLI and console that you can’t do in the Dashboard. Although the demonstrations will
be executed using the CLI, you’ll still need to know how to access the Neutron console.
As you can see from the following, it’s quite simple. Using the neutron command with-
out arguments will take you to the console. All of the subcommands will be listed using
the command shown in the following listing.

devstack@devstack:~/devstack$ neutron
(neutron) help

Shell commands (type help <topic>):
===================================
...
(neutron)

You now have the ability to access the interactive Neutron console. Any CLI configura-
tions can be made either in the console or directly on the command line.

 In the next subsection, you’ll create a new network.

INTERNAL NETWORKS

The first step you’ll take in providing a tenant-based network is to configure the inter-
nal network. The internal network is used directly by instances in your tenant. The
internal network works on the ISO Layer 2, so for the network types, this is the virtual
equivalent of providing a network switch to be used exclusively for a particular tenant.

Listing 6.25 Access Neutron console

WAN:
public address

Public network / public subnet:
192.168.2.0/24

Internet

External
router

Admin

OpenStack Networking
(Neutron)

Admin
router

VM

Internal network / internal subnet:
172.16.0.0/24

Figure 6.5 OpenStack tenant network
Licensed to tracy moore <nordick.an@gmail.com>

184 CHAPTER 6 Walking through a Networking deployment

Specifie
ad

tena
 In order to create an internal network for a tenant, you must first determine your
tenant ID:

$ keystone tenant-list
+----------------------------------+---------+---------+
| id | name | enabled |
+----------------------------------+---------+---------+
| 55bd141d9a29489d938bb492a1b2884c | admin | True |
| b3c5ebecb36d4bb2916fecd8aed3aa1a | service | True |
+----------------------------------+---------+---------+

By using the commands in listing 6.26, you can create a new network for your tenant.
First, you tell OpenStack Networking (Neutron) to create a new network. Then you
specify the admintenant-id on the command line. Finally, you specify the name of the
tenant network.

$ neutron net-create \

--tenant-id 55bd141d9a29489d938bb492a1b2884c \

INTERNAL_NETWORK

Created a new network:

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | True |

| id | 5b04a1f2-1676-4f1e-a265-adddc5c589b8 |

| name | INTERNAL_NETWORK |

| provider:network_type | gre |

| provider:physical_network | |

| provider:segmentation_id | 1 |

| shared | False |

| status | ACTIVE |

| subnets | |

| tenant_id | 55bd141d9a29489d938bb492a1b2884c |

+---------------------------+--------------------------------------+

Figure 6.6 illustrates the INTERNAL_NETWORK you created for your tenant. The figure
shows the network you just created connected to a VM (if one was in the tenant).

 You’ve now created an internal network. In the next subsection, you’ll create an
internal subnet for this network.

INTERNAL SUBNETS

In the previous subsection, you created an internal network. The internal network you
created inside your tenant is completely isolated from other tenants. This will be a
strange concept to those who work with physical servers, or even those who generally
expose their virtual machines directly to physical networks. Most people are used to
connecting their servers to the network, and network services are provided on a data
center or enterprise level. We don’t typically think about networking and computation
being controlled under the same framework.

Listing 6.26 Create internal network

Tells Neutron to create
a new networks the

min
nt-id Specifies the network name
Licensed to tracy moore <nordick.an@gmail.com>

185Installing Neutron

Crea
n

sub
 As previously mentioned, OpenStack can be config-
ured to work in a flat network configuration. But there are
many advantages to letting OpenStack manage the net-
work stack. In this subsection, you’ll create a subnet for
your tenant. This can be thought of as an ISO Layer 3 (L3)
provisioning of the tenant. You might be thinking to your-
self, “What are you talking about? You can’t just provision
L3 services on the network!” or “I already have L3 services
centralized in my data center. I don’t want OpenStack to
do this for me!” By the end of this section, or perhaps by
the end of the book, you’ll have your own answers to these
questions. For the time being, just trust that OpenStack
offers benefits that are either enriched by these features or
that are not possible without them.

 What does it mean to create a new subnet for a specific
network? Basically, you describe the network you want to
work with, and then you describe the address ranges you
plan to use on that network. In this case, you’ll assign the new subnet to the
ADMIN_NETWORK, in the ADMIN tenant. You must also provide an address range for the
subnet. You can use your own address range as long as it doesn’t exist in the tenant or
a shared tenant. One of the interesting things about OpenStack is that through the
use of Linux namespaces, you could use the same address range for every internal sub-
net in every tenant.

 Enter the command in the following listing.

$ neutron subnet-create \
--tenant-id 55bd141d9a29489d938bb492a1b2884c \
INTERNAL_NETWORK 172.16.0.0/24
Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "172.16.0.2", "end": "172.16.0.254"}
cidr	172.16.0.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	172.16.0.1
host_routes	
id	eb0c84d3-ea66-437f-9d1a-9defe8cccd06
ip_version	4
name	
network_id	5b04a1f2-1676-4f1e-a265-adddc5c589b8
tenant_id	55bd141d9a29489d938bb492a1b2884c
+------------------+--+

Listing 6.27 Creating an internal subnet for the network
tes
ew
net

B Specifies admin
tenant-id

C

Specifies network
name and subnet rangeD

OpenStack Networking
(Neutron)

VM

Admin

Internal
network

Figure 6.6 Created internal
network
Licensed to tracy moore <nordick.an@gmail.com>

186 CHAPTER 6 Walking through a Networking deployment

Crea
n

rou
First you tell OpenStack Networking (Neu-
tron) to create a new subnet B. Then you
specify the admintenant-id on the command
line C. Finally you specify the name of the
network where the subnet should be created
and the subnet range to be used on the inter-
nal network in CIDR notation D. Don’t forget,
if you need to find the admintenant-id, use
the Keystone tenant-id command.

 You now have a new subnet assigned to
your INTERNAL_NETWORK. Figure 6.7 illustrates
the assignment of the subnet to the
INTERNAL_NETWORK. Unfortunately, this subnet
is still isolated, but you’re one step closer to
connecting your private network to a public
network.

 In the next subsection, you’ll add a router to the subnet you just created. Make a
note of your subnet-id—it will be needed in the following sections.

CIDR NOTATION As previously mentioned, CIDR is a compact way to represent
subnets. For internal subnets, it’s common to use a private class C address
range. One of the most commonly used private ranges for internal or private
networks is 192.168.0.0/24, which provides the range 192.168.0.1–
192.168.0.254.

ROUTERS

Routers, put simply, route traffic between interfaces. In this case, you have an isolated
network on your tenant and you want to be able to communicate with other tenant
networks or networks outside of OpenStack. The following listing shows you how to
create a new tenant router.

$ neutron router-create \
--tenant-id 55bd141d9a29489d938bb492a1b2884c \
ADMIN_ROUTER
Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9
name	ADMIN_ROUTER
status	ACTIVE
tenant_id	55bd141d9a29489d938bb492a1b2884c
+-----------------------+--------------------------------------+

Listing 6.28 Create routertes
ew
ter

B
Specifies admin
tenant-idC

Specifies router nameD

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Figure 6.7 Created internal subnet
Licensed to tracy moore <nordick.an@gmail.com>

187Installing Neutron
First, you tell OpenStack Networking (Neu-
tron) to create a new router B. Then, you
specify the admintenant-id on the com-
mand line C. Finally, you specify the name
of the router D.

 Figure 6.8 illustrates the router you cre-
ated in your tenant.

 Now you have a new router, but your ten-
ant router and subnet aren’t connected.
The next listing shows how to connect your
subnet to your router.

$ neutron router-interface-add \
5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9 \
eb0c84d3-ea66-437f-9d1a-9defe8cccd06

Added interface 54f0f944-06ce-4c04-861c-c059bc38fe59
to router 5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9.

First, you tell OpenStack Networking (Neu-
tron) to add an internal subnet to your router
B. Then, you specify the router-id of the
router C. Finally, you specify the subnet-id of
the subnet D.

 If you need to look up Neutron-associated
object IDs, you can access the Neutron con-
sole by running the Neutron CLI application
without arguments: neutron. Once in the
Neutron console, you can use the help com-
mand to navigate through the commands.

 Figure 6.9 illustrates your router,
ADMIN_ROUTER, connected to your internal net-
work, INTERNAL_NETWORK.

 The process of adding a router to a subnet
will actually create a port on the local virtual
switch. You can think of a port on a virtual

Listing 6.29 Adding router to internal subnet

Adds internal subnetB

Specifies router-idC

Specifies subnet-idD

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Admin
router

Figure 6.8 Created internal router

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Admin
router

Figure 6.9 Router connected router to
internal network
Licensed to tracy moore <nordick.an@gmail.com>

188 CHAPTER 6 Walking through a Networking deployment

Create
n

netw
switch the same way you’d think of a port on a physical switch. In this case, the device
is the ADMIN_ROUTER, the network is INTERNAL_NETWORK, and the subnet is
172.16.0.0/24. The router will use the address specified during subnet creation (it
defaults to first available address). When you create an instance (VM), you should be
able to communicate with the router address on the 172.16.0.1 address, but you won’t
yet be able to route packets to external networks.

DHCP AGENT In past versions of OpenStack Networking, you had to manually
add DHCP agents to your network. The DHCP agent is used to provide your
instances with an IP address. In current versions, the agent is automatically
added the first time you create an instance. In advanced configurations, how-
ever, it’s still helpful to know that agents (of all kinds) can be manipulated
through Neutron.

A router isn’t much good when it’s only connected to one network, so your next step
is to create a public network that can be connected to the router you just created.

EXTERNAL NETWORK

In the subsection “Internal networks,” you created a network that was specifically for
your tenant. Here you’ll create a public network that can be used by multiple tenants.
This public network can be attached to a private router and will function as a network
gateway for the internal network created in the previous section.

 Only the admin user can create external networks. If a tenant isn’t specified, the
new external network will be created in the admin tenant. Create a new external net-
work as shown in the next listing.

neutron net-create \
PUBLIC_NETWORK

--router:external=True
Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	64d44339-15a4-4231-95cc-ee04bffbc459
name	PUBLIC_NETWORK
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	2
router:external	True
shared	False
status	ACTIVE
subnets	
tenant_id	55bd141d9a29489d938bb492a1b2884c
+---------------------------+--------------------------------------+

Listing 6.30 Create external networks a
ew

ork

B

Specifies network nameC

Designates as external networkD
Licensed to tracy moore <nordick.an@gmail.com>

189Installing Neutron

Defi
sub
First, you tell Neutron to create a
new network B and you specify the
network name C. Then, you desig-
nate this network as an external
network D.

 You now have a network desig-
nated as an external network. As
shown in figure 6.10, this network
will reside in the admin tenant.
Before you can use this network as
a gateway for your tenant router (as
shown in the subsection “Routers”)
you must first add a subnet to the
external network you just created.
That’s what you’ll do next.

EXTERNAL SUBNET

You must now create an external subnet, as shown in the following listing.

neutron subnet-create \
--gateway 192.168.2.1 \
--allocation-pool start=192.168.2.100,end=192.168.2.250 \
PUBLIC_NETWORK \
192.168.2.0/24 \
--enable_dhcp=False

Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "192.168.2.100", "end": "192.168.2.250"}
cidr	192.168.2.0/24
dns_nameservers	
enable_dhcp	False
gateway_ip	192.168.2.1
host_routes	
id	ee91dd59-2673-4bce-8954-b6cedbf8e920
ip_version	4
name	
network_id	64d44339-15a4-4231-95cc-ee04bffbc459
tenant_id	55bd141d9a29489d938bb492a1b2884c
+------------------+--+

You first tell Neutron to create a new subnet B. You set the gateway address to the first
available address C and then define the range of addresses available for allocation in

Listing 6.31 Create external subnet

Creates new subnetB Sets gateway addressC D Sets address range

E
G

Defines external network

Don’t provide DHCP services
F

nes
net

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Admin
router

Public network

Figure 6.10 Created
external network
Licensed to tracy moore <nordick.an@gmail.com>

190 CHAPTER 6 Walking through a Networking deployment

Spec
rout
the subnet D. You then define
the external network where
the subnet will be assigned E.
In CIDR format, you define the
subnet F. Finally, you specify
that OpenStack should not
provide DHCP services for this
subnet G.

 In figure 6.11, you can see
that you now have the subnet
192.168.2.0/24 assigned to
the external network PUBLIC
_NETWORK. The subnet and
external network you just cre-
ated can now be used by an OpenStack Networking router as a gateway network. In
the next step, you’ll assign your newly created external network as the gateway address
of your internal network.

You can assign an external subnet as a gateway as follows.

neutron router-gateway-set \
5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9 \

64d44339-15a4-4231-95cc-ee04bffbc459

Set gateway for router
15d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9

Figure 6.12 illustrates the assignment of the PUBLIC_NETWORK network as the gateway
for the ADMIN_ROUTER in the ADMIN tenant. You can confirm this setting by running the
command neutron router-show <router-id>, where the <router-id> is the ID of
the ADMIN_ROUTER. The command will return the external_gateway_info, which lists

Listing 6.32 Add new external network as router gateway

List routers to obtain router-id
To list all the routers in the system, you can use the neutron router-list com-
mand:

devstack@devstack:~/devstack$ neutron router-list
+--------+----------------+------------------------+
| id | name | external_gateway_info |
+--------+----------------+------------------------+
| 5d..e9 | ADMIN_ROUTER | null |

+--------+----------------+------------------------+

Uses router-gateway-set command

Specifies external-network-idifies
er-id

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Admin
router

Public network / public subnet:
192.168.2.0/24

Figure 6.11 Created
external subnet
Licensed to tracy moore <nordick.an@gmail.com>

191Installing Neutron

7-52
the currently assigned gateway network. Optionally, you can log in to the OpenStack
Dashboard and look at your tenant network.

6.2.9 Relating Linux, OVS, and Neutron

At this point you should have a working Neutron environment and even a functioning
network or two. But something will inevitably break and you’ll need to troubleshoot
the problem. Naturally, you’ll turn up the log level in the suspected Neutron compo-
nent. If you’re lucky, there will be an obvious error. If you’re not so lucky, there could
be a problem with the underlying systems that Neutron depends on. Throughout this
chapter, those dependencies and component relations have been explained. In many
cases, you’ve created networks that make use of Linux namespaces, which you might
not be used to working with. Now you’ll work with Linux namespaces to relate the
components you created on the network and systems layers.

 Start by looking at the Linux network namespaces on the Neutron node:

$ sudo ip netns list
qrouter-5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9

This result suggests you should look at the namespace qrouter-5d7f2acd-cfc4-
41bd-b5be-ba6d8e04f1e9. Referencing the namespace, you’ll display all network
interface adapters:

sudo ip netns exec qrouter-5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9\
ifconfig -a

qg-896674d7-52 Link encap:Ethernet HWaddr fa:16:3e:3b:fd:28
inet addr:192.168.2.100 Bcast:192.168.2.255 Mask:255.255.255.0
inet6 addr: fe80::f816:3eff:fe3b:fd28/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0

Admin

Internal network / internal subnet:
172.16.0.0/24

OpenStack Networking
(Neutron)

VM

Admin
router

Public network / public subnet:
192.168.2.0/24

External
router

Figure 6.12 Assigned public
network as router gateway

B Interface
qg-896674d
Licensed to tracy moore <nordick.an@gmail.com>

192 CHAPTER 6 Walking through a Networking deployment
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)

qr-54f0f944-06 Link encap:Ethernet HWaddr fa:16:3e:e7:f3:35
inet addr:172.16.0.1 Bcast:172.16.0.255 Mask:255.255.255.0
inet6 addr: fe80::f816:3eff:fee7:f335/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)

Whether you knew it or not, this feature has been lurking in your Linux distribution
for some time. Notice that the interface qg-896674d7-52 B has the same address
range as the Neutron PUBLIC_INTERFACE, and the interface qr-54f0f944-06 C has
the same range as the Neutron INTERNAL_INTERFACE. In fact, these are the router
interfaces for their respective networks.

OK. You have some interfaces in a namespace, and these interfaces are related to the
router interfaces you created earlier in the chapter. At some point, you’ll want to com-
municate either between VM instances on OpenStack Neutron networks or with net-
works external to OpenStack Neutron. This is where OVS comes in.

 Take a look at your OVS instance:

$ sudo ovs-vsctl show
Bridge br-int

...
Port "qr-54f0f944-06"

tag: 1
Interface "qr-54f0f944-06"

type: internal
...

Bridge br-ex
Port br-ex

Interface br-ex
type: internal

Port "p2p1"
Interface "p2p1"

Port "qg-896674d7-52"
Interface "qg-896674d7-52"

type: internal
...

C
Interface
qr-54f0f944-06

Working with Linux network namespaces
To work with network namespaces, you must preface each command with ip netns
<function> <namespace_id>:

sudo ip netns <function> <namespace_id> <command>

For more information about ip netns, consult the online man pages (which list it as
“ip-netns”): http://man7.org/linux/man-pages/man8/ip-netns.8.html.
Licensed to tracy moore <nordick.an@gmail.com>

193Installing Neutron
Some things have been added to OVS since you last saw it in listing 6.44. Notice that
the interface qr-54f0f944-06 shows up as Port "qr-54f0f944-06" on the internal
bridge, br-int. Likewise, the interface qg-896674d7-52 shows up as Port "qg-
896674d7-52" on the external bridge, be-ex.

 What does this mean? The external interface of the router in your configuration is
on the same bridge, br-ex, as the physical interface, p2p1. This means that the Open-
Stack Neutron network PUBLIC_NETWORK will use the physical interface br-ex to com-
municate with networks external to OpenStack.

 Now that all of the pieces are tied together, you can move on to the next section,
where you can graphically admire your newly created networks.

6.2.10 Checking Horizon

In chapter 5 you deployed the OpenStack Dashboard. The Dashboard should now be
available at http://<controller address>/horizon.

 It’s a good idea to log in at this point to make sure that components are reported
in the Dashboard. Log in as admin with the password openstack1. Once logged in to
Horizon, select the Admin tab on the left toolbar. Next, click System Info and look
under the Network Agents tab, which should look similar to figure 6.13. If you fol-
lowed the instructions in the previous sections, your network should be visible in the
Dashboard.

Now make sure you’re in the admin tenant and select the Project tab on the left tool-
bar. Next, click Network and then Network Topology. Your Network Topology screen
should look like figure 6.14.

Figure 6.13 Dashboard System Info
Licensed to tracy moore <nordick.an@gmail.com>

194 CHAPTER 6 Walking through a Networking deployment
The figure shows your public network, tenant router, and tenant network in relation
to your tenant. If you’ve made it to this screen, you’ve successfully manually deployed
your network node.

6.3 Summary
 A separate physical network interface will be used for VM traffic.
 Neutron nodes function as routers and switches.
 Open vSwitch can be used to enable advanced switching features on a typical

server.
 Network routing is included as part of the Linux kernel.
 Overlay networks use GRE, VXLAN, and other such tunnels to connect end-

points like VMs and other Neutron router instances.
 OpenStack Networking can be configured to build overlay networks for com-

munication between VMs on separate hypervisors.
 Neutron provides both OSI L2 and L3 services.
 Neutron agents can be configured to provide DHCP, Metadata, and other ser-

vices on Neutron networks.
 Neutron can be configured to use Linux networking namespaces in conjunc-

tion with OVS to provide a fully virtualized network environment.
 Internally, all tenants can use the same network IP ranges without conflict,

because they’re separated by using Linux namespaces.
 Neutron routers are used to route traffic between internal and external Neu-

tron networks.

Figure 6.14 Network topology
of PUBLIC/INTERNAL/ADMIN
network
Licensed to tracy moore <nordick.an@gmail.com>

Walking through a
Block Storage deployment
In chapter 5 you walked through the deployment of an OpenStack controller node,
which provides the server-side management of OpenStack services. During the con-
troller deployment, you set up controller-side configurations for several OpenStack
core services including Networking, Compute, and Storage. The configurations for
each core service were discussed in relation to the controller, but the services them-
selves weren’t discussed in detail.

 In chapter 6 you deployed your first standalone resource node. That node will
provide OpenStack Networking services for the deployment. In this chapter, you’ll
deploy another standalone resource node that will provide OpenStack Block Stor-
age services for the deployment.

This chapter covers
 Storage node prerequisites

 Understanding Logical Volume Manager (LVM)

 Deploying OpenStack Block Storage

 Managing LVM storage with OpenStack Block Storage

 Testing OpenStack Block Storage
195

Licensed to tracy moore <nordick.an@gmail.com>

196 CHAPTER 7 Walking through a Block Storage deployment
You’re now halfway through your manual OpenStack deployment, as shown in figure 7.1.
 Take another look at the multi-node architecture introduced in chapter 5, shown

in figure 7.2. In this chapter, you’ll deploy the OpenStack Block Storage components
at the lower left of the figure. You’ll deploy them manually on a standalone node. If
you’ve worked in virtual environments before, this chapter is unlikely to introduce any
fundamental concepts that will seem strange to you.

 First, you’ll prepare the server to function as a storage device. In this process,
you’ll take the raw storage capacity found on a physical disk and prepare it so that it
can be managed by a system-level volume manager. Then, you’ll configure Open-
Stack Block Storage to manage your storage resources, using this volume manager.
The storage resources configured in this chapter will be used directly by VMs pro-
vided by OpenStack. Storage resources used directly by VMs are generally referred to
as VM volumes.

 In the multi-node example presented in this book, you’ll use storage provided by
the same server that’s acting as the OpenStack Block Storage node, but as you learned
in chapter 4, this doesn’t have to be the case. Instead of using storage on the storage
node (such as physically attached disks), the storage node could be used to manage
storage provided by a vendor-storage system (SAN, Ceph, and the like). For the sake of

Networking

Neutron

Controller

Keystone

Chapter 5

Chapter 6 Chapter 7

Glance Horizon

Identity Image Dashboard

Networking StorageCompute

NovaNeutron Cinder

Compute

Chapter 8

Nova

Storage

Cinder

Figure 7.1 Deployment roadmap
Licensed to tracy moore <nordick.an@gmail.com>

197Deploying Block Storage prerequisites
simplicity, the examples in this book will use storage physically located on the storage
node, and no vendor-storage system will be introduced.

 Let’s get started!

7.1 Deploying Block Storage prerequisites
As is true of all chapters in this part of the book, this chapter walks you through man-
ually installing and configuring dependencies and core OpenStack packages.

PROCEED WITH CARE Working in a multi-node environment greatly increases
deployment complexity. A small, seemingly unrelated, mistake in the configu-
ration of one component or dependency can cause issues that are very hard to

Controller

Keystone Glance Horizon

Identity Image Dashboard

Networking

Public network:
10.33.2.0/24

Internal network:
192.168.0.0/24

StorageCompute

NovaNeutron Cinder

Networking StorageCompute

NovaNeutron Cinder

br-int

em2em1 em2

em2

em2

OVS KVM LVM

Client network

p2p1

br-int

br-ex

Storage node provides
and manages storage
resources for VMs.

Figure 7.2 Multi-node
architecture
Licensed to tracy moore <nordick.an@gmail.com>

198 CHAPTER 7 Walking through a Block Storage deployment
track down. Read each section carefully, making sure you understand what
you’re installing or configuring.

As usual, many of the examples in this chapter include a verification step, which I
highly recommended you follow. If a configuration can’t be verified, retrace your
steps to the last verified point and start over. This practice will save you a great deal of
frustration.

7.1.1 Preparing the environment

With the exception of the network configuration, environment preparation here will
be similar to the controller and network nodes you deployed in chapters 5 and 6. Fol-
low the instructions in the discussion and make sure you pay close attention to the
network interfaces and addresses in the configurations. It’s easy to make a typo and
often hard to track it down.

7.1.2 Configuring the network interface

You want to configure the network with two interfaces:

 Node interface—Traffic not directly related to OpenStack. This interface will be
used for administrative tasks like SSH console access, software updates, and even
node-level monitoring.

 Internal interface—Traffic related to OpenStack component-to-component com-
munication. This includes API and AMQP type traffic.

First, you’ll want to determine what interfaces exist on the system.

REVIEWING THE NETWORK

The following command will list the interfaces on your server.

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d4:52:0f
inet addr:10.33.2.62 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:520f/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:44205 errors:0 dropped:0 overruns:0 frame:0
TX packets:7863 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:55103938 (55.1 MB) TX bytes:832282 (832.2 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d4:52:10
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:38

Listing 7.1 List interfaces
Licensed to tracy moore <nordick.an@gmail.com>

199Deploying Block Storage prerequisites
You might have configured your node interface, em1, during the initial installation.
You’ll use the em1 interface to communicate with this node. Take a look at the other
interface, em2. On the example systems used in this book, interface em2 will be used
for internal OpenStack traffic.

 Next you’ll review the network configuration for the example nodes, and you’ll
configure controller interfaces.

CONFIGURING THE NETWORK

Under Ubuntu, the interface configuration is maintained in the /etc/network/inter-
faces file. We’ll build a working configuration based on the addresses italicized in
table 7.1.

In order to modify the network configuration, or any privileged configuration, you
must use sudo privileges (sudo vi /etc/network/interfaces). Any text editor can be
used in this process.

 Modify your interfaces file as shown here.

The loopback network interface
auto lo
iface lo inet loopback

The OpenStack Node Interface
auto em1
iface em1 inet static

address 10.33.2.62
netmask 255.255.255.0
network 10.33.2.0
broadcast 10.33.2.255

Table 7.1 Network address table

Node Function Interface IP address

controller Public interface/node address em1 10.33.2.50/24

controller OpenStack internal em2 192.168.0.50/24

network Node address em1 10.33.2.51/24

network OpenStack internal em2 192.168.0.51/24

network VM network p2p1 None: assigned to OpenStack
Networking

storage Node address em1 10.33.2.52/24

storage OpenStack internal em2 192.168.0.52/24

compute Node address em1 10.33.2.53/24

compute OpenStack internal em2 192.168.0.53/24

Listing 7.2 Modify interface file config /etc/network/interfaces

em1 interfaceB
Licensed to tracy moore <nordick.an@gmail.com>

200 CHAPTER 7 Walking through a Block Storage deployment
gateway 10.33.2.1
dns-nameservers 8.8.8.8
dns-search testco.com

The OpenStack Internal Interface
auto em2
iface em2 inet static

address 192.168.0.62
netmask 255.255.255.0

In your network configuration, the em1 interface B will be used for node administra-
tion, such as SSH sessions to the actual server. OpenStack shouldn’t use this interface
directly. The em2 interface C will be used primarily for AMQP and API traffic between
resource nodes and the controller.

You should now refresh the network interfaces for which the configuration was
changed. If you didn’t change the settings of your primary interface, you shouldn’t
experience an interruption. If you changed the address of the primary interface, it’s
recommended that you reboot the server at this point.

 If you’ve changed your network configuration, you can refresh the settings for a
particular interface, as shown here for interface em2.

sudo ifdown em2 && sudo ifup em2

The network configuration, from an operating system standpoint, should now be
active. The interface will automatically be brought online based on your configuration.
This process can be repeated for each interface that requires a configuration refresh.

 In order to confirm that the configuration was applied, you’ll once again need to
check your interfaces.

Listing 7.3 Refreshing Networking settings

em2 interfaceC

Why have a storage interface?
In practice, you want your storage traffic and VM network traffic isolated for many rea-
sons, not the least of which is performance. Unlike a physical server with a local disk,
the local volumes of these virtual machines are on other servers, and they use the
network to communicate. Although networks can be used for storage traffic, varia-
tions in network performance (latency, loss, and so forth) have far more impact on
storage networks than on VM networks. For example, a small delay in retrieving an
API response between OpenStack components might be negligible, but the same
delay could be crippling for an operating system attempting to retrieve pages
swapped from RAM to disk storage from a network-attached block volume.

For the sake of simplicity, the examples in this chapter don’t isolate storage and inter-
nal OpenStack traffic. In a production environment, this would not be recommended.
Licensed to tracy moore <nordick.an@gmail.com>

201Deploying Block Storage prerequisites

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d4:52:0f
inet addr:10.33.2.62 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:520f/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:44490 errors:0 dropped:0 overruns:0 frame:0
TX packets:8023 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:55134915 (55.1 MB) TX bytes:863478 (863.4 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d4:52:10
inet addr:192.168.0.62 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:5210/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:64 (64.0 B) TX bytes:532 (532.0 B)
Interrupt:38

At this point you should be able to remotely access the network server, and the server
should have internet access. The remainder of the installation can be performed
remotely using SSH or directly from the console.

7.1.3 Updating packages

As was mentioned in chapters 5 and 6, the APT package index is a database of all
available packages defined by a remote list found in the /etc/apt/sources.list file.
You’ll want to make sure the local database is synchronized with the latest packages
available in the repository for your specific Linux distribution. Prior to installation,
you should also upgrade any repository items, including the Linux kernel, that might
be out of date.

sudo apt-get -y update
sudo apt-get -y upgrade

You now need to reboot the server to refresh any packages or configurations that
might have changed.

sudo reboot

Listing 7.4 Check network for updates

Listing 7.5 Update and upgrade packages

Listing 7.6 Reboot server
Licensed to tracy moore <nordick.an@gmail.com>

202 CHAPTER 7 Walking through a Block Storage deployment
7.1.4 Installing and configuring the Logical Volume Manager

In this section, you’ll install a few software dependencies and make a few configura-
tion changes in preparation for the OpenStack component install.

 The Logical Volume Manager (LVM) is a volume manager for the Linux kernel. A
volume manager is simply a management layer that provides an abstraction between
the partitioning of physical devices and logical devices as they appear on the system
level. One can think of LVM in the same way as a hardware RAID adapter. LVM sits in
between the Linux kernel and the storage devices, providing a software layer for man-
aging storage volumes. This software layer provides several key benefits over using
storage devices directly:

 Resize volumes—Physical and virtual volumes can be used to expand and con-
tract an LVM volume.

 Snapshots—LVM can be used to create read/write snapshots (clones or copies)
of volumes.

 Thin provisioning—LVM volumes can be created that report a specific volume size
on the system level, but the storage isn’t actually allocated until it’s used. Thin
provisioning is a common technique for over-provisioning storage resources.

 Cache-enabled volumes—LVM volumes can be created that utilize SSD (fast) stor-
age for caching of slower volumes.

LVM IS NOT A STRICT OPENSTACK BLOCK STORAGE DEPENDENCY In the exam-
ples, you’ll be using raw storage (physical disk) attached to the same physical
node that’s running OpenStack Block Storage (Cinder). Cinder will be con-
figured to use a specific LVM volume, cinder-volumes. If Cinder was config-
ured to manage storage volumes on vendor-provided devices, you wouldn’t
have to configure LVM.

INSTALLING LVM
If you’re using the Ubuntu 14.04 operating system, you were given the option to man-
age your system disks using LVM during the install process. If you chose to use LVM dur-
ing this process, the following step is unnecessary, but harmless. However, if LVM wasn’t
installed, you should install it now.

$ sudo apt-get install lvm2
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

libdevmapper-event1.02.1 watershed
The following NEW packages will be installed:

libdevmapper-event1.02.1 lvm2 watershed
...

You now have the LVM tools installed and are ready to create LVM volumes.

Listing 7.7 Install LVM
Licensed to tracy moore <nordick.an@gmail.com>

203Deploying Block Storage prerequisites
USING LVM
In this section, you’ll identify physical devices you can use for storage and you’ll create
an LVM volume to be used by Cinder.

Most modern Linux distributions use udev (a dynamic device manager) for kernel
device management. On a system using udev, like our reference Ubuntu 14.04 system,
disk devices are listed and arranged by hardware path under /dev/disk/by-path. This
directory is shown in the following listing.

$ ls -la /dev/disk/by-path
pci-0000:03:00.0-scsi-0:2:2:0 -> ../../sda
pci-0000:03:00.0-scsi-0:2:2:0-part1 -> ../../sda1
pci-0000:03:00.0-scsi-0:2:2:0-part2 -> ../../sda2
pci-0000:03:00.0-scsi-0:2:2:0-part3 -> ../../sda3
pci-0000:03:00.0-scsi-0:2:3:0 -> ../../sdb
pci-0000:03:00.0-scsi-0:2:4:0 -> ../../sdc
pci-0000:03:00.0-scsi-0:2:5:0 -> ../../sdd

The listing shows four physical disk devices: sda, sdb, sdc, and sdd. You can see in the
listing that the sda volume has three partitions: sda1, sda2, and sda3. Although it isn’t
apparent from the listing, the physical device sda is being used as a system volume on
the reference storage node. The remaining devices, sdb, sdc, and sdd, will be used to
create an LVM volume.

Now that you know which disk devices you’re targeting, you can start working with
LVM.

Listing 7.8 List disk devices

Devices used in the examples
I expect you’ll be using dedicated nodes (physical or virtual) for the chapters 5
through 8 walkthroughs. If you have access to a resource configuration that matches
the reference architecture used in these chapters, things should just work. On the
other hand, if resources are limited (one disk, one network adapter, and so on) you
can make modifications to match your working environment.

The following examples work as well with one disk as they do with several. The exam-
ples can even be adapted to work with disk partitions instead of an entire disk.

Know your devices or risk data loss
Make sure you can identify the storage devices (drives) that you wish to target both
inside and outside the operating system. Most servers come with storage adapters
that are used to connect physical hard disks to the server. Storage adapters can be
used to simply present a raw disk to the operating system, or they can be used to pres-
ent multiple disks as a logical volume. As far as the operating system is concerned, a
physical disk and a logical disk look exactly the same (memory addressable storage),
Licensed to tracy moore <nordick.an@gmail.com>

204 CHAPTER 7 Walking through a Block Storage deployment
LVM relationships and commands
This is not a book on LVM, but you should have a basic understanding of LVM compo-
nents and commands before you start creating volumes.

 LVM is divided into three functional components:

 Physical volume—One or more partitions (or an entire device) on a physical
drive

 Volume group—One or more physical volumes representing one or more logical
volumes

 Logical volume—A volume reference contained within a volume group

There are many LVM tools and commands, but only those required for creating a vol-
ume usable by Cinder will be described here. The following commands are required
to create an LVM volume for use by Cinder:

 pvcreate <device> is used to create physical volumes from Linux storage
devices.

 pvscan is used to display a listing of physical volumes.
 pvdisplay is used to display physical volume attributes like size, state, and

system-level identifiers.
 vgcreate <name> <device> is used to assign physical volumes to a pool of stor-

age referenced by some <name>.

Physical volume operations
You’ll use the pvcreate volume to create a physical LVM device. This process creates a
volume-group descriptor at the start of the referenced disks.

 The following example shows how to create an LVM physical volume from three
Linux system devices: sdb, sdc, and sdd.

$ sudo pvcreate /dev/sdb /dev/sdc /dev/sdd
Physical volume "/dev/sdb" successfully created
Physical volume "/dev/sdc" successfully created
Physical volume "/dev/sdd" successfully created

Next, you’ll want to verify that your devices have been successfully created using the
pvscan command, as follows.

Listing 7.9 Using pvcreate to create a physical volume

(continued)
because the storage adapter abstracts this relationship. Storage adapters will report
SCSI ID information for physical and logical (such as RAID sets) disks. Listing 7.9
shows how you can match the SCSI ID, scsi-0:2:2:0, to the device mapping, sda, to
ensure you’re working with the appropriate disks.
Licensed to tracy moore <nordick.an@gmail.com>

205Deploying Block Storage prerequisites

$ sudo pvscan
PV /dev/sda3 VG storage-vg lvm2 [835.88 GiB / 24.00 MiB free]
PV /dev/sdb lvm2 [4.55 TiB]
PV /dev/sdc lvm2 [4.55 TiB]
PV /dev/sdd lvm2 [4.55 TiB]
Total: 4 [14.45 TiB] / in use: 1 [835.88 GiB] / in no VG: 3 [13.64 TiB]

The previous listing shows the physical volumes we just created, along with the sda vol-
ume that was shown in listing 7.9. The sda volume was created during the Linux
installation and has already been assigned to the storage-vg volume group.

 To get a closer look at the physical volumes, you can use the command pvdisplay.

$ sudo pvdisplay
--- Physical volume ---
PV Name /dev/sda3
VG Name storage-vg
PV Size 835.88 GiB / not usable 2.00 MiB
Allocatable yes
PE Size 4.00 MiB
Total PE 213986
Free PE 6
Allocated PE 213980
PV UUID XKAbeN-MI3p-kD9h-qHAS-ZXDZ-nzuh-echFIZ

"/dev/sdb" is a new physical volume of "4.55 TiB"
--- NEW Physical volume ---
PV Name /dev/sdb
VG Name
PV Size 4.55 TiB
Allocatable NO
PE Size 0
Total PE 0
Free PE 0
Allocated PE 0
PV UUID nUNvkZ-ggd7-8GA2-IS2n-7lxr-wk0W-qdUL84
...

LVM physical volumes have now been created from the system-level devices sdb, sdc,
and sdd. You can now move on to the next step, where you’ll work with volume groups.
OpenStack Block Storage (Cinder) will interface with LVM on the volume-group level.

Volume-group operations
The next step is to create a volume group. The volume group will simply be a pool of
storage consisting of the physical volumes you created in the previous step.

 Follow the steps in the next listing to create the new volume group with a group
name of cinder-volumes.

Listing 7.10 Using pvscan to verify physical volumes

Listing 7.11 Using pvdisplay to display physical volume attributes
Licensed to tracy moore <nordick.an@gmail.com>

206 CHAPTER 7 Walking through a Block Storage deployment

$ sudo vgcreate cinder-volumes /dev/sdb /dev/sdc /dev/sdd
Volume group "cinder-volumes" successfully created

Next, you’ll want to make sure your volume group was successfully created. If you
repeat the pvscan command demonstrated in listing 7.11, you’ll see that the physical
volumes have been assigned a volume group.

 Use the command vgdisplay to list all volume groups.

$ sudo vgdisplay
--- Volume group ---
VG Name cinder-volumes

...
VG Size 13.64 TiB
PE Size 4.00 MiB
Total PE 3575037
Alloc PE / Size 0 / 0
Free PE / Size 3575037 / 13.64 TiB
VG UUID 1On40i-fPAS-EsHf-WbH7-P6M5-1U0f-TcBrX2

--- Volume group ---
VG Name storage-vg

...

The listing shows the cinder-volumes volume group you just created, along with the
storage-vg volume group that was created during the operating system installation.

 OK. You’ve taken system-level devices and created LVM physical volumes. Next, you
assigned those physical volumes to a volume group named cinder-volumes. If you’ve
worked with LVM before, you might expect the next step to be creating a logical vol-
ume (creating a virtual volume from the cinder-volumes pool), but this isn’t the case.
Instead, Cinder will be configured to manage the cinder-volumes pool. Cinder will
create logical volumes as needed, based on VM requirements.

 Reboot the storage node. When the node comes back online, check that the vol-
ume group cinder-volumes is present, as demonstrated earlier in listing 7.14.

7.2 Deploying Cinder
Cinder provides an abstraction layer between block storage resources and Compute
services (Nova). Through the Cinder API, block volumes can be managed (created,
destroyed, assigned, and so on) without knowledge of the underlying resource that
provides the storage.

 Consider an organization that historically maintained separate groups to manage
storage and compute resources. In this scenario, the storage group could expose a
Cinder service to the compute group, for storage to be used by OpenStack Nova. In
other words, consumers of block storage services from Cinder require no information

Listing 7.12 Using vgcreate to create a volume group

Listing 7.13 Using vgdisplay to verify volume groups
Licensed to tracy moore <nordick.an@gmail.com>

207Deploying Cinder
regarding the underlying systems managing the backend storage. Cinder translates
the APIs of the underlying storage system to provide both storage resources and statis-
tical reporting related to storage. As with OpenStack Networking, underlying support
for backend storage subsystems is provided through vendor-based Cinder plug-ins.

 For each OpenStack release, a minimum set of features and statistical reports are
required for each plug-in. If plug-ins aren’t maintained between releases, and addi-
tional functions and reporting are required, they’re deprecated in subsequent
releases. The current list of minimum features and reports can be found in tables 7.2
and 7.3. The most current list of plug-in requirements can be found on the GitHub
repository: https://github.com/openstack/cinder/blob/master/doc/source/devref
/drivers.rst.

Table 7.2 Minimum features

Feature name Description

Volume create/delete Create or delete a volume for a VM on a backend storage system.

Volume attach/detach Attach or detach a volume to a VM on a backend storage system.

Snapshot create/delete Take a running snapshot of a volume on a backend storage system.

Volume from snapshot Create a new volume from a previous snapshot on a backend storage
system.

Get volume stats Report the statistics on a specific volume.

Image to volume Copy an image to a volume that can be used by a VM.

Volume to image Copy a volume used by a VM to a binary image.

Clone volume Clone one VM volume to another VM volume.

Extend volume Extend the size of a VM volume without destroying the data on the
existing volume.

Table 7.3 Minimum reporting statistics

Statistic name Example Description

driver_version 1.0a Version of the vendor-specific driver for the reporting
plug-in or driver.

free_capacity_gb 1000 Amount of free space in gigabytes. If unknown or infinite,
the keywords unknown or infinite are reported.

reserved_percentage 10 Percentage of how much space is reserved, which is
needed when volume extend is used.

storage_protocol iSCSI Reports the storage protocol: iSCSI, FC, NFS, and so on.

total_capacity_gb 102400 Amount of total capacity in gigabytes. If unknown or infi-
nite, the keywords unknown or infinite are reported.
Licensed to tracy moore <nordick.an@gmail.com>

208 CHAPTER 7 Walking through a Block Storage deployment
In the multi-node design presented in this book, the reference implementation plug-
in (LVM) will be used as the underlying storage subsystem. But there are many plug-
ins available for Cinder for many vendor platforms and technologies.

 In the next section, you’ll continue on with the Cinder deployment process. First,
you’ll install Cinder components, and then you’ll configure the components.

7.2.1 Installing Cinder

Unlike the multiple Neutron components you deployed in chapter 6, there’s only one
Cinder component to install and configure. You can install the cinder-volume com-
ponent as follows.

$ sudo apt-get install -y cinder-volume
[sudo] password for sysop:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

alembic cinder-common libboost-system1.54.0 libboost-thread1.54.0
...
Adding system user `cinder' (UID 105) ...
Adding new user `cinder' (UID 105) with group `cinder' ...
...
tgt start/running, process 3913

Although you only needed to reference cinder-volume during the install process, you
can see that this service has many dependencies. One of the fundamental dependen-
cies is the Linux Small Computer System Interface (SCSI) target framework (tgt).

 From the relationship of OpenStack and the Linux kernel, you can think of tgt
like Open vSwitch. Of course, on a functional level they accomplish very different
tasks, but they both bridge the gap between kernel-level and user-accessible functions.
Both of these frameworks are used by OpenStack plug-ins to accomplish system-level
tasks, without OpenStack having to work directly with the Linux kernel. It’s sufficient
to think of tgt as a Cinder helper.

 Now that the cinder-volume package has been installed and helper services have
been started, you can proceed with your Cinder configuration.

vendor_name Dell Name of the vendor that provides the backend storage
system.

volume_backend_name Equ_vol00 Name of the volume on the vendor back end. Needed for
statistical reporting and troubleshooting.

Listing 7.14 Install Cinder component

Table 7.3 Minimum reporting statistics (continued)

Statistic name Example Description
Licensed to tracy moore <nordick.an@gmail.com>

209Deploying Cinder

7.2.2 Configuring Cinder

The next step is configuration. First, you must modify the /etc/cinder/cinder.conf
file. You’ll define the service authentication, the management communication, the
storage helpers, and the name of the LVM volume group. The bold lines in the follow-
ing listing are the ones that need to be added or modified.

[DEFAULT]
...
iscsi_helper = tgtadm
volume_group = cinder-volumes
rpc_backend = cinder.openstack.common.rpc.impl_kombu
rabbit_host = 192.168.0.50
rabbit_password = openstack1

glance_host = 192.168.0.50

[database]
connection = mysql://cinder_dbu:openstack1@192.168.0.50/cinder

[keystone_authtoken]
auth_uri = http://10.33.2.50:35357/v2.0
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = cinder

The iscsi_helpertgtadm is part of the tgt framework discussed in section 7.2.1 B.
 You created the cinder-volumes volume group in the subsection “Using LVM.”

Now that you know both how to create new volume groups and where to configure
Cinder, you can use any name you like.

 Cinder will communicate with Glance directly over the OpenStack internal net-
work via 192.168.0.50 C, as defined in table 5.1. Images applied to VM volumes will be
applied from Glance to Cinder directly.

Listing 7.15 Modify /etc/cinder/cinder.conf

What is tgt?
Linux SCSI target framework (tgt) simplifies the process of integrating multi-protocol
SCSI targets in Linux environments. The following target drivers are supported:

 iSCSI (SCSI over IP)
 FCoE (Fibre Channel over Ethernet)
 iSER (iSCSI over RDMA, using Infiniband)

It’s worth noting that a tgt competitor, Linux-IO Target (http://linux-iscsi.org/),
claims that it superseded tgt as of the Linux 2.6.38 kernel, but OpenStack support
for this framework has not been updated since the OpenStack Grizzly release.

iscsi_helperB
cinder-volumes
volume group

Cinder and Glance
communicate via
192.168.0.50.

C

Licensed to tracy moore <nordick.an@gmail.com>

210 CHAPTER 7 Walking through a Block Storage deployment
 You have now installed Cinder and configured it to use the LVM pool you created
in an earlier section. Now continue on to the next section to verify your Cinder
deployment.

7.2.3 Restarting and verifying the Cinder agents

The final step is to restart the cinder-volume service to activate your new configura-
tion. In addition, you’ll need to restart the tgt helper service.

sudo service cinder-volume restart
cinder-volume stop/waiting
cinder-volume start/running, process 13822

sudo service tgt restart
tgt stop/waiting
tgt start/running, process 6955

You’ll want to check the Cinder log to make sure the service started successfully and
is listening for requests. The log can be found in the file /var/log/cinder/cinder-
volume.log.

Your cinder-volume log (at /var/log/upstart/cinder-volume.log) should look some-
thing like the following:

Starting cinder-volume node (version 2014.1.2)
Starting volume driver LVMISCSIDriver (2.0.0)
Updating volume status
Connected to AMQP server on 192.168.0.50:5672

Review the logs, checking for a connection to the AMQP (RabbitMQ) server, and
ensure there are no errors. The log files should exist even if they’re empty. If the logs
look fine, move on to the next section where you’ll test Cinder operations.

Listing 7.16 Restart Cinder

Restarts Cinder
volume service

Restarts tgt service

ERROR [-] No module named MySQLdb
If the error “[-] No module named MySQLdb” shows up in the cinder-volume.log, the
MySQL interface for Python wasn’t installed as a dependency on your system. Install
the python-mysqldb package to correct the issue:

$ sudo apt-get install python-mysqldb
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

libmysqlclient18 mysql-common

...
Licensed to tracy moore <nordick.an@gmail.com>

211Testing Cinder
7.3 Testing Cinder
Although you don’t yet have all the components deployed to test Cinder with a VM,
you can and should test some basic Cinder functionality. This section covers the cre-
ation of a volume using both the command-line tool and the Dashboard.

7.3.1 Create a Cinder volume: command line

First, you must install the Cinder command-line tools as follows.

sudo apt-get install -y python-cinderclient

The python-cinderclient package provides the cinder command-line application.
In order to use cinder, you must provide the application authentication credentials,
including an authentication location. One option is to set credential information as
part of your shell variables, and the other is to pass the information to the application
through command-line arguments. In order to provide details for the volume-
creation process, we’ll use command-line arguments in the examples.

 The following listing demonstrates how to list all Cinder volumes. Follow the
example, even though you know no volumes exist at this point. This step confirms that
you have a working client and service interaction.

$ cinder \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
list

+----+--------+--------------+------+-------------+----------+-------------+
| ID | Status | Display Name | Size | Volume Type | Bootable | Attached to |
+----+--------+--------------+------+-------------+----------+-------------+
+----+--------+--------------+------+-------------+----------+-------------+

If all worked properly, you should see output similar to that shown in the preceding list-
ing. If you experience an error, take a look at the Cinder log (/var/log/cinder/cinder-
volume.log) for any obvious problems.

 If all went well, you can create a volume as shown in the following listing.

$ cinder \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
create \

Listing 7.17 Install Cinder command-line tools

Listing 7.18 List Cinder volumes

Listing 7.19 Create Cinder volume
Licensed to tracy moore <nordick.an@gmail.com>

212 CHAPTER 7 Walking through a Block Storage deployment

Spec
volume

i

--display-name "My First Volume!" \
--display-description "Example Volume: OpenStack in Action" \
1
+---------------------+--------------------------------------+
| Property | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
created_at	2014-09-07T16:53:03.998340
display_description	Example Volume: OpenStack in Action
display_name	My First Volume!
encrypted	False
id	a595d38f-5f32-48e5-903b-9559ffda06b1
metadata	{}
size	1
snapshot_id	None
source_volid	None
status	creating
volume_type	None
+---------------------+--------------------------------------+

During volume creation, a volume name will be generated. This volume name will match
the name of the LVM logical volume provisioned on the system. Take a look in the
/var/log/cinder/cinder-volume.log file, and you should see entries resembling these:

cinder.volume.flows.manager.create_volume ... _create_raw_volume
..
'volume_name': u'volume-a595d38f-5f32-48e5-903b-9559ffda06b1'
..
cinder.volume.flows.manager.create_volume ... created successfully

In section 5.15.13 you created the cinder-volumes volume group, and in section 7.2.2
you configured Cinder to use the volume group you created. As part of the Cinder
volume-creation process, a logical volume was created from the cinder-volumes vol-
ume group. In the following listing, the logical volume command lvdisplay is used
to display the logical volumes on the storage node.

$ sudo lvdisplay
--- Logical volume ---

...
LV Name volume-a595d38f-5f32-48e5-903b-9559ffda06b1
VG Name cinder-volumes

...
LV Size 1.00 GiB

Listing 7.20 Display logical volumes

ifies
 size
n GB

Volume name = volume-a595d38f-5f32-48e5-903b-9559ffda06b1
Licensed to tracy moore <nordick.an@gmail.com>

213Testing Cinder
In the preceding listing, the LV Namevolume-a595d38f-5f32-48e5-903b-9559ffda06b1
matches the volume_name found in the Cinder volume create specification.

 For each Cinder volume that’s created, an LVM vol-
ume is created. Keeping this in mind, you can trace back
Cinder volume issues through the LVM and system lev-
els. In the next section, you’ll repeat this process using
the OpenStack Dashboard. Either method can be used,
but OpenStack administrators will often use the com-
mand line, and end users will choose the Dashboard. It’s
useful to understand both processes.

7.3.2 Create a Cinder volume: Dashboard

In chapter 5 you deployed the OpenStack Dashboard.
The Dashboard should now be available at http://
<controller address>/horizon/. Log in as admin with the
password openstack1.

 Once you’re logged in to the Dashboard, click Vol-
umes under the Project bar, as shown in figure 7.3.

 On the Volumes & Snapshots screen, click Create
Volume, shown in figure 7.4.

On the Create Volume screen, specify how you’d like your image created. In chapter 5
you added the Cirros 0.3.2 image to Glance. Unlike the previous command-line
example, figure 7.5 specifies that the Glance image Cirros 0.3.2 should be applied
to the volume. Click Create Volume when you’ve finished describing your volume.

Figure 7.4 Volumes & Snapshots screen

Figure 7.3 Dashboard toolbar
Licensed to tracy moore <nordick.an@gmail.com>

214 CHAPTER 7 Walking through a Block Storage deployment

Once you’ve submitted your volume for creation, you’ll be taken back to the Volumes &
Snapshots page. The volume-creation status will be updated on this page (see figure 7.6).

Figure 7.5 Create Volume screen

Figure 7.6 Volume-creation error
Licensed to tracy moore <nordick.an@gmail.com>

215Summary
Uh-oh! What happened? With the exception of specifying an image to be applied to
your volume, everything was exactly the same as in the command-line example. Where
did the error come from? You’d better take a look at the /var/log/cinder/cinder-
volume.log to see what’s going on:

ERROR cinder.volume.flows.manager.create_volume
…
is unacceptable: qemu-img is not installed and image is of type qcow2.

Only RAW images can be used if qemu-img is not installed.

The cinder-volume.log contains an ERROR that seems related to adding the image spec-
ification during volume creation. Install the qemu-utils package, which includes
tools for image conversion.

sudo apt-get install -y qemu-utils

The Cinder volume now has all the tools it needs to both create a volume and apply a
Glance image to the volume. Go back and follow the steps in this section again. The
volume-creation process with an image should now complete successfully. This proce-
dure tests both the Cinder and Glance services.

7.4 Summary
 A separate physical network will be used for storage traffic.
 There are many vendor plug-ins for many types of storage technologies.
 Logical Volume Manager (LVM) is the reference storage plug-in interface for

Cinder.
 Pools of LVM storage are used by Cinder to assign block volumes.
 The Linux SCSI target framework (tgt) is used as a helper by Cinder to assign

block volumes.
 Glance images can be applied to volumes by Cinder during creation.

Listing 7.21 Installing image-management tools
Licensed to tracy moore <nordick.an@gmail.com>

Walking through a
Compute deployment
In chapter 5 you deployed an OpenStack controller node, which provides the
server-side management of OpenStack services. In chapters 6 and 7, you deployed
standalone resource nodes for network and storage services.

 In this chapter, you’ll deploy another standalone resource node, and this one
will consume resources provided by the storage and network nodes. Later, in
chapter 8, you’ll walk through the deployment of OpenStack Compute services

This chapter covers
 Installing Open vSwitch (OVS) on a compute node

 Deploying OpenStack Networking components on an
OpenStack compute node

 Integrating OVS components with OpenStack Networking
on a compute node

 Setting up KVM as an OpenStack Compute hypervisor

 Integrating OpenStack Compute-supporting components
on a compute node
216

Licensed to tracy moore <nordick.an@gmail.com>

217
on a resource node. The overall multi-node architecture introduced in chapter 5 is
shown again in figure 8.1, with this chapter’s Compute components shown at the
lower middle.

Figure 8.2 shows your current progress on your way to a working manual deployment.
In this chapter, you’ll take the final step in your manual deployment—you’ll add com-
pute capabilities (hypervisor, network, and so on).

Controller

Keystone Glance Horizon

Identity Image Dashboard

Networking

Public network:
10.33.2.0/24

Internal network:
192.168.0.0/24

StorageCompute

NovaNeutron Cinder

Networking StorageCompute

NovaNeutron Cinder

br-int

em2em1 em2

em2

em2

OVS KVM LVM

Client network

p2p1

br-int

br-ex

Compute node provides
compute resources for VMs.
Code execution happens here.
VMs managed by OpenStack
live here.

Figure 8.1
Multi-node architecture
Licensed to tracy moore <nordick.an@gmail.com>

218 CHAPTER 8 Walking through a Compute deployment

First, you’ll prepare the server to function as a KVM hypervisor (virtual machine host),
and then you’ll configure OpenStack to manage your compute resources. The rela-
tionship between OVS from chapter 6, LVM from chapter 7, and KVM from chapter 8
with OpenStack components is similar. OpenStack serves as a management frame-
work for coordinating resource managers. In this chapter, OpenStack Compute
relates these resources to create VMs.

 If you’ve worked in virtual environments before, this chapter is unlikely to intro-
duce any fundamental concepts that will seem strange to you. In fact, if you’re used to
deploying virtual machine clusters, you’ll be familiar with the hypervisor steps pre-
sented in this chapter.

 This chapter is the last one standing between you and a manual OpenStack deploy-
ment. Follow the directions carefully, keeping in mind that OpenStack Compute
(Nova) depends on the services you installed in chapters 5 through 7. If you ran into
any errors with the services in those chapters, take the time to make sure the services
are working properly, as described in the corresponding chapters. If everything
appears to be running smoothly, you can get started with this final step in your manual
deployment.

Networking

Neutron

Controller

Keystone

Chapter 5

Chapter 6 Chapter 7

Glance Horizon

Identity Image Dashboard

Networking StorageCompute

NovaNeutron Cinder

Chapter 8

Storage

Cinder

Compute

Nova

Figure 8.2 Deployment roadmap
Licensed to tracy moore <nordick.an@gmail.com>

219Deploying Compute prerequisites
8.1 Deploying Compute prerequisites
As is true of all chapters in this part of the book, you're going to manually install and
configure dependencies and core OpenStack packages.

PROCEED WITH CARE Working in a multi-node environment greatly increases
deployment complexity. A small, seemingly unrelated mistake in the configu-
ration of one component or dependency can cause issues that are very hard
to track down. Read each section carefully, making sure you understand what
you’re installing or configuring.

Many of the examples in this chapter include a verification step, which I highly recom-
mended you follow. If a configuration can’t be verified, retrace your steps to the latest
verified point and start over. This practice will save you a great deal of frustration.

8.1.1 Preparing the environment

With the exception of the network configuration, environment preparation will be
similar to the controller nodes you deployed in chapters 5 through 7. Follow the
instructions in the discussion, and make sure you pay close attention to the network
interfaces and addresses in the configurations. It’s easy to make a typo and often hard
to track it down.

8.1.2 Configuring the network interface

You’ll configure the network with two interfaces:

 Node interface—Traffic not directly related to OpenStack. This interface will be
used for administrative tasks like SSH console access, software updates, and even
node-level monitoring.

 Internal interface—Traffic related to OpenStack component-to-component com-
munication. This includes API and AMQP type traffic.

Before you configure these new interfaces, though, you’ll want to determine what
interfaces already exist on the system.

REVIEWING THE NETWORK

To determine what interfaces exist on the system, use the following command.

$ ifconfig -a
em1 Link encap:Ethernet HWaddr b8:2a:72:d4:ff:88

inet addr:10.33.2.53 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:ff88/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:60708 errors:0 dropped:0 overruns:0 frame:0
TX packets:7142 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:54254314 (54.2 MB) TX bytes:962977 (962.9 KB)
Interrupt:35

Listing 8.1 List interfaces
Licensed to tracy moore <nordick.an@gmail.com>

220 CHAPTER 8 Walking through a Compute deployment
em2 Link encap:Ethernet HWaddr b8:2a:72:d4:ff:89
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:38

You might have configured your node interface, em1, during the initial installation.
You’ll use the em1 interface to communicate with this node. Take a look at the other
interface, em2. On the example systems used in this book, the interface em2 will be
used for internal OpenStack traffic.

 Next, you’ll review the network configuration for the example nodes and config-
ure controller interfaces.

CONFIGURING THE NETWORK

Under Ubuntu, the interface configuration is maintained in the /etc/network/inter-
faces file. In this chapter, we’ll build a working configuration based on the italicized
addresses in table 8.1.

In order to modify the network configuration, or any privileged configuration, you
must use sudo privileges (sudo vi /etc/network/interfaces). Any text editor can be
used in this process.

 Modify your interfaces file as follows.

The loopback network interface
auto lo
iface lo inet loopback

Table 8.1 Network address table

Node Function Interface IP Address

controller Pubic interface/node address em1 10.33.2.50/24

controller OpenStack internal em2 192.168.0.50/24

network Node address em1 10.33.2.51/24

network OpenStack internal em2 192.168.0.51/24

network VM network p2p1 None: Assigned to OpenStack
Networking

storage Node address em1 10.33.2.52/24

storage OpenStack internal em2 192.168.0.52/24

compute Node address em1 10.33.2.53/24

compute OpenStack internal em2 192.168.0.53/24

Listing 8.2 Modify interface config /etc/network/interfaces
Licensed to tracy moore <nordick.an@gmail.com>

221Deploying Compute prerequisites
The OpenStack Node Interface
auto em1
iface em1 inet static

address 10.33.2.53
netmask 255.255.255.0
network 10.33.2.0
broadcast 10.33.2.255
gateway 10.33.2.1
dns-nameservers 8.8.8.8
dns-search testco.com

The OpenStack Internal Interface
auto em2
iface em2 inet static

address 192.168.0.53
netmask 255.255.255.0

In your network configuration, the em1 interface B will be used for node administra-
tion, such as SSH sessions to the host server. OpenStack shouldn’t use this interface
directly. The em2 interface C will be used primarily for AMQP and API traffic between
resource nodes and the controller.

 You should now refresh the network interface settings for which the configuration
was changed. If you didn’t change the settings of your primary interface, you
shouldn’t experience an interruption. If you changed the address of the primary
interface, it’s recommended you reboot the server at this point.

 You can refresh the network configuration for a particular interface as in the fol-
lowing example for interface em2.

sudo ifdown em2 && sudo ifup em2

The network configuration, from an operating system standpoint, should now be
active. The interface will automatically be brought online based on your configura-
tion. This process can be repeated for each interface that requires a configuration
refresh.

 In order to confirm that the configuration was applied, you should once again
check your interfaces to see that your configuration is in place, as shown here.

$ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d4:ff:88
inet addr:10.33.2.53 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:ff88/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:61211 errors:0 dropped:0 overruns:0 frame:0
TX packets:7487 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:54305503 (54.3 MB) TX bytes:1027531 (1.0 MB)

Listing 8.3 Refreshing networking settings

Listing 8.4 Check network for updates

em1 interfaceB

em2 interfaceC
Licensed to tracy moore <nordick.an@gmail.com>

222 CHAPTER 8 Walking through a Compute deployment
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d4:ff:89
inet addr:192.168.0.53 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed4:ff89/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:256 (256.0 B) TX bytes:680 (680.0 B)
Interrupt:38

At this point you should be able to remotely access the network server, and the server
should have internet access. The remainder of the installation can be performed
remotely using SSH or directly from the console.

8.1.3 Updating packages

As explained in previous chapters, the APT package index is a database of all available
packages defined by a remote list found in the /etc/apt/sources.list file. You need to
make sure the local database is synchronized with the latest packages available in the
repository for your specific Linux distribution. Prior to installation, you should also
upgrade any repository items, including the Linux kernel, that might be out of date.

sudo apt-get -y update
sudo apt-get -y upgrade

You now need to reboot the server to refresh any packages or configurations that
might have changed.

sudo reboot

8.1.4 Software and configuration dependencies

In this section, you’ll install a few software dependencies and make a few configura-
tion changes in preparation for the OpenStack component install.

SERVER-TO-ROUTER CONFIGURATION

OpenStack manages resources used to provide virtual machines. One of those
resources is the network used by virtual machines to communicate with other virtual
and physical machines—you deployed OpenStack Networking in chapter 6. For
OpenStack Compute to use the resources provided by OpenStack Networking, you
must configure the Linux kernel to allow network traffic to be offloaded to Open-
Stack Networking.

Listing 8.5 Update and upgrade packages

Listing 8.6 Reboot server
Licensed to tracy moore <nordick.an@gmail.com>

223Deploying Compute prerequisites
 The sysctl command is used to modify kernel parameters, such as those related
to basic network functions. You’ll need to make several modifications to your kernel
settings using this tool.

 In chapter 6 you had to configure the OpenStack Network node to function as a
router and forward traffic between virtual and physical interfaces. For the OpenStack
compute node, you don’t have to make this configuration, because OpenStack Net-
working will be providing this service for you. But you still have to make configuration
changes to allow the Linux kernel to offload traffic-forwarding decisions.

 As discussed in chapter 6 (section “Server-to-router configuration”), reverse-path fil-
tering was introduced to limit the impact of DDOS attacks. By default, if the Linux ker-
nel can’t determine the source route of a packet, it will be dropped. You must
configure the kernel to disable reverse-path filtering, which leaves path management
up to OpenStack.

 Apply the following settings to your OpenStack compute node.

net.ipv4.conf.all.rp_filter=0

net.ipv4.conf.default.rp_filter=0

To enable the sysctl kernel changes without restarting the server, invoke the sysctl
-p command.

$ sudo sysctl -p
net.ipv4.conf.all.rp_filter = 0
net.ipv4.conf.default.rp_filter = 0

Reverse-path filtering should now be disabled on the kernel level.
 In the next section, you’ll add advanced network features to your node with the

Open vSwitch package.

8.1.5 Installing Open vSwitch

OpenStack Compute takes advantage of the open source distributed virtual switching
package Open vSwitch (OVS). OVS provides the same data-switching functions as a
physical switch (L2 traffic on port A destined to port B is switched on port B), but it
runs in software on servers. OVS will also be used to tunnel traffic from OpenStack
compute nodes to OpenStack network nodes for routing and other L3 services. From
a network-switching standpoint, the examples in this book make exclusive use of the
OVS switching platform. For more on how switches work, see the sidebar “What does a
switch do?” in section 5.11.9.

 At this point you have a server that can act like a switch (via Linux network
bridging). You’ll now add advanced switching capabilities to your server through the

Listing 8.7 Modify /etc/sysctl.conf

Listing 8.8 Execute sysctl command

Disables reverse-path filtering for all existing interfaces
Disables reverse-path filtering for all future interfaces
Licensed to tracy moore <nordick.an@gmail.com>

224 CHAPTER 8 Walking through a Compute deployment
installation of OVS. The switching features provided by OVS rival offerings provided
by standalone network vendors.

 You can now turn your server into an advanced switch by starting with the follow-
ing command.

$ sudo apt-get -y install openvswitch-switch
...
Setting up openvswitch-common ...
Setting up openvswitch-switch ...
openvswitch-switch start/running

The Open vSwitch install process will install a new OVS kernel module. In addition,
the OVS kernel module will reference and load additional kernel models (GRE,
VXLAN, and others) as necessary to build network overlays.

 You want to be absolutely sure the OVS kernel modules were loaded. Using the
lsmod command, confirm the presence of OVS kernel modules.

$ sudo lsmod | grep openvswitch
Module Size Used by
openvswitch 66901 0
gre 13796 1 openvswitch
vxlan 37619 1 openvswitch
libcrc32c 12644 1 openvswitch

The output of the lsmod command should show several resident modules related to
OVS:

 openvswitch is the OVS module itself. This module provides the interface
between the kernel and OVS services.

 gre, used by the openvswitch module, enables GRE functionality on the kernel
level.

 vxlan, like the gre module, is used to provide VXLAN functions on the kernel
level.

 libcrc32c provides kernel-level support for cyclic redundancy check (CRC)
algorithms, including hardware offloading using Intel’s CRC32C CPU instruc-
tions. Hardware offloading is important for the high-performance calculation
of network flow hashes and other CRC functions common to network headers
and data frames.

GRE and VXLAN support on the kernel level means that the transports used to create
overlay networks are understood by the system kernel, and by extension the Linux
network subsystem.

 If you think the kernel module should have loaded, but you still don’t see it,
restart the system and see if it loads then. You should also take a look at the sidebar in

Listing 8.9 Install OVS

Listing 8.10 Verify OVS kernel modules
Licensed to tracy moore <nordick.an@gmail.com>

225Deploying Compute prerequisites
section 5.11.9, “No Modules? DKMS to the Rescue!” Additionally, you can try to load
the kernel module with the command modprobe openvswitch. Check the kernel log,
/var/log/kern/log, for any errors related to loading OVS kernel modules. OVS won’t
function for your purposes without the appropriate resident kernel modules.

8.1.6 Configuring Open vSwitch

You now need to add an internal br-int OVS bridge.
 The br-int bridge interface will be used for communication within Neutron-

managed networks. Virtual machines communicating within internal networks cre-
ated by OpenStack Neutron (not to be confused with the Internal interface on the
operating-system level) will use this bridge for communication.

sudo ovs-vsctl add-br br-int

You’ll also want to confirm that the bridge was successfully added to OVS and that it’s
visible to the underlying networking subsystem.

sudo ovs-vsctl show
ff149266-a259-4baa-9744-60e7680b928d

Bridge br-int
Port br-int

Interface br-int
type: internal

ovs_version: "2.0.2"

Now that you’ve confirmed that br-int is configured in OVS, make sure you see the
bridge interface on the OS level.

$ ifconfig -a

br-int
Link encap:Ethernet HWaddr c6:6a:73:f4:5f:41

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

...
em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3

inet addr:10.33.2.53 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:13483 errors:0 dropped:0 overruns:0 frame:0
TX packets:2763 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

Listing 8.11 Configure internal OVS bridge

Listing 8.12 Show OVS configuration

Listing 8.13 Verify OVS OS integration

br-int bridgeB
Licensed to tracy moore <nordick.an@gmail.com>

226 CHAPTER 8 Walking through a Compute deployment
RX bytes:12625608 (12.6 MB) TX bytes:424893 (424.8 KB)
Interrupt:35

...
ovs-system
Link encap:Ethernet HWaddr 96:90:8d:92:19:ab

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Notice the addition of the bridge br-int in your interface list B. This new bridge will
be used by OVS and the Neutron OVS module for internal and external traffic. In
addition, the ovs-system interface was added C. This is the OVS datapath interface,
but you won’t have to worry about working with this interface; it’s simply an artifact of
Linux kernel integration. However, the presence of this interface is an indication that
the OVS kernel modules are active.

 You now have an operational OVS deployment and a bridge. As explained in chap-
ter 6, the internal br-int bridge will be used by Neutron to attach virtual interfaces to
the network bridge; the virtual interfaces will be used as endpoints for GRE tunnels
between network and compute nodes. The internal bridge will not need to be associ-
ated with a physical interface or be placed in an OS-level UP state to work.

 Recall creating the br-ex OVS bridge in chapter 6. This bridge was used to inter-
face OVS and, by relation, OpenStack Networking with a physical (external) interface
and network. This step isn’t needed with an OpenStack compute node because exter-
nal traffic (traffic not destined for the originating node) will be sent to OpenStack
Network.

 You’re now ready to configure the hypervisor on your OpenStack compute node.

8.2 Installing a hypervisor
As previously discussed, there are several choices for hypervisors and even containers
under OpenStack. Due to its popularity, we’ll use the KVM hypervisor. After the initial
install, KVM will be managed by Nova, Neutron, and Cinder.

8.2.1 Verifying your host as a hypervisor platform

You first need to confirm that CPU virtualization extensions are available and enabled
on your hardware. There’s a nice utility called cpu-checker that will check the status of
extensions that can be used by KVM. You’ll want to use this utility to verify your plat-
form as a hypervisor host.

$ sudo apt-get install cpu-checker
...
Setting up cpu-checker (0.7-0ubuntu1) ...
...

Listing 8.14 Verify processor virtualization extensions

ovs-system interfaceC
Licensed to tracy moore <nordick.an@gmail.com>

227Installing a hypervisor
$ sudo kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used

VIRTUAL HARDWARE EXTENSIONS The hardware assistance provided by virtual-
ization extensions enables fully isolated virtual machines to perform at near
native speeds for many workloads. Without extensions, the CPU-intensive
functions of the hypervisor must be performed in software, which greatly
reduces the performance of the overall system. Using hardware for Open-
Stack Compute that’s not capable of KVM acceleration isn’t recommended.

If you receive the message “INFO: Your CPU does not support KVM extensions,” you
can still run OpenStack, but hypervisor performance will be very poor. Virtualization
extensions provide hardware assistance to the hypervisor for processor migration, pri-
ority, and memory handling.

 If you receive the message “KVM acceleration can NOT be used,” without the previ-
ous warning, your processor likely supports virtualization extensions, but the exten-
sions might not be enabled in the BIOS. Confirm that your processor model supports
extensions and check your BIOS setting for virtualization extensions.

In the next step, you’ll install the KVM and Libvirt packages.

8.2.2 Using KVM

Before you install KVM, you should quickly review the components that will be
installed:

 Libvirt—This is a management layer used to control several hypervisors from
the OS and API layers.

 QEMU (Quick Emulator)—QEMU is a complete hardware virtualization platform
(a host monitor). Complete virtualization means QEMU can emulate, in
software, devices and even processors across several supported architectural
platforms.

 KVM (Kernel-based Virtual Machine)—KVM itself doesn’t perform emulation of
hardware. KVM is a Linux kernel module that interfaces directly with processor-
specific virtualization extensions to expose a standard \dev\kvm device. This

Checking processor extensions
Another method for determining hardware acceleration capabilities is to check the
processor extensions as reported by the Linux kernel. Use the following command:

egrep -c '(vmx|svm)' /proc/cpuinfo

If the result of this command is greater than 0, your hardware supports acceleration.

This method is listed in the OpenStack documentation.
Licensed to tracy moore <nordick.an@gmail.com>

228 CHAPTER 8 Walking through a Compute deployment
device is used by a host monitor, like QEMU, for hardware offloading of emula-
tion functions.

WHAT IS KVM? When you hear someone say they’re running KVM, what’s
really happening is that they’re using KVM for virtualization-specific hardware
offloading and leveraging QEMU for device emulation. When KVM extensions
aren’t available, QEMU will fall back to software emulation, which, although
it’s much slower, will work.

Unless specified, I’ll refer to the Libvirt, QEMU, and KVM suite of software collectively
as KVM.

INSTALLING THE KVM SOFTWARE

You’ll now install KVM and its related packages using apt-get.

$ sudo apt-get -y install qemu-kvm libvirt-bin
...
libvirt-bin start/running, process 13369
Setting up libvirt-bin dnsmasq configuration.
Setting up qemu-kvm (2.0.0+dfsg-2ubuntu1.3) ...

KVM should now be installed on the system, and the kernel modules should be
loaded.

VERIFYING ACTIVE KVM KERNEL MODULES

Now that the KVM suite has been installed, you must verify that the Intel- or AMD-
specific kernel module is loaded. If the KVM extension module isn’t loaded, QEMU
will fall back to software, and performance will be degraded.

$sudo lsmod|grep kvm
kvm_intel 132891 0
kvm 443165 1 kvm_intel

If you don’t see either kvm_intel or kvm_amd listed, the processor-specific KVM exten-
sions module wasn’t loaded.

LOADING THE KVM EXTENSION MODULE

With any luck, you can skip over this section. But if the KVM module was missing from
your output from the previous listing, this is what you should do.

$ sudo modprobe -r kvm_intel
$ sudo modprobe -r kvm
$ sudo modprobe -v kvm_intel
insmod /lib/modules/<kernel version>/kernel/arch/x86/kvm/kvm.ko
insmod /lib/modules/<kernel version>/kernel/arch/x86/kvm/kvm-intel.ko nested=1

Listing 8.15 Install KVM software

Listing 8.16 Verify KVM acceleration

Listing 8.17 Unload and reload KVM kernel extensions

Use kvm_amd if you’re
using AMD processors.
Licensed to tracy moore <nordick.an@gmail.com>

229Installing Neutron on Compute nodes
VERIFYING KVM-ACCELERATED QEMU ENVIRONMENT

You can now check to make sure you have a functional KVM-accelerated QEMU envi-
ronment.

$ sudo virsh --connect qemu:///system capabilities

<capabilities>

<host>
<uuid>44454c4c-5700-1035-8057-b8c04f583132</uuid>
<cpu>

<arch>x86_64</arch>
<model>SandyBridge</model>
<vendor>Intel</vendor>

...
<domain type='kvm'>

<emulator>/usr/bin/kvm-spice</emulator>
...
</capabilities>

If you experience errors connecting, such as “Error: Failed to connect socket to
/var/run/libvirt/libvirt-sock,” reboot the server. If a reboot doesn’t solve the prob-
lem, check the libvirtd log, which is found at /var/log/libvirt/libvirtd.conf. The
libvirtd service depends on the dubs service, which might need to be restarted.

 If problems persist, check the syslog for possible failed dependencies.

CLEANING UP THE KVM NETWORK

Because you’ll be using OpenStack Networking (Neutron) to manage the network,
you’ll want to remove the default network bridge automatically created during the
KVM install.

$sudo virsh net-destroy default
Network default destroyed

$ sudo virsh net-undefine default
Network default has been undefined

You now have a KVM hardware-accelerated QEMU environment with API-level support
provided by Libvirt. OpenStack Compute (Nova) will use these software stack compo-
nents to operate the Compute environment.

8.3 Installing Neutron on Compute nodes
In this section, you’ll install and configure Neutron components for a compute node.
The steps involved will be a subset of what you performed in section 6.2. For an Open-
Stack compute node, you only need to install and configure packages related to the
ML2 plug-in and OVS agent. The OpenStack network nodes will take care of the rest.

Listing 8.18 Verify libvirt/qemu/kvm availability

Listing 8.19 Remove KVM default virtual bridge
Licensed to tracy moore <nordick.an@gmail.com>

230 CHAPTER 8 Walking through a Compute deployment
8.3.1 Installing the Neutron software

Install the Neutron software packages with apt-get as follows.

$ sudo apt-get -y install neutron-common \
neutron-plugin-ml2 neutron-plugin-openvswitch-agent

...
Setting up neutron-common (1:2014.1.2-0ubuntu1.1) ...
Adding system user `neutron' (UID 108) ...
Adding new user `neutron' (UID 108) with group `neutron' ...
Not creating home directory `/var/lib/neutron'.
Setting up neutron-plugin-ml2 (1:2014.1.2-0ubuntu1.1) ...
Setting up neutron-plugin-openvswitch-agent (1:2014.1.2-0ubuntu1.1) ...

8.3.2 Configuring Neutron

The next step is configuration. First, you must modify the /etc/neutron/neutron
.conf file. You’ll define the service authentication, management communication, core
network plug-in, and service strategies. In addition, you’ll provide configuration and
credentials to allow the Neutron client instance to communicate with the Neutron
controller, which you deployed in chapter 5.

[DEFAULT]
verbose = True
auth_strategy = keystone

rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = 192.168.0.50
rabbit_password = openstack1

core_plugin = neutron.plugins.ml2.plugin.Ml2Plugin
allow_overlapping_ips = True
service_plugins = router,firewall,lbaas,vpnaas,metering

[keystone_authtoken]
auth_url = http://10.33.2.50:35357/v2.0
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = neutron

[database]
connection = mysql://neutron_dbu:openstack1@192.168.0.50/neutron

Now that the core Neutron components are configured, you must configure the Neu-
tron ML2 plug-in, which will provide integration with OVS and L2 services.

Listing 8.20 Install Neutron Software

Listing 8.21 Modify /etc/neutron/neutron.conf
Licensed to tracy moore <nordick.an@gmail.com>

231Installing Nova on compute nodes
8.3.3 Configuring the Neutron ML2 plug-in

The Neutron OVS agent allows Neutron to control the OVS switch.
 The Neutron configuration can be made in the file /etc/neutron/plugins/ml2

/ml2_conf.ini. We’ll provide database information, along with the ML2-specific switch
configuration.

[ml2]
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ovs]
local_ip = 192.168.0.53
tunnel_type = gre
enable_tunneling = True

[securitygroup]
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

The Neutron ML2 plug-in configuration is now complete.
 Clear the log file, and then restart the service:

sudo rm /var/log/neutron/openvswitch-agent.log
sudo service neutron-plugin-openvswitch-agent restart

Your Neutron ML2 plug-in agent log should look something like this:

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
Agent initialized
successfully, now running...

You now have OSI L2 Neutron integration using OVS. No other OpenStack Network-
ing configuration is required for the OpenStack Compute node. In the next section,
you’ll install Nova-specific packages.

8.4 Installing Nova on compute nodes
In this section, you’ll install and configure Nova components on a compute node.
Nova components not only control the KVM hypervisor, they also pull together other
OpenStack services to coordinate the resources required to launch VM instances.

8.4.1 Installing the Nova software

Install the Nova software components using apt-get as follows.

Listing 8.22 Modify /etc/neutron/plugins/ml2/ml2_conf.ini
Licensed to tracy moore <nordick.an@gmail.com>

232 CHAPTER 8 Walking through a Compute deployment

$ sudo -y apt-get install nova-compute-kvm
...
Adding user `nova' to group `libvirtd' ...
Adding user nova to group libvirtd
Done.
Setting up nova-compute-kvm (1:2014.1.2-0ubuntu1.1) ...
Setting up nova-compute (1:2014.1.2-0ubuntu1.1) ...

You now have all of the Nova software components installed on your compute node.

8.4.2 Configuring core Nova components

The next configuration is one of the most critical of the install. You’ll add configura-
tion to the /etc/nova/nova.conf file, which will reference the other core OpenStack
services. Add the following configuration to the existing file.

[DEFAULT]
auth_strategy = keystone

rpc_backend = rabbit
rabbit_host = 192.168.0.50
rabbit_password = openstack1

my_ip = 192.168.0.5
vnc_enabled = True
vncserver_listen = 0.0.0.0
vncserver_proxyclient_address = 192.168.0.53
novncproxy_base_url = http://10.33.2.50:6080/vnc_auto.html

neutron_region_name = RegionOne
auth_strategy=keystone

network_api_class = nova.network.neutronv2.api.API
neutron_url = http://192.168.0.50:9696
neutron_auth_strategy = keystone
neutron_admin_tenant_name = service
neutron_admin_username = neutron
neutron_admin_password = openstack1
neutron_admin_auth_url = http://192.168.0.50:35357/v2.0
linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
security_group_api = neutron

neutron_metadata_proxy_shared_secret = openstack1
service_neutron_metadata_proxy = true

glance_host = 192.168.0.50

[libvirt]
virt_type = kvm

[database]
connection = mysql://nova_dbu:openstack1@192.168.0.50/nova

Listing 8.23 Install Nova Compute software

Listing 8.24 Modify /etc/nova/nova.conf

Address of compute node

Address of compute
node proxy

URL of Neutron controller
Licensed to tracy moore <nordick.an@gmail.com>

233Installing Nova on compute nodes
[keystone_authtoken]
auth_url = http://10.33.2.50:35357/v2.
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = nova

Your Nova configuration is now complete. Clear the log file, and then restart the service:

sudo rm /var/log/nova/nova-compute.log
sudo service nova-compute restart

Your Nova compute log should look something like the following:

Connected to AMQP server on 192.168.0.50:5672
Starting compute node (version 2014.1.2)
Auditing locally available compute resources
Free ram (MB): 96127
Free disk (GB): 454
Free VCPUS: 40
Compute_service record updated for compute:compute.testco.com

You now have a working nova-compute service. No other OpenStack Compute config-
uration is required for this node.

 In the next section, you’ll validate the configuration.

8.4.3 Checking Horizon

In chapter 5 you deployed the OpenStack Dashboard. The Dashboard should be avail-
able at http://<public controller address>/horizon/. Log in as admin with the pass-
word openstack1 and make sure OpenStack Compute components are reported in
the Dashboard.

 Once you’re logged in to the Dashboard, select the Admin tab on the left toolbar. Next,
click System Info and look under the Compute Services tab, which should look similar to
figure 8.3. Notice the addition of the nova-compute service on the compute host.

URL of Keystone service

Figure 8.3 Dashboard
system info
Licensed to tracy moore <nordick.an@gmail.com>

234 CHAPTER 8 Walking through a Compute deployment
Now, once again from the Admin tab, click Hypervisors. Your Hypervisors screen
should look like the one in figure 8.4.

 The compute node you added in the previous section should show up under the
listed hypervisors. In figure 8.4, the compute node with the name compute is shown.
The steps in this chapter can be repeated to add additional OpenStack compute
nodes to your manual deployment; of course, you’ll need to modify the network
addresses, but other than that the process will be the same.

 There are several core and many incubated OpenStack components that weren’t
covered in this part of the book, but with your knowledge of the framework you
should be well equipped to explore additional components and perhaps even contrib-
ute your own.

 If things appear to be working as expected, you can continue on to the next sec-
tion, where you’ll test your completed deployment.

8.5 Testing Nova
You’ve now installed all the OpenStack components required to create a VM. This sec-
tion covers the creation of an instance using the command-line tool.

8.5.1 Creating an instance (VM): command line

In order to use nova, you must provide the application authentication credentials,
including an authentication location. One option is to set credential information as
part of your shell variables, and the other is to pass the information to the application
through command-line arguments. In order to provide details for the instance cre-
ation process, we’ll use command-line arguments in the examples.

 The following listing demonstrates how you can list all Nova instances for the
admin tenant. Follow the example, even though you know no instances exist at this
point. This step confirms that you have a working client and service interaction.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
list

Listing 8.25 List Nova instances

Figure 8.4 Dashboard hypervisor summary
Licensed to tracy moore <nordick.an@gmail.com>

235Testing Nova
+----+------+--------+------------+-------------+----------+
| ID | Name | Status | Task State | Power State | Networks |
+----+------+--------+------------+-------------+----------+
+----+------+--------+------------+-------------+----------+

If all worked properly, you should see output similar to that shown in the listing. If you
experience an error, take a look at the Nova log (/var/log/nova/nova-compute.log)
for any obvious problems.

 The nova command for creating an instance is nova boot. To create a Nova
instance, you’ll need to provide a minimum of four arguments:

 flavor—The size of the instance.
 image—The ID of an image to be applied to the volume used by the instance.

This image should contain an operating system that the instance will use to
boot.

 nic net-id—The network ID of the network you want the instance connected
to.

 <instance name>—The name you want to use for the instance.

The next three listings show what options are available for the first three arguments.
First, the Nova flavors.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
flavor-list
+----+-----------+-----------+------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral |
+----+-----------+-----------+------+-----------+
1	m1.tiny	512	1	0
2	m1.small	2048	20	0
3	m1.medium	4096	40	0
4	m1.large	8192	80	0
5	m1.xlarge	16384	160	0
+----+-----------+-----------+------+-----------+

Select a flavor based on the defined instance size. In this example, we’ll use the
m1.medium flavor, which has a flavor ID of 3.

 Next, you can find an image to apply to the instance.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \

Listing 8.26 List Nova flavors

Listing 8.27 List Nova images
Licensed to tracy moore <nordick.an@gmail.com>

236 CHAPTER 8 Walking through a Compute deployment
--os-auth-url http://10.33.2.50:35357/v2.0 \
image-list
+--------------------------------------+--------------+--------+
| ID | Name | Status |
+--------------------------------------+--------------+--------+
| e02a73ef-ba28-453a-9fa3-fb63c1a5b15c | Cirros 0.3.2 | ACTIVE |
+--------------------------------------+--------------+--------+

Here you see only one image—the image that you uploaded in chapter 6 during the
Glance installation. You’ll need to reference the image ID e02a73ef-ba28-453a-9fa3-
fb63c1a5b15c when booting your instance.

 Next, you can list the Nova networks.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
net-list
+--------------------------------------+------------------+
| ID | Label |
+--------------------------------------+------------------+
| 5b04a1f2-1676-4f1e-a265-adddc5c589b8 | INTERNAL_NETWORK |
| 64d44339-15a4-4231-95cc-ee04bffbc459 | PUBLIC_NETWORK |
+--------------------------------------+------------------+

Here you see two networks, the internal and public networks. For this example, we’ll
use the INTERNAL_NETWORK, which will be referenced by the network ID 5b04a1f2-
1676-4f1e-a265-adddc5c589b8.

 Now that you’ve selected your arguments, you’re ready to create an instance.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
boot \
--flavor 3 \
--image e02a73ef-ba28-453a-9fa3-fb63c1a5b15c \
--nic net-id=5b04a1f2-1676-4f1e-a265-adddc5c589b8 \
MyVM
+--------------------------------------+-----------|
| Property | Value |
+--------------------------------------+-----------|
...
| OS-EXT-STS:vm_state | building |
...
| name | MyVM |
...

Listing 8.28 List Nova networks

Listing 8.29 Create VM instance
Licensed to tracy moore <nordick.an@gmail.com>

237Testing Nova
Your vm_state instance property should now be in the building state. List your
instances again.

$ nova \
--os-username admin \
--os-password openstack1 \
--os-tenant-name admin \
--os-auth-url http://10.33.2.50:35357/v2.0 \
list
+--------+------+--------+-------------+------------------------------+
| ID | Name | Status | Power State | Networks |
+--------+------+--------+-------------+------------------------------+
| 82..3f | MyVM | ACTIVE | Running | INTERNAL_NETWORK=172.16.0.23 |
+--------+------+--------+-------------+------------------------------+

With any luck, your instance will now be active with a network assigned. If your status
is ERROR, or if the instance hangs in a SPAWNING state for more than a few minutes, take
a look at the Nova log (/var/log/nova/nova-compute.log). If there are no apparent
errors in the Nova log, start looking at the controller logs.

 Assuming all went well, congratulations! You’ve successfully completed a manual
deployment of OpenStack. You can review chapter 3 to remind yourself about basic
OpenStack operations for your new deployment, creating new tenants, and creating
new networks.

Through this component-level deployment, you gained a deeper understanding of
the OpenStack Framework and its related dependencies. But keep in mind that the
process you followed in this book was intended to teach you the framework; it doesn’t
serve as a best-practice reference. We’ll discuss production deployments of OpenStack
in the third and final part of this book.

Listing 8.30 List Nova instances

Want to try a newer version of OpenStack?
As previously mentioned, Ubuntu 14.04 uses the Icehouse release of OpenStack
by default. But by using the Ubuntu CloudArchive (https://wiki.ubuntu.com/
ServerTeam/CloudArchive), you can install back-ported distributions of OpenStack on
older Ubuntu releases.

The examples presented in this book might or might not work with newer versions of
OpenStack, but now that you’ve gone through the deployment process yourself,
you’re certainly in a better position to troubleshoot upgrade-induced problems.
Licensed to tracy moore <nordick.an@gmail.com>

238 CHAPTER 8 Walking through a Compute deployment
8.6 Summary
 OpenStack Compute consumes remote network resources from Neutron, vol-

ume resources from Cinder, image resources from Glance, and hypervisor
resources from local compute resources to provide VMs.

 On compute nodes, VM network traffic doesn’t access external (outside Open-
Stack) networks directly from the compute node.

 Compute nodes function as switches for their own traffic.
 Open vSwitch can be used to enable advanced switching features on a typical

server.
 OpenStack Compute uses OpenStack Networking to provide OSI L2 and L3

services.
 OpenStack Compute communicates with OpenStack Networking through over-

lay networks.
 OpenStack Compute VMs communicate with other OpenStack Compute VMs

through overlay networks.
 Overlay networks use GRE, VXLAN, and other tunnels to connect endpoints like

VMs and other OpenStack Networking services.
 Cinder is used to provide VM volume storage.
 Glance is used to provide images for VM volumes.
 KVM can be used as an OpenStack Compute hypervisor.
 Ensuring hardware acceleration support for KVM is critical for good performance.
Licensed to tracy moore <nordick.an@gmail.com>

Part 3

Building a production
environment

The third and final part of this book covers topics related to deploying and
utilizing OpenStack in production environments—specifically, enterprise envi-
ronments where the typical systems administrator might take care of a wide vari-
ety of both infrastructure and applications. In enterprise environments, systems
engineers often drive infrastructure design, deployment, and adoption. The
chapters contained in this part of the book are intended to help you develop a
successful OpenStack deployment for your environment.
Licensed to tracy moore <nordick.an@gmail.com>

Licensed to tracy moore <nordick.an@gmail.com>

Architecting
your OpenStack
In the first part of this book, you dipped your toes into OpenStack through the use
of DevStack. The purpose of that part was to introduce you to the hows and whys of
OpenStack and to pique your interest in a deeper understanding of how things
work under the covers.

 In the second part of the book, you undertook a manual deployment of several
core OpenStack components. Although it’s important that you understand the
underlying component interactions that make up OpenStack, the second part of
the book isn’t a blueprint for OpenStack deployment. This level of understanding
builds confidence in the underlying system through low-level exposure to the com-
ponents and configurations, but isn’t intended to encourage you to manually
install components in a production environment.

This chapter covers
 Using OpenStack to replace existing virtual server

platforms

 Why you should build a private cloud

 Choices to make when building your private cloud
241

Licensed to tracy moore <nordick.an@gmail.com>

242 CHAPTER 9 Architecting your OpenStack
 This third and final part of the book covers topics related to deploying and utiliz-
ing OpenStack in production environments, specifically enterprise environments
where the typical systems administrator might take care of a wide variety of both infra-
structure and applications. Often in enterprise environments, systems engineers drive
infrastructure design, deployment, and adoption. The chapters in this part of the
book are intended to help you develop a successful OpenStack deployment for your
environment.

 This chapter covers decisions—architectural, financial, and operational—that
you’ll need to make as you plan your deployment. This chapter isn’t a cookbook, but
rather a starting reference for use when developing a successful architecture. For a
prescriptive approach to developing your architecture, consult the “OpenStack Archi-
tecture Design Guide” (http://docs.openstack.org/arch-design). Once you determine
the type of OpenStack deployment that’s right for you, the online design guide can be
a valuable asset for configuration and sizing.

 Many enterprise systems people will approach OpenStack from the perspective of
traditional virtual and physical infrastructure platforms. We’ll first discuss using Open-
Stack as a replacement for existing virtual server platforms, covering strategic design
choices that you need to make to get the most out of your OpenStack deployment.

9.1 Replacement of existing virtual server platforms
In the 2015 Gartner report “Magic Quadrant for x86 Server Virtualization Infrastruc-
ture,” it was estimated that 75% of x86 workloads were virtualized, with VMware as the
predominate enterprise vendor.1 This section covers how OpenStack can be used as
either a replacement for or augmentation of your existing VM environment. In addi-
tion, the section makes a case for thinking of OpenStack as more than a replacement
for a traditional virtual server platform.

 Likely your traditional virtual environment was designed to provide virtual
machines in a way that operationally mimics physical machines. There’s also a good
chance that virtualization was introduced into your environment as an infrastructure
cost-savings measure for existing workloads. As workloads were moved from physical
servers to their virtual equivalents through a process known as Physical to Virtual
(P2V), an exact clone of the physical server was made by the P2V tool. More often than
not, physical and virtual servers operated on the same networks, which allowed the
P2V migration to take place without service interruption. For many environments, the
process of consolidating workloads on virtual servers resulted in significant financial
savings. In addition to resources being used more efficiently, new capabilities like mas-
ter images and virtual machine image snapshots became part of the software deploy-
ment and upgrade processes, mitigating many types of software and hardware failures.
Despite many of the new capabilities that virtual environments offered users, system

1 See Thomas J. Bittman, Philip Dawson, Michael Warrilow, “Magic Quadrant for x86 Server Virtualization
Infrastructure” (14 July 2015), www.gartner.com/technology/reprints.do?id=1-2JGMVZX&ct=150715.
Licensed to tracy moore <nordick.an@gmail.com>

243Replacement of existing virtual server platforms
administrators were still managing both the OS and application levels of virtual
machines, much in the same way they had physical machines.

 If your intent is to treat your virtual environment the way you do a physical envi-
ronment, as described in the previous paragraph, then the benefits of OpenStack in
your environment will be limited. This is to say, if your operational practice is to man-
ually deploy virtual services through a central group without automation, you must
evaluate how cloud frameworks such as OpenStack can be effectively adopted in your
environment.

 Suppose you’ve been using VMware vSphere as your server virtualization platform,
and you’re interested in adopting OpenStack as a VMware replacement for cost-
reduction purposes. If you think of OpenStack as simply a “free” alternative to
VMware, then you might be heading down the wrong path. Although in most cases
OpenStack can be deployed in a way that provides feature parity with many competing
virtual environments, this has to be done in a way that’s compatible with your opera-
tional practices. Consider again the previous VMware replacement example, where
you wanted to move all existing VMware workloads to OpenStack. Although Open-
Stack Storage can deal with VMDK (VMware image format) files, there’s no graphical
Virtual to Virtual (V2V) migration tool like what’s provided by VMware, and there
probably shouldn’t be.

 Now, consider the process most often used to build VMware-based machine
images. Typically, using a desktop client, a user virtually mounts a CD or DVD from
their workstation to virtual hardware and performs an install as they would with a
physical machine. However, the ability to remotely mount CD and DVD images doesn’t
exist on the OpenStack Dashboard. One shouldn’t consider these things as an indica-
tion that OpenStack is incomplete, but as an indication that it’s intended to be used
differently than traditional virtual server environments.

 Where might OpenStack be a good replacement for VMware and other commer-
cial hypervisors? To answer this, you must first consider strategically how you want to
interact with your infrastructure resources. Table 9.1 lists the possible impact of Open-
Stack based on your infrastructure management strategy.

Table 9.1 OpenStack impact based on environment

Environment Description Impact

Siloed and
manual VM

Hardware management is siloed and resources are
shared. Virtual hardware is manually provisioned by IT staff
to end users, where end users are responsible for OS-level
operation.

Low to negative

Siloed and
automated VM

Hardware management is siloed and resources are
shared. Virtual infrastructure is deployed using automated
methods by IT staff, where end users are responsible for
application-level operation.

Medium
Licensed to tracy moore <nordick.an@gmail.com>

244 CHAPTER 9 Architecting your OpenStack
In the case of the siloed and manual VM listed in the table, there’s a central group man-
ually provisioning virtual machines without automation, and they will likely view
OpenStack as either incomplete or unnecessary. Without the addition of automation,
OpenStack doesn’t necessarily provide them with anything that can help them do
their current jobs.

 The siloed and automated VM environment is similar to the manual environment,
with the exception that at least some level of infrastructure orchestration is being used
by the IT department managing the infrastructure. For instance, departments that
make use of dynamic automated provisioning as part of a request workflow are consid-
ered part of this group. Much like their manual counterparts, organizations that fall
into this category often evaluate OpenStack as a direct cost-saving replacement for
whatever they are currently using. Although it’s true that OpenStack can lead to cost
savings, the operational and business processes of these organizations must change in
order to take full advantage of the framework.

 Now, suppose the central group manually provisioning the virtual machines is repo-
sitioned as infrastructure or application resource consultants, as in the application-
specific backend scenario.

 Suppose that through this strategic shift, not only is automation used in the infra-
structure, but it’s also used for application-level provisioning. Suppose further that
resources are allotted to tenants, and departmental-level personnel are able to provi-
sion their own resources. That would be the private cloud, in which the central group is
enabling departmental agility by brokering services, not prescribing them. In many
respects, operating in this way allows you to change your thinking about the role of
infrastructure in your environment. Automation on application and infrastructure
levels removes the need for P2V and V2V tools, so there’s no need to move images
around. In this mode of operation, infrastructure resources are more transient and
function more as an application capability than a static allocation.

 The real value of OpenStack is in the automation and platform abstractions pro-
vided by the framework. The following subsections will discuss architectural consider-
ations that you must take into account as you develop your OpenStack design.

Application-
specific backend

Hardware is dedicated and managed by the cloud frame-
work. Infrastructure and application deployment are auto-
mated by IT staff for a specific application.

High to very high

Private cloud Hardware is dedicated and managed by the cloud frame-
work. Applications and standard (size and OS) VMs are
provided to end users using automated self-service
methods.

Very high

Table 9.1 OpenStack impact based on environment (continued)

Environment Description Impact
Licensed to tracy moore <nordick.an@gmail.com>

245Replacement of existing virtual server platforms
9.1.1 Making deployment choices

If you’re used to supporting virtual server platforms like VMware vSphere or Hyper-V,
you might need to rethink how you purchase and support hardware. Although it’s less
common than in the past, physical resources in the enterprise, like network switches
and central pools of storage, can be shared between physical and virtual resources.
Even if a resource is exclusively assigned to a virtual server platform, you’d typically
think of provisioning resources to be used by the platform, not of the platform itself
managing the resources. For instance, it’s common to assign a new VLAN or to make a
shared logical unit number (LUN) available to a group of hypervisors. But if you need
to create new VLANs or new shared LUNs, the administrators of those systems would
need to go through their own provisioning process. It’s also very common for the “net-
work person” to do all network configurations, the “storage person” to do all storage
assignments, and the “VM person” to tie the resources together with a physical server
to produce VMs. Each person in this process has to perform manual provisioning steps
along the way, often without understanding how their resource plays into the com-
plete infrastructure.

 Deploying OpenStack from slivers of shared central infrastructure is generally the
wrong path to take. OpenStack detects, configures, and provisions infrastructure
resources, not the other way around. Even if your shared central infrastructure pro-
vides multi-tenant (not to be confused with OpenStack tenants) operation, which
would isolate OpenStack automation, you’d still need to consider the effects of mak-
ing OpenStack-provisioned resources dependent on shared resources. For instance,
software upgrades for reasons outside of OpenStack operations could impact services.
In addition, resource utilization outside the scope of OpenStack resources could
impact performance while providing no indication to OpenStack services that prob-
lems exist.

 In many cases, virtual environments aren’t designed to leverage the benefits of an
infrastructure that can be managed programmatically. In these cases, the operational
practices will have been developed around vertical management of siloed resources
like compute, storage, network, load balancers, and so on. In contrast, OpenStack was
designed with the complete abstraction of physical infrastructure in mind. In general,
you can save yourself lots of trouble by assigning resources exclusively to OpenStack,
and through plug-ins and services letting the framework manage resources, instead of
the other way around.

 In the following subsections, it’s assumed you wish to augment or add new services
using OpenStack to manage your resources. In your environment, you want to lever-
age the management capabilities of OpenStack, and you even want OpenStack to
manage your hardware, but you want the end product to resemble what you are pro-
viding now. Specifically, you’re willing to change your operational and deployment
practices for the sake of efficiency, but your primary interest is to deploy VMs, just as
you might be doing now with VMware or Microsoft. Section 9.2 discusses taking a
more progressive approach to IaaS.
Licensed to tracy moore <nordick.an@gmail.com>

246 CHAPTER 9 Architecting your OpenStack
9.1.2 What kind of network are you?

If you want to take advantage of OpenStack, but you don’t want OpenStack to manage
L3 services such as routing, DHCP, VPN, and the like, you must evaluate your options
based on management of L2 (switching) services.

 For example, figure 9.1 shows a VM directly connected to a public L2 network. This
example isn’t specific to OpenStack and would be representative of similar network
deployments for many virtual server platforms, including VMware vSphere and Micro-
soft Hyper-V. In this network deployment scenario, the job of the hypervisor is to
direct L2 network traffic to a switch, which is typically a physical switch outside the
control of the hypervisor. Unlike many of the network examples in this book, there’s
no concept of an “internal” or hypervisor network, because no L2 services are being
provided by the virtual server platform. In this deployment type, all L3 services are
provided by systems outside the hypervisor. As you might imagine, separating the
majority of network services from the virtual server platform limits the benefits of the
platform, but the simplification isn’t without benefit. Based on your IT strategy, exist-
ing resources, and support structure, this mode of operation might be best for you.

The majority of this book has focused on OpenStack Networking (Neutron) provid-
ing L2 and L3 services. As discussed in previous chapters, Neutron was built to manage
complex networks and services within OpenStack environments, not simply to push
L2 traffic to external networks. But the OpenStack Compute (Nova) project, which
predates Neutron, does provide basic L2 services. If you want to limit your OpenStack
deployment to L2 services only, you’ll want to use Nova for networking, not Neutron.

A Nova network can operate in three different topologies: flat, flat DHCP, and VLAN.
 In a flat topology, all network services are obtained externally from OpenStack.

You can think of a flat topology working the same way as your office or home network

WAN:
public address

Physical
router

LAN:
L2 network

Internet

Hypervisor

VM

Figure 9.1 L2 network with VM
and hypervisor

Network hardware
If you’re using Nova for networking, there’s very little reason to worry about the inte-
gration of OpenStack with network hardware. Early on in the OpenStack project, hard-
ware vendors were writing drivers for Nova integration in their hardware, but most
development has since moved to Neutron.
Licensed to tracy moore <nordick.an@gmail.com>

247Replacement of existing virtual server platforms
connection works. When you connect your computer to the flat network, your com-
puter relies on the existing network for services such as DHCP and DNS. In this mode
of operation, OpenStack is simply connecting VMs to an existing network, just as you
would a physical machine.

 The flat DHCP topology is similar to the flat topology, with the exception that
OpenStack provides a DHCP server to assign addresses to VMs.

 The VLAN topology works in the same way as the flat topology, but it allows for
VLAN segmentation of the network based on VLAN IDs. Simply put, in the flat network
all VM traffic is sent to the same L2 network segment, whereas with the VLAN topology,
you can assign a specific L2 network segment to a particular VM.

 The next section covers choices in storage.

9.1.3 What type of storage are you?

If you’re coming from a traditional virtual server platform environment, you may have
no management integration between your hypervisor and storage subsystem. If you’re
using VMware vSphere, you’ll typically attach large shared host volumes to your hyper-
visors, as shown in figure 9.2 SharedVolume.

 In the figure, you can see a single host volume shared across all hypervisors. A
shared host volume is formatted with a cluster-aware filesystem that allows hypervisor
A to use the same underlying host volume to store data for VM A, as hypervisor B
would for VM B. If VM B was to be migrated to hypervisor A, no stored data would need
to be transferred, because the data is already accessible by hypervisor A. In this sce-
nario, VM volume management is done on the shared-host volume level, so from the

Volume for
VM B

Volume for
VM C

Volume for
VM A

Shared
host volume

Volume management
is done on the shared-
host volume level.

Hypervisor
B

VM B

Hypervisor
C

VM C

Hypervisor
A

VM A

Figure 9.2 Shared volume across hypervisors
Licensed to tracy moore <nordick.an@gmail.com>

248 CHAPTER 9 Architecting your OpenStack
standpoint of the underlying storage
subsystem, nothing is managed beyond
the large shared host volume attached
to the hypervisors.

 In contrast, Microsoft Hyper-V pro-
motes a “shared-nothing” model,
where each hypervisor maintains its
own storage and the storage for its
VMs. An independent host volume
model is shown in figure 9.3.

 In this figure, hypervisor A uses
host volume A to store data for VM A. If
VM B were migrated to hypervisor A,
volume information would need to be
migrated to the new hypervisor. The
benefit of this shared-nothing architec-
ture is that the failure domain is
reduced, but the migration costs are
increased. As with the shared–host vol-
ume model, the hypervisor is manag-
ing volumes for the VMs it maintains,
so the storage subsystem is still not
actively managed as part of the virtual
server platform. This is not to say that
there are no storage vendor integrations with vSphere and Hyper-V, simply that a high
level of integration is not fundamental to their operation.

 As discussed in previous chapters, there are two types of storage in the OpenStack
world: object and block. OpenStack Swift provides object storage services, which can
be used to provide backend storage for VM images and snapshots. If you’ve been work-
ing as a virtual server platform administrator, you might not have ever worked with
object storage. Although object-based storage is very powerful, it’s not required to
provide virtual infrastructure and is outside the scope of this book. In contrast, block
storage is a required VM component and is covered in several chapters.

 The majority of this book has been devoted to working with block storage using
OpenStack Block Storage (Cinder). Using the OpenStack Compute service (Nova),
it’s possible to boot a VM without using Cinder. But the volume used to boot the VM is
ephemeral, which means that when the VM is terminated, data on the VM volume is also
removed. In contrast to ephemeral storage is persistent storage, which can be detached
from a VM and reassigned to another VM. The relationship between the hypervisor,
persistent VM volume, Cinder, and the storage subsystem is shown in figure 9.4.

 As shown in the figure, the VM, not the hypervisor, communicates directly with
an underlying storage subsystem. In contrast, both in the case of VMware vSphere
and Microsoft Hyper-V, VM storage is provided by the hypervisor. This fundamental

Volume for
VM B

Each hypervisor maintains its own
storage and storage for its VMs.

Hypervisor
B

VM B

Volume for
VM C

Hypervisor
C

VM C

Volume for
VM A

Hypervisor
A

VM A

Host volume A Host volume B Host volume C

Figure 9.3 Independent host volumes
Licensed to tracy moore <nordick.an@gmail.com>

249Replacement of existing virtual server platforms
difference in operation forces a
higher level of storage subsystem
management for OpenStack. Where
other virtual server platforms might
manage VM volumes on the hypervi-
sor level, Cinder interfaces with
hardware and software storage sys-
tems to provide functions like vol-
ume creation, expansion, migration,
deletion, and so on. A list of storage
systems and supported functions
can be found on the Cinder support
matrix wiki: https://wiki.openstack
.org/wikiCinderSupportMatrix.

 Aside from a few corner cases,
most OpenStack deployments will
use Cinder to manage volume stor-
age. But the question remains,
what type of storage hardware or
software platform should Cinder
manage?

 The question of the underlying
storage subsystem depends on the
intersection of several factors,
including what your current stor-
age vendors are, whether you’re
willing to dedicate a storage system
to OpenStack, and what your toler-
ance is for risk in your environment. For instance, suppose you wish to mimic the oper-
ations of vSphere or Hyper-V, and your storage is provided by a large centralized storage
area network (SAN). In this case, you might not want Cinder to communicate directly
with your shared central system, but you do want to use storage from this system. In this
scenario, you could abstract the underlying storage subsystem by attaching indepen-
dent volumes directly to compute or storage nodes, similar to what was shown in figure
9.3. You’d then use LVM to manage your independent host volume. LVM would then be
managed by Cinder, thus abstracting the underlying storage subsystem. Managing an
independent volume using LVM doesn’t invalidate the storage model shown in figure
9.4; in fact, LVM was used as the underlying storage subsystem for Cinder in chapter 7.
There are, of course, other options where centralized storage software and hardware
can be used directly, but LVM is a common choice for people using shared central ser-
vices.

 In the next section, we’ll cover choices in servers.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

NetApp
SANDELL

RAMCPU

VM

Storage vendor API

Vendor plug-in

Net

Server
hardware

Disk

Figure 9.4 OpenStack VM volumes
Licensed to tracy moore <nordick.an@gmail.com>

250 CHAPTER 9 Architecting your OpenStack
9.1.4 What kind of server are you?

The past few sections have covered choices you need to make in providing network
and storage resources for your VM. For the most part, the choices that you make
regarding networking and storage are based on your current and intended future state
of operations. In neither case was there any mention of changing the underlying con-
figuration of network or storage hardware and software in a way that was fundamen-
tally different from what you’re doing now. In fact, everything we’ve discussed in this
chapter so far has described an architecture that can be used to mimic a traditional vir-
tual server platform environment. When it comes to OpenStack Compute (Nova), the
support matrix (https://wiki.openstack.org/wiki/HypervisorSupportMatrix) doesn’t
list server hardware vendors, it lists supported hypervisors.

Commoditization in the server hardware market around the x86_64 instruction set all
but guarantees that if you purchase a server with an Intel or AMD x86_64 processor,
any hypervisor will work. Although some hardware configurations and vendors pro-
vide advantages over one another, OpenStack Compute is hardware agnostic. The real
question you face is what hypervisor you want to use.

 You must consider your motivations for deploying OpenStack in the first place. If
your intent is to replace an existing commercial virtual server platform in a way that
mimics the operation of that platform, then you likely won’t want to maintain the
license cost of the commercial hypervisor.

FREE VERSIONS OF VMWARE ESXI AND MICROSOFT HYPER-V Recently VMware
and Microsoft have released free versions of their core visualization platforms.
The changes in licensing have generated a great deal of community interest
in using these hypervisors with OpenStack. But there are drawbacks, includ-
ing limited initial community support compared to KVM.

Based on OpenStack user surveys, KVM is the hypervisor used in the vast majority of
OpenStack deployments, and most community support will be based around using
KVM. In summary, you should select server hardware based on current business prac-
tices and use KVM until you have a reason to use something else.

 This section covered the architectural decisions around deploying OpenStack to
replace an existing virtual server environment. The next section covers the architec-
ture for deploying a greenfield environment for an on-premise private cloud.

Bare metal and containers
Although it’s outside the scope of this book, using OpenStack to provision bare-metal
servers and LXC/Docker containers is also an option. The use of containers in the
OpenStack environment is especially interesting for those who’d like to use Open-
Stack to provide applications.
Licensed to tracy moore <nordick.an@gmail.com>

251Why build a private cloud?
9.2 Why build a private cloud?
OpenStack is used in some very large public cloud services, including DreamHost
DreamCompute (see www.openstack.org/marketplace/public-clouds/). These com-
panies make use of OpenStack projects, along with their own custom integration ser-
vices, to manage resources on a much larger scale than most enterprise customers. The
ratio of servers to administrators varies wildly, based on the size and complexity of an
organization’s infrastructure and related workloads. For example, it’s common to have
a 30:1 or lower ratio of physical servers to administrators for small and medium-sized
business, whereas a medium to large enterprise might have 500:1 virtual servers to
administrators. But when you consider that the Amazons and Googles of the world
achieve ratios of 10,000:1 physical servers to administrators, you can start to appreciate
the infrastructure management efficiencies that large-scale providers have developed.

 When an enterprise provides public cloud–like services from resources that are
exclusive to the enterprise, we call this a private cloud. By adopting technologies and
operational practices born out of large-scale providers for private clouds, enterprises
are able to develop hybrid cloud strategies based on workload. So why do private
clouds exist? Why aren’t all workloads in the public cloud? A detailed study of IT strat-
egy concerning public, private, and hybrid clouds is beyond the scope of this book.
But this section presents several arguments for deploying a private cloud for your
enterprise and for adopting a hybrid cloud strategy.

9.2.1 Public cloud economy-of-scale myth

Cloud computing is often described as the computational equivalent of the electri-
cal power grid. Considering that the economic definition of utility is the ability of a
commodity to satisfy human wants, it’s easy to see how cloud computing gained this
reputation.

 But there’s a fundamental flaw in this power-grid comparison. The power grid,
much like cloud computing, produces a commodity that must be consumed in real
time, but this is where the comparison ends. There’s a vast difference between the
economies of scale related to the production of the commodities. Bulk power genera-
tion from nuclear facilities are orders of magnitude more cost effective than what
could be produced by a cloud of consumer-grade power generators. On the computer
side, there isn’t any quantum or other type of computer capable of producing compu-
tational power with a cost benefit greater than commodity clusters, so the economies
of scale aren’t comparable. In fact, the profit margins across commodity servers is so
low that the difference between what enterprise and public cloud providers pay for
the same hardware is negligible.

 This is not to say that there aren’t advantages for large-scale providers. For
instance, a large diverse group of workloads balanced across many resources should
be more efficient than its small-scale unoptimized counterpart. But enterprise custom-
ers can take advantage of the same fundamental components as public providers, and
often near the same price point.
Licensed to tracy moore <nordick.an@gmail.com>

252 CHAPTER 9 Architecting your OpenStack
9.2.2 Global scale or tight control

Public cloud providers offer a wide variety of services beyond IaaS, but for the sake of
argument, we’ll restrict our evaluation of public cloud to IaaS.

 Consider IaaS as providing VMs comprised of discrete components (CPU, RAM,
storage, and network). Public cloud consumers are unaware of the physical infrastruc-
ture used to provide public IaaS offerings. Specifically, users have no way of knowing if
they’re paying for the latest and greatest or yesterday’s technology. To complicate mat-
ters further, the consumer has no way to determine the level of oversubscription for a
particular type of shared service. Without knowing the underlying platform and the
number of shared users, there’s no passive, quantitative way to measure IaaS value
between public providers. Consider a case where provider A has a cost per unit of X
and an oversubscription of 20:1, whereas provider B has a cost per unit of 2X and rate
of 10:1. The total cost is clearly the same, but in the eyes of the customer, provider B is
simply twice the cost of provider A.

 In many industries, service level agreements (SLAs) are defined so consumers can
evaluate the expected quality of a service provider. Typically, public cloud SLAs are
based on uptime, not performance. No doubt large consumers of public cloud
resources develop performance SLAs with their public providers, but this isn’t com-
mon in the small business to medium enterprise space. Without a quantitative
approach, you’re left with qualitative evaluation based on active measurements. But
although there’s no shortage of benchmarks in the computing industry, an accepted
workload measurement standard for cloud services has yet to emerge.

 In the absence of clearly defined SLAs and verification methods, it’s difficult to
compare the value of public cloud offerings between providers. In addition, value
comparisons can change over time as workloads change across providers. For many
workloads, the benefits of global on-demand IaaS far outweigh resource performance
variability. But for other workloads, the tightly controlled performance provided by a
private cloud is necessary.

9.2.3 Keeping data gravity private

Dave McCrory coined the term data gravity to describe how applications and other ser-
vices are drawn to sources of data, analogous to the attraction of physical objects in
the universe proportional to their mass. Public cloud providers recognize this phe-
nomenon and typically make it much more financially attractive to move data into
their services than out. For instance, there’s no charge to move data into an Amazon
EC3 service, but there is a tiered pricing structure to move data out of the service. A
similar pricing structure exists for Amazon EC2 instances and other IaaS provider
offerings, to entice users to move data into a specific cloud provider and keep it there.

 Cloud providers can exploit the data gravity phenomenon through their transfer-
rate pricing structure to create cloud vendor lock-in for consumers. Consider the case
where an organization determines that based on the unit price of resources (not
accounting for transfers) it’s cost effective to move all of its storage and related
computation to a public cloud provider. Even if the majority of data was generated
Licensed to tracy moore <nordick.an@gmail.com>

253Why build a private cloud?
outside the cloud provider, there would be no transfer penalty to continuously add
data to storage maintained by the public provider. Now suppose this organization
wants to utilize a secondary public cloud provider for redundancy. Although the new
provider might not charge transfer fees for incoming data, the existing provider will
charge for outgoing data, which could greatly increase the cost.

 The same holds true if you want to process information locally or if you want to
take advantage of processing on a lower-cost provider. When the majority of your data
is maintained in the public cloud, it’s hard for services to escape the force of data grav-
ity pulling you to your data provider.

 Keeping the majority of your data in a private cloud allows you to move data in and
out of public clouds as needed. For many workloads and organizations, the ability to
consume services from several providers, including local resources, outweighs the
benefits of pure public cloud offerings.

9.2.4 Hybrid moments

The principle of pay as you go is a key differentiator between public and private clouds.
It’s easy to understand the economic benefits of the spending 1 hour on 1000 comput-
ers versus using 1 computer for 1000 hours when timely information is essential. But
at first glance, the economics of purchasing cloud services doesn’t seem viable when
you assume 100% service usage 24/7/365.

 The idea of usage-based pricing allows for the redirection of capital that would oth-
erwise be committed to infrastructure investment to be repositioned in other strategic
investments. Large public cloud providers have a natural tolerance for load spikes for
specific workloads. Given the diversity of workloads over a wide range of clients, it’s
unlikely that all workloads for all clients will experience a simultaneous resource peak
need. Given the natural elasticity of the cloud, much of the capacity risk related to
operating a private cloud is transferred to the public cloud provider. Private clouds
must be built for the peak usage, regardless of peak duration, and this involves extra
costs. In most cases, peak workloads exceed average workloads by a factor of 5 to 1.

 The public cloud has been adopted broadly across the enterprise, but rarely exclu-
sively. Based on enterprise surveys, public cloud services are adopted for specific stra-
tegic workloads, whereas private clouds provide services for a more diverse range of
services.

 The majority of IT organizations have adopted a hybrid cloud strategy, making use
of both public and private cloud resources. The real economic benefits of the public
cloud in the enterprise can be realized if organizations find the right balance between
private and public cloud services.

 For the service provider, OpenStack can provide project components that can be
used to construct massively global clouds of resources. For the enterprise, the Open-
Stack framework can be used to deploy private cloud services. From an integration
standpoint, API compatibility between public and private OpenStack-based providers
allows the enterprise to optimally consume resources based on workload requirements.
Licensed to tracy moore <nordick.an@gmail.com>

254 CHAPTER 9 Architecting your OpenStack
9.3 Building a private cloud
This book has focused on approaching OpenStack from the enterprise perspective
not as a virtual server platform replacement, but as a cloud management framework.
The previous section covered the benefits of deploying a private cloud. In addition,
the benefits of adopting a hybrid cloud strategy, where resources can be managed
based on a common OpenStack API control set, were covered.

 This section ties together what you’ve learned in previous chapters and prepares
you for the rest of the chapters in part 3 of this book.

9.3.1 OpenStack deployment tools

The deployment tool you choose will be based on your existing vendor relationships,
current operational strategy, and future cloud direction. There are three approaches
you can take when deploying OpenStack.

 The first approach, a manual deployment, was covered in part 2 of this book. Man-
ual deployments offer the most flexibility but have obvious problems at scale.

 The second approach is to use general orchestration tools, such as Ansible, Chef,
Juju, Puppet, and Vagrant, which are used to deploy a wide range of systems and appli-
cations. Being well versed in a collection of general orchestration tools allows you to
deploy not only OpenStack, but also applications using OpenStack resources. The
drawback of these systems is that each tool has its particular role to play, so you end up
using a wide range of general-purpose tools, which constitutes a training and opera-
tional challenge for the organization adopting this strategy.

 The third approach, using a standalone OpenStack deployment and management
tool, is a familiar approach for those in the enterprise. OpenStack deployment plat-
forms like HP Helion, Mirantis Fuel, and Red Hat RDO not only provide easy-to-use
tools for deploying OpenStack, they also provide their own validated OpenStack ver-
sions and deployment methods. You can
think of this the same way you think of
Linux distributions. Like the Linux ker-
nel, there’s one OpenStack source reposi-
tory (with many branches) for community
development. Enhancements and fixes
recognized by Linux and OpenStack com-
munities make their way into the respec-
tive code repositories. But as in the Linux
community, vendors validate community
work for specific use cases, for which they
provide support. Just as you don’t techni-
cally pay for the Linux kernel when you
pay for a supported Linux distribution,
you aren’t paying for OpenStack when
you purchase a commercially supported

Research, big data, and
OpenStack
For those who deal in the area of
research computing, new consoli-
dated infrastructure management
options are emerging. Traditional
high-performance computing (HPC)
niche vendors like Bright Computing
and StackIQ are getting into the
Hadoop and OpenStack game.
These vendors, and many others,
are adapting their HPC deployment
and management platforms to pro-
vide a holistic management view
across HPC, Hadoop, and Open-
Stack deployment.
Licensed to tracy moore <nordick.an@gmail.com>

255Building a private cloud
OpenStack distribution. Commercial OpenStack vendors typically provide community
supported versions of their deployment tools—one such tool, Mirantis Fuel, is cov-
ered in chapter 11.

 In many IT shops, the title “systems programmer” is still used to describe roles that
haven’t had much to do with programming since the days of the mainframe. In some
organizations, however, the systems programmer role has been reborn as part of the
DevOps movement (referring to systems administrators who also write code and
scripts). A systems administrator who is accustomed to manually double-clicking their
way through VM and application deployments isn’t likely to be comfortable with gen-
eral orchestration tools that they have to code or script together. On the other hand,
someone with automation experience will feel very restricted with only a standalone
OpenStack deployment tool.

 Based on the strategic direction of your organization, you should pick an approach
that not only deploys OpenStack but that is sustainable. For some this approach will
involve purchasing a commercially supported distribution and assigning existing
resources to work with the supporting vendor. Other organizations will choose to
develop DevOps teams that will not only be able to deploy OpenStack but also orches-
trate resources and applications across private and public cloud providers.

9.3.2 Networking in your private cloud

In section 9.1.2 we discussed Nova networking. When using Nova networking, your
choice of networking hardware isn’t of great importance, because OpenStack does
very little to manage your network. However, throughout most of this book, network-
ing is discussed in the context of OpenStack Networking (Neutron). When using Neu-
tron, your choice of network hardware and software is very important, because
OpenStack will be managing many aspects of your network.

 At the time of writing, few vendor-provided L3 (router) services exist (see
https://www.openstack.org/marketplace/drivers/). Because L3 services will likely be
provided by OpenStack, the focus of this dis-
cussion will be on choices related to L2.
From a Neutron L2 perspective, you have two
choices. Your first choice is to use a commu-
nity- or vendor-provided monolithic network
plug-in. These plug-ins are considered mono-
lithic because all L2 OpenStack services must
be implemented by the driver, as shown in
figure 9.5.

 Initially, monolithic plug-ins were the
only way to integrate vendor hardware and
software with OpenStack Networking. Several
of these plug-ins have been developed for ven-
dor hardware, including Arista, Cisco, Melinox,

Neutron Distributed
Virtual Routing (DVR)
One of the many goals of the
Neutron DVR subproject is to
provide distributed routing with
compute nodes, integration with
routing hardware, and routing
service migration between
nodes. Although the project is
fairly new, the DVR project will
likely serve as the primary inte-
gration point for most advanced
L3 vendor services.
Licensed to tracy moore <nordick.an@gmail.com>

256 CHAPTER 9 Architecting your OpenStack
VMware, and others. The issue with this
approach is that the plug-in code must be
modified with subsequent OpenStack
releases, even if nothing has changed on the
vendor side. The effort involved in separating
out vendor-specific code from OpenStack
code led to the second choice in Neutron L2
networking, the modular Layer 2 (ML2) plug-
in, previously covered in chapter 6 and shown
in figure 9.6.

 The ML2 plug-in framework allows com-
munities and vendors to provide L2 support
much more easily than with monolithic plug-
ins. The majority of vendors, even those who
had previously developed monolithic plug-ins, are now adopting the ML2 plug-in by
writing mechanism drivers for their specific technologies.

 Based on the OpenStack user survey, Open vSwitch (OVS) is the most commonly
used network driver (interface between standalone hardware and software packages
and OpenStack) used in OpenStack deployments. Due to its popularity, OVS was used
as a network driver in both parts 1 and 2 of this book. Specifically, using ML2 terminol-
ogy, the ML2 plug-in was configured to use the GRE type driver and OVS mechanism
driver. By using a combination of an overlay (GRE) type driver and a software switch
(OVS), we simplified the switch hardware configuration down to simple connectivity
between compute and network nodes. The hardware configuration is simple in this
context, because OVS is providing virtual switching (traffic isolation on the OVS level),
so you only need to worry about making sure that OVS switches on separate servers
can communicate with each other.

Networking

Neutron

API extension

GRE VXLAN VLAN Arista Cisco Linux
bridge OVS L2 pop

Mechanism driver

ML2 plug-in

Type driver

Figure 9.6 ML2 plug-in architecture

Networking

Neutron

Physical Virtual

Monolithic vendor plug-in

Figure 9.5 Monolithic plug-in architecture
Licensed to tracy moore <nordick.an@gmail.com>

257Building a private cloud
There are many benefits to using network overlays like GRE and VXLAN, including
scale and flexibility. But there are performance costs related to using network overlays
and software switches (OVS) in general. In chapter 11 the VLAN type driver will be
used with the OVS mechanism driver. OVS is still the network driver, but instead of
overlays connecting OVS instances, OVS makes use of a range of VLANS. The VLANS
used by OVS in the chapter 11 example must be manually configured on the switch. In
this context, some switching load is offloaded to the hardware switch and some
remains in OVS.

 The next progression in offloading network load from software to hardware is to
use a mechanism driver that deals with all L2 operations on the hardware device (this
could be a hybrid hardware and software device). In this configuration, OpenStack
Networking operations are translated by the network driver into vendor-specific oper-
ations. This doesn’t mean that you have to use VLAN as your type driver when using a
hardware vendor mechanism driver. In fact, there are many vendor-managed types,
including very powerful VXLAN type drivers, that are offloaded in hardware.

 As with most things in OpenStack and technology, generalized solutions (in soft-
ware) come at the cost of performance (using dedicated hardware). You must deter-
mine if the performance of software switching and overlay is acceptable, or if your
private cloud can benefit from the performance gained through tight integration of
OpenStack Networking and vendor hardware.

9.3.3 Storage in your private cloud

In chapter 7 you walked through the deployment of the OpenStack storage node
using Cinder. The purpose of the storage node was to provide block storage to VMs.
Just as Neutron uses network drivers to communicate with underlying software and
hardware network resources, Cinder uses storage drivers (see www.open-
stack.org/marketplace/drivers/) to communicate with storage resources.

 In chapter 7 an LVM-configured volume was managed by Cinder. In that example,
an LVM storage driver was used by Cinder to interface with the underlying LVM subsys-
tem. Where did the storage device that was used by the LVM volume come from? As
discussed in section 9.1.3, the LVM volume could have been a local disk, or it could
have been provided from an external source like a SAN. From the standpoint of LVM,
and by relation Cinder, as long as the device shows up as a block storage device in the
Linux kernel, it can be used. But this is similar to OVS using network hardware as a
physical transport. Through the abstraction of the underlying storage device by LVM,
you’re losing many of the advanced storage features the underlying storage subsystem
might offer. Just as with OVS, OpenStack is unaware of the capabilities of the underly-
ing physical infrastructure, and storage functions are offloaded to software. Luckily,
there are many Cinder storage drivers for OpenStack, including drivers for storage
systems provided by Ceph, Dell, EMC, Fujitsu, Hitachi, HP, IBM, and many others. As
with OpenStack Networking, integrating OpenStack Storage with hardware and soft-
ware storage subsystems through the use of vendor storage drivers allows OpenStack
to make use of the advanced features of the underlying system.
Licensed to tracy moore <nordick.an@gmail.com>

258 CHAPTER 9 Architecting your OpenStack
 Based on OpenStack user surveys, the Ceph storage system is used in the majority
of OpenStack deployments. Due to its popularity in the OpenStack community and its
inclusion in many standalone OpenStack deployment tools, chapter 10 is dedicated to
walking through a Ceph deployment.

 Like vendor decisions related to OpenStack Networking, storage decisions need to
be based on your current capabilities and future direction. Although it’s extremely
popular with the OpenStack community, building out support for a Ceph storage clus-
ter might not be the right choice if the rest of the storage in your enterprise is EMC.
Likewise, many advanced storage features previously found only in high-end arrays are
now found in Cinder or are not needed because of some other aspect of private cloud
operation, so purchasing a high-end array might not be necessary.

 As you continue through the remaining chapters in part 3 of this book, think
about the type of environment you want to construct. For some, a purpose-built sys-
tem with deep vendor integration will be the best fit. For others, a flexible general-
purpose deployment will be the right choice. Regardless of the path you take, make
sure OpenStack is the right tool for the job and that your organization is well posi-
tioned to take advantage of the benefits of the OpenStack framework.

9.4 Summary
 If you intend to limit the use of your virtual infrastructure to what you can do

with physical infrastructure, the benefits of OpenStack in your environment will
also be limited.

 Systems administrators who are happy with manually provisioning infrastruc-
ture can view OpenStack as either incomplete or unnecessary.

 Systems administrators, developers, consultants, architects, and IT leadership
interested in the benefits of cloud computing can view OpenStack as a disrup-
tive technology for the enterprise.

 Users wishing to use OpenStack as a replacement for traditional virtual server
infrastructure will find Nova networking comparable to their existing environ-
ment, whereas those building a private cloud will likely use Neutron networking.

 Users wishing to use OpenStack as a replacement for traditional virtual server
infrastructure will find LVM-based storage comparable to their existing environ-
ment, whereas those building a private cloud will likely use Ceph or another
vendor-specific directly attached VM storage system.

 By adopting technologies and operational practices born out of large-scale pro-
viders for private clouds, enterprises can develop hybrid cloud strategies for
best-of-breed solutions.
Licensed to tracy moore <nordick.an@gmail.com>

Deploying Ceph
Ceph (http://ceph.com) is an open source storage platform based on RADOS
(http://ceph.com/papers/weil-rados-pdsw07.pdf) that can be used to provide
block-, file-, and object-level storage services using commodity servers. Ceph works
in a distributed architecture with the goal of eliminating single points of failure by
replicating both user and cluster management data. So why is a chapter about
Ceph included in an OpenStack book? Based on OpenStack community user sur-
veys, Ceph is the most popular choice for OpenStack storage.1 In chapter 7 you
configured Cinder to use LVM to manage volume storage, but in a production
deployment you might use a Ceph backend in place of LVM to provide storage for
Cinder to manage.

 Although no OpenStack book would be complete without including Ceph, its
detailed design and operation is beyond the scope of this chapter. In this chapter,

This chapter covers
 Preparing servers for Ceph deployment

 Deploying Ceph using the ceph-deploy tool

 Basic Ceph operations

1 See “OpenStack users share how their deployments stack up,” http://superuser.openstack.org/articles/
openstack-users-share-how-their-deployments-stack-up.
259

Licensed to tracy moore <nordick.an@gmail.com>

260 CHAPTER 10 Deploying Ceph
you’ll walk through a deployment of Ceph using the ceph-deploy deployment tool
provided by the developers of Ceph.

 You’ll work with two types of nodes (commodity servers) in this chapter: resource
nodes, which are used by Ceph to provide storage, and an admin node, which is used as
both a Ceph client and as the environment from which you’ll provision Ceph.

10.1 Preparing Ceph nodes
In the Ceph architecture, resource nodes can be further divided into nodes that are
used for the operation and management of the Ceph cluster and nodes that are used
to provide storage. The different types of Ceph nodes are listed in table 10.1.

The examples in this chapter are based on a Ceph cluster containing six physical serv-
ers that are used exclusively for Ceph and one shared admin server. A list of the
nodes, roles, and addresses is shown in table 10.2.

THE ADMIN NODE TYPE The admin node is not part of the Ceph architecture.
This node is simply the server that’s used to automate the deployment and
management of Ceph on dedicated hardware.

Table 10.1 Ceph resource nodes

Node type Description Function

MON Monitor node Maintains a master copy of the storage cluster data map

OSD Object-storage device node Provides raw data storage

MDS Metadata server node Stores all the filesystem metadata (directories, file own-
ership, access modes, and so on)

Table 10.2 Ceph nodes

Node name Node type IP address

admin.testco.com ADMIN 10.33.2.57

sm0.testco.com MON/MDS 10.33.2.58

sm1.testco.com MON/MDS 10.33.2.59

sm2.testco.com MON/MDS 10.33.2.60

sr0.testco.com OSD 10.33.2.61

sr1.testco.com OSD 10.33.2.62

sr2.testco.com OSD 10.33.2.63
Licensed to tracy moore <nordick.an@gmail.com>

261Preparing Ceph nodes
The first step in deploying a Ceph storage cluster is to prepare your nodes. Ceph runs
on commodity hardware and software, just like the rest of the OpenStack components
in this book.

 First you’ll configure node authentication and authorization, and then you’ll
deploy the Ceph software on your nodes.

10.1.1 Node authentication and authorization

On each server, you must create a user that can be used by ceph_deploy to install and
configure Ceph. Create a new user using the following commands.

sudo useradd -d /home/cephuser -m cephuser
sudo passwd cephuser
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

In the preceding listing, you created a user named cephuser with the password
u$block01. The ceph_deploy tool will need privileged (sudo) access to install software
on your Ceph nodes.

 Typically, when you invoke privilege commands like the ones in the previous list-
ing, you must provide a sudo password, but in an automated install process you don’t
want to type a password for each invocation of elevated privileges. In order for the
cephuser to invoke sudo commands without a password, you must create a sudoers
file in /etc/sudoers.d that lets the system know that the cephuser can run sudo com-
mands without being prompted for a password. Run the commands in the following
listing to create your sudoers file with appropriate privileges.

Listing 10.1 Create Ceph user

Synchronize watches!
Distributed systems like Ceph can’t rely on a central clock, like the filesystem on a
single computer can. This is important because one of the ways that distributed sys-
tems can determine a sequence of distributed events is through timestamps
reported by distributed nodes. It’s important that you make sure nodes participating
in a Ceph cluster have a synchronized clock. In particular, the MON nodes by default
must report a time within 50 ms of each other or a warning alert will be generated
(this is configurable). It’s recommended that you use a Network Time Protocol (NTP)
service on Ceph nodes.

Setting the password without a prompt
Optionally, you can use the chpasswd command to script password updates:

echo 'cephuser:u$block01' | sudo chpasswd
Licensed to tracy moore <nordick.an@gmail.com>

262 CHAPTER 10 Deploying Ceph

echo "cephuser ALL = (root) NOPASSWD:ALL" \
| sudo tee /etc/sudoers.d/cephuser

sudo chmod 0440 /etc/sudoers.d/cephuser

At this point you’ve created the new user cephuser, and your new user can now invoke
sudo commands without being prompted for a sudo password.

CEPH NODE-TO-NODE AUTHENTICATION

In the previous step, you created the cephuser, which can be used locally on the
server for which is was created. If you only have a few servers, it might not be a prob-
lem to log in to each one and run a series of scripts, but what if you’re working with 10
or 100 servers? To complete the authentication and authorization steps required for
automated deployment, you must configure each server to allow remote SSH-based
logins for the cephuser without password prompts.

 Just because a remote host can log in to another host without a password doesn’t
mean you must sacrifice security for the sake of automation. To understand how this
works, you must understand the basics of SSH. Although an in-depth explanation of
SSH is beyond the scope of this book, it’s sufficient to consider two possible ways of
identifying a remote user and a specific local user.

 If you’ve followed the examples in this book, you’re already familiar with the pro-
cess of providing a password when prompted for SSH logins. But there’s an alternative
to password-based authentication called
key-pair authentication, where a public key
is shared between servers. The details are
complicated—all you need to know here
is that if SERVER_A shares a public key
for USER_A with SERVER_B, then if
USER_A exists on SERVER_B, SERVER_A
can authenticate USER_A on SERVER_B
without a password. This relationship is
shown in figure 10.1.

 Imagine SERVER_A in this scenario is
your admin node, and SERVER_B is a
resource node. Your admin node will be
used to push automated deployment
tasks to your resource nodes, which will
be used to provide services. Conse-
quently, from your admin node you’ll
want to access many resource nodes with-
out using a password.

Listing 10.2 Create the sudoers file

SERVER_A
[private_key]

SERVER_A
[private_key]

SERVER_B
[public_key]

Encrypt
[message] with

[public_key]

I am USER_A

SERVER_B
[public_key]

Message

Yes No

Prove it

Decrypt
[message] with
[private_key]

Message
match

SERVER_A
is

authenticated

SERVER_A
is not

authenticated

Figure 10.1 SSH key-pair exchange process
Licensed to tracy moore <nordick.an@gmail.com>

263Preparing Ceph nodes
SSH KEY-PAIR AUTHENTICATION Just as a server might want to access servers
without using a password, users often want this ability as well. Aside from the
convenience of not having to enter a password, this form of authentication
eliminates the need to store or transmit your password in clear text, and it’s
considered more secure (if used with key-pair and password) than password
authentication alone. In fact, OpenStack provides the ability to inject key
pairs into VMs as part of the instance-creation process.

From your admin node, using the cephuser, follow the steps in listing 10.3 to create a
private/public key pair. Make sure you don’t provide a passphrase when prompted, or
you’ll be prompted to provide this passphrase when using the key pair. You can repeat
the key-pair creation process if you experience any problems.

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/cephuser/.ssh/id_rsa):
Created directory '/home/cephuser/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/cephuser/.ssh/id_rsa.
Your public key has been saved in /home/cephuser/.ssh/id_rsa.pub.
The key fingerprint is:
90:6c:09:3d:b8:19:5e:f0:27:be:4b:00:91:34:1d:72 cephuser@admin
The key's randomart image is:
+--[RSA 2048]----+
| .=oE= |
| .=+++o |
| .. =O.. |
| .+o + |
| . . S |
| . . |
| o |
| . . |
| . |
+-----------------+

Now that you have your key pair, you must distribute the public key
(/home/cephuser/.ssh/id_rsa.pub) to all resource nodes. The public key must be
placed in the /home/cephuser/.ssh/authorized_keys file on every resource node.
Luckily, there’s a tool called ssh-copy-id that will help you distribute your public key.
From the admin node, follow the process shown in the next listing to distribute your
public key to each of your resource nodes.

$ ssh-copy-id cephuser@sm0.testco.com
/usr/bin/ssh-copy-id: INFO:
attempting to log in with the new key(s),
to filter out any that are already installed

Listing 10.3 Create private/public key pair on admin node

Listing 10.4 Distribute public key from admin node
Licensed to tracy moore <nordick.an@gmail.com>

264 CHAPTER 10 Deploying Ceph
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed --
if you are prompted now it is to install the new keys

cephuser@sm0.testco.com's password: [enter password]

Number of key(s) added: 1

Now try logging into the machine, with:
"ssh 'cephuser@sm0.testco.com'"

and check to make sure that only the key(s) you wanted were added.

When logged in to your admin node as the cephuser, you now have the ability to
remotely, yet securely, log in to your resource nodes as cephuser. In addition, due to
the previous sudoers configuration, you can now execute privileged commands on all
configured nodes.

 In the next section, you’ll install an automation tool used to deploy Ceph.

10.1.2 Deploying Ceph software

Ceph-deploy is a collection of scripts that can be used in the automated deployment
of Ceph storage. Learning the ceph-deploy method will give you a good component-
level understanding of how Ceph works, while abstracting tedious low-level repetitive
tasks. Ceph-deploy, unlike more-general orchestration packages like Ubuntu Juju
(covered in chapter 12), is exclusively used to build Ceph storage clusters. It’s not
directly used to deploy OpenStack or any other tool. (In chapter 11 you’ll use a fully
automated OpenStack deployment tool that deploys and configures Ceph for use with
OpenStack.)

 Get started by installing ceph-deploy on your admin node as show in the following
listing.

$ wget -q -O- \
'https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/release.asc' \
| sudo apt-key add -
OK

$ echo deb http://ceph.com/debian-dumpling/ $(lsb_release -sc) \
main | sudo tee /etc/apt/sources.list.d/ceph.list

$ sudo apt-get update
Hit http://ceph.com trusty InRelease
Ign http://us.archive.ubuntu.com trusty InRelease
...
Fetched 2,244 kB in 5s (423 kB/s)
Reading package lists... Done

$ sudo apt-get install ceph-deploy
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:

ceph-deploy
...

Listing 10.5 Install ceph-deploy
Licensed to tracy moore <nordick.an@gmail.com>

265Creating a Ceph cluster
You now have ceph-deploy installed on your admin node. Next, you’ll configure your
Ceph cluster.

10.2 Creating a Ceph cluster
In this section, you’ll walk through the deployment of a Ceph cluster. This cluster
can be used to provide storage resources, including object and block storage for
OpenStack.

10.2.1 Creating the initial configuration

The first step in creating a Ceph cluster is to create the cluster configuration that will
be used in your deployment. During this step, configuration files will be generated on
the admin node.

 Create your new Ceph cluster configuration as shown in the following listing.
You’ll want to reference all previously designated MON nodes in this step, as they
maintain the master copy of the data map for the storage cluster.

$ ceph-deploy new sm0 sm1 sm2
[ceph_deploy.conf][DEBUG]
found configuration file at: /home/cephuser/.cephdeploy.conf

[ceph_deploy.cli][INFO]
Invoked (1.5.21): /usr/bin/ceph-deploy new sm0

[ceph_deploy.new][DEBUG] Creating new cluster named ceph
...
ceph_deploy.new][DEBUG] Resolving host sm2
[ceph_deploy.new][DEBUG] Monitor sm2 at 10.33.2.60
[ceph_deploy.new][DEBUG] Monitor initial members are
['sm0', 'sm1', 'sm2']

[ceph_deploy.new][DEBUG] Monitor addrs are
['10.33.2.58', '10.33.2.59', '10.33.2.60']

[ceph_deploy.new][DEBUG] Creating a random mon key...
[ceph_deploy.new][DEBUG]
Writing monitor keyring to ceph.mon.keyring...

[ceph_deploy.new][DEBUG] Writing initial config to ceph.conf...

LAST CHANCE TO MODIFY THE CONFIG Your initial configuration file, ceph.conf,
is generated in listing 10.6. If you need to make any modifications to the con-
figuration, do it now, because it’s not trivial to change your configuration once
the cluster has been created. Refer to the Ceph documentation (http://
ceph.com/docs/master/rados/configuration/ceph-conf/) for configuration
options that might be applicable in your deployment. In the examples, we’ll
use the default configuration.

The /home/cephuser/ceph.conf file will be used in the rest of your deployment.
Look under the [global] heading in this file and make sure the initial monitor mem-
bers are listed under mon_initial_members. Also check that the correct IP addresses
were resolved to the initial members under mon_host.

Listing 10.6 Generate initial cluster configuration
Licensed to tracy moore <nordick.an@gmail.com>

266 CHAPTER 10 Deploying Ceph
 The next step is to install the Ceph software on all the resource nodes. You’ll use
ceph-deploy to do this.

10.2.2 Deploying Ceph software

As the cephuser, from the admin node, follow the steps in the following listing to
install the most current version of Ceph for each of your resource nodes. You can use
the fully qualified domain name (such as sm0.testco.com) or the short name (sm0)
for ceph-deploy commands.

$ ceph-deploy install admin sm0 sm1 sm2 sr0 sr1 sr2
[ceph_deploy.conf][DEBUG]

found configuration file at: /home/cephuser/.cephdeploy.conf
[ceph_deploy.cli][INFO]

Invoked (1.5.21): /usr/bin/ceph-deploy install sm0
...
[sm0][DEBUG]
ceph version 0.87

At this point you should have ceph-deploy installed on your admin node and the
Ceph software installed on your resource nodes. You now have all the components on
your physical nodes to configure and launch your Ceph cluster. Next, you’ll start the
process of cluster deployment.

Listing 10.7 Deploying Ceph software to resource nodes

Ceph-deploy version selection
By default, the ceph-deploy install process will use the most current version of
Ceph. If you need a feature in the development branch, or you want to avoid an
issue in a specific release, you can select your version using the following command
arguments:

 --release <code-name>

 --testing
 --dev <branch-or-tag>

Removing Ceph
If for some reason you want to remove Ceph from your resource nodes (perhaps you
want to repurpose the hardware), you can either uninstall (remove the software
only) or purge (remove the software and the configuration):

 ceph-deploy uninstall [hostname]
 ceph-deploy purge [hostname]
Licensed to tracy moore <nordick.an@gmail.com>

267Creating a Ceph cluster
10.2.3 Deploying the initial configuration

Enter the command in the following listing, adjusting it for your cluster configura-
tion. This process defines the monitor nodes within your Ceph cluster and gathers
keys from the monitoring nodes.

$ ceph-deploy mon create-initial
ceph-deploy mon create sm0 sm1 sm2
...
[ceph_deploy.mon][DEBUG]
Deploying mon, cluster ceph hosts sm0 sm1 sm2

...
[sm0][INFO] monitor: mon.sm0 is running
...
[sm1][INFO] monitor: mon.sm1 is running
...
[sm2][INFO] monitor: mon.sm2 is running

If you decommission a node (format the server) without completing this step, the
Ceph cluster will consider the missing node to be in a failure state.

 At this point you’ve deployed the Ceph cluster configuration and you have active
MON nodes. In addition, the keys from the MON nodes should now exist on the admin
node. These keys will be necessary in order to provision the OSD and MDS nodes.

 Before you go any further, you should check and make sure that the MON nodes
are up and running. One way to do this is to use the ceph client, which was deployed
in listing 10.7. But before you can use the ceph client, you must first deploy a client
configuration for your cluster.

 The following listing shows how to deploy a client configuration to your admin
node. This process can be repeated for any node where you wish to issue client com-
mands using the ceph CLI.

$ ceph-deploy admin admin
[ceph_deploy.conf][DEBUG]
found configuration file at: /home/cephuser/.cephdeploy.conf

[ceph_deploy.cli][INFO]
Invoked (1.5.21): /usr/bin/ceph-deploy admin admin

[ceph_deploy.admin][DEBUG] Pushing admin keys and conf to admin
...

Listing 10.8 Add monitor nodes and gather keys

Listing 10.9 Deploy the ceph client configuration

Removing MON nodes
To gracefully remove a MON node from your cluster, use this command:

ceph-deploy mon destroy [hostname]
Licensed to tracy moore <nordick.an@gmail.com>

268 CHAPTER 10 Deploying Ceph
[admin][DEBUG]
write cluster configuration to /etc/ceph/{cluster}.conf

Now that your client configuration is in place, check on the health of your cluster
using the following command.

$ ceph
ceph> health
HEALTH_ERR 64 pgs stuck inactive; 64 pgs stuck unclean; no osds

If all went well, the ceph client will report back on the current state of the cluster. At
this point you should receive a HEALTH_ERR result, because you don’t have any OSD
nodes. For now you just want to make sure that the ceph CLI can communicate with
your cluster.

 In the next section, you’ll add storage to your Ceph cluster.

10.3 Adding OSD resources
At this point you have a working Ceph cluster, but no storage has been assigned to this
cluster. In the following subsections, you’ll walk through the process of provisioning
local storage on OSD nodes and assigning those storage resources to your Ceph clus-
ter. As you assign storage resource via OSD processes running on OSD-designated
nodes, the reported storage available to the cluster will increase.

 A typical Ceph OSD node is a physical server with several directly attached physical
disks. Although it’s technically possible to use any block device that can be formatted
with a Ceph-supported filesystem (ext4, XFS, or Btrfs), direct attached disk is com-
monly used for financial and performance reasons. The physical disk found in an OSD
node can take on several roles, as shown in table 10.3.

First, take a look at the physical disks on your OSD nodes. Table 10.4 shows the physi-
cal disk for one of the OSD nodes in the example environment used in this book.
You’ll likely have a different configuration, so follow the steps carefully, making appro-
priate device-name substitutions where needed.

Listing 10.10 Checking Ceph health

Table 10.3 Ceph OSD device roles

Disk type Description

System OS storage for server running as OSD node

Journal Log of changes related to data resources

Data Storage resources
Licensed to tracy moore <nordick.an@gmail.com>

269Adding OSD resources

As you can see at the top of table 10.4, a single logical (physical RAID) device is being
used for OS storage. In this particular system, there are four SSD devices used as jour-
nal volumes for the data drives. Journal volumes are used to temporarily store data to
be replicated across OSD nodes, so the performance of journal volumes is very impor-
tant. Although you don’t need to have separate journal volumes, the use of dedicated
SSD journal volumes has been shown to greatly improve performance. The storage in
this example system will come from sixteen 1 TB data volumes.

 Next, you’ll start the process by identifying and clearing, or as Ceph calls it, zap-
ping, your storage devices.

10.3.1 Readying OSD devices

On a single OSD node in the example system, there are 21 logical volumes, for a total
of 63 in the entire example system, as shown in figure 10.2.

 In a manual configuration, you’d have to log in to each node and prepare each
disk independently. Luckily, ceph-deploy can be used to perform these tasks remotely.

Table 10.4 Device assignments

Path Type Size Usage

/dev/sda RAID 500 GB System

/dev/sdb SSD 375 GB Journal

/dev/sdc SSD 375 GB Journal

/dev/sdd SSD 375 GB Journal

/dev/sde SSD 375 GB Journal

/dev/sdf SAS 1000 GB Data

...

/dev/sdu SAS 100 GB Data

OSD_0

/dev/sdb:Journal
 …

/dev/sdf: Data
 …

/dev/sdu: Data

OSD_1

/dev/sdb:Journal
 …

/dev/sdf: Data
 …

/dev/sdu: Data

OSD_2

/dev/sdb:Journal
 …

/dev/sdf: Data
 …

/dev/sdu: Data

OSD_3

/dev/sdb:Journal
 …

/dev/sdf: Data
 …

/dev/sdu: Data

Figure 10.2 Ceph OSD nodes
Licensed to tracy moore <nordick.an@gmail.com>

270 CHAPTER 10 Deploying Ceph
The first step in this process is to identify the devices on your OSD nodes. This can be
done for each OSD node as shown in the following listing. This command should be
executed from the admin node.

$ ceph-deploy disk list sr2
...
[sr2][DEBUG] /dev/sda1 other, vfat, mounted on /boot/efi
[sr2][DEBUG] /dev/sda2 other, ext2, mounted on /boot
[sr2][DEBUG] /dev/sda3 other, LVM2_member
[sr2][DEBUG] /dev/sdb other, unknown
[sr2][DEBUG] /dev/sdc other, unknown
...
[sr2][DEBUG] /dev/sdu other, unknown

Although this listing isn’t very comprehensive from a decision-making standpoint,
it does let you know which devices ceph-deploy can see. You’ll want to make sure
that all the devices listed in your device assignments table (table 10.4) are visible in
ceph-deploy.

Now that you can see remote disks on OSD nodes, it’s time to do something with them.
The next step is to clear (or zap) any data or partition information from the devices
you plan on using. Clearing the devices will prevent any existing partitioning informa-
tion from interfering with Ceph OSD provisioning.

CHECK DEVICE PATHS OR RISK DATA LOSS In the next step, you’ll clear disk
information. If you zap a device containing data, you will destroy data on that
device, so make sure you have the device path correct.

The following example shows how to zap devices on OSD nodes. This process must be
repeated for every device (both journal and data) on every OSD node.

Listing 10.11 List OSD node devices

Devices sdb–sdu will
be used for Ceph.

Physical-logical device mapping
Most modern servers will have a disk controller of some type. By default, most con-
trollers require that each physical device or group of devices be configured as a log-
ical device. This can be a time-consuming process if not automated. Check with your
hardware vendor about automated hardware configuration tools, which can often be
used in conjunction with dedicated hardware management cards.

The mapping of logical disk to a device path is the job of the kernel device mapper.
Explaining this process is beyond the scope of this book, but it’s sufficient to know
that there are tools that will output all known storage devices and their attributes. For
example, you can use fdisk with the following command:

sudo fdisk -l
Licensed to tracy moore <nordick.an@gmail.com>

271Adding OSD resources

$ ceph-deploy disk zap sr0:sdb
...
[sr0][DEBUG] zeroing last few blocks of device
...
[sr0][DEBUG] GPT data structures destroyed!
You may now partition the disk using fdisk

[sr0][INFO] Running command: sudo partprobe /dev/sdb

Once this process has been repeated for every disk to be used as either a journal or
data device, you are ready to move on to disk preparation.

10.3.2 Creating OSDs

At this point you’ve identified your devices and their roles, and you’ve cleared the
devices of any data. There are two steps remaining to add these storage resources to
your Ceph cluster. First, you must prepare the OSDs, and then you must activate them.

 As previously discussed, our example system will make use of four dedicated jour-
nal volumes. The failure of a journal volume can be thought of as a failure of all stor-
age that uses that journal. For this reason, a quarter of each disk on a particular OSD
server will share a journal. During OSD disk preparation, you must reference your
OSD node, data disk, and journal disk, as shown here:

ceph-deploy osd prepare {node-name}:{disk}[:{path/to/journal}]

The output of the OSD disk prepare is shown in the following example. This step must
be completed for every disk on every OSD.

$ ceph-deploy osd prepare sr0:sdf:/dev/sdb
...
[ceph_deploy.osd][DEBUG] Deploying osd to sr0
...
[sr0][WARNIN] DEBUG:ceph-disk:
Creating journal partition num 1 size 5120 on /dev/sdb
...
[sr0][WARNIN] DEBUG:ceph-disk:Creating xfs fs on /dev/sdf1
...
[ceph_deploy.osd][DEBUG] Host sr0 is now ready for osd use.

Listing 10.12 Clear disks on OSD nodes

Listing 10.13 OSD disk prepare

Watching Ceph cluster activity
You can watch the activity in your Ceph cluster by running the following command:

$ ceph -w

This allows you to observe changes in the system, like the preparation and activation
of disks.
Licensed to tracy moore <nordick.an@gmail.com>

272 CHAPTER 10 Deploying Ceph
By this point, you should have every disk on every OSD prepared for the cluster. In our
example cluster, we have 4 OSD servers, with 48 data volumes, prepared across 12 jour-
nal volumes (as shown in figure 10.2).

ACTIVATE OSD VOLUMES

In the next and final step, you’ll activate your OSD volumes for each OSD, as shown in
the following listing.

$ ceph-deploy osd activate sr0:/dev/sdf1:/dev/sdb1
...
[sr0][WARNIN] DEBUG:ceph-disk:Starting ceph osd.0...
...

You should now have all OSDs activated in your Ceph cluster. Check your cluster
health and stats as follows.

$ ceph health
HEALTH_OK

$ ceph -s
cluster 68d552e3-4e0a-4a9c-9852-a4075a5a99a0
health HEALTH_OK
monmap e1: 3 mons at

...
pgmap v39204: 2000 pgs, 2 pools, 836 GB data, 308 kobjects

1680 GB used, 42985 GB / 44666 GB avail
2000 active+clean

At this point you’re finished with the basic deployment of your Ceph cluster. In the
next section, we’ll cover some basic operations, including benchmarking.

Listing 10.14 OSD disk activate

Listing 10.15 Ceph health and stats

Whoops, starting over
Enter the wrong value? Experience a strange failure? Want to change your design?
Part of the benefit of automation is the ability to quickly and easily start the process
over.

From the admin node, you can follow these steps to completely clean your environ-
ment of a ceph-deploy install:

ceph-deploy purge {node-name}
ceph-deploy purgedata {node-name}
ceph-deploy forgetkeys

The procedure to clean the environment, as described in this chapter, is as follows:

ceph-deploy purge admin sm0 sm1 sm2 sr0 sr1 sr2
ceph-deploy purgedata admin sm0 sm1 sm2 sr0 sr1 sr2

ceph-deploy forgetkeys
Licensed to tracy moore <nordick.an@gmail.com>

273Basic Ceph operations
10.4 Basic Ceph operations
You now have a Ceph cluster, and although a fully automated OpenStack and Ceph
deployment system are covered in chapter 11, you should understand a few Ceph
basics. This section covers creating Ceph pools and benchmarking your Ceph cluster.

10.4.1 Ceph pools

As previously mentioned, covering Ceph completely could fill an entire book, so only
minimal configuration and operation are covered here. One thing that you do need
to understand is the concept of a Ceph pool. A pool, as the name suggests, is a user-
defined grouping of storage, much like a tenant in OpenStack. A pool of storage is
created with specific parameters, including resilience type, placement groups, CRUSH rules,
and ownership, as described in table 10.5.

Now that you know the basic attributes of a Ceph pool, create one with the following
command.

ceph osd pool create {pool-name} {pg-num} [{pgp-num}] \
[replicated] [crush-ruleset-name]

The specific command used in the example Ceph cluster is as follows:

$ ceph osd pool create mypool 2000 2000
pool 'mypool' created

$ ceph health
HEALTH_WARN 1959 pgs stuck inactive; 1959 pgs stuck unclean
$ ceph health
HEALTH_OK

Table 10.5 Ceph pool attributes

Attribute Description

Resilience type The resilience type specifies how you want to prevent data loss, along with the
degree to which you’re willing to ensure loss doesn’t occur. Two types of resil-
ience are replication and erasure coding. The default resilience level for replica-
tion is two copies.

Placement groups Placement groups are defined aggregations of data objects used for tracking
data across OSDs. Simply put, this specifies the number of groups in which you
want to place your data, across OSDs.

CRUSH rules These rules are used to determine where and how to place distributed data. Dif-
ferent rules exist based on the appropriateness of placement. For example, rules
used in the placement of data across a single rack of hardware might not be opti-
mal for a pool across geographic boundaries, so different rules could be used.

Ownership This defines the owner of a particular pool through user ID.

Listing 10.16 Create Ceph pool
Licensed to tracy moore <nordick.an@gmail.com>

274 CHAPTER 10 Deploying Ceph
In this example, a pool named “mypool” was created with 2000 placement groups.
Notice in the example that two health checks were performed after the pool was cre-
ated. The first check resulted in a HEALTH_WARN, because the placement groups were
being created across OSDs. Once the placement groups were created, the cluster
reported HEALTH_OK.

 Next, we’ll benchmark the performance of the cluster, using the pool you just
created.

10.4.2 Benchmarking a Ceph cluster

There are many ways to benchmark a storage system based on ratios of reads and writes
and data rates and sizes. Consequently, there are nearly countless configuration
options that can be applied to optimize a storage system, including everything from
how the Linux kernel manages low-level I/O operations to the block size of a filesystem
or the distribution of data across Ceph nodes. Luckily, storage providers like Ceph do
a good job of creating system-wide defaults to cover typical storage workload profiles.

 You’ll now benchmark your Ceph cluster using a Ceph benchmark tool. This
benchmark will be on the pool level, so in terms of the Ceph architecture, this bench-
mark can be considered low-level and representative of core system performance. If
your system is slow on this level, it will only get worse at a higher level of abstraction,
where additional performance-impacting constraints could be applied.

WRITING BENCHMARKS

You’ll use the Ceph-provided rados tool to perform a write benchmark on the pool
you created in the previous section. The rados command syntax is as follows.

rados -p mypool bench <seconds> write|seq|rand \
[-t concurrent_operations] [--no-cleanup]

The --no-cleanup flag will leave data generated during the write test on your pool,
which is required for the read test.

 You’ll want to perform the test from your admin node, because the other
Ceph nodes are participating in managing your storage. Here’s an example of what
it looks like.

$ rados -p mypool bench 60 write --no-cleanup
Maintaining 16 concurrent writes of 4194304
bytes for up to 60 seconds or 0 objects

...
Total writes made: 16263
Write size: 4194304
Bandwidth (MB/sec): 1083.597

Stddev Bandwidth: 146.055
Max bandwidth (MB/sec): 1164

Listing 10.17 Ceph pool benchmark tool

Listing 10.18 Ceph write benchmark

Average write
bandwidth for 60 sec
Licensed to tracy moore <nordick.an@gmail.com>

275Basic Ceph operations
Min bandwidth (MB/sec): 0
Average Latency: 0.0590456
Stddev Latency: 0.0187798
Max latency: 0.462985
Min latency: 0.024006

In this example, the average write bandwidth was 1,083 MB/sec, out of the theoretical
maximum bandwidth (10 gigabit Ethernet) of 1,250 MB/sec.

READING BENCHMARKS

You can now test random reads as shown in the following listing. Keep in mind that if you
didn’t specify the --no-cleanup command in the previous step, you’ll receive an error.

$ rados -p mypool bench 60 rand
...
Total time run: 60.061469
Total reads made: 17704
Read size: 4194304
Bandwidth (MB/sec): 1179.059

Average Latency: 0.0542649

Max latency: 0.323452
Min latency: 0.011323

In this example, the random read bandwidth is 94% of the theoretical maximum 10
GB bandwidth of 1,250 MB/sec. One would expect a sequential benchmark to achieve
even higher numbers.

BENCHMARKING DISK LATENCY

Although bandwidth is a good indicator of network and disk throughput, a better per-
formance indicator for virtual machine workloads is disk latency. In the previous
examples, the default concurrency (number of simultaneous reads or writes) was 16.
The following two listings show the same benchmarks with a concurrency level of 500.

$ rados -p mypool bench 60 write --no-cleanup -t 500
...
Total time run: 60.158474
Total writes made: 16459
Write size: 4194304
Bandwidth (MB/sec): 1094.376

Stddev Bandwidth: 236.015
Max bandwidth (MB/sec): 1200
Min bandwidth (MB/sec): 0
Average Latency: 1.79975
Stddev Latency: 0.18336
Max latency: 2.08297
Min latency: 0.155176

Listing 10.19 Ceph read benchmark

Listing 10.20 Checking write latency

Average write
latency for 60 sec

Average read
bandwidth for 60 sec

Average read
latency for 60 sec

Increased bandwidth deviation

Greatly increased latency
Licensed to tracy moore <nordick.an@gmail.com>

276 CHAPTER 10 Deploying Ceph
$ rados -p mypool bench 60 rand -t 500
...
Total time run: 60.846615
Total reads made: 17530
Read size: 4194304
Bandwidth (MB/sec): 1152.406

Average Latency: 1.70021
Max latency: 1.84919
Min latency: 0.852809

As you can see in these examples, the increase in current reads and writes quadrupled
the maximum latency in both cases. Perhaps more concerning, the minimum read
latency grew by nearly three orders of magnitude.

This basic pool-based benchmarking method can be used to determine the underly-
ing performance of your Ceph cluster. Take a look at the online Ceph documentation
(http://ceph.com/docs/master/rados/operations/pools/) and experiment with dif-
ferent system-wide and pool settings.

10.5 Summary
 Ceph is a highly scalable cluster storage system based on a common (RADOS)

backend storage platform.
 Ceph can be used to provide block-, file-, and object-level storage services using

commodity servers.
 The majority of OpenStack deployments make use of Ceph storage.
 Ceph_deploy is a collection of scripts used to deploy Ceph clusters.
 In Ceph, a user-defined grouping of storage is called a pool.

Listing 10.21 Checking read latency

Greatly increased latency

Know your MTU
The maximum transmission unit (MTU) is the largest communication unit the network
can pass along. Ceph nodes communicate using the IP, for which an MTU must be
defined. The MTU is defined on the network switch and server interface. Typically, the
default MTU value is 1,500 bytes, which would mean that at least four packets must
be sent to transfer a 6,000-byte payload. A small MTU creates small packet sizes to
be used by storage networks, which in turn creates more packets, leading to
increased network overhead. By increasing the MTU value on storage to a range com-
monly called a jumbo frame (around 9,000 bytes), the payload could be transmitted
in a single packet.

The examples in this book are shown with jumbo frames enabled. Using the default
MTU of 1,500 bytes for the benchmarks in this section resulted in bandwidth values
that were over 40% less than those where jumbo frames were used.
Licensed to tracy moore <nordick.an@gmail.com>

Automated HA OpenStack
deployment with Fuel
This chapter demonstrates an automated high-availability (HA) deployment of
OpenStack using Fuel.

 The deployment type is described as automated because you’ll prepare your
hardware for automated deployment and describe your environment, and the auto-
mation tool will perform all steps required to deploy OpenStack in your environ-
ment, including the deployment of OpenStack components, as covered in chapters
5–8, and Ceph, covered in chapter 10. High availability refers to the architectural
design, where multiple OpenStack controllers are used.

 In chapter 2 you were introduced to the DevStack automation tool. This tool
performed automation tasks related to OpenStack deployment, but it was
intended as a development tool, not for deploying production environments. A
production-focused automation tool must do more than simply configure and

This chapter covers
 Preparing your environment for Fuel

 Installing the Fuel server

 Deploying OpenStack using Fuel
277

Licensed to tracy moore <nordick.an@gmail.com>

278 CHAPTER 11 Automated HA OpenStack deployment with Fuel
install OpenStack; it must also deal with environment preparations, like OS installa-
tion and server-side network configurations. The tool demonstrated in this chapter
doesn’t go this low in the stack, but some automation tools will actually configure net-
work hardware as well. A production-focused automated tool must be auditable,
repeatable, and stable, and provide the option of commercial support.

 High availability requires the deployment to continue operation within certain
limits, even when specific components fail. The deployments described in chapter 2
and part 2 of this book used a single controller. In these types of deployments, if the
controller server or one of its dependencies (such as MySQL DB) fails, your Open-
Stack deployment has failed. Until the single controller is returned to operation, no
changes can be made to your infrastructure. In the HA deployment demonstrated in
this chapter, the deployment will continue to operate as normal, even if a controller is
disabled. Controllers are aware of each others’ states, so if a controller failure is
detected, services are redirected to another controller.

 The OpenStack deployment tool demonstrated in this chapter is called Fuel. Fuel
was developed and later (2013) open-sourced by Mirantis Inc. (www.mirantis.com). In
late 2015 Fuel was formally approved by the OpenStack Foundation to be included as
part of their “Big Tent” (governance.openstack.org/reference/projects) project gov-
ernance model. Several other production OpenStack automation tools are in active
development, but I chose Fuel for this demonstration based on its maturity, the stabil-
ity of the Mirantis OpenStack code, the number of production enterprise deploy-
ments, and the availability of commercial support. Although this chapter demonstrates
an HA deployment of OpenStack using Fuel, many of the steps would be the same
regardless of tool.

 First, you’ll prepare your environment, then you’ll deploy the Fuel tool, and finally
you’ll use Fuel to deploy your OpenStack environment.

What version of OpenStack are we talking about?
The question in a production environment is not only what version of OpenStack you
want to use—you also need to think about the code or package maintainer that
you’re using.

In the first part of the book, you used DevStack, which pulled OpenStack code directly
from the community source (https://github.com/openstack/). In the second part of
the book, you used the Ubuntu CloudArchive (https://wiki.ubuntu.com/ServerTeam/
CloudArchive#Icehouse) Icehouse packages (the default in Ubuntu 14.04 LTS). In
this chapter, you’ll not only use Fuel to deploy OpenStack, you’ll also use the Mirantis
OpenStack version of OpenStack.

Just as various Linux distributions maintain their own kernel and userland packages,
the same is true of OpenStack. Determining the appropriate production OpenStack
deployment tool involves evaluating both the vendor-specific OpenStack package as
well as the capabilities of the deployment tool.
Licensed to tracy moore <nordick.an@gmail.com>

279Preparing your environment
11.1 Preparing your environment
Claims of turnkey automation typically provide a vision of a car-buying experience.
You sign on the dotted line, the salesperson tosses you the keys, and, free as a bird, you
set out on the open road. Unfortunately, no standard assembly-line deployment of
OpenStack exists, so there’s no standard deployment support model across the Open-
Stack domain. For example, a Windows or Linux administrator, on at least a basic
level, will understand a Windows or Linux instance installed anywhere. The rules of
these systems apply universally. From a deployment standpoint, such universal rules
don’t exist for OpenStack, the “Cloud Operating System.” This, of course, is the
intended benefit of this book: understand the framework well enough so that when
things fail, or when automation tools evolve, you have some idea of what’s going on
under the covers.

 Preparing an automated deployment environment and configuring it might well
take longer than deploying a small environment manually. But for the enterprise, the
use of automation tools even in small deployments is very helpful. Helpful, in that the
tasks you completed in part 2 of the book can be repeated, support can be purchased,
and actions can be tracked and, if necessary, audited.

11.1.1 Network hardware

As you might have noticed in chapters 2 and 6, the Neutron networking component
of OpenStack can be confusing, because enterprise systems and network administra-
tors typically have delegated responsibilities. Systems people often don’t deal with net-
work virtualization, routers, overlays, and the like, and network administrators don’t
typically deal with the internal workings of virtual server environments.

 Admittedly, there are many moving pieces to manage and configure. This difficulty
is amplified if your operational understanding of router and switch configurations is
limited. Even if you have a good understanding of routing and switching, you might
not have direct access to network hardware to make changes. Or if you have direct
access to the network hardware for your OpenStack deployment, you might not have
the ability to assign your own addresses and VLANs or to configure upstream network
hardware. As you work through this chapter, you’ll need to be able to do these things,
or to have someone do them for you.

VLANS untagged vs. tagged
The IEEE 802.1Q networking standard provides the ability to designate a virtual net-
work by adding information to the Ethernet frame. Virtual local area networks (VLANs)
are considered an OSI L2 function and allow administrators to do things like divide
up a switch into separate L2 networks and assign multiple VLANs to a single physical
trunk interface. When it’s said that a VLAN is tagged, the Ethernet frame contains an
Licensed to tracy moore <nordick.an@gmail.com>

280 CHAPTER 11 Automated HA OpenStack deployment with Fuel

CONFIGURING THE DEPLOYMENT NETWORK

You’ll accomplish three things in this section:

 Make sure that you can communicate with your automation (Fuel) server.
 Confirm that your automation server can contact all host servers.
 Make sure you have out-of-band access to both your automation and host servers.

The deployment demonstrated in this chapter makes use of two separate physical net-
works: the automation administration network and the out-of-band (OOB) network.
The administration network is used by the automation system to manage host servers
on the operating system and OpenStack levels. The OOB network is used to access and
configure servers on the hardware level.

Just how these networks will be used will be discussed in the following subsections, but
for now it’s sufficient to know that the example will use two untagged (VLAN) net-
works on two separate network interfaces for administrative and OOB networks, for
each server.

(continued)
802.1Q header specifying its VLAN. Likewise, when an Ethernet frame doesn’t con-
tain an 802.1Q header, it’s said to be untagged. It’s common for switches to com-
municate with each other through tagged frames (many VLANs on the same port),
whereas servers generally use untagged frames (one VLAN per port).

As you learned in chapter 6, in OpenStack your server acts like a switch, and like a
switch it could be using tagged or untagged VLANs. It’s important that you understand
this concept as you move forward. The examples in this book use tagged VLANs on
both the physical switches and physical network interfaces on the server.

Love your OOB network as you love yourself
Working with OpenStack or any large system without an OOB network is like working
on an aircraft engine while in the air. The importance of the OOB network for auto-
mated deployments can’t be overstated. You might be able to run between physically
connected consoles in your existing environments or even in a manual OpenStack
deployment. But the provisioning processes used in automated deployment all but
require remote network access to configure the hardware aspects of your servers. For
instance, the configuration of hardware disk controllers or the sequence of boot
devices on your server are things you’ll want to control not only remotely, but also
programmatically.

There’s no greater fear in a system or network administrator’s heart than the loss of
access to the OOB network; this means a trip to the data center.
Licensed to tracy moore <nordick.an@gmail.com>

281Preparing your environment
CONFIGURING SWITCH UPLINK PORTS

In order to actually use your management switch, you will need to configure an uplink
to an existing network. The physical network topology for the demonstration deploy-
ment is shown in figure 11.1. It shows the relation between the uplink and manage-
ment switches and a single OpenStack host.

 The switch interface and VLAN configuration for the example OpenStack manage-
ment switch, a Force10 S60, follows.

interface GigabitEthernet 0/1
description "Uplink Port VLAN 95,96"
no ip address
switchport
no shutdown

!
interface GigabitEthernet 0/2
description "OOB Server 0"
no ip address
switchport
no shutdown

!
interface GigabitEthernet 0/3

Listing 11.1 Out-of-band and administration switch configuration

0/1

VLAN95 VLAN96

Uplink
switch

Management
switch

0/30/2

95

00B Admin

iDrac Eth0

96

Tagged VLANs 95 and 96
(1 port, many VLANs)

The 00B network is used
to access and configure
servers on the hardware
level (set boot device,
power on/off).

The Admin network is used
by autosystem to manage
host servers on operating
system and OpenStack levels
(PXE boot, OS updates).

Untagged VLANs 95 and 96

Server 0
(single OpenStack host)

Figure 11.1 Network hardware topology for single-host management

Port 1B

Port 2E

Port 3F
Licensed to tracy moore <nordick.an@gmail.com>

282 CHAPTER 11 Automated HA OpenStack deployment with Fuel
description "Admin Server 0"
no ip address
switchport
no shutdown

!
...
interface Vlan 95
description "OOB Network 10.33.1.0/24"
no ip address
tagged GigabitEthernet 0/1
untagged GigabitEthernet 0/2
no shutdown

!
interface Vlan 96
description "Admin Network 10.33.2.0/24"
no ip address
tagged GigabitEthernet 0/1
untagged GigabitEthernet 0/3
no shutdown

!
...

In this example, port 1 B contains the two VLANs 95 C and 96 D. You’ll notice that
these VLANs are tagged, which allows them to both exist on the single port 1. Likewise,
ports 2 E and 3 F, which are destined for the server, are untagged because there will
be only a single VLAN assigned per port. In addition, low-level functions related to
automated deployment are often complicated or impossible using tagged VLANs,
because the software or hardware used in the deployment process might not support
VLAN tagging. It’s worth noting that the described networks will not be used directly by
OpenStack, but only in the deployment and management of the underlying hardware
and OS. These networks will continue to be used for system administrative purposes.

 There will be much more network configuration specific to OpenStack Network-
ing (networking that OpenStack controls), but this is sufficient to get started. Next,
we’ll discuss the hardware preparation.

11.1.2 Server hardware

The network topology you’ll set up in this chapter will provide OOB and automation
administration for each server, both participating in the OpenStack deployment and
the automated deployment (Fuel) server. At this point every server has two physical
cables plugged into a management switch. One cable is for the OOB network and the
other is for administration, as previously shown in figure 11.1. Here we’ll prepare the
server hardware to use the two networks.

CONFIGURING THE OOB NETWORK
From a deployment and ongoing management standpoint, the OOB network is criti-
cal. The OOB can do the following:

 Manage software-configurable aspects of server and network hardware
 Remotely access a virtual representation of the hardware console

VLAN 95C

VLAN 96D
Licensed to tracy moore <nordick.an@gmail.com>

283Preparing your environment
 Remotely mount virtual media used for software installation
 Programmatically access hardware operations (script reboots, boot devices, and

so on)

We’ll assume at this point that your servers are unconfigured, but that they’ve been
placed in the rack, have physical connections to the previously described networks,
and have power. Your next step is to establish OOB connectivity to all your servers.
OOB management can be thought of as your lifeline to the physical hardware. This
interface is separate from the operating system and often involves a physically sepa-
rate add-on device.

 There are several ways to establish OOB connectivity, some automated and others
quite manual. In some cases, the initial configuration tasks might be performed by
data center operations, and in other situations this falls to the systems administrator.
The size of your deployment and your enterprise operating policy will be factors in
determining which process is best for you.

 Typically, establishing OOB connectivity is done only once and changes are very
infrequent, so unless you have an established method for automating this process, it
might be easier to manually configure OOB on each server. Better yet, find an intern
and ask them to do it.

To manually configure the OOB network, you must physically access your server hard-
ware console with monitor and keyboard (or, optionally, use a serial interface). Typi-
cally a system configuration screen can be accessed by interrupting the server boot
process by pressing designated keys when prompted.

 Figure 11.2 shows the system configuration screen related to OOB management.
The demonstration system is a Dell server, which contains iDRAC OOB management
cards. Although the OOB management cards are vendor-specific, the general configu-
ration and desired results will be the same across vendors. In the figure, you can see
where a static address, gateway, and subnet mask have been assigned. Once saved, this
information will persist across reboots.

Automation: measure once, cut twice
The process of racking, stacking, cabling, and, most importantly, documenting the
physical environment is extremely important. You may well have been through painful
experiences like hearing, “What do you mean the rack/row was on the same
feed/network/unit?”

Through automation, you can easily deploy very complicated configurations across
large environments. This effectively creates a configuration needle in a haystack if
the underlying infrastructure isn’t properly configured. The physical deployment and
documentation is the basis for your system, so make sure everything is exactly as it
is documented before proceeding. Your up-front rigor will be rewarded in the end.
Licensed to tracy moore <nordick.an@gmail.com>

284 CHAPTER 11 Automated HA OpenStack deployment with Fuel
DHCP AND OOB MANAGEMENT Dynamic Host Configuration Protocol (DHCP)
can be used to configure the OOB management interface on your server. In
larger deployments, this additional degree of automation is usually necessary.

Once the OOB interface on your server has been configured, you’ll likely have several
ways to access your server, including web interfaces and secure shells (SSH).

ACCESSING AN OOB WEB INTERFACE

Figure 11.3 shows the OOB web interface for the demonstration server.
 From the web interface, you can access the virtual console and mount virtual

media. The virtual console will display exactly what you’d see on the physical console
if you were standing in front of the server.

 OOB web interfaces are notorious for requiring specific and typically out-of-date
web browsers. The good news is that most of the functions you’re likely to be interested
in from the OOB perspective can also be configured through an OOB SSH console.

ACCESSING THE OOB MANAGEMENT CONSOLE USING SSH
In addition to the graphical web interface, OOB management systems typically include
an SSH or Telnet interface. Although the web-based interface is convenient, it’s
not easily used from a programmatic perspective. The iDRAC in the demonstration
system provides an SSH interface, which allows for the scripted manipulation of OOB-
managed hosts. These manipulations range from a simple reboot to complete hard-
ware reconfigurations. For example, for each type of server (Compute, Storage, and
the others) you can create a configuration for a specific hardware profile. For exam-
ple, you can specify BIOS-level settings, RAID configurations, network interface set-
tings, and the like. A role-specific configuration can then be applied through your
OOB management interface.

Figure 11.2 OOB management interface configuration on the server
Licensed to tracy moore <nordick.an@gmail.com>

285Preparing your environment
Making use of the sshpass non-interactive SSH password provider software, the follow-
ing example demonstrates the process of configuring hardware over SSH. Sshpass
allows you to script access.

sshpass -p 'mypassword' ssh -o StrictHostKeyChecking=no \

root@10.33.1.58 racadm config -g cfgServerInfo \

-o cfgServerBootOnce 0

sshpass -p 'mypassword' ssh -o StrictHostKeyChecking=no \

root@10.33.1.58 racadm config -g cfgServerInfo \

-o cfgServerFirstBootDevice PXE

sshpass -p 'mypassword' ssh -o StrictHostKeyChecking=no \

root@10.33.1.58 racadm serveraction powercycle

Listing 11.2 Scripting OOB management console actions over SSH

Figure 11.3 Web-based OOB management console

Specifies a
permanent
configuration

B

Specifies first
devices in boot
process

C

Restarts the serverD
Licensed to tracy moore <nordick.an@gmail.com>

286 CHAPTER 11 Automated HA OpenStack deployment with Fuel
In this example, three separate commands are sent to the OOB management interface
that was configured in the previous figure. The command set for your OOB management
interface will vary by vendor. In this iDRAC demonstration, the command racadm is used
in both the configuration (-g cfgServerInfo) and management (serveraction)
actions. The first command specifies that the following boot configuration is intended
as a permanent configuration B. The second command specifies the first devices to be
used in the boot process C. The final command restarts the server D.

Next, you’ll configure your storage hardware.

Scripted passwords
In general, keeping clear-text passwords in scripts and using them with SSH is con-
sidered bad practice. Obviously, low-level credentials can be gained if the script is
accessed, but this is also the case with other forms of authentication. Automated
SSH login is designed to use public/private key encryption, but an unintended con-
sequence of scripting SSH access could be passwords showing up in the console his-
tory and other places where interactive login information is typically redacted.

Configuring first boot device as network
Automation frameworks must have a way to discover new devices, and this discovery
is typically done through the network using preboot execution environment (PXE) boot-
ing. Servers configured to PXE boot will try to boot using the network before accessing
any operating system components that might be found on attached storage.

The PXE boot device will transmit a DHCP request, and the DHCP server will return
an address assignment along with the location of executable code that can be used
to boot the server. Once the DHCP address has been assigned to the server, the
boot code will be transmitted over the network, and the server will boot based on
this information.

The automated deployment described in this chapter makes use of PXE booting.

Automation bug: PXE boot incompatibilities
You might have several devices that are capable of PXE boot on your server, and the
server management software might have a PXE boot option as well. In this chapter’s
example environment, the PXE boot agent provided by the system-level Unified Exten-
sible Firmware Interface (UEFI) was disabled and the PXE boot agent from the network
device itself was used. This was done due to PXE boot incompatibilities between the
Fuel PXE boot environment and the PXE agent provided by the server software.
Licensed to tracy moore <nordick.an@gmail.com>

287Preparing your environment
CONFIGURING SERVER STORAGE

Although private cloud technologies like OpenStack have started to change things in
the enterprise, the norm for a typical server is still to use centralized storage in the
form of proprietary storage area networks (SANs). There’s nothing wrong with this,
and as discussed in chapter 9, OpenStack can easily make use of SANs provided by
many vendors. But many OpenStack strategies make use of open source server-based
storage solutions, like Ceph, described in chapter 10. In fact, based on OpenStack
community surveys, server-based open source storage solutions are used in the major-
ity of OpenStack deployments. As a result, most automation frameworks natively sup-
port open source storage solutions as part of a fully automated deployment. For these
reasons, we’ll cover an automated deployment that makes use of the Ceph open
source storage software.

LOCAL STORAGE ON COMPUTE NODES Regardless of the role of your server,
you’ll need to configure its internal storage. Although it’s possible to PXE
boot servers, often PXE boot is only used during deployment and upgrade
phases. Unless it’s part of your overall operational strategy, you likely don’t
want to rely on PXE boot availability for normal operation.

Local disk configuration will be specific to your hardware and the intended purpose
of your deployment. Nevertheless, there are some role-based recommendations that
can be made based on the environment and automation framework presented in this
chapter:

 Controllers (three nodes)—The framework used in this chapter (Fuel) places the
majority of the administrative and some of the operational load (MySQL, net-
work functions, storage monitor, and so on) on the controllers. For this reason,
servers designated as controllers should have fast system volumes (where the OS
is installed), and SSD disks if possible. In an HA environment, performance
should be valued over redundancy for controllers, because you already have
redundancy through duplication of your controllers. An SSD RAID-0 system vol-
ume will be used in this chapter’s example.

 Compute (five nodes)—Your VM storage will be located on separate storage nodes,
so once again you only have to worry about the system volume. But because the
system volume is required to provide the operating environment for the virtual
servers, it should be resilient. Unless you plan on an environment where RAM is
expected to be highly over-provisioned, the system volumes don’t require SSD
performance. An SAS RAID-10 system volume will be used in this example.

 Storage (three nodes)—Your VM storage, images, and all storage related to resources
provided from OpenStack will be stored here. As previously stated, Ceph will be
used to manage these resources, but hardware resources must first be provi-
sioned on the device level. Ceph will work with storage on the device level, as pre-
sented by the hosting OS. (Of course, you must have an OS in the first place, so
a redundant system volume is needed.) Disks used by Ceph can be separated into
Licensed to tracy moore <nordick.an@gmail.com>

288 CHAPTER 11 Automated HA OpenStack deployment with Fuel
journal and data volumes; you’ll want your fastest disks as journal volumes and
your largest disks as data volumes. In both cases, Ceph volumes should be con-
figured as JBOD (just a bunch of disks) or RAID-0 if your disk controller doesn’t
support JBOD. For this chapter’s example, an SAS RAID-10 system volume was
used, along with 4 SSD RAID-0 journal and 16 SAS RAID-0 data volumes.

You might wonder, “What about the hardware requirements of the automation
server?” Well, it really doesn’t matter. Technically, the automation server could be run
from a VM or even a laptop. In practice, as will be discussed in the next section, you’ll
likely want a physical automation server because this server will be both booting (at
least initially) your host servers and maintaining their configuration. In addition, you
don’t want to spread your failure domain if you must use another system to provide a
virtual administration node. Performance is less of an issue on admin nodes, but you
do want something that can function independently of any other system.

 Now let’s look at the automation administration network, which will be used to
deploy and manage your cluster.

CONFIGURING THE AUTOMATION ADMINISTRATION NETWORK

From deployment and management standpoints, the automation administration net-
work is second only to the OOB network in terms of importance. The automation
administration network is how the automation framework communicates with your
hosts. This network will be used for the following functions:

 PXE boot network used during install and upgrade
 Administrative traffic between automation (Fuel) server and managed nodes
 OS-level network communication, such as outgoing Network Time Protocol

(NTP) and incoming SSH traffic on managed hosts

The good news is that, as with the OOB network, the configuration of this network
should be simple. On each server to be used in the deployment, pick an OS-accessible
interface (not an OOB hardware interface) and assign these interfaces to the adminis-
tration network. Do yourself a favor and select the same network interface for all serv-
ers—using the same interface for all servers allows you to group all the servers
together when you configure the interfaces in the automation framework. In the

Automation bug: disks
In the example environment, the data volumes on the storage nodes were combined
in pairs to limit the total number of storage devices on the server to 13. The servers
actually contain 24 disk devices, but listing the device and path for all disks creates
a long string that caused deployment failures. The string size exceeded an OS-related
limit during the automated OS deployment phase. Reducing the number of volumes
reduced the configuration string to an acceptable length.
Licensed to tracy moore <nordick.an@gmail.com>

289Preparing your environment
example environment, the first on-board network interface (eth0) will be designated
as the automation administration network interface.

 Assignment, in this context, means that the designated physical server ports will be
connected to switch ports that have been configured with the untagged VLAN 96.
These switch ports won’t be assigned any other VLANs, and the traffic for VLAN 96
won’t contain VLAN tags, as previously described. From the perspective of the end-
point device (server), VLAN 96 doesn’t exist, and it’s only used by the switch to isolate
traffic to ports internally designated on VLAN 96. Figure 11.4 shows how this network
is used during the PXE boot process.

In the figure, you’ll see a configured automation (Fuel) server and an unconfigured
server on the same untagged network. The Fuel server boots from its local disk and
starts listening for DHCP/PXE boot requests on its eth0 interface. The node labeled
“unconfigured server” is a server that has at least been configured with an OOB net-
work (not shown) and been set to PXE boot.

 During the PXE boot process, the unconfigured server will broadcast a request for
boot information. Because both servers are on the same network, the Fuel server will
receive the request and respond to the broadcast with both network address informa-
tion and additional network booting instructions. The unconfigured server will then
proceed with the boot process. Figure 11.5 shows how the network is used once the
server has been deployed.

 As you can see, the same network that was used in the PXE boot process will be
used for OS-level administration once the node has been deployed. In addition, the
Fuel server will continue to use this network to both discover new servers and manage
the configuration on existing servers.

VLAN96

Management
switch

0/40/3

Eth0

PXE server

The Fuel server receives PXE
boot requests, and responds
with network address information
and additional network
booting instructions.

The unconfigured
server broadcasts
a request for PXE
boot information.

Fuel server

Eth0

PXE agent

Unconfigured
server

Figure 11.4 Automation administration network in PXE boot
Licensed to tracy moore <nordick.an@gmail.com>

290 CHAPTER 11 Automated HA OpenStack deployment with Fuel
You’ve now completed all the necessary steps to prepare the environment for the
automation server deployment. The next section focuses on the deployment of the
automation (Fuel) server.

11.2 Deploying Fuel
You are now set up for Fuel, but before you start the Fuel deployment process, make
sure that you have OOB connectivity to all servers, including the designated automa-
tion server (Fuel). In addition, make sure that all servers use the same interface device
name, such as eth0 used in the previous examples, for their untagged automation
administration network assignment.

 Next, download the Fuel 7.0 community edition ISO from the Fuel wiki
(https://wiki.openstack.org/wiki/Fuel), and start the installation process.

11.2.1 Installing Fuel

At this point you should have OOB network or direct console connectivity to the server
designated as your Fuel server, as previously shown in figure 11.1.

 Follow these steps to start the Fuel installation process:

1 Using the OOB management capabilities of your deployment server (or manu-
ally), mount the Fuel 7.0 ISO on your designated automation server. This pro-
cess will be specific to your OOB management tool.

2 Reboot your automation server, and based on the vendor-specific instructions
for your server, boot from the Fuel 7.0 ISO.

VLAN96

Eth0

10.33.2.2

The Fuel server manages
configuration of deployed
servers and listens for other
boot requests.

Same network now
used for OS-level
administration of
deployed servers.

Fuel server

Eth0

10.33.2.3

Configured
server

Uplink switch
10.33.2.1

Management
switch

0/4

0/1

0/3

Figure 11.5 Automation administration network in OS communication
Licensed to tracy moore <nordick.an@gmail.com>

291Deploying Fuel
3 As the server starts to boot from the mounted Fuel 7.0 ISO, press the Tab key to
interrupt the boot process. The interrupted boot menu is shown in figure 11.6.
From the boot menu you have the option of changing initial boot-time settings.
You will also have the option to change Fuel settings during the setup phase
shown in this section.

If you successfully stopped the boot process, you’ll see the screen in figure 11.6.

The network settings on your screen won’t be the same as the ones shown in the fig-
ure. My default Fuel uses an automation administration address range of
10.20.0.0/24, whereas the address range for the demonstration environment is
10.33.2.0/24. In order to use a different range, you must use your cursor and modify
the following settings to match your environment:

 ip—The address to be used by the Fuel server for both PXE and administration
 gw—The network gateway address to be used by both the Fuel server and all

servers managed by Fuel
 dns1—The name server address to be used by both the Fuel server and all host-

managed hosts
 netmask—The subnet mask to be used by both the Fuel server and all host-

managed hosts
 hostname—The host name to be used by the Fuel server

When you’ve made your changes, press the Enter key to continue the installation.

Figure 11.6 Edit settings on the Fuel installer screen
Licensed to tracy moore <nordick.an@gmail.com>

292 CHAPTER 11 Automated HA OpenStack deployment with Fuel
WARNING If the Fuel installer detects existing partitions on the local disk,
you’ll be prompted to overwrite the partition. The Fuel installer will over-
write your existing partitions, so make sure you’re OK with losing the existing
data.

Once the initial Fuel installation process completes, you’ll be presented with the Fuel
command-line setup utility, as shown in figure 11.7. At a minimum, you’ll need to
create a password for the root user. If you didn’t configure your network during the
boot menu, you’ll also need to configure your network here. If the install is successful,
your server will be rebooted and your automation server console should look like fig-
ure 11.8.

 Your Fuel server is now installed! In the next section, you’ll walk through a basic
automated HA deployment using the web interface.

Figure 11.7 Fuel data overwrite verification screen

Figure 11.8 Fuel post-install
console screen
Licensed to tracy moore <nordick.an@gmail.com>

293Web-based basic Fuel OpenStack deployment
11.3 Web-based basic Fuel OpenStack deployment
The examples in this chapter make use of the Fuel web interface. Fuel also provides a
CLI for deploying and managing OpenStack (https://wiki.openstack.org/wiki/
Fuel_CLI). Although the Fuel CLI is outside the scope of this book, it’s a very powerful
tool and is heavily used by serious Fuel users.

 Access the Fuel web interface by navigating to http://<fuel server ip>:8443 in
your browser. For instance, in the demonstration environment, the address would
be http://10.33.2.2:8443. In your browser, you should see the web interface shown in
figure 11.9.

Using the default Fuel username and password of admin/admin, log in to the Fuel
web interface. Once logged in, you’ll be taken to the Environments screen as shown
in figure 11.10.

 Of course, at this point you haven’t configured any environments, and more
importantly, you haven’t discovered any servers to be used for a deployment. You’ll
discover your servers next.

Figure 11.9 Log in to the Fuel web interface

Figure 11.10 Fuel Environments screen
Licensed to tracy moore <nordick.an@gmail.com>

294 CHAPTER 11 Automated HA OpenStack deployment with Fuel
11.3.1 Server discovery

You might be used to management tools that perform server discovery after a service
has already been deployed. Often this is done by a network address scan or an
embedded agent, or you manually supply a list of host names and addresses. In this
case, your servers don’t have an address to discover or even an operating system to
assign an address.

 Server discovery in Fuel is accomplished through a lightweight agent that’s placed
on each unconfigured server after an initial successful PXE boot. This means that you
must first configure all unconfigured servers (excluding the Fuel server) to boot using
PXE, as previously discussed. Then each server should be rebooted so Fuel can man-
age the PXE boot process. The steps for configuring your server hardware for PXE
boot and the rebooting process will be specific to your vendor hardware.

 Discovery involves the following steps:

1 Set the unconfigured servers to use PXE as the first boot device.
2 Restart the unconfigured servers.
3 The unconfigured servers receive DHCP/PXE information from the Fuel server.
4 The unconfigured servers boot using a management bootstrap image provided

by the Fuel server.
5 An agent running under the bootstrap image reports back to the Fuel server

once an unconfigured server has booted and a hardware inventory has been
collected.

6 The unconfigured server is reported by the Fuel server as an unallocated server.

If the discovery process is successful, all of your previously unconfigured servers will now
be reported as unallocated servers by the Fuel web interface, as shown in figure 11.11.
If a server doesn’t show up as discovered, access your virtual OOB console and check the
status of the host. You may need to force a cold restart from a particular server’s OOB
console if the server is in a hung state.

 Next, you’ll build a new environment, which will be used to deploy OpenStack on
your unallocated servers. This environment specifies how you want your servers con-
figured for use with OpenStack.

Figure 11.11 Fuel UI with 13 unallocated nodes
Licensed to tracy moore <nordick.an@gmail.com>

295Web-based basic Fuel OpenStack deployment
11.3.2 Creating a Fuel deployment environment

At this point you’re ready to define the environment that Fuel will deploy for you.
From the Environments tab, click the New OpenStack Environment icon. You’ll be
presented with a dialog box and a series of screens like the one shown in figure 11.12.

You’ll be asked to supply the following information:

 Name and release—Provide the name of the deployment and the OpenStack
release you wish to deploy. The name is purely cosmetic, but the OpenStack
release and OS platform selection will determine the underlying OS and release
platform for the entire deployment.

 Deployment mode—If you have limited hardware, you can select multi-node. In
this chapter’s demonstration, multi-node with HA will be selected.

 Compute—If you’re running on hardware, like in the demonstration environ-
ment, select KVM. If you’re running everything virtually, you should select
QEMU.

 Networking setup—There are several choices for network type. Likely you’ll want
to use Neutron for networking, which narrows it down to using GRE or VLAN
for network segregation. This chapter’s example environment will use VLAN
segregation, which is a common choice in production environments for perfor-
mance reasons.

 Storage backends—You can select either Linux LVM as the storage backend or
Ceph, both of which will be configured for you. In the example environment,
Ceph will be selected for both Cinder and Glance storage.

Figure 11.12 Creating a new OpenStack environment using Fuel
Licensed to tracy moore <nordick.an@gmail.com>

296 CHAPTER 11 Automated HA OpenStack deployment with Fuel
 Additional services—You can optionally install additional services provided by the
OpenStack framework.

 Finish—When you’ve completed your configuration, click the Create button to
build your environment configuration.

You’ve successfully created a new deployment environment configuration. Now it’s
time to configure your network environment.

11.3.3 Configuring the network for the environment

Before you assign any unallocated servers, you first need to configure the network for
your environment. Completing this step first will make interface configuration during
node assignment easier to understand, because the networks will already be defined
by the time you assign them to your hosts.

 Click the Networks tab in your environment configuration screen. From the Net-
works screen, you’ll create the network configuration that will be both applied to the
underlying hosts’ operating systems and used to configure OpenStack.

 The following networks configuration will be based on your environment. In the
environment creation step shown in figure 11.13, VLAN segmentation was selected, so
the following settings will reflect that option:

 Public—This is the network to be used for external VM communications. The IP
Range is the range of addresses to be reserved for OpenStack operations, such
as external router interfaces. The CIDR is the full subnet used for all external
(OpenStack and floating) addresses. The Gateway setting specifies the network
gateway for the subnet. In the example environment, this network will use the
tagged VLAN 97, as indicated by the checked box.

 Management—This is the network used by OpenStack nodes to communicate on
the API level. This should be considered an internal network for OpenStack
components.

 Storage—This network will carry the storage traffic from the Ceph nodes to the
compute and Glance nodes.

 Neutron L2 Configuration—This is the internal or private VM network. Set a
range of VLANs to be used for VM-to-VM communication between compute
nodes.

 Neutron L3 Configuration—This CIDR and gateway will be used internally when
creating internal OpenStack networks. Floating IP Ranges specifies the range of
addresses reserved from the public network to be available to VMs as floating
external addresses.

When your configuration is complete, choose Save Settings.
 In the next section, you’ll allocate nodes to your environment. Once hosts are

assigned, you’ll return to this screen and verify your network configuration.
Licensed to tracy moore <nordick.an@gmail.com>

297Web-based basic Fuel OpenStack deployment
Figure 11.13 Fuel environment network configuration
Licensed to tracy moore <nordick.an@gmail.com>

298 CHAPTER 11 Automated HA OpenStack deployment with Fuel
11.3.4 Allocating hosts to your environment

You’ve configured your new environment and you have a pool of discovered, yet unas-
signed, resources. But no physical resources have been assigned roles in the environ-
ment. The next step in the process is to assign roles to the pool of unallocated servers.

 In the configuration screen for your environment, choose Add Nodes. You will be
taken to the Nodes tab, which lists the available roles along with unallocated server
candidates. The node assignment screen should look like figure 11.14.

In the example environment, the following assignments were made:

 Controller—Three servers with 64 GB RAM
 Compute—Five servers with 512 GB RAM

 Storage, Ceph (OSD)—Three servers with 48 GB RAM and 16.5 TB disk space

In the following discussion, the disks and network will be configured from the alloca-
tion screen.

CONFIGURING INTERFACES
If you’ve assigned all interfaces on all nodes to be used for the same purpose, then
this step is easy; otherwise, you’ll have to repeat the interface configuration process

Figure 11.14 Assigning nodes to OpenStack roles
Licensed to tracy moore <nordick.an@gmail.com>

299Web-based basic Fuel OpenStack deployment
for every group of hosts that have unique interface configurations. If interfaces vary
based on server or role, simply repeat the configuration for each node.

 From the Nodes tab in your environment, toggle the Select All check box and then
choose Configure Interfaces. The node interface dialog box should appear, as shown
in figure 11.15.

The networks you configured in the previous section, like the public network shown
in figure 11.13, must be assigned to physical interfaces on your servers. The interfaces
shown in the screen will be specific to your deployment, but the following network
assignments must be made regardless of deployment configuration:

 Admin (PXE)—This should be assigned to the automation administration inter-
face. In the example, this will remain on interface eth0.

 Private—This should be assigned to the interface that will carry VM-to-VM traffic
internal to the OpenStack deployment. In this example, VLAN isolation was

Figure 11.15 Assigning node interface configuration
Licensed to tracy moore <nordick.an@gmail.com>

300 CHAPTER 11 Automated HA OpenStack deployment with Fuel
selected, so the interface eth4 is expected to have tagged access to VLANs for
transmitting this traffic between nodes.

 Public—This should be assigned to the interface that will carry traffic external
to the OpenStack environment.

 Management—This should be assigned to the interface that will be used for
intra-component communication.

 Storage—This interface should be assigned to the interface that is connected to
the storage network.

Once your interfaces have been assigned, click Apply to save the settings.
 Next, you’ll configure your disks.

CONFIGURING DISKS

Unlike interfaces, the physical disks on the separate servers aren’t expected to be the
same, and disk configuration is done at the group level. To configure disks for a group
of servers with the same disk configurations, select the server group and then click
Configure Disk. For instance, to configure the disks on a group of Ceph OSD nodes,
you’d select the group to access the disk configuration screen shown in figure 11.16.

In this figure, you can see that some disks have been assigned as Ceph journal devices
and others have been assigned as Ceph data devices. The configuration will be
assigned for all nodes selected in the group.

 Once you’ve configured the disks on all of your nodes, you’ll need to make the
final configuration settings and verify your network.

Figure 11.16 Assigning node disk
configuration
Licensed to tracy moore <nordick.an@gmail.com>

301Web-based basic Fuel OpenStack deployment
11.3.5 Final settings and verification

Click the Settings tab in your environment configuration screen. Under this tab,
you’ll find your existing configuration, which will be based on the answers you pro-
vided during environment creation. From this screen, you can more finely tune your
deployment.

 At a minimum, I recommend that you change any passwords related to your
deployment. In addition, if you’re using Ceph for your storage, you might consider
assigning Ceph as the back end for both Nova and the Swift API. Once you’ve made all
your changes, click Save Settings.

 Once again, click the Networks tab in your environment configuration screen.
Scroll down to the bottom of the screen and choose Verify Networks. If all your net-
work settings are correct, you’ll see “Verification succeeded,” as shown in figure 11.17.

STOP! VERIFY OR ELSE Do not proceed until your network configuration can
be verified. You’ll be guaranteed to have major problems if your network con-
figuration isn’t validated on all participating nodes.

Figure 11.17 Verified
network configuration

Help! My network isn’t documented!
Things can admittedly get complicated during this process. Something as simple as
determining which server is plugged into which switch can be complicated. If you get
completely lost, go back to the basics.

You have no idea where the server is plugged in? You can either start chasing cables
in the data center, or you could use the Link Layer Discovery Protocol (LLDP). Con-
sider booting the servers in question using a live CD that contains support for LLDP.
Consult your switch documentation for how to enable LLDP on your network hard-
ware. Running LLDP on the switch and server will allow both devices to report link-
level locations.

You know where the server is attached, but VLAN verification is failing? Once again,
boot a server and confirm connectivity from an untagged VLAN. This can be done by
assigning an IP address on the switch and the server, and then using Ping to confirm
communication between the devices. Once communication is confirmed, repeat the
process using tagged VLANs.
Licensed to tracy moore <nordick.an@gmail.com>

302 CHAPTER 11 Automated HA OpenStack deployment with Fuel
11.3.6 Deploying changes

Do you see the blue button labeled Deploy Changes? If you’re confident of your hard-
ware configuration and your environment settings, go ahead and click it! This will
start the deployment process, which includes OS installation and OpenStack deploy-
ment. The deployment progress will be indicated by the green progress bar at the top
right of the screen. If you’re interested in deployment details, you can click the Logs
tab or the paper icon next to the individual server’s deployment progress bar.

 When the process completes successfully, you’ll be provided with your deploy-
ment’s Horizon web address, as shown in figure 11.18.

Click the Health Check tab and follow the instructions to run a full test on your envi-
ronment. Some tests require OpenStack tenant interactions, such as importing spe-
cific images.

 If you need to add a node, simply click Add Nodes and follow the deployment process.
To redeploy, click the Reset button under the Actions tab, and then Deploy Changes. If
you want to completely start over, click Reset and then Delete to delete the environment.

 Enjoy your new HA OpenStack environment.

11.4 Summary
 Fuel can be used in the automated high-availability (HA) deployment of

OpenStack.
 Fuel uses the Mirantis version of OpenStack.
 Commercial support is offered by Mirantis for both Fuel and their distribution

of OpenStack.
 Fuel provides PXE boot services, allowing your servers to boot from the Fuel

server.
 An out-of-band (OOB) network is critical to large-scale automated deployments.

Figure 11.18 Successful deployment
Licensed to tracy moore <nordick.an@gmail.com>

Cloud orchestration
using OpenStack
One definition of orchestrate is to arrange or manipulate, especially by means of
clever or thorough planning or maneuvering. You are likely very familiar with the
first part of this definition in relation to computing. You must arrange layers of
underlying hardware and software dependencies in order to deploy applications.
This chapter, and in some respect this entire book, is about the clever part of orches-
tration. Specifically, this chapter covers application orchestration tools that make
use of OpenStack resources. Some of the tools we’ll explore are official OpenStack
projects, and others are related projects.

 Even within official OpenStack orchestration tools, dependency hierarchies
exist. For instance, the Murano project (not covered in this chapter), which pro-
vides users with an application catalog, depends on the Heat project to deploy
infrastructure and application components. There are also standalone tools, like

This chapter covers
 Application orchestration using OpenStack Heat

 Application orchestration using Ubuntu Juju
303

Licensed to tracy moore <nordick.an@gmail.com>

304 CHAPTER 12 Cloud orchestration using OpenStack
Ubuntu’s Juju, that interface directly with core OpenStack APIs to deploy infrastruc-
ture dependencies, which Juju then uses to deploy applications.

 This chapter starts with the official OpenStack Heat project, which operates
between the infrastructure and application levels. Next, we’ll look at the standalone
Ubuntu tool Juju.

12.1 OpenStack Heat
The OpenStack Heat project is considered the foundation of orchestration in Open-
Stack. In many ways, Heat does for applications what OpenStack infrastructure com-
ponents (Nova, Cinder, and the like) do for vendor hardware and software—it
simplifies the integration. Large automated compute clusters existed long before
OpenStack, but the cluster-management systems were either home-grown or vendor-
specific. OpenStack provided a common interface for managing infrastructure
resources.

 But in the scope of application deployment, infrastructure is only part of the pro-
cess. Even if you had a system that could provision limitless virtual machines (VMs)
instantly, you’d still need additional tools to manage applications on VMs. In addition,
you’d want infrastructure and application layers to actively adapt to changes on either
level. For instance, if an application performance threshold is breached, you might
want additional infrastructure to be added without human interaction. Likewise, if
infrastructure resources become limited, you might want the least important applica-
tions to gracefully release resources.

 Consider for a moment the infrastructure resources that make up a VM. At a mini-
mum, a VM is composed of CPU, RAM, and disk resources. In OpenStack and similar
environments, defined formats exist for describing both individual resources and how
resources are related to form VMs. Now, suppose you could describe all the steps
required in the manual deployment of an application. Templates are the textual
description of resource dependencies and application-level install instructions.

12.1.1 Heat templates

OpenStack Heat translates templates into applications, making use of OpenStack-
provided infrastructure. The process of generating an application stack from a tem-
plate is called stacking. Of course, you need a template to make use of Heat capabili-
ties. Heat designers no doubt wanted the project to be useful to the OpenStack
community as soon as possible, and to this end they adopted the existing Amazon Web
Services (AWS) CloudFormation template format, which is designated in Heat as the
Heat CloudFormation-compatible format (CFN). AWS CloudFormation was released
in April 2011, several years before Heat, and many CFN templates are available:
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/.

 The anatomy of the CFN template is shown in the following listing.
Licensed to tracy moore <nordick.an@gmail.com>

305OpenStack Heat

{
"AWSTemplateFormatVersion" : "version date",

"Description" : "JSON string",

"Parameters" : {

},

"Mappings" : {

},

"Conditions" : {

},

"Resources" : {

},

"Outputs" : {

}
}

Although supporting the CFN format was valuable in making a large number of exist-
ing templates useful for Heat, it was still, after all, a format designed for AWS. Heat
project members determined that an OpenStack-specific format was needed, and the
Heat OpenStack Template (HOT) was created. The CFN template is structured in
JavaScript Object Notation (JSON), whereas HOT templates are structured in YAML
format. The HOT specification has been considered the standard template version for
Heat since the Icehouse release (April 2014).

 Take a look at the following abridged HOT template, which is based on a Word-
Press deployment template found in the official OpenStack Heat documentation.

heat_template_version: 2013-05-23

description: >
Heat WordPress template to support F20, using only Heat OpenStack-native
resource types, and without the requirement for heat-cfntools in the image.
WordPress is web software you can use to create a beautiful website or blog.
This template installs a single-instance WordPress deployment using a local
MySQL database to store the data.

parameters:

image_id:
type: string
description: >
Name or ID of the image to use for the WordPress server.

Listing 12.1 AWS CloudFormation template format

Listing 12.2 Example Heat OpenStack Template (HOT)

Declares stack input
types and values

Assigns key/value pairs for
reference in resource and
output steps

Specifies logical
conditions for the
creation of the stack

Declares resource
dependencies and application
installation procedures

Declares output data to
be provided on stack-
processing completion

Describes the template

Declares input types
and values
Licensed to tracy moore <nordick.an@gmail.com>

306 CHAPTER 12 Cloud orchestration using OpenStack
Recommended values are fedora-20.i386 or fedora-20.x86_64;
get them from http://cloud.fedoraproject.org/fedora-20.i386.qcow2
or http://cloud.fedoraproject.org/fedora-20.x86_64.qcow2 .

default: fedora-20.x86_64

resources:
wordpress_instance:
type: OS::Nova::Server
properties:
image: { get_param: image_id }
...
user_data:
str_replace:
template: |
#!/bin/bash -v

yum -y install mariadb mariadb-server httpd wordpress
...

outputs:
WebsiteURL:
description: URL for WordPress wiki
...

Both the CFN and HOT templates share foundational components, but they are sepa-
rate template languages. These template languages can be thought of as program-
ming languages. While initially you might not think of an orchestration template as a
programming language, consider the fundamental attributes of a language. A com-
puter language is a formal language used to communicate instructions to a computa-
tional system. If a template is a formal language, then Heat serves as an interpreter of
that language. The intermediate (process step) output of template interpretation is
the sum total of all instructions required to deploy applications on OpenStack-
provided infrastructure. The final output of interpretation is a deployed system imple-
mented by template language instructions, with resulting application outputs defined
in the template outputs section. The individual applications that comprise the Heat
project are listed in table 12.1.

Next, we’ll walk through the creation of a stack using Heat.

Table 12.1 Heat applications

Name Description

heat CLI tool that communicates with Heat APIs

heat-api OpenStack-native REST API

heat-api-cfn AWS-style query API (AWS CloudFormation API compatibility)

heat-engine Engine that takes input from APIs and interprets template languages

Declares resource
dependencies and application
installation procedures

Declares output data to be
provided on stack-processing
completion
Licensed to tracy moore <nordick.an@gmail.com>

307OpenStack Heat
12.1.2 A Heat demonstration

In this section, you’ll see the deployment of a simple application stack using Heat
command-line tools. But Heat does more than simply deploy applications. Heat can
be used in conjunction with OpenStack Ceilometer (the central measurement ser-
vice) to dynamically scale resources based on policies described in templates. A full
description of autoscaling with Heat is beyond the scope of this book, but you can find
all the details in the official OpenStack Heat documentation: http://docs.openstack
.org/developer/heat/.

 Back in chapter 2, you used DevStack to deploy OpenStack. The examples here
will be deployed in a DevStack environment, but any working Heat environment
could be used. If you already have a working Heat environment, skip ahead to the sub-
section “Confirming stack dependencies.”

ENABLING HEAT IN DEVSTACK

If you’re using the DevStack environment you deployed in chapter 2, you must make
some configuration changes to your local.conf script to enable Heat. Access the
command shell in your DevStack environment and add the following lines to
/opt/devstack/local.conf.

Enable Heat (orchestration) Service
enable_service heat h-api h-api-cfn h-api-cw h-eng
HEAT_BRANCH=stable/juno

Your new configuration specifies that you want all Heat services enabled, as well as
identifies the code branch and release you want to use. In your configuration, make
sure the release name in HEAT_BRANCH matches the release name of the rest of the
components in your configuration.

 Once the Heat configurations are in place in your local.conf file, repeat the stack-
ing (stack.sh) and unstacking (unstack.sh) process from chapter 2 (section
_2310_35359_190446), and set your environmental variables as shown in the follow-
ing listing.

$ source openrc

As you might recall from chapter 3, the openrc script provided by DevStack sets vari-
ables in your shell that allow you to interact with OpenStack services.

 You should now have a working Heat environment and console access to your envi-
ronment. Next, you need to confirm that all dependencies are in place for your first
stack.

Listing 12.3 Enable Heat in your DevStack local.conf

Listing 12.4 Set environmental variables

Run this command from the
/opt/devstack directory.
Licensed to tracy moore <nordick.an@gmail.com>

308 CHAPTER 12 Cloud orchestration using OpenStack
CONFIRMING STACK DEPENDENCIES

You need to take a few additional steps to verify that your environment is ready for
stacking. First, you want to make sure that you have command-line access to Open-
Stack components, including the heat application mentioned in table 12.1. A full
command reference for the heat application can be found in the official Open-
Stack documentation: http://docs.openstack.org/cli-reference/content/heatclient_
commands.html. Run the heat command shown in the following listing to confirm
basic Heat operation.

$ heat stack-list
+----+------------+--------------+---------------+
| id | stack_name | stack_status | creation_time |
+----+------------+--------------+---------------+
+----+------------+--------------+---------------+

As expected, no stacks were listed in this example, but this does confirm that appro-
priate variables have been set and Heat has been installed.

IS IT HEAT OR THE ENVIRONMENT? If you experienced an error during the pre-
vious step, look closely at the error. Does the error look like a Heat-specific
error or more like a lack of credentials? To confirm that your variables have
been set, try to access a known working service like Nova: nova list. If you
can access Nova, then your problem is likely with Heat; if you can’t access
Nova, your problem likely has to do with your environmental variables.

Now that you’ve confirmed access to OpenStack components, you need to see what
images are available in the existing system. You might recall from earlier chapters that
the Glance service is responsible for images. Using Glance, list all images as follows.

$ glance image-list
+---+-------------+..+
| ID | Name | Disk Format |..
+---+-------------+..+
| b5...d9 | Fedora-x86_64-20-20140618-sda | qcow2 |..
+---+-------------+..+

If you enabled Heat in a DevStack environment, you’ll notice that a new image was
added in the DevStack stacking process. The new Fedora image will be used in this
Heat stacking example. If you aren’t using DevStack and don’t have a Fedora image
listed, please add one as demonstrated in chapter 5, under the heading “Image man-
agement” in section 5.2.2.

IMAGES THAT WORK WITH HEAT Any image could be specified in a Heat tem-
plate, but some templates make use of Heat CloudFormation tools that must

Listing 12.5 List Heat stacks

Listing 12.6 List Glance images
Licensed to tracy moore <nordick.an@gmail.com>

309OpenStack Heat
be pre-installed on the image. Fedora F20 images (http://cloud.fedoraproject
.org/fedora-20.x86_64.qcow2) contain heat-cfntools and are a common
choice for Heat images.

The final step in your preparation is creating an SSH key pair that can be injected into
the host during the stacking process. As with the image, any key pair can be specified
in a template. For this demonstration, you’ll create a new key pair named heat_key to
be used for Heat instances, as shown in the next listing. Make sure you save the
heat_key in case you need to access your instances directly.

$ nova keypair-add heat_key > heat_key.priv
$ chmod 600 heat_key.priv

You’re now ready to create a Heat stack using the image, flavor, and key pair for your
environment. It’s time to complete the stack process.

LAUNCHING A HEAT STACK

At this point you have everything you need, with the exception of the template. The
good news is that there are many existing templates in the OpenStack Git repository
(https://github.com/openstack/heat-templates), and many more can be found on
the AWS CloudFormation Templates site (http://aws.amazon.com/cloudformation/
aws-cloudformation-templates/). The last step in the process is to select a template
and define template parameters. You might recall from earlier sections in this chapter
that template parameters are simply key/value pairs that are used to describe specific
attributes of a specific stack.

 For this we’ll use a Heat template that’s used to deploy WordPress, an open source
content management system.

Listing 12.7 Generate Heat SSH key pair

What’s the big deal?
You might well have experienced the pain of deploying highly dependent software
packages like WordPress from the ground up. If you haven’t, you need to understand
the many layers of interdependent complexities in these systems to know just how
amazing application orchestration is.

Before package management systems like apt and yum were common, open source
tools had to be compiled from source code. Often the source code of one package
had many dependencies from other packages. Not only did you have to compile many
separate packages from source, but specific libraries often had to be explicitly refer-
enced as part of the linking (compilation) process. Anyone who has compiled the
Apache web server from scratch with support for PHP, MySQL, LDAP, SSL, and so on,
will know this pain. Binary packages aren’t immune to dependency problems either,
which gave rise to the colloquial term “dependency hell.”

It’s amazing that tools like Heat can take a template and a few parameters and pro-
vide in minutes what it might take a person weeks to do manually.
Licensed to tracy moore <nordick.an@gmail.com>

310 CHAPTER 12 Cloud orchestration using OpenStack

Para
f

The following listing deploys a WordPress stack with the name mystack. Modify any
parameters in the example that might differ on your system.

$ heat stack-create mystack \
-u http://git.openstack.org/cgit/openstack/heat-

templates/plain/hot/F20/WordPress_Native.yaml \
-P image_id=Fedora-x86_64-20-20140618-sda \
-P key_name=heat_key
+---------+------------+--------------------+----------------------+
| id | stack_name | stack_status | creation_time |
+---------+------------+--------------------+----------------------+
| eb...29 | mystack | CREATE_IN_PROGRESS | 2015-03-04T08:59:02Z |
+---------+------------+--------------------+----------------------+

If the command executed successfully, you’ll see the initial status of your mystack
stack listed as CREATE_IN_PROGRESS.

 In order to check the status of your stacks, run the command heat stack-list as
shown here.

$ heat stack-list
+---------+------------+-----------------+----------------------+
| id | stack_name | stack_status | creation_time |
+---------+------------+-----------------+----------------------+
| eb...29 | mystack | CREATE_COMPLETE | 2015-03-04T08:59:02Z |
+---------+------------+-----------------+----------------------+

When your stack has completed, its status will change to CREATE_COMPLETE.
 If you experience issues or simply want to check on events related to your stack,

run the following command.

$ heat event-list mystack
+--------------------+...+---------------+--------------------+..+
| resource_name |...| status_reason | status |..
+--------------------+...+---------------+--------------------+..+
| wordpress_instance |...| state changed | CREATE_COMPLETE |..
| wordpress_instance |...| state changed | CREATE_IN_PROGRESS |..
+--------------------+---+---------------+--------------------+..+

You can see in this example that only two events exist for this simple deployment. In
an autoscaling environment, however, you might see many events related to the coop-
erative interaction between infrastructure and the applications in the stack.

 Now that the stack has completed, you’ll want to take a closer look at the details of
the stack with the heat stack-show command, as follows.

Listing 12.8 Launch Heat stack

Listing 12.9 Listing Heat stack status

Listing 12.10 List mystack events

Name for stack

URL location of
the templatemeter

or the
image

Parameter for the key pair
Licensed to tracy moore <nordick.an@gmail.com>

311OpenStack Heat

$ heat stack-show mystack
+-----------------+--+..+
| Property | Value |..
+-----------------+--+..+
| capabilities | []
..
| outputs | [
| | "output_value": "http://10.0.0.4/wordpress",
| | "description": "URL for WordPress wiki",
| | "output_key": "WebsiteURL"
...
| |]
| parameters | {
| | "OS::stack_id": "eb...29",
| | "OS::stack_name": "mystack",
| | "image_id": "Fedora-x86_64-20-20140618-sda",
| | "db_password": "******",
| | "instance_type": "m1.small",
| | "db_name": "wordpress",
| | "db_username": "******",
| | "db_root_password": "******",
| | "key_name": "heat_key"
...

As you can see in this listing, details of mystack are shown, including the outputs val-
ues. In this case, the output_value provides a reference to the WordPress site created
by the stacking process. Of course, the output values could be anything defined by the
template.

 Finally, to remove all data and release all infrastructure related to your stack, you
can use the stack-delete process shown in the following listing.

$ heat stack-delete mystack
+---------+------------+--------------------+----------------------+
| id | stack_name | stack_status | creation_time |
+---------+------------+--------------------+----------------------+
| eb...29 | mystack | DELETE_IN_PROGRESS | 2015-03-04T08:59:02Z |
+---------+------------+--------------------+----------------------+

In this section, you’ve learned about OpenStack Heat and completed the mystack
example in your environment.

 We’ve now looked at the OpenStack Heat orchestration project, which is devel-
oped and maintained as part of the OpenStack framework. However, there are other
automation tools that can make use of OpenStack resources, but aren’t official Open-
Stack projects. One such OpenStack-related project is Ubuntu Juju. In the next sec-
tion, you’ll learn how Juju is used with OpenStack in application orchestration.

Listing 12.11 Show mystack details

Listing 12.12 Delete mystack
Licensed to tracy moore <nordick.an@gmail.com>

312 CHAPTER 12 Cloud orchestration using OpenStack
12.2 Ubuntu Juju
The Ubuntu Juju project is all about orchestration, such as the system-level deploy-
ment of OpenStack or application-level deployment of WordPress. Juju can be used
for bare-metal deployments, but that’s beyond the scope of this book. Here we’ll focus
on application-level deployments using OpenStack resources.

 You can think of Juju as an agent-based orchestration system. You’ll configure a
Juju client on your personal computer to make use of an OpenStack instance for
infrastructure resources. Juju deploys a bootstrap agent to a tenant in your OpenStack
deployment, which it then uses to deploy additional applications and dependencies
via its own orchestration engine.

Before you get started, you’ll need to make sure you have the rights to create instances
using Nova and to store objects using OpenStack Swift.

12.2.1 Preparing OpenStack for Juju

It’s possible to use Juju without setting any OpenStack variables in your shell by simply
providing information about your OpenStack environment in your Juju configura-
tion. But this process can be tedious, so I’ll try to reduce the number of manual con-
figurations you must make. Luckily, the OpenStack Dashboard can be used to
generate a script that sets appropriate shell variables.

Log in to your OpenStack Dashboard with the userid you wish to use with Juju, and
select the tenant you want to contain Juju resources. Under the Projects drop-down,

OpenStack Heat vs. Ubuntu Juju
Both OpenStack Heat and Ubuntu Juju have their own strengths and weaknesses
depending on your use case. Heat is more closely integrated with OpenStack, but Juju
allows you to use other cloud framework resources (such as Amazon, HP, and Open-
Stack). In terms of the resulting output (namely, the automated deployment of appli-
cations on cloud resources), the two tools accomplish the same tasks. It’s up to you
to determine the appropriate tool for the job.

Where does Juju live?
Unlike almost everything else in this book (excluding Ceph and Fuel), the Juju instal-
lation doesn’t have to take place on an OpenStack node. In fact, Juju installers exist
for Linux, Mac OS X, and even Windows. The operations performed in section 12.2.1
will prepare your OpenStack environment for use with Juju. There are no server-side
Juju components to install on OpenStack nodes. This distinction was outlined in
chapter 4, which explained the differences between official core OpenStack projects
and related projects. Juju falls into the related category and even supports cloud
frameworks other than OpenStack.
Licensed to tracy moore <nordick.an@gmail.com>

313Ubuntu Juju
click on Access & Security and navigate to the API Access tab. From this tab, click on
Download OpenStack RC File as shown in figure 12.1.

 This generates a script that sets identity variables based on your selected tenant
and current user. You’ll be prompted to download the script, which will use the nam-
ing convention [tenant name]-openrc.sh.

 Copy the file to your OpenStack environment and then process the script as follows.

$ source demo-openrc.sh
Please enter your OpenStack Password:

It’s a good idea at this point to access your OpenStack service to make sure the variables
were set correctly. For example, make sure the commands like glance image-list exe-
cute without errors.

 The next step is to make sure you have an image that can be used with Juju. Deter-
mining what images are supported will be covered shortly; for now it’s sufficient to
know that Ubuntu 12.04 is a popular image used with Juju. If you have an Ubuntu 12.04
image in your environment, make note of the image ID using the glance list-image
command. If you don’t have an Ubuntu 12.04 image, register one as shown in the fol-
lowing listing, and make a note of the image ID, which will be used in the next section.

$ glance image-create --name="Ubuntu 12.04" \
--is-public=true --disk-format=qcow2 \
--container-format=bare \
--location http://cloud-images.ubuntu.com/precise/current/precise-server-

cloudimg-amd64-disk1.img
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
...
| id | ce7616a6-b383-4704-be3a-00b46c2de81d |
...
| name | Ubuntu 12.04 |
...
+------------------+--------------------------------------+

You’re now ready to install Juju.

Listing 12.13 Running the openrc.sh script

Listing 12.14 Register an image for Juju

Figure 12.1 Download
OpenStack RC

Make note of
image ID
Licensed to tracy moore <nordick.an@gmail.com>

314 CHAPTER 12 Cloud orchestration using OpenStack
12.2.2 Installing Juju

You’ll install Juju on an Ubuntu 14.04 instance, but the examples will work on other
Juju-supported platforms.

 In order to install the latest Juju release, you must add the Juju repository to your
package management system. The following listing shows how to add the Juju reposi-
tory, update the package index, and install the Juju binaries from your package man-
agement system.

$ sudo add-apt-repository ppa:juju/stable
$ sudo apt-get update
$ sudo apt-get install juju-core

If the previous commands complete without errors, you’ll now have the Juju binaries
installed on your system.

WHICH REPO SHOULD BE USED? The official Juju documentation suggests that
you install Juju from the Juju-specific repository, ppa:juju/stable, and fall
back to the Ubuntu universe repository if you experience problems. The
command sudo apt-get install juju will install Juju version 1.20.11-
0ubuntu0.14.04.1 if you’re using Ubuntu version 14.04.1. Over the course of
writing this chapter, I found that the Juju packages that are part of the nor-
mal Ubuntu universe repository worked better with OpenStack.

Next, generate a Juju configuration file as shown in the following listing. The file will
be generated in the ~/.juju directory.

$ juju init
A boilerplate environment configuration file has been written
to /home/sysop/.juju/environments.yaml.
Edit the file to configure your juju environment and run bootstrap.

Using your preferred text editor, take a look at the environments.yaml file you just
generated. You’ll see example configurations for several framework types including
ec2, openstack, manual, maas, joyent, and azure.

 As shown in the next listing, modify your Juju configuration file (environments
.yaml) by adding the new myopenstack environment and setting it as the default
environment.

default: myopenstack

environments:
myopenstack:

type: openstack
use-floating-ip: false

Listing 12.15 Install Juju binaries

Listing 12.16 Generate a Juju configuration file

Listing 12.17 Modify your Juju configuration

Set your configuration to default

If you’re using floating-ips,
set to true
Licensed to tracy moore <nordick.an@gmail.com>

315Ubuntu Juju

pa
me
use-default-secgroup: true
network: "private"
region: "RegionOne"
auth-mode: userpass
default-series: precise

By modifying the environments.yaml file, you’ve provided Juju with basic information
about your OpenStack deployment. But Juju requires additional deployment-specific
information to function.

 Juju charms were introduced back in chapter 4—they’re collections of installation
scripts that define how services and applications integrate into virtual infrastructure.
Charms are used by Juju in the same way HOT and CNF templates are used by Open-
Stack Heat. Charms reference image types as requirements, not specific images. For
example, a charm might require an Ubuntu 12.04 operating system, but it wouldn’t
require a specific instance of that image. So how does the Juju system know where to
find an Ubuntu 12.04 (or any other) image? You must define your existing OpenStack
Glance images for Juju to make use of them.

 In the following listing, the image metadata to be used by Juju is generated for an
existing Ubuntu 12.04 image.

$ juju metadata generate-image \
-i 0d6d8f6d-870c-4c58-aa96-ccc0e65df206 \
-r RegionOne \
-u http://192.168.1.178:5000/v2.0/ \
-d /home/sysop \
-s precise \
-a amd64

image metadata files have been written to:
/home/sysop/images/streams/v1.
For Juju to use this metadata, the files need to be put into the
image metadata search path. There are 2 options:

1. Use the --metadata-source parameter when bootstrapping:
juju bootstrap --metadata-source /home/cody

2. Use image-metadata-url in $JUJU_HOME/environments.yaml
Configure a http server to serve the contents of
/home/sysop
and set the value of image-metadata-url accordingly.

The image metadata generated in the previous listing will be stored in the [root
path]/images directory. This metadata will be used by Juju to translate charm require-
ments to resource requests on your OpenStack deployment.

 Juju has now been configured with your system and image information, but once
an appropriate image has been launched for a specific charm, additional application
installation procedures must take place on that instance. Juju uses an agent-based
model, which places Juju tools (agents) on images, and then uses the agents to

Listing 12.18 Generate image metadata

Set to your desired tenant network

Set to your OpenStack region

Image ID (from Glance) of
the Ubuntu 12.04 image

Keystone auth URL
Root

th for
tadata

Version of the OS distribution

Architecture of the
OS distribution
Licensed to tracy moore <nordick.an@gmail.com>

316 CHAPTER 12 Cloud orchestration using OpenStack
complete the charm-deployment process. It’s possible to use various Juju tool versions
on the same OpenStack deployment across tenants, just as various OS images are used.

 To allow tool flexibility across the deployment, you must also generate tool meta-
data, just as you did with the image metadata. The following listing shows how you can
generate tool metadata.

$ juju metadata generate-tools -d /home/sysop
Finding tools in /home/sysop

The tool metadata generated here will be stored in the [root path]/tools directory.
This metadata contains information related to the version of the tool used to generate
the metadata, which information will be used by Juju to determine what tools it should
use for a specific deployment.

 Now that you’ve configured Juju with system, image, and tool information, you’re
ready to bootstrap your tenant. Bootstrapping is the process used by Juju to place a con-
trol (bootstrap) instance in a tenant. The bootstrap instance communicates with the
Juju client and your OpenStack deployment to coordinate application orchestration.

 The bootstrap allows application nodes to remain isolated on internal OpenStack
networks until they’re explicitly exposed. For instance, if you deploy a load-balanced
WordPress environment (more than one web server), only the load balancers need to
be exposed to the outside world, and the web and database servers can remain iso-
lated. Of course, you could do this manually, but often the access required to manu-
ally manage these nodes makes isolation impractical.

 The following listing shows the OpenStack bootstrap process.

$ juju bootstrap \
--metadata-source /home/sysop \

--upload-tools -v

WARNING ignoring environments.yaml:
using bootstrap config in file
"/home/sysop/.juju/environments/myopenstack.jenv"

Bootstrapping environment "myopenstack"
Starting new instance for initial state server
Launching instance
- 25e3207b-05e5-428c-a390-4fb7d6849d6d

Installing Juju agent on bootstrap instance
Waiting for address
Attempting to connect to 10.0.0.2:22
Logging to /var/log/cloud-init-output.log on remote host
Installing add-apt-repository
Adding apt repository: ...
Running apt-get update
Running apt-get upgrade

Listing 12.19 Generate tool metadata

Listing 12.20 Bootstrapping an OpenStack tenant

Root path for image
and tool directories

Uploads tools to
deployment
Licensed to tracy moore <nordick.an@gmail.com>

317Ubuntu Juju
Installing package: git
Installing package: curl
Installing package: cpu-checker
Installing package: bridge-utils
Installing package: rsyslog-gnutls
Fetching tools: ...
Bootstrapping Juju machine agent
Starting Juju machine agent (jujud-machine-0)

Once the bootstrap successfully completes, you’ll be ready to use Juju in your tenant. To
check on the state of your Juju environment at any time, run the following command.

$ juju status
environment: myopenstack
machines:

"0":
agent-state: started
agent-version: 1.20.11.1
dns-name: 10.0.0.2
instance-id: 6a61c0db-9a32-4bba-b74d-44e09692210c
instance-state: ACTIVE
series: precise
hardware: arch=amd64 cpu-cores=1 mem=2048M root-disk=20480M
state-server-member-status: has-vote

services: {}

Now it’s time to deploy WordPress on OpenStack using a Juju charm.

12.2.3 Deploying the charms CLI

Using the following listing as a reference, deploy WordPress using Juju.

$ juju deploy wordpress
Added charm "cs:precise/wordpress-27" to the environment.

When you issue the deployment command, your request will be sent to your bootstrap
instance. You can check your deployment status using the following command.

$ juju status
environment: myopenstack
machines:

"0":
..
"1":

agent-state: pending
dns-name: 10.0.0.3
instance-id: ed50e7af-0426-4574-a0e0-587abc5c03ce

Listing 12.21 Check Juju status

Listing 12.22 Deploy WordPress using Juju

Listing 12.23 Check WordPress deployment

New instance for
WordPress

OpenStack
instance ID
Licensed to tracy moore <nordick.an@gmail.com>

318 CHAPTER 12 Cloud orchestration using OpenStack

Boo
in
instance-state: ACTIVE
series: precise
hardware: arch=amd64 cpu-cores=1 mem=2048M root-disk=20480M

services:
wordpress:

charm: cs:precise/wordpress-27
exposed: false
relations:

loadbalancer:
- wordpress

units:
wordpress/0:

agent-state: pending
machine: "1"
public-address: 10.0.0.3

From the OpenStack perspective, you can watch the bootstrap node deploying
instances by using the following Nova command.

$ nova list
+--------------------------------------+..------------------+
| ID |.. Networks |
+--------------------------------------+..------------------+
| 6a61c0db-9a32-4bba-b74d-44e09692210c |.. private=10.0.0.2 |
| ed50e7af-0426-4574-a0e0-587abc5c03ce |.. private=10.0.0.3 |
+--------------------------------------+..------------------+

Your WordPress service is now in the process of being provisioned, but the WordPress
charm has a dependency on MySQL. Just as you deployed the WordPress service, you
must now deploy MySQL and relate it to the WordPress instance.

$ juju deploy mysql
...
$ juju add-relation mysql wordpress
...

JUJU DEPENDENCIES Juju doesn’t currently provide automated dependency
resolution. You’ll have to read the charm documentation to determine
the dependencies. Documentation for charms can be found here: https://
jujucharms.com/.

Once all the resources have been provisioned from OpenStack, agents on each
instance will install WordPress and the dependent components. Components on each
node will be configured as specified by the Juju WordPress charm. For instance, web
servers will be configured to consume resources from database servers, and load bal-
ancers will be configured to balance traffic on the web servers.

Listing 12.24 Nova list instances

Listing 12.25 Deploy remaining dependencies

New WordPress service

Service is not exposed

Indication of service state

tstrap
stance WordPress

instance
Licensed to tracy moore <nordick.an@gmail.com>

319Ubuntu Juju
 When your WordPress service’s agent-state changes from pending to started, as
indicated by the status command in listing 12.23, your service is ready. But before
you can access your service, you must first expose it.

$ juju expose wordpress

Your WordPress deployment will now be accessible on the public address indicated by
the status command in listing 12.23.

 You’ve now completed a Juju deployment of WordPress using charms. If you want
to gain console access to instances deployed using Juju, determine the machine ID
with the status command in listing 12.23, and then use the following command. This
example demonstrates how to gain console (SSH) access to machine 1.

$ juju ssh 1

Next, you’ll deploy the Juju GUI, which can be used to graphically deploy Juju charms
in your environment.

12.2.4 Deploying the Juju GUI

Once you’ve bootstrapped your OpenStack tenant, you can deploy the Juju GUI. We’ll
first walk through the deployment of the GUI, and then through the deployment of
WordPress using the GUI.

 Once again, check the status of your Juju environment as follows.

$ juju status
environment: myopenstack
machines:

"0":
agent-state: started
agent-version: 1.20.11.1
dns-name: 10.33.4.54
instance-id: de0fbd71-a223-4be4-862b-8f1cb6472640
instance-state: ACTIVE
series: precise
hardware: arch=amd64 cpu-cores=1 mem=1024M root-disk=25600M
state-server-member-status: has-vote

services: {}

You can see in the preceding listing that the only node in the myopenstack Juju envi-
ronment is the bootstrap node, machine 0.

Listing 12.26 Expose the WordPress service

Listing 12.27 SSH to Juju instance

Listing 12.28 Check Juju environment status

Machine ID
Licensed to tracy moore <nordick.an@gmail.com>

320 CHAPTER 12 Cloud orchestration using OpenStack
 As shown in the following listing, deploy and expose the Juju GUI charm to your
environment.

$ juju deploy juju-gui
Added charm "cs:precise/juju-gui-109" to the environment.
$ juju expose juju-gui

Now that the Juju GUI has been deployed and exposed, check the status of the
deployment.

$ juju status
environment: myopenstack
...
services:

juju-gui:
charm: cs:precise/juju-gui-109
exposed: true
units:

juju-gui/0:
agent-state: started
agent-version: 1.20.11.1
machine: "1"
open-ports:
- 80/tcp
- 443/tcp
public-address: 10.33.4.53

In the previous example, you can see that
the service agent has started (agent-state:
started), that the service is now exposed
(exposed: true), and that the public
address of the service is 10.33.4.53 (public-
address: 10.33.4.53).

 Using a web browser, try to access the Juju
GUI using the public address listed for your
environment. Once you access the Juju GUI
site, you should be presented with a login
screen, as shown in figure 12.2.

 During the bootstrap process, an admin
secret was generated for your environment,
and this is the password for your Juju GUI
login. You can retrieve your admin secret
using the following command.

Listing 12.29 Deploying and exposing the Juju GUI

Listing 12.30 Check Juju environment status

Service is exposed

Running on machine 1

Using ports 80/443

Using IP 10.33.4.53

Figure 12.2 Juju GUI login
Licensed to tracy moore <nordick.an@gmail.com>

321Ubuntu Juju

$ more ~/.juju/environments/myopenstack.jenv | grep admin-secret
admin-secret: bc03a7948a117561eb5111437888b5f9

Using the admin username and your admin secret as the password (bc03a7948a117561
eb5111437888b5f9 in the example), log in to the Juju GUI.

 Once you log in, you’ll be presented with a home screen that provides a graphical
interface for your bootstrapped environment. Using the search bar at the top left of
the home screen, search for a WordPress charm, as shown in figure 12.3.

When you click on the name of a charm, you’ll be taken to the charm panel. Click on
a WordPress charm, which will take you to a charm panel like the one in figure 12.4.

Once in the WordPress charm panel, click Add to My Canvas. The WordPress charm
will be added as a service to your canvas, but no machine resources will be assigned.
Click the Machines tab on the home screen to see the machine resource assignments,
as shown in figure 12.5.

Listing 12.31 Retrieve admin secret

Figure 12.3 Juju GUI homepage

Figure 12.4 Adding WordPress charm to canvas
Licensed to tracy moore <nordick.an@gmail.com>

322 CHAPTER 12 Cloud orchestration using OpenStack
In the Machines tab, you’ll see the requested resources for the new WordPress service
in the New Units column. Click the Auto Place button, and machine resources will be
assigned, as shown in figure 12.6.

You have now assigned machine resources to
the new WordPress service, but these resources
haven’t been committed. Click the Commit
button at the bottom right of the screen to
commit your resource assignments, as shown in
figure 12.7.

 Once you’ve committed resources to your
service, you’ll be taken back to the Services tab
on the home screen.

Figure 12.5 View unassigned
service resource request

Figure 12.6 View assigned service resource assignments

Figure 12.7 Confirm service provisioning
Licensed to tracy moore <nordick.an@gmail.com>

323Ubuntu Juju
At this point Juju will be busy building your WordPress service, but not all external
dependencies and relationships will have been built. The WordPress service is depen-
dent on a MySQL service.

 Repeat the process you followed to install
the WordPress service from the wordpress
charm to install the MySQL service from the
mysql charm. Once both WordPress and
MySQL services are running (once they’re
green), build a relationship between Word-
Press and MySQL on the canvas screen, and
commit the change. Once the services have
been started and the relationships built, your
canvas should look like figure 12.8.

 You’re now ready to use your services, but not only are the services not exposed,
you also don’t know what addresses are being used for your services. Click on the
WordPress node on your canvas, which will bring up the WordPress service panel.
From the WordPress panel, you can expose your service by toggling the Expose slider
and confirming the expose action.

 Once the service is exposed, click on the running instance of the WordPress service
(wordpress/0), which will load the service inspector panel, shown in figure 12.9. In the
service inspector panel, you can see the public address and ports used by the service.

Figure 12.9 View the
service inspector panel

Figure 12.8 Service relationship between
WordPress and MySQL
Licensed to tracy moore <nordick.an@gmail.com>

324 CHAPTER 12 Cloud orchestration using OpenStack
Using a web browser, attempt to access your new WordPress site using your public
address, as shown in figure 12.10.

You have now used the Juju GUI to deploy WordPress and its related dependencies.
You can repeat this process using charms to deploy many applications using both pub-
lic and private clouds.

Figure 12.10 Access your WordPress site

503 Error?
If you experience a 503 error, you could be running
out of memory—the default charm provisions a very
small VM.

One way to reduce the memory usage of WordPress
is to reduce the number of loaded WordPress plug-
ins by changing the tuning of the service, before
resources are committed. From the WordPress ser-
vice panel, change the tuning from standard to bare.

Alternatively you could modify the deployment to
make use of larger instances.
Licensed to tracy moore <nordick.an@gmail.com>

325Summary
12.3 Summary
 The OpenStack Heat project can be used to automatically deploy applications

on OpenStack clusters.
 Heat is an official OpenStack project.
 Heat can make use of both the Amazon Web Services (AWS) CloudFormation

template format and its own HOT format.
 Ubuntu Juju can be used to automatically deploy applications on Amazon- and

OpenStack-based public and private clouds.
 Juju is a OpenStack-related project.
 Juju is an agent-based orchestration tool.
Licensed to tracy moore <nordick.an@gmail.com>

 appendix
Installing Linux

This appendix covers the basic install of Ubuntu Linux version 14.04 LTS on a sin-
gle physical server. Even if you’ve worked with Linux in the past, you might want to
review this tutorial, if only to understand the underlying system configuration used
for the examples in the book.

UBUNTU LINUX VERSION 14.04 LTS In connection with version 14.04, the
acronym LTS means Long Term Support. There will be support for the
14.04 branch of Ubuntu until at least April 2019.

Although Linux is used as an underlying operating system throughout this book,
this is not a book on Linux. This appendix is included to provide simple install
instructions for those without Ubuntu Linux experience. These instructions will
walk you through every step in the installation process.

 The install process is trivial if you know how to answer the questions asked by
the installer. This appendix provides common answers for each configuration step
in the process. If at any time you get turned around in the process, simply start
over. An entire install can be completed in 15–20 minutes once you know what
you’re doing. If you run into hardware-specific problems, or you want to learn
more about the process, take a look at the Ubuntu community page: https://
help.ubuntu.com/community/Installation.

A.1 Getting started
You’ll need a few items to get started. First, you’ll need some physical hardware.
This could be a full-blown server or simply an old desktop or laptop.

 For the Linux installation demonstrated in this appendix, I use a server with
four wired Ethernet network cards. If you have a wired Network Interface Card
(NIC) in your hardware, the network device names and quantity of adapters on
your server might or might not differ from the examples. Where appropriate, make
modifications to match your environment.

 Finally, you’ll need to download the latest stable copy of Ubuntu 14.04 LTS ISO,
which can be found here: http://releases.ubuntu.com/14.04/. The instructions
will be based on using the command line, so the server-specific install ISO works
just fine. If you’d prefer to use the desktop version, it will work as well, but it won’t
be needed for any examples in this book.
326

Licensed to tracy moore <nordick.an@gmail.com>

327Initial configuration
 Make sure you download the proper ISO for your hardware architecture. In gen-
eral, choose the x86 version for older (32-bit) hardware (5+ years) and the x86-64 ver-
sion for newer (32- or 64-bit) hardware. When in doubt, look up your specific CPU to
see if it’s a 32- or 64-bit architecture.

 This appendix covers these primary installation steps:

 Initial configuration—Setting language and location
 Network configuration—Connecting the hardware to the network
 User configuration—Creating new users for the operating system
 Disks and partitions—Building a disk configuration for the operating system
 Base system configuration—Software installation and initial service configuration

 Let’s get started.

A.2 Initial configuration
In this section, you’ll provide information about language and location.

 As shown in figure A.1, you pick your language and press Enter. This book is in Eng-
lish, but you’re free to pick any language. Note that this is the language for your
Ubuntu install; additional software, like OpenStack, will have its own language settings.

As prompted in figure A.2, you can test the install
disk or the memory of your hardware, if you’ve
had problems in the past or you’re the cautious
type. Otherwise, continue with the installation by
selecting Install Ubuntu Server with your keyboard
arrows and pressing Enter.

Figure A.1 Initial screen,
selecting language

Figure A.2 Select install Ubuntu server
Licensed to tracy moore <nordick.an@gmail.com>

328 APPENDIX Installing Linux
After selecting Install Ubuntu Server, you’ll once again be asked to pick your lan-
guage, as shown in figure A.3. Select your language and move forward.

Next, select your location, as shown in figure A.4. This sets the time zone along with
other locality settings.

 If you want to enable keyboard detection, select Yes in the next screen (figure A.5).
I’ve never bothered with layout detection and simply answer additional questions.

 After you answer the questions about language and location, additional install
packages will be loaded from the ISO, as shown in figure A.6. These components will
be used in the next install steps. No user interaction is required during this step.
In the next section, you’ll perform basic network configuration.

Figure A.3 Select a language
Licensed to tracy moore <nordick.an@gmail.com>

329Initial configuration
Figure A.4 Select your location

Figure A.5 Configure the keyboard

Figure A.6 Loading additional components
Licensed to tracy moore <nordick.an@gmail.com>

330 APPENDIX Installing Linux
A.3 Network configuration
In this section, you’ll walk through the network configuration. This process can be
very simple if you provide the correct answers, or very frustrating if you don’t. This
network configuration will be used to download up-to-date packages, so you’ll know
fairly quickly if things aren’t properly configured.

 You’ll perform the following configurations in this section:

 Set the physical adapter you want the operating system to use
 Configure your physical adapter with an IP address, subnet mask, and gateway
 Configure domain name resolution for the operating system
 Set the host and domain names for the operating system

 In figure A.7 you see four Ethernet adapters listed. You might have more or fewer,
depending on how many physical interfaces are in your hardware.

In this case, I know that I’m using the interface eth0 because this is my first physical
adapter. I have a wired cable connected to this interface, which will allow this server to
communicate on my network. Advanced Linux administrators have ways of identifying
specific adapters, but this is outside the scope of this appendix. With any luck, you’ll
only have one adapter, or you’ll know which adapter to choose. If you don’t know
which adapter to pick, you can go with trial and error. You’ll quickly know if the net-
work adapter isn’t working.

 If you don’t see any adapters listed, it’s possible that you have a hardware failure,
or the Ubuntu installer doesn’t include support for your adapter.

NO NETWORK ADAPTER FOUND If no network adapter is found, either you have
a bad adapter or your adapter is not supported. The best thing to do is con-
sult the Ubuntu hardware and community support pages (https://wiki
.ubuntu .com/HardwareSupport and https://help.ubuntu.com/community/
Installation). It can often be easier to find another piece of hardware than to
go ahead with unsupported hardware.

Figure A.7 Select a network adapter
Licensed to tracy moore <nordick.an@gmail.com>

331Network configuration
At this point the installer will send out a Dynamic Host Configuration Protocol
(DHPC) request. Based on the response, or lack thereof, one of two things can hap-
pen. If the response fails, meaning that your network is not configured for DHCP,
you’ll have to manually configure the network. But if your network is configured for
DHCP, you can skip ahead.

 Take a look at figure A.8. If your screen looks like the image to the left, where
you’re asked to enter an IP address, you’ll need to continue with the manual configu-
ration in section A.3.1. But if your screen looks like the image on the right, where
you’re asked for a host name, you can skip ahead to section A.3.2.

In either event, the install process is sequential and you shouldn’t have to backtrack.

A.3.1 Manually configuring the adapter

If DHCP configuration failed, your screen should look like figure A.9. This could have
occurred because you selected the incorrect adapter or because DHCP isn’t config-
ured on your network.

Figure A.8 Did DHCP fail?

Figure A.9 Continue with a manual configuration
Licensed to tracy moore <nordick.an@gmail.com>

332 APPENDIX Installing Linux
If you were expecting DHCP to work, you can retry the configuration with another
adapter, as shown in figure A.10. On the other hand, if you’ve manually selected the
correct adapter and you’re not using DHCP, you can proceed with a manual network
configuration.

Before continuing with a manual configuration, you’ll need the following information:

 IP address for this host
 Subnet mask for the host address
 Router gateway address for the host network subnet
 Domain Name System (DNS) server addresses for name resolution

 If you don’t have this information, speak to someone familiar with your network to
get these addresses.

CONFIGURING THE HOST IP ADDRESS

To start the manual configuration, you need to enter the IP address for your host, as in
figure A.11. I used the address 10.163.200.32, but that’s specific to the network this
host is connected to. Your IP address will be specific to your host for your network.

Figure A.10 Configure the network manually

Figure A.11 Configure the IPv4 address for the interface
Licensed to tracy moore <nordick.an@gmail.com>

333Network configuration
CONFIGURING THE SUBNET MASK

Next, you need to enter your subnet mask, as shown in figure A.12. You don’t need to
know what this mask does, but it’s necessary in the network configuration.

Put simply, the IP address is like a street address. The street address is unique, but the
street might contain many houses. The subnet address is like a specification for the
street, telling you where the street starts and ends. Hosts sharing the same IP address
range and subnet are said to be in the same broadcast domain, so you can think of this
as being on the same street.

CONFIGURING THE NETWORK GATEWAY ADDRESS

If properly configured, your host can now properly communicate with a host on its
same network (broadcast domain). But you’ll want to communicate with networks
outside your domain, like those on the internet, even before this installation is com-
plete. For this, you must specify a gateway address, as shown in figure A.13.

 The gateway address is an address in the same broadcast domain as your host that
will be used to route traffic from your host to other routing domains on other net-
works.

Figure A.12 Configure the subnet mask

Figure A.13 Configure the gateway
Licensed to tracy moore <nordick.an@gmail.com>

334 APPENDIX Installing Linux
CONFIGURING THE DNS SERVER

Finally, you want to be able to resolve host addresses to names. When accessing
Google, you don’t want to say, “Let’s go to 74.125.225.148”; you want to say, “Let’s go
to www.google.com.” In this example, www is the host name and google.com is the
domain name. In order to perform this name resolution, you need to provide the
address of a DNS server.

 Unlike the network address, DNS addresses are not necessarily specific to a loca-
tion or a network. In figure A.14, Google public DNS servers are shown. If in doubt
about the DNS address, speak with your network administrator.

At this point, your core network configuration is complete. In the next section, you’ll
configure host and domain names.

A.3.2 Configuring host and domain names

There are two components to a computer name: the host name, which identifies a
specific host or service, and the domain name, which specifies a higher-order name
often related to an organization. Without getting into too much detail, suppose you
wanted to call your server devstack and your domain name was example.com. The fully
qualified domain name (FQDN) of that your host would be devstack.example.com.

 You’ll want to set your host and domain names during the installation process, and
there are two ways to do this. The first way is the way you’d configure something in
production: use one FQDN for each host. This means that a record relating the host
and domain names to the IP address must exist in some DNS server. Fortunately, if
you’re loading Linux on your laptop at home, a real FQDN isn’t a requirement, espe-
cially if you’re using Linux for a single-node deployment of OpenStack. Basically, if
you’re in an environment where you can use a real FQDN, you should do so. If an
FQDN isn’t available to you, simply invent host and domain names.

 Enter your host name as shown in figure A.15.

Figure A.14 Configure the DNS server
Licensed to tracy moore <nordick.an@gmail.com>

335User configuration

Enter your domain name as shown in figure A.16.

At this point the network configuration is complete.

A.4 User configuration
The user configuration is short and simple. Basically, you provide information related
to creating a user for your installation.

 First, enter the real name of your user, as shown in figure A.17, and continue.

Figure A.15 Configure the host name

Figure A.16 Configure the domain name

Figure A.17 Set up full name for user
Licensed to tracy moore <nordick.an@gmail.com>

336 APPENDIX Installing Linux
Next, you need to provide the actual username or account name for your user. Enter
the username, as shown in figure A.18, and continue.

Provide a password, as shown in figure A.19, for your new user.

The next screen allows you to encrypt the home directory (figure A.20). This is argu-
ably more useful for multi-user or desktop deployments. Although the OpenStack
servers will be accessed by many people, these people won’t have accounts directly on
the operating system. I generally don’t encrypt the user directory in these types of sys-
tems, but that’s up to you.

 You’re now done with the user configuration. You can move on to disk partitions.

Figure A.18 Set up username for your account

Figure A.19 Set up password

Figure A.20 Encrypt the home directory
Licensed to tracy moore <nordick.an@gmail.com>

337Disks and partitions
A.5 Disks and partitions
Configuring disks and partitions on servers can be one of the most important configu-
ration steps, because these actions can be difficult to reverse. It’s beyond the scope of
this appendix to describe the best practices for configuring storage devices or Linux
filesystem partitioning. What we will do is walk through a basic manual disk and parti-
tion configuration (see figure A.21).

Alternatively, you can use one of the Guided setup options, which will provide default
values for filesystems and mount points (locations in the directory structure). In
Linux administration, it’s important to understand mount points and filesystems, but
that’s beyond the scope of this appendix.

 With OpenStack, we’ll be most concerned with the devices and servers providing
the OpenStack Storage resources, not with the storage related to specific servers.

NO VOLUME OR DISK FOUND As with the network adapter, if no storage device
is found, either you have a bad adapter or your adapter isn’t supported. The
best thing to do is to consult the Ubuntu hardware and community support
pages (https://wiki.ubuntu.com/HardwareSupport and https://help.ubuntu
.com/community/Installation). It can often be easier to find another piece
of hardware than to go ahead with unsupported hardware.

We’re going to look at the simplest manual configuration possible, but it won’t be the
configuration you’d use for a production server. If you’re interested in learning more
about partitions, you can take a look at the Ubuntu 14.04 installation guide:
https://help.ubuntu.com/14.04/installation-guide/amd64/.

 In our simple configuration, we’ll create two partitions. The first partition will be
the swap and the second will be the root volume. It isn’t important that you know the
functions of these volumes, but you should know that they’re the minimum volumes
needed for an installation.

Figure A.21 Manually partition disks
Licensed to tracy moore <nordick.an@gmail.com>

338 APPENDIX Installing Linux
A.5.1 Configuring the block device (hard drive)

In figure A.22, a single volume is shown. This volume comprises several physical disks,
but it’s presented to the operating system as a single volume by the storage adapter.
This is a common thing for servers to do. If you’re using a desktop or laptop, you
might have several disks or a single physical disk. Select the disk you want to use, and
move on to partitioning. Beware, this is your last chance. If you write changes to the
disk, there’s no going back.

STOP AND READ: YOUR DATA DEPENDS ON IT This is a tutorial for installing an
operating system on physical hardware. If you move forward with disk parti-
tioning, you will destroy any data that resides on the disk or volume you select.
If you’re in doubt, physically remove the disk or data that you want to keep.

You’re all in now. Create a new empty partition on the device, as shown in figure A.23.

Figure A.22 Select disk to partition

Figure A.23 Select entire disk
Licensed to tracy moore <nordick.an@gmail.com>

339Disks and partitions
You’ve now created a new partition table on your device. As you can see in figure A.24,
all the space on my volume is designated as FREE SPACE.

Select your FREE SPACE, as shown in figure A.25, and press Enter.

Now it’s time to configure your swap and root partitions from the free space available
on your disk.

Figure A.24 Partition menu

Figure A.25 Select FREE SPACE
Licensed to tracy moore <nordick.an@gmail.com>

340 APPENDIX Installing Linux
A.5.2 Configuring root and swap partitions and mount points

You’ll want to create a new partition when presented with the menu shown in figure
A.26.

As you can see in figure A.27, there are various ways to specify the size of a partition.
Of course, the size of the partition depends on the type of the partition you want and
the size of your disk. We’ll create the swap partition first.

In general, you’ll want the swap partition to be at least the size of your RAM, and in
some cases larger. The swap partition is used by the operating system to swap pages of
information in RAM to frames on the swap partition. Swap provides a way for the OS to
deal with memory fragmentation. In short, swap space is good and is necessary. Spec-
ify your swap size and continue.

 When presented with the screen shown in figure A.28, set the Use As option to
Swap Area. When finished, select Done Setting Up the Partition and press Enter.

Figure A.26 Create a new partition

Figure A.27 Partition disk: set the size of the new partition
Licensed to tracy moore <nordick.an@gmail.com>

341Disks and partitions

You can see in figure A.29 that the swap partition, along with FREE SPACE, is displayed.
You’ll now repeat the last several steps to create the root partition. Select FREE SPACE
and press Enter.

Once again, you’ll want to select Create
a New Partition when presented with the
menu shown in figure A.30.

Figure A.28 Set partition as “swap area”

Figure A.29 Select FREE SPACE

Figure A.30 Create a new partition
Licensed to tracy moore <nordick.an@gmail.com>

342 APPENDIX Installing Linux
This time around, for Use As select Ext4 Journaling File System and set the Mount
Point to /, as shown in figure A.31. You could optionally use another type of filesys-
tem, but for our purposes Ext3 or Ext4 will work just fine. It’s important that you set
the mount point to /, because otherwise there will be no root for the filesystem. When
you’re finished, select Done Setting Up the Partition and press Enter.

A.5.3 Finalizing the disk configuration

You’ll now see two partitions, as shown in figure A.32. These are the minimum parti-
tions required for the operating system install. Select Finish Partitioning and Write
Changes to Disk and then press Enter.

Figure A.31 Set partition as Ext4 and mount point as /

Figure A.32 Finish partition configuration
Licensed to tracy moore <nordick.an@gmail.com>

343Base system configuration
You’ll be provided with a report of what your volume will look like after the partitions
are written, as shown in figure A.33. If you’re confident that you aren’t destroying any-
thing important, go ahead and write the changes to disk.

Your language, network, user, and disk information have now been configured. You’re
ready to proceed to the final installation steps.

A.6 Base system configuration
In this final section, there’s very little configuration left. Most of your time will be
spent waiting on the system to install packages and deploy your configuration.

 Once the partition changes are written to disk, the installer will start the base pack-
age installation, as shown in figure A.34.

It’s unlikely that you’ll have to enter proxy information, but if you do, figure A.35
shows how you can configure a proxy for the package manager.

 If you didn’t provide proxy information in the previous step and are unsure if it’s
needed, ask someone in your security or networking team if proxies are needed. If
you’re setting this up on a home network, it’s highly unlikely that a proxy server is
used, and it could cause additional connectivity problems.

Figure A.33 Finish disk configuration

Figure A.34 Installing base packages
Licensed to tracy moore <nordick.an@gmail.com>

344 APPENDIX Installing Linux
During this step, operating system packages are downloaded and installed, and a
progress bar is displayed, as shown in figure A.36.

The next screen lets you configure how updates will be applied (see figure A.37). In
general, I don’t install security updates automatically on servers, because I don’t know
what they might break. This is your choice. If you do opt for automated updates and
something breaks, check if an update was applied.

Figure A.35 Configure the package manager

Figure A.36 Retrieving packages

Figure A.37 Configure update automation
Licensed to tracy moore <nordick.an@gmail.com>

345Base system configuration
There’s really only one service that you’ll want to install from the menu, shown in fig-
ure A.38, and that’s OpenSSH. OpenSSH is used for a host of functions, but mainly
for accessing this operating system from another computer. Once it’s installed, you
can use OpenSSH, commonly known as ssh, to access this host using the name or IP
address and username you previously specified.

The additional services you selected, such as OpenSSH, will be installed (see figure
A.39).

Figure A.38 Configure initial services

Figure A.39 Base system: installing packages
Licensed to tracy moore <nordick.an@gmail.com>

346 APPENDIX Installing Linux
In the next screen (figure A.40), install the GRUB boot loader. If you’re using this host
for OpenStack, there’s no reason not to.

OK. That’s it. With any luck, you’ll be able to restart your host as shown in figure A.41
and remotely access it via ssh.

If you’ve experienced trouble during the installation, take a look at the community
resources listed earlier. Alternatively, you can learn a great deal from the thousands of
blogs, tutorials, videos, and sites related to installing Linux.

Figure A.40 Install boot loader

Figure A.41 Finish install
Licensed to tracy moore <nordick.an@gmail.com>

index
A

abstraction and OpenStack 10–11
Access & Security screen, Dashboard 38–41
AD (Active Directory) 125
admin node, Ceph 260
admin user 62
adminurl endpoint 130–131, 137, 145, 150, 155
Advanced Message Queuing Protocol.

See AMQP
Advanced Packaging Tool. See APT
agents, DHCP 71
AKI (Amazon kernel image) format 42, 141
Amazon ramdisk image format. See ARI
Amazon Web Services. See AWS
AMI (Amazon machine image) format 42, 141
AMQP (Advanced Message Queuing

Protocol) 121
APIs (application programming interfaces)

commands usage 58–59
OpenStack management options 4

APT (Advanced Packaging Tool) 26
architecture considerations

private clouds
control over performance and quality 252
data gravity 252–253
hybrid cloud usage 253
networking for 255–257
OpenStack deployment tools 254–255
public clouds vs. 251
storage in 257–258

replacing existing virtual server platforms
deployment considerations 245
network topologies 246–247
overview 242–244
server types 250
storage considerations 247–249

ARI (Amazon ramdisk image) format 42, 141
automated deployment 277, 283
Availability Zone 48
AWS (Amazon Web Services) 5, 304

B

bare format 141
bare-metal servers 250
benchmarking Ceph clusters

disk latency 275–276
reading benchmarks 275
writing benchmarks 274–275

Block Storage 18, 86
Cinder

configuring 209–210
creating volumes using CLI 211–213
creating volumes using Dashboard 213–215
installing 208
overview 206–208
restarting services and verifying

installation 210
configuring Keystone user for 144–145
creating data store 143–144
creating service and endpoints 145–146
defined 47
installing 146–147
LVM

creating volumes 204
device identification and 203
installing 202
overview 202
physical volume operations 204–205
volume-group operations 205–206

overview 15–16, 142–143
prerequisites

network interfaces configuration 199–201
347

Licensed to tracy moore <nordick.an@gmail.com>

348 INDEX
Block Storage, prerequisites (continued)
network interfaces review 198–199
updating packages 201

required for booting instance 44
boot devices 286, 289, 294
branches, Git 28, 31

C

cache-enabled volumes 202
Ceilometer project 18, 86
CentOS images 41
central processing units. See CPUs
Ceph node deployment

benchmarking clusters
disk latency 275–276
reading benchmarks 275
writing benchmarks 274–275

Ceph pools 273–274
clusters

configuring 265–266
deploying configuration 267–268
deploying software to nodes 266

creating user for 261–262
installing 264–265
installing different version 266
node types 260–261
node-to-node authentication 262–264
OSD resources

creating OSDs 271–272
overview 268–269
preparing devices 269–271

uninstalling 266
certifications, Microsoft 12
CFN (CloudFormation) format 304
charms, Juju 89, 315
chpasswd command 261
CIDR (Classless Inter-Domain Routing) 69–70,

186
Cinder project 18, 21, 86

configuring 209–210
creating volumes using CLI 211–213
creating volumes using Dashboard 213–215
driver used by 257
installing 208
overview 206–208
restarting services and verifying installation 210
system support for 249

Classless Inter-Domain Routing. See CIDR
CLI (command-line interface)

commands usage 56–58
creating Cinder volumes using 211–213
--debug argument 59
for Fuel 300

for Ubuntu Juju 317–319
OpenStack management options 4

clock synchronization 261
cloud computing

OpenStack and 9–10
private clouds

control over performance and quality 252
data gravity 252–253
hybrid cloud usage 253
networking for 255–257
OpenStack deployment tools 254–255
public clouds vs. 251
storage in 257–258

terminology used in 17
cloud orchestration

OpenStack Heat
confirming dependencies 308–309
enabling in DevStack 307
Heat templates 304–306
launching Heat stack 309–311
overview 304

Ubuntu Juju
deploying charms CLI 317–319
deploying GUI 319–324
installing 314–317
overview 312
preparing OpenStack for 312–313

CloudFormation format. See CFN format
cloud-init 180
clusters, Ceph

benchmarking
disk latency 275–276
reading benchmarks 275
writing benchmarks 274–275

configuring 265–266
deploying configuration 267–268
deploying software to nodes 266
watching activity in 271

command-line interface. See CLI
companion VM 23–24
components, OpenStack

communication
dashboard authentication communication

86–87
interaction with Juju 88–90
overview 85–86
resource provisioning 87–88
resource query and request 87

distributed computing model
component communication at VM-level

93–95
general discussion 91
OpenStack distributed component model 92
VM provisioning interaction 93

overview 85
Licensed to tracy moore <nordick.an@gmail.com>

349INDEX
compute node deployment 86
configuring Keystone user for 154–155
creating data store 153–154
creating service and endpoints 155
defined 18, 115
hypervisor installation

installing software 228
kernel module installation 228
KVM overview 227–228
removing default network bridge 229
verifying host support 226–227
verifying KVM-accelerated QEMU

environment 229
installing 156–158
Neutron

configuring 230
configuring ML2 plug-in 231
installing 230

Nova
configuring 232–233
creating instance using CLI 234–237
installing 231–232
verifying in Dashboard 233–234

overview 152–153
prerequisites

network interfaces configuration 220–222
network interfaces review 219–220
Open vSwitch configuration 225–226
Open vSwitch installation 223–225
server-to-router configuration 222–223
updating packages 222

containers, Linux 14, 250
controller node deployment

defined 115
deploying Block Storage service

configuring Keystone user for 144–145
creating data store 143–144
creating service and endpoints 145–146
installing 146–147
overview 142–143

deploying Compute service
configuring Keystone user for 154–155
creating data store 153–154
creating service and endpoints 155
installing 156–158
overview 152–153

deploying Dashboard Service
accessing 159
debugging 160
installing 158–159

deploying Identity Service
assigning roles 134
configuring data store 126–128
creating roles 133–134
creating service and endpoints 129–132
creating tenants 132

creating users 133
initializing database 128
initializing variables 128–129
installing 126
listing roles 134–135
overview 125–126

deploying Image Service
configuring Keystone user for 136–137
creating data store 135–136
creating service and endpoints 137–138
image formats 140–142
installing 138–140
overview 135

deploying Networking service
configuring Keystone user for 149–150
creating data store 148–149
creating service and endpoints 150–151
installing 151–152
overview 147–148

deploying shared services 124–125
environment preparations 116
installing dependencies

MySQL 122–124
MySQL console access 124
RabbitMQ 121–122

network interface configuration
configuring interfaces in Ubuntu 117–120
determining existing interfaces 117

updating packages 120–121
core projects 18, 85
cpu-checker utility 226
CPUs (central processing units) 8–9, 327
CRC (cyclic redundancy check) 173, 224
credentials 40

D

Dashboard 18, 86
Access & Security screen 38–41
accessing 159
authentication communication 86–87
creating Cinder volumes using 213–215
debugging 160
Images & Snapshots screen 41–44
installing 158–159
Instances screen

Access & Security tab 49
Details tab 48–49
Networking tab 49–51
overview 47–48

overview 36–37
Overview screen 38
viewing Neutron networks in 193–194
Volumes screen 44–47

data gravity 252–253
Licensed to tracy moore <nordick.an@gmail.com>

350 INDEX
Database Service project 86
DDOS (distributed denial of service) attacks 169
dependencies 309, 318
deployment

Block Storage
configuring Keystone user for 144–145
creating data store 143–144
creating service and endpoints 145–146
installing 146–147
network interfaces configuration 199–201
network interfaces review 198–199
overview 142–143
updating packages 201

Cinder
configuring 209–210
creating volumes using CLI 211–213
creating volumes using Dashboard 213–215
installing 208
overview 206–208
restarting services and verifying installation

210
Compute service

configuring Keystone user for 154–155
creating data store 153–154
creating service and endpoints 155
installing 156–158
overview 152–153

considerations for replacing existing virtual
server platforms 245

Dashboard service
accessing 159
debugging 160
installing 158–159

DevStack
configuring options 30–31
creating server 25
general discussion 23–25
preparing for installation 28–29
running build script 31–32
server environment setup 26–27
testing stack 32–35

Identity Service
assigning roles 134
configuring data store 126–128
creating roles 133–134
creating service and endpoints 129–132
creating tenants 132
creating users 133
initializing database 128
initializing variables 128–129
installing 126
listing roles 134–135
overview 125–126

Image Service
configuring Keystone user for 136–137

creating data store 135–136
creating service and endpoints 137–138
image formats 140–142
installing 138–140
overview 135

LVM
creating volumes 204
device identification and 203
installing 202
overview 202
physical volume operations 204–205
volume-group operations 205–206

multi-node 114–115
network node

environment configuration 164
installing Linux Bridge and VLAN

utilities 168–169
network interfaces configuration 165–167
network interfaces review 164–165
Open vSwitch configuration 174–176
Open vSwitch installation 171–174
server-to-router configuration 169–171
updating packages 167–168

Networking service
configuring Keystone user for 149–150
creating data store 148–149
creating service and endpoints 150–151
installing 151–152
overview 147–148

Neutron components
configuring 178
DHCP agent configuration 180
installing 177
L3 agent configuration 179–180
Linux network namespaces and 191–193
Metadata agent configuration 180–181
ML2 plug-in configuration 178–179
overview 177
restarting services and verifying

installation 181–182
viewing in Dashboard 193–194

Neutron networks
external networks 188–189
external subnets 189–191
internal networks 183–184
internal subnets 184–186
Network console 183
overview 182
routers 186–188

DevStack
deploying

configuring options 30–31
creating server 25
general discussion 23–25
preparing for installation 28–29
Licensed to tracy moore <nordick.an@gmail.com>

351INDEX
DevStack, deploying (continued)
running build script 31–32
server environment setup 26–27
testing stack 32–35

enabling OpenStack Heat in 307
overview 22–23, 35–36
rebooting 35–36

DHCP (Dynamic Host Configuration Protocol)
66, 71, 284, 331

DHCP agent
configuring 180
defined 177
purpose of 188

discover command 129
disks, Linux

overview 342–343
partitioning 337–339
root and swap partitions 340–342

distributed computing model
component communication at VM-level 93–95
general discussion 91
OpenStack distributed component model 92
VM provisioning interaction 93

distributed denial of service attacks.
See DDOS attacks

Distributed Virtual Routing. See DVR
DKMS (Dynamic Kernel Module Support) 174
DNS (Domain Name System) 332, 334
Docker 14
driver_version statistic 100, 207
dubs service 229
DVR (Distributed Virtual Routing) 95, 255
Dynamic Host Configuration Protocol. See DHCP
Dynamic Kernel Module Support. See DKMS

E

EHA (Ethernet Hardware Address) 171
endpoints 126
environment variables, setting 56–57, 182
ephemeral storage 248
Ethernet Hardware Address. See EHA
external networks

creating 73–74
in Neutron 188–189

external subnets
creating 75–78
in Neutron 189–191

F

FC (Fiber Channel) 97
FCoE (Fiber Channel over Ethernet) 97
fdisk command 270

file storage 47
flat networks 52, 65, 182, 246–247
flavors, OpenStack 49
floating IPs

assigning to instance 53
defined 40
permitting network traffic to 53–54
removing IP before removing external network

76
FQDN (fully qualified domain name) 334
free_capacity_gb statistic 100, 207
Fuel

allocating hosts 298
configuring network for environment 296
configuring node disks 300
configuring node interfaces 298–300
creating deployment environment 295–296
deploying changes 302
installing 290–292
overview 293
server discovery 294
verifying installation 301

fully orchestrated clouds 10
fully qualified domain name. See FQDN

G

gating projects 85
Generic Routing Encapsulation tunnel.

See GRE tunnel
Git

defined 27
using specific branch 28

Glance project 18, 86
GRANT command 135
graphical user interface. See GUI
GRE (Generic Routing Encapsulation) tunnel

176, 256
gre module 173, 224
GUI (graphical user interface) 158

H

HA (high availability)
Fuel installation 290–292
Fuel web interface

allocating hosts 298
configuring network for environment 296
configuring node disks 300
configuring node interfaces 298–300
creating deployment environment 295–296
deploying changes 302
overview 293
server discovery 294
verifying installation 301
Licensed to tracy moore <nordick.an@gmail.com>

352 INDEX
HA (high availability) (continued)
network hardware preparations

deployment network 280
overview 279–280
switch uplink ports 281–282

overview 277–278
server hardware preparations

accessing OOB management console using
SSH 284–286

accessing OOB web interface 284
configuring automation administration

network 288–290
configuring OOB network 282–284
configuring server storage 287–288

hardware
Nova compatibility 246
preparations for HA

accessing OOB management console using
SSH 284–286

accessing OOB web interface 284
configuring automation administration

network 288–290
configuring OOB network 282–284
configuring server storage 287–288
deployment network 280
overview 279–280
switch uplink ports 281–282

Heat OpenStack Template specification.
See HOT specification

Heat project 18, 86
confirming dependencies 308–309
enabling in DevStack 307
Heat templates 304–306
launching Heat stack 309–311
overview 304
Ubuntu Juju vs. 312

high availability. See HA
high-performance computing. See HPC
Horizon project 18, 86
HOT (Heat OpenStack Template) specification

305–306
HPC (high-performance computing) 254
hub-and-spoke distribution 91
hybrid clouds 10, 253
hypervisors

installing software 228
kernel module installation 228
KVM overview 227–228
OpenStack and 11–14
removing default network bridge 229
verifying host support 226–227
verifying KVM-accelerated QEMU

environment 229

I

IaaS (infrastructure as a service) 9, 17
Identity Service, deploying 18, 86

assigning roles 134
configuring data store 126–128
creating roles 133–134
creating service and endpoints 129–132
creating tenants 132
creating users 133
initializing database 128
initializing variables 128–129
installing 126
listing roles 134–135
overview 125–126

ifconfig command 117
Image Service, deploying 18, 86

configuring Keystone user for 136–137
creating data store 135–136
creating service and endpoints 137–138
image formats 140–142
installing 138–140
overview 135

image-list command 57
Images & Snapshots screen, Dashboard 41–44
images, VM 41
incubated projects 85
infinite free space value 100
infrastructure as a service. See IaaS
Instance Console

assigning floating IP to instance 53
logging into VM 51–52
permitting network traffic to floating IP 53–54

instances
creating using CLI 234–237
VMs vs. 38

Instances screen, Dashboard
Access & Security tab 49
Details tab 48–49
Networking tab 49–51
overview 47–48

internal interfaces 118, 164, 198, 219
internal networks

creating 67–68
in Neutron 183–184

internal subnets
creating 68–70
in Neutron 184–186

internalurl endpoint 130–131, 137, 145, 150, 155
International Standards Organization. See ISO
Internet Small Computer System Interface.

See iSCSI
IP (Internet Protocol) 176
ip netns command 192
IPv4 addresses 40–41
Licensed to tracy moore <nordick.an@gmail.com>

353INDEX
IPv6 addresses 41
iSCSI (Internet Small Computer System

Interface) 97
ISO (International Standards Organization)

41–42, 141

J

JSON (JavaScript Object Notation) 305
Juju project. See Ubuntu Juju
jumbo frame 276

K

key-pair authentication 262–263
Keystone project 18, 86
KVM (Kernel-based Virtual Machine)

installing software 228
kernel module installation 228
overview 227–228
removing default network bridge 229
support for 12–13
verifying KVM-accelerated QEMU environment

229

L

L3 agent
configuring 179–180
defined 177

L3 services 106, 255
LDAP (Lightweight Directory Access Protocol)

125
libcrc32c module 173, 224
library projects 85
Libvirt 227
Lightweight Directory Access Protocol. See LDAP
Link Layer Discovery Protocol. See LLDP
Linux

containers 14
disk configuration

overview 342–343
partitioning 337–339
root and swap partitions 340–342

distributions supported 25
installing packages 343–346
network configuration

DNS server 334
host and domain names 334–335
host IP address 332
network gateway address 333
overview 330–332
subnet mask 333

network namespaces in 191–193

preparing for installation 326–328
user configuration 335–336

Linux Bridge 168–169
Linux-IO Target 209
list-image command 313
LLDP (Link Layer Discovery Protocol) 301
Logical Volume Manager. See LVM
logical volumes 204
losetup command 36
lsmod command 224
LTS (Long Term Support) 116, 326
lvdisplay command 212
LVM (Logical Volume Manager) 100

creating volumes 204
device identification and 203
installing 202
overview 202
physical volume operations 204–205
volume-group operations 205–206

M

MAC (Media Access Control) 171
maximum transmission unit. See MTU
MDS (metadata server) node 260
mechanism drivers 107
Media Access Control. See MAC
mesh distribution 91
Metadata agent

configuring 180–181
defined 177

Metadata Server node. See MDS node
micro-op decoding 9
Microsoft certification 12
Microsoft Hyper-V 250
ML2 (Modular Layer 2) 107, 151

configuring plug-in 178–179
defined 177

modprobe command 224
MON nodes 267
mount points 342
MTU (maximum transmission unit) 276
multi-tenancy 10, 35
Murano project 303
MySQL

console access 124
installing 122–124
performance considerations 123

N

namespace isolation 179
NAT translation 52
Nebula tool 18
Licensed to tracy moore <nordick.an@gmail.com>

354 INDEX
nested virtualization 25
Network File System. See NFS
Network Interface Cards. See NICs
network node deployment 18, 86

configuring Keystone user for 149–150
creating data store 148–149
creating Neutron networks

external networks 188–189
external subnets 189–191
internal networks 183–184
internal subnets 184–186
Network console 183
overview 182
routers 186–188

creating service and endpoints 150–151
defined 115
installing 151–152
Neutron components

configuring 178
DHCP agent configuration 180
installing 177
L3 agent configuration 179–180
Linux network namespaces and 191–193
Metadata agent configuration 180–181
ML2 plug-in configuration 178–179
overview 177
restarting services and verifying installation

181–182
viewing in Dashboard 193–194

overview 147–148
prerequisites

environment configuration 164
installing Linux Bridge and VLAN

utilities 168–169
network interfaces configuration 165–167
network interfaces review 164–165
Open vSwitch configuration 174–176
Open vSwitch installation 171–174
server-to-router configuration 169–171
updating packages 167–168

Network Time Protocol. See NTP
networks

considerations for replacing existing virtual
server platforms 246–247

hardware preparations for HA
deployment network 280
overview 279–280
switch uplink ports 281–282

Linux configuration
DNS server 334
host and domain names 334–335
host IP address 332
network gateway address 333
overview 330–332
subnet mask 333

OpenStack and 14–15
SDN 107
tenant

connecting router to public network 72–73
creating external networks 73–74
creating external subnets 75–78
creating internal networks 67–68
creating internal subnets 68–70
creating routers 70–72
Neutron console 67
overview 65–67

vendor technologies
examples of 107–108
how networking is used by VMs 102–105
OpenStack support 105–107
overview 101–102

Neutron 18, 21, 86
configuring 178, 230
configuring ML2 plug-in 231
DHCP agent configuration 180
installing 177, 230
L3 agent configuration 179–180
Linux network namespaces and 191–193
Metadata agent configuration 180–181
ML2 plug-in configuration 178–179
networks in

external networks 188–189
external subnets 189–191
internal networks 183–184
internal subnets 184–186
Network console 183
overview 182
routers 186–188

overview 177
restarting services and verifying installation

181–182
viewing in Dashboard 193–194

Neutron console 67
NFS (Network File System) 97
NICs (Network Interface Cards) 171, 326
--no-cleanup flag 274
node interfaces 118, 164, 198, 219
Nova 21, 86

configuring 232–233
creating instance using CLI 234–237
defined 18
installing 231–232
verifying in Dashboard 233–234

NTP (Network Time Protocol) 261, 288

O

object storage 18, 86
defined 47
overview 16–17
Licensed to tracy moore <nordick.an@gmail.com>

355INDEX
Object Storage Device node. See OSD node
OOB (out-of-band) networks 280, 282–286
Open Government Directive 18
Open Networking Foundation 107
Open System Interconnection. See OSI
Open vSwitch. See OVS
openrc script 307
OpenSSH 345
OpenStack

abstraction and 10–11
Architecture Design Guide 242
cloud computing and 9–10
cloud terminology used with 17
component communication

dashboard authentication communication
86–87

interaction with Juju 88–90
overview 85–86
resource provisioning 87–88
resource query and request 87

components of 18, 85
distributed computing model

component communication at VM-level
93–95

general discussion 91
OpenStack distributed component model 92
VM provisioning interaction 93

history of 18–19
hypervisors and 11–14
Linux versions and 120
network services and 14–15
overview 4–9
storage and

block storage 15–16
object storage 16–17
overview 15

OpenStack Heat
confirming dependencies 308–309
enabling in DevStack 307
Heat templates 304–306
launching Heat stack 309–311
overview 304
Ubuntu Juju vs. 312

openvswitch module 173, 224
Orchestration project 18, 86
orchestration, defined 303
OS (operating system) 94, 168
OSD (Object Storage Device) node

creating 271–272
defined 260
overview 268–269
preparing devices 269–271

OSI (Open System Interconnection) 66
out-of-band networks. See OOB networks
OVA format 141

overlay networks 172–173
Overview screen, Dashboard 38
OVF format 141
OVS (Open vSwitch) 14, 172

configuring 174–176, 225–226
installing 171–174, 223–225
usage statistics for 256

P

P2V (Physical to Virtual) 242
PaaS (platform as a service) 17
package management systems 309
password security 286
PCI (Peripheral Component Interconnect

Express) 97
performance

MySQL considerations 123
separating storage and network traffic 200

persistent storage 248
Physical to Virtual. See P2V
physical volumes 204
PI (policy inaccessible) 39
platform as a service. See PaaS
pools, Ceph 273–274
ports

checking for listening on 37
creating by adding router to subnet 187

Preboot Execution Environment. See PXE
private clouds 9

control over performance and quality 252
data gravity 252–253
hybrid cloud usage 253
networking for 255–257
OpenStack deployment tools 254–255
projects, defined 23
public clouds vs. 251
storage in 257–258

public clouds 9, 251
public interfaces 118
publicurl endpoint 130–131, 137, 145, 150, 155
pvcreate command 204
pvdisplay command 204–205
pvscan command 204, 206
PXE (Preboot Execution Environment) 286, 289,

294
python-cinderclient package 211
python-mysqldb package 210

Q

QCOW (QEMU Copy On Write) format 42, 141
QEMU (Quick Emulator) 227
qemu-utils package 215
Licensed to tracy moore <nordick.an@gmail.com>

356 INDEX
quotas
for tenant users 80–82
for tenants 79–80
general discussion 78–79, 82–83

R

RabbitMQ 121–122
rados tool 274
RAW format 42, 140
RBAC (role-based access control) 125
rebooting DevStack 35–36
related projects 85
releases, OpenStack 19
reserved_percentage statistic 100, 207
reverse-path filter 169, 223
Rocket 14
role-based access control. See RBAC
roles

assigning 64–65, 134
creating 133–134
listing 63, 134–135

root partition 340–342
root user 26, 28
router-gateway-set command 72
routers

connecting to public network 72–73
creating 70–72
DVR 95
in Neutron 186–188
listing 76, 190

S

SaaS (software as a service) 17
SAN (storage area network) 249, 287
screen console 32
SCSI (Small Computer System Interface) 208
SDN (software-defined networking) 18, 102, 105,

107
security

passwords 286
rules for VMs 39

SLAs (service level agreements) 252
Small Computer System Interface. See SCSI
SMP (symmetric multiprocessing) machines 4
snapshots

images and 42–44
LVM 202

software as a service. See SaaS
software-defined networking. See SDN
source command 129
ssh-copy-id tool 263
stacking 26
status command 319

storage
backend 46
OpenStack and

block storage 15–16
object storage 16–17
overview 15

replacing existing virtual server platforms
247–249

types of 47
vendor technologies

how storage is used by VMs 96–98
OpenStack support 98–100
overview 96

storage area network. See SAN
storage node 115
storage transport protocol 97
storage_protocol statistic 100, 207
subnets

defined 68
external 75–78, 189–191
internal 68–70, 184–186

sudo command 26
supporting projects 85
swap partition 340–342
Swift project 18, 86
switches 171
symmetric multiprocessing machines.

See SMP machines
sysctl command 169–170, 223

T

tagged VLANs 279–280, 282
target framework. See tgt
Telemetry project 18, 86
Tempest

defined 33
DevStack and 34
validation and 33

templates, Heat 304–306, 309
tenants 23

assigning roles 64–65
creating 62–63, 132
creating users 63–64
defined 6
general discussion 59–78
listing 63
listing all users in 64
listing roles for 63
quotas for 79–80
quotas for users 80–82
tenant model 61–62
tenant networks

connecting router to public network 72–73
creating external networks 73–74
Licensed to tracy moore <nordick.an@gmail.com>

357INDEX
tenants, tenant networks (continued)
creating external subnets 75–78
creating internal networks 67–68
creating internal subnets 68–70
creating routers 70–72
Neutron console 67
overview 65–67

text editors 29
tgt (target framework) 209
thin provisioning 202
total_capacity_gb statistic 100, 207
troubleshooting

checking for port listening 37
DevStack process failure 31

Trove project 86
type drivers 107
--type=compute parameter 155
--type=image parameter 137
--type=network parameter 150
--type=volume parameter 145

U

Ubuntu 116
disk configuration

overview 342–343
partitioning 337–339
root and swap partitions 340–342

images for 41
installing packages 343–346
network configuration

DNS server 334
host and domain names 334–335
host IP address 332
network gateway address 333
overview 330–332
subnet mask 333

preparing for installation 326–328
user configuration 335–336

Ubuntu Juju
deploying charms CLI 317–319
deploying GUI 319–324
installing 314–317
overview 88–90, 312
preparing OpenStack for 312–313
versions 314

udev manager 203
UEFI (Unified Extensible Firmware Interface)

286
unknown free space value 100
untagged VLANs 279–280
uplinks 281
usage-based pricing 253
user-role-add command 134

user-role-list command 134
users, Linux 335–336
users, tenant

assigning roles 64–65
creating 63–64, 133
listing all in tenant 64
quotas for 80–82

UTF8 error 140

V

V2V (Virtual to Virtual) 243
Vagrant 24
VDI (Virtual Disk Image) 42, 141
vendor technologies

network systems
examples of 107–108
how networking is used by VMs 102–105
OpenStack support 105–107
overview 101–102

storage systems
how storage is used by VMs 96–98
OpenStack support 98–100
overview 96

vendor neutrality of OpenStack 95–108
vendor_name statistic 100, 208
vgcreate command 204
vgdisplay command 206
VHD (Virtual Hard Disk) format 42, 140
Virtual Disk Image. See VDI
Virtual Local Area Networks. See VLANs
Virtual Machine Disk format. See VMDK format
virtual machine monitor. See VMM
virtual machines. See VMs
virtual private networks. See VPNs
Virtual to Virtual. See V2V
VirtualBox 24
virtualization

extensions for 227
nested 25
operating-system-level 14

VLANs (Virtual Local Area Networks) 168, 247,
279–280

VM interfaces 164
vm_state property 237
VMDK (Virtual Machine Disk) format 42, 141
VMM (virtual machine monitor) 11, 25
VMs (virtual machines)

companion for book 23–24
instances vs. 38
overview 5–6
PI 39

VMware 242–243, 250
volume groups 204–205
Licensed to tracy moore <nordick.an@gmail.com>

358 INDEX
volume_backend_name statistic 100, 208
VOLUME_BACKING_FILE_SIZE value 46
Volumes screen, Dashboard 44–47
VPNs (virtual private networks) 173
vxlan module 173, 224

W

WordPress service, provisioning 318
Licensed to tracy moore <nordick.an@gmail.com>

Amazon Web Services in Action
by Michael Wittig and Andreas Wittig

ISBN: 9781617292880
424 pages
$49.99
September 2015

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Big Data
Principles and best practices of scalable realtime
data systems
by Nathan Marz and James Warren

ISBN: 9781617290343
328 pages
$49.99
April 2015

Docker in Action
by Jeff Nickoloff

ISBN: 9781633430235
300 pages (estimated)
$49.99
March 2016

Licensed to tracy moore <nordick.an@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Docker in Practice
by Ian Miell and Aidan Hobson Sayers

ISBN: 9781617292729
325 pages (estimated)
$44.99
March 2016

MongoDB in Action, Second Edition
Covers MongoDB version 3.0
by Kyle Banker, Peter Bakkum, Shaun Verch,

Douglas Garrett, and Tim Hawkins

ISBN: 9781617291609
375 pages (estimated)
$44.99
March 2016

Making Sense of NoSQL
A guide for managers and the rest of us
by Daniel G. McCreary and Ann M. Kelly

ISBN: 9781617291074
312 pages
$34.99
September 2013

Licensed to tracy moore <nordick.an@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

The Quick Python Book, Second Edition
Revised edition of The Quick Python Book
by Daryl K. Harms and Kenneth M. McDonald
by Naomi R. Ceder

ISBN: 9781935182207
360 pages
$39.99
January 2010

Go in Action
by William Kennedy with Brian Ketelsen

and Erik St. Martin

ISBN: 9781617291784
264 pages
$44.99
November 2015

Software Development Metrics
by David Nicolette

ISBN: 9781617291357
192 pages
$59.99
July 2015

Licensed to tracy moore <nordick.an@gmail.com>

Agile Metrics in Action
How to measure and improve team performance
by Christopher W. H. Davis

ISBN: 9781617292484
272 pages
$44.99
July 2015

The Mikado Method
by Ola Ellnestam and Daniel Brolund

ISBN: 9781617291210
240 pages
$44.99
March 2014

Kanban in Action
by Marcus Hammarberg and Joakim Sundén

ISBN: 9781617291050
360 pages
$44.99
February 2014

For ordering information go to www.manning.com

MORE TITLES FROM MANNING

Licensed to tracy moore <nordick.an@gmail.com>

V. K. Cody Bumgardner

O
penStack is an open source framework that lets you
create a private or public cloud platform on your own
physical servers. You build custom infrastructure, plat-

form, and software services without the expense and vendor
lock-in associated with proprietary cloud platforms like Ama-
zon Web Services and Microsoft Azure. With an OpenStack
private cloud, you can get increased security, more control,
improved reliability, and lower costs.

OpenStack in Action offers real-world use cases and step-by-step
instructions on how to develop your own cloud platform. This
book guides you through the design of both the physical hard-
ware cluster and the infrastructure services you’ll need. You’ll
learn how to select and set up virtual and physical servers,
how to implement software-defi ned networking, and technical
details of designing, deploying, and operating an OpenStack
cloud in your enterprise. You’ll also discover how to best tailor
your OpenStack deployment for your environment. Finally,
you’ll learn how your cloud can offer user-facing software and
infrastructure services.

What’s Inside
● Develop and deploy an enterprise private cloud
● Private cloud technologies from an IT perspective
● Organizational impact of self-service cloud computing

No prior knowledge of OpenStack or cloud development is
assumed.

Cody Bumgardner is the Chief Technology Architect at a large
university where he is responsible for the architecture, deploy-
ment, and long-term strategy of OpenStack private clouds and
other cloud computing initiatives.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/openstack-in-action

$54.99 / Can $63.99 [INCLUDING eBOOK]

OpenStack IN ACTION

CLOUD/SOFTWARE DEVELOPMENT

M A N N I N G

“An excellent primer on
 the complex world of cloud

computing and the OpenStack
software ecosystem.”

—From the Foreword by Jay Pipes,
Member, OpenStack Technical

Committee

“Provides enough theory
and practice to understand
the subject matter with just
 the right level of detail.”

—Hafi zur Rahman
Kii Corporation

“A fundamental resource
for learning, installing, and
managing this exciting piece
 of cloud infrastructure.”

—Michael Hamrah, Getty Images

“If you thought that AWS
was the only player, you need

 to read this book.”
—Kosmas Chatzimichalis

Mach 7x

SEE INSERT

	OpenStack
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Why OpenStack in Action?
	Roadmap
	Who should read this book?
	Code conventions and downloads
	Author Online
	About the author
	About the cover

	Part 1 Getting started
	1 Introducing OpenStack
	1.1 What is OpenStack?
	1.2 Understanding cloud computing and OpenStack
	1.2.1 Abstraction and the OpenStack API

	1.3 Relating OpenStack to the computational resources it controls
	1.3.1 OpenStack and hypervisors
	1.3.2 OpenStack and network services
	1.3.3 OpenStack and storage
	1.3.4 OpenStack and cloud terminology

	1.4 Introducing OpenStack components
	1.5 History of OpenStack
	1.6 Summary

	2 Taking an OpenStack test-drive
	2.1 What is DevStack?
	2.2 Deploying DevStack
	2.2.1 Creating the server
	2.2.2 Preparing the server environment
	2.2.3 Preparing DevStack
	2.2.4 Executing DevStack

	2.3 Using the OpenStack Dashboard
	2.3.1 Overview screen
	2.3.2 Access & Security screen
	2.3.3 Images & Snapshots screen
	2.3.4 Volumes screen
	2.3.5 Instances screen

	2.4 Accessing your first private cloud server
	2.4.1 Assigning a floating IP to an instance
	2.4.2 Permitting network traffic to your floating IP

	2.5 Summary
	1 Go to http://manning.com/bumgardner/ and download the VM image under Links.
	2 Make sure you have VirtualBox installed (this VM image was tested with version 4.3.30).
	3 Unzip the file devstack_icehouse_openstackinaction.
	4 Double click the dev_stack_icehouse_openstackinaction.vbox file (or use command-line arguments—see the VirtualBox docs for details).
	5 VirtualBox should now be launched, and you should see the devstack_icehouse_openstackinaction VM.
	6 Start the devstack_icehouse_openstackinaction VM.
	7 In the VM configuration, several ports are forwarded from the VM to your local host (IP=127.0.0.1). These ports include 2222 for SSH access to the VM and 8080 for access to the OpenStack Dashboard.
	8 Once the VM is started, log in to the VM using the sysop ID and password u$osuser01 (for example, ssh -u sysop@127.0.0.1 -p 2222).
	9 Once on the console, switch to the stack user: sudo -i -u stack.
	10 Execute the rejoin script: sudo /opt/devstack/rejoin-stack.sh.
	11 You’ll now see screens related to the output of OpenStack components. To select a specific screen, hold and release Control-+, and then press " (double- quotes). You’ll be presented with a list of screens.

	3 Learning basic OpenStack operations
	3.1 Using the OpenStack CLI
	3.2 Using the OpenStack APIs
	3.3 Tenant model operations
	3.3.1 The tenant model
	3.3.2 Creating tenants, users, and roles
	3.3.3 Tenant networks

	3.4 Quotas
	3.4.1 Tenant quotas
	3.4.2 Tenant-user quotas
	3.4.3 Additional quotas

	3.5 Summary

	4 Understanding private cloud building blocks
	4.1 How are OpenStack components related?
	4.1.1 Understanding component communication
	4.1.2 Distributed computing model

	4.2 How is OpenStack related to vendor technologies?
	4.2.1 Using vendor storage systems with OpenStack
	4.2.2 Using vendor network systems with OpenStack

	4.3 Why walk through a manual deployment?
	4.4 Summary

	Part 2 Walking through a manual deployment
	5 Walking through a Controller deployment
	5.1 Deploying controller prerequisites
	5.1.1 Preparing the environment
	5.1.2 Configuring the network interface
	5.1.3 Updating packages
	5.1.4 Installing software dependencies

	5.2 Deploying shared services
	5.2.1 Deploying the Identity Service (Keystone)
	5.2.2 Deploying the Image Service (Glance)

	5.3 Deploying the Block Storage (Cinder) service
	5.3.1 Creating the Cinder data store
	5.3.2 Configuring a Cinder Keystone user
	5.3.3 Creating the Cinder service and endpoint
	5.3.4 Installing Cinder

	5.4 Deploying the Networking (Neutron) service
	5.4.1 Creating the Neutron data store
	5.4.2 Configuring a Neutron Keystone user
	5.4.3 Installing Neutron

	5.5 Deploying the Compute (Nova) service
	5.5.1 Creating the Nova data store
	5.5.2 Configuring a Nova Keystone user
	5.5.3 Assigning a role to the nova user
	5.5.4 Creating the Nova service and endpoint
	5.5.5 Installing the Nova controller

	5.6 Deploying the Dashboard (Horizon) service
	5.6.1 Installing Horizon
	5.6.2 Accessing Horizon
	5.6.3 Debugging Horizon

	5.7 Summary

	6 Walking through a Networking deployment
	6.1 Deploying network prerequisites
	6.1.1 Preparing the environment
	6.1.2 Configuring the network interfaces
	6.1.3 Updating packages
	6.1.4 Software and configuration dependencies
	6.1.5 Installing Open vSwitch
	6.1.6 Configuring Open vSwitch

	6.2 Installing Neutron
	6.2.1 Installing Neutron components
	6.2.2 Configuring Neutron
	6.2.3 Configuring the Neutron ML2 plug-in
	6.2.4 Configuring the Neutron L3 agent
	6.2.5 Configuring the Neutron DHCP agent
	6.2.6 Configuring the Neutron Metadata agent
	6.2.7 Restarting and verifying Neutron agents
	6.2.8 Creating Neutron networks
	6.2.9 Relating Linux, OVS, and Neutron
	6.2.10 Checking Horizon

	6.3 Summary

	7 Walking through a Block Storage deployment
	7.1 Deploying Block Storage prerequisites
	7.1.1 Preparing the environment
	7.1.2 Configuring the network interface
	7.1.3 Updating packages
	7.1.4 Installing and configuring the Logical Volume Manager

	7.2 Deploying Cinder
	7.2.1 Installing Cinder
	7.2.2 Configuring Cinder
	7.2.3 Restarting and verifying the Cinder agents

	7.3 Testing Cinder
	7.3.1 Create a Cinder volume: command line
	7.3.2 Create a Cinder volume: Dashboard

	7.4 Summary

	8 Walking through a Compute deployment
	8.1 Deploying Compute prerequisites
	8.1.1 Preparing the environment
	8.1.2 Configuring the network interface
	8.1.3 Updating packages
	8.1.4 Software and configuration dependencies
	8.1.5 Installing Open vSwitch
	8.1.6 Configuring Open vSwitch

	8.2 Installing a hypervisor
	8.2.1 Verifying your host as a hypervisor platform
	8.2.2 Using KVM

	8.3 Installing Neutron on Compute nodes
	8.3.1 Installing the Neutron software
	8.3.2 Configuring Neutron
	8.3.3 Configuring the Neutron ML2 plug-in

	8.4 Installing Nova on compute nodes
	8.4.1 Installing the Nova software
	8.4.2 Configuring core Nova components
	8.4.3 Checking Horizon

	8.5 Testing Nova
	8.5.1 Creating an instance (VM): command line

	8.6 Summary

	Part 3 Building a production environment
	9 Architecting your OpenStack
	9.1 Replacement of existing virtual server platforms
	9.1.1 Making deployment choices
	9.1.2 What kind of network are you?
	9.1.3 What type of storage are you?
	9.1.4 What kind of server are you?

	9.2 Why build a private cloud?
	9.2.1 Public cloud economy-of-scale myth
	9.2.2 Global scale or tight control
	9.2.3 Keeping data gravity private
	9.2.4 Hybrid moments

	9.3 Building a private cloud
	9.3.1 OpenStack deployment tools
	9.3.2 Networking in your private cloud
	9.3.3 Storage in your private cloud

	9.4 Summary

	10 Deploying Ceph
	10.1 Preparing Ceph nodes
	10.1.1 Node authentication and authorization
	10.1.2 Deploying Ceph software

	10.2 Creating a Ceph cluster
	10.2.1 Creating the initial configuration
	10.2.2 Deploying Ceph software
	10.2.3 Deploying the initial configuration

	10.3 Adding OSD resources
	10.3.1 Readying OSD devices
	10.3.2 Creating OSDs

	10.4 Basic Ceph operations
	10.4.1 Ceph pools
	10.4.2 Benchmarking a Ceph cluster

	10.5 Summary

	11 Automated HA OpenStack deployment with Fuel
	11.1 Preparing your environment
	11.1.1 Network hardware
	11.1.2 Server hardware

	11.2 Deploying Fuel
	11.2.1 Installing Fuel

	11.3 Web-based basic Fuel OpenStack deployment
	11.3.1 Server discovery
	11.3.2 Creating a Fuel deployment environment
	11.3.3 Configuring the network for the environment
	11.3.4 Allocating hosts to your environment
	11.3.5 Final settings and verification
	11.3.6 Deploying changes

	11.4 Summary

	12 Cloud orchestration using OpenStack
	12.1 OpenStack Heat
	12.1.1 Heat templates
	12.1.2 A Heat demonstration

	12.2 Ubuntu Juju
	12.2.1 Preparing OpenStack for Juju
	12.2.2 Installing Juju
	12.2.3 Deploying the charms CLI
	12.2.4 Deploying the Juju GUI

	12.3 Summary
	appendix

	Appendix Installing Linux
	A.1 Getting started
	A.2 Initial configuration
	A.3 Network configuration
	A.3.1 Manually configuring the adapter
	A.3.2 Configuring host and domain names

	A.4 User configuration
	A.5 Disks and partitions
	A.5.1 Configuring the block device (hard drive)
	A.5.2 Configuring root and swap partitions and mount points
	A.5.3 Finalizing the disk configuration

	A.6 Base system configuration

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

