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Preface

Since computers were introduced to automate organization management,
information system evolution has influenced data management considerably.
Applications demand more and more services from information stored in
computing systems. These new services impose more stringent conditions on
the currently prevailing client/server architectures and relational database
management systems (DBMSs). For the purpose of this book, those
demands can be arranged along three aspects, namely:

Enhancements on the structural side. The tabular representation of data
has proved to be suitable for applications, such as insurance and banking,
that have to process large volumes of well-formatted data. However, newer
applications such as computer-aided manufacturing or geographic informa-
tion systems have a tough job attempting to fit more elaborate structures into
flat records. Moreover, the SQL�92 types are clearly insufficient to tackle
time or multimedia concerns.

Improvements on the behavioral side. Data are no longer the only aspect
to be shared. Code can, and must, be shared. DBMS providers are striving to
make their products evolve from data servers to code servers. The introduc-
tion of rules to support active and deductive capabilities and the inclusion of
user-defined data types are now part of that trend.

Architectural issues. New applications need access to heterogeneous and
distributed data, require a higher throughoutput (e.g., large number of trans-
actions in e-commerce applications), or need to share code. The client/server
architecture cannot always meet those new demands.

xv



This book aims to provide a gentle and application-oriented intro-
duction to those topics. Motivation and application-development considera-
tions, rather than state-of-the-art research, are the main focus. Examples are
extensively used in the text, and a brief selected reading section appears at the
end of each chapter for readers who want more information. Special atten-
tion is given to the design issues raised by the new trends.

The book is structured as follows:

Part I: Fundamentals

Chapter 1 gives an overview of the evolution of DBMS and how its history
has been a continuous effort to meet the increasing demands of the applica-
tions. Chapter 2 provides a gentle introduction to the key concepts of con-
ceptual modeling.

Part II: Advanced Technologies

This part presents technological and design issues that we need to face to
address new application requirements. The first two chapters deal with rule
management, Chapter 3 covers active database systems, and Chapter 4
deductive ones. Chapter 5 examines the concepts of temporal databases and
the problems of time management. Chapters 6 and 7 discuss two different
ways of introducing object orientation in database technology: the more
evolutionary one (object-relational DBMSs) and the more revolutionary one
(object-oriented DBMSs). Chapter 8 discusses the issues related to multime-
dia databases and their management. Chapters 9 and 10 present distributed
and mobile DBMSs, respectively. Chapter 11 focuses on security concerns
by discussing secure DBMSs. Chapter 12 introduces a new approach to
DBMS implementation: component DBMSs.

Part III: Advanced Design Issues

Part III looks at two topics that are necessary for obtaining databases of a cer-
tain level of quality. Chapter 13 examines various concepts associated with
computer-aided database design that claim to be an effective way to improve
database design. Chapter 14 concentrates on considering quality issues in
database design and implementation.

As for the audience, the book is targeted to senior undergraduates and
graduate students. Thus, it is mainly a textbook. However, database profes-
sional and application developers can also find a gentle introduction to these
topics and useful hints for their job. The prerequisites for understanding the
book are a basic knowledge of relational databases and software engineering.
Some knowledge of object-oriented technology and networks is desirable.
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1
Evolution and Trends of Database
Technology

Adoración de Miguel, Mario Piattini, and Paloma Martínez

1.1 Introduction

The history of database (DB) dates from the mid-1960s. DB has proved to
be exceptionally productive and of great economic impact. In fact, today, the
DB market exceeds $8 billion, with an 8% annual growth rate (IDC fore-
cast). Databases have become a first-order strategic product as the basis of
Information Systems (IS), and support management and decision making.

This chapter studies from a global perspective the current problems
that led to the next generation of DBs.1 The next four sections examine the
past, that is, the evolution of DB (Section 1.2); the troubles and challenges
facing current DBs, including changes in the organizations and changes
in the type of applications (Section 1.3); the current research and market
trends based on the performance, functionality, and distribution dimensions
(Section 1.4); and the maturity level of the technology (Section 1.5).

3

1. Development and tendencies in DB technology are too complicated to sum up in a few
pages. This chapter presents one approach, but the authors are aware that some aspects
that are important to us may not be significant to other experts and vice versa. In spite of
that, we think it would be interesting for the reader to have a global view of the emer-
gence and development of DB, the problems that have to be solved, and DB trends.
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1.2 Database Evolution

In the initial stages of computing, data were stored in files systems. The
problems (redundancy, maintenance, security, the great dependence between
data and applications, and, mainly, rigidity) associated with the use of such
systems gave rise to new technology for the management of stored data: data-
bases. The first generation of DB management systems (DBMSs) evolved
over time, and some of the problems with files were solved. Other problems,
however, persisted, and the relational model was proposed to correct them.
With that model, the second generation of DBs was born. The difficulties in
designing the DBs effectively brought about design methodologies based on
data models.

1.2.1 Historical Overview: First and Second DB Generations

Ever since computers were introduced to automate organization manage-
ment, IS evolution has considerably influenced data management. IS
demands more and more services from information stored in computing sys-
tems. Gradually, the focus of computing, which had previously concentrated
on processing, shifted from process-oriented to data-oriented systems, where
data play an important role for software engineers. Today, many IS design
problems center around data modeling and structuring.

After the rigid files systems in the initial stages of computing, in the
1960s and early 1970s, the first generation of DB products was born. Data-
base systems can be considered intermediaries between the physical devices
where data are stored and the users (human beings) of the data. DBMSs are
the software tools that enable the management (definition, creation, mainte-
nance, and use) of large amounts of interrelated data stored in computer-
accessible media. The early DBMSs, which were based on hierarchical and
network (Codasyl) models, provided logical organization of data in trees
and graphs. IBM�s IMS, General Electric�s IDS, (after Bull�s), Univac�s DMS
1100, Cincom�s Total, MRI�s System 2000, and Cullinet�s (now Computer
Associates) IDMS are some of the well-known representatives of this genera-
tion. Although efficient, this type of product used procedural languages, did
not have real physical or logical independence, and was very limited in its
flexibility. In spite of that, DBMSs were an important advance compared to
the files systems.

IBM�s addition of data communication facilities to its IMS software
gave rise to the first large-scale database/data communication (DB/DC) sys-
tem, in which many users access the DB through a communication network.
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Since then, access to DBs through communication networks has been offered
by commercially available DBMSs.

C. W. Bachman played a pioneering role in the development of net-
work DB systems (IDS product and Codasyl DataBase Task Group, or
DBTG, proposals). In his paper �The Programmer as Navigator� (Bach-
man�s lecture on the occasion of his receiving the 1973 Turing award), Bach-
man describes the process of traveling through the DB; the programmer has
to follow explicit paths in search of one piece of data going from record to
record [1].

The DBTG model is based on the data structure diagrams [2], which
are also known as Bachman�s diagrams. In the model, the links between
record types, called Codasyl sets, are always one occurrence of one record
type to many, that is, a functional link. In its 1978 specifications [3],
Codasyl also proposed a data definition language (DDL) at three levels
(schema DDL, subschema DDL, and internal DDL) and a procedural (pre-
scriptive) data manipulation language (DML).

Hierarchical links and Codasyl sets are physically implemented via
pointers. That implementation, together with the functional constraints of
those links and sets, is the cause of their principal weaknesses (little flexibility
of such physical structures, data/application dependence, and complexity of
their navigational languages) of the systems based on those models. Never-
theless, those same pointers are precisely the reason for their efficiency, one
of the great strengths of the products.

In 1969�1970, Dr. E. F. Codd proposed the relational model [4],
which was considered an �elegant mathematical theory� (a �toy� for certain
experts) without any possibility of efficient implementation in commercial
products. In 1970, few people imagined that, in the 1980s, the relational
model would become mandatory (a �decoy�) for the promotion of DBMSs.
Relational products like Oracle, DB2, Ingres, Informix, Sybase, and so
on are considered the second generation of DBs. These products have more
physical and logical independence, greater flexibility, and declarative query
languages (users indicate what they want without describing how to get
it) that deal with sets of records, and they can be automatically optimized,
although their DML and host language are not integrated. With relational
DBMSs (RDBMSs), organizations have more facilities for data distribution.
RDBMSs provide not only better usability but also a more solid theoretical
foundation.

Unlike network models, the relational model is value-oriented and does
not support object identity. (There is an important tradeoff between object
identity and declarativeness.) As a result of Codasyl DBTG and IMS support
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object identity, some authors introduced them in the object-oriented DB
class. As Ullman asserts: �Many would disagree with our use of the term
�object-oriented� when applied to the first two languages: the Codasyl DBTG
language, which was the origin of the network model, and IMS, an early
database system using the hierarchical model. However, these languages sup-
port object identity, and thus present significant problems and significant
advantages when compared with relational languages� [5].

After initial resistance to relational systems, mainly due to performance
problems, these products have now achieved such wide acceptance that the
network products have almost disappeared from the market. In spite of the
advantages of the relational model, it must be recognized that the relational
products are not exempt from difficulties. Perhaps one of the greatest
demands on RDBMSs is the support of increasingly complex data types;
also, null values, recursive queries, and scarce support for integrity rules and
for domains (or abstract data types) are now other weaknesses of relational
systems. Some of those problems probably will be solved in the next version
of Structured Query Language (SQL), SQL: 1999 (previously SQL3) [6].

In the 1970s, the great debate on the relative merits of Codasyl and
relational models served to compare both classes of models and to obtain a
better understanding of their strengths and weaknesses.

During the late 1970s and in the 1980s, research work (and, later,
industrial applications) focused on query optimization, high-level languages,
the normalization theory, physical structures for stored relations, buffer
and memory management algorithms, indexing techniques (variations of
B-trees), distributed systems, data dictionaries, transaction management, and
so on. That work allowed efficient and secure on-line transactional process-
ing (OLTP) environments (in the first DB generation, DBMSs were ori-
ented toward batch processing). In the 1980s, the SQL language was also
standardized (SQL/ANS 86 was approved by the American National Stan-
dard Institute (ANSI) and the International Standard Organization (ISO) in
1986), and today, every RDBMS offers SQL.

Many of the DB technology advances at that time were founded on
two elements: reference models and data models (see Figure 1.1) [7]. ISO
and ANSI proposals on reference models [8�10] have positively influenced
not only theoretical researches but also practical applications, especially
in DB development methodologies. In most of those reference models, two
main concepts can be found: the well-known three-level architecture (exter-
nal, logical, and internal layers), also proposed by Codasyl in 1978, and the
recursive data description. The separation between logical description of
data and physical implementation (data application independence) devices
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was always an important objective in DB evolution, and the three-level
architecture, together with the relational data model, was a major step in that
direction.

In terms of data models, the relational model has influenced research
agendas for many years and is supported by most of the current products.
Recently, other DBMSs have appeared that implement other models, most
of which are based on object-oriented principles.2

Three key factors can be identified in the evolution of DBs: theoretical
basis (resulting from researchers� work), products (developed by vendors),
and practical applications (requested by users). Those three factors have been
present throughout the history of DB, but the equilibrium among them
has changed. What began as a product technology demanded by users� needs
in the 1960s became a vendor industry during the 1970s and 1980s. In the
1970s, the relational model marked the consideration of DB as a research
technology, a consideration that still persists. In general, users� needs have
always influenced the evolution of DB technology, but especially so in the
last decade.

Today, we are witnessing an extraordinary development of DB tech-
nology. Areas that were exclusive of research laboratories and centers are
appearing in DBMSs� latest releases: World Wide Web, multimedia, active,
object-oriented, secure, temporal, parallel, and multidimensional DBs.

Evolution and Trends of Database Technology 7
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Figure 1.1 Foundations of DB advances.

2. An IDC forecast in 1997 denoted that object-oriented DBMSs would not overcome 5%
of the whole DB market.



Table 1.1 summarizes the history of DBs (years are approximate because of
the big gaps that sometimes existed between theoretical research, the appear-
ance of the resulting prototypes, and when the corresponding products were
offered in the market).

1.2.2 Evolution of DB Design Methodologies3

DB modeling is a complex problem that deals with the conception, compre-
hension, structure, and description of the real world (universe of discourse),

8 Advanced Database Technology and Design

Table 1.1
Database Evolution

1960 First DB products (DBOM, IMS, IDS, Total, IDMS)
Codasyl standards

1970 Relational model
RDBMS prototypes
Relational theoretical works
Three-level architecture (ANSI and Codasyl)
E/R model
First relational market products

1980 Distributed DBs
CASE tools
SQL standard (ANSI, ISO)
Object-oriented DB manifesto

1990 Third-generation DB manifesto
Client/server architecture (two-tier architecture)
First object DB products
Reference models (ISO/ANSI)
SQL 92
ODMG consortium (OO standards)
Data warehouses
SQL: 1999 (previously SQL3)

2000 Three-tier architecture
Object relational model
Databases and the World Wide Web
Mobile DBs
SQL/MM

3. In considering the contents of this book and the significance of DB design, we thought it
appropriate to dedicate a part of this first chapter to presenting the evolution of DB design.



through the creation of schemata, based on the abstraction processes and
models. The use of methodologies that guide the designer in the process of
obtaining the different schemata is essential. Some methodologies offer only
vague indications or are limited to proposing some heuristics. Other meth-
odologies establish well-defined stages (e.g., the schemata transformation
process from entity relationship (E/R) model to relational model [11�13])
and even formalize theories (e.g., the normalization process introduced by
Codd in 1970 [4] and developed in many other published papers.4

Database design also evolved according to the evolution of DBMSs
and data models. When data models with more expressive power were born,
DBMSs were capable of incorporating more semantics, and physical and
logical designs started distinguishing one from the other as well. With the
appearance of the relational model, DB design focused, especially in the aca-
demic field, on the normalization theory. ANSI architecture, with its three
levels, also had a considerable influence on the evolution of design method-
ologies. It helped to differentiate the phases of DB design. In 1976, the E/R
model proposed by Chen [14, 15] introduced a new phase in DB design:
conceptual modeling (discussed in Chapters 2 and 14). This stage constitutes
the most abstract level, closer to the universe of discourse than to its com-
puter implementation and independent of the DBMSs. In conceptual mod-
eling, the semantics of the universe of discourse have to be understood and
represented in the DB schema through the facilities the model provides. As
Saltor [16] said, a greater semantic level helps to solve different problems,
such as federated IS engineering, workflow, transaction management, con-
currency control, security, confidentiality, and schemata evolution.

Database design is usually divided into three stages: conceptual design,
logical design, and physical design.

• The objective of conceptual design is to obtain a good representa-
tion of the enterprise data resources, independent of the implemen-
tation level as well as the specific needs of each user or application. It
is based on conceptual or object-oriented models.
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• The objective of logical design is to transform the conceptual
schema by adapting it to the data model that implements the DBMS
to be used (usually relational). In this stage, a logical schema and the
most important users� views are obtained.

• The objective of physical design is to achieve the most efficient
implementation of the logical schema in the physical devices of the
computer.

During the last few years, there have been many attempts to offer a more sys-
tematic approach to solving design problems. In the mid-1980s, one of those
attempts was design automatization through the use of computer-aided soft-
ware/system engineering (CASE) tools (see Chapter 13). CASE tools con-
tributed to spreading the applications of conceptual modeling and
relaunching DB design methodologies. While it is true that some CASE
tools adopted more advanced approaches, many continued to be simple
drawing tools. At times, they do not even have a methodological support or
are not strict enough in their application. As a result, designers cannot find
the correct path to do their job [17]. Furthermore, the models the tools gen-
erally support are logical models that usually include too many physical
aspects, in spite of the fact that the graphic notation used is a subset of the
E/R model.

New (object-oriented) analysis and design techniques, which at first
focused on programming language and recently on DBs [18, 19], have
appeared in the last decade. Those methodologies�Booch method, object-
oriented software engineering (OOSE), object modeling technique (OMT),
unified method, fusion method, Shlaer-Mellor method, and Coad-Yourdon
method, to name some important examples�are mainly distinguished by
the life cycle phase in which they are more focused and the approach adopted
in each phase (object-oriented or functional) [20]. A common characteristic
is that they generally are event driven.

The IDEA methodology [21], as a recent methodological approach, is
an innovative object-oriented methodology driven by DB technology. It
takes a data-centered approach, in which the data design is performed first,
followed by the application design.

1.3 The New DB Generation

Many nontraditional applications still do not use DB technology because
of the special requirements for such a category of applications. The current

10 Advanced Database Technology and Design



DBMSs cannot provide the answers to those requirements, and almost all the
vendors have started adding new facilities to their products to provide solu-
tions to the problem. At the same time, the advances in computers (hardware
and software) and the organizational changes in enterprises are forcing the
birth of a new DB generation.

1.3.1 Problems of Current DBs

Although one might think that DB technology has reached its maturity,
the new DB generation has demonstrated that we still ignore the solutions
to some of the problems of the new millennium. In spite of the success of
this technology, different �preoccupation signals� must be taken into
account [22]:

• Current DBMSs are monolithic; they offer all kinds of services and
functionalities in a single �package,� regardless of the users� needs, at
a very high cost, and with a loss of efficiency.

• There are more data in spreadsheets than in DBMSs.

• Fifty percent of the production data are in legacy systems.

• Workflow management (WFM) systems are not based on DB tech-
nology; they simply access DBs through application programming
interfaces (APIs).

• Replication services do not escalate over 10,000 nodes.

• It is difficult to combine structured data with nonstructured data
(e.g., data from DBs with data from electronic mail).

1.3.2 Changes in Organizations and in Computers: The Impact on DBs

DBMSs must also take into account the changes enterprises are going
through. In today�s society, with its ever increasing competitive pressure,
organizations must be �open,� that is, supporting flexible structures and
capable of rapid changes. They also must be ready to cooperate with other
organizations and integrate their data and processes consistently. Modern
companies are competing to satisfy their clients� needs by offering services
and products with the best quality-to-price ratio in the least time possible.

In that context, the alignment of IS architectures and corporate strate-
gies becomes essential. IS must be an effective tool to achieving flexible
organizations and contributing to business process redesign. For example,
teleworking is beginning to gain more and more importance in companies

Evolution and Trends of Database Technology 11



and is becoming strategic for some of them. As a result, the DB technology
required (such as DB access through mobile devices) will be essential in tele-
working environments.

DBs considered as the IS kernel are influenced by those changes and
must offer adequate support (flexibility, lower response times, robustness,
extensibility, uncertainty management, etc.) to the new organizations. The
integration of structured and nonstructured data is extremely essential to
organizations, and future DBMSs must meet that demand. An increasing
trend is globalization and international competition. That trend rebounds on
technology, which must provide connectivity between geographically distrib-
uted DBs, be able to quickly integrate separate DBs (interoperable protocols,
data distribution, federation, etc.), and offer 100% availability (24 hours a
day, 7 days a week, 365 days a year). The new DB products must assist cus-
tomers in locating distributed data as well as connecting PC-based applica-
tions to DBs (local and remote).

Besides changes in enterprises, advances in hardware have a great
impact on DBs as well. The reduction in the price of both main and disk
memory has provided more powerful equipment at lower costs. That factor
is changing some DBMSs algorithms, allowing large volumes of data to be
stored in the main memory. Likewise, new kinds of hardware including par-
allel architectures, such as symmetric multiprocessing (SMP) and massively
parallel processing (MPP), offer DBMSs the possibility of executing a process
in multiple processors (e.g., parallelism is essential for data warehouses).
Other technologies that are influencing those changes are compres-
sion/decompression techniques, audio and video digitizers, optical storage
media, magnetic disks, and hierarchical storage media.

Nomadic computing, that is, personal computers, personal digital
assistants (PDA), palmtops, and laptops, allows access to information any-
where and at any time. That poses connectivity problems and also affects DB
distribution.

The client/server model had a great influence on DBs in the 1980s,
with the introduction of two-tier architecture. Middleware and transaction
processing (TP) monitors developed during that decade have contributed to
three-tier architecture, where interface, application, and data layers are sepa-
rated and can reside in different platforms.

This architecture can be easily combined with the Internet and intra-
nets for clients with browser technology and Java applets. Products that
implement Object Management Group�s (OMG) Common Object Request
Broker Architecture (CORBA) or Microsoft�s Distributed Common Object
Model (DCOM) can also be accommodated in these new architectures.
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Finally, high-speed networks, such as Fast Ethernet, AnyLan, fiber
distributed data interface (FDDI), distributed queue dual bus (DQDB),
and frame relay, are also changing the communication layer where DBs are
situated.

In summary, enterprises demand technological changes because of
special needs. In relation to their organizational structure, the need for open
organizations requires distributed, federated, and Web DBMSs; the need for
strategic information gives rise to data warehouse and OLAP technologies,
and the increasing need for data requires very large DBs.

1.3.3 Nontraditional Applications

First-generation DB products provided solutions to administrative problems
(personnel management, seat reservations, etc.), but they were inadequate
for other applications that dealt with unexpected queries (such as decision
support systems demand), due to the lack of data/application independence,
low-level interfaces, navigational data languages not oriented to final users,
and so on.

That changed with the arrival of relational products, and the applica-
tion of DBs in different areas grew considerably. However, there are impor-
tant cultural, scientific, and industrial areas where DB technology is hardly
represented because of the special requirements of those kinds of applications
(very large volumes of data, complex data types, triggers and alerts for man-
agement, security concerns, management of temporal and spatial data, com-
plex and long transactions, etc.). The following are some of the most
important nontraditional applications that DB technology has hardly
embraced.

• Computer-aided software/system engineering (CASE). CASE requires
managing information sets associated with all the IS life cycle: plan-
ning, analysis, design, programming, maintenance, and so on. To
meet those requirements, DBMSs must provide version control,
triggers, matrix and diagram storage, and so on.

• Computer-aided design (CAD)/computer-aided manufacturing (CAM)/
computer-integrated manufacturing (CIM). CAD/CAM/CIM requires
the introduction of alerters, procedures, and triggers in DBMSs to
manage all the data relative to the different stages of the production
operation.
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• Geographical information systems (GISs). GISs manage geographi-
cal/spatial data (e.g., maps) for environmental and military research,
city planning, and so on.

• Textual information. Textual information management was executed
by special software (information retrieval systems), but the integra-
tion of structured and textual data is now in demand.

• Scientific applications. Both in the microcosmos (e.g., Genome proj-
ect) and in the macrocosmos (e.g., NASA�s earth-observing sys-
tems), new kinds of information must be managed. In addition, a
larger quantity of information (�petabytes�) must be stored.

• Medical systems. Health personnel need different types of informa-
tion about their patients. Such information could be distributed to
different medical centers. Security concerns are also high in this type
of IS.

• Digital publication. The publishing sector is going through big
changes due to the development of electronic books, which combine
text with audio, video, and images.

• Education and training. In distance learning processes, multimedia
courses require data in real time and in an Internet or intranet
environment.

• Statistical systems. Statistical systems have to deal with considerable
data volumes with expensive cleaning and aggregation processes,
handling time, and spatial dimensions. These systems are also a
grave security concern.

• Electronic commerce. The Internet Society estimates that more than
200 million people will use the Internet in 2000. The applications
linked to the Internet (video on demand, electronic shopping, etc.)
are increasing every day. The tendency is to put all the information
into cyberspace, thus making it accessible to more and more people.

• Enterprise resource planning packages. These packages, such as SAP,
Baan, Peoplesoft, and Oracle, demand support for thousands of
concurrent users and have high scalability and availability
requirements.

• On-line analytical processing (OLAP) and data warehousing (DW).
DW is generally accepted as a good approach to providing the
framework for accessing the sources of data needed for decision
making in business. Even though vendors now offer many DW serv-
ers and OLAP tools, the very large multidimensional DBs required
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for this type of applications have many problems, and some of them
are still unsolved.

The new (third) DB generation must help to overcome the difficulties associ-
ated with the applications in the preceding list. For example, the need for
richer data types requires multimedia and object-oriented DBMSs, and the
need for reactiveness and timeliness requires other types of functionalities,
such as active and real-time DBMSs, respectively. The third generation
is characterized by its capacity to provide data management capabilities that
allow large quantities of data to be shared (like their predecessors, although
to a greater extent). Nevertheless, it must also offer object management
(more complex data types, multimedia objects, etc.) and knowledge manage-
ment (supporting rules for automatic inference and data integrity) [23].

1.4 Research and Market Trends

In addition to the factors that encouraged DBMS evolution, the dimensions
along which research and market trends are evolving are performance, distri-
bution, and functionality (see Figure 1.2).
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An issue related to those three dimensions is the separation of the func-
tionalities of the DBMS into different components. Nowadays, DBMSs are
monolithic in the sense that they offer all the services in one package (persis-
tence, query language, security, etc.). In the future, component DB systems
will be available, whereby different services could be combined and used
according to the user�s needs (see Chapter 12).

1.4.1 Performance

In the next five years, data stored in DBs will be 10 times more capable. Like
gas, data expand to fill all the space available. Ten years ago, a DB of 1 Gb
(109) would have been considered as a very large database (VLDB). Today,
some companies have several terabytes (1012) of data, and DBs (data ware-
houses) of pentabytes (1015) are beginning to appear.

To cope with the increasing volume, DBs are taking advantage of new
hardware. Since the mid-1980s, different parallel DBs (shared memory,
shared disk, shared nothing) have been implemented, exploiting parallelism
as well as interquery (several queries executed independently in various proc-
essors) and intraquery (independent parts of a query executed in different
processors).

Performance is also important in a given set of applications where
response time is critical (e.g., control systems). The ability to respond is
of vital importance because it is not so much rapid response as guaranteed
response in a specific time, be it real-time or not. Real-time DBMSs, con-
ceived with that objective in mind, set priorities for transactions.

Hardware performance-to-price ratio also allows the DB (or part of it)
to be stored in the main memory during its execution. Therefore, we can dis-
tinguish between new main-memory DBs and traditional disk-resident DBs.
In main-memory DBs, several concepts, such as index structures, clustering,
locks, and transactions, must be restated.

In general, all the query-processing algorithms and even the classical
transaction properties of atomicity, consistency, isolation, and durability
(ACID) must be adapted to new-generation DBs and, especially, to complex
object management. Concurrency control and recovery in object database
management systems (ODMS) require research into new techniques (long
transactions that may last for days and long-term checkout of object ver-
sions). Traditional logging and locking techniques perform poorly for long
transactions and the use of optimistic locking techniques as well as variations
of known techniques (such as shadow paging) may help to remedy the lock
and log file problems [24].

16 Advanced Database Technology and Design



To facilitate the effective use of the DB hardware and software
resources, the DB administrator (DBA) is necessary. This person (or group
of persons) has a fundamental role in the performance of the global DB sys-
tem. The DBA is also responsible for protecting the DB as a resource shared
by all the users. Among other duties, the DBA must carry out backup, recov-
ery, and reorganization; provide DB standards and documentation; enforce
data activity policy; control redundancy; maintain configuration control;
tune the DB system; and generate and analyze DB performance reports.
Physical design and performance tuning are key aspects and essential to the
success of a DB project. The changes in the performance dimension also
oblige the introduction of important transformations in the DBA functions
[25]. The role of the DBA in the future will be increasingly difficult, and
DBMS products will have to offer, increasingly, facilities to help the DBA in
DB administration functions.

1.4.2 Distribution and Integration

In the last decade, the first distributed DBMSs appeared on the market and
have been an important focus of DB research and marketing. Some achieve-
ments of the early distributed products were two-phase commit, replication,
and query optimization.

Distributed DBs (see Chapter 9) can be classified into three areas: dis-
tribution, heterogeneity, and autonomy [26]. In the last area, federated DBs
(semiautonomous DBs) and multidatabases (completely autonomous) can
be found. A higher degree of distribution is offered by mobile DBs (see
Chapter 10), which can be considered distributed systems in which links
between nodes change dynamically.

From that point of view, we must also emphasize the integration of
DBs and the Internet and the World Wide Web. The Web adds new compo-
nents to DBs, including a new technology for the graphical user interface
(GUI), a new client/server model (the hypertext transfer protocol, HTTP),
and a hyperlink mechanism between DBs [27].

New architectures capable of connecting different software compo-
nents and allowing the interoperation between them are needed. Database
architectures must provide extensibility for distributed environments, allow
the integration of legacy mainframe systems, client/server environments,
Web-based applications, and so on.

Vendors now offer enough of the integration facilities required to
access distributed DBs from all types of devices (personal computers, PDAs,
palmtops, laptops, etc.) and some support for Internet data. However,
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vendors still do not offer complete integration between DBs and Internet
data. More research and development work are needed in this area.

1.4.3 Functionality and Intelligence

In this dimension, the evolution of IS can be summarized as the �functional-
ity migration� from programs to DB. From the inception of DBs, we have
seen the consolidation of a trend toward transferring all possible semantics
from programs to the DB dictionary-catalog so as to store it together with
the data. The migration in semantics and other functionalities have evident
advantages, insofar as its centralization releases the applications from having
to check integrity constraints and prevents their verification from being
repeated in the different application programs. Thus, all the programs can
share the data without having to worry about several concerns the DBMS
keeps unified by forcing their verification, regardless of the program that
accesses the DB.

At a first glance, in a process-oriented IS based on files, there are only
data in the �DB� (file); all the information on the data, constraints, control,
and process was in the program (Figure 1.3). The location of that informa-
tion in programs contributes to the classical problems of redundancy, main-
tenance, and security of this kind of IS.

Earlier DBMSs represented a second approach in which description of
data was stored with the data in the DB catalog or dictionary. However, in
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the DBMSs of the 1980s, programs were responsible for the verification of
constraints (until the 1990s relational products did not support, e.g., refer-
ential integrity or check constraints). Later, with the improvement of the
performance-to-cost ratio and optimizers, products incorporated more and
more information on constraints in the DBMS catalog, becoming semantic
DBs. In the early 1990s, active DBs appeared (see Chapter 3). In those
DBMSs, besides the description of the data and the constraints, part of the
control information is stored in the DB. Active DBs can run applications
without the user�s intervention by supporting triggers, rules, alerts, daemons,
and so on.

Finally, we are witnessing the appearance of object-oriented (see
Chapter 7) and object-relational (see Chapter 6) DBMSs, which allow the
definition and management of objects (encapsulating structure and behav-
ior). Objects stored in DBs can be of any type: images, audio, video, and so
on. Then, there are multimedia DBs (see Chapter 8), which could be the last
step in the evolution of DBs along the functionality dimension (Figure 1.4).
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Future DBMSs must manage in an integrated way, not only different
types of data and objects but also knowledge. In that respect, research into
deductive DBMSs has been carried out (see Chapter 4).

Two other important aspects of modern IS that are being incorporated
into DBs are time (temporal DBs; see Chapter 5) and uncertainty (fuzzy DBs).
Both aspects are crucial in decision-making. Decision support systems (DSS) and
executive information systems (EIS) are being integrated in wider data warehous-
ing/data mining environments in which DB technology plays a decisive role.

Another important concern for IS managers is security. The so-called
secure or multilevel DBs (see Chapter 11) now on the market provide mandatory
access control that is more secure than traditional discretionary access control.

1.5 Maturity of DB Technology

Some experts believe we are in a transition period, moving from centralized
relational DBs to the adoption of a new generation of advanced DBs: more
semantics, more intelligent, more distributed, and more efficient. In practice,
however, changes seem to be slower, and centralized relational DBs still
dominate the DB market landscape.

In the 1980s (and well into the 1990s), we underwent the transition
from network to relational products. Even today, this technology has not
matured enough. As a result of the adoption of an immature technology, the
transfer process became complicated and the risks increased. However, it can
offer opportunities for organizations to have a greater competitive advantage
with an incipient technology, which can be more productive and capable of
delivering better quality products with cost savings. We must not, however,
forget the risks, such as the shortage of qualified personnel, the lack of
standards, insufficient guarantee on the investment returns, instability of the
products with little competition among vendors, and so on, associated with
opting for a technology too soon.

In fact, not all the technologies are mature. The maturity level of a
technology can be measured in three ways (Figure 1.5):

• Scientific, that is, research dedicated to the technology;

• Industrial, that is, product development by vendors;

• Commercial, that is, market acceptance of the technology and its
utilization by users.

Table 1.2 indicates the maturity level (ranging from 1 to 5) in each
dimension for different DB technologies.
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Table 1.2
Maturity Level of Different DB Technologies

Technology Scientific Industrial Commercial

Relational DBs 5 5 5

Parallel DBs 4 3 3

Real-time DBs 3 2 1

Main-memory DBs 3 2 1

Active DBs 4 3 2

Deductive DBs 4 2 1

Object-oriented DBs 4 3 1

Multimedia DBs 4 3 3

Web DBs 3 2 2

Spatiotemporal DBs 3 1 1

Secure DBs 3 3 1

Fuzzy DBs 2 1 0

Distributed DBs 4 3 2

Federated DBs/multidatabases 3 2 1

Mobile DBs 2 2 1

Component DBs 2 1 0

Data warehouses 2 3 2
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Synergy among technologies also must be considered. For example,
fuzzy and deductive DBs can use the same logical language; both temporal
and real-time DBs deal with the management of time; real-time and main-
memory DBs can use analogous techniques for memory management; multi-
media DBs explore parallel capabilities; parallel and distributed DBs can take
advantage of the same techniques for intra- and interquery parallelism; and
parallelism is also needed for DW.

To respond to the challenges that the new applications present, it is
absolutely necessary that managers and technicians be well informed and that
they comprehend the basic aspects of the new-generation DB systems.
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2
An Introduction to Conceptual
Modeling of Information Systems

Antoni Olivé

2.1 The Functions of an Information System

The concept information system began to emerge around 1960. Even though
it may be considered an old concept, it is still difficult to define what an IS is.
Part of that difficulty is because ISs can be analyzed in at least three distinct
and complementary perspectives [1]:

• The contribution they provide;

• Their structure and behavior;

• The functions they perform.

From the first perspective, ISs are defined as means for wider systems to
achieve their objectives. That kind of definition emphasizes that ISs are sub-
systems of wider systems, to which they contribute. An IS does not exist for
itself. Examples of that kind of definition would be: �An IS is a system
designed to support operations, management, and decision-making in an
organization� or �An IS is a system that facilitates communication among
its users.�
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For our purposes, the main problem with that kind of definition is that
it does not give a clear characterization of ISs. The wider system of which an
IS is part may require means that are not ISs to achieve its objectives. Fur-
thermore, other things can provide the same type of contribution, without
being an IS. For example, there are various ways to facilitate communication
among users, including working physically close to each other or participat-
ing in meetings.

Even if it is difficult to define ISs in terms of the contribution they pro-
vide, it is important to realize that this perspective is essential during their
development. The requirements of an IS are determined from the objectives
of the organization for which the system is designed and built.

From the second perspective, definitions emphasize the structure and
the behavior of the physical and abstract elements that make up an IS. Both
structure and behavior can be characterized at different levels of detail.

For the purposes of conceptual modeling, the most useful definitions
are those based on the functions performed by ISs, that is, definitions that
emphasize what ISs do, abstracting from why and how they do it.

Within this third perspective, the classical definition says that �an IS is
a system that collects, stores, processes, and distributes information.� That
definition is commonly accepted for both its simplicity and its generality.
However, some comments may be in order to make it more precise.

First, in IS engineering, we should restrict the definition to designed
systems, that is, systems an engineer designs and builds [2]. The restriction is
needed because natural systems that perform information-processing func-
tions are beyond the scope of our study. For example, in cognitive science the
human mind is viewed as a complex system that receives, stores, processes,
and distributes information.

Second, the definition is too general with respect to the kind of infor-
mation an IS may deal with. In fact, the definition poses no constraint on the
kind of information, with the result that it encompasses systems that many
people would not consider ISs. For example, a fax could be considered an IS
according to that definition, because it can be seen as a system that receives
documents (which contain data representing some information), stores them
(even if only for a short time), translates them (i.e., changes the representa-
tion of the information), and sends the result through the phone.

The usual constraint on the kind of information handled by an IS is
that it must be about the state of some domain (also called object system
or universe of discourse). The nature of this domain is irrelevant to the defi-
nition of IS. For many systems, its domain is an organization, but the
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definition does not exclude other, different domains, such as a vehicle, the
atmosphere, or a chess game. According to that definition, a fax machine is
not an IS. A fax does not consider the documents it sends as information
about the state of some domain. To a fax, documents are just uninter-
preted data.

Thus, we define an IS as a designed system that collects, stores,
processes, and distributes information about the state of a domain. It is easy
to agree on those functions, but the problem is that they are too general and
are not related to the purpose for which the IS exists. For those reasons, many
authors prefer a more specific definition of the functions, one that captures
more neatly the nature of ISs.

To that end, it is considered that an IS has three main functions
(Figure 2.1) [3]:

1. Memory function, to maintain a representation of the state of a
domain;

2. Informative function, to provide information about the state of a
domain;

3. Active function, to perform actions that change the state of a
domain.
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2.1.1 The Memory Function

The memory function is needed by the other two functions. Its objective is
to maintain internally a representation of the state of the domain. Moreover,
the representation must be correct and complete [4].

The memory function can be performed in two execution modes: on
request or autonomously. In the first mode, the system memorizes the state
because a user explicitly tells the system the state and orders (normally
implicitly) the system to memorize it. For example, a system knows custom-
ers� addresses because any time a customer changes addresses, a user tells the
IS the new address and expects the system to remember it. The IS has no
way to know customers� addresses except by a user explicitly telling it that
information.

In the second mode, autonomously, the system memorizes the state of
the domain without an explicit request from a user. This mode has two vari-
ants. In the first variant, the system is able to observe autonomously the state,
for example, a system that periodically reads a device that gives the tempera-
ture of a building. In that case, the system can maintain a representation of
the temperature because it gets it directly from the environment. The second
variant is related to the active function and will be described later.

The memory function is considered to be passive, in the sense that it
does not perform anything that directly affects users or the domain. How-
ever, it is required by the other functions and constrains what they can
perform.

2.1.2 The Informative Function

With the informative function, the system provides users with information
about the state of the domain. Often, the state of the domain is observable
directly in the domain, and at the same time it is represented in the IS. For
example, the quantity of a given product in the shelves of a retail store may
be observed when necessary, and at the same time it can be represented in the
IS. In those cases there is a redundancy, but it is a desired one, because it may
be easier to ask the system than to observe the domain.

In other cases, the state is represented only in the IS, and it is not possi-
ble (or difficult) to observe it directly in the domain. For example, in a retail
store it is not possible to observe how many units of some product have been
sold up to a given moment. As another example, in the banking domain,
consider balances of accounts. The balance of an account at a given instant
cannot be known by observation of the owner of the account or the bank
office where the account was created. The only place where balances are
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represented is inside the IS. In those cases, the IS is the only source of infor-
mation about the state, and the system becomes indispensable to its users.

To perform the informative function, the system needs an inference
capability, allowing it to infer the required information from the memory. In
the most frequent case, users pose a query, and the system answers it. Both
query and answer are in a language understood by the users and by the
system.

Queries may be extensional (the most frequent case) or intensional. An
extensional query asks information about the state of the domain (either the
current state or some previous one), and the system gives an extensional or
intensional answer. An extensional answer, which is the usual case, consists of
more or less elaborated information about the state of the domain. Examples
of simple extensional answers are:

• Joan takes the Algebra course.

• Eighty students take the Programming course.

Some extensional answers must be much more elaborated and may require
a statistical analysis, a simulation or the execution of a decisional model.
Examples of such answers are:

• Ninety percent of customers that buy books also buy CDs.

• No customer has bought more than 200 books.

Less frequently, the answer to an extensional query may be intensional.
An intensional answer characterizes the state of the domain, but it does not
describe the state explicitly [5]. For example, to the question �Who earns
more than $100,000?� the system might answer, �The managers.�

Intensional queries ask about the kinds of information the system
knows, rather than particular information [6], for example,

• What do you know about students?

• What is the maximum number of courses a student may take
simultaneously?

• What is a student?
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The informative function also admits the two execution modes. The most
frequent case is the on request mode: Users get information when they ask it
explicitly. In contrast, in the mode autonomously, users define a condition on
the state of the domain and order the system to inform them when that con-
dition is satisfied. For example, the condition might be �the temperature is
over 40°C� and users expect that the system will issue some signal when that
condition is satisfied.

The informative function does not change the state of the domain. The
system merely provides the information requested by users. It is the users
who will take actions that change the domain, if they want to do so.

2.1.3 The Active Function

With the active function, the system performs actions that modify the state
of the domain. To perform the active function, the system must know the
actions it can take, when those actions can be taken, and their effect on the
state of the domain.

The active function also has the two execution modes. In the on request
mode, users delegate to the system the taking of some action that may
modify the state of the domain. For example, users may ask the system to cal-
culate the interests to be paid to bank accounts and charge them to the
accounts� balances.

In the mode autonomously, users delegate to the system the taking of
some action that may modify the state of the domain, when some condition
is satisfied. The system will monitor the state of the domain, and when the
condition is fulfilled, it will perform the delegated action.

The nature of actions that may be delegated to the system (in both exe-
cution modes) are varied. It may be a simple and well-defined action or one
for which only the objectives are defined, leaving autonomy to the system on
how to achieve those objectives.

The classical example of active function, with mode autonomously,
is the automatic replenishment of a store. Users define, for each product, a
reorder point and a quantity to order. The system maintains the quantity on
hand of each product, and users delegate to it to issue orders to suppliers
when the quantity on hand is below the reorder point. It is assumed that
orders to suppliers are part of the domain and, thus, the state of the domain
changes when a new order is issued.

It is interesting to note that, in the preceding example, if the orders
were not part of the domain, then the automatic replenishment would not be
an example of the active function. It would be an example of the informative
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action. Outputs from the system could be a requirement for action to the
users, but the state of the domain would not be altered.

Given that the active function may change the state of the domain
without the direct intervention of users, it is a function that calls the memory
function, in the execution mode autonomously.

Table 2.1 summarizes the examples of the three functions and the two
execution modes.

2.1.4 Examples of ISs

All conventional ISs perform a memory function and some informative func-
tion. We will not describe any concrete examples, since they are well known,
and identification of the functions they perform is simple. However, it may
be worthwhile to comment on some particular classes of systems and to see
that, even if one might doubt whether they are ISs, they in fact perform the
functions we have seen in this section.

Example 2.1

Assume a chess-playing system that can play against either a human or a
machine. We are going to see that this system may be considered an IS.

The domain consists of the board, the pieces and their position on the
board, the player, and the rules of the game. At any moment, the domain is
in some state, which is time varying. The rules of the game, however, are
fixed. The system has to maintain a representation of the state of the domain;
otherwise, it would not be able to play. When a move is completed, the sys-
tem must somehow know that in order to update the state representation.
This is a simple example of the memory function of an IS.

The system has to visualize on the screen the state of the game continu-
ously. When a game starts, the system shows the initial distribution of pieces.
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Table 2.1
Examples of Functions and Execution Modes

Functions Execution Modes

On request Autonomously

Memory Change of a customer�s address Reading of temperature

Informative Courses a student takes Signal when temperature is over 40°C

Active Pay interests to accounts Automatic replenishment



After every move, the system must show the new distribution. It is therefore
an example of the informative function, in the mode autonomously.

Once the player has made a move, it is expected that the system will
think about the available alternatives to achieve its objective (using the cur-
rent state of the game and the knowledge the system may have) and that,
after a while, it will make its own move. In making the move, the system
changes the state of the domain. Therefore, this is a complex example of the
active function.

If the system were naive enough to offer sincere advice on the next
move to the player, that would be an example of the informative function, in
the mode on request.

Example 2.2

Let us consider an e-mail system. The domain consists of users, who can send
or receive messages, distribution lists, active messages, folders created by
users to organize their active messages, and so on. Each message has a con-
tent, a subject, a sender, a date, and one or more receivers. Normally, the
content and the subject of a message are uninterpreted data for the system.

The memory function consists of maintaining a representation of the
state of the domain. The main part of the state will be represented only
within the system, and it is not directly observable in the domain. The state
changes when a user issues a message, receives a message, creates or deletes a
folder, puts a message in a folder (or removes a message from it), and so on.

Among other things, the informative function allows users to visualize
their active messages (at different levels of detail), as well as the contents of
their folders.

The active function consists of sending messages issued by users to their
receivers. The effect is that the sent message is put in the input folder of each
receiver. This function is performed in the mode on request.

Example 2.3

This last example is not a concrete system, but a class of systems: real-time
systems. There is not a consensus on what real-time systems are, but they
tend to be identified by means of a set of common characteristics [7].

First, a real-time system monitors and controls an environment (i.e., it
issues controlling commands that change the environment). Using our ter-
minology, monitoring the environment is a memory function, and control-
ling it is an active function. Second, real-time systems interact with users
for whom they perform a needed function. Such functions may be either
informative or active. Real-time systems frequently have various sensors and
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intersystem interfaces that provide continuous or periodic input. These are
the mechanisms by which the system knows the state of the environment, for
the memory function. Finally, a real-time system has a set of actuators or
intersystem interfaces that must be driven periodically. They correspond to
the mechanisms by which the system sends to the environment the output
form, the active function.

A real-time system has other characteristics that do not refer to the
essential functions that must be performed but to how they must be per-
formed, for example, sampling intervals of sensors, response time, concurrent
processing of multiple inputs, high reliability, resource (main or secondary
memory, processor capacity, etc.) limitations, and so on. These characteris-
tics are important, but they do not change the fact that real-time systems may
be seen as ISs.

2.2 Conceptual Modeling

Section 2.1 reviewed the main functions of an IS. To be able to perform
those functions, an IS requires some knowledge about its domain. The main
objective of conceptual modeling is the elicitation and formal definition of
the general knowledge about a domain that an IS needs to know to perform
the required functions.

This section describes the kinds of knowledge required by most ISs.
The line of reasoning we will follow is this:

• If the memory function of an IS has to maintain a representation of
the state of the domain, then we must define which is the concrete
state that must be represented.

• The state of most domains is time varying, which requires defining
the causes of changes and the effects of those changes on the state.

• The representation of the state in the IS must be consistent; there-
fore, it is necessary to define what it means to be a consistent
representation.

• Many times, answering queries posed by users requires some infer-
ence capability on the part of the IS. This capability uses derivation
rules, which must be defined.
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This section develops that line of reasoning. Along the way, we intro-
duce informally the terminology and give an intuitive idea of the basic
concepts.

2.2.1 Conceptual Schema of the State

The objective of the memory function of an IS is to maintain a consistent
representation of the state of its domain. The state of a domain consists of a
set of relevant properties.

The question of which exactly are the relevant properties of the domain
of an IS depends on the purpose for which the IS is built. We have already
mentioned that an IS is always a means for a wider system to achieve its
objectives. The relevant properties are determined by the functions of those
objectives and of the expected contribution of the IS to them. We focus
here on what are relevant properties rather than how to determine them.
That, of course, does not mean that the latter aspect is less important than
the former one.

In the IS field, we make the fundamental assumption that a domain
consists of objects and the relationships between those objects, which are
classified into concepts. The state of a particular domain, at a given time,
consists, then, of a set of objects, a set of relationships, and a set of concepts
into which those objects and relationships are classified. For example, in the
domain of a company, we may have the concepts of Customer, Product, and
Sale. Those concepts are usually stable. On the other hand, at a given instant,
we have objects classified as customers, objects classified as products, and
relationships between customers and products classified as sales.

That fundamental assumption is also shared by disciplines such as
linguistics, (first-order) logic, and cognitive science. Unfortunately, those
disciplines have not yet arrived at an agreement in the terminology, the defi-
nitions, the concepts, and the mechanisms to distinguish among objects and
relationships in a domain. The result is that we do not have at our disposal a
solid theoretical basis, and, as is often the case in the IS field, we must adopt a
humble and eclectic attitude.

The assumption that a domain consists of objects, relationships, and
concepts is a specific way to view the world (domain). At first sight, it seems
an evident assumption. Reality, however, is far from that. Other views are
possible, views that may be more adequate in other fields. As a simple and
well-known example in propositional logic, one assumes that domains con-
sist of facts, which may be either true or false. The study of the nature and
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the organization of the real world is the subject of the branch of philosophy
called ontology.

When we assume that a domain consists of objects, relationships, and
concepts, we commit ourselves to a specific way of observing domains. The
term used in ontology to designate such commitments is ontological commit-
ment. In the IS field, the term conceptual model is the commitment corre-
sponding to viewing domains in a particular way. In principle, the same
conceptual model can be applied to many different domains, and several
conceptual models could be applied to the same domain.

The set of concepts used in a particular domain is a conceptualization of
that domain. The specification of that conceptualization, in some language,
is called an ontology of that domain [8, 9]. There may be several conceptuali-
zations for a given domain and, thus, several ontologies. An ontology is also a
concrete view of a particular domain. Therefore, it is also an ontological
commitment for the persons that observe and act on that domain. In the IS
field, ontologies are called conceptual schemas, and the languages in which
they are written are called conceptual modeling languages.

As we will see, conceptual models of ISs are much more complex than
simply assuming that a domain consists of objects and relationships. A con-
ceptual model assumes that a domain includes other �things,� and also that
objects, relationships, and concepts have several properties that must be dis-
tinguished. On the other hand, a conceptual model includes a view of how a
domain changes.

There is a great diversity in conceptual models, which make them more
or less useful in particular situations or for particular purposes. However, all
of them share the fundamental assumption we have mentioned and that we
will make precise.

We begin trying to establish the distinction between concept and
object. According to the dictionaries, a concept is �an abstract or generic idea
generalized from particular instances� or �an idea or mental picture of a
group or class of objects formed by combining all their aspects.�

Those definitions fit our purpose. A concept, then, is something that
we have formed in our mind through generalization from some instances. A
concept has an extension and an intension. The extension of a concept is the
set of its possible instances, while the intension is the property shared by all
its instances.

As human beings, we use the concepts we have to structure our percep-
tion of a domain. In that sense, concepts are like eyeglasses with which we
observe a domain. Concepts allow us to classify the things we perceive as
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exemplars of concepts we have. In other words, what we observe depends on
the concepts we use in the observation.

Classification is the operation that associates an object with a concept.
The inverse operation, instantiation, gives an instance of a concept. The set
of objects that are an instance of a concept at some time is called the popula-
tion of that concept at that time.

An entity type is a concept whose instances are individual and identifi-
able objects. Objects that are instances of an entity type are called entities.
Figure 2.2 shows a simple example of entity and entity type.

All entities are instances of some entity type, but an entity may be an
instance of more than one entity type. For example, in Figure 2.2 the entity
shown could also be an instance of Doctor.

If there is a �thing� in which we are interested, but we are not able to
classify it in any of the concepts we have, then we have to form a new concept
of which that �thing� could be an instance. In contrast, there may be con-
cepts without instances in the usual domains. The typical example is Uni-
corn. In conceptual modeling, we do not show interest in concepts without
instances.

Some concepts are associative, in the sense that their instances relate
two or more entities. Relationship types are concepts whose instances are rela-
tionships. Figure 2.3 shows an example of relationship type Reads between
Person and Book.

A particular case of relationship is the reference relationship. In princi-
ple, each entity in the domain must have at least one name that allows us to
distinguish among entities. A name is a linguistic object that we use to refer
to an entity. Names are also entities and, therefore, instances of some entity
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type, that we call lexical entity types. Examples of lexical entity types are
String, Number, Bar code, ISBN code.

The correspondence between an entity and its name is established by
means of a relationship. That relationship is also an instance of some rela-
tionship type, sometimes called a reference relationship type. There may be
more than one reference relationship type, for example,

• The relationship type between Person and String;

• The relationship type between Book and ISBN code;

• The relationship type between Book and Number (in a library).

The set of entity and relationship types used to observe the state of a domain
is the conceptualization of that state. The description, in some language, of
that conceptualization, as well as other elements we will see in a moment, is
called the ontology of the state, or the conceptual schema of the state. The set
formed by the conceptual schema of the state and the conceptual schema of
the behavior, which will be described later, is called the conceptual schema.
Languages used to define conceptual schemas are called conceptual modeling
languages.

Not all entities and relationships in a domain need to be represented in
the IS. That leads us to distinguish between conceptual schema of a domain
and conceptual schema of an IS. The former describes the conceptualization
of the domain, without regard to which entities and relationships will be rep-
resented in the IS. In contrast, the latter describes only the fragment of the
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conceptualization such that its entities and relationships are represented in
the IS.

2.2.2 Information Base

An information base is a description of the entities and relationships of a
domain that are represented in the IS [10]. In principle, this description
could be done in any language, but usually it is done in a logic-based lan-
guage. Sometimes, the description of an entity or a relationship is called a
fact, and we say that the information base contains the facts about a domain.

For example, if we use the language of first-order logic as the modeling
language, we could have a schema formed by predicates Person, Book, and
Reads, which represent entity types Person and Book and relationship type
Reads. The information base might contain, at some time, the facts Per-
son(A), Book(B), and Reads(A,B).

Figure 2.4 illustrates the relationship between a conceptual schema and
an information base. The conceptual schema of the domain includes the
concepts from Figure 2.3 and two other concepts, Town and Lives. However,
we want to represent in the IS only the entities and relationships shown in
the conceptual schema of Figure 2.3. The conceptual schema is described in
a graphical language, in which rectangles correspond to entity types and lines
to relationship types. The information base contains three facts, described in
the language of first-order logic. Predicates correspond to entity and relation-
ship types.

The information base does not exist physically. It is only an abstract
description we use to reason about a schema and to exemplify particular
situations in a domain. Naturally, the IS must maintain an internal
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description (e.g., in a DB) of the entities and relationships in a domain, but
this description is at a very low level in order to be efficiently processable by
the processors used. The information base is a description close to the con-
ceptual schema and is not meant to be an internal description.

Unfortunately, the term conceptual model is not always used with the
same meaning in the literature. Besides the meaning we have given to it,
other meanings we may find are these:

• Conceptual model = conceptual schema

• Conceptual model = conceptual schema + information base

We have chosen to use three distinct terms (conceptual model, conceptual
schema, information base) to distinguish three different concepts. The same
distinction is well established in the DB field, where we distinguish clearly
among data model (for instance, relational data model), DB schema (in some
data models), and DB (instance of a schema).1

2.2.3 Conceptual Schema of the Behavior

Most IS domains change through time, at two levels: conceptual schema and
state. Changes at the conceptual schema level are less frequent than those at
the state level, and their origin is due to changes in users� interests: For what-
ever reason, users lose interest in the representation of some entities and rela-
tionships or they want other entities and relationships to be represented in
the IS.

The most frequent changes (and the only ones we consider here) occur
at the state level. It is easily observable that the state of most IS domains
changes through time. In consequence, if the information base is a truthful
representation of that state, then the facts of the information base will need
to change through time.
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We say that there is a change in the state of the domain at time t if the
entities or relationships that exist at t are different from those existing at the
previous time. In other words, a state change is a change in the population or
one or more entity or relationship types between two states: the new state
(corresponding to t ), and the old state (corresponding to t − 1).

Any change in the population of an entity (relationship) type can
always be decomposed into a set of one or more elementary changes of the
following types:

• Insertion of entity (relationship). This change happens when there is
an entity (relationship) in the new state that did not exist in the old
state.

• Deletion of entity (relationship). This change happens when there
was an entity (relationship) in the old state that does not exist in the
new state.

The causes of the changes are the events [3, 12]. A domain does not change
its state if no event happens. An event is any circumstance that happens at a
given instant and whose effect is a change in the domain state. Normally,
these circumstances are actions (or decisions) performed by human beings
that act on a domain (e.g., hiring an employee or making a move in a chess
game), but they also may be the result of physical processes (e.g., dropping
some amount of liquid into a tank or the rising of the sun).

It is usually assumed that events are instantaneous, that is, they do not
have duration. It is also assumed that an event causes a transition in the
domain, from an old state to a new one, without any noticeable intermediate
state. In many cases, those assumptions do not pose any particular problems.
For example, the process of hiring a new employee takes some time, but it is
likely that we are interested only in the outcome of that process: From that
moment on, the person will be an employee, which he or she was not at the
previous time.

In some cases, however, events have duration. To handle those cases in
conceptual models that require instantaneous events, it may be necessary to
refine the conceptual schema of the domain or the event itself. For example,
assume the domain includes the relationship type Is at between persons
and places. In principle, it seems natural to consider that persons are at some
place at any moment. Let us consider now the event corresponding to the
move of a person from an origin to a target. If we assume that the event
is instantaneous, then the person will continue to be at some place at any
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moment. But if we assume that a move is not instantaneous, then there will
be a temporal interval during which we will not know where a person is. If
we want to take into account that fact, we will need to do the following:

• Refine the conceptual schema of the domain: now there will be
some times when we do not know where a person is.

• Transform the move event into two events: the beginning and the
end of a move.

• Consider that the effect of the beginning of a move is that we enter a
state in which we do not know where the moving person is.

• Consider that the effect of the end of a move is that there is a rela-
tionship between the moving person and the target place.

For the designer, it is important to distinguish between external and gener-
ated events. An event is external if it occurs independently of the IS. If the IS
is computer-based, external events happen even if the system is out of service.
Such events are called external because they happen outside the control of the
system. The system will need to be notified of the events (to update its infor-
mation base), but the system itself has not produced the events. Many events
are external, for example, the hiring of an employee or the sunrise.

A system may know external events either by direct observation or by
users� communication:

• In direct observation, the system has some mechanism that allows it
to detect the occurrence of events. For example, a system may have a
sensor that detects the arrival of a car in a toll station.

• In users� communication, the users tell the system of the events
when they occur. For example, when a company changes the price
of a product, the system is also notified of the change.

As mentioned in Section 2.1, an IS may also have an active function. In the
active function, the users may delegate to the system the generation of some
events that change the state of the domain when some conditions hold. A
generated event is an event induced directly by the IS. Without the partici-
pation of the system, the event would not be generated, and, therefore, the
domain would not change. The system may generate an event as a response
to an explicit request from users, when it detects that the state of the domain
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satisfies some condition, or because it considers the event necessary to
achieve an objective defined by the users.

Example 2.4

Assume an IS that controls an elevator. At each floor there is a button that
users can press to request the elevator. Pressing one of the buttons is an exter-
nal event. The system responds immediately by turning on the light associ-
ated with the button (to inform users that the system is aware of their
request). Turning on and off light buttons are generated events. Taking into
account the current position of the elevator, as well as the pending requests,
the system issues several commands to start or stop the motor. Those com-
mands are also generated events.

Events, either external or generated, are also instances of concepts. An
event type is a concept whose instances are events. Events may have relation-
ships with other entities. In particular, all events have a relationship with an
entity that is a time instant, which corresponds to the time when the event
happens. Figure 2.5 shows an example of the event type change of residence.
Events of this type are related with a person (who changes), a town (new resi-
dence), and a date (occurrence time).

The set of event types that exist in a domain is part of the conceptual
schema of events. The description, in some language, of that schema, as well
as other elements described next, is called the conceptual schema of the
behavior.

To be able to update the information base, the IS must know not only
the events that have happened but also their effect on the information base.
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The definition of that effect, in some language, is also part of the conceptual
schema of the behavior.

In conceptual modeling, there are several distinct ways to define the
effect of events. The most usual way consists of defining, for each event type,
an effect function that gives the new state for any old state and any instance
of the event type. For example, the effect function corresponding to the
event type change of residence, shown in Figure 2.5, might be (informally)

If an event of type change of residence, of person p and town c, occurs on
date d, then in the new state, corresponding to date d, person p will not
live any longer where she lived before, and she will be living in town c.

In the example, the effect of the event is quite limited, and the effect function
is simple. In practice, however, it is not so easy to define the effect, because
there are many event types, and some of them have a complex effect
function.

For generated events, the conceptual schema of the behavior includes
the definition of the generating conditions, that is, when the events must be
generated.

Example 2.5

Assume an IS that monitors the level of water in a tank. The system has a
sensor that detects the level of water at any time. It is expected that the sys-
tem will keep the input valve open when the water level is below a desired
minimum and closed when the level is above a desired maximum. Generated
event types are the opening and the closing of the valve. The generation con-
dition of the former could be �when the current level is below the minimum
and the valve is not open already� and that of the latter, �when the current
level is above the maximum and the valve is not closed.�

2.2.4 Integrity Constraints

The information base is a representation of the state of the domain. An IS
obtains and updates the information base from messages received through
the input interface or by direct observation of the domain.

In a perfect world, the information base would be an exact representa-
tion of the domain. Input messages would always be correct, and the system
would receive all relevant messages. Furthermore, the direct observation of
the domain would always be faithful. In a perfect world, the representation
would always be correct (or valid) and complete.
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Unfortunately, in the real world it is likely that some received messages
are incorrect, in the sense that they communicate something that is not true.
Also, the direct observation of the domain may be distorted. In such cases,
some of the facts in the information base may not be valid. It is also likely
that the system does not receive all relevant messages; then the information
base may not be complete.

Validity and completeness are the two components of the integrity
of an information base [13]. We say that an information base has integrity
when all its facts are valid and it contains all relevant facts. Integrity is an
important property of an information base. Lack of integrity normally has
negative consequences, which in some cases may be serious.

In most systems, total integrity can be achieved only by human inter-
vention. In many cases, it is necessary to check the facts in the information
base against the domain. For example, many retail stores need to check peri-
odically that the products they have on shelves correspond to their records in
the IS. It is not difficult to see that in some cases the cost of integrity is high
and hardly avoidable.

However, it is possible to build mechanisms in the IS that auto-
matically guarantee some level of integrity. We can define conditions on the
information base such that, if satisfied, we can have some level of confidence
on its integrity. These conditions, called integrity constraints, are defined in
the conceptual schema. An integrity constraint is a condition that might not
be satisfied under some circumstances, but it is understood that the IS will
include mechanisms to guarantee its satisfaction at any time.

Example 2.6

Assume that a conceptual schema has a relationship type Assigned to, involv-
ing entity types Employee and Project. Suppose that in the domain all employ-
ees are always assigned to one or more projects. An integrity constraint might
be �all employees are assigned to some project.� Once defined in the concep-
tual schema, we can assume that all states of the information base will con-
tain for each known employee at least one relationship with a project. The
constraint, however, does not guarantee total integrity (e.g., the information
base could have wrong assignments), but its satisfaction is a necessary
condition.

We say that an information base is consistent if it satisfies all defined
integrity constraints. We also say that a constraint is violated when the infor-
mation base does not satisfy it. When a constraint is violated, the system
must produce some response to maintain consistency. The most frequent
case is when a violation is caused by the arrival of some erroneous message,
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and the response is usually the rejection of the message, asking for its
correction.

Most integrity constraints refer to facts of the information base, and
then they are part of the conceptual schema of the state. Some constraints,
however, refer to events; then they are part of the conceptual schema of the
behavior. An example of the latter, which refers to events of type Birth, could
be �a person cannot be parent of himself.�

2.2.5 Derivation Rules

By means of the informative function, an IS provides information about the
state of the domain to users, either when they request it or under predefined
circumstances.

If an IS does not have any inference capability, it can provide only
information collected from the environment. In some cases, that may be all
that is required, but in most cases users expect that systems have some capa-
bility to infer new facts from the ones they know. A simple example is total-
ing. If we give to the system a sequence of numbers, we normally assume the
system will at least be able to compute their total.

Most ISs have some inference capability, which requires two main
components: derivation rules and an inference mechanism. Derivation rules
are defined in the conceptual schema. The inference mechanism uses deriva-
tion rules to infer new information. How the inference mechanism works
may vary from one IS to another, and it is considered to be part of the inter-
nal structure of the system; therefore, it is not specified in the conceptual
schema.

A derivation rule is an expression that defines how new facts may be
inferred from others. The concrete form of this expression depends on the
conceptual modeling language used. Often, the expressions are formulas in
a logic style, but nothing prevents the use of conventional algorithms. For
example, assume we want to define the derivation rule corresponding to the
concept grandparent from the concept parent. An expression in logic style
would be �a person gp is grandparent of person gc if gp is a parent of a person
p and p is a parent of gc.�

An equivalent algorithmic expression that gets the four grandparents of
person gc could be:

1. Get the two parents p1 and p2 of gc.

2. Get the two parents gp1 and gp2 of p1.
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3. Get the two parents gp3 and gp4 of p2.

4. The grandparents of gc are gp1, gp2, gp3, and gp4.

Derivation rules may be specific of a given domain (e.g., a bank), applicable
to all domains of a certain class (e.g., banking), or domain independent (e.g.,
statistical concepts). The conceptual schema must include all derivation rules
that can be used in a particular system, but we should explicitly define only
those rules that are specific to our domain. The other derivation rules could
be shared by all conceptual schemas for domains of the same class or by all
conceptual schemas.

In practice, most derivation rules infer new facts of the information
base, and then the rules are included as part of the conceptual schema of the
state. However, nothing prevents the inference of events from other events,
and then the corresponding derivation rules are part of the conceptual
schema of the behavior. For example, a derivation rule referring to events of
type Travel could define Long travels as those travels such that the distance
traveled is greater than 1000 km.

2.3 Abstract Architecture of an IS

Section 2.2 presented conceptual schemas. This section shows the essential
role these schemas play in the architecture of ISs. By architecture, we mean
the main components and their relationships. In principle, there are many
possible architectures, and choosing the most convenient for a particular IS
depends on many factors, including the preferred architectural style and the
hardware and software platform on top of which it must work. However, we
do not need to take such diversity into account here. For our purposes, it will
suffice to consider the ANSI/SPARC abstract architecture proposed in the
ISO report [10] (Figure 2.6).

To illustrate this architecture and the role played by conceptual sche-
mas in it, we will use the example of a chess-playing system that can play with
persons or with other systems.

The conventional representation of the state of a chess game is a draw-
ing like the one shown in Figure 2.7. However, not everybody uses exactly
the same representation; different icons can be used to denote the same
piece. Some users may prefer other graphical representations (e.g., the three-
dimensional view), and in some cases text-based representations may be
preferred (e.g., in machine-machine communication).
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An external schema is a form of representation of the state of the
domain used in the domain, and an external DB is the representation of the
state of the domain in that external schema. Figure 2.7 can be considered an
external DB. External DBs are virtual, in the sense that they do not have a
physical and persistent existence within the system.

Besides a form of representation, external schemas also include aspects
of manipulation of this form, like the language used to ask queries or to
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communicate external events. In the example, we again find some diversity.
There are several textual (official) and graphical ways to represent a move
(e.g., as a string, like the string �D71,� or by dragging a piece to the desired
place).

The result is that in general there are several external schemas for a
given domain and it is not possible to single out one that satisfies all possible
users and all possible uses. Therefore, the system must deal with several exter-
nal schemas. To do that, the system needs to know the meaning of the repre-
sentations used and the meaning of the allowed manipulations.

Figure 2.8 shows a simplified conceptual schema of the example. In the
figure, entity types are represented by rectangles and relationship types by
lines connecting the involved entity types. The name of the relationship type
is placed near the line, with a small filled triangle that shows the way to read
the name.

Each piece is of some type (king, queen, bishop, etc.), has a color (black
or white), and is located at some square. Squares also have a color. For clarity,
we will call board square (or just square) to a square that is part of the board,
and representation square to a square drawn in the representation of the
board (external schema). A board square is located at a row and a column,
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which define its position in the board. Rows and columns have a number
(integer).

The conceptual schema might also include a derivation rule defining
that a board square is free if there is not a piece located at it; otherwise, it is
occupied.

There is a single conceptual schema and there may be one or more
external schemas. External schemas are defined in terms of the conceptual
schema. For instance, the correspondence between the conceptual schema in
Figure 2.8 and the external schema used in Figure 2.7 is as follows:

• The board is represented by a (large) square, subdivided into 64
smaller representation squares corresponding to the board squares.

• Representation squares are painted with the same color as the corre-
sponding board squares.

• Each piece has a different icon, depending on its type and color.

• If a piece p is located at a board square s, then the icon correspond-
ing to p is put over the representation square corresponding to s.

The correspondence between manipulations and the external events is
defined similarly. For example, when the user drags a piece to a representa-
tion square, the conceptual meaning is a move of that piece to the board
square where it is released.

The external processor is the architectural component that interacts with
users. In principle, there is an external processor for each external schema.
The external processors receive the messages from users (in the language of
the external schema), translate them into the language of the conceptual
schema, and forward them to the information processor.

The information processor is the component that handles the (concep-
tual) messages originated by the users and performs the active function that
may be delegated to the system. In particular, if a message communicates an
external event, then the information processor has to apply the correspond-
ing effect function and check that the resulting state is consistent. In the case
of the example, if a new move is received, the information processor has to
check whether the move is valid and, if so, to update the state of the game.

To perform those tasks, the information processor needs to access and
manipulate the state of the domain. It cannot use an external representation
because, in general, they may be partial, and, on the other hand, they include
aspects that do not have any relationship with the nature of the domain.
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For example, if the system had to use the representation shown in
Figure 2.7 to check whether the move of the black queen to column 1, row 5
is valid, the information processor should check, among other things, that
the representation square in column 2 and row 6 does not have any icon over
it. Neither �representation square� nor �icon� is a relevant concept in the
domain. It is much better that the information processor may ask questions
like �Is the board square of column 6 and row 2 free?� where both board
square and free are defined in the conceptual schema. For similar reasons,
which will be explained, the information processor cannot use an internal
representation.

What is most natural for the information processor is to use a represen-
tation based on the conceptual schema, which is the information base. How-
ever, the information base is virtual, because it does not exist physically
within the system. When the information processor asks itself questions like
�Is the board square in column 6 and row 2 free?� it behaves as if the infor-
mation base really existed. In reality the question will be sent to the internal
processor, which will answer it using the physical DB.

The representation of the state that the system has to maintain internally
must allow, among other things, an efficient execution. That means the design
of the internal representation must take into account technical factors. We call
internal schema the representation form of the state of the domain used inter-
nally by the system, and internal DB the state representation in that schema.
The internal DB is the only one that has a physical existence. The internal
schema also includes the set of operations that can be invoked on the DB.

An internal schema for the system example that would be almost optimal
from the point of view of the amount of space used (although not from other
technical points of view) could be a file with the following record structure:

PieceType, Color, Row, Column

where PieceType could use one character (with a K for king, Q for queen,
R for rook, etc.), Color one bit (0: white, 1: black), and Row and Column
a single byte (number 1…8). Internal schemas, like the external ones, are
defined with respect to the conceptual schema. In the example, the corre-
spondence might be:

• The file has a record for each piece that is on the board.

• The first field indicates the piece type, the second its color, the third
the row number of the board square where the piece is located, and
the fourth the column number.
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• The color of the board square is not represented explicitly. The
external processor may infer it by adding the numbers of the row
and the column: If the result is even, the board square is black;
otherwise, it is white.

Using that internal schema, the partial contents of the internal DB corre-
sponding to Figure 2.7 would be

R 1 8 2

R 1 8 4

K 1 8 7

Q 1 7 3

……

The internal processor receives the commands issued by the information
processor and executes them, possibly accessing the internal DB. For exam-
ple, if the internal processor receives the command (or, as in this case, ques-
tion) �Is the board square of column 6 and row 2 free?� it will check whether
there is a record, in the above file, such that Row = 2 and Column = 6. If
there is not such a record, the answer to the question will be positive, and
negative otherwise. To perform its task, the internal processor needs to know
the internal schema, including its correspondence with the conceptual
schema.

Modern architectures of ISs are layered, with three logical layers: pres-
entation, domain, and data management. The equivalent to the external
processors is located in the presentation layer, the information processor in
the domain layer, and the internal processor in the data management layer.

2.4 Requirements Engineering

Section 2.3 discussed the role of conceptual schemas in the architecture of
ISs. Now, we are going to see their role in the development of the systems.

Conceptual schemas are the common base for external and internal
schemas, as well as for their processors. Therefore, it is clear that it is not pos-
sible to design the architecture of an IS without the conceptual schema. Con-
ceptual modeling must precede system design.
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It is important to realize that it is impossible to design a system without
knowing its conceptual schema. The only available options are either to
define explicitly the schema or to have it in the minds of the designers.
Unfortunately, sometimes the latter option is taken.

The stage that precedes system design is called requirements engineering
[14]. Its objective is to capture the requirements that must be satisfied by the
system. Normally, requirements engineering is a complex process, because
the many persons (users, designers, managers, etc.) involved in it may have
different views, needs, and interests.

Requirements engineering consists of three main phases, which can be
performed iteratively:

• Requirements determination;

• Requirements specification;

• Requirements validation.

During requirements determination, the future users of the system and the
designers analyze the problems, the needs, and the domain characteristics.
On the basis of that analysis, they decide the changes to be introduced in the
domain and the functions that should be performed by a new IS. Require-
ments determination is a crucial phase, because it determines a significant
part of the final success or failure of the whole project. In this phase, it is
decided how the future system will be, and an error in the decision often
implies that users eventually will get an inadequate system.

During this phase, a conceptual schema of the existing domain may be
elaborated, if it is considered necessary to achieve a common understanding
of the domain. A conceptual schema of the desired domain can also be elabo-
rated, without determining yet the part that will correspond to the new IS.

In the requirements specification phase, the functional and nonfunc-
tional requirements of the new system are defined. The result is a set of docu-
ments (called specifications) that describe exactly the system that the users
want and that the designers have to design and build. Functional require-
ments describe what the system must do, while nonfunctional requirements
describe global properties of the system, like, for example, response time or
portability.

The conceptual schema of an IS is the specification of the functional
requirements of the system. The conceptual schema specifies all functions
(memory, informative, and active) that must be performed by the system
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and, together with the nonfunctional requirement specification, corresponds
to the system specification.

During requirements validation, specifications are checked with respect
to users� needs. In this phase, it must be ensured that users get a complete
understanding of how the future system will be before it is built. This is
also a crucial phase that can be done well only if requirements have been
described explicitly.

Validation can be performed in two main ways:

• By presenting the conceptual schema and in general the specifica-
tions in a language and form that is easily understood by users. If the
conceptual modeling language used is not completely understand-
able by the users, it will be necessary to provide either some help
for its interpretation or translation to more familiar languages (not
excluding natural language). When the conceptual schema is large,
as is often the case, its structuring in fragments or views may be
mandatory.

• By building (partial) prototypes of the system. If the conceptual
modeling language used is formal, then prototypes may be generated
automatically. This form of validation is usually more effective than
the other form, but in general it is more expensive.

In summary, conceptual schemas are elaborated during the require-
ments engineering stage and are the basis for the next stage, system design.

For further details on how these activities can be facilitated by comput-
ers, see Chapter 13.

2.5 Desirable Properties of Conceptual Schemas

Now that we have seen what the conceptual schemas are and their role in the
architecture of the system and during the development process, this section
describes which properties should have these schemas in order to play those
roles effectively [15�17].

A well-known property of conceptual schemas is the 100% principle, or
completeness, which states that

All relevant general static and dynamic aspects, i.e., all rules, laws, etc.,
of the universe of discourse should be described in the conceptual
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schema. The information system cannot be held responsible for not
meeting those described elsewhere, including in particular those in
application programs [10].

The justification for the 100% principle is that a conceptual schema is the
definition of the general domain knowledge the IS needs to perform its func-
tions; therefore, the conceptual schema must include all required knowledge.
If we had a �compiler� able to generate a system from the conceptual schema,
then it would be obvious that the system could not contain anything not
included in the schema. A conceptual schema is complete if it satisfies this
property.

An important conclusion from the 100% principle is that the concep-
tual modeling language used must allow the description of all relevant aspects
of a domain.

The correctness property is complementary to the completeness prop-
erty: A conceptual schema is correct if the knowledge that defines it is true in
the domain and relevant to the functions the IS must perform. For example,
in our chess-playing system the fact that players have an address is probably
irrelevant.

The Venn diagram in Figure 2.9 shows graphically the relationship
between completeness and correctness. The left circle, A, represents the
domain knowledge the IS needs to know to perform its functions. The right
circle, C, represents the knowledge defined in the conceptual schema. In a
complete conceptual schema, A is a subset of C. In a correct conceptual
schema, C is a subset of A. In a complete and correct conceptual schema,
A = C.
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Correctness and completeness of a conceptual schema are checked dur-
ing the requirements validation phase.

Another property that has become popular is the principle of conceptu-
alization, which states that

A conceptual model should only include conceptually relevant aspects,
both static and dynamic, of the universe of discourse, thus excluding
all aspects of (external or internal) data representation, physical data
organization and access as well as aspects of particular external user rep-
resentation such as message formats, data structures, etc. [10].

The justification is similar to the previous one: If a conceptual schema
is the basis for system design, then it should not include any design aspect,
thus leaving freedom to designers to decide on all those aspects. On the other
hand, when a schema focuses only on conceptual aspects, it is simpler and,
therefore, easier to be understood by users. A conceptual schema that satisfies
this principle is called design independent.

Conceptual schemas are described in some conceptual modeling lan-
guage. This language will have a set of rules that must be respected. A con-
ceptual schema is syntactically valid (or just valid) if it respects all the rules of
the language in which it is written. Syntactic correctness of a schema is inde-
pendent of the domain.

Sometimes, the same piece of knowledge about a domain may be
expressed in two or more ways in a given language. The property of simplicity
states that simple schemas must be preferred, that is, schemas that use fewer
language constructs or less complex constructs.

Closely related to the simplicity property is the property of ease of
understanding. A conceptual schema should be easily understandable by the
persons involved in the development of the IS, particularly its future users.
Section 2.4 mentioned the importance of this property during requirements
validation.

Finally, we mention the property of stability, also called flexibility,
extensibility, or modifiability. A conceptual schema is stable if small changes
in the properties of the domain or in the users� requirements do not imply
large changes in the schema.

There are some proposals of metrics for evaluating these properties in
a conceptual schema (see Chapter 14). A representative example is [18].
However, this is an issue where more work needs to be done to be fully
practical.
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3
Active Databases

Oscar Díaz and Norman Paton

3.1 Introduction

DBMSs are at the heart of current IS technology. They provide reliable, effi-
cient, and effective mechanisms for storing and managing large volumes of
information in a multiuser environment. In recent years, there has been a
trend in DB research and practice toward increasing the proportion of the
semantics of an application that is supported within the DB system itself.
Temporal DBs, spatial DBs, multimedia DBs, and DB programming lan-
guages are examples of that trend. Active DBs can be considered part of this
trend, where the semantics that are supported reflect the reactive behavior of
the domain.

Traditional DBMSs are passive in the sense that commands are exe-
cuted by the DB (e.g., query, update, delete) as and when requested by the
user or the application program. However, some situations cannot be mod-
eled effectively by that pattern. As an example, consider a university DB
where data are stored about students, lecturers, timetables, bus schedules,
and so on and which is accessed by different terminals. As new students join
the school (i.e., a new tuple is inserted in the student table), the bus should
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stop at new students� addresses. Two options are available to the administra-
tor of a passive DB system who is seeking to support such a requirement.
One is to add the additional monitoring functionality to all enrollment pro-
grams so the situation is checked for each time a student is added. However,
that approach leads to the semantics of the monitoring task being distrib-
uted, replicated, and hidden among different application programs. The sec-
ond approach relies on a polling mechanism that periodically checks the
addresses of the students. Unlike the first approach, here the semantics of
the application are represented in a single place, but the difficulty stems from
ascertaining the most appropriate polling frequency. If too high, there is a
cost penalty. If too low, the reaction may be too late (e.g., the students are
left on the pavement until the polling program is run again).

An active DB would support the application by moving the reactive
behavior from the application (or polling mechanism) into the DBMS.
Active DBs are thus able to monitor and react to specific circumstances of
relevance to an application. The reactive semantics are both centralized and
handled in a timely manner.

The advantages that can be drawn from this migration are numerous
[1]. First, it promotes code reusability. Rather than replicating code in dis-
tinct applications, the code resides in a single place from which it is implicitly
invoked. Such centralization accounts for increasing consistency because no
application can bypass the policy, and maintenance is eased as changes to
the policy are localized in a single piece of code. Moreover, in a client/server
environment, centralized reactive behavior reduces network traffic, as the
reaction associated with the event is executed locally as the single implicit
invocation arises. By contrast, if the reaction were embedded within the
application, the distinct SQL statements would have been executed across
the net.

The rest of this chapter is structured as follows. Section 3.2 introduces
an example that will be used to illustrate distinct aspects of reactive behavior
through the rest of the chapter. Reactive behavior is generally supported
using rules. Rules can be seen as an implementation mechanism, but imple-
mentation must be preceded by analysis and design. Thus, Section 3.3
provides some insights on how rules can be ascertained from business poli-
cies during analysis. At design time, rules need to be described and their
behavior understood. Section 3.4 illustrates the subtleties of rule behavior
through distinct examples and presents graphical notations for rule descrip-
tion. Section 3.5 addresses implementation issues, illustrating features using
the rule system of Oracle. Finally, Section 3.6 tackles the maintenance of
rule sets.
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3.2 Example: University Database

This section outlines the DB that will be used later in the chapter to illustrate
the utility of active functionality. The DB stores details of a training com-
pany that provides consultancy and courses. The E/R diagram for the DB is
depicted in Figure 3.1, and the SQL create table commands for the corre-
sponding tables are provided in Figure 3.2.

Each of the entity types in the DB is represented using a table in SQL.
Because each attendee can take many courses and each course can be taken
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create table employee (
name varchar(30) not null,
salary number not null,
department varchar(20) not null,
bossname varchar(20)

references employee(name),
teaches varchar(39) references course(c#),

level number,
primary key (ename));
create table room (

r# number(2) not null,
capacity number(3) not null,
heating varchar(1),

primary key (r#));
create table course (

c# varchar(30) not null,
cname varchar(20) not null,
itsRoom number(2) references room(r#),

primary key (c#));

create table attendee (
a# varchar(30) not null,
companyProfile varchar(30) not null,

primary key (a#));
create table distribution (

theRoom number(2) not null,
theCourse varchar(30) not null,
from date,
to date,

primary key (theRoom,theCourse));
create table enrollment (

theAttendee varchar(30) not null,
theCourse varchar(30) not null,
level number,
grade number,

primary key (theAttendee,theCourse));

Figure 3.2 Tables for the example.

Employee Attendee

Room

Course

distribution

enrollment

bossname

teaches
1:N

1:N

M:N

M:N

Figure 3.1 E/R schema for the example.TE
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by many attendees, the relationship between attendees and courses is repre-
sented using a distinct table, namely, enrollment, which has grade and level
as its attributes. Moreover, the distribution table supports the relationship
between courses and the rooms where they are taught. Finally, an employee
has a boss and teaches only a course at a given level. The bossname and teaches
attributes, respectively, realize such links.

3.3 Analysis

Analysis refers to the process of identifying and capturing application require-
ments from the user�s point of view. The developer should focus on the
semantics of the application rather than the characteristics of the final sys-
tem. The result is a consistent description (conceptual model) of the expecta-
tions the user has about system functionality. Since DBs traditionally store
raw data, the main concern of these models used to be the structural aspects
of the domain. However, that is no longer true. Most commercial DBMSs
are able to manage code in the form of store procedures, packages, and trig-
gers. Thus, we need to extend previous methods so they also capture the
behavioral aspects of the domain. Here, we focus on those aspects that even-
tually will be supported as triggers.

The first step is requirements elicitation, that is, how to ascertain the
functional requirements of the system to be built. As far as active behavior is
concerned, a good starting point is to look at business policies. Policies are
explicit statements of constraints placed on the business that concern both
structural features (i.e., asserting the description of essential concepts, rela-
tionships, or states) and behavioral characteristics (i.e., describing the proce-
dures that govern or regulate how the business operates). For the purpose of
this chapter, we will focus on the elicitation and description of two types
of business policies: recovering business policies and causal business policies.

3.3.1 Recovering Business Policies

DB people traditionally have focused on the structural side of the domain,
paying special attention to what is known as integrity constraints. Integrity
constraints express conditions that hold in the domain. For instance, the
constraint the number of students enrolled in a course cannot go above the capac-
ity of the course�s room expresses a condition that is always true in the domain,
and so it should be preserved in the DB. However, integrity constraints may
be violated when data are modified. For instance, the number of students
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constraint can be violated when a new student is enrolled or when the course
is moved to a different room.

It is generally considered that it is not so important how integrity con-
straints are preserved as long as the system guarantees that the consistency is
preserved. For that reason, most systems just reject those updates that cause
a constraint to be violated. However, a businessperson�s perspective can be
quite different. As stated in [2], the user is very interested in how the integ-
rity constraint is enforced and may have invested a lot of time in determining
what are considered to be the optimal procedures for ensuring that violations
never occur or are dealt with properly should they occur. As an example, con-
sider an attempt to enroll a new student in an already complete course. The
previous constraint will be violated, and an option is to reject the update
straight away. However, that is a stringent and unrealistic way to preserve
most of the constraints. A more realistic situation could be to split the course
into two groups and distribute the students evenly. That ends up with two
groups, both of them obeying the constraint. The substantial part is not only
the integrity constraint as such but the procedure to be followed should the
constraint be violated. Indeed, these recovering procedures, rather than the
constraints themselves, reflect more accurately the essence and idiosyncrasies
of the business. It is common for distinct businesses to share the same
constraints but to have distinct procedures for restoring the same constraint.
Think about the overdraft constraint (i.e., when an account goes into the
red). Although most banks do not allow negative balances, the action to be
taken when an overdraft occurs can be diverse. These procedures constitute
one of the main hallmarks of the business, and their importance cannot be
underestimated.

It is worth noticing that the constraint is frequently hidden and diffi-
cult to ascertain, as businesspeople are not always aware of the constraints
behind the procedures they follow. Domain users prefer to express them-
selves in terms of �doing� rather than �knowing,� and it is the task of the
analyst to dig out and elicit the behind-the-scenes constraint.

An additional difficulty is that recovery procedures for the same integ-
rity constraint can vary among the departments of the enterprise. Take again
the room�s capacity threshold constraint. During the elicitation phase, dis-
tinct stakeholders are interviewed. Those from the computing department
indicate that when the course registration is overbooked, the students are
split across two rooms; however, the engineering department follows a dis-
tinct approach: when overbooking arises, the course is moved to a new place with
enough room for all the students. Notice that the underlying constraint is the
same, but the procedures are different. On building a common repository
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not only of data but also of the procedures of the organization, the analyst
should be aware of those differences.

The process, then, begins by an unambiguous description of the con-
straint. Next, the analyst should ascertain whether the violation of the
constraint is always restricted. In the former case, the constraint should be
supported declaratively using the SQL-supported check construct wherever
possible. Otherwise, a procedural approach is followed that eventually will
be implemented as triggers. The obtaining of policies starts by identifying
the structural operations that can violate the constraint either directly or
indirectly. However, some of those operations might be prevented from hap-
pening due to other constraints (e.g., the updating of some attributes is
restricted) or interface validation. For those operations that can be per-
formed, the context and compensating action that restore the validity must
be stated.

As an example, consider the room�s capacity threshold constraint.
Table 3.1 shows some of the distinct structural operations that can violate
that constraint. Some updates are prevented from happening by other con-
straints. Only new enrollments and the assignment of a room to an already
available course need to be monitored. The table also shows the distinct com-
pensating actions that follow the violation of the policy, which depends
on the cause: If a new enrollment overflows the capacity of the current
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Table 3.1
Recovering Business Policy From the Room�s Capacity Threshold Constraint

Structural Operation Possible? Reaction Name

Update of capacity on
classroom

No � No

Insert on enrollment Yes Find a bigger classroom Enrollment overflow policy

Update of theStudent on
enrollment

No � �

Update of theCourse on
enrollment

No � No

Insert on distribution Yes Reject the update Room inadequacy policy

Update of theClassroom
on distribution

No � �

Update of theCourse on
distribution

No � �



classroom, the system attempts to find another classroom with enough room
for everybody; if a classroom is assigned that cannot lodge the already
enrolled students, the insertion is rejected straightaway.

3.3.2 Causal Business Policies

Besides those policies whose rationale is restoring integrity constraint valid-
ity, other policies have to be found in the business�s way of working. Rather
than looking at the structural side of the domain, such policies are found
in the behavioral realm of the enterprise; they reflect the procedural aspects
of the organization. Elicitation of those policies is not an easy task and fre-
quently involves some reengineering, because policies are hard-coded within
programs or business procedures.

During the elicitation process, a good starting point is to look at state
transition diagrams (STD). STDs are the final result of the behavioral analy-
sis phase that represents the allowable sequence of events for each entity. An
STD is represented as a network where nodes represent states, and arcs are
labeled with the events that allow transitions between states. The transitions
can be restricted to the satisfaction of certain conditions. Most of the infor-
mation in the STD will finally be supported as part of the operations that
realize the events.

An example of an STD for the course entity is shown in Figure 3.3: The
course begins by being approved by the department. Next, students can reg-
ister for the course, but the course is not set until at least 20 students have
enrolled. Once the course is set, a classroom is assigned and the course starts.
Eventually, the course terminates.
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STD can help the analyst dig out hidden business policies. Three ele-
mentary questions can be posed to discover those policies (see Table 3.2):

• Can any of the events that appear in the STD be caused by other
events? For instance, the analyst may be intrigued to know what
causes a course to start. Distinct alternatives are possible, depending
on the organization�s policy: The course can start at an established
date or once the number of students surpasses a given threshold. In
the latter case, the enrollment of a new student causes the beginning
of the course.

• Can an event cause other events to happen?

• What if an event does not happen? Does it matter? For instance,
what if not enough students (i.e., the threshold number of students
set for the course to take place) are registered in a reasonable period
of time? Is the course cancelled or postponed? What happens with
the already enrolled students? The analyst should address all those
questions and find the answers from the stakeholders.

This situation leads to the so-called nonevents [3]. The effect of one
event, such as enrollment, may prepare the environment for the next expected
event. Hence, when a course is approved, the system sets up a window of
expectation (e.g., a month) for the students to register, and then the course
begins. However, there is no guarantee that that will happen. That is, the
required number of enrollment events may not occur. Nonevents are often
overlooked and omitted, but they represent the clue to ascertaining impor-
tant business policies.
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Table 3.2
Causal Business Policies

Effect Cause Kind of Cause

A course starts when… the number of students is above 20. State condition

A student is reassigned when… the student�s course is cancelled. Operational event

A course is cancelled when… fewer than 20 enrollments are produced
in a month since the course was
approved.

Composite event



3.4 Design

Once relevant policies have been identified, the next step is to describe
them using active rules, the basic components of which are presented in
Section 3.4.1. Next, we address how both recovering and causal business
policies can be mapped into active rules in Sections 3.4.2 and 3.4.3, respec-
tively. Those rules can, however, give rise to complex run-time behavior,
which is considered in Section 3.4.4.

3.4.1 Active Rules

Active rules have up to three components: an event, a condition, and an
action (hence, active rules are also known as ECA rules). The basic computa-
tional model of an active rule is that it lies dormant until an event takes place
that corresponds to the rule�s event definition. When the event has taken
place, the rule�s condition is evaluated, and if it is true, the action is executed.
The following descriptions make these notions more precise:

• Event definition. The event definition describes the happening to
which the rule may have to respond. The happening is most often
some operation within the DB, such as the insertion, update, or
deletion of a tuple.

• Condition. The condition is a boolean expression or a query that
examines the context in which the event has taken place. The fact
that the event has taken place may not be enough in itself to require
that the action be carried out.

• Action. The action is the program block that specifies the response
required to the event that has taken place, given that the condition
has evaluated to true. The action often carries out some update
operation on the DB or communicates information to the user of
the DB.

3.4.2 Supporting Recovering Business Policies Through Active Rules

Recovering business policies express ways to overcome the unfulfillment
of integrity constraints. Because constraints are representations of structural
conditions that hold in the domain, violations of constraints are due to struc-
tural events, that is, events that directly handle the structure of the schema.
As for the relational model, that means that insert, delete, and update are the
operations that put in motion a recovering business policy.
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As an example, consider the integrity constraint that states that no
employee should be paid more than his or her boss. This integrity constraint
can be violated by distinct structural events, leading to different recovering
business policies (see Table 3.3).

The following is an example of a rule that monitors the insertion of
new tuples into the employee table:

after insert on employee

if new.salary > (select B.salary

from employee B

where B.name = new.bossname)

do rollback

That rule definition, in an imaginary rule language based on SQL, illustrates
a range of features of active rule languages that need some explanation.

The event definition after insert on employee describes what may trigger
the rule. A rule is triggered when an event that matches its event definition
has taken place. In this case, the rule is triggered every time a new employee
tuple is inserted into the DB.

The condition is described in the if clause. The condition compares
the value of the salary attribute of the newly inserted employee with the salary
of the boss of the employee. Information on the newly inserted tuple is
referred to using the reserved word new. Thus, new.salary is the salary of the
newly inserted tuple, and new.bossname is the value of the bossname attribute
of the newly inserted tuple. The condition compares the salary of the newly
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Table 3.3
Recovering Business Policy From the Constraint on Salary

Event Condition Action

Insert on employee Salary of employee bigger than
salary of employee�s boss

Increase salary of boss

Update of salary on
employee

Salary of employee bigger than
salary of employee�s boss

Increase salary of boss

Update of salary on
employee (boss)

New salary of boss below higher
salary among subordinates

Set salary of highest paid
employee to salary of new boss

Update of bossname
on employee

Salary of new boss below salary
of previous boss

Reject update



inserted employee with the salary of the boss of the employee by retrieving
the latter using a nested query.

The action is described in the do clause. The action in this case is
straightforward: The transaction in which the employee was inserted is rolled
back. The update violated the integrity constraint and, as a result, was
blocked by the active rule. It is not difficult, however, to identify ways of fix-
ing the constraint, as an alternative to blocking the update. For example, the
following revised version of the rule maintains the constraint by increasing
the salary of the boss of the newly inserted employee:

after insert on employee

if new.salary (select B.salary

from employee B

where B.name = new.bossname)

do update employee

set salary = new.salary

where name = new.bossname

A less generous policy might involve reducing the salary of the newly inserted
employee to that of the boss.

To provide complete enforcement of the constraint, it is also necessary
to define active rules that react to changes in the salaries of existing employ-
ees or changes to the boss of an existing employee. For example, the follow-
ing rule responds to increases in the salary of the employee:

after update of salary on employee

if new.salary > old.salary and

new.salary > (select B.salary

from employee B

where B.name = new.bossname)

do update employee

set salary = new.salary

where name = new.bossname

The event definition means that the rule is triggered by any modification to
the salary of an existing employee. The condition of the rule first checks to
see if the new value of the salary (i.e., the one after the update) is greater than
the old value of the salary (i.e., the one before the update). If so, the con-
straint can be violated by an employee who used to be paid less than the boss
now being paid more than the boss. The second part of the rule�s condition
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performs this test. If the employee is indeed paid more than the boss, then
the salary of the boss is increased.

However, that is not the only way in which the constraint can be vio-
lated by salary changes. Any reduction to the salary of a boss could cause the
boss to be paid less than (one or more) of the boss�s subordinates. This situa-
tion can be handled by the following rule:

after update of salary on employee

if (new.salary < old.salary and

new.salary < (select max(S.salary)

from employee S

where S.bossname = new.name))

do update employee

set salary = new.salary

where bossname = new.name and salary

> old.salary

That rule implements a less generous policy than some of the earlier ones, in
that it reduces the salary of all better paid subordinates to the salary of the
now not-so-well-paid boss.

The other update operation that must be monitored is a change to the
boss of an employee, which can be addressed by the following rule:

after update of bossname on employee

if new.salary < (select B.salary

from employee B

where B.name = old.bossname)

do rollback

That example illustrates rule support for a recovering business policy.
As is probably evident from these examples, writing active rules is by no

means straightforward. Even in this none-too-complex example, identifying
the events that are able to violate the integrity constraint is not trivial, and
ensuring that appropriate responses are made to similar but different hap-
penings (e.g., salary increases must be responded to differently from salary
decreases) can be quite involved. Overall, active rules can be seen as being
quite powerful, in that a range of tasks can be supported by active rules that
would be much more difficult without them. However, writing correct rules
is a skilled task.
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3.4.2.1 Graphical Representation

Once rules have been elicited, graphical notations can promote user inter-
action. Tools that support a graphical representation make the specification
more comprehensible and appealing to the end user, thereby easing model
validation. Here, we present the extension to the E/R model presented in [4],
known as the (ER)2 model.

As an example, consider the increase employee�s salary policy. This situa-
tion could be reflected using the (ER)2 notation as shown in Figure 3.4. The
regulation is modeled as an update on the employee�s salary, which in turn
could lead to updating the corresponding boss�s salary, if his or her salary
is below the employee�s. Arc labels indicate the operation to be applied to
the entity (e.g., m for modification), whereas circles and polygons stand for
events and rules, respectively. As for rules, they have a primitive event, a con-
dition over the DB state, and an action that is described as a list of DB opera-
tions or external actions. Conditions and actions are described separately
from the diagram, using textual descriptions displayed through windows
when circles or polygons are clicked on, thus avoiding cluttering of the dia-
grammatic representation [4].

3.4.3 Supporting Causal Business Policies Through Active Rules

Causal business policies concern the behavioral side of the domain. Unlike
recovering policies, now the relevant aspects to be tracked are not only state
conditions but also behavior invocation.

Let�s consider the policies outlined in Section 3.3.2 and shown in
Table 3.2. The circumstances to which a policy may respond can be diverse,
namely,
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1. A condition on the DB state (e.g., the number of students is above
20 );

2. The invocation of a structural operation (e.g., the assignment of a
room to a course can be realized as an insertion on the distribution
table);

3. The invocation of a domain operation (e.g., a course is cancelled );

4. A complex history of previous operations within an interval (e.g.,
fewer than 20 enrollments within a month of a course being
approved ). It is worth noticing that the cause is not that 20 stu-
dents are currently registered, but that the operation enrollment
has been invoked 20 times in a given time frame, that is, it is not a
condition on the DB state but on the history of the event flow.

The first two cases can be supported with active rules using a similar
approach to the one presented in the preceding section. However, policies
caused by domain operations need some further explanation.

Although data are the traditional asset of DBMSs, currently most of the
systems also support the description of domain operations within the realm
of the system through stored procedures. As an example, consider a course
cancellation, which affects distinct tables: tuple deletion in the distribution
table, tuple deletion on the enrollment table, tuple modification on the
course table, and so on. All those low-level structural operations can be
grouped into a domain-meaningful operation through a cancellation stored
procedure. The benefits include modularity, maintainability, and reduction
in network traffic as the whole set of structural operations is executed locally
after a single invocation of the procedure.

Let�s go back to the cancellation policy, which states that before cancel-
ling a course, if there are already some attendees enrolled, they should be
moved to a related course (e.g., the same course but taught at a different
time). The question is whether the policy should be supported as an inde-
pendent active rule or within a stored procedure. The former approach
implies the definition of rules such as

before cancellation(C: course)

if (select count(E.theAttendee)

from enrollment E

where E.theCourse = C) > 0

do .....
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An alternative would be to embed this policy in the stored procedure
that implements cancellation. Which is best? In [5], the notion of stability
is proposed as a criterion: If the policy is likely to evolve in the future, use
an active rule approach; otherwise, consider embedding it in the procedure.
Active rules involve an indirection that makes them less efficient than stored
procedures; on the other hand, they enhance system modularity, traceability,
and maintainability as they are described as separate chunks of code, without
being intertwined with other supporting aspects.

However, the use of stored procedures is not always viable. When the
cause is described as a composite combination of distinct operations, active
rules with composite events will be the direct approach.

3.4.3.1 Graphical Representation

(ER)2 diagrams are well suited for depicting simple rules with structural
events. However, as rules become more complicated with composite and
operation-based events, the use of the (ER)2 notation can lead to cluttered
diagrams with structural and behavioral features jointly described. In this
context, some authors advocate separate description of rules. As a case in
point, here the notation presented in [5] is introduced.

To illustrate this notation, consider the policy whereby courses in com-
puting are cancelled if fewer than 20 enrollments take place in a month since
the course was approved. The policy applies only if the average number
of courses taught by the employee who appears as the instructor is above 3.
Figure 3.5 depicts the policy. Simple events are denoted through black trian-
gles (e.g., course_approval, course_enrollment); simple events participate in the
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definition of composite events: Figure 3.5 shows a times event within the
interval delimited by a month since the approval of the course. A rule�s con-
dition is split into two kinds of predicates: predicates on the event parameters
(represented as a rhombus with a black angle) and predicates on the state of
the DB (depicted as a white rhombus). Finally, a rule�s action is denoted as a
rectangle where further black triangles are enclosed that stand for the policy�s
effect.

3.4.4 Active Behavior

Section 3.4.3 focused on the syntax of rules. Just as important is the run-time
behavior of sets of rules, which can be complex.

The run-time behavior of a collection of rules is determined by the exe-
cution model of the rule system supporting the rules. There are two principal
issues: (1) when rules are processed and (2) how multiple event occurrences
are handled.

3.4.4.1 When Rules Are Processed

When an event takes place that matches the definition of a rule, the rule is
triggered. It is possible that as soon as a rule is triggered, the transaction that
raised the event is suspended, and the rule�s condition and (if the condition is
true) the rule�s action are evaluated to completion right away.

However, that may not be the desired behavior. For example, consider
the following situation. Employee Tom has the salary 1000 and the boss
Sally. Employee Sally has the salary 1050. The following program is run:

update employee

set salary = salary * 1.10

What are the resulting salaries of Tom and Sally, given the rules defined in
Section 3.4.1? The answer is that it depends on the order in which the tuples
are updated in the employee table.

If Tom is processed before Sally, then the increase in Tom�s salary by
10% to 1100 will violate the integrity constraint and trigger the rule that
monitors updates to salaries. That in turn will cause Sally�s salary to be
increased to 1100, thereby reinstating the constraint. However, after that
the update program will perform a further change to Sally�s salary, making it
1100 ∗ 1.10, or 1210. That probably was not the intention of the person who
wrote the update request.
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If Sally is processed before Tom, the constraint is never violated, no rule
actions are executed, and both Sally and Tom receive a 10% raise in salary.

In this case, the basic problem arises from the fact that the integrity
constraint is enforced too eagerly, in the middle of a collection of updates. It
is often the case that programmers are happy to allow some temporary vio-
lation of constraints within a transaction but require that the collection of
operations that constitute the transaction leave the DB in a consistent state.
That means the checking of constraints can be deferred until the end of the
transaction.

The notion of when an active rule is evaluated relative to its triggering
event is captured by coupling modes. The two most common coupling modes
are immediate and deferred. When a rule with an immediate coupling mode is
triggered, the triggering transaction is suspended, and the rule�s condition
and (if necessary) action are evaluated right away. If the immediate rule r1
triggers another immediate rule r2, then the processing of r1 is suspended
until r2 has been processed to completion. When a rule with a deferred cou-
pling mode is triggered, it is added to a queue of triggered rules. The queue
of triggered rules is processed at some later time, typically the end of the
transaction. When deferred rules are being processed, if a deferred rule trig-
gers an immediate rule, then the deferred rule is suspended and the immedi-
ate rule is processed to completion. If a deferred rule triggers a deferred rule,
then the recently triggered rule is added to the queue, and the original rule
continues to be processed.

In practice, systems differ in their support for coupling modes and in
the ways they avoid problems such as that of the nondeterministic outcome
of rule processing described for the salaries integrity constraint. Some systems
avoid the problem by preventing rules from changing tables that are involved
in the triggering process (e.g., this is the behavior supported in Oracle8).

3.4.4.2 How Multiple Event Occurrences Are Handled

In immediate rule processing, a rule is triggered as soon as a single event cor-
responding to the rule�s event definition takes place. However, with deferred
rule processing, multiple events may have taken place that match a single
rule�s condition before the rule is scheduled for processing. There are two
ways in which that can be handled:

• Every time a deferred rule is triggered, a (rule name, event instance)
pair is added to the queue of deferred rules waiting to be processed.
When the rules come to be processed, there may be several entries in
the queue corresponding to the same rule, and they are removed for
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processing one at a time. The information about the event that is
passed to the rule is the information about a single event.

• Every time a deferred rule is triggered, a (rule name, set of event
instances) pair is added to the queue of deferred rules that is waiting
to be processed. When the rules come to be processed, there can be
at most one entry in the queue corresponding to a single rule. When
the rule is removed from the queue for processing, the information
about the event that is passed to the rule is the description of the
complete set of events.

When a rule is evaluated in the context of a single event instance, it is
said to have a transition granularity of tuple. When a rule is evaluated in the
context of a collection of triggering event instances, it is said to have a transi-
tion granularity of set.

3.5 Implementation Issues

Now that the basic structural and behavioral features of active rules have
been introduced, it is possible to look at how rules are supported in concrete
systems. Most of the systems follow an event-condition-action approach for
the description of triggers. However, variations can be found in the following
aspects:

• Language expressiveness. Rule systems differ in the range of things
that can be said within the event definition, condition, and action of
a rule.

• Information passing. It is common for one part of a rule to need
access to information from another part. In particular, information
about the event is often central to the definitions of conditions and
actions. Event information is accessed in the above examples using
new and old. Values for both new and old are available in rules moni-
toring update events, while only new is defined for insert events, and
only old is defined for delete events.

• Execution model. How rules are handled at execution time is far
from straightforward. Indeed, whereas most systems follow an
event-condition-action approach to rule description, there is a great
diversity on how rules are treated at run time.
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This section addresses the support for active rules in Oracle8, describes
how the Oracle8 rule system can be applied to the example application from
Section 3.2, and addresses the relationship between the Oracle rule language
and the emerging SQL: 1999 industry standard.

3.5.1 Active Rules in Oracle

This section describes the Oracle active rule language, illustrating its features
using examples based on the application from Section 3.2.

The following is a simple example of an Oracle active rule, which, every
time someone from a computing company registers, stores in the enrollment
table a tuple to indicate that the new attendee takes the course CS0. This is
an example of a causal business policy.

create or replace trigger addCS0

after insert on attendee

for each row

when (new.company = 'Computing')

begin

insert into enrollment values

(:new.a#, 'CS0', NULL);

end;

This command uses a significant range of features of the Oracle rule language:

1. Active rules are known as triggers in Oracle, and every trigger has a
name (in this case, addCS0 ).

2. The event is declared using the same syntax as in Section 3.4.1.
Events can monitor insert, delete, or update operations on tables.
Stored procedure invocations cannot be monitored by event
definitions.

3. The for each row clause indicates that this is a trigger with tuple-level
transition granularity that has an immediate coupling mode.

4. The condition is declared in the when clause. The condition is a
boolean expression�it is not possible to embed complete SQL
queries in the when clause. The condition can refer to values associ-
ated with the event using old and/or new. If an action contains
functionality, the execution of which needs to be conditional on
information stored in the DB, the conditionality needs to be cap-
tured in the action itself.

Active Databases 79



5. The action of an Oracle trigger is a PL/SQL block. PL/SQL is the
programming language extension of SQL provided with Oracle.
PL/SQL blocks are delimited by begin and end. In this case, the
only statement in the block inserts a new tuple into the enrollment
table. The action can refer to values associated with the event
using :old and :new.

The above example is known as a row trigger because of the tuple-level transi-
tion granularity. The other form of trigger is known as a statement trigger
because the rule is triggered once in response to an SQL modification state-
ment (i.e., insert, delete, update). A statement trigger can thus be seen as hav-
ing set level transition granularity, because a single modification statement
may modify several tuples. However, the trigger is processed as soon as the
statement that triggered it starts (for before events) or finishes (for after
events), rather than at some point less strongly linked to the triggering
operation.

The following is an example of a statement trigger that blocks attempts
to update the enrollment table at weekends:

create or replace trigger weekends

before delete or insert or update on enrollment

declare

not_at_weekends exception;

begin

if (to_char(sysdate,'DY') = 'SAT' or

to_char(sysdate,'DY') = 'SUN') then

raise not_at_weekends;

end if;

exception

when not_at_weekends

then raise_application_error(-20225,

'Cannot change grade at weekends');

end;

This command also illustrates a range of features:

1. The event definition in this case is a before event, which means that
the rule is processed (immediately) before the operation that has
triggered the rule is executed.
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2. The event definition is composite. Before this, every event definition
shown has been primitive�it has had a single component. The
event definition for this rule is composite, because the complete
definition has several parts linked using or. This rule is triggered by
events of any of the types named in the event definition. The only
composite event construction operator in Oracle is or.

3. There is no for each row clause, which indicates that it is a statement
trigger.

4. There is no when clause because the when clause is not supported
for statement triggers.

5. The declare clause introduces variables local to the adjacent
PL/SQL block.

6. The action responds to the attempt to update the enrollment table
at the weekend by raising an exception, which has the effect of
rolling back the triggering statement.

A further characteristic of statement triggers is that there is no access from
statement triggers to event information using new or old. One reason for that
is that new and old only provide a way of obtaining information about a sin-
gle event, and statement triggers may be responding to multiple events. Pro-
posals have been made that allow triggers with set transition granularities to
access information about their events using transition tables [6], but such
facilities are not provided in Oracle.1

3.5.2 Active Rules in Use

This section shows how active behavior can be supported using the Oracle
rule system. Examples have been given of the use of rules for both integrity
maintenance and authorization. This section deals with auditing and view
maintenance.

3.5.2.1 Auditing

DB systems often come with some mechanism for monitoring changes made
to the DB. However, the facilities provided, like those for integrity mainte-
nance, are limited in their scope and are not programmable in the way that
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triggers are. The following is a simple example of how triggers can be used
for auditing. The table enrollment_log is used to store modifications to the
enrollment table:

create table enrollment_log (

who varchar(20) not null,

when date not null,

theAttendee varchar(5) not null,

theCoursevarchar(5) not null,

old_grade number,

new_grade number);

create or replace trigger enrollment_log

after insert or update on enrollment

for each row

begin

if inserting then

insert into enrollment_log values

(USER,SYSDATE,:new.theAttendee,:new.theCourse,

NULL,:new.grade);

else /* updating */

insert into enrollment_log values

(USER,SYSDATE,:new.theAttendee,:new.the

Course,:old.grade,:new.grade);

end if;

end;

This trigger uses a number of facilities not shown before. The rule�s action is
able to test for the sort of event that is being monitored using inserting, which
is true if the event that triggered the rule was an insert (analogous facilities
exist for delete and update events). The values for the variables USER and
SYSDATE are updated automatically by the system for use in PL/SQL pro-
grams. They provide the user name of the current user and the date/time,
respectively.

3.5.2.2 View Materialization

A view is a table, the contents of which are computed from values already
stored in the DB. For example, the following is an SQL view definition:
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create view maximums as

select theCourse, max(grade) as maximum

from enrollment

group by theCourse;

The view maximums associates the theCourse of any course with the
maximum grade of any student taking the course.

A materialized view is a view for which the computed value of the view
is stored in the DB. It can be beneficial to materialize a view if it is used regu-
larly and is expensive to compute. The following trigger could be used to
materialize the view in the table maximums :

create table maximums (

theCourse varchar(5) not null,

maxval number);

create or replace trigger materialize1

after delete or insert or update of grade on

enrollment

begin

delete from maximums;

insert into maximums

select theCourse, max(grade)

from enrollment

group by theCourse;

end;

This statement-level trigger materializes the view by recomputing the
view every time the table enrollment is modified, which gives the anticipated
functionality but is likely to be quite inefficient. That is because most state-
ments that modify enrollment will make only a few changes to the table and
thus are likely to imply few, if any, changes to the materialized view. Despite
that, the view is recomputed whenever enrollment is modified.

A better solution would be to support incremental maintenance of
the view. That involves propagating individual updates on the underly-
ing enrollment table to the materialized view as soon as the update takes
place. For example, the following rule handles the insertion of new data into
enrollment :
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create or replace trigger materialize2

after insert on enrollment

for each row

declare

themax number;

begin

select maxval into themax

from maximums

where theCourse = :new.theCourse;

if (:new.grade > themax) then

update maximums

set maxval = :new.grade

where theCourse = :new.theCourse;

end if;

exception

when NO_DATA_FOUND

then insert into maximums values

(:new.theCourse, :new.grade);

end;

This rule is triggered by updates on enrollment such as insert into enroll-
ment values (�S4�,�CS1�,66). The rule must allow for two circumstances when
handling this update:

1. There is already a tuple in maximums for the course with c# equal to
CS1. If there is, and 66 is greater than the previous maximum grade
on CS1, then the tuple for CS1 in maximums must be updated.
This functionality is handled in the trigger by retrieving the current
value for the maximum grade into themax and then comparing the-
max with :new.grade.

2. There is no tuple in maximums for the course with c# equal to
CS1. This functionality is handled in the trigger using the excep-
tion mechanism. If there is no tuple for CS1 in maximums, then a
NO_DATA_FOUND exception will be raised when the trigger
tries to obtain a value for themax. This exception is trapped by the
exception clause, which responds by inserting a new tuple into
maximums based on the newly inserted values.
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Performing incremental view maintenance for update and delete is not so
straightforward. Row triggers handling those operations may have to read
from the enrollment table to compute values for use in maximums, but that
is illegal in Oracle, because accessing the enrollment table while that table is
being modified leads to nondeterministic results of the form outlined in
Section 3.4.4.1. That leaves the user with two options: (1) using a statement
trigger to recompute maximums for deletes and updates or (2) storing informa-
tion about the changes to enrollment temporarily in a table using a row trigger
for subsequent processing using a statement trigger.

It thus can be seen that triggers do provide support for incremental mate-
rialized view maintenance, but that for some views this is quite involved,
requiring careful construction of the relevant triggers.

3.5.3 Standardizing Active Behavior in SQL: 1999

Most of the principal relational DB vendors include active features in their
products. For a survey, see [7]. However, although these generally are quite
similar in their facilities and syntax, it is certainly not the case that rules written
for one product are likely to run on another. To address that problem, triggers
are included as part of the SQL: 1999 standard [8]. The principal differences
between the SQL: 1999 triggers and Oracle triggers are as follows:

1. SQL: 1999 triggers allow SQL queries in rule conditions, whereas
Oracle only allows boolean expressions.

2. SQL: 1999 statement triggers are able to access information about
events by accessing OLD_TABLE and NEW_TABLE transition
tables, which capture the state of the tuples affected by the triggering
statement before and after the execution of the statement.

3. The execution model of SQL: 1999 has been designed to reduce the
risks of nondeterministic behavior resulting from rule processing. In
Oracle, nondeterminism is avoided by strict run-time monitoring; in
SQL: 1999 the interleaving of updates with trigger processing has
been reduced by slightly deferring processing of row triggers.

The syntax of triggers in SQL: 1999 is similar to that in Oracle.

3.6 Rule Maintenance

Once in use, the rule set may need to be changed for different reasons: to over-
come a failure to realize user requirements (corrective maintenance); to enhance
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system tuning but without affecting its basic functionality; and to evolve
requirements leading to a change in the system�s underlying functionality
(adaptive maintenance) [9]. At a first glance, explicit capturing of business
policies through triggers will certainly help the maintenance of corporate
regulations in the DB system. Triggers support chunks of expertise that are
self-contained, isolated units that can be enlarged, removed, or updated more
easily than when they were previously coded in application programs. How-
ever, that is not the end of the story.

Maintenance of large rule sets can be difficult, and ascertaining the
effects of rule removal or addition is far from straightforward. It is the insidi-
ous ways in which rules can interact that makes addition or removal of a sin-
gle rule whose code looks perfectly satisfactory such a complicated task. A
previously correct rule set can stop enjoying this property after addition or
removal of a rule. Evolution-support tools are required to ease migration and
to determine the impact of additions and deletions.

To illustrate the difficulty of writing correct triggers, consider a policy
whereby when an employee who is teaching a course moves to the next level,
all his or her students should be moved accordingly. On the assumption that
only one class at each level can be under way, a first attempt to support this
policy can lead to the following trigger:

create or replace trigger levelChange

after update of level on employee

for each row

begin

update enrollment

set level = :new.level

where theCourse = 'Computing' and level =

:old.level

end;

If we look carefully at how that rule behaves at run time, we will realize that
the behavior is not as expected. Let�s consider that

John follows course �Computing�, level 1, taught by Employee1

Anne follows course �Computing�, level 2, taught by Employee2

Employee1 teaches course �Computing�, level 1

Employee2 teaches course �Computing�, level 2
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Computing courses last for a week, so at the end of the week, the next
instruction is issued:

update employee

set level = level + 1

where teaches = 'Computing';

Once employee1 is updated, the row trigger fires, updating the level of
John to 2. The next employee to be updated is employee2. The trigger is fired
again and updates all tuples in enrollment whose level is 2. However, now
not only is Anne following level 2, but so is John after the previous update.
That will lead to both Anne and John being moved to level 3. Even worse, the
final result will depend on the order in which tuples are arranged in the table!
If Anne were taken first, John would not have been upgraded yet, and so the
final result would look correct.

As this example points out, it is necessary to be extremely careful when
writing triggers. Unfortunately, few tools are available to help designers
debug, trace, and maintain triggers. The only functionality available in cur-
rent systems is the possibility to temporarily deactivate a trigger: A trigger can
be tracked alone without other triggers being fired simultaneously. However,
the difficulty of the task lies not in debugging a single trigger but in under-
standing how a set of triggers influences the final behavior.

3.7 Summary

Active DBs extend the behavior representation facilities of a DB system
with mechanisms that support reactive behavior. This reactive behavior can
be used to implement a range of different functionalities, including business
rules, integrity constraints, auditing, and view materialization.

Active extensions to DBs provide implementation mechanisms that are
not supported in conventional DB schema design frameworks. The identifi-
cation of reactive aspects of an application may imply the use of more com-
prehensive modeling facilities, as well as changes in the way that DB
designers work. This chapter identified two different kinds of business pol-
icy that can be supported using reactive facilities, namely, recovering busi-
ness policies and causal business policies. It also showed how examples of
such policies can be captured in advanced modeling methods for DB design.

The identification of reactive functionality in applications is by no
means the end of the story. The implementation of reactive behavior as

Active Databases 87



active DB rules is itself a skilled task, because rules may interact with each
other in unanticipated ways, and the semantics of rule evaluation systems
is often difficult to understand fully. However, active facilities are now
supported in most commercial relational DB systems, and this chapter gave
examples of how the Oracle trigger system can handle a range of different
kinds of functionality. Active rule systems provide a coherent framework for
the expression of behavioral requirements that would be difficult to capture
in their absence. However, although active rules provide powerful, self-
contained behavioral units, their presence in a broader context in which there
can be many complex responses taking place to the same event means that
developing and maintaining a large rule base must be approached with care.
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4
Deductive Databases

Ernest Teniente

4.1 Introduction

Database technology has evolved quickly since the first DBMS appeared
around 1960. Nowadays, DBMSs play an important role in the ISs in manu-
facturing, banking, and public administration, among other industries. A
common feature of all the systems is their ability to manage large volumes
of data, although they usually perform simple operations to manipulate the
data.

On the other hand, and parallel to the development of DBMSs, expert
systems were developed to support the process of decision-making within
narrow domains in particular contexts. The main feature of these systems is
to provide reasoning capabilities to help decision-making, but they usually
are not able to manage large volumes of information. Figure 4.1 illustrates
the parallel evolution of DBs and expert systems and states their main
features.

Deductive DBs were proposed as an attempt to overcome the limita-
tions of traditional DB systems by incorporating, somehow, the distinguish-
ing features provided by expert systems. Therefore, deductive DBs could be
seen as an integration of data (as in a DBMS) and knowledge (as in an expert
system).
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Data are represented by means of extensions of DB predicates (i.e.,
facts), while knowledge is represented by the intension of DB predicates.
Knowledge, or intensional information, is defined by means of rules that
allow us to deduce new information from that explicitly stored in the DB.
Two kinds of rules are usually considered: deductive rules, which allow us to
define new facts (view or derived facts) from stored facts, and integrity con-
straints, which state conditions to be satisfied by the DB.

Deductive DBs are able to manage most of the current applications,
being specially suited for those applications that are characterized by the need
to perform more complex manipulations on the data rather than just query-
ing or updating base facts [1]. Deductive rules and integrity constraints,
together with reasoning capabilities, ease the sharing of common knowledge
within more complex application domains, thus facilitating knowledge
reusability.

Deductive DBs also can be understood as the result of the application
of logic (and artificial intelligence (AI) aspects) in the traditional DB field
since they use Datalog, a language derived from logic programming, as a rep-
resentation language, to define the contents and the structure of the informa-
tion stored in the DB. Datalog is a declarative, nonprocedural language,
uniform and set oriented. The impact of logic in deductive DBs is widely dis-
cussed in [2, 3].

From a historical perspective, deductive DBs can be seen as extensions
of the relational ones as well, mainly because the expressive power of their
data definition language is greater than that of relational DBs. This impor-
tant issue is not so clear at the present moment and will deserve further dis-
cussion in Section 4.2.
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In fact, it has been shown how relational DBs can be seen as special
theories of first-order logic [4]. Thus, they could be interpreted as deductive
DBs. By carrying out this �logical reconstruction,� it is possible to formally
validate query evaluation or update processing algorithms, which is hard to
address in the context of relational DBs.

This chapter provides an overview of the main features of deductive
DBs and illustrates the main problems encountered when dealing with inten-
sional information. Our presentation is based on giving an intuitive idea of
those problems and providing several examples. For that reason, we some-
times omit certain details that are not possible to cover without a more for-
mal explanation. There are various places where these details can be found.
Several books are devoted, entirely or in part, to deductive DBs [1, 5�15].
We also provide references to relevant papers when presenting problems not
sufficiently addressed by those books.

Section 4.2 defines basic concepts of deductive DBs and compares
them to relational DBs. Section 4.3 presents the main approaches to query
processing. Section 4.4 describes the main problems present in update proc-
essing and the main achievements in this area. Section 4.5 examines the main
functionalities provided by existing prototypes of deductive DBs.

4.2 Basic Concepts of Deductive Databases

This section presents the basic notions needed to understand the problems
behind deductive DBs. More precisely, it provides a formal definition of
deductive DBs, a brief overview of their semantics, a discussion of the advan-
tages provided by the intensional information and a comparison of the
expressive powers of relational and deductive DBs. The language used to
define deductive DBs is usually called Datalog. For that reason, deductive
DBs are sometimes known as Datalog programs.

4.2.1 Definition of a Deductive Database

A deductive DB consists of three finite sets: a set of facts, a set of deductive
rules, and a set of integrity constraints. Facts state basic information that is
known to be true in the DB. Deductive rules allow the derivation of new
facts from other facts stored in the DB. Integrity constraints correspond to
conditions that each state of the DB should satisfy.

To formally define those concepts, we need to introduce the follow-
ing terminology. A term is either a variable or a constant. If P is a predicate
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symbol and t1, …, tn are terms, then P (t1, …, tn) is an atom. The atom is
ground if all terms ti are constants. A literal is either an atom or a negated
atom.

Facts, deductive rules, and integrity constraints are represented as
clauses of the general form:

A0 ← L1 ∧ … ∧ Ln with n ≥ 0

where A0 is an atom denoting the conclusion and each Li is a literal, represent-
ing a condition. A0 is called the head and L1 ∧ … ∧ Ln the body. Variables in
the conclusion and in the conditions are assumed as universally quantified
over the whole formula. For that reason, quantifiers are always omitted.

Facts are represented by means of clauses with an empty body, that is,
atoms. For instance, a fact stating that Mary is the mother of Bob would be
represented as Mother(Mary, Bob). A deductive DB contains only ground
facts.

Deductive rules define intensional information, that is, information
that is not explicitly stored in the DB. That intensional information is gath-
ered by means of facts about derived predicates. The definition of a derived
predicate P is the set of all deductive rules that have P in their head. For
example, the rules �if x is the mother of y, then x is a parent of y� and �if x
is the father of y, then x is a parent of y� define the derived predicate
Parent(x,y), which corresponds to the classical notion of parent. That can be
represented as:

Parent(x,y) ← Mother(x,y)
Parent(x,y) ← Father(x,y)

Integrity constraints are usually represented by means of clauses with an
empty head, also called denials. A denial has the following form:

← L1 ∧ … ∧ Ln with n ≥ 1

and states that L1 ∧ … ∧ Ln may never hold in a DB containing that integrity
constraint. Representation by denials entails no loss of generality because any
integrity constraint expressed as a general first-order formula can be trans-
formed into an equivalent set of clauses containing, at least, an integrity con-
straint in denial form [16].
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For the sake of uniformity, the head of each integrity constraint usually
contains an inconsistency predicate ICn, which is just a possible name given to
that constraint. This is useful for information purposes because ICn allows the
identification of the constraint to which it refers. If a fact ICi is true in a certain
DB state, then the corresponding integrity constraint is violated in that state.
For instance, an integrity constraint stating that nobody may be father and
mother at the same time could be represented as IC2 ← Parent(x,y) ∧
Mother(x,z).

A deductive DB D is a triple D = (F, DR, IC ), where F is a finite set of
ground facts, DR a finite set of deductive rules, and IC a finite set of integrity
constraints. The set F of facts is called the extensional part of the DB (EDB),
and the sets DR and IC together form the so-called intensional part (IDB).

Database predicates are traditionally partitioned into base and derived
predicates, also called views. A base predicate appears in the EDB and, possibly,
in the body of deductive rules and integrity constraints. A derived (or view)
predicate appears only in the IDB and is defined by means of some deductive
rule. In other words, facts about derived predicates are not explicitly stored in
the DB and can only be derived by means of deductive rules. Every deductive
DB can be defined in this form [17].

Example 4.1

This example is of a deductive DB describing familiar relationships.

Facts

Father(John, Tony) Mother(Mary, Bob)
Father(Peter, Mary)

Deductive Rules

Parent(x,y ) ← Father(x,y )
Parent(x,y ) ← Mother(x,y )
GrandMother(x,y ) ← Mother(x,z ) ∧ Parent(z,y )
Ancestor(x,y ) ← Parent(x,y )
Ancestor(x,y ) ← Parent(x,z ) ∧ Ancestor(z,y )
Nondirect-anc(x,y ) ← Ancestor(x,y ) ∧ ¬Parent(x,y )

Integrity Constraints

IC1(x ) ← Parent(x,x )
IC2(x ) ← Father(x,y ) ∧ Mother(x,z )
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The deductive DB in this example contains three facts stating exten-
sional data about fathers and mothers, six deductive rules defining the inten-
sional notions of parent, grandmother, and ancestor, with their meaning being
hopefully self-explanatory, and nondirect-anc, which defines nondirect ances-
tors as those ancestors that do not report a direct parent relationship. Two
integrity constraints state that nobody can be the parent of himself or herself
and that nobody can be father and mother at the same time.

Note that inconsistency predicates may also contain variables that
allow the identification of the individuals that violate a certain integrity con-
straint. For instance, the evaluation of IC2(x) would give as a result the dif-
ferent values of x that violate that constraint.

4.2.2 Semantics of Deductive Databases

A semantic is required to define the information that holds true in a particu-
lar deductive DB. This is needed, for instance, to be able to answer queries
requested on that DB. In the absence of negative literals in the body of deduc-
tive rules, the semantics of a deductive DB can be defined as follows [18].

An interpretation, in the context of deductive DBs, consists of an
assignment of a concrete meaning to constant and predicate symbols. A cer-
tain clause can be interpreted in several different ways, and it may be true
under a given interpretation and false under another. If a clause C is true
under an interpretation, we say that the interpretation satisfies C. A fact F
follows from a set S of clauses; each interpretation satisfying every clause of S
also satisfies F.

The Herbrand base (HB) is the set of all facts that can be expressed in
the language of a deductive DB, that is, all facts of the form P (c1, …, cn) such
that all ci are constants. A Herbrand interpretation is a subset J of HB that
contains all ground facts that are true under this interpretation. A ground
fact P (c1, …, cn) is true under the interpretation J if P (c1, …, cn) ∈ J. A rule
of the form A0 ← L1 ∧ … ∧ Ln is true under J if for each substitution q that
replaces variables by constants, whenever L1 q ∈ J ∧ … ∧ Ln q ∈ J, then it
also holds that A0 q ∈ J.

A Herbrand interpretation that satisfies a set S of clauses is called a Her-
brand model of S. The least Herbrand model of S is the intersection of all
possible Herbrand models of S. Intuitively, it contains the smaller set of facts
required to satisfy S. The least Herbrand model of a deductive DB D defines
exactly the facts that are satisfied by D.

For instance, it is not difficult to see that the Herbrand interpretation
{Father(John,Tony), Father(Peter,Mary), Mother(Mary,Bob), Parent(John,
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Tony)} is not a Herbrand model of the DB in Example 4.1. Instead, the
interpretation {Father(John,Tony), Father(Peter,Mary), Mother(Mary,Bob),
Parent(John,Tony), Parent(Peter,Mary), Parent(Mary,Bob), Ancestor(John,
Tony), Ancestor(Peter,Mary), Ancestor(Mary,Bob), Ancestor(Peter,Bob)} is
a Herbrand model. In particular, it is the least Herbrand model of that DB.

Several problems arise if semantics of deductive DBs are extended to
try to care for negative information. In the presence of negative literals, the
semantics are given by means of the closed world assumption (CWA) [19],
which considers as false all information that cannot be proved to be true. For
instance, given a fact R (a), the CWA would conclude that ¬R (a) is true if R (a)
does not belong to the EDB and if it is not derived by means of any deductive
rule, that is, if R (a) is not satisfied by the clauses in the deductive DB.

This poses a first problem regarding negation. Given a predicate Q (x),
there is a finite number of values x for which Q (x) is true. However, that is
not the case for negative literals, where infinite values may exist. For instance,
values x for which ¬Q (x) is true will be all possible values of x except those
for which Q (x) is true.

To ensure that negative information can be fully instantiated before
being evaluated and, thus, to guarantee that only a finite set of values is con-
sidered for negative literals, deductive DBs are restricted to be allowed. That
is, any variable that occurs in a deductive rule or in an integrity constraint has
an occurrence in a positive literal of that rule. For example, the rule P (x) ←
Q (x) ∧ ¬R (x) is allowed, while P (x) ← S (x) ∧ ¬T (x,y) is not. Nonallowed
rules can be transformed into allowed ones as described in [16]. For instance,
the last rule is equivalent to this set of allowed rules: {P (x) ← S (x) ∧
¬aux-T (x), aux-T (x) ← T (x,y)}.

To define the semantics of deductive DBs with negation, the Herbrand
interpretation must be generalized to be applicable also to negative literals.
Now, given a Herbrand interpretation J, a positive fact F will be satisfied in J
if F ∈ J, while a negative fact will be satisfied in J if ¬F ∉ J. The notion of
Herbrand model is defined as before.

Another important problem related to the semantics of negation is that
a deductive DB may, in general, allow several different interpretations. As an
example, consider this DB:

R (a)

P (x) ← R (x) ∧ ¬Q (x)

Q (x) ← R (x) ∧ ¬P (x)
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This DB allows to consider as true either {R (a), Q (a)} or {R (a), P (a)}. R (a)
is always true because it belongs to the EDB, while P (a) or Q (a) is true
depending on the truth value of the other. Therefore, it is not possible to
agree on unique semantics for this DB.

To avoid that problem, deductive DBs usually are restricted to being
stratified. A deductive DB is stratified if derived predicates can be assigned to
different strata in such a way that a derived predicate that appears negatively
on the body of some rule can be computed by the use of only predicates in
lower strata. Stratification allows the definition of recursive predicates, but it
restricts the way negation appears in those predicates. Roughly, semantics of
stratified DBs are provided by the application of CWA strata by strata [14].
Given a stratified deductive DB D, the evaluation strata by strata always pro-
duces a minimal Herbrand model of D [20].

For instance, the preceding example is not stratifiable, while the DB of
Example 4.1 is stratifiable, with this possible stratification: S1 = {Father,
Mother, Parent, GrandMother, Ancestor} and S2 = {Nondirect-anc}.

Determining whether a deductive DB is stratifiable is a decidable prob-
lem and can be performed in polynomial time [6]. In general, several stratifi-
cations may exist. However, all possible stratifications of a deductive DB are
equivalent because they yield the same semantics [5].

A deeper discussion of the implications of possible semantics of deduc-
tive DBs can be found in almost all books explaining deductive DBs (see, for
instance, [5, 6, 8, 9, 11, 14]). Semantics for negation (stratified or not) is dis-
cussed in depth in [5, 21]. Several procedures for computing the least Her-
brand model of a deductive DB are also described in those references. We
will describe the main features of these procedures when dealing with query
evaluation in Section 4.3.

4.2.3 Advantages Provided by Views and Integrity Constraints

The concept of view is used in DBs to delimit the DB content relevant to
each group of users. A view is a virtual data structure, derived from base facts
or other views by means of a definition function. Therefore, the extension
of a view does not have an independent existence because it is completely
defined by the application of the definition function to the extension of
the DB. In deductive DBs, views correspond to derived predicates and are
defined by means of deductive rules. Views provide the following advantages.

• Views simplify the user interface, because users can ignore the
data that are not relevant to them. For instance, the view
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GrandMother(x,y) in Example 4.1 provides only information about
the grandmother x and the grandson or granddaughter y. However,
the information about the parent of y is hidden by the view
definition.

• Views favor logical data independence, because they allow changing
the logical data structure of the DB without having to perform cor-
responding changes to other rules. For instance, assume that the
base predicate Father(x,y) must be replaced by two different predi-
cates Father1(x,y) and Father2(x,y), each of which contains a subset
of the occurrences of Father(x,y). In this case, if we consider
Father(x,y) as a view predicate and define it as

Father(x,y) ← Father1(x,y)

Father(x,y) ← Father2(x,y)

we do not need to change the rules that refer to the original base
predicate Father.

• Views make certain queries easier or more natural to define, since by
means of them we can refer directly to the concepts instead of hav-
ing to provide their definition. For instance, if we want to ask about
the ancestors of Bob, we do not need to define what we mean by
ancestor since we can use the view Ancestor to obtain the answers.

• Views provide a protection measure, because they prevent users
from accessing data external to their view. Users authorized to access
only GrandMother do not know the information about parents.

Real DB applications use many views. However, the power of views can be
exploited only if a user does not distinguish a view from a base fact. That
implies the need to perform query and update operations on the views, in
addition to the same operations on the base facts.

Integrity constraints correspond to requirements to be satisfied by the
DB. In that sense, they impose conditions on the allowable data in addition
to the simple structure and type restrictions imposed by the basic schema
definitions. Integrity constraints are useful, for instance, for caching data-
entry errors, as a correctness criterion when writing DB updates, or to
enforce consistency across data in the DB.

When an update is performed, some integrity constraint may be vio-
lated. That is, if applied, the update, together with the current content of the
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DB, may falsify some integrity constraint. There are several possible ways of
resolving such a conflict [22].

• Reject the update.

• Apply the update and make additional changes in the extensional
DB to make it obey the integrity constraints.

• Apply the update and ignore the temporary inconsistency.

• Change the intensional part of the knowledge base (deductive rules
and/or integrity constraints) so that violated constraints are satisfied.

All those policies may be reasonable, and the correct choice of a policy for a
particular integrity constraint depends on the precise semantics of the con-
straint and of the DB.

Integrity constraints facilitate program development if the conditions
they state are directly enforced by the DBMS, instead of being handled by
external applications. Therefore, deductive DBMSs should also include some
capability to deal with integrity constraints.

4.2.4 Deductive Versus Relational Databases

Deductive DBs appeared as an extension of the relational ones, since they
made extensive use of intensional information in the form of views and integ-
rity constraints. However, current relational DBs also allow defining views
and constraints. So exactly what is the difference nowadays between a deduc-
tive DB and a relational one?

An important difference relies on the different data definition language
(DDL) used: Datalog in deductive DBs or SQL [23] in most relational DBs.
We do not want to raise here the discussion about which language is more
natural or easier to use. That is a matter of taste and personal background. It
is important, however, to clarify whether Datalog or SQL can define con-
cepts that cannot be defined by the other language. This section compares
the expressive power of Datalog, as defined in Section 4.2.1, with that of
the SQL2 standard. We must note that, in the absence of recursive views,
Datalog is known to be equivalent to relational algebra (see, for instance,
[5, 7, 14]).

Base predicates in deductive DBs correspond to relations. Therefore,
base facts correspond to tuples in relational DBs. In that way, it is not diffi-
cult to see the clear correspondence between the EDB of a deductive DB and
the logical contents of a relational one.
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Deductive DBs allow the definition of derived predicates, but SQL2
also allows the definition of views. For instance, predicate GrandMother in
Example 4.1 could be defined in SQL2 as

CREATE VIEW grandmother AS

SELECT mother.x, parent.y

FROM mother, parent

WHERE mother.z=parent.z

Negative literals appearing in deductive rules can be defined by means
of the NOT EXISTS operator from SQL2. Moreover, views defined by more
than one rule can be expressed by the UNION operator from SQL2.

SQL2 also allows the definition of integrity constraints, either at the
level of table definition or as assertions representing conditions to be satisfied
by the DB. For instance, the second integrity constraint in Example 4.1
could be defined as

CREATE ASSERTION ic2 CHECK

(NOT EXISTS (

SELECT father.x

FROM father, mother

WHERE father.x=mother.x ))

On the other hand, key and referential integrity constraints and exclu-
sion dependencies, which are defined at the level of table definition in SQL2,
can also be defined as inconsistency predicates in deductive DBs.

Although SQL2 can define views and constraints, it does not provide a
mechanism to define recursive views. Thus, for instance, the derived predi-
cate Ancestor could not be defined in SQL2. In contrast, Datalog is able to
define recursive views, as we saw in Example 4.1. In fact, that is the main
difference between the expressive power of Datalog and that of SQL2, a limi-
tation to be overcome by SQL3, which will also allow the definition of recur-
sive views by means of a Datalog-like language.

Commercial relational DBs do not yet provide the full expressive
power of SQL2. That limitation probably will be overcome in the next few
years; perhaps then commercial products will tend to provide SQL3. If that
is achieved, there will be no significant difference between the expressive
power of Datalog and that of commercial relational DBs.

Despite these minor differences, all problems studied so far in the con-
text of deductive DBs have to be solved by commercial relational DBMSs
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since they also provide the ability to define (nonrecursive) views and con-
straints. In particular, problems related to query and update processing in the
presence of views and integrity constraints will be always encountered, inde-
pendently of the language used to define them. That is true for relational
DBs and also for most kinds of DBs (like object-relational or object-
oriented) that provide some mechanism for defining intensional
information.

4.3 Query Processing

Deductive DBMSs must provide a query-processing system able to answer
queries specified in terms of views as well as in terms of base predicates. The
subject of query processing deals with finding answers to queries requested
on a certain DB. A query evaluation procedure finds answers to queries
according to the DB semantics.

In Datalog syntax, a query requested on a deductive DB has the form
?-W(x), where x is a vector of variables and constants, and W(x) is a conjunc-
tion of literals. The answer to the query is the set of instances of x such that
W(x) is true according to the EDB and to the IDB. Following are several
examples.

?- Ancestor ( John, Mary) returns true if John is ancestor of Mary and
false otherwise.

?- Ancestor ( John, x) returns as a result all persons x that have John as
ancestor.

?- Ancestor ( y, Mary) returns as a result all persons y that are ancestors
of Mary.

?- Ancestor ( y, Mary) ∧ Ancestor (y, Joe) returns all common ancestors y
of Mary and Joe.

Two basic approaches compute the answers of a query Q:

• Bottom-up (forward chaining). The query evaluation procedure
starts from the base facts and applies all deductive rules until no new
consequences can be deduced. The requested query is then evaluated
against the whole set of deduced consequences, which is treated as if
it was base information.
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• Top-down (backward chaining). The query evaluation procedure
starts from a query Q and applies deductive rules backward by trying
to deduce new conditions required to make Q true. The conditions
are expressed in terms of predicates that define Q, and they can be
understood as simple subqueries that, appropriately combined, pro-
vide the same answers as Q. The process is repeated until conditions
only in terms of base facts are achieved.

Sections 4.3.1 and 4.3.2 present a query evaluation procedure that fol-
lows each approach and comments on the advantages and drawbacks.
Section 4.3.3 explains magic sets, which is a mixed approach aimed at achiev-
ing the advantages of the other two procedures. We present the main ideas of
each approach, illustrate them by means of an example, and then discuss
their main contributions. A more exhaustive explanation of previous work
in query processing and several optimization techniques behind each
approach can be found in most books on deductive DBs (see, for instance,
[1, 8, 9, 24]).

The following example will be used to illustrate the differences among
the three basic approaches.

Example 4.2

Consider a subset of the rules in Example 4.1, with some additional facts:

Father(Anthony, John) Mother(Susan, Anthony)

Father(Anthony, Mary) Mother(Susan, Rose)

Father(Jack, Anthony) Mother(Rose, Jennifer)

Father(Jack, Rose) Mother(Jennifer, Monica)

Parent(x,y) ← Father(x,y) (rule R1)

Parent(x,y) ← Mother(x,y) (rule R2)

GrandMother(x,y) ← Mother(x,z) ∧ Parent(z,y) (rule R3)

4.3.1 Bottom-Up Query Evaluation

The naive procedure for evaluating queries bottom-up consists of two steps.
The first step is aimed at computing all facts that are a logical consequence
of the deductive rules, that is, to obtain the minimal Herbrand model of
the deductive DB. That is achieved by iteratively considering each deductive
rule until no more facts are deduced. In the second step, the query is solved

Deductive Databases 103

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



against the set of facts computed by the first step, since that set contains all
the information deducible from the DB.

Example 4.3

A bottom-up approach would proceed as follows to answer the query
?-GrandMother (x, Mary), that is, to obtain all grandmothers x of Mary:

1. All the information that can be deduced from the DB in Example
4.2 is computed by the following iterations:

a. Iteration 0: All base facts are deduced.

b. Iteration 1: Applying rule R1 to the result of iteration 0, we get

Parent(Anthony, John) Parent(Jack, Anthony)

Parent(Anthony, Mary) Parent(Jack, Rose)

c. Iteration 2: Applying rule R2 to the results of iterations 0 and
1, we also get

Parent(Susan, Anthony) Parent(Rose, Jennifer)

Parent(Susan, Rose) Parent(Jennifer, Monica)

d. Iteration 3: Applying rule R3 to the results of iterations 0 to 2,
we further get

GrandMother(Rose, Monica) GrandMother(Susan, Mary)

GrandMother(Susan, Jennifer) GrandMother(Susan, John)

e. Iteration 4: The first step is over since no more new
consequences are deduced when rules R1, R2, and R3 are
applied to the result of previous iterations.

2. The query ?-GrandMother (x, Mary) is applied against the set con-
taining the 20 facts deduced during iterations 1 to 4. Because the
fact GrandMother(Susan, Mary) belongs to this set, the obtained
result is x = Susan, which means that Susan is the only grand-
mother of Mary known by the DB.

Bottom-up methods can naturally be applied in a set-
oriented fashion, that is, by taking as input the entire extensions of
DB predicates. Despite this important feature, bottom-up query
evaluation presents several drawbacks.

• It deduces consequences that are not relevant to the requested query.
In the preceding example, the procedure has computed several
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data about parents and grandmothers that are not needed to
compute the query, for instance, Parent(Jennifer, Monica),
Parent(Rose, Jennifer), Parent(Jack, Anthony), or GrandMother
(Susan, Jennifer).

• The order of selection of rules is relevant to evaluate queries effi-
ciently. Computing the answers to a certain query must be per-
formed as efficiently as possible. In that sense, the order of
taking rules into account during query processing is important
for achieving maximum efficiency. For instance, if we had con-
sidered rule R3 instead of rule R1 in the first iteration of the pre-
vious example, no consequence would have been derived, and
R3 should have been applied again after R1.

• Computing negative information must be performed stratifiedly.
Negative information is handled by means of the CWA, which
assumes as false all information that cannot be shown to be true.
Therefore, if negative derived predicates appear in the body of
deductive rules, we must first apply the rules that define those
predicates to ensure that the CWA is applied successfully. That
is, the computation must be performed strata by strata.

4.3.2 Top-Down Query Evaluation

Given a certain query Q, the naive procedure to evaluate Q top-down is
aimed at obtaining a set of subqueries Q i such that Q �s answer is just the
union of the answers of each subquery Q i. To obtain those subqueries, each
derived predicate P in Q must be replaced by the body of the deductive rules
that define P. Because we only replace predicates in Q by their definition, the
evaluation of the resulting queries is equivalent to the evaluation of Q, when
appropriately combined. Therefore, the obtained subqueries are �simpler,�
in some sense, because they are defined by predicates �closer� to the base
predicates.

Substituting queries by subqueries is repeated several times until we get
queries that contain only base predicates. When those queries are reached,
they are evaluated against the EDB to provide the desired result. Constants
of the initial query Q are used during the process because they point out to
the base facts that are relevant to the computation.

Example 4.4

The top-down approach to compute ?-GrandMother (x, Mary) works as
follows:
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1. The query is reduced to Q1: ?- Mother (x,z) ∧ Parent (z, Mary) by
using rule R3.

2. Q1 is reduced to two subqueries, by using either R1 or R2:

Q2a: ?- Mother (x, z) ∧ Father (z, Mary)

Q2b: ?- Mother (x, z) ∧ Mother (z, Mary)

3. Query Q2a is reduced to Q3: ?- Mother (x, Anthony) because the
DB contains the fact Father(Anthony, Mary).

4. Query Q2b does not provide any answer because no fact matches
Mother(z , Mary).

5. Query Q3 is evaluated against the EDB and gives x = Susan as a
result.

At first glance, the top-down approach might seem preferable to the
bottom-up approach, because it takes into account the constants in the initial
query during the evaluation process. For that reason, the top-down approach
does not take into account all possible consequences of the DB but only
those that are relevant to perform the computation. However, the top-down
approach also presents several inconveniences:

• Top-down methods are usually one tuple at a time. Instead of reason-
ing on the entire extension of DB predicates, as the bottom-up
method does, the top-down approach considers base facts one by
one as soon as they appear in the definition of a certain subquery.
For that reason, top-down methods used to be less efficient.

• Top-down may not terminate. In the presence of recursive rules, a
top-down evaluation method could enter an infinite loop and never
terminate its execution. That would happen, for instance, if we con-
sider the derived predicate Ancestor in Example 4.1 and we assume
that a top-down computation starts always by reducing a query
about Ancestor to queries about Ancestors again.

• It is not possible to determine always, at definition time, whether a top-
down algorithm terminates. Thus, in a top-down approach we do not
know whether the method will finish its execution if it is taking too
much time to get the answer.

• Repetitive subqueries. During the process of reducing the original
query to simpler subqueries that provide the same result, a certain
subquery may be requested several times. In some cases, that may
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cause reevaluation of the subquery, thus reducing efficiency of the
whole evaluation.

4.3.3 Magic Sets

The magic sets approach is a combination of the previous approaches, aimed
at providing the advantages of the top-down approach when a set of deduc-
tive rules is evaluated bottom-up. Given a deductive DB D and a query Q
on a derived predicate P, this method is aimed at rewriting the rules of D into
an equivalent DB D ′ by taking Q into account. The goal of rule rewriting
is to introduce the simulation of top-down into D ′ in such a way that a
bottom-up evaluation of rules in D ′ will compute only the information nec-
essary to answer Q. Moreover, the result of evaluating Q on D ′ is equivalent
to querying Q on D.

Intuitively, this is performed by expressing the information of Q as
extensional information and by rewriting the deductive rules of D used dur-
ing the evaluation of Q. Rule rewriting is performed by incorporating the
information of Q in the body of the rewritten rules.

Example 4.5

Consider again Example 4.2 and assume now that it also contains the follow-
ing deductive rules defining the derived predicate Ancestor:

Ancestor(x,y) ← Parent(x,y)

Ancestor(x,y) ← Parent(x,z) ∧ Ancestor(z,y)

Rewritten �magic� rules for evaluating bottom-up the query ?-Ancestor(Rose,x)
are as follows:

Magic_Anc(Rose)

Ancestor(x,y) ← Magic_Anc(x) ∧ Parent(x,y) (rule R1)

Magic_Anc(z) ← Magic_Anc(x) ∧ Parent(x,z) (rule R2)

Ancestor(x,y) ← Magic_Anc(x) ∧ Parent(x,z) ∧ Ancestor(z,y) (rule R3)

Assuming that all facts about Parent are already computed, in particular,
Parent(Rose, Jennifer) and Parent(Jennifer, Monica), a naive bottom-up
evaluation of the rewritten rules would proceed as follows:
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1. The first step consists of seven iterations.

a. Iteration 1: Ancestor(Rose, Jennifer) is deduced by applying R1.

b. Iteration 2: Magic_Anc(Jennifer) is deduced by applying R2.

c. Iteration 3: No new consequences are deduced by applying R3.

d. Iteration 4: Ancestor(Jennifer, Monica) is deduced by applying R1.

e. Iteration 5: Magic_Anc(Monica) is deduced by applying R2.

f. Iteration 6: Ancestor(Rose, Monica) is deduced by R3.

g. Iteration 7: No new consequences are deduced by applying R1,
R2, and R3.

2. The obtained result is {Ancestor(Rose, Jennifer), Ancestor(Rose,
Monica)}.

Note that by computing rewritten rules bottom-up, we only deduce the
information relevant to the requested query. That is achieved by means of
the Magic_Anc predicate, which is included in the body of all rules, and
by the fact Magic_Anc(Rose), which allows us to compute only Rose�s
descendants.

4.4 Update Processing

Deductive DBMSs must also provide an update processing system able to
handle updates specified in terms of base and view predicates. The objective
of update processing is to perform the work required to apply the requested
update, by taking into account the intensional information provided by
views and integrity constraints.

This section reviews the most important problems related to update
processing: change computation, view updating, and integrity constraint
enforcement. We also describe a framework for classifying and specifying all
of those problems. The following example will be used throughout this
presentation.

Example 4.6

The following deductive DB provides information about employees.

Emp(John, Sales) Mgr(Sales, Mary) Work_age(John)

Emp(Albert, Marketing) Mgr(Marketing, Anne) Work_age(Albert)

Emp(Peter, Marketing) Work_age(Peter)
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Edm(e,d,m) ← Emp(e,d) ∧ Mgr(d,m) Work_age(Jack)

Works(e) ← Emp(e,d)

Unemployed(e) ← Work_age(e) ∧ ¬Works(e)

IC1(d,m1,m2) ← Mgr(d,m1) ∧ Mgr(d,m2) ∧ m1 ≠ m2

IC2(e) ← Works(e) ∧ ¬Work_age(e)

The DB contains three base predicates: Emp, Mgr, and Work_age, stating
employees that work in departments, departments with their managers, and
persons who are of working age. It also contains three derived predicates:
Edm, which defines employees with the department for which they work
and the corresponding managers; Works, which defines persons who work as
those assigned to some department; and Unemployed, which defines persons
unemployed as those who are of working age but do not work. Finally, there
are two integrity constraints: IC1, which states that departments may
only have one manager, and IC2, which states that workers must be of
working age.

4.4.1 Change Computation

4.4.1.1 Definition of the Problem

A deductive DB can be updated through the application of a given transac-
tion, that is, a set of updates of base facts. Due to the presence of deductive
rules and integrity constraints, the application of a transaction may also
induce several changes on the intensional information, that is, on views and
integrity constraints. Given a transaction, change computation refers to the
process of computing the changes on the extension of the derived predicates
induced by changes on the base facts specified by that transaction.

Example 4.7

The content of the intensional information about Edm and Works in the DB
in Example 4.6 is the following.

Edm Works

Employee Department Manager Employee

John Sales Mary John

Albert Marketing Anne Albert

Peter Marketing Anne Peter
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The application of a transaction T={insert(Emp(Jack,Sales))} will induce the
insertion of new information about Edm and Works. In particular, after the
application of T, the contents of Edm and Works would be the following:

Edm Works

Employee Department Manager Employee

John Sales Mary John

Albert Marketing Anne Albert

Peter Marketing Anne Peter

Jack Sales Mary Jack

That is, the insertion of Emp(Jack, Sales) also induces the insertion of the
intensional information Edm(Jack, Sales, Mary) and Works(Jack).

There is a simple way to perform change computation. First, we com-
pute the extension of the derived predicates before applying the transaction.
Second, we compute the extension of the derived predicates after applying
the transaction. Finally, we compute the differences between the computed
extensions of the derived predicates before and after applying the transaction.
This approach is sound, in the sense that the computed changes correspond
to those induced by the transaction, but inefficient, because, in general, we
will have to compute the extension of information that is not affected by the
update. Therefore, the change computation problem consists of efficiently
computing the changes on derived predicates induced by a given transaction.

4.4.1.2 Aspects Related to Change Computation

We have seen that there is a naive but inefficient way to perform the process
of change computation. For that reason, the main efforts in this field have
been devoted to providing efficient methods to perform the calculation. Sev-
eral aspects have to be taken into account when trying to define an efficient
method.

• Efficiency can be achieved only by taking the transaction into account.
The naive way of computing changes on the intensional information
is inefficient because we have to compute a lot of information that
does not change. Therefore, an efficient method must start by con-
sidering the transaction and computing only those changes that it
may induce.
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• A transaction can induce multiple changes. Due to the presence of sev-
eral views and integrity constraints, even the simplest transactions
consisting on a single base fact update may induce several updates on
the intensional information. That was illustrated in Example 4.7,
where the insertion of Emp(Jack, Sales) induced the insertions of
Edm(Jack, Sales, Mary) and Works(Jack).

• Change computation is nonmonotonic. In the presence of negative lit-
erals, the process of change computation is nonmonotonic, that is,
the insertion of base facts may induce deletions of derived informa-
tion, while the deletion of base facts may induce the insertion of
derived information. Nonmonotonicity is important because it
makes it more difficult to incrementally determine the changes
induced by a given transaction. For instance, applying the trans-
action T = {delete(Emp(John, Sales))} to Example 4.6 would
induce the set of changes S = {delete(Edm(John, Sales, Mary)),
delete(Works(John)), and insert(Unemployed(John))}. Note that the
insertion of Unemployed(John) is induced because the deletion of
Works(John) is also induced.

• Treatment of multiple transactions. A transaction consists of a set of
base fact updates to be applied to the DB. Therefore, we could think
of computing the changes induced by each single base update inde-
pendently and to provide as a result the union of all computed
changes. However, that is not always a sound approach because the
computed result may not correspond to the changes really induced.
As an example, assume that T = {delete(Emp(John, Sales)),
delete(Work_age (John))} is applied to Example 4.6. The first
update in T induces S1 = {delete (Edm(John, Sales, Mary)),
delete(Works(John)), insert(Unemployed(John))}, as we have just
seen, while the second update does not induce any change. There-
fore, we could think that S1 defines exactly the changes induced
by T. However, that is not the case because the deletion of
Work_age(John) prevents the insertion of Unemployed(John) to be
induced, being ST = {delete(Edm(John, Sales, Mary)), delete(Works
(John))} the exact changes induced by T.

4.4.1.3 Applications of Change Computation

We have explained up to this point the process of change computation
as that of computing changes on intentional information without giving a
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concrete semantics to this intensional information. Recall that deductive
DBs define intensional information as views and integrity constraints. Con-
sidering change computation in each of those cases defines a different appli-
cation of the problem. Moreover, change computation is also used in active
DBs to compute the changes on the condition part of an active rule induced
by an update.

• Materialized view maintenance. A view is materialized if its extension
is physically stored in the DB. This is useful, for instance, to
improve the performance of query processing because we can make
use of the stored information (thus treating a view as a base predi-
cate) instead of having to compute its extension. However, the
extension of a view does not have an independent existence because
it is completely defined by the deductive rules. Therefore, when a
change is performed to the DB, the new extension of the material-
ized views must be recomputed. Instead of applying again the
deductive rules that define each materialized view, this is better per-
formed by means of change computation.

Given a DB that contains some materialized views and a trans-
action, materialized view maintenance consists of incrementally
determining which changes are needed to update all materialized
views accordingly.

• Integrity constraint checking. Integrity constraints state conditions to
be satisfied by each state of the DB. Therefore, a deductive DBMS
must provide a way to guarantee that no integrity constraint is vio-
lated when a transaction is applied. We saw in Section 4.2.3 that
there are several ways to resolve this conflict. The best known
approach, usually known as integrity constraint checking, is the
rejection of the transaction when some integrity constraint is to be
violated. That could be done by querying the contents of the incon-
sistency predicates after applying the transaction, but, again, this is
an inefficient approach that can be drastically improved by change
computation techniques.

Given a consistent DB, that is, a DB in which all integrity con-
straints are satisfied, and a transaction, integrity constraint checking
consists of incrementally determining whether this update violates
some integrity constraint.

• Condition monitoring in active databases. A DB is called active, as
opposed to passive, when a transaction not only can be applied
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externally by the user but also internally because some condition of
the DB is satisfied. Active behavior is usually specified by means
of condition-action (CA) or event-condition-action (ECA) rules.
The following is an example of a possible ECA rule for the DB in
Example 4.6:

Event: insert(Emp(e,d))

Condition: Emp(e,d) and Mgr(d,Mary)

Action: �execute transaction T�

That is, when an employee e is assigned to a department d, the trans-
action T must be executed if d has Mary as a manager. Note that the
condition is a subcase of the deductive rule that defines the view
Edm. Condition monitoring refers to the process of computing the
changes in the condition to determine whether a CA or ECA rule
must be executed. Therefore, performing condition monitoring effi-
ciently is similar to computing changes on the view.

Given a set of conditions to monitor and a given transaction,
condition monitoring consists of incrementally determining the
changes induced by the transaction in the set of conditions.

4.4.1.4 Methods for Change Computation

Unfortunately, there is no survey that summarizes previous research in the
area of change computation, although a comparison among early methods
is provided in [25]. For that reason, we briefly point out the most relevant
literature to provide, at least, a reference guide for the interested reader.
Although some methods can handle all the applications of change computa-
tion, references are provided for each single application.

• Integrity checking. Reference [26] presents a comparison and synthe-
sis of some of the methods proposed up to 1994. Interesting work
not covered by this synthesis was also reported in [27�30]. More
recent proposals, which also cover additional aspects not considered
here, are [31�33].

• Materialized view maintenance. This is the only area of change com-
putation covered by recent surveys that describe and compare previ-
ous research [34, 35]. A classification of the methods along some
relevant features is also provided by these surveys. The application
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of view maintenance techniques to DWs [36] has motivated an
increasing amount of research in this area during recent years.

• Condition monitoring. Because of the different nature of active and
deductive DBs, the approach taken to condition monitoring in the
field of active DBs is not always directly applicable to the approach
for deductive DBs. Therefore, it is difficult to provide a complete list
of references that deal with this problem as we have presented it. To
get an idea of the field, we refer to [37�40], and to the references
therein. Additional references can be found in Chapter 3.

4.4.2 View Updating

The advantages provided by views can be achieved only if a user does not dis-
tinguish a view from a base fact. Therefore, a deductive update processing
system must also provide the ability to request updates on the derived facts,
in addition to updates on base facts. Because the view extension is completely
defined by the application of the deductive rules to the EDB, changes
requested on a view must be translated to changes on the EDB. This problem
is known as view updating.

4.4.2.1 Definition of the Problem

A view update request, that is, a request for changing the extension of a
derived predicate, must always be translated into changes of base facts. Once
the changes are applied, the new state of the DB will induce a new state of
the view. The goal of view updating is to ensure that the new state of the view
is as close as possible to the application of the request directly to the original
view. In particular, it must guarantee that the requested view update is satis-
fied. This process is described in Figure 4.2 [41].

The EDB corresponds to the extensional DB where the view that we
want to update, V(EDB), is defined according to a view definition function
V (i.e., a set of deductive rules). When the user requests an update U on

114 Advanced Database Technology and Design

U(V(EDB)) V(T(U(EDB)))

V

T(U(EDB))

=

vvvvvvvvv

vvv

V(EDB)

V

EDB

U

T(U)

Figure 4.2 The process of view updating.



V(EDB), the request must be translated into a set of base fact updates T(U).
These modifications lead to the new extensional DB T(U(EDB)), when
applied to the EDB. Then, the application of V to T(U(EDB)) should report
to the new extension of the view U(V(EDB)) that satisfies the requested
update.

Given a deductive DB and a view update request U that specifies
desired changes on derived facts, the view update problem consists of appro-
priately translating U into a set of updates of the underlying base facts. The
obtained set of base fact updates is called the translation of a view update
request. Note that translations correspond to transactions that could be
applied to the DB to satisfy the view update request.

Example 4.8

The view update request U1 = {delete(Works(Peter))} is satisfied by the trans-
lation T1 = {delete(Emp(Peter, Marketing))}, in the DB in Example 4.6.

As opposed to the problem of change computation, there is no simple
procedure to obtain the translations that satisfy a view update request. For
that reason, the work performed so far in view updating has been concerned
more with effectiveness issues, like obtaining translations that really satisfy
the request or obtaining all possible translations, rather than with efficiency
issues.

4.4.2.2 Aspects Related to View Updating

We briefly summarize the main aspects that make the problem of view
updating a difficult one and that explain why there is not yet an agreement
on how to incorporate existing view updating technology into commercial
products. All the examples refer to the DB in Example 4.6.

Multiple Translations

In general, there exist multiple translations that satisfy a view update request.
For instance, the request U = {delete(Edm(Peter, Marketing, Anne))} can be
satisfied by either T1 = {delete(Emp(Peter, Marketing))} or T2 = {delete(Mgr
(Marketing, Anne))}.

The existence of multiple translations poses two different requirements
to methods for view updating. First, the need to be able to obtain all possible
translations (otherwise, if a method fails to obtain a translation, it is not pos-
sible to know whether there is no translation or there is one but the method
is not able to find it). Second, criteria are needed to choose the best solution,
because only one translation needs to be applied to the DB.
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Side Effects

The application of a given translation may induce additional nonrequested
updates on the view where the update is requested or on other views, that
is, it may happen that U(V(EDB)) ≠ V(T(U(EDB))). These additional
updates, known as side effects, are usually hidden to the user. As an exam-
ple, the application of the previous translation T1 would induce the side
effects S1 = {delete(Works(Peter)), insert(Unemployed(Peter))} and T2 would
induce S2 = {delete(Edm(Albert, Marketing, Anne))}.

View Updating Is Nonmonotonic

In the presence of negative literals, the process of view updating is nonmono-
tonic, that is, the insertion of derived facts may be satisfied by deleting base
facts, while the deletion of derived facts may be satisfied by inserting base
facts. For instance, the view update request U = {insert(Unemployed(John))}
is satisfied by the translation T = {delete(Emp(John, Sales))}.

Treatment of Multiple-View Updates

When the user requests the update of more than one derived fact at the same
time, we could think of translating each single view update isolatedly and to
provide as a result the combination of the obtained translations. However,
that is not always a sound approach because the obtained translations may
not satisfy the requested multiple view update. The main reason is that the
translation of a request may be inconsistent with an already translated request.

Assume the view update U = {insert(Unemployed(John)), delete
(Work_age(John))} is requested. The first request in U is satisfied by the
translation T1 = {delete(Emp(John, Sales))}, while the second by T2 =
{delete(Work_age(John))}. Then, we could think that the translation
T = S1 ∪ S2 = {delete(Emp(John, Sales)), delete(Work_age (John))} satisfies
U. However, that is not the case, because the deletion of Work_age(John)
does not allow John to be unemployed anymore.

Translation of Existential Deductive Rules

The body of a deductive rule may contain variables that do not appear in the
head. These rules usually are known as existential rules. When a view update
is requested on a derived predicate defined by means of some existential rule,
there are many possible ways to satisfy the request, in particular, one way for
each possible value that can be assigned to the existential variables. The prob-
lem is that, if we consider infinite domains, an infinite number of transla-
tions may exist.
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Possible translations to U = {insert(Works(Tony))} are T1 = {insert
(Emp(Tony, Sales))}, T2 = {insert(Emp(Tony, Marketing))}, …, Tk = {insert
(Emp(Tony, Accounting))}. Note that we have as many alternatives as possi-
ble for values of the departments� domain.

4.4.2.3 Methods for View Updating

As it happens for change computation, there is not yet any survey on view
updating that helps to clarify the achievements in this area and the contribu-
tion of the various methods that have been proposed. Such a survey would be
necessary to stress the problems to be addressed to convert view updating
into a practical technology or to show possible limitations of handling this
problem in practical applications.

View updating was originally addressed in the context of relational DBs
[41�44], usually by restricting the kind of views that could be handled. This
research opened the door to methods defined for deductive DBs [45�52].
A comparison of some of these methods is provided in [51]. A different
approach aimed at dealing with view updating through transaction synthesis
is investigated in [53]. A different approach to transactions and updates in
deductive DBs is provided in [54].

4.4.3 Integrity Constraint Enforcement

4.4.3.1 Definition of the Problem

Integrity constraint enforcement refers to the problem of deciding the policy
to be applied when some integrity constraint is violated due to the applica-
tion of a certain transaction. Section 4.2.3 outlined several policies to deal
with integrity constraints. The most conservative policy is that of integrity
constraint checking, aimed at rejecting the transactions that violate some con-
straint, which is just a particular application of change computation, as dis-
cussed in Section 4.4.1.

An important problem with integrity constraint checking is the lack of
information given to the user in case a transaction is rejected. Hence, the user
may be completely lost regarding possible changes to be made to the transac-
tion to guarantee that the constraints are satisfied. To overcome that limita-
tion, an alternative policy is that of integrity constraint maintenance. If some
constraint is violated, an attempt is made to find a repair, that is, an addi-
tional set of base fact updates to append to the original transaction, such that
the resulting transaction satisfies all the integrity constraints. In general, sev-
eral ways of repairing an integrity constraint may exist.
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Example 4.9

Assume that the transaction T = {insert(Emp(Sara, Marketing))} is to be
applied to our example DB. This transaction would be rejected by an integ-
rity constraint checking policy because it would violate the constraint IC2.
Note that T induces an insertion of Works(Sara) and, because Sara is not
within labor age, IC2 is violated.

In contrast, an integrity constraint maintenance policy would realize
that the repair insert(Work_age(Sara)) falsifies the violation of IC2. There-
fore, it would provide as a result a final transaction T′ = {insert(Emp (Sara,
Marketing)), insert(Work_age(Sara))} that satisfies all the integrity
constraints.

4.4.3.2 View Updating and Integrity Constraints Enforcement

In principle, view updating and integrity constraint enforcement might seem
to be completely different problems. However, there exists a close relation-
ship among them.

A Translation of a View Update Request May Violate Some Integrity Constraint

Clearly, translations of view updating correspond to transactions to be
applied to the DB. Therefore, view updating must be followed by an integ-
rity constraint enforcement process if we want to guarantee that the applica-
tion of the translations does not lead to an inconsistent DB, that is, a DB
where some integrity constraint is violated.

For instance, a translation that satisfies the view update request U =
{insert(Works(Sara))} is T = {insert(Emp(Sara, Marketing))}. We saw in
Example 4.9 that this translation would violate IC2, and, therefore, some
integrity enforcement policy should be considered.

View updating and integrity constraint checking can be performed as
two separate steps: We can first obtain all the translations, then check
whether they violate some constraint, and reject those translations that
would lead the DB to an inconsistent state.

In contrast, view updating and integrity constraint maintenance cannot
be performed in two separate steps, as shown in [51], unless additional infor-
mation other than the translations is provided by the method of view updat-
ing. Intuitively, the reason is that a repair could invalidate a previously
satisfied view update. If we do not take that information into account during
integrity maintenance, we cannot guarantee that the obtained transactions
still satisfy the requested view updates.
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Repairs of Integrity Constraints May Require View Updates

Because derived predicates may appear in the definition of integrity constraints,
any mechanism that restores consistency needs to solve the view update prob-
lem to be able to deal with repairs on derived predicates.

For instance, consider the transaction Ti = {delete(Work_age(John))}.
The application of this transaction would violate IC2 because John would work
without being of working age. This violation can be repaired by considering the
view update U = {delete(Works(John))}, and its translation leads to a final
transaction Tf = {delete(Work_age(John)), delete(Emp(John, Sales))}, which
does not violate any integrity constraint.

For those reasons, it becomes necessary to combine view updating and
integrity constraint enforcement. This combination can be done either by con-
sidering the integrity constraint checking or maintenance approach. The result
of the combined process is the subset of the translations obtained by view
updating that, when extended by the required repairs if the maintenance
approach is taken, would leave the DB consistent.

Research on integrity constraint maintenance suffered a strong impulse
after [55]. A survey of the early methods on this subject is given in [56]. After
this survey, several methods have been proposed that tackle the integrity con-
straint maintenance problem alone [57�61] or in combination with view
updating [46, 49, 51, 52]. Again, there is no recent survey of previous research
in this area.

4.4.4 A Common Framework for Database Updating Problems

Previous sections described the most important problems related to update
processing in deductive DBs. We have also shown that the problems are not
completely independent and that the aspects they must handle present certain
relationships. However, up until now, the general approach of dealing with
those problems has been to provide specific methods for solving particular
problems. In this section, we show that it is possible to uniformly integrate sev-
eral deductive DB updating problems into an update processing system, along
the ideas proposed in [62].

Solving problems related to update processing always requires reasoning
about the effect of an update on the DB. For that reason, all methods are
explicitly or implicitly based on a set of rules that define the changes that occur
in a transition from an old state of the DB to a new one, as a consequence of the
application of a certain transaction. Therefore, any of these rules would provide
the basis of a framework for classifying and specifying update problems. We
consider the event rules [29] for such a basis.
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4.4.4.1 Event Rules

Event rules explicitly define the differences between consecutive DB states,
that is, they define the exact changes that occur in a DB as a consequence of
the application of a certain transaction. The definitions of event rules depend
only on the rules of the DB, being independent of the stored facts and of any
particular transaction.

Event rules are based on the notion of event. Given a predicate P, two
different kinds of events on P are distinguished: an insertion event, ιP, and a
deletion event, δP. Events are formally defined as follows:

∀ x (iP(x) ↔ Pn(x) ∧ ¬P(x))

∀ x (dP(x) ↔ P(x) ∧ ¬Pn(x))

P and P n refer to predicate P evaluated in the old and new states of the DB,
respectively. These rules are called event rules and define the facts about P
that are effectively inserted or deleted by a transaction.

If P is a base predicate, iP and dP facts represent insertions and dele-
tions of base facts. If P is a derived or an inconsistency predicate, ιP and δP
facts represent induced insertions and induced deletions on P. In particular,
if P is an inconsistency predicate, a fact iP represents a violation of the corre-
sponding integrity constraint.

Furthermore, a transition rule associated with each derived or inconsis-
tency predicate P is also defined. The transition rule for P defines the exten-
sion of P in the new state of the DB (denoted by P n), according to possible
previous states of the DB and to the transactions that can be applied in each
state.

Example 4.10

Consider the derived predicate Unemployed from the DB in Example 4.6.
Event and transition rules associated with Unemployed are the following.

iUnemployed(e) ↔ Unemployedn(e) ∧ ¬Unemployed(e)

dUnemployed(e) ↔ Unemployed(e) ∧ ¬Unemployedn(e)

Unemployedn(e) ↔ [(Work_age(e) ∧ ¬dWork_age(e) ∧ ¬Works(e)
∧ ¬ iWorks(e)) Ú

(Work_age(e) ∧ ¬dWork_age(e) ∧ dWorks(e)) ∨
(iWork_age(e) ∧ ¬Works(e) ∧ ¬ iWorks(e)) ∨
(iWork_age(e) ∧ dWorks(e))]
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The previous transition rule defines all possible ways of satisfying a derived
fact Unemployed(E) in the new state of the DB. For instance, the third
disjunct states that Unemployed(E) will be true in the updated DB if
Work_age(E) has been inserted, Works(E) was false in the old state of the
DB, and it has not been inserted.

These rules can be intensively simplified, as described in [29, 30].
However, for the purposes of this presentation, it is enough to consider them
as expressed before. The procedure for obtaining transition rules is given
in [62].

4.4.4.2 Interpretations of Event Rules

Event rules can be interpreted in two different ways, according to the direc-
tion in which the equivalence is considered. The two interpretations are
known as upward (or deductive) and downward (or abductive).

Upward Interpretation

Upward interpretation is provided by considering the left implication of the
equivalence in the event and transition rules. It defines changes on derived
predicates induced by changes on base predicates given by a transaction that
consists of a set of base event facts.

In this interpretation, the event rules corresponding to Unemployed
are expressed as

iUnemployed(e) ← Unemployedn(e) ∧ ¬Unemployed(e)

dUnemployed(e) ← Unemployed(e) ∧ ¬Unemployedn(e)

the intended meaning of which is that there will be an induced insertion
(deletion) of a fact Unemp if the body of its corresponding event rule evalu-
ates to true in the transition from the old to the new state of the DB.

The result of upward interpreting an event rule corresponding to a
derived predicate P�succinctly, the upward interpretation of iP(x) or
dP(x)�is a set of derived event facts. Each of them corresponds to a change
of a derived fact induced by the transaction. Note that the upward interpre-
tation of an event rule always requires the upward interpretation of the tran-
sition rule of predicate P. To compute the upward interpretation, literals in
the body of transition and event rules are interpreted as follows.

• An old DB literal (P(x) or ¬P(x)) corresponds to a query that must
be performed in the current state of the DB.
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• A base event literal corresponds to a query that must be applied to
the given transaction.

• A derived event literal is handled by upward interpreting its cor-
responding event rule. In the particular case of a negative derived
event, for example, ¬ iP(x), its upward interpretation corresponds to
a condition whose truth value is given by the result of the upward
interpretation of iP(x). This condition will be true if the latter result
does not contain any derived event fact and false otherwise. The
same holds for the downward interpretation of ¬Pn(x).

Example 4.11 illustrates upward interpretation.

Example 4.11

Consider again the event and transition rules in Example 4.10 and assume a
given transaction T = {iWork_age(John)} is requested with an empty EDB.
Induced insertions on Unemployed are given by upward interpreting the lit-
erals in (Unemployedn(e) ∧ ¬Unemployed(e)). Then, we start by upward
interpreting Unemployedn.

Consider the third disjunctand of this rule: iWork_age(e) ∧ ¬Works(e)
∧ ¬ iWorks(e). The first literal, iWork_age(e), is a base event literal and,
thus, corresponds to a query to the given transaction. The only answer to this
query is e = John. Now, the second and third literals must be evaluated only
for e = John. It is not difficult to see that the resulting queries associated to
each of the literals hold. Therefore, the third disjunctand is true for e = John
and, thus, Unemployedn(John) is also true.

The second literal in the insertion event rule is an old DB literal,
¬Unemployed(e), which holds in the current state for the value e = John.
Therefore, the transaction T induces iUnemployed(John). It can be similarly
seen that this transaction does not induce any other change, mainly because
the queries on the other disjunctands fail to produce an answer. Thus,
upward interpretation of iUnemployed(e) results in {iUnemployed(John)}.

Downward Interpretation

Downward interpretation is provided by considering the right implication of
the equivalence in the event and transition rules. It defines changes on base
predicates needed to satisfy changes on derived predicates given by a set of
derived event facts. In general, several sets of changes on base predicates that
satisfy changes on derived predicates may exist. Each possible set is a transac-
tion that accomplishes the required changes on derived predicates.

122 Advanced Database Technology and Design



In this interpretation, the event rules corresponding to unemployed are
expressed as

iUnemployed(e) → Unemployedn(e) ∧ ¬Unemployed(e)

dUnemployed(e) → Unemployed(e) ∧ ¬Unemployedn(e)

the intended meaning of which is that to perform an insertion (deletion) of a
fact Unemp it is required that the body of its corresponding event rule evalu-
ates to true in the transition.

The result of downward interpreting an event rule corresponding to a
derived predicate P with respect to a derived event fact iP(X) or dP(X) (suc-
cinctly, the downward interpretation of iP(X) or dP(X)) is a disjunctive nor-
mal form, where each disjunctand defines a possible alternative to satisfy
the change specified by the derived event fact. Each disjunctand may contain
positive base event facts, which define a possible transaction to be applied,
and negative base event facts, representing events that the transaction may
not contain. To compute the downward interpretation, literals in the body
of transition and event rules are interpreted as follows.

• An old DB literal corresponds to a query on the current state of the DB.

• A base event literal defines different alternatives of base fact updates
to be performed, an alternative for each possible way to instantiate
this event. Negative base event literals correspond to events that
must not be performed.

• A derived event literal corresponds to possible changes on a derived
predicate, one for each possible way to instantiate this event. It
is handled by downward interpreting its corresponding event rule.
The downward interpretation of a negative derived event or transi-
tion literal is defined as the disjunctive normal form of the logical
negation of the result obtained by downward interpreting the corre-
sponding positive derived literal.

The downward interpretation of a set of event facts is defined as the disjunc-
tive normal form of the logical conjunction of the result of downward inter-
preting each event in the set. Example 4.12 illustrates the downward
interpretation.

Example 4.12

Consider again the event and transition rules in Example 4.10 and assume
now that the insertion of the fact Unemployed(John) is requested, that

Deductive Databases 123

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



is, iUnemployed(John). We are going to show how the downward interpre-
tation of iUnemployed(John) defines the changes on the EDB required to
satisfy this request.

Changes on base predicates needed to satisfy iUnemployed(John) are
given by downward interpreting the literals in (Unemployedn(John)
∧ ¬Unemployed(John)). Then, we start by downward interpreting the tran-
sition rule for Unemployedn.

Consider the third disjunctand of this rule. The first literal,
iWork_age(e), is a base event literal and, thus, corresponds to a base fact
update that must be performed. The second literal, ¬Works(John), is a DB
literal that holds in the current state. The third literal, ¬ iWorks(John), is
a negative base event and, thus, corresponds to a change that must not
be performed. Therefore, from this disjunctand, we obtain the alternative
(iWork_age(John) ∧ ¬ iWorks(John)). In a similar way, it can be seen that
no other alternatives are obtained by considering the other disjunctands.

Thus, the final result of downward interpreting iUnemployed(John) is
(iWork_age(John) ∧ ¬ iWorks(John)). Therefore, the application of the
transaction T = {iWork_age(John)} to the current state of the DB will
accomplish the insertion of Unemployed(John).

4.4.4.3 Classifying Database Updating Problems

We have seen in previous sections that views (materialized or not), integrity
constraints, and conditions to be monitored can be expressed as derived
predicates. In all cases, they are defined by a certain deductive rule, and the
only difference among them is the precise semantics given to the predicate in
the head of the rule. Thus, a predicate P defined by the rule P (x) ← Q (x) ∧
¬R (x), can be a view View (x) ← Q (x) ∧ ¬R (x), an integrity constraint IC (x)
← Q (x) ∧ ¬R (x), or a condition Cond(x) ← Q (x) ∧ ¬R (x), by changing
only the semantics given to P.

The upward and downward interpretations of the event rules corre-
sponding to View, IC, and Cond allow us to classify deductive DB updating
problems, in particular, change computation, view updating, integrity con-
straint enforcement, and several problems we have not yet described.

This is summarized in Table 4.1. Rows correspond to the particular
interpretation to consider and to the relevant event P that must be inter-
preted.1 Columns correspond to the precise semantics given to the event
predicate. The first column assumes that P is a view, the second one that P is
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an inconsistency predicate, and the third one that it is a condition. Each
resulting cell refers to the DB updating problem resulting from the previous
choices.

For instance, Table 4.1 states that integrity constraint checking and
condition monitoring can be specified as the upward interpretation of iIC
and iCond or dCond, respectively. View updating can also be specified as the
downward interpretation of iView, View being a derived given fact. Integrity
maintenance is the downward interpretation of T ∧ ¬ iIC, where T is a given
transaction to be applied to the DB.

In this way, the upward and downward interpretations define a com-
mon framework for classifying and specifying deductive DB updating prob-
lems. A particular implementation of each interpretation would produce a
particular method for update processing able to deal with all problems that
fit naturally in that form of reasoning. Therefore, two methods should be
enough to uniformly integrate DB updating problems into an update proc-
essing system.

The rest of this section briefly describes problems that have not been
presented yet.

Satisfiability Checking

Intuitively, a DB schema is satisfiable [63, 64] if there is a state of the schema
in which all integrity constraints are satisfied. Clearly, views and/or integrity
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Table 4.1
Classification of Database Updating Problems

View IC Condition

Upward
interpretation
of

iP Materialized view
maintenance

IC checking Condition monitoring

dP Checking consistency
restoration

Downward
interpretation
of

iP View updating Redundancy of integrity
constraints

Enforcing condition
activation

dP View liveliness Repairing inconsistent
DB satisfiability checking

Condition validation

T∧ ¬ iP Preventing side
effects

IC maintenance Preventing condition

T∧ ¬dP Maintaining DB
inconsistency

Activation



constraints in a nonsatisfiable schema are ill-designed because any facts
entered to the DB would give rise to constraint violations.

Example 4.13

Consider the following schema:

Some_Emp ← Emp(e,d)

Has_Mgr(d) ← Mgr(d,m)

Works_For(e,m) ← Emp(e,d) ∧ Mgr(d,m)

IC1 ← ¬Some_Emp

IC2 ← Emp(e,d) ∧ ¬Has_Mgr(d)

IC3 ← Mgr(d,m) ∧ ¬Emp(m,d)

IC4 ← ¬Works_For(e,e)

This schema is unsatisfiable in any state. IC1 requires the DB to have at least
one employee working in a department, but IC2 enforces all departments to
have managers, while IC3 obliges managers of a department to be employees
of the same department. Since IC4 impedes nobody to work for himself or
herself (i.e., to manage a department where he or she works), it is impossible
to find a state of the DB that satisfies all four constraints.

Satisfiability checking is different from integrity constraint enforce-
ment, because the former is independent of any state and any update, while
the latter is not. Moreover, an unsatisfiable schema is repaired by changing
the definition of views and/or integrity constraints, while an inconsistent DB
is repaired by adding or removing facts that return the DB to a consistent
state.

View Liveliness
A derived predicate P is lively if there is a consistent state of the DB schema
in which at least one fact about P is true. Predicates that are not lively corre-
spond to relations that are empty in each consistent state. Such predicates
clearly are not useful and possibly ill-specified. As an example, neither the
predicate Q nor S is lively in a DB {Q(x) ← R(x,y) ∧ S(y), IC1(x) ← S(x)}
because IC1 prevents any fact about them to be true. This definition of �live-
liness� essentially coincides with the definition of �satisfiable� in [66].

Redundancy of Integrity Constraints
Intuitively, a constraint is redundant if integrity does not depend on it.
Such a redundancy should be detected by schema validation and then be
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eliminated. Redundancy of a constraint may be due to several reasons:
because the constraint definition itself states a contradiction (i.e., something
that may never happen) or because it is enforced by the specifications of the
other integrity constraints. Redundancy of constraints is similar to subsump-
tion, as defined in [66] and discussed in the next section. As an example, con-
sider the following schema:

P ← Q IC1 ← Q ∧ ¬P

P ← R ∧ S IC2 ← T ∧ S

IC3 ← T

IC1 is redundant because Q implies P ; therefore, it is impossible to have Q
and not to have P. IC2 is also redundant because it is entailed by the third
one. Therefore, the previous schema allows the same consistent states than a
schema containing only IC3.

Preventing Side Effects

Undesired updates, or side effects, may be induced on some derived predi-
cate when a transaction is applied. The problem of preventing side effects is
concerned with determining a set of base fact updates that, appended to a
given transaction, ensures that the resulting transaction will not induce the
undesired side effects.

Repairing Inconsistent Databases

It may be interesting sometimes to allow for intermediate inconsistent DB
states (e.g., to avoid excessive integrity enforcement). In that case, the prob-
lem arises of repairing the inconsistent DB, which is concerned with obtain-
ing a set of base fact updates that restores the DB to a consistent state, in
which no integrity constraint is violated.

Maintaining Database Inconsistency

Given an inconsistent DB state and a transaction, the problem is to obtain an
additional set of base fact updates to append to the transaction to guarantee
that the resulting DB state remains inconsistent. Although there is no clear
practical application of this problem, it can be naturally classified and speci-
fied in the previous framework.

Enforcing Condition Activation

This problem refers to obtaining a set of changes of base facts that would
induce an activation of a given condition if applied to the current DB state.
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Preventing Condition Activation

Given a transaction, the problem is to find an additional set of insertions
and/or deletions of base facts to be appended to the original transaction such
that it is guaranteed that no changes in the specified condition will occur.

More details about this framework can be found in [62]. Problems
related to DB schema validation, like satisfiability checking, view liveliness,
or redundancy of integrity constraints have been investigated in depth in
[67]. Recently, [68] showed that query containment can also be reformu-
lated as a view updating problem and, thus, can be also specified by means of
the downward interpretation.

4.5 Deductive Database System Prototypes

Results from the large amount of theoretical research devoted to deductive
DBs have both penetrated current relational DBMSs and inspired several
extensions to the relational model. Furthermore, this research has material-
ized in some prototypes of deductive DBMSs [13, 69]. Among these devel-
oped systems are Aditi, CORAL, DECLARE, Glue-Nail (see [70] for
descriptions and references), LDL [71], EKS-V1 [72, 73], XSB [74], Validity
[75], FOLRE [76], and the two prototypes developed during the IDEA
Project [77].

Table 4.2 summarizes some aspects of those systems. We have consid-
ered only the aspects directly related to the main topics addressed in this
chapter, that is, deductive DB definition, query processing, and update proc-
essing. Table 4.2 is both an adaptation and an extension of [69], which pro-
vides a wider comparison for some of the considered aspects. Relevant issues
considered for each aspect are the following.

• Deductive database definition. Deductive rules and integrity con-
straints are the key concepts of deductive DBs. All the systems allow
the definition of recursive rules that may contain negative literals in
the body, while only some of them allow the definition of integrity
constraints.

• Query processing. Not all the systems provide the three basic
approaches to query evaluation. We distinguish whether a system
provides a top-down (TD), bottom-up (BU), or magic sets (MS)
approach. Most of the systems incorporate additional optimizations
during query evaluation, in addition to the general approaches con-
sidered in this chapter (see [69]).
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Table 4.2
Summary of Deductive DBMS Prototypes

Deductive
Prototypes DB Definition Query Processing Update Processing Storage

Rules Constraints Updates Change
computation

IC enforcement

Aditi Negative, recursive No TD, BU, MS No None None EDB, IDB

CORAL Negative, recursive No TD, BU, MS Base None None EDB, IDB

DECLARE Negative, recursive No BU, MS No None None EDB

EKS-V1 Negative, recursive Yes TD Base MVM, ICC ICC EDB, IDB

FOLRE Negative, recursive Yes TD Base, view MVM, ICC, CM ICC, ICM EDB, IDB

Glue-Nail Negative, recursive No BU, MS Base None None EDB

IDEA Project Negative, recursive Yes TD Base MVM, ICC, CM ICC, ICM EDB, IDB

LDL Negative, recursive No TD, BU, MS Base None None EDB

XSB Negative, recursive No TD No None None EDB, IDB



• Update processing. Three issues are relevant here: the kind of updates
allowed by each system, that is, updates of base facts and/or view
updates; the applications of change computation provided, that is,
materialized view maintenance (MVM), integrity constraint check-
ing (ICC), or condition monitoring (CM); and the integrity con-
straint enforcement policy, that is, ICC or integrity constraint
maintenance (ICM).

• Storage. It states whether the EDB, the IDB, or both are kept on sec-
ondary storage.

As shown in Table 4.2, most deductive DBMSs have concentrated on
providing efficient techniques for the storage and retrieval of large amounts
of complex data. Thus, just a few current deductive DBMSs provide some
mechanism for advanced data updating, other than updates of base facts. To
our fair knowledge, only EKS-V1, FOLRE, and the two prototypes devel-
oped into the IDEA project incorporate advanced update capabilities. On
the other hand, systems providing advanced update capabilities have
deserved little attention to query processing issues and rely on a back end that
fully provides the support for query evaluation needs, or they are not able to
evaluate queries efficiently.

4.6 Summary

Deductive DBs contain intensional information, expressed as views and
integrity constraints, in addition to extensional information. Therefore, they
require a query and an update processing system able to deal with that kind
of information. This chapter presented several problems encountered when
dealing at run time with intensional information, like query processing,
change computation, view updating, or integrity constraint enforcement,
and provided an overview of previous research in this area.

While techniques developed as a result of the research in deductive DBs
have been incorporated into current relational technology, there is no deduc-
tive DBMS in commercial use. A possible reason is that although most
deductive prototypes provide efficient techniques for query processing,
update processing has not been extensively considered. Therefore, the most
distinguishing feature of deductive technology�the update and manage-
ment of intensional information�is not fully provided by existing
prototypes.
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We believe the reason behind this situation is the isolated way in which
update problems have been dealt with in the past and the impossibility of
applying advanced update processing in practical applications (since it is not
provided by major deductive systems).

We want to stress that the difficulties of dealing with intensional infor-
mation are not unique to deductive DBs; they also appear in most kinds of
DBs that provide some mechanism to define this information, like relational,
object-relational, or object-oriented DBs. Hence, those DBs will also need to
deal with some of the problems addressed in this chapter.

The design of deductive DBs to identify derived predicates and
integrity constraints during conceptual modeling was not addressed in this
chapter and is still an open field of research. Some ideas on this topic are pre-
sented in [15, 77].
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The main goal of this chapter was to provide a comprehensive summary of
the main features of deductive DBs. A more detailed explanation of some
of these features is provided in some of the references.

References [5, 6, 8, 9, 15] are devoted entirely to deductive DBs. Their
main concern is to describe the semantics of deductive DBs and to explain
the different approaches to query processing. Reference [9] has a chapter on
integrity constraining checking, while [15] discusses deductive DB design
and considers deductive DBs in the general context of knowledge systems.

Most books on DBs, for instance, [1, 10, 11, 14], include some chap-
ters on deductive DBs. They address mainly issues behind the semantics of
deductive DBs and query processing issues. Reference [14] also considers the
problem of query containment checking.

Update processing is not broadly covered by any of the references.
Relevant papers that have been cited in this chapter describe the different
problems that need to be addressed.
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5
Temporal Database Systems1

Hugh Darwen and C. J. Date

5.1 Introduction

Loosely speaking, a temporal database is one that contains historical data
instead of, or as well as, current data. Such databases have been under active
investigation since the mid-1970s. Some of those investigations adopt the
extreme position that data in such a database are only inserted, never deleted
or updated, in which case the database contains historical data only. The
other extreme is a snapshot database, which contains current data only, and
data are deleted or updated when the facts represented by those data cease to
be true (in other words, a snapshot database is just a database as convention-
ally understood, not a temporal database at all).

By way of example, consider the suppliers and parts database of
Table 5.1.

That database is, of course, a snapshot database, and it shows among
other things that the status of supplier S1 is currently 20. A temporal version
of that database, by contrast, might show not only that the status is currently
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20, but also that it has been 20 ever since July 1, and perhaps that it was 15
from April 5 to June 30, and so on.

In a snapshot database, the time of the snapshot is usually taken to be
�now� (that is, the time at which the database is actually inspected). Even if
the time of the snapshot happens to be some time other than �now,� it makes
no material difference to the way the data are managed and used. As we will
see, however, how the data are managed and used in a temporal database dif-
fers in a variety of important ways from how it is managed and used in a
snapshot database; hence the present chapter.
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Table 5.1
The Suppliers and Parts Database (Sample Values)�Current Snapshot Version

(Primary Key Attributes in All Examples Are Shown in Bold and Underlined)

S S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

SP S# P#

S1 P1

S1 P2

S1 P3

S1 P4

S1 P5

S1 P6

S2 P1

S2 P2

S3 P2

S4 P2

S4 P4

S4 P5



The distinguishing feature of a temporal database is, of course, time
itself. Temporal database research has therefore involved much investigation
into the nature of time itself. Here are some of the issues that have been
explored:

• Whether time has a beginning and/or end;

• Whether time is a continuum or occurs in discrete quanta;

• How best to characterize the important concept now (often referred
to as �the moving point now�);

and so on. But these issues, interesting though they might be in themselves,
are not especially database issues, and we therefore do not delve into them in
this chapter; instead, we simply make what we hope are reasonable assump-
tions at appropriate places. This approach allows us to concentrate on mat-
ters that are more directly relevant to our overall aim. However, we do note
that portions of the temporal research have led to some interesting generali-
zations, suggesting strongly that ideas developed to support temporal data
could have application in other areas as well. Note: This last point notwith-
standing, we follow convention in referring throughout this chapter to �tem-
poral� keys, �temporal� operators, �temporal� relations, and so forth, even
though the concepts in question are often not limited to temporal data as such.

Caveat lector! We concentrate in what follows on what seem to us the
most interesting and important of the various research ideas (in other words,
the chapter is our attempt to distill out and explain �the good parts� of that
research, though we do depart from the literature here and there over ques-
tions of nomenclature and other small matters). Be aware, however, that little
if any of the proposed new technology has yet shown up in any commercial
DBMS. Possible reasons for this state of affairs include the following:

• It is only recently that disk storage has become cheap enough to
make the storage of large volumes of historical data a practical
proposition. However, �data warehouses� are now becoming a wide-
spread reality; as a result, users will increasingly find themselves
faced with temporal database problems and will start wanting solu-
tions to those problems.

• Although most if not all of the features we describe have been imple-
mented in prototype form, their incorporation into existing prod-
ucts�especially SQL products, where SQL�s departures from the
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relational model will have to be catered for�could be a daunting
prospect. Besides, most vendors currently have their hands full with
attempts to provide object/relational support.

• The research community is still somewhat divided over the best way
to approach the problem, and, for that matter, even what problem
to approach. (This lack of consensus might have carried over to the
vendors.) Some researchers favor a very specialized approach�one
involving some departure from relational principles�that caters
to temporal databases specifically and leaves certain other problems
unsolved (see, for example, [1]). Others favor the provision of more
general-purpose operators that could provide a basis for developing a
specialized approach if desired, while not departing from the rela-
tional framework (see, for example, [2]). For purposes of exposition
we follow the latter approach, which we also favor.

We defer an explanation of the structure of the chapter to the section imme-
diately following.

5.2 Temporal Data

If data are an encoded representation of facts, then temporal data are an
encoded representation of timestamped facts. In a temporal database,
according to the extreme interpretation of that term, all the data are tempo-
ral, meaning every recorded fact is timestamped. It follows that a temporal
relation is one in which each tuple includes at least one timestamp (that is,
the heading includes at least one attribute of some timestamp type). It fur-
ther follows that a temporal relvar2 is one whose heading is that of a temporal
relation, and a (relational) temporal database is one in which all of the relvars
are temporal ones. Note: We are being deliberately vague here as to what data
�of some timestamp type� might look like. We will take up this issue in
Sections 5.3�5.5.

Having just offered a reasonably precise definition of the concept �tem-
poral database� (in its extreme form), we now dismiss that concept as not
very useful. We dismiss it because even if the original relvars in the database
were all temporal, many relations that could be derived from that database
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(for example, query results) would not be temporal. For example, the answer
to the query �Get the names of all persons we have ever employed� might be
obtained from some temporal database, but is not itself a temporal relation.
And it would be a strange DBMS indeed�certainly not a relational one�that
would let us obtain results that could not themselves be kept in the database.

In this chapter, therefore, we take a temporal database to be a database
that does include some temporal data but is not limited to temporal data
only. The rest of the chapter discusses such databases in detail. The plan for
this chapter, then, is as follows:

• The remainder of the present section and Section 5.3 set the scene
for subsequent sections; in particular, Section 5.3 shows why tempo-
ral data seem to require special treatment.

• Sections 5.4 and 5.5 introduce intervals as a convenient way of
timestamping data. Sections 5.6 and 5.7 then discuss a variety of
scalar and aggregate operators for dealing with such intervals.

• Section 5.8 introduces some important new relational operators for
operating on temporal relations.

• Section 5.9 examines the question of integrity constraints for tem-
poral data.

• Section 5.10 discusses the special problems of updating such data.

• Section 5.11 proposes some relevant (and possibly novel) database
design ideas.

• Section 5.12 discusses a few miscellaneous issues that could not con-
veniently be handled elsewhere.

• Finally, Section 5.13 presents a summary.

Note: It is important to understand that�with just one exception, the interval
type generator introduced in Section 5.5�all of the new operators and other
constructs to be discussed in what follows are only shorthand. That is, they can
all be expressed (albeit only very long-windedly, sometimes) in terms of fea-
tures already available in a complete relational language such as Tutorial D.3

We will justify this claim as we proceed (in some cases but not all).
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5.2.1 Some Basic Concepts and Questions

We begin by appealing to the way people express what might be called
�timestamped statements� in natural language. Here are three examples:

1. Supplier S1 was appointed (that is, placed under contract) on
July 1, 1999.

2. Supplier S1 has been a contracted supplier since July 1, 1999.

3. Supplier S1 was a contracted supplier during the period from
July 1, 1999 to the present day.

Each of these statements is a possible interpretation of a 2-tuple containing
the supplier number �S1� and the timestamp �July 1, 1999,� and each of
them might be appropriate of that 2-tuple if it appears in a snapshot database
representing the current state of affairs in some enterprise. The boldface
prepositions on, since, and during characterize the different interpretations.
Note: Throughout this chapter we use �since� and �during� in the strong
senses of �ever since� and �throughout (the period in question),� respec-
tively, barring explicit statements to the contrary.

Now, although we have just referred to three possible interpretations, it
might be argued that Statements 1, 2, and 3 are really all saying the same
thing in slightly different ways. In fact, we do take Statements 2 and 3 to be
equivalent, but not Statements 1 and 2 (or 1 and 3), for consider:

• Statement 1 clearly asserts that S1 was not a contracted supplier
on the date (June 30, 1999) immediately preceding the specified
appointment date; Statement 2 neither states that fact nor implies it.

• Suppose today (�the present day�) is September 25, 2000. Then
Statement 2 clearly states that S1 was a contracted supplier on every
day from July 1, 1999 to September 25, 2000, inclusive; Statement
1 neither states that fact, nor implies it.

Thus, Statements 1 and 2 are not equivalent, and neither one implies
the other.

That said, tuples in snapshot databases often do include things like
�date of appointment,� and statements like Statement 2 (or 3) often are
the intended interpretation. If such is the case here, then Statement 1 in its
present form is not a fully accurate interpretation of the tuple in question.
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We can make it more accurate by rephrasing it thus: �Supplier S1 was most
recently appointed on July 1, 1999.� What is more, if this version of State-
ment 1 really is what our hypothetical 2-tuple is supposed to mean, then
Statement 2 in its present form is not a fully accurate interpretation
either�it needs to be rephrased thus: �Supplier S1 was not a contracted sup-
plier on June 30, 1999, but has been one since July 1, 1999.�

Observe now that Statement 1 expresses a time at which a certain event
took place, while Statements 2 and 3 express an interval in time during
which a certain state persisted. We have deliberately chosen an example in
which a certain state might be inferred from information regarding a certain
event: Since S1 was most recently appointed on July 1, 1999, that supplier
has been in the state of being under contract from that date to the present
day. Classical database technology can handle time instants (times at which
events occur) reasonably well; however, it does not handle time intervals
(periods of time during which states persist) very well at all, as we will see in
Section 5.3.

Observe next that although Statements 2 and 3 are logically equivalent,
their forms are significantly different. To be specific, the form of Statement 2
cannot be used for historical records (because �since� implies currency),
while that of Statement 3 can�provided we replace the phrase �the present
day� in that statement by some explicit date, say, September 25, 2000. (Of
course, the statement would then correspond to a 3-tuple, not a 2-tuple.)
We conclude that the concept of �during� is very important for historical
records, at least for state data if not for event data.

Terminology: The time(s) at which a certain event occurred or the inter-
val(s) during which a certain state persisted are sometimes referred to as valid
time. More precisely, the valid time of a proposition p is the set of times
at which p is believed to be true. It is distinguished from transaction time,
which is the set of times at which p was actually represented in the database as
being true. Valid times can be updated to reflect changing beliefs, but trans-
action times cannot; that is, transaction times are maintained entirely by
the system, and no user is allowed to change them in any way (typically, of
course, they are recorded, explicitly or implicitly, in the transaction log).

Note: The references in the foregoing paragraph to intervals and sets
of times tacitly introduce a simple but fundamental idea�namely, that an
interval with start time s and end time e actually denotes the set of all times
t such that s ≤ t ≤ e (where �<� means �earlier than,� of course). Though
�obvious,� this simple notion has far-reaching consequences, as we will see in
the sections to come.
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Now, much of the foregoing discussion was deliberately meant to raise
certain questions in your mind. Regardless of whether we succeeded in that
aim, we now raise those questions explicitly and try to answer them.

1. Does not the expression �all times t such that s ≤ t ≤ e� raise the
specter of infinite sets and the conceptual and computational diffi-
culties such sets suffer from?

Answer: Well, yes, it does appear to, but we dismiss the specter
and circumvent the difficulties by adopting the assumption that the
�timeline� consists of a finite sequence of discrete, indivisible time
quanta. The interval with start time s and end time e thus involves a
finite number of such quanta, a fortiori.

Note: Much of the literature refers to a time quantum as a chronon.
However, it then typically goes on to define a chronon as an inter-
val (see, for example, the glossary in [4]), implying that it has a start
point and an end point, and perhaps further points in between, and
so is not indivisible after all. (What exactly are those points? What
else can they be but chronons?) We find some confusion here and
prefer to avoid the term.

2. Statements 1, 2, and 3 seem to assume that time quanta are days,
but surely the system supports time precisions down to tiny frac-
tions of a second. If S1 was a supplier on July 1, 1999, but not on
June 30, 1999, what is to be done about the presumed period of
time from the start of July 1 up to the very instant of appointment,
during which S1 was still not officially under contract?

Answer: We need to distinguish carefully between time quanta as
such, which are the smallest time units the system can possibly
represent, and the time units that are useful for some particular
purpose, which might be years or months or days or weeks, and so
forth. We call such units timepoints (points for short) in order to
stress the fact that for the purpose at hand they too are considered
to be indivisible. Now, we might say, informally, that a timepoint is
�a section of the timeline��that is, the set of time quanta�that
stretches from one �boundary� quantum to the next (for example,
from midnight on one day to midnight on the next). We might
therefore say, again informally, that timepoints have a dura-
tion�one day, in our example. Formally, however, timepoints are
(to repeat) indivisible, and the concept of duration strictly does not
apply.
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Note: Much of the literature uses the term granule to refer to some-
thing like a timepoint as just defined. As with the term chronon,
however, it typically then goes on (unfortunately) to say that a
granule is an interval. We therefore choose to avoid the term gran-
ule also.4 We do, however, make use of the (informal) term granu-
larity, which we define (again informally) as the duration of the
applicable timepoint. Thus, we might say in our example that the
granularity is one day, meaning that we are casting aside�in this
context�our usual notion of a day being made up of hours, which
are made up of minutes, and so forth (such notions can be
expressed only by recourse to finer levels of granularity).

3. Given, then, that the timeline is basically a sequence of timepoints,
we can refer unambiguously to �the time immediately succeeding�
(or preceding) any given point. Is that right?

Answer: Yes, up to a point�the point in question being, of course,
the end of time. And down to a point, too�the beginning of time.
As far as we are concerned, the beginning of time is a timepoint
that has no predecessor (it might perhaps correspond to cosmolo-
gists� best estimate of the very moment of the putative Big Bang);
the end of time is a timepoint that has no successor.

4. If some relation includes a 3-tuple representing the fact that sup-
plier S1 was under contract from July 1, 1999 to September 25,
2000, does not the Closed World Assumption5 demand that the same
relation also include, for example, a 3-tuple representing the fact
that S1 was under contract from July 2, 1999 until September 24,
2000, and a host of other 3-tuples representing other trivial conse-
quences of the original 3-tuple?

Answer: Good point! Clearly, we need a more constraining predi-
cate as our general interpretation of such 3-tuples: �Supplier Sx
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was under contract on every day from date s to date e, but not on
the day immediately preceding s, nor on the day immediately fol-
lowing e.�6 This more constraining interpretation, in its general
form, provides the motivation and basis for many of the operators
we describe in this chapter, in Sections 5.8 and 5.10 in particular.

5.3 What�s the Problem?

We use a simplified �suppliers and parts� database as the basis for our exam-
ples in the rest of this chapter. Table 5.1 shows a set of sample data values for
this database. Note carefully that the database is a snapshot database�it does
not include any temporal features.

We interpret S as �Supplier S#, named SNAME, has status STATUS
and is located in city CITY.� We interpret SP as �Supplier S# is currently
able to supply part P#.�

We now proceed to discuss some simple constraints and queries for this
database. Later we will consider what happens to those constraints and que-
ries when the database is extended to include various temporal features.

Constraints (current snapshot database): The only constraints we want
to consider here are the key constraints. The use of underlined and bold
attribute names in Table 5.1 indicates that {S#} and {S#,P#} are the primary
keys of S and SP, respectively. {S#} is a foreign key in SP referencing the pri-
mary key of S. {P#} in SP possibly constitutes a foreign key referencing the
primary key of a �parts� relvar, P, but we do not use that relvar in this simpli-
fied example.

Queries (current snapshot): We consider just two queries, both of
them deliberately very simple:

• Query 1.1: Get supplier numbers of suppliers who are currently able
to supply some part.

SP { S# }
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• Query 1.2: Get supplier numbers of suppliers who are currently
unable to supply any part at all.

S { S# } MINUS SP { S# }

Observe that Query 1.1 involves a simple projection and Query 1.2 involves
the difference between two such projections. Later, when we consider tem-
poral analogs of these two queries, we will find that they involve temporal
analogs of these two operators (see Section 5.8). Temporal analogs of other
relational operators can be defined as well.

5.3.1 �Semitemporalizing� Suppliers and Parts

In order to proceed gently, our next step is to �semitemporalize� (so to speak)
relvars S and SP by adding a timestamp attribute, SINCE, to each and
renaming them accordingly. See Table 5.2.

For simplicity, we do not show real timestamps in Table 5.2; instead,
we use symbols of the form d01, d02, and so on, where the �d � can conven-
iently be pronounced �day,� a convention to which we adhere throughout
this chapter. (Our examples thus all make use of timepoints that are,
specifically, days.) We assume that day 1 immediately precedes day 2,
day 2 immediately precedes day 3, and so on; also, we do not propagate the
insignificant leading zeros when we write expressions such as �day 1� (as
you can see).

The predicate for S_SINCE is �Since day SINCE it has been the case
that supplier S# has been named SNAME, has had status STATUS, has been
located in city CITY, and has been under contract.� The predicate for
SP_SINCE is �Since day SINCE it has been the case that supplier S# has
been able to supply part P#.�

5.3.1.1 Constraints (Semitemporal Database)

The primary and foreign keys for this �semitemporalized� database are the
same as before. However, we need an additional constraint�one that might
be thought of as augmenting the foreign key constraint from SP_SINCE to
S_SINCE�to express the fact that no supplier can supply any part before
that supplier is placed under contract. In other words, if tuple sp in
SP_SINCE references tuple s in S_SINCE, the SINCE value in sp must not
be less than that in s :
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CONSTRAINT AUG_SP_TO_S_FK

IS_EMPTY (((S_SINCE RENAME SINCE AS SS) JOIN

(SP_SINCE RENAME SINCE AS SPS)) WHERE SPS < SS);

With this example we begin to see the problem. Given a �semitemporal�
database like that of Table 5.2, we will probably have to state many �aug-
mented foreign key� constraints like this one, and we will soon begin to wish
we had some convenient shorthand for the purpose.

5.3.1.2 Queries (Semitemporal Database)

We now consider �semitemporal� versions of Queries 1.1 and 1.2.
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Table 5.2
The Suppliers and Parts Database (Sample Values)�Semitemporal Version

S_SINCE S# SNAME STATUS CITY SINCE

S1 Smith 20 London d04

S2 Jones 10 Paris d07

S3 Blake 30 Paris d03

S4 Clark 20 London d04

S5 Adams 30 Athens d02

SP_SINCE S# P# SINCE

S1 P1 d04

S1 P2 d05

S1 P3 d09

S1 P4 d05

S1 P5 d04

S1 P6 d06

S2 P1 d08

S2 P2 d09

S3 P2 d08

S4 P2 d06

S4 P4 d04

S4 P5 d05



• Query 2.1: Get supplier numbers of suppliers who are currently able
to supply some part, showing in each case the date since when they
have been able to do so.

If supplier Sx is currently able to supply several parts, then Sx
has been able to supply some part since the earliest SINCE date
shown for Sx in SP_SINCE (for example, if Sx is S1, that earliest
SINCE date is d04 ). Hence:

SUMMARIZE SP PER SP {S#} ADD MIN (SINCE) AS SINCE

Result: S# SINCE

S1 d04

S2 d08

S3 d08

S4 d04

• Query 2.2: Get supplier numbers of suppliers who are currently
unable to supply any part at all, showing in each case the date since
when they have been unable to do so.

In our sample data there is just one supplier who is currently
unable to supply any parts at all, supplier S5. However, we cannot
deduce the date since when S5 has been under contract but unable
to supply any parts, because there is insufficient information in the
database�the database is still only �semitemporalized.� For exam-
ple, suppose d10 is the current day. Then it might be that S5 was
able to supply at least one part from as early as d02, when S5 was
first appointed, up to as late as d09 ; or, going to the other extreme,
it might be that S5 has never been able to supply anything at all.

To have any hope of answering Query 2.2, we must complete
the �temporalizing� of our database, or at least the SP portion of it.
To be more precise, we must keep historical records in the database
showing which suppliers were able to supply which parts when, as in
the section immediately following.

5.3.2 Fully Temporalizing Suppliers and Parts

Table 5.3 shows a fully temporalized version of our suppliers and parts data-
base. Observe that the SINCE attributes have become FROM attributes, and
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each relvar has acquired an additional timestamp attribute called TO. The
FROM and TO attributes together express the notion of an interval in time
during which something is true; for that reason, we replace SINCE by
FROM_TO in the relvar names. Because we are now keeping historical
records, there are more tuples in this database than there were in either of its
predecessors, as you can see. We assume for definiteness that the current date
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Table 5.3
The Suppliers and Parts Database (Sample Values)�First Fully Temporal Version,

Using Timestamps

S_FROM_TO S# SNAME STATUS CITY FROM TO

S1 Smith 20 London d04 d10

S2 Jones 10 Paris d07 d10

S2 Jones 10 Paris d02 d04

S3 Blake 30 Paris d03 d10

S4 Clark 20 London d04 d10

S5 Adams 30 Athens d02 d10

SP_FROM_TO S# P# FROM TO

S1 P1 d04 d10

S1 P2 d05 d10

S1 P3 d09 d10

S1 P4 d05 d10

S1 P5 d04 d10

S1 P6 d06 d10

S2 P1 d02 d04

S2 P2 d03 d03

S2 P1 d08 d10

S2 P2 d09 d10

S3 P2 d08 d10

S4 P2 d06 d09

S4 P4 d04 d08

S4 P5 d05 d10



is d10, and so d10 shows as the TO value for each tuple that pertains to
the current state of affairs. Note: You might be wondering what mechanism
could cause all of those d10�s to be replaced by d11�s on the stroke of mid-
night. Unfortunately, we have to set this issue aside for the moment; we will
return to it in Section 5.11.

Note that the temporal database of Table 5.3 includes all of the infor-
mation from the semitemporal one of Table 5.2, together with historical
information concerning a previous period (from d02 to d04 ) during which
supplier S2 was under contract. The predicate for S_FROM_TO is �Sup-
plier S# was named SNAME, had status STATUS, was located in city CITY,
and was under contract, from day FROM (and not on the day immediately
before FROM) to day TO (and not on the day immediately after TO).� The
predicate for SP_FROM_TO is analogous.

5.3.2.1 Constraints (First Temporal Database)

First of all, we need to guard against the absurdity of a FROM-TO pair
appearing in which the TO timepoint precedes the FROM timepoint:

CONSTRAINT S_FROM_TO_OK IS_EMPTY (S_FROM_TO WHERE TO

< FROM);

CONSTRAINT SP_FROM_TO_OK IS_EMPTY (SP_FROM_TO WHERE TO

< FROM);

Next, observe from the underlining in Table 5.3 that we have included
the FROM attribute in the primary key for both S_FROM_TO and
SP_FROM_TO; for example, the primary key of S_FROM_TO obviously
cannot be just {S#}, for then we could not have the same supplier under
contract for more than one continuous period. A similar observation applies
to SP_FROM_TO. Note: We could have used the TO attributes instead
of the FROM attributes; in fact, S_FROM_TO and SP_FROM_TO both
have two candidate keys and are good examples of relvars for which there is
no obvious reason to choose one of those keys as �primary.� We make the
choices we do purely for definiteness.

However, these primary keys do not of themselves capture all of the
constraints we would like them to. Consider relvar S_FROM_TO, for exam-
ple. It should be clear that if there is a tuple for supplier Sx in that relvar with
FROM value f and TO value t, then we want there not to be a tuple for sup-
plier Sx in that relvar indicating that Sx was under contract on the day imme-
diately before f or the day immediately after t. For example, consider supplier
S1, for whom we have just one S_FROM_TO tuple, with FROM = d04 and
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TO = d10. The mere fact that {S#, FROM} is the primary key for this relvar
is clearly insufficient to prevent the appearance of an additional �overlap-
ping� S1 tuple with, say, FROM = d02 and TO = d06, indicating among
other things that S1 was under contract on the day immediately before d04.
Clearly, what we would like is for these two S1 tuples to be coalesced into a
single tuple with FROM = d02 and TO = d10.7

The fact that {S#, FROM} is the primary key for S_FROM_TO is also
insufficient to prevent the appearance of an �abutting� S1 tuple with, say,
FROM = d02 and TO = d03, indicating again that S1 was under contract on
the day immediately before d04. As before, what we would like is for the
tuples to be coalesced into a single tuple.

Here then is a constraint that does prohibit such overlapping and
abutting:

CONSTRAINT AUG_S_FROM_TO_PK

IS_EMPTY (((S_FROM_TO RENAME FROM AS F1, TO

AS T1) JOIN

(S_FROM_TO RENAME FROM AS F2, TO AS T2))

WHERE (T1 ≥ F2 AND T2 ≥ F1)) OR

(F2 = T1+1 OR F1 = T2+1));

This expression is quite complicated, not to mention that we have taken
the gross liberty of writing, for example, �T1 + 1� to designate the immedi-
ate successor of the day denoted by T1, a point we will come back to in
Section 5.5. Note: Assuming this constraint is indeed stated (and enforced,
of course), some writers would refer to the attribute combination {S#,
FROM,TO} as a temporal candidate key (in fact, a temporal primary key).
The term is not very good, however, because the �temporal� candidate key is
not in fact a candidate key in the first place. (In Section 5.9, by contrast, we
will encounter �temporal candidate keys� that genuinely are candidate keys
in the classical sense.)

Next, note carefully that the attribute combination {S#, FROM} in
relvar SP_FROM_TO is not a foreign key from SP_FROM_TO to
S_FROM_TO (even though it does involve the same attributes, S# and
FROM, as the primary key of S_FROM_TO). However, we certainly do
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7. Observe that not coalescing such tuples would be almost as bad as permitting duplicates.
Duplicates amount to �saying the same thing twice.� And those two tuples for S1 with
overlapping time intervals do indeed �say the same thing twice�; to be specific, they both
say that S1 was under contract on days 4, 5, and 6.



need to ensure that if a certain supplier appears in SP_FROM_TO, then that
same supplier appears in S_FROM_TO as well:

CONSTRAINT AUG_SP_TO_S_FK_AGAIN1

SP_FROM_TO {S#} ⊆ S_FROM_TO {S#};

But constraint AUG_SP_TO_S_FK_AGAIN1 is not enough by itself;
we also need to ensure that (even if all desired coalescing of tuples has been
done) if SP_FROM_TO shows some supplier as being able to supply some
part during some interval of time, then S_FROM_TO shows that same sup-
plier as being under contract during that same interval of time. We might try
the following:

CONSTRAINT AUG_SP_TO_S_FK_AGAIN2 /* Warning � incorrect! */

IS_EMPTY ((S_FROM_TO RENAME FROM AS SF, TO

AS ST) JOIN

(SP_FROM_TO RENAME FROM AS SPF, TO AS

SPT))

WHERE SPF < SF OR SPT > ST);

As the comment indicates, however, this specification is in fact incorrect.
To see why, let S_FROM_TO be as shown in Table 5.3, and let
SP_FROM_TO include a tuple for supplier S2 with, say, FROM = d03
and TO = d04. Such an arrangement is clearly consistent, yet constraint
AUG_SP_ TO_S_FK_AGAIN2 as stated actually prohibits it.

We will not try to fix this problem here, deferring it instead to a later
section (Section 5.9). However, we remark as a matter of terminology that
if (as noted earlier) attribute combination {S#, FROM, TO} in relvar
S_FROM_TO is regarded as a �temporal candidate key,� then attribute
combination {S#, FROM, TO} in relvar SP_FROM_TO might be regarded
as a �temporal foreign key� (though it is not in fact a foreign key as such).
Again, see Section 5.9 for further discussion.

5.3.2.2 Queries (First Temporal Database)

Here now are fully temporal versions of Queries 1.1 and 1.2:

• Query 3.1: Get S#-FROM-TO triples for suppliers who have been
able to supply some part at some time, where FROM and TO
together designate a maximal continuous period during which sup-
plier S# was in fact able to supply some part. Note: We use the term

Temporal Database Systems 153

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



�maximal� here as a convenient shorthand to mean (in the case
at hand) that supplier S# was unable to supply any part on the day
immediately before FROM or after TO.

• Query 3.2: Get S#-FROM-TO triples for suppliers who have been
unable to supply any parts at all at some time, where FROM and
TO together designate a maximal continuous period during which
supplier S# was in fact unable to supply any part.

Well, you might like to take a little time to convince yourself that, like us,
you would really prefer not even to attempt these queries. If you do make the
attempt, however, the fact that they can be expressed, albeit exceedingly labo-
riously, will eventually emerge, but it will surely be obvious that some kind of
shorthand is very desirable.

In a nutshell, therefore, the problem of temporal data is that it
quickly leads to constraints and queries that are unreasonably complex to
state�unless the system provides some well-designed shorthands, of course,
which (as we know) today�s commercial products do not.

5.4 Intervals

We now embark on our development of an appropriate set of shorthands.
The first and most fundamental step is to recognize the need to deal with
intervals as such in their own right, instead of having to treat them as pairs of
separate values as we have been doing up to this point.

What exactly is an interval? According to Table 5.3, supplier S1 was
able to supply part P1 during the interval from day 4 to day 10. But what
does �from day 4 to day 10� mean? It is clear that days 5, 6, 7, 8, and 9
are included�but what about the start and end points, days 4 and 10? It
turns out that, given some specific interval, we sometimes want to regard the
specified start and end points as included in the interval and sometimes not.
If the interval from day 4 to day 10 does include day 4, we say it is closed
with respect to its start point; otherwise we say it is open with respect to that
point. Likewise, if it includes day 10, we say it is closed with respect to its end
point; otherwise we say it is open with respect to that point.

Conventionally, therefore, we denote an interval by its start point
and its end point (in that order), preceded by either an opening bracket or
an opening parenthesis and followed by either a closing bracket or a closing
parenthesis. Brackets are used where the interval is closed, parentheses where
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it is open. Thus, for example, there are four distinct ways to denote the
specific interval that runs from day 4 to day 10 inclusive:

[d04, d10 ]

[d04, d11 )

(d03, d10 ]

(d03, d11 )

Note: You might think it odd to use, for example, an opening bracket but
a closing parenthesis; the fact is, however, there are good reasons to allow
all four styles. Indeed, the so-called �closed-open� style (opening bracket,
closing parenthesis) is the one most used in practice.8 However, the �closed-
closed� style (opening bracket, closing bracket) is surely the most intuitive,
and we will favor it in what follows.

Given that intervals such as [d04,d10 ] are values in their own right,
it makes sense to combine the FROM and TO attributes of, say,
SP_FROM_TO (see Table 5.3) into a single attribute, DURING, whose
values are drawn from some interval type (see the next section). One imme-
diate advantage of this idea is that it avoids the need to make the arbitrary
choice as to which of the two candidate keys {S#, FROM} and {S#, TO}
should be primary. Another advantage is that it also avoids the need to decide
whether the FROM-TO intervals of Table 5.3 are to be interpreted as closed
or open with respect to each of FROM and TO; in fact, [d04,d10 ],
[d04,d11 ), (d03,d10 ], and (d03,d11 ) now become four distinct possible
representations of the same interval, and we have no need to know which (if
any) is the actual representation. Yet another advantage is that relvar con-
straints �to guard against the absurdity of a FROM ≤ TO pair appearing in
which the TO timepoint precedes the FROM timepoint� (as we put it in
Section 5.3) are no longer necessary, because the constraint �FROM TO� is
implicit in the very notion of an interval type (loosely speaking). Other con-
straints might also be simplified, as we will see in Section 5.9.

Table 5.4 shows what happens to our example database if we adopt this
approach.
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8. To see why the closed-open style might be advantageous, consider the operation of split-
ting the interval [d04,d10 ] immediately before, say, d07. The result is the immediately
adjacent intervals [d04,d07 ) and [d07,d10 ].



5.5 Interval Types

Our discussion of intervals in the previous section was mostly intuitive in
nature; now we need to approach the issue more formally. First of all, observe
that the granularity of the interval [d04,d10 ] is �days.� More precisely, we
could say it is type DATE, by which term we mean that member of the usual
family of �datetime� data types whose precision is �day� (as opposed to,
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Table 5.4
The Suppliers and Parts Database (Sample Values)�Final Fully Temporal Version, Using Intervals

S_DURING S# SNAME STATUS CITY DURING

S1 Smith 20 London [d04, d10 ]

S2 Jones 10 Paris [d07, d10 ]

S2 Jones 10 Paris [d02, d04 ]

S3 Blake 30 Paris [d03, d10 ]

S4 Clark 20 London [d04, d10 ]

S5 Adams 30 Athens [d02, d10 ]

SP_DURING S# P# DURING

S1 P1 [d04, d10 ]

S1 P2 [d05, d10 ]

S1 P3 [d09, d10 ]

S1 P4 [d05, d10 ]

S1 P5 [d04, d10 ]

S1 P6 [d06, d10 ]

S2 P1 [d02, d04 ]

S2 P2 [d03, d03 ]

S2 P1 [d08, d10 ]

S2 P2 [d09, d10 ]

S3 P2 [d08, d10 ]

S4 P2 [d06, d09 ]

S4 P4 [d04, d08 ]

S4 P5 [d05, d10 ]



say, �hour� or �millisecond� or �month�). This observation allows us to pin
down the exact type of the interval in question, as follows:

• First and foremost, of course, it is some interval type; this fact by
itself is sufficient to determine the operators that are applicable to the
interval value in question (just as to say that, for example, a value
r is of some relation type is sufficient to determine the opera-
tors�JOIN, etc.�that are applicable to that value r).

• Second, the interval in question is, very specifically, an interval from
one date to another, and this fact is sufficient to determine the set of
interval values that constitute the interval type in question.

The specific type of [d04,d10 ] is thus INTERVAL(DATE), where:

a. INTERVAL is a type generator (like RELATION in Tutorial D,
or �array� in conventional programming languages) that allows us
to define a variety of specific interval types (see further discussion
below);

b. DATE is the point type of this specific interval type.

It is important to note that, in general, point type PT determines both the
type and the precision of the start and end points�and all points in
between�of values of type INTERVAL(PT ). (In the case of type DATE, of
course, the precision is implicit.)

Note: Normally, we do not regard precision as part of the applicable
type but, rather, as an integrity constraint. Given the declarations
DECLARE X TIMESTAMP(3) and DECLARE Y TIMESTAMP(6), for
example, X and Y are of the same type but are subject to different constraints
(X is constrained to hold millisecond values and Y is constrained to hold
microsecond values). Strictly speaking, therefore, to say that, for example,
TIMESTAMP(3)�or DATE�is a legal point type is to bundle together
two concepts that should really be kept separate. Instead, it would be better
to define two types T1 and T2, both with a TIMESTAMP possible represen-
tation but with different �precision constraints,� and then say that T1 and
T2 (not, for example, TIMESTAMP(3) and TIMESTAMP(6)) are legal
point types. For simplicity, however, we follow conventional usage in this
chapter and pretend that precision is part of the type.

What properties must a type possess if it is to be legal as a point type?
Well, we have seen that an interval is denoted by its start and end points; we

Temporal Database Systems 157



have also seen that (at least informally) an interval consists of a set of points.
If we are to be able to determine the complete set of points, given just the
start point s and the end point e, we must first be able to determine the point
that immediately follows (in some agreed ordering) the point s. We call that
immediately following point the successor of s ; for simplicity, let us agree to
refer to it as s + 1. Then the function by which s + 1 is determined from s is
the successor function for the point type (and precision) in question. That
successor function must be defined for every value of the point type, except
the one designated as �last.� (There will also be one point designated as
�first,� which is not the successor of anything.)

Having determined that s + 1 is the successor of s, we must next deter-
mine whether or not s + 1 comes after e, according to the same agreed order-
ing for the point type in question. If it does not, then s + 1 is indeed a point
in [s,e], and we must now consider the next point, s + 2. Continuing this
process until we come to the first point s + n that comes after e (that is, the
successor of e), we will discover every point of [s,e].

Noting that s + n is in fact the successor of e (that is, it actually comes
immediately after e), we can now safely say that the only property a type PT
must have to be legal as a point type is that a successor function must be
defined for it. The existence of such a function implies that there must be a
total ordering for the values in PT (and we can therefore assume the usual
comparison operators��<,� �≥,� etc.�are available and defined for all pairs
of PT values).

By the way, you will surely have noticed by now that we are no longer
talking about temporal data specifically. Indeed, most of the rest of this chap-
ter is about intervals in general rather than time intervals in particular,
though we will consider certain specifically temporal issues in Section 5.11.

Here then (at last) is a precise definition: Let PT be a point type. Then
an interval (or interval value) i of type INTERVAL(PT ) is a scalar value for
which two monadic scalar operators (START and END) and one dyadic
operator (IN) are defined, such that:

a. START(i ) and END(i ) each return a value of type PT.

b. START(i ) ≤ END(i ).

c. Let p be a value of type PT. Then p IN i is true if and only if
START(i ) ≤ p and p ≤ END(i ) are both true.

Note the appeals in this definition to the defined successor function for
type PT. Note also that, by definition, intervals are always nonempty (that is,
there is always at least one point �IN� any given interval).
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Observe very carefully that a value of type INTERVAL(PT ) is a scalar
value�that is, it has no user-visible components. It is true that it does have a
possible representation�in fact, several possible representations, as we saw
in the previous section�and those possible representations in turn do have
user-visible components, but the interval value per se does not. Another way
of saying the same thing is to say that intervals are encapsulated.

5.6 Scalar Operators on Intervals

In this section we define some useful scalar operators (most of them more or
less self-explanatory) that apply to interval values. Consider the interval type
INTERVAL(PT ). Let p be a value of type PT. We will continue to use the
notation p + 1, p + 2, and so on, to denote the successor of p, the successor of
p + 1, and so on (a real language might provide some kind of NEXT opera-
tor). Similarly, we will use the notation p − 1, p − 2, and so on, to denote the
value whose successor is p, the value whose successor is p � 1, and so on (a
real language might provide some kind of PRIOR operator).

Let p1 and p2 be values in PT. Then we define MAX(p1,p2 ) to return
p2 if p1 < p2 is true and p1 otherwise, and MIN(p1,p2 ) to return p1 if
p1 < p2 is true and p2 otherwise.

The notation we have already been using will do for interval selectors
(at least in informal contexts). For example, the selector invocations [3,5]
and [3,6] both yield that value of type INTERVAL(INTEGER) whose con-
tained points are 3, 4, and 5. (A real language would probably require some
more explicit syntax, as in, for example, INTERVAL([3,5]).)

Let i1 be the interval [s1,e1] of type INTERVAL(PT ). As we have
already seen, START(i1) returns s1 and END(i1) returns e1; we additionally
define STOP(i1), which returns e1 + 1. Also, let i2 be the interval [s2,e2],
also of type INTERVAL(PT ). Then we define the following more or less
self-explanatory interval comparison operators. Note: These operators are
often known as Allen�s operators, having first been proposed by Allen in [6].

• i1 = i2 is true if and only if s1 = s2 and e1 = e2 are both true.

• i1 BEFORE i2 is true if and only if e1 < s2 is true.

• i1 MEETS i2 is true if and only if s2 = e1 + 1 is true or s1 = e2 + 1 is
true.

• i1 OVERLAPS i2 is true if and only if s1 ≤ e2 and s2 ≤ e1 are both
true.
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• i1 DURING i2 is true if and only if s2 ≤ s1 and e2 ≥ e1 are both
true.9

• i1 STARTS i2 is true if and only if s1 = s2 and e1 ≤ e2 are both true.

• i1 FINISHES i2 is true if and only if e1 = e2 and s1 ≥ s2 are both
true.

Following [2], we can also define the following useful additions to Allen�s
operators:

• i1 MERGES i2 is true if and only if i1 MEETS i2 is true or i1
OVERLAPS i2 is true.

• i1 CONTAINS i2 is true if and only if i2 DURING i1 is true.10

• To obtain the length, so to speak, of an interval, we have
DURATION(i ), which returns the number of points in i. For
example, DURATION([d03,d07 ]) = 5.

Finally, we define some useful dyadic operators on intervals that return intervals:

• i1 UNION i2 yields [MIN(s1,s2 ),MAX(e1,e2 )] if i1 MERGES i2 is
true and is otherwise undefined.

• i1 INTERSECT i2 yields [MAX(s1,s2 ),MIN(e1,e2 )] if i1 OVER-
LAPS i2 is true and is otherwise undefined.

Note: UNION and INTERSECT here are the general set operators, not
their special relational counterparts. Reference [2] calls them MERGE and
INTERVSECT, respectively.

5.7 Aggregate Operators on Intervals

In this section we introduce two extremely important operators, UNFOLD
and COALESCE. Each of these operators takes a set of intervals all of the
same type as its single operand and returns another such set. The result in
both cases can be regarded as a particular canonical form for the original set.
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9. Observe that here (for once) DURING does not mean �throughout the interval in question.�

10. INCLUDES might be a better keyword than CONTAINS here; then we could use
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The discussion that follows is motivated by observations such as the
following. Let X1 and X2 be the sets

{ [d01,d01 ], [d03,d05 ], [d04,d06 ] }

and

{ [d01,d01 ], [d03,d04 ], [d05,d05 ], [d05,d06 ] }

(respectively). It is easy to see that X1 is not the same set as X2. It is almost as
easy to see that (a) the set of all points p such that p is contained in some
interval in X1 is the same as (b) the set of all points p such that p is contained
in some interval in X2 (the points in question are d01, d03, d04, d05, and
d06 ). For reasons that will soon become clear, however, we are interested not
so much in that set of points as such, but rather in the corresponding set of
unit intervals (let us call it X3 ):

{ [d01,d01], [d03,d03 ], [d04,d04 ], [d05,d05 ], [d06,d06 ] }

X3 is said to be the unfolded form of X1 (and X2 ). In general, if X is a set of
intervals all of the same type, then the unfolded form of X is the set of all
intervals of the form [p,p] where p is a point in some interval in X.

Note that (in our example) X1, X2, and X3 differ in cardinality. It so
happens that X3 (the unfolded form) is the one with the greatest cardinality,
but it is easy to find a set X4 that has the same unfolded form as X1 and has
greater cardinality than X3 (exercise for the reader). It is also easy to find the
much more interesting�and necessarily unique�set X5 that has the same
unfolded form and the minimum possible cardinality:

{ [d01,d01 ], [d03,d06 ] }

X5 is said to be the coalesced form of X1 (and also of X2, X3, and X4 ). In
general, if X is a set of intervals all of the same type, then the coalesced form
of X is the set Y of intervals of the same type such that (a) X and Y have
the same unfolded form and (b) no two distinct members i1 and i2 of Y are
such that i1 MERGES i2 is true. Note that (as we have already seen) many
distinct sets can have the same coalesced form. Note too that the definition
of coalesced form relies�as the definition of unfolded form does not�on the
definition of the successor function for the underlying point type.

We can now define the monadic operators UNFOLD and
COALESCE. Let X be a set of intervals of type INTERVAL(PT ). Then
UNFOLD(X ) returns the unfolded form of X, while COALESCE(X )
returns the coalesced form of X. Note: We should add that unfolded form and
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coalesced form are not standard terms; in fact, there do not appear to be any
standard terms for these concepts, even though the concepts as such are cer-
tainly discussed in the literature.

These two canonical forms both have an important part to play in
the solutions we are at last beginning to approach to the problems discussed
in Section 5.3. However, the UNFOLD and COALESCE operators are still
not quite what we need (they are still just a step on the way); rather, what we
need is certain relational counterparts of these operators, and we will define
such counterparts in the section immediately following.

5.8 Relational Operators Involving Intervals

The scalar operators on intervals described in Section 5.6 are of course avail-
able for use in scalar expressions in the usual places within relational expres-
sions. In Tutorial D, for example, those places are basically WHERE clauses
on restrictions and ADD clauses on EXTEND and SUMMARIZE. Using the
database of Table 5.4, therefore, the query �Get supplier numbers for suppliers
who were able to supply part P2 on day 8� might be expressed as follows:

(SP_DURING WHERE P# = P# (�P2�) AND d08 IN DURING) {S#}

Explanation: We take the restriction of SP_DURING consisting of tuples
whose P# values are the part number P2 and whose DURING values contain
the point d08; then we project that result over just the supplier number
attribute, S#. Note: In practice, the expression �d08� here would have to be
replaced by an appropriate literal of type DAY.

As another example, the following expression yields a relation showing
which pairs of suppliers were located in the same city at the same time,
together with the cities and times in question:

EXTEND

((((S_DURING RENAME S# AS XS#, DURING AS XD)

{XS#, CITY, XD}

JOIN

(S_DURING RENAME S# AS YS#, DURING AS YD)

{YS#, CITY, YD})

WHERE XD OVERLAPS YD)

ADD (XD INTERSECT YD) AS DURING) {XS#, YS#,

CITY,DURING}
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Explanation: The JOIN finds pairs of suppliers located in the same city. The
WHERE restricts that result to pairs that were in the same city at the same
time. The EXTEND … ADD computes the relevant intervals. The final
projection gives the desired result.

We now return to Queries 3.1 and 3.2 from Section 5.3. We concen-
trate first on Query 3.1. Query 4.1 is a restatement of that query in terms of
the database of Table 5.4:

• Query 4.1: Get S#-DURING pairs for suppliers who have been able
to supply some part at some time, where DURING designates a
maximal continuous period during which supplier S# was in fact
able to supply some part.

You will recall that an earlier version of this query, Query 2.1, required
the use of grouping and aggregation (more specifically, it involved a
SUMMARIZE operation). You will probably not be surprised to learn,
therefore, that Query 4.1 is also going to require certain operations of a
grouping and aggregating nature. However, we will approach the problem of
formulating this query one small step at a time. The first is:

WITH SP_DURING { S#, DURING } AS T1 :

(there is more of this expression to come, as the colon suggests). This step
merely discards part numbers. Its result, T1, thus looks like this:

S# DURING

S1 [d04, d10 ]
S1 [d05, d10 ]

S1 [d09, d10 ]

S1 [d06, d10 ]

S2 [d02, d04 ]

S2 [d03, d03 ]

S2 [d08, d10 ]

S2 [d09, d10 ]

S3 [d08, d10 ]

S4 [d06, d10 ]

S4 [d04, d08 ]

S4 [d05, d10 ]
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Note that this relation contains redundant information; for example,
we are told no less than three times that supplier S1 was able to supply some-
thing on day 6. The desired result, eliminating all such redundancy, is clearly
as follows (let us call it RESULT):

S# DURING

S1 [d04, d10 ]

S2 [d02, d04 ]

S2 [d08, d10 ]

S3 [d08, d10 ]

S4 [d04, d10 ]

We call this result the coalesced form of T1 on DURING. Note that the
DURING value for a given supplier in this coalesced form does not necessar-
ily exist as an explicit DURING value for that supplier in the relation T1
from which the coalesced form is derived (see supplier S4 for an example).

Now, we will eventually reach a point where we can obtain this coa-
lesced form by means of a simple expression of the form

T1 COALESCE DURING

However, we need to build up to that point gradually.
Observe first of all that we were using the term �coalesced form� in the

previous two paragraphs in a sense slightly different from that in which we
used it in Section 5.7. The COALESCE operator as defined in that previous
section took a set of intervals as input and produced a set of intervals as
output. Here, however, we are talking about a different version�in fact, an
overloading�of that operator that takes a unary relation as input and pro-
duces another unary relation (with the same heading) as output, and it is the
tuples in those relations that contain the actual intervals.

Here, then, are the steps to take us from T1 to RESULT:

WITH ( T1 GROUP ( DURING ) AS X ) AS T2 :

The GROUP operator is used here to �nest� the DURING values with
respect to S# values, such that each supplier number is paired with a set of
intervals instead of with a single interval.
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T2 looks like this: S# X

S1 DURING
[d04, d10 ]
[d05, d10 ]
[d09, d10 ]
[d06, d10 ]

S2 DURING
[d02, d04 ]
[d03, d03 ]
[d08, d10 ]
[d09, d10 ]

S3 DURING
[d08, d10 ]

S4 DURING
[d06, d10 ]
[d04, d08 ]
[d05, d10 ]

Now we apply the new version of COALESCE to the relations that are
values of the relation-valued attribute X:

WITH (EXTEND T2 ADD COALESCE (X) AS Y) {ALL BUT X} AS

T3 :

T3 looks like this: S# X

S1 DURING
[d04, d10 ]

S2 DURING
[d02, d04 ]
[d08, d10 ]

S3 DURING
[d08, d10 ]

S4 DURING
[d04, d10 ]

Finally, we ungroup:

T3 UNGROUP Y
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This expression yields the relation we earlier called RESULT. In other words,
now showing all the steps together (and simplifying slightly), RESULT is the
result of evaluating the following overall expression:

WITH SP_DURING {S#, DURING} AS T1,

(T1 GROUP (DURING) AS X) AS T2,

(EXTEND T2 ADD COALESCE (X) AS Y) {ALL BUT

X} AS T3 :

T3 UNGROUP Y

Obviously it would be desirable to be able to get from T1 to RESULT in a
single operation. To that end, we invent a new �relation coalesce� operator,
with syntax as follows:

R COALESCE A

(where R is a relational expression and A is an attribute�of some interval
type�of the relation denoted by that expression).11 The semantics of this
operator are defined by obvious generalization of the grouping, extension,
projection, and ungrouping operations by which we obtained RESULT from
T1. Note: It might help to observe that coalescing R on A involves grouping
R by all of the attributes of R other than A (similarly, the expression �T1
GROUP (DURING) …,� for example, can be read as �group T1 by S#,� S#
being the sole attribute of T1 not mentioned in the GROUP clause).

Putting all of the foregoing together, we can now offer the following as
a reasonably straightforward formulation of Query 4.1:

SP_DURING { S#, DURING } COALESCE DURING

Note: The overall operation denoted by this expression is an example of what
some writers call temporal projection. To be more specific, it is a �temporal
projection� of SP_DURING over S# and DURING. (Recall that the origi-
nal version of this query, Query 1.1, involved the ordinary projection of SP
over S#.) Observe that temporal projection is not exactly a projection as such
but is, rather, a �temporal analog� of an ordinary projection.

We now move on to Query 3.2. Query 4.2 is a restatement of that query
in terms of the database of Table 5.4:
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• Query 4.2: Get S#-DURING pairs for suppliers who have been
unable to supply any parts at all at some time, where DURING des-
ignates a maximal continuous period during which supplier S# was
in fact unable to supply any part.

Recall that the original version of this query, Query 1.2, involved a relational
difference operation. Thus, if you are expecting to see something that might
be called temporal difference, then of course you are right. As you might also
be expecting, while �temporal projection� requires �relation coalesce,� �tem-
poral difference� requires �relation unfold.�

�Temporal difference� (like the ordinary difference operation) involves
two relation operands. We concentrate on the left operand first. If we unfold
the result of the (regular) projection S_DURING {S#,DURING} over
DURING, we obtain a relation�let us call it T1�that looks something like
this:

S# DURING

S1 [d04, d04 ]

S1 [d05, d05 ]

S1 [d06, d06 ]

S1 [d07, d07 ]

S1 [d08, d08 ]

S1 [d09, d09 ]

S1 [d10, d10 ]

S2 [d07, d07 ]

S2 [d08, d08 ]

S2 [d09, d09 ]

S2 [d10, d10 ]

S2 [d02, d02 ]

S2 [d03, d03 ]

S2 [d04, d04 ]

S3 [d03, d03 ]

… …………

Given the sample data of Table 5.4, T1 actually contains a total of 23 tuples.
(Exercise: Check this claim.)
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If we define a �unary relation� version of UNFOLD (analogous to the
�unary relation� version of COALESCE), then we can obtain T1 as follows:

( EXTEND ( S_DURING { S#, DURING } GROUP ( DURING ) AS X )

ADD UNFOLD ( X ) AS Y ) { ALL BUT X } UNGROUP Y

As already suggested, however, we can simplify matters by inventing a �rela-
tion unfold� operator with syntax as follows (and straightforward semantics):

R UNFOLD A

Now we can write

WITH ( S_DURING { S#, DURING } UNFOLD DURING ) AS T1 :

We treat the right �temporal difference� operand in like fashion:

WITH ( SP_DURING { S#, DURING } UNFOLD DURING ) AS T2 :

Now we can apply (regular) relation difference:

WITH ( T1 MINUS T2 ) AS T3 :

T3 looks like this: S# DURING

S2 [d07, d07 ]
S3 [d03, d03 ]
S3 [d04, d04 ]
S3 [d05, d05 ]
S3 [d06, d06 ]
S3 [d07, d07 ]
S5 [d02, d02 ]
S5 [d03, d03 ]
S5 [d04, d04 ]
S5 [d05, d05 ]
S5 [d06, d06 ]
S5 [d07, d07 ]
S5 [d08, d08 ]
S5 [d09, d09 ]
S5 [d10, d10 ]
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Finally, we coalesce T3 on DURING to obtain the desired result:

T3 COALESCE DURING

The result looks like this: S# DURING

S2 [d07, d07 ]

S3 [d03, d07 ]

S5 [d02, d10 ]

Here then is a formulation of Query 4.2 as a single nested expression:

((S_DURING {S#, DURING} UNFOLD DURING)

MINUS

(SP_DURING UNFOLD DURING))

COALESCE DURING

As already indicated, the overall operation denoted by this expression is
an example of what some writers call temporal difference. More precisely, it
is a �temporal difference� between the projections of S_DURING and
SP_DURING (in that order) over S# and DURING. Note that, like tempo-
ral projection, temporal difference is not exactly a difference as such but is,
rather, a �temporal analog� of an ordinary difference.

We are not quite done here, however. �Temporal difference� expres-
sions like the one shown in the example are required so frequently in practice
that it seems worthwhile defining a still further shorthand for them.12 To
be specific, it seems worth capturing as a single operation the sequence (a)
unfold both operands, (b) take the difference, and then (c) coalesce. Here is
our proposed further shorthand:

R1 I_MINUS R2 ON A

R1 and R2 are relational expressions denoting relations r1 and r2 of the same
type and A is an attribute of some interval type that is common to those two
relations (and the prefix �I_� stands for �interval,� of course). As we have
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more or less seen already, this expression is defined to be semantically equiva-
lent to the following:

( ( R1 UNFOLD A ) MINUS ( R2 UNFOLD A ) ) COALESCE A

The definitions of possible further �I_� operators, such as I_UNION and
I_INTERSECT, are left as an exercise for the reader.

There is an important performance point to be made in connection with
operators such as I_MINUS. Going through the actual motions of unfolding
both operands, taking the difference and then coalescing could be inordi-
nately time and space consuming. Much more efficient methods than that
are available. In fact, it is to be hoped that the optimizer would use the
efficient method for I_MINUS even when the longhand expression is given
in its place. An area for further research presents itself here, for consider a
slightly more complex expression such as

( ( ( R1 UNFOLD A ) WHERE C ) MINUS ( R2 UNFOLD A ) )

COALESCE A

where C is some arbitrary condition. If it can be proved that this is logically
equivalent to

( R1 WHERE C ) I_MINUS R2 ON A

then the optimizer might do well to realize that and take advantage of it.

5.9 Constraints Involving Intervals

It is clear that the attribute combination {S#,DURING} is a candidate key
for relvar S_DURING; in Table 5.4, in fact, we used our underlining con-
vention to show that key as the primary key specifically. (Observe that {S#} by
itself is not a candidate key, because it is possible for a supplier�s contract to
be terminated and then reinstated at a later date�see, for example, supplier
S2 in Table 5.4.) Relvar S_DURING might thus be defined as follows:

VAR S_DURING RELATION

{S# S#, SNAME NAME, STATUS INTEGER, CITY

CHAR, DURING INTERVAL (DATE)}

KEY {S#, DURING}; /* Warning�inadequate! */
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However, the KEY specification as shown here (though it is logically correct)
is also inadequate, in a sense, for it fails to prevent relvar S_DURING from
containing, for example, both of the following tuples:

S2 Jones 10 Paris [d07, d10 ]

S2 Jones 10 Paris [d02, d08 ]

As you can see, these two tuples display a certain redundancy, inasmuch as the
information pertaining to supplier S2 on days 7 and 8 is recorded twice.

The KEY specification is inadequate in another way also. To be
specific, it fails to prevent relvar S_DURING from containing, for example,
both of the following tuples:

S2 Jones 10 Paris [d02, d06 ]

S2 Jones 10 Paris [d07, d10 ]

Here there is no redundancy, but there is a certain circumlocution, inasmuch
as we are taking two tuples to say what could be better said with one:

S2 Jones 10 Paris [d02, d10 ]

It should be clear that, in order to prevent such redundancies and circum-
locutions, we need to enforce a relvar constraint�let us call it constraint
C1�along the following lines:

�If two distinct S_DURING tuples are identical except for their
DURING values i1 and i2, then i1 MERGES i2 must be false.�

(Recall that MERGES is the OR of OVERLAPS and MEETS, loosely speak-
ing; replacing MERGES by OVERLAPS in constraint C1 gives the con-
straint we need to enforce to prevent redundancy, replacing it by MEETS
gives the constraint we need to enforce to prevent circumlocution.) It should
also be clear that there is a very simple way to enforce constraint C1: namely,
by keeping relvar S_DURING coalesced at all times on attribute DURING.
Let us therefore define a new COALESCED clause that can optionally
appear in a relvar definition, as here:
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VAR S_DURING BASE RELATION

{S# S#, SNAME NAME, STATUS INTEGER, CITY

CHAR, DURING INTERVAL ( DATE ) }

KEY {S#, DURING}

COALESCED DURING; /* Warning�still inadequate! */

The specification COALESCED DURING here means that relvar
S_DURING must at all times be identical to the result of the expression
S_DURING COALESCE DURING (implying that coalescing S_DURING
on DURING will thus have no effect). This special syntax thus suffices to
solve the redundancy and circumlocution problems.13 Note: We assume for
the time being that any attempt to update S_DURING in such a way as to
leave it less than fully coalesced on DURING will simply be rejected. How-
ever, see Section 5.10 for further discussion of this point.

Unfortunately, the KEY and COALESCED specifications together are
still not quite adequate, for they fail to prevent relvar S_DURING from con-
taining, for example, both of the following tuples:

S2 Jones 10 Paris [d02, d08 ]

S2 Jones 20 Paris [d07, d10 ]

Here supplier S2 is shown as having a status of both 10 and 20 on days 7
and 8�clearly an impossible state of affairs. In other words, we have a con-
tradiction on our hands.

It should be clear that, in order to prevent such contradictions, we need
to enforce a relvar constraint�let us call it constraint C2�along the follow-
ing lines:

�If two distinct S_DURING tuples have DURING values i1 and i2
such that i1 OVERLAPS i2 is true, then those two tuples must be iden-
tical except for their DURING values.�

Note very carefully that constraint C2 is not enforced by keeping
S_DURING coalesced on DURING (and it is obviously not enforced by the
fact that {S#, DURING} is a candidate key). But suppose relvar S_DURING
was kept unfolded at all times on attribute DURING. Then:
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• The sole candidate key for that unfolded form S_DURING
UNFOLD DURING would again be the attribute combination
{S#, DURING} (because, at any given time, any given supplier cur-
rently under contract has just one name, one status, and one city).

• Hence, no two distinct tuples could possibly have the same S# value
and �overlapping� DURING values (because all DURING values
are unit intervals in S_DURING UNFOLD DURING, and two
tuples with the same S# value and �overlapping� DURING values
would thus be duplicates of each other�in fact, they would be the
same tuple).

It follows that if we enforce the constraint that {S#, DURING} is a candidate
key for S_DURING UNFOLD DURING, we enforce constraint C2 �auto-
matically.� Let us therefore define a new I_KEY clause (�I_� for interval) that
can optionally appear in place of the usual KEY clause in a relvar definition,
as here:

VAR S_DURING BASE RELATION

{S# S#, SNAME NAME, STATUS INTEGER, CITY

CHAR, DURING INTERVAL (DATE)}

I_KEY {S#, DURING UNFOLDED}

COALESCED DURING;

(meaning, precisely, that {S#, DURING} is a candidate key for S_DURING
UNFOLD DURING).14 This I_KEY specification suffices to solve the con-
tradiction problem.

Note carefully that if {S#, DURING} is a candidate key for
S_DURING UNFOLD DURING, it is certainly a candidate key for
S_DURING; it is this fact that allows us to drop the original KEY specifica-
tion for S_DURING in favor of the I_KEY specification. Note further that
{S#, DURING} can be regarded as a temporal candidate key in the sense of
Section 5.3. As we have just seen, moreover, this temporal candidate key is
indeed a true candidate key for its containing relvar (unlike the �temporal
candidate keys� discussed in Section 5.3).
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Of course, if such �I_KEY� syntax is supported for candidate keys, we
can expect it to be supported for foreign keys as well. Thus, the definition of
SP_DURING might include the following:

FOREIGN I_KEY { S#, DURING UNFOLDED } REFERENCES

S_DURING …

The intent here is that if SP_DURING shows supplier Sx was able to supply
some part during interval i, then S_DURING must show that Sx was under
contract throughout interval i. If this constraint is satisfied, then attribute
combination {S#, DURING} in relvar SP_DURING can be regarded as a
temporal foreign key in the sense of Section 5.3. (It is still not a true foreign
key in the classical sense, however.)

There is one more point to be made regarding relvar S_DURING.
Suppose we do indeed keep that relvar coalesced on DURING at all times.
Suppose too that from time to time we run a procedure that recomputes the
status of suppliers currently under contract. Of course, the procedure is care-
ful to record previous status values in S_DURING. Now, sometimes the
recomputation results in no change of status. In such a case, if the procedure
blindly tries to insert a record of the previous status in S_DURING, it will
violate the COALESCED specification. In order to avoid such violations,
the procedure will have to make a special test for �no change in status� and
perform an appropriate UPDATE instead of the INSERT that does the job
when the status does change. Alternatively, of course, we could decide not to
keep S_DURING coalesced on DURING after all�a solution that is proba-
bly not appropriate in this particular case, but might be so in other cases.

5.10 Update Operators Involving Intervals

In this section we consider some problems that arise with the use of the usual
update operators INSERT, UPDATE, and DELETE on a temporal relvar.
Consider S_DURING once again; assume the definition of that relvar includes
the �temporal candidate key� and COALESCED specifications as suggested
in the previous section. Assume too (as usual) that the current value of
S_DURING is as shown in Table 5.4. Now consider the following scenarios:

• INSERT: Suppose we discover that supplier S2 was additionally
under contract during the period from day 5 to day 6 (but still was
named Jones, had status 10, and was located in Paris, throughout
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that time). We cannot simply insert a tuple to that effect, for if we
did so the result would violate the COALESCED requirement
twice. In fact, what we have to do is delete one of the existing S2
tuples and update the DURING value in the other to [d02,d10 ].

• UPDATE: Suppose we discover that S2�s status was temporarily
increased on day 9 to 20. It is quite difficult to make the required
change, even though it sounds like a simple UPDATE. Basically, we
have to split S2�s [d07,d10 ] tuple into three, with DURING values
[d07,d08 ], [d09,d09 ], and [d10,d10 ], respectively, and with other
values unchanged, and then replace the STATUS value in the
[d09,d09 ] tuple by the value 20.

• DELETE: Suppose we discover that supplier S3�s contract was ter-
minated on day 6 but reinstated on day 9. Again, the required update
is nontrivial, requiring the single tuple for S3 to be split into two, with
DURING values of [d03,d05 ] and [d09,d10 ], respectively.

Observe now that the solutions we have just outlined to these three problems
are specific to the current value of relvar S_DURING (as well as to the particu-
lar updates desired). Consider the insert problem, for example; in general, a
tuple considered for insertion might just be insertable �as is,� or it might
need to be coalesced with a �preceding� tuple, a �following� tuple, or (as in
our example) both. Analogously, updates and deletions in general might or
might not require the �splitting� of existing tuples.

It is clear that life will be unbearably complicated for users if they are
limited to the conventional INSERT, UPDATE, and DELETE operations;
some extensions are clearly desirable. Here then are some possibilities:

• INSERT: Actually, the INSERT problem can be solved by simply
extending the semantics of the COALESCED specification on
the relvar definition appropriately. To be specific, we can permit the
INSERT to be done in the normal way and then require the system
to do any needed (re)coalescing following that INSERT. In other
words, the COALESCED specification no longer merely defines
a constraint, it also includes certain implicit compensating actions
(analogous, somewhat, to referential actions on foreign key specifi-
cations).

Unfortunately, however, extending the semantics of
COALESCED in this way is not sufficient in itself to solve the
UPDATE and DELETE problems.

Temporal Database Systems 175



• UPDATE: The UPDATE problem can be addressed by extending
the UPDATE operator as suggested by the following example:15

UPDATE S_DURING

WHERE S# = S# (�S2�)

DURING INTERVAL ( [d09,d09] )

STATUS := 20 ;

The third line here specifies the interval attribute to which the
COALESCED specification applies�DURING in the
example�and the relevant interval value�[d09,d09 ] in the
example (the syntax of that third line is basically name <attribute
name> and <interval expression>). The overall UPDATE can be
understood as follows:

a. First, identify tuples for supplier S2.

b. Next, out of those tuples, identify those where the DURING
value includes the interval [d09,d09 ] (of course, there should
be at most one such tuple).

c. If no tuple is identified, no updating is done; otherwise, the
system splits the tuple as necessary and performs the required
update.

• DELETE: The DELETE problem can be addressed by extending
the DELETE operator analogously. Our example becomes:

DELETE S_DURING WHERE S# = S# (�S3�) DURING INTERVAL

( [d06,d08] ) ;

5.11 Database Design Considerations

Our example relvars, S_DURING and SP_DURING, have so far served
us well, clearly illustrating the need for interval types and the desirability of
defining special operators to deal with interval data. Now, those two relvars
were originally �designed� by simply adding interval attributes to their snap-
shot counterparts. In this section, we question whether such an approach
to design is really a good one. More specifically, we suggest some further
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decomposition of certain temporal relvars (where by �further decomposition�
we mean decomposition beyond what classical normalization would require).
In fact, we suggest both horizontal decomposition and vertical decomposi-
tion, in appropriate circumstances.

5.11.1 �Horizontal� Decomposition

Our running example assumes, reasonably enough, that the database con-
tains historical information up to and including the present time; however, it
also assumes that the present time is recorded as some specific date (namely,
day 10), and that assumption is not reasonable at all. In particular, such an
approach suggests that whenever time marches on, so to speak, the database
is somehow updated accordingly (in our example, it suggests that every such
appearance of d10 is somehow replaced by d11 at midnight on day 10). A
different example, involving intervals of finer granularity, might require such
updates to occur as often as, say, every millisecond.

Some authorities (see, for example, [1]) advocate the use of a special
marker�we will call it now�to be permitted wherever a point value is per-
mitted. Under this proposal, the interval [d04, d10 ], shown in Table 5.4
as the DURING value for supplier S1 in S_DURING, would become
[d04, now]. The actual value of such an interval depends, of course, on the
time at which you look at it, so to speak; on day 14 it would be [d04, d14 ].

Other writers, including this chapter�s authors, regard the introduction
of now as an incautious departure from the concepts on which relational sys-
tems are based. Note that now is really a variable. The proposal therefore
leads to the notion of values containing variables, an apparent contradiction.
In any case, the only variables in a truly relational database are the relation
variables constituting that database. Here are some examples of questions
arising from the notion of now that you might care to ponder over:

• What happens to the interval [now, d14 ] at midnight on day 14?

• What is the value of END([d04, now]) on day 14? Is it d14 or is it
now ?

We believe it is hard to give coherent answers to questions of this nature.
Thus, we prefer to look for an approach that stays with widely understood
concepts.

Now, sometimes a �DURING attribute� will be used to record infor-
mation regarding the future as well as (or instead of ) the past. For example,
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we might want to record the date in the future at which a supplier�s contract
is to be terminated or considered for renewal. If such is the case, then the
S_DURING design of Table 5.4 could be used. However, this approach
will obviously not always be acceptable. In particular, it will not be
acceptable if DURING is to carry the transaction time interpretation (see
Section 5.2)�by definition, transaction times do not refer to the future.

The general problem is that there is an important difference between
historical information and information regarding the current state of affairs.
The difference is this: For historical information, the start and end times are
both known; for current information, by contrast, the start time is known,
but the end time is not (usually). This difference strongly suggests that there
should be two different relvars, one for the current state of affairs and one for
the history (after all, there are certainly two different predicates). In the case
of suppliers, the �current� relvar is S_SINCE as shown in Table 5.2, while
the �history� relvar is S_DURING as shown in Table 5.4 (except that tuples
whose DURING values have end times of d10 are omitted, the relevant
information being recorded in S_SINCE instead).

This example thus illustrates the suggested horizontal decomposition: a
relvar with a point-valued �since� attribute for the current state of affairs, and
a relvar with an interval-valued �during� attribute for the history. We remark
in passing that triggered procedures could be used to populate the history rel-
var; for example, deleting a tuple from S_SINCE could �automatically� trig-
ger the insertion of a tuple into S_DURING.

The relational UNION operator can be used to combine history and
current data into a single relation, for example:

S_DURING

UNION

( EXTEND S_SINCE ADD INTERVAL [ SINCE, TODAY() ] AS

DURING )

{ ALL BUT SINCE }

A possible disadvantage with horizontal decomposition arises if DURING
has the valid time interpretation rather than the transaction time one. In that
case, history is updatable. The update operators would be helpful here, but
there will be some occasions when a desired revision has to affect both rel-
vars. Suppose, for example, that the most recent change in some supplier�s
status is discovered to have been a mistake. Then we must not only delete
a tuple from S_DURING but also update one in S_SINCE. As another
example, if that most recent change in status was correct but made on the
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wrong day, then again the necessary revision will involve updates to both
relvars.

If SP_DURING is similarly decomposed into SP_SINCE and
SP_DURING, we need to take another look at the foreign key constraints.
In the case of SP_DURING, we have already seen (in Section 5.9) that the
relvar definition might include the following:

FOREIGN I_KEY { S#, DURING UNFOLDED } REFERENCES

S_DURING …

As we said in Section 5.9, the intent of this specification is that if supplier Sx
is shown as able to supply some part during interval i, then S_DURING
must show that Sx was under contract throughout interval i. We went on to
say that {S#,DURING} in relvar SP_DURING might now be regarded as a
�temporal foreign key.�

In the case of SP_SINCE, however, the corresponding foreign key is
only �semitemporal;� thus, we are still faced with the problem of having to
deal with the cumbersome constraint we showed in Section 5.3:

CONSTRAINT AUG_SP_TO_S_FK

IS_EMPTY (((S_SINCE RENAME SINCE AS SS) JOIN

(SP_SINCE RENAME SINCE AS SPS))

WHERE SPS SS);

Thus, horizontal decomposition does arguably lead to certain problems�the
problem of cumbersome constraints, and the problem of updating current
and history relvars �simultaneously� (as it were). At the time of this writing,
we have not seen any specific proposals for shorthands to help with either of
these problems. Perhaps further research is needed. Of course, these prob-
lems do not arise in the case where the �DURING relvar� is used for infor-
mation about the future as well as the past and present. While including the
future allows us to drop the �SINCE relvar,� it also requires us to predict the
future ending times. We note also that the problems in question do not arise
in the approach proposed in [1].

5.11.2 �Vertical� Decomposition

Even before temporal data was studied�and before SQL was invented, for
that matter�some writers argued in favor of decomposing relvars as far as
possible, instead of just as far as classical normalization would require. Some
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of those writers unfortunately damaged their cause by proposing database
designs consisting entirely of binary relvars. One criticism of this idea was
that sometimes unary relations are needed. Another was that some relvars
of degree 3 or more really are nondecomposable. For example, the relation
corresponding to the following triadic natural language predicate is non-
decomposable:

Person a owes person b x dollars.

Our usual (nontemporal) relvar S, on the other hand, certainly can be further
decomposed. Given the truth of the sentences �S1�s name is Smith,� �S1�s
status is 20,� and �S1 is located in London,� we can safely conclude the truth
of the statement implied by the first tuple shown for S in Table 5.1. We can
therefore decompose S into three binary relvars, each with S# as primary key.

The idea of decomposing all the way (as it were) is motivated by a
desire for reduction to the simplest possible terms. Now, the case for such
decomposition is perhaps not very strong in the case of relvar S; however, it
is significantly stronger in the case of relvars like S_DURING. A supplier�s
name, status, and city vary independently over time. Moreover, they proba-
bly vary with different frequency, too. For example, it might be that a sup-
plier�s name hardly ever changes, while that same supplier�s location changes
occasionally and the corresponding status changes quite often�and it might
well be a nuisance to have to repeat the name and location every time the
status changes. Besides, the name history, status history, and city history of
a supplier are probably each more interesting and more digestible concepts
than the concept of a combined name-status-city history. We therefore pro-
pose decomposing S_DURING into three historical relvars that look like
this (in outline):

S_NAME_DURING {S#, SNAME, DURING}

S_STATUS_DURING {S#, STATUS, DURING}

S_CITY_DURING {S#, CITY, DURING}

The specifications I_KEY {S#, DURING UNFOLDED} and
COALESCED DURING would apply to each of these three relvars. Note:
We would probably want to include the following �master� suppliers relvar
as well:

S#_ DURING { S#, DURING }
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This relvar would indicate which suppliers were under contract when. Again
the specifications I_KEY {S#, DURING UNFOLDED} and COALESCED
DURING would apply. In addition, the combination {S#, DURING}
would serve as a temporal foreign key in each of S_NAME_DURING,
S_STATUS_DURING, and S_CITY_DURING (and SP_DURING), cor-
responding to the temporal candidate key {S#, DURING} in relvar
S#_DURING. If it is an additional requirement that a supplier under con-
tract at any time must have a name at that time, then {S#, DURING} in rel-
var S#_DURING would constitute a temporal foreign key referencing
S_NAME_DURING.16

There is another point to be made here, too. With S_DURING as
originally defined, we have to use a fairly nontrivial expression in order to
obtain the status history:

S_DURING { S#, STATUS, DURING } COALESCE DURING

At the same time, the expression to give the much less interesting combined
history is just a simple relvar reference. In a sense, therefore, the suggested
decomposition �levels the playing field� for queries�or, rather, it makes it
easier to express the more interesting ones and harder to express the less
interesting ones.

The need to decompose S_SINCE is not so compelling. Note in par-
ticular that while (again) triggered procedures could be used to populate the
three historical relvars�for example, deleting a tuple from S_SINCE could
�automatically� trigger the insertion of tuples into S_NAME_DURING,
S_STATUS_DURING, and S_CITY_DURING�there is no need to
decompose S_SINCE in order to achieve such effects.

5.12 Further Points

In this section we briefly mention three additional points that do not con-
veniently fit into any of the main sections. We present them as questions for
the reader to consider, followed by some suggested answers.
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Question 1: In this chapter we have shown how certain operators that
apply to intervals in general can be especially useful for time intervals in
particular. Are there other possible applications of these operators, involving
intervals that are not intervals in time?

Here are some suggestions. Animals vary according to the range of fre-
quencies of light and sound waves to which their eyes and ears are receptive.
Various natural phenomena occur and can be measured in ranges in depth
of soil or sea, or height above sea level. That tea is taken between the hours of
4 P.M. and 5 P.M. is a temporal observation, but one that is significantly dif-
ferent in kind from the examples discussed previously (how, exactly?). No
doubt you can think of many similar examples on which interesting database
applications might be based.

Question 2: Are there any realistic examples of relations with more than
one interval attribute, temporal or otherwise?

Animals vary according to the range of frequencies of light and sound
waves to which their eyes and ears are receptive. Besides, as soon as we wish
to join two temporal relations R1{A,B } and R2{A,C }, where B and C are
interval attributes, we obtain a result, even if just an intermediate one, that
has more than one interval attribute.

Question 3: Can you think of an example of a relvar with an interval
attribute that you would not want to keep in coalesced form?

Actually, we have not been able to think of any compelling examples,
but perhaps the reader can do better.

5.13 Summary

We began this chapter with reference to the growing requirement for data-
bases to contain historical as well as current data. We showed that represent-
ing historical data using only timestamps leads to severe difficulties�in
particular, it makes certain constraints and certain queries very hard to deal
with�and we proposed the use of scalar (�encapsulated�) intervals as a bet-
ter approach. To be specific, we proposed an INTERVAL type generator,
together with several new operators for dealing with interval data (though
we remind you that almost all of those operators are really just shorthand).
Intervals and their related operators are useful for more than just temporal
data per se�despite the fact that our running example was based specifi-
cally on the type INTERVAL(DATE). We showed examples of temporal
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relations (and discussed temporal relvars) with attributes of this particular
type.

An interval type must be defined over an underlying point type, and an
associated precision must be specified (somehow) for that point type. A suc-
cessor function must be defined for that point type and that precision.

The operators we described include operators on intervals per se, opera-
tors on sets of intervals, and operators on temporal relations. Operators on
intervals per se include START, END, and Allen�s operators. Operators on
sets of intervals include UNFOLD and COALESCE. Operators on temporal
relations include relational versions of UNFOLD and COALESCE. We
also discussed certain specialized update operators and certain specialized
constraints for temporal relvars. We showed that most of those new opera-
tors and constraints could effectively be regarded as temporal counterparts of
familiar constructs.

We discussed two important canonical forms for sets of intervals of the
same type, the unfolded form and the coalesced form. A set of intervals of
type INTERVAL(PT) is in unfolded form if every interval in the set is a unit
interval�that is, an interval containing just one point, where a point is a
value of the underlying point type PT. A set of intervals of type
INTERVAL(PT ) is in coalesced form if no two distinct intervals in the set
overlap or meet. Both canonical forms have the advantage of avoiding certain
kinds of redundancy; the coalesced form maximizes conciseness and has very
pressing psychological advantages, while the unfolded form is the easiest to
operate on (obviating the need for the special constraints and update opera-
tors discussed in Sections 5.9 and 5.10). We showed how the concept of
these canonical forms is extended to relations with interval attributes, leading
to the important new relational operators, UNFOLD and COALESCE.

We drew attention in Section 5.11 to certain database design issues,
having to do with horizontal and vertical decomposition of certain temporal
relvars. Finally, we posed three questions concerning points that had not
conveniently arisen in any of the earlier sections. We suggested answers for
two of those questions and left the third for the reader to ponder.
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this section).

Lorentzos, N. A., and Y. G. Mitsopoulos, �SQL Extension for Interval
Data,� IEEE Trans. on Knowledge and Data Engineering, Vol. 9, No. 3,
May/June 1997.

184 Advanced Database Technology and Design



Many of the operators discussed in Chapter 5 (especially unfold and coa-
lesce) are based on the work reported in this paper. The paper also includes
many useful further references.

Before presenting their proposed SQL extension, the authors define an
Interval-Extended Relational Algebra. The proposed SQL extension is called
IXSQL (sometimes pronounced �nine SQL�) and is not specifically for time
intervals. Because the keywords INTERVAL and COALESCE are already
used in SQL for purposes other than those at hand, the authors propose
PERIOD (even for nontemporal intervals) and NORMALIZE in their place.
Their UNFOLD differs from ours in that it yields points instead of unit
intervals. As a consequence, they propose an inverse FOLD operator, which
converts points to unit intervals, then coalesces. UNFOLD, FOLD, and
NORMALIZE are proposed in the form of additional clauses on the familiar
SELECT�FROM�WHERE construct. It is interesting to note that the pro-
posed NORMALIZE ON clause is not only written last but�in what is a
departure for SQL�is also executed last. That is, the output of the SELECT
clause is input to the NORMALIZE ON clause (for good reasons).

Snodgrass, R. T. (ed.), The TSQL2 Temporal Query Language, Boston, MA:
Kluwer Academic Publishers, 1995.

TSQL2 is a set of proposed temporal extensions to SQL. To a significant
extent, the TSQL2 committee spurns the general approach of scalar and rela-
tional operators on intervals in favor of something that is more convenient in
certain special cases. Instead of simply supporting an interval type generator
and associated operators, therefore, they propose various special kinds of
tables: snapshot tables, valid time state tables, valid time event tables, transac-
tion time tables, bitemporal state tables, and bitemporal event tables.

• A snapshot table is an old-fashioned SQL table, possibly including
columns of data type PERIOD (as in IXSQL [2], this keyword is
used instead of INTERVAL because SQL already uses INTERVAL
for another purpose).

• The other kinds of tables are said to have temporal support ; temporal
support implies the existence, alongside each row, of either one
or two temporal elements. A temporal element is a set of timestamps,
where a timestamp is either a PERIOD value or a value of some
datetime data type. (Note, therefore, that the term �timestamp� is
not being used in its conventional SQL:1992 sense.)
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Temporal elements consisting of PERIOD values are specified to be coa-
lesced.17 Temporal elements do not appear as regular columns but instead are
accessed by means of special-purpose operators.

Here is a quick survey of the various kinds of tables �with temporal
support�:

• In valid time state tables and transaction time tables, each timestamp
is a PERIOD value.

• In valid time event tables, each timestamp is a value of some datetime
data type.

• A bitemporal table is one that is both a transaction time table and
either a valid time state table or a valid time event table. Each row in
a bitemporal table has two temporal elements, one for the transac-
tion time and one for the valid time. A bitemporal table can there-
fore be operated on either as a transaction time table or as a valid
time table.

TSQL2 is strongly motivated by a notion it calls temporal upward compatibil-
ity. The idea is to be able to add �temporal support� to an existing base table,
thus converting that base table from a snapshot table to a temporal table of
some kind. From then on, all regular SQL operations on that base table are
interpreted as operations on the current snapshot version of that table,18 but
now they might have new side effects. In particular, updates and deletes on
the current snapshot version result in retention of the old versions of those
rows as rows with temporal elements.

The big advantage of the TSQL2 approach accrues in connection with
what are called sequenced operations. A sequenced operation is one that is
expressed as an operation on a snapshot of the database, typically the current
snapshot, but is executed, as it were, on every snapshot. The result of a
sequenced query on valid time tables, for example, is a valid time table. The
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18. Actually, there is another difference here between TSQL2 as defined in [1] and the ver-
sion proposed to ISO. Reference [1] requires the keyword SNAPSHOT after SELECT
to indicate that a query is against the current state of each of the tables it references; the
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query itself is expressed just as if it were a query against a current snapshot
database, with the addition of a single keyword to indicate that it is a
sequenced query. The application program giving such a query has to make
special provisions to access the timestamps of the result rows.

Operations that cannot be expressed as sequenced operations some-
times require the use of rather arcane syntax. As a consequence of SQL�s fail-
ure to support tables with no columns, TSQL2 carries the restriction that a
table with temporal support must have at least one regular column in addi-
tion to its temporal element(s). Thus, queries such as the one to show periods
during which at least one supplier in Paris was under contract cannot be
expressed in sequenced form.
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6
Object-Relational Database Systems

David Anstey

6.1 Introduction

Object-relational DBs are the natural evolution of pure object-oriented and
relational DBs. The convergence of those two disparate philosophies came
about as a realization that there were inherent shortcomings in the existing
paradigms when considered individually.

Observers of information technology might wonder in amusement at
the debate that rages in the software community over the ultimate character
of object-relational DBs or object-relational DBMSs (ORDBMS).

Industry pundits are frequently critical of object-relational DBs
because they usually demonstrate a limited or nonexistent ability to perform
certain relational or object-oriented tasks in comparison to their pure coun-
terparts. A case in point would be the limited support for inheritance in
object-relational DBs, a feature fully supported in the object-oriented para-
digm. Others argue that inheritance is of such limited consequence when
employed in the storage of data and data-centric objects that its pursuit is a
waste of effort. Each point of view is almost always driven by the particular
background of the individual presenting the criticism. Because the object-
relational paradigm is a compromise of two very different architectures, the
most effective definition of its ultimate character will be devised by those
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who have an unbiased appreciation for relational and object-oriented systems
alike.

It is not an unreasonable question to ask whether ORDBMSs should
begin with a relational foundation with added object-orientation or the
reverse. From a conceptual level, it might seem that the hybridization from
either starting point would yield the same outcome, but it does not. From
the commercial perspective, relational DBs have seen far more success and
acceptance than their object-oriented DBMS (OODBMS) counterparts.
It should not be any surprise then, that virtually all major vendors are
approaching the object-relational arena by extending the functionality of
existing relational DB engines. A case in point would be IBM, Oracle, and
Informix, whose efforts to create a �universal server� began by extending
their core relational engines.

Anything that causes such controversy should be worth the effort,
which begs two important questions: First, what factors have led to the devel-
opment of object-relational DBs? And second, what characterizes an accurate
definition of an object-relational DB? The general answer to the first ques-
tion is that developers need a more robust means of dealing with complex
data elements without sacrificing the access speed for which relational DBs
have become known. To answer the second question, there are several char-
acteristics that, as a minimum, must be included to achieve a true object-
relational structure. Those characteristics are the following:

• Retrieval mechanism, that is, a query language like SQL but one
adapted to the extended features of the ORDBMS. The retrieval
mechanism must include not only relational navigation but also
object-oriented navigational support. For example, links from an
attribute to a collection type (discussed in greater detail later) must
incorporate a pointer-type scheme or mechanism.

• Support for referential integrity as it is currently practiced in the
relational paradigm.

• Support for relational features like keys, constraints, indexes, and so
on.

• Support for the object metamodel (classes, types, methods, encapsu-
lation, etc.).

• The ability to support user-defined data types.

• Support for the SQL3 ANSI standard.
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This chapter contrasts and compares the relative strengths and weaknesses
of the relational and object-oriented systems. We also discuss in detail the
importance of �blended technologies� used to support the object-relational
architecture. The discussion will include user-defined data types and set-
based versus navigational access to data. Finally, we examine some simple
modeling examples to illustrate the discussions.

6.2 A Quick Look at Relational and Object-Oriented Databases

There is no doubt that the strengths of the relational paradigm have revolu-
tionized information technology. Relational DB technology was originally
described by E. F. Codd. Not long afterward, companies like IBM and Ora-
cle created spectacularly successful DB products. The relational DB standard
is published by ANSI, with the current specification being X3H2 (SQL�92).
The new specification dealing with object extensibility has been labeled
X3H7. A relational DB stores data in one or more tables of rows and col-
umns. The rows correspond to a record (tuple); the columns correspond to
attributes (fields in the record), with each column having a data type like
date, character, or number. Commercial implementations currently support
very few data types. For example, character, string, time, date, numbers
(fixed and floating point), and currency describe the various options. Any
attribute (field) of a record can store only a single value.

Relational DBs enforce data integrity via relational operations, and the
data themselves are structured to a simple model based on mathematical set
theory. Relationships are not explicit but rather implied by values in specific
fields, for example, foreign keys in one table that match those of records in a
second table. Many-to-many relationships typically require an intermediate
table that contains just the relationships. Relational DBs offer simplicity
in modifying table structure. For example, adding data columns to existing
tables or introducing entire tables remains an extremely simple operation.
The beauty of relational DBs continues to be in its simplicity. The process of
normalization establishes a succinct clarity to the management and organi-
zation of data in the DB. Redundancies are eliminated and information
retrieval is governed by the associations created between primary and foreign
keys. Why store the same piece of information in two or more places when a
logical connection can be established to it in one place? Referential integrity
(RI) has also made an important contribution because it enables business
rules to be controlled through the use of constraints. The role of constraints
is to prevent the violation of data integrity and, thereby, its normalization.
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The origins of object-oriented DBs trace their beginnings to the emer-
gence of object-oriented programming in the 1970s. Technically, there is no
official standard for object DBs. The book The Object Database Standard:
ODMG-V2.0, under the sponsorship of the Object Database Management
Group (ODMG) (http://www.odmg.com), describes an industry-accepted
de facto standard. Object DBMSs emphasize objects, their relationships, and
the storage of those objects in the DB.

Designers of complex systems realized the limitations of the relational
paradigm when trying to model complex systems. Characteristics of object
DBs include a data model that has object-oriented aspects like class, with
attributes, methods, and integrity constraints; they also have object identifi-
ers (OIDs) for any persistent instantiation of classes; they support encapsula-
tion (data and methods), multiple inheritance, and abstract data types.

Object-oriented data types can be extended to support complex data
such as multimedia by defining new object classes that have operations to
support the new kinds of information.

The object-oriented modeling paradigm also supports inheritance,
which allows incremental development of solutions to complex problems by
defining new objects in terms of previously defined objects. Polymorphism
allows developers to define operations for one object and then share the
specification of the operation with other objects. Objects incorporating poly-
morphism also have the capability of extending behaviors or operations
to include specialized actions or behaviors unique to a particular object.
Dynamic binding is used to determine at run time which operations are
actually executed and which are not. Object DBs extend the functionality of
object programming languages like C++ or Java to provide full-featured DB
programming capability. The result is a high level of congruence between the
data model for the application and the data model of the DB, resulting in less
code, more natural data structures, and better maintainability and greater
reusability of code. All of those capabilities deliver significant productivity
advantages to DB application developers that differ significantly from what is
possible in the relational model.

6.3 Contrasting the Major Features of Pure Relational and
Object-Oriented Databases

In the relational DB, the query language is the means to create, access, and
update objects. In an object DB, the primary interface for creating and modi-
fying objects is directly via the object language (C++, Java, Smalltalk) using
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the native language syntax even though declarative queries are still possible.
Additionally, every object in the system is automatically given an OID that is
unique and immutable during the object�s life. One object can contain an
OID that logically references, or points to, another object. Those references
prove valuable when in the association of objects with real-world entities,
such as products, customers, or business processes; they also form the basis
of features such as bidirectional relationships, versioning, composite objects,
and distribution. In most ODBMSs, the OIDs become physical (the logical
identifier is converted to pointers to specific memory addresses) once the
data are loaded into memory (cached) for use by the object-oriented applica-
tion. No such construct exists in the relational DB. In fact, the addition of
navigational access violates the very principles of normalization because
OIDs make no reliance on keys.

To further explore the divergent nature of relational and object-
oriented DBs, let us look more closely at the drawbacks of each. Our discus-
sion eventually leads us to the justification behind the object-relational
paradigm.

6.4 Drawbacks of Pure Relational and Object-Oriented
Databases

There is no doubt that the strengths of the relational paradigm have revolu-
tionized information technology. If the relational paradigm is so wonderful,
then what are the shortcomings that have precipitated an interest in object-
relational? Let us address a simple question, namely, how does an asset like
RI become a liability?

Traditional relational types demand decomposition of constituent
objects to the most primitive level. That is necessary because of the declara-
tive structure of SQL. The relational design model requires data objects to
exist in a rudimentary state: numbers, characters, and dates. SQL simplified
data access because cumbersome navigational mechanisms of the past (recall
the use of linked lists and so on) were eliminated. The use of pointers, so
commonly found in hierarchical and network DBs, was not needed to estab-
lish relationships between data tables. Data access is accomplished through
the use of primary and foreign keys. The most outstanding benefit of
the declarative structure is that the actual navigation path is hidden from the
user. The work is performed by the SQL optimizer, which determines the
navigation path. Unfortunately, the declarative approach begins to fall apart
when working with complex data types, such as collection types, because
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such objects cannot be referenced by key. DB designers are increasingly chal-
lenged by today�s modern systems.

The explosive popularity of object-oriented languages, namely Java, has
precipitated a need to merge interfaces that exercise varying degrees of poly-
morphism, encapsulation, class/type structures, and behavior. Not only are
developers faced with requirements for support of new data types such as
multimedia, temporal, and video, but the nature of modern business systems
is growing more complex. A real-world example of this phenomenon is the
explosive popularity of e-commerce. Many of today�s businesses live or die
on their ability to respond to the marketplace via the World Wide Web.
Complex technological systems require the implementation of user-defined
data types. A common example of that is the requirement to store Geo-
graphical Information System (GIS) data like satellite imagery. How should
a developer associate a set-based retrieval hook like a primary key to a satellite
image? That is a concept for which object orientation is well suited but rela-
tional is not, for two reasons. First, relational set theory does not deal well
with abstraction in the physical implementation. Second, the employment of
user-defined data types and collection types requires the violation of normali-
zation rules to succeed in the relational model.

If the shortcomings of the relational paradigm make it unworthy as the
uncontested successor to the competitive DB marketplace, then what about
object-oriented DBs? Ironically, the very aspects of object orientation that
have proved to be it greatest assets, namely, its ability to encapsulate data and
behavior and its capability to exercise abstraction, make the employment of a
robust data-retrieval mechanism like SQL somewhat out of reach. Indexing,
for example, a powerful aid in data retrieval (at least in terms of performance)
for relational DBs, is next to impossible in an object-oriented DB.

We can see that the fundamental differences of the relational and
object-oriented paradigms clearly delineate the criteria for which a successful
object-relational definition will be made. In a perfect world, the new para-
digm would possess all the features and benefits of both worlds without any
of the drawbacks. While we may be a long way from a perfect solution, the
road in that direction has been engaged by increments.

So, to recap the important points of our comparison, we find that the
individual paradigms must move to the middle to meet the criteria for
object-relational DB systems. Considering relational DBMSs first, we find
the following challenges in migrating toward object orientation.

• Creating user-transparent interfaces between DBs of different ven-
dor origin.
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• Adding object-oriented layers (typically middleware components)
on top of the relational DB to facilitate the integration of the
object-oriented client interface and the DB backend.

• Redesigning the relational DBMS architecture to support multime-
dia functions. Recall the example of storing satellite imagery.

• Architectural shift from set-based query access to a blend of set-
based and navigational.

• Storage techniques to handle objects. The very nature of objects�
self-contained instantiations�currently require gateways and/or
wrappers, which perform poorly.

If we consider the perspective of moving object-oriented DBs closer to the
middle, we discover the following points.

• Object-relational DBs require a generalized object-oriented pro-
gramming language interface versus a specific, hard-coded one. Nor-
mally, object-oriented DBs are geared for a specific programming
language.

• Object-oriented DB architectures have been known historically for
their slow performance.

• Object-oriented DBs are, by design, limited in terms of scalability.

• Object-oriented DBs are not designed for high concurrency.

Now that we have a clearer understanding of the strengths and weaknesses of
the relational and object-oriented DB systems, let us explore the specifics of
what it takes to define the object-relational paradigm.

6.5 Technology Issues: Enabling Object Functionality in the
Relational World

Two important aspects must be considered in any definition of the object-
relational paradigm. The first is the logical design aspects of the architecture.
What data types will be supported? How will data be accessed? The other
aspect is how the logical architecture will arrive at a physical implementation.
For example, will the object-relational DB conform to the ANSI standard for
SQL3? If so, many decisions regarding SQL semantics, object support, and
so on will be decided. In all likelihood, SQL3 would be adopted because it is
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derived from the international standard produced by the ISO. Most vendors
find it in everyone�s interest to find a level of consistency.

From a technological standpoint, certain capabilities must be included
in the list of logical capabilities, or the DB will not measure up to the mini-
mal requirements for being object-relational. Those capabilities are behavior,
collection types, encapsulation, polymorphism, and inheritance.

6.5.1 Behavior

A method, in the purely object-oriented paradigm, is the incorporation of a
specific behavior assigned to an object or element. A method is a function of
a particular class.

6.5.2 Collection Types

An aggregate object is essentially a data-type definition that can be composed
of many subtypes coupled with behavior. In Oracle8, for example, there
are two collection types: VARRAYs and nested tables. VARRAYs are suitable
when the subset of information is static and the subset is small. A suitable
implementation of a VARRAY might be in the same context where a refer-
ence entity might be used. The contents of reference entities remain rela-
tively static and serve to validate entries in the referencing table. For example,
a reference entity called MARKETS might be created to store the valid set of
areas where a company does business. In the same way, a VARRAY might be
substituted to perform the same reference and validation.

VARRAY constructs are stored inline. That means the VARRAY struc-
ture and data are stored in the same data block as the rest of the row as a
RAW data type. Although they bear some similarity to PL/SQL tables, VAR-
RAYs are a fixed size. Altering a VARRAY requires a DDL statement. Access-
ing individual elements of a VARRAY is limited. This task can be done only
via the index within the PL/SQL code.

A nested table is essentially a table embedded within another table and
linked to a specific column. Nested tables are suitable in situations where a
table has one or more columns to be used as parameters, variables, or user-
defined data types. They are also ideal when the number of items is indeter-
minate and the storage must be directly managed. Nested tables are stored
out-of-line and have a more robust access than VARRAYs. Keep in mind,
too, that the nested table is a somewhat clumsy structure compared to a con-
ventional table with attributes. That is because the nested table becomes an
attribute for another table. The most recognizable benefit of these structures
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is that they are fast because of their use of pointers instead of relational
keys. They also provide a cleaner design alternative to many-to-many rela-
tionships than the use of associative entities. To implement a nested table, a
pointer is defined in the column that references it. If a column is designated
to reference the nested table, then all column entries for that column must
contain a pointer to a nested table of the exact same definition.

6.5.3 Encapsulation

Encapsulation is the defining of a class with data members and functions. In
other words, it is the mechanism that binds code and data together while
protecting or hiding the encapsulation from outside of the class. The actual
implementation is hidden from the user, who only sees the interface.

As an illustrative example, think of a car engine. You can open the
hood and see that it is there, and you can get in the car and start the ignition.
The engine causes the car to move. Although you can see the motor, the
inner workings are hidden from your view. You can appreciate the function
that the motor performs without ever knowing all the details of what occurs
inside or even how.

6.5.4 Polymorphism

Polymorphism is the ability of different objects in a class hierarchy to have
different behaviors in response to the same message. Polymorphism derives
its meaning from the Greek for �many forms.� A single behavior can generate
entirely different responses from objects in the same group. Within the
framework of the program, the internal mechanism determines what specific
action should take place. In C++ programming, the use of the same function
name for different purposes is known as function overloading. To experi-
enced PL/SQL programmers, that is not an alien concept. It is accepted as
good practice to develop overloaded PL/SQL packages whenever possible.
Overloaded PL/SQL packages are flexible and require little revision when
they are thought out carefully.

6.5.5 Inheritance

Inheritance is the ability of one class to inherit the properties of its ancestor.
This concept is also known as subclassing. Inheritance allows an object to
inherit a certain set of attributes from another object while allowing the addi-
tion of specific features.
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6.6 ORDBMS: A Closer Look at Characteristics in the Physical
Implementation

A philosophical solution to a problem in the information technology com-
munity is worthless if it cannot generate some physical benefit. That also
holds true for any ORDBMS. The following points illustrate important
characteristics that must manifest themselves in the object-relational DB.

The constituent elements for supporting object-oriented structures are
the following:

• User-defined types;

• Type constructors for row types and reference types ;

• Type constructors for collection types ;

• User-defined functions and procedures (methods);

• Support for large objects�binary large objects (BLOB) and charac-
ter large objects (CLOB).

Object-relational DBs must support normal built-in types defined
by SQL and user-defined types. The latter may be used in the same way as
built-in types. For example, columns in relational tables may be defined as
taking values of user-defined types, as well as built-in types. A user-defined
abstract data type (ADT) definition encapsulates attributes and operations in
a single entity. In SQL3, an ADT is defined by specifying a set of decla-
rations of the stored attributes that represent its value, the operations that
define the equality and ordering relationships, and finally the operations that
define its behavior. Operations are implemented by procedures called rou-
tines. ADTs can also be defined as subtypes of other ADTs. A subtype inher-
its the structure and behavior of its supertype. Instances of ADTs can be
persistently stored in the DB only by storing them in columns of tables.

A row type is a sequence of field name�data type pairs resembling a
table definition. Two rows are type equivalent if both have the same number
of fields, and every pair of fields in the same position has compatible types.
The row type provides a data type that can represent the types of rows in
tables, so that complete rows can be stored in variables, passed as arguments
to routines, and returned as return values from function invocations. This
facility also allows columns in tables to contain row values. A named row
type is a row type with a name assigned to it. A named row type is
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effectively a user-defined data type with a nonencapsulated internal structure
(consisting of its fields). A named row type can be used to specify the types of
rows in table definitions. A named row type can also be used to define a refer-
ence type.

A value for a reference type defined for a specific row type is a unique
value that identifies an instance of the row type in question within some base
(top-level) DB table. A reference-type value can be stored in one table and
used as a direct reference (pointer) to a specific row in another table. That
translates directly to navigational access as represented in the object paradigm
whereby links are initiated. The same reference-type value can be stored in
multiple rows, thus allowing the referenced row to be shared by those rows.
For example, an accounting table with account_t as a row type contains a cust
column with the reference type REF(customer_t). A value of this column
identifies a specific row of type customer_t. The reference type has three
important characteristics: (1) The value of a reference type is unique within
the DB; (2) it never changes as long as the corresponding row exists in the
DB; and (3) the reference type value is never reused.

Reference types are an important functionality in the object-relational
system for the following reasons:

• Set referencing. The first normal form can be violated, and a tabular
column cell can contain a pointer to repeating values. The true
benefit of this approach is that prebuilt aggregations can be created,
simplifying DB design in the long run.

• Accessing nondatabase objects in a flat file. The importance of multi-
media objects in new application systems was discussed earlier in
this chapter. Large object (LOB) data types can be stored in the DB
or on the file server. Pointers supply the means to effectively access
these constructs.

• Data relationships without referential foreign keys. Utilization of
pointers obviates the need for conventional SQL JOIN operations
because each column instance references the object table containing
the necessary aggregate data.

The introduction of reference types allows us to employ collection types.
Collection types are aggregations that appear as sets, lists, and multisets.
Using these types, columns of tables can contain sets, lists, or multisets, in
addition to individual values. Currently in SQL: 1999, a table can be defined
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as either a SET table, a MULTISET table, or a LIST table. By default, a table
is a MULTISET table. SET tables and LIST tables share all the properties
of MULTISET tables, but have the additional properties that a SET table
can contain no duplicate rows, and a LIST table has an order defined for
the rows. Each table has a data type, which consists of the specification of
whether the table is a MULTISET, SET, or LIST table, and the row type
of the table. The row type of a table is the sequence of (column name, data
type) pairs specified in the table definition. These data types can include
ADTs as well as built-in types. The only way that an ADT instance can be
stored persistently in the DB is as the column value of a table.

Tables have also been enhanced in SQL: 1999 with a subtable facility.
The purpose of this functionality is to provide a degree of inheritance to
what has been a relational concept, namely, the table. A table can be declared
as a subtable of one or more supertables (it is then a direct subtable of those
supertables), using an UNDER clause associated with the table definition.
When a subtable is defined, the subtable inherits every column from its
supertables and may also define columns of its own. The concept of subtable
is completely independent from that of the ADT. Any base table that has a
subtable or a supertable has a row identifier implicitly defined. The row iden-
tifier type for a table with supertables is a subtype of the row identifier type
defined for each supertable. An example follows.

CREATE TABLE person

(name CHAR(20),

sex CHAR(1),

age INTEGER,

spouse person IDENTITY);

CREATE TABLE employee UNDER person

(salary FLOAT);

CREATE TABLE customer UNDER person

(account INTEGER);

By including the row identifier as an argument, routines can be associated
with tables to implement object-like operations on rows, and more special-
ized routines can be associated with subtables to support polymorphism for
those operations.
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6.7 Design Issues: Capturing the Essence of the
Object-Relational Paradigm

To resolve the differences between the two paradigms, one must understand
them first. One of the striking dissimilarities between them is the handling of
abstraction and encapsulation. The dissimilarity of abstraction and encapsu-
lation handling first manifests itself in detailed analysis of the data flow dia-
gram. Because of the unique qualities of abstraction and encapsulation that
object-oriented structures bring to the DB, the data flow and store defini-
tions must reflect the aggregate character of complex data types. Data flow
diagrams help in defining the function-to-entity and function-to-attribute
associations.

At the most general level, data structure within the data flow diagram is
completely described, but as substantive detail is added, the developer must
determine what DB mechanisms will be utilized (e.g., reference entity versus
collection type). Because today�s DB vendors are supporting complex data
types, the effort of translating the function-to-attribute association becomes
more complex. Nested tables and aggregate objects require a violation of nor-
malization rules to associate them with source tables.

Inheritance is also an important point of departure for the relational
and object-oriented paradigms. Inheritance is a natural characteristic of
object-oriented design because of its treatment of object types and classes.
Recall the earlier discussion that classes can be defined to describe the general
or detailed characteristics of an object type. Recall also that a class does not
identify an instance of an object but only its properties. That ability to cate-
gorize types is extremely useful in modeling because a hierarchical progres-
sion of properties can be defined, thus emulating objects in the real world.
The relational paradigm is incapable of employing true inheritance as just
described here.

Complex data object implementation calls for a technique known as
persistent storage. Persistent storage is the concept that an object will have a
physical location on the storage media even when the object is not in use. For
example, an object called PERSONNEL_HISTORY might be created to store
attributes such as skill level, specialty, and department. In the object meta-
model, such a construct would become an abstract type physically residing in
storage. In the relational world, a column must contain a single value. Com-
plex data typing of the variety proposed by persistent storage is not possible
under the relational model. In the relational metamodel, the individual
attributes might exist in different tables and would be retrieved via query to
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assemble the aggregate data. No physical storage of the aggregate would take
place except for the atomic elements spread about in various tables. Ad hoc
SQL proves to be counter to the concept of encapsulation because the inher-
ent protection afforded an object can be violated through the use of a DML
statement.

In the relational paradigm, such problems are handled by creating con-
straints on the tables. Constraints vary from encapsulation for two reasons.
First, constraints are not restricted to maintaining the behavior of a single
object, and, second, they are external to the property set for the aggregated
data type. The object paradigm defines more types of relationships than the
relational one. Object relationships are primarily unidirectional in nature.

That means any efforts to reconcile these disparate methodologies must
address the impedance mismatch by mapping the object relationships to
those of the relational paradigm. Such a reconciliation should address the
following:

• Relationship name, type, and cardinality;

• Implied direction of the relationship;

• The simplest object type to store the data (single values utilize stan-
dard relational data types; aggregates and complex data use collec-
tion types).

This pointed treatment of relationships, particularly with respect to direc-
tionality, is required to properly map the logical expressions from the DB
design to the physical implementation in the DB. Business object relation-
ships from the DB object model can specify an implementation in only
one direction or in both directions. For example, consider CUSTOMER
and BANK ACCOUNT tables. You will find that a CUSTOMER can
implement a BANK ACCOUNT as an attribute. Conversely, a BANK
ACCOUNT might incorporate multiple CUSTOMERS. In each case, the
individual relationships do not infer or negate the possibility of the other.

From an academic perspective, it is often a simple task to describe the
proper means to implement a methodology or technique. In this case, is
there a set of real-world steps that can assist the developer in executing the
correct object type with the corresponding relationship? The answer is a sim-
ple yes, so long as the rules as not interpreted too inflexibly.

A typical effort in Oracle8 to decipher the implementation of object
types to relationships uses the following questions to make the necessary
assertions.
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1. What is the specified direction asserted for the relationship?

2. What is the cardinality of the relationship?

3. Is the cardinality many?

4. What data type is favored based on the response to question 3?

5. What is the cardinality of the relationship in the other direction (if
applicable)?

6. Is embedding or referencing used to satisfy the relationship?

If the response to question 1 is unidirectional, then DDL is used to execute
the task. That also means that the answer to question 6 is �no.� To clarify the
intent behind question 6, we should define embedding and referencing. Ref-
erencing is used when an instance of an object can be used by one or more
objects at the same time. For example, one company could be a client, a sup-
plier, and a distributor. The company holds three responsibilities, but the
fact remains that all three responsibilities are executed by one company.
Embedded relationships are relationships in which the object is not visible to
the rest of the system or in which the object has no relative significance out-
side its relationship. For example, a shipping manifest can contain numerous
line items. Outside the context of shipping manifest, the line items lose
meaning.

Continuing on with the questions, if the answer to question 1 is bidi-
rectional, then the cardinality of the relationship type must be determined in
question 2. If a �many� relationship is indicated, then the answers to ques-
tions 3 and 4 determine that an aggregation (collection type) is needed. The
description of collection types given earlier in the chapter should be used
to determine the most proper type for use in a given situation. Question 5
determines the bidirectional nature of the relationship. If the relationship is
unidirectional, then there is no effect on whether embedding or referencing
is used.

Let us next examine a situation that helps to reinforce the advantages of
the object-relational paradigm.

6.8 An Object-Relational Example

To properly illustrate the nature of object-relational systems in a real-world
context, we will examine a small hypothetical company. ABC Corporation
will be revisited several times in this chapter so that different aspects of
object-relational development can be described. This first installment
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describes the target system and explains why it is a good candidate for an
ORDBMS.

ABC Corporation produces telephonic systems to the business com-
munity. All systems delivered to clients are complete and ready to run with-
out further modification from the user. Each system comprises a hardware
and a software component. The hardware component may contain an assort-
ment of parts. Some systems, depending on their complexity, include addi-
tional complex devices. A typical configuration has a Pentium-based server, a
device known as a multiplexer, and one or more networking devices. The
exact functionality of each piece is not germane to the understanding of this
example, only that certain parts are required. An additional fact to bear
in mind is that the combinations of hardware parts that will work together
properly are almost limitless.

The software component is provided as a single package, but it has
three integral parts. The first part is the operating system. The second is the
code or mechanisms that cause the telephonic system to function. The last
part is a series of drivers that facilitate the subtle differences between the
operating systems so the code mechanism can operate problem free.

The first DB requirement facing ABC Corporation is to create a DB
schema that will properly maintain all aspects of the telephony systems pro-
duced while enforcing the business rules of what parts will go with which.
Briefly, the general rules can be summarized as follows:

• Each full system comprises a hardware and a software component.

• Each hardware component has a list of required parts; the other
parts are optional, depending on the system to be delivered.

• Each software component requires three parts, which must be cor-
rectly matched.

The illustration in Figure 6.1 shows the logical representation of this model-
ing problem.

This example introduces two crucial concepts to the DB design prob-
lem that are classic problem areas in the relational model: class hierar-
chies and inheritance/versioning (the concept of one or more distinct
instantiations from a single abstract class). The two criteria may sound simi-
lar, but there are aspects that make them unique.

Hierarchical structures in DB design have often been referred to as
�Is-a� or �Is-a-type-of � relationships. These relationships were so termed
because they provided a means to express different variants of the same
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entity. That means each variant could have different attributes and methods.
Hierarchical relationships infer a supertype or subtype association between
two or more objects. In the case of ABC Corporation, the pattern is clear that
we will be modeling systems, parts of systems, and parts of parts.

As a starting point for our modeling example (and a fundamental
construct in object-oriented methodology), we will create a base class, which
eventually leads us to a class structure. A base class equates to what is often
termed a generalization. The base class contains the high-level properties and
supporting functions common to all object classes. In object-oriented terms,
the class is a logical abstraction that describes the characteristics that an
object type will assume. Classes do not contain or represent actual instances
of objects. Instead, objects take on the properties of classes under which they
have been defined.

Inheritance is the essential ingredient that allows object-oriented pro-
grammers to create class hierarchies. The integration of true inheritance has
never been possible before in the relational environment, because the physi-
cal representations of class objects in the relational structure lacked
persistence.

To practice the concept of inheritance, we must establish one or more
derived classes to our base class. The underlying concept behind the derived
class is that of a specific base class implementation. The derived class retains
all attributes and functions of the base class, but it can also specify additional
properties and functions of its own. Derived class definitions can also over-
ride default properties stipulated in the default class so long as those proper-
ties are public. The relationship between the base class and the newly created
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derived class represents a generalization-specialization structure (gen-spec
structure, for short). A gen-spec structure must pass a reasonableness test to
be valid. If the generic statement �specialization is a kind of generalization�
holds true, then the gen-spec structure is valid. To address the distinctive
nature of specific objects under the base class, it is necessary to define
specializations or derived classes. The process of creating derived classes can
be compared to the activity that takes place in a functional decomposition.
The creation of a class tree, or hierarchy, is the first step in establishing a
pattern of inheritance. Inheritance is essentially the process of passing down
general traits of a parent object to its children. DB developers will quickly
recognize this relationship as being synonymous with the supertype-subtype
construct used so often in data modeling. The most striking dissimilarity
between class inheritance in object-oriented programming and supertype-
subtype relationships in the relational world is that normalization eliminates
duplicated data types while inheritance passes all elements down intact. That
has to do with the fact that object-oriented class objects represent persistent
elements whose behaviors are encapsulated into the class. In Oracle8, meth-
ods are now coupled with data elements, bringing the object-relational
behavior in closer equivalence to that of object-oriented programming
languages.

Referring back to Figure 6.1 and taking into consideration the discus-
sion so far, we can see that these statements are true:

• The hardware component is a collection of parts.

• Each hardware part can be first classified by type/function, then by
version (e.g., Pentium versus Pentium II).

• Versions of the software components (operating system, code, driv-
ers) are variants of a base class.

• Each new combination of software components creates a new vari-
ant of a base software component.

It was easily demonstrated how simply this example was analyzed. We will
reveal the difficulties in modeling that schema in the relational world. Before
doing so, however, let us discuss a couple of important real-world aspects of
DB design.

While the obvious purpose of this chapter is to give readers an essential
understanding of the object-relational paradigm, no matter what method-
ology is chosen for implementation, simplicity is the key. Always strive to
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create the simplest, most straightforward, and easiest to maintain system. As
an individual�s knowledge increases (regardless of his or her technical disci-
pline), there is a tendency to apply advanced techniques in places where they
may not be needed. Remember to always seek out the simplest way.

Another point to keep in mind is that every DB design is a balance
between maintainability and performance. Usually an increase in one yields
a decline in the other. Always bear in mind what is most important to the
client for whom you are designing a system.

6.9 The ABC Corporation Example

Now that we have examined the character of the object-relational paradigm,
let us return to ABC Corporation. Understanding what we know about the
functionality at our disposal, we can see that the telephony system can be
logically depicted as shown in Figure 6.2.

The hardware component is an aggregation of three principal parts.
Each part is abstractly represented as a class. For example, the server class
is the generalized representation of all servers that can be configured in the
telephony system. Figure 6.2 illustrates that there are multiple versions, or
instances, of server. These simple facts also pertain to the other hardware
components. Note that the multiple combinations for hardware parts create
multiple versions of the hardware component. The association between dif-
ferent part combinations describing unique hardware component configura-
tions is what creates the hierarchical nature of this DB example. SERVER,
MX, and NETWK represent the base classes responsible for defining the
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class hierarchy of distinct instances. All of this also applies to how the soft-
ware component is modeled.

An interesting aspect of the software component is that multiple drivers
are needed to support a single code-operating system combination. That
leads us to understand that this is possibly a good collection-type candidate.
A good analytical understanding of this design challenge is taking place. We
have identified several opportunities for using object-relational techniques
where conventional approaches (pure relational) would have been unman-
ageable. The one challenge that has not yet been addressed is how one goes
about visualizing or modeling the object-relational model, an important fact
that has not gone unnoticed in the DB design community.

6.10 Summary

The first step in developing the object-relational DB system is understanding
the inherent strengths and weaknesses of its predecessors and combining the
most noteworthy elements into one system. The object-relational paradigm
faces a number of challenges because it must meld together characteristics of
two diametrically opposed architectures.

The first object-relational DBs met most, if not all, relational criteria
while addressing only 30�50% of the object-oriented spectrum. User-
defined data typing, collection types, rudimentary support for behavior, and
some encapsulation were addressed. The most anxiously awaited features,
namely full support for inheritance, are needed to convince skeptical devel-
opers that object-oriented DBs have come into their own.

Some of the technological factors that will contribute to achieving total
object-relational character are now entering the market. Oracle�s release of 8i
provides full support for Java. As a matter of fact, Java is on equal ground
with PL/SQL in the DB kernel. The adoption of a true object-oriented lan-
guage is the first step in achieving the last milestone in this new paradigm.
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7
Object-Oriented Database Systems

Elisa Bertino and Esperanza Marcos

7.1 Introduction and Motivation

In spite of the fact that relational databases still hold first place in the market,
object-oriented databases are becoming more widely accepted every day.
Relational databases are suitable for traditional applications supporting man-
agement tasks such as payroll and library management. Recently, as a result
of hardware improvements, more sophisticated applications have emerged.
Engineering applications, such as computer-aided design/computer-aided
manufacturing (CAD/CAM), computer-aided software engineering (CASE),
and computer-integrating manufacturing (CIM); office automation systems;
and multimedia systems, such as GIS and medical information systems, can
be characterized as consisting of complex objects related to one another
by complex interrelationships. Representing such objects and relationships in
the relational model means that the objects must be decomposed into a large
number of tuples. A considerable number of joins are necessary to retrieve an
object when tables are too deeply nested; thus, performance is dramatically
reduced. Object-oriented databases are quite suitable to store and retrieve
complex data by allowing users to navigate through the data [1].

Another relevant problem of traditional database systems is that there
is usually a complete mismatch between the modeling constructs typical
of data models and the data structures provided by programming languages.
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Whenever application objects need to be made persistent by storing them
in a database, a mapping is required from the programming language data
structures onto the data structures of the data model. Sometimes, such map-
ping wastes over 50% of the development time for applications and gives rise
to several program bugs [2].

The first problem can be partially solved by object-relational technol-
ogy, that is, relational systems extended with new capabilities, such as triggers
(see Chapter 3) and object-oriented capabilities (see Chapter 6). Nonethe-
less, object-relational technology is not the best solution to the impedance
mismatch problem. In addition, the difficulty in actually integrating the rela-
tional and the object-oriented models has made the market acceptance of a
common object-relational model difficult.

Object-oriented databases solve those problems by supporting complex
objects and integrating database technology with the object-oriented para-
digm. Both object-oriented databases and programming languages support
the same data model, removing the impedance mismatch of the relational
model.

This chapter reviews the state of the art in object-oriented databases by
presenting the main concepts of the object-oriented data model (Section 7.2)
and a graphical representation of an object-oriented database schema
(Section 7.3); the current standard for object-oriented database systems, the
ODMG (Section 7.4); the current state of the object-oriented database tech-
nology, with some examples in different commercial products (Section 7.5);
and finally some guidelines for object-oriented database design through an
example (Section 7.6).

7.2 Basic Concepts of the Object-Oriented Data Model

Despite the fact that the object-oriented approach is widely used today and
is characterized by large industrial efforts, there is no consolidated standard
definition of an object model. Therefore, a large number of variations can
be found when we compare the various object-oriented programming lan-
guages. Even though an object data model standard, known as the ODMG
standard [3], has been recently developed, OODBMSs are not an exception;
therefore, there is no consensus about the specific features of an object-
oriented data model. It is possible, however, to identify some basic concepts,
collectively referred to as core model. The core model is powerful enough
to satisfy many of the requirements of advanced applications and moreover
can be used as the basis for discussing the main differences with respect to
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conventional data models, like the relational model. It also serves as a basis
for discussing the data models of the various OODBMSs.

The core model is based on five fundamental concepts.

• Each real-world entity is modeled by an object. Each object is associ-
ated with a unique identifier.

• Each object has a set of instance attributes (instance variables) and
methods. The value of an attribute can be an object or a set of
objects. This characteristic allows arbitrarily complex objects to be
defined as aggregations of other objects. The set of attributes of an
object and the set of methods represent, respectively, the object
structure and the object behavior.

• The attribute values represent the object�s state. The state of an
object is accessed or modified by sending messages to the object to
invoke the corresponding methods.

• Objects sharing the same structure and behavior are grouped into
classes. A class represents a template for a set of similar objects. Each
object is an instance of some class.

• A class can be defined as a specialization of one or more classes. A
class defined as a specialization is called a subclass and inherits attrib-
utes and methods from its superclass(es).

There are many variations with respect to those five concepts, as we will
see in the remainder of this section. We use them mainly as a way to organize
the discussion rather than as a definition of the object-oriented paradigm.

An OODBMS can be defined as a DBMS that directly supports a
model based on the object-oriented paradigm. Like any DBMS, it must pro-
vide persistent storage for objects and their descriptors (schema). The system
must also provide a language for schema definition and for manipulation
of objects and their schema. In addition to those basic characteristics, an
OODBMS usually includes a query language and the necessary database
mechanisms for access optimization, such as indexing and clustering, con-
currency control and authorization mechanisms for multiuser accesses, and
recovery. The remainder of this section elaborates on the basic concepts of an
object-oriented data model.
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7.2.1 Objects and Object Identifiers

In object-oriented systems, each real-world entity is uniformly represented
by an object. Each object is uniquely identified by an OID. The identity of
an object has an existence that is independent of its value. For example, the
OID for a person, Bob, is the same even if Bob changes the color of his hair
and his eyes, changes his name, changes his sex, and so on. Bob is identified
along his life by an identifier that is unique, constant along his life, and inde-
pendent of the values taken by his attributes; this identifier is the OID. As
another example, think of twins with exactly the same physical characteris-
tics: the color of their hair and their eyes, their sex, their weight, and so on.
In spite of their common attributes, they are two different objects in the real
world, and they should be the same in the database. The use of OIDs allows
objects to share subobjects and makes the construction of general object net-
works possible.

The notion of object identifier is different from the concept of key in
the relational data model. A key is defined by the value of one or more attrib-
utes and therefore can undergo modifications. By contrast, two objects are
different if they have different OIDs, even if all their attributes have the same
values. Back to the example of the twins, a possible primary key is the name,
but the name could change and even become the same for both of them.
That problem is solved by the OID.

The notion of object identity introduces at least two different notions
of equality among objects. The first, denoted here by an equals sign (=), is
the identity equality: Two objects are identity-equal, or identical, if they have
the same OID. The second, denoted here by two equals signs (==), is the
value equality: Two objects are value-equal if all their attributes that are val-
ues are equal, and all their attributes that are objects are recursively value-
equal. That is, the two objects have the same information content, even if
they have two different identifiers. Two identical objects are also value-equal,
but two value-equal objects are not necessarily identical.

Figure 7.1 shows an example of different objects that are equal. The
figure also introduces a graphical notation for objects. Each object is repre-
sented as a box, with two regions: The upper region contains the object�s
OID; the second region contains the object�s attributes. In the graphical rep-
resentation, we use logical OIDs, consisting of the name of the object�s class
and of a numeric identifier unique within the class. For example, Window[i]
denotes the i th instance of the class Window. For each attribute, the box con-
tains the name and the value. When the value is a reference to another object,
the attribute contains the OID of the referenced object. For example, attribute
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�title� of object Window[i] contains as value the OID Title[j] to denote that
Window[i] references object Title[j]. Note that both Window[i] and Win-
dow[k] are equal; indeed, they have the same values for attributes �x,� �y,�
�width,� and �height.� Moreover, these objects reference, through the attrib-
ute �title,� two distinct objects, Title[j] and Title[h], which are in turn equal.

Different approaches for building OIDs can be devised. For example,
in the approach used in the Orion system [4], an OID consists of the pair
<class identifier, instance identifier>, where the first element is the identifier
of the class to which the object belongs, and the second identifies the object
within the class. The complete definition of attributes and methods for
all instances of a class is factorized and kept in an object representing the
class itself (called class-object). This approach has the major disadvantage of
making object migration from one class to another (e.g., in cases of object
reclassification) difficult, even impossible, since that would require the modi-
fication of all OIDs. Therefore, all references to migrated objects would be
invalidated. In another approach, used, for example, in the GemStone sys-
tem, the OID does not contain the class identifier. The identifier of the class
to which an object belongs in general is kept as control information stored in
the object itself.

In both previous approaches, the OID is logical, that is, it does not
contain any information about the object location on secondary storage.
Therefore, a correspondence table exists mapping OIDs onto physical
addresses. A different approach, based on physical identifiers, is used in O2

[5], where each object is stored in a WiSS1 record and the OID is the record
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Window[i]

x:2
y:3
width: 10
height: 20
title: Title[j]

Window[k]

x:2
y:3
width: 10
height: 20
title: Title[h]

Title[j]

longname: Database menu
shortname: DB

Title[h]

longname: Database menu
shortname: DB

Figure 7.1 An example of equal objects with different identifiers.

1. O2 uses the Wisconsin Storage Subsystem (WiSS) as a storage subsystem.



identifier (RID). The RID does not change even if the record is moved to a
new page, for example, when the record grows too big for the page in which
it resides. The approach used in O2 has the main advantage that persistent
OIDs are provided supporting a fast access to objects, since there is no need
of mapping the OID on the physical location. The major disadvantage is that
a temporary OID must be assigned to an object created on a site different
(e.g., on a workstation) from the object store site.

7.2.2 Aggregation

The values of an object�s attributes can be other objects, both primitive and
nonprimitive. When the value of an attribute of an object O is a nonprimi-
tive object O ′, the system stores the OID of O ′ in O. When complex values
are supported by the model, the system usually stores in the object attribute
the entire complex value.

Different constructors can be used to define complex objects and val-
ues. A minimal set of constructors that should be provided by a model
includes set, list, and tuple [6]. In particular, the set constructor allows multi-
valued attributes and set objects to be defined. The list is similar to the set,
but it imposes an order on the elements. Finally, the tuple constructor is
important because it provides a natural way of modeling properties of an
object. As discussed in [6], the object constructors should be orthogonal, that
is, any constructor should be applicable to any object, including, of course,
objects constructed using any constructor whatsoever.

The notion of composite objects is found in some data models. As
already stated, a complex object may recursively reference any number of
other objects. The references, however, do not imply any special semantics
that may be of interest to different classes of applications. One important
relationship that could be superimposed on the complex object is the part-of
relationship, that is, the concept that an object is part of another object. A set
of component objects forming a single entity is a composite object. A similar
concept is found in [6], where two different types of references are defined:
�general� and �is-part-of.� The �part-of� relationship among objects has
some consequences on object operations. For example, if the root of a com-
posite object is removed, all component objects are deleted. Moreover, in
some models of composite objects, an object can be part of only one object,
that is, the �part-of� relationship imposes an exclusivity constraint. In some
systems, a lock on the root of a composite object is propagated to all the com-
ponents. Some extended relational models and object-oriented programming
languages (e.g., the Loops language) also provide the notion of composite
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objects. Note, however, that in some models and papers the term complex
object is used with the meaning of composite object.

7.2.3 Methods

Objects in an object-oriented database are manipulated by the use of meth-
ods. In general, a method definition consists of two components. The first
is the method signature, which specifies the method name, the names and
classes of the arguments, and the class of the result, if there is one. Some sys-
tems, like Orion [4], do not require that the class of the arguments and of
the results be declared. That happens when type checking is executed at run
time; therefore, there is no need to know that information in advance. The
second component is the method implementation, which consists of code
written in some programming language. Different OODBMSs use different
languages for method implementation. For example, both Vbase and O2

use the C language, while Orion uses Lisp. GemStone uses OPAL, which
is nearly identical to Smalltalk. ObjectStore uses C++. In addition to the
method signature and implementation, other components may be present in
a method definition. For example, in Vbase, a method definition may specify
in addition to the base method some trigger methods and exceptions that can
be raised by the method execution.

Often in object-oriented programming languages, an object attribute
cannot be directly accessed. The only access to attributes is by invoking the
methods available at the object interface (strict encapsulation). In databases, a
lot of applications simply read or write attribute values. Queries are often
expressed as a boolean combination of predicates on attribute values. There-
fore, most OODBMSs provide direct access to attributes by means of
system-defined methods. Examples of these methods are get and set of Vbase,
which are used to read and write, respectively, a given attribute. These meth-
ods, being provided as part of the system, have an efficient implementation
and save the users from writing a large amount of trivial code. Therefore,
some systems (e.g., Vbase and the system described in [7]) allow users to
redefine the implementation of these methods for a given attribute. Each
time the attribute is accessed, the user-defined method implementation,
instead of the system-defined implementation, is invoked.

In OODBMSs characterized by distributed or client/server architec-
tures, an important architectural issue concerns the site where an invoked
method is executed. In GemStone [8], for example, the application designer
has the option of moving an object, on which a method has been invoked,
to the workstation (and then execute the method locally) or executing the
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method remotely on the server. A similar option is provided in the O2

system. In general, the choice concerning the method execution site may be
complex, because different factors must be taken into account, such as the
complexity of the manipulations executed on the object, the references made
to other objects during method execution, the network bandwidth, and the
competition for the network and the server.

7.2.4 Classes and Instantiation Mechanisms

The instantiation is the first reusability mechanism (the second is inheri-
tance) in that it makes it possible to reuse the same definition to generate
objects with the same behavior and structure. Object-oriented data models
provide the concept of class as the instantiation basis. A class is an object that
acts as a template. As such, a class specifies the intended use of its instances
by defining

• A structure that is a set of instance attributes (or instance variables);

• A set of messages that define the external interface;

• A set of methods that are invoked by messages.

In this sense, the class can be viewed as a specification (intention) for its
instances. Because the class factorizes the definitions of a set of objects, it is
also an abstraction mechanism.

Given a class, it is possible to generate through the instantiation mecha-
nism objects that �answer� all messages defined in the class.

So far, we have implicitly assumed that an object is an instance of only
one class. However, in some models, the instances of a class C are also mem-
bers of the superclasses of C. Note that, as in [9], we distinguish between
the notions of �instance of a class� and �member of a class.� An object is
an instance of a class C if C is the most specialized class associated with the
object in a given inheritance hierarchy. An object is a member of a class C
if it is an instance of some subclass of C. Most object-oriented data models
restrict each object to be an instance of only one class, even though they
allow an object to be a member of several classes through inheritance. How-
ever, object-oriented data models [10] can be found allowing an object to be
an instance of several classes.

In addition to acting as a template, in some systems the class denotes
also the collection of all its instances, that is, its extension. That is important
because the class becomes the base on which queries are formulated. The
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concept of query has a meaning only if applied to sets of objects. In systems
where the class does not have this extensional function, the model provides
set constructors for object grouping. Queries are then issued on the sets
defined by the constructors. In that respect, there are differences among the
various systems (see Section 7.5).

In general, the decoupling of the intentional notion from the exten-
sional notion is correct and provides increased flexibility. The major draw-
back is that the data model becomes more complex compared to a simpler
model in which the class acts both as object template and as object extent.

7.2.5 Inheritance

The concept of inheritance is the second reusability mechanism. It allows a
class, called a subclass, to be defined starting from the definition of another
class, called the superclass. The subclass inherits the superclass attributes,
methods, and messages. In addition, a subclass may have specific attributes,
methods, and messages that are not inherited. Moreover, the subclass may
override the definition of the superclass attributes and methods. Therefore,
the inheritance mechanism allows a class to specialize another class by
additions and substitutions. Inheritance represents an important form of
abstraction, because the detailed differences of several class descriptions are
abstracted away and the commonalties factored out as a more general
superclass.

A class may have several subclasses. Some systems allow a class to have
several superclasses (multiple inheritance), while others impose the restric-
tion of a single superclass (single inheritance).

The inheritance mechanism allows the implementation of an inherited
method to be overridden in the subclass. That is accomplished by simply
defining in the subclass a method with the same name and a different imple-
mentation. Each time a message is sent to an instance of the subclass, the
implementation local to the subclass will be used to execute the method.
That results in a single name denoting different method implementations
(overloading). This unit of change (i.e., the entire method) may be, however,
too coarse, since in some situations it may be desirable to refine the object
behavior rather than completely change it. Mechanisms to accomplish that
have been proposed in the framework of object-oriented programming lan-
guages and adopted in several OODBMSs.

Often the notion of subtyping is also found in OODBMSs. It is impor-
tant, however, not to confuse inheritance with subtyping, even if there is
a unique mechanism providing both functions. For the purpose of this
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discussion, we briefly characterize the difference between the two concepts
as follows. Inheritance is a reusability mechanism that allows a class to be
defined from another class, by possibly extending and/or modifying the
superclass definition. Instead, a type T is a subtype of a type T ′ if an instance
of T can be used wherever an instance of T ′ is used. Therefore, subtyping is
characterized by a set of rules ensuring that no type violations occur when the
instance of a subtype T is used in place of an instance of a supertype of T.
Note that the fact that a class C is a subclass of a class C ′ does not necessarily
imply that C is also a subtype of C ′. For example, to reuse common attrib-
utes and methods (name, address, telephone, e-mail, fax, etc.), a class com-
pany can be defined as a subclass of the class person. It is obvious that, by
contrast, the company type cannot be a subtype of the person type; in such
a case, the subclassing is just a reusability mechanism. Subtyping, however,
influences inheritance, because it may restrict the overriding and impose con-
ditions on multiple inheritance, so that the subtyping rules are not violated.
An example of restriction on overriding is to require that, when the domain
of an attribute is redefined in a subclass, the domain be a subclass of the
domain associated to the attribute in the superclass. A discussion of inheri-
tance and subtyping is presented in [11].

7.3 Graphical Notation and Example

An object-oriented database schema can be represented as a graph. In such a
representation, a node (denoted by a box) represents a class. A class node
contains the names of all instance attributes and methods. The latter are
underlined. Finally, the class-attributes (and methods) are distinguished
from the instance-attributes (and methods) by enclosing them in an ellipse.
Nodes can be connected by three types of arc. An arc from class C to C ′
denotes different relationships between the two classes, depending on the arc
type. A normal arc (i.e., nonbold and nonhatched) indicates that C ′ is the
domain of an attribute A of C, or that C ′ is the domain of the result of
a method M of C. A bold arc indicates that C is the superclass of C ′. A
hatched arc indicates that C is the class of an input parameter for some
method M of C ′.

An example is presented in Figure 7.2. We assume that in the Team
class there is a method, �project-budget.� This method is applied to a team
and receives as input parameter a project; the method output is an integer
that represents the amount of budget allocated by the team on the project.
Moreover, we assume that a class-attribute, called �maximum-salary,� is

220 Advanced Database Technology and Design



defined for class Permanent. This attribute defines the maximum amount of
monthly wage that can be assigned to a permanent employee without requir-
ing special authorizations and checkings. The class-attribute �maximum-
wage� of class Consultant has a similar meaning.

7.4 ODMG Standard

As mentioned at the beginning of Section 7.2, there is no consolidated stan-
dard definition of an object model. Object-oriented programming languages
and object-oriented database systems support different object models. To
solve the problem, the ODMG, an organization (www.odmg.org) whose
members are producers of several various commercial OODBMSs, proposed
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Figure 7.2 A database schema example.



an object database standard. The objective of the ODMG is to unify the core
object model of the different OODBMS. Currently, the voting members of
the group are Ardent Software Inc., Ericsson, Object Design Inc., Objec-
tivity Inc., POET Software, Sun Microsystems, and Versant Corporation.
Other database vendors, such as GemStone Systems Inc., participate as
reviewers or chairs.

The first release of the standard, ODMG-93, came out in 1993 and
was revised in Release 1.1 [12]. Release 2.0 of the standard [3], which is the
last one at the time of this writing, defines an object model on the basis of
the core object model proposed by the Object Management Group (OMG).
An object definition language (ODL) supports this model. ODL is not a
full programming language but rather an independent definition language
for object specifications. The syntax of ODL extends the interface definition
language (IDL) developed by the OMG as a part of CORBA. The ODMG
standard also provides an object query language (OQL) and the C++, Small-
talk, and Java ODL bindings.

The rest of this section summarizes the main constructs that the
ODMG data model specifies and that should be supported by an
OODBMS.

7.4.1 Objects and Literals

The basic primitives are the object and the literal. Whereas objects have a
unique identifier (OID), which should be immutable, literals have no identi-
fier. Types can categorize both objects and literals.

Objects can be persistent or transient. Persistent objects, also called
database objects, continue existing once the procedure or the process that
creates them has finished. They are allocated memory and storage managed
by the OODBMS run-time system. Transient objects exist only inside the
procedure or the process that creates them. They are allocated memory
by the programming language run-time system. The lifetime of an object is
independent of the type. Some instances of the types can be persistent, while
others can be transient.

7.4.2 Types: Classes and Interfaces

A type defines the common properties (attributes and relationships) and the
behavior (operations) of a set of elements. The values of an object�s proper-
ties can change at any time.
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A type has an external specification and one or more implementations.
The external specification is an abstract description of the type, independent
of the implementation. ODL provides the following constructs to support
the external specification: interface, class, and literal.

An interface definition is a specification that defines only the abstract
behavior of an object type. The class definition is a specification that
defines the abstract behavior and the abstract state of an object type. A
literal definition defines only the abstract state of a literal type. [3]

The implementation of an object type has to be done by a language binding.

7.4.3 Subtypes and Inheritance

The ODMG data model supports the type-subtype relationship often
referred to as an �is-a� relationship or a gen-spec relationship, where the
supertype is the more general type and the subtype is the more specialized
one. The ODMG data model supports two different kinds of inheritance
relationships:

• The �is-a� relationship (represented by a colon) defines the inheri-
tance of behavior between object types, either interfaces or classes.

• The EXTENDS relationship (represented by the word extend ) refers
to the inheritance of state. It applies only to object types; thus, only
classes and not literals may inherit state.

The ODMG data model supports simple inheritance and multiple
inheritance of object behavior. The EXTENDS relationship is a single
inheritance relationship between classes.

7.4.4 Extents

The extent of a type is the collection of all objects (often called instances) of
the type. It is similar to the table in a relational database. The extent defini-
tion is optional in the ODMG data model; if it is not explicitly defined, the
system will not maintain the extension.

If the type A is a subtype of B, then every instance of the type A must
also be an instance of the type B; moreover, the extent of A must be a subset
of the extent of B.
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7.4.5 Keys

A key is an attribute or a set of attributes that uniquely identifies each object
of a type. This concept is similar to the candidate key of the relational model
(UNIQUE constraint in SQL), since a key attribute in the ODMG data
model prevents duplicates (uniqueness), but it allows null values (unlike the
primary key in the relational model). For a type to have a key, and given that
the scope of uniqueness is the extent of the type, the type must have an
extent.

7.4.6 Collection and Structured Types

A collection is a type that has a variable number of elements, all of which must
be of the same type. The ODMG data model supports the following collec-
tion types (objects or literals): set, bag, list, array, dictionary, and table. They
are defined by the ODMG standard as follows:

• A set is an unordered collection of elements, where no duplicates are
allowed.

• A bag is an unordered collection of elements that may contain
duplicates.

• A list is an ordered collection of elements.

• An array is a dynamically sized ordered collection of elements that
can be located according to their position.

• A dictionary is an unordered sequence of key-value pairs with no
duplicate keys.

• A table type is a collection type defined in the ODMG data model to
express SQL tables. It is equivalent to a collection of structures.

A structured type is a type that has a fixed number of elements that may be
of different data types. The ODMG data model supports the following
structured types (objects or literals): date, interval, time, and timestamp.
These types are defined as in the ANSI SQL specification. In addition to
these types, the ODMG data model allows users to define new structured
types.
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7.5 Technology

This subsection briefly describes the models of three systems compliant with
the ODMG standard: GemStone, ObjectStore, and POET. These systems
have been chosen mainly because they differ in several aspects of the data
model and the query and access languages. Note, however, that, to date,
more than 20 OODBMSs are available as products. The Web sites of dif-
ferent products based on the ODMG standard are listed at the end of this
chapter.

7.5.1 GemStone

The GemStone system [8] was one of the first OODBMSs to appear on
the market. The data model and the access/manipulation language (initially
called Opal and afterward SmalltalkDB [13]) were defined as an extension of
the Smalltalk language. On closer analysis, Opal shows the features that must
be added to a programming language to make it suitable as a database lan-
guage. Applications can be written in a number of different languages,
including Smalltalk, C++, C, and Pascal. Currently, GemStone provides a
product based on Smalltalk language (called GemStone/S) and a product
based on Java language (Smalltalk/J). Latest versions integrate the Java com-
ponents with CORBA and an Object Transaction Monitor (www.gemstone.
com/products/j/main.html). We present here GemStone/S as an example of
Smalltalk-based OODBMS.

7.5.1.1 Basic Features

To illustrate the features of the GemStone/S data model, we show how the
class Institute of the example database schema in Figure 7.2 is defined:

Object subclass �Institute�
instVarNames: #(�research-area�, �institute-name�,

�address�, �research-group�)
classVars: #()
poolDictionary: #()
inDictionary: UserGlobals
constraints: #[#[#research-area, String],

#[#institute-name, String],
#[#address, Address],
#[#research-group, Teams]]

instanceInvariant: false
isModifiable: false.
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In GemStone/S, the definition of a class is always performed by sending to
the proper superclass the message �subclass� for which there exists a system-
defined method in each class in the database. In the above example, the class
Institute is created as a subclass of the system-class Object. In addition to the
name of the new class, a class definition message contains other arguments
describing relevant characteristics of the new class. In particular,

• The clause instVarNames has a list of strings denoting the names
of the instance variables (i.e., attributes) of the class. Domains are
specified in the clause constraints.

• The clause classVars has as an argument a list of class instance vari-
ables (i.e., class-attributes).

• The clause poolDictionary has as an argument a list of pool variables
that are shared by several classes and their instances. The pool vari-
ables enable several objects, instances of different class, to share com-
mon information.

• The clause inDictionary specifies the name of an already defined dic-
tionary, where the name of class is inserted on its creation.

• The clause constraints specifies the domain�s attributes.

• The clause instanceInvariant specifies whether the instances of the
class can be modified.

• The clause isModifiable specifies whether the class itself can be
modified.

7.5.1.2 Methods

Methods in GemStone/S are defined by means of the message �method.�
This message has as an argument the name of the class to which the method
belongs and the method specification. The method specification consists of a
message pattern and a body. The message pattern is, in essence, the specifica-
tion of the method interface. Two example methods, defined for the class
Institute, are the following. The first method, when invoked on an instance
of class Institute, returns the value of attribute �research-area� of the
instance, whereas the second method modifies the value of attribute
�research-area.�

226 Advanced Database Technology and Design



method: Institute

research-area �message pattern�

^research-area �return statement�

%

method: Institute

research-area: anArea �message pattern�

research-area:= anArea

^self �return statement�

%

Note that the two methods have different message patterns. Indeed, the first
method has no input parameter, whereas the second method has one (i.e.,
the new value of attribute �research-area�). GemStone/S supports full encap-
sulation; therefore, a pair of methods like the preceding ones must be defined
by the users for each attribute that must be directly accessed and modified.

7.5.1.3 Object Query Language

In addition to navigation capabilities commonly provided by all
OODBMSs, GemStone/S provides a query language supporting set-oriented
queries. Queries can be issued only against set objects, not against classes. For
example, suppose that an instance of class Institute-Set has been defined hav-
ing the name �an-Institute-Set� and that instances of class Institute have
been added to this set. A query retrieving from the set �an-Institute-Set� all
institutes doing research on databases is formulated in Opal as follows:

DB-Institutes := an-Institute-Set select: {aSet |

aSet.research-area = �Databases�}

The result of the query is a set that is assigned to the variable �DB-Institute.�
Then the elements of the results can be extracted by using the usual opera-
tions on the sets. Queries may contain a boolean combination of predicates
as well as path-expression.

7.5.2 ObjectStore

The ObjectStore system has been developed starting from the C++ language
as a system to provide persistency to C++ objects according to the persistent
programming language approach. In particular, ObjectStore exploits the
C++ class definition language as data definition language extending it with
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specific constructs for data management. In addition to the C++ based
definition language, ObjectStore currently provides interface for Java and
ActiveX. It also supports CORBA, DCOM, and JavaBeans (www.odi.com/
content/products/os/OstoreHome.html). We present here ObjectStore as an
example of C++ based OODBMS.

7.5.2.1 Basic Features

The type system and the DDL in ObjectStore are based on the type system
and the class definition mechanism of C++. In particular, C++ distinguishes
between objects and values, as does ObjectStore.

To illustrate the features of the ObjectStore data model, we show how
the class Institute of the example database schema in Figure 7.2 is defined:

class Institute {

public:

char* research-area;

char* name;

Address* address;

os_set<Team*> research-group;

}

In the preceding example, the public clause introduces the list of declarations
of public features (attributes and methods) of the class. Such features can
be directly accessed from outside the objects. In the example, all features
are public. The private clause, by contrast, introduces features that can be
accessed only by methods of the class.

7.5.2.2 Relationships

A further important extension of ObjectStore with respect to C++ is related
to the notion of relationship. This extension allows us to specify inverse
attributes, representing binary relationships. This functionality is requested
through the keyword inverse_member associated with an attribute and fol-
lowed by the inverse attribute name. ObjectStore automatically ensures rela-
tionship consistency. On the deletion of a participating object, the
relationship is also deleted. Thus, no dangling references can arise. It can
also be specified that the object participating in the relationship with the
deleted object must in turn be deleted. As an example, consider the schema
in Figure 7.2 and suppose that a company can be a sponsor for at most a
team and that an additional attribute, sponsor-of, having class Team as the
domain, is included in the class Company. The relationship between a team
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and a company corresponding to the fact that a team has a sponsor and vice
versa can be modeled by the inverse attributes �industrial-sponsor� in Team
and �sponsor-of� in Company. The relevant fragments of the definitions for
classes Team and Company are expressed in ObjectStore as follows:

class Team {
………
Company* industrial-sponsor
inverse_member Company::sponsor-of;

………}

class Company {
………
Team* sponsor-of
inverse_member Company::industrial-sponsor;

………}

Through the os_Set constructor, one-to-many and many-to-many relation-
ships can be represented as well.

7.5.3 POET

The POET system, developed by POET Software Corporation
(www.poet.com), is an extension to the C++ language that provides persis-
tence to C++ objects [14]. Language extensions are limited to the declaration
syntax for persistent classes. In addition to the traditional C++ binding,
POET provides an implementation of ODMG-93 1.2 [15]. The POET�s
ODMG binding is a subset of the traditional binding, so with certain limita-
tions, it is possible to mix constructs from the two application programming
interfaces (API) [16]. The next versions of POET will also provide the
ODMG ODL compiler and an ODMG Java binding. POET also imple-
ments a subset of the ODMG Object Query Language (OQL).

This section describes the technical features of the POET system; the
type system and POET data model are explained in Section 7.6.3.

7.5.3.1 Technical Features

In POET, a class is persistent if it is defined using the �persistent� keyword.
Every object of a persistent class has the ability to store itself in the database.
POET uses an explicit persistence model, so if a persistent object is created in
the RAM, it must be explicitly stored (applying the Assign method) to place it
in the database; moreover, deleting an object in RAM is a separate operation
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from deleting it from the database. Thus, manipulations of objects must be
done within a transaction.

When an object is stored in the database, POET automatically stores
the objects or data to which it refers. When an object is read from the data-
base, all references are resolved, the referenced objects or data are loaded into
memory, and the pointers are set to the appropriate RAM address. In some
cases, it would be convenient to decide when to load data and objects; POET
permits that with on-demand references (ondemand keyword).

For each declared class, the POET precompiler creates a set that holds
all objects of this class. This set is called AllSet, and it is possible to step
through the AllSet sequentially to find all objects of a given class.

Each object can exist only once in memory. Whenever a database
operation loads an object, POET first checks to see if it is already in memory.
If so, it simply returns a pointer to the existing object. Because each object
may have any number of references to itself, deleting an object cannot be
safe. POET uses a counter to keep track of the number of references made to
each object, and a call to the Forget() method will delete an object if there are
no active references to that object.

Persistent classes may contain persistent objects as embedded objects.
The embedded object may not be stored separately and does not receive an
object identity; it exists only as a member of the container object. Persistent
classes may also contain pointers or on-demand references to persistent
objects. It may also contain sets of pointers or sets of on-demand references
to persistent objects. Persistent classes may contain nonpersistent objects, but
they may not contain pointers to nonpersistent objects, because POET needs
an object identity to resolve pointers, and only persistent objects have an
OID. POET allows definition of persistent objects containing transient
members, which are not stored in the database. For instance, an object may
contain a pointer to a big image, which is needed only temporarily. The
image member may be defined as a transient member.

7.6 Object-Oriented Database Design

Previous sections have dealt with the main concepts of an object-oriented
data model, as well as the main differences with regard to the relational
model. In particular, an object-oriented data model supports many modeling
concepts and constructors, resulting in a large variety of database schema
design options. However, because of such richness, the design of an object-
oriented database schema may be difficult. For example, when should we use
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a certain constructor, such as the list or the array? There are many factors that
can determine the best design of a database schema. Nonetheless, it is possi-
ble to devise methodological guidelines that can help the database designer.

The rest of this section presents a methodological approach that sup-
ports the design of an object-oriented database schema. The approach that
we present must be understood as only a set of guidelines, because there is no
unique and exact method to design databases.

To a large extent, the object-oriented paradigm has changed the appli-
cation design process, chiefly because the gap among the various design
phases is reduced. In the same way, conceptual, logical, and implementation
models in object-oriented databases (always object models) are closer than
their corresponding models in relational databases (E/R and relational mod-
els). However, in spite of using the same paradigm in all design phases,
object-oriented conceptual models generally are richer than object-oriented
design and implementation models. Some of the concepts that are usually
supported by conceptual models, and that are not provided by most of
the design and implementation models, are: n-ary relationships, relationships
with attributes, different kinds of generalizations (such as complete/incom-
plete or disjoint/overlapping generalizations), aggregations, constraints (such
as the ordered constraint in a relationship), and so on. In addition, there are
some decisions that must be taken at design level, such as, for example, the
final representation of a multivalued attribute, because the conceptual
schema must not specify when a multivalued attribute has to be defined as an
array, as a list, or as a set.

The first step in a database design process is to define a conceptual
schema in a language (usually called model ) which has to be close to the
user and independent of the final implementation (see Chapter 1). The
model used in this step should be able to represent every user�s requirements;
therefore, it must be as expressive as possible. It would also be recommend-
able that the model should be supported by most of the CASE tools (see
Chapter 13). We could use the Unified Modeling Language (UML) notation
[17], which, apart from being the OMG standard notation, fulfills the previ-
ously mentioned characteristics.

Once the conceptual schema has been defined, it often can be directly
translated into the final implementation in a specific OODBMS. Another
possibility consists of getting, as an intermediate step, a schema described in
ODL [3], which would represent the design details independently of the final
product (improving portability, understandability, etc.) (see Figure 7.3). Even
though we advise getting the implementation schema in three steps (from
conceptual design to implementation design, going through the standard
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design), in some cases, specially if the OODBMS does not support the
ODMG data model, it could be more convenient to go directly from the
conceptual schema to the implementation schema.

With regard to the final product, we could distinguish between the
OODBMS based either on Smalltalk or on C++. However, the main differ-
ence lies in their ODL, because both kinds of OODBMSs are based on the
ODMG data model. We are going to use POET as an example of
OODBMS based on C++.

To illustrate the translation process, we will introduce an example that
represents the organization of a Ph.D. course program. It is an academic
example that tries to gather the main concepts of the object-oriented
modeling.

7.6.1 Conceptual Design

The main activity of the first step is representation of the universe of dis-
course according to the UML notation. The universe of discourse of our run-
ning example is as follows.

Milano University (in Milan) and Rey Juan Carlos University (in
Madrid) offer some Ph.D. programs jointly. The programs are taught in col-
laboration by the two universities, which require an object-oriented database
that stores the information related to these programs. The system will have to
store the following data:

• The data for each participant in the Ph.D. program, both lecturers
and students: name, address (including number, street, city, coun-
try), and telephone number, as well as the program in which the
participant is involved. Students are related with only one Ph.D.
program (by the register number), but lecturers can be involved in
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several. A lecturer in a Ph.D. program cannot be involved in another
Ph.D. program as a student. It is also important to have the follow-
ing information: each student�s register number, degree, and univer-
sity and each lecturer�s rank in the university, as well as his or her
Ph.D. degree.

• Each Ph.D. program has a name and two departments, one from
Milano University and the other from Rey Juan Carlos University.
It is important to know the names of the two departments.

• A complete program consists of two courses. In the first one, stu-
dents have to complete a number of credits. With that aim, they
have to choose among a number of topics offered in the Ph.D. pro-
gram. Each topic has a name, a number of credits, and a set of key
words, and it is important to know the number of hours, theoretical
(THours) and practical (PHours), the course consists of, as well
as the university that teaches it. In the second course, students also
have to complete a number of credits by delivering some essay by a
specific date. Each essay has a number of credits, a name, and a set of
key words.

Figure 7.4 represents how that information is represented according to the
UML notation. To simplify the example, we will consider just the relation-
ship between lecturers and students with the Ph.D. program; we will not
consider the topics and essays in which they are involved.

On the basis of this example, and adapting or extending it where nec-
essary, we intend to propose the guidelines to translate it into an ODMG
schema.

7.6.2 Standard Schema Design

This step is based on a number of principles that state how to obtain an
ODMG schema from a conceptual schema expressed in the UML notation.
These principles are based on the [18] proposal. Other design proposals can
be found in [19, 20].

7.6.2.1 Object Types Translation

Each UML persistent class is translated into an ODL class, which represents
the abstract behavior, as well as the abstract state of the class (see Figure 7.5).
The extent will be explicitly defined for each class. As we are defining a

Object-Oriented Database Systems 233

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



database schema, we assume that all classes are persistent classes. Each UML
interface is translated into an ODL interface.

Each attribute is translated as an attribute. If it is a multivalued attrib-
ute, such as phone, it will be translated as a collection type (a list if the order is
relevant). If it is a composed attribute, such as the address, it will be translated
as a structure. Section 7.6.2.5 gives some recommendations about when to
use each collection type or when to use the structure type.

The database constraints (UNIQUE, NOT NULL, CHECK,
ASSERTION, and TRIGGER in SQL) are represented in UML as
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Participant ( participants)
{ string (30) name;

attribute address {char (3) number,
char (20) street, char (15) city,
char (15) country};

attribute string (10) phone;
void (); //constructor
void (); //destructor };

< >

Figure 7.5 Class definition in ODL.



predicates between two braces. For example, for the lecturers we could
impose the following constraint:

{Rank = Full Professor� or Rank =�Associated Professor}

Apart from the key constraint that, as explained in Section 7.4.5, corre-
sponds to the candidate key (UNIQUE in SQL) of the relational model,
the ODL does not provide any other constructor to support this kind of
constraint. Therefore, the constraints have to be implemented inside the
operations. For each UML method, a signature of an ODL operation must
be defined.

7.6.2.2 Associations

Binary associations are defined as relationships in ODL (see Figure 7.6).
Multiplicity represents how many objects of a class can be associated with a
specific object of the related class. It is represented by two numbers that rep-
resent the minimum and a maximum multiplicity. In ODMG, maximum
multiplicity is supported in the relationship definition. If the maximum
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Class PhDProgram (extent PhDPrograms)
{ attribute string (30) name;

attribute struct departments
{char (10) MilanoD, char (10) RJCD};

<Lecturer> involves essays::Lecturer;
<Student> has enrols::Student;

void PhDProgram ();
void drop (); };

relationship set inverse
relationship list inverse

Class Student (extent students
key rnumber)

{ attribute short rnumber;
attribute string (20) degree;
attribute string (30) university;

PhDProgram enrols
has::PhDProgram;

void student ();
void drop (); };

relationship
inverse

1..1 1..*
0..*has
involves

essaysPhDProgram
Name

Departments

Lecturer
PhD
Rank

enrols

Student
RNumber
Degree

University

0..*

Class Lecturer (extent lecturers)
{ attribute set string (30) PhDs;

attribute enum rank {full professor,
associate professor};

PhDProgram essays
involves::PhDProgram;

void lecturer ();
void drop (); };

< >

< >relationship set
inverse

Figure 7.6 Relationships in ODL.



multiplicity is over 1, the relationship is defined by a collection type (set, list,
or bag). When it is an ordered relationship, the collection type has to be a
list. The ODMG data model does not support directly the minimum multi-
plicity, so when it is 1, this constraint has to be implemented in the con-
structor operation. Role-names are the names of each traversal path of the
relationship.

In Figure 7.6, the relationship between PhDProgram and Lecturer is a
many-to-many relationship defined without order. However, PhDProgram
and Student is a one-to-many relationship. If students are ordered accord-
ing to, for example, their register number, the relationship will have to be
defined with a list type.

ODMG supports the definition of two-way relationships. However, in
some cases, because of efficiency reasons, it may be convenient to implement
one-way relationships. Relationships in OODBMSs are currently imple-
mented as pointers. If queries traverse the relationships in just one direction,
then bidirectional relationships are redundant. For example, it could be con-
venient to establish a one-way relationship between Student and PhDPro-
gram (from PhDProgram to its Students). We generally will want to know
the registered students in a given Ph.D. program, but we will not know the
Ph.D. program of a specific student. If we can define such a one-way rela-
tionship in ODL, we have to define it as an attribute (see Figure 7.7). In
addition, we have to define two methods that implement the relationship;
the order will have to be implemented through the enrol_in method.
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Class Student (extent students Key rnumber)
{ attribute short rnumber;

attribute string (20) degree;
attribute string (30) university;
void student (short N, string (20) D, string (30) U, );
void drop ( ); };

{ attribute string (30) name;
attribute struct Departments {char (10) MilanoD, char (10) RJCD};

Student enrols;
relationship set Lecturer involves inverse essays::Lecturer;
void PhDProgram ();
void drop ();

};

PhDProgram DP
PhDProgram DP

attribute list

void enrol_in (in Student S, PhDProgram, DP);
void drop_enrol (in Student S, PhDProgram DP);

Class PhDProgram (extent PhDPrograms)

< >
< >

Figure 7.7 One-way relationships defined as attributes.



Supposing the class Topic has a self-association representing the rela-
tionship between different topics (e.g., object databases is a subtopic of the
databases topic), that association can be defined in ODL just like any other
association (see Figure 7.8).

Notice that self-relationships have to be defined twice to represent the
two traversal paths.

If the association has attributes, there are two different possibilities:

• If the multiplicity is of the type many-to-many, we will have to con-
vert the association into a new class. This class has to define the
attributes of the association as well as two relationships.

• If the multiplicity is of the type one-to-many, we could define the
attribute inside the associated classes that take part in the association
with multiplicity one.

The ODMG data model supports only binary associations, so that n-ary rela-
tionships could be defined, as in the relational model, by creating a new class.
This class will have a relationship for each class involved in the association.

If the association has an association class, the last one will be converted
into another class. Therefore, there would be three classes (the two classes
involved in the association and the association class itself ) related to one
another through a n-ary relationship. This relationship will be defined in
ODL just as any other n-ary relationship.

The UML or the constraint between two associations has to be defined
in ODL as an operation.
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Class Topic (extent topics)
{ attribute string (20) name;

attribute set string(10) kwords;
attribute short phours;
attribute short thours;
attribute short credits;
attribute enum university {Milan, URJC};

void topic ();
void drop (); };

< >

< >relationship set Topic has_subtopic
inverse is_subtopic::Topic;

relationship Topic is_subtopic
inverse has_subtopic::Topic;

Figure 7.8 Self-association definition in ODL.



7.6.2.3 Generalizations and Realizations

UML supports disjoint/overlapping and complete/incomplete generaliza-
tions. Those two distinctions are orthogonal between them. The default gen-
eralization in UML is the disjoint and incomplete one, and it is also directly
supported by the ODMG data model through the EXTEND relationship.
Figure 7.9 shows an example.

The overlapping is not supported by the ODMG data model. It could
be supported, as in other data models that do not support overlapping (e.g.,
the previous releases of the standard [12]), by adding a new class that inherits
from the two overlapping classes. For example, to represent a lecturer who
belongs to two different Ph.D. programs, as a lecturer and as a student,
a class Lecturer-Student, which inherits from Student and Lecturer, should
be defined. However, the latest version of the ODMG data model supports
only multiple inheritance of behavior, but it does not provide multiple
inheritance of state: �The EXTEND relationship is a single inheritance rela-
tionship between two classes� [3]. Thus, ODL does not allow the definition
of an overlapping generalization that inherits the state and the behavior, and
overlapping generalizations cannot be represented in the ODMG data model
as a result.

With regard to complete generalization, the ODMG data model does
not define any notation that explicitly supports it. A possibility would consist
in defining the superclass as an abstract class. Because an abstract class cannot
be directly instantiated, when the superclass is an abstract class, the generali-
zation is complete [21]. Unfortunately, abstract classes are not directly sup-
ported by the ODL grammar. An abstract class could also be defined as a
class with some deferred method, but ODL does not provide any syntax to

238 Advanced Database Technology and Design

Class Student extends

extends

Participant
(extent students

Key rnumber)
{ ...
};

Class Participant
(extent lecturers)
{ ...
};

Lecturer{disjoint, incomplete}

Lecturer

PhDs
Rank

Participant
Name

Address (number,
street, city, country)

Phones

Student

RNumber
Degree

University

Figure 7.9 Disjoint and incomplete generalization in ODL.



define this kind of method either. Another possibility would consist in defin-
ing the superclass as an interface. In the ODMG data model, interfaces rep-
resent only the abstract behavior of the objects; that is why they cannot be
directly instantiated: �Classes are types that are directly instantiable … Inter-
faces are types that cannot be directly instantiated� [3]. Therefore, an
abstract class could be represented as an interface in ODMG. Thus, a com-
plete generalization could be defined through an �is-a� relationship in ODL
and the supertype being an interface. However, it is important to outline that
an interface does not amount to an abstract class because an interface, in con-
trast to a class, does not represent the state [21]. That is the best way to repre-
sent the complete generalization in ODL.

The UML concept of realization corresponds to the �is-a� relationship
in ODMG (inheritance of behavior).

7.6.2.4 Aggregation

UML supports two different ways of representing the aggregation concept:
aggregation as a special kind of binary association and the aggregation tree
notation. In spite of that, UML specifies that the difference is just one of
notation. However, we find some semantic differences between aggregation
(often called member-collection aggregation) and the aggregation tree (often
called part-whole aggregation). Actually, there are other proposals concern-
ing aggregation relationships in conceptual design [22, 23], richer than the
UMLs. These proposals make a distinction between different kinds of aggre-
gation, all of which support member-collection (aggregation in UML) and
part-whole (aggregation tree in UML) aggregations.

Member-collection aggregation represents a collection of objects, all of
which are of the same class and together give rise to another class. The most
common example is a collection of trees that make up a forest. Part-whole
aggregation represents a structured class that is composed of almost two dif-
ferent classes. For example, a window is composed of a menu and a tool bar.
The main difference with respect to member collection aggregation is that
component objects are of a different class. In addition, part objects have
a structural relationship among them. For example, a car comprises four
wheels, an engine, and a body, but those parts have to be placed in a specific
position to complete the car. Nonetheless, in a member-collection aggrega-
tion, there is no structural relationship among members.

ODL does not provide any constructor that directly supports aggrega-
tion, so both kinds of aggregation could be represented through attributes.
Member-collection aggregation could be translated as a collection type (see
Figure 7.10). If the order is relevant, then the collection type will be a list.
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The part-whole aggregation could also be represented in ODL defining
each component class as an attribute in the composite class, just like dif-
ferent member-collection aggregations, missing the part-whole aggregation
abstraction.

We can see that member-collection aggregation is supported as a collec-
tion attribute, in the same way as multivalued attributes are supported, and
there are no differences between member-collection and part-whole aggre-
gation. We could also consider other design alternatives, such as defining
aggregation as a relationship. Object databases do not currently provide
special constructors for the aggregation concept either. However, some theo-
retical proposals do extend the ODMG data model to support composite
objects [24].

7.6.2.5 Collection and Structured Types

As we have seen, collection and structured types are key concepts in the
object-oriented database design, and they also constitute one of the main dif-
ferences with regard to the relational databases. They allow the definition
of multivalued attributes, the cardinality of relationships, aggregations, and
so on. The ODMG data model supports different kinds of collection types;
now the question is how to choose the most appropriate type. As a rule, we
should use the following:

• A bag type, if the collection type allows duplicates and has an
unbounded number of elements, and the order is not relevant. For
example, the drum for a lottery has an unbounded number of balls.
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Class Essay (extent essays)
{ attribute string (20) name;

attribute set string(10) kwords;
attribute short credits;
void essay ();
void drop (); };

Class SCourse (extent scourses)
{ attribute short tcredits;

attribute date ddelivery;
};

< >

< >attribute set Essay offered_essays;

Figure 7.10 Member-collection aggregation in the ODMG data model.



Two different balls can have the same number and the order is not
relevant, so it can be designed as a bag type.

• A set type, if the collection type also has an unbounded number of
elements and the order is not relevant, but, unlike the bag, dupli-
cates are not allowed. For example, the drum for a bingo game has
an unbounded number of balls. Each ball has a different number
and the order is not relevant. Thus, it can be designed as a set type.

• A list type should be used if the collection type has an unbounded
number of elements and the order is relevant, whether it has dupli-
cated elements or not. A school register could be an example of a
list type.

• A dictionary type, if the collection type has an unbounded number
of pairs of elements (Key-value), with no duplicate keys. The most
common example is a dictionary.

• An array or a sequence type, if the collection type has a bounded
number of elements. For example, a week in the calendar could be
represented as an array.

• A structure type is used when the element that we want to represent is
a composite element and each component has a different data type.
A structure has a bounded number of components. For example, the
address is a structure with four components (number, street, city,
and country). The main difference between a structure and a class
lies in the fact that whereas the class represents an object type, the
structure represents a value type (a literal in the ODMG terminol-
ogy). The distinction between objects and values has been one of
the most important discussions in the object-oriented paradigm.
Smalltalk, for example, as well as ODL, does not distinguish
between objects and values, so the address type has to be represented
either as a literal (that is not exactly the same as a value) or as a class.
On the contrary, C++, just like some OODBMSs such as Object-
Store (see Section 7.5.3), supports structures and classes, so the
address would be represented as a structure.

Although their implementation could be similar, values and types are
conceptually different. An object, in the database environment, is the com-
putational representation of an object of the real world, which we want to
represent in our database. However, values do not exist by themselves and
they just allow the definition of objects. A real object can be seen as an object
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or as a value depending on the universe of discourse. Thus, for example,
color is a value if we are talking about the characteristics of a person (the
color of his or her eyes), but it can also be seen as an object if we are modeling
a painting factory. When the difference between object and value types is not
supported (which is the case of most pure object models), both of them are
defined as classes (see the POET example in Section 7.6.3). In this example,
both addresses and people are classes. For that reason, they have OIDs and
we could query about addresses, as well as for people, as a result.

Before proposing an implementation schema, we will sum up the ODL
schema (see Figure 7.11) that corresponds to the conceptual schema defined
in Section 7.6.1 (see Figure 7.4). Although we have proposed different possi-
bilities to translate it into the ODMG model, we will now take one of those
proposals into consideration to implement it.

7.6.3 Implementation Schema Design

This section shows how the example of the Ph.D. programs can be translated
into an implementation schema in POET 4.0 using the C++ binding.
In addition to the definition language, which is C++ based, the translation
from the ODL schema into a POET schema will carry out some changes.

Because we are defining a database schema, all classes must be persis-
tent classes. Persistent classes are defined by the introduction of the key word
persistent before the class declaration,

persistent class student {…};

To use the OQL provided by POET, an extent must be explicitly defined.
For example, the following declaration,

define extent students for student;

defines an extent for the class student, called students. This extent is equiva-
lent to the StudentAllSet, which is implicitly generated by POET when the
class student is created.

In the POET definition, we have introduced the visibility levels, which
could not be defined in ODL. Attributes and relationships have been defined
as private members, and methods as public ones.

The type system of POET is based on the C++ type system. In addi-
tion to the C++ base types (int, float, char, double), POET provides the fol-
lowing data types: PtString, PtDate, PtTime, PtBlob, and PtStorage.
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However, POET does not provide the structure construct supported by
C++. Thus, structured attributes must be implemented either as classes or as
normal attributes. For example, in Figure 7.12, the address of the participant
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class Topic

FCourse

Essay

SCourse

PhDProgram

(extent topics)
{ attribute string (20) name;

attribute set<string(10)> kwords;
attribute short phours;
attribute short thours;
attribute short credits;
attribute enum

university {Milan, URJC};
void topic ();
void drop (); };

class (extent fcourses)
{ attribute short tcredits;

attribute set<Topic> offered_topics;
void fcourse ();
void drop (); };

class (extent essays)
{ attribute string (20) name;

attribute set<string(10)> kwords;
attribute short credits;
void essay ();
void drop (); };

class (extent scourses)
{ attribute short tcredits;

attribute date ddelivery;
attribute set<Essay> offered_essays;
void scourse ();
void drop (); };

class (extent
PhDPrograms)

{ attribute string (30) name;
attribute struct Departments {

char (10) MilanoD,
char (10) RJCD};

attribute FCourse fc;
attribute SCourse sc;

relationship set <Lecturer> involves
inverse essays::Lecturer;

relationship list <Student> has
inverse enrols::Student;

void PhDProgram ();
void drop ();};

class Participant

Student

Lecturer

{ attribute string (30) name;
attribute struct address {

char (3) number,
char (20) street,
char (15) city,
char (15) country};

attribute set<string (10)> Phone;
void participant ();
void drop (); };

class extends Participant (
extent students Key rnumber)

{ attribute short rnumber;
attribute string (20) degree;
attribute string (39) university;
relationship PhDProgram enrols

inverse has::PhDProgram;
void lecturer ();
void drop (); };

class extends Participant (
extent lecturers)

{ attribute set <string (30)> PhD s;
attribute enum rank {full professor,

associate professor};
relationship

set <PhDProgram> essays
inverse involves::PhDProgram;

void lecturer ();
void drop (); };

Figure 7.11 ODL schema from the UML conceptual schema in Figure 7.4.
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implemented as a class can be seen, whereas the Departments attribute of
the class PhDProgram is defined as two different attributes, namely, MilanoD
and RJCD.

Multivalued attributes are implemented as collection attributes. POET
supports the cset, lset, and hset collection types. In spite of their names, all of
them are list types because they are ordered collection and insert or append
methods are applicable. The difference between cset, lset, and hset lies in their
memory model.

POET does not directly support relationships; thus, they have to be
defined as pointers. Pointers can be defined in the two classes involved in the
relationship (as a two-way relationship), or just in one of them (as a one-
way relationship). In the example (see Figure 7.12), the relationship between
Lecturer and PhDProgram is a two-way relationship, and the relationship
between Student and PhDProgram has been defined as one-way (from
PhDProgram to Student). POET does not allow the definition of sets of
objects, so they have to be defined as a set of pointers to objects.

When an object that is referenced by another one is removed, the
pointer is set to zero (as a null pointer). Thus, it is possible to have in the
database a Lecturer related with a PhDProgram and yet for the PhDProgram
not to involve the aforementioned Lecturer. If the pointer is defined as a
dependent pointer, the referenced object is also deleted when the main object
is removed.

If we use the ODMG C++ binding, relationships will be implemented
as ref attributes, and POET will provide the integrity options just as they are
defined by the C++ binding of the ODMG [3, 16].

Generalizations are directly supported by POET because of the C++
inheritance. POET supports both simple and multiple inheritance. How-
ever, multiple inheritance is not recommended, because it does not work
correctly (e.g., it fails with collection types). The following sentence shows
a generalization example in which the class Student inherits from the class
Participant

class student: public participant {…}

Because POET does not support aggregation as a �first class� object, it must
be supported through attributes. If the aggregation is of the member-
collection type, it will be supported as an attribute of collection type. POET
does not support collections of persistent objects, so that they have to be
defined as collections of pointers to the member objects. The following sen-
tences show an example.
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persistent class Addresstype

Participant

Student

Lecturer

{ private:
PtString number;
PtString street;
PtString city;
PtString country;

public:
void address ();
void drop ();

};

persistent class
{ private:

PtString name;
Addresstype* address;
lset<PtString> phone;

public:
void participant ();
void drop (); };

persistent class
{ private:

int rnumber;
PtString degree;
PtString university;

public:
void student ();
void ~student(); };

persistent class
{ private:

lset <PtString> PhD s;
PtString rank;
lset <PhDProgram*>
essays;

public:
void lecturer ();
void ~lecturer ();};

persistent class Topic

FCourse

Essay

SCourse

PhDProgram

{ private:
PtString name;
lset PtString kwords;
int phours;
int thours;
int credits;
PtString university;

public:
void topic ();
void ~topic ();};

persistent class
{ private:

int tcredits;
lset Topic* offered_topics;

public:
void fcourse();
void ~fcourse(); };

persistent class
{ private:

PtString name;
lset PtString kwords;
int credits;

public:
void essay ();
void ~essay (); };

persistent class
{ private:

int tcredits;
PtDate delivery;
lset Essay* offered_essays;

public:
void scourse();
void ~scourse();};

persistent class
{ private:

PtString name;
PtString MilanoD;
PtString RJCD;
depend FCourse* fc;
depend SCourse* sc;
lset Lecturer* involves;
lset Student* has;

public:
void PhDProgram ();
void ~PhDProgram(); };

< >

< >

< >

< >

< >
< >

Figure 7.12 POET schema definition from the ODL schema in Figure 7.11.



persistent class FCourse

{ private:

…
lset<Topic*> offered_topics;

…
};

A part-whole aggregation is defined through a pointer for each compo-
nent object:

persistent class PhDProgram

{ private:

…
dependent FCourse* fc;

dependent SCourse* sc;

…
};

The dependent key word indicates that a referenced object should be deleted
if the object containing the reference is deleted. For instance, a first course,
just like a second course, should not exist if the Ph.D. program to which it
belongs did not exist. Either in the member-collection or in the part-whole
aggregation, we can decide whether the embedded objects depend on the
main object. Part-whole aggregation (as in our example), generally, requires
that option, whereas in the member-collection aggregation, member objects
usually exist by themselves and do not depend on the collection object. Thus,
for example, a topic can exist independently of a specific course.

Figure 7.12 shows the POET schema definition according to the previ-
ous comments, and Figure 7.13 is the database schema compiled in POET.

7.7 Summary

This chapter was an overview of the current state of the object-oriented data-
base technology. It briefly considered the main limitations of relational tech-
nology and introduced the main benefits of object-oriented database systems.
It also reviewed the main concepts of the object-oriented model. The
ODMG standard was briefly reviewed, and some of the current products in
the market based on the ODMG standard were surveyed, including Gem-
Stone, O2, ObjectStore, and POET. Finally, some design guidelines were
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proposed by using an example first defined in UML, next in ODL, and
finally described in POET.

Two main benefits of the object-oriented database technology can be
underlined:

• On one hand, the technology provides a single data model for data-
base and programming objects, partially solving, in this way, the
impedance mismatch problem.

• On the other hand, it increases the expressive power allowing repre-
sentation of the complex objects and relationships required by such
new applications as CAD/CAM, CASE, or GIS.

Perhaps the main drawbacks to object-oriented database systems are due to a
lack of a common model and an established technology. The first benefit
listed is close to being solved thanks to the existence of the ODMG standard,
which seems to be widely accepted by the community. The second could be,
in our opinion, just a matter of time.
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8
Multimedia Database Management
Systems

Michalis Vazirgiannis and Timos Sellis

8.1 Introduction

Recent advances in digital information technology; steady increases in ubiq-
uitous computing, CPU power, memory and disk capacity, and network
bandwidth; and the availability of new software and hardware for multime-
dia objects have increased the demand for multimedia applications. This is
evident by the rapid spread of multimedia into all fields of information proc-
essing, resulting in a need to access (store, retrieve, transport, display, etc.)
multimedia data in a flexible way. The growing interest in building multime-
dia applications is creating a need for developing multimedia database man-
agement systems (MM-DBMS) as tools for efficient organization, storage,
and retrieval of multimedia objects.

This chapter examines the special features of multimedia data that call
for special features in a DBMS to store and retrieve such information.

8.1.1 Diverse Nature of Media Objects

In traditional DBs, the vast majority of data are strings (e.g., names,
addresses) and numbers (e.g., salaries). Moreover, the DB values are merely
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atomic values, that is, the complexity of the data is manageable. Long
research efforts have resolved the issues of modeling, storage, and retrieval in
these cases.

On the other hand, consider a DB in which we want to store and
retrieve efficiently monomedia objects, such as images or video, or multi-
media documents, such as complex multimedia presentations or interactive
Web pages. Things are quite different regarding DB support. The multime-
dia objects are to a great degree different from traditional data. The differ-
ences can be summarized as follows.

• Size: Generally, case multimedia objects and documents are quite
demanding in terms of storage. A single image can be as large as
1.5 MB; uncompressed high-quality video may demand as much as
several gigabytes per minute [1]; CD-quality audio requires almost
10 MB per minute. Such sizes forced the research and development
community to produce compression schemes that have reached a
remarkable level of maturity, resulting in various image and
audio/video compression standards.

• Real-time requirements: Most of the media objects are related to
time. Their presentation has some dependency on time, which
imposes that information has to be presented in a timely fashion,
(i.e., the information flow has to fulfill some requirements). Sam-
ple requirements arise from audio (CD-quality audio requires
throughput 176 Kbps, while high-quality video HDTV requires
110 Mbps [1]).

8.1.2 Complexity and Multidimensionality

Each of the multimedia object types (either monomedia or document) has
a wide variety of features that need to be represented in a DB system. For
instance, an image, although it is a two-dimensional array of bits, may con-
vey complex information in regard to its color distribution, the objects that
may be identified in it, and so on. In the case of an interactive multimedia
document (IMD), a variety of monomedia objects are ordered in the spatial
and temporal domains, and user or internal interaction may alter the flow of
the presentation. The complexity that has to be represented in a multimedia
DB system can be very high.

The growing interest in building multimedia applications is creating a
need for developing MM-DBMSs as tools for efficient organization, storage,
and retrieval of multimedia objects. Because of the diverse nature of the
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multimedia data, DBMSs designed to manage such data must have consid-
erably more functionality and capability than conventional DBMSs. Our
understanding about the requirements imposed by multimedia objects on
the development of MM-DBMS is only partial and still evolving.

Hence, any architecture for an MM-DBMS ought to be extensible.
One of the important goals in the design of an MM-DBMS is to provide
extensibility, that is, the ability for the system developers and end users to
extend the system by adding new types of media objects, devices, and proto-
cols for storage, retrieval, and management of multimedia information.
Extensibility can be classified into two types: logical extensibility and physi-
cal extensibility.

• Logical extensibility is the possibility of dynamically introducing new
user-defined data types. Users should be able to define their own
data types and use them seamlessly with the predefined data types.
In other words, user data types and system data types should have
the same status, although the system may support them differently.
Logical extensibility is important in multimedia management,
because adding a new type of media may introduce new operations.

• Physical extensibility is an architectural type of extensibility. Physical
extensibility allows new system modules to be added to an opera-
tional system. This capability is useful in multimedia DB manage-
ment because it allows modules to be introduced that are specialized
in the management of new media or data types. Physical extensibil-
ity is necessary for two reasons. First, it is required to support logical
extensibility, because introduction of new data types may require the
introduction of new system modules. For example, image data types
may be used differently for GIS. Second, data types used for differ-
ent applications may require different types of system support for
storage, indexing, and so on.

8.1.2.1 Storage

Extensibility in Access Methods

The multiple interpretation and application of different media data types
preclude an international standard on indexing and search mechanism
for multimedia objects. Therefore, various indexing techniques should be
included in the system as they evolve. Searching in a multimedia DB can be
computationally intensive or I/O intensive, depending on the media type.
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For example, given that audio and video compression techniques are evolv-
ing, corresponding retrieval methods should be allowed to evolve in an
MM-DBMS.

Extensibility in Storage Mechanisms

Methods for efficient data clustering and storage layout schemes for multi-
media data are still evolving [2]. A multimedia storage manager component
of MM-DBMS should store only raw data of multimedia objects. Storage
details should be explicitly used by the object manager.

8.1.2.2 Retrieval: Query Languages

Content-based retrieval of multimedia data calls for content-based indexing
techniques. Different from conventional DBs, in which data items are repre-
sented by a set of attributes of elementary data types, multimedia objects are
represented by a collection of features; similarity of object contents depends
on context and frame of reference; and features of objects are characterized
by multimodal feature measures. These lead to great challenges for content-
based indexing. On the other hand, there are special requirements on
content-based indexing: To support visual browsing, similarity retrieval, and
fuzzy retrieval, indexes should be enhanced with extra semantics [3].

This chapter emphasizes the structural complexity and mostly the spa-
tiotemporal features of a multimedia document rather than the features of
monomedia objects. Interested readers can find an extensive presentation
of important aspects of IMDs such as modeling, integrity, authoring, and
retrieval in [4].

The chapter is structured as follows. Section 8.2 provides an example
application, an IMD, that motivates the requirements for MM-DBMS. An
interactive multimedia application includes media objects modified accord-
ingly and presented according to a predefined spatiotemporal sequence or
to some interaction. The example application serves as a point of discussion
throughout the rest of the chapter. Section 8.3 presents an integrated IMD
model and discusses storage, retrieval, indexing, and other DBMS-related
issues for the case of multimedia DBs. The chapter concludes with interest-
ing issues and research prospects.

8.2 A Sample IMD

This section presents a sample IMD that motivates the requirements that will
feed an MM-DBMS design. We emphasize the structural complexity and
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mostly the spatiotemporal features of a multimedia document rather than
the features of monomedia objects.

As mentioned, the carriers of interactions in a multimedia document
are the events (atomic or complex) that occur in the context of an IMD ses-
sion. Hereafter, we refer to the events that the sample presentation will detect
and consume. Some of them are the following: Double Click is raised when
the user double-clicks the mouse; KeyEsc is raised when the user presses the
Escape key; IntroStop is raised each time the audio clip �INTRO� ends its
playback; ExitEvent is raised each time the user presses the �EXITBTN� but-
ton; TIMEINST is raised each time the timer �TIMER1� reaches the fiftieth
second; AppTimerEvent is raised each time the Application timer reaches the
time 2 minutes and 30 seconds.

Having the media objects available, we can build the application for the
following scenario.

The application starts (event StartApp) with presentation of button
LABELBTN immediately followed by the audio clip INTRO. After 3
seconds the image IMG2_1 is presented followed by IMG2_2 after 2
seconds. After 2 more seconds the image IMG1_2 is presented at posi-
tion, while after 2 seconds IMG2_1, IMG2_2, and IMG1_2 stop their
presentation, while after a second the video clip RUNS starts. This
sequence of presentation actions may be interrupted whenever one of
the following events occurs: _DoubleClick, _KeyEsc, or _IntroStop.
Another set of presentations (�Stage2A�) starts when the event
_IntroStop is raised. The presentation actions that take place are presen-
tation of image IMG1_3 in parallel with audio clip ACDDM (when the
clip ends the image disappears). In parallel, two seconds after timer
TIMER1 (which started when �Stage 2A� started) expires, the text
INFOTXT is presented.

The next set of media presentations (�Stage 2B�) is initiated when
the sequence of events _IntroStop and _ACDSoundStop occurs. Dur-
ing �Stage2B� the video clip KAVALAR starts playback while the but-
tons NEXTBTN and EXITBTN are presented. The presentation
actions are interrupted when any of the events _TIMEINST and
_NextBtnClick occurs. The end of �Stage2B� raises the synchronization
event _e1.

The following set of media presentations (�Stage3�) starts when
any two of the events _e1, _NextBtnClick, _TIMEINST occur. During
�Stage3� the text INFOTXT disappears, just after the text YMNOS
appears while the audio clip FLUTE starts while 2 seconds after images
IMG1_1 and IMG3_1 appear. Three seconds after, the EXITBTN
appears.
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The last part of the scenario handles the presentation termination,
which will occur when _ExitEvent occurs. An application timer limits
the duration of the scenario through the _AppTimer event.

That rich example generates requirements for modeling and retrieval, central
issues for an MM-DBMS capable of dealing with IMDs. As for modeling, we
have to look into the specific features of an IMD, such as interaction model-
ing and spatiotemporal composition of the media objects to adhere to the
author�s specifications. Another important issue is assurance of the docu-
ment integrity in temporal and spatial terms. Then having the IMD in an
MM-DBMS, we need to retrieve and present it according to the scenario
specifications. That means internal and external interaction has to be
detected and the spatial and temporal relationships among objects rendered
in the output device.

Another important requirement is the retrieval of IMDs from the
MM-DBMS, according to several criteria, among which the spatial/temporal
ones play a significant role.

8.3 Design of an MM-DBMS for IMDs

The design requirements in the context of an MM-DBMS can be classified
into two groups: one related to the data model and the other related to
retrieval issues. In an MM-DBMS, monomedia objects (i.e., single media
objects) or IMDs are stored. The modeling requirements of the latter are
unarguably richer and certainly are a superset of monomedia objects. This
section presents the requirements for modeling IMDs as MM-DBMS
objects.

8.3.1 Modeling IMDs

In regard to the data model, we will discuss the following features, which are
specific to multimedia information: interaction, multidimensionality, space
and time dependencies, complexity, and temporal integrity. An IMD
involves a variety of individual multimedia objects presented according to a
set of specifications called the IMD scenario. The multimedia objects that
participate in the IMD are transformed, either spatially or temporally, to be
presented according to the author�s requirements. Moreover, the author has
to define the spatial and temporal order of objects within the document con-
text and the relationships among them. Finally, the way that the user will
interact with the presentation session as well as the way that the application
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will treat application or system events has to be defined. The related applica-
tion domains are challenging and demanding. These applications include,
among others, interactive TV, digital movies, and virtual-reality applications.
In the framework of IMDs, we consider events, spatiotemporal composition,
and the scenario as cornerstone concepts in a modeling effort.

• Events are the fundamental means of interaction in the context of
the IMD and are raised by user actions, by objects participating in
the IMD, or by the system. They can be simple (i.e., not decompos-
able in the IMD context) or complex, and they have attached their
spatiotemporal signature (i.e., the space and the time they occurred).
For more details, refer to [5].

• Spatiotemporal composition is an essential part of an IMD and rep-
resents the spatial and temporal ordering of media objects in the cor-
responding domain. At this point, the issue of spatial and temporal
relationships among the objects is critical [6].

• The scenario stands for the integrated behavioral contents of the
IMD, that is, what kind of events the IMD will consume and what
presentation actions will be triggered as a result. In our approach, a
scenario consists of a set of self-standing functional units (scenario
tuples) that include triggering events (for start and stop), presenta-
tion actions (in terms of spatiotemporal compositions) to be carried
out in the context of the scenario tuple, and related synchronization
events (i.e., events that get triggered when a scenario tuple starts or
stops).

To support complex IMDs, a system that offers both a suitable high-level
modeling of IMDs and interactive multimedia presentation capabilities is
needed. The modeling should provide for the spatial and temporal composi-
tion of the participating media, the definition of interaction between the user
and the IMD, and the specification of media synchronization.

We claim that modeling of IMDs should place more emphasis on the
interactive parts of such an application. In principle, the modeling of interac-
tion should cover all the procedures that somehow involve the machine and
the user.

8.3.1.1 Modeling Interaction With Events

The concept of events is defined in several research areas. In the area of active
DBs an event is defined as an instantaneous happening of interest. An event is
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caused by some action that happens at a specific point in time and may be
atomic or composite. Multimedia information systems, however, widen the
context of events, as defined in the domain of active DBs. In addition to the
temporal aspect of an event, which is represented by a temporal instance,
there are events in IMDs that convey spatial information. That is represented
by a spatial instance. For example, an event captures the position of visual
objects at a certain point in time. Another aspect that is also crucial in the
IMDs context is that, although the number and multitude of events pro-
duced both by the user and by the system may be huge, we may be interested
in only a small subset of them. We define an event in the context of IMDs as
follows:

An event is raised by the occurrence of an action and has attached a spa-
tial and temporal instance. The event is recognized by some interested
human or process.

As mentioned in the definition, all events have attached to them a temporal
instance relative to some reference point, usually the beginning of the IMD.
Apart from a temporal instance, we assign a spatial instance to an event in
case it is related to a visual media object. This spatial instance is essentially
the rectangle that bounds an event (e.g., the screen area where the presenta-
tion of an image takes place). In some trivial cases (e.g., a mouse click), the
rectangle is reduced to a point. Thus, it is meaningful to integrate the two
notions of temporal and spatial instances in the definition of events. There-
fore, we introduce the term spatiotemporal instance, whose representation
in tuple form is (sp_inst, temp_inst), where sp_inst is a spatial instance and
temp_inst is a temporal instance as defined in previous sections. Events can
be purely temporal, as is the case for the start event of an audio clip.

Classification

To assist the authors in the specification of IMDs, we have to provide them
with a fundamental repertoire of events. In the framework of IMDs, we fur-
ther classify the events into categories. The classification of the events is done
on the basis of the entity that produces the event. The elaborated categories
are presented in the following list.

• User interaction. The user interactions are the events that are gener-
ated explicitly by user interactions within the IMD context. They
are mainly input events as the user interacts with the system via
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input devices such as mouse, keyboard, touch screen, and so on.
Temporal access control events are the well-known actions start,
pause, resume, stop, fast forward, rewind, and random positioning in
time and concern the execution of one or a group of media objects.

• Intra-object events. This category includes events that are related to
the internal functionality of an object presented in an IMD. This
functionality is implemented in object-oriented approaches as
method invocation.

• Interobject events. Interobject events occur when two or more objects
are involved in the occurrence of an action of interest. These events
are raised if spatial or temporal relationships between two or more
objects hold. In the spatial case, an interobject event can occur if one
object, moving spatially, meets another media object. A temporal
interobject event can occur when the deviation between the syn-
chronized presentation of two continuous media objects exceeds a
threshold.

• User-defined events. Into this category we place the events that are
defined by the IMD designer. They are related to the content of
the IMD execution. A user-defined event can refer to the content of
a media object, that is, to the occurrence of a specific pattern in a
media object. For instance, an event is to be raised if the head of
a news anchor occurs in a video frame to indicate that the boring
advertisements are over and the interesting news is now on.

Now we present a model for simple and complex events in IMDs, based on
the event concept and classification. A detailed presentation can be found
in [5].

Modeling and Composition of Events

According to the definition of an event, we need the following attributes to
represent a generic event: the subject and object attributes, which are of
type objectList and which essentially represent the objects that caused or are
affected by the event, respectively. The attribute spatio_temporal_signature
takes the spatial and temporal instances attached to the event when it actually
occurs.

Then the structure of the Event class in an object-oriented pseudolan-
guage is as follows:
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class Event inherits from object

attributes // attribute name attribute's data type,

subject objectList;

action actionList;

object objectList;

spatio_temporal_signature spatiotemp_instance;

end

As mentioned previously, it is important to provide the tools to the authors
for the definition of composite events. The composition of events in the con-
text of an IMD has two aspects:

• Algebraic composition is the composition of events according to alge-
braic operators, adapted to the needs and features of an IMD.

• Spatiotemporal composition reflects the spatial and temporal relation-
ships between events.

This chapter elaborates on the first aspect. Readers can refer to [5] for the
second one. First, however, we should define some fundamental concepts:

• The spatiotemporal reference point (q) is the spatiotemporal start of
the IMD scenario named as q. This serves as the reference point for
every spatiotemporal event and instance in the IMD.

• The temporal interval is the temporal distance between two events
(e1, e2), namely, the start and the end of the interval t_int :== (e1,e2),
where e1,e2 are events that may either be attached to predefined tem-
poral instances relative to some reference or occur asynchronously.

Algebraic Composition of Events

In many cases, the author wants to define specific events that relate to other
existing events. We distinguish among the following cases: disjunction, con-
junction, inclusion, and negation.

Disjunction
e :== OR(e1, …,en). This event occurs when at least one of the events e1, …,
en occurs. For instance, we may be interested in the event e occurring when
button A (e1) or button B (e2) was pressed.
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Conjunction

• e :== ANY(k,e1,…,en). This event occurs when at least any k of the
events e1, …, en occur. The sequence of occurrence is irrelevant. For
example, in an interactive game, a user proceeds to the next level
when he or she is successful in two out of three tests that generate
the corresponding events e1, e2, and e3.

• e :== SEQ(e1, …,en). This event occurs when all events e1, …, en

occur in the order appearing in the list. For example, in another
interactive game, the user proceeds to the next level when he or she
succeeds in three tests causing the events e1, e2, and e3 one after the
other.

• e :== TIMES (n,e1). This event occurs when there are n consecutive
occurrences of event e1. This implies that other events may occur
between the occurrences of e1.

In many cases, the authors want to apply constraints related to event
occurrences in specific temporal intervals. To facilitate this requirement, we
define a set of operators that are of interest in the context of multimedia
applications:

Inclusion
e :== IN(e1,t_int ). Event e occurs when event e1 occurs during the temporal
interval t_int. For example, in an IMD we might want to detect three mouse
clicks at intervals of 1 second, so that a help window appears. If t_int =
(e2,e3), where e2 corresponds to the starting point of a timer, while e3 corre-
sponds to the end of a timer whose duration is defined as 1 second. The
desired event would then be defined as e = IN (TIMES(3,mouse.click),
t_int).

Negation
e :== NOT(e1,t_int ). Event e occurs when e1 does not occur during the tem-
poral interval t_int.

The events of the sample application in Section 8.2 can then be repre-
sented using the primitives introduced in the current section.

8.3.1.2 Spatiotemporal Compositions of Actors

In an IMD there is a set of monomedia objects (referred to as actors) that par-
ticipate, and in most of the cases their presentations are related temporally
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and/or spatially. A set of presentation actions may be applied to each actor
(such as start, stop, show, hide). In the past, the term synchronization
was widely used to describe the temporal ordering of actors in a multimedia
application [7]. However, a multimedia application specification should
describe both temporal and spatial ordering of actors in the context of the
application. The spatial-ordering issues (i.e., absolute positioning and spatial
relationships among actors) have not been adequately addressed. We claim
that the term synchronization is a poor one for multimedia applications;
instead, we propose the term composition to represent both the temporal and
spatial ordering of actors. Many existing models for temporal composition of
multimedia objects in the framework of an IMD are based on Allen�s rela-
tions [8]. Nevertheless, those relations are not suitable for composition repre-
sentation, because they are descriptive (they do not reflect causal dependency
between intervals), they depend on interval duration, and they may lead to
temporal inconsistency. Next, we refer briefly to a model for spatiotemporal
compositions of actors [6] that we have exploited for the definition of the
IMD scenarios.

Temporal and Spatial Relationships and Operators

In this section we briefly examine the temporal aspects of actor composition.
We exploit the temporal composition scheme as defined in [9] and introduce
a similar scheme that also captures the causality of the temporal relationships.
In this scheme, the start and end points of a multimedia instance are used
as events. Moreover, the well-known pause (temporarily stop execution) and
resume procedures (start the execution from the point where the pause opera-
tor took place) are also taken into account.

Hereafter, we present a set of TAC operators that represent the tempo-
ral composition of actors, together with the causality of temporal relation-
ships among presentation intervals. For more details, refer to [9]. These
operators correspond to the well-known TAC actions: start (>), stop (!),
pause (||), resume (|>), fast forward (>>), and rewind (<<). Therefore,

TAC_operator :== �>� | �!� | �||� | �|>� | �>>� | �<<�

We have not defined an operator for the random positioning in time action
because it would require an argument to denote the time point. We imple-
ment that action by defining an attribute for actors that specifies the point
from which the actor should start playing.

262 Advanced Database Technology and Design



We also have to illustrate the events arising from the temporal state
changes of an actor, that is, when object A starts its presentation, then the
�A>� temporal event is raised. Special attention should be paid to the event
generated when the actor finishes its execution naturally when there are no
more data to be presented (�<�) and to distinguish this event from the TAC
operator �!.� Therefore,

t_event :== �>� | �<� | �|>� | �||� | �>>� | �<<�

We define now temporal composition representation. Let A, B be two actors.
Then the expression A t_event t_interval TAC_operator B represents all the
temporal relationships between the two actors, where t_interval corresponds
to the length of a vacant temporal interval. Therefore,

temporal_composition :== (Θ | object [{temp_rel object}])
temp_rel:== t_event t_interval TAC_operator

For instance, the expression: �Θ >0> A >4! B <0> C� conveys this message:
�zero seconds after the start of the application, start A; 4 seconds after the
start of A, stop B; 0 seconds after the end of B, start C.�

Finally, we define the duration dA of a multimedia object A as the tem-
poral interval between the temporal events A> and A<. Another aspect of
object composition in IMDs is related to the spatial layout of the application,
that is, the spatial arrangement and relationships of the participating objects.
The spatial composition aims at representing three aspects:

• The topological relationships between the objects (disjoint, meet,
overlap, etc.);

• The directional relationships between the objects (left, right, above,
above-left, etc.);

• The distance characteristics between the objects (outside 5 cm, inside
2 cm, etc.).

Spatiotemporal Composition Model

An IMD scenario presents media objects composed in spatial and temporal
domains. A model that captures those requirements is presented here. For
uniformity reasons, we exploit the spatiotemporal origin of the image, Θ,
that corresponds to the spatial and temporal start of the application (i.e.,
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upper left corner of the application window and the temporal start of the
application). Another assumption we make is that the objects that participate
in the composition include their spatiotemporal presentation characteristics
(i.e., size, temporal duration). We define the spatiotemporal model as
follows:

Assuming two spatial objects A, B, we define the generalized spatial
relationship between those objects as sp_rel = (rij, vi, vj, x, y), where rij is the
identifier of the topological-directional relationship between A and B; vi, vj

are the closest vertices of A and B, respectively (as defined in [9]); and x, y are
the horizontal and vertical distances between vi, vj.

We define now a generalized operator expression to cover the spatial
and temporal relationships between objects in the context of a multimedia
application. It is important to stress that, in some cases, we do not need to
model a relationship between two objects, but to represent the spatial and/or
temporal position of an object relative to the application spatiotemporal ori-
gin, Θ (i.e., object A to appear at the spatial coordinates (110, 200) on the
tenth second of the application).

We define a composite spatiotemporal operator that represents
absolute spatial/temporal coordinates or spatiotemporal relationships
between objects in the application as ST_R (sp_rel, temp_rel ), where sp_rel
is the spatial relationship and temp_rel is the temporal relationship as already
defined.

The spatiotemporal composition of a multimedia application consists
of several independent fundamental compositions. In other words, a scenario
consists of a set of acts that are independent of each other. The term inde-
pendent implies that actors participating in them are not related explicitly
(either spatially or temporally), though there is always an implicit relation-
ship through the origin Θ. Thus, all compositions are explicitly related to Θ.
We call these compositions, which include spatially and/or temporally
related objects, composition_tuples.

We define the composition_tuple in the context of a multimedia appli-
cation as composition_tuple :== Ai [{ ST_R Aj }], where Ai, Aj are objects par-
ticipating in the application, and ST_R is a spatiotemporal relationship (as
defined above).

We define the composition of multimedia objects in the context of
multimedia applications as a set of composition_tuples: composition =
Ci {,Cj }, where Ci, Cj are composition_tuples.

The EBNF definition of the spatiotemporal composition based on the
above is as follows:
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composition :== composition_tuple{[,composition_tuple]}
composition_tuple :==

(Θ| object) [{spatio_temporal_relationship object}]
spatio_temporal_relationship :== �[(�[sp_rel�)�,�(�temp_rel�)]�
sp_rel :== �(� rij �,� vi �,� vj �,� x �,� y �)�
x :== INTEGER
y :== INTEGER
temp_rel1:== t_event t_interval TAC_operator

where rij denotes a topological-directional relationship between two objects
and vi, vj denotes the closest vertices of the two objects. The term action was
defined previously.

8.3.1.3 The Scenario Model

The term scenario in the context of IMDs stands for the integrated behavioral
contents of the IMD, that is, what kind of events the IMD will consume
and what actions will be triggered as a result. The scenario, in the current
approach, consists of a set of autonomous functional units (scenario tuples)
that include the triggering events (for starting and stopping the scenario
tuple), the presentation actions to be carried out in the context for the sce-
nario tuple, related synchronization events, and possible constraints. More
specifically, a scenario tuple has the following attributes:

• Start_event represents the event expression that triggers the execu-
tion of the actions described in Action_List.

• Stop_event represents the event expression that terminates the execu-
tion of this tuple (i.e., the execution of the actions described in
Action_List before its expected termination).

• Action_List represents the list of synchronized media presentation
actions that will take place when this scenario tuple becomes acti-
vated. The expressions included in this attribute are in terms of
compositions as described in previous sections and in [9].
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• Synch_events refers to the events (if any) generated at the beginning
and the end of the current tuple execution. These events can be used
for synchronization purposes.

The scenario tuple is defined as follows:

scenario:== scenario_tuple [{,scenario_tuple}]
scenario_tuple :== Start_event �,� Stop_event �,� Action_List �,�

Synch_events
Start_event :== Event
Stop_event :== Event
Action_List :== composition
Synch_events :== �(� start, end �)�
start :== Event | � �
stop :== Event | � �

Section 8.2 presented a sample IMD scenario with rich interaction and com-
position features. One of the parts of the scenario adheres to the following
verbal description.

The next set of media presentations (�Stage 2B�) is initiated when the
sequence of events _IntroStop and _ACDSoundStop occurs. During
Stage2B the video clip KAVALAR starts playback while the buttons
NEXTBTN and EXITBTN are presented. The presentation actions are
interrupted when any of the events _TIMEINST and _NextBtnClick
occurs. The end of Stage2B raises the synchronization event _e1.

The IMD scenario model can represent that functionality by the following
scenario tuple definition:

TUPLE Stage2B
Start Event = SEQ(_IntroStop;_ACDSoundStop)
Stop Event = ANYNEW(1;_TIMEINST;_NextBtnClick)
Action List = KAVALAR 0 NEXTBTN 0 EXITBTN
Synch Events = (_, e1)

8.3.2 IMD Retrieval Issues

As regards retrieval issues, we will mainly discuss the issues related to retrieval
and presentation of IMDs, which are broader than those of monomedia
objects.
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• Synchronization and presentation: The retrieval and presentation of
multimedia objects from an MM-DBMS bear some specific features
arising from the time-dependent features of most media types. For
instance, for a video clip to be presented properly, we need to ensure
adequate data throughput (i.e., 25 frames per second) so that the
presentation is continuous and of acceptable quality. This is a multi-
parameter issue involving several technological factors, such as com-
munication networks, secondary storage technology, compression
algorithms, and so on. Then, given that this issue (known as the
intramedia synchronization problem) is tackled, we have to take into
account the different synchronization relations among sets of
objects. The well-known example of a �talking head� requires that
the audio clip be in synchrony with the video clip so that lip syn-
chronization is achieved.

• Query languages, content-based retrieval, and indexing: Another
important issue related to retrieval is content-based retrieval, which
has attracted important research efforts and industrial interest.
Research has focused on content-based image indexing, that is, fast
retrieval of objects using their content characteristics (color, texture,
shape). For example, in [10] a system, called QBIC, that couples sev-
eral features from machine vision with fast indexing methods from
the DB area is proposed to support color-, shape-, and texture-
matching queries. Nearest-neighbor queries (based on image con-
tent) are addressed in [11]. In general, indexing of objects� contents
is an active research area, while indexing of objects extends in the
spatiotemporal coordinate system sets a new direction. This chapter
presents the research efforts we have completed in the area of index-
ing and retrieval of IMDs based on their spatiotemporal struc-
tures [6].

8.3.2.1 Retrieval of IMDs Based on the Spatiotemporal Structure

As mentioned previously, the retrieval of multimedia documents on the
basis of their spatiotemporal structure is a challenging theme. This chapter
presents the research effort we have completed in the area of indexing and
retrieval of IMDs based on their spatiotemporal structures [6]. During the
IMD development process, it can be expected (especially in the case of com-
plex and large applications) that the authors would need information related
to the spatiotemporal features of an IMD. The related queries, depending on
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the spatiotemporal relationships that are involved, can be classified in the fol-
lowing categories:

• Pure spatial or temporal. Only a temporal or a spatial relationship is
involved. For instance, �Which objects temporally overlap the pres-
entation of logo D?� �Which objects spatially lie above object D in
the application window?�

• Spatiotemporal. Where such a relationship is involved. For instance,
�Which objects spatially overlap with object D during its presenta-
tion?�

• Layout, related to the spatial or temporal layout of the application. For
instance, �What is the screen layout on the 22nd second of the
application?� �Which objects are presented between the 10th and
20th seconds of the application?� (temporal layout).

A simple serial storage scheme that includes objects� spatial and temporal
coordinates is an inefficient solution because typical IMDs include thou-
sands of objects. Hence, indexing techniques that could be able to efficiently
handle spatial and temporal characteristics of objects need to be adopted. We
propose such efficient indexing mechanisms to support queries, like the ones
listed above, in a large IMD.

Indexing Techniques for Large IMDs

As discussed in preceding sections, IMDs usually involve a large amount of
media objects, such as images, video, sound, and text. The quick retrieval of a
qualifying set, among the huge amount of data, that satisfies a query based on
spatiotemporal relationships is necessary for the efficient construction of an
IMD. Spatial and temporal features of objects are identified by six coordi-
nates: the projections on the x-axis (points x1, x2), y-axis (points y1, y2), and
t-axis (points t1, t2).

2 A serial storage scheme, maintaining the object charac-
teristics as a set of seven values (id, x1, x2, y1, y2, t1, t2) and organizing them
into disk pages, is not an efficient solution. Lack of ordering leads to the
access of all pages for answering any query, like the above example queries.
However, this scheme is used as the baseline for the evaluation of our pro-
posals later in this chapter. A more efficient but still simplified solution (as
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presented next) is based on the maintenance of three disk arrays that keep
low coordinates of objects (i.e., x1, y1, and t1) separate in a sorted order.3

Several queries involving spatiotemporal operators require the retrieval
of one array only, using divide-and-conquer techniques. Temporal layout
queries belong to this group. However, the majority of queries involves infor-
mation about more than one axis. Thus, the retrieval of more than one array
and the subsequent combination of the answer sets are necessary for such
cases. Efficient indexing mechanisms that could combine spatiotemporal
characteristics of objects to efficiently support a wide range of spatiotemporal
operators need to be present in an IMD authoring tool. The next subsections
propose two indexing schemes and their retrieval procedures.

A Simple Spatial and Temporal Indexing Scheme

A simple indexing scheme that could handle spatial and temporal character-
istics of media objects consists of two indexes:

• A spatial (two-dimensional) index for spatial characteristics (the id
and the x1, x2, y1, y2 values) of the objects;

• A temporal index for temporal characteristics (the id and the t1, t2 val-
ues) of the objects.

As an example, Figure 8.1 shows such an index based on the well-known
multidimensional indexing scheme of R-trees [12].

We argue that the adoption of this indexing scheme improves the
retrieval of spatiotemporal operators compared to the sorted-arrays scheme.
Even for complex operators where both tree indexes need to be accessed (e.g.,
for the overlap_during operator), the cost of the two indexes� response times
is expected to be lower than the retrieval cost of the (three) arrays. A weak
point of the scheme already has been mentioned. The retrieval of objects
according to their spatiotemporal relationships (e.g., the overlap_during one)
with others demands access to both indexes and, in a second phase, the com-
putation of the intersection set between the two answer sets. Access to both
indexes is usually costly, and, in many cases, most of the elements of the two
answer sets are not found in the intersection set. In other words, most of the
disk accesses to each index separately are useless. A more efficient solution is
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the merging of the two indexes (the spatial and the temporal one) in a unified
mechanism. This scheme is proposed next.

A Unified Spatiotemporal Indexing Scheme

We propose a unified spatiotemporal indexing scheme that eliminates the
inefficiencies of the previous scheme and further improves the performance
of an IMD tool. The proposed indexing scheme consists of only one index: a
spatial (three-dimensional) index for the complete spatiotemporal information
(location in space and time coordinates) of the objects. If we assume that the
R-tree is an efficient spatial indexing mechanism, then the unified scheme is
illustrated in Figure 8.2. The main advantages of the proposed scheme, when
compared to the previous one, are the following.

• The indexing mechanism is based on a unified framework. Only one
spatial data structure (e.g., the R-tree) needs to be implemented and
maintained.

• Spatiotemporal operators are more efficiently supported. Using the
appropriate definitions, spatiotemporal operators are implemented
as three-dimensional queries and retrieved using the three-
dimensional index, so the need for (time-consuming) spatial joins is
eliminated.
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Retrieval of Spatiotemporal Operators Using R-Trees

The majority of multidimensional data structures has been designed as exten-
sions of the classic alphanumeric index, B-tree. They usually divide the plane
into appropriate subregions and store those subregions in hierarchical tree
structures. Objects are represented in the tree structure by an approximation
(the minimum bounding rectangle (MBR) approximation being the most
common one) instead of their actual scheme, for simplicity and efficiency
reasons. Unfortunately, the relative position of two MBRs does not convey
the full information about the spatial (topological, direction, distance) rela-
tionship between the actual objects. For that reason, spatial queries involve
the following two-step strategy [13]:

• Filter step: The tree structure is used to rapidly eliminate objects that
could not possibly satisfy the query. The result of this step is a set of
candidates that includes all the results and possibly some false hits.

• Refinement step: Each candidate is examined (by use of computa-
tional geometry techniques). False hits are detected and eliminated.

R-tree [12] is one of the most efficient hierarchical multidimensional data
structures. A height-balanced tree, it consists of intermediate and leaf nodes
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(stored in secondary memory as disk pages). The MBRs of the actual data
objects are assumed to be stored in the leaf nodes of the tree. Intermediate
nodes are built by grouping rectangles (or hyperrectangles, in general) at
the lower level. An intermediate node is associated with some rectangle that
encloses all rectangles that correspond to lower level nodes. To retrieve
objects that belong to the answer set of a spatiotemporal operator, with respect
to a reference object, we have to specify the MBRs that could enclose such
objects and then search the intermediate nodes that contain those MBRs. This
technique was proposed and implemented in [14] to support spatial operators
of high resolution (e.g., meet, contains) that are popular in GIS applications.

As an example, Figure 8.3(b) shows how the MBRs corresponding
to the presentations of the objects are grouped and stored in the three-
dimensional R-tree of our unified scheme. We assume a branching factor of
4, that is, each node contains, at most, four entries. At the lower level, MBRs
of objects are grouped into two nodes, R1 and R2, which in turn compose
the root of the index. We consider a spatiotemporal query, that is, the over-
lap_during operator, with D being the reference object q. To answer this
query, only R2 is selected for propagation. Among the entries of R2, objects C
and (obviously) D are the ones that constitute the qualified answer set. Note
that only the right subtree of the R-tree index in Figure 8.3(a) was propagated
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to answer the query. The rate of the accessed nodes heavily depends on the
size of the reference object q and, of course, the kind of the operator (more
selective operators result in a smaller number of accessed nodes).

Let us now consider a spatial query, that is, the overlap operator with D
being the reference object q. Because the query gives no temporal informa-
tion on the reference object, the unified scheme transforms it to a large cube
that covers the whole t-axis. In this case, the simple scheme, presented before,
could be more efficient, since the two-dimensional R-tree that is dedicated
to spatial information of objects is able to answer the query. Similarly, a tem-
poral query (i.e., the during operator) could also be efficiently supported by
the simple scheme.

A special type of query, which is popular in IMD authoring, consists of
spatial or temporal layout retrieval. In other words, queries of the type �Find
the objects and their position in screen at the T0 second� (spatial layout) or
�Find the objects that appear in the application during the (T1,T2) temporal
segment and their temporal duration� (temporal layout) need to be sup-
ported by the underlying scheme. As we will present next, both types of que-
ries are efficiently supported by the unified scheme, since they correspond to
the overlap_during operator and an appropriate reference object q : a rectan-
gle q1 that intersects the t-axis at point T0, or a cube q2 that overlaps the t-axis
at the (T1,T2) segment, respectively. The reference objects q1 and q2 are illus-
trated in Figure 8.4(a). In a second step, the objects that make up the answer
set are filtered in main memory to design their positions on the screen (spa-
tial layout) or the intersection of their t-projections to the given temporal
segment (temporal layout).

In particular, spatial layout could be answered by exploiting the refer-
ence object q1 at the specific time instance T0 = 22 seconds. The result would
be a list of objects (the identifiers of the objects and their spatial and tempo-
ral coordinates) that are displayed at that temporal instance on the screen.
This result can be visualized as a screen snapshot with the objects that are
included in the answer set drawn in, as shown in Figure 8.4(b). As for tem-
poral layout query with constraints, it could be answered using as a refer-
ence object a cube q 2 having dimensions (Xmax − 0) ⋅ (Ymax − 0) ⋅ (T2 − T1)
where Xmax ⋅ Ymax is the dimension of the screen and (T2 − T1) is the requested
temporal interval; T1 = 10 and T2 = 20 in our example. The result would be a
list of objects (the identifiers of the objects and their spatial and temporal
coordinates) that are included or overlapped with cube q2. This result can be
visualized toward a temporal layout by drawing the temporal line segments
of the retrieved objects that lie within the requested temporal interval
(T2 − T1), as shown in Figure 8.4(c).
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On the other hand, the simple indexing scheme (consisting of two
index structures) is not able to give straightforward answers to the above lay-
out queries, because information stored in both indexes needs to be retrieved
and combined.

8.4 Conclusions

8.4.1 Main Achievements of MM-DBMS Technology

So far, the MM-DBMS industry and research have invested significant
efforts to the design and development of DB support for the special features
of media objects and documents. The capabilities of the current MM-DBMS
approaches in the research and industrial domains are summarized in [15].
A MM-DBMS may contain either single-media objects (i.e., images, video
clips) or IMDs. Previous sections of this chapter elaborated on modeling and
retrieval of IMDs; this section focuses on single-media DBs.

8.4.1.1 Modeling

There has been a substantial amount of work in recent years on multimedia.
Zdonik [16] has specified various roles that DBs can play in complex
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multimedia systems. One role is the logical integration of data stored on
multiple media. Kim et al. [17, 18] show how object-oriented DBs (with
some enhancements) can be used to support multimedia applications. Their
model is a natural extension of the object-oriented notions of instantiation
and generalization. The general idea is that a multimedia DB is considered to
be a set of objects that are interrelated to each other in various ways.

Little and Ghafoor [7] have developed methods for satisfying temporal
constraints in multimedia systems. In a similar vein, Prabhakaran and
Raghavan [19] show how multimedia presentations can be synchronized.

Other related works are the following: Gaines and Shaw [2] have devel-
oped an architecture to integrate multiple document representations. Eun et
al. [20] show how Milner�s calculus of communicating systems can be used
to specify interactive multimedia, but they do not address the problem of
querying the integration of multiple media.

8.4.1.2 Integrity

There have been research efforts on the issue of multimedia document verifi-
cation and integrity. In [21], a synchronization model for the formal descrip-
tion of multimedia documents is presented, while [22] explores an approach
for automatic generation of consistent presentation schedules. In [21], the
user formalization is automatically translated into an RT-LOTOS formal
specification, allowing verification of a multimedia document aiming to
identify potential temporal inconsistencies. Multimedia documents are
described through a hierarchical model, and incomplete timing is allowed. In
[22], a temporal constraint satisfaction algorithm is presented. The algo-
rithm generates consistent schedules, according to acceptable durations that
the author defines. The system covers both preorchestrated specifications
and interactive ones. The algorithm has two phases, and a compile time
scheduler can smooth predictable temporal inconsistencies to produce dura-
tion of desired or necessary duration, contrary to our approach, in which
durations are not smoothed.

In [23] an approach is presented that addresses the key issue of provid-
ing flexible multimedia presentation with user participation and suggests
synchronization models that can specify the user participation during the
presentation. A dynamic timed Petri net structure is proposed that can
model preemptions and modifications to the temporal characteristics of the
net. This structure can be adopted by the object composition petri nets
(OCPN) to facilitate modeling of multimedia synchronization characteristics
with dynamic user participation. In [24] a framework for checking the tem-
poral consistency of a composition of media objects is provided. The
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temporal composition is defined in terms of directed acyclic graphs, in which
the nodes are objects and the edges represent temporal relations. The con-
cepts of qualitative and quantitative inconsistency are introduced. The first
concept is related to the incompatibility of a set of temporal relations, and
the second concept is related to the relations that arise from the errors that
occur due to the specific durations of media objects.

8.4.1.3 Content-Based Retrieval

The retrieval of multimedia information from DBs is evolving as a challeng-
ing research and industrial area. There is already a substantial volume of
results in both levels. This section reviews important efforts in this topic, spe-
cifically research for image and video retrieval based on content.

Image Retrieval

Image retrieval is concerned with retrieving images relevant to users� queries
from a large image collection. The relevance is determined by the nature of
the application. For instance, in a fabric-image DB, relevant images would be
those matching a sample in terms of texture and color. In a news photogra-
phy DB, date, time, and the occasion at which the photograph was taken
may be just as important as the actual visual content. Many relational DB
systems support fields for binary large objects (BLOBs) and facilitate access
by user-defined attributes such as date, time, media type, image resolution,
and source. On the other hand, content-based systems analyze the visual
content of images and index extracted features.

Possible query categories involving one or more features are proposed
in [25].

• Simple visual feature query. The user specifies certain values possibly
with percentages for a feature. Example: �Retrieve images which
contain 70 percent blue, 20 percent red, 30 percent yellow.�

• Feature combination query. The user combines different features and
specifies their values and weights. Example: �Retrieve images with
green color and tree texture where color has weight 75 percent and
texture has weight 25 percent.�

• Localized feature query. The user specifies feature values and loca-
tions by placing regions on a canvas. Example: �Retrieve images
with sky blue at the upper half and green at the bottom half.�

• Query by example. The system generates a random set of images. The
user selects one image and retrieves similar images. Similarity can be
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determined based on user-selected features. Example: �Retrieve
images that contain textures similar to this example.� A slightly dif-
ferent version of this type of query is one in which the user cuts a
region from an example image and pastes it onto the query canvas.

• Object versus image. The user can describe the features of an object in
an image as opposed to describing a complete image. Example:
�Retrieve images containing a red car near the center.�

• User-defined attribute query. The user specifies the values of the
user-defined attributes. Example: �Retrieve images in which location
is Washington, D.C., and the date is July 4, and the resolution is at
least 300 dots per inch.�

• Object relationship query. The user specifies objects, their attributes,
and the relationships among them. Example: �Retrieve images in
which an old man is holding a child in his arms.�

• Concept queries. Some systems allow the user to define simple con-
cepts based on the features extracted by the system. For instance, the
user may define the concept of a beach as �Small yellow circle at top,
large blue region in the middle, and sand color in the lower half.�

Combination queries can involve any number of those query primitives as
long as the retrieval system supports such queries. The visual content of an
image is summarized as follows. Visual content can be modeled as a hierar-
chy of abstractions. At the first level are the raw pixels with color or bright-
ness information. Further processing yields features such as edges, corners,
lines, curves, and color regions. A higher abstraction layer may combine and
interpret those features as objects and their attributes. At the highest level are
the human-level concepts involving one or more objects and relationships
among them. An example concept might be �a person giving a speech.�
Although automatic detection and recognition methods are available for cer-
tain objects and their attributes, their effectiveness is highly dependent on
image complexity. Most objects, attribute values, and high-level concepts
cannot be extracted accurately by automatic methods. In such cases, semiau-
tomatic methods or user-supplied keywords and annotations are employed.
Next, we describe the various levels of visual features and the techniques for
handling them.

Some of the visual features of images are briefly presented next. Color
plays a significant role in image retrieval. Different color representation
schemes include red-green-blue (RGB), the chromaticity and luminance
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system of the International Commission on Illumination (CIE), hue-
saturation-intensity (HSI), among others. The RGB scheme is most com-
monly used in display devices. Texture is a visual pattern in which a large
number of visible elements are densely and evenly arranged. A texture ele-
ment is a uniform-intensity region of simple shape that is repeated. Shape-
based image retrieval is a hard problem in general image retrieval because of
the difficulty of segmenting objects of interest in the images. Consequently,
shape retrieval typically is limited to well-distinguished objects in the image.

For indexing visual features, a common approach is to obtain numeric
values for n features and then representing the image or object as a point in
the n-dimensional space. Multidimensional access methods, such as K-D-B-
trees, quad-trees [26, 27], R-trees [28], or their variants (R∗-trees, hB-trees,
X-trees, TV-trees, SS-trees, SR-trees, etc.), are then used to index and
retrieve relevant images. Problems arise in indexing in this context [25].
First, most multidimensional methods work on the assumption that different
dimensions are independent; hence, the Euclidean distance is applicable.
Second, unless specifically encoded, feature layout information is lost. In
other words, the locations of the features can no longer be recovered from the
index. The third problem is the number of dimensions. The index structures
become very inefficient as the number of dimensions grows. To solve those
problems, several approaches have been developed. We first look at the
color-indexing problem. Texture and shape retrieval share some of these
problems, and similar solutions are applicable.

An important constituent of the image content is the information on
objects identified in the image. Object detection involves verifying the pres-
ence of an object in an image and possibly locating it precisely for recogni-
tion. In both feature-based and template-based recognition, standardization
of global image features and registration (alignment) of reference points are
important. The images may need to be transformed to another space for
handling changes in illumination, size, and orientation. Both global and
local features play important roles in object recognition. In local feature-
based object recognition, one or more local features are extracted and the
objects of interest are modeled in terms of those features. For instance, a
human face can be modeled by the size of the eyes, the distance between the
eye and the nose, and so on. Recognition then can be transformed into a
graph-matching problem.

Cardenas et al. [29] have developed a query language called
PICQUERY+ for querying certain kinds of federated multimedia systems.
The spirit of their work is an attempt to devise query languages that access
heterogeneous, federated multimedia DBs. However, many features in [29],
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such as temporal data and uncertain information, form a critical part of
many domains (such as the medical domain).

Fagin in [30] presents work on atomic queries for a multimedia DB.
Here we are often interested in �approximate matches.� Therefore, an atomic
query in a multimedia DB is typically much harder to evaluate than an
atomic query in a relational DB. To make sense of that notion, it is conven-
ient to introduce �graded� (or �fuzzy�) sets, in which scores are assigned to
objects, depending on how well they satisfy atomic queries. Then there are
aggregation functions, which combine scores (under subqueries) for an
object into an overall score (under the full query) for that object.

Video Retrieval

Video retrieval involves content analysis and feature extraction, content
modeling, indexing, and querying. Video naturally has a hierarchy of units
with individual frames at the base level and higher level segments such as
shots, scenes, and episodes. An important task in analyzing video content is
to detect segment boundaries.

A shot is a sequentially recorded set of frames representing a continu-
ous action in time and space by a single camera. A sequence of shots focusing
on the same point or location of interest is a scene. A series of related scenes
form an episode [31]. An abrupt shot change is called a cut. There are several
techniques for shot change detection.

An important issue here is the detection and tracking of objects. In
video, two sources of information can be used to detect and track objects: vis-
ual features (such as color and texture) and motion information. A typical
strategy is to initially segment regions based on color and texture informa-
tion. After the initial segmentation, regions with similar motion vectors can
be merged subject to certain constraints. Systems for detecting particular
movements such as entering, exiting a scene, and placing or removing objects
using motion vectors are being developed. It is possible to recognize certain
facial expressions and gestures using models of face or hand movements.

Once features are detected, indexing and retrieval techniques have to
be adopted to support queries. The temporal nature and comparatively huge
size of video data require special browsing and querying functions. A com-
mon approach for quick browsing is to detect shot changes and associate a
small icon of a key frame for each shot [32]. Retrieval using icons, text, and
image (frame) features is possible. The hierarchical and compositional model
of video [31] consists of a segment hierarchy such as shots, scenes, and epi-
sodes. This model facilitates querying and composition at different levels and
thus enables a rich set of temporal and spatial operations. Example temporal
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operations include follows, contains, and transition. Example spatial opera-
tions are parallel to and below. Hierarchical Temporal Language (HTL) [33]
also uses a hierarchical model of video consisting of units such as frames,
shots, and subplots. The semantics of the language is designed for similarity-
based retrieval.

8.4.2 Commercial Products and Research Prototypes

Several research and commercial systems provide indexing and querying
based on visual features such as color and texture. Certain unique features of
these systems are discussed here.

8.4.2.1 Research Systems

The Photobook system [34] enables users to plug in their own content analy-
sis procedures and select among different content models based on user
feedback via a learning agent. Sample applications include a face-recognition
system, image retrieval by texture similarity, brain map, and semiautomatic
annotation based on user-given labels and visual similarity. VisualSEEk [35]
allows localized feature queries and histogram refinement for feedback using
a Web-based tool. An important effort is VideoQ system [36]. The user
interface that is provided is quite flexible and gives sufficient query abilities
to the user.

8.4.2.2 Commercial Systems

IBM�s DB2 system supports video retrieval via video extenders
(http://www.software.ibm.com/data/db2/extenders). Video extenders allow
for the import of video clips and the querying of those clips based on attrib-
utes such as the format, name/number, or description of the video, as well as
last modification time.

Oracle (v.8) introduced integrated support for a variety of multimedia
content (Oracle Integrated Multimedia Support [37]). The set of services
includes text, image, audio, video, and spatial information as native data
types, together with a suite of data cartridges that provides functionality
to store, manage, search, and efficiently retrieve multimedia content from
the server. Oracle8i has extended this support with significant innovations,
including its ability to support cross-domain applications that combine
searches of a number of kinds of multimedia forms and native support for
data in a variety of standard Internet formats, including JPEG, MPEG, GIF,
and the like.

Informix�s multimedia asset management technology [38] offers a
range of solutions for media and publishing organizations. In fact, Informix�s
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DB technology is already running at the core of innovative multimedia
solutions in use. Informix Dynamic Server� with Universal Data Option�
enables effective, efficient management of all types of multimedia con-
tent�images, sound, video, electronic documents, Web pages, and more.
The Universal Data Option enables query, access, search, and archive digital
assets based on the content itself. Informix�s DB technology provides cata-
loging, retrieval, and reuse of rich and complex media types�video, audio,
images, time series, text, and more�enabling viewer access to audio, video,
and print news sources; high-performance connectivity between a DB and
Web servers, providing on-line users with access to up-to-the-minute infor-
mation; tight integration between DB and Web development environments,
for rapid application development and deployment; and extensibility for
adding features like custom news and information profiles for viewers.

QBIC (http://wwwqbic.almaden.ibm.com) [39] supports shape que-
ries for semimanually segmented objects and local features as well as global
features. The Virage system (http://www.virage.com) [40] supports feature
layout queries, and users can give different emphasis to different features.
Excalibur (http://www.excalib.com) Visual RetrievalWare systems enable
queries on gray shape, color shape, texture, and color using adaptive pattern-
recognition techniques. Excalibur also provides data blades for Informix
DBs. An example data blade is a scene change detector for video. The data
blade detects shots or scenes in video and produces a summary of the video
by example frames from each shot.

8.4.2.3 Systems for the World Wide Web

WebSEEk [41] builds several indexes for images and videos based on visual
features, such as color, and nonvisual features, such as key terms assigned
subjects and image/video types. To classify images and videos into subject
categories, a key term dictionary is built from selected terms appearing in a
uniform resource locator (URL), the address of a page on the World Wide
Web. The terms are selected based on their frequency of occurrence and
whether they are meaningful subject terms. After the key term dictionary is
built, directory portions of the image and video URLs are parsed and ana-
lyzed. The analysis produces an initial set of categories of the images and the
videos, which are then verified manually. Videos are summarized by picking
one frame for every second of video and then packaging them as an animated
GIF image. The WebSeer project [42] aims at classifying images based on
their visual characteristics. Novel features of WebSeer include image classifi-
cation such as photographs, graphics, and so on; integration of face detector;
and multiple key word search on associated text such as an HTTP reference,
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alternate text field of HTML reference, or page title. Yahoo Image Surfer
(http://isurf.yahoo.com) employs Excalibur Visual RetrievalWare for search-
ing images and video on the World Wide Web. Table 8.1 compares the fea-
tures of the commercial systems and research prototypes.

8.4.3 Further Directions and Trends

There is now intense interest in multimedia systems. These interests span
vast areas in computer science, including, but not limited to, computer net-
works, DBs, distributed computing, data compression, document process-
ing, user interfaces, computer graphics, pattern recognition, and artificial
intelligence. In the long run, we expect that intelligent problem-solving sys-
tems will access information stored in a variety of formats, on a wide variety
of media. Next, we propose some direction on the research themes presented
in this chapter.

8.4.3.1 Modeling�Integrity

In [43] the issue of uniform definition of the notion of an update in multime-
dia DB systems and efficiently accomplishing such updates is addressed. The
authors claim that the update algorithms, especially the algorithm for delet-
ing states, is less efficient than the others. In applications that require large-
scale state deletions, it may be appropriate to consider alternative algorithms
(and possibly alternative indexing structures as well).

The issue of authoring complex and consistent IMDs is still an open
one. The integrity of a document is a multiparameter problem that has to be
studied thoroughly, and formal verification techniques have to be developed.
The issue of interaction especially should be studied in this perspective.

The spatiotemporal dependencies in the modeling and authoring level
are an issue that requires special attention, because the spatial aspects have
not been given the appropriate importance so far. Interaction is a key factor
for successful document design and rendering. The interactions modeled so
far in the DB models and document standards are primitive ones. There has
to be a more thorough and elaborate study of complex interaction in the
algebraic and spatiotemporal levels, because event carriers of interactions
have many different facets.

8.4.3.2 Content-Based Retrieval

There are essential differences between multimedia DBs (which may contain
complicated objects, such as images) and traditional DBs. These differences
lead to interesting new issues and in particular cause us to consider new types
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Comparative Presentation of Content-Based Retrieval Systems
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Table 8.1 (continued)

QBIC ORACLE INFORMIX DB2 VideoQ Photobook VisualSEEK Virage

Captions and
annotations
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annotation
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reproduction
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� � � �



of queries. Unlike the situation in relational DBs, where the semantics of a
boolean combination are quite clear, in multimedia DBs it is not at all clear
what the semantics are of even the conjunction of atomic queries. Multi-
media DBs have interesting new issues beyond those of traditional DBs
[30, 43, 44]:

• Handling of uncertainty in queries toward underlying media and/or
temporal changes in the data. These changes need to be incorporated
into the query language because they are relevant for various applica-
tions such as those listed by Cardenas et al. [29].

• Handling boolean combinations of atomic queries. In [30] a first step is
made, by giving a reasonable semantics, involving aggregation func-
tions, for evaluating boolean combinations, and by giving an effi-
cient algorithm for taking conjunctions of atomic queries, that is
optimal under certain natural assumptions.

• The role of spatiotemporal structure and relationships. Spatiotemporal
structure is gaining more importance, which is reflected in the docu-
ment standards evolution procedures (MPEG-4, MPEG-7 [45]). An
interesting direction is the design of indexing schemes for the spatio-
temporal structure of video objects or IMDs.

8.4.3.3 QoS Issues for Web Retrieval

The exponential growth of the World Wide Web content calls for enriched
and complex multimedia content, which in turn imposes connection with an
MM-DBMS. Then the following issues need to be searched.

• Rendering of IMDs on the Web. The presentation of a complex IMD
imposes handling of complex internal and external interaction and
also assurance of the spatiotemporal presentation specifications dur-
ing IMD presentation. Initial work appears in [4].

• Provision of quality of service(QoS). Provisions could be made to
ensure the QoS, and admission control could be the first step toward
that goal. It is clear, though, that due to the massively distributed
architecture of the system, there is no apparent way of applying a
centralized QoS control. In its present state, the system operates on
a best-effort basis.
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Finally, we note that multimedia DBs form a natural generalization of het-
erogeneous DBs that have been studied extensively. How exactly the work on
heterogeneous DBs is applicable to multimedia DBs remains to be seen, but
clearly there is a fertile area to investigate here.
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9
Distributed Databases

Peter McBrien and Alexandra Poulovassilis

9.1 Introduction

The widespread use of computers for data processing in large distributed
organizations means that such organizations often store their data at different
sites of a computer network, possibly in a variety of forms, ranging from
flat files, to hierarchical or relational DBs, through to object-oriented (see
Chapter 7) or object-relational DBs (see Chapter 6). The rapid growth of the
Internet is causing an even greater explosion in the availability of distributed
information sources. Distributed DB (DDB) technology aims to provide
uniform access to physically distributed but logically related information
sources.

Before introducing the main concepts of DDBs, we first will review
some necessary concepts and terminology from centralized DBs. A central-
ized DB system consists of a DBMS and a DB, which is held on disc. Users
access the DB by submitting queries or transactions to the DBMS. Two
major components of any DBMS are thus the query processor and the trans-
action manager.

The query processor translates queries into a sequence of retrieval
requests on the stored data. There may be many alternative translations for a
given query, which are known as query plans. The task of selecting a good
query plan is known as query optimization. A �good� query plan is one that
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has a relatively low cost of execution compared with the alternative query
plans.

A transaction is a sequence of queries and/or updates. The transaction
manager coordinates concurrently executing transactions so as to guarantee
the so-called ACID properties:

• Atomicity. Either all or none of a transaction is executed.

• Consistency. Transactions must leave the data in a consistent state,
that is, satisfying all the stated integrity constraints.

• Isolation. It must appear to users that transactions are being executed
one after the other, even though they may be interleaved.

• Durability. If a transaction has committed, its effects must not be
lost.

The two mechanisms by which a transaction manager guarantees the ACID
properties are concurrency control, which ensures consistency and isolation,
and recovery, which ensures atomicity and durability.

A DDB system consists of several DBs stored at different sites of a com-
puter network. The data at each site are managed by a DB server running
some DBMS software. The servers can cooperate in executing global queries
and global transactions, that is, queries and transactions whose processing
may require access to DBs stored at different sites. There are a number of
alternative architectures for DDB systems, which are reviewed in Section 9.2.

To improve the performance of global queries in DDBs, data items can
be split into fragments that can be stored at sites requiring frequent access to
them. Data items or fragments of data items can also be replicated across
more than one site. Techniques are therefore needed for deciding the best
way to fragment and replicate the data to optimize the performance of
applications. This is part of the DDB design process, which is discussed in
Section 9.3.

A key difference between processing global queries in a DDB system
and processing queries in a centralized DB system is that DDB queries may
require data to be transmitted over the network. Thus, new query-processing
algorithms are needed that include data transmission as an explicit part
of their processing. Also, the global query optimizer needs to take data
transmission costs into account when generating and evaluating alterna-
tive query plans. Section 9.4 examines query processing and optimization
in DDBs.
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A key difference between global transactions in a DDB system and
transactions in a centralized DB system is that global transactions are divided
into a number of subtransactions. Each subtransaction is executed by a single
DB server, which guarantees its ACID properties. However, an extra level of
coordination of the subtransactions is needed to guarantee that the overall
global transactions also exhibit the ACID properties. Section 9.5, which cov-
ers transaction management in DDBs, explores how such global coordina-
tion can be achieved.

The chapter concludes with a discussion of some current trends and
challenges in DDBs.

9.2 Distributed Database Architecture

There are a number of alternative architectures for DDB systems. In the
description of them in this chapter, we use an extended version of the taxon-
omy of [1], illustrated in Figure 9.1.

Distributed Databases 293

Distributed
databases

Single-DBMS Multi-DBMS

Unfederated
(homogeneous)

Federated
(heterogeneous)

Loose schema
coupling

Tight schema
coupling

Single
federated
schema

Multiple
federated
schema

Figure 9.1 Taxonomy of DDB architectures.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



A DDB system consists of several DBs distributed over several sites.
Access to the DBs can be controlled by a single DBMS process; that is the
single-DBMS architecture in Figure 9.1. Alternatively, there may be several
independent DBMS processes, each controlling access to its own local DB;
that is the multi-DBMS architecture in Figure 9.1.

There are two variants of the multi-DBMS architecture, depending on
the amount of autonomy of each of the participating DBMS processes. In
an unfederated multi-DBMS, a single DB administration authority decides
what information is stored in each DB, how the information is stored and
accessed, and who is able to access it. In contrast, a federated multi-DBMS
separates the DB administration authority between the DB administrators
(DBAs) of each local DB (the local DBAs) and the DBAs for the overall fed-
eration (the global DBAs). The local DBAs have complete authority over the
information in their DBs, and what part of that information is made avail-
able to the federation, that is, to global queries and transactions. This infor-
mation is represented in the form of one or more export schemas for each
local DB. The global DBAs control global access to the system, but must
accept the access restrictions imposed by the local DBAs.

A federated DDB is said to be tightly coupled if the global DBAs main-
tain one or more global schemas that provide an integrated view through
which global queries and transactions can access the information stored
in the local DBs. A federated DDB is loosely coupled if there is no global
schema provided by a global DBA, and it is the users� responsibility to define
the global schemas they require to support their applications. This chapter
concentrates on tightly coupled DDBs, which present the extra difficulty
of having to provide an integrated view of the information stored in the
local DBs.

The presence of a single DB administration authority in an unfederated
multi-DBMS makes it likely that the multi-DBMS will be a homogeneous
one, both physically and semantically. Physical homogeneity means that the
local DBs are all managed by the same type of DBMS, supporting the same
data model, DDL/DML, query processing, transaction management, and so
forth. Semantic homogeneity means that different local DBs store any infor-
mation they have in common in a consistent manner, so that integration of
the information does not require it to be transformed in any way.

In contrast, the presence of multiple DB administration authorities in a
federated multi-DBMS makes it likely that it will be heterogeneous. The het-
erogeneity may be physical, semantic, or both. Physical heterogeneity means
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that different local DBs may be managed by different types of DBMSs for
example, different products or different versions of one product. Thus, the
local conceptual schemas may be defined in different data models (e.g., net-
work, hierarchical, relational, object-oriented), the DDL/DML supported by
local DBs may be different (e.g., network or hierarchical, different versions
of SQL, OQL), the query processors may use different algorithms and cost
models, the transaction managers may support different concurrency control
and recovery mechanisms, and so forth. Semantic heterogeneity means that
different local DBs may model the same information using different schema
constructs or may use the same schema construct to model different infor-
mation. For example, people�s names may be stored using different string
lengths, or a relation named student in one DB may contain only under-
graduate students while a relation named student in another DB contains
both undergraduate and postgraduate students. If there is semantic hetero-
geneity in a multi-DBMS, it is necessary to perform semantic integration of
the export schemas. That requires the export schemas to be transformed so
as to eliminate any inconsistencies between them. Section 9.3 examines this
topic further in the discussion of DDB design.

We finally note that, in reference to multi-DBMSs, the terms unfeder-
ated and homogeneous are usually treated as almost synonymous, as are the
terms federated and heterogeneous.

Of the various architectures in Figure 9.1, a heterogeneous multi-
DBMS is the most challenging to implement. Thus, this section first con-
siders a five-level model for a heterogeneous multi-DBMS architecture. We
then simplify that model to a four-level model for homogeneous multi-
DBMS and finally to a three-level model for single-DBMS. Section 9.2.4
continues with a discussion of physical DB connectivity, that is, mechanisms
by which information can be exchanged by DBMSs in DDB systems.

Ideally, the manner in which data are physically stored in a DDB sys-
tem should not alter the way that global queries and transactions are written.
For example, it should be possible to change the location of a particular data
item, perhaps to improve the performance of the DDB, without having to
alter any application code that requires access to that data item. This prop-
erty of DDBs, known as distributed data independence, is discussed further
in Section 9.2.5.

We conclude the section on architectures with, in Section 9.2.6, a brief
comparison of DDBs with two other decentralized DB architectures, client/
server DBs and parallel DBs.
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9.2.1 Five-Level Model for Heterogeneous Multi-DBMS

A heterogeneous multi-DBMS requires integration of the export schemas
to be performed so the federation can be accessed as a single resource. This
section examines how the three-level ANSI/SPARC architecture for central-
ized DBMSs [2] has been extended to a five-level architecture for heterogene-
ous DDBs. Several variations of the five-level model have been proposed
[1, 3, 4], and the description here broadly follows that of [1], except that
local DBs are termed component databases in [1] and global schemas are
termed federated schemas.

A heterogeneous multi-DBMS must integrate the export schemas of
the local DBs into one or more global schemas, which provide an integrated
view through which global queries and transactions can access the federation.
This view must be constructed while preserving the autonomy of the local
DBs, that is, leaving control of them in the hands of the local DBAs.
The five-level model illustrated in Figure 9.2 achieves that by requiring
the following five types of schema to be present in a heterogeneous DDB
system.

• A local schema for each local DB. The local schema is the conceptual
schema of the local DB. Each local DB continues to operate as an
autonomous entity, and the content of its local schema is under the
control of its local DBAs. Each local DB will also have a physical
schema and possibly a number of external schemas that are views of
its local schema. However, those schemas are not considered to be
part of the heterogeneous multi-DBMS architecture.

• A component schema corresponding to each local schema. The local DBs
may support different data models and different DDL/DMLs.
Thus, the local schemas have to be translated into some common
data model (CDM) before they can be integrated. This may be some
variant of the E/R model or an object-oriented data model. Each
component schema is the translation of its corresponding local
schema into this CDM.

• One or more export schemas corresponding to each component schema.
Each export schema is a view over the component schema that the
local DBAs want to make available to the federation. The export
schemas define what part of the locally held information can be
accessed by global queries and transactions.

• One or more global schemas. Each global schema is obtained by inte-
grating one or more of the export schemas into a single schema. A
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global schema can be regarded as a conceptual schema for the het-
erogeneous DDB. However, in contrast to a centralized DB, it may
not be possible�or desirable�to create a single global schema that
encompasses all the export schemas. For example, it may not be pos-
sible to resolve some of the semantic heterogeneities between some
of the export schemas, or different application domains may require
access to different parts of the federation.

• A number of external schemas. Each external schema is a view over
one global schema and contains information that a user needs
for a specific application. The external schemas correspond to the
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external schemas of the three-level ANSI/SPARC model in that they
provide views over the conceptual schema(s) of the federation.

9.2.2 Four-Level Model for Homogeneous Multi-DBMS

In a homogeneous multi-DBMS, all the local DBs are managed by the same
type of DBMS. Thus, all the local schemas are expressed in the same data
model. There is, therefore, no need for any component schemas, since this
platform-specific data model can be used as the CDM. Thus, for a homo-
geneous multi-DBMS, the five-level model in Figure 9.2 simplifies to a
four-level model that has no component schemas.

9.2.3 Three-Level Model for Single-DBMS

In a single-DBMS DDB, there is no role to be played by either the compo-
nent schemas or the export schemas, and a single global schema is formed
as the union of all the local schemas. Thus, a three-level model for single-
DBMS DDBs can be obtained by omitting the component schema and the
export schema from the five-level model in Figure 9.2.

9.2.4 Physical Database Connectivity

A large number of software tools support DDB architectures by allowing
DBMSs to exchange information. We can summarize their functionality by
placing them in two main categories: DBMS-independent approaches and
DBMS-dependent approaches.

DBMS-independent approaches abstract the common capabilities of
DBMSs, and in particular relational DBMSs, into a uniform API with asso-
ciated communication protocols. Examples of this approach are Microsoft�s
Open Database Connectivity (ODBC) and SUN�s Java Database Connec-
tivity (JDBC) APIs. This approach allows the construction of open systems,
because applications can be built using a uniform API and then physically
connect to any DB that supports that API. However, variations in different
DBMSs� capabilities, for example, with respect to query processing, transac-
tion management, and access control, mean that some features of DBMSs
will not be available through the uniform API.

DBMS-dependent approaches present the capabilities of specific
DBMSs as a direct inter-DB communication protocol. The major DB ven-
dors have provided this functionality for their products for some time,
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allowing different DBMSs running the same DBMS software to cooperate
in executing distributed queries and transactions. The concept of gateways
extends this approach by allowing a DBMS to exchange information with
another type of DBMS, using the native DML and DDL of the first. A
different gateway is required for each different type of DBMS; thus, this
approach does not scale well in highly heterogeneous systems. However, it
does give better performance and functionality than the DBMS-independent
approach, because each gateway is tailored specifically to the two DBMSs it
serves to connect. Examples of the gateway approach are Oracle�s SQLNet
and Sybase�s Open Server. It can be seen that DBMS-independent
approaches are best suited to building loosely coupled DDB systems, while
tightly coupled DDB systems will require the use of a DBMS-dependent
approach. We note that in DBMS-dependent approaches, as well as in
DBMS-independent ones, it is normal to present the inter-DB communica-
tion protocol as an API that can be used by applications. Thus, one can write
programs that integrate data from several types of DBMS by using the
DBMS-specific API for each one. However, unless some DBMS-specific
feature is required, it is simpler to use a DBMS-independent API where
possible.

9.2.5 Distributed Data Independence

Recall that distributed data independence means that changing the physical
location of data items in a DDB should not require application code to be
altered. One way of achieving distributed data independence is to maintain a
global catalog that describes all the data items stored at every site, associating
both a logical name and a physical name with each one. The disadvantage of
this approach is that the site where the catalog resides becomes a bottleneck
for network traffic as well as a single point of failure for the DDB. The prob-
lem can be overcome by replicating the global catalog at multiple sites. But
that makes updating the catalog complex because all its distributed replicas
have to be updated to reflect the change before any of them can be used
again. The commonly adopted solution to those problems is for the distrib-
uted DBMS to maintain a distributed catalog.

With that approach, each site maintains its own local catalog of all the
data items stored at that site. Each data item recorded in the local catalog has
both a local name and a global name. The global name identifies the site
or sites whose catalogs contain full information regarding that data item,
for example, its definition, its physical location(s), the integrity constraints it
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must satisfy, and user access rights to it. Applications running at each site use
their own local names for data items. The DBMS handles the translation of
the local names to global names. A change in the physical location of some
data item does not require applications to be altered, and they can continue
to use just their local name for the data item.

9.2.6 Other Decentralized Database Architectures

We conclude this section on architectures by briefly comparing and contrast-
ing DDB systems with two other decentralized DB architectures, namely
client/server DBs and parallel DBs.

A client/server DB system consists of multiple client processes and
multiple server processes. Client processes are responsible for user interaction
and data presentation, while server processes are responsible for query proc-
essing, transaction management, and storage management. Client processes
can submit queries or transactions to any server process. However, coordinat-
ing queries and transactions that need access to multiple servers is the respon-
sibility of the client, unlike in DDB systems, where servers can cooperate in
the execution of global queries and transactions.

A parallel DB system utilizes multiple processors and multiple disks to
provide parallel, and thus faster, execution of queries and transactions. An
effective way to utilize multiple processors and disks is to split each relation
into groups of rows according to some selection criterion and store each
group on one disk. A query referencing that relation can then be translated
into multiple subqueries, each requiring access to one fragment of the rela-
tion; the subqueries can be processed in parallel in a shorter time than the
original sequential query. This is known as intra-query parallelism, that is,
paralleling the execution of one query. Inter-query parallelism is also possi-
ble, that is, executing several queries concurrently.

The processors in a parallel DB system are linked by very high-speed
connections; thus, interprocessor communication costs are negligible in
comparison to I/O costs. That is in contrast to the typically slower commu-
nication links in DDB systems. Thus, although query processing algorithms
and cost models in parallel and DDB systems share some commonalties, in
that both architectures support inter- and intra-query parallelism, they also
have this major difference. Moreover, parallel DBs differ from DDBs in that
they do not support two levels of access to the DB (local and global) but only
one integrated view of the data.

300 Advanced Database Technology and Design



9.3 Distributed Database Design

The two main approaches to designing DDBs are bottom up and top down.
With bottom-up DDB design, the local DBs already exist and their

export schemas need to be integrated into one or more global schemas.
Section 9.3.3 considers bottom-up design for the case of heterogeneous
multi-DBMS because they present the greatest integration difficulties and
subsume the cases of homogeneous multi-DBMS and single-DBMS
architectures.

With top-down design, there are no preexisting local DBs. The global
schema is first designed, taking as input the requirements that all potential
users will have of the new DDB system. The design of the local DBs then fol-
lows. The main challenge with top-down design is how to derive the local
conceptual schemas from the global schema, that is, how to allocate the
information in the global schema across the local DBs. Top-down design is
most likely to occur in homogeneous multi-DBMS or single-DBMS archi-
tectures. Section 9.3.2 examines top-down design, assuming that this is
indeed the case and that the DBMS is a relational one. Because the top-down
design of a relational DDB is concerned with how relations should be frag-
mented and replicated across the local DBs, we begin with a general discus-
sion of data fragmentation and replication in relational DDBs.

9.3.1 Data Fragmentation and Replication in Relational DDBs

In a relational DDB, relations can be fragmented horizontally or vertically.
Horizontal fragmentation partitions a relation R into a number of disjoint
subsets. For example, in Figure 9.3(b), the account relation has been parti-
tioned into two subsets: saccno < 400 account, which is stored at S1, and saccno ≥ 400

account, which is stored at S2.
Derived horizontal fragmentation of relations is also possible. It frag-

ments a relation, R, according to the fragmentation of some other relation, S,
with which R has attributes in common and hence is joinable. In particular,
if the fragments of S are S1, …, Sn, then the fragments of R are R1, …, Rn,
where each Ri is defined by

Ri = R >< Si

Here, >< is the semijoin operator, which is defined as
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Figure 9.3 Distribution of the account relation: (a) single database; (b) horizontal frag-
mentation; (c) vertical fragmentation; (d) hybrid fragmentation.
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R >< S = R >< pR∩S(S )

where pR∩S denotes projection on the common attributes of R and S. For
example, the fragmentation of a relation customer (name,address,telno), which
would be derived from the fragmentation of account shown in Figure 9.3(b),
would partition customer into the two fragments customer >< (saccno <

400 account) and customer >< (saccno ≥ 400 account).
Vertical fragmentation splits a relation R into n projections pattrs1 R,

pattrs2 R, …, pattrsnR, such that R = pattrs1 R >< pattrs2 R | … >< pattrsn R, that is,
into a lossless join decomposition of R. For example, in Figure 9.3(c), the
relation account has been split into two vertical fragments, paccno,name account,
which is stored at S1, and paccno,balance account, which is stored at S2. The origi-
nal relation in Figure 9.3(a) can be reconstructed by forming the natural join
of the two fragments over their common attribute, accno.

Hybrid fragmentation of a relation is also possible in that a relation
can be fragmented both vertically and horizontally. Hybrid fragmentation
is illustrated in Figure 9.3(d), where the account relation has been split
into four fragments, paccno,balance(saccno < 400 account), paccno,name(saccno < 400 account),
paccno,name(saccno ≥ 400 account) and paccno,balance(saccno ≥ 400 account), which are stored
at, respectively, sites S1, S2, S1, and S2.

There are two main advantages in fragmenting relations in a DDB system:

• Applications running at different sites often require access to only
part of a relation rather than to the entire relation. Thus, fragments
can be stored at the sites where they are accessed most often rather
than storing the entire relation at the sites. For example, it may be
the case that accounts with numbers less than 400 are managed at
one site of a DDB system, and the rest of the accounts at another
site, in which case the accounts relation could be fragmented as
shown in Figure 9.3(b). Or it may be that one site frequently
requires information about customer names, while another fre-
quently requires information about customer balances. In that case,
the accounts relation could be fragmented as shown in Figure 9.3(c).

• Fragmentation of relations also makes intra-query parallelism possi-
ble, in that a single global query can be translated into multiple local
subqueries that can be processed in parallel.

Two disadvantages of fragmentation are the increased query processing costs
for those queries that need to access many distributed fragments of a relation
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and the increased cost and complexity of enforcing semantic integrity con-
straints on fragmented relations.

As already mentioned, fragments of relations or, indeed, entire rela-
tions can be replicated at multiple sites of a relational DDB. There are two
general advantages to data replication.

• Processing of queries generally will be localized to fewer sites, thus
reducing the amount of data being transmitted over the network
and speeding up query processing.

• The reliability of the system is increased because if one site fails and
its information is replicated at other sites, then those sites can be
accessed instead of the failed site.

The disadvantage of replication is the added overhead of maintaining the
consistency of all the replicas when updates are performed by transactions.
Consistency can be maintained either synchronously or asynchronously [5].
With the synchronous approach, transactions must update all replicas of any
relation that is being modified. That can have a significant effect on transac-
tion throughput since write locks must be obtained for all replicas and held
until the transaction commits.

With the asynchronous approach, one or more replicas are designated
as primary copies and are updated synchronously. The rest of the replicas are
designated secondary copies. They are not updated by transactions but have
updates propagated to them by the primary copies. With this approach, users
need to know which are the primary replicas and which are the secondary
ones, and they have to access the desired replica explicitly. That violates the
principle of distributed data independence, but it does give more flexibility
and better performance than the synchronous approach.

9.3.2 Top-Down Design of Relational DDBs

Top-down design of relational DDBs addresses two main issues: What is the
appropriate amount of fragmentation of each relation, and how fragments
should be allocated across the sites of the DDB.

The central aim of fragmenting relations is to divide them among the
local DBs in such a way that applications will place an equal load on each DB
server. Thus, both horizontal and vertical fragmentation must be based on
information about the expected accesses to relations.
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To horizontally fragment a relation, we need to decide which rows of
the relation should be placed in the same fragment. To do that, we need
to examine the selection predicates that will be applied to the relation by
applications, that is, by queries and transactions submitted to the DDB. The
selection predicates will consist of one or more simple predicates of the form
attr op value, where op can be =, ≠, <, ≤, >, or ≥, possibly connected by the
boolean connective AND or OR.

Suppose that P = {p1, …, pn} is the set of simple predicates that will be
applied to a relation R. Let F (P ) be the set of predicates of the form q1 AND
… AND qn , where each qi is either the simple predicate pi or its negation ¬pi.
Then, R is fragmented so that the rows in each fragment satisfy precisely one
of the predicates in F (P ).

To illustrate, consider the account relation in Figure 9.3(a). Suppose
that the simple predicates that will be applied to it are

accno < 400, balance < 0

Let P0 denote this set of simple predicates. Then F (P0) consists of four
predicates:

(accno < 400) AND (balance < 0)
(accno < 400) AND (balance ≥ 0)
(accno ≥ 400) AND (balance < 0)
(accno ≥ 400) AND (balance ≥ 0)

R will thus be fragmented into four fragments, F1, …, F4, each one satisfying
one of the above predicates.

The set of simple predicates, P, should be chosen so that it satisfies the
properties of completeness and minimality. Completeness means that all the
rows of any fragment generated by F (P ) should have the same probability of
being accessed. For example, the set P0 = {accno < 400, balance < 0} is com-
plete if all applications access the account relation using only combinations of
those simple predicates or their negations. However, suppose a new applica-
tion now includes the selection predicate accno > 600. Then some rows of the
fragments F3 and F4 will have a greater probability of being accessed by this
new application than others. To make P0 complete, the predicate accno > 600
should be added to it. Let P1 be this new set of simple predicates:

accno < 400, balance < 0, accno < 600
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Then F (P1) consists of the eight predicates that result from combining those
simple predicates or their negations. Some combinations of simple predicates
may be simplifiable, for example, (accno < 400) AND (accno < 600) to just
accno 400, and some combinations may not be satisfiable, for example,
(accno < 400) AND (accno ≥ 600). Thus, F (P1) reduces to the following six
predicates:

(accno < 400) AND (balance < 0)
(accno < 400) AND (balance ≥ 0)
(accno ≥ 400) AND (balance < 0) AND (accno < 600)
(accno ≥ 600) AND (balance < 0)
(accno ≥ 400) AND (balance ≥ 0) AND (accno < 600)
(accno ≥ 600) AND (balance ≥ 0)

Each of those predicates will generate one fragment of account, which has the
desired effect of splitting each of the original fragments F3 and F4 of R into
two. The completeness property is important because it means that all the
rows of a fragment have the same statistical properties, so the fragment can
be treated as one unit for the purposes of query optimization.

The minimality property of a set of simple predicates P means that if
any one of the predicates in P is removed, the completeness property is vio-
lated. For example, it is easy to see that omitting any of the predicates from
the preceding set, P1, would violate its completeness property. However, if
we were to add another predicate to P1, say, balance < 2000, then it would
introduce unnecessary fragmentation of the account relation in the sense that
some of the fragments would have the same statistical properties (assuming
there was no change in the applications accessing account). Thus, P1 ∪ {bal-
ance < 2000} would not be minimal.

Turning now to vertical fragmentation, we need to decide which attrib-
utes of a relation should be placed in the same fragment. To guarantee the
losslessness of the join of the vertical fragments, each vertical fragment
should contain the primary key attributes of the relation. Alternatively, repli-
cation of the primary key attributes can be avoided by augmenting the rela-
tion with a system-maintained row identifier (ROWID) attribute, which is
present in each vertical fragment. Fragmentation of the rest of the attributes
depends on the frequency with which attributes are accessed together in the
same query. For example, the vertical fragmentation of the account relation in
Figure 9.3(c) favors applications in which the attributes name and balance
will not often be accessed together in the same query, since such queries will
require a join of the two fragments to be performed. Statistical clustering
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techniques can be used to cluster attributes into the same vertical fragment
on the basis of information regarding the frequency with which pairs of
attributes appear together in the same query.

Having discussed the first issue in the top-down design of relational
DDBs, that is, what is the appropriate amount of fragmentation of each rela-
tion, we turn now briefly to the second issue, that is, how to allocate frag-
ments across the sites of the DDB. Unlike fragmentation, which primarily
uses semantic information about applications, allocation requires informa-
tion about how applications are distributed over the network. The problem
is how to allocate fragments to sites to minimize some performance metric.
Possible metrics are the overall cost of running applications, the query
response time, and the transaction throughput. Even very simple formula-
tions of this problem are computationally intractable, so heuristic approaches
must be used, such as those employed in operations research.

9.3.3 Bottom-Up Design of Heterogeneous DDBs

With bottom-up design of heterogeneous DDBs, the local DBs already exist
and the main challenge is one of schema integration, that is, how to integrate
a set of export schemas into a single global schema. Because the local DBs
typically will have been designed by different people at different times, con-
flicts are likely to exist between the export schemas. For example, different
export schemas may model the same real-world concept using different con-
structs, or they may model different real-world concepts using the same
construct. Such conflicts must be removed by transforming the export
schemas to produce equivalent schemas, which can then be integrated. The
schema integration process thus consists of three main tasks [6]:

• Schema conformance, during which conflict detection and conflict
resolution are performed, resulting in new versions of the export
schemas that represent the same concepts in the same manner;

• Schema merging, during which related concepts in the export sche-
mas are identified and a single global schema is produced;

• Schema improvement, during which the quality of the global schema
is improved, in particular, removal of redundant information so
that the resulting schema is the �minimum� union of the export
schemas.
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Those tasks are illustrated in Figure 9.4, which shows how two export sche-
mas, ES 1 and ES 2, can be integrated. The export schemas are expressed using
an E/R model, which is often used as the CDM in heterogeneous DBs. Sup-
pose that ES 1 and ES 2 have a conflict in that the student entity class of ES 1

represents all students, and the student entity class of ES 2 represents just post-
graduate students. In the conformance step, we thus rename the latter entity
class postgrad student so distinct entity classes now have distinct names. In the
merging step, we identify that postgrad student is a subclass of student and
introduce an �is-a� relationship between them. Finally, in the improvement
step, we identify that postgrad student has a redundant attribute id, which it
can inherit from student. Thus, we remove id from postgrad student, resulting
in a final global schema GS.

Performing those tasks requires that a sequence of transformations be
applied to schemas in such as way that the resulting schema is equivalent to
the original one. The sequence of transformations gives a pathway for trans-
lating data expressed in the constructs of the export schemas ES 1 and ES 2

into data expressed in the constructs of the global schema GS. The trans-
formations should be reversible in the sense that data and queries expressed
in the integrated schema GS must be translatable into data and queries
expressed in ES 1 and ES 2. With such reversible transforms, it is possible to
automatically translate queries and data between DBs [7].

In [8] we propose a new formal definition for equivalence of E/R sche-
mas and give a set of primitive transformations that can be used to transform
E/R schemas into equivalent schemas. This set of primitive transformations
includes transformations for renaming entity classes, attributes, and relations
(renameE, renameA, renameR) and transformations for adding and deleting
entity classes, attributes, and relations (addE, delE, addA, delA, addR, delR). For
example, the conformance step in Figure 9.4 is performed by the following
primitive transformation:

renameE �student,postgrad student�
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This transformation is successful provided there is not already an entity class
with the name postgrad student in ES2. The addition of the �is-a� link is per-
formed by

addI �postgrad student,student�

This succeeds provided the actual extent of postgrad student is a subset of the
extent of student. Finally, the improvement step is performed by

delA �postgrad student,id�

This succeeds provided the extent of the association between postgrad student
and id can be derived from the remaining constructs in the schema, which is
indeed the case, since id is also an attribute of student.

This example illustrates the distinction between schema-dependent
transformations (such as the first and third transformations) and instance-
dependent transformations (such as the addition of the �is-a� link). Schema-
dependent transformations require only information about the schema,
whereas instance-dependent transformations also require information about
the DB contents.

One disadvantage with using a high-level CDM such as an E/R, rela-
tional, or object-oriented data model is that the conceptual schemas of local
DBs will also be expressed in some high-level data model. Thus, to translate
the local schema into the component schema, one high-level modeling lan-
guage needs to be translated into another. This can cause problems, because
there is rarely a simple correspondence between the modeling constructs of
such languages. For example, if we want to translate an E/R local schema into
a relational CDM, many-to-many relationships in the E/R model must be
represented as relations in the relational model, whereas one-to-many rela-
tionships can be represented as a foreign key attribute [9]. Similarly, if we
want to translate a relational local schema into an E/R CDM, an attribute
that is part of a foreign key will be represented as a relationship in the E/R
model, whereas other relation attributes will be mapped to E/R attributes
[10].

An alternative approach is to use a more �elemental� modeling lan-
guage as the CDM. We explore this approach in [11], where we introduce a
low-level hypergraph data model (HDM). The HDM is based on a hyper-
graph data structure together with a set of associated constraints. A small set
of primitive transformations can be used to transform schemas expressed in
the HDM. Higher-level modeling languages are handled by defining their
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constructs and primitive transformations in terms of constructs and primi-
tive transformations of the underlying HDM. That opens up the possibility
of transforming between schemas expressed in different modeling languages,
which we explore in [12]. It also makes it possible to create special-purpose
CDMs that mix constructs from different modeling languages. This is par-
ticularly useful in integration situations in which there is not a single already
existing CDM that can fully represent the constructs of the various data
sources. For example, this approach can be used for integrating semistruc-
tured data (such as Web documents) with structured DBs.

9.4 Distributed Query Processing

The purpose of distributed query processing is to process global queries, that
is, queries that are expressed with respect to the global or external schemas of
a DDB system. The local query processor (LQP) at each site is still responsi-
ble for the processing of subqueries of global queries that are being executed
at that site, as well as for the processing of local queries submitted directly to
the local DB. However, a global query processor (GQP) is also needed to
optimize each global query, distribute subqueries of the query to the appro-
priate LQPs, and collect the results of those subqueries. There are likely to be
several GQPs in a DDB system, one at each site to which global queries can
be submitted.

This section first considers global query processing in homogeneous
relational DDBs. We then briefly consider the additional challenges of global
query processing in heterogeneous multi-DBMSs.

9.4.1 Query Processing in Relational DDBs

Processing global queries in a relational DDB consists of the following main
steps:

1. Translation of the query into a query tree annotated with relations
at its leaves and operations at its nonleaf nodes.

2. Replacement of fragmented relations in the query tree by their defi-
nition as unions and joins of their horizontal and vertical
fragments.

3. Simplification of the resulting tree using several heuristics.

4. Global query optimization, resulting in the selection of a query
plan for the query. This query plan will consist of subqueries, each
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of which will be executed at one local site. It will also be annotated
with the data transmission that will occur between sites.

5. Local processing of the local subqueries, which may include fur-
ther local optimization of the local subqueries, based on local
information about access paths and DB statistics.

To illustrate these steps, consider the relations

account (accno,name,balance)
customer (name,address,city,telno)

and the following global query, which finds the telephone numbers of cus-
tomers with account numbers over 600:

SELECT telno

FROM customer, account

WHERE customer.name = account.name

AND accno > 600

Step 1 translates this query into the query tree shown in Figure 9.5(a).
Assuming that account and customer are fragmented as discussed in
Section 9.3.1, let a1 = saccno < 400 account, a2 = saccno ≥ 400, c1 = customer ><
a1, and c2 = customer >< a2. Then Step 2 results in the query tree shown in
Figure 9.5(b). In Step 3, three main heuristics generally can be applied, the
first two for horizontally fragmented relations and the third for vertically
fragmented ones:

• Eliminating fragments from the argument to a selection operation
that can contribute no tuples to the result;

• Distributing join operations over unions of fragments and eliminat-
ing joins that can yield no tuples;

• Eliminating fragments from the argument of a projection operation
that have no nonkey attributes in common with the projection
attributes.

In the case of the previous query, the subtree saccno > 600(a1 ∪ a2) can be simpli-
fied to saccno > 600 a2 by first distributing the selection operation over the union
and then applying the first heuristic, because saccno > 600 a1 must always be
empty. That results in the query tree shown in Figure 9.5(c). The second
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heuristic can then be applied to first distribute the join operation over
the union operation, obtaining the tree shown in Figure 9.5(d). The subtree
(saccno > 600 a2) >< c1 can then be removed, because this must always be empty,
giving the tree shown in Figure 9.5(e).

Step 4 consists of generating a set of alternative query plans, estimating
the cost of each plan, and selecting the cheapest plan. It is carried out in
much the same way as for centralized query optimization, but now commu-
nication costs also must be taken into account as well as I/O and CPU costs.
Given the potential size of joined relations, efficient processing of the join
operation is the major factor in DDBs, which we now consider. We base our
discussion of this topic on that given in [13].

The simplest method for computing an operation R >< S at the site of
S consists of shipping R to the side of S and processing the join operation
there. This has a communications cost of c0 + c ∗ size (R ), where c0 reflects the
cost of initiating the communication between the two sites, c is the cost of
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transmitting one unit of data between them (e.g., one byte or one packet),
and size (R ) is the size of the relation R expressed in those units. The cost of
actually performing the join operation at the site of S needs to be added to
the communications cost to obtain the overall cost of the operation. How-
ever, for simplicity, our discussion assumes that the communications cost is
the dominant factor (this is a realistic assumption for slower wide area net-
works but not for higher-speed local area networks).

An alternative method for computing R >< S at the site of S is the semi-
join method, which consists of the following steps:

1. Compute pR ∩ S(S ) at the site of S.

2. Ship the result to the site of R.

3. Compute R >< Σ at the site of R, using the fact that R >< S = R
>< pR ∩ S(S ).

4. Ship the result to the site of S.

5. Compute R >< S at the site of S, using the fact that R >< S = (R
>< S ) >< S.

This method has a communications cost of c0 + c ∗ size (pR ∩ S(S )) from Step 2
and c0 + c ∗ size (R >< S ) from Step 4. Again, for simplicity, let us ignore
the cost of the computation in Steps 1, 3, and 5. Thus, the semijoin method
is cheaper than the simple join method if c0 + c ∗ size (pR ∩ S(S )) + c ∗ size (R
>< S ) < c ∗ size (R ). If we ignore the constant c0, on the assumption that the
actual data transmission costs are much greater than this constant, the above
inequality simplifies to size (pR ∩ S(S )) + size (R >< S ) < size (R ). The signifi-
cant factor in comparing the two methods is how much smaller size (R >< S )
is than size (R ). If few tuples of R join with S, then the semijoin method is
likely to be cheaper. If most tuples of R join with S, then the full join method
will be cheaper.

For example, consider the join operation in the previous query and let
R = saccno > 600 a2 and S = c2. Suppose those two relations are stored at different
sites and the result of the query is needed at the site of S. The full join
method will be cheaper than the semijoin method in this case, because name
is a foreign key in the account relation and so every tuple of R joins with some
tuple in S, that is, size (R >< S ) = size (R ).

However, suppose now that S = Σcity = Londonc2. Then, assuming a uniform
distribution of customers across cities, size (pR ∩ S(S )) can be estimated as
size (c2)/|dom (city)| and size (R >< S ) as size (R )/|dom (city)|. Thus, the semijoin
method will be cheaper if size (c2)/|dom(city)| + size (R )/|dom (city)| < size (R ).
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For example, suppose there are 100 cities; 10,000 customers, each with one
account; and 5000 accounts with an account number greater than 600.
Suppose also that all tuples are of size 1. Then the left side is equal to
10,000/100 + 5000/100 = 150, compared with the right side of 5000, and
the semijoin method is cheaper.

9.4.2 Query Processing in Heterogeneous DDBs

Query processing in heterogeneous DDBs is considerably more complex
than in homogeneous DDBs, for a number of reasons.

• In Steps 2 and 3 in Section 9.4.1, a global query expressed on a
global schema now needs to be translated into the constructs of the
export schemas from which the global schema was derived.

• In Step 4, the cost of processing local queries is likely to be different
for different local DBs, which considerably complicates the task of
defining a global cost model on which to base global query optimi-
zation of the global query. Moreover, the local cost models and local
DB statistics may not be available to the global query optimizer.
One way for the GQP to gather local cost information is to send
sample test queries to the local DBs. Another way is for it to monitor
the execution of actual local queries and maintain statistics about
their behavior.

• Also in Step 4, different local DBs may support different data mod-
els. Thus, it may not be possible to translate the results of one local
subquery into the data model of a different local DB. Global query
plans need to take those limitations into account, and sites should be
sent only data they can translate. Different local DBs may also sup-
port different query languages and hence may have different query
processing capabilities. Thus, sites should be sent only subqueries
that they can process.

• In Step 5, local subqueries expressed on the export schemas using
the query language of the CDM have to be translated into queries
expressed on the local schemas using the local query language.

• The points in the third entry in this list also mean that some post-
processing of local subqueries may have to be undertaken by the
GQP to combine the results of the local subqueries. This is an
extra sixth step, which will occur after the five steps described in
Section 9.4.1.
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9.5 Distributed Transaction Management

The purpose of distributed transaction management is to maintain the
ACID properties of global transactions, that is, transactions expressed with
respect to the global or external schemas of a DDB system. The local transac-
tion manager (LTM) at each site is still responsible for maintaining the
ACID properties of subtransactions of global transactions that are being exe-
cuted at that site, as well as of local transactions that are submitted directly to
the local DB. However, a global transaction manager (GTM) is also needed
to distribute requests to and coordinate the execution of the various LTMs
involved in the execution of each global transaction.

There are likely to be several GTMs in a DDB system, one at each site
to which global transactions can be submitted. Each GTM is responsible for
guaranteeing the ACID properties of transactions submitted to it for execu-
tion. To do that, a GTM must employ distributed versions of the concur-
rency control and recovery protocols used by centralized DBMSs for local
transaction management. We discuss these distributed protocols in this sec-
tion, but first we will briefly review the main aspects of concurrency control
and recovery in centralized DBMSs.

In a centralized DBMS, the concurrency control mechanism ensures
that transactions are interleaved in such a way that their net effect is equiva-
lent to a sequential execution in some order, that is, that transactions can
be serialized. This is the isolation part of the ACID properties listed in the
introduction to this chapter. If each transaction is individually consistent,
this also ensures the overall consistency of concurrently executing trans-
actions, that is, the consistency property. The three main approaches to
centralized concurrency control are locking, timestamping, and optimistic
concurrency control. We will be focusing on locking, because it is the
method most commonly used in commercial DBMSs, both centralized
and distributed.

Concurrency control is concerned with preserving the semantic integ-
rity of the DB in the face of concurrently executing transactions. In contrast,
the recovery mechanism ensures the physical integrity of the DB in the event
of a transaction aborting or a system failure occurring. It does that by logging
the changes made by each transaction on stable storage, such as disk or tape,
before the changes are applied to the actual data files. If a failure occurs, a
redo phase applies all the changes recorded in the log to the data files. That
brings the data files up to date and in particular ensures that the effects of
committed transactions are not lost. This is the durability part of the ACID
properties. An undo phase then reverses the changes performed by
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transactions that had not committed at the time of the failure, thus ensuring
the atomicity property.

9.5.1 Distributed Concurrency Control

The most common approach to concurrency control in centralized DB
systems is to use two-phase locking (2PL), in which transactions must first
obtain the locks they require in a growing phase before releasing the locks
in a shrinking phase. Often the shrinking phase is conducted only when
the transaction commits, resulting in what is termed strict 2PL. However,
this method presents the problem that two or more transactions may enter a
deadlock state, in which each transaction holds locks required by the others
and all the transactions are unable to proceed.

In a DDB, the locks obtained by 2PL must be distributed to the vari-
ous sites that form the DDB, and some action must to taken to ensure that
2PL is obeyed globally over the DDB. There must also be some distributed
deadlock-detection mechanism. To illustrate this discussion, we give several
examples based on the two transactions shown in Figure 9.6, representing
a fragment of a simple banking application operating on the relations in
Figure 9.3(b). The transactions have been written so that it is clear which
parts of each transaction need to operate on a particular fragment of the data.
The read and write operations performed by the transactions are shown to
the right of the SQL statement that performs the operations.

9.5.1.1 Distributed Two-Phase Locking

It might at first appear that it would be sufficient to run 2PL on each LTM
involved in the distributed transaction. Indeed, that will ensure that the
transactions executed at each server are locally serializable. However, the seri-
alization order chosen may vary between LTMs, and thus the transaction
may not be globally serializable. That is because one server may start its
shrinking phase before the other starts its growing phase. To prevent that
from occurring, 2PL must be applied to the global transaction sequence. In
principle, that might be achieved by a protocol to ensure that GTM controls
when the shrinking phase may begin on each LTM. In practice, the usual
solution is to use strict 2PL and the atomic commitment protocols discussed
in Section 9.5.2 to ensure that all locks are released at the same time.

9.5.1.2 Distributed Locks

One crude implementation of distributed locking would be to insist that
each read and write lock must fully replicated, matching the replication of
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the data on which the locks operate. However, this clearly will lead to delays
in transaction execution, because all locks need to be secured at all sites. To
avoid this, conflicts should involve only write locks, and a conflict needs to
be detected at only one site for the transaction to be prevented from execut-
ing incorrectly. Thus, in a DDB with n sites, assuming all sites are fault free,
it is required only that one site detects either of the following conflicts:

• A read-write conflict. Suppose we have T1 reading from o and T2

writing to o, thus making T1 and T2 conflict. If we have placed read
locks for object o in transaction T1 at k sites, then the number j of
write locks for o in transaction T2 must exceed n − k + 1 (i.e., j ≥
n − k + 1) to guarantee at least one site with both a read lock and a
write lock for o and thus detect the conflict.
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BEGIN TRANSACTION
UPDATE account
SET balance balance 100

T1

= +
WHERE accno 987

UPDATE account
SET balance 100 100
WHERE accno 123

COMMIT TRANSACTION

=

= −
=

T1

}
}

T r a w a1.1 1 987 1 987( ), ( ),

T r a w a1.2 1 123 1 123( ), ( )

(a)

}
}

T r a r a r a2.1 2 100 2 123 2 130( ), ( ), ( ),

T r a r a r a r a2.2 2 400 2 563 2 588 2 987( ), ( ), ( ), ( )

BEGIN TRANSACTION
DECLARE @X INT, @Y INT

SELECT @X SUM(balance)

T2

=
FROM account
WHERE accno 400

SELECT @Y SUM(Balance)
FROM account
WHERE accno 400

SELECT @X @Y
COMMIT TRANSACTION

<

=

>=

+
T2

(b)

Figure 9.6 Sample SQL transactions: (a) T1: transfer $100 to account 987 from account
123 and (b) T2: find total credit/debit of all customers.



• A write-write conflict. Suppose we have T1 writing to o and T2 writ-
ing to o, thus making T1 and T2 conflict. If we have placed write
locks in T1 for object o at j1 sites, then the number j2 of write locks in
transaction T2 for o must be at least n − j1 + 1. Because the situation
is reflexive (the same argument could have been made swapping T1

and T2), we can determine that j1 = j2 and thus say that the number
of write locks j placed by any transaction is given by j ≥ (n + 1)/2.

Often we can identify that in a particular system the number of read
operations greatly outnumbers the number of write operations. Therefore,
we want to minimize the cost of making a read operation, at the expense of
greater cost in making a write operation. That can be achieved by using a
write-locks-all scheme, where any write operation locks all sites (i.e., j = n).
Therefore, from the above rules, we have n ≥ n − k + 1 → k ≥ 1, that is, only
one read lock is needed, because every site will already have the conflicting
write lock present.

9.5.1.3 Deadlocks

For fragmented data, a deadlock may occur between transactions executing
at separate sites, each running its own LTM. For example, consider the fol-
lowing concurrent execution of transactions T1 and T2 from Figure 9.6 that
(when using strict 2PL) has reached a deadlocked state:

r1(a987), w1(a987), r2(a100), r2(a123), r2(a130), r2(a400), r2(a563), r2(a888), r1(a123)

T1 is unable to proceed because its next operation w1(a123) is blocked waiting
for T2 to release the lock obtained by r2(a123), and T2 is unable to proceed
because its next operation r2(a987) is blocked waiting for T1 to release the lock
obtained by w1(a987). In a single-server system, this results in a waits-for
graph that contains a cycle, indicating the deadlock, and either T1 or T2

would be rolled back. In a DDB, if the account relation is fragmented as
shown in Figure 9.3(b), then locks on a987 will be held at S2, and locks on a123

at S1, leading to a requirement that the waits-for graph is maintained on a
global basis.

One simple way to achieve that is to use the GTM to hold the graph,
but that leads to delays in transaction execution because a remote copy of the
waits-for graph needs to be constantly updated during execution. An alterna-
tive mechanism is to store local waits-for graphs, with any transaction outside
the local server being marked as an EXT node. Once a cycle is detected at the
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local server, the waits-for graph is fetched from any remote sites where other
parts of the transactions involved in the cycle might be executing. In our
example, the transaction fragments for T1.2 and T2.1 executing at S1 would be
involved in a cycle including an EXT node. This causes S1 to contact S2,
from which the waits-for graph for T1.1 and T2.2 can be fetched.

9.5.2 Distributed Commit

Once a transaction has completed all its operations, the ACID properties
require that it be made durable when it commits. In a centralized system,
ensuring that the commit is atomic amounts to ensuring that all updates are
written to log files and that the write operation to disk that marks the trans-
action as complete is atomic. In distributed transactions, there is the addi-
tional requirement for a protocol that ensures that all the servers involved in
the transaction agree to either all commit or all abort. The basic framework
for building such protocols will involve having a coordinator process in the
GTM for each set of server processes in the LTMs that are executing the
transaction. At some point, the coordinator will decide that the transaction
should be concluded and will perform the following steps.

1. Ask all servers to vote if they are able to commit the transaction.

2. The servers may vote to commit or to abort.

3. The coordinator commits the transaction only if all servers vote to
commit.

We next give two protocols that implement this voting procedure in a
manner that is (to various extents) tolerant of failures of servers and the
coordinator.

9.5.2.1 Two-Phase Commit

The most common protocol for ensuring atomic commitment is two-phase
commit (2PC) [14�16], which has been implemented in commercial
DBMSs such as Sybase [17] and Oracle [18]. It is such a common protocol
that its messages make up the OSI application-layer commitment, concur-
rency, and recovery (CCR) protocol. We use these messages to describe the
execution of 2PC, which involves the following two phases:

• Phase 1: The coordinator transmits the message C-PREPARE to all
servers, informing them that the transaction should now commit. A
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server replies C-READY if it is ready to commit. After that point, it
cannot abort the transaction unless instructed to do so by the coor-
dinator. Alternatively, a server replies C-REFUSE if it is unable to
commit.

• Phase 2: If the coordinator receives C-READY from all servers, it
transmits C-COMMIT to all servers. Each server commits on receiv-
ing this message. If the coordinator receives C-REFUSE from any
server, it transmits C-ROLLBACK to all servers. Each server aborts
on receiving this message.

Provided none of the servers crashes and there are no network errors, 2PC
will provide a reliable and robust distributed atomic commitment protocol.
However, we must take into account failures occurring, which introduces
the concept of having some termination protocol to deal with situations in
which the atomic commitment protocol is not being obeyed. Some failures
are easily handled by having timeouts associated with communication. For
example, the coordinator may not receive a reply from one failed server and
then might decide to abort the transaction using C-ROLLBACK. Alterna-
tively, the coordinator may fail after asking for a vote, in which case all the
servers will time out and then contact each other to elect a new coordinator
and continue with the transaction.

For some errors, however, the protocol has a weakness in that a server
may become blocked. That will occur after a server has sent a C-READY
reply, which entails that it must commit if and when it receives
C-COMMIT. In this circumstance, two failures can occur that require con-
tradictory action by the server:

• Immediately after sending C-PREPARE, the coordinator might
have crashed. One other server might have replied C-REFUSE and
aborted its transaction. If this was the case, it would be correct for
the server to abort its transaction, even after sending C-READY.

• The coordinator might have sent C-COMMIT to all other servers
and then crashed. Those other servers might have committed their
transactions and then also crashed. It would then be correct for the
server to commit its transaction.

For the server that issued the C-READY and has received no reply, those two
situations would be identical�the server is unable to get information from
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the coordinator. Thus the server is blocked, unable to either commit or
abort the transaction; hence, it must maintain all the locks associated
with the transaction indefinitely.

The factor that makes 2PC block is that once a server has voted to take
part in a commit, it does not know what the result of the vote is until the
command to commit arrives. By the time it has timed out, after not receiving
the result of the vote, all other servers might have failed and so may not be
able to be contacted. Eventually one of the failed servers will execute a recov-
ery and be able to inform the blocked server of the result, but that may take
a great deal of time. It can be argued that such scenarios are unlikely in
practice; indeed, 2PC has been used successfully in commercial systems.
However, in environments that require greater fault tolerance, we require
protocols that do not block.

9.5.2.2 Three-Phase Commit

2PC can be made nonblocking by introducing an extra phase that obtains
and distributes the result of the vote before sending out the command to
commit. That requires that the OSI CCR protocol be extended with message
types C-PRECOMMIT and C-PRECOMMIT-ACK to inform servers of the
result of a vote separately from issuing the command to commit or roll back
a transaction. The steps in such a three-phase commit (3PC) [14, 15, 19]
protocol are the following:

• Phase 1: The same as for 2PC.

• Phase 2: If the coordinator receives C-READY from all servers, it
transmits C-PRECOMMIT to all servers. Each server replies with a
C-PRECOMMIT-ACK. If the coordinator receives C-REFUSE from
any server, it transmits C-ROLLBACK to all servers. Each server
aborts on receiving that message.

• Phase 3: If the coordinator receives a C-PRECOMMIT-ACK from
all servers, it transmits C-COMMIT to all servers. If the coordinator
is missing a C-PRECOMMIT-ACK, it transmits a C-ROLLBACK to
all servers.

The fact that the vote is distributed to all servers and is confirmed to have
arrived at those servers, before a command to commit is made by the coordi-
nator, means that should any server be missing the C-PRECOMMIT, it will
time out and contact some other server to find out the result of the vote and
hence be in a position to commit. If all other servers have failed, the server
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can abort because none of the other servers could have committed before the
timeout occurred. If a server has received a C-COMMIT, it can safely com-
mit, knowing that all the other failed servers can later recover and determine
the result of the vote.

3PC is a nonblocking protocol that ensures that all nonfailed sites can
agree on a decision for transaction termination in the absence of commu-
nication failures. It achieves that by introducing an extra delay and set of
messages to be exchanged; hence, it will have poorer performance than 2PC.
Also, the number of different states that may arise in 3PC is greatly increased
from that in 2PC. For that reason, implementations of 3PC are more diffi-
cult to produce and verify as correct.

9.5.3 Distributed Recovery

To a large extent, each LTM in the DDB will be able to use standard tech-
niques based on redo/undo logs [15] to recover from system crashes by roll-
ing back or committing transactions. As in a centralized system, the recovery
process should be executed each time a server is restarted after a crash. In a
DDB, extra complexity is introduced by the fact that a distributed commit
decision has to be made, and failures might occur during the execution of the
atomic commitment protocol. A full analysis of how 2PC and 3PC alter the
recovery process is given in [20], but in overview the extra complexity is due
to the fact the other sites might need to be contacted during the recovery
process to determine what action should be taken. For example, in 2PC, a
server might fail after having issued a C-READY. During recovery, it should
contact the coordinator to determine what has been the result of the vote, so
that it knows whether to use the undo log to roll back the transaction (if the
decision had been C-ROLLBACK ) or simply mark the transaction as com-
plete in the local logs (if the decision has been C-COMMIT ).

9.5.4 Transaction Management in Heterogeneous DDBs

We recall that a heterogeneous DDB consists of several autonomous local
DB systems. There is thus a basic contradiction in executing global transac-
tions over a heterogeneous DDB. This is because the GTM needs to exercise
some degree of control over the LTMs to guarantee the ACID properties of
global transactions, thereby violating the autonomy of the local DB systems.

For example, if one local DB server decides to roll back a subtransac-
tion of a global transaction, it would require the other servers participating
in the execution of the transaction to also roll back their subtransactions,
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thereby violating their autonomy. A further violation of local autonomy
occurs if standard techniques such as 2PL are used to guarantee the serializ-
ability of global transactions, since this would require the LTMs of the vari-
ous servers to export some of their transaction management capabilities in an
external interface. In particular, the GTM needs access to the lock records,
deadlock waits-for graph, and atomic commitment protocol of each LTM.

A further complication is that different servers may support different
atomic commitment protocols (some may use 2PC, others 3PC) or different
concurrency control methods (some may use 2PL, others timestamping), or
that some servers may allow nonserializable execution of transactions. Coor-
dinating such disparate functionality to achieve global ACID properties can
be prohibitively complex.

These problems have led researchers to suggest that the serializability
requirement be relaxed for heterogeneous DDBs by the adoption of different
transaction models, such as workflow models. The next section briefly dis-
cusses alternative transaction models.

9.6 Current Trends and Challenges

9.6.1 Alternative Transaction Models

Conventional transaction models may be inadequate in distributed environ-
ments for two main reasons. First, there is the loss of autonomy of the local
DBs. Second, there is the tying up of local resources, such as locks, at sites
that are participating in the execution of long-running global transactions.
One solution to those problems is relaxation of the serializability require-
ment, which has led to the development of several alternative transaction
models.

One approach is the use of sagas [21] rather than serializable global
transactions. Sagas consist of a sequence of local subtransactions t1; t2; …; tn,
such that for each ti it is possible to define a compensating transaction ti

−1

that undoes its effects. After a local subtransaction commits, it releases its
locks. If the overall saga later needs to be aborted, then, for all subtransac-
tions that have already committed, their compensating transactions can
be executed. However, notice that sagas can see the changes of other con-
currently executing sagas that may later abort, thereby violating the isolation
property. This loss of isolation needs to be taken into account by applica-
tions, and any data dependencies between different sagas need to be explicitly
tested for.
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Another approach is workflow models [22]. Workflows relax the ato-
micity requirement of conventional transaction models in that it may be pos-
sible for one or more tasks of a workflow to fail without the entire workflow
failing. The workflow designer is able to specify what the scheduling depend-
encies between the tasks making up a workflow are and what the permissible
termination states of the workflow are. The workflow management system
automatically guarantees that the workflow execution terminates in one of
these states.

9.6.2 Mediator Architectures

The mediator approach [23] to DB integration is a development of the five-
level model in Figure 9.2. With the mediator approach, the export schemas
are replaced by wrappers, which include more functionality, such as locking
for concurrency control. The semantic integration of export schemas into
global schemas is replaced by mediators. Apart from sourcing information
from wrappers, mediators can contact other mediators and provide some
intelligence, which allows negotiation between mediators to occur.

In the mediator approach, the DDB is constructed in a top-down man-
ner. A global schema is first created for a particular application. The applica-
tion then requests one or more mediators to source the information in that
global schema. The mediators use their knowledge to source data from
the correct information wrappers. Note the use of the term information here
rather than data. An advantage of the mediator approach is that semistruc-
tured data (such as Web documents) can be accessed by the mediators, as
well as structured DBs. A second advantage is that changes to the structure
of the information sources do not always require that the mediators be
reconfigured.

There have been a number of research implementations of the media-
tor approach. In the intelligent integration of information (I3) architecture
[24], the basic notion of a mediator as the middle layer between applications
and information sources has three additional components: facilitators, which
search for likely sources of information and detect how those sources might
be accessed; query processors, which reformulate queries to enhance the
chance of a query being successfully answered from the available sources
of information; and data miners, which search the information sources for
unexpected properties.

The knowledge reuse and fusion/transformation (KRAFT) architecture
[25] extends the notion of wrappers so that information sources may initiate
requests for information as well as service them. The middle layer between
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applications and wrappers is termed the KRAFT domain, where messages
can be exchanged between applications and wrappers. Facilitators serve to
route those messages, and mediators serve to process operations based on the
messages.

9.6.3 Databases and the World Wide Web

The World Wide Web is based on the notion of browsers on client machines
fetching from servers documents formatted in hypertext markup language
(HTML), using a protocol called hypertext transfer protocol (HTTP). A DB
can be statically connected to the World Wide Web by the use of an applica-
tion on the server to read information from the DB and format the results in
HTML. A DB can also be connected dynamically to the World Wide Web,
by allowing requests from clients to cause the server to generate HTML
documents from the DB. In both cases, the structure of the DB is lost, in
that there is no standard method for describing the schema of HTML docu-
ments. They contain just the data with some formatting instructions; for that
reason, HTML documents generally are referred to as semistructured data.

The focus of some more recent works has been on methods by which a
schema can be extracted from the semistructured data (e.g., [19]) and data
extracted from HTML (e.g., [26]). The introduction of the extended
markup language (XML) allows a much richer range of types to be associated
with values in World Wide Web documents, since the XML definition can
be regarded as a kind of DB schema. An interesting area of future work will
be methods to query and integrate XML documents from diverse sources.
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10
Mobile Computing: Data Management
Issues

Alfredo Goñi and Arantza Illarramendi

10.1 Introduction

In the past few years, the use of portable computers and wireless networks has
been widespread. The combination of both opens the door to a new tech-
nology: mobile computing. Although the wireless communication networks
were designed for the transport of voice signals, their use for data transport is
growing.

Mobile computing allows users to access from anywhere and at any-
time the data stored in repositories of their organizations (i.e., the DBs of the
company for which they work) and available data in a global information sys-
tem through the Internet. Many professionals use mobile computers for their
work (e.g., sales personnel and emergency services) to obtain and send infor-
mation where and when they actually need it. Moreover, there are applica-
tions in this new framework in which the location is an important aspect,
such as those applications that provide information about the nearest hotels,
restaurants, and so on. Mobile computing adds a new dimension to distrib-
uted data computation, a dimension that enables a new class of applications.

So far, distributed data management has been considered mainly for
fixed computers. DDBMSs, federated DBs, interoperable DBs, and GISs are
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areas in which a great research effort is being made (see Chapter 9). The new
framework of mobile computing can profit from some new proposals on
those topics. However, specific problems related to this new framework must
be taken into consideration. Some problems are intrinsic to portable com-
puters, which generally provide fewer resources than fixed computers because
they must be small and light and consume little energy. Other problems are
related to the wireless connection, which presents poor quality and is influ-
enced by a multitude of factors that cause the wireless networks to have
a high rate of errors and a limited bandwidth. There is also the problem
of continuous disconnections. One could say that mobile computing is the
worst case of distributed computation, because fundamental assumptions
about connectivity, immobility, and scale have lost their validity.

With respect to related works, the different mobile software systems
can be grouped in the following way:

• Systems that allow a disconnected or weakly connected access to file
systems. Among the different issues that have to be dealt with are the
possibility of prefetching files for later access, management of cached
data, model of consistency used, how to propagate changes, trans-
parency of support to client applications, and transparency of
mechanisms to users. In the related literature, many works deal with
some of those issues [1�6].

• Systems that allow a weakly connected access to DBs such as the
Bayou system which proposes and implements an architecture for
mobile-aware DBs. In the system architecture there are several
Bayou servers containing the full replicated data and several client
applications interacting (reading and writing) with those servers and
that are aware that they may be working with inconsistent data. Dis-
connected operation with the system is not allowed [7].

• Systems that allow a disconnected and weakly connected access to
the World Wide Web. These systems differ with respect to the sys-
tems that access file systems in the following aspects: a URL is not a
file reference because it can contain embedded references, so some
content filtering and transformation may need to be made. It is
also possible to have dynamic URLs. In such systems, prefetching
and caching techniques also can be applied and proxies added to the
architecture. In some systems, namely, Caubweb [8], TeleWeb [9],
and Weblicator [10], the proxy is added to the client part of the sys-
tem. In other systems, like TranSend [11] and Digestor [12], the
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proxy is added to the Web server. Finally, in WebExpress [13], there
are proxies in both parts, client and server.

• Systems that provide an environment for the development of mobile
applications. For example, the Rover Toolkit is software that sup-
ports the construction of mobile-transparent and mobile-aware appli-
cations based on the idea of relocatable dynamic objects and queued
remote procedure call [14]. Also interesting is the work developed
by the DATAMAN group that has defined a set of classes, called
Mobjects, that would form the basis of a toolkit to implement appli-
cations for mobile computing devices [15].

This chapter presents basic concepts and issues related to data management
for mobile computing. First, we present a motivation and the widely accepted
architecture. Then we explain briefly different wireless networks and introduce
the problems inherent to the framework and, specifically, the impact of mobile
computing in the area of data management. Finally, we explain the main fea-
tures of the more frequently used communication models and those related to
agent technology and describe some design characteristics.

10.2 Motivation

There is no doubt that mobile computing offers new computing opportuni-
ties to users. We present three scenarios in which the three main features of
the new paradigm are reflected: (1) access to distributed information reposi-
tories anywhere, anytime, (2) information delivery by broadcasting, and
(3) provision of user-tailored information.

The first scenario considers one day in the life of a salesperson
equipped with a personal computer. Our salesperson plans her work days in
advance, so before going to bed each night, she switches on her mobile com-
puter and asks if there are any new assignments. After reading the messages,
our salesperson adds the new tasks to her agenda and plans the following
day�s itinerary. The following morning, she leaves home to visit the first cli-
ent of the day. Before leaving, however, she uses her mobile computer to find
the best route to the client�s office based on up-to-date traffic conditions. She
also requests the client�s file. Our salesperson stops in a café before arriving at
the client�s office, and while she has a coffee she reviews the most important
data related to the client to prepare for the interview. Once the interview has
been concluded, she enlarges the client�s file, registering that day�s visit and
its results and sending the new data to her company�s DB. During the rest of
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the day, our salesperson goes on in the same way, visiting clients and reading
her e-mail and messages. When she is about to conclude her work day, she
receives a broadcast message from her company�s assistant director to all the
salespersons. It is a report about the results of the previous month and the
expectations for the current month.

The second scenario concerns an archaeologist, but in general it could
be applied to any autonomous worker. Mobile computers allow our archae-
ologist to have a computer, albeit one with limited capacities, out in the field.
Our archaeologist needs access to the Internet to be able to access the big
data repositories of the universities and libraries that store the data he needs
for his research. Let us imagine one day in this archaeologist�s life. He gets up
early; a day of fieldwork awaits him in the current excavation. In the excava-
tion, the workers are examining the remains of prehistoric tools. While the
archaeologist has breakfast, he switches on his mobile computer. He sends
queries to obtain the information stored in a series of DBs about certain
types of prehistoric tools: periods to which they correspond, areas in which
they were located, information about the people who made and used them,
and so on. He finishes his breakfast and, before driving to the excavation,
examines the weather report provided by the computer. Later on, when
he arrives at the excavation, he switches the mobile computer on again. The
information in response to his earlier queries has arrived. The archaeologist
begins his work with the found samples. He consults the stored data and for-
mulates new queries to the DBs until he identifies the period to which the
tools belong. He also obtains information about that period and the people,
uses they gave to those tools, and similar discoveries at other digs.

Finally, the third scenario considers the case of a user equipped with a
palmtop (equipment that has limited capabilities). Usually our palmtop user
only registers data on her small mobile computer, but today, using special-
ized keys, she asks for information about movies playing tonight in the city.
The information she receives is only textual; all the associated multimedia
information has been eliminated, taking into account the limitations of the
mobile computer.

In summary, we can conclude that mobile computing gives users all the
advantages of fixed computers but in a mobile environment.

10.3 Architecture

In the widely accepted architecture for mobile computing (see Figure 10.1)
[16], the following elements can be distinguished:
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• Mobile unit (MU). A portable computer equipped with a wireless
interface.

• Base station (BS). A fixed host augmented with wireless interface. It
is also called a mobile support station (MSS). The geographical area
covered by each BS is called a cell. MUs communicate with other
units through those BSs of the cells in which they reside.

• Fixed host (FH). A computer without a wireless interface.

Cell sizes vary widely, from 400 miles in diameter (covered by satellites), to a
few miles (covered by cellular transceivers), to a building (covered by a wire-
less local area network). When MUs move, they may cross the boundary of a
cell and enter an area covered by a distinct BS. This process is called handoff.
Taking into account that MUs can be disconnected, an MU can abandon a
cell and appear in another one far away. In other words, movement among
cells is not necessarily among adjacent cells.

Previous architecture must support different kinds of MUs such as
palmtops and laptops. Because palmtops provide fewer functionalities than
laptops, the features of MUs must be taken into consideration in implemen-
tation of the architecture.

Mobile Computing: Data Management Issues 333

BS

BS

BS

BS
BS

BS

BS

BS

BSBS

GSN

GSN

GSN

FH

FHFH

FH

FH

Fixed network

Figure 10.1 Mobile computing environment.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



With respect to the wireless part of the architecture, there exist a lack
of standards and limited performance features with today�s second digital
generation of mobile communications systems. However, a third generation
of mobile communication systems is emerging. It is formed by systems like
the European Universal Mobile Telecommunication Systems (UMTS) and
the international Future Public Land Mobile Telecommunications in 2000
(FPLMTS/IMT 2000). These systems have the goal of providing services
and capabilities on the same level as fixed networks, making those services
globally available independent of the user�s location, so there will be a strict
distinction between network and service providers.

10.4 Technological Aspects: Wireless Networks

Nowadays, different wireless access technologies connect mobile users to
wired networks: analog cellular networks, digital cellular networks, wireless
wide-area networks (WANs), wireless local-area networks (LANs), and satel-
lite systems. With those wireless access technologies, it can be possible to use
circuit switch or packet switch communications with important implications
in money spent and speed obtained.

10.4.1 Analog Cellular Networks

The first generation of analog cellular systems is called advanced mobile
phone service (AMPS). It is still used for cellular telephone technology and
utilizes analog frequency modulation (FM) for speech transmission. The
technique of frequency division/multiple access (FDMA) is used to make
individual calls. The bandwidth is divided into different channels, and
neighboring cells use different channels controlled by MSSs.

10.4.2 Digital Cellular Networks

The second generation of cellular systems uses digital modulation instead
of analog techniques and, apart from voice services, can offer integrated serv-
ices digital network (ISDN) services. Although there are several advantages
of using digital cellular communications such as error corrections, intelli-
gence of the digital network, integration with wired digital networks, and
encrypted communications, the effective data rate is low (ranging from 9 to
14 Kbps). There are two basic techniques for sharing the digital cellular
network: time-division multiple access (TDMA) and code-division multiple
access (CDMA). There are several basic standards deployed in Europe and

334 Advanced Database Technology and Design



the United States. In Europe, the Global System for Mobile Communica-
tions (GSM) is based on TDMA. In the United States, the IS-54 standard is
based on TDMA, and the IS-95 standard is based on CDMA. There are also
other cordless telephony technologies that are limited to short ranges, like the
British second-generation cordless telephone (CT2), based on FDMA, and
the digital European cordless telephone (DECT), based on TDMA.

10.4.3 Wireless Wide-Area Networks

Because the cellular products previously mentioned are relatively expensive
and slow, some other technologies are being deployed that are based on
packet switching instead of circuit switching. For example, the advanced
radio data information system (ARDIS), which provides a data transmission
rate from 8 to 19.2 Kbps; the RAM mobile data system, which provides a
data rate of 8 Kbps; the cellular digital packet data (CDPD) system, which
provides data services on top of the AMPS analog system with a maximum
data transmission rate of 19.2 Kbps but with an effective rate of 9.6 Kbps;
and the general packet radio service (GPRS), which is being developed by
the GSM consortium to include packet switching with higher expected data
rates than the previous ones. In general, with all these WAN technologies the
transmission rates are not very high.

10.4.4 Wireless Local-Area Networks

Wireless LANs provide higher data rates (more than 1 Mbps) to mobile users
who have less mobility (e.g., inside a building, on a campus). Some products
try to provide wireless Ethernet connections and use different link technolo-
gies like radio frequencies, infrareds, and microwaves. Examples of products
are FreePort, WaveLAN, and Altair, and standards, like the IEEE 802.11
and the HiperLAN, are being developed.

10.4.5 Satellite Networks

Mobile satellite networks allow global coverage for two-way voice commu-
nications but limited data capabilities. Data rates and propagation times
depend on the type of satellites used. Geostationary satellites (GEOS) pro-
vide global coverage with few but expensive stations and with great delays
when establishing communications that require a high power cost. Low earth
orbit satellites (LEOS) are smaller and less expensive, and communications
have low cost but also a low data rate. The cells are much smaller and allow
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for more frequency reuse but imply more handoffs. Medium earth orbit sat-
ellites (MEOS) represent a tradeoff between GEOS and LEOS.

10.4.6 The Future

Some trends known as personal communication service (PCS) in the United
States and the UMTS in Europe may lead to a new generation of mobile
communications. They try to define and develop communication systems
with global coverage and integration with broadband public networks.

10.5 Special Issues for Consideration

Three main features of the new context require special consideration: mobil-
ity, wireless medium, and portability of mobile elements [17, 18].

10.5.1 Mobility

The location of MUs is an important parameter in the locating of a mobile
station that may hold the required data and in the selection of information
especially for location-dependent information services. But the search cost
to locate MUs is added to the cost of each communication involving them.
Two solutions have been discussed in the literature [16] for the first problem.
In one solution, each MU has a home BS that keeps track of its location
by receiving notification of its movements. The second solution is based on
restricted broadcast within the area that the MU wants to access.

10.5.2 Wireless Medium

Some specific features of the wireless medium include the scarce band-
width, asymmetry in the communications, and the high frequency of
disconnections.

10.5.2.1 Scarce Bandwidth of Wireless Networks and Asymmetry in
Communications

Wireless networks offer a smaller bandwidth than wired networks. Wireless
networks offer a bandwidth that varies between 9 and 14 Kbps, while any
Ethernet offers a bandwidth of 10 Mbps. The oscillation in the bandwidth is
more noticeable than in traditional wired networks. There is, however, an
asymmetry in the communication because the bandwidth for the downlink
communication (from servers to clients) is much greater than the bandwidth
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for the uplink communication (from clients to servers). To resolve the previ-
ous constraints, one approach consists of the use of broadcasting to dissemi-
nate information of general interest. The use of broadcast saves bandwidth
by reducing the need of point-to-point communications among the MUs
and the BSs and saves MU battery power because it reduces uplink commu-
nications, which are more expensive in terms of energy than downlink
communications.

10.5.2.2 Disconnections

Wireless communications are very susceptible to disconnections, an impor-
tant aspect to keep in mind in the design of an architecture to support mobile
computing. Disconnections can be classified into two types: forced disconnec-
tions, which are usually accidental and unavoidable (e.g., the disconnection
that occurs when the user enters an out-of-coverage area), and voluntary dis-
connections, in which the user decides to disconnect the unit with the goal of
saving energy. Voluntary disconnections can also occur when abrupt changes
in the signal are detected or when the power level in the batteries is low. In
those cases, the unit takes the necessary measures to change to disconnected
mode in a stable way and without the risk of losing data. The undesirable
effects of the disconnections can be mitigated using caching techniques
[19, 20]. With caching techniques, the user can continue working even in a
disconnection state, which will help avoid the unnecessary use of the wireless
communication.

10.5.3 Portability of Mobile Elements

Although mobile computers exist that present different capabilities, in gen-
eral their limitations are related mostly to their size and battery life.

10.5.3.1 Limitations on Size and Capabilities of Mobile Computers

The design of portable computers implies that they must be small and light-
weight, and consume little energy. That means the computers generally have
more limited functionalities than FHs, mainly in aspects such as computa-
tion power, storage capacity, screen size and graphic resolution, and auton-
omy. Among the solutions that try to overcome such limitations are those
that adapt the images for their visualization by reducing their size, definition,
or colors, or by using filters. Filters are programs used to process every mes-
sage coming or going to the MUs. They can abolish the message, delay it,
reorganize it into segments, or transform it [21].
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10.5.3.2 Battery Power Limitation

Because of the limited autonomy of the batteries, optimizing the energy con-
sumption is generally a critical aspect in mobile computing. Even with the
new advances in battery technology, the typical lifetime of a battery is only a
few hours. The problem is not likely to disappear in the near future. The use
of asynchronous models allows the disconnection of the portable computer
to the network while requests are processed in the server of the fixed network;
the units are in �doze� mode, which saves energy.

10.6 Impact of Mobile Computing on Data Management

This section examines the impact that the issues of mobility, scarce band-
width, disconnections, and limitations on size and battery power have on
data management, particularly transactions, data dissemination, query proc-
essing, caching, and DB interfaces.

10.6.1 Transactions

As it is accepted in the DB community, all transactions must satisfy the
ACID properties. They must be atomic (all actions performed or none of
them), consistent (the DB must be left in a consistent state), isolated (a trans-
action does not read intermediate results made by other transactions), and
durable (results must remain after the transactions commit). Moreover, the
schedule in which different concurrent transactions are performed has to be
serializable. This is enforced by the concurrency control methods, like 2PL or
timestamping methods, implemented by the DBMS. However, the problem
is more complicated in a distributed context, in which different protocols
like 2PC and 3PC have been defined to ensure ACID properties for transac-
tions performed in different computers (see [22]).

Mobile transactions are, in general, distributed transactions in which
some actions are performed in mobile computers and others in FHs. The
ACID properties are hard to enforce, especially when the mobile computers
are disconnected, and techniques like 2PL and 2PC may seriously affect the
availability of the DB system, for example, when a disconnected mobile com-
puter owns a lock over DB items or if other computers are waiting for the
mobile computer to know if it is ready to perform a commit. Therefore, it is
necessary to provide transaction support for mobile environments or to
define some notions of different kinds of transactions.
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Some proposals work with the notion of weak transactions, transactions
that read or write local and probably inconsistent data [23]. Other proposals
present mechanisms so that applications have views of the DBs consistent
with their own actions, mechanisms known as session guarantees (see [24]).
Others present notions of transactions based on escrow methods, which
are especially interesting in sales transactions. The total number of available
items is distributed in the different sites, and local transactions can commit if
the demand does not exceed the quantity in the local site (see [25]). In [26]
isolation-only transactions are proposed, but the rest of the ACID properties
are not. In [27] a technique is explained whereby the broadcast channel is
used so that the mobile clients know if they have to abort the transactions
that are running. To do that, certification reports sent through the broadcast
channel contain items over which commits are going to be made. Another
related idea, called transaction proxies and presented in [28], consists of defin-
ing dual transactions (one for each transaction performed in a mobile host)
that will be executed in an FH that acts as the host support of the mobile
one. The dual transactions contain only the updates made by the mobile
transaction in case recovery is needed.

10.6.2 Data Dissemination by Broadcasting

The feature of asymmetry in mobile communications along with the power
limitation of the mobile computing framework make the model of broad-
casting data to clients an interesting alternative. Broadcasting is the delivery
of data from a server to a large set of clients (sometimes it is also referred to as
being push-based ). By pushing data, the server avoids interruptions caused
by requests of clients and thus optimizes the use of the bandwidth in the
upstream direction.

The main aspects that a broadcasting system must take into considera-
tion are the clients� needs and whether to send the data periodically or aperi-
odically. Periodic push has the advantage of allowing clients to disconnect
for certain periods and still not miss items. In [29, 30] there appears the
use of a periodic dissemination architecture in the context of mobile systems.
Aperiodic dissemination, on the other hand, is a more effective way of using
the bandwidth available. In [31, 32] those authors work with the concept of
�indexing on air,� that is, transmitting an index along with the data, so cli-
ents can tune in only during the times they need to. One issue that arises in
the former approach is how the index is multiplexed with the data to make
the latency and tuning time minimal.
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Because no broadcast program can perfectly match the needs of indi-
vidual clients, mechanisms have been defined to compensate the existing
mismatches. One mechanism consists of intelligent caching and prefetching
at the client side, which are examined in [29, 30]. The authors of [19]
present a way of sending invalidation messages over a limited bandwidth
network. With those messages, the server can notify clients about changes in
the items they are caching. They also address the issue of relaxing consistency
of the caches.

Alternatively, broadcasting can be achieved by the use of multicast
addresses. The server sends data to a group of clients using the same address.
Hashing can be efficiently used in combination with multicast addresses.

Moreover, there also exist works that integrate the pull-based and the
push-based approaches. In a pull-based operation, clients explicitly request
items by sending messages to the server, which in turn sends the information
back to the clients. A system that includes both approaches uses two inde-
pendent channels, a front channel and a back channel. The front channel
is used for the push-based operations, while the back channel serves as the
medium for the pull-based operations. The available bandwidth is shared
between the two channels. Finally, some recent applications of data dissemi-
nation include information dissemination on the Internet [33] and private
networks [34] and dissemination through satellite networks [35].

10.6.3 Query Processing

Query processing is affected when mobility is considered, and it is possible to
formulate location-dependent queries. For example, �Where is the nearest
gas station?� and �Which cinemas show a film at 8:00 P.M. in this city?�
return different values depending on the location of the mobile computer.

In general, query optimization methods try to obtain execution plans
that minimize CPU, I/O, and communication costs. In centralized environ-
ments, the cost that is the most prominent is that for I/O. In distributed
environments, communication cost is the most important cost, but the other
two may also be important if communication costs are not very high (e.g., in
LANs) [36]. In a mobile distributed environment, the communication costs
are much more difficult to estimate because the mobile host may be situated
in different locations. The best site from which to access data depends on
where the mobile computer is located. In general, it is not worth calculating
plans and their associated costs statically; rather, dynamic optimization
strategies are required in this mobile distributed context.
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Among the works related to query processing in mobile computing we
can mention [37�40]. In [37] those authors present how to deal with queries
with location constraints, that is, queries that involve the individual locations
of users. Because the location of a user is not exact, it is expensive, in terms
of communication costs, to find out the missing information necessary to
answer queries with location constraints. The rest of the mentioned works try
to provide solutions to more specific problems. In [38, 39] the authors try to
facilitate traveling by providing updated information on traffic conditions,
weather, available parking, shortest distances, emergency services, and so
forth. Needed data can be obtained by making specific requests (pull based)
and by data dissemination or broadcasting (push based). In [40] a Web
information system for a mobile wireless computing environment is
described. The Web is extended to allow documents to refer and react to
changing contextual information, like current location in a wireless network.
It introduces the concept of dynamic URLs (which allow to return different
documents or execute different commands depending on dynamic environ-
ment variables) and the concept of active documents, which automatically
update their contents in response to changes in the user�s mobile context.

10.6.4 Caching

As mentioned previously, query optimization methods try to minimize CPU,
I/O, and communication costs; in the mobile distributed context, the com-
munication costs may be particularly important. It is accepted that applying
caching techniques for query processing can reduce communication costs
dramatically. However, it is more difficult to apply caching techniques in the
mobile context because cache contents may change rapidly or become out-
of-date due to mobility; in addition, because of disconnections of the MU,
updates to the cache memory may not be sent. The authors of [18] present
several techniques related to caching, such as prefetching, replacement strate-
gies, and consistency of the cache memory, used in combination with broad-
casting techniques. The idea is to send by broadcast channel some data that
may be needed in the future (prefetching) or data that have become
inconsistent.

10.6.5 Database Interfaces

The limited screen sizes of many mobile computers have motivated the
development of new interfaces for them and, in particular, the design of new
DB interfaces for mobile computers. In [41] there appears a query processing
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interface, called query by icons, that addresses the features of screen size along
with the limitations in memory and battery power and the restricted com-
munication bandwidth. In [42] the issue of how the pen and voice can be
used as substitutes for the mouse and keyboard is addressed. Moreover, in
[43] there appears an implementation of a pen-based graphical DB interface
on a pen computer.

10.7 Communication Models and Agents

This section presents other issues that have to be considered in the building
of systems that allow accessing services from mobile computers.

10.7.1 Communication Models

Two main types of models are being used in the mobile computing environ-
ment [18]: the client/server model (in its different versions) and the peer-to-
peer model. An important difference between the two models is the role
that each element of the environment plays. In the client/server, the MU�
the client�requests a service from another computing system�the
server�located at the fixed network. The peer-to-peer model makes no
distinction between clients and servers. Each site (ideally) has the full func-
tionality of both a client and a server. Although the peer-to-peer model is
adequate for certain applications (e.g., two partners performing cooperative
work on the same data using portable computers), the client/server model is
more broadly used.

The traditional client/server model presents some shortcomings in
wireless networks because wireless networks present a high rate of errors,
limited and variable bandwidth, and continuous disconnections. For those
reasons, the following client/server extensions have been proposed: the cli-
ent/agent/server model and the client/intercept/server model (both can be
grouped under what is called the indirect model [44]). The basic idea of the
indirect model is that whenever the interaction between two computers takes
place over two radically different media, like wire and wireless, their interac-
tion is broken down into two phases, one for each kind of medium. An inter-
mediary element is placed in one point between the two computers. That
element manages the interaction between the computers, taking into account
the different nature of the two media involved. It tries to relieve the more
limited extreme of the communication of some tasks, but its existence
can even remain unnoticed by the two computers. More particularly, the
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client/agent/server model alleviates the impact of the limited bandwidth and
the poor reliability of the wireless link by continuously maintaining clients�
presence on the fixed network via an agent. The agent splits the interaction
between mobile clients and fixed servers into two parts, one between the cli-
ent and the agent, and one between the agent and the server. This model
moves responsibilities from the client to the agent. Moreover, agents are used
in a variety of forms and roles. At one extreme, an agent acts as the complete
surrogate of a mobile host on the fixed network. At the other extreme, the
agent is attached to a specific service or application.

The client/intercept/server model [45] is used to address the shortcom-
ings of the client/agent/server model. In the client/agent/server model, the
mobile client cannot continue to operate uninterrupted when an event such
as a disconnection happens. That model requires changes to the client code,
and the agent can optimize only data transmission over the wireless link from
the fixed network to the mobile client but not vice versa. The client/inter-
cept/server model proposes the use of two agents, the client-side agent, which
is co-resident with the client, and the server-side agent, which resides on the
fixed networks. This model is transparent to both the client and the server,
offers flexibility in handling disconnections, and optimizes data transmis-
sions from the fixed network to the mobile client and vice versa.

10.7.2 Agents

Agent technology is not new in computer science [46]. It has been used in,
for example, artificial intelligence. In general, an agent is a computer pro-
gram that acts autonomously on behalf of a person or an organization. Each
agent has its own thread of execution so it can perform tasks on its own
initiative. An agent system is a platform that can create, interpret, execute,
transfer, and terminate agents. When an agent moves, it travels between exe-
cution environments called places. A place is a context within an agent system
where an agent can execute. The source place and the destination place can
reside in the same agent system or in different agent systems that support the
same agent profile [47].

The use of the agent technology in the implementation of mobile sys-
tems has the following advantages [48]:

• Asynchronous communications. The elements involved in the com-
munication do not have to be connected all the time. That means
MUs may decide to disconnect while the agents that represent them
are working in other computers. This may be interesting, for
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example, in the accessing of DBs in which transactions can take a
long time.

• Autonomous communications. The agents may make some decisions
on behalf of the user when representing the MUs. This may be inter-
esting, for example, when in the accessing of a DB some transactions
fail; in such a case, the agent can make the decision of retrying the
transaction or not, trying another one, and so on, considering the
knowledge that it has about the MU.

• Remote communications. The agents can make use of remote facilities
or resources such as memory, CPU, and so forth. This may be inter-
esting when, for example, an MU does not have enough capacity
to develop a task; in such a case, an agent can realize the task in a
remote computer and, once the task is finished, return the results to
the mobile computer.

Recently there has been a great research effort with respect to the mobility
feature of agents. A mobile agent is not bound to the system where it begins
execution; it has the unique ability to move from one system in a network to
another. The ability to travel lets a mobile agent move to a system that con-
tains an object with which the agent wants to interact and take advantage of
being in the same host or network as the object. When an agent travels, it
transports its state and the code with it. Mobile agent technology, apart from
the previously mentioned advantages, allows us to migrate processes among
different machines.

10.8 Mobile Computer Design Features for Accessing Data
Services

The number of people who use or work with mobile computers is continu-
ously increasing. Although the performance features of those kinds of com-
puters in disconnected mode (e.g., laptops) are equivalent to those offered by
fixed computers, when they are connected to a wireless network, the same
performance does not hold. The intrinsic features of wireless commu-
nications�poor quality, limited bandwidth, continuous disconnec-
tions�make working connected to a wireless network more difficult.
However, one important wish of mobile users is to have the possibility of
working connected to a wireless network in the same way as working
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connected to a fixed network or at least with better QoS than that offered by
existing networks.

Taking that wish into consideration, different research projects are try-
ing to build mobile systems that overcome the existing limitations [49�54].
All the works cited so far in this chapter consider different aspects of mobile
computing by using agent technology. In the same line, we present in [55] a
system based on the use of the client/intercept/server model that incorporates
some modules and agents in the mobile computer as well as in an intermedi-
ary element situated in the fixed network. That element, called a gateway
support node (GSN) (see Figure 10.1), is the intermediary element in the
communication between the mobile computers under its coverage and all
other hosts of the network (mobile or fixed). Its aim is to relieve mobile com-
puters from many tasks and increase their capabilities, while respecting their
natural limitations and taking into consideration the problems of the mobile
computing framework and trying to solve them. The pair formed by the
GSN and the MU allows the MU to behave like a fixed computer for the rest
of the network. The GSN lends its identity to the set of mobile computers
it monitors, so that when the GSN receives messages and data sent to the
mobile computers, it distributes them to the suitable MU.

Concerning the use of agents, in the works cited here, the process con-
sists of creating an agent for each task to be carried out, giving it the data
necessary to access a certain source of information and sending it from the
mobile computer to the network. Once the results have been obtained, the
agent returns to the mobile computer. In our proposal, the underlying phi-
losophy is different. We advocate using a majordomo agent, Alfred, to avoid
the continuous transferences of agents through the wireless link and, there-
fore, the high cost that it represents. Alfred is an efficient majordomo for
mobile computers. Each mobile computer will have its own version of Alfred
with the aim of giving adequate services to its owner. From the implementa-
tion point of view, Alfred is the union of two agents: static Alfred (SAlfred),
a static agent situated in the mobile computer, and mobile Alfred (MAlfred),
a mobile agent situated in the intermediary element. MAlfred is created
in the mobile computer, but it travels to the intermediary element, where it
works on behalf of the mobile user, representing the user in the network,
becoming the common point to all the communications in which the MU is
involved, even when the mobile computer is disconnected. When a task must
be carried out, SAlfred sends a message to MAlfred with the necessary data.
MAlfred then carries out the task or creates a new agent, a specialist (the spe-
cialist mobile agents are situated in the GSN), and orders it to carry out the
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task. Once the results have been obtained, MAlfred sends them with a mes-
sage to SAlfred.

The system that we propose can be presented from two different points
of view, depending on where the GSNs are situated and who owns them. On
one hand, a GSN owned by the company that is offering the wireless com-
munication infrastructure (e.g., a cellular phone company) can be consid-
ered. In that model, the GSN can offer some services for the general use of
mobile users that contract them to the company. Those services include the
following (see Figure 10.2):

• A broadcast transmitter, for disseminating general-interest informa-
tion such as local traffic conditions and weather forecasts;

• Yellow pages, for providing access to different data repositories that
contain general-interest information such as local restaurants;

• Access to Internet à la carte, for facilitating the use of the push tech-
nology to the mobile users;

• Available software, such as freeware software, that can be used on the
mobile computer or on the GSN on behalf of the mobile user;
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• Rent of lockers, which allows the mobile user to have services such as
confidential access protected with a secret key to a �locker.�

The GSN could also be situated in a computer that is in charge of monitor-
ing the access to a private corporate network. That is, the GSN is part of the
intranet of the company, and the offered services can be customized accord-
ing to the needs and characteristics of the particular company and its mobile
workers. For example, the GSN could offer the following services:

• Access to data repositories, to allow the users to perform queries and
updates in any DB server of their organization;

• Access to FHs, for providing access to information stored in FHs and
allowing a user to get and store files in any host of the fixed network
where that user has the right access privileges;

• Access to the World Wide Web, to obtain Web pages, cache them in
the GSN, and send them to the mobile users;

• E-mail, to allow mobile users to get and send e-mail to any e-mail
server;

• A blackboard, which stores general-interest messages that the users
can obtain in several ways.

10.9 Summary

This chapter briefly reviewed the main issues concerning data management
in mobile computing. It illustrated the possibilities that this new paradigm
offers and the widely accepted architecture, followed by the technologies that
are being considered. It also introduced the main features that have a great
influence on the performance of the mobile systems, focusing on the data
management aspects. In summary, we can conclude that mobile computing
opens new expectations for data applications. However, because mobile com-
puting is not yet mature and many problems must be solved, it is expected
that new proposals will appear in the future.
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11
Secure Database Systems

Elena Ferrari and Bhavani Thuraisingham

11.1 Introduction

The number of computerized DBs has increased rapidly over the past three
decades. The advent of the Internet as well as networking capabilities have
made the access to data and information much easier. For example, users can
now access large quantities of information in a short space of time. As more
and more tools and technologies are developed to access and use the data,
there is also an urgent need to protect the data. Many government and indus-
trial organizations have sensitive and classified data that have to be protected.
Various other organizations, such as academic institutions, also have sensitive
data about their students and employees. As a result, techniques for protect-
ing the data stored in DBMSs have become a top priority.

Over the past three decades, various developments have been made on
securing DBs. Much of the early work was on statistical DB security. In the
1970s, as research in relational DBs began, attention was directed toward
access control issues. In particular, work on discretionary access control mod-
els began. While some work on mandatory security started in the late 1970s,
it was not until the Air Force study in 1982 that many of the efforts in multi-
level secure DBMSs were initiated [1]. That resulted in the development of
various secure DB system prototypes and products. In the new millennium,
with the advent of new technologies such as digital libraries, the World Wide

353

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Web, and collaborative computing systems, there is much interest in secu-
rity, not only by government organizations but also by commercial industry.

This chapter provides an overview of the various developments in
secure DB systems and addresses both discretionary and mandatory security
issues. The organization of the chapter is as follows. Section 11.2 discusses
access control and administration policies. Section 11.3 provides a detailed
overview of discretionary security in DB systems. Section 11.4 examines
mandatory security in detail, while Section 11.5 deals with secure DB design.
Research directions in access control are discussed in Section 11.6.

11.2 Access Control: Concepts and Policies

This section introduces the basic concepts in access control, then discusses
discretionary and mandatory access control policies. Finally, it explores
administration policies.

11.2.1 Basic Concepts

Access control is usually performed against a set of authorization rules stated
by security administrators or users according to some security policies. An
authorization rule, in general, specifies that subject s is authorized to exercise
privilege p on object o.

Authorization objects are the passive components of the system to which
protection from unauthorized accesses should be given. Objects to be consid-
ered depend on the underlying data model. For instance, files and directories
are objects of an operating system, whereas if we consider a relational DBMS,
resources to be protected are relations, views, and attributes. With respect to
the object dimension, we can classify access control mechanisms according
to the granularity of access control, that is, according to whether it is possible
to authorize a user to access only selected components within an object.

Access control models can be further classified according to whether
the set of objects to be protected is a flat domain or is organized into a hierar-
chy. In the latter case, the semantics assigned to the hierarchy depends on the
object nature. For instance, consider an object-oriented context. If objects
to be protected are classes, the hierarchy represents the inheritance relations
among classes. If objects represent class instances, the hierarchy reflects the
way objects are organized in terms of other objects.

Authorization subjects are the entities in the system to which authori-
zations are granted. Subjects can be classified into the following categories:
users, that is, single individuals connecting to the system; groups, that is, sets
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of users; roles, that is, named collections of privileges needed to perform spe-
cific activities within the system; and processes, which execute programs on
behalf of users. These categories are not mutually exclusive. For instance, a
model can support roles and groups, or users and processes.

Often, both roles and groups are hierarchically organized. The hierar-
chy imposed on groups usually reflects the membership of a group to another
group. By contrast, the role hierarchy usually reflects the relative position of
roles within an organization. The higher the level of a role is in the hierarchy,
the higher its position is in the organization.

Processes need system resources to carry on their activities. Generally,
processes refer to memory addresses, use the CPU, call other programs, and
operate on data. All those resources must be protected from unauthorized
accesses. Usually, a process is granted access only to essential resources, that
is, resources necessary to the completion of the process�s tasks. That limits
possible damage deriving from faults of the protection mechanism.

As far as users are concerned, sometimes it would be useful to specify
access policies based on user qualifications and characteristics, rather than
user identity (e.g., a user is given access to an R-rated video only if he or she is
older than 18). This is the case, for instance, in digital library environments.
In access control models supporting those possibilities [2, 3], users must pro-
vide information, typically about themselves, that allows the access control
mechanism to decide whether the access must be authorized or not.

Authorization privileges state the types of operations a subject can
exercise on the objects in the system. The set of privileges depends on the
resources to be protected. For instance, read, write, and execute privileges are
typical of an operating system environment, whereas in a relational DBMS
typical privileges are select, insert, update, and delete. Moreover, new envi-
ronments, such as the digital library environment, are characterized by new
access modes, such as usage or copying access rights.

Often, privileges are hierarchically organized, and the hierarchy repre-
sents a subsumption relation among privileges. Privileges toward the bottom
of the hierarchy are subsumed by privileges toward the top (for instance, the
write privilege is at a higher level in the hierarchy with respect to the read
privilege, because write subsumes read operations).

11.2.2 Access Control Policies

Access control policies give the criteria to decide whether an access request
can be authorized or should be denied. A basic distinction is between discre-
tionary and mandatory access control policies.
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11.2.2.1 Discretionary Access Control Policies

Discretionary access control (DAC) policies govern the access of subjects
to objects on the basis of a subject�s identity and the authorization rules.
Authorization rules state for each subject the privileges it can exercise on each
object in the system. When an access request is submitted to the system, the
access control mechanism verifies whether there is an authorization rule
authorizing the access. If there is such a rule, the access is authorized; other-
wise, it is denied. Such mechanisms are discretionary in that they allow
subjects to grant other subjects authorization to access the data at their
discretion.

Discretionary policies are flexible in that they allow specification of
a wide range of access control policies, by using different types of authori-
zations, from positive and negative authorizations to implicit and explicit
authorizations to weak and strong authorizations.

Positive and Negative Authorizations

Most of the existing discretionary authorization models provide only positive
authorizations, that is, authorizations stating permissions to exercise a given
privilege on a particular object. Under such models, whenever a subject tries
to access an object, the system checks whether a corresponding positive
authorization exists and, only in that case, authorizes the subject to execute
the access. The lack of an authorization is interpreted as no authorization.
This approach has a major problem in that the lack of a given authorization
for a given subject does not prevent the subject from receiving authorization
later on. This drawback is overcome by models supporting negative authori-
zations, that is, authorizations expressing explicit denials.

Models that support both positive and negative authorizations can be
further categorized according to the policy they adopt to deal with conflicts
among authorizations. Conflicts arise when a subject has both a positive and
a negative authorization for the same privilege on the same object. Different
resolution policies can be adopted. The following are the most widely used:

• No conflicts. The presence of a conflict is considered an error. There-
fore, whenever a user requires the insertion of a new authorization,
the system checks whether the authorization conflicts with other
authorizations already present in the system; if it does, the system
rejects the insertion of the new authorization.

• Denials take precedence. The negative authorization prevails over the
positive one.
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• Permissions take precedence. The positive authorization prevails over
the negative one.

• Nothing takes precedence. Neither the positive nor the negative
authorization takes precedence. The final result is equivalent to the
case in which no authorization has actually been specified. This
approach differs from the no-conflicts approach in that it allows the
presence of conflicting authorizations. However, the simultaneous
presence of two conflicting authorizations invalidates both of them.

Strong and Weak Authorizations

Some of the models that support both positive and negative authorizations
further distinguish between weak and strong authorizations. Strong authori-
zations (both positive and negative) cannot be overridden, whereas weak
authorizations can be overridden, according to specified rules, by other
strong or weak authorizations. In systems that support both strong and weak
authorizations, conflicts among authorizations usually are solved according
to the following rules:

• Strong authorizations have higher priority than weak authorizations.

• Conflicts among strong authorizations are solved according to the
no-conflicts resolution policy.

• Conflicts among weak authorizations are solved according to one of
the conflict-resolution polices illustrated above.

Explicit and Implicit Authorizations

A further distinction is among models that support only explicit authori-
zations and models that support both explicit and implicit authorizations.
Implicit authorizations are automatically derived by the system from the set
of explicit ones, according to a set of rules. Implicit authorizations can be
derived according to two distinct mechanisms:

• A set of propagation rules that determine which authorizations are
implied by an authorization of a certain type defined for a subject on
a given object, based on the hierarchies supported by the model;

• A set of user-defined derivation rules, allowing the granting of an
authorization to be conditioned to the presence or absence of other
authorizations. For instance, a derivation rule can be used to express
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that a subject can access a given object only if another subject has an
explicit denial to access it.

Moreover, different models use different propagation policies, that is, they
make different choices with respect to whether or how the authorizations
propagate along the hierarchies. For instance, consider a model in which
roles are hierarchically organized and let r be a generic role. The propagation
policy must determine which authorizations granted to r propagate to roles
connected to r through the role hierarchy. The most common approaches are
the following.

• A positive authorization given to a role r propagates to all the roles
preceding r in the role hierarchy.

• A negative authorization given to a role r propagates to all the roles
following r in the role hierarchy.

In some models privileges also are hierarchically organized, and that hier-
archy is used to derive new authorizations, according to propagation rules
similar to those illustrated for the role hierarchy. By contrast, for the group
hierarchy, the most common approach is that an authorization given to a
group propagates to all the members of the group. A similar approach is usu-
ally applied to the object hierarchy. In models that support both positive and
negative authorizations and implicit and explicit authorizations, the propaga-
tion policy should also state what happens in case a subject holds an explicit
authorization that conflicts with the propagated authorizations. The most
common approaches are:

• No overriding. All the authorizations are propagated (regardless of
the presence of other conflicting authorizations). Conflicts among
authorizations are solved according to one of the conflict resolution
policies previously explained.

• Most specific overrides. The most specific authorizations (with respect
to the defined hierarchies) prevail.

Finally, when the model supports several hierarchies, the derivation policy
should also take into account the interactions among the hierarchies. The
most common approach is to establish a priority among the hierarchies.
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Content-Based Authorizations

Discretionary models can be further categorized according to whether they
support content-dependent access control. Content-dependent access con-
trol conditions the access to a given object to the content of one or more of
its components. For example, in a relational DBMS that supports content-
dependent access control, it is possible to authorize a subject to access infor-
mation only about employees whose salaries are not greater than $30,000.

There are two common approaches according to which content-based
access control is enforced. The first is association of a predicate (or a boolean
combination of predicates) with the authorization. The predicate expresses
the conditions on the object content that must be satisfied to authorize the
access. The second approach is to define a view that selects the objects whose
content satisfies a given condition and then grant the authorization on the
view instead of on the basic objects.

11.2.2.2 Mandatory Access Control Policies

Mandatory access control (MAC) policies specify the access that subjects
have to objects based on subject and object classification. This type of secu-
rity is also referred to as multilevel security. DB systems that satisfy multilevel
security properties are called multilevel secure DBMSs (MLS/DBMS) or
trusted DBMSs (TDBMS). Many of the MLS/DBMSs have been designed
based on the Bell and LaPadula policy [4] specified for operating systems.
We will first state that policy and then discuss how it has been adopted for
DBMSs.

In the Bell and LaPadula policy, subjects are assigned clearance levels,
and they can operate at a level up to and including their clearance levels.
Objects are assigned sensitivity levels. The clearance levels as well as the sensi-
tivity levels are called security levels. The set of security levels forms a partially
ordered lattice with Unclassified, Confidential, Secret, TopSecret. The fol-
lowing are the two rules in the policy:

• Simple security property. A subject has read access to an object if its
security level dominates the level of the object.

• ∗-property (read �star property�). A subject has write access to an
object if the subject�s security level is dominated by that of the
object.

These properties also apply to DB systems. However, for DB systems, the
∗-property is modified to read as follows: A subject has write access to an
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object if the subject�s level is that of the object. That means a subject can
modify objects at its own level.

Figure 11.1 summarizes the differences between mandatory and discre-
tionary policies. Under the discretionary policy, an access request is author-
ized if there exists an authorization rule authorizing the access. By contrast,
under the mandatory policy, an access is authorized if a certain relation exists
between the security level of the subject requiring the access and the security
levels of the object to which access is required (the relation depends on the
requested privilege).

Note that mandatory security is mainly about multilevel security. For
that reason, from now on this chapter will focus on the multilevel security
aspects of mandatory security.

11.2.3 Administration Policies

A further dimension along which access control models can be compared is
the administration policies they support. Administration refers to the func-
tion of granting and revoking authorizations. We classify administration
policies according to the following categories [5]:

• DBA administration. Under this policy, only the DBA can issue
grant and revoke requests on a given object. The DBA administra-
tion policy is highly centralized (even though different DBAs can

360 Advanced Database Technology and Design

Access request
(s,o,p)

If sec_lev(s)
sec_lev(o)rel p

then
else

If exists
s,o,p< >

then
else

Mandatory access control

Discretionary access control

Access denied

Access denied

Access authorized

Access authorized

Figure 11.1 Discretionary and mandatory access control.



manage different parts of the DB), and it is seldom used in current
DBMSs except in the simplest systems.

• Object-owner administration. Under this policy, which is commonly
adopted by DBMSs and operating systems, the creator of the object
is the owner of the object and is the only one authorized to adminis-
ter the object.

• Object �curator� administration. Under this policy, a subject, not
necessarily the creator of the object, is named administrator of the
object. Under such policy, even the object creator must be explicitly
authorized to access the object.

The second and third administration policies listed above can be further
combined with administration delegation and administration transfer. Those
two options are not mutually exclusive. Administration delegation means
that the administrator of an object can delegate other subjects the
administration function on the object. Delegation can be specified for
selected privileges, for example, for only read operations. In most cases, dele-
gation of administration to another subject implies also granting the subject
the privilege of accessing the object according to the same privilege specified
in the delegation. Most current DBMSs support the administration policy
based on the owner administration with delegation. Note that, under the
delegation approach, the initial administrator of the object does not lose his
or her privilege to administer the object. Therefore, different administrators
can grant authorizations on the same object.

Administration transfer, like delegation, has the effect of giving another
subject the right to administer a certain object. However, the original admin-
istrator loses his or her administration privileges. When dealing with transfer,
an important question concerns the authorizations granted by the former
administrator. The following two approaches can be adopted:

• Recursive revoke. All authorizations granted by the former adminis-
trator are recursively revoked.

• Grantor transfer. All authorizations granted by the former admin-
istrator are kept; however, the new administrator replaces the old
one as grantor of the authorizations (and is able to revoke them).
The grantor transfer is not recursive. Therefore, if the older
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administrator has delegated other subjects for administration, those
grants are left in place. Only the new administrator becomes their
grantor.

Furthermore, transfer can be with acceptance or without acceptance. Accep-
tance means that the user to whom the administration (or ownership) is
transferred must have explicitly accepted taking on the administration
responsibility. Transfer without acceptance means that such explicit accep-
tance is not required.

A further possibility is the joint administration of data objects. Joint
administration means that several subjects are jointly responsible for admin-
istering an object. Joint administration can be used in both the object �cura-
tor� administration and object owner administration policies. Joint
administration is particularly useful in computer-supported cooperative
work (CSCW) applications where subjects typically cooperate to produce a
complex data object (a document, a book, a piece of software, a very large
system integration (VLSI) circuit). In such applications, each subject in
the working group is responsible for producing a component of the complex
object; therefore, no single subject is the owner of the entire object. Authori-
zation for a subject to access a data object, administered under the joint
administration policy, requires that all the administrators of the object issue a
grant request.

Figure 11.2 gives a taxonomy of the administration policies discussed
in this section. Bold arrows denote mutually exclusive administration
options for the same object, whereas nonbold arrows denote nonmutually
exclusive administration policies.

11.3 Discretionary Access Control Models and Systems

This section describes DAC models and systems. Discretionary models can
be categorized according to several criteria. This section classifies those mod-
els according to the DBMSs for which they are developed into three broad
categories: authorization models for relational DBMSs, authorization models
for object DBMSs, and authorization models for active DBMSs. We do not
consider here other advanced DBMSs, like deductive DBMSs, because the
research in security models is still in its early stages. Also, due to lack of space,
we do not report here models such as the Harrison-Ruzzo-Ullman access
matrix model or the Take-Grant model (we refer the interested reader to [6]
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for details). Those models, which were developed mainly for the protection
of an operating system environment, greatly inspired most of the discretion-
ary models developed for DBMSs.

11.3.1 Authorization Models for Relational DBMSs

This section reviews some of the authorization models developed for
relational DBMSs. It starts by describing the System R authorization model,
then surveys some of its extensions. The System R authorization model is an
important milestone in the history of authorization models [7]. The impor-
tance of the System R authorization model is based on the fact that the
model has served as a basis for the development of most of the authorization
mechanisms provided as part of commercial DBMSs.
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11.3.1.1 The System R Authorization Model

In the System R authorization model, objects to be protected are represented
by tables and views on which subjects can exercise several privileges. Privi-
leges supported by the model include select, to select tuples from a table,
update, to modify tuples in a table, insert and delete, to add and delete tuples
from a table, and drop, to delete an entire table. Groups and roles are not
supported. The System R authorization model supports decentralized
administration facilities. Whenever a subject creates a table, it receives the
own privilege on it. The owner of a table can exercise all the privileges on the
table as well as grant or revoke other subjects all the privileges (except drop)
on the table. Moreover, the owner can grant authorizations with the grant
option. If a subject owns an authorization for a privilege on a table with the
grant option, it can grant the privilege, as well as the grant option, to other
subjects.

The System R authorization model enforces recursive revocation:
Whenever a subject revokes an authorization on a table from another user,
all the authorizations that the revokee had granted because of the revoked
authorization are removed. The revocation is iteratively applied to all the
subjects that received the access authorization from the revokee.

11.3.1.2 Extensions to the System R Authorization Model

The System R authorization model has been extended in several directions,
which is graphically illustrated in Figure 11.3. Wilms and Lindsay [8] have
extended it to deal with group management capabilities. In the model of
Wilms and Lindsay, authorizations can be granted to groups of users, as well
as to single users. Authorizations granted to groups apply to all the members
of the group. Moreover, in [8] the System R authorization model has been
extended for the distributed DBMS System R∗. Bertino and Haas [9] further
extended the System R∗ authorization model to deal with distributed views.

Additional extensions to the System R authorization model have been
proposed by Bertino et al. in [10]. The first extension concerns a new type of
revoke operation, called noncascading revocation: Whenever a subject revokes
a privilege on a table to another subject, all the authorizations the subject
may have granted by using the privilege received by the revoker are restated
as if they had been granted by the revoker. Then the cascading revocation
is applied to the resulting state. The second extension concerns negative
authorizations. The authorization mechanism of System R, like those of
most DBMSs, does not allow explicit denials to be expressed. The second
extension proposed in [10] concerns the support for negative authorizations.
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Conflicts between positive and negative authorizations are solved according
to the denials-take-precedence policy. Thus, whenever a subject has both a
positive and a negative authorization on the same object for the same privi-
lege, it is prevented from accessing the object.

Negative authorizations are also supported by the SeaView model [11],
by means of a special privilege denoted as null. A subject having the null
privilege on a table cannot exercise any access on the table. Thus, it is not
possible to selectively deny a subject accesses to a table. For instance, it is
not possible to specify that a subject is authorized to read a table and, at the
same time, it has the denial to write on that table.

In [12] a more flexible approach to deal with authorization conflicts is
proposed in which negative authorizations do not always override positive
ones. The model in [12] is based on the concept of strong and weak authori-
zations. Authorization subjects can be either single users or groups. Authori-
zations given to members of a group are considered as prevailing with respect
to the authorizations given to the group. Conflicts among contrasting
authorizations such that neither one of them overrides the other are solved
in different ways according to the type (i.e., strong versus weak) of the
authorizations. Conflicts between a weak and a strong authorization are
always solved in favor of the strong authorization. Conflicts between strong
authorizations are solved according to the no-conflicts policy. By contrast,
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conflicts between weak authorizations are solved according to the nothing-
takes-precedence principle.

A further extension to the System R authorization model deals with
the support for role-based authorizations [13]. Under role-based models, all
authorizations needed to perform a certain activity are granted to the role
associated with that activity rather than directly to users. In such models,
user access to objects is mediated by roles; each user is authorized to play cer-
tain roles and, on the basis of that role, can perform accesses on the objects.

Finally, a recent extension is related to the temporal duration of
authorizations. In many organizations, authorizations given to subjects must
be tailored to the pattern of their activities within the organization. There-
fore, subjects must be given access authorizations to data only for the time
periods in which they are expected to need the data. An example of policy
with temporal requirements is that �part-time employees can modify a given
file every working day between 9 A.M. and 1 P.M.� Authorization models of cur-
rent DBMSs are not able to directly support such types of temporal con-
straints. The only way is to implement them as code in application programs.
Such an approach makes it difficult to verify and modify the access control
policies and to provide any assurance that the policies are actually enforced.
An authorization model overcoming such drawbacks has been proposed
[14]. Under such a model, each authorization has a temporal constraint that
denotes the set of time periods in which the authorization holds. When
such periods expire, the authorization is automatically revoked without
requiring any explicit revoke operations. In addition, the model provides
deductive temporal rules to derive new authorizations based on the presence
or absence of other authorizations in specific periods of time.

11.3.2 Authorization Models for Object DBMSs

Object-oriented and recent object-relational DBMSs (in what follows, we
refer to both kinds of systems as object DBMSs, ODBMSs for short) are
today some of the most promising research directions in the DB area [15]. A
reason for their success is that they are well suited for advanced applications,
like CAD/CAM, multimedia, and cartography applications, because such
applications require data models richer than the relational model. As far
as authorization is concerned, an ODBMS is characterized by protection
requirements different from those of traditional (i.e., relational) systems.
This makes conventional authorization models for relational DBMSs not
adequate for ODBMSs [16]. Despite the growing interest in ODBMSs, the
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research on authorization models for ODBMSs is still in its early stages.
Indeed, although several proposals exist [17�23], of the existing ODBMSs,
only Orion [23] and Iris [17] have an authorization model comparable to
those of relational DBMSs.

11.3.2.1 The Orion Authorization Model

The Orion authorization model [17] supports positive and negative authori-
zations, as well as weak and strong authorizations. Strong authorizations
always have higher priority than weak authorizations. Authorizations are
granted to roles instead of to single users, and a user is authorized to exercise
a privilege on an object, if there exists a role possessing the authorization
and the user is authorized to play such role. Roles, objects, and privileges are
organized into hierarchies to which a set of propagation rules applies. Propa-
gation rules allow the derivation of implicit authorizations, according to the
following criteria.

• If a role has an authorization to access an object, all the roles that
precede it in the role hierarchy have the same authorization.

• If a role has a negative authorization to access an object, all the roles
that follow it in the role hierarchy have the same negative
authorization.

Similar propagation rules are defined for privileges. Finally, propagation
rules on objects allow authorizations on an object to be derived from the
authorizations on objects semantically related to it. For example, the authori-
zation to read a class implies the authorization to read all its instances.

A consistency condition is defined on propagation rules, which requires
that, given a weak or a strong authorization, the application of the propa-
gation rules supported by the model to the authorization does not generate
conflicting authorizations. Moreover, a further property is required: For any
weak authorization (either positive or negative), there must not exist a strong
conflicting authorization. The system ensures that this property is always sat-
isfied. In particular, if the insertion of a weak authorization would not satisfy
the above property, it is rejected. By contrast, if the insertion of a strong
authorization would not satisfy the property, the strong authorization is
inserted and all the weak authorizations causing the nonsatisfaction of the
property are removed.
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11.3.2.2 Extensions to the Orion Authorization Model

Bertino and Weigand [18] have proposed several extensions to the Orion
authorization model. The model of Bertino and Weigand has several differ-
ences with respect to the model proposed in [17]. In the extended model new
authorization types have been introduced and some propagation rules have
been revised. However, the main extension concerns the introduction of con-
tent based access control. Another extension to the Orion model has been
recently proposed by Bertino et al. in [19]. The main differences between the
Orion model and the model in [19] can be summarized as follows. Reference
[19] supports both roles and groups with a clear functional distinction
between them. Moreover, [19] supports the possibility of granting authoriza-
tions to a single user, whereas in the Orion model authorizations can be
specified only for roles. In the Orion model implicit authorizations can be
derived only along the role, object, and privilege hierarchies, whereas in [19]
authorizations can also be derived through user-defined derivation rules.
Another difference is related to the concept of strong and weak authoriza-
tions. In the Orion model, strong authorizations cannot be overridden. This
implies that the insertion of a strong authorization is rejected by the system if
it conflicts with an existing strong authorization. This clearly prevents strong
authorizations to be granted through derivation rules. To avoid these short-
comings, in [19] an approach is proposed that allows strong authorizations to
be overridden by other positive or negative strong authorizations, under spe-
cific circumstances.

11.3.2.3 The Iris Authorization Model

Another relevant proposal is the authorization model developed for Iris [20].
In Iris, both attributes and methods are represented as functions. The only
privilege supported by the model is the call privilege: A subject owning the
call privilege on a function is authorized to call that function. The subject
who creates a function is the owner of the function and automatically
receives the call privilege on it. Moreover, the owner of a function can grant
other subjects the call privilege on the function. Call privileges can be
granted with the grant option, allowing the subject that receives the privilege
to grant it to others. The Iris authorization model allows a privilege to be
granted or revoked on both a per-group and per-user basis. A user can belong
to several groups. Moreover, groups can be nested. Derived functions can be
defined in terms of other functions. The Iris authorization model supports
two approaches for the protection of derived functions. Under the approach
called static authorization, the subject requesting the execution of a derived
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function must have the call privilege only on the derived function. In the
other approach, called dynamic authorization, the caller must have the call
privilege both on the derived function and on all the functions executed by
the derived function. On creation of a derived function, the creator must
specify which of the two approaches must be used to check the execution
requests on the function. In both cases, the creator of the function must have
the call privilege on all the functions that compose the function it creates.

The Iris authorization model also provides two novel constructs to
enforce access control: guard functions and proxy functions. Guard functions
are a means to express preconditions on the call of a function and are there-
fore used to restrict the access to a given function. The function to which
a guard function refers is called the target function. A target function is
executed only if the corresponding guard function is evaluated successfully.
Conditions are imposed to guarantee that the evaluation of expressions
involving guards will terminate. The main advantage of guard functions
is that they restrict the access to a function without requiring changing the
function code. Proxy functions provide different implementations of a spe-
cific function for different subjects (or groups of subjects). When a function
is invoked, the appropriate proxy function is executed instead of the origi-
nal one.

11.3.3 Authorization Models for Active DBMSs

Active DBs are characterized by a rule system that enables the DBMS to react
to events by triggering rules. The rules describe the operations to be auto-
matically executed on the DB on the occurrence of particular events or the
satisfaction of given conditions. As an example of an authorization model
for active DBMSs, the following subsections describe authorization facilities
supported by the Starbust system [24].

11.3.3.1 The Starbust Authorization Model

Starbust is a prototype extensible relational DB system developed at the IBM
Almaden Research Center. Starbust is characterized by a rule language fully
integrated in the system. The authorization model of Starbust supports a
hierarchy of privilege types that can be exercised on DB objects, where higher
types subsume lower types. Examples of privilege types are control, which
subsumes all the other privileges, write, alter, and attach. When a table is cre-
ated, the owner receives the control privilege on the table, which implies the
possibility of granting and revoking all the other privileges. Similarly, a hier-
archy of privilege types for rules is defined, whose top element is control and
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whose bottom elements are activate and deactivate. As with tables, the rule
creator receives the control privilege on the rules he or she creates. The crea-
tion and modification of rules are governed by the following constraints.

• The creator of a rule on a table T must have both the attach and the
read privilege on T.

• The condition and action statements of the created rule are checked
against the creator privileges. If the condition or action part of the
rule contains statements that the creator is not allowed to execute,
the create operation is not authorized.

• Subjects requesting the deletion of a rule r on a table T must have
either the control privilege on r or the attach and the control privi-
leges on T.

• Subjects requesting the modification of a rule must have the alter
privilege on the rule.

• Subjects requesting the activation/deactivation of a rule must have
the activation/deactivation privilege on the rule.

11.3.4 Comparative Analysis of Authorization Models

Table 11.1 is a comparative analysis of the authorization models considered
in Section 11.3.3. The second column in the table lists, for each of the con-
sidered models, the granularity at which access control can be enforced. The
third column specifies which subjects the model supports (e.g., roles,
groups); the fourth column indicates which types of authorizations each
model supports (e.g., positive, negative, weak, strong); and the fifth column
deals with administration policies. The last column illustrates which is the
semantic of the revoke operation for those models supporting delegation of
administration.

11.3.5 Discretionary Access Control in Commercial DBMSs

In this section, we describe how DAC is enforced in the object-relational
DBMSs Oracle and DB2, and in the object-oriented DBMS GemStone. Note
that the products discussed here and in the following sections may be trade-
marks of various corporations. We do not mention trademarks in this chapter.

11.3.5.1 Oracle

In Oracle, privileges can be granted to either users or roles. Roles are hierar-
chically organized, and a role acquires the privileges of all the roles that are in
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Table 11.1
Comparison of Discretionary Authorization Models

Approach Objects Subjects Types Administration Policies Revoke

Bertino, Bettini, Ferrari,
and Samarati

Not defined Users, groups Positive/negative,
implicit

Owner administration,
delegation

Recursive

Bertino, Buccafurri,
Ferrari, and Rullo

Class instances Users, groups, roles Positive/negative,
strong/weak, implicit

DBA administration �

Bertino, Jajodia, and
Samarati

Tables Users, groups Positive/negative,
strong/weak, implicit

Owner administration,
delegation

Recursive

Bertino and Weigand Classes, class instances,
sets of class instances,
object components*

Roles Positive/negative,
strong/weak, implicit,
content-based

DBA administration �

Bertino, Samarati, and
Jajodia

Tables, views� Users, groups Positive/negative,
content-based

Owner administration,
delegation

Recursive, noncascading

Bruggemann Classes, class instances Users, roles� Positive/negative,
implicit

DBA administration �

Fernandez Classes, class instances,
sets of attributes

Users, groups Positive/negative,
implicit, content-based

Delegation Recursive

Iris Functions Users, groups Positive, implicit Owner administration§,
delegation

Not defined
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Table 11.1 (continued)

Approach Objects Subjects Types Administration Policies Revoke

Kelter Class instances Users, groups Positive/negative,
implicit

Owner administration Not defined

Orion DB, classes, class
instances, sets of class
instances, object
components*

Roles Positive/negative,
strong/weak, implicit

DBA administration �

SeaView DB, tables Users, groups Positive/negative,
implicit

Delegation Noncascading

Starbust Tables, rules Users, groups Positive, implicit Owner administration Not defined

System R Tables, attributes, views� Users Positive, content-based Owner administration,
delegation

Recursive

Wilms Tables, attributes, views� Users, groups Positive, content-based Owner administration,
delegation

Recursive

*Object components can be attributes, methods, or values.
�Views are used to support content-based access control.
�More precisely, [21] provides the notion of subject class, to model subjects with the same authorization requirements.
§The model also supports a set of DBAs that hold privileges on each function in the system.



lower positions in the hierarchy. A user can be authorized to play several
roles. Each role can be, at a given time, either enabled or disabled. The
initialization parameter MAX_ENABLED_ROLES specifies the maximum
number of roles a user can enable. With each role, a password can be associ-
ated to prevent unauthorized use of the privileges granted to the role. A set of
predefined roles is provided, which can be modified as any other role in an
Oracle DB. When a subject creates a role, the role is automatically granted
to the creator with the admin option, which allows the subject to grant or
revoke the role to or from any subject, with or without the admin option,
and to alter or drop the role. Oracle also supports the special group PUBLIC,
accessible to every subject. Privileges and roles can be assigned to PUBLIC to
be accessible by everyone.

The privileges of an Oracle DB can be divided into two categories: sys-
tem privileges and object privileges. System privileges allow subjects to perform
a particular systemwide action or an action on a particular type of objects.
More than 60 distinct system privileges are provided. Examples of system
privileges are the privilege to delete the tuples of any table in a DB or to cre-
ate a cluster. Because system privileges are powerful, they usually are avail-
able only to DBAs or application developers. Like roles, system privileges
also can be granted with the admin option. If a subject has a system
privilege with the admin option, it can grant or revoke system privileges to
other subjects. Any subject with the admin option for a system privilege or
a role can revoke the privilege or the role from any other subject. The sub-
ject does not have to be the one that originally granted the privilege or role.
When a system privilege is revoked, there may be cascading effects, depend-
ing on the type of system privilege. If the revoked system privilege is related
to a DDL operation, no cascading effects take place. By contrast, cascading
effects are caused by the revocation of a system privilege related to a DML
operation.

Object privileges allow subjects to perform a particular action on a par-
ticular object in the DB. The privilege to delete or insert tuples in a particular
table is an example of object privilege. When a subject creates an object in
its schema, it automatically receives all the object privileges on the created
object as well as the right to grant those privileges to other subjects. If
the grant includes the grant option, the subject receiving the privilege
can further grant the privilege to other subjects. Privileges granted to a role
cannot be granted with the grant option. Object privileges can be revoked
only by the subjects that have granted them. Revocation of object privilege
is recursive.
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11.3.5.2 DB2

In DB2, subjects can be either single users or groups. The access control
facilities provided by DB2 relies on two main concepts: authorities and privi-
leges. The concept of authority is similar to that of Oracle system privileges in
that an authority is a right to perform a particular administrative operation.
Authorities usually are granted to particular groups rather than to single
users. Several authorities are supported by DB2. The highest authority is the
system administrator authority, usually held by a group, whose members
have the ownership of all the DB2 resources and the ability to execute any
DB2 command. Other authorities include the system maintenance author-
ity, which conveys the right to perform maintenance operations, such as
starting and stopping the DB2 server; the DB administration authority,
which allows subjects to access and modify all the objects in a DB and
to grant other users access authorizations and authorities; and the
CREATETAB authority, which conveys the right to create tables in a DB.

Privileges are similar to the Oracle object privileges. They are rights to
perform a certain action on a particular object in a DB. Privileges can be
granted to both users and groups. When a subject creates an object, such as a
table or a view, it receives the control privilege on it. The control privilege
subsumes all the other privileges supported by DB2 and allows the possibility
of granting any applicable privilege on the considered object to other users
or groups. When a privilege on a table or view is revoked, all the privileges
derived from the revoked privilege are recursively revoked.

11.3.5.3 GemStone

GemStone provides a simple authorization model. Authorizations can be
granted both to single users and groups. The only type of authorization unit
is the segment. A segment groups together a set of objects with the same level
of protection. That implies, for instance, that if a subject has the authoriza-
tion to read a segment, then it can read all the objects within the segment.
Each segment has only one owner, which can grant and revoke authoriza-
tions on the segment. A default segment, whose identifier is stored in the
subject profile, is associated with each subject. Normally, an object is stored
into the default segment of its creator. A subject can transfer objects from
one segment to another and can create new segments, given the appropriate
authorizations. Transferring an object from one segment to another is a
means to change the object accessibility.

Privileges that can be granted on a segment are of two distinct
types: the #read privilege, which allows a subject to read all the objects in a
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segment, and the #write privilege, which allows a subject to modify all the
objects in a segment. GemStone also supports the special privilege #none,
which, when granted to a subject, deletes authorizations.

11.4 Multilevel Security in Database Systems

This section describes the multilevel security aspects of mandatory security
for DB systems. The first part focuses mainly on relational systems. Then we
provide an overview of secure object systems. Note that several other signifi-
cant developments have been made in multilevel security for DB systems,
including inference problems, secure concurrency control, and recovery algo-
rithms, and multilevel security for distributed, heterogeneous, and federated
DB systems. This chapter does not discuss all those developments. For details
on inference problems, we refer the reader to [25]; for secure concurrency
control, [26]; for secure distributed, heterogeneous, and federated DBs, [27].

11.4.1 Multilevel Relational Data Model

In a multilevel DB, not all the data are assigned the same security level.
If such a DB is based on the relational model, the objects of classification
may be the entire DB, relations, tuples, attributes, or data elements. Access to
those objects is governed by the mandatory policy discussed in Section 11.2.
A multilevel DBMS should protect the multilevel DB from unauthorized
access or modification by subjects cleared at different security levels. A multi-
level relational DB represents the multilevel DB as a set of relations. The cor-
responding model is called a multilevel relational data model.

A goal of a multilevel relational DB designer is to represent multiple
versions of the same entity, action, or event at different security levels with-
out violating the integrity or security rules. One of the mechanisms being
proposed to represent multiple versions of an entity at different security
levels is polyinstantiation. Polyinstantiation enables two tuples with the same
primary key to exist in a relational DB at different security levels. However,
having two tuples with the same primary key violates the entity-integrity
property of the standard relational data model. If polyinstantiation is not
supported, then it is possible for signaling channels to occur. Consider the
following example. EMP is a relation with attributes SS#, NAME, SALARY,
and DEPT#. Let SS# be its primary key. Suppose a subject enters the tuple
(000, John, 60K, 120) first into EMP. Later suppose an Unclassified subject
enters the tuple (000, John, 20K, 120) into EMP. If the tuple is accepted,
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then it is a polyinstantiated tuple. If the tuple is rejected due to entity-
integrity violation, then the actions of a Secret subject have interfered with
those of an Unclassified one.

Recently there has been much discussion on polyinstantiation. Some
argue that polyinstantiation is necessary if we are to design multilevel DB sys-
tems with higher levels of assurance (see, e.g., [11]). Some argue that it is
important to maintain the integrity of the DB and that polyinstantiation vio-
lates the integrity (see, e.g., [28]). Some have used partial polyinstantiation
together with security constraint enforcement in their design (see, e.g., [29]).
An interesting operational example that shows the disastrous effects of poly-
instantiation is given in the paper by Wiseman [30]. Even among those
who support polyinstantiation, there has been much discussion of the correct
update semantics to use. A logic for formalizing concepts in multilevel rela-
tions that supports polyinstantiation is given in [31]. Various systems dis-
cussed here have proposed various types of multilevel data models. They all
satisfy the security properties discussed in Section 11.2. The entities of classi-
fication are mostly the tuples. Polyinstantiation is supported in most of the
models.

11.4.2 Architectures

This section describes various access control models that have been devel-
oped for MLS/DBMSs. While DBMSs must deal with many of the same
security concerns as trusted operating systems (identification and authenti-
cation, access control, auditing), there are characteristics of DBMSs that
introduce security difficulties over and above those that could be handled
by traditional operating system security techniques. For example, objects in
DBMSs tend to be of multiple sizes and can be of very fine granularity. That
contrasts with operating systems in which the granularity tends to be coarse
and uniform (e.g., files or segments). Because of the variety of granularity in
TDBMSs, the objects on which MAC and DAC may be performed may dif-
fer. In trusted operating systems, MAC and DAC tend to be performed on
the same objects.

There are also some obvious functional differences between operating
systems and DBMSs, which affect how the two deal with security. Operating
systems tend to deal with subjects attempting to access some objects. DBMSs
are used to share data between users and to provide users with a means to
relate different data objects. Also, DBMSs generally are dependent on oper-
ating systems to provide resources and isolation for the DBMS. Therefore,

376 Advanced Database Technology and Design



TDBMS designs often must take into account how the operating system
deals with security.

The differences between DBMSs and operating system functional and
security requirements mean that the traditional approaches to developing
secure systems that worked so well for operating systems need to be modified
for TDBMSs. Currently, no single architectural approach has been agreed on
or employed in the development of MLS/DBMSs. A variety of approaches to
designing and building MLS/DBMSs have been proposed. Taxonomies for
MAC have been proposed (see, e.g., [32, 33]). This chapter merges the vari-
ous ideas proposed as well as uses the notes from tutorials the authors have
given (see, e.g., [34]).

11.4.2.1 Single-Kernel Architecture

The single-kernel approach, also known as the Hinke-Schaefer approach, is
characterized by having the underlying trusted operating system perform all
the access control mediation. No access control mediation is performed by
the DBMS. The DBMS objects (e.g., records) are aligned with the underly-
ing operating system objects (e.g., files). Thus, Secret records are stored in
Secret files, TopSecret records are stored in TopSecret files, and so on. Under
this approach, no single DBMS has access to all the data in the DB; rather,
there is an instantiation of the DBMS for each security level. The advantages
of this approach are its simplicity and high degree of security. The disadvan-
tage is that performance is likely to degrade significantly as the number of
security levels increases (see, e.g., the work of Graubart in [32]).

11.4.2.2 Distributed Architecture

Under the distributed approach, there are multiple untrusted (in terms of
MAC) back-end DBMS machines, and a single trusted front-end machine
to which all the untrusted back ends communicate. There are two primary
versions of this architecture. One version has only a single level of data per
machine. Thus, one machine would have only Secret data, another would
have TopSecret data, and so on. We refer to this version as the partitioned
approach. Under the second version, lower level data are replicated on the
various machines. Thus, the Secret machine will have the Secret data, the
Confidential data, and the Unclassified data; the Confidential machine will
have the Confidential data and the Unclassified data; and so forth. We refer
to this second version as the replicated approach.

Under the partitioned approach, the trusted front end is responsible for
ensuring that queries are directed to the correct machines and for performing
joins on the data passed back by the various machines. Because the query
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itself could contain information classified higher than some of the target
machines (and because the trusted front end would be unable to ascertain if
that is the case), this partitioned approach suffers from a potentially high sig-
naling channel, as queries are sent to machines that are operating at levels
lower than the user. For the replicated approach, the trusted front end
ensures that the query is directed to a single machine. Because only machines
operating at the same level as the user are queried, replicated approach does
not suffer from the signaling channel problem. Nor does the replicated
approach require that the front end perform any of the join operations.
However, because the data are replicated, the trusted front end must ensure
consistency of the data maintained in the various machines.

The advantage of the distributed approaches is that they provide high-
assurance separation between the data, and performance is likely to be inde-
pendent of the number of security levels. The disadvantage is the high cost
in hardware (one machine per security level) and the physical space require-
ments for the placement of the machines.

11.4.2.3 Trusted-Subject Architecture

The trusted-subject approach, also sometimes called a dual kernel�based
architecture [32], does not rely on the underlying operating system to per-
form access control mediation. Under this approach, the DBMS performs its
own access mediation for objects under its control. Thus, access to DBMS
records is mediated by the TDBMS. The architecture is referred to as a
trusted-subject approach because the access mediation provided by the
TDBMS is not independent from the access mediation of the operating sys-
tem and must act as a trusted subject to ensure that no violation of the overall
security policy occurs. Under the trusted-subject approach, a single DBMS
has access to all the data in the DB. The advantages of this architecture are
that it can provide good security and that its performance is independent
from the number of security levels involved. Its disadvantage is that the
DBMS code that performs access mediation must be trusted, and often such
code is both large and complex. Another disadvantage with this approach is
that the evaluation of such architectures may require reevaluation of part or
all of the underlying trusted operating systems on which the DBMS is built.

11.4.2.4 Integrity Lock Architecture

The integrity-lock approach employs an untrusted DBMS back end with
access to all the data in the DB; an untrusted front end, which communicates
with the user; and a trusted front end, which makes use of encryption
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technology (see, e.g., [35]). It is essential that the untrusted components are
isolated from each other so there is no communication between the two
without the intervention of the trusted filter. This isolation can be provided
either by physical isolation (the front and back ends can be on two different
machines) or by logical isolation via the MAC mechanism of the underlying
operating system. Assuming the latter approach is employed, the back end
should be maintained at system high. Multiple instantiations of the front
end would be maintained, with one instantiation for each user level. The
trusted filter exists at the same level as the back end.

Under this approach, every tuple that is inserted into the DB has asso-
ciated with it a sensitivity label and a cryptographic checksum, employing
a CBC algorithm (both supplied by the trusted front end). The sensitivity
label should also be encrypted, but the data tuple itself remains unencrypted.
For insertions, the untrusted DBMS back end takes the data tuple and asso-
ciated label and checksum and places them in the DB, as it would with any
other data tuple. On retrieval, the back end retrieves the data tuples and
passes them to the trusted front end, which validates the label and the check-
sum. If the label and the checksum satisfy the validation check, the tuple is
passed to the user or any waiting untrusted processes.

The advantage of this approach is that a minimal amount of additional
trusted code is required for the TDBMS, and performance is independent
of the number of security levels involved. The disadvantage is that this
approach is subject to an inference threat, which occurs because the
untrusted back end is able to view classified data, encode it as a series of
unclassified data tuples, and pass the encoded data tuples to the trusted front
end. Because the data tuples would all be unclassified, the trusted filter will
allow the tuples to be passed on to a subject not cleared for classified data.

11.4.2.5 Extended-Kernel Architecture

The extended-kernel approach is an extension of the single-kernel approach.
The underlying operating system is still employed to provide the basic MAC
and DAC mediation. However, the TDBMS will supplement this access
mediation by providing some additional access control mediation. Thus,
if the operating system provides standard content-independent DAC on
files, the TDBMS might provide context-dependent DAC on views. This
approach differs from the trusted-subject approach because the policies
enforced by the TDBMS are not dependent on those of the operating system
and can only further restrict the access restrictions imposed by the operating
system. This approach suffers from the same performance difficulties of the
single-kernel approach. Also, it is likely to be somewhat complex. However,
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because it provides more sophisticated access control mechanisms, it is likely
to be capable of addressing some additional real-world access control needs.

11.4.3 Prototypes

This section examines two prominent research prototypes that were designed
in the late 1980s: SRI�s SeaView and Honeywell�s LOCK Data Views
(LDV). Both are based on the extended-kernel approach. Many of the
MLS/DBMS products discussed in this chapter have been heavily influenced
by those two systems. Other MLS/DBMSs designed in the 1980s and the
early 1990s include ASD-Views by TRW, integrity-lock prototypes by
MITRE, Secure Distributed Database Systems by Unisys, SINTRA by Naval
Research Laboratory, and SWORD by Defense Research Agency. Note that
in describing SeaView and LDV, we discuss the design of the initial systems.

Table 11.2 classifies the various prototypes and products according to
the design on which they are based. A discussion of some of these prototypes
and products is given in the following sections. Since most multilevel object
models also include policies for method execution, we have not considered
them in this classification. There is no taxonomy yet for multilevel object
systems.

11.4.3.1 SeaView

SeaView, which is an MLS relational DDBMS hosted on GEMSOS Trusted
Computing Base (TCB), addresses the multilevel secure needs by enabling
individuals possessing a range of clearances to create, share, and manipulate
relational DBs that contain information spanning multiple sensitivity levels.
Its designers� goal was to develop a high-assurance MLS/DBMS. The project
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Table 11.2
Classification of Products and Prototypes Based on Their Architecture

Architecture Prototypes and Products

Single kernel Hinke-Schaefer, SeaView, Oracle (based on Hinke-Schaefer)

Distributed Unisys�s Secure Distributed Database, Naval Research Laboratory�s SINTRA

Trusted subject TRW�s ASD-Views, Secure Sybase, Trusted Oracle (based on trusted
subject), Trusted Informix

Integrity lock MITRE prototypes, TRUDATA

Extended kernel Honeywell�s LDV



addressed some difficult issues such as polyinstantiation, inference, and
aggregation. In addition, algorithms for decomposing multilevel relations
into single-level relations as well as recombining the single-level relations
to form a multilevel relation were developed. The relational query language
SQL was extended to MSQL to include multilevel security constructs. Since
the project began in 1985, it has attained much prominence, and SeaView
is now being regarded by many as one of the key MLS/DBMS prototypes
to be developed. We first provide an overview of SeaView and then discuss
its security model, which is unique. This discussion of SeaView is obtained
from [5].

To obtain high assurance, SeaView design is based on the reference
monitor concept. Subjects have the view of multilevel relations, which are
relations with data at different security levels. A subject at level L could have
a view of a multilevel relation with data classified at or below level L. A mul-
tilevel relation is stored in one or more single-level relations. The single-level
relations are transparent to the subject. A single-level relation is stored in a
file (or segment) at the same level, and the reference monitor controls access
to the single-level files. Implementing multilevel relations as virtual relations
(or views) enables subjects to issue insert, delete, and update requests on
those views. Appropriate algorithms are then used to translate the update
on views to an update on the base relations, which are single level. An advan-
tage of the SeaView approach is that the labels of the data elements need
not be stored. That is because the level of the file in which a data element is
stored is the level of the data element. However, if many security levels are
to be supported, there will be considerable performance impact on query
processing. That is because several files will have to be accessed to form a
view of a multilevel relation.

Each DB operation is carried out by a single-level subject. When a sub-
ject at level L issues a request, a DB system subject operating at level L will
process the subject�s request. The designers believe that having single-level
subjects carry out the DB operations will considerably reduce disclosure
risks. However, with this approach there must be a DB server operating at
each security level supported by the system, that is, multiple DB servers share
the same logical DB.

The SeaView security model consists of two components: the MAC
model and the TCB model. The MAC model defines the mandatory security
policy. The basic constructs are subjects, objects, and access classes. Each
subject is assigned a readclass and a writeclass. A subject can read an object if
the subject�s readclass dominates the access class of the object. A subject can
write into an object if the object�s access class dominates the writeclass of the
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subject. The TCB model defines discretionary security and supporting poli-
cies for multilevel relations, views, and integrity constraints, among others.
The data model utilized by SeaView is a multilevel relational data model.
It supports element-level classification. Polyinstantiation is the mechanism
introduced by SeaView to handle cover stories as well as signaling channels.
For example, in a multilevel world, it is possible to have multiple views of the
same entity at different security levels. In the SeaView model, the two views
may be represented by, say, two tuples with the same primary key but at dif-
ferent security levels. The primary key constraint is not violated because, in
the multilevel relational data model proposed by SeaView, a modified entity
integrity property is defined. Additional integrity properties such as referen-
tial integrity and polyinstantiation integrity are also defined in the SeaView
model.

11.4.3.2 LOCK Data Views

The LOCK Data Views (LDV) system, which is an MLS relational DBMS
hosted on LOCK TCB, addresses the multilevel secure needs by enabling
individuals possessing a range of clearances to create, share, and manipulate
relational DBs that contain information spanning multiple sensitivity levels.
In LDV, the relational query language SQL is enhanced with constructs
for formulating security assertions. Those security assertions serve to imply
sensitivity labels for all atomic values, contexts, and aggregations in a DB.
The labeled data are partitioned across security levels, assigned to containers
with dominating security markings or levels, and may only flow upward
in level unless authorized otherwise. The ability of LDV to perform in this
manner is a function of its design and the operating system on which it is
hosted. The design of LDV is unique because it is based on LOCK�s type-
enforcement mechanism. A detailed discussion of LDV is described in [25].

To understand the LDV security policy, it is essential to understand
the LOCK security policy, which consists of a discretionary and a mandatory
security policy. The discretionary policy allows subjects to specify and con-
trol the sharing of objects. The mandatory policy is based on controlling the
potential interferences among subjects. It consists of a MAC policy and a
type-enforcement policy. The MAC policy is based on the Bell and LaPadula
policy. The type-enforcement policy deals with aspects of security policy that
are inherently nonhierarchical in nature. It restricts accesses of subjects to
objects based on the domain of the subject and the type of the object.

The additional concern for a DBMS in a multilevel secure environ-
ment beyond that of LOCK is the proper labeling of information. To pro-
vide for that concern, two extensions to the policy of the TCB are required.
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One extension summarizes the actions that happen when a DB is updated
and the other when a query is made to the DB. The update classification pol-
icy addresses the problem of proper classification of the DB data. That is,
when the DB is updated, the classification level of the data is determined.
The data are then inserted into an object whose level dominates the level of
the data.

The response classification policy addresses the problem of proper clas-
sification of response to queries. This is a problem because the response may
be built based on the data in many base relations. In the process of manipu-
lating and combining the data, it is entirely possible that the data will be
used in a manner that reveals higher level information. The problem
becomes more acute when one realizes that the response will be released into
an environment in which many responses may be visible. Thus, the problem
becomes one of aggregation and inference over time as well as across rela-
tions. In light of that, it seems fairly clear that a response can be released only
if it is placed in an object whose level dominates the derived level of the
response. The derived level is the maximum level of any information that can
be deduced from the response by a subject reading the response. LOCK�s
type-enforcement mechanism allows us to encapsulate applications such
as DBMS in a protected subsystem, by declaring the DBMS objects to be
of special types that are accessible only to subjects executing in the DBMS
domain. The subjects who are allowed to execute in this domain are carefully
restricted. It is this approach that makes LDV a unique design.

Some of the essential design concepts of LDV are the following.

• Subjects interact with LDV through a request importer and a
request exporter.

• Access to data as well as to metadata is controlled by LOCK.

• Information in the DB as well as the meta-DB is stored in single-
level files, that is, LOCK objects. LOCK ensures that the DB files
may be opened for read/write operations only by subjects executing
at the appropriate levels and in the appropriate DB domains.

• The LDV subsystems are the Data Dictionary Manager (DDM),
which is responsible for maintaining all information about the mul-
tilevel DB; the User Request Manager (URM), which provides
interface subjects; the Relational Access Manager (RAM), which is
responsible for query optimization; and the Execution Manager
(EM), which is responsible for file and transaction management.
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11.4.4 Commercial Products

Since 1988, MLS/DBMS products have been developed. However, some of
those products are not being marketed anymore. Furthermore, some corpo-
rations have merged with other corporations, so the ownership of the prod-
ucts also has changed. This section is an overview of the commercial products
that emerged between 1988 and 1993. Note that in describing the product
we do not mention the evaluation status. Our emphasis is on the technical
aspects of the product for the initial release. We also briefly mention the plat-
forms they were intended to run on initially. Because the MLS/DBMS com-
mercial marketplace has been dominated by relational systems, we discuss
only relational DBs.

11.4.4.1 TRUDATA

The initial version of the TRUDATA system designed in the late 1980s
is an approach based on Integrity-Lock whose underlying security model is
derived from the Naval Surveillance Model as well as from Integrity-Lock
architecture. TRUDATA employs an untrusted Britton Lee DB machine as
a back end and an AT&T 3B2 V/MLS system as a front end. The back-end
DB machine is completely untrusted and has access to all the data in the DB.
The back-end machine performs standard DBMS selection, joins, and
projections, as well as being responsible for data storage and recovery. In
TRUDATA physical, not logical, isolation is used to isolate the DB from
non-DBMS code. Trusted code added to the MLS front end associates labels
and a 64-bit CBC checksum to the data being stored in the DB. The trusted
filter also performs all access mediation (MAC and DAC).

Objects in TRUDATA are view instances (pviews, mviews, and rela-
tions). Pviews are projections from a given relation. The pviews are defined a
priori before data are inserted into the DB. Mviews are the join between two
or more pviews. The intent of labeling only view instances is to limit the
inference threat to which systems based on Integrity-Lock are vulnerable.
TRUDATA provides two versions of its MAC policy: a �restricted� version,
which allows only a write-equal policy, and an �unrestricted� version, which
allows a write-up policy.

Objects in TRUDATA may be labeled with one of three types of labels:
an actual security label (ASL), a default security label (DSL), or a container
clearance requirement (CCR) label. An ASL may be associated with only a
pview instance. A DSL is attached to every container. Pview instances, which
do not have an ASL associated with them, inherit the DSL of their container.
The inheritance mechanism allows subjects to avoid having to label all view
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instances explicitly. The CCR labels are associated with containers. The
CCR labels are a pair of labels that constitute the ceiling and floor of the
labels that may be associated with objects in the container. All labels may be
changed (changed in place) through the use of the change command by an
authorized subject.

In addition to providing MAC, TRUDATA also provides DAC. DAC
is handled in TRUDATA via a combination of access control lists (ACLs):
exclusionary access control lists (XACLs) and operator authorization lists
(OALs). OALs are associated with subjects and specify which operators
the associated subjects may apply to objects. The operators supported by
TRUDATA are read, write, delete, create, change-level, and change-access.
ACLs and XACLs are associated with objects. ACLs indicate which subjects
may access the object (discretionary sense) and in what manner the objects
may be accessed (e.g., read, write). XACLs explicitly exclude a specified sub-
ject from accessing the object in a specified manner. When an ACL is associ-
ated with a container, the access permission of the ACL applies to all the
objects in the container unless excluded by an XACL. XACL permissions,
like those of ACLs, are inherited by their containing objects. However, once
an XACL excludes a subject from accessing an object, subsequent ACLs will
not restore it. Access permission granted at the system level cannot be denied
via lower level XACLs. That ensures that permissions granted to DBAs can-
not be denied by lower level subjects.

11.4.4.2 Secure Sybase

Sybase�s Secure SQL Server is a trusted-subject-based DBMS based on a
client/server architecture. For the initial release, the client portion of the
architecture ran on Ultrix, SE/VMS, and SUN MLS. The initial release
of the server ran only on Ultrix. Because Ultrix is not a trusted product, it
may not provide the trusted operating system support environment that a
TDBMS requires. However, Sybase had discussed porting the server to DEC
RISC CMW, SUN CMW, and SeVMS.

Secure Sybase provides security labels (16 hierarchical and 64 non-
hierarchical) on each tuple of the system and performs MAC based on those
labels. Because Sybase stores its metadata in relations, it is capable of labeling
each row of the metadata relation, thus allowing for a very fine-grained and
flexible labeling of the metadata. Secure Sybase provides DAC on relations
but not views. Secure Sybase is unique in that identification and authentica-
tion functions are handled by the DBMS, not by the underlying operating
system. The Secure Sybase server also provides for a trusted facility man-
agement capability by supporting separate security officer and system
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administrator roles. The current release of the server supports a trusted-path
capability, but it is our understanding that Sybase is planning to do away
with this capability in future releases of the system to allow for compatibility
with the nonsecure versions of Sybase.

Secure Sybase supports polyinstantiation for insertion, updating, and
deletion. Polyinstantiation can be turned off for deletions and updates, but it
cannot be turned off for insertions. Secure Sybase allows for downgrading of
the entire content of a relation. Subjects create empty relations at the desired
lower level, and then the contents of the original relation are copied into the
new relation. Downgrading selected tuples is more difficult. The selected
tuples are copied into a new relation at the lower security level. The selected
tuples in the original relation are then deleted. The selected tuples in the new
relation are then copied into the old relation. Finally, the new relation (now
empty) is deleted. Sybase intends to provide a less awkward means of reclassi-
fying data in future releases. The new approach will entail copying tuples
from one level to another and then deleting the original tuple, but unlike
the current approach, only the tuples that are being reclassified need to be
copied.

11.4.4.3 Trusted Oracle

Oracle�s MLS/DBMS effort is unique in that Oracle had pursued both a
Hinke-Schaefer approach and a trusted-subject approach. The Hinke-
Schaefer approach draws heavily from the SeaView model. The early releases
of trusted Oracle were targeted to run on the SE/VMS and the HP/UX oper-
ating systems. Also, Oracle has tried to maintain its trusted product to keep
up with the nontrusted releases of Oracle.

The system enforces tuple-level MAC granularity. In the Hinke-
Schaefer version, that is done by storing the tuples in the underlying trusted
operating system storage object. Under both approaches, the number of
security levels is the same as that enforced by the underlying operating
system. Trusted Oracle provides polyinstantiation on insertions. The poly-
instantiation is on a relation basis and can be turned on and off as desired.
The system enforces a write-equal policy for updates and deletes. Subjects
who have the appropriate privilege may change the sensitivity labels associ-
ated with tuples (label changes occur in place, as opposed to inserting new
tuples at a different level and deleting the old tuple).

We discussed discretionary security for Oracle in Section 11.3.5.1.
Here, we briefly discuss how DAC was handled in the early release of the
trusted version. Trusted Oracle provides its own DAC mechanism (i.e., a
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DAC mechanism independent from the underlying operating system). The
DAC is enforced on views. Trusted Oracle is unique in that it does not
employ locking to enforce concurrency control. Instead, it employs single-
level multiversioning. Because there is no locking and no writing down
under this approach, there is no chance of a covert signaling channel
occurring.

The system metadata is handled as a normal relation. For the Hinke-
Schaefer version of the product, that means the metadata is partitioned into
operating system objects of the appropriate security level. For the trusted-
subject version of the product, each tuple of the metadata relations is inde-
pendently labeled.

11.4.4.4 Trusted Informix

Trusted Informix is intended to be a trusted-subject-based architecture and
run on both the HP/UX operating system and the AT&T System V MLS.
The product associates security labels on rows (tuples). However, rather than
enforcing its own MAC mediation, the system makes calls to the underlying
trusted operating system, which in turn makes calls to the operating system.
Trusted Informix supports the ability of changing existing row labels; it does
so by copying the data into a new row at a different level and then deleting
the original row.

Content-independent DAC is enforced on DBs, tables, rows, and col-
umns. The product supports polyinstantiation on insert, and the mechanism
cannot be shut off once activated. The system metadata are all protected at
system high. The product has a unique approach to handling MLS concur-
rency control. If a higher level subject locks an object, a lower level subject
is still allowed to write the object. By permitting that writing, the product
ensures that the higher level subject cannot signal the lower level subject via
the locking mechanism. This approach opens up a potential data integrity
problem, because even locked objects can be written by lower level subjects.
Trusted Informix addresses the problem by alerting the higher level subjects
when a �locked� object has been written and giving the subject the option of
either backing out of the transaction or continuing.

11.4.5 Multilevel Object Data Models

This section describes some of the major multilevel object-oriented data
models described in the literature.
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11.4.5.1 SODA Model

Keefe, Tsai, and Thuraisingham were the first to incorporate multilevel secu-
rity in object-oriented data models. The system they subsequently developed,
called SODA [36], has a number of unique properties, both in its security
model and in its data model.

The rules that govern operations within SODA are designed to enforce
the Bell and LaPadula properties and conceptually are quite simple. First,
any method activation can read a value within a labeled object or a labeled
instance variable, provided the classification of the object is dominated by
the clearance level of the method. However, if the classification of the object
dominates the current classification of the method, the method�s classifica-
tion is raised to the level of the object being read. Second, a method acti-
vation may modify or create a new object of a particular classification if
the method�s current classification equals that of the object in question, the
method�s current classification is dominated by the upper bound of the clas-
sification range (as specified by the constraint), and the lower bound of the
classification range specified by the constraint is dominated by the subject�s
clearance. If these rules are not satisfied, then a write/create operation fails.
Because method activations in SODA can have their classifications dynami-
cally upgraded, the TCB must be involved to perform the level change. If the
nature of methods can be determined in advance, then a level change opera-
tion could be restricted to the message-passing mechanism. However, this
situation is not generally the case, and the TCB must be invoked when a
method activation attempts to read an object whose classification dominates
the method�s current classification. The TCB must then restart the method
activation at the point where it invoked the TCB.

11.4.5.2 SORION Model

Thuraisingham investigated security issues for the ORION object-oriented
data model [37]. The secure model was called SORION. It extends the
Microelectronics & Computer Technology Corporation�s ORION model
with multilevel security properties. In SORION�s security policy, subjects
and objects are assigned security levels. The following rules constitute the
policy:

1. A subject has read access to an object if the subject�s security level
dominates that of the object.

2. A subject has write access to an object if the subject�s security level
is equal to that of the object.
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3. A subject can execute a method if the subject�s security level domi-
nates the security level of the method and that of the class with
which the method is associated.

4. A method executes at the level of the subject who initiated the
execution.

5. During the execution of a method, m1, if another method, m2, has
to be executed, m2 can execute only if the execution level of m1

dominates the levels of m2 and of the class with which m2 is
associated.

6. Reading and writing of objects during method execution are gov-
erned by rules 1 and 2.

Different architectures for implementing a system based on the SORION
model have been examined, and an approach in which the TCB enforces all
MAC has been proposed. Basically, the system runs as an untrusted applica-
tion on a general-purpose TCB. The TCB controls all access to read, write,
and method execution.

11.4.5.3 Millen-Lunt Model

Millen and Lunt have proposed a secure object model for knowledge-based
applications, based on a layered architecture [38]. At the lowest layer is the
security kernel, which provides MAC. At the next layer is the object system,
which implements object-oriented services, providing the abstraction of
objects, methods, and messages. The object system layer is assumed to be lay-
ered with respect to mandatory security. Here are the security properties of
the model.

• The hierarchy property states that the level of an object dominates
that of its class.

• The subject-level property states that the level of a subject created to
handle a message dominates both the level of the subject that origi-
nated the message and the level of the object receiving the message.

• The object locality property states that a subject can execute methods
or read variables only in the object where it is located or any super-
class of that object. It can write variables only in that object.

• The *-property states that a subject may write into an object where
the subject is located only if its security level is equal to that of the
object.
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• The return-value property states that an invoking subject can receive
a return value from a message only if the message handler subject is
at the same security level as the invoking subject.

• The object-creation property states that the security level of a newly
created object must dominate the level of the subject that requested
its creation.

11.4.5.4 Jajodia-Kogan Model

Jajodia and Kogan present a secure object-oriented model that is conceptu-
ally simple and unique in that it relies almost wholly on its message-passing
mechanism for the enforcement of its security policy [39]. The security
model proposed by Jajodia and Kogan is based on a message-filtering algo-
rithm that is used to determine if the execution of a method will cause an ille-
gal flow of information within the system.

Two concepts are central to the Jajodia-Kogan security model. The first
is that methods must always have one of two states: They are either restricted
or unrestricted. If restricted, the method is prevented from modifying attrib-
utes or creating new objects. If unrestricted, the method can modify object
attributes and create new objects. Under certain circumstances, method acti-
vation can attain a restricted status, and once attained, any further method
invocations will also be restricted. The second concept is a simplifying
assumption that is made in the model with respect to the nature of methods.
All more complex methods are divided into a sequence of methods of the
following four types:

• Read: a method that reads the value of an attribute;

• Write: a method that modifies the value of an attribute;

• Invoke: a method that invokes another method via the sending of a
message;

• Create: a method that creates a new object.

The rules enforced by the message-filtering algorithm are separated into two
sets. The first set restricts messages sent from one object to another. The sec-
ond set restricts messages sent from an object to itself. Because the message-
passing mechanism contains the filtering algorithm and all information flows
are determined at the time that a message is sent, the TCB of this model
could include the message passer and nothing more. It is conceivable that the
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Jajodia-Kogan model could be implemented without relying on an underly-
ing TCB for security policy enforcement, a situation that is not necessarily
desirable but that is nevertheless one of the unique aspects of this model.

11.4.5.5 Morgenstern�s Model

Morgenstern has proposed an object-oriented security model for multilevel
objects with bidirectional relationships [40]. He argues that the use of multi-
level attributes in the relational model suggests the need for multilevel objects
in the object model. The model also distinguishes between the security levels
of binary and n-ary relationships. Security constraints are used to specify the
types of operations to be executed. Some of the constraints are listed here.

• The method invocation constraint states that the level of a method
invocation is the least upper bound of (1) the minimum level among
the range of levels associated with the method; (2) the level of the
subject who requested the invocation; and (3) the levels of the argu-
ments provided for that invocation.

• The method output constraint states that the level of any output or
insertion produced by the method execution must dominate the
level of the method invocation.

• The property update constraint states that the modification of a prop-
erty instance must not change its level.

Morgenstern�s model does not address issues on TCB enforcement. Because
multilevel objects are decomposed by access classes, one could envision that
the operating system provides the MAC to the decomposed objects. How-
ever, the module that enforces the security constraints must also be trusted.

11.4.5.6 UFOS Model

MITRE has developed a model called UFOS (uniform finegrained object
security) [41]. After the various models proposed in the literature were exam-
ined, it was found that there is a need for a model that is consistent with
industry trends, is flexible, provides element-level access control, and sup-
ports collections of data. Essentially the UFOS model classifies the associa-
tions between instance variables and their values. For example, consider an
object called TANK-A. The association between its instance variable tank-
name and its value XXX could be Unclassified while the association between
its instance variable mission and its value YYY could be Secret. The
UFOS model also treats polyinstantiation in great depth. For example, the
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association between tank-name and its value at the Secret level could be ZZZ
instead of XXX. The security policy of UFOS is essentially read-at-or-
below-your-level and write-at-your-level. There does not appear to be any
discussion of TCB with this effort.

11.5 Design Issues

DB security can no longer be considered a secondary requirement to be
added to existing DB systems. Rather, it must be considered a primary need
to be taken into account from the initial phases of the DB design. Various
authors thus suggest the use of a methodological approach to the design of a
secure DB system, along the lines of the methodologies used for DB design.
Here, we briefly report some guidelines that can be used in designing a secure
DB (some of the ideas presented here are taken from [6]). Secure DB design
can be seen as an incremental process, consisting of the following steps:
(1) preliminary analysis; (2) requirement analysis; (3) security policy specifi-
cation; (4) design of the access control mechanism; and (5) implementation
of the access control mechanism.

The aim of the preliminary analysis phase is to perform a feasibility
study for the secure system to be developed, including an evaluation of
the costs, risks, priorities, and human, hardware, and system resources to
be employed. The protection requirements are fully specified during the
requirement analysis phase. This second phase must start with a precise study
of all the possible security threats to which the system could be exposed and
an accurate analysis of the kind of protection you would like to ensure for the
data stored in the system. The result of this phase is a specification of the type
of accesses a subject can exercise on the DB objects. Such specification is usu-
ally expressed in an informal way, usually as a set of sentences expressed in
natural language.

In the third phase, the security policies that best match the require-
ments specified in the preceding phase are selected. During the security poli-
cies specification phase, it must be defined in details which kinds of privileges
the subjects can exercise on the objects in the system (e.g., update, read, exe-
cute). During this phase, it must also be defined which are the roles and/or
groups (if any) in the systems and whether they are flat or hierarchically
organized. It must also be defined at which granularity the access control
should be enforced, that is, whether it is possible to require access to groups
of objects, single objects, or portions of them.
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Once the security policies have been specified, using some formal or
informal notation, the next step is the design and implementation of an
access control mechanism enforcing such policies (these activities are per-
formed by steps 4 and 5, respectively). Basic components of an access control
mechanism are a set of authorization rules by which the security policies can
be enforced; an access control algorithm, which verifies whether an access
request can be authorized according to the specified policies; and a set of
tools for performing administrative operations. Such functions can be
designed and implemented using the methodologies commonly used for
software development.

Finally, it is important to mention that a very important research direc-
tion concerns the development of tools for the specification of security poli-
cies and for their automatic mapping into a set of authorization rules. Such
tools are particularly crucial when dealing with sophisticated authorization
models supporting a wide range of access authorizations (such as posi-
tive/negative, weak/strong, and implicit/explicit authorizations). This area,
however, has not yet been widely investigated.

11.6 Some Research Trends

Many advanced application environments, such as distributed digital
libraries, heterogeneous information systems, cooperative systems, workflow
applications, and groupware, have articulated and rich access control require-
ments. These requirements cannot be adequately supported by current access
control mechanisms, which are tailored to a few, specific policies. In most
cases, either the organization is forced to adopt the specific policy built into
the access control mechanism at hand, or access control policies must be
implemented as application programs. Both situations are clearly unaccept-
able. A promising research direction is the development of access control
mechanisms specifically tailored for these new environments. The following
sections survey the access control requirements introduced by three of the
most challenging environments, namely, digital libraries, workflow manage-
ment systems, and the World Wide Web [42]. Issues discussed in what fol-
lows are summarized in Table 11.3. Note that many of the research trends
are focusing on access control models for discretionary security and not on
mandatory security. Therefore, mandatory security aspects are not addressed
in this section.
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11.6.1 Digital Libraries

Digital libraries (DLs) introduce several challenging requirements with
respect to the formulation, specification, and enforcement of adequate data
protection policies.

Even though some of those requirements have been addressed by secu-
rity research related to DBMSs, approaching them in the framework of DLs
entails solving several new challenging problems. Other requirements, such
as copyright and intellectual property protection are specific to DLs and have
not been addressed by security research in DBMSs. We briefly discuss some
of the main issues next.

11.6.1.1 Flexible Subject Specification Mechanism

In current authorization models, authorization subjects are stated in terms
of user identifiers. In some systems, roles and groups can also be used as
authorization subjects. In DLs, the user population is often very dynamic,
with new users (also from remote sites) needing to get access to library
objects. Moreover, the access policies that one expects to be stated in a DL
may be based on specific user characteristics. Consider as an example the pol-
icy stating that �a video rated X can only be accessed by users who are 18 or
older.� Directly mapping such a policy, which requires knowledge of the age
of the user submitting the access request, onto a traditional authorization
model is not feasible, because such a model typically does not support the
specification of authorizations based on subject characteristics. The need of
such flexible user specification is even more evident when dealing with users
belonging to organizations different from the organization owning the DL.
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Table 11.3
Some Open Research Directions

Environment Issues

Digital libraries Flexible subject specification; content-based access control to
multimedia data; remote accesses; accesses to distributed digital
libraries; copying and usage of information

Workflow management
systems

Role-based access control; authorization constraints on role and user
assignments; authorization models for the WfMC standard

World Wide Web Efficient strategies for storing authorizations; caching and
administrative operations; authorization models for XML



In such a case, the user characteristics may also include information such as
the organization the user belongs to, whether the subject (or its organization)
has paid the subscription (in case access is allowed upon payment), and
so forth.

11.6.1.2 Content-Based Access Control to Multimedia, Unformatted Data

In many cases, granting access to objects is based on their content. In rela-
tional DBMSs, such access control policies are expressed in terms of views. In
DLs, content-based access control is more difficult because of the presence of
data such as text, image, and video, which makes it more difficult to auto-
matically determine whether a certain object verifies a condition on its con-
tent. As an example, consider a policy stating that �all documents discussing
how to operate guns must be available only to users who are 18 or older.�
The main issue is how to determine whether a certain text really deals
with such a topic. The situation is even more complicated when dealing with
images and videos, due to the inherent difficulty in content understanding
for such data types.

11.6.1.3 Distributed DLs and Remote Accesses

Distribution entails two different aspects. The first concerns the fact that the
DL itself may be distributed and may consist of several information provid-
ers, each maintained by possibly different organizations. Because different
organizations may have different access control policies, several questions
arise related to whether each organization should retain its own autonomy
with respect to access control policies and how to solve conflicts that may
arise, or whether the various policies should be integrated and global policies
devised. Other questions are related to where to maintain authorization
information and where to enforce access control. Some of these questions
were addressed in the framework of distributed DBMSs. However, solutions
proposed in such a framework may not be adequate to DLs.

The second aspect is related to the fact that subjects accessing a DL
may be remote (i.e., they do not belong to the organization owning the DL).
Remote accesses pose a number of problems, especially when remote subjects
are required to provide information (such as age) for access control purposes.
Access control information that is recorded at the subjects� organization may
differ with respect to the information required by the access control system
of the DL. Consider the case of a DL that requires the age of the subject for
giving access to certain objects, whereas the subject�s organization keeps the
birth date. In such a case, the mapping between the two types of information
is easy; however, more complicated situations may arise. Another related
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question is how a subject (or an organization) wishing to access a DL deter-
mines the information to supply for access control purposes. Finally, other
important issues include the use of certification and other authentication
mechanisms to ensure the authenticity of the information provided for access
control as well as access anonymity.

11.6.1.4 Copying and Usage of Information

In some cases, accesses to objects from DLs can be allowed only upon pay-
ment; therefore, objects cannot be freely passed among users. In other cases,
objects can be used only if copyright information is mentioned.

11.6.2 Data Protection for Workflow Management Systems

Another growing area characterized by peculiar security requirements is
the area of workflow management systems (WFMSs). WFMSs have gained
popularity in research as well as in commercial sectors. A workflow separates
the various activities of a given organizational process into a set of well-
defined tasks. The various tasks are usually carried out by several users
according to the rules imposed by the organization. The stringent security
requirements imposed by many workflow applications call for suitable access
control mechanisms. The most important features an access control mecha-
nism for WFMSs must provide are described here:

• Role-based access control. Quite often, security policies of a given
organization are expressed in terms of the roles within the organi-
zation rather than individuals. To directly represent such organiza-
tional security policies, an access control mechanism must therefore
be capable of supporting roles.

• Authorization constraints on role and user assignments. Although sev-
eral role-based access control mechanisms already exist (see, e.g.,
[13]), a common drawback of such mechanisms is that they are not
capable of modeling authorization constraints on roles and users.
A typical authorization constraint, which is very relevant and well
known in the security area, is separation of duties. It aims at reducing
the risk of frauds by not allowing any individual to have sufficient
authority within the system to perpetrate a fraud on his or her own.
Separation of duties is a principle often applied in everyday life. For
example, opening a bank safe requires two keys held by different
individuals; taking a business trip requires the approval of the
department manager as well as the accounting department. If no
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proper support is provided, constraints like separation of duties
must be implemented as application code and embedded in the
various tasks.

Bertino, Ferrari, and Atluri recently proposed a work in the modeling of
authorization constraints in WFMSs [43]. Their model provides a logic
language for defining constraints that support, among other functions,
separation of duties. Another relevant research direction is the definition of
access control models for the emerging workflow standard developed by the
Workflow Management Coalition (WfMC).

11.6.3 Data Protection for the World Wide Web

The World Wide Web is enabling the deployment of a new generation
of distributed information systems, whose communication platform is the
Internet (or an intranet). Such an information system is characterized by a
client/server architecture, in which the clients are potentially the entire popu-
lation of Internet users and the servers are potentially the available set of Web
servers. Clients are free to access data (like documents and multimedia data)
and software independently of their physical location. Such an environment
is characterized by a very large and dynamically changing user population,
which is highly distributed. Data protection in such an environment entails
addressing several issues, such as data access based on user credentials, secure
data browsing software, access anonymity, distributed management of
authorization and authentication information, and fault tolerance.

With respect to authorization management, an important issue is the
development of access control protocols that reduce the communication
overhead between the servers and the clients, since that affects the latency
experienced by the users. When authorizations can be specified only on spe-
cific documents, the most efficient solution is storing the authorizations at
the same place where the corresponding document resides. However, when
authorizations on documents� groups are allowed, and such groups involve
objects stored at different servers, that simple solution may affect perform-
ance. In that case, approaches based on a total or partial replication of
the authorization must be considered. Several replication mechanisms can be
adopted. For instance, authorizations can be stored at the hosts more fre-
quently accessed or having the best response time.

Another relevant research direction deals with the management of
administrative operations. In particular, the revoke operation is made more
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difficult by the caching mechanisms provided by most Web browsers that
allow users to cache documents they frequently access. Therefore, the tradi-
tional revoke mechanisms, like the one provided by the System R authoriza-
tion model, should be revised. A possible approach consists in associating
a lifetime with the cached data. The main problem with that approach is
the correct estimation of the lifetime interval: The interval should be small
enough to guarantee that cached data are consistent with the authorizations
and large enough to avoid the clients to have to reload the documents
because of the lifetime expiration, even if no changes occurred to the authori-
zations. An alternative approach is to automatically propagate the revocation
of authorizations to the cache, possibly invalidating its content. The main
drawback of this approach is that it may not preserve security in that a failure
in communicating authorization updates (e.g., because of a message or net-
work partition) may lead to the inability to invalidate the cache.

Another topic is related to XML, the new standard format for data
on Web. XML is a text-based format, providing a standard data model to
encode the content, the semantics, and the schema of documents, structured
records, and metacontent information about a Web site. The development
of access control mechanisms for XML documents is an important research
direction [44].

11.7 Summary

This chapter provided a fairly comprehensive overview of the developments
in secure DB systems. Basic concepts in access control were introduced, as
well as discretionary and mandatory policies. An overview of administration
policies was presented, along with an examination of DAC models, commer-
cial developments, and mandatory security. Data models, architectures, pro-
totypes, and commercial products were discussed, and an overview of recent
developments and trends presented.

Throughout the chapter, the concepts were illustrated with discussions
of prototypes and commercial products. However, it should be noted that
vendors are continuously updating their products. Therefore, to obtain
the most up-to-date information, the reader is encouraged to keep up with
the developments on products and prototypes from research papers as well as
material published by vendors.

Directions in secure DB systems will be driven by the developments on
the World Wide Web. Database systems are no longer standalone systems.
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They are being integrated into various applications such as multimedia, elec-
tronic commerce, mobile computing systems, digital libraries, and collabo-
ration systems. Security issues for all these new generation systems will
be important. Furthermore, there are many developments on various object
technologies such as distributed object systems and components and frame-
works. Security for such systems is being investigated. Eventually the security
policies of the various subsystems and components have to be integrated to
form policies for the entire system. There will be many challenges in formu-
lating policies for such systems. New technologies such as data mining will
help solve security problems such as intrusion detection and auditing. How-
ever, these technologies can also violate the privacy of individuals. Finally,
migrating legacy DBs and applications will continually be a challenge. Secu-
rity issues for such operations cannot be overlooked.
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12
Component Database Systems

Andreas Geppert and Klaus R. Dittrich

12.1 Introduction

DBMSs support individual applications and comprehensive information sys-
tems with modeling and long-term reliable storage capabilities of data as well
as with retrieval and manipulation facilities for persistent data by multiple,
concurrent users or transactions. SQL [1], the transaction abstraction [2],
and the concept of a data model�most notably the relational model [3] and,
to a lesser extent, the object-oriented data models [4, 5]�are crucial ingredi-
ents of data management. DBMSs are well established and form the corner-
stones of virtually every enterprise: IS.

Traditionally, data elements stored in DBs were simply structured, for
example, employee records and product and stock information. Transactions
typically were of short duration and often needed to access only a few data
items. Queries were usually simple, and techniques to efficiently answer
them well understood. Taking a broader view, DBMS-based information
systems have usually been built in a rather DB-centric way, that is, environ-
ment decisions like the use of mainframe-based or client/server architectures
are typically based on what the DBMS itself requires or supports in that
respect.

Recently, however, more and more new and demanding application
domains have emerged that also want to benefit from DB technology, and
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new requirements have been posed to DBMSs (see Chapter 1). First,
many applications require the management of data types that are not
handled well by conventional DBMSs. Examples of such new data types are
multimedia data, documents, engineering artifacts, and temporal data, to
name just a few.

Likewise, DBMSs are increasingly required to be integrated with other
infrastructure parts of their environment. For instance, instead of letting the
DBMSs manage existing data, it is often necessary to leave data where they
are (possibly because there are applications that one would not want to
migrate as well), but to enhance the external data management system with
some sort of DB functionality [6]. It might also be necessary to integrate
existing data stores with DB systems in a way that each of them is still inde-
pendently operational, while users are provided with an integrated and
uniform view of the entire system. In other words, often applications need
support as offered by multidatabase systems or federated DB systems [7, 8],
whereby the federation parties might be any kind of data store.

To meet all those new requirements, DBMSs (or whatever the resulting
kinds of system will ultimately be called) apparently have to be extended by
new functionality. However, enhancing a single system with modules imple-
menting all the new functions is not a viable approach for several reasons.

• DBMSs would become so large and, in consequence, complex that
they could no longer be maintained at reasonable costs.

• Users would have to pay a high price for the added functionality,
even if they do not need every part of it.

• Users and applications also would have to pay a performance penalty
for added functionality that they do not actually need.

• A DBMS vendor might not have the expertise to perform such
extensions or the resources to undertake all extensions within a rea-
sonable period of time.

Thus, beefing up a monolithic DBMS by adding ever more functionality
does not work. Instead, it seems attractive to consider the alternative of
extending DBMS in a piecemeal way, that is, supporting the addition or
replacement of functionality in a modular manner as needed. Modular
extensions to a DBMS require that a well-defined software architecture is
imposed on the DBMS. Such an architecture would clearly define the places
in the system where extensions are possible. In general, extensions will not be
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possible at any arbitrary place in the system, and implications of modifica-
tions on other parts should be avoided or at least minimized. To that end,
(parts of ) the DBMS needs to be �componentized� in such a way that new
components can be added or existing components exchanged in a flexible yet
well-defined way. Thus, a componentized architecture specifies and restricts
the ways in which the DBMS can be customized. Ultimately, the architec-
ture model also defines the notion of the component itself and hence the
realm of valid extensions.

We refer to DBMSs that expose a componentized architecture and
allow the adding of components as component DBMSs (CDBMSs). They
allow the addition of new components (i.e., new or adapted functions) to the
DBMS whenever needed. Due to the componentized architecture, the exten-
sions are possible without requiring other system parts to be rewritten as well.
Components can be provided by third parties and possibly even users, thus
increasing the developer base of a DBMS. Ultimately, unnecessary compo-
nents do not have to be added, and applications therefore do not pay (in
terms of system cost and performance) for functionality they do not use.

The remainder of this chapter introduces principles and different forms
of CDBMSs. The next section presents a more detailed motivation based on
application scenarios. We then discuss the foundations of CDBMS (DBMS
architecture and componentware) and classify CDBMSs into four groups.
Each group is discussed in more detail, and examples for each are given.
Section 12.5 addresses design issues, and Section 12.6 summarizes some past
trends that are prerequisites for CDBMSs.

12.2 Motivation

This section further motivates the need for CDBMS (see also [6, 9]). We
consider DB systems for advanced ISs and investigate the following issues:
management of new data types, adapted and new DB functionality, and bet-
ter integration with other IS parts and the IS environment.

Consider the following scenario. A meteorological institute wants DB
technology for its data, of which it has tremendous amounts that need to be
stored reliably and persistently. Among the kinds of data to be managed
are images (such as satellite images), maps, climate data (temperatures, wind
direction and velocity), and text documents (weather forecasts and climate
analyses). To keep track of climatic trends, the application also needs time
series, that is, pairs (point in time, data value). Ultimately, it must be possible
to aggregate elements of these data types into complex objects. For instance,
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one might want to associate a time series of temperatures with geographic
points or satellite images with regions on a map. By formulating typical que-
ries, we might want to know the 30-year average temperature at a certain
location, or we might ask for satellite images of hurricanes over Central
America.

An important aspect of this scenario (and its commonality with other
applications with which DBMSs are currently confronted) is that we no
longer deal with the simply structured data for which relational DB systems
were intended. Instead, multimedia data (such as images), temporal data
(time series), textual data (documents), and geographic data are found in this
scenario. Of course, each data type also comes with a characteristic set of
operations and query modes.

Assume the perspective of a DBMS user (who can also be seen as a cus-
tomer of the DBMS vendor), in this scenario, the meteorological institute.
The traditional solution would be to develop applications over a DBMS and
a set of file-based, dedicated data stores (see Figure 12.1). Applications
receive support from a DBMS as far as it can handle the kinds of data they
deal with. All other types of data remain in dedicated data stores, such as
files, and applications are responsible for integrating the data from the vari-
ous data stores, establishing an integrated, global view, and ensuring data
consistency across multiple data stores.

In this solution, there is no DB support for the dedicated data stores
such as image libraries. Thus, one might look for a DBMS that provides
all the desired functionality, that is, a DBMS that in our scenario would
also be able to handle nonstandard data so far kept in specialized data stores.
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Unfortunately, in the current DBMS landscape, no single DBMS offers all
the functionality applications that those described in our scenario require.

Assume now the perspective of a DBMS vendor. If such a system is really
needed and customers ask for it, then why not build one (see Figure 12.2)?
The prime reason for DBMS companies not to develop such a �one-size-
fits-all� DBMS is that it would turn into an extremely complex system. Even
if such a system could be built, it would be hardly maintainable and evolv-
able. Second, since a DBMS vendor introduced all the new functionality, the
cost of a DBMS license would significantly increase, and users that need only
part of the functionality would nonetheless have to pay for the entire, func-
tionally rich system. Finally, because such a DBMS would be a fairly large
system, it most likely would also exhibit much worse run-time performance.
That would not, however, be acceptable for users not needing the new
functionality.

We face the dilemma of users needing specific functionality and ven-
dors not being able or willing to deliver systems meeting those requirements.
The underlying problem lies in the monolithic character of current DBMSs:
In such a system, any desired functionality is included in the system either
right away or not at all, and all the parts of the DBMS are so tightly intercon-
nected that extensions and modifications within the system are impossible.
If, however, the monolithic architecture could be broken up in such a way
that new components could be added to a common core on an as-needed
basis, then in our scenario the institute could add one component each for
images, geographic information, texts, and temporal information. Advanced
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functionality such as query processing techniques for those kinds of data also
would be covered by those components.

In the first scenario, we expected the DBMS to model, store, and effi-
ciently retrieve a fairly varied set of data. Consider now the following
scenario. Large collections of satellite images, weather forecasts, and so forth
already exist in files and are managed by specialized applications. It is not
economic to move the data into a DBMS and rewrite all the applications.
Nevertheless, the meteorological institute wants to ask queries against the
integrated view of its data stores, ensure correct concurrent accesses to them,
and so forth. The dilemma here is that integration (and providing the inte-
grated system with DB functionality) is desired, but it is not possible under
the roof of a single DBMS.

A practical remedy for the problem is to �hook� existing data stores
into a common, integrating DBMS. If query processors and transaction
managers were designed and implemented so that they could be easily com-
bined with existing data stores, the data stores could be leveraged to recover-
able and queriable systems (i.e., they would be enhanced with DB
functionality). To that end, flexible mechanisms for connecting DBMSs and
existing data stores are needed.

The general problem in the scenarios we have considered is the mono-
lithic structure of traditional DBMSs. By monolithic structure or architec-
ture, we mean that the DBMS is a single unit whose parts are connected with
each other and dependent on each other to such a degree that modifications
and extensions are not easily possible. In particular, each DBMS part might
make assumptions about the requirements and operations of other parts,
which leads to domino effects whenever changes are made in one place.
Extensions can be made only if all the interconnections and dependencies are
known. Evolution of and extensions to a DBMS are only possible by the ven-
dor, who then, for each extension, also needs to make sure that other affected
parts are adequately adapted. To prevent misinterpretations, it should be
stressed that monolithic architectures, as they are prevalent, have not
emerged simply because developers and vendors did not know better. In the
past, they have been sufficient because applications posed restricted require-
ments to DBMSs. Moreover, a monolithic DBMS can be implemented in a
way that optimizes run-time performance and throughput for all applications
that need just the functionality offered by the DBMS. Nevertheless, when-
ever extensions and customizations are considered, problems with mono-
lithic architectures occur with respect to system complexity, system
performance, system cost (production and maintenance), and complexity of
system evolution.
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The general idea to overcome these problems and to still provide for
the needed functionality as sketched in the above scenarios is to offer a core
system and to extend it as needed. CDBMSs attempt to allow such exten-
sions in a controlled and safe way. Although different forms of CDBMSs
exist, their common basis is a componentized architecture and the support of
components that can be added to or assembled into a DBMS. To effectively
allow extensions, the DBMS architecture must be made explicit and well
defined. While typically some parts of the CDBMS will need to be fixed
without the possibility of altering them, others can be extended (we call this
the variable part). �Explicit� means that the system structure is defined, pref-
erably in a (formal) architecture model and that the system structure is visible
to the actors modifying it. Second, the notion and the meaning of component
need to be defined. Varieties range from abstract data types to implementa-
tions of internal tasks. However, the common characteristics of components
are that they implement a coherent set of functions, make all restrictions
concerning their use explicit in their interface, and are generally applicable
across a variety of applications. Ultimately, a CDBMS architecture also
defines places in the system (the variable part) where components can be
added. These places can be thought of as hooks used to plug components
into the enclosing system. Technically, the hooks are defined in terms of
interfaces the component can use or should implement.

12.3 Principles of Component DBMSs

This section elaborates on the principles of CDBMSs. As mentioned, exten-
sions to a DBMS affect its architecture and also require that certain pre-
requisites be met. We therefore first briefly address the issue of DBMS
architecture. The subsequent section relates CDBMS to componentware,
followed by a classification of CDBMS.

12.3.1 DBMS Architecture

Different kinds of �architecture� serve different purposes. For instance, the
three-level schema architecture (which distinguishes external schemas that
users work with, the internal, integrated schema of the entire DB, and the
physical schema determining storage and organization of DBs on secondary
storage) reflects the different levels of abstraction of data in a DB system. The
layered architecture described below illustrates a hierarchy of mappings,
where the topmost layer deals with data model entities and the one at the
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bottom deals with blocks and files. Finally, a task-oriented architecture iden-
tifies the relevant modules (i.e., their purpose and interface) and relationships
to other modules, for example, in the form of exported and imported inter-
faces. Examples for such tasks include query optimization, concurrency con-
trol, and recovery. The latter two also are examples for tasks that are hard to
assign to a specific layer in the layered architecture, or that might even be
addressed by multiple layers. Although a task-oriented architecture is much
more suitable for reasoning about extensibility and DBMS construction, ref-
erence architectures hardly exist (with the strawman architecture developed
by the Computer Corporation of America (CCA) [10] as a notable excep-
tion), and concrete architectures are described at a granularity too coarse to
be helpful for our purposes.

For educational purposes, it is convenient to consider a DBMS archi-
tecture as consisting of a number of layers [11, 12]. Each layer supports a set
of data types and operations at its interface and typically consists of several
components (modules or managers of some concrete or abstract resource).
The data types and operations defined for the modules of one layer are
implemented using the concepts (data types and operations) of the next
lower level. Therefore, the layered architecture can also be considered as
a �stack� of abstract machines. Concretely, the layered architecture model
as introduced by Härder and Reuter [11] is composed of five layers (see
Figure 12.3):

• The uppermost layer (L4) supports logical data structures such
as relations, tuples, and views. Typical tasks of this layer include
query processing and optimization, access control, and integrity
enforcement.

• L3 implements a record-oriented interface. Typical entities are
records and sets (e.g., as found in the Codasyl data model) as well as
logical access paths. Typical components are the data dictionary,
transaction management, and cursor management.

• The middle layer (L2) manages storage structures (internal records),
physical access paths, locking, logging, and recovery. Relevant mod-
ules include the record manager, physical access path managers (e.g.,
a hash table manager), and modules for lock management, logging,
and recovery.

• L1 implements (page) buffer management and the page replacement
strategy. Typical entities are pages and segments.
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• The lowest layer (L0) implements management of secondary stor-
age, that is, maps, segments, and pages to blocks and files.

In general, due to performance considerations, no concrete DBMS has fully
followed the layered architecture proposal. Note further that different lay-
ered architectures and different numbers of layers are proposed, depending
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on the desired interfaces at the top layer. If, for instance, a solely set-oriented
interface has to be offered, it is useful to �merge� the upper two layers.

From a more practical point of view, most DBMS architectures have
been influenced by System R [13], which consists of two layers: the relational
data system (RDS), providing for the relational data interface (RDI), and the
relational storage system (RSS), supporting the relational storage interface
(RSI). While RDS implements SQL (including query optimization, access
control, triggers, and the like), RSS supports access to single tuples of base
relations at its interface.

12.3.2 Components and DBMS Architecture

When we are striving for reusability, extensibility, openness, and interoper-
ability in DB systems, looking at software engineering research and practice
yields helpful insights. In particular, �componentware� [14�20] has recently
been proposed as a paradigm to address those issues. This notion is meant to
say that software systems are built in a disciplined manner out of building
blocks with specific properties, called components. There is currently no
widely agreed-upon definition of the term component ; however, the follow-
ing characteristics of components can be found in most definitions in the lit-
erature. A (software) component, then, is a software artifact modeling and
implementing a coherent and well-defined set of functions. It consists of
a component interface and a component implementation. Components are
�black boxes,� which means that clients can use them properly without
knowing their implementation. Component interface and implementation
should be separated such that multiple implementations can exist for one
interface, and implementations can be exchanged. Components being black
boxes also means that each component �sees� only the interfaces of other
components, that is, access to internal operations and structures of other
components is not permitted. A component should not have an overly high
number of relationships to other components, because that might restrict its
reuse potential.

Components usually possess a coarser granularity than objects in
object-oriented systems and models. A well-designed component supports
a coherent set of tasks (e.g., in one of our scenarios, storing and retrieving
textual documents), while objects and classes typically address only a part
thereof. Components and objects, however, are not mutually exclusive alter-
natives, but components rather leverage object-orientation to a higher level
of abstraction and granularity. In fact, components are �under the hood,�
often assemblies of objects.
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To put the right components together, that is, to obtain complete and
adequate systems, a frame (into which components are plugged) and rules
governing the composition process are needed. The frame is given by the
software architecture [21, 22] of the system under construction. Similar soft-
ware systems are then described by architecture skeletons or generic archi-
tectures [19] that are successively enhanced and completed by components.
Thus, as a prerequisite, the underlying generic architecture needs to be
defined in terms of components (acting as placeholders) and connections in
such a way that later components can be added in a meaningful and consis-
tent way.

We use the principles of componentware to better understand,
abstract, and classify the various approaches to extend and customize
DBMSs. Moreover, the characteristics of componentware (components,
architecture) are crucial requirements for systematic and well-defined exten-
sibility and integration. Extensions to a DBMS in that context are repre-
sented as components, that is, they should meet the aforementioned
properties of components. Further, DBMSs should exhibit a componentized
architecture, at least for those parts that are intended to be customizable.

12.3.3 Typology of Component DBMSs

This section presents the various types of CDBMSs. The following dimen-
sions are considered.

• Components. What kinds of components are considered? Which
kinds of DB functionalities or DBMS tasks can be represented as
components? How are components defined?

• Architecture. What is the generic DBMS architecture that allows
components to be plugged in? What are the fixed parts? The variable
parts? How are components and plugs described?

12.3.3.1 Plug-In Style

The first category of CDBMSs comprises so-called universal servers. Their
core system is formed by a fully functional DBMS that implements all
the standard functionality expected from a DBMS. Nonstandard features
or functionality not yet supported can be plugged into such a DBMS (see
Figure 12.4). Such a system is functionally complete and meets basic require-
ments; extensions add further functionality for specialized needs.
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A typical case of component in this kind of CDBMS is families of base
and abstract data types or implementations of some DBMS function, such as
new access paths. The DBMS architecture, among others, defines a number
of �plugs� components can use, for example, interfaces of functions the
DBMS will invoke and which the component must thus implement. In
other words, the architecture formulates expectations concerning interfaces
that the component must meet to be integrated successfully.

12.3.3.2 Middleware DBMSs

The typical aim of systems falling into the category of middleware DBMSs is
to integrate existing data stores, that is, to leave data items under the control
of their original (external) management systems, while integrating them into
a common DBMS-style framework. For instance, existing data stores should
be integrated into query processing or transaction management of the entire
system (the integrating DBMS ). External systems will in many cases exhibit
different capabilities, such as query languages with varying power or no que-
rying facilities at all. The different data stores might also have different data
models (i.e., different data definition and structuring means) or no explicit
data model at all. Nevertheless, users and applications should be shielded
from that kind of heterogeneity and be provided with a uniform and inte-
grated view of the entire system. That is accomplished by a CDBMS acting
as middleware [20] between the data stores and the applications of the inte-
gration. The overall aim of systems in this group is similar to that of multida-
tabase systems [7, 8], although the latter typically considers only integration
of DB systems instead of any kind of data store.

That goal is achieved by componentizing a DBMS in the following
way (see Figure 12.5). The architecture introduces a common (intermediate)
format into which the local data formats can be translated. Components
are introduced that are able to perform this kind of translation. Second,
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common interfaces and protocols define how the DBMS and the compo-
nents interact, for example, in order to retrieve data from a data store. The
components (so-called wrappers) are able to transform requests issued via the
interfaces (e.g., queries) into requests understandable by the external system.
In other words, the components implement the functionality needed to
access from within the DBMS data managed by the external data store.

12.3.3.3 Service-Oriented Architectures

The third type of componentized DBMS is characterized by a service-
oriented view of DB functionality. All DBMS and related tasks are unbun-
dled [23] into services: As a result, a monolithic DBMS is transformed into a
set of standalone services. For instance, the unbundling process can result
in persistence, query, and transaction services. Applications then no
longer operate on a full-fledged DBMS, but use those services as needed (see
Figure 12.6).

Each service is defined by one or more interfaces and implemented
by some software systems. Services (i.e., their interfaces) are defined in a
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common model or language. Services are implemented using a common
platform to render service implementations exchangeable and freely
combinable.

12.3.3.4 Configurable DBMSs

In the previous form of componentized DBMS, the set of services has been
standardized and fixed. One step further, configurable DBMS, allows the
development of new DBMS parts and the integration of them into a DBMS
(see Figure 12.7). Components are DBMS subsystems, which are defined in
an underlying architecture model. In that approach, the architecture model
is also used to model the DBMS architecture.

Like the previous type of CDBMS, configurable DBMSs also consider
services as unbundled representations of DBMS tasks. However, the models
underlying the various services and defining the semantics of the correspond-
ing DBMS parts can now also be customized. As a consequence, components
for the same DBMS task may vary not only in their implementations (for the
same and standardized interface), but also in their interfaces for the same
task. DBMS implementors select (or construct new) components imple-
menting the desired functionality and obtain a DBMS by assembling the
selected components (see Figure 12.7). The DBMS is thus the result of a
configuration process.

12.4 Component Database Models

This section investigates the various types of component DB systems in more
detail and describes example systems for each type.
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12.4.1 Plug-In Components

To date, all systems in the category of plug-in components are based on the
relational data model and existing relational DBMSs, and all of them offer
some object-oriented extensions. We thus discuss this type of CDBMS in
an object-relational [24] context, although componentization is also possible
for object-oriented DB systems. Example systems include Informix Universal
Server [25], IBM�s Universal Database [26], and Oracle8 [27]. Descriptions
of sample component developments can be found in [28, 29].

These approaches aim at providing data management facilities for non-
standard, new data types and nonstandard or specialized DB functionality
within the DBMS. Instances of these new data types are thus stored in the
DB, and their manipulation and retrieval are implemented by the DBMS.
We do not consider techniques that leave the data in files and just maintain
links to those files.

Assume that an application needs support for data types not yet sup-
ported by the DBMS in use (e.g., spatial data, or a German character set
including ä, ö, ü, etc.). The ultimate task is to �teach� the DBMS how to
store, manipulate, and retrieve instances of those data types.

As a first step, the designer has to model the structure of the desired
new data types as well as their type-specific behavior. From a user point of
view, new data types are either complex or atomic. Complex data types
possess structure, and their values can be represented as specialized
records/tuples or collections, using the means of the data definition language.
Atomic data types do not have an internal structure and consist of literal val-
ues (such as numbers or characters). For atomic types, the DBMS needs basic
information, such as their length in bytes, to store their instances.

For spatial data, one would, for example, specify points as a complex
data type modeling locations in three-dimensional space, that is, 3DPoint
could be specified as a tuple type with attributes x, y, and z, each of which is
of type decimal. Another example would be Region, whose structure could be
defined as a pair of points, LowerLeft and UpperRight. The German alphabet,
in contrast, would be defined as an atomic type whose instances are, say,
2 bytes long. In addition to the structure of data types, the type-specific
behavior of the new sorts of data needs to be specified. For each complex data
type, its specific functions, operators, and predicates must be made known to
the DBMS. In our example, a possible function would be the move function
for points, and a typical predicate would be overlaps, which tests whether two
regions intersect in some subregion.
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While atomic types often most do not exhibit type-specific behavior,
they do normally require special treatment with respect to ordering and
representation. Indeed, one reason to introduce a new type for nonstandard
alphabets is that existing DBMSs do not know how to sort them correctly.
Thus, for new atomic types, it is necessary to define operators such as �<�.
Furthermore, functions that convert elements of atomic types from an inter-
nal (stored) representation to/from an external one are needed.

For each function, operator, and predicate, its signature (i.e., its name,
arguments, and result) must be defined, and an implementation must be
provided. The implementation language in turn depends on the DBMS,
with possibilities ranging from DBMS-specific languages such as Oracle�s
PL/SQL to general-purpose programming languages like C/C++ or Java.

The collection of data types (their definition and implementation)
forms a significant part of a component, which then needs to be plugged into
the DBMS. To that end, DBMSs in this category offer a facility to �register�
new components. Component registration introduces new definitions (for
types, functions, and so forth), and also informs the DBMS where (in which
files) implementations can be found.

After a data type has been registered, applications can in principle start
to use them, that is, to create and retrieve instances of them. However, effi-
cient retrieval and processing might require further enhancements to the
DBMS, particularly to the access path manager and the query optimizer.
Thus, we observe that extending a DBMS by plugging in new components
often has some sort of domino effect, because other parts must be adapted
accordingly.

Current DBMSs typically contain B-tree access paths and possibly also
hash-based indexes. B-trees can handle one-dimensional keys very well, and
they rely on the orderability of keys. New types such as spatial data types,
however, can be multidimensional; thus, they would not be adequately
served by B-trees, and consequently query processing might easily become
inefficient. Therefore, in some situations it will be necessary to add new
access methods to the DBMS, for example, one that supports multidimen-
sional indexing [30]. To integrate well with other parts of the DBMS, such a
new index has to implement exactly those functions that the DBMS calls
for its indexes, that is, insertion and deletion of entries, index scanning,
and so on.

The addition of new data types also affects query processing, in particu-
lar, query optimization. Cost-based optimization techniques, for instance,
need information about the cost of each operator (in terms of CPU con-
sumption and I/O operations) to find an optimal plan. To ensure efficient
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query processing in this case, it is necessary to provide the optimizer with
adequate information, for example, some knowledge of how it can estimate
the cost of evaluating newly defined predicates.

For a typical example of the aforementioned domino effect, consider
concurrency control for access paths. Many DBMSs use specialized concur-
rency control protocols on indexes to prevent unnecessary locking conflicts
[31, 32], which otherwise would increase lock contention and decrease trans-
action throughput. Therefore, whenever a new index is introduced, concur-
rency control (for this new index type) also should be adopted, which is not
possible in current systems.

12.4.2 Middleware DBMS

This type of CDBMS aims at integrating external data stores into DB sys-
tems without requiring the data to be moved under control of the DBMS.
Still, users should be provided with an integrated view, that is, queries and
updates on the data source should be possible, and the disparate data formats
should be resolved into a homogeneous form.

The underlying problem in that respect is that the DBMS needs to
�understand� the data formats and the functions of each data source. Two
extreme alternatives exist to tackle the problem. In one, information about
the data sources� interfaces is hardwired into the (integrating) DBMS. The
realm of integratable external data stores is thus restricted, and the DBMS
needs to be extended for each specific type of data store. In the other
extreme, a common data model, query language, or interface to external data
stores is set as a prerequisite (e.g., SQL). Each data store that does not imple-
ment SQL right away would have to be extended to do so.

The solution that helps to overcome the intrinsic problems of both
approaches lies in the introduction of additional components. In a nutshell,
one component is pushed between the DBMS and each data source. The
components serve to homogenize differences in formats and functionality
from the DBMS�s point of view. From the data sources� perspective, they
level the different data source capabilities into a common basis. Thus, each
component mediates between the data sources and the DBMS or�from the
DBMS�s point of view�wraps the data source.

The first prerequisite of this approach is a common data abstraction
(e.g., objects). Second, the mediation components offer a common interface.
This interface is used by the DBMS to request data from the data sources.
Each component should at least support the �minimal� interface, such as
scanning over a collection of data entities. Depending on the data source
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capabilities, its mediation component can contribute more or specialized
functions, such as predicate evaluation. Whenever the DBMS executes a
query and determines that it needs results from the data source, it sends
a request to the corresponding component, which in turn translates the
request into a form the data source can handle. Eventually, the component
receives results from the data source and converts them into the common
format expected by the DBMS.

For several reasons, this approach requires an appropriately defined
notion of components for wrapping the external data stores, because it must
match the requirements and characteristics of the DBMS while also taking
as much benefit as possible of the capabilities of the data stores. Moreover,
using the full potential of this approach means that a component is written
once for each kind of data store (e.g., for a specific image management
system) and used for all subsequent instances of the data store.

Ultimately, users should be allowed to introduce new components to
integrate data stores not yet covered. To that end, the implementation of
a component must be possible without knowing the internal structure and
operations of the DBMS; the requirements to be met by a component must
be entirely expressed in its interface.

An example for that approach is OLE DB [33�35]. The major abstrac-
tion in OLE DB is rowsets, which are sets of tuples. From a functional point
of view, data and service providers can be distinguished. Data providers are
components that are able to export rowsets. For instance, a sample data pro-
vider component might be able to convert data from a spreadsheet into
rowsets. Service providers are components that offer operations on rowsets,
for example, query processors. A service provider can also be a data provider.

Components in OLE DB are described using Microsoft�s Component
Object Model (COM). Each COM object implements a set of interfaces.
The most general interface is called IUnknown, which defines a few generic
functions (such as checking whether the object supports a given interface).
IRowset is the most general interface for rowsets and includes functions for
iterating over a rowset. Further interfaces for rowsets allow retrieval of infor-
mation about the columns of a rowset. IRowset can be specialized to model
further operations, such as inserting, updating, and deleting rows from a
rowset. Commands (data definition, manipulation, queries) are represented
in OLE DB as command objects, whose most general interface is ICommand.
Queries (see Figure 12.8) are special command objects that consume and
produce rowsets. Based on the common abstraction of rowsets, it is possible
to build specialized query processors such as content-based search engines.
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To integrate a new kind of data source, developers have to build a data
provider for it. Its interfaces must conform to the existing interfaces (such as
IRowset) or be specializations of those interfaces. To implement specialized
behavior (such as a customized query processor), new command objects need
to be built.

Another example for this category of CDBMS is Garlic [36]. In Garlic,
data source-specific wrappers are used to mediate between the Garlic layer
and the data sources. Garlic additionally allows components to exploit the
query capabilities of data sources (via their wrappers) [37]. Minimally, each
wrapper provides scans over collections. Depending on the data source capa-
bilities, a wrapper can generate plans for more complex queries, such as
predicates, joins, and aggregates. During query planning, the optimizer will
request a plan for subqueries from the responsible wrapper, which then
decides whether it can execute the entire subquery or only parts of it. In case
the wrapper/data source can execute only parts of a query, the remaining
operations are done by the Garlic query execution component.

A final representative for this group is the Sybase Adaptive Server
Enterprise [38], which allows access to external data stores (called �specialty
data stores� in Sybase) and other types of DB systems.
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12.4.3 Service-Oriented DBMSs

In the service-oriented approach, DB tasks are unbundled from each other
and represented as services. Each service is implemented on top of a common
platform. Services should be as independent as possible from each other, that
is, they should not rely on the availability of another service in the environ-
ment. Specifically, they should not assume that other services are imple-
mented in a particular way. Thus, DB services and their implementations
are viewed as components. Given that both the platform and the service
interfaces are standardized, exchangeability and compatibility are guaran-
teed. Different implementations of a service can be exchanged, and imple-
mentations of different services�possibly from different vendors�can be
plugged together.

An example of this approach is CORBAservices [39], which leverages
several DBMS tasks to general object systems. These services are standardized
by the Object Management Group (OMG). Service interfaces are defined
using the IDL. Services related to DB functionality include persistency, con-
currency, relationships, transactions, queries, and collections.

CORBAservices offers further non-DB services such as licensing and
event notification. Whenever a system (e.g., an application server) to be
implemented needs some DB functionality, it can receive the appropriate
support by using the corresponding service. Such requests are handled in a
location-transparent way by object request brokers (ORB) [40], which form
the platform on top of which services are implemented.

In contrast to the other approaches discussed here, components (i.e.,
services) are not meant to extend or customize a DBMS. Rather, the systems
constructable by using services are distributed applications located above
the DBMS level. In fact, services like persistence could be implemented by a
DBMS, and the transaction service is typically implemented by transaction
processing monitors [41].

The underlying semantics and models (such as the transaction model
and the query language) are fixed. Thus, for a transaction service, there will
be different implementations all implementing transactions such as flat
or nested ACID-transactions, but transactions such as cooperative or other
forms of nonstandard transactions [42] would not be supported.

A second example for this approach is the so-called �strawman architec-
ture� [10] developed at CCA. The aim of that study was to propose standard
interfaces between users/applications and DBMSs as well as standards for
internal interfaces (such that different DBMS subsystems can be combined
more easily). The CCA study identified 79 subcomponents, which are
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grouped together into 38 components, some of which denote internal func-
tions while others refer to external (i.e., visible at the DBMS interface) func-
tions. The subcomponents are partitioned into six groups of related tasks.
For each subcomponent, procedures and interfaces are proposed. Therefore,
the view of a DBMS architecture is more service oriented, and concrete
components are proposed to implement such services (to the best of our
knowledge, however, a DBMS implementing this architecture has never
been built).

12.4.4 Configurable DBMSs

Configurable DBMSs are similar to service-oriented DBMSs in that they
also rely on unbundled DBMS tasks that can be mixed and matched to
obtain DB support. The difference lies in the possibility of adapting service
implementations to new requirements or even to define new services when-
ever needed.

For an example, configurable DBMSs have been investigated in the
KIDS project [43, 44]. KIDS aims at constructing DBMSs by developing
subsystems that implement various aspects of a DBMS (such as transaction
management or constraint enforcement) and by finally configuring those
subsystems together into a coherent and complete DBMS. The underlying
architecture model provides for constructs that are adequate for defining the
architecture of DBMSs. The tasks and functionality of a DBMS and its com-
ponents are modeled by means of services. Services are provided by reactive
components called brokers, which are responsible for services. In case of
service requests, the responsible brokers react by providing the service. The
functionality of each subsystem under construction is represented as a set of
services, and one or more brokers are designated as components implement-
ing the subsystem.

The construction process defines how to proceed to obtain a DBMS
with the desired functionality. The process consists of several phases, includ-
ing requirements analysis and design, implementation, and integration of
multiple DBMS subsystems. Some phases of the process are common to all
constructable DBMSs and independent of subsystems, for example, require-
ments analysis and architecture design. For each type of subsystem, a dedi-
cated construction subprocess is defined and integrated into the enclosing
DBMS construction process. For each subsystem, a dedicated specification
language is used to define its functionality (such as ACTA in the case of
transaction models [45] or SOS in the case of data models [46]). These speci-
fications serve as input to subsystem-specific implementation phases, which
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in turn use techniques such as the generation of subsystems or the configura-
tion of subsystems out of reusable, already existing components [43].

12.4.5 Categories of Component DBMS Models

We now summarize and examine component DBMS models. Table 12.1
summarizes the characteristics of the four categories.

The categories listed in Table 12.1 are not necessarily disjoint. For
instance, it is conceivable that both plug-in components for nonstandard
data as well as wrappers for accessing external data stores can be added to a
single system. Such a system would therefore belong to the first two catego-
ries (e.g., as outlined in [47]). Likewise, OLE DB could also be classified as a
configurable DBMS, because in principle it allows the exchange and addition
of internal components, for example, to add specialized query processors.

12.5 Development of Component DBMSs and Their Applications

Given all the powerful new kinds of functionalities CDBMSs offer, the ques-
tion is apparent of how users can effectively use them�we encounter the
problem of design and development of component DBMSs and their appli-
cations. Because the type of systems considered here are only in the process of
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Table 12.1
Classification of Component DBMS Models

Category Purpose
Architecture,
�Plugs� Typical Components

Plug-in DBMSs Extend existing DBMS
with nonstandard
functionality

Interfaces expected or
provided by kernel

ADT definition and
implementation, new
indexes

Middleware
DBMSs

Integrate existing data
stores into DB system

Common format and
interfaces between
DBMS and wrappers

Wrappers for external
data sources

Service-oriented
architectures

Provide DB functionality
in standardized,
unbundled form

Service definitions Service implementations

Configurable
DBMSs

Compose nonstandard
DBMS out of reusable
components

Service definitions DBMS subsystems



maturing, design methods for them are to a large extent still an open issue.
This section thus aims mainly at identifying which development phases will
be affected and how.

We concentrate on the development of components and of applica-
tions using components. A third kind of development is the design of
CDBMSs themselves, that is, the definition of their architecture and compo-
nent models (in cases where the component models are DBMS specific). Few
people will ever be confronted with that task, so we do not address it here.

Requirements analysis is concerned with the specification of the func-
tionality the application under development should have. The important
results of this phase are

• Separation of DBMS tasks from application tasks;

• Identification of components meeting requirements;

• System selection.

With component DBMSs, tasks so far in the responsibility of applications
could be �moved� into the DBMS. However, that might not always be
useful, for several reasons. For instance, a DBMS is supposed to be responsi-
ble for general, application-independent functionality only. Likewise,
computing-intensive yet not data-intensive operations are often better done
by DBMS clients rather than DBMS servers. Thus, the increased number of
options offered by component DBMSs also requires a more complex analysis
of the separation of concerns between a DBMS and its potential applications.

Another important outcome of analysis is the identification of compo-
nents that meet some of the requirements. For instance, analysis may yield
the requirement to maintain an image library, and one might conclude that
an image storage and retrieval component is needed.

In case a system (DBMS) selection is possible (i.e., the DBMS to be
used is not already firmly determined by the current environment), this selec-
tion will also depend on the components most likely to be needed and the
possibility of adding new components. Not all vendors will offer the same
components, or different components will vary in adequacy or performance
for a system under development. Thus, one criterion for DBMS selection
would be the optimal match of required and offered components. In case
some desired components are not available from DBMS vendors or third
parties, an enterprise itself might want to develop the missing components.
In that case, another criterion for DBMS selection is which of the vendors
allows the addition of user-defined components.
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With respect to DB design proper, it is useful to distinguish two types
of users:

• Schema and application designers who develop applications by
using the (enhanced) features of a CDBMS;

• DBMS implementors who extend a CDBMS by developing new
components.

The distinction between the two kinds of developers leads to a distinction
between two design tasks:

• Database design for a CDBMS;

• Component development in a CDBMS.

12.5.1 Database Design for CDBMSs

The first task is very much akin to common DB design [48, 49], that is,
developing a conceptual schema, mapping the schema to a logical schema
(expressible in the logical schema of the underlying DBMS), and finally
defining a physical schema. The ability to extend the DBMS (e.g., by adding
new types and treating them as co-equal to existing, built-in types) implies
that more means to express a logical schema exist. Thus, instead of defining
new types from scratch, designers could reuse already existing types. The
challenge here is to enforce design by reuse, that is, to support designers
in finding components that meet the requirements of the application in
question.

Established design methods in the current state of the art are those that
use the E/R model [50] to express conceptual schemas and map them into
relational schemas; such mapping can even be automated. CDBMSs exploit
object-oriented features such as type-specific behavior, complex objects, and
inheritance. There is currently no commonly accepted DB design method
exploiting these concepts or an object-oriented design method (e.g., one
using the widely accepted UML notation [51]) that could be applied to
CDBMSs. Moreover, given behavioral elements such as triggers [52] and
user-defined functions [53], the sharp distinction between data-centric (done
in DB design) and processing-oriented design (addressed by application
development) is blurred.
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Ultimately, the already complex problem of physical DB design
is also aggravated. If in a CDBMS new access methods can be added,
DB administrators can choose among more options. The rules of when to
use which type of access path are no longer fixed, because newly added
access paths can be equivalent to existing ones with respect to some prop-
erties, while outperforming them in other regards. While most of the
work in CDBMSs has been devoted to extending the DBMS itself, effects
on physical DB design and tuning practices have not been considered in
depth so far.

Design problems are also aggravated for middleware CDBMSs.
Designers �see� a common and uniform interface as far as data modeling and
manipulation are concerned. However, the task of integrating existing data
stores into a common system is far from trivial. Existing mediation compo-
nents such as wrappers resolve disparities in terms of languages, interfaces,
and data formats, but they do not consider the �meaning� of the various data
stores. In consequence, semantic integration and resolution of semantic con-
flicts still have to be done during DB design (i.e., schema integration in the
sense of federated DB systems [7, 54]). Although considerable research has
been conducted in this area, consensual and practicable solutions are not yet
in sight.

12.5.2 Development of CDBMS Components

Design issues are also of concern with regard to the development of compo-
nents. Assume that a system has been selected and it has been decided that
one or more new components are to be developed. The questions then arise
about which functionality this component should expose and how it should
be implemented.

Developing a component is meaningful only when it is defined in
such a way that it is of effective use for future applications/schemas. In other
words, the component interface should not necessarily be designed in such
a way that it offers exactly the functionality the currently considered appli-
cation needs. Instead, reuse payoff of all potential current and future applica-
tions should be optimized. That means that by abstracting from the concrete
requirements of the current application under design, the component is
designed for reuse.

From a more technical point of view, developing a component means
that a piece of software is produced that is supposed to link with a DBMS,
possibly on different platforms such as operating systems and network proto-
cols. The software should be correct and adequate because it will be reused,
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and errors will multiply with applications using the software. Moreover, bugs
introduced to internal subsystems of a DBMS, such as index structures, can
easily corrupt not only the DBMS process but also the DB. Thus, methods
and tools that guide and assist the design, implementation, and evaluation
(or at least testing) of new components are of paramount importance. That is
particularly true whenever users (not only vendors) are allowed to add com-
ponents. An example for this type of tool support is the DataBlade Develop-
ers Kit by Informix [25].

12.6 Related Work: The Roots of CDBMSs

This section reviews the roots of component DB systems. In a nutshell, those
roots are relational DB systems, object-orientation in general and object-
oriented DBMSs in particular, and extensible DB systems.

In the mid-1970s, companies like IBM (with System R [13] and later
DB2), Oracle, and Ingres started to build relational DBMSs. The success of
those systems (i.e., the relational model and SQL, the transaction concept)
for mission-critical applications in enterprises led to the desire for DB
support in further areas, for which relational DBMSs were originally neither
intended nor adequate.

Object-oriented DB systems [2, 3] were developed starting in the mid-
1980s, with the objective of integrating into the data model object-oriented
features such as object identity, specialization and inheritance, and classes,
including class-specific behavior (methods). Thus, many enhancements like
user-defined types and functions that recently have been made available in
relational DBMSs have been supported in OODBMSs from the very begin-
ning. Concepts like inheritance and complex objects are crucial for powerful
extension mechanisms and component models; thus all component DBMSs
surveyed in this chapter use object-oriented (DBMS) features to at least some
degree.

Extensible DB systems [55�68] all attempted to ease the construction
of DBMSs [69] by exploiting some kind of software reusability. They pro-
posed a general core that could be customized or extended in some way
by users or even to generate some DBMS parts. Hence, they shared the
aims of component DBMSs. Several of the techniques proposed for extensi-
ble DBMSs (such as extensible query optimization [70] and user-definable
types [66]) are now used in CDBMSs. However, many still open problems
render the construction of entire, full-fledged DBMSs based on reuse
impracticable.
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• Most of the systems did not expose a real architecture model (except
OpenOODB [58, 67] and KIDS [43, 44]). It thus remained unclear
how to extend DBMSs to achieve the desired functionality.

• DBMS implementation (e.g., on top of object managers or by using
toolkits) and customization have required way too much effort and
have been too complex to be considered practical.

• Most of them addressed a single DBMS aspect such as transaction
management or query optimization, and it remained unclear how
the generated or customized subsystems could be integrated prop-
erly with other DBMS parts.

• Albeit extensible DBMSs have striven for reuse of existing artifacts
in DBMS construction, they nonetheless failed to address problems
known from software reuse research and practice [70], such as selec-
tion (support for finding the adequate reusable software artifact) or
integration of reused parts into the entire system under con-
struction. Libraries of reusable artifacts (specifications, designs,
implementations) have been proposed but never built.

• Finally, building a full-fledged CDBMS is a voluminous piece of
work and at the very limits of even larger academic research groups.
On the other hand, the DBMS industry is preoccupied so far by
maintaining and evolving their current product offers and thus is
not yet interested enough to invest in entirely new approaches. Nev-
ertheless, performance considerations and the domino effect of add-
ing components are likely to push the plug-in approach further, so
that DBMS parts that are currently fixed will be customizable in the
future. In the end, plug-in approaches might well exhibit the power
of configurable DBMSs.

By putting CDBMSs, in particular plug-in CDBMSs, into the context
of recent research directions, they build on the well-established relational
engines and make use of features found in object-oriented DBMSs, but they
also have learned lessons from extensible DBMSs and try to avoid dead ends.
Middleware DBMSs share their goals with multidatabase systems, and the
systems in both groups overlap. The former, however, goes beyond multida-
tabase systems that had been proposed until recently in that their
component-based approach allows integration of a broader set of external
data stores, notably those without DB functionality.
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12.7 Summary

This chapter introduced the notion of component DBMSs and surveyed
the various types thereof. Component DBMSs attempt to meet nonstandard
requirements for DBMSs by allowing extension and customization. Those
objectives are achieved by componentizing DBMSs at least to some degree
and by allowing insertion of components into such a componentized DBMS.
The success and viability of component DBMSs thus rely on a properly
expressed DBMS architecture that provides for the hooks to connect new
components to the DBMS and a well-defined notion of �component.�

Based on those two dimensions, we have identified four categories
of CDBMSs:

• Universal servers with pluggable components;

• Middleware DBMSs able to integrate external data stores;

• Service-oriented architectures offering a set of unbundled DBMS
tasks;

• Configurable DBMSs, full-custom DBMSs built out of specialized
DBMS subsystems.

In the current state of the art, systems in the first two groups of CDBMSs are
available on the market (with further ones to follow) and represent a practical
technology. The third group is intended more for heterogeneous and distrib-
uted application systems that require some subset of DBMS tasks; they are
not necessarily meant as a way to construct DBMSs. Configurable DBMSs
are still in a research state and need a lot more work before they have practical
relevance.

Despite initial success stories showing the benefits of CDBMSs, a
number of questions remain. First, components are usually defined and
implemented in a system-dependent manner. As a consequence, components
developed for a system of one vendor cannot be added to the system of
another one, that is, components are not portable across systems. Because
component implementations depend on the (internal) interfaces of the
DBMS they use, it is hard to imagine a standard that would make portability
possible.

Furthermore, component implementations might be less efficient than
code hardwired in the DBMS. One reason for performance penalties is that
componentization can prevent optimizations that otherwise would be possi-
ble. Moreover, extensions to other parts of the system that would improve
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performance of new components might not be possible (e.g., specialized
concurrency control for new index structures). As for the latter point, more
research is needed to fully understand the implications and side effects of
CDBMSs.

The work conducted in the area of CDBMSs has focused on extensions
in the area of new data types (including indexes useful for those nonstandard
types). Componentization of the DBMS kernel, including the transaction
manager and the query processor in general and the optimizer in particular,
has been considered less thoroughly so far. In those areas, a better under-
standing of the implications and limitations of componentization is neces-
sary. It might turn out that subsystems also need to be componentized and
that it might be possible to specialize them by adding or replacing new
(sub)components.

Despite the problems that still need to be addressed, component
DBMSs will certainly gain practical significance, and componentization of
DBMSs will continue to be a major trend in DB technology.
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13
CASE Tools: Computer Support for
Conceptual Modeling

Mokrane Bouzeghoub, Zoubida Kedad, and Elisabeth Métais

13.1 Introduction to CASE Tools

The acronym CASE (computer-aided software engineering) implies two
aspects: software engineering and computer aid. Software engineering refers
to the activities of analysis, design, implementation, and maintenance of
information systems, to which we can add the complementary tasks of verifi-
cation, assessment, and validation of all the decisions that have been taken
and products that have been generated during the project�s life cycle. Com-
puter aid concerns all the possible supports that a computer can provide to
facilitate the project management and documentation, to control the com-
plexity of a design, and to reason on the specifications and models.

CASE technology emerged in the late 1970s and early 1980s with code
generation and program testing. The success of relational DBs encouraged
the development of data dictionaries and the maintenance of design traces.
The explosion of computer graphics and workstations imposed CASE tools
by providing attractive interfaces and by opening up a new era of cooperative
distributed design and development. Evolution of traditional languages
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from third generation to fourth generation and the success of reusable
object libraries accompanying object-oriented languages like C++ and Java
confirmed CASE tools as an advanced technology that cannot be bypassed in
the development of modern information systems.

Current CASE tools have sparse functionalities, cover different phases
in a project�s life cycle, and are based on different formal specification mod-
els. This makes a comparison difficult. There is no standard architecture for a
CASE tool, only products that address specific activities in software engineer-
ing. The project actors see CASE tools from their individual perspectives and
from their own roles in the software project. Many classifications of CASE
tools have been proposed; they are either based on the project�s life cycle
(analysis, design, implementation, validation, maintenance, administration,
etc.), on the level of abstraction (upper CASEs, middle CASEs, and lower
CASEs), or on the degree of automation (manual tools; semiautomated, or
interactive, tools; fully automated tools). Programming experts focus on
process modeling, formal verification of program behavior, and code genera-
tion. Database experts focus on conceptual data modeling, physical DB
design, and integrity constraints validation. Project managers focus on data
dictionaries, report generation, and assessment techniques.

The daisy in Figure 13.1 gives a flavor of an ideal integrated CASE
toolset. The figure highlights a set of functionalities provided by CASE tools
independently of any specific methodology and classification. One can imag-
ine as many CASE environments as combinations of petals in the daisy.

Among CASE tools we can distinguish those related to project manage-
ment and control, those related to DB modeling, those related to process
modeling, and those related to IS administration and maintenance. The
baseline of these tools is the knowledge repository that groups all the meta-
data concerning the application domain, the products and the processes of
the project, and the generic reusable components. The cornerstone of the
toolset is the fundamental inference and reasoning mechanisms that can be
used by various tools. Graphical interfaces constitute a convenient way to
synthesize specifications and to give a rapid understanding of the semantics
of the system under construction.

13.1.1 Functional Classification of CASE Tools

The functional classification of tools given in Table 13.1 is not exhaustive,
but it gives a good view of the diversity of CASE tools that support software
engineering projects.
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13.1.1.1 Project Management Tools

Among the project management and cost evaluation tools, we can distin-
guish planning and decision support tools such as PERT diagrams, spread-
sheets, and workflows. Task assessment and product integration tools refer to
the tools that help in evaluating deliverables and consolidating their integra-
tion into intermediate or final products. Report generation maintains prog-
ress reports, cost statements, and recovery actions in case of failure or delay.
Current CASE tools for project management (e.g., Platinum Process Contin-
uum by Platinum Technology, Autoplan by Digital Tools, and MS-Project
by Microsoft) are not specific to software engineering but are taken among
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the tools provided for any other management activity. Integration of those
tools within the software engineering environment is usually done through
the knowledge repository.

13.1.1.2 Database Design Tools

Database design tools (e.g., Designer 2000 by Oracle Corp.) are formal or
semiformal supports that help in the definition of the global DB schema and
user views. Some tools support conceptual modeling; others support logical
or physical design. Model transformation tools allow users to map schemas
of different formalisms into one pivot design model. View integration tools
reconcile different perceptions of the real world into one single consistent
schema. Database reverse engineering tools allow the extraction of data struc-
tures from legacy systems and abstract them into a logical or conceptual
schema. Database design tools are perhaps the most well-integrated tools
provided in the marketplace.
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13.1.1.3 Process Modeling Tools

Process modeling tools help in functional decomposition of a given system,
in the formal specification and verification of each function, and in code
generation (e.g., Developer 2000 by Oracle Corp, Pacbench by IBM). Code
testing tools are also among the oldest tools in software engineering. Because
of its complexity, reverse engineering of programs is less developed than that
of data structures. Code generation and code testing tools are probably the
most important tools whose productivity profit is the highest. Automatic
coding produces, in principle, correct programs whose maintenance is easy,
thanks to their standard way of generation and documentation. Important
problems in code generation are the definition of the input specification lan-
guage and the optimization of the generated code. Among the interesting
subproducts of automatic code generation are prototyping tools that allow
validation of user requirements and interfaces.

13.1.1.4 Maintenance and Administration Tools

Administration and maintenance tools refer to all the support that allows the
information system administrator to evolve applications by changing speci-
fications and propagating the change to the implementation, by changing
technology and migrating data and code to the new one, and by improving
performance with DB tuning or program tuning. Multiple-version manage-
ment and code inspection for errors are also among administration tools.
Administration and maintenance activities may result in inconsistencies and
inefficiencies. Decision support tools, such as simulation tools and cost esti-
mation tools, which are able to trace or evaluate the impact of a specific sys-
tem change, are valuable tools that avoid system downgrading. These kinds
of tools are called impact search tools. They are usually supplied by DB
system providers and platform providers. An example of such a tool is
Openview RPM (Hewlett-Packard), which helps in tuning the resources.

13.1.1.5 Repository and Metadata Tools

Repository management refers to a set of tools that support other CASE
functionalities. The knowledge repository is the memory of the design and
maintenance activities. It contains metadata describing DBs and processes,
cross referencing between data and processes, inputs and outputs of each
CASE tool, metamodels driving the tools, design decisions, history of
changes, trace of simulations, and so on. The repository is a common shared
memory between CASE tools and between designers and programmers. The
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cooperative realization of a software project is organized around the knowl-
edge repository.

13.1.2 Communication Between CASE Tools

The proliferation of CASE tools has rapidly posed the problem of communi-
cation among the tools. Data dictionaries are now recognized as basements
for the construction of a software engineering environment, and most of the
provided CASE tools propose their own data dictionaries. A valuable effort
was carried out in the late 1980s for normalizing structures with the ANSI
standard, called IRDS [1]. Recent work done by OMG on unifying mod-
eling concepts and representations, proposed in UML [2], may lead to the
definition of a new generation of metadata repositories. Besides data diction-
aries, the European projects PCTE [3] and ESF [4] proposed generic proto-
cols and software bus, and CORBA [5] provided ORBs as a base technology
to exchange objects between different heterogeneous systems. Figure 13.2
summarizes the different approaches to cooperating CASE tools.

The next section focuses on CASE tools that help in the analysis,
design, and implementation of DBs. We highlight the fundamental knowl-
edge and reasoning mechanisms used by these tools. The purpose is to show
the internal aspects of CASE tools through their intelligent components, that
is, how they contribute to acquire application knowledge, how they structure
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that knowledge and form conceptual and logical schemas, how these are
schemas validated and transformed into low-level representations, and how
they are verified and validated. Our aim is to provide the basic ideas that gov-
ern the design and implementation of a CASE tool and to show the balance
between what a CASE tool can do and what remains the designers� creativity
and decisions. We particularly insist in these sections on CASE functionali-
ties that help in solving hard problems, such as knowledge acquisition, con-
ceptual modeling, and design validation.

13.2 A CASE Framework for Database Design

Database design has been widely investigated and explored during the past
three decades. Many design frameworks have been proposed, and there is a
consensus to distinguish among four abstraction levels: external, conceptual,
logical, and physical design. Based on these levels, different modeling nota-
tions, techniques, and approaches have been proposed. Early provided design
tools support relational normalization, schema mapping between the entity-
relationship model and the relational model, and DDL generation. The early
1980s saw the promotion of expert systems and knowledge-based tools that
integrated heuristics, design alternatives, and high-level interaction with
the human designer [6]. The late 1980s confirmed the industrial use of DB
design tools; hundreds of CASE tools were proposed in the software engi-
neering market. The 1990s saw the emergence of object-oriented languages
and methodologies with their companion tools. Database design tools gained
in maturity and in complexity.

To understand the role and the contribution of these tools, we use the
framework in Figure 13.3. The framework serves as an ideal CASE environ-
ment, one that illustrates most of the possible tools related to DB design.

Knowledge acquisition concerns the collection of all the knowledge
necessary for the conceptual modeling of the DB. Knowledge acquisition is
done during user requirements analysis, either by interaction with potential
DB users, extraction of data from forms and texts, or by the use of some
appropriate graphical interface. Knowledge acquisition is driven by preexist-
ing domain knowledge, a predefined enterprise model, or any procedure that
helps in requirement analysis.

Data abstraction and structuring consist of organizing the knowledge
acquired during the acquisition phase and defining the main entities and
relationships that best capture the views of the users. That corresponds to
the effective conceptual modeling phase. Depending on the complexity of
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the target information system, the conceptual schema may either be obtained
in one shot or after the integration of several separate schemas that corre-
spond to different user views. Reverse engineering is another way to abstract
conceptual entities and relationships from existing files or DBs.

Verification checks the formal verification of the conceptual model,
and validation checks its relevance to user requirements. Formal verification
guarantees consistency, irredundancy, and completeness. Formal verification
techniques depend on the conceptual model used. Conformance with user
requirements is much harder. It is usually based on heuristics, expert rules,
and prototyping. Validation is the most powerful aid that CASE tools can
provide. Indeed, the minimum requirement expected from a CASE tool is at
least to check that the design is correct.
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View integration or schema integration is a design approach necessary
when the complexity of the problem requires its decomposition and modular
formalization. Integration is also required in modern ISs that are built from
legacy systems or from multiple heterogeneous sources like distributed sys-
tems or Web sites. Schema integration is often completed by data integra-
tion, which deals with instances and their heterogeneous representations.

Transformation and normalization concern the multiple mappings a
schema may undergo to achieve a canonical representation or another
formalization. For example, mapping an entity-relationship schema into a
relational schema is one of the important DB design steps. Relational nor-
malization can also be considered as a mapping process from first normal
form to third or fourth normal form.

Optimization covers all the implementation and tuning decisions that
influence the performance of DB queries. Optimization cannot be done
without knowledge of all the important queries that represent the main
activity of the DB. Optimization may lead to changing physical DB schema,
introducing indexes, replicating data, reducing redundancy, and so forth.
Optimization requires a good understanding of DB system internals and
more generally the software and hardware technologies used to realize the
information system.

Our aim in the rest of this chapter is to describe, for the conceptual
and logical levels, tools that support corresponding design activities. For each
design task, we summarize the main problems to be solved and how far
CASE tools go in the automation of that task. Besides the established tech-
niques and algorithms, we will particularly examine the other design exper-
tise that can enhance CASE tools capabilities and bring them up toward the
human designer competence.

13.3 Conceptual Design Tools

Conceptual modeling covers several design activities, such as defining con-
ceptual schemas from scratch or by integrating several predefined schemas,
verifying the consistency of the schema, and validating the relevance of the
schema with respect to user expectations. This section investigates the differ-
ent CASE tools that can support those activities. Before defining the tools,
we present a reference conceptual model that will be used to describe illustra-
tive examples.
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13.3.1 The Choice of the Conceptual Model

The purpose of a conceptual schema is to describe in a formal way the part of
the real world to represent into a DB. The choice of the conceptual language
influences the modeling tasks and determines the necessary knowledge to
perform those tasks. There is a general agreement, although never standard-
ized, to use an E/R model [7] or one of its extensions as a high-level formal-
ism to describe conceptual DB schemas. The extended E/R model used in
this chapter is summarized by the metamodel in Figure 13.4.

In this model, entities represent concrete or abstract objects relevant to
the given real world. They are described by lists of attributes that may be sim-
ple or composite, monovalued or multivalued. Relationships are binary or
n-ary associations between not necessarily distinct entities. Each link between
an entity and a relationship materializes the role played by the entity in the
relationship. Each role is characterized by cardinalities that specify, on one
hand, the number of entity instances involved in a relationship instance, and
on the other hand, the number of relationship instances in which the same
entity instance participates. Each of these numbers is actually represented
by a couple of values, minimal cardinality and maximal cardinality, which
respectively specify the minimum and maximum instances involved in each
role. Relationships may or may not have their own attributes. Entity
instances are identified by one or several of their attributes. Relationship
instances are identified by a combination of identifiers of the participating
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entity instances. Entities can form a hierarchy of generalizations or
aggregations.

13.3.2 Conceptual Modeling Tools

Conceptual design tools are those which support concept discovery, the
organization of concepts into a coherent schema, and the validation of the
schema with respect to user requirements. This section addresses three kinds
of tools: those that help in the creative design done by the user, those that
help in abstracting the conceptual schema from existing files and DBs, and
those that derive conceptual schemas from natural language sentences.

13.3.2.1 Creative Design

Creative design is a modeling activity that starts from scratch or, more
precisely, from the informal knowledge a designer has in mind. Every con-
ceptual entity and relationship is abstracted directly from the designer�s
perception of the real world. Actually, many DB schemas are designed that
way. The designer translates users� needs into the conceptual language used
to formalize those needs.

CASE tools required by creative design are simple, but they must also
be attractive. They are limited to a graphical interface that supports the
conceptual model and a data dictionary to store the resulting schemas.

The success of the interface is obviously related to its friendliness, ease
of use, and semantic expressiveness. Friendliness is related to the graphical
�widgets� used to represent the concepts of the conceptual model. It is rec-
ommended that the designer use either standard or well-accepted representa-
tions or metaphors that do not give rise to confusion and misunderstanding.
Ease of use means providing an interface that can be manipulated by intui-
tion and that conforms to the most popular actions used in Office Works
and other successful products. Semantic expressiveness depends on the con-
ceptual model used. A rich semantic model reduces the gap between a per-
ception and its formal representation and allows easy capture of the meaning
of the real world considered. A poor conceptual model requires many more
skills in the design because it often leads to a reformulation of the perception
into more basic facts that can be expressed in the conceptual model.

Although creative design is based on the use of some diagrammatic
interface, it requires minimal support in terms of syntactic and semantic veri-
fications. An attractive graphical interface should implement procedures that
enforce the structuring rules of the model. For example, in the E/R model,
relationships do not link other relationships but entities; there are no cycles
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in generalization hierarchies; entities must have identifiers; and so forth.
Such rules should be hardwired into the graphical interface. Their existence
liberates the designer from tedious checking and allows the designer to con-
centrate on the semantics of the problem.

In addition to that syntactic verification, the graphical interface should
provide some semantic checking. For example, when there are different rela-
tionships between the same entities, there might be some inconsistencies
between their cardinalities. An example of inconsistency between cardinali-
ties is given in Figure 13.5. The cardinalities of the R1 relationship imply
that card(E1) ≥ 2 ∗ card(E2), and the cardinalities of the R2 relationship
imply that card(E2) ≥ card(E1). Except for the trivial solution, card(E1) =
card = (Ε2) = 0, that leads to a contradiction. In [8] and [9], an inequality
system is built with all the cardinalities. If the system has no solution, a con-
tradiction is detected.

The detection of inconsistencies can be completely automated. To
make the CASE tool attractive, it has to check that kind of consistency and
spot the contradiction. Consequently, a CASE tool that supports creative
design is not a static graphical editor but rather an intelligent system, able to
automatically enforce syntactic and semantic rules. These features contribute
to increasing designer productivity because they save checking time, and they
enhance the schema quality because the enforcement is more rigorously done
by the tool than by a human designer. Figure 13.6 gives the general architec-
ture of a creative design tool.

13.3.2.2 Reverse Engineering

Reverse engineering techniques have been proposed to reduce the increasing
cost of maintaining and modifying existing software [10]. The goal of reverse
engineering is to understand how software operates. This is done by
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identifying the different modules of the software and the interactions
between them in order to produce an abstract representation of the consid-
ered software. In the DB field, the reverse engineering process consists of
extracting the DB semantics from its implementation and abstracting the
semantics into the conceptual model. The process is based upon the analysis
of physical data structures and data instances. The reverse engineering of
DBs can be considered as conceptual modeling techniques to which CASE
support can be associated.

Three classes of reverse engineering approaches have been proposed
[11]: (a) reverse engineering of COBOL files, (b) reverse engineering of
navigational DBs, which include hierarchical and Codasyl DBs [12], and
(c) reverse engineering of relational and object DBs [11].

Compared to creative design, which starts from scratch, design by
reverse engineering starts from concrete structured components. The design
process is viewed as a transformation problem that maps a physical data
structure into an abstract schema. However, this mapping process is not triv-
ial, and it should be preceded by a discovering process of the entities and rela-
tionships between those entities. The discovering process is a kind of data
mining process that exploits knowledge sources such as the following:

• File records, their internal structure with the embedded attributes,
types of attributes (particularly when they are multivalued or com-
plex attributes), the physical or logical pointers that relate different
records, primary and secondary keys, and so forth. The description
of file records is often embedded in data divisions of COBOL pro-
grams or in similar other languages.

• DDL statements in the case of legacy DBs. These statements may be
Codasyl statements or SQL statements. In both cases, it is useful to
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extract the logical structure underlying the definitions. From physi-
cal DB schemas, it is often possible to extract some integrity con-
straints such as unicity of values and functional dependencies.

• DML statements, that is, DB queries written in a standard language
such as Codasyl or SQL. Database queries allow us to compute some
abstract objects from materialized objects. As is generally known, the
choice of objects to implement is done with respect to performance.
At the conceptual level, both abstract and materialized objects are
of the same importance with respect to their semantics. Then, the
former as well as the latter can be considered to be potential ele-
ments of the conceptual schema.

• Data instances can also be exploited to abstract some structure, espe-
cially within legacy systems, either when source code is too large to
investigate or unavailable. Data mining techniques used for this pur-
pose are inspired by machine learning, knowledge discovering, and
statistics [13].

From this list, we can see how useful a CASE tool is in reverse engineer-
ing, especially in conceptual modeling by reverse engineering. Indeed, there
is no unified approach or common techniques or algorithms that exploit all
the knowledge referred to here. The only possible approach is to combine
several techniques into one common design environment and allow the
designer to apply the technique that best fits each situation. A general archi-
tecture for a reverse engineering CASE tool is portrayed in Figure 13.7.
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13.3.2.3 Natural Language Understanding

Extracting data structure from natural language sentences is a difficult prob-
lem that may differ from natural language understanding or natural language
translation. Indeed, in a text written in natural language, only a part of
the global semantics is captured by DB models. Other aspects that deal with
processing and dynamics of the described information system are not cap-
tured in static data models. Extracting knowledge relevant to conceptual
modeling mainly consists in solving two problems: sorting relevant and
irrelevant assertions, and stating correspondences between natural language
concepts and conceptual modeling concepts.

Within the semantic part that can be captured by a conceptual data
model, one of the difficult problems is to decide whether a term in a given
sentence should be considered an attribute, object, relationship, or integrity
constraint. None of the classical techniques used in natural language process-
ing can solve that problem; only expert rules can produce relevant results.

At first glance, a sentence is turned into conceptual schema by abstract-
ing verbs into relationships, subjects and complements into participating
entities, and adverbs and adjectives into attributes. Some verbs are recog-
nized as well-known relationships; for example, the verb �to be� usually indi-
cates a generalization link, whereas the verb �to have� indicates a relationship
role or link between an entity (or a relationship) and its attribute.

Sentences can be interpreted as independent units, but they also appear
in the context of a global text. The interpretation of a given sentence can be
modified by the interpretation of other sentences. For example, from the sen-
tence, �a product has a number, unit price, and supplier,� we understand
that there is an entity named �product� characterized by three attributes:
�number,� �unit price,� and �supplier.� If we add a new sentence, such
as, �Each product supplier, described by name and address, supplies 1 to
10 parts,� we modify the previous interpretation by transforming the
attribute �supplier� into an entity described by two attributes (�name� and
�address�), and a relationship (�supplies�) that links it to �product.� The sec-
ond sentence introduces additional complexity related to the usage of syno-
nyms (�product� and �parts�) that have to be solved by the presence of a
dictionary.

Redundancy is a frequent problem in the textual specification. Some
new sentences, although true, do not augment the semantics of the applica-
tion, because the newly described facts can be deduced from the previous
ones. For example, in the following description, the third sentence is redun-
dant to the first two: �A person has a name and age. An employee is a person.
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An employee has a name and an age.� Again, in the following example, there
is a redundancy, but it is an underhanded one: �Employees and secretaries
are persons. A secretary is an employee.� Indeed, the second sentence makes a
part of the first one redundant�because a secretary is an employee, it is not
necessary to say that he or she is a person, as that fact can automatically be
deduced.

Conceptual modeling from a natural language interface involves many
aspects: natural language parsing, knowledge elicitation, and the sorting and
recovering of pertinent information with respect to the conceptual modeling.
Figure 13.8 shows a possible tool architecture for conceptual modeling from
natural language.

To reduce the complexity of natural language parsing, often only
restricted grammar is allowed, which leads to a technical jargon, easy to spec-
ify by the designer and easy to understand by the CASE tool. In the KASPER
project [14], a very restricted language called �normalized language� is
imposed, which uses standard grammar and standard terms. Both human
partners of different languages can use it as a specification language, and the
CASE tool can easily transform it into conceptual structures. However, some
experts may argue [15] that this simplicity provides only the appearance of a
natural language, and it is not the usual natural language dealing with the three
essential aspects of polysemy (homonymy, homotaxy), paraphrases (synon-
ymy, allotaxy, definition), and relation to the context (anaphora, implicit,
trope, spot). Some research projects of CASE tools such as DMG [16] and
NIBA [17] have extended their languages to quite complex sentences.

The interpretation of a natural language specification is not only a syn-
tactic process, but a very high level semantic process based on expert knowl-
edge from research in natural language processing and DB modeling.
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13.3.3 Verification and Validation Tools

This section deals with the properties of a good conceptual schema and
shows how CASE tools support the verification of these properties. We can
divide the desired properties into three categories: (a) formal properties,
(b) quality factors, and (c) conformance with user needs. With respect to for-
mal properties, a good conceptual schema has to be consistent, complete, and
irredundant, if it is to give birth to a sound DB. With respect to quality, a
conceptual schema has to be understandable and able to evolve wherever the
analysis progresses. With respect to the user needs, a conceptual schema has
to conform to the requirements, that is, represent exactly what the user wants
to represent. The following subsections illustrate how CASE tools contribute
to the assessment of those desired properties and how far one can go in the
identification of those properties.

13.3.3.1 Formal Verification

As stated earlier, a good conceptual schema has to be intrinsically correct,
that is, consistent, complete, and irredundant. Depending on the conceptual
model used, these properties may vary from one model to another. Conse-
quently, the following desired list of properties is not exhaustive and applies
to the extended E/R model described in Figure 13.4.

Schema Consistency

Consistency is defined with respect to both the syntactic rules of the concep-
tual model and the semantic rules. A schema is syntactically consistent if it
satisfies the construction rules of the model. With respect to our conceptual
model, an instance of this model is syntactically consistent if it satisfies the
following properties:

• The names of entities and relationships are distinct, that is, there is
unicity of names.

• None of the attributes, entities, and relationships can exist inde-
pendently in the schema without characterizing or being related to
the others. This property is called nonisolation of concepts.

• A relationship is at least a binary relationship between not necessar-
ily distinct entities.

• A given relationship does not participate in another relationship.
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• Cardinalities are specified as intervals bounded by positive integers;
for example, minimal cardinality is less than or equal to maximal
cardinality.

• There are no cycles in generalization hierarchies.

This list is just an illustrative sample of syntactic rules; it can be
extended with more refined rules if the conceptual model is defined in more
detail. We have already seen how syntactic correctness can be hardwired into
the graphical interface, which does not allow the user to get around these
laws. It is also obvious that when a schema is automatically generated by
reverse engineering or natural language processing, the obtained schema is
correct because the corresponding CASE tool respects the construction rules
of the model.

A conceptual schema is semantically consistent with respect to a con-
ceptual model if the concepts are used according to their definition and if no
contradiction can be found within the concepts of the schema (e.g., cardinal-
ity constraint, identifier). The first part of the definition is, in general, hard
to verify. Given a concept in the real world, it is difficult to automatically
decide whether it is an attribute, an entity, or a relationship. The second
part of the definition concerns logical inconsistencies that may occur in a
specification.

Consistency of the �functional dependencies� given in the specification
has to be checked. There is a functional dependency from a set of attributes
X to an attribute Y (noted as X → Y) in an R relation if two tuples of R can-
not have the same values for X and different values for Y. For example, the
number of a book functionally determines its title (number → title), because
one given number corresponds to only one title, but its author does not func-
tionally determine its title (author ⁄→ title), because an author can be related
to several titles.

Within a set of functional dependencies, there is a systematic approach,
based on Armstrong�s inference rules [18], that decides whether a given func-
tional dependency can be derived from others.

• R1 (reflexivity): If Y ⊇ X, then Y → X.

• R2 (augmentation): If X → Y and W ⊇ Z, then X,W → Y,Z.

• R3 (transitivity): If X → Y and Y → Z, then X → Z.

• R4 (pseudo-transitivity): If X → Y and Y,W → Z, then X,W → Z.
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• R5 (union): If X → Y and X ⊇ Z then X → Y,Z.

• R6 (decomposition): If X → Y and Y ⊇ Z, then X → Z.

These rules are used to detect inconsistencies between functional dependen-
cies. Reference [19] introduces rules between independencies, and [6] defines
a complementary set of rules that combines functional dependencies and
cardinalities.

Section 13.3.2.1 presented an example of logical inconsistency between
cardinalities. We can add another example that illustrates inconsistency
between multivalued attributes and functional dependencies. In the example
in Figure 13.9, it is stated that a library has several telephone numbers, but
the name of the library determines its telephone number. That is obviously
inconsistent and should be detected by the CASE tool that implements
semantic rules.

The combination of all these rules constitutes a sample of reasonable
expertise that can be used to build a sophisticated CASE tool able to detect
most of the important inconsistencies in a conceptual schema. However,
once a contradiction is detected, only the human designer can solve it. The
only complementary service a CASE tool can provide is to suggest a list of
solutions for the designer to choose from. Obviously, the process may be
completely automated if default answers are allowed. Heuristics can also
be used to make the CASE tool more intelligent. Choices can be based on
statistical use of the rules as the tool gains in expertise.

Irredundancy of the Schema

A schema is irredundant if no element can be removed without loss of
semantics. Redundancy can occur for any fact represented in the conceptual
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schema. However, checking redundancy of entities, that is, whether two dif-
ferent entity names represent the same universe of discourse, is difficult. The
only redundancy that can be checked in a conceptual schema concerns integ-
rity constraints and some relationships.

Checking whether a given integrity constraint is redundant is a logical
inference problem. If the integrity constraint can be logically derived from
other constraints, it is redundant; otherwise, it is not. If we restrict the set of
constraints to those usually represented in a conceptual schema�cardinali-
ties, unicity of keys, functional dependencies, inclusion dependencies, and so
forth�we can use specific rules to check redundancy of each type of con-
straint. Most of the rules are the same as those used for checking consistency.
Inference rules between functional dependencies can be used to check both
their consistency and their redundancy.

For example, given the following known dependencies and independ-
encies: {A → B; (B,D) → E; (C,F) → G; (A,F) ⁄→ G}, we can use the
same inference rules to check that (A,D) → E is redundant and to check
that A ⁄→ C is inconsistent. More precisely, in both cases we use pseudo-
transitivity. The theorem proves for redundancy checks whether the goal can
be derived from other constraints, while the theorem proves for consistency
checks whether the negation of the goal can be derived from other
constraints.

As for the consistency, an intelligent CASE tool should combine all the
known inference rules for functional dependencies, inclusion dependencies,
and cardinalities into the same theorem proof in order to check the redun-
dancy or irredundancy of a conceptual schema.
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As mentioned earlier, some other redundancies may be detected among
relationships. For example, in Figure 13.10, the generalization link between
Literature Book and Document is redundant because the link is transitive.
The relationship between Literature Book and Person is redundant because it
can be inherited from the relationship between Document and Person. Simi-
larly, the attribute in Journal is redundant to that of Document.

After its detection, removing a redundancy implies making a choice
between the redundant statements. Depending on the nature of the redun-
dancy, the choice is automatically made if the redundant fact does not play
a symmetric role as those from which it is derived. Otherwise, it is left to
the user.

Completeness of the Schema

The completeness of a conceptual schema can be defined with respect to
either the metamodel or the universe of discourse represented. The first part
of the definition concerns the mandatory elements that constitute a concep-
tual schema. For example, the definition of a conceptual schema is not con-
sidered to be terminated until the following are verified:

• Each entity has at least one attribute.

• Each entity has at least one identifier.

• Each attribute has its domain.

• All relationship roles and cardinalities are specified.

The second part of the definition relates to the validation with respect
to user requirements. Checking whether a conceptual schema represents all
the necessary knowledge for a given information system is a difficult problem
and is generally considered in the validation phase, which refers to confor-
mance of the conceptual schema to the real world. We address that problem
in Section 13.3.3.3. However, part of completeness checking can be auto-
matically performed by cross-checking the conceptual schema with the infor-
mation system processes. If all the data types needed by the processes are in
the conceptual schema, it is considered to be complete.

Based on these simple rules, it is easy to build a tool that reminds the
designer of all the knowledge that remains unknown in the conceptual
model. An interactive acquisition process can be implemented to force the
designer to complete the specification before starting consistency and redun-
dancy checking.
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13.3.3.2 Quality Assessment

Quality assessment of a conceptual schema deals with desired properties that
cannot be proved by a logic-based approach. These properties define a sub-
jective evaluation of a conceptual schema and assign a value that is placed
against the user�s expectations. Among those properties, we can mention
readability and reusability of conceptual schemas (see Chapters 2 and 14).

Readability of a Conceptual Schema

The readability of a schema can be measured according to two criteria: the
percentage of the schema that the reader may understand and the time
needed for that understanding. To fulfill these criteria, a schema has to be as
close as possible to the real world it is supposed to represent.

A schema is close to the real world if (a) the names of entities and rela-
tionships correspond to usual names and verbs in the application domain, (b)
the construction rules reflect the real world, and (c) the objects are clustered
in the graphical representation with respect to semantic criteria.

The starting point to evaluate readability of names may be a general
electronic dictionary or a specialized business domain dictionary. Each name
given to an entity in the conceptual schema must exist in the dictionary. If
the entity name does not match any entry in the dictionary, that means that
either the dictionary is not complete or the entity name is not a concept of
the real world. In the first case, a new entry is added to the dictionary; in the
second case, the name is rejected.

The choice of the conceptual model and its corresponding structuring
rules may affect the readability of conceptual schemas. Indeed, generalization
and aggregation hierarchies are the most natural relationships that users can
understand and read easily. The distinction between an entity and a rela-
tionship is not so clear. Relationships can become entities when one wants
to relate them to other entities or relationships. In that case, the conceptual
model perpetuates the ambiguities and variations that exist in natural lan-
guage. To push designers to intensively use generalization hierarchies, [16]
has proposed a tool that checks the overlapping of two entity types; if they
have common attributes, it is suggested that a generic entity type be
introduced.

Graphical presentation of complex schemas also influences the read-
ability of the schemas. Clustering techniques based on semantic classification
are defined in [20]. They permit the division of large schemas into relatively
small semantic units by grouping entities and relationships that deal with the
same subject in the real world.
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Testing and improving readability of a conceptual schema are two
complementary services provided by the same CASE tool. The cornerstone
of this tool is the linguistic dictionary and the structuring rules of the con-
ceptual model. Semantic clustering and interactive restructuring are addi-
tional functionalities that improve readability as well. However, in spite of
some sophisticated techniques, the readability remains user dependent.

Reusability of the Schema

A recent trend in conceptual modeling has been to integrate the reuse of con-
ceptual schemas into the methodology, especially in the context of object-
oriented models. In this context, reusability is a desired property for object
types, and conceptual schemas are considered objects, too. A conceptual
schema is reusable in a further DB application if we can expect that selecting,
understanding, and customizing the schema will be faster than designing a
new one.

To be reusable, a conceptual schema must satisfy the following proper-
ties: (a) the conceptual schema must be correct, that is, consistent, complete,
and irredundant, and (b) the conceptual schema must be documented. Cor-
rectness has already been addressed. Documentation consists in the defi-
nition of a metadescription that defines the application domain to which
the schema is relevant (e.g., library application), the activities for which it is
designed (e.g., book borrowing), and a list of key words (e.g., on book topics)
that summarizes its global semantics [21].

Improving reusability may consist in providing a high-level interface
that allows documentation of a conceptual schema and provision of online
guidelines for the documentation. Another useful support a CASE tool can
provide for reusability is an appropriate query language that allows, through
fuzzy queries, selection of schemas that are the most relevant to the subject
concerned by the conceptual modeling of a given application. This language
is particularly useful when object libraries have thousands of reusable compo-
nents. Reference [22] has proposed an extended SQL language that permits
object retrieval by the use of domain knowledge and semantic distance. (We
will come back to this point in Section 13.3.5.)

13.3.3.3 Schema Validation

Conceptual schema validation deals with conformance of a given schema
with respect to user requirements. It is one of the important issues that con-
tribute to the decision of whether a conceptual schema is good or not. One of
the techniques frequently proposed for validation is the conformance of the
conceptual schema with applications processes. This is much more useful in
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checking for completeness than whether conceptual entities and relation-
ships effectively represent the semantics in users� minds. A technique
explored for several years by research tools consists of paraphrasing concep-
tual schemas in natural language. The validation process of the conceptual
schema is transformed into a validation process of a text, which is much more
adapted for final users than abstract data structures.

Paraphrasing can be split into two theoretical parts: deep generation
and surface generation. The deep generation corresponds to the question
�What do we say?� The surface generation corresponds to the question
�How do we say it?�

In the deep generation, the paraphrasing algorithm strongly depends
on the conceptual model. First, each model is associated with a set of rules
that link the concepts of the model to linguistic component types. In the E/R
model [7], a relationship corresponds to a verb, and its participating entities
are its subject and complements. Patterns of sentences are also elaborated for
the translation of cardinalities. However, paraphrasing an E/R-like model,
without any other source knowledge, may produce only generic sentences
like �Leasing is a relationship between an agency, a person, and a vehicle,�
instead of a more natural and pertinent one like �An agency leases a vehicle
to a person.� To reach that level of paraphrasing, three kinds of solutions
have been explored:

• The first solution consists of enriching the model with linguistic
considerations (e.g., CSOM [23]).

• The second one consists of adding a linguistic level between the
specification level and the conceptual level. This new level is sup-
plied by the parser (e.g., Kheops [24]).

• The third solution aims to deduce the lacking linguistic information
lost during the conceptual modeling from external sources such as
lexicons, linguistic dictionaries, or any other knowledge base (e.g.,
KISS [25], COLOR-X [23], Kheops [24]).

In the surface generation, other linguistic knowledge is needed for building
the sentences. They include syntactic, morphologic, and pragmatic knowl-
edge developed for natural language processing. For example, to generate
French sentences, we have to know the gender of the nouns, which are
dependent on their sense, while homonyms may have different genders.
Some researchers have worked on the coherence and readability of the dis-
course. For example, [26] proposes a method to aggregate atomic sentences
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to present a synthetic discourse. The presentation of the discourse is impor-
tant, because the purpose of paraphrasing is to make the conceptual schema
closer to nonexpert users.

13.3.4 Conceptual Design by Schema Integration

Modeling large DB schemas having tens or hundreds of entities and relation-
ships is a complex problem. The natural approach to the issue is to divide the
application domain into subdomains, model each subdomain separately, and
integrate the results to form the global conceptual schema. Integration of dif-
ferent schemas also happens when conceptual modeling recovers schemas of
existing DBs or aims to define a global schema on top of distributed DBs.
For both issues, we are faced with the same problem of integrating seman-
tically heterogeneous schemas that may overlap and contradict on some of
their elements.

Detection and resolution of conflicts between heterogeneous schemas
are the core problem in schema integration. The remainder of this section
recalls some of the conflicts that may arise between two schemas and presents
the main integration techniques upon which a CASE tool can be based to
support integration process.

13.3.4.1 Possible Conflicts Between Schemas

Given two conceptual schemas, several kinds of conflicts may occur.

• Terminology problems. A terminology problem occurs when the same
real-world object is referred to using different names or when two
different real-world objects are referred to using the same name.

• Incompatible constraints. A conflict occurs when two incompatible
constraints are defined over two equivalent concepts belonging to
distinct schemas. For example, the value of Salary may be declared as
less than 2000 in schema 1 and greater than 3000 in schema 2.

• Structural conflicts. A structural conflict occurs when two objects
representing the same real world are described with different sets of
properties. For example, the two objects Worker and Employee in
Figure 13.11 are semantically equivalent despite their disjoint sets of
attributes.

• Representation conflicts. A representation conflict occurs when differ-
ent concepts in two different schemas are used to represent the same
real-world object. For example, in Figure 13.12, both schemas
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contain the concept of Address. However, in the first schema,
Address is represented as an attribute describing the entity
Employee, while in the second schema it is represented as a separate
entity.

Solving these conflicts necessitates different techniques organized into a
specific methodology. Next we describe the techniques used at each step and
the way they can be organized to form a CASE tool.

13.3.4.2 Schema Integration Steps

Many integration approaches have been proposed in the literature [27].
Apart from the data model, which varies from one approach to another, the
difference among them is mainly the degree of their automation and the type
of inputs they assume. The general integration process is based on four steps:
(1) schema comparison, (2) schema conforming, (3) schema merging, and
(4) schema restructuring. The following paragraphs detail each integration
step by giving the essential knowledge on which it is based and the corre-
sponding support a CASE tool can provide.

464 Advanced Database Technology and Design

Employee

Soc-security-nb
Name
Date of birth
Address

Schema 1 Schema 2

Address

Number
Street
City

Employee

Soc-security-nb
Name
Date of birth

Has-a

Figure 13.12 Example of a representation conflict.

Schema 2

Worker

Name
Address

Employee

Soc-security-nb
Date of birth
Salary

Schema 1

Figure 13.11 Example of a structural conflict.



Schema Comparison

This step is critical during schema integration. It provides the essential
knowledge used to merge two different schemas. The main task of this step
is to compare two distinct schemas and decide for each pair of compared
objects whether they represent the same real-world object or not. The result
of this step is a set of correspondence assertions that state which pairs of con-
cepts are semantically equivalent. Schema comparison is either done manu-
ally or supported by an automated tool. In the first case, equivalence
assertions are elaborated by the designer [28]. In the second case, they are
discovered by a structure-matching algorithm [29], although the validation
of the assertions is done by a human designer, due to the high level semantics
required to enforce the equivalence between concepts.

To illustrate some of the problems that can arise during the comparison
step, let us consider the two E/R schemas in Figure 13.13. The comparison
of entities must state that Worker and Employee, in schema 1 and schema 2,
respectively, are semantically equivalent despite the fact that they have
different names and different attributes, while Worker and Department
are not semantically equivalent despite the fact that they have identical
attributes.

If there are only a few small schemas, the comparison can be done
manually. The correspondence assertions established by the human designer
are generally of high semantic quality; they can be used profitably as inputs
to the remaining integration steps. However, in large application domains,
the comparison process becomes tedious and complex as a human activity.
Different comparison tools have been proposed to aid in this combinatory
task [29]. However, the produced equivalence assertions are of low-level
semantics, and a human intervention is again necessary to elicit those that
are pertinent. For example, syntactic comparison of the schemas given in
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Figure 13.13 is generally not able to provide the right correspondence asser-
tions, that is, equivalence between Worker and Employee. Rather, it pro-
duces a potential equivalence between Worker and Department because of
their identical lists of attributes.

A CASE tool that supports the comparison process has been proposed
in [29]. A structure-matching algorithm produces a set of similarity vectors
that comprises four comparative components: names, types (domain or
structure), attached constraints, and instances. The value of each component
varies between 0 and 1, depending on whether the corresponding objects are
distinct, similar, or equivalent, according to the component. Two improve-
ments to this algorithm have been proposed. The first one [30] introduces
linguistic knowledge into the comparison algorithm by way of an electronic
dictionary (e.g., WordNet [31]). Besides the lexicon entries and their defini-
tions, the dictionary contains semantic knowledge that provides linguistic
use of the terms, that is, the relationships between them, the context in
which they can be used, their synonyms and homonyms, and so forth. The
use of such a dictionary allows us to state, for example, that the entities
Worker and Employee, in Figure 13.13, are semantically equivalent, while
Worker and Department are not. The second improvement concerns the
validation. To ease the analysis and validation of the similarity vectors, [20]
proposes a classification algorithm that organizes the vectors into distinct
classes, based on a semantic distance. Then the validation process considers
only similarity vectors inside a class.

Other Integration Steps

• Schema conforming. When correspondence assertions are established
in the comparison step, the initial schemas are conformed to make
them mergeable.

• Schema merging. After schema comparison and schema conforming,
the initial schemas are merged into a single global schema according
to the correspondence assertions found during schema comparison.

• Schema restructuring. The resulting schema may be redundant and
inconsistent. Then a verification and validation step is performed.

Other integration tasks can be added, such as transforming initial schemas if
they are described in different data models, or ordering the initial schemas
before integration, giving priorities to some schemas to be integrated first.
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13.3.5 Conceptual Design Based Upon Reusable Components

Object-oriented methods recommend the reuse of existing components in
the design of new systems. Translated in the context of DB design and
in contrast to the classical design approach in which a conceptual schema
is constructed directly from user requirements or from legacy systems, reuse
implies that the designer must endeavor to construct a conceptual schema
mainly from existing elements. There is a difference between design by reuse
and design by integration. In design by integration, all the integrated sche-
mas concern the same real-world application, while design by reuse means
customization of elements that have been designed for different purposes.

A simple example that highlights this difference is illustrated by a con-
ceptual schema devoted to flight booking that can be reused in train booking
or hotel booking. Another example concerns a conceptual schema designed
for the management of a specific conference (paper reception, participant
registration, reviewer assignment, evaluation synthesis, and program schedul-
ing) that can be reused for another conference that does not necessarily have
the same organizational rules (different number of reviewers, different
evaluation systems, different organization of the final program). Designing
by reuse means searching for one or several schemas that have similar pur-
poses but not necessarily in the same application domain as the one
addressed in the given application, customizing those schemas to adapt them
to the given application, and possibly integrating them when there are several
to have one unique global schema. We can summarize the reuse process into
three steps: (1) searching, (2) customizing, and (3) integrating. While the
third step is the same as design by schema integration, the first two steps are
specific to design by reuse.

The first task in design by reuse is to investigate and select those ele-
ments that best match the modeling purpose, according to the given applica-
tion requirements. Then the selected building blocks are retouched and
customized by changing the names of concepts, removing or adding some
concepts, changing some relationship roles and cardinalities, changing
some attribute domains, and so forth.

Retrieval mechanisms of reusable components usually follow one of
two methods: browsing or querying. Although it is more interesting to
browse a reasonably sized repository of objects, it quickly becomes a time-
consuming and burdensome task with an increasing number of resulting
schemas. Reference [22] has proposed a flexible language that combines que-
rying and browsing. The proposed retrieval solution has two main character-
istics: It permits imprecise querying, and it deals with the semantics (concept
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meaning), syntax (concept structure), and pragmatics (concept meaning
related to a given context and to the users� expectations) contained within the
components.

Customization of each component is also done manually before inte-
gration of the selected elements into a global conceptual schema. Customi-
zation is supported by the graphical tools for adding or removing small
parts of the schemas or renaming objects. The tool may also provide an
algebra to compose a new schema by union, difference, or intersection of
schemas [21].

13.3.6 Conclusion on the Conceptual Level

Although the conceptual design activity is based upon informal user require-
ments and is strongly subject to variations of semantics, we have seen that it
is possible to define a set of design aids that help solve many combinatorial
problems, extract pertinent knowledge from text, reuse existing solutions,
audit schemas and evaluate their correctness, and generate a customized con-
ceptual schema.

Many CASE tools that assist in conceptual design are available. Oracle
Designer/2000 (Oracle), Rational Rose (Rational Corporation), Platinum
ERwin (Platinum), Objectering (Softeam), Pacbase (CGI), OPENTOOL
(TNI), ORCA (Telelogic), and all those mentioned below provide graphical
interfaces for creative design and verification tools for schema checking.
Graphical models are rather object-oriented, mainly by extending the E/R
model, and they tend to support the UML notation; for a list of UML-
dedicated tools, see http://www.essaim.univ-mulhouse.fr/uml/outillage.
html. Increasingly, CASE provides the capability to customize one�s own
model, and this leads to �metaCASEs� such as metaEdit+ (MetaCase Con-
sulting), MEGA (MEGA International), and Pragmatica (Pragmatix Soft-
ware). RIDL (from IntelliBase) also deals with natural language
specifications. Validator (AONIX) helps the user in the validation process
with respect to the requirements. Most tools�such as DB-Main (University
of Namur), Software through Picture (AONIX), RoboCASE (Db Logic
Inc.), Paradigm (Platinum technology), Pragmatica (Pragmatic Software)
and INNOVATOR (MID GmbH)�offer reverse engineering and reuse
functionalities, although they are sometimes quite restricted. Functionalities
for schema integration are growing with the emergence of multisource infor-
mation systems design. For example, PowerDesigner (Sybase) and VIS (Meta
system) help integrate several schemas graphically.
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13.4 Logical Design Tools

At the logical level, the purpose of the CASE tool is to derive a good logical
schema from the conceptual schema, assuming the latter is consistent, com-
plete, and irredundant. The model used at the logical level is the relational
model in most DB applications. Given that model, this section presents the
main tools that can be provided to support relational design.

As for the conceptual level, we first define the notion of a good rela-
tional schema, the way to build it and to validate it. Compared to the
conceptual level, relational design is better understood and the theory well
established. Consequently, design tools are easier to identify and implement.
The following sections recall the fundamentals of relational normalization
and focus on the complementary tools that help in the acquisition of func-
tional dependencies, which is the most important problem after the theory is
defined.

13.4.1 Fundamentals of Relational Design

The properties of a good relational schema have been formalized by the defi-
nition of normal forms and the corresponding algorithms that produce them
[32]. Normalization is defined with respect to update anomalies. To permit
any update without loss of information, relations have to be at least in third
normal form (3NF) or fourth normal form (4NF), in which the only func-
tional or multivalued dependencies are those implied by a key. Functional
and multivalued dependencies are among the main semantic links relating
attributes within a relation.

Well-known algorithms exist for producing a set of normalized rela-
tions starting from a universal relation (the set of all attributes composing a
DB) and the set of dependencies over those attributes. Normalization algo-
rithms are traditionally sorted into two categories: synthesis algorithms [33],
which compute 3NF relations, and decomposition algorithms [34], which
compute Boyce-Codd normal form (BCNF) and 4NF relations.

It is easy to implement these algorithms to provide a powerful CASE
tool that automatically derives a good relational schema from a set of attrib-
utes and a set of dependencies. Obviously, these algorithms can be used to
decompose any user-defined relation, without necessarily being a universal
relation. Such CASE tools can be extended with another functionality that
is often desired: checking whether a given relation with certain key and
dependencies is normalized at a certain degree or not.
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Although the normalization process is well defined and the correspond-
ing algorithms easy to implement, few existing CASE tools provide normali-
zation support for relational schemas. The common reason always given
is that normalized schemas are not optimized schemas, and the necessary
denormalization step that follows makes the process useless and time con-
suming. Obviously this argument is not acceptable because it is clear that
logical design has nothing to do with physical design. The purpose of logical
design is to build a sound relational schema that will serve as a reference for
the DB evolution, while the physical design intends to provide an implemen-
tation that optimizes the set of actual queries. Physical design is subject to
change more frequently than logical design, as the application queries and
technology evolve.

The main problem of the normalization theory is the acquisition of
dependencies. Functional dependencies are semantic assertions stated about
attributes. Although inference rules between dependencies [18] allow us
to derive some dependencies from others, elementary dependencies cannot
be defined without the users� support. This is probably the most important
obstacle to the use of normalization tools. The next section investigates dif-
ferent techniques that can support functional dependencies acquisition and
can be added to the normalization process to make it more pragmatic.

13.4.2 Functional Dependency Acquisition

Given that the number of possible functional dependencies between n attrib-
utes is the function of n!, the acquisition of these dependencies is the bottle-
neck of the normalization process. A question-answering system becomes
useless without intelligent techniques to dramatically reduce the number of
questions for the users or designers. To deal with the combinatory aspect
of this problem, we present a panel of heuristics and techniques that reduce
the search space of functional dependencies.

Removing the Universal Relation Assumption

The universal relation assumption allows the definition of functional
dependencies in the absence of existing relations. In the case where the rela-
tional schema is derived from the conceptual schema by mapping rules, as we
will see in Section 13.4.3, there is no need to have this assumption. Indeed,
functional dependencies can be defined on first normal form (1NF) relations
that resulted from the transformation of the conceptual schema. Each of
these 1NF relations can be considered a universal relation over which func-
tional dependencies must be defined. The normalization algorithm will
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therefore be applied to each 1FN relation. All the design techniques used at
the conceptual level can be considered to be a method to define concepts.
Thanks to those conceptualization techniques, the search space of dependen-
cies is drastically reduced to the set of attributes of each relation.

Avoiding the Combination of Several Attributes

Although each 1NF relation has few attributes�say, fewer than 10 or 15�it
is not meaningful to consider dependencies where the left side is composed
of more than five or six attributes. Indeed, searching for functional depend-
encies is equivalent to searching keys for the decomposed relations, and it is
not practically manageable to have relation keys composed of more than five
or six attributes. Based on this hypothesis, the question-answering system
will not consider all the possible combinations of attributes but only those
built with fewer than five or six attributes. The gain is important, although
many combinations still remain as potential questions to ask. Obviously, five
or six attributes is a heuristic that can be chosen differently, depending on
each application. Inside a CASE tool, it should be a parameter the designer
sets before activating the acquisition process.

Applying Deduction Rules

As already mentioned in the discussion of conceptual modeling, several tech-
niques can be used to infer functional dependencies from other functional
dependencies and constraints. The following three approaches, if appropri-
ately used in the question-answering system, help avoid asking all the
questions that concern functional dependencies that can be automatically
derived, using the following sets of rules.

• Inference rules between dependencies stated by Armstrong [18] can
be used by the question-answering system to avoid asking questions
relative to all dependencies that could be deduced.

• Inference rules between independencies [19] are also a way to intro-
duce new rules that avoid asking questions for which the answer
can be automatically derived using the rules. For example, hav-
ing the functional dependency Y → Z and the functional indepen-
dency X ⁄→ Z, we can easily infer that the functional independency
X ⁄→ Y holds, too.

• Inference rules involving relation keys, attribute cardinalities, and
functional dependencies [6] can derive functional dependencies
from other knowledge such as attribute cardinalities (which specify
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whether a given attribute can take one or several values for the same
entity occurrence) and entity identifiers. For example, knowing that
Social Security numbers identify employees and knowing that each
employee has a single address, we can derive that the Social Security
number determines the employee�s address. We can use the same
key and cardinality constraints to infer independencies.

Combinations of all those inference rules reduce the number of potential
questions to ask the user, because answers to the questions can be automati-
cally derived.

Learning From Small Examples

Given a relation schema and a set of tuples for the relation, we can infer
from this example whether some functional independencies hold between
two different attributes. For example, from the extension of the relation in
Figure 13.14, we can easily derive that the following functional independen-
cies hold: {Author ⁄→ Title,Editor,Date; Title ⁄→ Author; Editor ⁄→ Title,
Author,Date}.

This technique is based on the idea that domain expert users are not
familiar with the concept of functional dependency, so example is one of the
different ways to acquire this knowledge.

Mining Dependencies From Existing Files or DBs

Many current DBs are built from legacy files or DBs, in which there exist not
only a small sample of tuples but most of the real-world images representing
the application. Exploiting huge amounts of real tuples cannot be done
by the simple techniques presented in the preceding paragraph. Advanced
techniques based upon data mining algorithms have already been suggested
in the literature [13]. While exploiting a few examples leads to discovering
independencies, mining a large number of instances aims to find valid
dependencies.
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Some mining algorithms search for approximate dependencies that are
functional dependencies that almost hold. Such dependencies arise in many
DBs when there is a natural dependency between attributes, but some rows
contain errors and missing data or represent exceptions to the integrity
constraints. Such cases occur frequently in legacy systems. Approximate
dependencies in the legacy system can be confirmed by the user as valid
dependencies for the ongoing application.

The combination of the previous techniques makes functional depend-
ency acquisition possible and the relational theory applicable to real
applications.

13.4.3 Mapping From Conceptual Schema to Logical Schema

Current design methodologies provide high-level conceptual models that
are either extended E/R models or object-oriented models. These models are
better suited to reducing the semantic distance between user perception and
the formal representation of that perception. However, no current DB sys-
tems support all the concepts provided in conceptual models. Consequently,
conceptual schemas are always transformed into logical models supported by
a class of DB systems. Next we discuss the transformation rules between an
extended E/R model and a relational model, and between an object-oriented
model and a relational model.

13.4.3.1 Mapping an Entity-Relationship Schema Into a Relational Schema

As a general rule, given an extended E/R model such as the one summarized
in Figure 13.4, one can say that any attribute of the conceptual level is an
attribute of the relational model, and any entity or relationship in the con-
ceptual level can be transformed as a relation in the relational model. How-
ever, conceptual attributes may be multivalued, while they are not in the
relational model. Entities and relationships may have complex attributes,
while relations have simple attributes. Conceptual schemas may contain
aggregation and generalization hierarchies, while relational schemas cannot.
Conceptual schemas have roles and cardinalities that are not supported by
the relational model. Then mappings between an extended E/R model and a
relational model are not direct mappings. There should first be some trans-
formations within the E/R model before direct transformations are applied.
We briefly summarize the two types of transformation and show how a
CASE tool can apply them with respect to a certain methodology.
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Intermediate Mapping Rules

Intermediate mappings constitute a set of rules that transform any E/R
schema into a canonical form in which any entity or relationship is in 1NF,
that is, any of their attributes is monovalued for each entity instance or rela-
tionship instance.

For example, an entity type having multivalued attributes should be
transformed using one of the two following rules:

• R1: If an attribute may take only a very few values, say, two or three,
the attribute is duplicated as many times as it has possible values.

• R2: If an attribute may take several values, it is represented as
an independent entity, related to the mother-entity by a binary rela-
tionship, generically named �has-a.� The cardinalities of this rela-
tionship are 1-N, where N is the maximum number of values that
the attribute may take in the mother-entity.

Figure 13.15 illustrates an application of these two rules. In the Book entity,
the attribute Author is multivalued but has a maximum of four authors,
while the attribute Chapter may have more than 10 values. Author attribute
is transformed using R1, while Chapter attribute is transformed using R2.

Other rules concern structured attributes. If the original E/R model
allows specification of structured attributes, the attributes have to be trans-
formed using one of the following two rules:

474 Advanced Database Technology and Design

Book

Title
Authors:set of name
Chapters:set of string

Book

Title
Author1
Author2
Author3
Author4

Book-chapters

Chapter-title

Has-a
1-N

1-1

Rule R1

Rule R2

Figure 13.15 Eliminating multivalued attributes.



• R3: Each structured attribute in an entity (or a relationship) should
be unnested in such a way that only primitive attributes are visible in
the entity type. Intermediate names are missed.

• R4: Each structured attribute in an entity is transformed into an
independent entity related to the mother-entity by a binary relation-
ship, generically named �has-a.� The cardinalities of this relation-
ship are those of the complex attribute in the original mother-entity.

Figure 13.16 illustrates an application of these rules. The Address attribute
has been unnested in the Editor entity. The Bookstore�s attributes have been
defined as an entity related to Editor.

Other intermediate mapping rules concern the homogenization of spe-
cialization hierarchies to make them complete and not overlapping.

Given that the conceptual schema is in a canonical form after these
transformations, the remaining mappings are direct mappings to the rela-
tional model.

Direct Mappings

Each entity in the conceptual schema is a candidate to become a 1NF rela-
tion in the logical schema. However, relationships and generalization hierar-
chies also have to be transformed. Transforming relationships can be done by
applying one of the following two rules:

• R5: If the conceptual relationship is a binary relationship and one of
its roles has a 1-1 cardinality, it can be transformed into a reference
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Editor

Name
Address:[Nb,Str,City]
Bookstores:Set of [Name,City]

Editor
Name
Nb
Str
City

Bookstores
Name
City

Has-a
1-N

1-1

Rule R3

Rule R4

Figure 13.16 Eliminating complex attributes.



in the relational schema, that is, a link represented by a foreign key
from the referencing entity (the one whose role cardinality is 1-1) to
the other. Possible attributes of the relationship are transferred to
the referencing entity.

• R6: Any conceptual relationship can be transformed into a relation
in the logical schema. This relation references all the participating
entities.

Generalization hierarchies are not supported by the relational model. There
are different ways to represent them, specified in the following three rules:

• R7: Given a generalization hierarchy of conceptual entities, each
entity of this hierarchy is a candidate to become a base relation in
the logical level. Generalization links between these conceptual enti-
ties are represented by references from specialized entities to the
generic entity.

• R8: Given a hierarchy of conceptual entities, only specialized entities
are candidates to become base relations. The generic entity is
defined as a view computed by the union of the previous relations.
This rule assumes that the generalization hierarchy is complete, that
is, each generic instance is also an instance of one of the specialized
entities.

• R9: Given a hierarchy of conceptual entities, only the generic entity
is a candidate to be a base relation. Specialized entities are repre-
sented as views, computed by a selection on the base relation. This
selection assumes that a new attribute, generically named �role,� is
defined in the base relation such that its domain is composed of the
names of the specialized entities.

Figure 13.17 illustrates a successive application of those three rules to the
same generalization hierarchy.

13.4.3.2 Mapping a Conceptual Object-Oriented Schema Into a
Relational Schema

The difference between an extended E/R model, such as the one defined
in Figure 13.4, and an object-oriented model, as defined in OMT [35] and
UML [2], is mainly the addition of operations on entities and relationships,
and messages between objects. Consequently, the structural mapping
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between an object-oriented model to a relational model is similar. We just
add a few rules concerning the behavioral aspect.

In the relational model, the behavioral aspect of applications is rep-
resented through direct queries, embedded queries within a programming
language, DB procedures, and triggers. They may also be simply integrated
within application programs. A flexible approach is to gather the behavioral
aspect within a front end between the DB system and user applications (see
Figure 13.18). This solution permits a better isolation of shared behavior and
allows for the evolution of the behavior without changing the DB schema
and user applications. The front end also allows the application of some opti-
mization techniques that cannot be used for sparse triggers.

13.4.3.3 CASE Support of the Mapping Process

We have seen some of the mapping rules that can transform a conceptual
schema into a logical schema. For a given schema, there are often several can-
didate rules to apply. The choice among these rules is based upon heuristics,
which are derived from the expertise acquired in conceptual modeling, and
upon the needs of specific applications.

For example, R1 applies when the number of attribute values is small.
This is general knowledge in logical modeling, but the number of values
under which R1 instead of R2 is applied may vary from one application to
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Figure 13.17 Transforming generalization hierarchies.
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Figure 13.18 Behavioral front end to represent object behavior in the relational context.



another, although R1 suggests two or three values. Similarly, R3 and R4
apply concurrently to the same situation. The decision whether R3 should
apply instead of R4 depends on the designer�s perception. If the structured
attribute has a meaning as a whole with respect to the application, then R4
applies. Otherwise, if nested attributes are of the same importance as non-
nested attributes, R3 applies.

Regarding R5 and R6, R6 is more generic and applies to every situa-
tion. However, R5 is relevant when there is no need to multiply the number
of relations and when the conditions in which it applies hold.

Similarly, R7 applies for any generalization hierarchy. However, apply-
ing this rule leads to a complex management of update propagation. Indeed,
each time an instance is created for a generic entity, it must be created for one
of its specializations and vice versa. If one wants to avoid the control of this
update propagation, R8 and R9 are relevant. However, R9 cannot be applied
without a loss of information in the case where specialized entities have their
own attributes or relationships. Applying this rule must then be preceded by
a kind of generalization of all the properties of the specialized entities. This
assumes that for every generalized attribute or relationship, there is a corre-
sponding rule that controls its instantiation in the generic entity. This is a
quite complex specification. Consequently, R9 applies only when specialized
entities have few specific properties. Rule R8 applies provided inheritance
of the generic properties has been done before. Besides the arbitrary choice
among these three rules, there is another strategy to define: scanning gener-
alization hierarchies can be done by starting from the root or from the leaves.

In the case of an object-oriented schema, the behavioral aspect is also
transformed using some know-how in DB modeling and heuristics, which
capture user needs and DB administration needs. Figure 13.19 shows a pos-
sible architecture for a mapping tool.
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This discussion has shown that the mapping process from the concep-
tual level to the logical level, although based on a few simple rules, is actually
driven by some extra knowledge, which can be modeled as parameters or
metarules, precisely instantiated for each class of applications. This knowl-
edge can also be obtained through a dialogue between the designer and the
CASE tool during each design session.

13.4.4 Concluding Remarks on the Logical Design

In spite of the high-level formalization of the relational model, the definition
of normalization algorithms, and the specification of a good set of mapping
rules, logical design remains complex and characterized by a high level of
expertise. Acquisition of functional dependencies, as well as heuristics to
choose mapping rules, necessitates advanced skills in DB modeling, a
good understanding of the user requirements, and a good intuition of the
administration problems.

As for the conceptual modeling, logical modeling does not produce a
unique solution. Depending on the different technical choices and on the
decisions taken by the designer, several logical schemas may represent the
information system DB. CASE tools help in combining formal knowledge,
domain knowledge, and heuristics in the same methodological environment.

13.5 Summary

This chapter gave a global overview of CASE tool functionalities and showed
the main features of specific DB CASE tools. We focused this study on those
functionalities that capture as much as possible the design expertise, in order
to demonstrate that CASE tools do not concentrate solely on metadata man-
agement or graphical editing. All of the functionalities presented and many
other techniques have been successively tested in the SECSI and Kheops
projects [6, 36, 37]. The industrial use of SECSI has shown the contribution
and the pertinence of such intelligent functionalities. But it has also shown
that many designers use only the passive parts of this tool, because they con-
tinue to think that while CASE tools may provide nice graphical editors and
code generators, the creative activity still remains on their hands.

The study in this chapter is not exhaustive; many other possible tools
can be built. Physical design is a hard problem that needs computer support
as well as DB maintenance and tuning. Physical design depends upon several
parameters, some of which characterize the DB workload, others which
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characterize the DB system and the hardware environment. Denor-
malization, replication, partitioning, and index selection are some of the
main techniques used to optimize a physical DB schema. But while there is a
precise theory for normalization, denormalization and physical design in
general use empirical approaches. Knowledge of DB systems, of software and
hardware environments, and of the evolution of users� needs is the base
knowledge used to select a good DB implementation.

Modern applications such as data warehousing, World Wide Web
information systems, workflows, mobile DBs, and multimedia DBs intro-
duce a high degree of complexity to the design and increase the need for
powerful design aids. CASE tools that deal with view materialization, multi-
dimensional data, semistructured data, and audio and video data are still far
from being a reality in the marketplace, although strong research efforts have
been invested in these areas. Active rules, design patterns, reusable libraries,
and formal specification languages will certainly be the main ingredients that
make up the next generation of CASE tools.
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Database Quality

Mario Piattini, Marcela Genero, Coral Calero, Macario Polo,
and Francisco Ruiz

14.1 Introduction

IS quality is one of the most pressing challenges facing organizations today.
Global, national, even local enterprises are driven by information. Many
companies have discovered how critical information is to the success of their
businesses. Yet few companies have effective ways of managing the quality of
that information, which is so important to their competitiveness.

DBs have become the essential core of ISs; therefore, their quality must
be improved as much as possible to guarantee successful ISs.

Because of the growing complexity of ISs, continuous attention to and
assessment of DB quality throughout the development process are necessary
to produce quality systems [1]. Commitment to quality in software develop-
ment is essential both to satisfy customers and to improve the productivity of
the development process [2].

Consider what we mean by the term quality. There is a bewildering
range of formal and informal definitions available [3]. Some of the most sig-
nificant ones are shown in Table 14.1.

Quality is a relative concept in that the importance of different features
varies among designers and over time. It is therefore important that any
approach to the evaluation of data models recognizes these differences and
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allows different features to be weighted according to the context or situation
under consideration.

We also have to take into account the distinction between product
quality and process quality (see Figure 14.1):
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Table 14.1
Definitions of Quality

Author Definition of Quality

Crosby [4] �Conformance to requirements�

Juran [5] �Fitness for purpose�

ISO [6] �The totality of features and characteristics of a product or service
that bear on its ability to satisfy specified or implied needs�

English [7] �Consistently meeting customers� expectations�
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• Product quality focuses on the characteristics of the product itself.
The approach is to carry out inspections of the finished product,
look for defects, and correct them.

• Process quality focuses on the characteristics of the process used to
build the product. The focus of process quality lies on defect preven-
tion rather than detection and aims to reduce reliance on mass
inspections as a way of achieving quality [8].

In the context of DBs, product quality relates to characteristics of the
data model and the data itself (the product), while process quality relates to
how data models are developed and how the data are collected and loaded
(the process). This chapter focuses on product quality.

We refer to information quality in a wide sense as comprising DB sys-
tem quality and data presentation quality (see Figure 14.2). In fact, it is
important that data in the DB correctly reflect the real world, that is, the data
are accurate. It is also important for the data to be easy to understand. In DB
system quality, three different aspects could be considered: DBMS quality,
data model quality (both conceptual and logical), and data quality.

This chapter deals with data model quality and data quality. To assess
DBMS quality, we can use an international standard like IS 9126 [9], or
some of the existing product comparative studies (e.g., [10] for ODBMS
evaluation).

Unfortunately, until a few years ago, quality issues focused on software
quality [3, 9, 11�14], disregarding DB quality [15]. Even in traditional DB
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design, quality-related aspects have not been explicitly incorporated [16].
Although DB research and practice have not been focused traditionally on
quality-related subjects, many of the developed tools and techniques (integ-
rity constraints, normalization theory, transaction management) have influ-
enced data quality. It is time to consider information quality as a main goal
to achieve, instead of a subproduct of DB creation and development
processes.

Most of the works for the evaluation of both data quality and data
model quality propose only lists of criteria or desirable properties without
providing any quantitative measures. The development of the properties is
usually based upon experience in practice, intuitive analysis, and reviews of
relevant literature. Quality criteria are not enough on their own to ensure
quality in practice, because different people will generally have different
interpretations of the same concept. According to the total quality manage-
ment (TQM) literature, measurable criteria for assessing quality are necessary
to avoid �arguments of style� [17]. Measurement is also fundamental to
the application of statistical process control, one of the key techniques of
the TQM approach [8]. The objective should be to replace intuitive notions
of design �quality� with formal, quantitative measures to reduce subjectivity
and bias in the evaluation process. However, defining reliable and objective
measures of quality in software development is a difficult task.

This chapter is an overview of the main issues relating to the assessment
of DB quality. It addresses data model quality and also considers data (val-
ues) quality.

14.2 Data Model Quality

A data model is a collection of concepts that can be used to describe a set of
data and operations to manipulate the data. There are two types of data mod-
els: conceptual data models (e.g., E/R model), which are used in DB design,
and logical models (e.g., relational, hierarchy, and network models), which
are supported by DBMSs. Using conceptual models, one can build a descrip-
tion of reality that would be easy to understand and interpret. Logical mod-
els support data descriptions that can be processed by a computer through a
DBMS. In the design of DBs, we use conceptual models first to produce
a high-level description of the reality, then we translate the conceptual model
into a logical model.

Although the data modeling phase represents only a small portion
of the overall development effort, its impact on the final result is probably

488 Advanced Database Technology and Design



greater than that of any other phase [18]. The data model forms the foun-
dation for all later design work and is a major determinant of the quality of
the overall system design [19, 20]. Improving the quality of the data model,
therefore, is a major step toward improving the quality of the system being
developed.

The process of building quality data models begins with an under-
standing of the big picture of model quality and the role that data models
have in the development of ISs.

There are no generally accepted guidelines for evaluating the quality
of data models, and little agreement even among experts as to what makes
a �good� data model [21]. As a result, the quality of data models pro-
duced in practice is almost entirely dependent on the competence of the data
modeler.

When systems analysts and users inspect different data models from
the same universe of discourse, they often perceive that some models are, in
some sense, better than others, but they may have difficulty in explaining
why. Therefore an important concern is to clarify what is meant by a �good�
data model, a data model of high quality.

Quality in data modeling is frequently defined as a list of desirable
properties for a data model [22�27]. By understanding each property and
planning your modeling approach to address each one, you can significantly
increase the likelihood that your data models will exhibit characteristics that
render them useful for IS design. The quality factors are usually based on
practical experience, intuitive analysis, and reviews of relevant literature.
Although such lists provide a useful starting point for understanding and
improving quality in data modeling, they are mostly unstructured, use
imprecise definitions, often overlap, often confuse properties of models with
language and method properties, and often have goals that are unrealistic or
even impossible to reach [28].

Expert data modelers intuitively know what makes a good data model,
but such knowledge can generally be acquired only through experience. For
data modeling to progress from a craft to an engineering discipline, the desir-
able qualities of data models need to be made explicit [22]. The conscious
listing (or bringing to the surface) of those qualities helps to identify areas on
which attention needs to be focused. This can act as a guide to improve the
model and explore alternatives. Not only is the definition of quality factors
important to evaluate data models, but we also have to consider other ele-
ments that allow any two data models, no matter how different they may be,
to be compared precisely, objectively, and comprehensively [29]. So, in this
chapter, we propose and describe the following elements: quality factors,
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stakeholders, quality concepts, improvement strategies, quality metrics, and
weightings.

14.2.1 Quality Factors

In the literature related to quality in data modeling, there exist a lot of quality
factors definitions. We list here the more relevant ones:

• Completeness. Completeness is the ability of the data model to meet
all user information and functional requirements.

• Correctness. Correctness indicates whether the model conforms to
the rules of the data modeling technique in use.

• Minimality. A data model is minimal when every aspect of the
requirements appears once in the data model. In general, it is better
to avoid redundancies.

• Normality. Normality comes from the theory of normalization asso-
ciated with the relational data model; it aims at keeping the data in a
clean, �purified� normal form.

• Flexibility. Flexibility is defined as the ease with which the data
model can be adapted to changes in requirements.

• Understandability. Understandability is defined as the ease with
which the concepts and structures in the data model can be under-
stood by users of the model.

• Simplicity. Simplicity relates to the size and complexity of the data
model. Simplicity depends not on whether the terms in which
the model is expressed are well known or understandable but on the
number of different constructs required.

While it is important to separate the various dimensions of value from the
purposes of analysis, it is also important to bear in mind the interactions
among qualities. In general, some objectives will interfere or conflict with
each other; others will have common implications, or concur; and still others
will not interact at all.

14.2.2 Stakeholders

Stakeholders are people involved in building or using the data model�there-
fore, they have an interest in its quality. Different stakeholders will generally
be interested in different quality factors.
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Different people will have different perspectives on the quality of a data
model. An application developer may view quality as ease of implementation,
whereas a user may view it as satisfaction of requirements. Both viewpoints
are valid, but they need not coincide. Part of the confusion about which is
the best model and how models should be evaluated is caused by differences
between such perspectives.

The design of effective systems depends on the participation and satis-
faction of all relevant stakeholders in the design process. An important con-
sideration, therefore, in developing a framework for evaluating data models is
to consider the needs of all stakeholders. This requires identification of the
stakeholders and then incorporation of their perceptions of �value� for a data
model into the framework.

The following people are the key stakeholders in the data modeling
process.

• Users. Users are involved in the process of developing the data model
and verifying that it meets their requirements. Users are interested in
the data model to the extent that it will meet their current and
future requirements and that it represents value for money.

• DB designer. The DB designer is responsible for developing the data
model and is concerned with satisfying the needs of all stakeholders
while ensuring that the model conforms to rules of good data mod-
eling practice.

• Application developer. The application developer is responsible for
implementing the data model once it is finished. Application devel-
opers will be primarily concerned with the fact that the model can
be implemented given time, budget, resource, and technology
constraints.

• Data administrator. The data administrator is responsible for ensur-
ing that the data model is integrated with the rest of the organization
data. The data administrator is primarily concerned with ensuring
data shareability across the organization rather than the needs of spe-
cific applications.

All these perspectives are valid and must be taken into consideration during
the design process. The set of qualities defined as part of the framework
should be developed by coalescing the interests and requirements of the vari-
ous stakeholders involved. It is only from a combination of perspectives that
a true picture of data model quality can be established.
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14.2.3 Quality Concepts

It is useful to classify quality according to Krogstie�s framework [30] (see
Figure 14.3).

Quality concepts are defined as follows:

• Syntactic quality is the adherence of a data model to the syntax rules
of the modeling language.

• Semantic quality is the degree of correspondence between the data
model and the universe of discourse.

• Perceived semantic quality is the correspondence between stakehold-
ers� knowledge and the stakeholders� interpretation.

• Pragmatic quality is the correspondence between a part of a data
model and the relevant stakeholders� interpretation of it.

• Social quality has the goal of feasible agreement among stakeholders,
where inconsistencies among various stakeholders� interpretations
of the data model are solved. Relative agreement (stakeholders�
interpretations may differ but remain consistent) is more realistic
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than absolute agreement (all stakeholders� interpretations are the
same).

Each quality concept has different goals that must be satisfied. If some of
those goals are not attained, we can think about an improvement strategy.

14.2.4 Improvement Strategies

An improvement strategy is a process or activity that can be used to increase
the value of a data model with respect to one or more quality factors. Strate-
gies may involve the use of automated techniques as well as human judgment
and insight.

Rather than just simply identifying what is wrong with a model or
where it could be improved, we need to identify methods for improving
the model. Of course, it is not possible to reduce the task of improving data
models to a mechanical process, because that requires invention and insight,
but it is useful to identify general techniques that can help improve the qual-
ity of data models.

In general, an improvement strategy may improve a data model on
more than one dimension. However, because of the interactions between
qualities, increasing the value of a model on one dimension may decrease its
value on other dimensions.

14.2.5 Quality Metrics

Quality metrics define ways of evaluating particular quality factors in
numerical terms. Developing a set of qualities and metrics for data model
evaluation is a difficult task. Subjective notions of design �quality� are not
enough to ensure quality in practice, because different people will have
different interpretations of the same concept (e.g., understandability).

A metric is a way of measuring a quality factor in a consistent and
objective manner. It is necessary to establish metrics for assessing each quality
factor. Software engineers have proposed a plethora of metrics for software
products, processes, and resources [31, 32]. Unfortunately, almost all the
metrics proposed since McCabe�s cyclomatic number [33] until now have
focused on program characteristics, without paying special attention to DBs.

Metrics could be used to build prediction systems for DB projects [34],
to understand and improve software development and maintenance projects
[35], to maintain the quality of the systems [36], to highlight problematic
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areas [37], and to determine the best ways to help practitioners and research-
ers in their work [38].

It is necessary that metrics applied to a product be justified by a clear
theory [39]. Rigorous measurement of software attributes can provide sub-
stantial help in the evaluation and improvement of software products and
processes [40, 41]. Empirical validation is necessary, not only to prove the
metrics� validity but also to provide some limits that can be useful to DB
designers. However, as DeChampeaux remarks, we must be conscious that
�associating with numeric ranges the qualifications good and bad is the hard
part� [37].

To illustrate the concept of quality metrics, this section shows some
metrics that measure the quality factor of simplicity, as applied to E/R mod-
els. All the metrics shown here are based on the concept of closed-ended met-
rics [42], since they are bounded in the interval [0,1] which allows data
modelers to compare different conceptual models on a numerical scale.
These metrics are based on complexity theory, which defines the complexity
of a system by the number of components in the system and the number of
relationships among the components. Because the aim is to simplify the E/R
model, the objective will be to minimize the value of these metrics.

• The RvsE metric measures the relation that exists between the
number of relationships and the number of entities in an E/R
model. It is based on MRPROP metric proposed by Lethbridge [42].
We define this metric as follows:

RvsE
N

N N

R

R E=
+







2

where NR is the number of relationships in the E/R model, NE is
the number of entities in the E/R model, and NR + NE > 0.

When we calculate the number of relationships (NR), we also
consider the IS_A relationships. In this case, we take into account
one relationship for each child-parent pair in the IS_A relationship.

• The DA metric is the number of derived attributes that exist in the
E/R model, divided by the maximum number of derived attributes
that may exist in an E/R model (all attributes in the E/R model
except one). An attribute is derived when its value can be calculated
or deduced from the values of other attributes. We define this metric
as follows:
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where NDA is the number of derived attributes in the E/R model,
NA is the number of attributes in the E/R model, and NA > 1.

When we calculate the number of attributes in the E/R model
(NA), in the case of composite attributes we consider each of their
simple attributes.

• The CA metric assesses the number of composite attributes com-
pared with the number of attributes in an E/R model. A composite
attribute is an attribute composed of a set of simple attributes. We
define this metric as follows:

CA
N

N

CA

A=

where NCA is the number of composite attributes in the E/R model,
NA is the number of attributes in the E/R model, and NA > 0.

When we calculate the number of attributes in the E/R model
(NA), in the case of composite attributes we regard each of their
simple attributes.

• The RR metric is the number of relationships that are redundant in
an E/R model, divided by the number of relationships in the E/R
model minus 1. Redundancy exists when one relationship R 1

between two entities has the same information content as a path of
relationships R 2, R 3, …, R n connecting exactly the same pairs of
entity instances as R 1. Obviously, not all cycles of relationships are
sources of redundancy. Redundancy in cycles of relationships
depends on meaning [22]. We define this metric as follows:

RR
N

N

RR

R=
= 1

where NRR is the number of redundant relationships in the E/R
model, NR is the number of relationships in the E/R model, and
NR > 1.

When we calculate the number of relationship (NR), we also
consider the IS_A relationships. In this case, we consider one
relationship for each child-parent pair in the IS_A relationship.
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• The M:NRel metric measures the number of M:N relationships com-
pared with the number of relationships in an E/R model. We define
this metric as follows:

M N l
N

N

M NR

R: Re
:

=

where N M:NR is the number of M:N relationships in the E/R
model, NR is the number of relationships in the E/R model, and
NR > 0.

When we calculate the number of relationships (NR), we also
consider the IS_A relationships. In this case, we think over one
relationship for each child-parent pair in the IS_A relationship.

• The IS_ARel metric assesses the complexity of generalization/spe-
cialization hierarchies (IS_A) in one E/R model. It is based on the
MISA metric defined by Lethbridge [42]. The IS_ARel metric com-
bines two factors to measure the complexity of the inheritance hier-
archy. The first factor is the fraction of entities that are leaves of the
inheritance hierarchy. That measure, called Fleaf, is calculated thus:

Fleaf
N

N

Leaf

E=

where NLeaf is the number of leaves in one generalization or
specialization hierarchy, NE is the number of entities in each
generalization or specialization hierarchy, and NE > 0.

Figure 14.4 shows several inheritance hierarchies along with
their measures of Fleaf. Fleaf approaches 0,5 when the number of
leaves is half the number of entities, as shown in Figure 14.4(c) and
(d). It approaches 0 in the ridiculous case of a unary tree, as shown
in Figure 14.4(c), and it approaches 1 if every entity is a subtype of
the top entity, as shown in Figure 14.4(d). On its own, Fleaf has
the undesirable property that, for a very shallow hierarchy (e.g., just
two or three levels) with a high branching factor, it gives a
measurement that is unreasonably high, from a subjective
standpoint; see Figure 14.4(a). To correct that problem with Fleaf,
an additional factor is used in the calculation of the IS_ARel
metric: the average number of direct and indirect supertypes per
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nonroot entity, ALLSup (the root entity is not counted because it
cannot have parents).

The IS_ARel metric is calculated using the following formula:

IS A l Fleaf
Fleaf

ALLSup
_ Re = −

This metric assesses the complexity of each IS_A hierarchy. The
overall IS_ARel complexity is the average of all the IS_ARel
complexities in the E/R model.

Table 14.2 summarizes the meaning of the values of the proposed
closed-ended metrics. Columns indicate the interpretation of measurements
at the extremes of that range and in the middle.

Now we will apply the outlined metrics to the example shown in
Figure 14.5, taken from [43].

Table 14.3 summarizes the values of the metrics calculated for the
example in Figure 14.5.
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The Kiviat diagram shown in Figure 14.6 is a graphical representation
of the values of the metrics shown in Table 14.3 This diagram is useful
because it allows designers to evaluate the overall complexity of an E/R
schema at a glance. It also serves to compare different conceptual schemas
and then to improve their quality.
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Table 14.2
An Interpretation of Measurements

Metrics tends to 0 when… tends to 0,5 when… tends to 1 when…

RvsE No relationships or very
few relationships

2,5 relationships per
entity

Very many relationships per
entity

DA No derived attributes Half of attributes are
derived

All attributes except one are
derived

CA No composite
attributes

Half of attributes are
composite

All attributes are composite

RR No redundant
relationships

Half of relationships are
redundant

All relationships are redundant
(impossible in practice)

M:NRel No M:N relationships Half of relationships are
M:N

All relationships are M:N

IS_ARel Each subtype has about
one parent

All IS_A hierarchies are
binary trees

Very bushy tree: a complex
hierarchy with multiple
inheritance

Table 14.3
Values of the Metrics for the Example in Figure 14.5

Metrics Values

RvsE 0.5357

DA 0.0740

CA 0.1071

RR 0

M:NRel 0.0666

IS_ARel 0.2975
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14.2.6 Weighting

Weighting defines the relative importance of different quality factors in a
particular problem environment. It is impossible to say in absolute terms that
one data model is better than another, irrespective of context. Values can be
assessed only in the light of project goals and objectives. If the system under
development will be used as a basis for competing in the marketplace (e.g., a
product development system), then flexibility will be paramount. If the sys-
tem is used internally and the requirements are stable (e.g., a payroll system),
then flexibility will be less important. The concept of weightings helps to
define what is important and what is not important in the context of the
project.

Finding the best representation generally involves tradeoffs among
different qualities, and an understanding of project priorities is essential to
making those tradeoffs in a rational manner. Depending on users� needs, the
importance of different qualities will vary greatly from one project to
another. Weightings provide the means to explicitly incorporate user priori-
ties into the evaluation process. An understanding of the relative importance
of different quality dimensions can highlight those areas where improvement
efforts will be most useful. The project team should come to a common
understanding of what is most important to the user as early as possible in
the modeling process. Ideally, the user sponsor should define the weightings
prior to any data modeling taking place. Analysts can then focus their efforts
on maximizing quality in the areas of highest value to the customer.
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14.3 Data Quality

DB quality has to deal not only with the quality of the DB models but also
with the quality of the data values. There are different relevant dimensions
for data quality values, as listed next.

• Accuracy sometimes reflects the nearness of the data values to the val-
ues considered �correct.� Obviously, the problem in this dimension
is that correct values are not always known, making it difficult to
quantify accuracy.

• Completeness refers to the portion of the values (of the real world)
that are present in the DB. DB null values reflect sometimes
unknown values.

• Currency reflects the degree to which data are up to date. There is
an inevitable lag between when a data value changes and when it is
updated in the DB.

• Value consistency means that values do not contradict each other.
Consistency is a crucial factor for decision making.

All these and other dimensions (e.g., [44]) help to measure data quality.
Three different types of measures can be distinguished [45].

• Subjective measures depend upon the subjective assessment of data
quality, for example, expressed using a questionnaire with a Likert-
type scale from 0 to 7, where 0 indicates �not at all� and 7 �com-
pletely� for each question as �The data are correct.�

• Objective, application-independent measures, for example, in rela-
tional DB systems can measure the number of violations of referen-
tial integrity present in the DB.

• Objective, application-dependent measures require domain expert par-
ticipation (the percentage of incorrect addresses in the DB).

Several aspects should be addressed by companies in order to achieve good
data quality and have �good� marks in these measures: management respon-
sibilities, operation and assurance costs, research and development, produc-
tion, distribution, personnel management, and legal functions [46]. This
section makes reference to only two of them: management and design issues.
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14.3.1 Management Issues

Companies must, on the one hand, define a quality policy that establishes
the duties of each function to ensure data quality in all its dimensions. But
on the other hand, they must implement an information quality assessment
process.

Regarding the first issue, Redman [47] has proposed a policy covering
four types of roles that can be summed up in five points:

• All the employees of the company have to assume that data, infor-
mation, and the business processes that create, store, process, and
use data are company properties. Data sharing must be restricted to
legal or privacy considerations.

• The chief information officer (CIO) will be responsible for keeping
an updated data inventory and its availability and for informing oth-
ers about data quality.

• Data providers and creators both need to understand who uses data
and for what purpose. They can then implement data quality meas-
ures to ensure that users� requirements are fulfilled, and implement
data process management.

• People who store and process data must provide architectures and
DBs that minimize unnecessary redundancy, save data from
damages or unauthorized access, and design new technologies to
promote data quality.

• Users must work with data providers�providing feedback, ensuring
that data are interpreted correctly and used only for legitimate com-
pany purposes, and protecting clients� and employees� privacy rights.

The data quality policy must be developed by top management and be
aligned with the overall quality policy and system implemented in the
organization. The CIO�s role will become increasingly important in the
assurance of the organization�s information quality. Miller [48] poses four
interesting questions about information quality that must be answered by
the heads of information technology (IT):

• Are yesterday�s perceptions of our quality needs still valid?

• How do quality needs translate into technology requirements?

• Is our technology strategy consistent with our quality needs?
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• Do internal information collection, dissemination, and verification
procedures measure up to quality requirements?

Data quality training and awareness programs must be carried out jointly
with the data quality policy. Personnel involvement is a prerequisite to qual-
ity program success.

In addition, an information quality assessment process must be imple-
mented. English [49] puts forward a methodology called TQdM (Total
Quality data Management), which allows the assessment of an organization�s
information quality. The methodology consists of the following steps:

1. Identify an information group that has a significant impact in order
to give more added value.

2. Establish objectives and measures for information quality, for
example, assess the information timeliness and measure the span
that passes from when a datum is known until it is available for a
specific process.

3. Identify the �information value and cost chain,� which is an
extended business value chain focused on a data group. This chain
covers all the files, documents, DBs, business processes, programs,
and roles related to the data group.

4. Determine the files or processes to assess.

5. Identify the data validation sources to assess data accuracy.

6. Extract random samples of data, applying appropriate statistical
techniques.

7. Measure information quality to determine its reliability level and
discover its defaults.

8. Interpret and inform others about information quality.

A crucial aspect for carrying out this process is the definition of significant
metrics that allow for the analysis and improvement of quality. In [45], three
kinds of metrics are given: subjective (based on user opinion about
data); objective, application-independent (e.g., accuracy); and objective,
application-dependent (specific to a particular domain).

Companies must also measure the value of the information, both infor-
mation produced by operational systems and information produced by
decision-support systems. The way of measuring both kinds of information
varies considerably. In Due [50], three different approaches (normative,

Database Quality 503

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



realistic, and subjective) to the measurement of decision support systems
information can be found.

14.3.2 Design Issues

Unfortunately, few proposals consider data quality to be a crucial factor in
the DB design process. Works like [17] and [51] are the exception in this
sense. The authors of these works provide a methodology that complements
traditional DB methodologies (e.g., [22]). At the first stage of this methodol-
ogy (see Figure 14.7), in addition to creating the conceptual schema using,
for example, an extended E/R model, we should identify quality require-
ments and candidate attributes. Thereafter, the �quality parameter view�
must be determined, associating a quality parameter with each conceptual
schema element (entity, relationship, …). For example, for an academic
mark, two parameters can be accuracy and timeliness. Next, subjective
parameters are objectified by the addition of tags to conceptual schema
attributes. For example, for the academic mark we can add the source of the
mark (to know its accuracy) and the date (to know its timeliness). Finally,
different quality views are integrated.
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These authors also propose to extend relational DBs with indicators,
allowing the assignment of objective and subjective parameters to the quality
of DB values [51]. For example, in Table 14.4, for each DB value, the source
and the date of the data are stored. The source credibility should be known
(e.g., in the case of the Department of Education, it could be �high�) to help
�knowledge workers� in making decisions.

14.4 Summary

If we really consider information to be �the� main organizational asset, one
of the primary duties of IT professionals must be ensuring its quality. Tradi-
tionally, the only indicator used to measure the quality of data models has
been normalization theory; Gray [52], for example, has proposed a normali-
zation ratio for conceptual schemas.

This chapter presented some elements for characterizing and ensuring
DB quality. Further research about quality in conceptual modeling can be
found in [23, 29, 31, 53�58]. More research is necessary on this subject as
well as on the quality of the associated processes: data modeling, data pro-
curement and load, and data presentation.

For data modeling to progress from a craft to an engineering discipline,
formal quality criteria and metrics need to be explicitly defined [30]. We
affirm that in the next decade information quality will be an essential factor
for company success, in the same way as product and service have been in the
past. In this sense, measuring data and data model quality will become
increasingly important, and more metrics need to be researched. As in other
aspects of software engineering, proposing techniques, metrics, or procedures
is not enough; it is also necessary to put them under formal and empirical
validation to ensure their utility.

Database Quality 505

Table 14.4
Table Extended With Quality Indicators

Student Secondary School Final Mark Entrance Examination Mark

William Smith 8
<30/10/90, Education Ministry>

7
<30/7/95, UCLM Univ.>

Gene Hackman 9
<30/10/90, Education Ministry>

6
<10/9/96, UCLM Univ.>

… …
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Component DBMSs (CDBMSs) (continued)
extensions, 409
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secure, 20, 353�99
semantic, 19
snapshot, 137�38
temporal, 19, 137�87
Web, 13

Database technology
dimensions in evolution of, 15
evolution and trends, 3�22
maturity of, 20�22
synergy, 22

Data definition language (DDL), 5, 100
Datalog

in deductive DBs, 100
defined, 92

DATAMAN group, 331
Data manipulation language (DML), 5
Data model quality, 488�500

concepts, 492�93
factors, 490
improvement strategies, 493
metrics, 493�500
process, 489
stakeholders, 490�91
weighting, 500

Data quality, 501�5
design issues, 504�5
management issues, 502�4
measurement types, 501
policy, 502
value dimensions, 501
See also Quality

Data warehousing (DW), 14�15
DB2

authorities, 374
DAC in, 374
privileges, 374

DB administrators (DBA), 17
administration, 360�61
in federated multi-DBMS, 294
multiple, 294
role, 17

DB-Main, 468
DB management systems (DBMSs).

See Databases
DBTG model, 5
Deadlocks, 318�19

Index 521



Decision support systems (DSS), 20
Decomposition, 177�81, 183

horizontal, 177�79
vertical, 179�81

Deduction rules, 471�72
Deductive databases, 20, 22, 91�131

base predicates, 100
basic concepts of, 93�102
Datalog, 92, 100
defined, 91�92, 93�96
derived predicates, 101
historical perspective, 92
interpretation, 96
introduction to, 91�93
prototype summary, 129
query processing, 102�8, 128
relational databases vs., 100�102
semantics of, 96�98
stratified, 98
summary, 130�31
system prototypes, 128�30
update processing, 108�28, 130
views in, 98

Deductive rules, 92
existential, translation of, 116�17
intensional information definition, 94
representation, 94
See also Databases

DELETE operator, 175, 176
Denials, 94
Derivation rules, 45�46

defined, 45
inclusion of, 46
in practice, 46

Dictionary type, 241
Digital cellular networks, 334�35
Digital libraries (DLs), 394�96

content-based access control to
multimedia, 395

copying and usage, 396
distributed, 395�96
flexible subject specification

mechanism, 394�95
Digital publication, 14
Direct mappings, 475�76
Disconnections, mobile computing, 337

Discretionary access control
(DAC), 356�59, 362�75

authorization models, 363�72
in commercial DBMSs, 370�75
content-based authorizations, 359
DB2, 374
explicit and implicit

authorizations, 357�58
GemStone, 374�75
Oracle, 370�73
positive and negative

authorizations, 356�57
strong and weak authorizations, 357
TRUDATA, 385
See also Access control

Distributed commit, 319�22
three-phase, 321�22
two-phase, 319�21

Distributed Common Object Model
(DCOM), 12

Distributed concurrency control, 316�19
deadlocks, 318�19
locks, 316�18
two-phase locking, 316

Distributed databases, 22, 291�325
alternative transaction models, 323�24
architecture, 293�300
architecture taxonomy, 293
areas, 17
bottom-up design, 301, 307�10
client/server system, 300
data fragmentation, 301�4
data independence, 299�300
data replication, 304
defined, 291
design, 301�10
elements, 294
federated, 294, 295
global query processing, 292
global transactions in, 293
introduction to, 291�93
mediator architectures, 324�25
parallel system, 300
top-down design, 301, 304�7
trends and challenges, 323�25
unfederated, 294, 295
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World Wide Web and, 325
See also Databases

Distributed digital libraries, 395�96
Distributed locks, 316�18

read-write conflict, 317
write-write conflict, 318

Distributed query processing, 310�14
in heterogeneous DDBs, 314
in relational DDBs, 310�14
See also Query processing

Distributed queue dual bus (DQDB), 13
Distributed recovery, 322
Distributed transaction

management, 315�23
commit, 319�22
concurrency control, 316�19
in heterogeneous DDBs, 322�23
recovery, 322

Domains, 35
Downward interpretation, 122�24

computing, 123
defined, 122
example, 123�24
result, 123
See also Event rules

Dyadic operators, 160
Dynamic URLs, 341

Education and training, 14
Electronic commerce, 14
Encapsulation, 197

constraints vs., 202
strict, 217

Enterprise resource planning packages, 14
Entities

defined, 36
as instances of concepts, 36
types, 36, 37

Entity relationship (E/R) model, 9, 73, 448
E/R schema, 499
Event rules, 120�24

defined, 120
downward interpretation, 122�24
examples, 120�21
interpretation of, 121�24
upward interpretation, 121�22

Events
algebraic composition of, 260
cause, 258
classification, 258�59
conjunction, 261
defined, 40, 258
disjunction, 260
duration, 40
external, 41
generated, 41, 43
IMD, 257�61
inclusion, 261
interobject, 259
intra-object, 259
modeling and composition of, 259�60
modeling interaction with, 257�61
negation, 261
user-defined, 259
user interaction, 258�59

Event types
defined, 42
generated, 43
sets of, 42

Executive information systems (EIS), 20
Explicit authorization, 357�58
Extended-kernel architecture, 379�80
Extended markup language (XML), 325
EXTENDS relationship, 223
Extensibility, 253�54

in access methods, 253�54
logical, 253
physical, 253
in storage mechanisms, 254

Extensional part of DB
(EDB), 95, 102, 114

Extents, 223
External DBs, 47
External processor, 49
External schemas, 49

Fast Ethernet, 13
Federated multi-DBMS, 17, 294

component schema, 296
defined, 295
export schemas, 296
external schemas, 297�98
five-level model for, 296�98
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Federated multi-DBMS (continued)
global schemas, 296�97
local schema, 296
query processing in, 314
transaction management in, 322�23
See also Databases

Fiber distributed data interface (FDDI), 13
Fixed host (FH), 333
Formal verification, 455�59

completeness of schema, 459
irredundancy of schema, 457�59
schema consistency, 455�57
See also Verification and validation tools

Fourth normal form (4NF), 469
Fragmentation, 301�4

advantages, 303
disadvantages, 303�4
horizontal, 301�3
hybrid, 302, 303
vertical, 302, 303

Functional dependency acquisition, 470�73
attribute combination avoidance, 471
deduction rule application, 471�72
learning from small examples, 472
mining dependencies, 472�73
universal relation assumption

removal, 470�71
See also Logical design tools

Future Public Land Mobile
Telecommunications in 2000
(FPLMTS/IMT 2000), 334

Fuzzy DBs, 20, 22

Gateway support nodes (GSNs), 345�47
defined, 345
model services, 346, 347

GemStone system, 225�27
DAC in, 374�75
defined, 225
features, 225�26
methods, 226�27
privileges, 374�75
queries, 227
segments, 374

Generalizations
defined, 205
hierarchy transformation, 477

POET support, 244
UML support, 238

General packet radio service (GPRS), 335
Generated events, 41, 43
Geographical Information System

(GIS), 14, 194
Geostationary satellites (GEOS), 335
Global queries, 292

DDB vs. centralized system, 292
processing, in relational DDBs, 310�11
See also Queries

Global query processor (GQP), 310
Global transaction manager (GTM), 315
Granularity, 145
Graphical user interfaces (GUIs), 17
Groups

defined, 354
organization, 355

Guard functions, 369

Hashing, 340
Herbrand interpretation, 96, 97
Horizontal decomposition, 177�79, 183
Horizontal fragmentation, 301�3

defined, 301
derived, 301
top-down design and, 305�6
See also Fragmentation

Hybrid fragmentation, 302, 303
Hypergraph data model (HDM), 309
Hypertext markup language (HTML), 325
Hypertext transfer protocol (HTTP), 17

IDEA methodology, 10
Image retrieval, 276�79

defined, 276
query categories, 276�77

Implicit authorization, 357�58
Improvement strategies, 493
Inconsistent databases, 127
Indexing

efficient, mechanisms, 269
spatial/temporal scheme, 269�70
techniques for large IMDs, 268�69
unified spatiotemporal scheme, 270�71
visual features, 278

Inference rules, 471�72
Information base, 38�39
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conceptual schema and, 38
consistency, 44
defined, 38
integrity, 44

Information processor, 49, 50
Information systems (IS)

abstract architecture of, 46�51
active function, 27, 30�31
architecture alignment, 11
conceptual modeling of, 25�55
defined, 25�27
engineering, 26
examples of, 31�33
executive (EIS), 20
functions of, 25�31
geographical, 194
informative function, 27, 28�30
kinds of knowledge required by, 33�34
memory function, 27, 28
process-oriented, 18
real-time, 32, 33

Informative function, 28�30
defined, 27
execution modes, 30
extensional queries, 29
intensional queries, 29
performing, 29
See also Information systems (IS)

Informix multimedia asset management
technology, 280�81
Inheritance, 192, 197

concept, 205, 219
defined, 201
multiple, 219
POET support, 244
See also Object-oriented DBMSs

(OODBMSs)
INNOVATOR, 468
INSERT operator, 174�75
Instances, 223
Instantiation, 36, 218�19
Integrated services digital network

(ISDN), 334
Integrity constraint

enforcement, 108, 117�19
defined, 117
example, 118

performance of, 118�19
problem definition, 117
satisfiability checking vs., 126
view updating and, 118�19
See also Deductive databases

Integrity constraints, 43�45, 92, 99
advantages provided by, 98�100
checking, 112, 113, 117
defined, 44, 64
in denial form, 94
falsification of, 99�100
heads of, 95
maintenance, 117, 118
program development and, 100
redundancy of, 126�27
references, 45
representation, 94
unfulfillment of, 69
violated, 64�65

Integrity lock architecture, 378�79
Intelligent integration of information

(I3), 324
Intensional part of DB (IDB), 95, 102
Interactive multimedia document

(IMD), 252
actors, 261�65
authoring, 273
complex, 257
composition of events, 260
events, 257
framework, 257
indexing techniques, 268�69
modeling, 256�61
rendering, on the Web, 285
retrieval, based on spatiotemporal

structure, 267�74
retrieval issues, 266�74
retrieval requirement, 256
sample, 254�56
scenario, 256, 257, 265�66
spatiotemporal composition, 257
synchronization and presentation, 267
See also Multimedia DBMSs

(MM-DBMSs)
Interface definition language (IDL), 222
Internal DBs, 50
Internal schema, 50�51
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Internal schema (continued)
defined, 50
using, 51

Interobject events, 259
Interpretations

defined, 96
Herbrand, 96, 97

Intervals, 154�56
aggregate operators on, 160�62
canonical forms, 183
closed, 154
comparison operators, 159
constraints involving, 170�74
defined, 182
denoting, 155
dyadic operators on, 160
open, 154
relational operators with, 162�70
scalar operators and, 159�60
update operators involving, 174�76
value, 158

Interval types, 155, 156�59
defined, 156�57
point type of, 157, 183
type generator, 157

Intra-object events, 259
Iris authorization model, 368�69

defined, 368�69
guard functions, 369
proxy functions, 369
See also Authorization models

Is-a relationship, 204, 223
Is-a-type-of relationship, 204

Jajodia-Kogan model, 390�91
Java Database Connectivity (JDBC), 298
Joins, 211
Joint administration, 362

Keys, 224
temporal candidate, 173
temporal foreign, 174

KIDS project, 423, 429
Kiviat, 498, 500
Knowledge acquisition, 445
Knowledge base, 39
Knowledge reuse and fusion/transformation

(KRAFT), 324�25

Layered DBMS architecture, 410�11
illustrated, 411
layers, 410�11

List type, 241
Local query processor (LQP), 310
Local transaction manager (LTM), 315
LOCK Data Views (LDV) system, 382�83

defined, 382
design concepts, 383
security policy, 382
type-enforcement mechanism, 383

Logical design, 10, 479
Logical design tools, 469�79

functional dependency
acquisition, 470�73

mapping, 473�79
See also CASE tools

Logical extensibility, 253
Low earth orbit satellites (LEOS), 335

Magic sets, 107�8
defined, 107
example, 107�8

Maintenance
adaptive, 86
corrective, 85�86
rule, 85�87
tools, 443

Mapping
CASE support of, 477�79
conceptual object-oriented schema into

relational schema, 476�77
conceptual schema to logical

schema, 473�79
direct, 475�76
E/R schema into relational

schema, 473�76
intermediate, rules, 474�75

Massively parallel processing (MPP), 12
Materialized view

maintenance, 112, 113�14
Mediator architectures, 324�25
Medical systems, 14
Medium earth orbit satellites (MEOS), 336
MEGA, 468
Memory function, 28

defined, 27
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modes, 28
objective, 28
See also Information systems (IS)

MetaEdit+, 468
Methods, 217�18

GemStone/S, 226�27
implementation, 217
signature, 217

Middleware DBMSs, 414�15, 419�22
defined, 414
illustrated, 415
OLE DB, 420�21

Millen-Lunt model, 389�90
defined, 389
security properties, 389�90
See also Multilevel object data models

Minimum bounding rectangles
(MBRs), 271, 272

Mining algorithms, 473
Mobile computing, 329�47

agents, 343�44
AMPS, 334
architecture, 332�34
base station (BS), 333
battery power limitation, 338
caching, 341
client/agent/server model, 342�43
client/intercept/server model, 342, 343
communication models, 342�43
database interfaces, 341�42
design features for accessing data

services, 344�47
digital cellular networks, 334�35
disconnections, 337
environment, 333
environment with GSN elements and

mobile agents, 346
fixed host (FH), 333
handoff, 333
impact on data management, 338�42
mobile unit (MU), 333
mobility, 336
motivation, 331�32
portability of mobile elements, 337�38
query processing, 340�41
satellite networks, 335�36
size/capability limitations, 337

software systems, 330�31
summary, 347
technological aspects, 334�36
transactions, 338�39
wireless local-area networks, 335
wireless medium, 336�37
wireless wide-area networks, 335

Mobile unit (MU), 333
Monolithic DBMSs

implementation, 408
information system on top of, 407

Morgenstern�s model, 391
Multidatabases, 17
Multilevel object data models, 387�92

Jajodia-Kogan model, 390�91
Millen-Lunt model, 389�90
Morgenstern�s model, 391
SODA model, 388
SORION model, 388�89
UFOS model, 391�92

Multilevel secure DBMSs (MLS/DBMS),
20, 359, 360, 375�92

architectures, 376�80
commercial products, 384�87
distributed architecture, 377�78
extended-kernel architecture, 379�80
integrity lock architecture, 378�79
LOCK Data Views (LDV)

system, 382�83
object data models, 387�92
prototypes, 380�83
relational data model, 375�76
SeaView, 380�82
Secure Sybase, 385�86
single-kernel architecture, 377
TRUDATA, 384�85
Trusted Informix, 387
Trusted Oracle, 386�87
trusted-subject architecture, 378
See also Secure databases

Multimedia DBMSs
(MM-DBMSs), 19, 251�86

achievements of, 274�80
commercial products and research

prototypes, 280�82
commercial systems, 280�81
conclusions, 274�86
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Multimedia DBMSs (MM-DBMSs)
(continued)

content-based
retrieval, 276�80, 282�85

design goals, 253
development of, 253
directions and trends, 282�86
extensibility, 253�54
integrity, 275�76, 282
introduction to, 251�54
modeling, 274�75, 282
research systems, 280
retrieval, 254
systems for the World Wide

Web, 281�82
See also Databases

Multimedia objects, 251�52
real-time requirements, 252
size, 252

Negative authorization, 356�57, 365
Nested tables, 196�97, 201
Networks

analog cellular, 334
digital cellular, 334�35
satellite, 335�36
wireless local-area, 335
wireless wide-area, 335

Noncascading revocation, 364
Nonevents, 68
Nontraditional applications, 13�15

Object composition petri nets
(OCPN), 275

Object �curator� administration, 361
Object Database Management Group

(ODMG), 192
binary association support, 237
collection type support, 224
data model, 223, 224
maximum multiplicity, 235�36
objective, 222
ODMG-93, 222
standard, 221�24
two-way relationship support, 236

Object database management system
(ODMS), 16

Object definition language (ODL), 222

class definition in, 234
conceptual schema, 234
disjoint and incomplete generalization

in, 238
relationships in, 235
schema, 243
self-association definition in, 237

Objectering, 468
Object identifiers

(OIDs), 192, 193, 214�16
building approaches, 215
logical, 214
mapping, 215

Object Management Group (OMG), 222
Object modeling technique (OMT), 10
Object-oriented DBMSs

(OODBMSs), 19, 190,
191�92, 211�47

authorization models, 366�69
classes, 218�19
conceptual design, 232�33
conceptual schema, 231
data model concepts, 212�20
defined, 213
design, 230�46
design process, 232
drawbacks, 193�95, 247
feature comparison, 192�93
graphical notation, 220�21
implementation schema design, 242�46
industry standard, 192
inheritance, 192, 219�20
introduction to, 211�12
joins, 211
methods, 217�18
objects, 213, 214�16
OIDs, 192, 193, 214�16
origins, 192
RID, 215�16
schema example, 221
standard schema design, 233�42
subtyping, 219
summary, 246�47
technology, 225�30, 247
uses, 211
See also Databases
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Object-oriented software engineering
(OOSE), 10

Object-owner administration, 361
Object privileges, 373
Object-relational DBMSs

(ORDBMSs), 19, 189�208
ABC Corporation example, 203�8
behaviors, 196
built-in types support, 198
characteristics, 190
collection types, 196�97, 198, 199�200
defined, 190
design issues, 201�3
drawbacks, 193�95
encapsulation, 197
feature comparison, 192�93
inheritance, 192, 197
introduction to, 189�91
physical implementation, 198�200
polymorphism, 197
reference types, 198, 199
row types, 198�99
summary, 208
See also Databases; Object-oriented

DBMSs (OODBMSs)
Objects, 214�16

aggregations, 213
authorization, 354
classes, 213
complex, 216, 217
composite, 217
defined, 213
detection, 278
indexing, 267
instances, 213
media, 251�52
persistent, 222
state, 213
transient, 222
types, 222�23, 252
See also Object-oriented DBMSs

(OODBMSs)
ObjectStore, 227�29

defined, 227�28
features, 228
relationships, 228�29

OLE DB, 420�21

components, 420
query execution, 421
rowsets, 420

One-way relationships, 236
On-line analytical processing

(OLAP), 14�15
On-line transactional processing (OLTP), 6
Ontology, 35
Open Database Connectivity

(ODBC), 298
Open intervals, 154
Open Server, 298
OPENTOOL, 468
Operators, 182

aggregate, 160�62
Allen�s, 159�60
comparison, 159
dyadic, 160
relational, 162�70
TAC, 262�63
update, 174�76

Optimization, 447
Oracle

DAC in, 370�73
Designer/2000, 468
object privileges, 373
Oracle8, 280
system privileges, 373

Oracle active rule language, 79�81
defined, 79
features, 79�80

ORCA, 468
Orion authorization model, 367�68

defined, 367
extensions, 368
propagation rules, 367
See also Authorization models

Pacbase, 468
Paradigm, 468
Parallel DBs, 22
Perceived semantic quality, 492
Performance

DBMS, 16�17
integrity constraint

enforcement, 118�19
three-phase commit, 322
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Persistent objects, 222
Persistent storage, 201
Personal digital assistants (PDA), 12
Photobook system, 280
Physical design, 10
Physical extensibility, 253
PICQUERY+, 278
Platinum ERwin, 468
Plug-in components, 417�19
Plug-in style DBMSs, 413�14
POET system, 229�30

collection types support, 244
database schema, 247
data types, 242
defined, 229
features, 229�30
generalization support, 244
inheritance support, 244
OQL use, 242
schema definition, 245
type system, 242

Point type, 157, 183
Polyinstantiation, 375, 386
Polymorphism, 197
Positive authorization, 356�57
PowerDesigner, 468
Pragmatica, 468
Pragmatic quality, 492
Principle of conceptualization, 55
Privileges, 355

DB2, 374
GemStone system, 374�75
object, 373
Oracle, 370, 373
system, 373

Process
modeling tools, 443
quality, 486, 487
systems, 18

Product quality, 486, 487
Project management tools, 441
Propagation policies, 358
Proxy functions, 369

QBIC, 267, 281
Quality, 485�505

concepts, 492�93

data, 501�5
data model, 488�500
definitions, 486
factors, 490
information, 487
perceived semantic, 492
pragmatic, 492
process, 486, 487
product, 486, 487
semantic, 492
social, 492
summary, 505
syntactic, 492
See also Databases

Quality assessment, 460�63
conceptual schema readability, 460�61
schema reusability, 461
schema validation, 461�63
See also Verification and validation tools

Quality metrics, 493�500
CA, 495
DA, 494�95
defined, 493
example values, 498
IS_ARel, 496
M:NRel, 496
measurement interpretation, 498
PR, 495
RvsE, 494

Queries, 218, 219
atomic, 285
combination, 277
concept, 277
current snapshot database, 146�47
extensional, 29
feature combination, 276
first temporal database, 153�54
GemStone/S, 227
global, 292, 310�11
intensional, 29
localized feature, 276
object relationship, 277
semitemporal database, 148�49
simple visual feature, 276
spatial, 271
uncertainty, handling of, 285
user-defined attribute, 277
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Query by icons, 342
Query optimization

defined, 291
illustrated, 312

Query plans
alternative set of, 312
defined, 291
good, 291�92

Query processing, 102�8, 128
bottom-up, 102, 103�5
distributed, 310�14
in heterogeneous DDBs, 314
magic sets, 107�8
mobile computing, 340�41
in relational DDBs, 310�14
top-down, 103, 105�7
See also Deductive databases

Rational Rose, 468
Record identifier (RID), 215�16
Recovering business policies, 64�67

defined, 69
graphical representation, 73
supporting, through active rules, 69�73

Reference relationships, 36
Reference types, 198, 199

importance, 199
values, 199

Referential integrity (RI), 191
Relational data interface (RDI), 412
Relational data system (RDS), 412
Relational DBMSs (RDBMs), 5

authorization model for, 363�66
constraints role, 191
data integrity enforcement, 191
deductive databases vs., 100�102
migrating, toward object

orientation, 194�95
SQL, 100
table structure modification, 191
See also Databases

Relational DDBs
query processing in, 310�14
top-down design in, 304�7
See also Distributed databases

Relational design, 469�70
Relational operators

COALESCE, 165, 166
GROUP, 164
involving intervals, 162�70
overloading, 164
UNION, 178

Relational storage system (RSS), 412
Relationships

as instances of concepts, 37
in ODL, 235
one-way, 236
reference, 36
two-way, 236
types, 36, 37

Remote communications, 344
Replication, 304
Repository and metadata tools, 443�44
Representation conflict, 463�64
Requirements engineering, 51�53

defined, 52
phases, 52
requirements determination, 52
requirements specification, 52
requirements validation, 53

Reusability, 461, 467�68
Reverse engineering, 450�52
RIDL, 468
RoboCASE, 468
Roles, 355
Row triggers, 85
Row types, 198�99
R-trees, 271�74

3D, spatial/temporal layout retrieval
with, 274

defined, 271�72

Sagas, 323
Satellite networks, 335�36
Satisfiability checking, 125�26
Scalar operators, 159�60
Scenario model, 256, 257, 265�66

defined, 265
tuple attributes, 265�66
verbal description, 266
See also Interactive multimedia

document (IMD)
Schemas

comparison, 465

Index 531



Schemas (continued)
conceptual, 35, 39�43, 53�54
conflict between, 463�64
conforming, 466
E/R, 499
external, 49
integration, 447, 463�66
internal, 50�51
merging, 466
restructuring, 466
standard design, 233�42
validation, 461�63

Scientific applications, 14
SeaView, 380�82

components, 381�82
data model, 382
defined, 380�81
reference monitor concept, 381

Secure databases, 20, 353�99
access control, 354�62
administration policies, 360�62
basic concepts, 354�55
DAC, 356�59, 362�75
design issues, 392�93
digital libraries, 394�96
introduction to, 353�54
MAC, 359�60
MLS/DBMS, 359, 360, 375�92
multilevel secure, 359
research trends, 393�98
summary, 398�99
WFMS, 396�97
World Wide Web, 397�98
See also Databases

Secure Sybase, 385�86
defined, 385
polyinstantiation support, 386

Security
levels, 359
mandatory, 360
multilevel, 360, 375�92

Semantic DBs, 19
Semantic quality, 492
Semijoin operator, 301�3
Sequenced operations, 186
Service-oriented DBMSs, 422�23

architectures, 415�16

CORBAservices, 422
strawman architecture, 422�23
See also Databases

Set type, 241
Side effects

defined, 116
prevention, 127

Single-kernel architecture, 377
Snapshot databases, 137�38

defined, 137
snapshot time, 138
See also Databases

Social quality, 492
SODA model, 388
Software through Picture, 468
SORION model, 388�89

defined, 388
security policy, 388�89
system implementation, 389
See also Multilevel object data models

Spatial queries, 271
Spatiotemporal composition, 257, 260

of actors, 261�65
EBNF definition of, 264�65
model, 263�65
of multimedia applications, 264
See also Composition

Spatiotemporal indexing scheme, 270�71
Specialization, 206, 213
SQL

relational databases, 100
SQL2, 101
SQL3, 198
SQL: 1999, 85

SQLNet, 299
Stakeholders, 490�91
Standard schema design, 233�42

aggregation, 239�40
associations, 235�37
collection and structured types, 240�42
generalizations and realizations, 238�39
object types translation, 233�35
See also Object-oriented DBMSs

(OODBMSs); schemas
Starburst authorization model, 369�70
Statement triggers, 80�81

access from, 81
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for auditing, 81�82
defined, 80
example, 80
features, 80�81
SQL: 1999, 85
for view materialization, 82�85

State transition diagrams (STD), 67
Statistical systems, 14
Stratification, 98
Strawman architecture, 422�23
Strict 2PL, 316
Strong authorization, 357
Structural conflict, 463�64
Structured type, 224, 241
Subclasses, 219

defined, 213
instances, 219
See also classes

Subqueries, 105, 106
Successor function, 158, 183
Superclasses, 213, 218
Sybase Adaptive Server Enterprise, 421
Symmetric multiprocessing (SMP), 12
Syntactic quality, 492
System privileges, 373
System R authorization model, 363�66

defined, 363
extensions, 364�66
recursive revocation, 364
See also Authorization models

Temporal candidate key, 173
Temporal databases, 20, 137�87

aggregate operators on intervals, 160�62
concepts, 142�46
constraints, 146, 147�48, 151�53
constraints involving intervals, 170�74
data, 140�46, 154
decomposition, 177
defined, 137
design considerations, 176
horizontal decomposition, 177�79
intervals, 154�56
interval types, 156�59
introduction to, 137�40
queries, 146�47, 148�49, 153�54

relational operators involving
intervals, 162�70

research issues, 139
scalar operators on intervals, 159�60
summary, 182�83
terminology, 143
update operators involving

intervals, 174�76
vertical decomposition, 179�81
See also Databases

Temporal difference, 167
Temporal elements, 185
Temporal foreign key, 174
Temporal projection, 166
Temporal relations, 182�83
Temporal relvars, 183
Temporal support, 185
Temporal upward compatibility, 186
Textual information, 14
Third normal form (3NF), 469
Three-phase commit, 321�22

performance, 322
phases, 321

Time
transaction, 143
valid, 143, 178

Time-division multiple access
(TDMA), 334, 335

Timepoints, 144
Timestamps, 140, 182, 185
Top-down design, 301, 304�7

horizontal fragmentation and, 305�6
issues, 304
vertical fragmentation and, 306�7
See also Distributed databases

Top-down query evaluation
defined, 103
drawbacks, 106�7
example, 105�6
process, 105
repetitive subqueries, 106
See also Query processing

Total quality management (TQM), 488
TQdM, 503
Transaction manager, 292
Transaction proxies, 339
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Transactions
defined, 292
global, 293
isolation-only, 339
mobile computing, 338�39
weak, 339

Transaction time, 143
Transient objects, 222
Triggered procedures, 178
Triggers

row, 85
SQL: 1999, 85
statement, 80�81
temporarily deactivating, 87
tracking, 87

TRUDATA, 384�85
ACLs, 385
DAC, 385
defined, 384
objects in, 384

Trusted Informix, 387
Trusted Oracle, 386�87
Trusted-subject architecture, 378
Tutorial D, 162

defined, 141
type generator, 157

Two-phase commit, 319�21
failures, 320
phases, 319�20

Two-way relationships, 236
Types, 222�23

array, 241
bag, 240�41
collection, 196�97, 198, 199�200,

224, 240�41
dictionary, 241
extents, 223
external specification, 223
implementations, 223
list, 241
set, 241
structured, 224, 241
subtypes, 223

UFOS model, 391�92
Unfederated multi-DBMS, 294

defined, 295

four-level model for, 298
Unfolded form, 183
UNFOLD operator, 160�62
Unified Modeling Language (UML), 231

aggregation support, 239�40
aggregation tree, 239
conceptual schema, 243
generalization support, 238
interfaces, 234
persistent classes, 233
realization, 239

UNION operator, 178
Universal Mobile Telecommunication

System (UMTS), 334
Universal relation assumption, 470�71
UPDATE operator, 174�75
Update operators

DELETE, 175, 176
INSERT, 174�75
involving intervals, 174�76
UPDATE, 175, 176
See also Temporal databases

Update processing, 108�28, 130
change computation, 109�14
condition activation enforcement, 127
condition activation prevention, 128
database inconsistency

maintenance, 127
event rules, 120�24
inconsistent database repair, 127
problem classification, 124�28
problem framework, 119�28
redundancy of integrity

constraints, 126�27
satisfiability checking, 125�26
side effect prevention, 127
view liveliness, 126
view updating, 114�17
See also Deductive databases

Upward interpretation, 121�22
defined, 121
example, 122
result, 121
See also Event rules

User-defined events, 259
User interaction events, 258�59

534 Advanced Database Technology and Design



Validation
defined, 446
schema, 461�63
See also Verification and validation tools

Validator, 468
Valid time, 178

defined, 143
event tables, 186
state tables, 186

Verification
defined, 446
formal, 455�59

Verification and validation tools, 455�63
formal verification, 455�59
quality assessment, 460�61
schema validation, 461�63

Vertical decomposition, 179�81, 183
Vertical fragmentation, 302, 303

defined, 303
top-down design and, 306�7
See also Fragmentation

Video retrieval, 279�80
Views

advantages, 98�100
in deductive DBs, 98
defined, 95
integration, 447
liveliness, 126
materialized maintenance, 112, 113�14
power of, 99

View updating, 108, 114�17
aspects related to, 115�17
defined, 114
example, 115

integrity constraint enforcement
and, 118�19

methods for, 117
multiple translations, 115
multiple update treatment, 116
performance of, 118�19
problem definition, 114�15
process illustration, 114
side effects, 116
translation of existential deductive

rules, 116�17
See also Deductive databases

Virage system, 281
VIS, 468

Weak authorization, 357
Web

data protection for, 397�98
distributed databases and, 325
growth of, 285
IMD rendering on, 285
retrieval, QoS issues, 285�86

WebSEEk, 281
WebSeer project, 281�82
Weighting, 500
Wireless local-area networks, 335
Wireless wide-area networks, 335
Workflow Management Coalition

(WfMC), 397
Workflow management systems (WFMSs)

access control, 396�97
authorization constraint modeling, 397
defined, 396

Workflow models, 324
World Wide Web. See Web
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