THE EXPERT’S VOICE®

Beginning

Database
Design

From Novice to Professional

Designing databases for the desktop and beyond

Clare Churcher

Foreword by Stéphane Faroult

Apress’

Beginning Database
Design

Clare Churcher

ApPress’

Beginning Database Design
Copyright © 2007 by Clare Churcher

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-769-9
ISBN-10 (pbk): 1-59059-769-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Stéphane Faroult

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Gunther

Compositor: Gina Rexrode

Proofreader: Elizabeth Berry

Indexer: John Collin

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

To Neville

Contents at a Glance

FOrBWOId Xiii
Aboutthe AUthor ... o XV
About the Technical REVIBWETt e Xvii
ACKNOWIBAGMENTS Xix
INtrOdUCHION ... XXi
CHAPTER1 WhatCanGoWrong....................cooiiiiiiiiiiiin.. 1
CHAPTER 2 Guided Tour of the Development Process 1
CHAPTER 3 Initial Requirementsand Use Cases 31
CHAPTER 4 Learning fromthe DataModel.................................. 53
CHAPTER 5 DevelopingaDataModel 75
CHAPTER 6 Generalization and Specialization 95
CHAPTER 7 From Data Model to Relational Schema........................ 113
CHAPTER 8 Normalization, 139
CHAPTER9 More on Keys and Constraints 157
CHAPTER 10 Queries.............. ... 171
CHAPTER 11 UserlInterface 191
CHAPTER 12 Other Implementations 205
CONCLUSION 225

Contents

FOrBWOId Xiii
Aboutthe AUthor ... o XV
About the Technical REVIBWETt e Xvii
ACKNOWIBAGMENTS Xix
INtrOdUCHION ... Xxi
CHAPTER1 WhatCanGoWrong.. 1
Mishandling Keywords and Categories 1

Repeated Information............... 5

Designing fora SingleReport. ... 8

SUMMANY ... 9

CHAPTER 2 Guided Tour of the Development Process 11
Initial Problem Statement.l 12

Analysis and Simple DataModel 14

Classesand Objectsc i, 15

Relationships 16

Further Analysis: Revisitingthe Use Cases.......................... 19

DESIgN . o 23

Implementation 24

Interfaces for InputUse Cases.ccoiieit. 25

Reports for Output Use Casesc.oovviinininn... 26

SUMMANY ... 28

CHAPTER 3 Initial Requirements and Use Cases 31
Real and Abstract Viewsof aProblem.............................. 33

DataMinding 34

Task Automation.l 34

vii

viii

CONTENTS

CHAPTER 4

What Doesthe UserDo? ..., 36
What Data s Involved?. 37
What Is the Objective of the System? 38
What Data Is Required to Satisfy the Objective? 40
What Are the Input Use Cases?...................c.oiiiiiiia... 42
What Is the First Data Model?................ 44
What Are the Output Use Cases?ccovviiiiiiinen... 45
More About Use Casesooririni e 47
ACOrS. ... 47
Exceptions and Extensions. 48
Use Cases for MaintainingData 48
Use Cases for Reporting Information 49
Finding Out More About the Problem 49
What Have We Postponed? i 50
Changing Prices. ... 50
Meals That Are Discontinued. 50
Quantities of ParticularMeals 51
SUMMArY 51
Learning from the DataModel 53
Review of DataModels............. 54
Optionality: Should tBe Oor1?............c.oiii 57
Student Course Examplel 57
Customer OrderExample, 58
Insect Example.o 59
A Cardinality of 1: Might It Occasionally Be Two? 60
InsectExample.....l 60
Sports Club Example. ... 62
A Cardinality of 1: What About Historical Data? 63
Sports ClubExample............ L. 63
DepartmentsExample. 64

InsectExample. ... 65

CHAPTER 5

CHAPTER 6

CONTENTS

A Many-Many: Are We Missing Anything? 66
Sports Club Example.oi i 67
Student Course Example 69
Meal DeliveryExample i 70
When a Many—Many Doesn’t Need an Intermediate Class. 72

SUMMArY 72

Developing a DataModel................................... 75

Attribute, Class, or Relationship? 75

Two or More Relationships Between Classes........................ 78

Different Routes Between Classes................................. 81
Redundant Information....................., 81
Routes Providing Different Information 83
False Information from a Route (FanTrap) 84
Gaps in a Route Between Classes (Chasm Trap) 85

Relationships Between Objects of the Same Class................... 87

Relationships Involving More Than Two Classes 89

SUMMArY 92

Generalization and Specialization......................... 95

Classes or Objects with Much in Common.......................... 95

Specialization. 97

Generalization 98

Inheritance inSummary............ 100

When Inheritance Is Nota Good Idea. 102
Confusing Objects with Subclasses 102
Confusing an Association with a Subclass 103

When Is Inheritance Worth Considering?. 104

Should the Superclass Have Objects?............................. 105

Objects That Belong to More Than One Subclass 107

IS TEASY. ... 110

SUMMANY .. 111

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

From Data Model to Relational Schema.................. 113
Representingthe Model, 114
Representing Classes and Attributes.............................. 115
CreatingaTable............. ... i, 116
Choosing Data Types. ..o 118
Adding Constraints on DataValues. 120
Checking Character Fields...........................ooL. 121
Primary Keyo 122
DeterminingaPrimaryKey ..., 122
Concatenated Keys ...t 123
Representing Relationships.................. 126
Foreign Keys. ... 127
Referential Integrity................ ..o 128
Representing 1-Many Relationships 129
Representing Many—Many Relationships 131
Representing 1-1 Relationships............................. 133
Representing Inheritance.................... L. 134
SUMMANY ... 136
Normalization ... 139
Update Anomalies 140
Insertion Problems. 140
DeletionProblems i 141
Dealing with Update Anomalies.............................. 141
Functional Dependencies. 142
Definition of a Functional Dependency. 142
Functional Dependencies and Primary Keys. 143
Normal Forms. 145
FirstNormalForm 145
Second Normal Form. 147
ThirdNormal Form. 149
Boyce-Codd Normal Formcoiiii... 150
Data Models or Functional Dependencies?......................... 151
Fourth and Fifth Normal Forms................................... 153

CHAPTER 9

CHAPTER 10

CHAPTER 11

CONTENTS

More on Keys and Constraints 157
ChoosingaPrimary Key..........coririii i, 157
More About IDNumbers............. L 157
Candidate Keyscoo i 159
An ID Number or a Concatenated Key? 159
Unique Constraints i 162
Using Constraints Instead of Category Classes 164
Deleting Referenced Recordsccoiii.... 167
SUMMANY ... 170
Queries.................... 171
Simple QueriesonOneTable............. L. 171
The Project Operation.................cciiiii ... 172
The Select Operation................ iiii... 173
AgOregates 174
Ordering.o 176
Queries with Two or More Tablescooiiiint. 176
The Join Operation i, 177
SetOperationso i 181
How IndexesCanHelp 183
Indexes and Simple Queriesoiiall. 183
Disadvantages of Indexes.ocoviiiiints. 185
Indexesand Joins i 186
Typesofindexeso i 187
VWS . . 188
CreatingViews ... 188
UseSTorVIewst 188
SUMMANY .. 190
Userinterface ... 191
Input Forms 191
Data Entry Forms Based ona Single Table 193
Data Entry Forms Based on Several Tables. 193
ConstraintsonaForm.............., 196
Restricting AccesstoaForm.........................ooools. 198

Web FOrmsS ... 198

Xi

Xii CONTENTS

CHAPTER 12

CONCLUSION

REPOMS ... 199
Basing ReportsonViews ..., 199

Main PartsofaReport 200
Grouping and Summarizing.................co it 202
SUMMArY ... 204
Other Implementations 205
Object-Oriented Implementation. 205
Classesand Objects il 206
Complex Types and Methods. 208
Collections of Objects ...t 210
Representing Relationships 211

OO Environments..............cocoiiiii 214
Implementing a Data Model in a Spreadsheet...................... 215
1-Many Relationships. L. 216
Many-Many Relationships................ 219
SUMMANY .. 222
Object-Oriented Databases 222
Spreadsheets ... 222
.. 225
Understanding the Objective and Requirements 225
Polishing Your Data Model il 226
Representing Your Model in a Relational Database.................. 226
UsingYourDatabase................cooiiiiiiii e, 227
And SO 228

Foreword

Don’t be mistaken: this book will definitely be very useful to you if you need to design
a small database. But most importantly, it will help you design a database that can grow,
into terabytes if need be. Design is to databases what grammar is to languages: the foun-
dation. As grammar prevents ambiguities and lets you express your ideas as clearly in a
short note as in a long essay, proper design prevents loss of data integrity and lets you
extract from your databases the information that is hidden in data. Implementation
varies; principles remain the same.

Clare Churcher has done a wonderful job in this book of explaining how to make
proper design decisions, showing why seemingly indifferent design choices often later
become apparent as disastrous mistakes. Database design is too often introduced in the
dry formal tone of computer science, and happily ignored by all but the computer sci-
ence types, with unfortunate results. Clare has succeeded in writing a very readable book,
in which humor is never very far from the surface. Beginning Database Design deserves to
become a popular classic, in the best acceptance of the word; every important concept is
here, for all to understand.

In the course of more than 20 years of database consulting, I have seen umpteen
databases that were nothing more than careless data repositories. Born out of bright
functional insights, victims of their own success, they quickly evolved into slow and
unmanageable dinosaurs, to the dismay of users. Very recently, I have been involved in
the restructuring of tables the initial design of which didn’t exactly follow the principles
expressed in this book. Five million rows are inserted every day into these tables. Believe
me, restructuring such a database without impacting (too much) production is no mean
task. Big data volumes are not forgiving.

It’s probably this type of experience that makes me all the more sensitive to Clare’s
topic, and I truly delight in her brilliant demonstration that sound principles can even be
applied to the ubiquitous spreadsheet.

If you are serious about your data, whether you just want to store parameters into a
SQLite file or conceive something more ambitious, read this book, apply what it tells you,
and live happily ever after.

Stéphane Faroult
Database, SQL, and Performance Consultant
RoughSea Limited

xiii

About the Author

CLARE CHURCHER (B.Sc. [Hons], Ph.D. [Physics]) has designed,
implemented, and maintained databases for a variety of large and
small clients and research projects. She is currently a senior faculty
member in the Applied Computing Group at Lincoln University and
has recently completed a term as Head of Group. Clare has designed
and delivered a range of subjects including analysis and design of
information systems, databases, and programming. Her peers have
nominated her for a teaching award in recognition of her expertise in communicating her
knowledge. Clare has road-tested her design principles on more than 70 undergraduate
group database design projects that she has supervised. Examples from these real-life
situations are used to illustrate the ideas in this book.

Xv

About the Technical Reviewer

STEPHANE FAROULT first discovered relational databases and the SQL language back in
1983. He joined Oracle France in their early days (after a brief spell with IBM and a bout
of teaching at the University of Ottawa) and soon developed an interest in performance
and tuning topics. After leaving Oracle in 1988, he briefly tried to reform and did a bit of
operational research, but after one year, he succumbed again to relational databases.
He has been continuously performing database consultancy since then, and founded
RoughSea Ltd. in 1998. He is the author of The Art of SQL (O’Reilly, 2006).

Xvii

Acknowledgments

There are many people who have helped me directly or indirectly with this book. First
of all, I want to say thanks very much to my husband, Neville, for introducing me to this
subject a long time ago and for always being prepared to read drafts and offer advice and
support.

My colleagues at Lincoln University have been wonderful. Theresa McLennan first
acquainted me with using spreadsheets to represent data, and her knowledge of the sub-
ject is the basis for much of Chapter 12. Thanks also to Shirley, Alan, Walt, and Keith for
many discussions about databases and spreadsheets and for shouldering additional
administrative work as deadlines drew near. Special thanks to my dear friends Theresa
and Shirley for maintaining my mental well-being with numerous coffees and walks. I
would also like to acknowledge Peter McNaughton, who first worked with me on the
insect database.

Most of this book is based on examples that cropped up during my teaching of
COMP302 “Analysis and Design of Information Systems.” This involved group projects
and the wide-ranging and sometimes heated debates provided a huge amount of inspira-
tion. So a big thank you to all my students over the last 12 years at Lincoln University.

Being a newcomer to book writing, I had no idea how to start getting published, and
after a few abortive approaches to publishing houses, I googled “literary agent” and
“computer books” and serendipitously found Neil Salkind at Studio B. I am very grateful
for Neil’s efforts to find the right publisher. My editor, Jonathan Gennick at Apress, has
been just great for a new author. He is knowledgeable, relaxed, humorous, and always
encouraging—thank you, Jonathan. I would also like to thank my technical reviewer,
Stéphane Faroult, for many excellent ideas and suggestions.

Xix

Introduction

Everyone keeps data. Big organizations spend millions to look after their payroll, cus-
tomer, and transaction data. The penalties for getting it wrong are severe: businesses may
collapse, shareholders and customers lose money, and for many organizations (airlines,
health boards, energy companies), it is not exaggerating to say that even personal safety
may be put at risk. And then there are the lawsuits. The problems in successfully design-
ing, installing, and maintaining such large databases are the subject of numerous books
on data management and software engineering. However, many small databases can be
found within these large organizations and also in small businesses, clubs, and private
concerns. When these go wrong, it doesn't make the front page of the papers, but the
costs, often hidden, can be just as serious.

Where do we find these smaller electronic databases? At home, we might keep
address books and CD catalogs; sports clubs will have membership information and
match results; small businesses might maintain their own customer data. Within large
organizations, there will also be a number of small projects to maintain data that isn’t
easily or conveniently managed by the large system-wide databases. Researchers may
keep their own experimental and survey results; groups will want to manage their own
rosters or keep track of equipment; departments may keep their own detailed accounts
and submit just a summary to the organization’s financial software.

Most of these small databases are set up by end users. These are people whose main
job is something other than a computer professional. They will typically be scientists,
administrators, technicians, accountants, or teachers, and many will have only modest
skills in spreadsheet or database software.

The resulting databases often do not live up to expectations. Time and energy is
expended to set up a few tables in a database product such as Microsoft Access, or in
setting up a spreadsheet in a product such as Excel. Even more time is spent collecting
and keying in data. But invariably (often within a short time frame) there is a problem
producing what seems to be a quite simple report or query. Often this is because the way
the tables have been set up makes the required result very awkward, if not impossible,
to achieve.

XXi

XXii

INTRODUCTION

Getting It Wrong

A database that does not fulfill expectations becomes a costly exercise in more ways than
one. We clearly have the cost of the time and effort expended on setting up an unsatisfac-
tory application. However, a much more serious problem is the inability to make the
best use of valuable data. This is especially so for research data. Scientific and social
researchers may spend considerable money and many years designing experiments,
hiring assistants, and collecting and analyzing data, but often very little thought goes
into storing it in an appropriately designed database. Unfortunately, some quite

simple mistakes in design can mean that much of the potential information is lost.

The immediate objective may be satisfied, but unforeseen uses of the data may be
seriously compromised. Next year’s grant opportunities are lost.

Another hidden cost comes from inaccuracies in the data. Poor database design
allows what should be avoidable inconsistencies to be present in the data. Poor handling
of categories can cause summaries and reports to be misleading or, to be blunt, wrong. In
large organizations, the accumulated effects of each department’s inaccurate summary
information may go unnoticed.

Problems with a database are not necessarily caused by a lack of knowledge about
the database product itself (though this will eventually become a constraint) but are
often the result of having chosen the wrong attributes to group together in a particular
table or spreadsheet. This comes about for two main reasons:

* Not having a clear idea of what information the database or spreadsheet is meant
to be delivering in the short and medium term

¢ Not having a clear model of the different classes of data and their relationships
to each other

This book describes techniques for gaining a precise understanding of what a
problem is about, how to develop a conceptual model of the data involved, and how
to translate that model into a database design. You'll learn to design better databases.
You'll avoid the cost of “getting it wrong.”

Analysis Techniques

Many analysis and design methodologies have been developed with very large multi-
developer, multiversion projects in mind. Those methodologies have to address the issues
of costing and contracts, maintenance and security, standards and interfaces, and the
documentation required for a project that is too big for any one person or team to com-
prehend in total. The timescale involved may mean that project teams could turn over
their entire staff during the development, so that documentation becomes a critical
factor in the project’s success.

INTRODUCTION

What about the smaller projects that beginners are likely to start with? Do you really
need to bother with “analysis” to set up a database for the kids’ tennis teams’ transport
roster? Given the attempts I have seen of people doing just that, the answer is a resound-
ing YES (if only to prevent your starting in the first place).

Determine the Use

What any project requires is a clear understanding of exactly what the database is meant
to achieve. Sometimes clients can take offence when you ask them what use they intend
to make of their data. A research scientist has many precious experimental readings, and
his immediate objective may be just to have them safely stored. This often results in the
database being designed to look just like the experimental recording sheet. It is impor-
tant to think about what questions might be asked of the data in the future. It is regret-
table when carefully prepared and recorded experimental data is stored in such a
fashion as to make it impossible to get accurate answers to reasonable questions at

a later date.

It takes some discipline to do the necessary preparation, especially when the urge to
get the data keyed in is very pressing. One convenient way to capture possible uses for
data is to construct use cases or user stories. You may be familiar with these ideas, which
come from the Unified Modeling Language (UML)! and Extreme Programming.? Use
cases are free-format text accounts that essentially describe things from the point of view
of an eventual user. For example, one use case might record that a statistician working on
some experimental research data that is dependent on weather might need to “extract
the counts for all readings between specified dates given a particular weather condition.”
We now know that the way the weather data is categorized and stored is going to be
important to someone, and that we'd better get it right. To set about implementing even
the smallest database without having thought through at least a couple of possible use
cases is asking for trouble.

Create a Data Model

The chasm between having a basic idea of what your database needs to be able to do and
designing the appropriate tables is bridged by having a clear data model. Data modeling
involves thinking very carefully about the different sets or classes of data we need for a
particular problem.

Here is a very simple textbook example: a small business might have customers,
products, and orders. We need to record a customer’s name. That clearly belongs with our
set of customer data. What about address? Now, does that mean the customer’s contact

1. Grady Booch, James Rumbaugh, and Ivar Jacobsen, The Unified Modeling Language User Guide
(Boston, MA: Addison Wesley, 1999).

2. Kent Beck, Extreme Programming Explained: Embrace Change (Boston, MA: Addison Wesley, 2000).

xxiii

XXiv

INTRODUCTION

address (in which case it belongs to the customer data) or where we are shipping the
order (in which case it belongs with information about the order)? What about discount
rate? Does that belong with the customer (some are gold card customers), or the product
(dinner sets are on special at the moment), or the order (20% off orders over $400.00), or
none of the above, all of the above, or it depends what mood the boss is in?

Getting the correct answers to these questions is obviously vital if you are going to
provide a useful database for yourself or your client. It is no good heading up a column
in your spreadsheet “Discount” before you have a very precise understanding of exactly
what a discount means in the context of the current problem. Data-modeling diagrams
provide very precise and easy-to-interpret documentation for answers to questions such
as those just posed. Even more importantly, the process of constructing a data model
leads you to ask the questions in the first place. It is this, more than anything else, that
makes data modeling such a useful tool.

The data models we will be looking at in this book are small. They may represent a
small problem in its entirety, but more likely they will be a small part of a larger problem.
The emphasis will be on looking very carefully at the relationships between a few classes
of data and getting the detail right. This means using the first attempts at the model to
form questions for the user, to find the exceptions (before they find you), and then to
make some pragmatic decisions about how much of the detail is necessary to make a
useful database. Without a good data model, any database is pretty much doomed before
it is started.

Data models are often represented visually using some sort of diagram. Diagrams
allow you to take in a large amount of information at a glance, giving you the ability to
quickly get the gist of a database design without having to read a lot of text. We will be
using the class diagram notation from UML to represent our data models, but many
other notations are equally useful.

Database Implementation

Once you have a data model that supports your use cases (and all the other details that
you have discovered on the way), you know how big your problem is and the type of
detail it will involve. You now have a good foundation for designing a suitable application
and undertaking the implementation.

Conceptually, the translation from data model to designing a database or spread-
sheet is simple. In Chapters 7 through 9, we will look at how to design tables and
relationships in a relational database (such as Microsoft Access), which represent the
information in the data model. In Chapter 12, we also look at how this might be done in
an object-oriented database or language (e.g., JADE, Visual Basic), and for problems with
not too many classes of data, how you might capture some of the information in a
spreadsheet product such as Microsoft Excel.

INTRODUCTION

The translation from data model to database design is fairly straightforward; how-
ever, the actual implementation is not quite so simple. A great deal of work is necessary
to ensure that the database is convenient for the eventual user. This will mean designing
a user interface with a clear logic, good input facilities, the ability to quickly find data for
editing or deleting, adaptable and accurate querying and reporting features, the ability to
import and export data, and good maintenance facilities such as backup and archiving.
Do not underestimate the time and expertise necessary to complete a useful application
even for the smallest database! Considerations such as user interface, maintenance,
archiving, and such are outside the scope of this work but are well covered in numerous
books on specific database products and texts on interface design.

Objective of This Book

Setting up a database even for a small problem is a big job (if you do it properly). This
book is primarily for beginners or those people who want to set up a small, single-user
database. The ideas are applicable to larger, multiuser projects, but there are consider-
able additional problems that you will encounter there. We do not look at problems to
do with concurrency (many users acting together), or efficiencies, nor how you manage
a large project. There are many excellent books on software engineering and database
management that deal with these issues.

The main objective of this book is to ensure that the people starting out on setting up
a database have a sufficient understanding of the underlying data so that any effort
expended on actual implementation will yield satisfying results. Even small problems
are more complicated than they appear at first sight. A data model will help you under-
stand the intricacies of the problem so that some pragmatic decisions can be made about
what should be attempted. Once you have a data model that you are happy with, you
can be confident that the resulting database design (if implemented faithfully) will not
disappoint. It may be that after doing the modeling you decide a database is not the
appropriate solution. Better to decide early than after hours of effort have gone into
a doomed implementation.

XXV

CHAPTER 1

What Can Go Wrong

The problem with a number of small databases (and quite probably with many large
ones) is that the initial idea of how to record the data is not necessarily the correct one.
Often a table or spreadsheet is designed to mimic a possible data entry screen or a
hoped-for report. This practice may be adequate for solving the immediate problem
(e.g., storing the data somewhere); however, mimicking a data entry screen or report in
your database design often causes problems later. It can make it difficult, if not impossi-
ble, to get information for different reports or summaries that were not originally
envisaged but nevertheless should be available given the data collected.

This chapter gives examples drawn from real life to illustrate some very basic types
of problems encountered when data is stored in poorly designed spreadsheets or tables.
These are real examples that I have encountered in my own design work. They do not
come from a textbook or out of an exam paper. Some of the data has been removed or
altered to protect the identities of the guilty.

Mishandling Keywords and Categories

A common problem in database design is the failure to properly deal with keywords and
categories. Many database applications involve data that is categorized in some way:
products or events may be of interest to certain categories of people; customers may be
categorized by age or interest or income (or all three). When entering data, you usually
think of an item with its particular list of categories or keywords. However, when you
come to preparing reports or doing some analyses, you may need to look at things the
other way round. You often want to see a category with a list of all its items or a count of
the number of items. For example, you might ask “What percentage of our customers are
in the high-income bracket?” If keywords and categories are not stored correctly initially,
these reports can become very difficult to produce.

Example 1-1 describes a case in which information about how plants are used was
recorded in a way that seems reasonable at first glance, but that ultimately works against
certain types of searches that you would realistically expect to perform.

CHAPTER 1 ©© WHAT CAN GO WRONG

EXAMPLE 1-1: THE PLANT DATABASE

Figure 1-1 shows a small portion of a database table recording information about plants. Along with the
botanical and common name of each plant, the developer decides it would be convenient to keep the
uses a plant can be put to. This is to help prospective growers decide whether a plant is appropriate for
their requirements.

Genus Species Common Name Usage1 Usage2 Usage3
Dodonaea viscosa akeake shelter hedging soil stability
Cedrus atlantica atlas cedar shelter

Alnus glutinosa Black alder shelter soil stability firewood
Eucalyptus nicholli Black peppermint gum shelter coppicing hird food
Juglans nigra Black walnut timber

Acacia mearnsii Black wattle firewood shelter soil stability

Figure 1-1. The plant database

If we look up a plant, we can see immediately what its uses are. However, if we want to find all the
plants suitable for hedging, for example, we have a problem. We need to search through each of the
use columns individually. To produce a report of all hedging plants would require some logic along the
lines of IF Usagel = 'hedging' OR Usage2 = 'hedging' OR Usage3 = 'hedging'.Also, the
database table as it stands restricts a plant to having three uses. That may be adequate for now, but if
that three-use limit changes, the table would have to be redesigned to include a new column(s). Any
logic will need to be altered to include OR Usage4 = 'hedging' ...,and atthe back of our minds
we just know that whatever number of uses we decide on, eventually we will come across a plant that
needs one more.

Changes such as I've been describing become too tedious to maintain. While the database quite
successfully provides information about each plant, it never fulfills the potential of being able to conve-
niently suggest suitable plants for a prospective purchaser. Much of the usefulness of that carefully
collected data on usages is lost.

In Example 1-1, the real shame is that all the data has been carefully collected and
entered, but the design of the table makes it impossible to answer obvious questions
conveniently. The problem is that the developer did not take time to step back and con-
sider the likely uses of the data. He designed the database principally to satisfy his
immediate problem, which is “I need to store all the info I have about each plant.” Before
embarking on the implementation, it would have been useful to consider other points of
view and potential uses of the data. The most obvious of these is “I want to find all the
plants that have this particular use.”

CHAPTER 1 ©© WHAT CAN GO WRONG

The developer’s one-sided view of the project leads to an inappropriate data model.
He saw the data in terms of a single class, Plant, and he saw each use as an attribute of a
plant in much the same way as its genus or common name. This is fine if all you want to
know are the answers to questions like “What uses does this plant have?” The approach is
not so useful when going in the other direction, when searching for plants having a given
use.

In Example 1-1, we really have two sets or classes of data, Plants and Usages, and we
are interested in the connections between them. The data modeling techniques
described in the rest of the book are a practical way of clarifying exactly what it is you
expect from your data and helping to decide on the best database design to support that.

Jumping ahead a bit to see a solution for the plant database problem, you can quite
quickly set up a useful relational database by creating the two tables shown in Figure 1-2.
(Some extra tables would be even better, but more about that in Chapter 2.)

Plants Usages
PlantlD | Genus | Species | CommonName ‘ Plant | Use
1 Dodonaea viscosa akeake 1/soil stability
2 Cedrus atlax.‘ltica atlas cedar 1 hedging
3 Alnus g!utmo?a Black alder _ 1 shelter
4 Eucalyptus |nichollii Black peppermint gum 2 shelter
5 Juglans nigra Black walnut
6 Acacia mearnsii Black wattle 3 ﬁr.ewooc_l -
7 Schinus terebinthifolis Brazilian Pepper Tree 3 soil stability
8 Griselinia littoralis broadleaf 3 shelter
9 Eucalyptus |fastigata Brown barrel 4 bird food

Figure 1-2. An improved database design to represent Plants and Usages

An end user with modest database skills would be able to set up the appropriate
keys, relationships, and joins and to produce some useful reports. A simple query on
(or even sorting of) the Usages table will enable the user to find, for example, all hedging
plants. There is no restriction now on how many uses a plant can have. The initial setup is
more costly, in time and expertise, than the one table described in Example 1-1, but it will
be able to provide the information that is needed.

Example 1-1 shows us one way we can satisfactorily deal with categories. Unfortu-
nately, there are other problems in store. In Example 1-1, the categories were quite clear
cut, but this is not always the case. Example 1-2 shows the problems that occur when
categories and keywords are not so easily determined.

4

CHAPTER 1 ©© WHAT CAN GO WRONG

EXAMPLE 1-2: RESEARCH INTERESTS

An employee of a university’s liaison department receives a number of calls asking to speak to a spe-
cialist in a certain topic. The university’s personnel database does not contain such information, so the
liaison department decides to set up a small spreadsheet to maintain data about each staff member’s
main research interests. Originally, the intention is to record just one main area for each staff member,
but academics, being what they are, cannot be so constrained. The problem of an indeterminate num-
ber of interests is solved by adding a few extra columns in order to accommodate all the interests each
staff member supplies. Part of the spreadsheet is shown in Figure 1-3.

A EEEREEE E | F
1
2 |PersonilD Interest 1 Interest 2
3
4 152 Computing education
B 275 Computer visualisation Simulation
5] 282 Scientific visualization Statistics
7 292 Visualisation of data Computing education
8 890 Databases Scientific visualisation

Figure 1-3. Research interests in a spreadsheet

What problems have we in Example 1-2, and how might we fix them? We are able to
see at a glance the research interests of a particular person, but it is awkward to find who
is interested in a particular topic. As before, the database table, or in this case the spread-
sheet, has been designed by considering just one class of data—People. But really we have
two classes, People and Interests, and we are concerned with the connections or rela-
tionships between them. A solution analogous to that in Example 1-1 would be much
more useful in this case too.

Creating a table of people is reasonably straightforward, but the table of interests
poses some problems. In Example 1-1, the different possible uses were fairly clear (hedg-
ing, shelter, etc.). What are the different possible research interests in Example 1-2? The
answer is not so obvious. A quick glance at the data displayed shows eight interests, but it
is reasonable to assume that “visualisation” and “visualization” are merely different
spellings of the same topic. But what about “Scientific visualisation” and “Visualisation of
data”—are these the same in the context of the problem? What about “Computer visuali-
sation”? Any staff member with one of these interests would be useful for an outside
inquiry.

CHAPTER 1 ©© WHAT CAN GO WRONG

We see that we have another problem to deal with. Having decided we have two
classes of data, People and Interests, we now need to clearly define what we mean by
them. People isn't too difficult—you might have to think which staff members are to be
involved and whether postgraduate students should be included. However, Interests is
more difficult. In the current example, an interest is anything that a staff member might
think of. Such a fuzzy definition is going to cause us a number of problems, especially
when it comes to doing any reporting or analysis about specific interests. One solution is
to predetermine a set of broad topics and ask people to nominate those applicable to
them. But that task is far from simple. People will be aggrieved that their pet topic is not
included verbatim and hours (probably months) could be wasted attempting to find
agreement on a complete list. And this list may well comprise a whole hierarchy of cate-
gories and subcategories. Libraries and journals expend considerable energy and
expertise devising and maintaining such lists. Maybe one of those lists will be useful for
the problem in Example 1-2, but then again maybe not.

Having foreseen the difficulties, you may decide that the effort is still worthwhile, or
you may reconsider and choose a different solution. In the latter case, it may well be eas-
ier for the liaison department to make a stab at the most likely individual and let a real
human being sort out what is required. In just the three-month period prior to writing
this chapter, I have seen three different attempts at setting up spreadsheets or databases
to record research interests. Each time a number of hours were spent collecting and stor-
ing data before the perpetrator started to run into the problems I've just described, all
caused by the same faulty design. None of the databases is being maintained or used as
envisioned.

Repeated Information

Another common problem is unnecessarily storing the same piece of information several
times. Such redundancy is often a result of the database design reflecting some sort of
input form. For example, in a small business, each order form may record the associated
information of the customer’s name, address, and phone number. If we design a table
that reflects such a form, the customer’s name, address, and phone number are recorded
every time an order is placed. This inevitably leads to inconsistencies and problems,
especially when the customer moves house. We might want to send out an advertising
catalog, and there will be uncertainty as to which address we should be using. Sometimes
the repeated information is not quite so obvious. Example 1-3 cites one such case.

6

CHAPTER 1 ©© WHAT CAN GO WRONG

EXAMPLE 1-3: INSECT DATA!

Team members of a long-term environmental project regularly visit farms and take samples to deter-
mine the numbers of particular insect species present. Each field has been given a unique code, and on
each visit to a field a number of representative samples are taken. The counts of each species present
in each sample are recorded.

Figure 1-4 shows a portion of the data as it was recorded in a spreadsheet. The information about
each farm was recorded (quite correctly) elsewhere, so avoiding that data being repeated. However,
there are still problems. The fact that field ADhc is on farm 1 is recorded every visit, and it doesn’t take
long to find the first data entry error in row 269. (The coding used for the fields raises other issues that
we will not address just now.)

R R e e

1 |[Farm Field Date Rep Springtail A.S.W. Fungus Beetle
268 1 ADhc Aug-06 1 2 0 0
269 2 ADhc Sep-06 2 2 0 0
270 1 ADhcen Oct-06 3 7 0 0
271 1 ADhc Nov-06 4 3 0 2
272 1ADhc Dec-06 5 3 2 0
273 1ADhc Jan-07 6 3 1 9
274 1 ADhc Feb-07 7 2 0 1
275 1 ADhc Mar-07 8 6 1 1
276 1ADhc Apr-07 9 2 0 1
277 1 ADhc May-07 10 5 0 3
278 1 ADhc Jun-07 11 0 0 0
279 1 ADhe Jul-07 1 0 1 6
280 1 ADhe Aug-07 2 1 1 1
281 1 ADhe Sep-07 3 5 0 2

Figure 1-4. Insect data in a spreadsheet

On the face of it, the error of listing field ADhc under farm 2 in Figure 1-4 instead of
farm 1 doesn’t seem like such a big deal—but it is avoidable. The fact that the farm was
recorded in this spreadsheet means that the data is probably likely to be analyzed by
farm, and now any results for farms 1 and 2 are potentially inaccurate. And how many
other data entry errors will there be over the lifetime of the project? Given that the experi-
ment in Example 1-3 was a carefully designed, long-term experiment, the results of
which were to be statistically analyzed, it seems a shame that such errors can slip in
when they can be easily prevented.

1. Clare Churcher and Peter McNaughton, “There are bugs in our spreadsheet: Designing a database for
scientific data” (research report, Centre for Computing and Biometrics: Lincoln University, February
1998).

CHAPTER 1 ©© WHAT CAN GO WRONG

It is important to distinguish the difference between data input errors (anyone
makes typos now and then) and design errors. The problem in Example 1-3 is not that
field ADhc was wrongly associated with farm 2 (a simple error that could be easily fixed),
but that the association between farm and field was recorded so many times that an
eventual error became almost certain. And errors such as these can be very difficult to
detect.

Another piece of information is repeated in the spreadsheet in Example 1-3: the date
of a visit. The information that field ADhc was visited in Aug-06 is repeated in rows 268 to
278, creating another source of avoidable errors (e.g., we could accidentally put Sept-06
in row 273) that would affect any analyses based on date.

The repeated visit date information in Example 1-3 also gives rise to an additional
and more serious problem: What do you do with information about a particular visit (e.g.,
it was raining at the time—quite important if you are counting insects)? Does it just get
included on one row (making it difficult to find all the affected samples), or does it go on
every row for that visit (awkward and compounding the repeated information problem)?
In fact, the information in this case was recorded quite separately in a text document,
thereby making it impossible to use the power of the software to help in any analyses of
weather.

Techniques described more fully in later chapters would have prevented the prob-
lems encountered in Example 1-3. Rather than thinking of the data in terms of the counts
in each sample, the designer would have thought about Farms, Fields, Visits, and Insects
as separate classes of data in which researchers are interested both individually and
together. For example, the researchers may want to find information about farms of a
particular size or fields with specific crops or visits undertaken just in the spring. In the
meantime, Figure 1-5 shows a database design that would have overcome some of these
problems (the design is still in its early stages, and we’ll return to the insect problem in
Chapter 4.

Fields Visits Counts

| | Field |Farm|Size VisilD|Field| Date | Conditions | VisitlD | Sample | Springtail |
Adhe |1 113/Adhc Aug-06 Fine 113 1 2
Adhe |1 114/Adhe Aug-06 Fine 113 2 2
Mvhe 2 115 Adhc Sep-06 Rain 113 3 7
Mvhe 2 116 Adhe Sep-06 Overcast 113 4 3

Figure 1-5. An improved database design for the insect problem

As well as removing the problems with repeated data, the design in Figure 1-5 now
gives room for additional information about each Field (e.g., size, soil type). The design
also enables the recording of information about each Visit (e.g., weather conditions).

CHAPTER 1 ©© WHAT CAN GO WRONG

Designing for a Single Report

Another cause of a problematic database is to design a table to match the requirements
of a particular report. A small business might have in mind a format that is required by,
for example, the Internal Revenue Service. Or a school secretary may want to see the
whereabouts of teachers during the week. Thinking backward from one specific report
can lead to a database with many flaws. Example 1-4 is a particular favorite of mine,
because it was the first time I was ever paid real money to fix up a database.

EXAMPLE 1-4: ACADEMIC RESULTS

A university department needed to have its final-year students’ provisional results in a format suitable
to take along to the examiners’ meeting. The course was very rigidly prescribed with all students doing
the same subjects, and a report similar to the one in Figure 1-6 was generated by hand prior to the sys-
tem being computerized. This format allowed each student’s performance to be easily compared across
subjects, helping to determine honors’ boundaries.

2000 Results

D Name S001 |S002 S103 S104 S202 S310 S331 GPA
100987 A+ A A A+ A B+ B+ 8.6
108765 A A A+ A A B+ B+ 8.5
109843 A B+ A- A- B+ A- B 7.5

Figure 1-6. Report required for students’ results

A database table was designed to exactly match the report in Figure 1-6, with a field for each column.
The first year the database worked a treat. The next year the problems started. Can you anticipate them?

Some students were permitted to replace one of the papers with one of their own choosing. The
table was amended to include columns for option name and option mark. Then some subjects were
replaced, but the old ones had to be retained for those students who had taken them in the past. The
table became messier, but it could still cope with the data.

What the design couldn’t handle was students who failed and then retook a subject. The full aca-
demic record for a student needed to be recorded, and the design of the table made it impossible to
record more than one mark if a student did a subject several times. That problem wasn’t noticed until the
second year in operation (when the first students started failing). By then, a fair amount of effort had gone
into development and data entry. The somewhat curious solution was to create a new table for each year,
and then to apply some tortuous logic to extract a student’s marks from the appropriate tables.

When the developer left for a new job, several years of data was left in a state that no one else
could comprehend. And that’s how | got my first database job (and the new database coped with
changing requirements over several years).

CHAPTER 1 ©© WHAT CAN GO WRONG

Example 1-4 is particularly good for showing how much trouble you can get into with
a poor design. Once again, an inappropriate data model is to blame. The developer could
see only one class: Student. His view was based on students as was the report. We should
see that at the very minimum we have two classes, Student and Subject, and we are inter-
ested in the relationship between them. In particular, we would like to know what mark a
particular student got in a particular subject. Chapter 4 will show how an investigation of
a Many-Many relationship such as the one between Subject and Student would have led
to the introduction of another class, Enrollment. This allows different marks to be
recorded for different attempts at a subject. The oversight of how to deal with a student’s
failure would not have lasted five minutes, and this whole sorry mess would have been
avoided.

Summary

The first thoughts about how to design a database may be influenced by a particular
report or by a particular method of input. This can lead to a design that cannot cope with
different requirements later on. It is important to think about the underlying data and
design the database to reflect the information being stored rather than what you might
want to do with the data in the short term.

CHAPTER 2

Guided Tour of the Development
Process

The decision to set up a small database usually arises because there is some specific task
in mind: a scientist may have some experimental results that need safekeeping; a small
business may wish to produce invoices and monthly statements for its customers; a
sports club may want to keep track of teams and subscriptions.

The important thing is not to focus solely on the immediate task at hand but to try to
understand the data that is going to support that task and other likely tasks. This is some-
times referred to as data independence. In general, the fundamental data items (names,
amounts, dates) that you keep for a problem will change very little over a long time. The
values will of course be constantly changing but not the fact that we are keeping values
for names, amounts, and dates. What you do with these pieces of data is likely to change
quite often. Designing a database to reflect the type of data involved, rather than what
you currently think is the main use for the data, will be more advantageous in the long
term.

For example, a small business may want to send invoices and statements to its cus-
tomers. Rather than thinking in terms of a statement and what goes on it, it is important
to think about the underlying data items. In this case, it is customers and their transac-
tions. A statement is simply a report of the transactions for a particular customer over
some period of time. In the long term, the format of the statement may change, for exam-
ple, to include aging or interest charges. However, the underlying transaction data will be
the same. If the database is correctly designed according to the fundamental data (cus-
tomers and transactions), it will be able to evolve as the requirements change. The type
of data will stay the same, but the reports can change. We might also change the way data
is entered (transactions might be entered through a web page or via e-mail), and we
might find additional uses for the data (customer data might be used for mail-outs as
well as invoicing).

Arriving at a good solution for a database project requires some abstraction of the
problem so that the possibilities become clear. In this chapter, we take a quick tour of
how we will approach the process from initial problem statement, through an abstract

1

12 CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

model, to the final implementation of a (hopefully) useful application. The diagram in
Figure 2-1 is a useful way of considering the process.

Analysis
Real World Abstract World
Problem Problem Statement Model
Design
Solution Application Software Design
) Implementation

Figure 2-1. The software process (based on Zelkowitz et al., 1979")

Using Figure 2-1 as a way of thinking about software processes, we will now look at
how the various steps relate to setting up a database project by applying those steps to
Example 1-1, “The Plant Database.”

Initial Problem Statement

We start with some initial description of the problem. One way to represent a description
is with use cases, which are part of the Unified Modeling Language (UML),? a set of dia-
gramming techniques used to depict various aspects of the software process. Use cases
are descriptions of how different types of users (more formally known as acfors) might
interact with the system. Most texts on systems analysis include discussions about use
cases. (Alistair Cockburn’s book Writing Effective Use Cases® is a particularly readable and
pragmatic account.) Use cases can be at many different levels, from high-level corporate
goals down to descriptions of small program modules. We will concentrate on the tasks
someone sitting in front of a desktop computer would be trying to carry out. For a data-
base project, these tasks are most likely to be entering or updating data, and extracting
information based on that data.

1. Marvin V. Zelkowitz, Alan C. Shaw, and John D. Gannon, Principles of Software Engineering and Design
(Englewood Cliffs, NJ: Prentice-Hall, 1979), p. 5.

2. Grady Booch, James Rumbaugh, and Ivar Jacobsen, The Unified Modeling Language User Guide
(Boston, MA: Addison Wesley, 1999).

3. Alistair Cockburn, Writing Effective Use Cases (Boston, MA: Addison Wesley, 2001).

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

The UML notation for use cases involves stick figures representing, in our case, a
type of user, and ovals representing each of the tasks that the user needs to be able to
carry out. For example, Figure 2-2 illustrates a use case in which a user performs three as
yet unknown tasks. However, those stick figures and ovals aren'’t really enough to describe
a given interaction with a system. When writing a use case, along with a diagram you
should create a text document describing in more detail what the use case entails.

Task 3

Figure 2-2. UML notation for use cases*

Let’s see how use cases can be applied to our problem from Example 1-1 in the last
chapter. Figure 2-3 recaps where we started with an initial database table recording
plants and their usages.

Genus Species Common Name Usage1 Usage2 Usage3
Dodonaea viscosa akeake shelter hedging soil stability
Cedrus atlantica atlas cedar shelter

Alnus glutinosa Black alder shelter soil stability firewood
Eucalyptus nichollii Black peppermint gum shelter coppicing hird food
Juglans nigra Black walnut timber

Acacia mearnsii Black wattle firewood shelter soil stability
Schinus terebinthifolis Brazilian Pepper Tree bird food

Griselinia littoralis broadleaf succession | shelter

Figure 2-3. Original data of plants and usages

If we consider what typical people might want to do with the data shown in
Figure 2-3, the use cases suggested in Example 2-1 would be a start.

4. The diagrams in this book were prepared using Rational Rose (http://www.rational.com/). The
software was made available under Rational’s Software Engineering for Educational Development
(SEED) Program.

13

14 CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

EXAMPLE 2-1: INITIAL USE CASES FOR THE PLANT DATABASE

Figure 2-4 shows some initial use cases for the plant database. Text following the figure describes each
use case.

>

1. Maintain plant information
User ©
© 2. Report information about plants

3. Report information about usages

Figure 2-4. First attempt at use cases for the plant database

Use case 1: Enter (or edit) all the data we have about each plant, that is, plantlD, genus, species,
common name, and usages.

Use case 2: Find or report information about a plant (or every plant) and see what it is useful for.

Use case 3: Specify a usage and find the appropriate plants (or report for all usages).

As explained in the previous chapter, if the data is stored as in Figure 2-3, we cannot
conveniently satisfy the requirements of all the use cases in Example 2-1. It is easy to get
information about each plant (use case 2) by looking at each row in the table. However,
finding all the plants that satisfy a particular usage is extremely awkward with the data
maintained as in Figure 2-3. Have a go at finding all the plants suitable for firewood. You
have to look in each of the usage columns for every row.

Analysis and Simple Data Model

Now that we have an initial idea of where we are heading, we need to become a little
abstract and form a model of what the problem is really about. In terms of Figure 2-1,
we are moving across the top of the diagram.

A practical way to start to get a feel for what the data involves is to sketch an initial
data model that is a representation of how the different types of data interact. UML
provides class diagrams that are a useful way of representing this information. There are

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

many products that will maintain class diagrams, but a sketch with pencil and paper is
quite sufficient for early and small models. A large portion of this book is about the intri-
cacies of data modeling, but the following sections provide a quick overview of the
definitions and notation.

Classes and Objects

Each class can be considered a template for a set of similar things (places, events, or peo-
ple) about which we want to keep data. Let’s consider Example 2-1 about plants and their
usages. An obvious candidate for our first class is the idea of a Plant. Each plant can be
described in a similar way in that each has a genus, a species, and a common name and per-
haps a plantID number. These pieces of information that we will keep about each plant
are referred to as the attributes (or properties) of the class. Figure 2-5 shows the UML
notation for a class and its attributes. The name of the class appears in the top panel,
and the middle panel contains the attributes. For some types of software system, there
may be processes that a class would be responsible for carrying out. For example, an
order class might have a process for calculating a price including tax. These are known
as methods and appear in the bottom panel. For predominantly information-based
problems, methods are not usually a major consideration in the early stages of the
design, and we will ignore them for now.

Plant

plantlD

genus
species
COMMOon name

Figure 2-5. UML notation for a class

Each plant about which we want to keep data will conform to the template in Figure
2-5, that is, each will have (or could have) its own value for plantID, genus, species, and
common name. Each individual plant is referred to as an object of the Plant class. The Plant
class and some objects are depicted in Figure 2-6.

15

16

CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

Class Objects
A template which includes the name Each object of a class has its own
of each attribute value for each attribute
AN
£
plantiD: 1
genus: Dodonaea
species: Viscosa
name: Akeake
Plant
plantiD o7
genus ¥
species _—
common name plantiD: 2
genus: Cedrus
species: Atlantica
name: AtlasCedar
&
£
plantiD: 3
genus: Almus
species: Glutinosa
name: Black Alder

Figure 2-6. A class and some of its objects

The class Plant could include other attributes, for example, typical height, lifespan,
and so on. What about the uses to which a plant can be put? In the database table in
Figure 2-3, these usages were included as several attributes (Usage1, Usage2, and so on)
of a plant. In Example 1-1, we saw how having several attributes to store uses caused a
number of problems. What we really have is another candidate for a class: Usage. We will
discuss how we can figure out whether we need classes or attributes to hold information
in more detail in Chapter 5. Our new class Usage will not have many attributes, possibly
just name. Each object of the Usage class will have a value for name such as “hedging,”
“shelter,” “bird food.” What is particularly interesting for our example is the relationship
between the Usage and Plant classes.

Relationships

One particular plant object can have many uses. As an example, we can see from Figure 2-3
that Akeake can be used for soil stability, hedging, and shelter. We can think of these as a
....relationship (or association) between particular objects of the Plant class and objects
of the Usage class. Some specific instances of this relationship are shown in Figure 2-7.

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS 17

\.kq
Shelter
1
Dodonaea < P
Viscosa > 0i
Akeake x| stability
P Firewood
Ce(?rus Hedging
Atlantica
AtlasCedar
Bee food
WS ql
Ed
3
Almus
Glutinosa
Black Alder

Figure 2-7. Some instances of the relationship between Plant and Usage

In a database, we would usually create a table for each class, and the information
about each object would be recorded as a row in that table as shown in Figure 2-8. The
information about the specific relationship instances would also be recorded in a table.
For a relational database, you would expect to find tables such as those in Figure 2-8 to
represent the plants and relationship instances shown in Figure 2-7. We will look further
at how and why we design tables like these in Chapter 7. For now, just convince yourself
that it contains the appropriate information.

Plant PlantUsage

| planflD | species name| commonname | gemus | | plant | usage

1/ viscosa ake-ake Dodonaea 1 hedging
2|atlantica atlas cedar Cedrus 1 shelter
3|nigra Black walnut | Juglans 1 soil stability

2 shelter

3 firewood

3 shelter

3 soil stability

Figure 2-8. Plant objects and instances of the relationship between Plants and Usages
expressed in database tables

18

CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

In UML, a relationship is represented by a line between two class rectangles as
shown in Figure 2-9. The line can be named to make it clear what the relationship is, for
example, “can be used for,” but it doesn’t need to have a name if the context is obvious.
The pair of numbers at each end of the line indicates how many objects of one class can
be associated with a particular object of the other class. The first number is the minimum
number. This is usually 0 or 1 and is therefore sometimes known as the optionality (i.e., it
indicates whether there has to be a related object). The second number is the greatest
number of related objects. It is usually 1 or many (denoted *), although other numbers
are possible. Collectively, these numbers can be referred to as the cardinality or the
multiplicity of the relationship.

One particular object of class A is
associated with at least 1 and possibly many
(%) objects of class B.

»
»

Class A 1.* | Class B
0..1

A

One particular object of class B is
associated with possibly 0 and at most 1
object of class A.

Figure 2-9. A data model expressed as UML class diagram

Relationships are read in both directions. Figure 2-9 shows how many objects of the
right-hand class can be associated with one particular object of the left-hand class and
vice versa. When we want to know how many objects of class B are associated with class
A, we look at the numbers nearest class B.

A great deal can be learned about data by investigating the cardinality of relation-
ships, and we will look at the issue of cardinality further in Chapter 4. This chapter
concentrates on the notation for class diagrams and what the diagrams can tell you
about the relationships between different classes. Figure 2-10 shows some relationships
that could be associated with small parts of some of the examples you saw in the previ-
ous chapter.

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

Left to Right Right to Left
Example 2-1 One particular plant may | One particular usage
o m have no usages or it may | may have no plants
ant sage have any number of associated with it, or it
0.* 0.* may have a number of
plants associated with it.
Example 2-2 One person may have Each interest has at
Person Interest lots of interests or may | least one person
N N have none. associated with it and
1. 0. maybe several people.
Example 2-3 One customer may have | Each transaction is for
Customer Transaction several transactla_ns but | exactly one customer.
N doesn’t necessarily have
1.1 0.. any at all.
Example 2-4 Each visit has at Igast Each sample comes
Visi one sample associated | from exactly one visit.
isit Sample e
" with it and maybe
1.1 1. several.

Figure 2-10. Examples of relationships with different cardinalities

Figure 2-10 is consistent in that the phrases in the right-hand columns accurately
describe the diagrams. Whether each diagram is appropriate for a particular problem is
quite a different question. For example, in the diagram for Example 2-1, why would we
want a usage that has no plants associated with it? It is questions like this that help us to
understand the intricacies of a problem, and we will discuss these in Chapter 4. At the
moment, none of the problems has been sufficiently defined to know if the diagrams in
Figure 2-10 are accurate, but they are reasonable first attempts.

Further Analysis: Revisiting the Use Cases

Using the notation for class diagrams, we can make a first attempt at a data model dia-
gram to represent our plants example. We have a class for both plants and usages, and
the relationship between them looks like Figure 2-11.

Plant
genus
species 0* 0. name
Commaon name

Figure 2-11. First attempt at a data model for plants example

19

20 CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

We now need to check whether this model is able to satisfy the requirements of the
three use cases in Figure 2-4:

Use case 1: Maintain plant information. We can create objects for each plant and
record the attributes we might require now or in the future. We can create usage
objects, and we can specify relationship instances between particular plant and
usage objects.

Use case 2: Report information about plants. We can take a particular plant object
(or each one in turn) and find the values of its attributes. We can then find all the
usage objects related to that plant object.

Use case 3: Report information about usages. We can take a particular usage object
and find all the plant objects that are related to it.

So far not too bad. But let’s look a bit more carefully. Use case 1 is really two or maybe
three separate tasks. If we consider how the database will actually work in practice, it
seems likely that the different usages (hedging, shelter, etc.) would be entered right at the
start of the project and just updated from time to time. Entering information about
usages is a task that a user might want to perform independently of any plants. At some
later time, the same user, or someone else, may want to enter details of a plant and relate
it to the usages that are already in existence.

These are important questions to consider about all use cases related to input. How
will it be done in practice? Will different people be involved? Will bits of the data be
entered at different times? Answering these questions is the first part of the analysis
where we have to get inside the users’ heads to find out what they really do. (Don't ever
rely on them telling you.)

Tip For data entry or editing, separate the tasks done by different people or at different times into their
Own use cases.

Now let’s look at use case 2 where we want to report about plants. We can find out
more about the problem by probing a bit deeper into how the user envisages the report-
ing of information about plants. Think about the following dialog:

You: Would you like to be able to print out a list of all your plants to put in a folder or
send to people?

User: That would be good.

You: What order would you like the plants to be listed in?

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

User: By their genus, I guess. Alphabetical?
You: Genus? So youd like, for example, all the Eucalyptus plants together.
User: Yep, that would be good.

At this point in the conversation, we see another level of the problem. (Give yourself
bonus points if you've already thought of the issue I'm about to describe.) If we look care-
fully at the data in the original table, we can see that it appears that each genus has a
number of species, and each of these species can have many usages. Another question can
confirm whether we understand the relationship between genus and species correctly.

You: So each species belongs to just one genus? Is that right?
User: That’s right.

We can see that asking questions about the reporting use cases in the initial problem
statement is another excellent way to find out more about the problem.

Tip For data retrieval or reporting tasks, ask questions about which attributes might be used for sorting,
grouping, or selecting data. These attributes may be candidates for additional classes.

We now realize that we have a new class, Genus, to add to our data model. Why is it
important to include this new class? Well if genus remains as simply an attribute of our
original Plant class, we can enter pretty much any value for each object. Two objects with
genus Eucalyptus might end up with different spellings (almost certainly if I were doing
the data entry). This would cause problems every time we wanted to find or count or
report on all Eucalyptus plants. The fact that our user has mentioned that grouping by
genus would be useful means that it is important to get the genus data stored appropri-
ately. Our revised data model in Figure 2-12 shows how genus can be represented so that
the data is kept accurately.

Species
Genus 11 species ID 0 Usage
genus name |— species name - name
1..n/COmMmon name 0.n

Figure 2-12. Revised data model for our plant problem

21

22 CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

We now have a set of genus objects, and each plant must be associated with exactly
one of them. You will see in Figure 2-12 that we have also renamed the Plant class to
Species, as it is the species, or type of plant, that we are keeping information about, not
actual physical plants. This opens the way to extend the model later to keep information
about actual plants if we so wish (e.g., when each was planted, when it was pruned, and
so on).

Entering the values of each genus will likely be a separate job from entering data for
each species, so it should have its own use case. We don’t want or need to enter a new
object for the Eucalyptus genus every time we enter a new species.

Example 2-2 shows the amended use cases. See how the reporting use cases can now
be much more precisely defined in terms of the data model.

EXAMPLE 2-2: REVISED USE CASES FOR THE PLANT DATABASE

Figure 2-13 shows the revised use cases for the plant problem. Text following the figure describes each
use case.

1. Maintain usages ©

f/z Maintain genus O
///Zdaintain species

User ©
© 4. Report plant information

5. Report usage information

Figure 2-13. Revised use cases for the plant problem

Use case 1: Maintain usages. Create or update a usage object. Enter (or update) the name.
Use case 2: Maintain genus. Create or update a genus object. Enter the name.

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

Use case 3: Maintain species. Create a species object. Generate a unique ID, and enter the species and
common name. Associate the new species object with one of the existing genus objects and optionally
associate it with any number of the existing usages.

Use case 4: Report plant information. For each genus object, write out the name and find all the associ-
ated species objects. For each species object, write out the species and common name. Find all the
associated usages and write out their names.

Use case 5: Report usage information. For each usage object, write out the name. Find all the associ-
ated species objects, and for each, write out the associated genus name, and the species and common
name.

We can continue asking questions about our use cases and updating the class dia-
gram. We then look at how the new class diagram copes with the tasks we need to carry
out. This is an iterative process and forms the main part of the analysis of the problem.
After a few iterations, we will have a much clearer idea of what the users want and what
they mean by many of the terms they use.

Design

After a few iterations of evaluating the use cases and class diagrams, we should have an
initial data model and a set of use cases that show in some detail how we intend to satisfy
the requirements of the users. The next stage is to consider what type of software would
be suitable for implementing the project. For a database project, we could choose to use
arelational database product (such as MySQL or Microsoft Access), a programming lan-
guage (for example, Visual Basic or Java), or for small problems maybe only a spreadsheet
(such as Microsoft Excel) may be required.

Here is a brief overview of how the design might be done in a relational database. We
consider the details more thoroughly in Chapters 7 to 9, so if you don’t follow all the rea-
soning here, don’t panic. For those readers who already know something about database
design, please excuse the simplifications.

In very broad terms, each class will be represented by a database table. Because each
species can have many usages and vice versa, we need an additional table for that rela-
tionship. This is generally the case for relationships having a cardinality of greater than
1 on both ends (known as Many-Many relationships). (There will be more about these
additional tables in Chapter 7.) The tables are shown in Figure 2-14. Three tables corre-
spond to the classes in Figure 2-12 and the extra table, PlantUsage, gives us somewhere to
keep the relationships between plant species and usages (Figures 2-7 and 2-8). The other
relationships between the classes can be represented within the database by setting ref-
erential integrity between the four tables (more about this in Chapter 7).

23

24 CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

1 - 1 oo 1

genus name E:q:le«:lm;]l] = | plant 2/— |usage
pecies name usage
common name

genus
Figure 2-14. Representing classes and relationships in Microsoft Access

For those readers who know a bit about database design we have included a
speciesID in the Species table, which is a number unique to each species. This notion
of having one attribute (or possibly a combination of attributes) that uniquely identifies
each object is important, and we will look at it more in Chapter 8. In a relational data-
base, these unique identifiers are known as key fields and they are shown in boldface in
Figure 2-14. (We could also have added an extra ID field in the Usage and Genus tables but
as the names are unique we have chosen not to do so.) We have also introduced some
additional fields to help create the relationships between the tables. For the Species table,
this means that we have included an attribute, genus, and have insisted that its value
must come from an entry in our table Genus. (This new attribute is referred to in technical
jargon as a foreign key, and the insistence that it match an existing value in the Genus
table is known as referential integrity—more about this in Chapter 7.) This ensures that
the design of the database will mean we won'’t ever have to worry about different
spellings of Eucalyptus. Similarly, we have included foreign keys, usage and plant, in the
PlantUsage table.

We have now done some analysis (the use cases and the class diagram) to under-
stand the details of the problem. We have also started a design for a relational product
such as Access, SQL Server, or MySQL that represents our class diagram as tables. We can
now think about implementing the database.

Implementation

We will not be going into the intricacies of how to implement a database in any particular
product, but it is useful to see where the analysis is leading us in general terms. The data
model in Figure 2-12 can be represented very accurately in a relational database product
such as MySQL or Microsoft Access as shown in Figure 2-14. The first stage in the imple-
mentation is to set up these tables and associated relationships and input some data.
Figure 2-15 shows some of the data that would be in relational database tables set up
according to the design in Figure 2-14.

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

Genus Species

genus name speciesID | genus ‘ species name ‘ common name
Coprosma 26 Dodonaea viscosa akeake
Cordyline 27 Elaeocarpus dentatus hinau
Corokia 28 Eucalyptus nichollii Black peppermint gum
Cryptomeria 29 Eucalyptus fastigata Brown barrel
Cupressocyparis 30 Eucalyptus gunnii cider gum
Dacrydium 31 Eucalyptus viminalis manna gum
Dodonaea 32 Eucalyptus regnans Mountain ash
Elaeocarpus 33 Eucalyptus delegatensis | Alpine ash
Eucalyptus 34 Eucalyptus camaldulensis Red river gum

(The value of genus must be one of the values in the Genus table.)

Usage PlantUsage
usage plant usage
bee food 28 bird food
bird food 28 coppicing
coppicing 28 shelter
firewood 29 soil stabilit
hedging 29 timber
shelter 30 coppicing
soil stability 30 shelter
timber 30 timber

(The values of usage and speciesID must be
one already in the corresponding table.)

Figure 2-15. Example data in tables for the plant database

We have now implemented our design, but we still need to provide convenient ways
to maintain and retrieve the data. This means we have to provide forms and reports that
will efficiently satisfy the requirements in our revised set of use cases.

Interfaces for Input Use Cases

We need to provide the users of our plant system with a nice way to input their data. The
use cases for maintaining genus and usage data are easily taken care of. We can enter the
data into each table usually via an interface such as a form or a web page. The use case
for maintaining species information is trickier. We need to update two tables: Species
(for the data about each species) and PlantUsage (because we need to specify which
usages each species is associated with). Many database products have utilities to facili-
tate the entry of data into two tables simultaneously usually via a form. Alternatively, we
might have a web page with a script to insert the data into the appropriate tables.

Figure 2-16 shows a very basic form for entering data about a particular species
setup using the Form Wizard in Microsoft Access. This form allows us to enter data that
will end up as one row in the Species table and several rows in the PlantUsage table (one
for each usage for this particular species). The form also provides convenient ways to
establish the relationships between a species and its genus and usages by providing

25

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

drop-down lists that will contain each of the possible genus or usage objects. This is one
possible solution to satisfy the requirements of use case 3 (maintaining species data) in
an accurate and convenient way.

= Species

r SpecieslD 20

nichollii

Drop-down list to
select from values
in the Genus table

Species Name

Commaon Mame Black peppermint gum

fus |Eucalyptus =

Subform to maintain Use

all the usages for this shelter

species (will end up in coppicing

PlantUsage table) bird food|

bee food

bird food

coppicing
firewood

,heduinu

Drop-down list of
values from the
Usage table

Record: EE 26

Figure 2-16. A form to satisfy the use case for maintaining species data

Reports for Output Use Cases

With the data stored in separate tables, the reporting and querying facilities in database
products make extracting (simple) information reasonably straightforward. We will not
go into the detail of how to set up queries and reports now, but we will look at two possi-
ble reports that would satisfy our reporting use cases. Most good report generators allow
the data to be selected, ordered, and grouped in various ways. By grouping on either
genus or usage, we can quite simply provide the information to satisfy the two reporting
use cases from Figure 2-13. Figure 2-17 shows a report grouped by usages and shows the
plants that are appropriate for each usage. The report in Figure 2-17 was created very
simply using default options in the Access Report Wizard.

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

Use Genus Species Common Name
bird food

Eucalyptus nichollii Black peppermint gum
coppicing

Eucalyptus gunnii cider gum

Eucalyptus nichollii Black peppermint gum
shelter

Eucalyptus gunnii cider gum

Eucalyptus nichollii Black peppermint gum

Figure 2-17. A simple report satisfying the use case for providing information on plants suit-
able for a specific usage

We could create a similar report to Figure 2-17 but grouping our data by genus
instead of usage. However, there are many different ways to access information from the
database. Figure 2-18 shows a very simple web page view of our Access database. It allows
users to select a genus and to see the associated species and uses (the web page was
developed with FrontPage).

genus_name speciesID |species_name common_name usage
Eucalyptus 30 gunnii cider gum shelter
Eucalyptus 30 gunnii cider gum coppicing
Eucalyptus 30 gunnii cider gum timber
Eucalyptus 29 fastigata Brown barrel soil stability
Eucalyptus 29 fastigata Brown barrel timber
[

[Submit " Reset l Eucalyptus V

Figure 2-18. A simple web page front end satisfying the use case for returning plant informa-
tion grouped by genus

27

CHAPTER 2 " GUIDED TOUR OF THE DEVELOPMENT PROCESS

Summary

We have now taken the complete trip from original imprecise problem statement to a
possible final solution for our very simple plants and usages example. The steps are sum-
marized here and illustrated in Figure 2-19.

1. Express the problem in terms of what a user might want to achieve. For a database
problem, this will typically be in terms of the data to be stored and the informa-
tion that needs to be retrieved. Sketch some initial use cases and a data model.

2. Undertake an iterative analysis process of reconsidering the data model and the
use cases until satisfied you have a complete and precise understanding of the
problem. For larger problems, this stage may include making some simplifying or
other pragmatic choices. The bulk of this book will concentrate on this phase of
the process.

3. Choose the type of product to manage the data and create an appropriate design.
For a relational database, this will involve designing tables, keys, and foreign keys.
Different structures will be required if the project is to be implemented in some
other type of product such as a programming language or a spreadsheet. The
design phase is discussed more fully in Chapters 7 to 9.

4. Build the application. For a relational database, this will include setting up the
tables and relationships and developing forms and reports to satisfy the use cases.
The mechanics of how to do this in any particular product is outside the scope of
this book, but there are numerous how-to books that will help you.

Problem

Solution

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PROCESS

Analysis
N
>
Real World Abstract World
1. Maintain usages O
/ 2. Maintain genus
/O / 3. Maintain species
1. Maintain plant information %\
User User\ 4, Report plant information
2. Report information about plants 5. Report usage information
3. Report information about usages
Species
Genus A species ID on Usage
genus name species name name
1..n| common name 0.n
=]
Problem Statement Expressed Data Model and More Complete o
with Initial Use Cases and Precise Use Cases)
Hepecte BE X
P spe]
[Jsheter
[coppicing Y
¥ bird food| I
ccoppicng i 1 oD L i ‘
Reowe: (] 170 genus name pi — [p o) |usage
o pee Common Name e
bird food
Bucdpts il Bick peppemint g
coppicing
Eucalyptus gunnii cider gum
Eucalps nichol Bick peppemninteum
shelter
e — -
Eucilpns nichol Bick peppemminteum
Final Application with Forms Database Design of Tables and
and Reports Relationships

A

Implementation

Figure 2-19. The development process for our simple database example

29

CHAPTER 3

Initial Requirements and Use
Cases

In this chapter, we consider part of the first step from real-world problem to eventual
real-world solution as described in Chapter 2. First we need to make sure we really
understand the problem. This may sound obvious, but it is surprising how often people
set about implementing a database before they understand the problem completely.
There are two things we need to do: understand what tasks all the people who will use
the system need to carry out and then figure out what data we will need to store to sup-
port them. Use cases and class diagrams as shown in Figure 3-1 are a great way to start to
consolidate our understanding of a problem.

Analysis
N
>
Real World Abstract World
1. Maintain usages
/ 2. Maintain genus
/ 3. Maintain species
1. Maintain plant information %\
User User 4. Report plant information
PI‘Oblem 2. Report information about plants 5. Report usage information
3. Report information about usages
Species
Genus 1.1 species ID 0.n Usage
genus name species name name
1..n| common name 0..n
Problem Statement Expressed Data Model and More Complete
with Initial Use Cases and Precise Use Cases

Figure 3-1. The first step: developing an abstract model of the real-world problem

31

32

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

First, we have to fully understand the real problem. It is not enough to have a rough
idea of what a business or club or scientist does. One of my favorite quotations comes
from Peter Coad and Ed Yourdon’s book Object Oriented Analysis,! in which they have this
to say about analyzing an air traffic control system:

The analyst needs to immerse himself in the problem domain so deeply that he
begins to discover nuances that even those who live with air traffic control every
day have not fully considered.

While the people involved are the experts in their particular real-world problem, they
seldom need to think in an abstract way about the details. Exceptions and irregularities
can be just “dealt with” as they arise. In a manual system, someone can scribble a note,
or post an additional invoice, or adjust some totals. However, an automated system can-
not be so forgiving, and possible irregularities need to be allowed for right from the start.

People will usually not volunteer information about the little oddities of their prob-
lem and even when questioned will often not see the importance. Answers such as “No,
not really,” or “Hardly ever,” or “Umm, no, I don’t think so, umm, well maybe” are a sign
that there is a complication that needs to be understood before any design of a database
proceeds any further.

As you have seen in the previous chapters, databases are often set up to solve one
immediate problem with little regard to what may come next or how the situation may
sometimes vary from the norm. In Example 1-4, “Academic Results,” tables were set up to
record students’ marks without considering the (sadly not altogether uncommon) case of
a student having to repeat a subject.

In this chapter, we look at ways to get an initial, accurate overview of the problem
and express these with use cases. Then, having understood all the definitions, detail,
exceptions, irregularities, reasonable extensions, and uses of the system (gasp), we have
to ensure that our abstract model captures the most important features accurately. It is
after all the abstract model that will eventually be implemented.

You may be designing your own database, or maybe you are designing one for some-
one else. In either case, there are two views of the problem. One is the concrete, real-
world view from the person who will be the eventual user (I will call this person the
client) and the other view is the more abstract model from the person who is designing
and possibly developing the system (I'll call this person the analyst). If you are designing
your own database, then wear two hats and swap them as necessary.

As a good understanding of a real-world problem depends so critically on the client
and analyst being able to understand each other, we will take a moment to look at the
two different views of a problem.

1. Peter Coad and Ed Yourdon, Object Oriented Analysis (Upper Saddle River, NJ: Yourdon Press, 1991).

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Real and Abstract Views of a Problem

The analyst sees the problem in a mostly abstract way. For the type of data-based prob-
lems we are considering, the processing can mostly be separated into

* Entering, editing, or otherwise maintaining data
* Extracting information from the database based on some criteria

This view of the problem is shown in Figure 3-2.

INPUT

/]

Use Cases for

|
mil

Data Entry
MODEL Data Model

U@

Use Cases for
Information Output

|
mil

OUTPUT

Figure 3-2. An analyst’s view of a typical data-based system

The first thing an analyst must do is to understand the client’s problem in sufficient
detail to help determine the input and output requirements (both immediate and poten-
tial). These can be expressed in use cases. The analyst then needs to develop a data
model that will support those requirements. As you shall see in later chapters, the data
model provides considerable insight into the details of a system, so the use cases and
data model are often developed in tandem.

Establishing the use cases is not a simple problem. Users or clients seldom have a
clear idea of the whole problem. Many database projects fall into one of the two cate-
gories described next, and it is useful to look at these from the client’s perspective.

33

34

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Data Minding

This type of project involves a client who has data that needs to be looked after. This is
often the case for research results. A scientist may devise an experiment to collect data
for a particular purpose, but there is often little clear idea of how to store the data most
effectively. The analyst’s responsibility here is to think ahead and ask questions about
how the data may be used in future situations. This process is depicted in Figure 3-3.

INPUT

(—]

=T

4

m MODEL
4
]

=

|
]
il

mil

=~

mil

Client’s View Eventual Model

Figure 3-3. The analysis of a data-minding problem

A careful analysis at this stage helps prevent the very common and infuriating situa-
tion of knowing the data is “in there” but not being able to “get it out” conveniently.
Predicting the potential output requirements, given the type of data that is being col-
lected, is one of the most difficult aspects of problems involving storing data.

Task Automation

This type of project involves a client with a job that needs to be automated. This could be
a small business, club, or school that has been keeping records by hand or with software
that needs to be updated. Maybe they are looking to transfer their data to a database with
aweb interface. These clients usually have a clear idea of what they do. The analyst’s job

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES 35

here is to separate what the client does from what needs to be recorded and reported and
recast the problem as shown in Figure 3-4.

||

|
mill

(=

MODEL

U@

|
mil

Client’s View Eventual Model

Figure 3-4. The analysis of a task automation problem

A typical description for a task automation problem at a local school might go like
this:

When parents ring up to say that children are sick, we have to let their classroom
teachers know, and if it’s sports day and the child is in a school team, the sports
teacher might have to sort out substitutes. Then we need to count up all the days
missed to put on the child’s report. The Department of Education needs the totals
each term, too.

Recording the absence and being able to report it in several ways is clearly a prime
requirement. However, what about the sports teams? Does the system need to differenti-
ate those children in teams (and if so does it need to know which teams)? Does the
system need to know which dates there are interschool matches?

Probably not.

Differentiating what the client does (if it’s sports day, tell the sports teacher) from
what needs to be recorded is part of the scoping process. The solution may fall anywhere

36

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

from recording all the details about teams, substitutes, and match dates, to doing little
more than handing the sports teacher a list of everyone who is absent today and letting
her sort it out.

Every problem is different, so we need a general framework for discovering and rep-
resenting the intricacies of a database problem. A good start is to determine answers to
the following questions:

¢ What does the user do?

¢ What data is involved?

¢ What is the main objective of the system?

¢ What data is needed to satisfy this objective?
e What are the input use cases?

e What is the first data model?

¢ What are the output use cases?

The preceding steps are iterative. As we find out more about the problem, we will
probably have to return to the early steps and adjust them. We will work through these
steps in the context of Example 3-1.

EXAMPLE 3-1: MEAL DELIVERIES

Visitors to the city staying in local motel or hotel rooms are offered a service that will deliver them a
variety of fast food or takeaway meals (pizzas, burgers, Chinese takeout, and so on). The visitor phones
the company and places an order for some meals. A driver is selected and dispatched to pick up the
meals from the appropriate fast-food outlets. The driver delivers the meals to the customer, receives
the payment, and informs the depot. He also fills in a time sheet, which he returns to the depot later.
One of the reasons given for wanting to automate this, currently manual, process is to be able to
produce statistics about the numbers of orders taken and about the time taken to complete orders.

What Does the User Do?

“What does the user do?” is a question particularly relevant to task automation problems.
As a start, it is useful to list the jobs that the user regularly undertakes. Here is a start for
the meal deliveries example:

¢ Receptionist records details of order (address, phone number, meals, total price).

¢ Receptionist selects a driver and gives him the information about the order.

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

* Driver picks up meal(s) from fast food outlet(s).

¢ Driver delivers meal(s) and informs the depot.

* Driver hands in time sheets at end of shift.

* Receptionist or manager produces weekly and monthly statistics.

The first five of the preceding tasks may involve entering data into the system while
the last task is reporting on information already in the system.

What Data Is Involved?

The tasks described in the previous section are very much stated from the users’ point of
view and are what physically take place. We need to step back a bit, put on our analyst’s
hat, and think about what data, if any, needs to be recorded or retrieved at each step.

It is useful to start by thinking what a typical order might involve. Let’s say a family is
in a motel for the night and rings up for curries for mum and dad and pizzas for the kids.
Brainstorm about what data could be recorded at each step of the job. Some possibilities
are shown in Table 3-1.

Table 3-1. Physical User Tasks and Related Data

Task Physical Jobs Data That Could Be Recorded

1 Take order. Order number, address, phone, name, meals,
price, time.

2 Dispatch driver. Driver’s name (or ID?), order number, time,

outlets to go to.

3 Pick up meals. Order number, time of picking up each meal.
4 Deliver meals. Order number, time.
5 Enter time sheet. Anything other than what we already have

for each order? Sign-on time, sign-off time?

Let’s look at some of the questions each of these jobs might raise:

Take order: Recording the information about an order seems fairly straightforward.
We need to be able to identify an order easily. We could refer to the customer and the
time of placement, but generally it is easier to assign an order number to make it eas-
ier to track the order through its various stages. The information about the customer
is fairly obvious too. We need to at least record where the meals are to be delivered
and how to get in touch. What about meals? How do we record this information?

37

38 CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Presumably the customer is choosing from some list of available meals. Should the
system be able to provide that list of meals to the receptionist somehow so that a
selection can be made? What about price? If we have data about the meals, we may
already know the price. Is there some other price that needs to be entered? Is there a
mileage charge perhaps?

Dispatch driver: First up, we need to think about how we know which driver is going
to deliver the order. Does the system need to keep track of the whereabouts of drivers
and determine which driver is the most appropriate? Does the receptionist choose
from a list of drivers on duty? Does the system need to keep track of which drivers are
available or which are currently on a delivery? If all the drivers are busy, what hap-
pens?

Having decided on a driver, we then need to tell him about the order (two curries,
two pizzas). Do we also tell him where to go to get them (e.g., are there several pizza
outlets to choose from)? Does the system need to record which outlets provided the
meal for this order? If the outlets for pizzas and curries are far apart, might two driv-
ers be involved?

Pick up meals: What do we want to record about a driver picking up a meal? Do we
want the system to be able to tell us what stage an order is at (e.g., “Curries were
picked up at 8:40, pizzas have not been collected yet”)? Do the eventual statistics
need to be separated into times for picking up meals and times to deliver meals, or
will overall times do?

Deliver meals: If statistics on time are important, recording the time the meals were
delivered will be essential.

Enter time sheets: Assuming that time sheets are currently managed manually, look-
ing at an existing time sheet will be very helpful. It is possible that the manual time
sheet will contain some of the information we have already discussed. Is there any
data that we have not recorded yet? Does the system need to record information
about pay rates and payments to the drivers? We discuss looking at existing manual
forms again in the section “Finding Out More About the Problem.”

What Is the Objective of the System?

Clearly, a system to record meal deliveries could be quite small or very large depending
on how much of the information in the previous section we decide to record. With our
analyst’s hat on, we need to sort out the main objectives and provide pragmatic solutions
(as opposed to all-encompassing ones).

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

One common problem if you are working with other people is that as you ask ques-
tions similar to the ones described earlier, your clients may become quite enthusiastic
about broadening the scope of the system to include more and more. They will soon set-
tle down when they realize that extras come at a cost.

It is important not to see everything that could be automated as something that
should be automated. Many tasks are much more conveniently done manually. It is eas-
ier to look up often-used phone numbers in a paper notebook beside the phone than it is
to look them up in a database on a computer in another room.

Human judgment is also better than a computer’s in many cases. A good example is
assigning demonstrators to laboratory classes. While the database may have all the infor-
mation about requirements and availability, the actual matching up may be better done
by a real person who has additional information (e.g., who has a tendency to sleep in,
who is likely to fall out with whom, who is likely to be most patient at 5:30 on a Friday
afternoon).

It is best to keep the scope of the problem as small and tightly defined as possible in
the early stages of the analysis. Satisfy the most pressing requirements first. A properly
designed database should not be too difficult to expand later as necessity dictates or as
time and funds allow. Let’s think about the meal delivery example. The initial incentive
for developing the database was to provide summary information about the orders and
the times involved. Information about orders in a summary might include the total num-
ber of orders and/or their combined value, probably within some time frame (weekly or
monthly). This information might allow the company to identify some trends and adapt
its business accordingly.

Let’s think about the time statistics. How detailed should they be? Here is where you
need to be imaginative. A question such as “What statistics do you want about time?”
may not elicit adequate detail from a client. If it doesn’t, you might try to think what
could be achieved and try some more specific questions. Here are a few suggestions:

¢ Do you need to have statistics to back up statements such as “Our meals are deliv-
ered within 40 minutes” or “Our average delivery time is 15 minutes”?

* Do youneed to be able to break down the delivery time to see where the delays
are? For example: How long does an order typically have to wait before a driver
becomes available? What proportion of the time is spent waiting for the meals to
be prepared? What is the average time taken to deliver a meal from outlet to cus-
tomer?

* Do you need to be able to break these statistics down by driver? For example, to
find out if any drivers are regularly slower than others?

* Do youneed to be able to break these statistics down by outlet? For example, do
you need to see the average waiting times for each outlet to determine whether
any are significantly slower?

39

40

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

The purpose of these questions is to determine the most pressing requirements. Let’s
assume that for this small business the main objective is just to get some idea of the over-
all times from phone call to delivery. Asking the other questions may (or may not) lead
the client to become too ambitious: “I never thought of that. What a good idea. Throw
that in as well.”

Before everyone gets carried away; it is essential to consider how realistic it is to
obtain data sufficiently reliable to fulfill these extra ideas. The main objective of overall
delivery times isn’t too difficult. It requires the time of the call to be logged and the time
of final delivery. Any more detail than that comes at significant cost. Drivers will have to
be constantly recording times or informing the depot at each stage of the process. Will an
extra receptionist be required to cope with maintaining all this extra data? If these extras
are not essential to the client, the scope should exclude them. If, however, the extra infor-
mation is one of the main purposes of acquiring the system, there are still issues to
consider. How accurate will the data be? If drivers suspect that times are being recorded
next to their names, might they feel pressured into being less than accurate sometimes?
Setting up a complicated system to analyze inaccurate numbers is a waste of everybody’s
time and money.

Let’s assume that after some careful thought it is agreed that only the total delivery
time is required. We can now restate the main objectives of the project:

To record orders for meals so that summaries of the number, value, and overall time
taken to process orders can be retrieved for different time periods.

What Data Is Required to Satisfy the Objective?

We can now revisit each of the tasks in Table 3-1 with the more clearly stated objective in
mind. After further consultation with the client, we can produce some more precise
descriptions of the tasks. Following are some possible outcomes for our scenario:

Take order: If we are to provide statistics by month or week, we will need to record a
date. The client has confirmed that there is a price list of different meals, and it
would be useful for the receptionist to be able to select off this list. We will therefore
need an additional task to enter and maintain information about meals and their
prices. The client confirms that the cost of the order is just the total cost of all the
meals.

Dispatch driver: We need to know how a driver is chosen and determine what we
need to record. Let’s assume we discover that the drivers are assigned to be on duty
for various time units. Obviously, being able to maintain and print out duty rosters
would be a useful thing to be able to do. However, automating rosters doesn't directly

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

contribute to our main objective. It is agreed to leave the rosters outside the scope of
the system for now. The receptionist will use information available independently of
the database (probably a list of names pinned to a notice board) to determine who
should be assigned to deliver an order.

Should the system provide a list of drivers for the receptionist to choose from? Why
do we need the driver’s name? Well, clearly we need to be able to contact the driver
for a specific order to check up on progress or make alterations. Maybe all we need is
aname and a cell phone number. This is a good point to check with the client. “Is it
important to know how many orders were delivered by different drivers?” Let’s say
for now that this is not required in the initial stages.

Where does the driver go to pick up the pizzas? Is it part of the system to suggest or
record the outlet? Once again, if the purpose of the statistics is to streamline the busi-
ness, knowing where each driver traveled to and how long they had to wait at various
outlets would be essential. Given that we have determined that this is not the main
objective, we decide not to maintain information about outlets for now.

Pick up meals: We decided that the statistics are not going to differentiate times for
picking up and delivering a meal, so we don’t need to record the times at every stage
of the process. Even if we don’t record the pickup times, might it still be useful to
know that a meal has been picked up and is on its way to the customer? Certainly
this will be useful information when there is a delay or a problem. However, to satisfy
our main objective, it is not necessary for the system to record information about the
status of a delivery. If there is a problem, the receptionist has a contact number for
the driver and can ring him and find out what stage the order is at. So in the first
instance, we need to record nothing about picking up meals in our database.

Deliver meals: If we want to have statistics on overall delivery times, we clearly need
to record the time that each meal is delivered. We don't need to be concerned at this
stage how that information gets into the database. The driver may ring the depot or
write the time on a time sheet for entering later. At this stage, we are only concerned
that the system is capable of storing the delivery time for each order. When the order
is delivered, the receptionist also needs to know that the driver is free to take another
order. We decided in the section about dispatching drivers that for now these deci-
sions would be independent of the database. The receptionist would probably just
make a manual note.

Enter time sheets: We already have the driver’s name, information about the order,
and delivery times recorded. Is there anything else we need to record at this step?
Let’s say that a look at the current manual time sheets confirms that we already have
all the information we need.

41

42

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

We have gone to a lot of trouble to ask questions to clarify the scope of the problem
and the data necessary to support that. The decisions we have come to are hypothetical.
They are not right or wrong. Even for a real problem there will not be right or wrong
answers. We can only ever hope for a good pragmatic solution. If the database is designed
sensibly, being able to add additional information or increase the scope should be rea-
sonably straightforward at a later stage. It may take considerable time to come to some
decision about the size and scope of the system, so having arrived at some agreement, it
is important to clearly express what the new scope is. Example 3-2 restates the problem
in light of our rethink.

EXAMPLE 3-2: RESTATEMENT OF MEAL DELIVERY PROBLEM

The system will record and provide information about meals and their current prices. It will maintain
data about orders including the date, the meals requested, and contact information for the customer
and the driver assigned to the delivery. It will also maintain the time the order was placed and the time
it was finally delivered. Given this, the system will be able to provide summary information about the
number and value of orders within particular time periods and also summaries of the time taken for
total processing of orders.

The system will not maintain any additional information about drivers nor about which drivers
were associated with a particular order. The system will not maintain any information about outlets nor
which were used for any particular order.

What Are the Input Use Cases?

Recall that use cases are simply textual descriptions of the ways users interact with the
system. There are many different levels of use case from very high-level descriptions of
objectives to very low-level tasks. The most useful level for our purposes of trying to
understand and describe a database system is the user task level. In his book Writing
Effective Use Cases,? Alistair Cockburn describes this as something small enough that a
user could do in less than about twenty minutes and then go off and have a coffee. He also
says it should be a job significant enough so that if a user did several of the tasks in a day
he could use it as evidence for a raise. So something like “manage the orders for the busi-
ness” would be too broad for a task and “look up driver’s phone number” probably too
insignificant.

Now that we have a clearer idea of the objectives and the scope of the system, we can
return to our list of jobs that involve data entry (which appear earlier in Table 3-1) and
decide what interaction with the system needs to take place at each point. The interac-
tions are shown in Table 3-2.

2. Alistair Cockburn, Writing Effective Use Cases (Boston, MA: Addison Wesley, 2001).

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Table 3-2. Physical User Tasks for Data Entry and Interaction with the Proposed System

Task Physical Job Interaction with System

0 Record available meals. Enter and maintain data about each item
that can be ordered (ID, description,
current price).

1 Take order. Enter order data (order number, time,

address, phone) and the ID of each meal
required (assume for now that prices don’t
change).

2 Dispatch driver. Record driver’s name and contact number
with appropriate order.

3 Pick up meals. Nothing.

4 Deliver meals. Record delivery time for the appropriate
order (here or possibly at the next step).

5 Enter time sheet. Nothing.

The interactions in Table 3-2 form the basis for our first attempt at writing down
some data entry use cases. How big should each use case be? Should we combine some
tasks or split others into more than one use case? The overriding consideration is read-
ability and communication. At the first pass, about five to ten use cases is enough (and
not too many) to give a clear view of the components of a small problem.

We could consider combining all the tasks that involve data about an order into one
use case (i.e., entering the original order, adding the driver contact, and updating the
delivery time). However, for this problem these tasks are all quite separate, performed at
different times, and possibly by different people. It may not be possible to assign a driver
to an order immediately (during busy times we may have to wait to see which driver
becomes available first), so entering the driver contact data should be a separate task
from entering the order. Similarly, recording the delivery time is a separate task per-
formed at a different time. Each of these tasks to do with updating an order are central to
the whole business and will be repeated several times a day, so it is reasonable to con-
sider providing each with its own use case. However, the mechanics of adding the driver
contact and adding the delivery time are almost identical in that information about a
particular order has to be found and then be updated. We can (if we feel like it) combine
these into one use case called, for example, “Update Order Status.”

Thinking about updating the status of an existing order leads us to ponder about
how the user will be able to locate a particular order. It might be useful to provide lists of
orders yet to be assigned a driver or yet to be delivered. We will not look at specific user
interface design at this stage (i.e., how such a list would be presented or how a user might
select the appropriate one); however, making such information available will be impor-
tant. We have enough data stored to be able to find orders with no driver contact number

43

44

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

or no delivery time. Given that this information will be almost essential to the reception-
ist and it is readily available in the system, we will add locating uncompleted orders as a
use case also. Example 3-3 shows the use cases so far.

EXAMPLE 3-3: INITIAL USE CASES FOR MEAL DELIVERIES

Figure 3-5 shows the initial use cases for the meal delivery problem, and the text for each use case is
given after the figure.

C o D

1. Maintain meal data

2. Enter an order ©
//' 3. Update order status

>

Receptionist 4. Report on order status

Figure 3-5. Use cases for meal deliveries

Use case 1: Maintain meal data. Enter and update data on meals (ID, description, current price).

Use case 2: Enter an order. Enter initial order information (order number, date, address, phone) and for
each meal (ID). (This assumes prices do not change. We will consider price changes later in the chapter
in the section “Changing Prices.”) Each meal must be one already in the system.

Use case 3: Update order status. For a particular order already in the system, add driver contact num-
ber or delivery time.

Use case 4: Report on order status. Retrieve all orders satisfying required status (e.g., no driver contact
number or no delivery time).

What Is the First Data Model?

Now that we have some idea of the data we need to maintain, we can sketch a first data
model for the problem. We clearly have data about at least two separate things, orders
and the types of meals that can be supplied, and so have two classes as shown in Figure 3-6.
The objects of the Meal class will be each of the types of meal that appear on the menus in
a client’s motel or hotel room.

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Order
order_number
date Meal
address oy
phone D
order_time 0..n 1n dtr‘._scrlptlon
delivery_time price
driver_contact

Figure 3-6. First attempt at a data model for meal delivery database

In Figure 3-6, we have separated each of the pieces of data we are recording and put
them as attributes in the most likely class. Let’s recap from Chapter 2 what a model like
Figure 3-6 means. Reading from left to right, we have that a particular order (e.g., “to
Colombo Street at 8:30 on 1/4/2006”) can involve one or more types of meal. From right
to left, we have that each type of meal (e.g., chicken vindaloo) could appear on many
orders but may not appear on any (e.g., no one may ever want to order spinach and
anchovy pizzas). Just in case there is any confusion, when we talk about a meal, we mean
a type of meal as it appears on the menu. We don’t mean that a particular portion of curry
may end up on more than one order!

Note that this model is only a first attempt and overlooks some important details that
we will consider later in the chapter.

What Are the Output Use Cases?

We now need to reconsider the required reporting and summarizing tasks in terms of the
data we are keeping, as in the data model in Figure 3-6. We have already determined that
it would be useful to report on orders awaiting a driver to be assigned or yet to be deliv-
ered and have included that in use case 3 in Example 3-3.

Let’s think about the statistics on orders and delivery times that are part of our main
objective. The statistics on orders can be found by considering the Order objects. We can
find the value of each order by summing the prices of each meal associated with that
order, given (for now) that prices remain constant. We can also determine the time taken
for each order by subtracting the order time from the delivery time. By selecting those
order objects that are in the date period we are interested in, we can determine different
statistics about the times (e.g., averages or totals) during a particular week or month or
whatever is required. We have enough information stored in our data model to satisfy the
requirements of our main objective.

It is useful at this point to look at the data we are storing and see what other informa-
tion can be deduced. Given the data we have, what other statistics could we supply? How

45

46

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

about grouping all the orders for a particular type of meal? It might be useful to ask your
client whether, given the information is already stored and readily available, they would
like to be able to know how much gross income came from pizzas, or how many people
ordered curries, or if orders containing particular types of meals took longer to deliver.
This is not really broadening the scope of the problem, as the data is already being stored
and the additional analysis and reporting is quite straightforward.

On closer thought, however, we might surmise that information about particular
meals (e.g., a chicken vindaloo compared with alamb korma) may not be as useful as
comparisons between different categories of meals (pizzas versus curries). If this is the
case, we maybe have a new attribute or class, Category. Each meal could then be assigned
a particular category. We will look more closely at whether something like a category
should be an attribute or a class in Chapter 5, but for now take my word for it that a
Category class would be a good idea. This is only a small extension to the problem and
may provide considerable additional information for little extra effort or cost. With our
analyst’s hat on, we should at least discuss this addition with the client.

Even if we don’t include an additional Category class, we still need at least one further
use case to deal with the statistical output. Because all the reports are broadly similar, we
can describe them quite clearly in one use case as shown in Example 3-4.

EXAMPLE 3-4: STATISTICAL REPORTING USE CASE FOR MEAL DELIVERIES

Figure 3-7 shows the use case for reporting statistics.

-

Summary reports on orders

Manager

Figure 3-7. Use case for reporting statistics
Use case: Summary reports on orders. (This assumes constant prices.)
For each completed order with a date in the required time period:
¢ Find all the associated meals and sum their value of price, and/or
¢ Calculate the time of the order by subtracting order_time from delivery_time.
e [f required, group orders by smaller time period (day, week, etc.).

e Average and/or total prices/times.

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

More About Use Cases

We have been using very simple descriptions in our use cases. However, they can contain
much more information, good examples of which can be found in Alistair Cockburn’s
book Writing Effective Use Cases. This book goes into more detail than I do here as it
includes the analysis of larger projects where the specification of requirements for con-
tractual purposes is more critical. In this book, we are using use cases not so much as a
contractual specification document but as a way to clarify and learn more about the
proposed project, its scope, and its complexities.

There are no hard-and-fast rules about what use cases should include or how they
should be presented. The overriding consideration is that they should be readable and
provide a clear and complete description of what each task involves.

We now have a closer look at some further aspects of use cases.

Actors

We use an actor as a representation of a user of our database. In order to take into
account all the different interactions our users might make with the database, it is useful
to consider all the different fypes of people our users may encompass.

In our example of the meal delivery service, you will see that in Figures 3-5 and 3-7
we distinguished two actors: receptionist and manager. It is not necessary to become too
concerned about which actors are associated with particular use cases. What is impor-
tant is to consider the different roles of people likely to interact with the system and see
the problem from the perspective of each. For a small business, these roles might be car-
ried out by one or two people in total. For larger organizations, a single role might have
many people associated with it (many data entry operators, for example). It becomes a
case of putting on different hats and looking at the problem from different points of view.

Here are some broad categories of roles people might have, with examples from our
meal delivery service.

Clerical/data entry operators: Users in this role deal with entering or updating raw
data (e.g., entering order details or finding an order to enter a delivery time).

Supervisors: Users in this role deal with day-to-day details. They may require lists of
transactions, rosters, and so on. For our meal delivery database, these users would
probably deal with things such as a list of which orders have not yet been delivered
or details of specific orders to follow up problems.

Managers: Managers are more likely to be interested in summaries rather than day-
to-day details (e.g., the total number of orders for each day during the last week or
the average time of delivery for today’s orders). They may also require very general
summaries that show trends and which can be used for forecasting and strategic
management decisions (e.g., value of orders per month over the last two years).

47

48

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

Thinking from the point of view of these different roles (or actors) can give a great
deal of information about what the system will need to provide to be most useful.

Exceptions and Extensions

The textual description of each use case is the place to include any exceptions or prob-
lems that might occur. For our simple example, there are not too many. We might include
what to do about orders that run over midnight so as to get the elapsed time correct
(I hate dealing with times!). We might also include what happens if an order is not com-
pleted for some reason. This is quite tricky. We need to differentiate orders that have been
cancelled from those that have not yet been delivered so our report on the status of cur-
rent orders is correct. Every time we ask for those orders not yet delivered, we don’t want
to include all the discontinued orders from the beginning of time. Here are two possibili-
ties: cancelled or terminated orders could be deleted from the system, or we could add a
new attribute, status, to the Order class that could have values such as ordered, delivered,
cancelled, and so on. The second option is more advisable in that it seems wasteful to
delete information that is already in the system, and it is quite probable that a manager
would be very interested to know what percentage of orders were cancelled (and very
possibly why—but that introduces yet another level of complexity). Any additions such
as keeping track of cancelled orders would have to be reflected in the use cases and data
model.

As you can see, thinking about the things that can go wrong at each step helps our
understanding of the problem.

Use Cases for Maintaining Data

Maintaining data includes four activities: Create, Read, Update, and Delete. For many
types of data, we have chosen, as Cockburn suggests, to lump all these together in one
use case (e.g., maintain meal data). While they are all separate jobs and are likely to be
done at different times, they don’t really individually satisfy the criteria for a user task
given previously. A user could not really use the fact that she had corrected many mis-
spellings of a meal description as evidence for a raise. Most good database products will
provide facilities to carry out data maintenance activities. If we create a table for meal
data, the database product will almost certainly provide utilities to allow us to add new
meals, find particular ones (based on the value of one or more attributes), update the
values for a particular meal, or delete a meal entirely. So for many classes, it is quite
reasonable to include these maintenance activities in one use case and leave the par-
ticulars for when we design a user interface at some later point.

For some tasks, it may be sensible to separate out different aspects of maintaining a
particular class of data. In our meal delivery example, we have separated entering orders
from updating orders (e.g., adding the driver contact and delivery time) because these

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

are quite significant and separate parts of the receptionist’s job. Considering the entering
and updating tasks separately encouraged us to think about how a receptionist might
conveniently find the appropriate order to update its status and so led us to provide
reports on the status of current orders.

Whether these aspects of maintaining the order data should be in separate use cases
is a matter of opinion, and the deciding factor should be what is most readable and pro-
vides best communication. As we only have a few use cases, leaving these separate seems
reasonable, but if the scope, and therefore the number, of use cases grew, then clarity
might be better served by combining them.

Use Cases for Reporting Information

To the client, reporting tasks are probably the most significant part of the database
system. To some extent, they are just an extension of the Read activity in the previous
section. We need to be able to extract a subset of the objects and then do something with
them: display them on a screen or web page, write them out in a report, group them
together, count them, average or total some attribute value(s).

As we have seen, it is very useful to consider how we might want to select or group
the objects when producing a report. In the meal delivery example we considered group-
ing orders by meal type and quickly realized that a broader definition of meal category
might prove useful. Asking detailed questions about reports, early on, is a good invest-
ment because it will impact on the classes that will be required.

How many use cases do you need for reports? Once again be guided by readability.
The use case in Figure 3-7 includes quite a few similar but different possibilities and is
fairly easy to read. If we were to include other quite different reports (rosters, invoices,
and so on) these should have their own use case.

The mechanism for choosing which report to print or which orders to include (this
week’s or this month’s) is not a matter for this part of the analysis. We defer these deci-
sions until the user interface is designed. All that matters at this stage is that the data is
stored in such a way as to make the reports possible.

Finding Out More About the Problem

We have considered a number of questions that need to be answered to understand and
scope a project. We have presented the questions as a dialog between client and analyst.
A great deal of information is also available from other sources. The existing forms and
reports that the client (business, researcher, club, etc.) is using are an excellent way to get
an overview of a project. These documents can provide a wealth of detail and can be the
source of a number of interesting questions. Having a close look at input forms and
reports right at the start can improve the understanding of the problem and form a great
basis for a line of detailed questioning.

49

50

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

It is important to realize that you are looking at the forms and reports to find out
about the problem (not to find out about the forms and reports). Empty forms give an
indication of the data the client expects to be recorded. However, much more informa-
tion will come from filled-in forms. Here you are likely to find many of the irregularities
and exceptions. Look for fields that are not filled in or are marked “not applicable.” Look
for options that are crossed out and another written in by hand. Look for fields that have
two values in them or for explanatory notes written by hand on the bottom or back of the
form. It is these details that will really give you some insight into the complexities of the
problem.

Existing reports also give you a guide as to what information the client currently
expects. The project has possibly been commissioned because the existing reports are
unsatisfactory in some respects. However, even ones that are still useful can give rise to
interesting questions. Look for gaps in the rows or columns. Look for blanks as opposed
to zeros. Question any negative numbers. Ask for definitions of amounts.

What Have We Postponed?

Our analysis of the meal delivery example is nowhere near complete because we do not
have enough tools just yet. For those concerned about the oversights, here are some of
the things that we still have to consider. We will look at these issues again in more depth
in later chapters.

Changing Prices

The Meal class has an attribute that we have called price. This is the current price of a
meal, and clearly it will change over time. When a new order is placed, we need to know
the current price that is recorded with the meal information. If the prices change and we
run a report about old orders, as described in the use case in Figure 3-7, we will have a
problem. The only prices we are storing are the current prices, so we will not necessarily
find the total cost of particular orders when they were placed, but instead will find how
much those same orders would cost at today’s current prices. There are a number of ways
to remedy this. The simplest in this case would be to include another attribute in the
Order class to contain the total value of the order at the time of ordering. This will then be
unchanged at a later date when the meal prices change.

Meals That Are Discontinued

Another thing that is certain to change over time is the meal types that are being offered.
Adding new meals doesn'’t raise any problems; however, removing a meal is more tricky. If
we remove a meal, we have to consider what happens to old orders in the system that are

CHAPTER 3 © INITIAL REQUIREMENTS AND USE CASES

associated with that meal. We probably want to retain this historical data, so we may
choose never to remove any meals that are associated with orders.

We then have the problem that our set of meals includes some that should not be
associated with new orders. One way to deal with this is to add an attribute, available, to
the Meal class that indicates whether the meal can be ordered at the present time. We
would need to alter our use case for entering an order to say that only meals that are
available can be included. Our reporting use cases, however, would probably include all
meals that were ordered during the reporting period.

Quantities of Particular Meals

What if our customer orders two chicken vindaloos? We can associate the Order object
with the Meal object, but where do we keep the information about how many of this par-
ticular meal type is to be delivered for this order? This is a very serious oversight, and to
fix it requires a new class between the Order and Meal classes. This often happens when
we have Many-Many relationships. We will discuss this further in Chapter 4.

Summary

The first part of the analysis process is to understand the main objectives and the scope
of the project. The analyst’s job is to get inside the heads of all the different types of peo-
ple who will use the system to understand what they require now and what they are likely
to need in the future. The process is iterative but is likely to include the following steps:

¢ Determine the main objective of the system.

¢ Determine the jobs different users do in an average day.

* Brainstorm the data that could be associated with each job.

» Agree on the scope of the project and decide on the relevant data.
 Sketch data input use cases—consider exceptions—check existing forms.
¢ Sketch a first data model.

* Brainstorm the possible outputs given the data being collected.

¢ Sketch information output use cases.

51

CHAPTER 4

Learning from the Data Model

In the previous chapter, we attempted to extract the essential tasks involved in a real-
world problem and express them with use cases. We also made a first attempt at
determining the data that is necessary to support those tasks and formed an initial data
model, which we depicted with a class diagram. In this chapter, we look more closely at
the data model to see how it can further our understanding of a database system.

A data model is a precise description of the data stored for a real-world problem, in
much the same way that a mathematical equation describes a real-world physical event,
or an architectural drawing describes the plan of a building. However, like a mathemati-
cal equation or an architectural plan, the data model is not a complete nor exact
description of a real situation. It will always be based on definitions and assumptions,
and it has a finite scope. For example, a high school student’s simple mathematical equa-
tion to describe the path of a ball tossed into the air will probably make assumptions
about the constancy of the gravitational force and the absence of air resistance, and will
likely assume low speeds where relativistic effects can be ignored. The equation is precise
and correct for the assumptions that have been made, but it does not reflect the real
problem exactly. It is, however, a good, pragmatic, and extremely useful description that
captures the essentials of the real physical event.

A data model has similar benefits and limitations to a mathematical equation. It is a
model of the relationships among the data items that are being stored about a problem,
but it is not a complete model of the real problem itself. Constraints on money, time, and
expertise will always mean that problems will need to be scoped and assumptions made
in order to extract the essential elements. It is crucial that the definitions and assump-
tions are clearly expressed so that the client and the analyst are not talking at
Cross-purposes.

In the early stages of the analysis, as client and developer are trying to understand
the problem (and each other), the details will necessarily be vague. In this chapter, we
look at how the initial data model can be used to discover where definitions and scope
may need to be more rigorously expressed.

53

54

CHAPTER 4 " LEARNING FROM THE DATA MODEL

Review of Data Models

The essential aspects of a data model were defined in Chapter 2. We will revisit these by
way of an example that will highlight some additional features. Think about a small
hostel that provides a number of single rooms for school groups visiting a national park.
The hostel has a small database to keep track of its rooms and the people currently in
residence. An initial data model is shown in Figure 4-1.

Group
name Guest Room
contact name number
date_in adult type
date_out 1.1 1.n 0.1 1.1

Figure 4-1. Initial data model for the current occupancy of a small hostel

You can see that there is a 1-Many relationship between the Group and Guest classes.
Reading from left to right in Figure 4-1, we have that a particular group is related to one
or more guests, and from right to left that a particular guest is associated with exactly one
group. Figure 4-1 also depicts a 1-1 relationship between Guest and Room. Reading left to
right, we have that each guest must be associated with one room and a room can be
associated with at most one guest but maybe none. In normal speak, we have that groups
consist of a number of guests, and each guest has a room. Rooms are for one guest only,
and they may not all be full. Some possible instances of these objects and relationships
are shown in Figure 4-2. We have two groups: Green High with three associated guests,
and Boys High with four. Each of the guests is associated with one room (and some
rooms are empty). Take a little time to convince yourself how the class diagram in
Figure 4-1 represents the situation.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

name: J. Smith ¢ N number: 101
adult: Yes type: Deluxe

name: Green High
contact: PO Box 145

date_in: 4th April
date_out: 7th April , .
— name: 1. Brown ¢ > number: 102
adult: No type: Standard

name: T. Jones ¢ > number: 103
adult: No type: Standard

==

number: 104
type: Deluxe

. ; name: J. Green ¢ > number: 105
Contact: PO'Box 73 / adult:No type: Standard
date_in: ~ 2nd April
date_out: 6th April .

name: A. Taylor ¢ N rt%gf)er: ;?gndard

name: W. Long ¢ > number: 107
type: Standard

: 108

name: D. Foly number:
adult: No < > type: Standard

Figure 4-2. Objects and relationship instances consistent with Figure 4-1

Notice that room 104 is empty as is allowed by the data model (a room does not have
to be associated with a guest). Now that we have read what the data model tells us in a
mechanical way, let’s think a little bit more deeply about what the model is telling us
about the real problem and how it is being handled.

What is the definition of a group? We see that in the example data in Figure 4-2 the
Boys High group consists of four people. What would we do if A. Taylor and W. Long wish
to leave a day early? How could we record this information? There is no place to store
dates with Taylor or Long’s Guest objects, and there is only room for one departure date to
be stored with the Boys High Group object. The data model is telling us that a group is
more precisely defined as being associated with a set of guests all with the same arrival
and departure dates rather than just any group of friends who happen to be passing
through the hostel at overlapping times.

55

56

CHAPTER 4 " LEARNING FROM THE DATA MODEL

What should we do about Taylor and Long wishing to leave early? Within this model,
we could do this by creating another Group object for them (Boys High Early Leavers, say).
In this respect, our definition of group is a little different from what we might expect in
normal conversation. It is not a set of people who all know each other and feel as though
they belong together, but a set of people with the same arrival and departure dates and a
common contact address. If it is essential that the system needs to record that these two
groups of Boys High people are somehow “together,” the data would need to be modeled
differently.

The data model also tells us that a guest must belong to a group. What else does this
tell us about the definition of a group? What about a lone traveller wishing to stay at the
hostel? This can be accommodated within the model by having a group with just one
guest. In this respect, the definition of group for the database problem is once again
different from the way the word is used in normal conversation. We would not generally
refer to a group of one person; however, for the data model that is a possibility that will
almost certainly eventuate.

So our original data model, which at first glance looked quite simple, has told us
quite a bit about how the problem is being dealt with. It has led us to a precise definition
for a group:

A group is a set of guests with a common contact address and with identical arrival
and departure dates. If a party of friends have different arrival or departure dates,
they will need to be recorded as separate groups. A group can have just one guest
associated with it.

By being careful with the definition of the Group class, we have avoided having to
make special cases of groups with more than one set of dates or guests traveling alone.
This keeps the problem and its solution simple. Of course, if the majority of guests were
lone travelers, we might rethink the problem and model it in an entirely different way.

In the rest of this chapter, we will look at questions we can ask about small pieces of
a data model in order to learn more about the problem at hand. The questions we will
look at only apply to relationships between two classes, but they can open up a great deal
of discussion about the problem. As more is understood about a problem, what we learn
from the data model can be reflected in the use cases. The questions we will consider are
as follows:

Optionality: Should it be 0 or 12
Cardinality of 1: Might it occasionally be 2?
Cardinality of 1: What about historical data?

Many-Many: Are we missing anything?

CHAPTER 4 © LEARNING FROM THE DATA MODEL

Optionality: Should It Be 0 or 1?

As described in Chapter 2, the optionality of one end of a relationship is the smallest
number of objects that can be associated with an object at the other end. This is usually 0
or 1. For example, in Figure 4-1, reading the relationship between guest and room from
left to right, we have that a particular guest must be associated with a room (optionality
1), whereas reading the relationship from right to left, we see that a particular room does
not have to have a related guest (optionality 0).

Optionalities are often treated quite carelessly in data models, but they can provide
a great deal of information about the definitions of classes and the scope of the problem.
We will look at a few small examples, each of which illustrates some aspect of deciding
on the appropriate optionality.

Student Course Example

Consider the data model in Figure 4-3, which shows a relationship between students and
courses they enroll in.

Student
. Course
studentiD enrolls in
name code
address |7 2 | name

Figure 4-3. Data model for students enrolling in courses

On first sight this is quite trivial: a student can enroll in many courses, and a course
can have many students enrolled in it. What about the optionalities? Can a student be
enrolled in no courses? Our normal conversational definition of a student is someone
who is studying or, more accurately, formally enrolled in a course (which is quite differ-
ent really!). What is our definition of student for the database? It is a long time since I've
been able to be described as a student in normal conversation, but I am quite sure I still
feature in the student database at my former university. For the purpose of this database
then, we might define a student as someone who is, or has been, enrolled in a course.

Does it make any sense to have a “student” in our database who is not and has not
been enrolled in any courses? What about a person who has been accepted into a univer-
sity but has not yet made final decisions about any specific courses? Is this person a

57

58

CHAPTER 4 " LEARNING FROM THE DATA MODEL

student? The university would certainly want to keep information about such a person (her
ID, name, address, and so on). We can accommodate this situation by expanding our defi-
nition of a student to include people accepted by and/or registered with the university.

What about a person who has contacted the university and asked to be sent informa-
tion about enrollment? Any typically cash-strapped institution will want to keep
information about such a person. Asking this question starts to involve issues about the
scope of the problem as well as the definition of a student. It is important that questions
such as “Exactly who are these people you call students?” are considered right at the start
of the analysis process. Is the system to include contact details for everyone who has ever
expressed an interest in attending the university, or is the scope to be restricted (at least
for the time being) to records of current and former students?

Clearly, only the client can answer these questions. What is useful is to see how care-
ful consideration of the details of even the most simple data model can lead to important
questions about much wider aspects of the problem. Asking whether a student must be
enrolled in a course may seem pedantic at first, but until we can answer that question
clearly, we have not even begun to understand the problem we are trying to solve.

Reading the relationship from right to left and questioning whether a course must
have a student enrolled in it leads us to a similar debate about what we mean by the defi-
nition of a course. What data might we want to keep about a course? Think about all the
different situations we might need to deal with. We might need to consider former, cur-
rent, or proposed courses; popular courses offered more than once concurrently (two
streams); unpopular courses that are on the books but lack students. You cannot come up
with absolute answers without being able to discuss the situation with a client, but you
can come up with some possible definitions for consideration.

Customer Order Example

Here is an easier example (or is it?). We keep information on customers and the orders
they place. Our first instinct is to say that customers can place many orders and each
order is placed by one customer. This can be represented as in Figure 4-4.

Customer places Order

Figure 4-4. Data model for customers placing orders

CHAPTER 4 © LEARNING FROM THE DATA MODEL

What about the optionalities? Consider the relationship from left to right. Can a cus-
tomer be associated with no orders? This depends on the definition of a customer. For
the purposes of many businesses, it might be anyone I am hopeful of selling something to.
A working definition such as anyone who has ever placed an order and other people who
are to be sent catalogs seems reasonable and suggests an optionality of 0 (i.e., customers
in our database have not necessarily placed an order). However, this definition should
probably spark a few questions such as “Do you want to be able to identify people who
have previously placed orders but who are now fed up with being sent catalogs?”

Reading the relationship from right to left, we want to know whether each order must
have an associated customer. This seems trivial. What is the point of an order if we don’t
know who it is for? If an order arrives in the mail with no name or address, it would be
reasonable to say that it should not be entered in the database, and so from this perspec-
tive we can insist that every order must have a customer (optionality 1).

However, there is a subtle difference between knowing who an order is for and relat-
ing it to a customer object in the database. A written order may come in the post from
Mrs. Smith of Riccarton Road. While we know who the order is from, that is different from
associating it with a customer. We may have to create a new object if Mrs. Smith is a new
customer, or we may be faced with deciding which of the existing three Mrs. Smiths this
order is from. The problem of distinguishing customers with similar details or deciding
whether two or more entries in the customer database actually refer to the same real per-
son can be difficult. Once again, we are not trying to solve any of these issues just now.
We are simply using the data model to make us think clearly about some of the issues we
will have to confront.

Insect Example

Here is another example of how investigating the optionalities of a relationship can lead
to questions about the scope of the problem. Figure 4-5 shows part of a possible data
model from Example 1-3 where farms were visited and several samples of insects were
collected. A Visit object would contain information about the date and conditions of a
particular visit and would be associated with several Sample objects. Each sample object
would contain information about the number of insects collected.

Visit Sample

Figure 4-5. Data model for collecting samples

59

60

CHAPTER 4 " LEARNING FROM THE DATA MODEL

Asking whether a sample must be associated with a visit is like the question in the
previous section about whether an order must have a customer. If, for this research proj-
ect, our samples only come from farmes, it is reasonable that we had to visit a farm to
collect them, and so each sample should always be associated with a visit. However, if the
scope of the database is broader, with records of samples that have been stored for years
and whose origin is uncertain, we may have to reconsider.

Asking whether each visit must have an associated sample (should the optionality at
the sample end be 0 or 1) leads to an interesting question. Is it possible that at some time
we may want to visit farms just to record the conditions? These questions may seem triv-
ial, but the broad understanding of the larger problem can only be improved.

A Cardinality of 1: Might It Occasionally Be Two?

Every part of a problem is susceptible to exceptional occurrences. During the analysis of
a situation, it is important to think carefully about different scenarios to ensure that the
database will be able to cope adequately with all the data that may eventuate. Some
“exceptions” are really complications that have been overlooked. Real life and real prob-
lems are always complicated. Even something as simple as write down your usual address
can have hidden difficulties, as many children in shared custody discover when they have
to fill out an address on a school form. It might seem picky to insist on asking “Might a
person have more than one usual address?” but thousands of modern-day families can-
not be shrugged off as exceptional.

In this section, we will look at how to deal with “exceptions” that do not warrant a
complete overhaul of the problem but nevertheless are likely to turn up during the life-
time of the database. We have already seen an example of a likely exception earlier in this
chapter in the hostel data model. There we considered the case where some members of
a group might want to leave before the others. In the hostel data model, rather than com-
plicating the problem by allowing each group to have several dates, we redefined what we
meant by group for the purposes of storing the data (i.e., a set of people arriving and leav-
ing on the same dates).

The following sections provide some other examples where a different definition can
help cope with some foreseeable, but unusual, events.

Insect Example

In the previous section we looked at the example of a scientist visiting a farm to collect
insect samples. Let’s suppose that it is important to know about the weather conditions
at the time of collection. To record the weather conditions consistently, the scientist may
decide to choose from one of a number of categories (e.g., fine, overcast, raining). Part of
a possible class diagram to represent the data is shown in Figure 4-6.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

Visit Weather
0.n 1.1

1.1
0.n

Sample

Figure 4-6. Associating a weather category with a visit

Reading the relationship between weather category and visit from left to right, it is
reasonable that a visit will have one weather type that describes it, but there might also
be occasions when a thunderstorm arrives while the last few samples are being collected.
If so, do we care? The answer will, of course, depend on the client, but it is up to the ana-
lyst to ask the question and propose some possibilities.

One possibility might be that the weather is not particularly important to the analy-
sis of each sample. In this case, it might be sufficient to record the weather at the start of
each visit.

At the other extreme, the conditions under which each sample is collected may be
vital. In this case, it might be more sensible to associate each sample with its own

weather condition as shown in Figure 4-7.

Visit

1.1

0.n

Sample Weather
0.n 1.1

Figure 4-7. Associating each sample with a weather category

This latter solution may be overkill when the majority of visits have stable weather
conditions. It seems pointless to record the same weather condition for each of 50 sam-
ples. A compromise solution may be to say that, if the weather changes markedly, we will

61

62

CHAPTER 4 " LEARNING FROM THE DATA MODEL

create another visit. This way all visits have a single associated weather type, and we can
cope with the “exceptional” case by redefining what we mean by a visit. For example:

Avisit is a time spent on a farm during constant weather conditions on a single day
collecting samples. It is possible to have more than one visit to a farm per day.

With this compromise solution, the data model remains unchanged, but our revised
definition of a visit is in place for the inevitable day when lightning strikes, so to speak.

Sports Club Example

Here is another little snippet of a database problem. A local sports club may want to
keep a list of its membership and which team they currently play for (SeniorB, JuniorA,
Veteran, etc.). One way to model this data is shown in Figure 4-8.

lays for
Member pray Team

0.n 0.1

Figure 4-8. Members and their current teams

The data model as it stands does not require all members to be associated with a
team (optionality 0 at the team end). This means members may be purely social or may
miss out on being selected for a team. However, we should still ask questions about the
maximum number of teams a member might be associated with. For example, “Can a
member play for more than one team and, if so, do we care?” The data model clearly does
not allow for historical records to be kept. If a player is promoted from one team to
another, he will simply be associated with the new team, and we will lose information
about his association with his previous team. If the scope of the database is simply to
record current affiliations of members with teams, then that is OK. (If not, just wait a few
moments until the next section.)

Even if we are only keeping information on current membership of teams, we are
always going to get the situation where injury or sickness necessitates a member of one
team filling in for another team for a particular match. How will this affect the data
model? This is a question of scope. What are we keeping this data for and what informa-
tion do we want to be able to extract from the database? If we want to keep track of which
players played in particular matches, our data model is woefully inadequate. We will
need to introduce a Match class and consider other complications (see Chapter 5).

CHAPTER 4 © LEARNING FROM THE DATA MODEL

However, the scope of the problem may simply be to record a person’s main team. This
may be to enable team members to be on a list to be phoned if a match is cancelled or if
there is to be a rescheduled practice or a social outing. If this is the case, the cardinality of
1 in the data model in Figure 4-8 is fine so long as it is understood that the relationship
plays for means a player’s main team rather than just any team they may fill in for.

A Cardinality of 1: What About Historical Data?

We have had a number of examples of relationships with a cardinality of 1 at one end.

A room has one guest; a club member plays for one team. In both these cases, we have
been careful to add the word currently because over time a room will have many guests
and a player many teams. An important question is “Do we wish our system to keep track
of the previous guests or previous team affiliations?” This is often overlooked during the
analysis, and sometimes the oversight does not become evident for some time. A sports
club will find its system just fine for the first season but may get a surprise when the next
year’s teams replace the previous ones, which are then lost forever. In this section, we will
look at a few different examples to illustrate how we can manage historical data.

Sports Club Example

To illustrate how the sports club might lose its historical data, let’s look at some simple
data as it might be kept in a database table. If each member is associated with just one
team, the team he belongs to becomes a characteristic of the member, and the relation-
ship can be represented as an attribute in the Member class as in Figure 4-9.

member no | last name ‘ first name | team

152 Abell Walt SeniorB
103 Anderson James JuniorA
276 Avery Graeme JuniorA
287 Brown Bill JuniorA
298 Burns Lance Veteran

Figure 4-9. Members and their current teams

The following season when Bill Brown graduates to the SeniorB team, his previous
association with the JuniorA team will be lost. If the historical data is important, the
problem must be remodeled to reflect the fact that members will be associated with
many teams over time. The model and some possible data are shown in Figure 4-10.

63

64 CHAPTER 4 " LEARNING FROM THE DATA MODEL

We will discuss how we arrive at the database tables in Chapter 7; for now, just convince
yourself appropriate information is being maintained.

Member plays for Team
0..n 0..n
Data Model
member no | last name | first name | team | member | team

152 Abell Walt SeniorB 152 SeniorB
103 Anderson | James JuniorA 287 JuniorA
276 Avery Graeme JuniorA 276 JuniorA
287 Brown Bill JuniorA 103 JuniorA
152/ SeniorB

Member Table 152 Veteran

287 SeniorB

Plays_For Table

Figure 4-10. Members and the teams they play for

Modeled this way, we can record the fact that Bill Brown has had associations with
both the JuniorA and SeniorB teams. There is still the question of when he played for
these teams, and we will think about that a little later on in this chapter.

Departments Example

Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we
have that each department has one employee as its manager. But clearly this is one at a
time. Over time, the department will have several different managers.

Dept is managed by | Employee
On 1.1

Figure 4-11. Each department has a manager.

The important question for this situation is “Do we want to keep track of former
managers?” Why are we keeping information about managers at all? If it is just to have
someone to ring when something goes wrong, probably the current manager is all that is
required. However, if we want to know who was in charge when something went wrong

CHAPTER 4 © LEARNING FROM THE DATA MODEL

last year, we will need to keep a history. The data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

Dept is managed by Employee
0.n 1.n

Figure 4-12. A department has several managers over time.

Insect Example

Here is a real example of a problem arising in our scientific database of insect samples.
To put the data in perspective, we need to know that the main objective of this long-term
project was to see how the numbers of insects change as farming methods evolve over
the years. The farms selected represented different farming types (organic, cropping,
etc.). Throughout the duration of the project, each farm is visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

FarmType Farm Visit
1.1 0.n 1.1 0O

Figure 4-13. Visits to farms of different types

At first the data model in Figure 4-13 seemed to be serving its purpose adequately,
but this was only because during the time the project had been running the farming
types had not changed. However, real trouble was in store. A farm can only be associated
with one farm type in this model. When a farm did eventually change, say from a conven-
tional cropping farm to an organic farm, the previous farming type would be lost if the
database was set up this way.

A farm can only be associated with one farming type at a time. The important ques-
tion to ask is “Might the type change over time, and is it important for the system to
record that historical data?” In this case, it was critical to the whole experiment to keep
information about the history of the farm types, but no one had noticed the problem
because the time frames for change were very long.

65

66

CHAPTER 4 " LEARNING FROM THE DATA MODEL

A Many-Many: Are We Missing Anything?

We have come across quite a few Many-Many relationships in our examples so far. For
example, a student can enroll in many courses, and a course can have many students
enrolled in it. If we widen the scope of some of the examples to include historical data, as
in the previous section, a number of 1-Many relationships will become Many-Many rela-
tionships (i.e., departments may have many managers, members many teams, and farms
many types over a length of time).

Often we find that we need to keep some additional information about a
Many-Many relationship. In the sports team example, we altered the model of members
and teams to allow a member to be associated with more than one team. However, if we
look at the model and data in Figure 4-10, we have no idea when those associations
occurred. When did Bill Brown play for the SeniorB team? This season? Last season? Ten
years ago? The historical data will not be much use without a date attached somewhere.
But where will the date go? In Figure 4-10, we have two classes: Member and Team. The date
does not belong as an attribute of Member because it will be dependent on which team we
are interested in. Similarly, the date cannot be an attribute of the Team class because there
will be different dates for each of the players. This problem occurs often and is usually
remedied by the introduction of a new class.

We need to ask the question

Is there any data that we need to record that depends on particular instances of
each of the classes in our Many—-Many relationship?

In this example, the question would be

Is there any data that depends on a particular player and a particular team?
and the answer is

Yes—the dates that player played for that team

Figure 4-14 shows how an intermediate class can be incorporated into the

Many-Many relationship so that data that depends on a particular pairing of objects
from each class can be included.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

ClassA ClassB

ClassA MewClass ClassB

Figure 4-14. Introducing a new class in a Many-Many relationship

In situations where we have data that depends on instances of both classes in a
Many-Many relationship, the Many-Many relationship is replaced by a new class and
two 1-Many relationships. The many ends of the new relationships are always attached
to the new intermediate class. We will see what this means for some of the examples we
have already looked at.

Sports Club Example

Let’s reconsider the member and team problem. We'll put some attributes in the classes to
make it clearer what information each is maintaining. The model is shown in Figure 4-15.

Member
Team
plays for
Esetmr?;r;_go team name
first name 0.n 0_n|practice_night

Figure 4-15. Many—Many relationship between members and teams

As we have already mentioned, the date that a particular member plays for a particu-
lar team cannot live in the Member class (because a member will play for many different
teams over time) nor can it live in the Team class. Figure 4-16 introduces a new intermedi-
ate class, Contract, in the same way as was done in Figure 4-14.

67

68 CHAPTER 4 " LEARNING FROM THE DATA MODEL

Member
member_no Contract Team
last_name date team name
first_name 11 o.n 0.n 11 practice_night

Figure 4-16. Intermediate class to accommodate the date a member played for a team

Reading from the middle class outward, the model tells us that each contract is for
exactly one team and exactly one member. Reading from the outside inward, we see that
each member can have many contracts as can each team. Figure 4-17 shows some
objects that might occur in such a data model.

103
James
Anderson

2004

Veteran
Thursday

\

2005

152 2004

Walt
Abell

SeniorB
Tuesday

/

2006

"

276

Graeme > 2003

Avery
. JuniorA
Im 2005 Tuesday

287

Bill

Brown 2004

Figure 4-17. Some possible objects of the Member, Contract, and Team classes

We can now see what years members played for particular teams. We can see that Bill
Brown (287) played for the JuniorA team in 2004 and for the SeniorB team in 2005. This
data would be stored in database tables as shown in Figure 4-18.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

| member no | last name | first name | member‘ team | year team name |practice_night‘
152 Abell Walt 152 SeniorB 2004 JuniorA Tuesday
103 Anderson James 287 JuniorA 2004 SeniorB Tuesday
276/ Avery Graeme 276 JuniorA 2003 Veteran Thursday
287 Brown Bill 103 JuniorA 2004 Under 18 Monday
298 Burns Lance 152 SeniorB 2005
152 Veteran 2006
287 SeniorB 2005

Member Table Contract Table Team Table

Figure 4-18. Data for players, contracts, and teams

Student Course Example

Let’s now think about the Many—Many relationship of students enrolling in courses
(Figure 4-3). This isn’t just a historical problem, although we clearly will want to know
when the student did the course. But even if we were only keeping student enrollments
for a single year or semester, we should still look to see whether there is missing informa-
tion that might require an extra class. The question that needs to be asked is

Is there any data that I want to keep that is specific to a particular student and his
or her enrollment in a particular course?

One obvious piece of data that fits the preceding criteria is the result or grade. Once
again, we cannot keep the grade with the Student class (because it requires knowledge
of which course) nor with Course class (because the grade depends on which student).
In the same way as we dealt with this situation in Figure 4-14, we can introduce a new
class, Enrollment, between Student and Course classes as shown in Figure 4-19.

Student
studentlD Enrollment Course
name year code
address | 1.1 0..n |result 0.n 1.1 |name

Figure 4-19. Intermediate class to accommodate the result (and the year)

69

70

CHAPTER 4 " LEARNING FROM THE DATA MODEL

A student and a course can each have many enrollments, and a particular enrollment
is for exactly one student and one course. If we were to draw some objects, we would get
a picture very like that in Figure 4-17 with students, enrollments, and courses replacing
players, contracts, and teams.

Meal Delivery Example

As a final example of when we might need an additional class to keep information about
a Many-Many relationship, let’s look again at the meal delivery problem (Example 3-1)
from the previous chapter. The initial data model had a Many-Many relationship
between types of meal and orders. A particular type of meal (a chicken vindaloo, say)
might appear on many orders, and a particular order may include many different types
of meal as shown in Figure 4-20.

Order
ggttisr_number Veal
address meaIID _
phone description
order_time 0.n 1.n |price
delivery_time
driver_contact

Figure 4-20. Orders for different types of meal

What happens if a family orders three chicken vindaloos, one hamburger, and one
pork fried rice? Where do we put these quantities? The quantity cannot be an attribute
in the Order class (for this order there are three quantities and they each depend on the
particular meal) nor in the Meal class (for there will be potentially hundreds of orders
involving a particular type of meal, each with different quantities).

Once again, our problem of where to put the additional data is solved by including
anew class as shown in Figure 4-21.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

Order
g;cgsr_number Meal
address Order/Meal meallD
phaone quantity description
order time 1.1 1.n 0.n 1.1 Drice
delivery_time
driver_contact

Figure 4-21. Orders for different types of meal—with additional class to store quantities

For some problems, it can be difficult to come up with a meaningful name for the
intermediate class. In such a case, it is always possible to use a concatenation of the two
original class names as we have done here with Order/Meal. We could maybe have called
the class Orderline, in this example, as it represents each line in the order (i.e., a meal
and the quantity). You might find it helpful to sketch some objects of the three classes in
Figure 4-21 to clarify what is happening.

We can also use this new intermediate class to solve one of the other problems we
deferred in Chapter 3. This was the problem of coping with the price of a meal changing
over time. In the Meal class in Figure 4-21, we can define the price attribute as being the
current price for that type of meal. An order placed for that meal today will be at that
price. How do we know what was charged for this type of meal on an order several
months ago? To deal with the problem of changing prices, we can include an attribute,
price, in the intermediate class Order/Meal. This will be the price charged for a particular
meal on a particular order and will not change when the current price changes in the
Meal class. This way we have a complete history of the prices for each meal on each order.
A price attribute in this intermediate class can allow us to keep historical data and also to
deal with “unusual” situations such as specials or discounts. We are always keeping the
price that was actually charged for that type of meal on that particular order.

The question that needed to be asked about the original Many—Many relationship in
Figure 4-20 was

Is there any data we need to store about a particular meal type on a particular
order?

and the answer is

Yes, the quantity of that meal type ordered and the price being charged for that
meal type on this order.

n

72

CHAPTER 4 " LEARNING FROM THE DATA MODEL

When a Many-Many Doesn’t Need an Intermediate Class

A few Many-Many relationships contain complete information for a problem without the
need for an intermediate class in the data model. Problems that involve categories as part
of the data often do not require an additional class. Example 1-1, “The Plant Database,”
involved plants and uses to which they could be put. The original data model is repeated
in Figure 4-22.

Plant
plant_ID Usage
genus name
species 0.n 0.n
common_name

Figure 4-22. Plants and their uses

We can ask the question “Is there any information we want to keep about a particular
species and a particular use?”

In this case, the answer is probably “No.” A Many-Many relationship that doesn’t
require any additional information often occurs where we have something that belongs
to a number of different categories, for example, a plant has many different uses and all
we want to know is which they are.

It is possible, however, that in a different situation we might want to record whether
a particular plant is excellent or just reasonable at hedging. Or we may want to note how
many of a particular species are needed to be sufficient for attracting bees. In both these
cases, we might need an intermediate class. Try sketching a new model for these situa-
tions.

Summary

Even at the very early stages of analysis, a simple data model can provide us with a num-
ber of questions. The answers to these questions will help us to understand a problem
better. The resulting clarifications to the problem should eventually be reflected in the
use cases and may affect the final model and the eventual implementation.

In this chapter, we have suggested some questions about a single relationship
between two classes. Some of the questions we have discussed are reviewed here.

CHAPTER 4 © LEARNING FROM THE DATA MODEL

Optionality: Should it be 0 or 1? Considering whether an optionality should be 0 or 1
might affect definitions of our classes: for example, “Would a student who was not
enrolled in any courses still be considered a student for the purposes of our data-
base?”

A cardinality of 1: Might it occasionally be 22 We need to consider whether there
might be exceptional cases where we might want to squeeze two numbers or cate-
gories into a box designed for one: for example, “What happens if the weather
changes during a visit?” Redefining a class might help out for the exceptional cases:
“If the weather changes, we will call it two visits.”

A cardinality of 1: What about historical data? Always consider whether the 1 in a
relationship really means “just one at a time”: for example, “A department has one
manager. Do we want to know who the previous managers of the department were?”
If so, the relationship should be Many-Many.

Many-Many: Are we missing anything? Consider whether there is information we
need to record about a particular pairing of objects from each class: for example,
“What might we want to know about a particular student and a particular course?”
If there is such information (the grade), introduce a new intermediate class.

73

CHAPTER 5

Developing a Data Model

In the previous chapters, you've seen how to determine the requirements of a database
problem by considering the tasks users of the system need to carry out. Tasks were repre-
sented with use cases, and a simple data model was developed to represent the required
data. In Chapter 4, you saw that a great deal can be learned about a problem by questioning
some of the details of simple relationships, particularly the number of objects involved at
each end of a relationship. In this chapter, you'll be introduced to a few problems that
frequently occur in order to enlarge your armory for attacking tricky situations.

Attribute, Class, or Relationship?

It is never possible to say that a given data model is the correct one. We can only say that
it meets the requirements of a problem within a given scope, and subject to certain
assumptions or approximations. If we have a piece of data describing some person or
thing or event, it is possible that there may be different ways of representing that infor-
mation. In this section, we look at a simple problem, described in Example 5-1, for which
various pieces of data may be represented as an attribute, class, or relationship depend-
ing on the overall requirements of the problem.

75

76

CHAPTER 5 " DEVELOPING A DATA MODEL

EXAMPLE 5-1: SPORTS CLUB

Let’s say we are keeping information about current teams for a sports club. The club wishes to keep
very simple records of the team name, its grade, and the captain. As a start we could have a class to
contain this information as shown in Figure 5-1.

Team

name
grade
captain

Figure 5-1. Simple class for Team

In Figure 5-1, each of the pieces of information we are capturing about a team, the name, grade, and
the name of the captain is represented by an attribute. With this model, we can find the values of the
attributes for any given team, but that is about all we can do. Of course, that may be all we want to do!

In previous chapters, you saw how it is important to consider how the data being
stored might be used in the future. With the data in Figure 5-1, it is quite likely we may
want to find all the teams in a given grade. Will the simple data model allow this? It is
certainly possible to find all the Team objects with a given value for the grade attribute;
however, to obtain reliable data, we would require the data entry to be exact. We would
not get an accurate list of all teams in senior grade if the value of the grade attribute for
different objects was variously recorded as “Senior,” “snr,” “Sen Grade,” “Senior Grd,” and
so on. We saw a similar problem in Example 2-1 where we wanted to ensure plant genus
information (like Eucalyptus) was always spelled correctly. If reliable recording and
extracting of data about grades is important for our sports club, we need a data model
that will ensure grades are recorded consistently. This can be done by representing the
grade of a team as a class as in Figure 5-2. Each possible grade becomes an object of the
Grade class, and each team is related to the appropriate Grade object.

” «

Team Grade
name name

Figure 5-2. Representing a team’s grade as a class

CHAPTER 5 ©" DEVELOPING A DATA MODEL

Therefore, depending on the requirements of the project, we might choose to repre-
sent the grade as an attribute of Team (if the consistency of the spelling is not important)
or as a class of its own (if we think we may want to find all the teams belonging to the
same grade, for example).

Now consider the captain attribute in Figure 5-1. It’s unlikely that a person will
captain more than one team at a time, so a query analogous to the one in the previous
section (find all the teams Jenny currently captains) is unlikely to be a high priority.
However, there may be some additional data about a captain that we might like to keep:
her phone number and address maybe. In the context of a sports club, it is highly likely
that this information already exists in some membership list. We very possibly have
another class, Member, that keeps contact information about all the members of the
sports club. If so, we can represent a team’s captain as a relationship between the
Team and Member classes as shown in Figure 5-3. A particular object of the Member class
is the captain of an object of the Team class.

Member
name is captain of Team
address name
phone 1..1 0.1

Figure 5-3. Representing captain as a relationship

Once again, depending on the problem, we have different ways to represent a team’s
captain. We might choose to represent the captain as an attribute of Team or as a relation-
ship between Member and Team. The determining factor here will be whether the problem
requires information about members in general.

Some useful questions to ask when considering whether to represent information as
an attribute, class, or relationship are summarized here:

¢ “Am I likely to want to summarize, group, or select using a given piece of informa-
tion?” For example, might you want to select teams based on grade? If so consider
making the piece of information into a class.

¢ “Am I likely now or in the future to store other data about this piece of informa-
tion?” For example, might you want to keep information such as phone and
address about a captain? Does (or should) this information already exist in another
class? If so, consider representing the piece of information as a relationship
between the classes.

77

78

CHAPTER 5 " DEVELOPING A DATA MODEL

Two or More Relationships Between Classes

How would the model in Figure 5-3 change if we also wanted to keep information about
the people playing for a team? We may need to know their names and their phone num-
bers. Keeping all this information as attributes of the Team class will rapidly become
unwieldy. We would need attributes such as PlayeriName, PlayeriPhone, and so on. Once
again, we probably have the information we require about players already in a Member
class. The fact that particular members play for a particular team can therefore be repre-
sented as a relationship between the classes. This is very similar to the situation in
Example 2-1 where plant objects were related to particular usage objects. Figure 5-4
shows the addition of this relationship between Member and Team in our data model.

plays for
Member [1.n 0.1
name Team
address name
h v
phone 1 01

Is captain of

Figure 5-4. Different relationships between Member and Team

We now have two relationships between our Member and Team classes. One is about
which members play for the team (could be many). The other is about which member is
the captain of the team (just one). The model in Figure 5-4 also allows for members who
do not play for or captain any teams (they may be social members of the club). Such
members would simply not be linked to a team.

You may be wondering whether a captain of the team should always be one of the
players in that team. The model as drawn in Figure 5-4 does not have anything to tell us
about such a constraint. There are a number of ways to represent constraints such as this.
It is possible to make the constraints part of the relevant use case. For the use case
describing entering information about a team, we would say that the captain has to be
one of the players. The Object Constraint Language (OCL),! which is part of the Unified
Modeling Language, UML, provides a formal specification for constraints, but I will not
delve into formal methods in this book, preferring to draw attention to these additional
constraints in the use case text.

1. Object Constraint Language Centre: http://www.klasse.nl/ocl/.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

Another situation where it is possible to consider two relationships between classes
is when we have historical data. Example 5-2 revisits the Rooms, Groups, and Guests exam-
ple that we first looked at in Chapter 4.

EXAMPLE 5-2: SMALL HOSTEL

A small hostel consists of single-occupancy rooms. Typically, groups of people (schools, clubs) stay at
the hostel. We will expand the problem from Chapter 4 by keeping information about previous guests as
well as current guests. A room will have many guests over time. (For simplification, we will assume that
a guest only stays once and in one room.) The revised model is shown in Figure 5-5.

Group
group_narme Cuest roomRr?uOr;”ber
contact_address guest_name hone
date_in 1.1 1_n|adult 0 11 tpy o
date_out -n - P

Figure 5-5. Model for a single occupancy room having many guests over time

What can we find out from the model in Figure 5-5? If we have some query about a
guest, we can easily find his room number, and we can also find the length of the stay by
checking the dates of the related group object. Things become a little more complicated
if we want to find out the name of the guest currently occupying a room (say there has
been a complaint about noise). There are an increasing number of guests associated with
each room over time, so how do we go about finding the current one? One way would be
to search through all the guests associated with the room and check their associated
group information to find one with a date_out value in the future. Another likely task is to
find a list of empty rooms. To do this, we would have to find those rooms without a guest
belonging to a group with a date_out in the future. These solutions are quite feasible, but
for something that is likely to be required regularly, they are complicated and tedious.

A different option is to consider having a second relationship between Room and Guest
for the current guest. All guests will be associated with a room as in Figure 5-5, but we
add an additional relationship between the current guest and the room. This is shown in
Figure 5-6.

79

80 CHAPTER 5 " DEVELOPING A DATA MODEL

is currently in

Group 5 W -
group_name uest
contact_address guest_name r%%r:e_number
date_in 11 1_n|adult 0 p E{ e
date_out -n - p

Figure 5-6. Alternative model for a room having many guests over time

With the data model in Figure 5-6, we can find the current guest with reference to
objects of only two classes (Room and Guest). With the model in Figure 5-5 we needed to
inspect date attribute values of the Group object as well. To find empty rooms, we can now
simply look for all rooms that have no current guest.

There are a few problems with modeling the data in this way as some extra updating
is required to keep the data consistent. For example, when a group checks out, we will
have to update the date_out in Group, and we will also have to remove each is currently in
relationship instance to reflect that the room is now empty. This extra maintenance step
is caused because we are in effect storing the same piece of information in more than
one way. While the retrieval of information about empty rooms and current guests is sim-
pler for the model in Figure 5-6, the updating of data is more complex. Table 5-1 shows
possible use cases for check out a group, and a report such as list all currently empty
rooms for each data model.

Table 5-1. Some Possible Use Cases for the Alternative Guest and Room Models

With Data Model in Figure 5-5

With Data Model in Figure 5-6

Check out a group

List all currently
empty rooms

Update date_out for
appropriate Group object.

First find the occupied rooms:
find all Group objects with
date_out in the future.

Find all the associated Guest
objects for these groups, and the
set of all Room objects associated
with these guests.

List the room_number for all Room
objects not included in this set.

Update date_out for appropriate
Group object.

Find all associated Guest objects
and remove the currently in
association with the Room object.

Find all Room objects that do not
have an associated current Guest
object.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

It is clear that the reporting is simpler for a model such as that in Figure 5-6, while
the maintenance is simpler for one like Figure 5-5. The problem with the model in Figure
5-6 is that if the updating required when checking out a group is not done correctly, we
will end up with a database that has inconsistent information, which is intolerable. While
the model in Figure 5-6 appears easier to query, it does so at the expense of making the
maintenance more difficult and therefore the reliability more likely to be compromised.
As you shall see in the next section, it is best to avoid the situation where we have infor-
mation stored more than once.

Different Routes Between Classes

Using the model in Figure 5-6, we can find the current guest in a room by two routes: via
the relationship currently in or by checking the date_out for each guest who has occupied
the room. The problem here is that if the data is not carefully maintained, we might find
that we come up with two different answers. For example, if a group is checked out but
we did not remove all the is currently in associations (as in the use case in Table 5-1), the
first route will give us the previous guest in the room, while the second route will show
an empty room.

As argued in the previous section, the advantages in easy retrieval may appear to
outweigh the associated data maintenance complications. What we should avoid at all
costs is having alternative routes for a piece of information when there is no associated
reduction in complexity.

Redundant Information

Having what should be the same piece of information available by two different routes
can be referred to as redundant information. In the previous section, we had redundant
information about the current occupant of a room. We could find the current occupant
by inspecting the is currently in relation, or we could deduce the current occupant by
looking at the check-out dates of the groups.

Let’s have a look at Example 5-3, which is another case of redundant information.

81

82

CHAPTER 5 " DEVELOPING A DATA MODEL

EXAMPLE 5-3: SMALL COMPANY

A small company has employees who each work for one of a number of different small project groups.
Each group and all its employees are housed in one particular room with larger rooms housing several
groups. We may require information such as where each employee is located, a particular employee’s
phone number, where to find a particular group, which employees work in each group, who is in each
room, and so on. One possible data model is shown in Figure 5-7. Take a moment to understand the
data model and the information it contains about the number of groups in a room and so on for this
particular problem. The model has redundant information. Can you see what it is?

is located in

1.n 1.1
Employee | works for Grou is located in Room
name P room_number
group_name —
address |y 1.1 1n 1.1 [phone

Figure 5-7. Employee, Group, and Room with a redundant relationship

With respect to Example 5-3, if we regularly want to find an employee’s phone num-
ber, we might think that the top relationship in Figure 5-7 between Employee and Room
would be a useful direct route. However, this same information is very easily available by
an alternative route through Group. We can find the employee’s (one only) group and then
find that group’s (one only) room. This is a very simple retrieval (it does not involve all the
complications with dates that plagued the small hostel in Example 5-2).

However, the extra relationship is not just unnecessary, it is dangerous. With two
routes for the same information, we risk getting two different answers unless the data is
very carefully maintained. Whenever an employee changes group or a group shifts
rooms, there will be two relationship instances to update. Without very careful updating
procedures, we could end up having that Jim is in Group A, which is in Room 12, while
the other route may have Jim associated directly with Room 15. Redundant information
is prone to inconsistencies and should always be removed.

Note Whenever there is a closed path in a data model (as in Figure 5-7), it is worth checking carefully to
ensure that none of the relationships is redundant.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

Routes Providing Different Information

Not all closed paths necessarily mean redundant data. One of the routes may contain
different information. Alter the problem in Example 5-3 slightly to allow an employee to
work for more than one of the small project groups. This is shown in Figure 5-8. Can you
deduce which room an employee is in now?

Employee | works for Grou is located in Room

name P room_number
group_name —

address |y 1n 1.n 1.1 |phone

Figure 5-8. Employees working for more than one project group

In the model in Figure 5-8, there is no certain clear route between an employee and a
particular room. For example, Group A may be in Room 12, Group B in Room 16, and Jim
may work for both groups. Thus, Jim could be in either Room 12 or Room 16. Just narrow-
ing the possibilities like that may be all the problem requires. If, however, each employee
has a home room and we wish to record that information, we will need an additional
relationship between employee and room as in Figure 5-9.

Is based in
1.n 1.1
Employee | yorks for Grou is located in Room
name P room_number
group_name —
address |y 1.n 1.n 1.1 |phone

Figure 5-9. Different routes are providing different information.

It might seem that we have introduced another path that will give different answers
to a question such as “What room is Jim in?” Figure 5-9 allows us to have Jim based in a
room different from any of the groups he works for. For real-life problems, this may be
exactly what is required. The size of a room and the number of employees in a group are
unlikely to always match. The important thing is to ensure that two routes do not contain
what should be identical information so we do not introduce avoidable inconsistencies.

83

84 CHAPTER 5

False Information from a Route (Fan Trap)

Not being able to deduce an employee’s room from Figure 5-8 is an example of a more

DEVELOPING A DATA MODEL

general problem. Take a look at Example 5-4.

An organization has several divisions. Each of these divisions has many employees and is broken down
into a number of groups. We might model this as in Figure 5-10. Have a look at the model. What can we

EXAMPLE 5-4: LARGER ORGANIZATION

deduce about which group or groups a particular employee is associated with?

Employee

Division

Group

Figure 5-10. One (dangerous) way to model an organization

Figure 5-10 represents a very common problem often referred to as a fan trap. The
danger here is to take a route between employee and group and infer something that
was not intended. Figure 5-11 shows some possible objects consistent with the model

in Figure 5-10.

Jim

1.n

Figure 5-11. A fan trap

1.

1

1.

1

1.n

GroupA

GroupB

GroupC

GroupD

CHAPTER 5 ©" DEVELOPING A DATA MODEL

Consider employees Jim and Sue. It is not possible to infer anything about which
groups Jim or Sue work for. It is only possible to get many combinations of a Group object
and an Employee object that have a Division in common: Jim A, Jim B, Sue B, Jane D, and
so on.2We must not mistake these combinations for the information we require—e.g.,
which group or groups does Jane belong to?

The feature that alerts us to a fan trap is a class with two relationships with a Many
cardinality at the outside ends. This leads to the fan shape in Figure 5-11.

What can we do about it? If it is important for our system to be able to show which
groups an employee works for, we will need another relationship between Group and
Employee, or we may need to model the problem quite differently (as shown in the next
section).

Gaps in a Route Between Classes (Chasm Trap)

We might choose to model the relationships between divisions, groups, and employees in
a hierarchical way as in Figure 5-12 (i.e., a division has groups and groups have employ-
ees). The optionality at one end of the employee-group relationship has not been
specified. Have a think about the different possibilities.

Division | 1..1 1.n| Group [?.1 1..n [Employee

Figure 5-12. Another way of modeling an organization

Figure 5-13 shows some example objects. We have a direct connection between an
employee and a single group (Jim works for Group A) and another between a group and
its one division (Group A is in Division 1). We can therefore make a confident and unique
connection between Jim and Division 1.

2. This situation is sometimes also referred to as a lossy join.

85

86 CHAPTER 5 " DEVELOPING A DATA MODEL

5 =9

GroupA

\
GroupB /
\ @
\

GroupC F——mm>

£ =

g =

3 =

A

g —g-

B

—_—>
D /
f

Figure 5-13. A chasm trap

g =o-

So far, so good. However, in situations such as this, it is always useful to check that
that connection is always there. What if Ann is not attached to a specific group? Maybe
she is a general administrator for Division 1 and serves all groups. If this is the case (the
relationship between Employee and Group is optional), the model in Figure 5-12 does not
provide a link between Ann and her division. To find the appropriate Division object,
we need to know the Group, and Ann has no related Group object. If we need to know this
information, we have a problem. This is sometimes referred to as a chasm trap (we can't
get there from here).

This is yet another case where careful study of the data model provides quite inter-
esting questions about the problem. For a model such as the one in Figure 5-12, we
should always check for the exceptional case of an employee who may not be attached
to any group.

How we solve the problem of a chasm trap depends on the situation we are model-
ing. One possibility is to add another relationship between division and employee so we
can always make that connection. However, this extra relationship is going to cause
redundant information. For many employees, we will have two routes for connecting
them with a division: directly and via their group. This is the situation we had in Example
5-3 and can lead to inconsistent results for connecting employees and divisions. This is
not recommended.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

A different way to get around the problem in Example 5-4 is to introduce another
group object (say administration or ancillary staff). Ann could belong to this group, and
we can then insist that every employee must be in a group. However, it may be that the
problem needs to be remodeled entirely. It is often best to go back to the use cases and
reconsider what information is the most important for the problem. It is never possible
to capture every detail in a project with finite resources, so pragmatism becomes very
important.

Relationships Between Objects of the Same Class

Let’s return to our sports club from Example 5-1. Many clubs require a new member to
be introduced or sponsored by an existing member. If it is necessary to store sponsorship
information, a first attempt at a data model might be as shown in Figure 5-14.

is sponsored by
Member Sponsar

1.n 1.1

Figure 5-14. Modeling members and sponsors (not correct)

The problem with the model in Figure 5-14 is that (by definition) a sponsor is a
member. The model will mean that if Jim sponsors a new member of the club, we will
be storing two objects for him (one in the Member class and one in the Sponsor class), both
probably containing the same information (until it inevitably becomes inconsistent).
What is really happening here is that members sponsor each other. This can be repre-
sented by a self relationship as shown in Figure 5-15.

sponsors —)

0..n
Member

1.1

Figure 5-15. Members sponsor other members

87

88

CHAPTER 5 " DEVELOPING A DATA MODEL

The relationship in Figure 5-15 is read exactly the same as a relationship between
two different classes. Reading clockwise, we have a particular member may sponsor many
members, while counterclockwise we have a particular member is sponsored by exactly
one member. As with all relationships, we have to change the verb depending on the
direction (i.e., sponsors and is sponsored by). I have annotated Figure 5-15 to dispel any
confusion about which way round we are going.

Nothing in this data model prevents members from sponsoring themselves. Such
constraints need to be noted, most usefully by mentioning them in the appropriate use
case (e.g., adding a member).

Self relationships appear in many situations. This is certainly true for data pertaining
to genealogy or animal breeding. Consider the case in Figure 5-16 where we record infor-
mation about animals and their mothers (I am only leaving out fathers to keep the
example simple!).

is mother of —»
0..n
Animal
2.1

Figure 5-16. Genealogical data about animals

Reading clockwise, we have that one animal may be the mother of several other ani-
mals, and counterclockwise, that each animal has at most one mother. Why not exactly
one mother? Every animal has to have a mum, does it not? This is where we have to be
quite sure about the definitions of our classes. The class Animal represents those animals
about which we are keeping data, not all animals. If we trace back the ancestry of a pure-
bred dog for example, we may find his mother in our database, and her mother, but
eventually we will come to a blank. You might argue that the additional generations
should be added for completeness, but this could mean tracing back to the primeval
slime. Our data model does not say that some animals do not have mothers, merely that
some animals do not have mothers that are recorded in our database.

As an aside, note that our Animal class will presumably contain animals of both sexes.
Clearly if we establish an is mother of relationship between two Animal objects, the
mother must be female. As it stands, there is nothing in the model to prevent male ani-
mals being recorded as mothers. This constraint could be expressed in the use case, but
if this is a serious genealogical database, we may wish to treat males and females slightly
differently. We will discuss ways to use techniques called generalization and specializa-
tion for situations such as this in Chapter 6.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

Relationships Involving More Than Two Classes

In the examples so far, the information we have been interested in generally related to
relationships involving two classes (e.g., which members are in which team, or which
employee is in which group). Sometimes we have data that depends on objects of more
than two classes. Let’s reconsider a sports club. As well as keeping data about members
and their current team, we might also want to keep information about games or matches
between teams. Ignoring, for now, complications such as byes,® we can say that exactly
two teams play in a match. A possible data model is shown in Figure 5-17.

Member Team Match
name name
address grade date
phone 1.n 0 1|captain |22 1.n[VENUE

Figure 5-17. Possible data model for members, teams, and matches

The model in Figure 5-17 allows us to record a player’s current or main team, the cur-
rent members of a particular team, and the matches that teams are involved in. However,
we cannot deduce that a particular player played in any given match (he may have been
sick or injured). This is an example of the fan trap described earlier in the chapter. A team
has many players and is involved in many matches, but we cannot say any more about
which players were involved in particular matches. We could attempt to address this by
adding a relationship between Member and Match as shown in Figure 5-18. Look carefully at
the new data model. Can you see where there is a possibility that the data might become

inconsistent?
Team
name
0.1 grade_ 292
in captain in
Member - - Match

name
address S:?rt]ie
phone 1.n plays in 0.n

Figure 5-18. Another model to represent members, teams, and matches

3. A byesometimes occurs in a competition with an odd number of teams.

89

90 CHAPTER 5 " DEVELOPING A DATA MODEL

From Figure 5-18, it is possible to have the following relationship instances:
John plays for Team A.

John plays in the match on Tuesday.

The match on Tuesday is between Teams B and C.

If John plays for only one team (as the model indicates), then something weird is
going on here.

Let’s think through this problem with members, teams, and matches a bit further.

If we want to keep track of who plays in which matches, our problem has some intrica-
cies that the model does not adequately represent. If we are allowing for people being
injured and not taking part, we also need to account for the situation where someone
from another team may need to replace them. For example, John normally plays for
Team A but filled in for Team B on Tuesday because Scott was injured. Our scenario in
the previous paragraph is not so weird—just a bit more complicated than we originally
thought.

We still have a problem, however. We are happy that John normally plays for Team A
and that he just happened to play in the match between Team B and Team C on Tuesday,
but the model doesn'’t tell us which team he was playing for.

We need to step back, revisit the use cases, and figure out exactly what it is we want
to know. If we want to know exactly which players played in each team for each match,
then no combination of the relationships in Figure 5-18 will tell us that. The crucial point
is that who played for which team in which match requires simultaneous knowledge of
objects from three classes: which Member, which Team, and which Match. This is sometimes
referred to as a ternary relationship (and, similarly, quaternary for four classes and so on).

When we have a case where the information we need requires simultaneous infor-
mation from objects of three (or more) classes, we introduce a new class connected to all
three classes as shown in Figure 5-19.

Team
name
1.1
Member 1n Match
name
address date
phone 1..1 O..n 1..n 1..1 venue

Figure 5-19. Members and the team they played for in a particular match

CHAPTER 5 ©" DEVELOPING A DATA MODEL

We might be able to think of an appropriate name for this class—in this case
Appearance would be sensible. If not, concatenating the other three class names will
suffice (e.g., Team/Member/Match). This is not unlike introducing a new class in the
Many-Many relationships we considered in Chapter 4. As in that case, the cardinality
at each of the outer classes is 1.

Reading this model, we have something like this: each appearance involves one
member, one team, and one match (e.g., Jim appeared for Team A in the match on
Saturday 12th); each member may have many appearances (Jim can appear for different
teams in many matches); a team will have many players appearing in a number of
matches; and a match will have many players appearing for different teams.

The new class may or may not have attributes. It may just be a holding place for valid
combinations of Member, Team, and Match objects. If there are attributes for the new class,
they must be something that involves all three classes. For example, what do we need to
know about a particular player playing for a particular team in a particular match? Possi-
bly the position. If we wanted to know that Jim played fullback for Team A in the match
on Saturday 12th, our new class is the place to record that information.

Figure 5-19 clearly has additional information that is impossible to deduce from
Figure 5-18. What about vice versa? Can we re-create all the information in Figure 5-18
from 5-19? By looking at Figure 5-19, we can deduce all the teams a player played for, all
the matches a player played in, and the teams involved in each match. We do not need
to add extra relationships between each pair of classes to figure out this information. In
fact, it would be dangerous to do so as we would then have two routes for finding a piece
of information and as we have seen that redundancy can lead to inconsistencies. How-
ever, there may be other information about each pair of classes that we would like to
keep. For instance, in Figure 5-19 we know all the teams Jim played for but we don’t know
which his main team is (i.e., which team he regularly trains with). Some binary relation-
ships between each of the three classes may be required in addition to the relationships
with the new class.

Whenever we have a pattern such as that in Figure 5-19, we should check whether
the other binary relationships are necessary. If we have classes A, B, and C connected to
a third class, we should ask, for each pair of classes, a question like “Is there something
I need to know about a relationship between A and B that is independent of C?” For the
preceding example, we could ask “Is there something I need to know about player and
team that is independent of the match?” The answer here would be “Yes. I want to know
the player’s main team.” We would therefore add a binary relationship to represent that
information as shown in Figure 5-20.

91

92

CHAPTER 5 " DEVELOPING A DATA MODEL

Mainly plays for Team

name
0.1
1.1
1.n
nl:ri;nber 1.n Match
address Appearance date
phone 1.1 on 1n 4 1 |venue

Figure 5-20. Including a binary relationship for information independent of one class

We need to ask a similar question for each of the other combinations, e.g., “What
do I need to know about a particular team and a particular match independent of the
members?” The winning team maybe. “What do I need to know about a particular
member and particular match independent of the teams?” Maybe who was refereeing.

Summary

This chapter has described a miscellany of common modeling situations. Investigating
these leads to a more precise understanding and representation of the real-life problem.
These situations are summarized as follows:

* Attribute, class, or relationship?
Here are some examples of questions to help you decide:

* Might I want to select teams based on grade? If the answer is yes, consider
making grade a class.

e Am I likely now or in the future to store other data about this piece of informa-
tion? For example, might I want to keep information about a captain—phone,
address, etc.? If yes, consider introducing a class.

* Am I storing (or should I be storing) such information already? For example,
the information about a captain is the same or similar to information about
members. Consider a relationship between existing classes.

CHAPTER 5 ©" DEVELOPING A DATA MODEL

* More than one relationship between two classes:

¢ Consider more than one relationship between two classes if there is different
information to be stored. For example, a member might play for a team,
captain a team, manage a team, and so on.

¢ Consider self relationships:

¢ Obijects of a class can be related to each other. For example, members sponsor
other members, people are parents of other people.

¢ Different routes between classes:

¢ Check wherever there is a closed loop to see whether the same information is
being stored more than once.

¢ Check to ensure you are not inferring more than you should from a route; i.e.,
look out for fan traps where a class is related to two other classes and there is
a cardinality of Many at both outer ends.

¢ Check to ensure a path is available for all objects; i.e., look out for chasm traps
(are there optional relationships along the route?).

* Information dependent on objects of more than two classes:

¢ Consider introducing a new class where you need to know about combina-
tions of objects from three or more classes simultaneously; e.g., which
member played for which team in which match?

¢ Any attributes in the new class must depend on a particular combination of
objects from each of the participating classes; e.g., what do I need to know
about a particular member playing in a particular team in a particular match?

* Consider what information might be pertinent to two objects from pairs of the
contributing classes; e.g., what do I need to know about a particular member
and a particular team independent of any match?

93

CHAPTER 6

Generalization and
Specialization

As the data model begins to develop, situations will sometimes arise where we find that
a class may not describe our possible objects as neatly as we might like. We might find
that we have some objects for which some of the attributes do not really apply. For
example, if we have a class to record information about all the people associated with
a company, we might find that some have hourly pay rates while others have annual
salaries. In many respects, much of the information about each of the employees is
similar, but there are differences. We may also come across the case where we have
started with two separate classes, for example Lecturers and Students, and then begin to
realize that there is a great deal of information in common or that they are involved in the
same relationships (who has parking permits, say). How do we handle these “same only
different” cases in a pragmatic way?

Some questions that are useful to keep in mind are

Do the two classes have enough in common to reconsider how they are defined?

Are some of the objects in a given class different enough from other objects to
warrant reconsidering how they are defined?

Classes or Objects with Much in Common

Consider a company wishing to keep information about its employees. For all employees
it needs to keep employee numbers, names, contact addresses, and job type, but depend-
ing on the type of job, the rest of the information might be different. For data entry
operators, it may be necessary to keep information about their speed in keystrokes per
hour, while technicians might have a grade. Some workers might have a yearly salary,
while others might have an hourly rate.

95

96

CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

Let’s just take a simple case of an outsourcing company keeping information about
data entry operators and technicians. We could, as a start, consider having just one class,
Employee, as shown in Figure 6-1. In Figure 6-2, we show some possible objects of that
class.

Employee
number
name
job_type
speed
grade

Figure 6-1. Information about different types of workers kept in one class

f f f f f

number: 156 number: 188 number: 196 number: 208 number: 212

name: Sue name: Bob name: Ann name: Jane name: Pat
job_type: Entry job_type: Tech job_type: Tech job_type: job_type: Entry
speed: 6000 speed: speed: 7000 speed: 7500 speed:

grade: grade: A grade: grade: grade:

Figure 6-2. Some possible objects of the class Employee

What are we supposed to make of Ann? She is a technician, but instead of a grade,
she has a speed. There is a bit of confusion here now. Is she both a technician and a data
entry operator? If she is a technician, why doesn’t she have a grade? Or (as is most likely)
has there been some sort of data entry mess up? A database that allows for obviously
inconsistent or incomplete data to be entered is not going to give accurate or reliable
information. We could have added some constraints to our use case description on main-
taining the Employee data (e.g., if job_type = Tech, then speed must be empty and grade can
have a value), but this is quite messy and can only become more and more complicated
as other job types are added. We could contemplate removing job_type altogether on the
grounds that we can infer the type of job from the presence or absence of a typing speed
or grade. We can deduce that Jane is a data entry operator even though the job_type field
is empty. However, if we remove the job_type field, what can we deduce about Pat? At the
moment, we know that she is a data entry operator whose speed is currently unknown or
not required. Without the job_type field, we would know nothing.

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

The real question, of course, is “Does it really matter whether we can enter inconsis-
tent or incomplete data?” For some applications, it may not. However, if one of the
objectives of the project is to be able to produce reliable statistics about the types of job
and abilities of employees, clearly the simple class in Figure 6-1 is not very practical.

Specialization

The situation in the previous section is an example of specialization. In general, we have
employees who share many characteristics, but depending on each person’s job type, we
may wish to keep different specialized data. Data modeling provides a mechanism for
this idea through sub- and superclasses, or an idea known as inheritance. Figure 6-3
shows a class, Employee, with two subclasses, sometimes called inherited classes, named
DataEntry and Technician.

Employee
number
name
| |
DataEntry Technician
speed grade

Figure 6-3. Subclasses to contain specialized information

The two classes beneath the arrow are derived from Employee, which means that in
addition to any of their own attributes, they will also have all the attributes from the
Employee class.

We now have three classes: objects of Employee will have a number and a name (and in
general any other information that is relevant to all employees); objects of Datakntry will
have a number, name, and speed; and objects of Technician will have a number, name, and a
grade. Some possible objects are shown in Figure 6-4.

97

98 CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

f f f f t

DataEntry Technician DataEntry DataEntry Employee
number: 156 number: 188 number: 196 number: 212 number: 230
name: Sue name: Bob name: Ann name: Pat name: Jim
speed: 6000 grade: A speed: 7000 speed:

Figure 6-4. Some objects consistent with the model in Figure 6-3

Each object is of one of the three classes: Employee, DataEntry, or Technician. There is
now no possibility of having a technician with a data entry speed. It is possible to have an
employee such as Pat who is a data entry operator with an unknown speed. We also have
an employee who is neither a data entry operator nor a technician.

With this model, we are able to keep accurate information about the different types of
employees and the specialist data associated with their jobs. If we need to keep information
about other types of employees, we can simply add another subclass. For example, we
might find we need to add another class to keep information about electricians and when
their practicing licenses need to be renewed.

Generalization

A model using classes and subclasses is also useful when we start with two distinct
classes and find that they have some behavior in common. Let’s consider a database
such as in Figure 6-5, with information about lecturers and students and the courses
they teach or enroll in.

student | opons in Course | is taught by | Lecturer
name code name
major 0.n 0.n 0.n 1.1 |salary

Figure 6-5. Lecturers and students as independent classes

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION 99

The university may, as all universities do, have a parking problem and decide that
each person is allowed one and only one designated parking space. If we wish to include
this information in our model, we may try a solution as in Figure 6-6. However, we run
into a real problem pretty soon. Can you see what it is?

Parking Space

number
0.1 0.1
is assigned to is assigned to
0.1 0.1
Student enrolls in Course | istaughtby | Lecturer
major code salary
0.n 0.n 0.n 1.1

Figure 6-6. Possible model for maintaining car park information

Reading the model from the bottom to the top, we have that students and lecturers
can each have at most one parking space. That is fine. However, from the top to bottom,
we have that a parking space could be assigned to a student, and the same space could
be assigned to a lecturer. What the model doesn’t show is that a single parking space
cannot be assigned to both a student and lecturer simultaneously.

We have come across constraints on particular objects before, and we could specify
these in the use cases for maintaining the data. However, we have a more elegant solu-
tion here. In some respects, our Lecturer and Student objects have the same
behavior—they are assigned parking spaces. We can capture this common behavior by
creating a superclass as in Figure 6-7.

100 CHAPTER 6

GENERALIZATION AND SPECIALIZATION

Person

Figure 6-7. Common behavior captured in a superclass

In this model, we have people, with names (and other common attributes), who can
be assigned a parking space. Students are people with a major who enroll in courses,
whereas lecturers are people with a salary who teach courses. We do not have the prob-
lem now of extra tricky constraints that a parking space cannot be assigned to both a
lecturer and a student—we just have that a parking space is assigned to one person.

Inheritance in Summary

Specialization and generalization in the examples we have looked at so far in this chapter
are just two sides of the same coin. They both lead to the type of generic data model

shown in Figure 6-8.

SuperClass

7

SubClassA

is assigned Parking Space
name
phone 01 number
Student enrollsin | Course | istaughtby | Lecturer
major code
0.n 0.n 0.n 1.1

SubClassB

Figure 6-8. A data model showing inheritance

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

SubClassA and SubClassB are both specialized types of the class SuperClass. They will
have all the properties of the SuperClass and in addition have their own specialized
attributes and/or relationships with other classes.

Whenever you find yourself thinking things like “But a parking space could be
associated with a lecturer OR a student,” or “A booking could be for an individual OR
a company,” and so on, consider a superclass to capture the common behavior.

When you find yourself thinking, “Some objects will have a value for this attribute
but not that one,” or “Only some objects of this class will have a relationship with an
object of that class,” you should consider creating some subclasses to capture that
specialist behavior.

To check whether inheritance (or sub- and superclasses) is actually applicable to
a given problem, you should ask the following questions. For example: to check whether
SubClassA is really a subclass of SuperClass in Figure 6-8, ask

Is an object of SubClassA a type of SuperClass? (Always/sometimes/never)
Is an object of SuperClass a type of SubClassA? (Always/sometimes/never)

If the answer to the first question is “Always” and the answer to the second is
“Sometimes,” the problem is a good candidate for this type of model. For example,
we can check the validity of Figure 6-3 by asking

Is a data entry operator a type of employee? (Always)
Is an employee a type of data entry operator? (Sometimes)

These answers mean that making DataEntry a subclass of Employee is possible.

Asking the always/sometimes/never questions can help make sense of complicated
problem descriptions. Say we have a complex employee hierarchy with secretaries, data
entry operators, agents, salespeople, and so on. Those two always/sometimes/never
questions can sort things out. If we discover that

An agent is always a salesperson, and a salesperson always an agent.
we know that for this particular situation “salesperson” and “agent” are two different
words for the same thing. We should have one class called either Salesperson or Agent.
However if we have that

A salesperson is always an agent, and an agent is sometimes a salesperson.

we have good grounds for considering a Salesperson class as a subclass of Agent.

101

102 CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

When Inheritance Is Not a Good Idea

Inheritance in a data model is not as common as you might think at first. Humans are
very good at categorizing things into hierarchies, and once people get hold of the idea of
inheritance in data modeling, there can be a temptation to use it everywhere. In the last
section, I was careful to say that an affirmative answer to the question “Is A a type of B?”
only meant that using inheritance might be a possible way of making sense of a problem.
In this section, we will look at a couple of examples where inheritance is definitely not a
good way to think about a problem.

Confusing Objects with Subclasses

Consider a database of dogs of different breeds. We may have a hierarchy of breeds and
might at first sight think that inheritance is a possibility. Consider the following state-
ments:

¢ A Corgiis adog.

* Rover is a Corgi.

* Spotis a Labrador.
¢ A Labrador is a dog.

While the four statements are similar, they do not all suggest subclasses. Rover and
Spot are not classes: they are objects of some class of dogs. Corgi and Labrador, on the
other hand, could possibly be subclasses of some super Dog class, but then again maybe
not. First of all, let’s consider how we know whether something is an object or a class.
Why is Rover probably an object and Corgi possibly a class?

A quick way to help decide whether something is a class or an object is to ask a
question such as “Am I likely to have several of whatever and am I interested in them
as a group?” For example:

Am 1 likely to have several corgis and am I interested in them as a group? Probably.
Therefore Corgi is a potential class.

Might I have several Rovers and am I interested in them as a group? There might well
be several dogs called Rover, but it is hard to think of why we would be interested in
them as a group just because of their common name.

Corgis and Labradors are potential classes, whereas Spot and Rover are more likely
to be objects of one of our dog classes. A possible hierarchy and some objects that are
consistent with the preceding statements are shown in Figure 6-9.

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

Dog
name

Labrador Labrador Corgi Corgi
name: Spot name: Rover

Figure 6-9. Some possible classes, subclasses, and objects of a dog data model

Confusing an Association with a Subclass

The model in Figure 6-9 may look fine for a start, but in fact we don’t need inheritance to
maintain simple information about the different breeds of our dogs. We are not keeping
any different information about Labradors than we are about Corgis or any other breed
(so far). We are merely noting that some of our dogs are Corgis and some are Labradors,
and this can be done with a simple association between our Dog objects and objects of
another class called Breed as shown in Figure 6-10 (assuming pure-bred dogs for now).

Dog Breed
name breed_name

y y y y y

name: Spot name: Lassie name: Jock name: Boy name: Rover
breed_name: Labrador breed_name: Terrier breed_name: Corgi

Figure 6-10. Each Dog object is associated with a breed.

The model in Figure 6-10 is a much simpler way of representing our problem than
the model in Figure 6-9. The resulting database will be much easier to maintain also.
In Figure 6-9, if we add a new breed, we need to add a new subclass. For the model in
Figure 6-10, we just need to add another object of our Breed class.

103

104

CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

What if the problem changed to say that we want to keep the fees payable to the ken-
nel club and that these are different for the different breeds (e.g., a Labrador will cost
$100, a Corgi $80, and a Terrier $85)? Now that we have some different information about
the breeds, should we reconsider specialized classes?

No. What we have here are just different values for an attribute, fee, which can easily
be accommodated in the Breed class. We only need to consider specialized classes if we
have different attributes or relationships (not just different values for an attribute).

When Is Inheritance Worth Considering?

We have seen that what looks like inheritance can often be represented more simply
(and effectively) by simple relationships. At what point is it worth considering inheri-
tance? Let’s think of another scenario for our dog model.

Let’s say the town council keeps a register of dogs. Some of these dogs are just your
plain old family pet, while others might be show dogs with affiliations to kennel clubs.
If (big if) the council wanted to keep this information, a model such as the one in
Figure 6-11 might be worth considering.

Person owns Dog
name name
address |1 1 0 n |reg_number

b

Show Dog registered with
id_number

Club

1.n 1.1

Figure 6-11. Possible model using inheritance to show different behavior

In Figure 6-11, we see that show dogs have not only additional attributes (e.g., an
id_number to perhaps point to records of their genealogy), but also different behavior
(i.e., a show dog will be registered with a kennel club whereas an ordinary pet will not).

How else could we have modeled this? Well, we could have given all dogs an
id number attribute (that could be left unspecified for ordinary pets) and let all dogs have
an optional relationship with a club as shown in Figure 6-12. Can you see any drawbacks
to this model?

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

Dog
Person owns name registered with Club
ngge reg_number !
address 1.1 0.n|id_number 1.n 0.1

Figure 6-12. Possible model without using inheritance

It is possible to capture all the required information with the model in Figure 6-12,
but it is not so easy to keep the data accurate. We run into much the same problems as
we had with our model of Employees in Figures 6-1 and 6-2. What about dogs with no
id number that are associated with a club and vice versa? Are these show dogs, or has there
just been a data entry mishap?

The decision as to whether to use inheritance or not depends on how important the
accuracy of the data is to the objective of the project. We get right back to the questions
we considered in Chapter 3. What is the main objective? What is the scope? How impor-
tant is the accuracy of this data? On the whole, when you are starting out on a problem,
it is best to keep your solution as simple as possible. Inheritance provides an elegant
solution to many problems involving specialization and generalization, but you should
only use it when it is necessary.

Should the Superclass Have Objects?

In Figure 6-11, we had a class of dogs with show dogs as a subclass. The implication here
is that your ordinary old pet will be an object of the superclass Dog, while show dogs will
be objects of the subclass. This can lead to a few problems as the project evolves.

As we have seen, we should only be considering inheritance when we have objects
with specialized data that needs to be accurately maintained. We need to make sure that
the model we develop will be able to cope with changes or additions to the scope in the
future.

Consider an example where a company keeps the number, name, and contact infor-
mation about all employees and, for those employees who are union members, we record
the fee they pay to the union. This seems like a reasonable candidate for setting up a spe-
cialized subclass, and we may arrive at a model as in Figure 6-13.

105

106

CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

Employee

number
name

UnionMember
fee

Figure 6-13. A specialized class for employees who are union members

If we set up a database based on this model, we will probably have some objects of
type Employee (with a value for number and name) and some objects of type UnionMember
(with a value for number, name, and fee). Some time later, the problem may change in that
we may now want to keep some additional information about our nonunion members
(say an advocate’s name). We now have a problem. Our nonunion members are objects of
the superclass: if we add an attribute to that class, it will be inherited by our UnionMember
subclass objects, which may not be what we want at all.

This problem can occur when the top, or root, class of a data model has objects.
Generally, it is advisable that the top class of the hierarchy not have any objects. A class
with no objects is called an abstract class. If we had followed this advice, our original data
model would have had two subclasses, one for union members and one for those who
are not union members as in Figure 6-14. The superclass is an abstract class (represented
with an italicized name) that will not have any objects.

Employee
number
name

UnionMember
fee

NonUnionMember

Figure 6-14. Employee as an abstract class

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

It does not matter that NonUnionMember has no additional attributes at the moment.
The two subclasses are different, and if in the future the information to be stored about
nonunion members changes, that can be done without affecting the attributes of the
union members.

Objects That Belong to More Than One Subclass

In most of the examples in this chapter, the problems have been very simplified. In Fig-
ure 6-15, we have a model with Lecturer and Student represented as subclasses of a Person
class along with some objects of the two subclasses. We see that for this case our objects
have to be either a lecturer or a student.

Person
name
o]

f f phone f f

Lecturer Lecturer % Student Student
name: Linda name: Rob

name: Sue name: John oot Studert
phone: 3456 phone: 9865 ecturer u en phone: 5436 phone: 1324
salary: 50,000 salary: 40,000 salary major major: Science major: Arts

Figure 6-15. Students and lecturers are distinct.

Figure 6-15 copes with the simple case of lecturers and students being distinct. What
is more likely, however, is that there is some overlap between the two. What if lecturer
John is also doing some part-time studying for an arts degree and student Linda is doing
some part-time teaching to fund her fees? Where do we store John’s major and Linda’s
salary?

We could make another two objects, an additional Student object for John and a
Lecturer object for Linda, but there are problems with this approach. We would now
have six Person objects in total when in reality there are only four people. Any counts or
summaries of numbers of people will be inaccurate. An additional problem is that we
now have two objects for Linda, and they will both have values for name and phone, caus-
ing problems when Linda’s contact details change. They will have to be updated in two
places.

One solution is to consider another class that inherits from both Student and
Lecturer. Inheriting from two different parents is sometimes referred to as multiple
inheritance. Objects of our new Lecturer/Student class will have attributes name, phone,
salary, and major as in Figure 6-16.

107

108 CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

Person

name

phone
Lecturer I 4 1 Student

Lecturer Student
name: Sue salary major name: Rob
phone: 3456 phone: 1324
salary: 50,000 \K ﬁ major: Arts
Lecturer/Student

t f

Lecturer/Student Lecturer/Student
name: John name: Linda
phone: 9865 phone: 5436
salary: 40,000 salary: 12,000
major: Arts major: Science

Figure 6-16. Multiple inheritance to capture objects of two classes (not recommended)

There are difficulties with the approach in Figure 6-16. The obvious problem, from
a purely pragmatic design point of view, is that when more classes are added at the mid-
dle level, we will be in trouble. If we add more classes (e.g., Adninistrator and Cleaner) as
further subclasses of Person, we will need to add a whole slew of subclasses at the bottom
level to cope with all the possible combinations: for example, administrators who do
some lecturing, cleaners who do some study, poor students who do a whole raft of extra
jobs to fund their studies, and so on. This approach very soon gets out of hand.

Our problem is that we have been thinking of students and lecturers as different
types of people when in fact they are all just people doing different things. A better way
to think of this type of scenario is not so much that there are different types of people, but
that there are people who play many different roles. We can model these jobs or roles as a
class with many different subclasses for the different types of jobs we need to store differ-
ent information about. Rather than have subclasses of People, we can have another class
(let’s call it Contract) that has subclasses for the different roles we need to describe. Each
person can then have many contracts as shown in the model in Figure 6-17.

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

Person has
name Contract
phone 11 0.n Z>
' |
Student_Contract Lecturer_Contract
major salary =

Figure 6-17. People can have many contracts each for a type of role.

Some objects of a data model like Figure 6-17 and consistent with the scenario in
Figure 6-16 are shown in Figure 6-18. We see that we very clearly have four people who
are undertaking a number of different roles. A person can have more than one contract,
and each contract is associated with a single person.

ﬁ Lecturer_ Contract

e / salary: 50000

name: Sue
phone: 3456

Student_Contract
major: Arts

]

Person

Lecturer_ Contract

name: Rob salary: 40000

phone: 1324

ﬁ Student_Contract

Person -} major: Arts

name: John

phone: 9865 Lecturer_ Contract
. salary: 12000

]

Person

) Student_Contract
name: Linda major: Science

phone: 5436

A 4

Figure 6-18. Using roles (contracts) as an alternative to multiple inheritance

109

110

CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

The approach in Figure 6-17 is easy to adapt when new roles are added (e.g., admin-
istrator, cleaner). If we wish to include administrators with information specific to their
contracts, we just add another subclass, Adninistrator Contract, to our Contract class.

There is a slight problem, however. In Figure 6-17, we have that a person can be related
to many contracts, but we don’t have any constraints as to which type of contracts. The
model does not prevent Linda being associated with several Lecturer contracts and/or
several Student contracts. In reality, this may be what the problem actually requires. Linda
may follow her arts degree with a science degree. John may be promoted and take out a new
contract for $70,000. We can add some date attributes to the parent Contract class so the
contracts can be recognized as being in succession or overlapping. Overall the model in
Figure 6-17 is very flexible and allows us to address many complications in a transparent
manner.

However, we need to be sure the objectives of our problem require this sort of
accuracy about people and the roles they undertake. If the objective is to keep reliable
statistics about different types of employees, their pay, and their qualifications, this sort
of model is necessary to help us understand what is going on. If that information is of
only secondary importance (i.e., our main objective is keeping student enrollments and
results), then maybe we do not need to introduce subclasses to keep the specialized data
about the other more minor roles that people might play.

It Isn’t Easy

Inheritance offers some wonderfully elegant ways to model very complicated problems.
However, getting a hierarchy of classes and subclasses that will cope with all the eventual
data is very difficult. We have only touched on the data aspects of inheritance here in this
chapter. Dealing with inherited classes becomes considerably more difficult if we need to
add behavior (or methods) to our classes. Adding behavior, however, is outside the scope
of the data-based problems we are considering in this book.

Even for just static data, we can still run into problems when we try to design an
inheritance hierarchy. Consider the model in Figure 6-19.

CHAPTER 6 © GENERALIZATION AND SPECIALIZATION

Animal

name
average _weight

1

Bird Mammal Fish 209?
air_speed blood _temperature fresh/salt _water

Figure 6-19. An amateur biologist’s model for keeping data about animals

Dividing animals up into fish, mammals, birds, and so on may do quite well as we
enter data about bears, dogs, sharks, and sparrows. But what happens when we come to
whales? Whale doesn't fit at all into Figure 6-19’s model. A whale is a mammal, but it also
needs to be shown as living in sea water. The hierarchy was not clearly thought out to
begin with. If a database has been implemented and lots of data entered, it can be very
difficult to insert layers or move subclasses between layers. Getting it right at the start is
very important. Poorly thought-out inheritance can cause more problems than it solves,
so use it very sparingly in database problems.

In Chapter 7, you will see how to capture the most important parts of these data
models in a relational database.

Summary

Situations when inheritance is a possibility include the following:

« If different objects have mutually exclusive values for some attributes (e.g., data
entry employees have speeds but technicians have grades), consider specialized
subclasses.

* When you think this is like that except for . . ., consider subclasses.

¢ When two classes have a similar relationship with another class, consider a new
generalized superclass (e.g., if both students and staff are assigned parking spaces,
consider a generalized class for people).

111

112 CHAPTER 6 ©* GENERALIZATION AND SPECIALIZATION

Before you use inheritance, make sure that

* You have not confused objects with subclasses (e.g., Rover is probably an object,
Collie could be a class).

* An association with a category class would be sufficient (e.g., Labrador and Collie
could be objects of a Breed class, and each dog could be associated with a breed).

e Itis not just the value of an attribute that is different (e.g., don’t consider inheri-
tance because the fee for Labrador and Collie is different).

Other considerations:

e Classes at the top of the hierarchy should be abstract, which means they will never
have any objects. This allows the problem to be more readily extended (unless you
can think of a good, pragmatic reason to do otherwise).

* Consider associations with roles when you come across the my object is a member
of both these classes dilemma.

* Don't introduce the complexity of inheritance unless the specialized data in the
subclasses is important to the main objectives of the project.

CHAPTER 7

From Data Model to Relational
Schema

Let’s recap the story so far in our endeavors to design a database. We started with use
cases to describe the basic requirements of a problem and developed an initial data
model. By looking carefully at the details of the model, we were able to develop questions
to help understand further subtleties and complexities about the real-world problem. We
then looked at a number of situations that occur in many models in the hope that these
would be useful when difficult situations arose in other contexts.

There is no way to get a perfect or complete model. All that can be done is to agree
on a model that accurately reflects the essential requirements of the real-world problem.
This will involve numerous iterations as the use cases adjust to reflect the improved
understanding and the changing scope. Having arrived at a set of use cases and a data
model that everyone is comfortable with, we can now move on to the third phase of the
development process as shown in the bottom-right square of Figure 7-1.

113

114

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Analysis
N
>
Real World Abstract World
1. Maintain usages
/ 2. Maintain genus
/ 3. Maintain species
1. Maintain plant information -
User User\ 4. Report plant information
Problem 2. Report information about plants 5. Repont usage information
3. Report information about usages
Species
Genus 1 species ID o.n Usage
genus name name name
1. name 0.
S]
Problem Statement Expressed Data Model and More Complete 3
with Initial Use Cases and Precise Use Cases g
= = X]
A 4
. genusname = |plantn 2= [plant :/Lmage
Solution e =
Genus Species genus
shatter
Final Application with Forms Database Design of Tables and
and Reports Relationships
<
<
Implementation

Figure 7-1. Database development process

In this and the following chapters, we will look at how to design a database that could
be implemented in a relational database product (e.g., MySQL, Microsoft Access, SQL
Server, Oracle, and so on).

Representing the Model

We have gone to a great deal of trouble to capture as much detail as possible in the data
model. Why? Much of the detail expressed in the data model can be represented and
enforced by standard techniques built into relational database management software.
A good model, implemented using the standard techniques, allows us to capture many
of the constraints implied by the relationships between classes without recourse to pro-
gramming or complex interface design.

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

In this chapter, I will show you how many of the aspects of the data model can be
captured by standard database functionality. To give you an idea of what is coming up,
I have summarized the techniques in Table 7-1.

Table 7-1. Techniques to Represent Aspects of the Data Model

Feature in Model Technique Used in Relational Database

Class Add a table with a primary key.

Attribute Add a field with an appropriate data type to the
table.

Object Add a row of data to the table.

1-Many relationship Use a foreign key, i.e., a reference to a particular
row (or object) in the table at the 1 end of the
relationship.

Many-Many relationship Add a new table and two 1-Many relationships.

Optionality of 1 at the 1 end of a relationship Make the value of the foreign key required.

Parent and child classes (inheritance) Add a table for each class, with 1-1 relationships
between each child class and the parent (not an
exact representation but OK).

All of the techniques described in Table 7-1 can be carried out in most database
management products as part of the specification of the tables. More complex con-
straints may require some additional procedures or checking at data input time, but with
a good model this can be minimized. By using the built-in facilities of the database prod-
uct, the time required for implementation, maintenance, and expansion of the
application is greatly reduced.

Representing Classes and Attributes

Consider Figure 7-2, which represents a small part of a data model for customers and
orders.

115

116

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Customer Order
name order_number
address 1.1 0_n|amount_owing

Figure 7-2. Part of data model for customers and orders

The first step is to design a database table for each class. The attributes of the class
will become the field or column names of the table, and when the data is added each row,
or record, in the table will represent an object. For example, as a start we would create a
table called Customer for the Customer class in Figure 7-2. The table would have two fields
or columns, one for a customer’s name and one for the address. We would then add a row
to the table for each customer object (e.g., John Smith, 83 SomePlace, Christchurch).

Creating a Table

All relational databases allow you to create a table using SQL, which is a set of standard
commands to create, update, and query databases. First we need a database that encom-
passes all our tables. To create a table, we need to provide a name for the table and a
name and data type for each of the columns. The data type of the columns specifies what
sort of data will be put into that particular column, for example, a date (4/Aug/09), a
piece of text or a set of characters (“Mary Smith”), an integer (467), or some other type of
number (3.57). Particular database products provide different data types, and we will talk
about suitable choices a little later on in the section “Choosing Data Types.”

As well as providing SQL as a way of creating a table, many databases also provide a
more graphical front end through which the user can provide information about the
columns and their data types. Equivalent ways of creating a very simple Customer table
are shown in Listing 7-1 and Figures 7-3 and 7-4. Figure 7-3 shows the phpMyAdmin
front end, while Figure 7-4 shows the equivalent in MS Access. Both programs will gener-
ate SQL statements similar to those shown in Listing 7-1. Note that the data type for the
two fields is called Text in Access and VarChar in SQL. These both just mean the user will
be able to enter any number of characters they like up to the maximum number stated
(25 for name and 40 for address).

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Listing 7-1. Standard SQL Command to Create a Customer Table with Two Fields

CREATE TABLE Customer (
name VARCHAR(25),
address VARCHAR(40)

)

&3 Server: localhost » Database: test_Company » Table: Customer

Field Type Length/Va lues] Collation
name VARCHAR [+| |[25 v
address VARCHAR |v| (40 v

Figure 7-3. Creating a Customer table in phpMyAdmin

[~ -

_1 Customer : Table g@

Field Name | Data Type [~
| I name 3=
address =
Memo [
Field Propertl yumber
Date/Time
General | Lookup Currency
Field Size 25 |AutoMumber
Format Yes/No
Input Mask OLE Object
Caption Hyperlink
Default Value Lookup Wizard...

Validation Rule
Validation Text

Required No

Allow Zero Length Yes
Indexed No
Unicode Compression Yes

IME Mode No Control
IME Sentence Mode Nane
Smart Tags

Figure 7-4. Creating a Customer table in Microsoft Access

117

118

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Once the table has been created, we can enter data. In the case of the Customer table,
we would enter a row for each customer. Once again, this can be done with SQL com-
mands as in Listing 7-2 or for many products through a table-like front end as shown
for Access in Figure 7-5.

Listing 7-2. SQL Command for Entering a Record into the Customer Table

INSERT INTO Customer (name, address)
VALUES ('Green, Mrs R', 'P.0. Box 678, Christchurch')

1 Customer : Table

name | address |
Amn McDonald Flatl, 366 Allo Street
& |Green, Mrs R P.O. Box 678, Christchurch

Figure 7-5. Entering data through the MS Access interface

Choosing Data Types

Each attribute in a class becomes a field or a column in our table. When we create the
table, we need to provide a name for the field (e.g., name, address) and specify the type of
data that will be stored in that field. Database products often offer a bewildering number
of different data types, but these basically fall into the following groups:

Character types: These allow you to enter any characters—numbers, letters, punctu-
ation. They are used for names, addresses, descriptions, and so on. You usually need
to provide a maximum length for the data going into the field. In SQL, a type of
VARCHAR(60) would allow you to enter any number of characters up to 60. In Access,
the equivalent type is called Text. If you have very large amounts of text (notes, dis-
cussions, and so on), you might like to look at other types (e.g., Text in SQL Server or
Memo in Access).

Integer types: These types are for entering numbers with no fractional part. They are
great for ID numbers such as customer numbers and for anything that you can
count. Database systems often provide different-sized integer types (long, short,
byte, etc.) that have different maximum numbers that can be entered. Unless you
have particular performance problems or extremely large amounts of data, you will
probably be fine if you use the ordinary integer type (in SQL it is called INT). Just
check that the biggest number it can handle is large enough for your data.

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA 119

Numbers with a fractional part: These are used for things that you measure (heights,
weights, and so on) and also for numbers that result from calculations such as aver-
ages. Most of the time you will be just fine with what is called a float or single
(depending on the product you are using). Other types exist if you need particularly
accurate measurements or calculations. One situation when a float may not be suit-
able is when you need to record largish amounts of money accurately. Many
products now provide money or currency types for this situation, or you may find the
type is called something like fixed-length decimal. These types enable you to have
many significant figures so that you can keep track of your billions down to a fraction
of a cent!

Dates: No prizes for guessing the type of data you can put in fields with these types.
If your product has different date types, some may allow you to include times and
others may allow you to access dates further into the past or future.

Why is it important to get the correct data type? You could argue that as you can put
anything in a character field, you can have character fields for everything (and I've seen
it done!). There are three main reasons why it is important to choose an appropriate data
type for each of your fields:

Constraints on the values: A character field type has no constraints on what you can
enter; however, most other fields do. Number fields won'’t allow you to accidentally
mistype a number, say, by putting in an extra decimal point or a letter “O” instead of
the number 0. Dates won't allow February 29 unless it is in a leap year, and so on. For
this reason, phone numbers, which are likely to have extra symbols like () for area
codes, need to be stored in character rather than number fields.

Ordering: Different types of fields have different ways for sorting or ordering values.
For example, character fields can be sorted alphabetically (A-Z), number fields
numerically (small to large), and dates chronologically (older first). If you store num-
bers in character fields and then ask your product to sort them for you, you might get
something like this: (10, 12, 123, 2, 200, 36). Dates in a character field might be sorted
like this: (01/Aug/08, 01/Feb/08, 04/May/08, .. .). Can you see why?

Calculations: Your database product can do arithmetic and perform other functions
on your data, but only if it is the correct type. For example, it will be able to add, mul-
tiply, and average numbers, figure out how many days between two dates, and look
for particular characters in a piece of text. You need to have the correct types in order
to take advantage of this type of functionality. And getting back to phone numbers,
you never want to subtract them, average them, or order them numerically, so they
can and should be stored in a character field type.

120

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Adding Constraints on Data Values

At this point, it is usually possible to add some constraints on the data for each field, e.g.,
maximum and minimum values for numbers, earliest or latest dates, or a set of specified
values for character fields. Here is an example. For a Student table, there may be a gender
field with the constraint that the only values allowed are “M” or “F”. These constraints are
usually defined when the table is created. The SQL code for creating a table with a con-
straint on the values for a gender field is shown in Listing 7-3.

Listing 7-3. SQL for Creating a Table with a Constraint

CREATE TABLE Student (

number INT,

name VARCHAR(20),

gender VARCHAR(1) CHECK gender IN ('M', 'F')

)

One very important constraint is specifying whether a value is required or can be left
empty. A field with nothing in it is said to have a null value, and we can specify when a table
is created which fields are not allowed to have nulls. This is shown in SQL in Listing 7-4.

Listing 7-4. SQL for Specifying That the Number and Name Fields Must Have Values

CREATE TABLE Student (

number INT NOT NULL ,

name VARCHAR(20) NOT NULL,

gender VARCHAR(1) CHECK gender IN ('M', 'F')

)

Looking at the code in Listing 7-4, it is reasonable to ask why we haven't insisted gen-
der must always have a value as well. All students have a gender after all. In general, there
are two main reasons why we might need to put a null in a field: either the field doesn’t
apply for a particular record (a person may or may not have a driver’s license number) or
the field does apply, but at the moment we don’t know the actual value. For the situation
with gender then, clearly the value applies, but there could be situations where we do not
know what it is. If we force a value to always be entered, we risk not being able to enter
the record or having a distressed data entry operator having a guess at a likely value.

Consider a university administrator entering details from a stack of student applica-
tions, a couple of which have left the box for gender empty. The university would much
rather have the student’s information entered incompletely than not at all. At least then
they can extract some fees and contact the person about the gender at a later time. What

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

about name—should that be allowed to be null? It is always a judgement call, but person-
ally I think recording details about a nameless student is probably going to result in
trouble somewhere down the line.

Even if you think a value is going to be essential for the accuracy of your data, do not
underestimate the likelihood that disallowing nulls might cause an incorrect value to be
entered. I find myself doing this all the time when filling in web forms for US sites that
demand a value for a state. I live in New Zealand. We don’t have states, so I just make
something up. Some sites accept “XXX,” while others demand a real US state and so I put
“Virginia.” I don’t know why. I do know that it drives me crazy, and any statistics being
gathered about the states of visitors to the site are going to be hopelessly inaccurate.

Checking Character Fields

Character fields are a bit different from other field types. With a character field, we can
enter anything we like (if there are no other constraints), and so it is possible to enter sev-
eral values into a field. Other fields such as numbers and dates only ever allow one value
to be entered.

You have seen examples of storing several values in one character field in Figure 7-5.
The name field as it stands actually has data about the first name, last name, and possibly
other names, initials, and titles. We know that the second record is about Mrs. R. Green,
but it is going to be very difficult to know whether we must search for Mrs. Green, Mrs.
Rose Green, Rose Green, Mrs. R. Green, or Ms. Green. It is also going to be difficult to sort
the records sensibly. We usually want to order people by last names, and it is not going to
be possible to do this with the way we are recording the data in Figure 7-5. The way the
address data is being recorded is going to make it difficult to select records by city or print
nicely formatted address labels easily. Separating the data into fields as in Figure 7-6 makes
the data much more useful. A good rule of thumb is that any data that you are likely to
want to search for, sort by, or extract in some way must be in a field all by itself.

last name | first name | title | street_address | city | post_code
McDonald Ann Ms Flatl, 366 Allo Street Dunedin 7001
Green Ruth Mrs P.O.Box 678 Christchurch 8024
Smith John Mr 83 Some Street Christchurch 8065

Figure 7-6. Improved fields to describe a customer

If the accuracy of values in a field is really crucial to the project, maybe that particu-
lar piece of information should actually be in a class all by itself. You might recall that we
separated genus out of our Plant class (refer to the discussion of Figure 2-12) because its
accuracy was important and we didn’t want any misspellings. In the table in Figure 7-6

121

122

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

we might ask how important it is for the values in the city field to be accurately recorded.
If it is essential to have it accurate (e.g., we regularly want to target advertising to cus-
tomers in a particular city), we may need two classes, City and Customer, with a 1-Many
relationship between them. If we only want the address for sending general mail, it isn’t
so important, as the postman can probably cope with the odd misspelling.

Primary Key

We have taken our model and for each class we have created a table. Each attribute in
the class is represented by a field with a particular data type, and we can apply some
constraints to the values we allow into a field. We have overlooked one constraint that is
so important that it gets a section all to itself. This involves choosing a primary key for the
table. It is imperative that we can always find a particular object (or row or record in a
table). This means that all records must be unique; otherwise, you couldn’t distinguish
two that were identical.

Consider the consequences of two identical records: when a customer orders goods
or makes payments, we need to connect those orders and payments to the customer
somehow. What if we have two identical rows in our customer table for Mrs. Smith? We
connect an order to the first Mrs. Smith and later we connect a payment to the second
Mrs. Smith. The first Mrs. Smith may be pretty upset to find her payment not reflected on
her monthly account. Every customer needs to be able to be uniquely identified. There
must never be two identical records in any of our tables.

Determining a Primary Key

A key is a field, or combination of fields, that is guaranteed to have a unique value for
every record in the table. It is possible to learn quite a bit about a problem by considering
which fields are likely to be possible keys. We will see later that there can be more than
one set of fields that can have unique values in a table. We choose one of these to be the
primary key and then use that to help us represent the relationships between tables.

Consider which fields could be keys for the following table where the names of the
fields are given in parentheses after the table name:

Customer (name, address, phone, birth date)

How about name for a key? No—it is entirely probable (even likely) that we may have
two customers with the same name, and we will need to be able to distinguish them.
What about the combination (name, address)? This is more promising, but then dads
have been known to name their sons after themselves, and it is not improbable that
they may at various times of their lives share the same address and be customers of the
same business. Many organizations sometimes key their clients on the combination

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

(name, birth _date), feeling this is unlikely to be duplicated. However, there are regular
horror stories in the press of people who suddenly discover they have a namesake twin
as they struggle to fend off bailiffs and police.
A potential key must be guaranteed to be unique for every possible record. In cases
like this, there is not much choice but to add a new attribute or field such as
customer number and then assign every customer their own unique number so we can
distinguish them. This is sometimes called a surrogate key. In real life, we can always dis-
tinguish individuals, but when we look at the data we are storing about them, we may not
be able to find a unique set of values. In many cases, privacy laws prevent information
such as social security or tax numbers being used to identify people, so each business
or organization is often compelled to provide its own personal identification number.
When we create a table in our database, we can specify that the field customer_number
is to be the primary key of the table. The SQL to do this is shown in Listing 7-5. Most data-
base products also usually provide you with an interface to help create a table and select
the field(s) that make up the primary key.

Listing 7-5. Specifying a Primary Key

CREATE TABLE Customer (
customer number INT PRIMARY KEY,
name VARCHAR (20)

)

With the primary key field specified, a constraint is put on the table that will ensure
that every record must have a unique value for customer_number. The user will never be
able to put in two records with the same value for customer number, and so every customer
in our table can be uniquely distinguished. The constraint also ensures that the primary
key field always has a value, so every record is certain to have a value for customer_number.

It is possible to get the database to automatically generate unique values for fields
like customer number. Depending on the product you are developing with, you will find a
field type called identity, auto_increment, autonumber, or something similar. You can
then specify some starting number and a step size, and every new row entered into the
table will get the next available number automatically.

Concatenated Keys

It isn't always necessary or even advisable to introduce a new automatically incrementing
number field into a table to act as a primary key. With the case of customers, there was no
other way to ensure a unique field for every record, but often a unique field or combina-
tion of fields already exists in the table. When we have a combination of fields that can
uniquely identify a record, this is referred to as a concatenated key. Thinking about which

123

124

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

combinations of fields are possible keys can help you discover and understand subtleties
of the problem. Here is an example:

What is a possible key for the table in Figure 7-7, which is keeping information about
students enrolling in courses?

studenﬂD‘ course | year ‘ grade
13887 COMP101 2005
17625 COMP101 2006
17625 COMP102 2006
18574 COMP102 2006

WM e W

Figure 7-7. Enrollments table

studentID will not be suitable as a key, as a student will have a record for each of the
courses he enrolls in (we can see that the value 17625 appears in at least two records).
Similarly, course will not do, as a course will have many enrollments, each with its own
record (the value COMP102 is duplicated). In fact, every column has duplicated values,
so no single field is suitable as a key.

What about the combination (studentID, course)? In the few records shown in Figure 7-7,
this combination is always unique, but we have to be sure this will always be the case for
every record we may need to enter. We need to find out a bit more about the problem.
Consider this dialog:

Analyst: Could student 17625 enroll in COMP102 a second time to try and improve
his mark?

Client: Yes.

Now we see that studentID and course will not be a suitable key. As soon as the stu-
dent tries to enroll in the course again, we will have another row with the same values
for student number and course.

Let’s try the combination (studentID, course, year):

Analyst: Is it possible for a student to enroll in the same course again in the same year
(say during the summer)?

Client: It is for some subjects.

Analyst: If a student did reenroll in the same subject in the summer, would you want
to keep both her previous and her new grade?

Client: Of course!

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

The combination (studentID, course, year) will not do as a key either because we will
have to repeat the values of the three fields when a student enrolls in the same course
later in the same year. Clearly, we need an additional attribute (semester maybe) to differ-
entiate these enrollments. Thinking about a possible key has revealed a little more of the
complexity of this problem and helped us spot a missing attribute or field.

Whenever we are checking the suitability of a combination of fields as a key, we need
to find a question that checks that the combination will always be unique. In this case,
we needed to ask questions such as the following:

Is a student ever likely to enroll in a course more than once?
Yes. (studentID, course) is not a suitable key.

Is it possible that a student will enroll in the same course more than once in a single
year?

Yes. (studentID, course, year) is not a suitable key.

Is it possible that a student will enroll in the same course more than once in a single
semester of a given year?

No. (studentID, course, year, semester) is a possible key.
Now look at the other fields in the table:

Is it possible that a student might need to have more than one grade for a given
enrollment (e.g., an initial grade and a revised grade)?

Maybe. (In that case, the problem is much more complicated than we thought.)

Would it all have been easier if we had just abandoned looking for a concatenated
key and added an automatically generated enrollment number field that could be guaran-
teed to be always unique?

Enrollment (enrollment number, studentID, course, semester, year, grade)

Consider the case where a student can only enroll in a course once a semester. The
enrollment table now has two possible keys: enrollment number and the combination
(studentID, course, semester, year). What are the pros and cons of choosing one key over
the other?

enrollment number is shorter than the concatenated key, and you will see in Chapter 9
that this may be a consideration. However, if we make the combination of fields
(studentID, course, semester, year) the key, the database will ensure that we never enter
duplicate values (i.e., it will impose the constraint that a student cannot enroll in the
course more than once a semester). This will effectively ensure enrollments do not get

125

126

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

entered twice accidentally. If we choose the enrollment number as the key, we will need to
find another way to prevent such duplications.

An automatically generated number may be a sensible key, but it should not be
included in a table because we can’t be bothered thinking about alternatives. If we don’t
think about what values are suitable keys, we may miss discovering some subtleties of the
problem.

Representing Relationships

So far we have represented each class as a table, each attribute as a field with a particular
type, and decided on a field, or combination of fields with unique values, to be a primary
key. We can now use this primary key to help us represent relationships.

Let’s consider our sports club example. A simple data model is shown in Figure 7-8
with some possible objects in Figure 7-9. A member may have one team that he currently
plays for, and each team has exactly one captain.

plays for
Member 1n 0.1
memberlD /\\\ Team
last_name team_name
first_name v
phone 1.1 0

Is captain of

Figure 7-8. Sports club data model

t ¢ ¢ ¢ t ¢ ¢
105 118 198 235 216 199 265
Smith Jones Green Brown Brown Norton King
Jim Bob Linda Grant Sue Harvey Jane
78876 98786 76543 87987 34321 66567 88912

A

1

\

\

1

\
.......... > >

Captain Plays for

Figure 7-9. Members, teams, and instances of the relationships between them

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

First we design two tables to represent the classes and choose a primary key for each.
We will adopt the convention of underlining the primary key fields.

Member (memberID, last name, first name, phone)

Team (team_name)

Each of the objects in Figure 7-9 will be a row in the appropriate table.

To represent the relationships plays for and is captain of, we need a way of specifying
each of the lines between the objects in Figure 7-9. For example, we need to show that
Bob Jones plays for SeniorB, and the captain of JuniorA is Harvey Norton.

As we have primary keys established, we can easily identify the row associated with
each object (e.g., Harvey Norton is the row in the Member table where the primary key field
memberID has the value 199). To represent the relationship between the objects, we use
these key values by way of a foreign key as described in the next section.

Foreign Keys

Figure 7-10 shows the two tables Member and Team again, but now we have added a field to
show who is the captain of each team. What we have done is put a new field in the Team
table (captain) that will contain the key value of the member who is its captain. This is a
foreign key. A foreign key is a field(s) (in this case captain) that refers to the primary key
field(s) in some table (in this case it contains a value of the key field memberID from the
table Member). In this way, we establish the relationships between objects of different
classes.

memberID | last name| first name

105 Smith 78876
118 Jones Bob 98786
198, Linda 76543
199 Norton Harvey 66567
216 Brown Sue 34321
235 Brown Grant 87987
265 King Jane 88912
Member Table Team Table

Figure 7-10. The Team table has a foreign key field (captain) referring to the Member table.

The SQL statement for creating the table Team with a foreign key referring to the
Member table is shown in Listing 7-6. Many products also provide a diagrammatic interface
for specifying foreign keys. The interface for setting up a foreign key in Access is shown in
Figure 7-11.

127

128

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Listing 7-6. SQL to Create a Team Table with a Foreign Key

CREATE TABLE Team (
team name VarChar(10) PRIMARY KEY,
captain int FOREIGN KEY REFERENCES Member

)

1
memberD # |
last_name |
first_name = team_name

phone k4 captain

Figure 7-11. Access interface for specifying captain is a foreign key referring to the Member
table

Because the two fields memberID and captain will be holding similar values, the data-
base software will insist that they have identical or compatible data types (e.g., both
integers). The types of data that are regarded as compatible will depend on the database
software being used (e.g., character fields of different lengths are compatible in some
products, but not in others).

Referential Integrity

Arm-in-arm with the idea of a foreign key is the concept of referential integrity. This is

a constraint that says that each value in a foreign key field (i.e., 199 and 105 in the Team
table in Figure 7-10) must exist as values in the primary key field of the table being
referred to (i.e., 199 and 105 must exist as values in the memberID field in Member). This
prevents us putting a nonexistent member (say, 765) as the captain of a team. It also
means that we cannot remove members 199 and 105 from our member table while they
are captains of teams. As soon as you set up a foreign key, this referential integrity con-
straint is automatically taken care of for you.

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Representing 1-Many Relationships

In the previous sections, you have seen how it is possible to represent instances of a rela-
tionship by using a foreign key. In general, the process for a 1-Many relationship is as
follows:

For a 1-Many relationship, the key field from the class at the 1 end is added as a
foreign key in the class at the Many end.

We have already represented the relationship is captain of in Figure 7-10. Let’s now
use our general guideline to do the same thing for the relationship plays for between
Member and Team.

The class at the 1 end is Team, so we take the primary key field from Team and add it as
a new foreign key attribute in the Member table. We can give the field any name we like, but
it should clearly indicate the relationship it is representing, e.g., current_team. This is
shown in Figure 7-12.

‘memberID ‘ 1ast7name| first name | phone | current feam

105 Smith Jim 78876 SeniorB
118 Jones Bob 98786 SeniorB
198 Green Linda 76543 JuniorA | team_name | captain I
199 Norton Harvey 66567 JuniorA S
216 Brown | Sue 34321 SemiorB Jeniona. L)
235 Brown | Grant 87987 SeniorB 105
265 King Jane 88912 JuniorA
Member Table Team Table
(current team is the foreign key referencing Team.) (captain is the foreign key referencing Member.)

Figure 7-12. Both relationships in sports club model represented by foreign keys

Referential integrity, which is a result of making the current team field a foreign key,
will ensure that the value entered in current team can be found in the primary column
(team_name) of the Team table. This ensures that members can only play for teams that
already exist in the Team table.

Note that the value of a foreign key field can be null. Grant Brown does not belong to
a team, so there is no value in the field in his record. This is consistent with the optional-
ity of the plays for relationship in the class diagram back in Figure 7-8. If the relationship
was not optional, we would have to impose an additional constraint on the field to say
that nulls were not permitted. If we wanted to ensure that every team had a captain
(as the data model suggests), then as well as making the captain field in the Team table
a foreign key, we would also specify that it cannot ever be null.

129

130

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Let’s look at another example of a 1-Many relationship—this time a self relationship.
We will consider the case where a member sponsors other members to obtain member-
ship of the club. The relevant part of the data model is shown in Figure 7-13, and some
objects and their relationships are shown in Figure 7-14.

Member

memberiD
last_name | 0..n
first_name
phone

1.1

sponsors —»

Figure 7-13. Self relationship: member sponsors other members.

—

t ¢ £ ¢© ¢t £ ¢

105 118 198 235 216 199 265
Smith Jones Green Brown Brown Norton King
Jim Bob Linda Grant Sue Harvey Jane
78876 98786 76543 87987 34321 66567 88912

- AN,

Figure 7-14. Instances of members who sponsor each other

This self relationship is a 1-Many relationship, and we do exactly the same as we do
for any other 1-Many relationship. We take the key from the table at the 1 end (memberID)
and add it as a foreign key to the table at the Many end (Member). It makes no difference
that it is the same table. We give the new foreign key field a name that describes the rela-
tionship, say sponsor, and the table will look like that in Figure 7-15.

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

|membeﬂD‘ last_name‘ first name ‘ phone | sponsor‘ current_team‘

105 Smith Jim 78876 118 SeniorB
118 Jones Bob 98786 216 SeniorB
198 Green Linda 76543 118 JuniorA
199 Norton Harvey 66567 118 JuniorA
216 Brown Sue 34321 265 | SeniorB
235 Brown Grant 87987 199

265 King Jane 88912 199 JuniorA

Figure 7-15. A foreign key (sponsor) representing a self relationship

The table Member has a foreign key, sponsor, referencing its own table. Jim Smith is
sponsored by member 118, who is Bob Jones. Referential integrity ensures that a member
can only be sponsored by someone who is already a member. There is a bit of a problem
if the relationship is compulsory, which means we add a constraint not to allow nulls in
the sponsor field. How do you ever get the first member into the database when there is
no existing member to sponsor her? This isn't just a database problem, it is actually part
of our problem description. All new members need a sponsor, but what about the found-
ing members? Making the sponsor field required is probably not a good idea.

Representing Many-Many Relationships

You may remember from Chapter 4 that Many-Many relationships are not as common as
you might at first expect. Often they are a sign that some information about the problem
has been initially overlooked, and an intermediate class is required to store that informa-
tion. They do, however, genuinely occur where we have objects that simultaneously
belong in many categories. Figure 7-16 and Figure 7-17 review the plant database from
Chapter 2 where we had species of plants that were suitable for a variety of uses.

Species
D Usage
genus
species_name 0 0 use_name
common_name -n -n

Figure 7-16. Data model for plant database

131

132

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

Shelter
1 //"
_}

Dodonaea <

Viscosa - Soil
Akeake stability
=¥ Firewood
\443
Ce§rus Hedging
Atlantica
AtlasCedar
Bee food
WA,
3
Almus
Glutinosa
Black Alder

Figure 7-17. Some examples of species and their usages

How are we to represent all the instances of this relationship? Foreign keys will no
longer do the trick, as we will never know how many usages a particular species will have,
nor how many species will be related to a particular usage. To deal with this in a rela-
tional database, we have to introduce a new intermediate class in our data model. You
saw how to do this in Chapter 4 when we had some additional information that required
anew class. In this case, the new class will not have any attributes, as there is nothing we
wish to know about a particular combination of Species and Usage. We use the new inter-
mediate class to simply store all the relevant pairings of Usage and Species. As in Chapter 4,
the new class connects to the existing classes with two 1-Many relationships as shown
in Figure 7-18. We can interpret the diagram as “Each Species_Use object (or pairing)
consists of exactly one species and exactly one usage.”

Species
ID - Usage
genus Species_Use use_name
species_name 1.1 0.n 0n 1.1
COmmaon_name

Figure 7-18. Adding another class to deal with a Many-Many relationship in a relational
database

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

The two 1-Many relationships can now be dealt with like any other 1-Many relation-
ship. First we need to create a table, Species_Use, for our new class. Then for each of the
1-Many relationships, we add the primary key field from the table representing the class
at the 1 end as a foreign key in the table for the class at the Many end. This means adding
two new attributes that will be foreign keys, speciesID and usage, to the Species Use table.
These foreign keys will reference the Species and Usage tables, respectively. The resulting
tables with some data are shown in Figure 7-19.

D ‘ species name‘ common name ‘ genus plant ‘ usage

1 viscosa ake-ake Dodonaea 1 hedging bee food

2 atlantica atlas cedar Cedrus 1 shelter bird food

3 nigra black walnut Juglans 1 soil stability coppicing
2 shelter firewood
3 firewood hedging
3 shelter shelter
3 soil stability soil stability

Species Table Species Use Table Usage Table

Figure 7-19. Representing a Many-Many relationship with an additional table with two
foreign keys

We now have to decide on a primary key for the new Species_Use table. The combina-
tion of the two foreign key fields (speciesID, usage) will do the trick. This combining of
foreign keys to form a primary key is often the case in the situation where a table has
been inserted in a Many—Many relationship.

Representing 1-1 Relationships

In all of the previous sections, we have always ended up taking the primary key field at
the 1 end of the relationship and using it as a foreign key in the table at the other end. If
both ends of the relationship have a cardinality of 1, which way round should we do this?

Our example of members and teams had a 1-1 relationship—is captain of. That part
of the data model is shown in Figure 7-20.

Member
memberlD is captain of Team
last_name
first_name |4 A1 0.1 feam_name
phone

Figure 7-20. Is captain of is a 1-1 relationship.

133

134 CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

The question is whether to put memberID as a foreign key in the Team table or team_name
as a foreign key in the Member table. The resulting tables for these alternatives are shown in

Figure 7-21.
‘member]D | 1ast_name| first name | phone ‘ captain_of
105 Smith Jim 78876 SeniorB :—
1 ta:
118 Jones |Bob 98786 J;afziame
198 Green | Linda 76543 OR SemiorB e
199 Norton | Harvey 66567 JuniorA
216/ Brown Sue 34321
235 Brown Grant 87987
265 King Jane 88912)
a) Foreign Key in the Member Table b) Foreign Key in the Team Table

Figure 7-21. Alternative ways to represent the 1-1 relationship

The same information is represented in both tables. We mustn’t do both simultane-
ously as we might end up with inconsistent data. For example, we could end up with
Bob being captain of SeniorB according to the Member table, but Jim being the captain
according to the Team table.

In Figure 7-21a, we have many empty values for the field captain_of because that end
of the relationship is optional (a member doesn’t have to be captain). In general, you
should put the foreign key in the table that has the compulsory association if there is one.
A team must have a captain, so put the foreign key in the Team table. Captain is an impor-
tant property of Team and not really a significant property of Member.

There is one small problem. In either case, the way we have set up the foreign keys
is the same as for a 1-Many relationship. There is nothing in the way we have set up the
tables and foreign keys that reflects the fact that this relationship has a cardinality of 1 at
both ends. For example, in Figure 7-21b, there is nothing to prevent a member being cap-
tain of more than one team (e.g., there is nothing in the design of the table to prevent us
putting 199 on more than one row). We will see how to do this in Chapter 9.

Representing Inheritance

Relational databases do not have the concept of inheritance built into them; however,
it is possible to approximate the idea of inheritance.

As mentioned in Chapter 6, inheritance is very useful to model tricky problems, but
it should only be used when other more simple patterns cannot fully represent some
essential complications. Figure 7-22 shows a simple case of inheritance where lecturers
and students inherit the attributes of a person and also have some specialized attributes
of their own.

Person

D
last_name
first_name

£

CHAPTER 7

Lecturer

salary

Student

degree

Figure 7-22. Simple model with inheritance

FROM DATA MODEL TO RELATIONAL SCHEMA

One way to capture the main aspects of inheritance in a relational database is to set
up classes for each parent class and subclass and include a 1-1 relationship between
each subclass and its parent as shown in Figure 7-23. The relationships (reading upward)

say that a lecturer is a person and a student is a person, which is a natural way to think

about the model.

isa

0.1

Student

degree

Person

D
last_name
first_name

1.1 1..

1

0.1

Isa

Lecturer

salary

Figure 7-23. Inheritance approximated with 1-1 is a relationship

The relationship between Student and Person in Figure 7-23 is compulsory at the top
end because every student is a person, but optional at the bottom end because a person
does not have to be a student. We can now set up tables as we did for the 1-1 relationship
in the previous section. We choose to put the foreign key in the Student table (because a
student has to be a person) and similarly for the Lecturer table. We will end up with three

tables as shown in Figure 7-24.

135

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA

D ‘ last name | first name ‘ | personlD | salary ‘ personlD ‘ degree |
101 Jones Sue 101 50000 108 Arts
108 Brown Lin 108 40000 110 Science
110 L1 Bo 110 12000 112 Arts
112 Green Mike '
Person Table Lecturer Table Student Table

Figure 7-24. Tables representing the model in Figure 7-23

What elements of the inheritance have we captured? Well, we have the contact
details of each person in just one place—the Person table. We know who are lecturers and
who are students, and we have the specialist attributes of each role neatly stored in the
appropriate tables. As a special bonus, we have also managed to capture multiple inheri-
tance! John and Linda feature in both the lecturer and the student tables.

What is different from true inheritance? In the model in Figure 7-23, we have just one
object for Sue (a Lecturer object). In Figure 7-24, we have fwo rows (a row in the Person
table and a row in the Lecturer table) with a relationship between them. Extending the
model is also different in the two cases. If, at a later date, we require an additional sub-
class (e.g., Adninistrator), this can be added quite simply to the hierarchy in Figure 7-23.
In Figure 7-24, we would need to add another table and add and also maintain another
relationship.

Summary

We have taken a data model and represented the main features using the functionality
available in relational database products. Following is a summary of the steps.

1. For each class, create a table.

2. For each attribute, create a field and choose an appropriate data type. Consider
whether some attributes (e.g., address) should be split into several fields.

3. Choose a field or combination of fields as the primary key. Ask careful questions
to ensure that the key fields will always have unique values.

4. For each Many-Many relationship, insert a new intermediary class and two
1-Many relationships.

5. For each 1-Many relationship, take the primary key field(s) from the table at the
1 end and add this field(s) as a foreign key in the table at the Many end.

6. For a 1-1 relationship, put the foreign key in the table where it is most likely to
have a value.

CHAPTER 7 ©* FROM DATA MODEL TO RELATIONAL SCHEMA 137
7. For compulsory relationships, add a constraint to the foreign key fields that they
must not be null.

8. For inheritance (as an approximation), use a 1-1 is a relationship between the
parent and each child class.

CHAPTER 8

Normalization

We are doing pretty well at designing a database. So far, you have learned how use
cases and a data model can help you understand many of the complexities of the actual
problem you are trying to represent. In the previous chapter, you saw how to represent
the main parts of the data model in a relational database. To recap:

* Each class is represented by a table.
* Each object becomes a row in a table.

* For each table, we determine a primary key, which is a field(s) that uniquely
identifies each row.

* We use the primary key field(s) to represent relationships between tables by way of
foreign keys.

At this stage, everything could be absolutely fine, but then again there may be some
classes in our model (or tables in our database) that might still cause us problems. Nor-
malization is a formal way of checking the fields to ensure they are in the right table or to
see if perhaps we might need restructured or additional tables to help keep our data
accurate. The initial idea of normalization was first proposed by E. E Codd! over 30 years
ago and has been a cornerstone of relational database design since then. Some readers
of this book may be throwing up their hands in horror that I have left this important topic
until Chapter 8. However, we have actually been normalizing our database right from
Example 1-1 when we saw that two classes were needed to keep information about plants
and their usages.

In this chapter, we will first look at why it is critical that all the attributes are in the
right table and how normalization helps us make sure they are.

1. Edgar E Codd, (June 1970). “A Relational Model of Data for Large Shared Data Banks.” Communica-
tions of the ACM: 13 (6): pp. 377-387. 139

140

CHAPTER 8 ©° NORMALIZATION

Update Anomalies

Let’s have a look at a simple example where having the attributes in the wrong table can
cause us a number of problems in maintaining data. Let’s say we have a database for
maintaining information about many different aspects of a company. There may be sev-
eral tables for maintaining customers, products, orders, suppliers, and so on, and there
are also two tables as shown in Figure 8-1 about employees and some small projects they
have been assigned to. Can you see a problem lurking in the Assignment table?

emplD | lastName | firstName emplD | projNum| projName | contact | hours
1001 Smith John 1001 3 ABCPromo | 142-3456 8
1005 Jones Susan 1001 6 Smith&Co |365-8765 20
1029/ Li Jane 1005 1| JenningsLtd 325-1234 8
1005 3 ABCPromo 142-3456 14

Employee Assignments

Figure 8-1. Tables with potential update problems

A problem with the Assignment table is one that we encountered way back in
Example 1-3, “Insect Data.” We have repeated information. Information about a project
(its number, name, and contact) can be repeated several times in this table if there is
more than one employee working on a project. This will almost inevitably lead to some
rows (for, say, project number 3) having inconsistent names or contact numbers. This
is quite easy to spot for the data in Figure 8-1, but often it can be less easy to see. If we
hadn’t had data for two employees working on project 3, we might not have even realized
this was a possibility. Normalization gives us a formal way of checking for such situations
before we get into trouble.

As well as the possibility of inconsistent data, there are other problems that the
design of the Assignment table can cause. These are often collectively referred to as update
anomalies. We will look at some of these other problems now.

Insertion Problems

You will recall that it is necessary to have a primary key for every table in our database.
This is so we can uniquely identify each row and have a mechanism for relating rows in
different tables. What is a possible primary key for the Assignment table in Figure 8-1? Just
looking at the data in the table, we can see that there is no single field that is a potential
primary key field. Every column has duplicated values. We need to look for a concate-
nated key, and the pair empID and projNum is possible. We need to confirm that each
employee is associated with a project just once, and if that is the case, the pair of values
for empID and projNumis a suitable primary key.

CHAPTER 8 ©° NORMALIZATION

However, we have a problem. If we want to keep information about a particular proj-
ect but there is no employee yet working on it, we have no value for empID, which is one of
the fields making up our primary key. If a field is essential to uniquely determine a partic-
ular row in our table, it makes no sense that it can be empty. As you may recall from the
previous chapter, one of the constraints imposed by putting a primary key on a table is
that the fields involved must always have a value. We cannot enter a record for which the
empID, being part of the primary key, is empty. Therefore we have no way of recording
information about any project before someone is working on it.

Deletion Problems

Here is another situation that may face us. Employee 1001 may finish working on the
Smith&Co project. If this happens, we will remove that row from the Assignment table.
What is a possible side effect of deleting this row? Well, if employee 1001 was the only
person working on the project, every reference to Smith&Co will have gone, and we will
have lost their contact number. By deleting information about employee 1001’s involve-
ment in a project, we have inappropriately lost information about the project.

Dealing with Update Anomalies

We have seen three different updating problems with the Assignment table in Figure 8-1:
possible inconsistent data because information is being repeated, problems inserting
new records because part of the primary key may be empty, and accidental loss of infor-
mation as a by-product of a deletion.

I'm sure you have spotted the solution to these problems ages ago. What we need is
another table to record information about projects as in Figure 8-2. With this design, we
don’t have a project’s contact number recorded more than once, we can add a new proj-
ect in the Project table even if no one is working on it, and we can delete an assignment
(employee 1001 working on project 6) without accidentally losing information about the

project.
empID| lastName | firstName emplD | projNum | hours| projID| projName | contact
1001 Smith John 1001 3 8 3/ABCPromo 142-2345
1005/ Jones Susan 1001 6 20 6 Smith&Co 365-8765
1029 Li Jane 1005 1 8 1 JenningsLtd 325-1234
1005 3 14
Employee Assignment Project

Figure 8-2. Tables with update anomalies removed

141

142

CHAPTER 8 ©° NORMALIZATION

Chances are that this Project table would have surfaced in your original analysis of
use cases and the data model. But how can you be sure you haven’t missed anything?
This is where the formal definition of a normalized table helps.

Functional Dependencies

Normalization helps us to determine whether our tables are structured in such a way as to
avoid the update anomalies described in the previous section. Central to the definition of
normalization is the idea of a functional dependency. Functional dependencies are a way
of describing the interdependence of attributes or fields in our tables. With a definition of
functional dependencies, we can provide a more formal definition of a primary key, explain
what is meant by a normalized table, and discuss the different forms of normalization.

Definition of a Functional Dependency

A functional dependency is a statement that essentially says “If I know the value for this
attribute(s), I can uniquely tell you the value of some other attribute(s).” For example,
we can say

IfI know the value of an employee’s ID number, I can uniquely tell you the value of
his last name.

Or equivalently
Employee’s ID number functionally determines employee’s last name.

Or in symbols
empID > lastName

For the situation depicted in Figure 8-2, if | know an employee’s ID is 1001, I can tell
you that his last name is Smith. Does it work the other way round? If I know an
employee’s last name, can I uniquely tell you his employee ID number? From the data
displayed in the tables, you might say “Yes, you can.” However, for a functional depend-
ency to hold, it must be true for any data that can ever be put in our tables. We know that
in the long term it is possible we might have several employees called Smith, so that
knowing the last name does not uniquely determine what the ID is. Or more formally,
lastName does not functionally determine empID.

Let’s try another example. For the database tables in Figure 8-2, do we have a func-
tional dependency between an employee’s ID number and a project he is assigned to?
If I know the employee’s ID is 1001, I cannot tell you a uniqgue project number. It could be

CHAPTER 8 ©° NORMALIZATION

project 3 or project 6, and so an employee’s ID number does not functionally determine
(or uniquely determine) a project number.

The functional dependencies are a feature of the problem, not the actual data we
might currently have. Figuring out the functional dependencies means we need to
understand the intricacies of the specific situation. In this case, we need to know whether
an employee can be assigned to only one project or whether he can be assigned to many
different projects. Does this sound familiar? Determining whether attributes functionally
determine each other involves the same sort of questions we went through when trying
to understand the data model in Chapter 4.

In terms of a data model with an Employee class and a Project class, we would ask
“Can an employee ever be associated with more than one project?”

If the answer is “No,” we have a 1-Many relationship between employees and proj-
ects as in Figure 8-3a; otherwise, we have a Many-Many relationship as in Figure 8-3b.

Employee Project Employee Project
emplD i t projNum emplD i 1 projNum
lastName assigned to projName lastName assigned to projName
firstName 0..n 0..1| contact firstName 0..n 0..n| contact

a) 1-Many. Employee is associated with b) Many—Many. Employee could be
only one project. associated with several projects.

Figure 8-3. Different relationships between Employee and Project

In terms of functional dependencies, we have an analogous question: “If I know an
employee’s ID number, can I tell you a unique project number?”

If the answer is “Yes,” empID = projNum; otherwise, employee ID does not functionally
determine the project number. Understanding the functional dependencies and under-
standing classes and their relationships are two different approaches to figuring out the
intricacies of the problem we are trying to model.

Functional Dependencies and Primary Keys

Now that you know about functional dependencies, we have another way of thinking
about what we mean by a primary key. If we know the values of the key fields of a table,
we can find a unique row in the table. Once we have that row, then we know the value of
all the other fields in that row. For example, if I know empID, I can find a unique row in the
Employee table and so give you unique values for lastName and firstName. Or in terms of
functional dependencies:

empID = lastName , firstName

143

144

CHAPTER 8 ©° NORMALIZATION

This leads us to a more formal way of defining a key:
The key fields should functionally determine all the other fields in the table.

If I know the value of the key, I guarantee I can tell you the value of every other field
in the row. This is why lastName cannot be a key field for our Employee table. If I know the
last name of an employee is Smith, I cannot guarantee I can find a single row and tell you
the value for empID.

You have probably noticed that I've been using the term key rather than primary key
in the last couple of paragraphs. There is a distinction between the two. Think about this.
Is the pair of attributes (empID, lastName) a possible key for our Employee table? Our defini-
tion of a key is that if we know the value of the key fields, we can find a unique row. That
is certainly the case if we know empID and lastname. However, I'm sure you can see that
lastName is redundant. The pair of attributes (empID, lastName) is a key because empID is a
key. If we know empID, we can find the row regardless of what other information we have.
We don’t need to know lastName as well.

This idea of having fields in our key that are superfluous is the distinction between a
key and a primary key. To be considered as a primary key, there must be no unnecessary
fields. More formally:

A primary key has no subset of the fields that is also a key.

Why is this important? Say each of our projects has one manager as shown in the
snippet of the data model in Figure 8-4.

Employee Project
emplD manages projNum
lastName 11 0 projName
firstName - - | contact

Figure 8-4. A I-Many relationship

Remember how we represent a 1-Many relationship in our database. We take the pri-
mary key field(s) from the table at the 1 end (Employee) and put those field(s) as a foreign
key in the Project table. If we had mistakenly used the pair (empID, lastName) as a primary
key for the Employee table, we would get a Project table as shown in Figure 8-5. I'm sure
you can see the information redundancy and potential for problems there.

CHAPTER 8 ©° NORMALIZATION

Foreign Key Fields

projID | projName | contact | manager]D |managerName‘
1 JenningsLtd 325-1234 1005 Jones
3 ABCPromo | 142-2345 1001 Smith
6 Smith&Co 365-8765 1001 Smith

Figure 8-5. Redundancy problems caused by not having a suitable primary key

Now that you have an idea of what a functional dependency is and a more formal
definition of a primary key, we can look at how normalization can help us ensure we have
a good design for our tables.

Normal Forms

Tables that are “normalized” will generally avoid the updating problems we looked at ear-
lier in the chapter. There are several levels of normalization called normal forms, each
addressing additional situations where problems may occur. In this section we will look
at the normal forms that are defined using functional dependencies.

First Normal Form

First normal form is the most important and essentially says that we should not try to
cram several pieces of data into a single field. Our very first example of what can go
wrong, Example 1-1, “The Plant Database,” was a situation where this was a problem. In
the plant database, we were keeping information about different plant species and the
different uses they were suited to. Some possible (but not recommended!) ways of keep-
ing several usages for each plant are shown in Figure 8-6.

145

146

CHAPTER 8 ©° NORMALIZATION

plantlD | genus ‘ species ‘ commonN ame| usages

1 Dodonaea |viscosa akeake soil stability, hedging, shelter

2 Cedrus atlantica atlas cedar shelter

3 Alnus glutinosa Black alder firewood, soil stability, shelter

planﬂD‘ genus ‘ species |comm0nN am|| usagel | usage2 ‘ usage3 ‘
1 Dodonaea viscosa akeake shelter hedging soil stability
2/ Cedrus atlantica | atlas cedar shelter
3 Alnus glutinosa Black alder soil stability shelter firewood

Figure 8-6. Nonrecommended ways of keeping information about multiple usages

We saw in Example 1-1 the problems that eventuate from keeping the plant data in
tables like those in Figure 8-6. For example, it is very difficult to find all the plants with
particular usages (e.g., all the shelter plants).

Thinking back to our new definition of a primary key, let’s reconsider the primary
keys of the two tables in Figure 8-6. plantID is a primary key of both tables in the sense
that it is different in every row. Does it functionally determine all the other attributes?

If I know the value of plantID (e.g., plantID = 1), can I tell you a unique usage? Well, in the
top table I can tell you the character string in the usage field, and in the second table I can
tell you what is in any particular one of the three columns, so in a very formal sense, yes,
I can. However, if we are thinking about the meanings behind these fields, I can’t give you
any information about a unique usage if I know the plant’s ID. I can only tell you about a
collection of usages for each plant.

The two tables are not in first normal form (except in a technical sense). They are
both trying in a roundabout way to keep multiple values of usage.

A table is not in first normal form if it is keeping multiple values for a piece of
information.

Normalization has given us a formal way of determining that there is something
wrong with the design of the tables in Figure 8-6. It also gives us a method for solving
the problem.

If a table is not in first normal form, remove the multivalued information from the
table. Create a new table with that information and the primary key of the original

table.

For our plant database example, this means setting up two tables as in Figure 8-7.

CHAPTER 8 ©° NORMALIZATION

| PlantJD| Genus | Species | CommonName | Plant| Use
1 Dodonaea viscosa akeake 1 soil stability
2 Cedrus atlantica atlas cedar 1 hedging
3 Alnus glutinosa Black alder 1 shelter
2 shelter
3 firewood
3 soil stability
3 shelter
Plant Plant-Usage

Figure 8-7. Removing the multivalued field from unnormalized table to create an addi-
tional table

When we considered this problem by way of a data model, we decided that we actu-
ally had two classes, Plants and Usages, with a Many-Many relationship between them.
In Chapter 7, you saw that to represent a Many—Many relationship, we needed to add an
intermediate table. If you go back and have a look at Figures 7-17 to 7-19, you will see
that the new table is the same as the Plant-Usage table in Figure 8-7. We arrived at the
same normalized solution but via two different routes. As discussed in Example 1-1,
normalized tables such as those in Figure 8-7 avoid the many problems associated with
the original unnormalized tables of Figure 8-6.

Second Normal Form

We can have a table in first normal form that can still have updating problems. The
Assignment table in Figure 8-8, which we discussed at the beginning of this chapter, is an
example. It has the information about the names and contacts of projects several times
with the result that eventually the information may become inconsistent. We also saw
that there could be problems with inserting new records and losing information as a
by-product of deleting certain records.

emplD projNum| projName ‘ contact |h0urs
1001 3/ ABCPromo 142-3456 8
1001 6 Smith&Co 365-8765 20
1005 1 JenningsLtd 325-1234 8
1005 3 ABCPromo 142-3456 14

Figure 8-8. Assignment table with update anomalies

147

148

CHAPTER 8 ©° NORMALIZATION

The definition of both first and second normal form requires us to know the primary
key of the table we are assessing. The primary key of the Assignment table is the combina-
tion of the empID and projNum fields. Is the table in first normal form? If I tell you an
employee ID and a project number (e.g., 1005 and 1), can you tell me unique values for
all the other non-key fields? Yes. The project name is Jennings Ltd, the contact is 325-1234,
and the hours are 8. There are no multivalued fields in this table. We are not trying to
squeeze several bits of information into one field anywhere. But there is still a problem
with update anomalies.

The problem here is that while I can figure out the value of all the non-key fields by
knowing the primary key, I don’t actually need both fields of the primary key to do that. If
I want to know the number of hours, I need to know the values of both empID and projNum.
However, if I want to know the contact number or the project name, I only need to know
the value of the projNum. Here is where our problem arises and gives us a definition of
second normal form.

A table is in second normal form if it is in first normal form AND we need all the
fields in the key to determine the values of the non-key fields.

We also have a way of fixing a table that is not in second normal form.

If a table is not in second normal form, remove those non-key fields that are not
dependent on the whole of the primary key. Create another table with these fields
and the part of the primary key that they do depend on.

This means that we remove the non-key fields projName and contact from the
Assignment table and put them in a new table with projNum (the part of the key they do
depend on). This splitting up of an unnormalized table is often referred to as
decomposition. So we could say the original Assignment table is decomposed into the
two tables in second normal form as shown in Figure 8-9.

emplD projNum|h0urs| projID| projName | contact
1001 3 8 3/ABCPromo | 142-2345
1001 6 20 6 Smith&Co |365-8765
1005 1 8 1/ JenningsLtd 325-1234
1005 3 14
Assignment Project

Figure 8-9. Assignment table decomposed into two tables

Had we approached this from a data modeling perspective, we would have said we
have two classes, Employee and Project, with a Many—Many relationship between them as

CHAPTER 8 ©° NORMALIZATION

in Figure 8-3b. As discussed in Chapter 7, to represent this relationship we need to add an
intermediary table, and we would have come up with exactly the same tables (along with
an Employee table) as in Figure 8-9.

Once again, we have arrived at the same solution via two routes: thinking about
the classes and their relationships or considering the functional dependencies and
normalization.

Third Normal Form

You guessed it. Tables in second normal form can still cause us problems. This time,
consider our employee table with some added information about the department an
employee works for. Have a look at the table in Figure 8-10.

| emplD ‘ lastName ‘ firstName ‘ deptNum| deptName |

1001 Smith John 2 Marketing
1005 Jones Susan 2 Marketing
1029 Li Jane 1 Sales

Figure 8-10. Employee table with updating problems

What is the primary key for the Employee table in Figure 8-10? If an employee works
for only one department, it is enough to know just the empID to find a particular row. Is the
table in first normal form? Yes. If | know the value of empID (e.g., 1029), I can tell you a
unique value for all the other fields. Is the table in second normal form? Yes, the primary
key is only one field now, so nothing can depend on “part” of the key. Are there still prob-
lems? Yes. The information about the department name is repeated on several rows and
is liable to become inconsistent.

The situation in this table is that the name of the department is determined by more
than one field. If I know the value of the primary key field empIDis 1001, I can tell you the
department name is Marketing. However, if I know that the value of deptNumis 2, I can
also tell you that the department name is Marketing. There are two different fields deter-
mining what the value of the department name is. This is where the problem arises this
time and gives us a definition for third normal form.

A table is in third normal form if it is in second normal form AND no non-key fields
depend on a field(s) that is not the primary key.

As in the other normal forms, we also have a simple method for correcting a table
that is not in third normal form.

149

150

CHAPTER 8 ©° NORMALIZATION

If a table is not in third normal form, remove the non-key fields that are dependent
on a field(s) that is not the primary key. Create another table with these fields and
the field that they do depend on.

For the Employee table in Figure 8-10, this would mean removing the field deptName
from the original Employee table and putting it in a new table along with the field it
depends on (deptNum) as shown in Figure 8-11. The field deptNum will be the primary key
of our new table and will also remain in the Employee table as a foreign key.

| empID| lastName | ﬁrstName| deptNum| deptNum| depName ‘
1001 Smith John 2 1 Sales
1005 Jones Susan 2 2 Marketing
1029 Li Jane 1 3 Research
Employee Department

Figure 8-11. Employee table decomposed to two tables

Boyce-Codd Normal Form

This is the last normal form that involves functional dependencies. For most tables, it is
equivalent to third normal form, but it is a slightly stronger statement for some tables
where there is more than one possible combination of fields that could be used as a pri-
mary key. We are not going to consider those here. However, Boyce-Codd normal form is
quite an elegant statement that encapsulates the first three normal forms.

A table is in Boyce-Codd normal form if every determinant could be a primary key.

Let’s see how this works. Say I know that the value of a particular field (e.g., projNum)
determines the value of another field (e.g., projName) in a table. We say that projNumis a
determinant (it determines the value of something else). In any table where this is the
case, then projNum must be able to be a primary key.

Consider the Assignment table in Figure 8-8. projNum determines projName, but projNum
is not able to be a primary key (there can be several rows with the same value of projNum).
In this case, Boyce-Codd normal form is a more general statement of second normal
form—projNumis a determinant, but it is not the whole key. In the Employee table in
Figure 8-10, deptNum is a determinant, but it cannot be a primary key because it is not
different in every row. In this case, Boyce-Codd normal form is a statement that includes
third normal form.

CHAPTER 8 ©° NORMALIZATION

One of the sweetest ways to sum up the normal forms we have discussed is from Bill
Kent. He summarizes the normal forms this way:

A table is based on

the key,

the whole key,

and nothing but the key (so help me Codd)

Just remembering this simple quotation can help you ensure all your tables are
normalized to third normal form.

Data Models or Functional Dependencies?

In our discussions of the normal forms, based on functional dependencies, you have
seen that in most of the examples we have arrived at the same set of tables as we did in
previous chapters by considering classes and their relationships. What differences are
there in the two approaches? In general, how should we go about our database design?

Essentially, we have two tools in our arsenal, and we should use either or both when
we find them helpful. This will depend on particular people and the particular problem
we are trying to model. Whichever tool we use, the most essential thing is to understand
the scope of the problem and the intricacies of the relationships between pieces of data.
A detailed understanding requires us to ask very specific questions about the project. We
can represent the answers with either part of a data model or by writing down a func-
tional dependency. Sometimes one way just feels more natural than the other. Let’s look
at some examples.

For a particular problem, I may know I am going to require data about employees
and projects, and I need to know more about the relationships between them.

From a data modeling perspective, I might ask “Can an employee be associated with
more than one project?”

I can use the answer to decide whether the relationship between the employee class
and project class is 1-Many or Many—Many. To me, this feels like a natural way to think
about and discuss the issue. From a functional dependency perspective, I would ask
something like “If I know the employee’s ID number, can I know a unique project that she
is associated with?”

If the answer is “Yes,” I would represent this as the functional dependency

empID = project

151

152

CHAPTER 8 ©° NORMALIZATION

To me, this doesn’t feel quite such a natural way of describing this aspect of the prob-
lem. Other people might think quite differently. The two questions and the two ways of
representing them (class diagram and functional dependency) contain pretty much the
same information about the relationship between employees and projects.

Let’s try another example. What about the relationship between salary and tax rate?
From a functional dependency perspective, I would ask “If I know the salary, can I
uniquely determine the tax rate?”

To me, that feels like a good way to think about this aspect of the problem. If the
answer is “Yes,” I can represent it as the functional dependency

salary > taxRate

From a data-modeling perspective, 'm not sure what question I would ask. I proba-
bly don’t have a salary class or a tax rate class, so thinking about relationships between
classes is not such a natural way to come to terms with this intricacy.

What would happen if we tried to do our whole database design in terms of func-
tional dependencies and normalization? We could start out with one huge table with a
field to hold every piece of information. This is sometimes referred to as the universal
relation. We could make a list of all the functional dependencies that apply between all
the different fields and then apply our normalization rules to gradually decompose our
big table into a set of normalized tables. There are in fact algorithms to allow you to do
exactly that automatically. However, putting all the rules about our database in terms of
functional dependencies and treating all the pieces of information as independent fields
of one big table is not a practical way to start.

When we first start thinking about a problem, it is natural to think in quite general
terms. For example, we might know we have to keep data about people and information
about projects, and we mustn’t forget the buildings. We might not have a clear idea at the
start what data we want to keep about each of these things, so trying to capture this origi-
nal information with functional dependencies is not going to be helpful. However, the
very basic ideas about the project fall quite naturally into classes. A data model or class
diagram will show us that we need info about buildings, projects, and people and allow
us to start thinking about the relationships. Do people work in a particular building? Do
people work on more than one project? Do people have other relationships with projects
(e.g., might they manage them as well as work on them)? Do people manage each other?

All these broad initial ideas about the project are easily captured by the data model.
The data model also helps us to find out more detailed information as we question the
cardinalities and optionalities of the relationships, or look for fan traps, or check to see
whether some relationships are redundant.

Once we are satisfied that our class diagram captures the information correctly, we
can then represent the diagram as a set of tables and primary and foreign keys as
described in Chapter 7. At this point, it is then a good idea to look at each table and see
whether it is normalized. We might have an Employee table with fields empID, lastName,
firstName, salary, and taxRate with empID as the primary key. Now we might ask about the

CHAPTER 8 ©° NORMALIZATION

functional dependencies between salary and taxRate. If there is a functional dependency;,
our table is not in third normal form (taxRate depends on something other than the pri-
mary key), and it should not be in this table.

The data model is great for the big picture, and normalization is great for the finer
details. Use both these tools to ensure that you get the best structure for your database.

Fourth and Fifth Normal Forms

We have looked at functional dependencies and the normal forms that are defined using
them: first, second, third, and Boyce-Codd normal form. There are other dependencies
that can exist between pieces of data and additional normal forms that protect against
some problems that may occur. I am not going to describe these in any very formal way,
but I will point out what aspects of data models they relate to.

Fourth and fifth normal forms deal with tables for which there may not even be any
functional dependencies. We have already seen a case where this can occur. Let’s recon-
sider the sports team example we had in Chapter 5. Let’s say we are particularly inter-
ested in matches: who plays in them and what teams are involved. Fourth and fifth
normal forms are to do with the question of whether we should have the intermediate
table and/or the other relationships in Figure 8-12.

Member Team
memiD teamlD
n 2 / o
? ?
Match
matchlD
n n

Figure 8-12. What relationships are needed between Member, Team, and Match?

If we represent the model in Figure 8-12 in a relational database, we would need
tables for each of the classes Member, Team, and Match, and another for the intermediate
class, which is related to all three classes. We would also need two additional tables to
represent the Many—Many relationships between Match and Team, and Match and Person.
Figure 8-13 shows some data that could be in the tables.

153

154

CHAPTER 8 ©° NORMALIZATION

Match |Member| Maich ‘ Team Match |Member| Team
MatchA | Jim MatchA Teaml MatchA | Jim Teaml
MatchA Sue MatchA Team?2 MatchA Sue Teaml
MatchA Hal MatchB Teaml MatchA Hal Teaml
MatchA Li MatchB Team3 MatchA Li Team2

Figure 8-13. Sample data representing the relationships in Figure 8-12

For each of the tables in Figure 8-12, the primary key is made up of all the fields.
There are no non-key fields, and there are no functional dependencies. They are all there-
fore in Boyce-Codd normal form because there are no determinants that are not possible
keys (there are no determinants!). The question is “Do we need all three tables?” There is
clearly some repeated information with the data as it stands. For example, the fact that
Jim plays in MatchA can be seen from both the MatchMember and the MatchMemberTeam
tables. When information is stored twice, there is always the danger of it becoming
inconsistent. So what (if anything) do we need to get rid of?

A match has many members involved with it and many (two) teams taking part.

The question we need to answer is “Are these two sets of information independent for
our problem?” If they are, we don't need (and shouldn’t have) the MatchMemberTeam table.
However, as we discussed in Chapter 5, it is likely that we will need to know which mem-
ber played for which team in a particular match. We cannot work that out just from the
data in the other two tables (nor even if we included a MemberTeam table). So for this situa-
tion where we need to know “who played for which team in which match,” the
MatchMemberTeam table is necessary.

What about the other two tables in Figure 8-13? If we have the MatchMemberTeam table,
do we need these other two as well? Recapping the discussion in Chapter 5, the questions
we need to ask are “Do we want to know about matches and teams independent of
the members involved?” and “Do we want to know about members and matches inde-
pendent of the teams?” Let’s think about the first question. What happens when the
original draw for the competition is determined? We will probably need to record in our
database that Team1 and Team?2 are scheduled to play in MatchA. If we only have the
MatchMemberTeam table, we cannot insert appropriate records. Why? Because as all the
fields are part of the primary key, none can be empty, and we have nothing to put in the
Member field. We want to record the fact that this match is scheduled independently of
the members involved. We may also have additional information to record about
matches and teams that is independent of members. For example, we will probably need
to record a score. Without a MatchTeam table, where would we store that? Which row in the
MatchMemberTeam would it go in? Many of them? So yes, we do need the MatchTeam table as
well if we want to store all this information. You can go through a similar thought process
to decide whether the table MatchMember is also necessary.

CHAPTER 8 ©° NORMALIZATION 155

These sorts of questions arise every time we have three (or more) classes that are inter-
related in any way. Are there situations when we need to know about combinations of
objects from all three classes? Do we have information about combinations of objects from
two of the classes independent of the third? If we figure out the answers to these questions
correctly, we can be pretty sure the final tables will be in fourth and fifth normal form.

Summary

If we have poorly structured tables in a database, we run the risk of having problems with
updating data. These include

¢ Modification problems: If information is repeated, it might become inconsistent.

¢ Insertion problems: Not being able to enter a record because we don't have
information for each of the primary key fields.

¢ Deletion problems: Deleting a record to remove a piece of information and as
a consequence losing some additional information.

By understanding the concepts of functional dependencies, primary keys, and
normalization, we can ensure that our tables are structured in such a way as to avoid
the update problems described previously.

* A functional dependency exists between two sets of fields in a table: If field A func-
tionally determines field B, this means that if I know the value for A, I can uniquely
tell you a value for B.

¢ A primary key is a (minimal) set of field(s) that functionally determines all the
other fields in the table.

e The first three normal forms can be summed up as

A table is based on

the key,

the whole key,

and nothing but the key

¢ A table in Boyce-Codd normal form is one where every determinant could be a
primary key.

* Where you have three or more interrelated classes, ask questions about what infor-
mation, if any, you need to know that involves all three classes and what
information involves two classes independent of the third.

156 CHAPTER 8 ©° NORMALIZATION

When designing a relational database

* Create original use cases and a data model.

* Ask questions about the data model to improve understanding of the problem.
* Represent the data model with tables, primary keys, and foreign keys.

* Check each table is suitably normalized.

CHAPTER 9

More on Keys and Constraints

In previous chapters, you have seen how to take a class diagram and represent it as a set
of relational database tables. We looked at how to represent relationships between classes
with primary and foreign keys and then applied the ideas of normalization to ensure the
attributes were in the right tables. In this chapter, we take another look at some of these
ideas and think about some alternative possibilities. In particular, we take a closer look at
primary keys and how to choose them. We also take a look at how we can maintain refer-
ential integrity when data is being constantly updated.

Choosing a Primary Key

In the previous two chapters, I described how we can choose a field or combination of
fields to use as a primary key. The key fields will have unique values and so can be used

to identify a particular row in a table. The primary key is also used to set up relationships
between rows in different tables by way of a foreign key. Choosing a primary key is not
always straightforward. For a person, combinations such as name and birth date are
sometimes used as a key, but they cannot be guaranteed to always be unique. You saw
that introducing a customer number or some sort of automatically generated ID number
can make sure that we have a field that is guaranteed to be unique for every row. Now let’s
have another look at this idea of ID numbers.

More About ID Numbers

A generated ID number does not solve all our problems. If we have two rows in our table
that are identical in every respect except for their ID, we are going to be in real trouble.
Two John Smiths with the same birth date living at the same address are going to cause us
problems whether they have different customer numbers or not. Are they the same per-
son or are they different people? It would be intolerable if the only thing distinguishing us
from another person was some generated ID. For one thing, who ever remembers all their
hundreds of different ID numbers? We always expect that a business will be able to find

our customer number for us from information that differentiates us from everyone else.

157

158

CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

So does that mean that there will always be (or should always be) a possible key made up
of some combination of the data kept about a customer? Probably yes. In that case, why
do we need ID numbers? Wouldn't a primary key made up of all the fields in the table

be OK?

One of the main reasons why ID numbers are necessary in many cases is that while
there might always be some information that distinguishes one customer from another,
it is likely that some of those values are constantly changing. If we decide that name,
birth date, address, mother’s maiden name, and so on will identify a customer, it is no use
to us as a primary key in a table. Addresses are certain to change, names are likely to
change, and this is where we have a problem. We use the primary key in order to relate
rows in different tables. For example, we would use the Customer table primary key as a
foreign key in the Order table to identify which customer an order was for. If we had to put
a combination of names and addresses into our Order table as a foreign key, I'm sure you
can imagine the sorts of problems we are likely to encounter associating orders with par-
ticular customers when they move house. An ID number will be constant. Each order will
be associated with, say, customer 3602, and in the Customer table the information about
customer 3602 can change as much as it likes. Jane Green can move house and remarry
as much as she likes, and we can still keep track of her orders through her constant
customer number.

When storing information about people in a database, an ID number is almost
always necessary. People are generally fairly resistant to being described by a number,
and yet they are likely to have a different one for every business they deal with. Universal
ID numbers are resisted by many civil liberties groups for privacy reasons, although in
many countries social security, tax, or driver license numbers have almost become
default universal IDs.

While ID numbers are essential, there are still problems with them. One problem
arises when a person gets two ID numbers for the same organization. Consider being
admitted to a hospital. You are unwell, and your friends are asked for your name and
address and whether you have ever been admitted before. The name they give may be
different from your exact name. They call you Rob Brown, but your real name is Jacob
Robert Brown, and they don’t know you were once admitted as a child with tonsillitis.

A new patient is therefore entered into the database with a new number. Now there are
real problems: Rob Brown has two patient numbers and two rows in the patient table.
Allergies may be associated with one patient number, and treatments with the other.
Anecdotally, at various times the number of patients associated with New Zealand
hospitals has been about 25% more than the total population!

This can happen just as easily when a student enrolls at a university. One year she
pre-enrolls but then decides to take a year off traveling instead. She doesn'’t realize that
she has been assigned a student number. The next year when she enrolls, she ticks the
new student box and is given another number. Come graduation year, the student finds
that some subjects have been credited to one number and some to the other, and neither
has enough credits to graduate (this really does happen!).

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

There is not much that can be done about these problems other than to have very
careful procedures at data entry times. Existing customers or clients with similar names
need to be brought to the data entry operator’s attention so that checks can be made. The
process cannot be automated though, because sometimes two different people will have
identical names and even birth dates.

Candidate Keys

In the previous chapter, we used functional dependencies to help us define what we
meant by a key.

The key fields functionally determine all the other fields in a table.

This means that if we know the value of the key fields, we can locate a single row in
our table, and then we can see the values of all the other fields. We also talked about fields
that were not necessary to make a set of fields a possible key. For example, if we have
customerID as a key in a Customer table, then by our definition the combination customerID
and customerName would also be a key. Clearly, customerName is superfluous, and in Chapter 8
we discussed how this extra field would cause us problems if we used it as part of a for-
eign key. The term candidate key is used to describe a key with no unnecessary fields.

A candidate key is a key where no subset of the fields is also a key.

With this definition, we see that the combination customerID and customerName is not
a candidate key, as the subset customerID is a key on its own. There may be more than one
candidate key in a table. For example, in the Customer table, we may also store the cus-
tomer’s tax or social security number.

Customer(customerID, name, address, phone, birthDate, taxNumber)

Now we have two candidate keys: customerID and taxNumber. Both will be unique for
every record, and (so long as every customer is able and prepared to supply a tax num-
ber) either would be sufficient to uniquely identify a record. In a situation such as this,
you choose one of the candidate keys as the primary key for the table. What are the con-
siderations for choosing a primary key from among two or more candidates?

An ID Number or a Concatenated Key?

Let’s take a fresh look at the problem from way back in Chapter 1 about insect data
(Example 1-3). This was an environmental project where researchers regularly visited
farms and took samples of insects from different fields. Because I want to use the word
“field” in its database sense, I'm going to use the Australasian synonym for a field on a
farm, paddock.

159

160 CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

Let’s build up the class diagram and the associated tables slowly. For a start, we need
to keep information about each farm and also about the paddocks on that farm. A possi-
ble class diagram is shown in Figure 9-1.

Paddock 1 11 ram
n B name

number address
area belongs to owner

Figure 9-1. Farms and paddocks

What will be a suitable primary key for the table representing the Farm class? Over
time the name and owner may change, and in any case one person may own several
farms, so the value of owner may not be unique. The farm is not going to shift, but the
address may well change when roads are altered or boundaries change. An ID number
seems the safest bet.

What about paddocks? Each farmer probably has some numbering system for his
own paddocks. Just considering the two classes in Figure 9-1, we could therefore set up
two tables:

Farm(farmID, name, address, owner) Paddock (paddockNum, area)

To represent the relationship between Farm and Paddock, we include the primary key
from the Farm table as a foreign key field in the Paddock table: Paddock (paddockNum, area,
farm), where farmis a foreign key referencing the Farm table.

Now we have a decision to make. Is the paddock number a unique number over all
paddocks, or is it just unique within a farm? The two possibilities are shown in Figure 9-2.
In Figure 9-2a, the primary key would be paddockNum, and in Figure 9-2b, the primary key
would be the combination (farm, paddockNum).

paddockNum | area | farm ‘ farm | paddockNum | area
322 25 17 17 2 25
333 25 17 17 3 25
334 35 17 17 4 35
335 30 18 18 1 30
336 23 18 18 2 23
a. Primary Key paddockNum b. Primary Key farm and paddockNum

Figure 9-2. Simple and concatenated primary keys for the Paddock table

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

In Figure 9-2a, we only need the one field as a primary key; however, the numbers for
each paddock will get large, and they don’t mean very much. In the second option, the
numbers for paddockNum are no longer unique (they restart from 1 for each farm), and we
need two fields to identify a paddock. However, paddock (17, 2) means more to the owner
of farm 17 than paddock 333. At this stage, the choice doesn't matter too much.

This relationship between farm and paddock (a 1-Many with a compulsory 1 end) is
sometimes referred to as an ownership relation. The paddock must have an associated
farm, or looking at it the other way round, the farm owns the paddock. When we get a
long line of 1-Many ownership relationships, the issue of the size of the foreign key
becomes more pressing. Consider some more of the insect data model as shown in
Figure 9-3. Each visit has to be associated with a paddock, and each sample has to be
associated with a particular visit.

Farm Paddock Visit Sample
name
address number date samrileNum
owner 1.1 1.n |area 1.1 0. 1.1 0.n|COUN

Figure 9-3. Several 1-Many ownership relationships

For each of the 1-Many relationships, we need to include the primary key from the
1 end as a foreign key in the Many end. Let’s assume that a paddock can only be visited
once on any given date. One possible set of tables for the preceding model could be as
follows:

Farm(farmID, name, address, owner)

Paddock(farmID, paddockNum, area), with farmID being a foreign key referring to Farm

Visit(date, farm, paddock), with (farm, paddock) being a foreign key referring to
Paddock

Sample(date, farm, paddock, sampleNum, count), with (date, farm, paddock) being

a foreign key referring to Visit

In this set of tables, we are assuming paddocks are numbered from 1 within each
farm and samples are numbered from 1 within each visit. The Visit table doesn’t need to
have an ID because the combination (date, farm, paddock) is unique for this problem.

The Sample table is now looking quite cumbersome because the foreign key referring
to the Visit table is a combination of three fields. This table is going to have the most
rows eventually, and so as well as it just looking ugly, there could be a size consideration.
Had we used the alternative in Figure 9-2a of a single key for Paddock, the foreign keys in

161

162

CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

the Visit and Sample tables would be a little smaller, but at the expense of having less-
intuitive identifications for paddocks.

What other options have we? Introducing a visitID makes some sense. Visits will
probably be in a chronological order so that the ID number will mean something. Visit
458 will probably be the one that occurred after visit 457, whereas paddock 458 has no
obvious relationship to paddock 457.

A happy compromise might be the following set of tables:

Farm(farmID, name, address, owner)

Paddock(farmID, paddockNum, area), with farmID being a foreign key referring to Farm

Visit(visitID, date, farm, paddock), with (farm, paddock) being a foreign key
referring to Paddock

Sample(visitID, sampleNum, count), with visitID being a foreign key referring to
Visit

The paddocks are numbered within farms, the visits are numbered chronologically,
and the samples are numbered within a visit. All our introduced ID numbers therefore
have some meaning, and the sample table is considerably smaller than in the previous
design.

In summary, choosing a primary key may not be straightforward. There are times
when an automatically generated ID number will be necessary but won't solve all our
problems. We might like to consider a primary key that is a concatenation of ID numbers
(e.g., numbering paddocks within farms or samples within visits). There will always be a
trade-off between concatenated ID numbers that might be more meaningful and having
potentially cumbersome foreign keys in other related tables. There are always going to be
alternative ways to choose a primary key, and as with most design issues, there is no
hard-and-fast set of rules to say which choice is best.

Unique Constraints

Let’s have another look at our Visit table, shown in Figure 9-4. We have two candidate
keys: visitID and the combination (date, farm, paddock). For the reasons discussed in the
previous section, we choose visitID as the primary key. Do we lose anything by making
this choice?

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

visitD ‘ date ‘ farm ‘ paddock
23 1/03/2006 18
24 1/03/2006 18
25 1/04/2006 17
26 1/04/2006 17

T b =

Figure 9-4. Visit table with a generated visitID

If the (date, farm, paddock) combination is not a primary key, we have lost the con-
straint that each row must have unique values for this combination of fields. This means
we could mistakenly insert two rows for a visit to paddock 3, farm 17, on 1/04/2006. We
still want to maintain the uniqueness of this combination, and we can do this by setting
up a unique constraint.

Listing 9-1 shows the SQL to create the Visit table with a unique constraint to ensure
that the combination (date, farm, paddock) is not duplicated in the table.

Listing 9-1. SQL o Create the Visit Table with a Unique Constraint

CREATE TABLE Visit (

visitID INT PRIMARY KEY,

date DATE,

farm INT,

paddock INT ,

FOREIGN KEY (farm, paddock) REFERENCES Paddock
UNIQUE (date, farm, paddock))

Unique constraints are also a way to enforce a 1-1 relationship between tables.
Consider the class diagram for sports teams in Figure 9-5, where each team has a
member as its captain.

Member
memberNum is captain of Team
lastName name
firstName 1.1 0.1
phone

Figure 9-5. A 1-1 relationship between Team and Captain

163

164 CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

When we set up the classes in Figure 9-5 in a relational database, the 1-1 relationship
will be represented by a foreign key in the Team table as shown in Figure 9-6.

name ‘ captain
SeniorA 203
SeniorB 156

Wed Social 203

Figure 9-6. Team table

Each team can only have one captain (because we only have one captain field);
however, we have yet to discuss a way of ensuring that each member can only captain
one team as required by the 1-1 relationship. In Figure 9-6, note that member 203 is the
captain of more than one team. We can prevent this happening by adding a unique
constraint on the captain field in the Team table. This will prevent a value being entered
into the captain field more than once. The SQL to create the Team table with a unique
constraint on the captain field is shown in Listing 9-2.

Listing 9-2. Ensuring a 1-1 Captain Relationship Between Member and Team

CREATE TABLE Team (
name VARCHAR(20) PRIMARY KEY,
captain INT UNIQUE FOREIGN KEY REFERENCES Member)

Unique constraints are able to help us with a couple of design issues: enforcing a 1-1
relationship and maintaining uniqueness for a candidate key that has not been chosen as
a primary key.

Using Constraints Instead of Category Classes

Much of our discussion about classes and their corresponding tables in a relational data-
base has involved introducing new classes and tables in order to keep data accurate and
consistent. Now we are going to have a look at when you might decide not to add addi-
tional classes and why. Let’s think about members of a club and their membership type
(e.g., Senior, Junior, or Social). If we include membership type as a field in the Member
table, we can have problems with consistency as can be shown in Figure 9-7.

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

memberID ‘ lastName ‘ frstName ‘ type
156 Jones Graeme senior
187 Green Chris Jun
203 Wang James Sen

Figure 9-7. Keeping membership type as a field in the Member table

If we are interested in creating reports that group all the members of different types
(e.g., all the Seniors, and all the Juniors, etc.), we are going to run into trouble with the
table in Figure 9-7 where we have different spellings of the types. Our solution in previ-
ous chapters was to create an additional class (table) to keep the different membership
types and set up a 1-Many relationship as shown in Figure 9-8.

Member
memberNum Type
lastName
firstName on 1.1 typeName
phone

Figure 9-8. Representing membership type with a class

We can now have objects of the Type class or rows in a Type table to represent each
of our types: Junior, Senior, and so on. This ensures that we have consistency in naming
the different types. Have a look at the tables in Figure 9-9. The Type table seems a bit
superfluous.

memberID | lastName | frstName | type ‘ \ typeName

156 Jones Graesme Senior Senior

187 Green Chris Junior Junior

203 Wang James Senior Social
Member Type

Figure 9-9. Membership type is a separate table.

All the additional Type table is achieving is to ensure the consistency of the entries in
the type field of the Member table. We can achieve the same thing by putting a check con-
straint on the type field. We discussed constraints on fields in Chapter 7, and Figure 9-10
shows how easily this can be done in a product like Access.

165

166

CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

rj Member : Table g@“

Field Mame | Data Type | Description [~
% |memberD Text =
__|lastName Text
| |frstName Text
|| type Text =

Field Properties

General | Lookup

Field Size 50

Format

Input Mask

Caption

Default Value

Validation Rule ="Senior" Or ="Junior" Or ="Social"

Figure 9-10. Membership type with a constraint

Which should we prefer: a table with a constraint on a field (Figure 9-10) or a refer-
ence to another table (Figure 9-9)? In Figure 9-10, we have a constraint built into the
design of the table. If additional membership types are added at a later date, the defini-
tion of the constraint would have to be changed. This is something that needs to be done
by a system manager or at least someone trusted to alter the design. On the positive side,
we have one fewer table in our database.

In Figure 9-9, we have the additional complexity of an extra table. However, if
another membership type is required, it can be added simply as a new row in the Type
table. This is just a data entry job and doesn'’t involve any change to the design of the
database. If the types are going to be fairly constant, the constraint is simpler, whereas
the reference to another table makes it easy for a user to add different types.

There is one case where the extra table will always be the appropriate choice. This is
when there are (or may later be) some additional attributes belonging to the Type class.
For example, if we wish to keep a fee for each different membership type, the only way
we can do this is via a Type class as shown in Figure 9-11.

Member
memberNum Type
lastName typeName
firstName On 1.1|fee
phone

Figure 9-11. An extra class is needed if there are additional attributes.

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

In summary, when we have a piece of data that acts like a category (e.g., membership
type), we sometimes have a choice as to whether we store this as a simple field in a table
and keep the values consistent by way of a constraint or validation rule, or whether we
have a separate table of categories that we refer to. If the number of categories is likely to
increase, the second option is better, as this then becomes a simple matter of adding
additional rows to the category table rather than changing the constraint on the parent
table. If there are or are likely to be other attributes associated with the category, the
additional table is the only option. If neither of these situations apply, it is worth thinking
about whether a simple field with a constraint may be more appropriate.

Deleting Referenced Records

You have seen how we can use foreign keys to represent relationships between two
tables. Have another look at our model of teams and members in Figure 9-5. We can rep-
resent the relationship is captain of with a foreign key (captain) in the Team table as shown
in Figure 9-12.

name | captain memberlD ‘ lastName ‘ frstName
SeniorA 203 156 Jones Graeme
SeniorB 156 187 Green Chris
203 Wang James
Team Member

Figure 9-12. Teams and members

A foreign key ensures that we have referential integrity. Recall from Chapter 7 that
referential integrity prevents us from having a value in the foreign key field captain if the
value does not exist in the primary key field memberID in the Member table. This ensures all
our captains are members. Unlike a primary key, a foreign key field is not necessarily
mandatory, and the captain field may be empty (i.e., referential integrity does not make
it necessary for every team to have a captain). We can of course impose that extra con-
straint if we want to by specifying that the captain field must be NOT NULL.

We have only looked at referential integrity from the point of view of adding a team
and captain. However, we also have the situation of deleting members from the Member
table. If we attempt to delete member 156, we shall have a problem with the referential
integrity in the Team table. The captain of SeniorB won't exist in the Member table any more.

167

168 CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

There are three ways to deal with this situation. Database software products vary in
their ability to provide each of these options, but all will provide the first as follows:

Disallow delete: You cannot delete a row that is being referenced. For example, the
deletion of member 156 will not be allowed while it is being referenced by the Team
table. If we want to delete member 156, we will first have to remove the reference to
him in the Team table and then delete him from the Member table.

Nullify delete: If member 156 is deleted, the field that is referencing it, captain,
will be nullified (made empty). This essentially is saying that if a captain of a team
leaves the club, that team has no captain—which is probably quite sensible in this
situation.

Cascade delete: If a row is deleted, all the rows referencing it will be deleted also (and
the rows referencing them, and on and on). In this case, deleting member 156 would
mean that the team SeniorB would be deleted. This is clearly not desirable.

When we set up a field as a foreign key, we can specify what should occur when there
is an attempt to delete the row it refers to. Listing 9-3 shows the SQL statement for speci-
fying a nullify delete for the foreign key captain when we create the Team table. If you do
not specify an option, the default is generally disallow delete.

Listing 9-3. Specifying a Deletion Option on a Foreign Key

CREATE TABLE Team (
name VARCHAR(10),
captain INT FOREIGN KEY REFERENCES Member ON DELETE NULLIFY)

Depending on the particular problem, we can choose the deletion option that is
most appropriate. For the team and member situation, a nullify delete seems sensible for
the foreign key captain. We want to be able to delete members, and it makes sense that if
member 156 leaves, there will be a vacancy for the captain of the SeniorB team. Our
model as it stands in Figure 9-5 doesn’t allow this, however. It says every team must have
a captain. Maybe it is worth reconsidering this. While in the normal course of events we
expect all our teams to have captains, we are going to get cases where people unexpect-
edly leave or resign. What do we want to happen to the data we are keeping in that case?
If we insist that every team has a captain (by making that field required), we will have to
find a new captain before we can delete the old captain from our membership list.
Perhaps this is what we want to do. Maybe that will be too restrictive. We talked in previ-
ous chapters about the dangers in making fields required. Thinking about deletions from
the database may make us reconsider the relationship is captain of and whether it should
be optional or not.

Let’s consider a different situation, of orders and products, as in Figure 9-13.

CHAPTER 9 © MORE ON KEYS AND CONSTRAINTS

orderNum| date | customer‘ product| quantity ‘ productID‘ name ‘ price I

10034 1/Mar/06 |1345 809 4 809 teddy 10.50

10035 1/Mar/06 1562 975 3 810 doll 15.75

10036 2/Mar/06 |1345 996 1 811 cart |23.80
Order Product

Figure 9-13. Orders and products: What happens if we delete a product?

What happens if we no longer stock product 809? If we delete this row in the Product
table, our referential integrity will be compromised as order number 10034 refers to it.
What are our choices? A nullify delete means having nothing in the foreign key product
field in the Order table. This makes no sense. We would have that there was once an order
for four of some product—but we don’t know what that product was and we have no way
of finding out the price. Clearly, this is not going to be useful. A cascade delete would
mean that all the orders for product 809 would be deleted. This doesn’t seem sensible
either, as a business is going to need to keep track of all its orders to determine profits
and tax and so on. Our only choice in this case is the disallow delete option. If there is an
order for the product, we can’t delete that product from the Product table.

While we don’t want to delete existing orders for a discontinued product, we will
want to be able to distinguish such products from current products. For a case like this,
we might then decide to add an additional field to our Product table (say current) to dis-
tinguish current products from discontinued ones. We have a new problem now. How do
we prevent orders being entered for discontinued products? This is starting to get outside
the scope of this book. Many database applications allow you to put additional con-
straints on a table by way of triggers. A trigger is a procedure that is fired by a change to a
table (e.g., adding or updating a row) and will carry out specified actions. In this case, the
trigger would check whether a newly added row in the Order table was for a discontinued
product and if so immediately remove it. Constraints such as only allowing orders for
current products can also be implemented through the interface of the database, and we
will have a look at the benefits and drawbacks of this in Chapter 11.

When might a cascade delete be a good choice? It is a fairly brutal solution, and you
should be very careful about setting it up. If we have enrollments for a subject, and then
that subject is cancelled, it is perhaps reasonable to expect that all the enrollments for it
should be deleted too. We have to be careful though that there aren’t historical enroll-
ments from previous years. Deleting information does not happen as often as you might
expect. Products and subjects may be discontinued, but if we have historical orders or
enrollments for them, we need to keep the information. In these cases, the disallow
delete option is the best bet. When customers and orders do outlive their usefulness, it is
more usual to archive the important, or summarized, information and store it elsewhere
rather than just deleting it entirely.

169

170

CHAPTER 9 ©© MORE ON KEYS AND CONSTRAINTS

Having said all that, we might think that the safest option is never to delete anything.
It is possible to set up tables so that no rows can ever be deleted. However, while this
might seem like a good idea, we will always need to delete records that have got into a
table by mistake. Say we accidentally enter the same customer twice (with a different
customer number). We need to get that extra record out of the table as quickly as possible
before it causes us all sorts of problems.

Summary

In this chapter, we have looked at some issues involved with choosing appropriate pri-
mary keys and for ensuring referential integrity is maintained when we update the data
in our tables. Some of the important points to remember are the following:

We often need to introduce a generated ID number to ensure we have a stable,
unique field that we can use as a primary key. This is particularly so for people,
where the identifying information such as names and addresses are likely to
change.

Be aware that mistakes in data entry means it is possible to have a person in your
database twice with two different ID numbers. Try to avoid this!

Where a primary key is made up of several concatenated fields, it is worth consid-
ering a generated ID number to reduce the size of the foreign keys referencing the
table.

Unique constraints can be used to retain the uniqueness of combinations of fields
that have been replaced as a primary key with a generated ID.

Unique constraints can enable you to enforce a 1-1 relationship.

Sometimes it may be useful to use a constraint on the value of a field rather than
have a relationship to another (very simple) table.

You have three options when you wish to delete a row that it is being referenced by
a foreign key:

¢ Disallow the deletion.
¢ Make the field referencing the deleted row NULL (nullify delete).

¢ Remove all rows that reference the deleted row (cascade delete).

CHAPTER 10

Queries

We have spent a considerable amount of effort designing our database in order to
make sure the data can be stored in a consistent and accurate way. In this chapter, we are
going to look at how to get information back out again. The data will be stored in many
separate tables, and depending on the questions we are asking, we will need to combine
data from those tables in a number of different ways. This chapter is just an introduction
to the art of querying.

Simple Queries on One Table

Let’s start with looking at just one table. We'll use the Student table, a small part of which
is shown in Figure 10-1, to illustrate some of the main types of queries that are possible.

studentID ‘ lastName ‘ firstName ‘ firstEnrolled | city | degree
12654 Green Linda 2005 Auckland Science
13887 Smith John 2005 Christchurch Arts
17625 King Steven 2006 Christchurch Arts
18574 Smith John 2006 Christchurch Science

Figure 10-1. A small part of the Student table

Over time, the Student table is likely to accumulate hundreds of thousands of records,
and in reality there are going to be several more columns to record birth dates, phone
numbers, immigration status, and so on. It is manageable subsets of this information
that are going to be relevant for users. We should look back at the original use cases for
the project to see what sort of questions people are going to ask about the data. The regis-
trar might want a list of all students starting their studies this year; the alumni manager
might want a list of current and past students living in Christchurch; a dean might want
lists of students enrolling this year in an arts degrees; the management might need the
numbers of enrollments in the last 10 years to determine trends. All that information can

1

172

CHAPTER 10 " QUERIES

be gleaned from this one table. To do this, we can use the basic relational operations
select and project, along with ordering and aggregating functions.

The Project Operation

The project operation allows us to specify which columns of the table we would like to
retrieve. If we want a list of names, we don't really want to see all the other information
about each student. If we just want to see the ID number and the name of every student,
we project (or retrieve) just the first three columns. Listing 10-1 shows how to achieve this
with an SQL command, and Figure 10-2 shows a diagrammatic interface, in this case
Microsoft Access.

Listing 10-1. SQL for Projecting Three Columns from the Student Table

SELECT studentID, firstName, lastName
FROM Student

_:"ﬂ Query1 : Select Query

studentID [Ead]
lasthame
firsthame
firstEnrolled

L)

Table:
Sort:
Show:

Field: | studentD

lastName

firstName

firstEnrolled

city

Student

Student

Student

Student

Student

[

Criteria:
or: v

Figure 10-2. Projecting three columns (those with check marks) from the Student table in
MS Access

The result of the queries in Listing 10-1 and Figure 10-2 will be a new set of rows with
just the three fields or columns we have specified. This project operation is one of the
simplest of the operations on a table, but even for this simple process we do have to think
carefully about what we are doing. Every row in a table is guaranteed to be unique
because we always have a primary key. However, if the primary key is not one of the
columns we specify in our query, the rows resulting from a project operation may not be

CHAPTER 10 = QUERIES

unique. What should we do about the duplicate rows? It depends entirely on what your
query is to be used for.

Consider a couple of examples of queries that would produce duplicates from the
small sample of data in the Student table in Figure 10-1. Say the alumni manager is organ-
izing a dinner and wants a list from which to produce name tags for all the guests. He
projects firstName and lastName from the Student table, and there are two rows with John
Smith. Does he want them both? He certainly does, as two distinct people with the same
name are going to be turning up for the dinner. Now consider that the alumni manager
wants to set up alumni branches and so would like a list of all the cities that students
come from. He projects city from the Student table and gets several rows with
Christchurch. Does he want them all? No. He just wants to know the set of cities.

So sometimes we want the duplicate rows in a query and other times we don’t. By
default, an SQL statement such as the one in Listing 10-1 will retrieve duplicates. If you
don’t want the duplicates, you can use the keyword DISTINCT as in Listing 10-2.

Listing 10-2. Specifying Only Unique Records Be Retrieved

SELECT DISTINCT city
FROM Student

The Select Operation

The other thing that we want to do with a single table is to retrieve just some of the rows.
For example, we may want to retrieve information about those students who are doing a
science degree or just those students who first enrolled in 2006. Retrieving a subset of the
rows is known as a select operation. We need to specify how we will determine which rows
we want, and to do this we specify a condition that can be applied to each row. A Boolean
condition is a statement that is either true of false, and we specify such a condition to be
applied to the fields in each row to determine whether we want to retrieve that row. To
find all the science students, we would specify the condition degree = 'Science’, while to
find all the students entering the university in 2006, the condition would be year = 2006.
The condition is checked for each row in turn, and if it is true, then that row is included
in the set being retrieved. We can build up more complicated conditions by using
Boolean operators such as AND, OR, and NOT. For example, if we want just the science
students enrolling in 2006, the condition would be degree = 'Science' and year = 2006.
If we wanted a list of all commerce and arts students (but not any other degree), the
condition would be degree = 'Arts' OR degree = 'Commerce'.

A select operation is specified in an SQL statement, by using the keyword WHERE
followed by the appropriate Boolean condition as shown in Listing 10-3. The * in the first
line means retrieve all the columns or fields for the selected rows.

173

174

CHAPTER 10 " QUERIES

Listing 10-3. Specifying Which Rows Are to Be Retrieved

SELECT *
FROM Student
WHERE degree = 'Science' and year = 2006

Most queries will require us to combine the select and project operations. In this
case, the rows are first selected according to the condition, and then the specified
columns are retrieved. Rather than seeing all the information about each of our selected
students as in Listing 10-3, we may just want to see their ID numbers and names.
Listing 10-4 shows the select and project operations being combined in an SQL statement.

Listing 10-4. Specifying Which Rows and Columns Are to Be Retrieved

SELECT studentID, firstName, lastName
FROM Student
WHERE degree = 'Science' and year = 2006

Note that the fields involved in the condition (degree and year) do not have to appear
in the columns being projected.

Aggregates

The other type of information that we might want to retrieve from our Student table may
be things like counts. For example, we might want to know the number of students that
have ever enrolled or the number enrolled in each degree or the number enrolled each
year for the last 10 years. If we had more columns in the Student table, we might want to
total fees or average ages, and so on.

SQL provides a number of different functions for counting, and for aggregating
numeric data, e.g., COUNT, AVG, SUM, MAX, MIN. We will have a look at how to do a couple of
different queries.

If we just want a simple count of how many students have ever enrolled at the
university, we can issue an SQL statement such as the one in Listing 10-5.

Listing 10-5. Selecting a Single Count

SELECT COUNT(*)
FROM Student

COUNT (*) simply means count each record. This will return us just one number, which
is the number of rows in the table. Had we wanted to find the largest studentID, we would
have issued a similar statement, but specifying which field we want to find the maximum
value of as in Listing 10-6.

CHAPTER 10 = QUERIES

Listing 10-6. Finding the Maximum Value of a Field

SELECT MAX(studentID)
FROM Student

We can specify a particular field in a COUNT statement. What do you think will be
returned if we ask for COUNT (studentID) or COUNT(city)? In both these cases, we will proba-
bly get the same answer (the number of rows), as most versions of SQL will default to just
counting all the rows. This is probably what we want if we ask to count the student IDs,
but when we ask for a count of the cities, we are really asking for how many distinct cities
appear in the table. This can be achieved by adding the keyword DISTINCT in the COUNT
function as in Listing 10-7.

Listing 10-7. Counting the Number of Distinct Cities

SELECT COUNT(DISTINCT city)
FROM Student

Each of these aggregate statements can be combined with a select operation to first
of all retrieve a subset of the rows. We can do this by adding a WHERE clause to specify which
rows we want to apply the aggregate to. For example, to find the number of students that
have ever enrolled in a science degree, we would use the statement in Listing 10-8. We
can think of this as first retrieving the appropriate rows and then counting them.

Listing 10-8. Counting a Subset of the Rows

SELECT COUNT(*)
FROM Student
WHERE degree = 'Science’

One particularly powerful feature of aggregating in SQL is being able to group sub-
sets of rows and then count the rows in each subset. For example, Listing 10-8 returns
the number of students who have enrolled in science. It is likely that we might want
numbers of students in science, arts, and other degrees as well. Rather than having to
issue several commands, one for each degree, we can combine this into a single state-
ment as in Listing 10-9.

Listing 10-9. Retrieving Counts for Each Degree

SELECT degree, COUNT(*)
FROM Student
GROUP BY degree

175

176

CHAPTER 10 " QUERIES

I like to think of the query in Listing 10-9 as working like this: Go and get all the rows
in the Student table, group all the ones for each degree together, count the rows in each
subset, and then write out the degree and the count (as specified on the first line). The
result would be something like Figure 10-3.

Arts 24087
Science 37986
Commerce 38065

Figure 10-3. Result of a grouped aggregate query as in Listing 10-9

Once again, all these aggregate queries can be combined with a WHERE clause to
retrieve just a subset of the rows before we do the grouping and counting. This means
we can answer a multitude of requests such as retrieve the numbers of students enrolling
in science in each of the last 10 years, retrieve the number of students from each city,
retrieve the number of science students that have come from each city, and so on.

Ordering

When we retrieve a subset of rows and columns from a table, we might want to see them
in a particular order. For example, if we want a list of the names of all students first
enrolling in 2006, it is likely that we would prefer to see them ordered by name rather
than in a random order. The SQL phrase ORDER BY allows us to specify the order in which
the rows are presented. Listing 10-10 shows the SQL statement that retrieves a subset

of the rows and then orders them: first by lastName and then by firstName for rows with
the same value of lastName.

Listing 10-10. Retrieving a Subset of Rows and Columns in a Specified Order

SELECT lastName , firstName, studentID
FROM Student

WHERE year = 2006

ORDER BY lastName, firstName

Queries with Two or More Tables

The last section gave an overview of some of the queries we can carry out on a single
table. Most of our queries will require information from several tables in our database.

CHAPTER 10 = QUERIES

There are a number of different operations that we can use to combine tables, and we
will look at some of them in this section. One really elegant feature of relational database
operations is that when we do combine two tables using one of the relational operators,
we can think of the result as a new table. This new table does not exist permanently in the
database, but conceptually it is convenient to think of it as a virtual table that exists for
the time of the query. All the operations that we used in the previous section can then be
applied to the new resulting virtual table. We can also take a virtual table that results from
combining two tables and then combine that with another real table, and then another.
So with a few quite simple operations, we can easily build up queries that involve a num-
ber of tables that will satisfy quite complex questions. Let’s first look at some of the
operations that combine tables.

The Join Operation

The most common operation to combine two tables is the inner join. Consider the
Student and Enrollment tables in Figure 10-4.

17625 COMP102 2007
18574 COMP102 2007

studentID | lastName | firstName | firstEnrolled | | studentID ‘ course ‘ year ‘ grade
12654 Green Linda 2005 13887 COMP101 2006 B
13887 Smith John 2005 13887 COMP102 2007 A
16574 Smith (Jobm:]2006 17625 COMP102 2006 E
C
B

Student Table Enroliment Table

Figure 10-4. Parts of the Student and Enrollment tables

If we want to answer a question such as “Who is enrolled in COMP102 in 20072” we
need data from both tables. If we were answering this question by just looking at the
tables, we would first find the rows from the Enrollment table that satisfy the condition
course= 'COMP102' AND year = 2007. We would then need to look at the Student table to
find the corresponding names. An inner join allows us to combine the two tables so
that all the required information appears together. For this query, we are interested in
rows from the Student table and rows from the Enrollment table where the value of the
studentID is the same in each. This will be the join condition. Let’s look at the SQL state-
ment in Listing 10-11 and then consider what it means.

177

178

CHAPTER 10 " QUERIES

Listing 10-11. SQL Statement to Join Two Tables

SELECT *
FROM Student INNER JOIN Enrollment ON Student.studentID = Enrollment.studentID

It is useful to think of an inner join operation as making a new virtual table that will
have all the columns from both original tables. We fill this table up with every combina-
tion of rows from each table that satisfy the condition Student.studentID =
Enrollment.studentID (i.e., where the values of studentID are the same in each table).
Figure 10-5 shows part of the resulting set of rows.

Student.studenﬂD|lastName|ﬁrstName|ﬁrstEnrolled|En.rollment.studentID| course | year | grade

13887 Smith John 2005 13887 COMP101 2006 B
13887 Smith John 2005 13887 COMP102 2007 A
17625 King Steven 2006 17625 COMP101 2006 A
17625 King Steven 2006 17625 COMP102 2006 E
17625 King Steven 2006 17625 COMP102 2007 C
18574 Smith John 2006 18574 COMP102 2007 B

Figure 10-5. Rows resulting from joining Student and Enrollment on studentID

In Figure 10-5, the first four columns are from the Student table, and the second four
columns are from the Enrollment table. We only see the combinations of rows from each
table where the studentID is the same. Now that we have this virtual table, we can apply
all the single table operations to it. We can select just those rows for enrollments in
COMP102 for 2007 with a WHERE clause and then project or retrieve just the IDs and names
of the students. The SQL statement to do this is shown in Listing 10-12 and the resulting
rows in Figure 10-6.

Listing 10-12. SQL Statement to Retrieve IDs and Names of Students in COMP102 in 2007

SELECT Student.studentID, lastName, firstName
FROM Student INNER JOIN Enrollment ON Student.studentID = Enrollment.studentID
WHERE course= 'COMP102' AND year = 2007

studentID ‘ lastName ‘ firstName
17625 King Steven
13887 Smith John
18574 Smith John

Figure 10-6. Rows resulting from combining join with select and project operations

CHAPTER 10 = QUERIES

Many database systems will provide a diagrammatic interface to help construct
queries. Figure 10-7 shows the Access interface for the query to retrieve the names and
IDs of students in COMP102 in 2007. The join is shown by the line between the StudentID
fields in the two tables; the select condition is specified in the grid, and the columns we
want to retrieve are marked with a check.

_:"ﬂ Query1 : Select Query

studentID
lastMame
firstName
firstEnrolled [+ |

3\
studentID)

course
vear

v

Field: | studentID lastName firstName course year
Table: | Student Student Student Enrollment Enrollment
Sort:
Show:
Criteria: "COMP102" "2007"

Figure 10-7. Access diagrammatic interface for the query in Listing 10-12

This is just a very cursory explanation of an inner join, but I'm sure you can see how
you can keep joining the resulting virtual table to another table and then another to build
up ever more complex queries.

One last point that is worth mentioning in a beginning-level book is what happens
when we join two tables such as those in Figure 10-8.

courselD | examiner personlD | lastName | firstName
COMP101 1001 1001 Jones Jim
COMP102 1018 1018 Li Henry
COMP205 1100 Harrow Jenny
COMP303 1018
Course Table Lecturer Table

Figure 10-8. Course and Lecturer tables

If we want a list of courses with the names of the examiner, we might first try an
inner join where examiner in the Course table is equal to personID in the Lecturer table.
If we were to do this, then the resulting rows would be those shown in Figure 10-9.

179

180

CHAPTER 10 " QUERIES

courselD | examiner person]D| 1astName| firstName
COMP101 1001 1001 Jones Jim
COMP102 1018 1018 Li Henry
COMP303 1018 1018 Li Henry

Figure 10-9. Result of inner join between Course and Lecturer tables

The rows in Figure 10-9 may not be what we were expecting if we thought we were
going to see a row for every course. The course COMP205 is missing because it does not
have an examiner, and the inner join only returns combinations of rows from the two
tables where examiner = personlID. It feels as though somehow we have lost a course.

If the question is more accurately worded as “Retrieve all the courses and, for those
courses that have one, the examiner as well,” we can use what is called an outer join as
shown in Listing 10-13.

Listing 10-13. Outer Join to Retrieve All Courses Along with Examiners

SELECT *
FROM Course LEFT OUTER JOIN Lecturer ON examiner = personID

The result of this query, shown in Figure 10-10, is the same as for the inner join, but
in addition, any rows in the left-hand table (Course) with nothing in the join field
(examiner) will appear as well.

courselD | examiner person]D| lasﬂ\Iame| firstName
COMP101 1001 1001 Jones Jim
COMP102 1018 1018 Li Henry
COMP205
COMP303 1018 1018 Li Henry

Figure 10-10. Result of outer join to retrieve all the courses

Which way round you put your tables in the join statement doesn’t matter, so Course
LEFT OUTER JOIN Lecturer is equivalent to Lecturer RIGHT OUTER JOIN Course. Standard
SQL also supports a full outer join, which means that every row from both tables will be
represented in the result. Lecturer FULL OUTER JOIN Course will retrieve all the lecturers

CHAPTER 10 = QUERIES

(even if they don’t examine a course) and all the courses (even if they don’'t have an exam-
iner). While a full outer join is part of standard SQL, not all systems support it explicitly
(MS Access doesn’t). However, we can always achieve the same result by combining two
outer joins with a union operation (which I describe in the next section).

Set Operations

While joins are probably the most often used operation for combining information from
several tables, there are a number of other operations. A join can be used between any
two tables. Set operations are used on two tables (or virtual tables) that have the same
number and type of columns. They are used for queries such as “Retrieve the rows that
appear in both these tables” or “Retrieve the rows that are in this table but not that one.”
We can use the Enrollment table in Figure 10-11 to illustrate these ideas.

studentID | course ‘ year | grade |
13887 COMP101 2006
13887 COMP102 2007
17625 COMP101 2006
17625 COMP102 2006
17625 COMP102 2007
18574 COMP102 2007
19765 COMP101 2007

Wwome e w

Figure 10-11. Enrollment table

Here are some queries we might like to carry out:

¢ Retrieve the ID numbers of all students who have done both COMP101 and
COMP102.

¢ Retrieve the ID numbers of all students who have done either COMP101 or
COMP102.

¢ Retrieve the ID numbers of all students who have done COMP101 but not
COMP102.

What we need to do for a start is to formulate two queries that will return the IDs of
students who have done COMP101 and COMP102, respectively. These queries and the
virtual tables they produce are shown in Figure 10-12.

181

182 CHAPTER 10 ™ QUERIES

studentID studentID
17625 13887
13887 17625
19765 18574
SELECT distinct studentiD SELECT distinct studentiD
FROM Enrollment FROM Enroliment
WHERE course=‘COMP101’ WHERE course=‘COMP102’

Figure 10-12. Results of queries to select students who have done particular papers

Alittle reordering and overlaying of the two virtual tables as shown in Figure 10-13
can help us see what rows will satisfy each of our questions.

COMP101 COMP101 COMP101
19765 19765 19765
13887 13887 13887
17625 17625 17625
18574 18574 18574
COMP102 COMP102 COMP102
COMP101 COMP101 COMP101
INTERSECT UNION EXCEPT
COMP102 COMP102 COMP102

Figure 10-13. Using set operations to find answers to questions about enrollments

The three set operations shown in Figure 10-13 show us those students who have
done both subjects (intersect), either subject (union), and COMP101 but not COMP102
(except). Listing 10-14 shows the SQL to retrieve the union of the two sets of studentIDs
starting from the original real tables.

Listing 10-14. The studentIDs for Those Students Who Have Done Either COMP101 or

COMPI102

SELECT distinct studentID FROM Enrollment WHERE course = 'COMP101'
UNION

SELECT distinct studentID FROM Enrollment WHERE course = 'COMP102'

CHAPTER 10 = QUERIES

In principle, in SQL we can replace the keyword UNION in Listing 10-14 with the key-
words INTERSECT and EXCEPT to obtain the other set operations. In practice, many database
systems don’t provide these latter two keywords. This is because it is possible to obtain
the same results using some other SQL statements. How this is done is getting a bit
beyond the scope of this design book. The important thing is to know that your relational
database system will allow you to write an SQL statement to retrieve rows equivalent to
each of the set operations in Figure 10-13.

How Indexes Can Help

Many queries will require joining a number of tables, extracting particular rows and
columns, and possibly presenting the result in a specified order. As tables become large,
these operations will clearly become more time consuming. Indexes are a way of
enabling particular rows in a database table to be found quickly.

Indexes and Simple Queries

Let’s start by looking at simple queries on a single table such as the Enrollment table in
Figure 10-14. We will want to retrieve different subsets of the rows for different purposes.

studentID | course ‘ year | grade |
18887 C101 2007 B
17625 C102 2007 E
17625 C101 2007 A
19765 C108 2007 B
17625 C108 2007 C
18887 C102 2007 A
18887 C101 T 2007 B

Figure 10-14. A small part of a potentially very large table

It is likely that we will want to access this table by course (in order to retrieve the stu-
dents enrolled in a particular class) and at other times by studentID (to get a student
record). Indexes help us to do both these efficiently. Database indexes act very much like
an index that you would find in the back of a book. For example, if you have an index on
aname, it would store all the values of the name field in alphabetical order and also store
a pointer or reference to the full record elsewhere. The reference is like storing a page
number in a book index. Figure 10-15 shows how you can envisage indexes on the
Enrollment table.

183

184

CHAPTER 10 " QUERIES

c101 ~{ | studenﬂD| course | year | grade| L 17625

c101 ~» 18887 C101 2007 B &/ 17625
17625 C102 2007 E

C101 17625

102 - >< 17625 C101 2007 |A 18887
v 19765 C108 2007 B

€102 17625 C108 2007 C - | 18887

C108 § 18887 C102 2007 A - 18887

G108 18887 C101 T 2007 |B 19765

Index on Subject Enroliment Table Index on Student

Figure 10-15. Two indexes on the Enrollment table

If we want a class list for C101, the system can quickly scan or search the subject
index to find the C101 entries. The index also contains a reference to the full row in the
Enrollment table so the system can quickly locate the rest of the information. Alterna-
tively, if we need a record of student 17625’s progress, we can use the student index to
quickly access the appropriate records for that student.

Listing 10-15 shows the SQL statements to create the two indexes on the student and
subject fields of the Enrollment table.

Listing 10-15. Creating Two Indexes on the Enrollment Table

CREATE INDEX IDX student ON Enrollment (student)
CREATE INDEX IDX subject ON Enrollment (subject)

Let’s look at another example using the Student table in Figure 10-16.

studentID | lastName | firstName | firstEnrolled ‘ city ‘ degree |
12654 Green Linda 2007 Auckland Science
13887 Smith John 2007 Christchurch Arts
17625 King Steven 2007 Christchurch Arts
18574 Smith James 2007 Christchurch Science
19876 Smith Alison 2007 Auckland Commerce

Figure 10-16. Student table

CHAPTER 10 = QUERIES

In the Student table, the primary key field is studentID. When we specify a field as a
primary key, an index is automatically created for that field. The index will be specified
as being unique, meaning that only one entry for each value can be included. This index
is how the primary key constraint is physically implemented. When we add a new row to
the table, the system quickly scans the index to see whether the primary key value is
already there, and if so it rejects the new row.

With the Student table, two things that we will regularly want to do is find a particular
student by name and retrieve students in alphabetical order. As the table is likely to have
several thousands of entries, we do not want to have to scan the entire table looking for a
particular student’s name, so some sort of index involving names will be useful. If we are
just looking for a particular student, an index on the field lastName will speed things up,
as all the Smiths will be together, and there will be fewer records to scan to find the one
we want. To improve access further, we can set up a compound index where the last
names are ordered, and where there are duplicate last names, the entries are ordered by
first name. The SQL for creating a compound index is shown in Listing 10-16.

Listing 10-16. Creating a Compound Index on the Student Table
CREATE INDEX IDX_ fullName ON Student (lastName, firstName)

In summary, indexes can help us speed up select queries where we want to find a
particular set of records (e.g., all the rows for student 17625 in the Enrollment table) or to
find a particular record (e.g., for a student given her names). Indexes are also useful for
speeding up queries with an ORDER BY clause.

Disadvantages of Indexes

Clearly, indexes are very useful for speeding up queries. However, before we get too car-
ried away and start indexing all our columns, we need to consider any disadvantages.

Let’s consider what happens with our Enrollment table and its two indexes, one on
studentID and one on course. This table is likely to be huge, and these two indexes are going
to speed up the retrieval of specific rows for a student record or a class list. But what hap-
pens when we add a new row to the table? The system will have to add the actual row, but it
will also have to update the two indexes. This will involve finding the correct place in each
index, inserting an entry and adding a reference to the new row. A similar process will be
necessary if rows are deleted. Database systems are actually pretty clever about how they
manage indexes, but nevertheless there can be a significant performance cost.

A database administrator needs to carefully weigh up the reduced performance in
updating records compared with the increased performance of retrieving records. In the
enrollment case, the retrieval is likely to be happening every day, whereas new enroll-
ments are probably only entered at the beginning of each semester. The increased

185

186

CHAPTER 10 " QUERIES

performance in retrieval will probably outweigh any loss of performance in data main-
tenance. However, what about the situation at a supermarket checkout? Every time a
purchase is made, an entry may be made into a database table. With thousands of
updates an hour, this needs to be as efficient as possible. Maintaining a couple of indexes
on this table might considerably reduce performance if they had to be updated with
every purchase. By contrast, retrieving information from the table (such as totals and
summaries) can probably be done overnight or at less busy times when speed is not such
an issue.

Indexes and Joins

Very few queries involve just a single table, and many will require several tables to be
joined in order to retrieve the appropriate information. Consider the tables in Figure 10-17
for customers and orders.

| custID | lastName | firstName | 0rderNum| date | customer | product| quantity|
1345 Smith Jacob 10034 1/Mar/06 1345 809 4
1562 |Li Jane 10035 1/Mar/06 1562 975 3
1789 Grant Sue 10036 2/Mar/06 1345 996 1
Customer Order

Figure 10-17. Customers and orders

To get useful information from these two tables, we would perform an inner join on
custID = customer. In the previous description of joins, I said that you could think of
them as producing a new virtual table with all the columns from the two original tables
and combinations of rows for which the join condition is true. This is a useful way to
conceptualize what a join does, but it is not how it works in practice. If we have an idea of
how the database system carries out a join, we are in a better position to provide indexes
that will improve the performance. Let’s look at some examples.

If we are interested in a particular row in the Order table, it is likely that we will need
to find the name of the customer. While we would specify this as a join in an SQL com-
mand, all the system needs to do is find the row in the Order table and then go and find
the corresponding customer in the Customer table. This will be pretty speedy, as we can
find the related record in the Customer table very quickly via the index on the primary key.

It is not so easy if we want to find all the orders for a particular customer (1345, say).
Once again, this is specified as a join, but it is more awkward for the system to carry out.
It would need to scan through the entire Order table looking for all the rows with 1345 in
the customer field. The order table is likely to be huge, so with no indexes this could be
quite inefficient. If we provide an index on the customer field in the Order table, we will be
able to find all the orders for a particular customer much more quickly.

CHAPTER 10 = QUERIES

Both of the two questions (“Who is the customer for this order?” and “What are the
orders for this customer?”) involve the same join on the two tables. However, the way
these joins could be carried out were described quite differently in the two preceding
paragraphs and required different indexing. How do we know what is going on? In actual
fact, most database systems have very sophisticated algorithms for deciding the best way
to carry out a join. The choice will depend on the available indexes and the number and
size of records in each table. For example, when joining the Customer and Order tables, the
system might scan the Customer table and then look up the matching records in the Order
table (or vice versa); alternatively, it might retrieve all the records from each table in cus-
tomer order so that the related records can be matched more easily.

Most large database systems provide analyzing tools that allow you to experiment
with placing different indexes on your table and will estimate how the performance
might be affected for various queries and maintenance processes. The only way to really
see how the performance will vary is to use these tools and try some experiments.
Because joins are so often undertaken between the foreign key on one table and a pri-
mary key on another table, checking out the effect of putting indexes on foreign keys is
often a good place to start experimenting.

Types of Indexes

The indexes we have been discussing so far have all been what are called nonclustered
indexes. A nonclustered index is where we keep the values from just one (or a couple) of
the fields in order, along with a reference to the full row, which is kept elsewhere. Non-
clustered indexes can be specified as being unique, which means none of the entries can
be duplicated. When we declare a field as having a unique constraint, as we did in the last
chapter, it is likely the system will construct a unique nonclustered index to manage that
constraint. A table will always have at least one unique index, and that will be on its pri-
mary key field. This is how the system ensures that the value of the primary key is always
unique. A table can also have several other nonclustered indexes if that seems sensible.

Another type of index is a clustered index. A clustered index affects how the complete
records or rows are physically stored on disk. When we ask the database system to find rec-
ords for us, it retrieves an area of disk that will usually contain several records. If records
that we are often likely to want at the same time are physically stored together, this will
speed things up. For example, if we regularly want to fetch customer information in order
of name, storing all the records in that order on the disk might be useful. Clearly, we can
only have one clustered index on a table. If we don'’t specify a clustered index, rows that
have been added at the same time are likely to be stored near each other, but we can'’t rely
on that.

187

188

CHAPTER 10 " QUERIES

Views

In our discussion of queries so far, we have thought of them as one-off questions that we
might like to ask the database. Many queries, however, will be ones that we want to carry
out regularly—for example, retrieving order information to construct an invoice or prod-
uct information for printing a catalog. Views are a way of saving the specifications of our
queries so we can reuse them.

Creating Views

To create a view, we simply issue the statement for the query we want and preface it with
the words “CREATE VIEW ... AS”. Listing 10-17 shows the SQL statement to create a view
that joins the Customer and Order tables. Cust_Ord is just a name given to the view so we
can refer to it.

Listing 10-17. Creating a View Joining the Customer and Order Tables

CREATE VIEW Cust Ord AS
SELECT * FROM Customer INNER JOIN Order ON custID = customer

When we run or open the view, the system will carry out the select statement on the
tables and return the results as a single virtual table, which it will call Cust_0rd. We can
treat that table as any other table, combining it with other tables in new queries and so
on. It does not physically exist, however. If the data in the underlying tables changes,
so will the resulting rows in the view.

Part of the design of a database includes providing a set of views that will be helpful
to the users. Referring back to the original use cases will be the best guide as to the views
that will be most important.

Uses for Views

Clearly, views are useful to retrieve data from the database. You will see in the next chap-
ter how to use views as a basis for reports such as invoices or price lists, and so on. Views
can sometimes be used for entering data. If we have a customer who places an order for
a product, we need to enter a new row in the Order table, find the customer number from
Customer table, and probably look up the product number and price in a Product table.
Accessing all these tables individually is not going to be efficient, and in the next chapter
you will see how to use views underneath forms in order to manage data entry and
maintenance.

Another use for views is providing some security for our data. Consider an Employee
table. It will have information that everyone will need such as offices and phone num-
bers. It will have quite private information such as salaries that only managers should be

CHAPTER 10 = QUERIES

able to see. There is also the issue of updating information. A secretary might be able to
change a phone number but not a salary.

A complete discussion of security issues is well beyond the scope of this book, but it
is useful to see how views can be used to manage who can see and do what. For example,
we can set up two views on our Employee table. One will display employee names and
phone numbers, and the other will include salaries. These are shown in Listing 10-18.

Listing 10-18. Two Views of the Employee Table

CREATE VIEW Phone_view AS
SELECT empID, lastName, firstName, phone from Employee

CREATE VIEW Manager view AS
SELECT empID, lastName, firstName, phone, salary from Employee

When a table or a view is created it is owned by the person who created it. This will
typically be some sort of data administrator. By default, he will be the only one to be able
to see or update the table or view. The owner of the table or view can grant permission
to other users or groups of users to read, update, or delete from the table or view as
appropriate.

Typically, the users of the database will be placed in groups that will have different
security levels or rights. There will always be a Public group, which will consist of all the
users, and for the problem we are considering here, we might consider groups such as
Managers and/or Secretaries.

We would like everyone to be able to view the names and phone numbers, so we can
grant everyone (the Public group) permission to retrieve or select information from the
phone view. We only want managers to be able to see the salaries, so we grant only that
group permission to see rows from the manager view. The SQL to give these permissions
is shown in Listing 10-19.

Listing 10-19. Granting Different Groups Read Access to Different Views

GRANT SELECT on Phone_view
TO Public

GRANT SELECT on Manager_ view
TO Managers

There are a number of different types of permissions that can be granted to individ-
ual database users or groups of users. Listing 10-20 shows how we can allow the group of
secretaries to update the information in our view of employees and phone numbers.

189

190

CHAPTER 10 " QUERIES

Listing 10-20. Granting a Group of Users the Right to Update Data Through a View

GRANT UPDATE on Phone_view
TO Secretaries

Summary

In this chapter, we have looked at how to get information out of our database.

* We can retrieve different subsets of data from our database using a number of
different relational database operations. These include

* Retrieving a subset of rows from a table or view (select)
* Retrieving a subset of columns from a tables or view (project)
¢ Combining two tables or views with a join

» Performing set operations (intersect, union, and difference) on tables or views
with the same columns

* Indexes can help speed up queries. You should consider indexes on fields that act
as select conditions in your queries. Remember that indexes can speed up retrieval
but may slow down updating of data.

¢ Views are a way of storing the specification of a query so you can reuse it. Views are
useful as a basis for forms and reports and can help with restricting access for
specific groups of users.

CHAPTER 11

User Interface

Right back at the beginning of this book, we looked at defining our database problem
in terms of what different users of the database would need to do. We specified these
requirements in terms of use cases, and most fell into one of two categories: tasks a user
would need to carry out to enter data efficiently and tasks for retrieving information in
the form of different reports.

In the intervening chapters, we have mostly been concerned with separating our
data into several normalized tables in order to ensure the data is kept in a way that would
allow the construction of different reports as the database evolved. This separation of
data also ensures that it is kept in an accurate and consistent manner.

In Chapter 10, we looked at how queries and views allow us to gather together infor-
mation from several tables in a number of different ways. In this chapter, we take a brief
look at how to design forms and reports that will satisfy the original use cases. These can
be added as a front end to your database to provide a convenient, friendly, and efficient
way for users to interact with the data.

Input Forms

Figure 11-1 shows some possible use cases for our (very tiny) university database. Use
cases 1 through 3 involve data entry, and use cases 4 and 5 are reporting tasks.

191

192 CHAPTER 11 = USER INTERFACE

1. Maintain Student Data ©

//2 Maintain Course Data

3. Maintain Enrollments

© 4. Provide Class Lists

5. Provide Student Record

Figure 11-1. Use cases for the university database

A simple data model for satisfying the use cases in Figure 11-1 is shown in Figure 11-2
along with some representative data in Figure 11-3.

Student Enrollment Course
Egtﬂlfgﬂwg year courselD
firstName | 1-1 0.n|drade 0.n 1. |courseName

Figure 11-2. Simple data model for the university database

student]D| lastN ame‘ firstName | ﬁrstEnmlled‘ student[D ‘ course year courselD I courseName
12654 Green Linda 2006 18887 C303 2006 C101 Intro Computing
13887 Smith John 2006 18887 C101 2006 C102 Intro Programming
17625 King Steven 2006 12654 C101 2007 C108 Fundamentals
18887 Smith James 2006 17625 C108 2007 C205 Advanced Programming
19765 Smith Alison 2006 17625 C102 2007 C303 Databases
20111|Li Bo 2006 17625 C101 2007

Student Enrollment Course

Figure 11-3. A small portion of the data in the university database

CHAPTER 11 ©" USER INTERFACE

Data Entry Forms Based on a Single Table

Let’s look at use case 1 first. This is a task likely to be carried out when a student first
enters the university and at infrequent times when her contact or other details change.
The data entry involves interacting with just one table, the Student table in Figure 11-3.
Form-generating software that may come with your database system usually offers a
number of different ways to input data to a single table. One way is to design a form that
shows several records in a grid (similar to the tables in Figure 11-3). This is useful where
each record only has a few fields that can all fit across a screen. In reality, our Student
table is going to have many more fields than we have shown. Where there are many
fields, it is preferable to have just one record displayed per form. An example is shown
in Figure 11-4.

EI StudentData g@‘
Student Data

Student ID 12654

-

Family Name Green

Given Name Linda

Address 16 High Street Degree Science
City Auckland First Enrolled 2006
Country Mew Zealand Immigration citizen
Post Code a1 Siole

Phone (021 4747653

Record: E 1 E]@ of 5

Figure 11-4. Form to update a single student’s details

The form in Figure 11-4 was produced using the default options from the MS Access
Form Design Wizard with a few alterations. I've added a title, relocated and resized some
of the fields, and added some borders to keep similar fields together. A proper graphic
designer would do an infinitely superior job! The default form provides navigation but-
tons along the bottom to move between records or add a new one, and there are also
built-in search features that enable you to move quickly to records matching a value
you might type into a field. We would create a similar form for entering course data.

Data Entry Forms Based on Several Tables

The use case for entering enrollment data requires a bit more thought. On the face of it,
we only need to enter information into the enrollment table, but in practice we need to
see corresponding information in the other two tables. Let’s say that Steven King is an

193

194

CHAPTER 11 I USER INTERFACE

existing student wanting to enroll in three subjects in 2007. We need a convenient way to
add something like the bottom three rows shown in the Enrollment table in Figure 11-3.
If typing into a form based only on the Enrollment table, the data entry person would
have to type the year and the studentID three times (once on each row), and there is no
feedback to let him know that 17625 is actually the correct number for Steven King.
Typing each of the course codes may also lead to errors.

Referential integrity between the tables will ensure each enrollment is for an existing
student and an existing course. However, the data entry operator will only get an error
message after he tries to enter an enrollment record for a nonexistent student or course.
Fortunately, forms based on views allow us to make the process much more efficient and
less error prone.

We can create a view with the relevant information from all three tables. Figure 11-5
shows the Access diagrammatic interface for creating a view that contains the Enrollment
table data with joins to provide the corresponding student and course names.

5l Enroll : Select Query g@
-~
2 1
courselD -~ studentlD IS
courseMame lastName ‘_
examiner S firstName v
w
< >
Field: | studentlD lastName firstName course courseMame year [
Table: |Enrollment Student Student Enroliment Course Enrollment
Sort:
Show:
Criteria:
or: v
< >

Figure 11-5. View to show enrollment data with corresponding student and course names

We can base a form on the view in Figure 11-5 and then apply some conditions and
formatting to the fields to produce something like Figure 11-6.

- Enroll g@
ID lastName firsthame course courseMame year I
17625 |King Steven C108 Fundamentals | |2007
17625 |King Steven cio2 Intro Prograrmm | 2007
17625| [King Steven c1m Intro Computing 2007
&|17625| [King Steven | 2007 .
R.ecord: EE] ’—12 E]@ of 12 < > i

Figure 11-6. Form based on view in Figure 11-5

CHAPTER 11 ©" USER INTERFACE

The data entry operator still has to type in the same details as previously (into the
white boxes), but as the studentID and courseID are entered, the corresponding names
will appear, providing some feedback to the user. Form generators allow us to adjust all
manner of things. For the input boxes, we can choose the fonts and colors, but we can
also say what the user is allowed to do. In the form in Figure 11-6, I have altered the prop-
erties of the three name fields so that the user can see, but not accidentally change, the
values. Graying out the background makes it clear to the users that these three fields are
just for information.

Default values can also make forms much more efficient to use. At the beginning of
any particular year, it is probable that only enrollments for that year will be entered, so
I have specified a default value in the year field. This means that every new record has, in
this case, 2007 already in the year box. The new form is not a huge advance on the simple
grid in Figure 11-3, but providing defaults and displaying the student and course names
makes life a little easier for the user.

How else could we improve the form for enrollment entry? Have another look at the
data model in Figure 11-2. Both the Student class and the Course class have a 1-Many
relationship with the Enrollment class. Each student has many enrollments, as does each
course. From the point of view of data entry, which of these is most relevant? At the
beginning of the year, it is likely that a student will turn up in your office and want to
make all his enrollments at one time. It makes sense to let our form reflect this 1-Many
relationship between a student and his enrollments.

The form in Figure 11-7 is a combination of two forms. The top part is a form based
on fields from the Student table. The bottom part is a form, set out in a similar way to the
one in Figure 11-6 but just based on a view joining the Enrollment and Course tables. The
two forms are related so that we only see enrollments for the student displayed at the top.
Access calls this a form with a subform, and the wizard makes it very easy to set up. Now
once a particular student’s record is located, the data entry operator can enter all the
enrollments in one place.

195

196

CHAPTER 11 I USER INTERFACE

==l Student Enrollment g@
Add Enrollment

-

StudentlD 17625
Last Name King
First Name Stewen

c101 Intra Cormnputing 2007
cioz Intra Programming 2007
C108 Fundamentals 2007

M 2007

Record: @[z] ’73 E]@ of 6

Figure 11-7. Form based on Student with a subform based on a join between Enrollment
and Course

Constraints on a Form

The next obvious addition to help with data entry is to allow a user to choose from a list
of available choices rather than having to type them in. For example, in the enrollment
form in Figure 11-7, referential integrity requires that the course codes entered into the
Enrollment table must be ones that already exist in the Course table. If the user enters a
code that does not exist, he will get an error message from the underlying database
system. Rather than have that happen, we can present the user with a drop-down list
of allowed subjects to choose from. In Figure 11-8, we have changed the text box for the
course code to a list box. We then specify that the list box is to display the primary key
values from the Course table.

==l Student Enrollment g@
-~
Add Enrollment
L4 StudentlD 17625
Last Name King
First Name Stewen
c101 B2 Intra Cormnputing 2007
» Intro Prograrmming 2007
] Fundamentals 2007
3 2007
— -
Record: El E]@ of 6

Figure 11-8. A list box to allow the user to select a subject

CHAPTER 11 ©" USER INTERFACE

We can also use a list box for other constraints. A likely situation is that in our table of
course data, we might specify that particular subjects are or are not being offered as in
Figure 11-9.

courselD | courseName | offered
Clo1 Intro Computing Y
C102 Intro Programming Y
C108 Fundamentals Y
C205 Advanced Programming N
C303 Databases Y

Figure 11-9. Course table with field for whether a course is being offered

When entering new enrollments in the Enrollment table, we want to restrict the value
of course just to those courses from the Course table with Y in the offered field. How are
we to do this? A check constraint as described in Chapter 9 won't do. Check constraints
are just based on values from the table we are updating. Here we are updating one table,
Enrollment, but we need to check something about a row in a different table, Course.
Referential integrity won't help because that just requires the course code to exist in the
Course table and would therefore allow C205. We can use a list box as in Figure 11-8 to
help with this problem. Instead of populating the list box with all values from the Course
table, we can populate it with values from a view that selects just those courses that are
offered. The SQL to create such a view is shown in Listing 11-1.

Listing 11-1. A Query That Will Select the Codes of Offered Courses

CREATE VIEW OfferedCourses AS
SELECT courseID FROM Course
WHERE offered = 'Y'

Now if we restrict the user to just those values in the list box populated with this
query, then we have effectively applied our constraint. Be aware that this constraint only
takes effect for this particular form. If we update the Enrollment table in any other way,
the constraint will not be in place. The only way to ensure that a constraint will always
be in place is to put it directly on the table. This can be by a check constraint or for more
awkward constraints, like the offered courses, by a trigger.

There is a place for constraints that only take effect on some forms. Our enrollment
example is one of them. The offered field only applies for the current year. There will be
many rows in our Enrollment table from previous years for courses that are no longer
offered. We may need to retrospectively update some of those rows, so we don’t actually
want the constraint on the table. We just want to restrict new rows to courses being

197

198

CHAPTER 11 I USER INTERFACE

offered in the current year. A data entry form is a good place to apply that constraint. This
is the same as the problem discussed in Chapter 9 about how to prevent orders being
placed for items that were no longer in stock. The same solution will work there too. In
effect, we have a set of permanent constraints applied to our database tables through the
table design. In addition, we can have other constraints on our forms that just apply in
certain situations.

Restricting Access to a Form

Forms offer designers a great deal of versatility on what they can allow users to do. Most
form design software will allow you to specify whether the form can be used just for read-
ing the data, or for updating or deleting records. You can also specify that certain fields
on a form cannot be changed. For example, in Figure 11-8 we would probably not want a
user who is meant to be entering enrollments to change a student’s ID number or change
the name of a course. However, we do want them to be able to see these values for confir-
mation that they have the correct records. Allowing read-only access to the ID and course
name fields will prevent accidental changes to that data.

Because the forms are based on views or tables, we can also restrict who can see or
update the data through the form. We can do this by granting different permissions to the
underlying views to different groups of users as described in Chapter 10. We might grant
aresponsible group, such as secretaries, update permission to our view while allowing
less-reliable groups such as academics only read permission.

Web Forms

It is also possible to create web pages that act as data entry forms to the database. In
order to do that, you need to set up web server software, and that topic is beyond the
scope of this book. However, once you have got that far, much of what we have already
discussed in this chapter applies. Software such as FrontPage or Dreamweaver will offer
varying facilities to help you create forms to access your database. As a simple example,
it is possible to take a form in Access and save it as a data access page. This creates
HTML code, which allows the user to access the form through a web browser. As shown
in Figure 11-10, the web page provides navigation buttons to move through the records
and, if it is based on a single table, to add, delete, and update the underlying data. How-
ever, if the data access page is based on a view with two or more tables, this simple
approach only allows the user to view the data. To be able to update two or more tables
through a single web form will normally require some manual coding of SQL update
commands.

CHAPTER 11 ©" USER INTERFACE

l?\ Student - Microsoft Internet Explorer
Ele Edit View Favorites Tools Help

Dbk - @ - Ij Ig‘ A /": Search J Favorites (e Me

Address http:\\learn.Lincoln.ac.nz\StudentWeb.htm

Student Web Page
L studentD ’W

lasthame [king

firstiharme |Sleven

firstEnrollect [z008

City: [Christchurch

degree P«ns

14 4 Student1of6 » M b KK Hp 7y 2] 217 7 [3)

Figure 11-10. Data access page allowing updating of a table through a web browser

Reports

Use cases 4 and 5 in our diagram in Figure 11-1 are both concerned with output. They
require useful, easy-to-read reports based on the data in our tables. Reports are probably
the most visible part of a database for a casual user. Our university database needs to be
able to provide class lists and student records; a business would need to provide product
lists, invoices, and summaries of sales. All of these reports need to be able to provide just
a subset of the data, e.g., invoices for unpaid transactions for a particular client, sum-
maries of sales for the last month, enrollments for a particular course, and so on.

Many database systems provide report-generating software, and there are also inde-
pendent products such as Crystal Reports. Most software uses the same principles for
designing reports, so we will have a look at the basic elements.

Basing Reports on Views

Most informative reports are going to need data from more than one table. If we are
interested in the details of enrollment information, we will likely want to see a student’s
name as well as her ID and the course name along with its code. Clearly, we are going to
need a view joining these three tables. Be careful here. It is probable that we will want to
see all the courses and all the students, even those with no enrollments. As we discussed
in the last chapter, this requires outer joins as in Listing 11-2.

199

200

CHAPTER 11 I USER INTERFACE

Listing 11-2. A View to Retrieve Information About Enrollments

CREATE EnrollView AS
SELECT courseID, courseName, Enrollment.studentID, lastName, firstName, year
FROM (Course FULL OUTER JOIN Enrollment ON courseID = course)

FULL OUTER JOIN Student ON Enrollment.studentID = Student.studentID

Some of the rows retrieved when the view in Listing 11-2 is run are shown in
Figure 11-11.

courselD | courseName | studentID |lastName |firsthame |year |
C101 Intro Computing 17625 King Steven 2007
Cc101 Intro Computing 18887 Smith James 2006
c102 Intro Programming 17625 King Steven 2007
C303 Databases 18887 Smith James 2006
c102 Intro Programming 18887 Smith James 2006
C108 Fundamentals 17625 King Steven 2007
C108 Fundamentals 19765 Smith Alison 2006

C101 Intro Computing 19765 Smith Alison 2006
Cc101 Intro Computing 12654 Green Linda 2007
Cc101 Intro Computing 20111 Li Bo 2006
c102 Intro Programming 19765 Smith Alison 2007
C205 Advanced Programm <NULL> <NULL> <NULL> <NULL>
<MULL> <MNULL> <NULL> Smith John <MULL>

Figure 11-11. Result of a view on Enrollment outer joined with Student and Course

Note that the outer joins mean we have a row for courses with no enrollments (C205)
and also for students with no enrollments (John Smith). Now that we have this underly-
ing view, we can create a host of different reports based on it.

Main Parts of a Report

Report generators generally have the following parts:
Report header: Text appearing at the top of the report, typically a title and date
Page header: Text appearing at the top of each page such as column headings

Detail: Which values you want to see from each row in the query or table on which
the report is based

Page footer: What appears at the bottom of each page, typically page numbers

Report footer: What appears at the end of the report, often overall summaries

CHAPTER 11 ©" USER INTERFACE 201

Figure 11-12 shows a report with a report header and page header, and with all the
fields being displayed in the detail area (one for each row in the query result). In the
report design, we can specify the order that the detail rows are displayed (in this case by
ID), and the report software will do all the necessary formatting to deal with page breaks
and so on.

Basic Enrollment Report

ID courselD) courseName lastName firstName year
C205 Advanced Programming
Smith John
12654 C101 Intro Computing Green Linda 2007
17625 C101 Intro Computing King Steven 2007
17625 C102 Intra Pragramming King Steven 2007
17625 C108 Fundamentals King Steven 2007
18887 C101 Intro Computing Smith James 2006
16687 C303 Databases Smith James 2006
18887 C102 Intro Pragramming Smith James 2008
19765 C108 Fundamentals Smith Alison 2006
19765 C101 Intro Computing Smith Alison 2008
19765 C102 Intro Pragramming Smith Alison 2007
20111 C101 Intro Computing Li Bo 2008

Figure 11-12. Basic report based on EnrollView

The report in Figure 11-12 isn’t much use at the moment, but there are a couple of
simple things we can do to improve it. Often it is useful to put a select condition on the
rows we want to see, e.g., the rows for a particular course. We could include this in the
underlying view, but that would mean changing the view each time we wanted a list for
a particular course. It is more useful to build this criteria into the design of the report so
that each time we run the report we can specify the condition. Depending on what tool
you are using, there will be different ways of doing this. Figure 11-13 shows how in Access
instead of basing the report on all the rows in Enrol1View, we can select just some of the
rows. The ? means that the user will be prompted to enter a value.

Format| Data Event | Other All
Record Source Select * from EnrollView where courselD = ?

Figure 11-13. Allowing the user to specify the condition for selecting rows from the view

202

CHAPTER 11 I USER INTERFACE

While not strictly speaking a report, we can do a similar thing in a web page.
Figure 11-14 shows how the user can select the course for which he would like to view
enrollments. The web page, set up using FrontPage, allows the user to enter the course
code and then return a page showing the matching subset of rows from EnrollView.

Class List

Enter Course |(C101

Submit Query " Reset l

Student ID Last Name First Name
12654 Green Linda
17625 King Steven
20111 Li Bo

19765 Smith Alison
18887 Smith James
(S| ———

Figure 11-14. Web page to return a subset of the rows and columns from EnrollView

Grouping and Summarizing

Now let’s see how we can adapt our basic report in Figure 11-12 in order to satisfy the use
cases more effectively. The basic report provides all the information we need, but it is just
not structured appropriately. Using the grouping features of a report generator can provide
the appropriate structure. For a class list, we want to see all the enrollments for each class
grouped together, whereas for a student record, we want the enrollments grouped by
student. This is essentially reflecting the two 1-Many relationships in our data model—
a student has many enrollments, and a course has many enrollments. Our model allows us
to report from either point of view as required.

When we apply grouping, the report generator allows us to add a group header
and footer for information relevant to that group. What happens is this: if we group by
courselD, the rows in the view (as shown back in Figure 11-11) will be sorted in order of
courseID. When the report writes out each row, it will insert a footer and header each time
the value of courseID changes. Figure 11-15 shows two reports, both based on EnrollView:
one is grouped on studentID, the other on courseID.

CHAPTER 11 ©" USER INTERFACE

Student Records Class Lists
12654 Green Linda 101 Intro Computing
Cc101 Intro Computing 2007 12654 Green Linda 2007
17625 King Steven 17625 King Steven 2007
20111 Li Bo 2006
Cc108 Fundamentals 2007)
c102 Intra Programming 2007 19765 “Smith . Al 2006
101 Intro Computing 2007 I8E8F Smh. JJames 2005
18887 Sk Jariss Number of Students 5
C303 Databases 2006
Cc102 Intro Programming 2006
c10 Intro Computing 2005 cioz2 Intro Programm
19765 smith Alison 17625 King Steven 2007
19765 Smith Alison 2007
c108 Fundamentals 2006
. 18887 Smith James 2006
c102 Intro Programming 2007
c1m Intra Computing 2006 Number of Students 3
Report Grouped by Student Report Grouped by Course

Figure 11-15. Parts of two reports based on EnrollView with different grouping

In the student record report, we have a group header displaying each student’s
studentID, lastName, and firstName, while the detail just displays the course data. In the
class list report, the group header has the course information, while the detail contains
the student information. In the class list, we also have a group footer that summarizes
the number of students in that course. This is done with a calculated field that will have
a formula, something like = Count(*). We can restrict these two reports to just presenting
data for a specified course or student as in Figure 11-13 if we wish.

We have now satisfied the requirements of our two reporting use cases. A number
of other reports are also possible. For example, we can choose to suppress the detail section
of areport, in which case we will just see the header and/or footer of each group. A report
grouped on courseID with the detail suppressed and a report footer for the overall count
would look like Figure 11-16.

203

204

CHAPTER 11 I USER INTERFACE

Class Numbers

Cl101
ci02
Cl108
C303

Intro Computing 3
Intro Programming 3
Fundamentals 2
Databases 1
Total Number 11

Figure 11-16. A summary report grouped by course

We can see that there are numerous very useful reports that can all be based on our
one view of the enrollment data. All these reports can have a select condition placed on
them so that the user can limit them to particular years or particular subsets of courses.
Part of our database design should be to provide a set of reports that will satisfy the use
cases agreed upon in the early stages of the design.

Summary

Part of the design of a useful database is to provide a convenient interface for users to
enter data and retrieve information. The original use cases will be a good indication of
what is required.

Forms and reports allow convenient ways to enter data into the database and to
see well-presented output.

Both forms and reports are usually based on views.

By controlling the permissions granted to the views, we can restrict the access of
different groups of users to specific forms and reports.

Subforms are a way to conveniently add data involved in a 1-Many relationship
(e.g., a student has many enrollments).

On forms, list boxes provide a convenient way for users to select from allowed val-
ues. By populating a list box from a view, additional constraints can be applied to
data being entered through that form.

By using different grouping, several very different reports can be constructed on a
single view. These can be used to satisfy the output use cases identified in the
requirements.

Reports can include summary data such as totals, subtotals, counts, and so on.

Reports can be designed to further refine the subset of data each time a report is
run.

CHAPTER 12

Other Implementations

In the first few chapters of this book, we focused on obtaining a set of use cases and
a data model that accurately represented the scope of a problem and the interrelation
of the different data items. Chapters 7 through 9 saw how we could take the data model
and represent it in a relational database as a set of normalized tables related by foreign
keys. The previous two chapters showed how we could efficiently enter data into these
tables and use queries to extract meaningful information and reports.

Now we will have a brief look at other ways to represent the data model. One is to
use an object-oriented database. The other option for small and simple data models is
to use a spreadsheet.

Object-Oriented Implementation

Our data models are object oriented. This means that we look at the data and relation-
ships in terms of specific objects, as in this description of a 1-Many relationship:

“An object of the Customer class can be associated with many objects of the Order class.”
A programmer in object-oriented (OO) languages such as Java, VB .NET, and C# can cre-
ate and manipulate objects directly. OO languages also have additional features that are
not present in most relational database software. These features include the ability to
have complex types for attributes (an object or a collection of objects) and the ability to
store methods describing the behavior of an object as part of the class definition.
Another advantage of an OO language is that it is able to directly implement and main-
tain classes and subclasses and so make full use of inheritance. One thing that many OO
languages lack, however, is a way of saving and retrieving objects to and from persistent
storage in a transparent manner. OO databases provide a way of seamlessly creating
objects, storing them to disk and then finding them again. The design of OO programs is
a huge topic, so here I merely outline some of the main techniques in capturing the
essential elements of a data model.

205

206

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

Classes and Objects

Unlike relational databases, OO programming languages support the idea of classes and
objects directly. Classes are a definition or a template for how objects are going to be con-
structed. For example, a Customer class will specify the attributes that each Customer object
will have (e.g., a name, an address, and so on). Each Customer object will be created
according to the definition of the class and will have its own values for each of the attrib-
utes. Classes are just an abstract idea, but the objects themselves are independent
entities. By contrast, in a relational database we think in terms of tables. We construct a
table to represent each class, and the objects are represented by rows. We perform opera-
tions such as joins and unions on tables, not rows. Whereas operations within a relational
database are firmly based on tables, in an OO environment the emphasis is on objects
(hence object oriented).

The difference between OO languages and relational databases is particularly
marked when we consider inheritance. In Chapter 6, you saw how the ideas of specializa-
tion and generalization could help us model particular situations where we had classes
that had much in common. In Figure 12-1, we have a data model of how we can capture
the similarities between students and lecturers in a parent Person class.

Person
lastName
firstName

| |
Student Lecturer
degree salary

Figure 12-1. Data model with inheritance

Figure 12-2 shows how we attempt to capture the main features of this data model
with tables in a relational database.

CHAPTER 12 " OTHER IMPLEMENTATIONS

Person
lastName
firstName
0.1 isa isa 0.1
Student Lecturer
degree salary

Figure 12-2. Capturing inheritance with 1-1 is a relationships

The representation in Figure 12-2 requires three tables. Each student will be repre-
sented by two rows: one in the Person table and one in the Student table. If we want all
the information about a particular student, we need to join the Student and Person tables
in order to retrieve both the degree and the names. In an OO environment, if we create
an object of either the Student or Lecturer class, it will have all the relevant attributes
embedded in that object. We do not need to look up any other object or refer to any other
class to retrieve the required information. This is depicted in Figure 12-3.

lastName: Smith lastName: Green

firstName: Jane firstName: Linda
degree: Arts salary: 75000

Student Object Lecturer Object

Figure 12-3. A student and lecturer object in an OO environment

In an OO environment, each object is a separate entity with its own unique object
identification (OID). Because each object has its own identification, there is no require-
ment that the values of its attributes be unique. Put another way, from an
implementation point of view, there is no need to provide the equivalent of a primary key
as we needed to in a relational database. For example, the two objects in Figure 12-4 can
each be identified by the system via their unique OID, even though the values of their
attributes are the same. However, the OID is not necessarily available nor meaningful to
the user. The program can distinguish the objects, but can the user?

207

208

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

lastName: Smith lastName: Smith

firstName: Jane firstName: Jane
degree: Arts degree: Arts

0ID = 100836 0ID = 0887654

Figure 12-4. Two distinct objects, but can the user tell them apart?

When a user has to associate a course enrollment with one of the student objects,
he will have the same problems we discussed in Chapter 9 when we had identical rows
in a relational table. Although technically the two objects are identifiable, we still need
a unique attribute (such as an ID number) so the user can distinguish the objects in a
meaningful way. You will see later how we can use collections to enforce the uniqueness
of attributes.

Complex Types and Methods

In most relational systems, we are generally restricted to attributes of a simple type
(e.g., number, text, date, and so on). In an object-oriented environment, we can have
more complex attributes.

Consider the issue of addresses and names. In Chapter 7, we argued that a single
address field was inadequate, and we introduced individual fields such as street, city,
postCode, and country. We did a similar thing for names by introducing fields such as
title, firstName, lastName, initials, and so on. This made it possible to effectively search
or sort the rows by country or last name, and to format addresses properly in reports. In
arelational database, these fields are all independent: without creating a new table, there
is no way to say these fields should all be kept together in some way because they form an
address. Creating a new table means every time we need the address of a customer, we
need to join the tables, and little is really achieved for that extra overhead.

In an object-oriented environment, we can define a class Address with its own attrib-
utes (street, city, country, postCode) and then in a Customer class we can have an attribute
address, which refers to an Address object. Figure 12-5 illustrates this idea.

CHAPTER 12 = OTHER IMPLEMENTATIONS

lastName: Smith
firstName: Jane

3 High St.
city: Christchurch
country: NZ

postcode: 8014

address: [

Y

Person Object Address Object

Figure 12-5. A Person object can refer to an Address object.

In the Person class, we have three attributes: two names that are character types and
a complex address that is of the type Address object. If we need addresses in other classes,
we can reuse the Address class. Similarly, we could introduce a Name class and associate
each Person object with a Name object. Apart from being able to use something like an
Address class over and over in different situations, we also have the ability to declare
methods as part of the class definitions.

Methods are a set of instructions that we might want an object to carry out. Let’s look
at a simple example for a Name class. In Figure 12-6, we have a class diagram as before, but
now we have some methods in the bottom rectangle.

Name

lastName
firstName
initials
fitle

FormalName()
FullName()

Figure 12-6. The Name class with two methods

The method FormalName() might instruct the program to print out title, initials,
lastName (e.g., Mr. J. A. Wilson), while FullName() might print out firstName, lastName
(e.g., John Wilson). In a relational database, these types of instruction would be kept with
particular reports or forms. Every time we needed a new report, we would have to reissue
the instructions. In an OO environment, these instructions are kept with the data. Every-
where we use a Name object, we just need to ask for FullName, and the instructions are
available.

209

210

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

Collections of Objects

OO0 environments have the concept of collections (or sets or lists) of objects. In much the
same way that a Student table is a way of managing all the rows in a relational database, in
an OO environment we can set up many different collections of objects. There is proba-
bly a built-in collection for every object in a particular class (all Student objects, for
example), but we can also create our own collections. We might have collections called
AllStudents, CurrentStudents, Lecturers, People, and so on. Each of these collections will
contain a set of references to individual objects. Figure 12-7 shows how you can visualize
collections and objects. Particular objects may be referred to by more than one collection
(e.g., a Lecturer object might be referred to by the People collection and also by the
Lecturers collection).

Collection A

Object 4

Object 6

Figure 12-7. Collections referring to objects

Collection B

{

Collections are important for representing relationships between objects as you will
see in the following section. Collections can also be used to help ensure that objects have
some attribute(s) that have unique values so that they can be distinguished by the user.
There is no such concept as a primary key in an OO environment, but we can use collec-
tions to enforce a similar uniqueness constraint. Typically, there will be different types of

CHAPTER 12 = OTHER IMPLEMENTATIONS

collections we can choose from. A useful type of collection is one that can be keyed on
a particular attribute or combination of attributes. A collection, say A11Students, keyed
on studentID will be set up in such a way as to be very efficient at locating a particular
object given an ID number. A collection keyed on lastName will be efficient at finding a
particular object based on a name. Finding particular objects in a keyed collection is
very similar to finding rows in a table that has an index on it. As in the relational model,
we can specify that a particular keyed collection may only have unique values of the key.
If we have a collection Al1Student uniquely keyed on studentID, and we ensure all our
Student objects are added to this collection, we have effectively enforced the constraint
that no two Student objects have the same value for studentID. This ensures that all our
objects have an attribute (or set of attributes) that make them identifiable to the user.

Representing Relationships

References to objects and collections of objects can be used to represent the relation-
ships in a data model. Consider the model in Figure 12-8 where a customer can have
many orders and each order is for exactly one customer.

Customer places Order
custiD date .
1.1 0_n |Quantify

Figure 12-8. Data model for a relationship between customer and orders

We will have two classes, Customer and Order. Each customer will have its own object,
and each order will have its own object. What about the relationship between these
two objects? Let’s look at the 1 end of the relationship. Every order has one associated
Customer object. Because we are able to have complex types as attributes in a class, we
can have an attribute in each Order, which is a reference to the appropriate Customer
object. This is illustrated in Figure 12-9.

211

212 CHAPTER 12 I/ OTHER IMPLEMENTATIONS

date: 6/3/2007
quantity: 4

| customer:e

date: 4/7/2007

customer:

date: 4/3/2007 date: 8/3/2007
quantity: 3 quantity: \7
customer: customer:

Figure 12-9. Each Order object contains a reference to a Customer object.

This reference in the Order object is not unlike the idea of a foreign key in the rela-
tional model. It is different in the sense that with a foreign key the reference is to the
table, and the application will have to find the associated row. In the OO environment,
the reference is directly to the relevant Customer object.

Now let’s think about the Many end of the relationship. Each Customer object has
many Order objects, and we can set up this association directly also. We can include a col-
lection of Order references as an attribute in the Customer class as shown in Figure 12-10.

date: 6/3/2007
quantity: 4

custiD: 234

my orders:

{

date: 4/7/2007
quantity: 8

date: 4/3/2007 date: 8/3/2007
quantity: 3 quantity: 7

Figure 12-10. Each Customer object contains a collection of references to its Order objects.

We can choose to include the reference to a Customer in the Order class, the collection
of Orders in the Customer class, or both. The decision will depend on which way we want

CHAPTER 12 = OTHER IMPLEMENTATIONS

to navigate between classes. The use cases will be our guide. If we want to know what
orders a particular customer has placed, we need to navigate from Customer to Orders
through the collection of Order objects. If we have an uncollected order and we want to
know the name of the customer, we need to navigate from Order to Customer through the
reference to the Customer object.

How is this different from a relational database? In a relational database, each row
in the Order table has a foreign key, customer, referring to the Customer table, but we do
not have a direct connection between specific rows. If we want information from both
Customer and Order tables, we need to join the two tables and create a new virtual table.
That table is quite symmetric, and we are able to find customers for particular orders and
orders for particular customers from this one virtual table. This is very useful. Recall from
the previous chapter how we were able to create two very different reports, a student
record and a class list, both from a single virtual table.

By contrast, in an OO environment, we have to explicitly provide both paths if we
think we will need them. If we don’t have the collection in Customer, then we cannot
easily find a particular customer’s orders. If we don’t have the reference to a customer
in the Order objects, we would have no straightforward way of finding the appropriate
customer. However, the direct links we can provide are very efficient for navigating
between objects.

Given that we can represent a Many end of a relationship with a collection of objects,
Many-Many relationships can be represented directly. This is in contrast to the relational
model, where we had to create a new intermediate table to handle Many-Many relation-
ships. For example, in the model in Figure 12-11, the Many-Many relationship between
plants and uses can be represented by having a collection of Usage objects associated
with each Plant object and a collection of Plant objects associated with each Usage object.
The association between objects is direct, and we do not need an additional table nor do
we need to perform two joins as in the relational model.

Plant
id on Usage
genus -
species on useName
commonMName

Figure 12-11. A Many—Many relationship

You may have spotted the potential problem with all this. Take the example about
customers and orders. If we choose to include both the reference and the collection as

213

214

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

shown in Figures 12-9 and 12-10, we are potentially storing information about an associ-
ation between objects twice. A particular order will be in a customer’s collection of
orders, and a customer reference will be kept with the order. There is potential now for
inconsistencies to arise. Order A may be in customer Smith’s collection, but the Order A
object may refer to customer Green. How this is managed depends on the software you
are using. More about that in the next section.

OO Environments

There are numerous development platforms that use object-oriented concepts. Many
modern programming languages (e.g., VB .NET, C#, Java, C++) are based on classes and
objects. However, it is not necessarily easy to use these languages to maintain data. While
they provide all the concepts we have discussed so far, the problem comes when you try
to store the data permanently. When you enter a row into a relational database, the soft-
ware automatically takes care of saving it to disk so that it will be available after the
software and the computer are shut down and restarted. This is permanent, or persistent,
data. Other variables—intermediate results of calculations and so on—are not saved in
this way and are known as transient data.

In OO programming languages, the programmer usually has to specifically save and
retrieve the data about objects, and this is not necessarily a trivial matter. Specially
designed OO database systems (e.g., JADE! and Gemstone?) can handle the storage and
retrieval of objects transparently. A system like JADE allows you to take your data model
and define a hierarchy of classes. The relationships between objects in the classes can be
specified and are automatically maintained. For example, the problem mentioned in the
previous section about inconsistent references between Order and Customer objects would
not arise. If an order is removed from a customer’s collection, the reference to that cus-
tomer in the Order object will be automatically updated.

A good object-oriented database product provides a great many advantages. It can
employ the full power of inheritance, manage complex types, store methods with the
data, and provide very efficient links between related objects. However (there is always
a however), one of the most powerful aspects of the relational model is the set of opera-
tions that we can perform on tables to retrieve complex subsets of data. These are the
operations described in Chapter 10: joins, unions, intersections, and so on. The SQL
commands to carry out these operations are relatively straightforward and are an integral
part of any relational database system. However, the operations are all defined on tables
and have no direct counterpart in an OO system. There have been attempts to develop
a set of standards for object-oriented databases® and to develop OO database query
languages.

1. http://www.jadeworld.com/
2. http://www.gemstone.com/products/
3. http://www.odmg.org/, http://www.odbms.org/index.html

CHAPTER 12 = OTHER IMPLEMENTATIONS

One compromise between a full OO database and a relational database is where an
OO0 programming language connects to a relational database. Objects are converted to
rows in a table, and then the full data management power of the relational database can
be used for storage and retrieval. Within the programming language, it is then possible
to communicate with the database and place and retrieve data using SQL. In doing this
transfer between objects and tables, however, we can lose many of the specific OO
advantages with respect to our data objects.

Implementing a Data Model in a Spreadsheet

Spreadsheets are perhaps one of the most versatile of the applications widely available
on the desktop. The popularity of spreadsheets stems from the ability to open a sheet and
start entering numbers and equations immediately. There is no need to declare variables
or design tables.

For those people with some data and the need to find statistical or calculated results
quickly, a spreadsheet is wonderful. Spreadsheets have amazing power readily available
in the form of an abundance of functions and features. However, they can also be quite
dangerous. Anyone who contemplates using a spreadsheet for performing important
calculations should visit one of the web sites* that discuss the many and varied mistakes
and errors that plague most spreadsheets.

Spreadsheets are great for performing calculations but are less suited to storing data
that may need to be extracted in a variety of ways. To query and report on data easily, the
required information usually needs to be on one sheet. This is a bit like keeping all the
data for a problem in one database table. We showed some examples of the problems of
doing this in Chapter 1. The rest of the book has essentially been about how to avoid
these problems by splitting our data into classes or normalized tables. However, spread-
sheets are such a popular tool that it is worth looking at how to use them to represent a
small data model effectively.

Where there are many classes with complex relationships, a spreadsheet will not be
able to capture the complexities accurately and in a maintainable way. For problems that
have only a few classes (mostly category type classes), it is sometimes possible to capture
quite a substantial amount of the complexity of a data model with a properly designed
spreadsheet.

Consider a small business that is keeping data about the transactions of its cus-
tomers in a spreadsheet. You might imagine that a first attempt at a spreadsheet would
look something like Figure 12-12.

4. http://study.lincoln.ac.nz/spreadsheet, http://panko.cba.hawaii.edu/SSR/index.htm

215

216

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

S e e D RS B G i
| 1 |orderNum custID name address date product price quantity
| 2 | 1001 3-Dec-06 56789 250 6
[3 | 1002) 1231 Smith PO Box Z-547 5-Dec-06 56789 250 7
| 4 | 1003) 1231 Smith PO Box Z-548 12-Dec-06 76253 375 10
L3 | 1004 1354 Robson PO Box 541 17-Dec-06/ 65789 250 4
| 6 | 1005 1657 19-Dec-06/ 65788 250 5

Figure 12-12. Spreadsheet for (very) simple orders from customers for products

By now, you should be able to see the potential problems in such a solution. Data is
repeated (e.g., the address of a customer and price of a product) with the potential to
become inconsistent as in rows 3 and 4. Orders can be entered without an associated
customer (row 2), and as far as we can see here there is no check on whether a valid
product code has been entered (is there really a product 76253?).

A suitable data model for the preceding situation (assuming orders are just for a
single product) is shown in Figure 12-13. By separating the information about customers
and products into separate classes, we can ensure transactions are always for valid
customers and products.

Customer Order Product
custlD 0.n |orderNum 1_1|productiD
name —date —|name
address 1.1 quantity 0.n price

Figure 12-13. Data model for simple orders from customers for products

In a spreadsheet, the main focus for our calculations and analyses is going to be the
orders. We will want to sort them by date, total the amounts, search them by customer,
and so on. To do this, all the information has to be on one sheet as in Figure 12-12. How
do we maintain some control over the consistency and accuracy of the data?

The data model in Figure 12-13 has two 1-Many relationships, so let’s first look at
how to represent those in a spreadsheet.

1-Many Relationships

To represent a data model involving 1-Many relationships as in Figure 12-13, we first set
up a separate sheet for each class at the 1 end. Figure 12-14 shows a sheet containing the
information about customers with the data given a range name (allCust). There would be
another sheet with information about products. The separate customer sheet enables
rows to be added or updated independently of other information (orders and products).

CHAPTER 12

OTHER IMPLEMENTATIONS

allCus - & 1231
R Ea C
1 custID name address
2 1231|Smith |PO Box Z-548
3 1354 |Robson |PO Box 541
4 1672|Li 12 Any Street
M < »]\ Customer/ Product /

Figure 12-14. Sheet with information about customers with a range name allCust

We then create a third sheet for the class at the Many end (orders) where we will
accumulate all the information we need. Rather than type in all the information about
each customer, we can enter the customer ID and display the matching data from the
customer sheet. In Excel, this can be done with a function called VLOOKUP. In Figure 12-15,
cell C6 has the formula shown in Listing 12-1.

Listing 12-1. Excel VLookup Function

=VLOOKUP(B6,allCust,2,FALSE)

C6 - # =VLOOKUP(B6,allCust,2,FALSE)
A | B 1SN D s G
1 |orderNum custID name address date product price quantity
i 1001 #N/A EN/A 3-Dec-06 56789 250 6
B 1002 1231 Smith PO Box Z-547 5-Dec-06 56789 250 7
4 1003 1231 Smith PO Box Z-547 12-Dec-06 76253 375 10
5| 1004 1354 Robson PO Box 541 17-Dec-06 65789 250 4
z 1005 1657[#N/A__ [#N/A 19-Dec-06 ~ 65789 250 5

Figure 12-15. Transaction sheet with lookups to customer and product details

The formula in Listing12-1 means take the value from cell B6 (1657) and find it in the
range allCust (Figure 12-14); the parameter “2” means return the associated value in the
second column of that range. The “FALSE” means if the value isn't in the table, return an
error message. Similarly, columns D and G also contain functions to look up data from
the appropriate sheets.

The custID column in Figure 12-15 is acting somewhat like a foreign key in a rela-
tional table. Unlike a foreign key, there is nothing so far to stop us entering a value in
column B that is not represented in the customer sheet (row 6), but if we use exact match
lookups (including the parameter “FALSE” as in Listing 12-1), we get a very clear signal
with the error message #N/A (not available) that there is a problem.

217

218

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

Spreadsheet products such as Excel also offer data validation tools so that we can
have control over the customer numbers we enter into column B. We can specify that the
values in column B on our order sheet must come from the list of values in the ID column
of the customer sheet. This is shown in Figure 12-16. We have named the range of cells
containing the customer numbers on the customer sheet custIDs and then specified that
column B on the order sheet is restricted to values from that “list.”

Data Validation I

Input Message Error Alert

Validation criteria

Allow:

List v Ignore blank
Data: In-cell dropdown
Source:

=custIDs

[] Apply these changes to all ather cells with the same settings

——

Figure 12-16. Excel validation tool

As well as restricting the values we can enter into the column, the validation tool also
provides a convenient list box to help data entry as shown in Figure 12-17.

A NN c | D |
orderNum custID name address
1001 HN/A - TEN/A

1002 1231|X§'nith PO Box Z-547
1003121 “imith PO Box Z-547

1354

1004|1672 bbson PO Box 541

Figure 12-17. Using data validation tools to restrict values in a column

Using a data validation on column B in Figure 12-17 has given us a type of referential
integrity at the point where data is entered or updated on the order sheet. The lookup
functions themselves act a bit like joins. The order sheet in Figure 12-15 has brought

CHAPTER 12 = OTHER IMPLEMENTATIONS

together data from the customer and product sheets in a manner quite similar to an
outer join between three tables in a relational database. This method of dealing with rela-
tionships rapidly gets out of hand where there are lots of different classes in our model,
but it is not a bad approximation for small problems.

We have managed to separate the data for our three classes so as to avoid inconsis-
tencies, used data validation to simulate referential integrity to a degree, and used
lookups to perform something similar to a join. So we have some control over the accu-
racy of the data. We can use sorting and filtering tools to do the equivalent of selecting
rows, and we can hide columns to simulate projecting columns. Spreadsheets also offer
a huge range of analysis features. What we don’t have is the ability to perform complex
queries that require other relational operations, e.g., which customers have ordered both
product 76253 and 56789.

Many-Many Relationships

Let’s now have a look at Many—Many relationships in a spreadsheet. This situation often
arises where we have categories, and we will take one last look at our plant example data
model shown in Figure 12-18.

Plant
genus Usage
species useName
commonName | 0-n 0.n

Figure 12-18. A Many—Many relationship representing plants with multiple values of usage

There are a number of different ways you can store multiple values for usages in a
spreadsheet. We will look at some of the advantages and disadvantages of three different
methods: repeated columns, categories as columns, and normalized ranges.

Figure 12-19 shows the most common way that people store multivalued categories
in a spreadsheet, repeated columns.

219

CHAPTER 12 I/ OTHER IMPLEMENTATIONS

A B C D E F |
genus species commonName usagei usage2 usaged
Dodonaea viscosa akeake shelter hedging soil stability
Cedrus atlantica atlas cedar shelter
Alnus glutinosa Black alder soil stability shelter firewood

Figure 12-19. Representing multiple values of usage in repeated columns

The reason this way of storing the data is so popular is that it is in a format the user
finds useful. The user probably initially thought of the data in terms of plants and their
usages, and this format displays each plant with all its usages on one line. (This is actu-
ally a very difficult output to achieve from normalized database tables.) We have already
discussed some of the problems of storing the data this way in Chapter 1, but by using
some spreadsheet functionality, we can reduce some of the problems. One issue was
ensuring that the entries in columns D through F had consistent spelling. This can be
achieved in Excel by using the data validation feature and insisting values in those
columns come from a list of possible usages stored on another sheet. The other most
significant problem is being able to find all the plants with a specific usage (e.g., shelter).
It is not possible just to sort or filter, say, column D to find all the values of shelter
because shelter may have been recorded in any of the columns D through E It is possible
to check all three columns using advanced filters and criteria tables, but this is well
beyond the capabilities of the casual user. With this level of skill, the user would have
been better off to use a database right from the start. Repeated columns therefore can
provide some checking of the usage data, a good reporting format but very poor querying
in terms of plants for a given usage.

Another common storage method is to have a separate category for each column and
use check marks to specify whether they apply for a particular species. This is shown in
Figure 12-20.

e E T e e G |
_ 1 |genus species commonName Shelter Firewood Hedging | Soil Stability
2 |Dodonaea viscosa akeake A \ A
3 |Cedrus aflantica atlas cedar \
4 |Alnus glutinosa Black alder Al < -+

Figure 12-20. Representing multiple values of usage with categories as columns

CHAPTER 12 = OTHER IMPLEMENTATIONS

This is actually a very useful representation. As long as there are not too many cate-
gories, it is quite good for reporting purposes, as you can see all the usages on one line.
There are no issues with spelling usage names as these only appear once in the heading
row. It is also possible to quite simply find all the plants with a specific usage. If we want
to find all Hedging plants, we can simply sort or filter column E Simple filtering will
also allow us to perform more complex queries such as find plants that are suitable for
Hedging AND Firewood. The categories-as-columns arrangement therefore offers good
reporting, good data entry consistency, and useful querying.

The last method is what we will call normalized ranges. This method actually mimics
arelational database by introducing the equivalent of an intermediary class in Figure 12-18
and turning the Many-Many relationship into two 1-Many relationships. We now have a
situation very similar to the orders spreadsheet described earlier. We would have a sheet
with all the species information (with an ID column), a sheet with all the usages, and a
third sheet for the pairings of species and usages with lookups or validations to the other
sheets. This is shown in Figure 12-21. Columns B through D are looked up in the plants
sheet, and column E can be validated from the usage sheet.

A BEEEN cC D E
1 |id enus species commonName Usage
2 1|D0d0naea |viscnsa akeake Shelter
3 1 Dodonaea viscosa akeake Hedging
4 1 Dodonaea viscosa akeake Soil Stability
5 2 Cedrus atlantica atlas cedar Shelter
G 3 Alnus glutinosa Black alder Shelter
i 3 Alnus glutinosa Black alder Firewood
8 3 Alnus glutinosa Black alder Soil Stability

Figure 12-21. Representing multiple values of usage with normalized ranges and lookups

With this method of keeping the data, we have good checking of the data, we can sort
or filter on column A to find all the usages for a particular plant, and we can sort or filter
on column E to find all the plants with a particular usage. So far, so good. However, the
reporting is awful. The format of the data is not in a form that anyone would want to
print out and it is not particularly nice to use. If the data is going to be stored in this way;,
it might as well be in three tables in a database where we have better access to good
querying, data entry, and reporting features.

221

222 CHAPTER 12 I/ OTHER IMPLEMENTATIONS

Summary

In this chapter, we have looked at two alternatives to using a relational database to
represent a data model: object-oriented databases and spreadsheets.

Object-Oriented Databases

Object-oriented databases offer a number of advantages over relational databases in
terms of complex data types (e.g., names and addresses), methods (e.g., outputting
different formats of names), and accurately representing inheritance. The drawback is
that complex queries may be more difficult to set up.

To represent a data model in an object-oriented language or database:

* Define a class for each class.
¢ Consider creating classes for complex data types such as addresses or names.

¢ Consider adding methods to classes (e.g., for formatting addresses or performing
calculations).

* Give thought to how a user will identify objects (the equivalent of a primary key).

¢ For the Many part of a relationship, include a collection that has references to
several objects (e.g., a Customer will have a collection of many Order objects).

 For the 1 part of a relationship, include a reference to the particular object
(e.g., an Order will have a reference to one Customer object).

Spreadsheets

Spreadsheets are a marvellous tool for data analysis and calculations. They are not really
designed for storing data but are commonly used for this purpose, as they are considered
to be simpler and more immediate than databases. For small data models with simple
relationships between the classes, it is possible to design a spreadsheet that is both useful
and accurate.

To represent very simple 1-Many relationships in a spreadsheet:

¢ Create a separate sheet for each class.

¢ Create a sheet where all the information will be brought together.

CHAPTER 12 = OTHER IMPLEMENTATIONS 223

» Use exact match lookups to display information from other sheets.

* Use data validation features to provide the equivalent of referential integrity
between sheets.

There are several ways to represent Many—-Many relationships in a spreadsheet:
* Repeated columns (good for validation and reporting but not querying)
* Categories as columns (good for validation, reporting, and querying)

* Normalized ranges (good for validation and querying but poor for reporting
and ease of use)

Conclusion

Well, thank you for staying with me this far (unless you are one of those people who
read the last page of a novel first!). Let’s have a recap of where we have been so you can
avoid making costly design errors. A well-designed database will ensure that your data is
accurate, that you can extract the information you need, and that your database can
evolve as your requirements change. What are the steps to designing a database that
satisfies these objectives?

Understanding the Objective and Requirements

People wanting to set up a small database usually have one fairly specific idea in mind:
for example, “I just want to keep a list of club members’ details along with their member-
ship type and the subs they have paid.” The basic data is actually pretty easy to type
directly into a spreadsheet, and that is what 90% of club secretaries will do. However, to
make sure the data is stored to the best advantage, you need to understand all the sub-
tleties of the data and think about likely future uses. As you tighten up the requirements,
write yourself a set of initial use cases and sketch a data model.

To understand the requirements, you need to ask some searching questions. What sort
of questions can you ask about something as simple as members, their types, and their
subs? How about “Would you like to be able to print out the members grouped according to
their types?” If the answer is “Yes,” then (having read this book) you will know that you will
need to consider a class for members and another class for membership types. So you have
some use cases (maintain membership and type data) and a data model (each member has
a membership type). Keep on with this iterative process of asking questions and adapting
the use cases and data model until you feel you have the main requirements of the data-
base accounted for. As you think of extra things you might do with your database, think
about what extra data might be needed to support that. Remember that your data model
does not represent the problem; it represents the data that you think is necessary to store
about the problem. Just because you need some data doesn't mean you have to store it in
your database. Paper lists tacked on pin boards have their place!

Always be aware that although you can add all sorts of functionality to your database,
it may not necessarily be a good idea. Every addition to the database will cost time
and/or money to set up and maintain. It is important to be pragmatic about what you
should store. A good way to keep focused is to decide early on what the main objective
of the database is and then to evaluate all additional options against that main objective.

225

226

CONCLUSION

Polishing Your Data Model

With the basic requirements and the initial use cases and data model sketched, exploit all
the things you have learned in Chapters 4 through 6 to find out as much as you can about
the subtleties of your problem. For example, ask about the cardinality and optionality of
the relationship(s) between your classes. “Do you want to keep just one membership type
for each member, or do you want to keep all their types from previous years?” This will
probably lead you on to questions such as “Do you want to keep track of subs paid in
previous years?” Questions like this help you refine the scope of your database.

Aspects of your data model that you should question or carefully consider are
summarized here:

* Check the optionality and cardinality of relationships. Think hard about possible
exceptional cases.

¢ Check 1-Many relationships with respect to whether you might need to keep
historical data.

* Check Many-Many relationships to see whether there is any data that depends on
both classes. If so, a new intermediary class might be required.

¢ Remember that some situations might be usefully modeled with self relationships.

* Check for different routes between classes. If you can get between two classes by
different routes, the routes should represent different information.

* Consider introducing a new class where you need to know about combinations of
objects from three or more classes simultaneously.

¢ Consider inheritance where you have the feeling that “This class is like that one
exceptfor...”

These types of questions will help you understand the subtleties of your problem.
There are no “correct” answers to any of the questions. The answers will always be based
on pragmatism. Where you have two options, you need to weigh up what you would
gain, what you would lose, and how important these are to the main objective of your
database.

Representing Your Model in a Relational Database

The model you finally come up with is an abstract representation of the different sets of
data you need to keep and how they are related to each other. This model is entirely

CONCLUSION

independent of any type of implementation. You now have the choice of how you imple-
ment it. For really simple, small models, a spreadsheet may be enough. Mostly you will
find that you need to use a database system. There are different types of database system,
but the one that satisfies most people’s needs is the relational database.

A relational database is based on tables, with a table for each class in your model.

For the very simple example in this conclusion, you would have a table for the Member
class and a table for the Type class. Each attribute in a class becomes a column or field of
the table (e.g., lastName, firstName, gender). Now you can think about the possible values
each field could have and apply some constraints. For example, you might like to restrict
gender to being “M” or “F”. You can also decide whether the field is mandatory. Be careful
here. Once again, you are modeling the data, not the real world. While all your members
will have a gender, you might not always have that information to put in your database.
Forcing users to enter values encourages them to make things up!

It is essential in the relational model that you be able to uniquely identify every row
in a table. To ensure this uniqueness, every table must have a primary key. This is an
attribute or set of attributes that you can guarantee will have a unique value for every row
in your table. Choosing a primary key is not always as straightforward as you might think,
so use all you have learned in Chapter 9 to make a suitable decision.

With all your classes represented by tables with primary keys, you can now turn to the
relationships between classes. A 1-Many relationship can be represented by using foreign
keys. This involves creating a new field(s) in the table at the Many end of the relationship
that will have values that refer to the primary key field(s) in the other table. For example, in
the Member table we would add a foreign key field type that would have a value from the pri-
mary key field of the Type table. Many-Many relationships can be reconstructed as two
1-Many relationships and then treated exactly the same way. An optionality of 1 as opposed
to 0 or 1 at the 1 end of the relationship is reflected by adding a constraint to the foreign key
that it must have a value.

Now you should finally apply the principles of normalization to check that your
tables are designed in such a way that your data can be entered and maintained with the
greatest possible accuracy. With a good data model, most of your tables should already be
normalized, but as a final check, look at each table and ask “Does every attribute depend
on the key, the whole key, and nothing but the key?” If the answer is “No,” your table
probably needs to be split up using the techniques in Chapter 8.

Using Your Database

You have now got yourself a data model that reflects the subtleties of the problem and
have set up a relational database that can capture all those intricacies. Now you need to
use it. This is where you look back at the use cases to see what it is that you and others
want to do. Generally the uses come down to two main things: putting data in and getting
information out.

227

228

CONCLUSION

How do you get information out? Because you have been careful to design the data-
base well, you can be confident the information you require is available. However, the
answer to many questions will often require you to combine many tables in a variety of
ways. This is where relational databases have a significant advantage over other data
management systems. The powerful relational operators (e.g., select, project, join, union)
described in Chapter 10 allow you to create queries or views that combine tables and
extract the subset of the data you require. SQL provides a means of expressing the opera-
tions you want to apply to your tables, and most relational database management
systems also provide graphical interfaces to help you specify the particular subset of data
you want to extract. Having retrieved the data you require, report generators allow you to
display the data grouped, sorted, and summarized in a host of different ways. By granting
different users rights to different views, you can have control over who can see and/or
update different information.

Providing convenient ways to get data into your database is also an important aspect
of the design. Well-designed forms not only make data entry quicker, but can also
improve accuracy. Form-generating software allows you to create forms with fields from
more than one table and provides components such as drop-down lists to aid data entry.
It is also possible to add additional constraints on data entry forms.

And So...

There is the full story—how to start with an ill-defined idea and end up with a database
that will be useful, accurate, and a pleasure to use. Enjoy!

Index

A

abstract classes
description, 106
inheritance, 112
abstract models
developing model of real-world
problems, 31
real and abstract views of problems,
33-36
Access
creating table in, 117
data entry form based on multiple
tables, 194, 195
data entry form based on single table,
193
entering data in, 118
interface for specifying foreign key, 128
representing classes and relationships
in, 24
saving form as data access page, 198
setting up foreign key in, 127
actors
classifying types of database users, 47
description, 12
use cases, 47
aggregated data, 174-176
analysis process
See also development process; real-
world problems
actors, 47
analyzing system objectives, 38—40
changing prices, 50
data related to system objectives, 40-42
discounts, 50
examining filled-in forms, 49
exceptions/problems, 48, 50
first data model, 44-45
input use cases, 42-44
order quantities, 51
output use cases, 45-46

real and abstract views of problems,
33-36

roles, 47

use cases for maintaining data, 48

use cases for reporting information, 49

user tasks for meal delivery system, 36,
37-38

value of hesitant answers to analysis, 32

attributes, class

data as attribute, class, or relationship,
75-77,92

data model, 15

functional dependencies, 142

interdependence of attributes, 142

representation in relational database,
115-122

behavior

inheritance and, 110
Boolean operators

retrieving selected rows, 173
Boyce-Codd normal form, 150-151

C
calculations
choosing data types, 119
candidate keys, 159
cardinality of relationships in data
models, 60-65
cardinality of 1 or 2, 60-63
departments data model, 64-65
description, 18
historic data, 63—-65
insect data model, 60-62, 65
relationships with different
cardinalities, 19
sports club data model, 62-64
cascading delete
deleting referenced records, 168, 169

229

230

INDEX

categories
poor database design for, 1-3
spreadsheet implementation of data
models, 220
category classes
using constraints not category classes,
164-167
character data types
checking character fields, 121-122
choosing data types, 118
constraints, 119
ordering values, 119
separating data into multiple fields, 121
chasm trap
different routes between classes, 85-87
check constraints
membership type with, 165
restricting allowed values, 197
CHECK IN keywords, SQL, 120
child classes. See inheritance
class diagrams
UML, 14
understanding the problem first, 31
classes
See also different routes between classes
abstract classes, 106
classifying similar objects, 95-100
confusing associations/subclasses for
inheritance, 103-104
confusing objects/subclasses for
inheritance, 102-103
data as attribute, class, or relationship,
75-77,92
data model, 15
determining if class or object, 102
intermediate classes, 132
objects and, 16
objects belonging to multiple
subclasses, 107-110
OO0 implementation of data model,
206-208
relationships between objects of same
class, 87-88, 93
relationships in OO data models, 211
relationships involving 2+ classes,
89-92, 93

representation in relational database,
115-122
representing in Microsoft Access, 24
superclasses containing objects,
105-107
three or more interrelated classes,
153-155
two or more relationships between
classes, 78-81, 93
using constraints not category classes,
164-167
classifying similar objects, 95-100
generalization, 98-100
specialization, 97-98
clustered indexes, 187
collections
object-orientation, 210-211
columns. See fields
complex types
OO0 implementation of data model, 205,
208-209
concatenated keys
ID numbers or, 159-162
primary keys, 123-126
conditional statements
retrieving selected rows, 173
constraints
adding constraints on data values,
120-121
choosing data types, 119
constraints on data entry forms,
196-198
restricting allowed values, 197
selecting from allowed values using list
boxes, 196
triggers, 169, 197
unique constraints, 162-164, 170
using constraints not additional tables,
164-167
contracts. See roles
COUNT function
counting subset of rows, 175
SELECT statement, SQL, 174
CREATE TABLE command, SQL, 117
CREATE VIEW command, SQL, 188
currency data types
choosing data types, 119

D
data
adding constraints on data values,
120-121
aggregated data, 174-176
ordering data, 176
use cases for maintaining data, 48
data entry
using views for, 188
data entry forms, 191-199
constraints on forms, 196-198
forms based on multiple tables,
193-196
forms based on single table, 193
restricting access to forms, 198
saving Access form as data access page,
198
selecting from allowed values using list
boxes, 196
subforms, 195
using default values, 195
web forms, 198
data entry operators
restricting allowed values, 197
roles of database users, 47
data independence, 11
data minding problem
real and abstract views of problems, 34
data types
character, 118
choosing data types, 118-119
date, 119
integer, 118
number, 119
data validation
See also constraints
spreadsheet implementation of data
models, 218
user interface, 191-204
data entry forms, 191-199
reports, 199-204
date data types, 119
decimal data types, 119
decomposition
normalization, 148

INDEX

default values
data entry form based on multiple
tables, 195
deleting referenced records, 167-170
cascading delete, 168, 169
disallowing delete, 168, 169
nullifying delete, 168, 169
SQL to specify deletion option, 168
triggers, 169
deletion problems
incorrectly normalized tables, 141
dependencies
See also functional dependencies
three or more interrelated tables,
153-155
design
See also relational databases
development process, 23-24
development process, 11-28
See also analysis process
data model, 14-19
design, 23-24
implementation, 24-27
initial description of problem, 12-14
use cases, 19-23
false information from a route (fan
trap), 84-85
gaps in routes between classes (chasm
trap), 85-87
learning from, 53-72
routes providing different information,
83
disallowing delete
deleting referenced records, 168, 169
discounts
meal delivery database, 50
DISTINCT keyword, SQL, 173, 175

E

EXCEPT keyword, SQL, 183

except operation, 182

exceptions
cardinality of 1 or 2, 60
cardinality with historic data, 63
optionality of 0 or 1, 57
understanding the problem domain, 32
use cases, 48

231

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

INDEX

F

fan trap
different routes between classes, 84-85
fields
adding constraints on data values,
120-121
checking character fields, 121-122
choosing data types, 118-119
choosing primary keys, 157-162
converting data model into relational
database, 115-122
creating tables, 117
data model representation of, 115
fields dependant on non primary key
field, 149-150
fields not dependant on all of primary
key, 147-149
generating ID numbers as primary keys,
157-159, 170
mulitvalued fields not normalized,
145-147
project operation, 172-173
retrieving all columns, 173
separating character data into multiple
fields, 121
fifth normal form, 153-155
first normal form, 145-147
FOREIGN KEY REFERENCES keywords,
SQL, 128
foreign keys
Access interface for specifying, 128
data model representation of, 115
database relationships, 24
deleting referenced records, 167-170
many-to-many relationships, 132, 133
null values, 129
one-to-many relationship, 129
referential integrity, 128
relationships in relational databases,
127-128
representing self relationships, 131
setting up foreign key in Access, 127
SQL to create, 128
Form Design Wizard, Access
data entry form based on single table,
193

forms
data entry forms, 191-199
constraints on forms, 196-198
forms based on a single table, 193
forms based on multiple tables,
193-196
restricting access to forms, 198
web forms, 198
selecting from allowed values using list
boxes, 196
subforms, 195
fourth normal form, 153-155
functional dependencies, 142-145
candidate keys, 159
definition of, 142-143
normal forms involving functional
dependencies, 145-151
normalization and, 142
normalization based on data models or,
151-153
primary keys and, 143-145

G

Gemstone
OO database systems, 214
generalization
classifying similar objects, 98-100
inheritance and, 100
GRANT keyword, SQL, 189
GROUP BY keywords, SQL, 176
grouping reports, 202-204

historic data
cardinality of relationships in data
models, 63-65
many-to-many relationships in data
models, 66

ID numbers
concatenated keys or, 159-162
generating as primary keys, 157-159,
170
implementation
development process, 24-27

indexes
clustered indexes, 187
disadvantages of indexes, 185
indexes and joins, 186-187
indexes helping queries, 183-187
nonclustered indexes, 187
types of indexes, 187
inheritance, 100-105
abstract classes, 106, 112
behavior and, 110
classifying similar objects through
generalization, 98
classifying similar objects through
specialization, 97
confusing associations with subclasses,
103-104
confusing objects with subclasses,
102-103
data model showing inheritance, 100
data model with inheritance, 206
hierarchies of classes and subclasses,
110
multiple inheritance, 107
roles as alternative to, 109
objects belonging to multiple
subclasses, 107-110
one-to-one relationships, 207
representation in relational database,
115
representing inheritance in relational
databases, 134-136
roles and, 108
superclasses containing objects,
105-107
using inheritance to show different
behavior, 104
when not to use, 102-104, 112
when to consider using, 104-105, 111
INNER JOIN keywords, SQL, 178
inner joins, 177
input forms. See data entry forms
inputs
analyzing input use cases, 42-44
interfaces for input use cases, 25
INSERT INTO command, SQL, 118

INDEX

insertion problems
incorrectly normalized tables, 140
integer data types, 118
interfaces for input use cases, 25
See also data entry forms
intermediate classes
many-to-many relationships, 132
INTERSECT keyword, SQL, 183
intersect operation, 182
irregularities. See exceptions

J
JADE
OO database systems, 214
JOIN keyword, SQL, 178
joins
indexes and joins, 186-187
inner joins, 177
outer joins, 180
queries on two+ tables, 177-181

K
keys
candidate keys, 159
concatenated keys, 123-126
description, 122
fields dependant on non primary key
field, 149-150
fields not dependant on all of primary
key, 147-149
foreign keys, 127-128
formal definition of, 144
primary keys, 122-126
choosing primary keys, 157-162
multiple primary keys exist, 150-151
surrogate keys, 123
keywords
See also categories
poor database design for, 3-5

L

list boxes
selecting from allowed values, 196
lists of values
using constraints not additional tables,
165

233

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

234

INDEX

maintaining data
use cases for, 48
managers
roles of database users, 47
many-to-many relationships, 131-133
functional dependencies, 143
intermediate classes, 132
relationships in OO data models, 213
representation in relational database,
115
spreadsheet implementation of data
models, 219, 221, 223
many-to-many relationships in data
models, 66-72
historic data, 66
intermediate class not required, 72
introducing intermediate class into, 67,
69, 71
meal delivery data model, 70-71
sports club data model, 67-68
student course data model, 69-70
MAX function, SQL, 174
meal delivery data model
analysis of tasks, 36-46
analyzing system objectives, 38-40
data required, 4042
input use cases, 42-44
many-to-many relationships, 70-71
output use cases, 45-46
restatement of objectives, 42
use case for reporting statistics, 46
user tasks, 36
data related to, 37-38
meal delivery database
changing prices, 50
classifying types of database users, 47
discounts, 50
first data model for, 44-45
order quantities, 51
output use cases for, 45-46
methods
data model, 15
inheritance and, 110
OO implementation of data model, 205,
208-209

Microsoft Access. See Access

money data types, 119

mulitvalued fields not normalized,
145-147

multiple inheritance, 107

roles as alternative to, 109

multiplicity of relationships in data

models, 18

N
nonclustered indexes, 187
normal forms, 145-151, 153-155
Boyce-Codd normal form, 150-151
fifth normal form, 153-155
first normal form, 145-147
fourth normal form, 153-155
second normal form, 147-149
third normal form, 149-150
normalization, 139-155
decomposition, 148
fields dependant on non primary key
field, 149-150
fields not dependant on all of primary
key, 147-149
functional dependencies, 142-145
incorrectly normalized tables
deletion problems, 141
insertion problems, 140
update anomalies, 140-142
mulitvalued fields not normalized,
145-147
multiple primary keys exist, 150-151
using data models or functional
dependencies, 151-153
normalized ranges
spreadsheet implementation of data
models, 221
NULL keyword, SQL, 120
null values
adding constraints on data values, 120
foreign keys, 129
SQL to create, 120
when to allow nulls, 120
nullifying delete
deleting referenced records, 168, 169
number data types, 119

INDEX 235

0 self relationships, 130
object identification (OID), 207 spreadsheet implementation of data
object-orientation models, 216-219, 222
0O database systems, 214 using constraints not additional tables,
using OO language with relational 164-167
database, 215 one-to-one relationships, 133-134
object-oriented implementation of data inheritance, 207
models, 205-215 representing inheritance in relational
classes and objects, 206-208 databases, 135
collections, 210-211 SQL to create, 164
complex types, 208-209 unique constraints, 163
implementation of data models, 222 0OO0. See object-orientation
methods, 208-209 optionality of relationships in data models
OO0 environments, 214-215 customer order data model, 58-59
persistent storage problem, 205 description, 18
representing relationships, 211-214 insect data model, 59-60 -
objects optionality of 0 or 1, 57-60 3
abstract classes, 106 representation in relational database, =
classes and, 16 115 a
classifying similar objects, 95-100 student course data model, 57-58 g
collections of, 210-211 ORDER BY keywords, SQL, 176 =
confusing with subclasses for ordering data, 176 =
inheritance, 102-103 ordering values =
data model, 15 choosing data types, 119 =
determining if class or object, 102 separating character data into multiple %_
objects belonging to multiple fields, 121 =
subclasses, 107-110 OUTER JOIN keywords, SQL, 180 :
00 implementation of data model, 205, outer joins, 180 g
206-208 basing reports on views, 200 »
relationships between objects of same output. See reports 8
class, 87-88, 93 output use cases 3
relationships in OO data models, 211 meal delivery database, 45-46
representation in relational database, reports for output use cases, 26
115 ownership relationships, 161
superclasses containing objects, P
105-107 | .
OID (object identification), 207 parent classes. See inheritance

ON DELETE keywords, SQL, 168 performance .
one-to-many relationships, 129-131 disadvantages of indexes, 185

data entry form based on multiple estimating effect of indexes, 187
tables, 195 permissions
: granting access permissions, 189

restricting access to forms, 198
persistent storage, 214
relationships in OO data models, 211 00 implementation of data model, 205

representation in relational database, php My{\dmln .
115 creating table in, 117

functional dependencies, 143
ownership relationships, 161
primary keys, 144

236 INDEX

prices, changing, 50
PRIMARY KEY keywords, SQL, 123
primary keys, 122-126
See also key fields
candidate keys, 159
choosing primary keys, 157-162
concatenated keys, 123-126
determining primary keys, 122-123
fields dependant on non primary key
field, 149-150
fields not dependant on all of primary
key, 147-149
formal definition of, 144
functional dependencies and, 143-145
generating ID numbers as, 157-159, 170
ID numbers or concatenated keys,
159-162
incorrectly normalized tables, 141
multiple primary keys exist, 150-151
one-to-many relationships, 144
redundancy, 145
referential integrity, 128
representing relationships in relational
databases, 126
SQL to specify, 123
surrogate keys, 123
project operation, 172-173
combining with select operation, 174
properties, data model, 15

Q

queries, 171-190
aggregated data, 174-176
indexes helping queries, 183-187
ordering data, 176
project operation, 172-173
queries on one table, 171-176
queries on two+ tables, 176-183
select operation, 173-174
views as queries, 188-190

real-world problems
See also analysis process
analysis of data-minding problem, 34
analysis of task automation problem, 35
developing an abstract model of, 31
first step to real-world solution, 31

real and abstract views of problems,
33-36
understanding the problem domain, 32
understanding the problem first, 31
value of hesitant answers to analysis, 32
records. See rows
redundant information
different routes between classes, 81-82
poor database design for repeated
information, 5-7
primary keys, 145
referential integrity
data entry form based on multiple
tables, 194
deleting referenced records, 167-170
foreign and primary keys, 128
restricting allowed values, 197
relational databases
adding constraints on data values,
120-121
checking character fields, 121-122
choosing data types, 118-119
converting data model into, 114-136
creating tables, 116-118
database development process, 114
deleting referenced records, 167-170
foreign keys, 127-128
functional dependencies, 142-145
indexes helping queries, 183-187
join operations, 177-181
many-to-many relationship, 131-133
normal forms, 145-151, 153-155
normalization, 139-155
one-to-many relationship, 129-131
one-to-one relationship, 133-134
primary keys, 122-126
choosing primary keys, 157-162
project operation, 172-173
queries, 171-190
queries on one table, 171-176
queries on two+ tables, 176-183
referential integrity, 128
representing inheritance in, 134-136
representing relationships in, 126-134
select operation, 173-174
set operations, 181-183
unique constraints, 162-164, 170

using OO language with relational
database, 215
views as queries, 188-190
relational operations
except operation, 182
intersect operation, 182
join operations, 177-181
project operation, 172-173
select operation, 173-174
set operations, 181-183
union operation, 182
relationships in data models, 16-19
cardinality, 18, 60-65
relationships with different
cardinalities, 19
cardinality of 1 or 2, 60-63
insect data model, 60-62
sports club data model, 62-63
cardinality where historic data exists,
63-65
departments data model, 64-65
insect data model, 65
sports club data model, 63-64
collections in OO systems, 210
data as attribute, class, or relationship,
75-77,92
data model expressed as UML class
diagram, 18
different routes between classes, 81-87,
93
many-to-many relationships, 66-72
intermediate class not required, 72
introducing intermediate class into,
67,69, 71
meal delivery data model, 70-71
sports club data model, 67-68
student course data model, 69-70
object-oriented models, 211-214
optionality, 18
optionality of 0 or 1, 57-60
customer order data model, 58-59
insect data model, 59-60
student course data model, 57-58
ownership relationships, 161

INDEX

primary keys, 122
relationships between objects of same
class, 87-88, 93
relationships involving 2+ classes,
89-92, 93
representing in Microsoft Access, 24
representing in relational databases,
126-134
small hostel example, 54
three or more interrelated classes,
153-155
two or more relationships between
classes, 78-81, 93
relationships in relational databases
foreign keys, 127-128
functional dependencies, 143
many-to-many relationship, 131-133
normalization based on data models or
functional dependencies, 151-153
one-to-many relationship, 129-131
one-to-one relationship, 133-134
representing inheritance in relational
databases, 135
self relationships, 130
three or more interrelated classes,
153-155
universal relation, 152
repeated columns
spreadsheet implementation of data
models, 219
repeated information
See also redundant information
poor database design, 5, 7
report based database design
examples of poor database design, 8-9
report footer, 200
report generator
grouping and summarizing reports, 202
reports, 199-204
basing reports on views, 199-200
grouping and summarizing reports,
202-204
main parts of reports, 200-202
reports for output use cases, 26
use cases for reporting information, 49

237

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

238

INDEX

user specifying condition for selecting
rows, 201
using ? for user input in, 201
roles
alternative to multiple inheritance, 109
associations with roles, 112
classifying activities of database users,
47
inheritance and, 108
routes between classes

See also different routes between classes

false information from a route (fan
trap), 84-85

gaps in routes between classes (chasm
trap), 85-87

redundant information, 81-82

routes providing different information,
83

rows

counting subset of rows, 175

data model representation of, 115

deleting referenced records, 167-170

DISTINCT keyword, 173

indexes helping queries find rows, 183

queries retrieving duplicate rows, 173

retrieving selection of, 173

retrieving selection in specified order,
176

select operation, 173-174

SQL to insert into tables, 118

S

second normal form, 147-149
security
granting access permissions, 189
using views for, 188
select operation, 173-174
combining with project operation, 174
SELECT statement, SQL, 173-174
aggregated data, 174-176
COUNT function, 174
DISTINCT keyword, 173, 175
GROUP BY keywords, 176
ORDER BY keywords, 176
retrieving all columns, 173
retrieving subset of rows in specified
order, 176

WHERE clause, 173
aggregated functions, 175
self relationships
foreign key representing, 131
one-to-many relationships, 130
relationships between objects of same
class, 87-88, 93
set operations, 181-183
software process, 12
sorting values, 119, 121
specialization
classifying similar objects, 97-98
inheritance and, 100
spreadsheet implementation of data
models, 215-221, 222
many-to-many relationships, 219-221,
223
one-to-many relationships, 216-219,
222
SQL
aggregating functions, 174-176
CHECK IN keywords, 120
COUNT function, 174
CREATE TABLE command, 117
CREATE VIEW command, 188
DISTINCT keyword, 173, 175
EXCEPT keyword, 183
FOREIGN KEY REFERENCES keywords,
128
GRANT keyword, 189
GROUP BY keywords, 176
INNER JOIN keywords, 178
INSERT INTO command, 118
INTERSECT keyword, 183
JOIN keyword, 178
MAX function, 174
NULL keyword, 120
ON DELETE keywords, 168
ORDER BY keywords, 176
OUTER JOIN keywords, 180
PRIMARY KEY keywords, 123
project operation, 172-173
select operation, 173-174
SELECT statement, 173-174
UNION keyword, 183
UNIQUE keyword, 163

WHERE clause, 173
aggregated functions, 175
subclasses
See also inheritance
classifying similar objects through
specialization, 97
confusing with associations for
inheritance, 103-104
confusing with objects for inheritance,
102-103
objects belonging to multiple
subclasses, 107-110
subforms
data entry form based on multiple
tables, 195
summarizing reports, 202-204
superclasses
See also inheritance
classifying similar objects through
generalization, 98
superclasses containing objects,
105-107
supervisors
roles of database users, 47
surrogate keys
primary keys, 123

T
tables
choosing data types, 118-119
choosing primary keys, 157-162
converting data model into relational
database, 115-122
creating tables, 116-118
data model representation of, 115
deleting referenced records, 167-170
entering data into, 118
fields dependant on non primary key
field, 149-150
fields not dependant on all of primary
key, 147-149
foreign keys, 127-128
generating ID numbers as primary keys,
157-159, 170
ID numbers or concatenated keys,
159-162

INDEX

incorrectly normalized tables
deletion problems, 141
insertion problems, 140
update anomalies, 140-142
indexes and joins, 186-187
mulitvalued fields not normalized,
145-147
normal forms, 145-151, 153-155
primary keys, 122-126
queries on one table, 171-176
queries on two+ tables, 176-183
representing relationships in relational
databases, 127
SQL to create tables, 117
with constraint, 120
three or more interrelated tables,
153-155
using constraints not additional tables,
164-167
task automation problem
real and abstract views of problems, 34
Text data type, Access, 118
third normal form, 149-150
time considerations. See historic data
time data types, 119
transient data, 214
traps in routes between classes
chasm trap, 85-87
fan trap, 84-85
triggers
constraints, 197
deleting referenced records, 169
types
See also data types
complex types in OO systems, 208
types as lists of values
using constraints not additional tables,
165

U
UML (Unified Modeling Language), 12
class diagrams, 14
data model expressed as UML class
diagram, 18
notation for classes, 15

239

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

240

INDEX

notation for use cases, 13
relationships, data models, 18
UNION keyword, SQL, 183
union operation, 182
unique constraints, 162-164, 170
one-to-one relationships, 163
SQL to create, 163
UNIQUE keyword, SQL, 163
universal relation, 152
update anomalies
incorrectly normalized tables, 140-142
use cases
actors, 47
analysis of larger projects, 47
analyzing input use cases, 42-44
description, 12
development process, 19-23
exceptions, 48
further reading on, 47
interfaces for input use cases, 25
maintaining data, 48
output use cases for meal delivery
database, 45-46
plant database, 14, 20, 22
reporting information, 49
reporting statistics for meal deliveries,
46
reports for output use cases, 26
roles, 47
UML notation for, 13
understanding the problem first, 31
university database, 192
user interface, 191-204
data entry forms, 191-199
constraints on forms, 196-198
forms based on multiple tables,
193-196
forms based on single table, 193

restricting access to forms, 198
web forms, 198
reports, 199-204
basing reports on views, 199-200
grouping and summarizing reports,
202-204
main parts of reports, 200-202
user specifying condition for
selecting rows, 201
analysis of tasks for meal delivery
system, 36, 37
classifying activities/types of database
users, 47

vV

validation tool
spreadsheet implementation of data
models, 218
VARCHAR data type, SQL, 118
views
See also queries
basing reports on views, 199-200
creating, 188
data entry, 188
granting access permissions, 189
security, 188
uses for, 188
views as queries, 188-190
VLOOKUP function
spreadsheet implementation of data
models, 217

W

web forms, 198
saving Access form as data access page,
198
WHERE clause, SQL, 173
aggregated functions, 175

	Beginning Database Design
	Table of Content
	Chapter 1 What Can Go Wrong.
	Chapter 2 Guided Tour of the Development Process
	Chapter 3 Initial Requirements and Use Cases
	Chapter 4 Learning from the Data Model.
	Chapter 5 Developing a Data Model
	Chapter 6 Generalization and Specialization
	Chapter 7 From Data Model to Relational Schema.
	Chapter 8 Normalization
	Chapter 9 More on Keys and Constraints
	Chapter 10 Queries
	Chapter 11 User Interface
	Chapter 12 Other Implementations
	CONCLUSION
	Index

