OREILLY

MySQL and

MariaDB

HEADING IN THE RIGHT DIRECTION
WITH MYSQL AND MARIADB

Russell J.T. Dyer

Learning MySQL and MariaDB

Russell J.T. Dyer

Beijing « Cambridge * Farnham « Kéln Sebastopol ¢ Tokyo

To Fortunata Serio, my mother, who gave me life, taught me to be kind and loving, and to
speak — which is a precursor to being a writer.

And to Andrew Gambos, who had the thankless job of being my stepfather, but taught me
how to assert myself in life and in my career.

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:

DRM-free ebooks — use your ebooks across devices without restrictions or limitations
Multiple formats — use on your laptop, tablet, or phone

Lifetime access, with free updates

Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take
advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.

Please note that upgrade offers are not available from sample content.

http://oreilly.com

Foreword

Before you begin to read the main chapters of this book to learn about MySQL and
MariaDB, it might be useful to understand what we were trying to accomplish when we
first created MySQL about 20 years ago and MariaDB about 5 years ago, as well as the
current state of these database systems and my expectations of them going forward. And
I’d like to encourage you in your decision to learn these database systems and to assure
you that they will be in use for a long time and that you will benefit from the time and
energy you put into reading this book and learning what it has to teach you.

Origins of MySQL

When my business partner David Axmark and I started MySQL, there weren’t any good,
free, open source database systems. There was mSQL, which wasn’t open source, but it
inspired us to create a new database system for our clients, which would later become
MySQL. We had no plans to do anything more with this embryo of MySQL other than
satisfy the needs of our clients. We were learning, discovering, and creating out of
practical concerns and needs, much as you might and perhaps should be doing as a reader
of this book and a newcomer to MySQL and MariaDB.

Although we had accomplished our task in creating a straightforward database to meet our
requirements, it wasn’t long before we noticed that there were many other organizations
that were looking for a solution similar to what we had already developed. So we decided
to make the software available to the public and we named it MySQL.

Part of our motivation for doing this was that we felt that it was a way in which we could
give something back to the open source community that would be very useful. Most open
source projects at that time weren’t as useful. We wanted to make the world a little better
— we had no idea at that time how much of an impact MySQL would have on the world.
At the same time, we were hoping that by going public with the software, it might finance
further development of MySQL for as long as we might want. We had expectations of
getting rich from MySQL. We hoped only to be able to work full-time on this project
because we believed in it. The result, though, was that we contributed much to the world
— much more than we thought possible.

Given the fact that over 80% of the websites in the world are now running on MySQL,
one could easily argue that we accelerated the growth of the internet and almost
everything that has grown out of it. The impact it’s had is immeasurable. Many of the sites
and businesses that have been successful, including the ones that are now huge, probably
would never have started if it were not for MySQL being free and dependable. At that
time, those founders and startup companies just didn’t have the financial resources to start
their sites. The cost of commercial database software was a barrier to some of the most
creative web-based organizations being launched, including organizations like Google,
Wikipedia, and Facebook. Plus, the commercial database systems posed other problems
for startups of that time. First, they were too slow — they weren’t optimized for the Web
and that was critical for organizations like these. The commecial alternatives were also too
difficult to use and manage, requiring higher paid developers.

Because of these factors, we were able to give fledgling organizations what they needed to
become the significant components of the Internet and a major part of the lives of most
people in the world today. We were a critical component of the development of the
Internet and we still are. There’s nothing to indicate that we won’t continue to be so. The
growth of MySQL and especially of MariaDB is increasing. It’s not decreasing as some
people expected with the introduction of new databases systems and methods such as
NoSQL.

MySQL became a dominant database system long ago. Once something becomes
dominant, it’s difficult to replace it. Even if something better comes along, people prefer
what’s already familiar to them and what they already know and are using. For something

to replace MySQL as the dominant open source database, it would have to be not only
critically better, but also offer a way for people to migrate without much effort, and
without wasting all of the knowledge they accumulated from their current system. This is
why MariaDB can replace MySQL.: it’s basically the same thing, but with more features
and more potential for the future.

State of MySQL and MariaDB

MySQL and MariaDB aren’t perfect — no database is that, nor will ever be that — but
MySQL and MariaDB are good enough for most people and they’re excellent in many
ways. The balance we strive for is to develop a database system that works easily on the
Web and has one of the fastest connectors. Thanks to the fact that we’re using threads, we
can handle much higher loads than other database systems. We used some of the most
advanced technologies available when we started MySQL and we have always striven to
adapt to new hardware and to optimize the software for all commonly used systems and
methods of deployment. Because we’re continuously improving the software, we can have
a new release each month for the community edition and we can have a new version every
year. That’s an indication that things are happening and improving regularly.

As someone learning and intending to use MySQL and MariaDB, you can take comfort in
that we are always improving and adjusting for a changing environment. You can count on
us for the future. I think that’s the main thing: people like that they can depend on us.
Although it may be fun and exciting to learn something new, after a while it can become
tiresome to have to learn a totally new system every couple of years. You won’t have to do
that with MySQL and MariaDB.

I mentioned before about how difficult it is to supplant a dominant software. In the case of
MariaDB, it’s not much of a change in practice for those who have been using MySQL.
As a result, most people can migrate to MariaDB without the usual obstacles, but they can
take advantage of the new features included in MariaDB and the ones that are planned
when they’re added. MariaDB is relevant because we continue to make improvements and
we care about giving developers what they need to get the most out of their databases.

Beyond the Server

In addition to web usage, MySQL and MariaDB can be used for stand-alone applications,
embedded with other software. Embedded MySQL and MariaDB are growing more than
ever. Many applications are moving to cloud environments, but database systems that
many businesses used in the past are typically too expensive to use in a cloud
environment. As a result, they need an inexpensive database system that is easily deployed
in a cloud environment. For this situation, MySQL and MariaDB are the obvious choices.

The use of mobile devices and websites and applications through mobile devices has
increased dramatically; for some sites, it now exceeds access and usage through desktop
computers. For sites and applications that run on mobile devices and use a database
located in the cloud or in house, we’re the best choice among all the open source and
commercial database systems. We have the best scale-out technologies for when your site
or application experiences major spikes in traffic or rapid growth in business. With the
encryption that we’re adding in version 10.1 of MariaDB, you can be assured that your
databases will be very secure by default. Most other database systems don’t have
encryption by default.

MariaDB: The Differences and Expectations

Regarding my hopes and expectations for the MariaDB database system, I’'m working at
the foundation to ensure that we get more companies actively involved in the development
of MariaDB. That’s something we lacked during the history of MySQL. We want to
develop something that will satisfy everyone — not only now, but for the future. To do
that, we need more organizations involved. We’re happy to see Google involved in the
MariaDB Foundation. I’d like to see 10 or 15 companies as significant as Google
involved. That’s something they’ve managed to do at FOSS, the Free and Open Source
Software Foundation. They have several companies that assist in development. That’s
their strength. Their weakness is that they don’t have one company coordinating the
development of software. My hope is that the MariaDB Foundation will act as a
coordinator for the effort, but with many companies helping. That would benefit everyone.
It is this collaborative effort that I don’t expect from Oracle regarding MySQL. That’s the
difference and advantage of MariaDB. With Oracle, there’s no certainty in the future of
the open source code of MySQL. With MariaDB, by design it will always be open source
and everything they do will be open source. The foundation is motivated and truly want to
be more closely aligned with open source standards.

The MariaDB Foundation was created to be a sanctuary. If something goes wrong in the
MariaDB Corporation, the Foundation can guarantee that the MariaDB software will
remain open — always. That’s its main role. The other role is to ensure that companies
that want to participate in developing MariaDB software can do so on equal terms as
anyone else because the foundation is there. So if someone creates and presents a patch for
MariaDB software, they can submit it to be included in the next release of MariaDB. With
many other open source projects, it’s difficult to get a patch included in the software. You
have to struggle and learn how to conform to their coding style. And it’s even harder to get
the patch accepted. In the case of MySQL with Oracle, it could be blocked by Oracle. The
situation is inherently different with MariaDB.

For example, if Percona, a competitor of MariaDB Corporation, wants to add a patch to
MariaDB software that will help their background program XtraBackup to run better, but
the management of MariaDB Corporation doesn’t like that it would be helping their
competitor, it doesn’t matter. MariaDB Corporation has no say in which patches are
adopted. If the Foundation accepts the patch, it’s added to the software. The Foundation
review patches on their technical merits only, not based on any commercial agenda.

The open source projects that survived are those that were created for practical reasons.
MySQL wasn’t in the beginning the best database solution. People complained that it
didn’t have many features at that time. However, it was always practical. It solved
problems and met the needs of developers and others. And it did so better than other
solutions that were supposedly better choices. We did that by actively listening to people
and with a willingness to make changes to solve problems. Our goal with MariaDB is to
get back to those roots and be more interactive with customers and users. By this method,
we can create something that might not be perfect for everyone, but pretty good.

The Future of MySQL and MariaDB

As for the future, if you want MariaDB to be part of your professional life, I can assure
you that we will do everything possible to support and develop the software. We have
many brilliant people who will help to ensure MariaDB has a long future.

In the near term, I think that MariaDB version 10.1 will play a large role in securing the
future of MariaDB. It offers full integration with Galera cluster — an add-on for MariaDB
for running multiple database servers for better performance — because of the new
encryption features. That’s important. In recent months, all other technologies have been
overshadowed with security concerns because the systems of some governments and
major companies have been hacked. Having good encryption could have stopped most of
those attacks from achieving anything. These improvements will change the perception
that open source databases are not secure enough. Many commercial database makers
have said that MySQL and MariaDB are not secure, and they have been able to convince
some businesses to choose a commercial solution instead as a result. With MariaDB 10.1,
though, we can prove easily that their argument is not true. So that’s good. If you’ve
chosen to use MariaDB, you can make this point when you’re asked about the difference
between MySQL and MariaDB, and you can feel good about your choice over the long
term for this same reason.

Looking at the future, many companies are leery about using commercial database
software because they don’t know for sure if the compiled code contains backdoors for
accessing the data or if there is some special way in which the software is using
encryption that could allow hackers to get at their databases. On the other hand, countries
like Russia and China question whether open source databases are secure. The only way
we can assure them of that is to provide access to the source code, and that means they
must use open source software. So I do hope and expect that in the future we will see
MySQL and MariaDB growing rapidly in these countries and similar organizations,
because we can address their concerns when commercial solutions cannot. Ironically, a
more transparent software system is preferred by a less transparent government. It’s better
not only for less transparent organizations, but also for those that want to keep their
databases more secure. This applies to an organization that wants to keep their data private
and doesn’t want someone else such as a hacker, or a competitor, a government to have
access to their data.

Your Future in Learning MySQL and MariaDB

Both MySQL and MariaDB follow the SQL convention for database languages, which
was created about 30 years ago. The nice thing about SQL is that it hasn’t changed much
in the last 30 years. Mostly, one can do more with it. So if you learn one SQL system well,
you can easily make a transition to another. The basic concepts that you’ll acquire in
learning an SQL system like MySQL or MariaDB, will be useful for your entire career as
a database developer or administrator. There’s nothing to indicate that MySQL or
MariaDB will go away for the next 50 years. All of the concepts for the past 20 years of
MySQL are the same as they are today and will probably be the same for the next several
decades. There are just some new features and tools to be able to do extra tasks. But the
skills you always need are basic ones and they’re contained in this book. These skills are
ones that will always be of benefit to you.

Advice on Learning MySQL and MariaDB

You shouldn’t just read this book. You should install MySQL or MariaDB, try executing
the examples given, and complete the exercises at the end of each chapter. You should also
try to do something useful with the software and the SQL statements and functions
described in each chapter. You should use the tools or utilities presented. If you don’t get
practical experience, any book like this one will be useless to you. If you’re not sure what
you can do to get practical experience, perhaps you could try to build a website using
MySQL or MariaDB. Try to solve some data-related problem with one of these database
systems. Begin to make it part of your life. Then what you’re learning may help you
immediately in some way. By this method, you will become more excited by what you’re
learning. You will better learn the basics by using the software from almost the beginning.

Another way to learn more, as well as make yourself known in the community and to
develop a business network that could lead to more work and better jobs, is by
participating in the forums and mailing lists and IRC channels for MySQL and MariaDB.
By using what you’re learning to help others, you’ll not only become popular, but you’ll
learn more in the process of having to explain the concepts you’ll learn in this book.

— Monty Widenius
Malaga, Spain, January 2015

Preface

MySQL is the most popular open source database system available. It’s particularly useful
for public websites that require a fast and stable database. Even if you’re not familiar with
MySQL, you’ve used it many times. You use it when you use Google, Amazon, Facebook,
Wikipedia, and many other popular websites. It’s the keeper of the data behind huge
websites with thousands of pages of data, and small sites with only a few pages. It’s also
used in many non-web-based applications. It’s fast, stable, and small when needed.

The software was started by Michael “Monty” Widenius and David Axmark in 1995 and
is licensed under the GNU General Public License. In time, they founded the Swedish
company MySQL Ab (the Ab stands for aktiebolag, or stock company), which years later
became MySQL, Inc., incorporated in the United States. In January 2008, the company
was acquired by Sun Microsystems, which seemed promising for the future of the
software. But in April 2009 Oracle — a major competitor of MySQL that offers closed
source database software — acquired Sun. Many worried at the time that this acquisition
would eventually end MySQL software as a free, open source alternative on which much
of the Web and many sites that have changed the world were built. Five years after the
acquisition, this hasn’t proved to be the case. Many new features have been added to
MySQL and the number of MySQL developers within and outside of Oracle has increased.

Displeased that Oracle took control of MySQL software, Monty started a new company

(Monty Program Ab) that has developed a fork of the software called MariaDB.[!
Because MySQL software is licensed with the GPL, it is possible to freely and legally use
the MySQL software and add to it. At the same time, Ulf Sandberg, the former Senior
Vice President of Services at MySQL, Inc., along with other former employees of
MySQL, left Sun and Oracle and started SkySQL Ab, providing support, consulting,
training, and other services related to MySQL and MariaDB software. As of October
2013, Monty Program has merged into SkySQL, which was renamed to MariaDB Ab in
October 2014. The software license, though, is now held by the MariaDB Foundation so
that it cannot be bought by Oracle or any other corporation.

As for the community related to the software, some have been migrating to MariaDB,
preferring software not associated with a large proprietary software company. Many
operating systems distributors, hardware makers, and software packagers are now
shipping their products with MariaDB, either together with MySQL or without it. Many
websites that used MySQL software have switched to MariaDB. It’s easy to do, and for
most sites it requires no changes to applications that use MySQL — not a single line of
code needs to be changed to switch to MariaDB. If you want to take advantage of new,
advanced features of MariaDB, it is necessary to add or change code in an application that
previously used MySQL, bu the rest is the same.

Although ownership, company names, and even the name of the software has changed, the
vision that began almost 30 years ago and the spirit that has grown strong and vibrant in
the community is the same and continues in MariaDB.

If you want to learn about MySQL and MariaDB software, you can do it. It’s not difficult
to understand or to use. This book has been written to be a primer for newcomers to

MySQL and MariaDB, to get you started and help you be productive quickly. It’s also
useful for beginners who have learned only parts of MySQL and feel that there may be
key aspects used commonly that they don’t know, that they somehow missed or skipped
over when first learning it. At the beginner level, there is no difference between MySQL
and MariaDB. So when you learn one, you learn the other. Because of this, the names
MySQL and MariaDB are used interchangeably.

Reading Strategy

The chapters of this book are written and ordered based on the assumption that the reader
will read them in order. This does not assume that some chapters won’t be skipped; it’s
assumed that most will skip Part I. For instance, in addition to skipping Chapter 1, the
introductory chapter, if MySQL is already installed on your computer, you would probably
skip Chapter 2, which covers installing MySQL and MariaDB. If you’ve never used
MySQL, you probably should read Chapter 3, The Basics and the mysql Client. After that,
all readers should read sequentially the chapters contained in the Parts II, III, and I'V. The
remaining chapters, contained in Part V, relate to administration and not all of those may
be of use to you early on.

Most of the chapters conclude with a set of exercises. The exercises are designed to help
you think through what you’ve read in the chapter. Working through the exercises will
help reinforce what you should have learned from the examples in the chapter.
Incidentally, it’s useful to try entering the examples throughout the chapters for more
practice. The exercises at the end of the chapters depend on a building of knowledge, if
not from one chapter to the next, at least from previous chapters.

Text-Based Interface and Operating Systems

Many people feel that graphical user interfaces (GUIs) are faster when using a complex
software program or system. This accounts for the popularity of Windows programs.
However, while it is said that a picture is worth a thousand words, when you want to say
only one word, you don’t need to draw a picture. You don’t need to use an elaborate GUI
to make a minute change to a database.

In particular, I don’t like GUISs for controlling a server or MySQL. Interfaces tend to
change between versions of the interface. Command-line utilities are very stable and their
basic commands don’t usually change. If you know how to configure a server at the
command line, it matters little what kind of server you’re entering commands on. Any
examples in this book that are executed within MySQL are universal. Examples shown at
the command line are for Unix-like operating systems (e.g., Linux). I leave it to readers to
make the necessary adjustments for their particular operating systems (i.e., how to get to
the command prompt).

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

TIP

This icon signifies a tip, suggestion, or general note.

CAUTION

This icon indicates a warning or caution.

Using Code Examples

All of the scripts and programs shown in the book are available for you to easily copy and
modify for your own use. They can be found on the Web at
http://mysqlresources.com/files.

This book is here to help you learn MySQL and MariaDB and to get your job done in
relation to this software. In general, if this book includes code examples, you may use the
code in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning MySQL and MariaDB by Russell
J.T. Dyer (O’Reilly). Copyright 2015 Russell J.T. Dyer, 978-1-449-36290-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
you may contact us at permissions@oreilly.com to request special permission.

http://mysqlresources.com/files
mailto:permissions@oreilly.com

Safari® Books Online

NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/lrng_mysql_and_mariadb.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/lrng_mysql_and_mariadb
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to my colleagues Colin Charles, Kenneth Dyer, Chad Hudson, Caryn-Amy Rose,
and Sveta Smirnova for reviewing this book for technical accuracy and for advice and
other information critical to its creation. Thanks to my editor, Andy Oram, for his help and
his confidence in me over the many years I’ve known him. Thanks to my two bosses from
the MySQL and MariaDB world: Ulf Sandberg and Max Mether, both of whom worked at
MySQL AB and SkySQL/MariaDB Ab. Both of them have been very encouraging and
excellent managers. Thanks also to my friend and coworker, Rusty Osborne Johnson for
her friendship and patience while working on this book.

[1] Incidentally, MySQL is named for Monty Widenius’ first daughter, My Widenius. MariaDB is named for his second
daughter, Maria Widenius.

Part I. The Software

At the heart of what is collectively known as MySQL and MariaDB is the server. The term
server in this context refers to software, not a primary computer on which it may be
running. The server maintains, controls, and protects your data, storing it in files on the
computer where the server is running in various formats. The server listens for requests
from other software that is running (called clients in this context). The term client refers to
software, not a computer. A client and server software may be running on the same
computer, which can be a personal laptop computer.

We’ll start by using a command-line client where you type in requests manually. Then
we’ll graduate to issuing the requests from programs that can back up web servers and
other uses for the data. It’s not necessary for you to know all of the files and programs that
make up MySQL. There are, though, a few key ones of which you should be aware.

One key program is the server itself, mysqld (the d stands for daemon and is a common
term for a server). The name is the same in both MySQL and MariaDB. This daemon must
be running in order for users to be able to access data and make changes. As an
administrator, you have the ability to configure and set mysqld to suit your database
system needs. The daemon is mentioned where relevant in various chapters throughout
this book.

Another key program, used extensively through this book, is the basic MySQL client,
called simply, mysql. With it, you can interact with the mysqld daemon, and thereby the
databases. It’s a textual user interface. There’s nothing fancy about it — a mouse is not
needed to use it. You simply type in the SQL statements that you will learn about in this
book. The results of queries are displayed in ASCII text. It’s very clean looking, but no
graphics are involved. It’s also very fast, as there’s nothing but text (i.e., there are no
binaries or image files). We’ll cover this in Chapter 3. There are GUI clients available, but
because most MySQL developers and administrators prefer the mysql client, and what you
type in mysql is the same as what is passed to the server by a GUI client, I cover it
exclusively.

Chapter 1. Introduction

MySQL is an open source, multithreaded, relational database management system created
by Michael “Monty” Widenius in 1995. In 2000, MySQL was released under a dual-
license model that permitted the public to use it for free under the GNU General Public
License (GPL). All of this, in addition to its many features and stability, caused its
popularity to soar.

It has been estimated that there are more than six million installations of MySQL
worldwide, and reports of over 50,000 downloads a day of MySQL installation software.
The success of MySQL as a leading database is due not only to its price — after all, other
cost-free and open source databases are available — but also its reliability, performance,
and features. MariaDB is rapidly becoming the replacement to MySQL, and is seen by
many as the heir apparent to the spirit of the MySQL community.

If you’re embarking on a career in computer programming, web development, or
computer technology more generally, learning MySQL and MariaDB will prove useful.
Many businesses develop and maintain custom software with MySQL. Additionally, many
of the most popular websites and software use MySQL for their database — or they use
another SQL database system that you can learn once you understand MySQL. It’s highly
likely that you will be required to know or will benefit from knowing MySQL during the
course of working as a database or website developer. Therefore, learning MySQL and
MariaDB is a good foundation for your career in computer technology.

The Value of MySQL and MariaDB

Many features contribute to MySQL’s standing as a superb database system. Its speed is
one of its most prominent features (refer to its benchmarks page for its performance over
time). MySQL and MariaDB are remarkably scalable, and are able to handle tens of
thousands of tables and billions of rows of data. They can also manage small amounts of
data quickly and smoothly, making them convenient for small businesses or amateur
projects.

The critical software in any database management system is its storage engine, which
manages queries and interfaces between a user’s SQL statements and the database’s back-
end storage. MySQL and MariaDB offer several storage engines with different
advantages. Some are transaction-safe storage engines that allow for rollback of data (i.e.,
the often needed undo feature so familiar in desktop software). Additionally, MySQL has a
tremendous number of built-in functions, which are detailed in several chapters of this
book. MariaDB offers the same functions and a few more. MySQL and MariaDB are also
very well known for rapid and stable improvements. Each new release comes with speed
and stability improvements, as well as new features.

http://www.mysql.com/it-resources/benchmarks

Mailing Lists and Forums

When learning MySQL and MariaDB, and especially when first using MySQL for your
work, it’s valuable to know where to find help when you have problems with the software
and your databases. For problems that you may have with your databases, you can receive
assistance from the MySQL community at no charge through several Oracle-hosted
forums. You should start by registering on the forums so that you may ask questions, as
well as help others. You can learn much when helping others, as it forces you to refine
what you know about MySQL. You can find similar resources related to MariaDB on
MariaDB Ab’s website.

When you have a problem with MySQL, you can search the forums for messages from
others who may have described the same problem that you are trying to resolve. It’s a
good idea to search the forums and the documentation before starting a new topic in the
forums. If you can’t find a solution after searching, post a question. Be sure to post your
question in the forum related to your particular topic.

http://forums.mysql.com/
https://mariadb.com/resources/community-tools

Other Books and Other Publications

MariaDB provides online documentation of their software that generally applies to
MySQL software. Oracle provides extensive online documentation for the MySQL server
and all of the other software it distributes. The documentation is organized by version of
MySQL. You can read the material online or download it in a few different formats (e.g.,
HTML, PDF, EPUB). In PDF and EPUB, you can download a copy to an ereader. I
maintain a website that contains some documentation and examples derived from my
book, MySQL in a Nutshell (2008). Other people have also contributed examples and other
materials to the site.

In addition to the book that you’re now reading, O’Reilly publishes a few other MySQL
books worth adding to your library. O’Reilly’s mainline reference book on MySQL is
written by me, MySQL in a Nutshell. For solving common practical problems, there’s
MySQL Cookbook (2006) by Paul DuBois. For advice on optimizing MySQL and
performing administrative tasks, such as backing up databases, O’Reilly has published
High Performance MySQL (2012) by Baron Schwartz, Peter Zaitsev, and Vadim
Tkachenko. At MySQL, Inc., I worked with the writers of both MySQL Cookbook and
High Performance MySQL, and they are authorities on the topic and well respected in the
MySQL community.

O’Reilly also publishes several books about the MySQL application programming
interfaces (APIs). For PHP development with MySQL, there’s Learning PHP, MySQL,
JavaScript, CSS, and HTML5 (2014) by Robin Nixon. For interfacing with Perl to MySQL
and other database systems, there’s Programming the Perl DBI (published in 2000 and
still very useful) by Alligator Descartes and Tim Bunce. To interface to MySQL with Java,
you can use the JDBC and JConnector drivers; George Reese’s book, Database
Programming with JDBC & Java (2000) is a useful resource on this topic.

In addition to published books on MySQL, a few websites offer brief tutorials on using
MySQL. Incidentally, I’ve contributed a few articles to O’Reilly blogs and several other
publications on MySQL and related topics. MySQL’s site also provides some in-depth
articles on MySQL. Many of these articles deal with new products and features, making
them ideal if you want to learn about using the latest releases available even while they’re
still in the testing stages. All of these online publications are available for no cost, except
the time invested in reading them. If you are a MySQL support customer, though, you can
get information about MySQL from their private Knowledge Base, of which I was the
editor for many years.

Once you’ve mastered the material in this book, if you require more advanced training on
MySQL, MariaDB, or related topics, MariaDB Ab offers training courses. Some are for
one or two days, others are week-long courses offered in locations around the world. You
can find a list of courses and when they’re offered on MariaDB Ab’s training page. I’'m
currently the Curriculum Manager for MariaDB Ab.

https://mariadb.com/kb/en/mariadb/documentation/
http://dev.mysql.com/doc
http://mysqlresources.com
http://shop.oreilly.com/product/9780596514334.do
http://shop.oreilly.com/product/0636920032274.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920036463.do
http://shop.oreilly.com/product/9781565926998.do
http://shop.oreilly.com/product/9781565926165.do
http://dev.mysql.com/tech-resources/articles
http://www.skysql.com/products/mysql-training

Chapter 2. Installing MySQL and
MariaDB

The MySQL and MariaDB database server and client software works on several different
operating systems, notably several distributions of Linux, Mac OS X, FreeBSD, Sun
Solaris, and Windows.

This chapter briefly explains briefly the process of installing MySQL or MariaDB on
Linux, Mac OS X, and Windows operating systems. For some operating systems, this
chapter has additional sections for different distribution formats. For any one platform,
you can install MySQL by reading just three sections of this chapter: the next section on
choosing a distribution; the section that applies to the distribution that you choose; and
Post-Installation at the end of the chapter. There’s no need to read how to install every
version of MySQL.

The Installation Packages

The MySQL and MariaDB packages come with several programs. Foremost is the server,

represented by the mysqld daemon.[?) It has the same name in both MySQL and MariaDB.
This daemon is the software that actually stores and maintains control over all of the data
in the databases. The mysqld daemon listens for requests on a particular port (3306, by
default) by which clients submit queries. The standard MySQL client program is called
simply mysql. With this text-based interface, a user can log in and execute SQL queries.
This client can also accept queries from text files containing queries, and thereby execute
them on behalf of the user or other software. However, most MySQL interaction is done
by programs using a variety of languages. The interfaces for Perl, PHP, and others are
discussed in Chapter 16.

A few wrapper scripts for mysqld come with the server installation. The mysqld_safe script
is the most common way to start mysqld, because this script can restart the daemon if it
crashes. This helps ensure minimal downtime for database services. You don’t need to
know the details of how all of this works if you’re just starting to learn MySQL and
MariaDB, but it gives you a sense of how powerful and versatile this database system can
be.

MySQL, and thereby MariaDB, also comes with a variety of utilities for managing the
server. The mysqlaccess tool creates user accounts and sets their privileges. The
mysqladmin utility can be used to manage the database server itself from the command
line. This kind of interaction with the server includes checking a server’s status and usage,
and shutting down a server. The mysqglshow tool may be used to examine a server’s status,
as well as information about databases and tables. Some of these utilities require Perl, or
ActivePerl for Windows, to be installed on the server. See the Perl site to download and
install a copy of Perl on non-Windows systems, and the ActivePerl site to download and
install a copy of ActivePerl on Windows systems.

MySQL and MariaDB also come with a few utilities for importing and exporting data
from and to databases. The mysqldump utility is the most popular one for exporting data
and table structures to a plain-text file, known as a dump file. This can be used for backing
up data or for copying databases between servers. The mysqgl client can be used to import
the data back to MySQL from a dump file. These topics and utilities are explained in
detail in Part I.

You can opt not to install the helper utilities. However, there’s no cost for them and they’re
not large files. So you may as well install and use them.

http://www.perl.org
http://www.activestate.com/activeperl

Licensing

Although MySQL can be used for free and is open source, the company that develops
MySQL — currently Oracle — holds the copyright to the source code. The company
offers a dual-licensing program for its software: one allows cost-free use through the GPL
under certain common circumstances, and the other is a commercial license requiring the
payment of a fee. They’re both the same software, but each has a different license and
different privileges. The website for the Free Software Foundation, which created the
GPL, has details on the license.

Oracle allows you to use the software under the GPL if you use it without redistributing it,
or if you redistribute it only with software that is licensed under the GPL. You can even
use the GPL if you redistribute MySQL with software that you developed, as long as you
distribute your software under the GPL as well. This is how MariaDB was created and
why it is a legal fork of MySQL.

However, if you have developed an application that requires MySQL for its functionality
and you want to sell your software with MySQL under a non-free license, you must
purchase a commercial license from Oracle. There are other scenarios in which a
commercial license may be required. For details on when you must purchase a license, see
the MySQL legal site.

Besides holding the software copyright, Oracle also holds the MySQL trademark. As a
result, you cannot distribute software that includes MySQL in its name. None of this is
important to learning how to use MySQL, but it’s good for you to be aware of these things
for when you become an advanced MySQL developer.

http://www.fsf.org/licenses/license-list.html
http://www.mysql.com/about/legal

Finding the Software

You can obtain a copy of MySQL from MySQL’s site, which requires an Oracle login but
is still free, or from one of its mirror sites. You can instead download MariaDB, which

contains the latest release of MySQL and some additional features. You can get a copy of
MariaDB from the MariaDB Foundation site, which is also free and requires registration.

When downloading the software on both sites, you’ll have to provide some information
about yourself, your organization, and how you intend to use the software. They’re
collecting information to understand how the software is used and to give to their sales
department. But if you indicate that you don’t want to be contacted, you can just download
the software and not have to interact further with them.

If your server or local computer has MySQL or MariaDB installed on it, you can skip this
chapter. If you’re not sure whether MySQL or MariaDB is running on the computer you’re
using, you could enter something like this from the command line of a Linux or Mac
machine:

ps aux | grep mysql

If MySQL is running, the preceding command should produce results like the following:

2763 ? 00:00:00 mysgld_safe
2900 ? 5-23:48:51 mysqld

On a Windows computer, you can use the tasklist tool to see whether MySQL is running.
Enter something like the following from the command line:

tasklist /fi "IMAGENAME eq mysqld"

If it’s running, you will get results like this:

Image Name PID Session Name Session# Mem Usage

mysqld.exe 1356 Services 0 212 K

If it’s not running, you may get results like this from tasklist:

INFO: No tasks are running which match the specified criteria.

This isn’t conclusive proof that you don’t have MySQL installed. It just shows that the
daemon isn’t running. You might try searching your computer for mysqld, using a file
manager or some other such program. You might also try running mysgladmin, assuming
it’s installed on your server, and use the first line shown here to test MySQL (an example
of the results you should see follow):

mysqladmin -p version status

mysgladmin Ver 9.0 Distrib 5.5.33a-MariaDB, for Linux on 1686
Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.

Server version 5.5.33a-MariaDB

Protocol version 10

Connection Localhost via UNIX socket

UNIX socket /var/1lib/mysql/mysql.sock
Uptime: 30 days 23 hours 37 min 12 sec

Threads: 4 Questions: 24085079 Slow queries: @ Opens: 10832 Flush tables: 3
Open tables: 400 Queries per second avg: 8.996 Uptime: 2677032 Threads: 4
Questions: 24085079 Slow queries: © Opens: 10832 Flush tables: 3

Open tables: 400 Queries per second avg: 8.996

If one of these tests shows that MySQL is running on your computer, you may move onto

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mirrors.html
https://downloads.mariadb.org/mariadb/

Chapter 3. If MySQL is not running, it may be just that you need to start it. That’s covered
in this chapter, at the end of each section for each version of MySQL. Look for the section
related to your distribution of MySQL or MariaDB (e.g., Mac OS X) and skip to the end
of that section to see how to start the daemon. Try then to start it. If it starts, skip to the
end of this chapter and read Post-Installation. There are a few important points made in
that section, in particular some security steps you should follow. If you’re unable to start
the daemon, though, read the whole section for the distribution you choose.

Choosing a Distribution

Before beginning to download an installation package, you must decide which version of
MySQL or MariaDB to install. For MySQL, the best choice is usually the latest stable
version recommended by Oracle on its site, the version called the generally available (GA)
release. This is the best way to go if you’re new to MySQL. There’s no need as a beginner
to use a beta version, or a development release. Unless you have a support contract with
Oracle, which would provide you access to the Enterprise version of MySQL, you will
have to use the MySQL Community Server version. For a beginner, it’s essentially the
same as the Enterprise version.

For MariaDB, the latest GA release will be the current stable version. You can download it
from the MariaDB Foundation’s download page.

When installing one of these database systems, you also have the option of using either a
source distribution or a binary distribution. The binary distribution is easier to install and
is recommended. Use a source distribution only if you have special configuration
requirements that must be set during the installation or at compile time. You may also
have to use a source distribution if a binary distribution isn’t available for your operating
system. Otherwise, install the binary; there’s no need to make installation difficult when
your goal at this point should be to learn the basics of MySQL.

https://downloads.mariadb.org/mariadb/

The AMP Alternatives

The following sections describe different methods for downloading and installing MySQL
or MariaDB for different operating systems, in different formats. An easy method, though,
is to use one of the _AMP packages. These letters stand for Apache, MySQL/MariaDB,
and PHP/Perl/Python. Apache is the most popular web server. PHP is the most popular
programming language used with MySQL. An AMP package or stack is based on an
operating system: the Linux stack is called LAMP, the Macintosh stack is called MAMP,
and the Windows stack is called WAMP. If you download and install one of these stacks, it
will install Apache, MySQL, PHP, and any software upon which they depend on your
local computer or server. It’s a simple, turnkey method. If you install MySQL using a
stack installation, you still need to make some post-installation adjustments. They’re
explained in the last section of this chapter. So after installing, skip ahead to it.

Sites for these packages include:

m The Apache XAMPP site for the latest Linux version (the extra P in LAMPP stands for
Perl). Even though the site calls the package XAMPP instead of LAMPP, it’s the same
thing.

m The SourceForge MAMP site for the latest Mac version.

m The EasyPHP WAMP site for the latest Windows vision.

All of these packages have easy-to-follow installation programs. The default installation
options are usually fine.

Linux Binary Distributions

If your server is running on a version of Linux that installs software through the RPM
package format (where RPM originally stood for RedHat Package Manager) or the DEB
package format (where DEB stands for Debian Linux), it is recommended that you use a
binary package instead of a source distribution. Linux binaries are provided based on a
few different Linux distributions: various versions of Red Hat, Debian, SuSE Linux. For
all other distributions of Linux, there are generic Linux packages for installing MySQL.
There are also different versions of a distribution related to the type of processor used by
the server (e.g., 32-bit or 64-bit).

Before proceeding, though, if you have the original installation disks for Linux, you may
be able to use its installation program to easily install MySQL from the disks. In this case,
you can skip the remainder of this section and proceed to Post-Installation. If your
installation disks are old, though, they may not have the latest version of MySQL. So you
may want to install MySQL using the method described in the following paragraphs.

For each version of MySQL, there are a few binary installation packages that you can
download: the MySQL Server, the Shared Components, the Compatibility Libraries, Client
Utilities, Embedded, and the Test Suite. The most important ones are the Server, the Client
Utilities, and the Shared Components. In addition to these main packages, you may also
want to install the one named Shared Libraries. It provides the files necessary for
interacting with MySQL from programming languages such as PHP, Perl, and C. The
other packages are for advanced or special needs that won’t be discussed in this book and
that you may not need to learn until you’re a more advanced MySQL developer.

http://www.apachefriends.org/en/xampp-linux.html
http://sourceforge.net/projects/mamp/
http://www.easyphp.org/download.php

The naming scheme for these packages is generally MySQL-server-version.rpm, MySQL-
client-version.rpm and MySQL-shared-version.rpm, where version is the actual version
number. The corresponding package names for Debian-based distributions end in .deb
instead of .rpm.

To install .rpm files after downloading them to your server, you can use the rpm utility or
something more comprehensive like yum. yum is better about making sure you’re not
installing software that conflicts with other things on your server. It also upgrades and
installs anything that might be missing on your server. In addition, it can be used to
upgrade MySQL for newer editions as they become available. On Debian-based systems,
apt-get is similar to yum. For MySQL, Oracle provides a yum repository and an apt
repository. For MariaDB, there is a repository configuration tool for each operating
system.

To install the binary installation files for MySQL using yum, you would enter something
like the following from the command line on the server:

yum install MySQL-server-version.rpm \

MySQL-client-version.rpm MySQL-shared-version.rpm
You would, of course, modify the names of the RPM or DEB files to the precise name of
the packages you want to install. The yum utility will take you through the installation
steps, asking you to confirm the installation, any removals of conflicting software, and any
upgrades needed. Unless the server is a critical one for use in business, you can probably
agree to let it do what it wants.

To install the binary installation files for MariaDB using yum, you would enter something
like the following from the command line on the server:

yum install MariaDB-server MariaDB-client

To install MySQL or MariaDB using the rpm utility, enter something like the following
from the command line in the directory where the RPM files are located:

rpm -ivh MySQL-server-version.rpm \

MySQL-client-version.rpm MySQL-shared-version.rpm
If an earlier version of MySQL is already installed on the server, you will receive an error
message stating this problem, and the installation will be canceled. If you want to upgrade
an existing installation, you can replace the -i option in the example with an upper case -
U like so:

rpm -Uvh MySQL-server-version.rpm

MySQL-client-version.rpm MySQL-shared-version.rpm
When the RPM files are installed, the mysqld daemon will be started or restarted
automatically. Once MySQL is installed and running, you need to make some post-
installation adjustments, as explained in Post-Installation. So skip ahead to it.

Mac OS X Distributions

Recent versions of Mac OS X no longer come with MySQL installed, but previous ones
did — they stopped shipping it after Oracle took over MySQL. If your computer started
with an older version, it may already be installed, but not running. To see if you have
MySQL installed on your system, open the Terminal application (located in
Applications/Utilities). Once you have a command prompt, enter the first line shown here

http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/
https://downloads.mariadb.org/mariadb/repositories/

(the results you should see are on lines 2—4):
whereis mysql mysqld mysgld_safe

/usr/bin/mysql

/usr/bin/mysqld

/usr/bin/mysqgld_safe
If you get the results just shown, MySQL is installed on your computer. Check now
whether the MySQL daemon (mysqld) is running. Enter the following from the command
line:

ps aux | grep mysql

If it shows that mysqld is running, you don’t need to install it, but skip instead to Post-
Installation.

If the daemon is present on your system but not running, enter the following from the
command line as root to start it:

/usr/bin/mysqld_safe &

If MySQL is not installed on your Mac system or you want to upgrade your copy of
MySQL by installing the latest release, directions are included in the remainder of this
section. If MySQL isn’t already installed on your system, you may need to create a system
user named mysql before installing MySQL. Oracle’s MySQL package automatically
creates a user called _mysql.

Binary file packages (DMG files) are available for installing MySQL. For Mac servers
that do not have a GUI or a desktop manager, or for when you want to install it remotely,

there are TAR files for installing MySQL.[2] Whether you will be downloading a DMG
file or a TAR file, be sure to download the package related to the type of processor on
your server (e.g., 32-bit or 64-bit), and for the minimum version of the server’s operating
system (e.g., Mac OS X, version 10.6 or higher).

If an older version of MySQL is already installed on your server, you will need to shut
down the MySQL service before installing and running the newer version or replacing it
with MariaDB. You can do this with the MySQL Manager Application, which is a GUI
application that was probably installed when the operating system was first installed along
with MySQL. It’s typically installed on recent versions of Mac OS X by default. If your
server doesn’t have the MySQL Manager Application, you can enter the following from
the command line to shut down the MySQL service:

/usr/sbin/mysgladmin -u root -p shutdown

If you’ve never used MySQL and didn’t set the password, it’s probably blank. When
you’re prompted for it after entering the preceding command, just press the Enter key.

To install the MySQL package file, from the Finder desktop manager, double-click on the
disk image file (the DMG file) that you downloaded. This will reveal the disk image file’s
contents. Look for the PKG files; there will be two. Double-click on the one named
mysql-version.pkg (e.g., mysql-5.5.29-0sx10.6-x86.pkg). This will begin the installation
program. The installer will take you through the installation steps from there. The default
settings are recommended for most users and developers.

To have MySQL started at boot time, add a startup item. Within the disk image file that

you downloaded, you should see an icon labeled MySQLStartupltem.pkg. Just double-
click it, and it will create a startup item for MySQL. You should also install the MySQL
preferences pane so that you can start and stop MySQL easily from Systems Preferences
in the Mac system, as well as set it to start automatically at start up time. To do this, click
on the icon labeled MySQL.prefPane. If you have problems using the installer, read the
ReadMe.txt file included in the DMG image file.

There is not yet an official installer for MariaDB on a Mac machine. However, you can
use homebrew to download and install the needed packages, including required libraries.
The homebrew utility works much like yum does on Linux systems, but is made for Mac
OS X. After you install homebrew, you can run the following from the command line to
install MariaDB:

brew install mariadb

To install MySQL with the TAR package instead of the DMG package, download the TAR
file from Oracle’s site and move it to the /usr/local directory, then change to that directory.
Next, untar and unzip the installation program like so:

cd /usr/local

tar xvfz mysql-version.tar.gz
Change the name of the installation package in the example to the actual name. From here,
create a symbolic link for the installation directory, and then run the configuration
program. Here is an example of how you might do this:

1n -s /usr/local/mysql-version /usr/local/mysql
cd /usr/local/mysql

./configure --prefix=/usr/local/mysql \

--with-unix-socket-path=/usr/local/mysql/mysqgl_socket \

--with-mysqld-user=mysql
The first line creates the symbolic link to give MySQL a universal location regardless of
future versions; change version to the actual version number. By making a symbolic link
to a generic directory of /usr/local/mysql, you’ll always know where to find MySQL when
you need it. You could also just rename the directory with the version name to just mysql.
But then you can’t test new versions and keep old versions when upgrading.

With the second line, you enter the directory where the installation files are now located.
The third line runs the configuration program to install MySQL. I’ve included a few
options that I think will be useful for solving some problems in advance. Depending on
your needs, you might provide more options than these few. However, for most beginners,
these should be enough.

Next, you should set who owns the files and directories created, and which group has
rights to them. Set both the user and group to mysql, which should have been created by
the installation program. For some systems, you may have to enable permissions for the
hard drive or volume first. To do that, use the vsdbutil utility. If you want to check whether
permissions are enabled on the volume first, use the -c option; to just enable it, use -a
option for vsdbutil. You should also make a symbolic link from the /usr/bin directory to
the mysql and mysqgladmin clients:

vsdbutil -a /Volumes/Macintosh\ HD/

sudo chown -R _mysql /usr/local/mysql/.

http://brew.sh/

alias mysql=/usr/local/mysqgl/bin/mysql

alias mysgladmin=/usr/local/mysql/bin/mysqladmin
The first line of this example enables the main drive of the Mac machine. The name of the
drive on which you locate MySQL may be different on your server. The second line
changes the owner to the user mysql. The last two lines create aliases for the two key
MySQL clients mentioned earlier so that you can run them from anywhere on your
system.

At this point, you should be able to start the daemon and log into MySQL or MariaDB. If
you installed the preference pane for MySQL with the installer, you can go to the Systems
Preference of the operating system and start it there instead:

sudo /usr/bin/mysqld_safe &

mysql -u root -p
Depending on the release of MySQL, the file path for a dmg installation may be different
from what is shown in the first line here. An ampersand (&) sends the process to the
background. The second line will start the mysql client and let you log in as root, the
MySQL user who is in control of the whole server — MySQL users are different from
operating system users, so the root user is also different even though the name is the same.
The command will prompt you for a password, which will probably be blank. So you can
just press Enter for the password and you’ll be in.

Success here simply shows that you can connect to the MySQL or MariaDB server and
that you have correctly added the symbolic links for the mysql client. There’s more to do
before you start trying MySQL. So type exit and press Enter to exit the mysql client.

Now that MySQL or MariaDB is installed and running, you need to make some post-
installation adjustments, as explained in Post-Installation. Skip ahead to that section.

Windows Distributions

Installing MySQL or MariaDB on a server using Microsoft Windows is fairly easy.
MySQL’s website now provides one installation package for everything, offering different
methods and versions to meet your needs and preference. The MariaDB Foundation’s
website provides installation packages for installing MariaDB on servers using Windows.
The easiest and best choice for installing MySQL is to download and use the MySQL
Installer for Windows. It’s a single file that does everything for you. There are also older
versions still available that may be downloaded in a TAR file, but the new installer is
easier and will give you the latest version. For both the installer packages and the TAR
packages, there are 32-bit and 64-bit versions, which you would choose based on which
kind of processor is in your server.

Both the installer and TAR packages contain the essential files for running MySQL or
MariaDB, including all of the command-line utilities covered in this book (e.g., mysql,
mysqgladmin, mysqlbackup), some useful scripts for handling special needs, and the
libraries for APIs. They also contain the /usr/local/mysql/docs directory for the version
that you download.

If you decide to use the TAR package for Windows, because it does not include an
installer to handle everything for you, you will have to do a few things manually at the
beginning. First, you will need to unzip the TAR file to get at the installation files. To do

this, you need WinZip or another utility that you might have installed on your server to
uncompress the files. These files need to be copied into the c:\mysql directory. You’ll have
to create that directory if it does not already exist on your server. Then, using a plain-text
editor (e.g., Notepad) you must create a configuration file that is generally called my.ini in
the c:\windows directory. Several examples of this configuration file are provided with the
distribution package. Once you have the files in the appropriate place, you can run the
setup program. It does provide some assistance, but not as much as the installer.

Before running the installer or the setup program, if MySQL is already installed and
running on your server, and you want to install a newer version, you will first need to shut
down the one that’s currently running on your server. For server versions of Windows, it’s
generally installed as a service. You can enter something like the following within a
command window to shut down the service and remove it:

mysqld -remove

If MySQL is running on your server, but not as a service, you can enter the following
within a command window to shut it down:

msyqladmin -u root -p shutdown

If that returns an error message, you may have to figure out the absolute path for
mysqgladmin. Try entering something like the following, adjusting the file path to wherever
mysqladmin is located:

"C:\Program Data\MySQL\MySQL Server 5.1\bin\mysqladmin" -u root -p shutdown

After you download the MySQL Installer for Windows from the Windows desktop,
double-click on the file’s icon and the Windows Installer program will start. If you’re
installing from a ZIP package, look for the file named setup.exe wherever you put the
MySQL installation files. Double-click on it to start the installation. From this point, the
installation process is pretty much the same for both types of packages.

After you’ve started the installation, once you get past the licensing question and so forth,
you will be given a few choices of which type of installation. The Developer choice is the
recommended one. However, it will not install the files need for an API, or some other
utilities. It will install the MySQL server, libraries, and several MySQL clients on your
computer. This is probably the best choice. However, if you’re installing the software on a
server and you will be connecting to it from a different computer such as your deskop, you
could select “Server only” to install the MySQL server on your server. If you do so, run
the installer on your desktop machine and select “Client only” to install only the MySQL
clients locally. The MySQL files aren’t very large, though. You could also install the
“Server only” on your server and the Developer package on your desktop. This would
allow you to use your desktop as a development environment to learn and test a database
before uploading it to your server and making it active. Choose the packages and
combinations that work best for you. Just be sure to have both the MySQL server and the
MySQL clients installed somewhere that you can access them.

On the same screen where you choose the setup type, there will be two boxes for file
paths: one where you install the utilities and the other where MySQL stores your data. You
can accept the default paths for these or change them, if you want to use a different hard
drive or location. The default settings are usually fine. Just make a copy of the paths

http://www.winzip.com

somewhere, because you may want to know this information later. You can find it later in
the configuration file for MySQL, but while it’s handy now, copy it down: it might save
you some time later.

Next, the installer will check whether your computer has the required additional files,
besides the MySQL package. Allow it to install whatever files it says you need. For the
TAR package, you will have to decide which directory to use and put the files where you
want them. A typical choice is C:\Program Data\MySQL\ for the installation path, and
C:\Program Data\MySQL\MySQL Server version\data\ for the data path, where the word
version is replaced with the version number.

The last section before the installer finishes is the Configuration screen, where you can set
some configuration options. If you want to set options, you can check the box labeled
Advanced Configuration, but because you’re still learning about MySQL, you should
leave this unchecked and accept the basic default settings for now. You can change the
server settings later.

If you’re installing the MySQL server on this machine and not just the clients, you will see
a “Start the MySQL Server at System Startup” checkbox. It is a good idea to check that
box. In the Configuration section, you can also enter the password for the MySQL root
user. Enter a secure password and don’t forget it. You can also add another user. We’ll
cover that in Post-Installation. But if you want to make that process easier, you can add a
user here for yourself — but I recommend waiting and using MySQL to add users, so you
learn that important skill. As for the rest of the choices that the installer gives you, you can
probably accept the default settings.

In this book, you will be working and learning from the command line, so you will need to
have easy access to the MySQL clients that work from the command line. To invoke the
command-line utilities without having to enter the file path to the directory containing
them, enter the following from the command line, from any directory:

PATH=%PATH%; C:\Program Data\MySQL\MySQL Server version\bin

export PATH
Replace the word version with the version number and make sure to enter the actual path
where MySQL is installed. If you changed the location when you installed MySQL, you
need to use the path that you named. The line just shown will let you start the client by
entering simply mysql and not something like, C:\Program Data\MySQL\MySQL Server
version\bin\mysql each time. For some Windows systems, you may need to change the
start of the path to C:\Program Files\. You’ll have to search your system to see where the
binary files for MySQL were installed — look for the bin\ subdirectory. Any command
windows you may already have open won’t get the new path. So be sure to close them and
open a new command window.

Once you’ve finished installing MySQL and you’ve set up the configuration file, the
installer will start the MySQL server automatically. If you’ve installed MySQL manually
without an installer, enter something like the following from a command window:

mysgld --install
net start mysqgl

Now that MySQL is installed and running, you need to make some post-installation
adjustments, as explained in Post-Installation. So jump ahead to the last couple of pages of

this chapter.
FreeBSD and Sun Solaris Distributions

Installing MySQL or MariaDB with a binary distribution is easier than using a source
distribution. If a binary distribution is available for your platform, it’s the recommended
choice. For Sun Solaris distributions, there are PKG files for MySQL on Oracle’s site and
PKG files for MariaDB on the MariaDB Foundation’s site. For MySQL, you will have to
decide between 32-bit, 64-bit, and SPARC versions, depending on the type of processor
used on your server. For MariaDB, there is only a 64-bit version.

There are also TAR files, combining the MySQL files. The FreeBSD files are available
only in TAR packages and only for MySQL. For MariaDB, you will have to compile the
source files. If you download the TAR files, you will need a copy of GNU’s tar and
GNU’s gunzip to unpack the installation files. These tools are usually included on Sun
Solaris and FreeBSD systems. If your system doesn’t have them, though, you can
download them from the GNU Foundation site.

Once you’ve chosen and downloaded an installation package, enter something like the
following from the command line as root to begin the installation process:

groupadd mysql

useradd -g mysqgl mysql

cd /usr/local

tar xvfz /tmp/mysql-version.tar.gz
These commands are the same for both MySQL and MariaDB. The first command creates
the user group, mysql. The second creates the user, mysql, and adds it to the mysql group at
the same time. The next command changes to the directory where the MySQL files are
about to be extracted. The last line uses the tar utility (along with gunzip via the z option)
to unzip and extract the distribution files. The word version in the name of the installation
file should be replaced with the version number — that is to say, use the actual file path
and name of the installation file that you downloaded as the second argument of the tar
command. For Sun Solaris systems, you should use gtar instead of tar.

After running the previous commands, you need to create a symbolic link to the directory
created by tar in /usr/local:

1n -s /usr/local/mysql-version /usr/local/mysql

This creates /usr/local/mysql as a link to /usr/local/mysql-version, where mysql-version
is the actual name of the subdirectory that tar created in /usr/local. The link is necessary,
because MySQL is expecting the software to be located in /usr/local/mysql and the data to
be in /usr/local/mysql/data by default.

At this point, MySQL or MariaDB is basically installed. Now you must generate the initial
user privileges or grant tables, and change the file ownership of the related programs and
data files. To do these tasks, enter the following from the command line:

cd /usr/local/mysql
./scripts/mysql_install db

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

The first command changes to the directory containing MySQL'’s files. The second line
uses a script provided with the distribution to generate the initial privileges or grant tables,

http://www.gnu.org

which consist of the mysql database with MySQL’s superuser, root. This is the same for
MariaDB. The third line changes the ownership of the MySQL directories and programs to
the filesystem user, mysql. The last line changes the group owner of the same directory
and files to the user, mysql.

With the programs installed and their ownerships set properly, you can start MySQL. This
can be done in several ways. To make sure that the daemon is restarted in the event that it
crashes, enter the following from the command line:

/usr/local/mysgl/bin/mysqld_safe &

The mysqld_safe daemon, started by this command, will in turn start the MySQL server
daemon, mysqld. If the mysqld daemon crashes, mysqld_safe will restart it. The ampersand
at the end of the line instructs the shell to run the command in the background. This way
you can exit the server and it will continue to run without you staying connected.

To have MySQL or MariaDB start at boot time, copy the mysql.server file located in the
support-files subdirectory of /usr/local/mysql to the /etc/init.d directory. To do this, enter
the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

chkconfig --add mysql
The first line follows a convention of placing the start up file for the server in the server’s
initial daemons directory with the name, mysqgl. The second line makes the file executable.

The third sets the run level of the service for startup and shutdown.

Now that MySQL or MariaDB is installed and running, you need to make some post-
installation adjustments, as explained in Post-Installation.

Source Distributions

Although a binary distribution of MySQL and MariaDB is recommended, sometimes you
may want to use a source distribution, either because binaries are not available for your
server’s operating system, or because you have some special requirements that require
customizing the installation. The steps for installing the source files of MySQL or
MariaDB on all Unix types of operating systems are basically the same. This includes
Linux, FreeBSD, and Sun Solaris. These steps are explained in this section.

To install a source distribution, you will need copies of GNU gunzip, GNU tar, GNU gcc
(at least Version 2.95.2), and GNU make. These tools are usually included in Linux
systems and most Unix systems. If your system doesn’t have them, you can download
them from the GNU Foundation site.

Once you’ve chosen and downloaded the source distribution files for MySQL or
MariaDB, enter the following commands as root from the directory where you want the
source files stored:

groupadd mysqgl

useradd -g mysql mysql

tar xvfz /tmp/mysql-version.tar.gz
cd mysqgl-version

These commands are the same for installing MariaDB, except that the name of the
installation package file will be something like mariadb-5.5.35.tar.gz and the name of the

http://www.gnu.org

directory created when expanding the TAR file will be different. The first line creates the
filesystem user group, mysql. The second creates the system user, mysql, and adds it to the
mysql group at the same time. The next command uses the tar utility (along with gunzip
via the z option) to unzip and extract the source distribution file you downloaded. Replace
the word version with the version number. Use the actual file path and name of the
installation file that you downloaded for the second argument of the tar command. The
last command changes the directory to the one created by tar in the previous line. That
directory contains the files needed to configure MySQL.

This brings you to the next step, which is to configure the source files to prepare them for
building the binary programs. This is where you can add any special build requirements
you may have. For instance, if you want to change the default directory from where
MySQL or MariaDB is installed, use the - -prefix option with a value set to equal the
desired directory. To set the Unix socket file’s path, use - -with-unix-socket-path. If
you would like to use a different character set from the default of 1atini, use - -with-
charset and name the character set you want as the default. Here is an example of how
you might configure MySQL with these particular options before building the binary files:

./configure --prefix=/usr/local/mysql \
--with-unix-socket-path=/tmp \
--with-charset=latin2
You can enter this command on one line without the backslashes. Several other
configuration options are available. To get a complete and current listing of options
permitted with the installation package you downloaded, enter the following from the
command line:

./configure --help
You may also want to look at the latest online documentation for compiling MySQL.

Once you’ve decided on any options that you want, run the configure script with those
options. It will take quite a while to run, and it will display a great amount of information,
which you can ignore usually if it ends successfully. After the configure script finishes, the
binaries will need to be built and MySQL needs to be initialized. To do this, enter the
following:

make

make install

cd /usr/local/mysql

./scripts/mysql_install_db
The first line here builds the binary programs. There may be plenty of text displayed after
that line and the next one, but I omitted that output to save space. If the command is
successful, you need to enter the second line to install the binary programs and related
files in the appropriate directories. The third line changes to the directory where MySQL
was installed. If you configured MySQL to be installed in a different directory, you’ll have
to use that directory path instead. The last command uses a script provided with the

distribution to generate the initial user privileges or grant tables.

All that remains is to change the ownership of the MySQL programs and directories. You
can do this by entering the following:

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

http://bit.ly/compiling_mysql

The first line here changes ownership of the MySQL directories and programs to the
filesystem user, mysql. The second line changes the group owner of the same directories
and files to the group mysql. These file paths may be different depending on the version of
MySQL you installed and whether you configured MySQL for different paths.

With the programs installed and their file ownerships set properly, you can start the
daemon. You can do this in several ways. To make sure that the daemon is restarted in the
event that it crashes, enter the following from the command line:

/usr/local/mysgl/bin/mysqld_safe &

This method is the same for both MySQL and MariaDB, and it starts the mysqld_safe
daemon, which will in turn start the server daemon, mysqld. If the mysqld daemon crashes,
mysqld_safe will restart it. The ampersand at the end of the line instructs the shell to run
the daemon in the background. This way you can exit the server and it will continue to run
without you staying connected.

To have MySQL or MariaDB started at boot time, copy the mysql.server file, located in
the support-files subdirectory of /usr/local/mysql, to the /etc/init.d directory. To do this,
enter the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

chkconfig --add mysql
The first line follows a convention of placing the startup file for the server in the server’s
initial daemons directory with the name, mysql. The second command makes the file
executable. The third sets the run level of the service for startup and shutdown. All of this
is the same for MariaDB.

At this point, MySQL or MariaDB is installed and running. All that remains now are some
post-installation adjustments, as explained in the next section.

Post-Installation

After you’ve finished installing MySQL or MariaDB on your server, you should perform a
few tasks before allowing others to begin using the service. You may want to change the
server’s default behavior by making changes to the configuration file. At a minimum, you
should change the password for the database administrator, root, and add some
nonadministrative users. Some versions of MySQL have some anonymous users initially,
and you should delete them. This section will explain these tasks.

Although the creators of MySQL and MariaDB have set the server daemon to the
recommended configuration, you may want to change one or more settings. For instance,
you may want to turn on error logging.

Special Configuration

To enable error logging and other such settings, you will need to edit the main
configuration file for MySQL. On Unix-like systems, this file is /etc/my.cnf. On Windows
systems, the main configuration file is usually either c:\windows\my.ini or c:\my.cnf. The
configuration file is a text file that you can edit with a plain-text editor — don’t use a word
processor, as it will introduce hidden binary characters that will cause problems.

The configuration file is organized into sections or groups under a heading name
contained within square brackets. For instance, settings for the server daemon, mysqld, are
listed under the group heading, [mysqld]. Under this heading you could add something
like 1og = /var/log/mysql to enable logging and to set the directory for the log files.
You can list many options in the file for a particular group. Here is an example of how a
server configuration file might look:

[mysqld]

datadir=/data/mysql

user=mysql
default-character-set=utf8
log-bin=/data/mysql/logs/binary_log
max_allowed_packet=512M

[mysqld_safe]

ulimit -d 256000
ledir=/usr/sbin

mysqld=mysqld
log-error=/var/log/mysqld.log
pid-file=/data/mysql/mysqld.pid

[mysql.client]
default-character-set=utf8

As a beginner, you probably won’t need to make any changes to the server’s configuration
file. For now, just know that the configuration file exists, where it’s located on your server,
and how to change settings. What is necessary is to set the password for the MySQL user,
root. It’s initially blank.

Setting Initial Password for root

You can change the password for the root user in MySQL in a few ways. One way is to
use the administration utility, mysqladmin. Enter the following from the command line:

mysgladmin -u root -p flush-privileges password "new_pwd"

Replace the word new_pwd in quotes with a strong password that you want to use for root.

If you get a message saying something like, mysqladmin command is not found, it may be
because you didn’t make a symbolic link to the MySQL directory where mysqladmin is
located or you haven’t added it to your command path. See the instructions for the
distribution you installed on how to do one or the other. For now, you can just add the file
path to the preceding line and re-enter it. On Linux and other Unix like systems, try
running the command as /usr/local/mysql/bin/mysqladmin. On a Windows system, try
c:\mysql\bin\mysqgladmin.

If you’re working on a networked server, though, it’s better not to enter a password in this
way. Someone might be looking over your shoulder or may find it in the server logs later.
As of version 5.5.3 of MySQL, you can and should enter it like this:

mysqladmin -u root -p flush-privileges password

After entering this line, you will be prompted for the old password, which will be initially
blank, so press the Enter key. Then you will be prompted to enter the new password twice.
By this method, the password you enter won’t be displayed on the screen as you type it. If
everything was installed properly and if the mysqgld daemon is running, you should not get
any message in response.

The MySQL user root is completely different from the operating system’s root user, even
though it has the same name. It is meaningful only within MySQL or MariaDB.
Throughout this book, I will be referring to this MySQL user by default when I use the
term root. On the rare occasion where I have to refer to the operating system root user, I
will explain that.

More on Passwords and Removing Anonymous Users

Privileges in MySQL are set based on a combination of the user’s name and the user’s
host. For instance, the user root is allowed to do everything from the localhost, but very
little or nothing from a remote location. This is for security. Therefore, there may be more
than one username/host combination for root. Using mysgladmin, you changed the
password for root on the localhost, as you would have executed it while logged into the
server where MySQL is located locally. Now you should set the password for all of the
username/host combinations for root. To get a list of username and host combinations on
the server, execute the following from the command line:

mysql -u root -p -e "SELECT User,Host FROM mysql.user;"

127.0.0.1 |
localhost |
% |
localhost |

+
1
1
1
1
1
1

+—_——+— +
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
+

If this didn’t work for you, it may be that you don’t have the mysql client in your
command path. You may have to preface mysql with /bin/ or /usr/bin/, or the path for
wherever the binary files for MySQL are installed. The command will be the same for
MariaDB. The results here are contrived. It’s unlikely you will see exactly these results.
But there are versions of MySQL whose host for root is %, which is a wildcard meaning
any host. This is not good for security, because it allows anybody to claim to be root and
to gain access from any location. And there have been versions of MySQL in which the

username is left blank, meaning that any username from the localhost is accepted. This
is an anonymous user. All of the users you will see in the results, though, will initially
have no password. You should delete any unnecessary users and set passwords for those
that you want to keep. Although 127.0.0.1 and localhost translate to the same host, the
password should be changed for both. To change the root user’s password for the first two
entries shown in the previous example and to delete the second two user/host
combinations shown, you would enter the following at the command prompt:

mysgl -u root -p -e "SET PASSWORD FOR 'root'@'127.0.0.1' PASSWORD('new_pwd');"
mysql -u root -p -e "SET PASSWORD FOR 'root'@'localhost' PASSWORD('new_pwd');"
mysql -u root -p -e "DROP USER 'root'@'%';"

mysgl -u root -p -e "DROP USER ''@'localhost';"

When you’ve finished making changes to the initial batch of users, you should flush the
user privileges so that the new passwords will take effect. Enter the following from the
command line:

mysqladmin -u root -p flush-privileges
From this point on, you’ll have to use the new password for the user, root.
Creating a User

The next step regarding users is to create at least one user for general use. It’s best not to
use the root user for general database management. To create another user, enter
commands like:

mysql -u root -p -e "GRANT USAGE ON *.*

TO 'russell'@'localhost'’

IDENTIFIED BY 'Rover#My_1st_Dog&Not_Yours!';"
These lines create the user russell and allow him to access MySQL from the localhost.
The *.* means all databases and all tables. We’ll cover this in more depth later in the
book. The statement also sets his password as Rover#My 1st_Dog&Not_Yours!.

This user has no privileges, actually: he can’t even view the databases, much less enter
data. When you set up a new user, you should consider which privileges to allow the user.
If you want her to be able only to view data, enter something like the following from the
command line:

mysql -u root -p -e "GRANT SELECT ON *.* TO 'russell'@'localhost';"

In this line, the user russell may use only the SELECT statement, a command for viewing
data. If you would like to see the privileges granted to a user, you could enter something
like this from the command line:

mysql -u root -p -e "SHOW GRANTS FOR 'russell@'localhost' \G"

EE I O S S O O O 1 row EE R o S O o O O I O

Grants for russell@localhost:

GRANT SELECT ON *.* TO 'russell'@'localhost'

IDENTIFIED BY PASSWORD '*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1’
These results show that the user is granted only privileges to use the SELECT statement for
viewing data. We’ll cover this in more depth later in the book. Notice that the password is
returned encrypted. There’s no way to retrieve someone’s password unencrypted from
MySQL.

The user in the previous example, russell on localhost, cannot add, change, or delete
data. If you want to give a user more than viewing privileges, you should add additional

privileges to the SELECT command, separated by commas. That is covered in Chapter 13.
For now, to give a user all privileges, replace SELECT with ALL. Here’s another example
using the ALL setting:

mysgl -u root -p -e "GRANT ALL ON *.* TO 'russell'@'localhost';"

The user in this example, russell on localhost, has all basic privileges. So that you can
experiment while reading this book, you should create a user with full privileges, but use a
name other than mine, something that better suits you.

With the MySQL or MariaDB installation software downloaded and installed, all of the
binary files and minimal data in place and properly set, and a full privileged user created,
the database system is now ready to use and you can begin learning how to use it.

[2] A daemon is a background process that runs continuously; a Unix term for what most people call a “server.”

(3] tar is an archive tool developed on Unix, but its format is understood by many archiving tools on many operating
systems.

Chapter 3. The Basics and the mysql
Client

There are various methods of interacting with a MySQL or MariaDB server to develop or
work with a database. A program that interfaces with the server is known as a MySQL
client. There are many such clients, but this book focuses on one that best serves the need
of interactive users, a text-based client known simply as mysql. It’s the most commonly
used interface, recommended for beginners and preferred by advanced users.

There are alternative clients with GUIs, but in the long run they’re not as useful. First, you
don’t learn as much while using them. Because they give you visual hints about what to
do, you may be able to carry out some basic queries quickly, but you won’t be as well
prepared for advanced work. The text-based mysql client causes you to think and
remember more — and it’s not that difficult to use or confusing. More importantly, GUIs
tend to change often. When they do, you will need to learn where to find what you want in
the new version. If you change jobs or go to a customer’s site, or for whatever reason use
someone else’s system, they may not use the same GUI with which you are familiar.
However, they will always have the mysql client, because it’s installed with the MySQL
server. So all examples in this book assume that this is the client you will use. I
recommend that when examples are shown, that you try entering them on your computer
with the mysql client so that you can reinforce what you’re learning.

The mysql Client

With the mysqgl client, you may interact with the MySQL or MariaDB server from either
the command line or within an interface environment called the monitor. The command-
line method of using mysgl allows you to interact with the server without much overhead.
It also allows you to enter MySQL commands in scripts and other programs. For instance,
you can put lines in cron to perform maintenance tasks and make backups automatically of
databases. The monitor is an ASCII display of mysql that makes the text a little more
organized and provides more information about commands you execute. Almost all of the
examples in this book are taken from the monitor display. If they’re not, I will note that
they are from the command line.

If MySQL or MariaDB was installed properly on your server, mysql should be available
for you to use. If not, see Post-Installation to make sure everything is configured correctly
on your system and make sure you created the necessary symbolic links or aliases. The
mysql client should be in the /bin/ or /usr/bin/ directory. Windows, Macs, and other
operating systems with GUIs have file location utilities for finding a program. Look for
the directory containing the mysgql client and the other binary files for MySQL.

Assuming that everything is working, you will need a MySQL username and password to
be able to connect to MySQL, even with the mysgl client. If you’re not the administrator,
you must obtain these credentials from the appointed person. If MySQL or MariaDB was
just installed and the root password is not set yet, its password is blank — that is to say,
just press the Enter key when prompted for the password. To learn how to set the root
password and to create new users and grant them privileges, see Post-Installation for
starting pointers and Chapter 13 for more advanced details.

Connecting to the Server

Once you know your MySQL username and password, you can connect to the MySQL
server with the mysql client. For instance, I gave myself the username russell so I can
connect as follows from a command line:

mysql -u russell -p

It’s useful to understand each element of the previous line. The -u option is followed by
your username. Notice that the option and name are separated by a space. You would
replace russell here with whatever username you’ve created for yourself. This is the
MySQL user, not the user for the operating system. Incidentally, it’s not a good security
practice to use the root user, unless you have a specific administrative task to perform for
which only root has the needed privileges. So if you haven’t created another user for
yourself, go back and do that now. To log into MariaDB, you would enter the same
command and options as for MySQL.

The -p option instructs the mysql client to prompt you for the password. You could add the
password to the end of the -p option (e.g., -pRover#My_1st_Dog&Not_Yours'!, where the
text after -p is the password). If you do this, leave no space between -p and the password.
However, entering the password on the command line is not a good security practice
either, because it displays the password on the screen (which others standing behind you
may see), and it transmits the password as clear text through the network, as well as
making it visible whenever someone gets a list of processes that are running on the server.
It’s better to give the -p option without the password and then enter the password when
asked by the server. Then the password won’t be displayed on the screen or saved
anywhere.

If you’re logged into the server filesystem with the same username as you created for
MySQL, you won’t need the -u option; the -p is all you’ll need. You could then just enter
this:

mysql -p
Once you’ve entered the proper mysql command to connect to the server, along with the

password when prompted, you will be logged into MySQL or MariaDB through the client.
You will see something that looks like this:

wWelcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1419341
Server version: 5.5.29 MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>
If MariaDB is installed on your server, you will see something like the following:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 360511

Server version: 5.5.33a-MariaDB MariaDB Server, wsrep_23.7.6.rXXXX

Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>>

The first line, after “Welcome to the MySQL/MariaDB monitor,” says that commands end

with a semicolon (;) or a slash-g (\g). When you enter a command, or rather an SQL
statement, you can press Enter at any point to go to the next line and continue entering
more text. Until you enter either ; or \g, the mysgl client will not transmit what you’ve
entered to the MySQL server. If you use \G, with an uppercase G, you’ll get a different
format. We’ll cover that format later. For now, just use the semicolon.

The second line in the output shown tells you the identification number for your
connection to the server. One day you may get in trouble and need to know that. For now
you can ignore it.

The third line tells you which version of MySQL or MariaDB is installed on the server.
That can be useful when you have problems and discover in reading the online
documentation that the problem is in a particular version, or when you want to upgrade the
server but need to know which version you have now before upgrading.

The next line talks about getting online help. It provides help for all of the SQL statements
and functions. Try entering these commands to see what the client returns:

help

This command provides help on using the mysql client.

help contents

This command shows you a list of categories for help on major aspects of MySQL or
MariaDB. In that list, you will see one of the categories is called Data Manipulation.
These are SQL statements related to inserting, updating, and deleting data.

hep Data Manipulation

This command will display all of those statements for which help is available from the
client. One of those SQL statements is SHOW DATABASES.

help SHOW DATABASES

This command shows how to retrieve the help information related to that SQL
statement. As you can see, there is plenty of useful information accessible within the
client. If you can’t quite remember the syntax of an SQL statement, it’s a quick way to
retrieve the information.

The first help command provides help on using the mysql client. The second help
command shows you a list of categories for help on major aspects of MySQL or MariaDB.
In that list, you will see one of the categories is called, Data Manipulation. These are SQL
statements related to inserting, updating, and deleting data. The third help command will
display all of those statements for which help is available from the client. One of those
SQL statements is SHOW DATABASES. The last help command shows how to retrieve the
help information related to that SQL statement. As you can see, there is plenty of useful
information accessible within the client. If you can’t quite remember the syntax of an SQL
statement, it’s a quick way to retrieve the information.

A minor but sometimes useful tip is included in the third line of the opening results: to
cancel an SQL statement once you’ve started typing it, enter \c and press Enter without a
closing semicolon. It will clear whatever you have been entering, even on previous lines,
from the buffer of the mysql client, and return you to the mysql> prompt.

The very last line, the mysql>, is known as the prompt. It’s prompting you to enter a
command, and is where you’ll operate during most of this book. If you press Enter without
finishing a command, the prompt will change to -> to indicate that the client hasn’t yet
sent the SQL statement to the server. On MariaDB, the default prompt is different. It
shows MariaDB [(none)]>> to start. When you later set the default database to be used,
the none will be changed to the name of the current default database.

Incidentally, it is possible to change the prompt to something else. To do so, enter the
client command prompt followed by the text you want to display for the prompt. There are
a few special settings (e.g., \d for default database). Here’s how you might change the
prompt:

prompt SQL Command \d>_

And here’s how the prompt will look after you run the preceding command to change it:

SQL Command (none)>

Right now you have no default database. So now that you have the mysql client started,
let’s start exploring databases.

Starting to Explore Databases

The next few chapters cover how to create databases, add data to them, and run queries to
find interesting relationships. In this chapter, while you’re logged into MySQL or
MariaDB with the mysql client, let’s get familiar with the core aspects of the database
system. We’ll consider a few basic concepts of databases so that you may enter a few
commands within the mysql monitor. This will help you get comfortable with the mysql
client. Because you may be in a very early stage of learning, we’ll keep it simple for now.

In SQL terminology, data is always stored in a table, a term that reflects the way a user
generally views the data. In a table about movies, for example, you might see a horizontal
row about each movie, with the title as one column, and other columns to indicate more
information on each movie:

Fommm e e oo o o aaaa oo Fommm o m +

| movie_id | title | rating |
Fommm e e oo o oo oo Fommmmaom +
1	Casablanca	PG
2	The Impostors	R
3	The Bourne Identity	PG-13
Fommm e e oo o oo oo Fommm oo +

That’s just a simple example. Don’t try to create that table. Let’s first take a look at what
you already have on your server, to see these elements. From the mysql> prompt, enter the
following and press the Enter key:

SHOW DATABASES;

The following output (or something similar) should be displayed in response:

Fom e e e e m oo o - +
| Database |
S +
| information_schema |
| mysql I
| test |
B +

First, let me mention a book convention. MySQL is not case sensitive when you enter
keywords such as sHow. You could just as well enter show or even sHow. However, the
names of databases, tables, and columns may be case sensitive, especially on an operating
system that is case sensitive, such as Mac OS X or Linux. Most books and documentation
use all upper case letters to indicate keywords while respecting the case of the things that
you can change. We use all lower case letters for database, table, and column names
because it’s easier on the eyes and easier to type, and mostly because it’s easier for the
reader to distinguish between what is set by the SQL convention and what is flexible.

The list just displayed shows that you have three databases at the start of using MySQL,
created automatically during installation. The information_schema database contains
information about the server. The next database in the list is mysql, which stores
usernames, passwords, and user privileges. When you created a user for yourself at the
end of Chapter 2, this is where that information was stored. You may have noticed that
some commands shown in Chapter 2 referenced this database. Don’t try to change the
mysql database directly. Later, I’ll show you commands for manipulating this database. At
least for now, access the mysql database only through administrative functions and
utilities. The last database listed is called test. That’s there for you to test things and to
use when learning. Let’s use that for a bit in this chapter.

First SQL Commands

The test database is initially empty; it contains no tables. So let’s create one. Don’t worry
about understanding what you’re doing in detail. I’ll introduce concepts gradually as we
go along.

So enter the following in the mysql client (remember the terminating semicolon):

CREATE TABLE test.books (book_id INT, title TEXT, status INT);

This is your first SQL statement. It creates a table in the test database and names it
books. We specified the name of the database and table with test.books (i.e., the format
is database. table). We also defined, within the parentheses, three columns for the table.
We’ll talk about that in more depth later.

If you correctly type that SQL statement, you’ll receive a reply like this:

Query OK, 0 rows affected (0.19 sec)

This is a message from the server reporting how things went with the SQL statement you
sent. What you need to take from the message is that everything is oK. With that, let’s see
the results of what we did. To see a list of tables within the test database, enter:

SHOW TABLES FROM test;

The output should be:

1 row in set (0.01 sec)

You now have one table, books. Notice that the results are enclosed with ASCII text to
look like a table of data, as you might draw it on a piece of paper. Notice also the message
after the table. It says that one row is in the set, meaning that books is the only table in the
database. The time in parentheses that you will see after running every SQL statement
indicates how long it took for the server to process the request. In this case, it took my
server 0.01 seconds. I ran that statement from my home computer in Milan, Italy, but
using my server in Tampa, Florida in the U.S. That’s a pretty quick response. Sometimes
it’s even faster and shows 0.00 seconds, because the lapse in time was not enough to
register.

From this point forward, I will leave out these lines of status to save space and to keep the
clutter down, unless there’s something relevant to discuss. For the same reason, I’m not
including the mysql> prompts. You’ll have to learn when something is entered from the
mysql client versus the operating system shell — although I will usually indicate when to
enter something from the operating system shell. So from now on, I’ll combine input and
output like this:

SHOW TABLES FROM test;

T +
| Tables_in_test |
T +
| books |
T +

You can tell what you’re supposed to enter because it’s bold, whereas the output is not.

For each of these SQL statements, we have to specify the database name. If you will be
working mainly in one database (you usually will be), you can set the default database so
that you don’t have to specify the database each time. To do this, enter a USE command:

USE test

NOTE

Incidentally, if your server doesn’t have the test database, you can create it by just entering CREATE DATABASE test;
on the server first.

Because this is an instruction for the mysql client and not the server, the usual ending
semicolon is not needed. The client will change the default database on the server for the
client to the one given, making it unnecessary to specify table names without a preceding
database name — unless you want to execute an SQL statement for a table in another
database. After entering the USE command, you can re-enter the earlier SQL statement to
list the tables in the database without specifying that you want test. It’s taken for granted:

SHOW TABLES;

RS +
| Tables_in_test |
RS +
| books |
Sy +

Now that we’ve peeked at a database, which is not much more than a grouping of tables
(in this example, only one table), and created a table, let’s look inside the table that we
created. To do that, we’ll use the SQL statement DESCRIBE, like so:

DESCRIBE books;

Fomm e m oo - E Y oo oo e Fomm e e e oo - Fommm oo +
| Field | Type | Null | Key | Default | Extra |
Fomm e m e o - E SFS Fomm oo e Fomm e e e oo - Fommmm o +
book_id	int(11)	YES		NULL	
title	text	YES		NULL	
status	int(11)	YES		NULL	
Fomm e m e o - B Y Fomm oo e Fomm e e e oo - Fommm oo +

In these results you can see that we created three fields for entering data, named book_id,
title, and status. That’s pretty limited, but we’re keeping things simple in this chapter.
The first and third fields, book_id and status, are integer types, meaning they can contain
only numbers. We stipulated that when we created the table by adding the INT keyword
when specifying those columns. The other field, title, can contain text, which includes
anything you can type at the keyboard. We set that earlier with the TEXT keyword. Don’t
worry about remembering any of this now. We’re just looking around to get a feel for the
system and the mysql client.

Inserting and Manipulating Data

Let’s put some data in this table. Enter the following three SQL statements within the
mysql client:

INSERT INTO books VALUES(100, 'Heart of Darkness', 0);

INSERT INTO books VALUES(101, 'The Catcher of the Rye', 1);

INSERT INTO books VALUES(102, 'My Antonia', 0);
All three lines use the SQL statement INSERT to insert, or add data, to the books table.
Each line will be followed by a status message (or an error message if you mistype

something), but I didn’t bother to include those messages here. Notice that numbers don’t

need to be within quotes, but text does. The syntax of SQL statements like this one is
pretty structured — hence the name Structured Query Language. You can be casual about
spacing between elements of the statements, but you must enter everything in the right
order and use the parentheses, commas, and semicolons as shown. Keeping SQL
statements structured makes queries predictable and the database faster.

The previous examples insert the values given in parentheses into the table. The values are
given in the same order and format as we told MySQL to expect when we created the
table: three fields, of which the first and third will be numbers, and the second will be any
kind of text. Let’s ask MySQL to display the data we just gave it to see how it looks:

SELECT * FROM books;

SRR S HFommmmao o +
| book_id | title | status |
E SRR e Fommmmaom +
| 100 | Heart of Darkness | © [
| 101 | The Catcher of the Rye | 1 [
| 102 | My Antonia | © [
Fomm e oo o mmmmmmmoo- Fommmmao o +

In this table, you can see more easily why they call records rows and fields columns. We
used the SELECT statement to select all columns — the asterisk (*) means “everything” —
from the table named. In this example, book_id functions as a record identification
number, while title and status contain the text and numbers we want to store. I
purposely gave status values of 0 or 1 to indicate status: 0 means inactive and 1 means
active. These are arbitrary designations and mean nothing to MySQL or MariaDB.
Incidentally, the title of the second book is not correct, but we’ll use it later as an example
of how to change data.

Let’s play with these values and the SELECT statement to see how it works. Let’s add a
WHERE clause to the SQL statement:

SELECT * FROM books WHERE status = 1;

Fomm e e e o - Fom e e e e o oo e e oo - +
| book_id | title | status |
Fomm e mmo o Fom e e e e e oo oo e oo o - +
| 101 | The Catcher of the Rye | 1
Fomm e mmo o Fom e e e e e oo oo e oo o - +

In these results, we’ve selected only rows in which status equals 1 (i.e., only records that
are active). We did this using the WHERE clause. It’s part of the SELECT statement and not an
SQL statement on its own. Let’s try another SQL statement like this one, but ask for the
inactive records:

SELECT * FROM books WHERE status = 0 \G

E R O S S O 1

book_id: 100

title: Heart of Darkness
status: 0
khkkhkkhkhkhkkhkhkhkhkhhkhhkhhkhhhkhkhhdkkhki*k 2.
book_id: 102

title: My Antonia

status: 0

EE R S S O S O O O
row

EE IR O S O o O O I O O
row

Notice that this time we changed the ending of the SQL statement from a semicolon to \G.
This was mentioned earlier in this chapter as an option. It shows the results not in a table
format, but as a batch of lines for each record. Sometimes this is easier to read, usually
when the fields are so long that a tabular format would be too wide for your screen and

would wrap around. It’s a matter of preference for each situation.

We’ve added data to this minimal table. Now let’s change the data a little. Let’s change the
status of one of the rows. To do this, we will use the UPDATE statement. It produces two
lines of status output:

UPDATE books SET status = 1 WHERE book_id = 102;

Query OK, 1 row affected (0.18 sec)

Rows matched: 1 Changed: 1 Warnings: 0
You can learn how to read and remember SQL statement syntax better if you read and
interpret them in the way and order they’re written. Let’s do that with this SQL statement,
the first line in the preceding code block. It says to update books by setting the value of
status to 1 for all rows where book_id equals 102. In this case, there is only one record
with that value, so the message that follows says that one row was affected, and only one
was changed or updated — however you want to say that. To see the results, run the
SELECT statement shown earlier, the one where we check for active status:

SELECT * FROM books WHERE status = 1;

F SRR i Fommmmaoo +
| book_id | title | status |
Fomm e e oo - Foom e e e e o oo e oo o - +
| 101 | The Catcher of the Rye | 1 [
| 102 | My Antonia | 1 [
Fomm e e e o - Fom e e e o oo e oo o - +

Thanks to our update, we get two rows back this time, where the rows have a status of
active. If we execute the UPDATE statement again, but for a different book_id, we can
change the book, The Catcher in the Rye to inactive:

UPDATE books SET status = 0 WHERE book_id = 101;

SELECT * FROM books WHERE status = 0;

Fomm e mm o - Fom e e e e o oo e e oo - +
| book_id | title | status |
Fomm e e e o - Fom e e e e o oo e oo o - +
| 100 | Heart of Darkness | © |
| 101 | The Catcher of the Rye | © |
Fomm e m e oo Fom e e e e oo oo e oo o - +

Let’s enter one more UPDATE statement so you can see how to do more with just one
statement. As I mentioned earlier, the title of this book is not correct. It’s not The Catcher
of the Rye. The correct title is The Catcher in the Rye. Let’s change that text in the title
column, while simultaneously setting the value of status back to 1. We could do this with
two SQL statements, but let’s do it in one like so:

UPDATE books

SET title = 'The Catcher in the Rye', status = 1

WHERE book_id = 101;
Notice that we’ve given the same syntax as before with the UPDATE statement, but we’ve
given two pairs of columns and values to set. That’s easier than entering the UPDATE
statement twice. It also saves some network traffic when communicating with a server on
another continent.

A Little Complexity

Let’s increase the pace a little. Let’s create another table and insert a couple of rows of
data in it. Enter these two SQL statements from within the mysql client:

CREATE TABLE status_names (status_id INT, status_name CHAR(8));

INSERT INTO status_names VALUES(0, 'Inactive'), (1, 'Active');

Now we’ve created the table status_names, but with only two columns. The CREATE
TABLE statement is similar to the one we used to create the first table. There’s one
difference I’d like you to notice: instead of using the column type of TEXT, we’re using the
column type of CHAR, which stands for “character.” We can add text to this column, but its
size is limited: each row can have only a maximum of eight characters in this column.
That makes a smaller field and therefore a smaller and faster table. It doesn’t matter in our
examples here, as we’re not entering much data, but little specifications like this will make
a huge performance difference in large databases. It’s good for you to start thinking this
way from the beginning.

The second SQL statement added two sets of values. Doing multiple sets of values in one
INSERT is allowed, and is easier than entering a separate line for each. Here’s how the data
looks in that table:

SELECT * FROM status_names;

. oo e oo +

| status_id | status_name |
Fomm oo oo Y +

| 0 | Inactive |

| 1 | Active [
That’s probably a seemingly useless table of data. But let’s combine this table with the
first table, books, to see a glimpse of the potential of database system like MariaDB. We’ll
use the SELECT statement to join both tables together to get nicer results, and we’ll be
selective about which data is displayed. Try this on your computer:

SELECT book_id, title, status_name
FROM books JOIN status_names
WHERE status = status_id;

Fomm e m e o - Fom e e e e o Fom e oo +
| book_id | title | status_name |
Fomm e m e o - Fom e e e e o Fom e oo +
100	Heart of Darkness	Inactive
101	The Catcher in the Rye	Active
102	My Antonia	Active
Fomm e m e oo e e e e e e o B +

First, notice that I broke this SQL statement over three lines. That’s allowed. Nothing is
processed until you type a semicolon and then press the Enter key. Breaking apart a
statement like this makes it easier to read, but has no effect on MySQL. In this SQL
statement, the first line selects book_id and title, which are both in books, and
status_name, which is in the status_names table. Notice that we didn’t use an asterisk to
select all of the columns, but named the specific ones we want. We also chose columns
from two tables.

On the second line, we say to select these columns listed from books and from
status_names. The JOIN clause is where we named the second table.

In the WHERE clause, on the third line, we tell MySQL to match the values of the status
column from books to the values of the status_id column from the status_names table.
This is the point in which the rows from each will be joined. If the idea of joining tables
seems difficult, don’t worry about it at this point. I’ve included it just to show you what

can be done with MySQL and MariaDB. I’'ll explain joins more fully later.

When we created books, we could have made status a text or character field and entered
the words Active or Inactive for each row. But if you have a table with thousands or maybe
millions of rows of data, entering 0 or 1 is much easier and you’re less likely to make
typos (e.g., you might enter Actve sometimes). Databases are tedious, but creating tables
with better structures and using better written SQL statements makes them less tedious
and helps you to leverage your time and resources.

Summary

There’s plenty more you can do to explore the simple tables we’ve created, but in this
chapter I wanted just to give you an overview of MySQL and MariaDB, and to show you
around. The chapters in Part II will delve into details, starting with Chapter 4, which will
cover creating tables in detail.

Before jumping ahead, you might want to reinforce what you just learned from this
chapter. A few exercises follow for you to play some more on your own with the test
database and the mysql client. When you’re finished, to exit mysql, type quit or exit, and
press the Enter key.

Exercises

In addition to logging into MySQL or MariaDB with the mysql client and entering the
SQL statements shown already in this chapter, here are a few exercises to get some more
practice playing with the mysql client and to help you better understand the basics. Rather
than use generic names like books and book_id, you’re asked to use more realistic names.
In that same spirit, use fairly realistic data (e.g., “John Smith” for a person’s name) when
entering data in these exercises.

1.

Log into MySQL or MariaDB using the mysql client and switch the default database
to the database, test. Create two tables called contacts and relation_types. For
both tables, use column type INT for number columns and CHAR for character
columns. Specify the maximum number of characters you want with CHAR —
otherwise MySQL wills set a maximum of one character, which is not very useful.
Make sure that you allow for enough characters to fit the data you will enter later. If
you want to allow characters between numbers (e.g., hyphens for a telephone
number), use CHAR. For the contacts, you will need six columns: name, phone_work,
phone_mobile, email, relation_id. For the relation_types table, there should be
only two columns: relation_id and relationship.

When you’re finished creating both tables, use the DESCRIBE statement to see how
they look.

Enter data in the two tables created in the previous exercise. Enter data in the second
table, relation_types first. Enter three rows of data in it. Use single-digit,
sequential numbers for the first column, but the following text for the second
column: Family, Friend, Colleague. Now enter data in the table named contacts.
Enter at least five fictitious names, telephone numbers, and email addresses. For the
last column, relation_id, enter single digits to correspond with the relation_id
numbers in the table, relation_types. Make sure you have at least one row for each
of the three potential values for relation_id.

Execute two SELECT statements to retrieve all of the columns of data from both
tables that you created and filled with data from the previous two exercises. Then
run a SELECT statement that retrieves only the person’s name and email address from
the table named contacts.

Change some of the data entered in the previous exercises, using the UPDATE
statement. If you don’t remember how to do that, refer back to the examples in this
chapter on how to change data in a table. First, change someone’s name or telephone
number. Next, change someone’s email address and his or her relationship to you
(i.e., relation_id). Do this in one UPDATE statement.

Run a SELECT statement that joins both tables created in the first exercise. Use the
JOIN clause to do this (the JOIN clause was covered in this chapter, so look back at
the example if you don’t remember how to use it). Join the tables on the common
column named relation_id — this will go in the WHERE clause. To help you with
this, here’s how the clauses for the tables should look:

FROM contacts JOIN relation_types
WHERE contacts.relation_id = relation_types.relation_id

Select the columns name and phone_mobile, but only for contacts who are marked as
a Friend — you’ll have to add this to the wHERE with AND. Try doing this based on
the value of relation_id and then again based on the value of the relationship

column.

Part II. Database Structures

The primary organizational structure in MySQL and MariaDB is the database. Separate
databases are usually created for each separate business or organization, or for individual
departments or projects. The basis by which you might want to create separate databases is
mostly based on your personal preference. It does allow a convenient method of providing
different permissions and privileges to different users or groups of users. However, for a
beginner, one database for one organization is enough on which to learn.

As explained in Starting to Explore Databases, databases contain tables that contain one
row or record for each item of data, and information about that item in columns or fields.
Compared to databases, there are well-established, practical considerations for
determining what separate tables to create. Although some beginners may create one large
table within a database, a table with many columns, it is almost always an inefficient
method of handling data. There is almost never a situation in which it makes sense to have
only one table. So expect to create many small tables and not a few wide tables (a wide
table is one with many columns).

When creating a table, you specify the fields or columns to be created, called the table’s
schema. When specifying the columns of a table being created, you may specify various
properties of each column. At a minimum, you must specify the type of column to create:
whether it contains characters or just integers; whether it is to contain date and time
information; or possibly binary data. When first creating a column, you may also specify
how the data to be contained in the column is indexed, if it is to be collated based on
particular alphabets (e.g., Latin letters or Chinese characters), and other factors.

The first chapter of this part, Chapter 4, covers how to create a database — a very simple
task — and how to create a table. I also touch on how to put data into a table and retrieve
it, topics to be greatly expanded in later chapters. Presenting only how to create a table
without showing you how to use it would be a very dry approach. It’s better to show you
quickly the point of why you would create a table before moving on to other details
related to tables.

When you first create tables, especially as a beginner, it’s difficult to know exactly what to
put in each table’s schema. Invariably, you will want to change a table’s structure after the
table is created. Thus, in Chapter 5 we’ll look at how to alter tables after they have been
created. I could have placed the chapter on altering tables after the chapters on
manipulating data, but you would inevitably need to jump ahead to it at some point when
you realize that you created a table incorrectly while experimenting with MySQL.

Chapter 4. Creating Databases and Tables

In order to be able to add and manipulate data, you first have to create a database. There’s
not much to this. You’re creating just a container in which you will add tables. Creating a
table is more involved and offers many choices. There are several types of tables from
which to choose, some with unique features. When creating tables, you must also decide
on the structure of each table: the number of columns, the type of data each column may
hold, how the tables will be indexed, and several other factors. However, while you’re still
learning, you can accept the default setting for most of the options when creating tables.

There are a few basic things to decide when creating a structure for your data:

m The number of tables to include in your database, as well as the table names
m For each table, the number of columns it should contain, as well as the column names
m For each column, what kind of data is to be stored

For the last part, in the beginning, we’ll use just four types of columns: columns that
contain only numbers; columns that contain alphanumeric characters, but not too many
(i.e., a maximum of 255 characters); columns that contain plenty of text and maybe binary
files; and columns for recording date and time information. This is a good starting point
for creating a database and tables. As we get further along, we can expand that list of
column data types to improve the performance of your databases.

This chapter contains examples of how to create a database and tables. The text is written
on the assumption that you will enter the SQL statements shown on your server, using the
mysql client. The exercises at the end of this chapter will require that you make some
changes and additions to the database and its tables on your computer. So, when
instructed, be sure to try all of the examples on your computer.

The database and the tables that we create in this chapter will be used in several chapters
in this book, especially in Part III. In those later chapters, you will be asked to add,
retrieve, and change data from the tables you create in this chapter. Exercises in
subsequent chapters assume that you have created the tables you are asked to create in this
chapter. Thus, in order to get the most value possible from this book, it’s important that
you complete the exercises included for each chapter. It will help reinforce what you read,
and you will learn more.

Creating a Database

Creating a database is simple, mostly because there’s nothing much to it. Use the SQL
statement CREATE DATABASE. You will have to provide a name for the database with this
SQL statement. You could call it something bland like db1. However, let’s do something
more realistic and interesting. I’'m a fan of birds, so I’ve used a database of a fictitious
bird-watching website for the examples in this book. Some birds live in groups, or a
colony called a rookery. To start, let’s create a database that will contain information about
birds and call it rookery. To do this, enter the following from within the mysql client:

CREATE DATABASE rookery;

As previously mentioned, this very minimal, first SQL statement will create a subdirectory
called rookery on the filesystem in the data directory for MySQL. It won’t create any
data. It will just set up a place to add tables, which will in turn hold data. Incidentally, if
you don’t like the keyword DATABASE, you can use SCHEMA instead: CREATE SCHEMA
database_name. The results are the same.

You can, though, do a bit more than the SQL statement shown here for creating a database.
You can add a couple of options in which you can set the default types of characters that
will be used in the database and how data will be sorted or collated. So, let’s drop the
rookery database and create it again like so:

DROP DATABASE rookery;

CREATE DATABASE rookery

CHARACTER SET latini

COLLATE latini_bin;
The first line in this SQL statement is the same as the earlier one — remember, all of this
is one SQL statement spread over two lines, ending with the semicolon. The second line,
which is new, tells MySQL that the default characters that will be used in tables in the
database are Latin letters and other characters. The third line tells MySQL that the default
method of sorting data in tables is based on binary Latin characters. We’ll discuss binary
characters and binary sorting in a later chapter, but it’s not necessary to understand that at
this point. In fact, for most purposes, the minimal method of creating a database without
options, as shown earlier, is fine. You can always change these two options later if
necessary. I’'m only mentioning the options here so that you know they exist if you need to
set them one day.

Now that we’ve created a database, let’s confirm that it’s there, on the MySQL server. To
get a list of databases, enter the following SQL statement:

SHOW DATABASES;

L T +
| Database |
L T +
| information_schema |
| rookery |
| mysql I
| test |
Fommm e me e aaaan +

The results here show the rookery database, and three other databases that were created
when MySQL was installed on the server. We saw the other three in Starting to Explore
Databases, and we’ll cover them in later chapters of this book as needed.

Before beginning to add tables to the rookery database, enter the following command into
the mysql client:

USE rookery

This little command will set the new database that was just created as the default database
for the mysql client. It will remain the default database until you change it to a different
one or until you exit the client. This makes it easier when entering SQL statements to
create tables or other SQL statements related to tables. Otherwise, when you enter each
table-related SQL statement, you would have to specify each time the database where the
table is located.

Creating Tables

The next step for structuring a database is to create tables. Although this can be
complicated, we’ll keep it simple to start. We’ll initially create one main table and two
smaller tables for reference information. The main table will have a bunch of columns, but
the reference tables will have only a few columns.

For our fictitious bird-watchers site, the key interest is birds. So we want to create a table
that will hold basic data on birds. For learning purposes, we won’t make this an elaborate
table. Enter the following SQL statement into mysql on your computer:

CREATE TABLE birds (

bird_id INT AUTO_INCREMENT PRIMARY KEY,

scientific_name VARCHAR(255) UNIQUE,

common_name VARCHAR(50),

family_id INT,

description TEXT);
This SQL statement creates the table birds with five fields, or columns, with commas
separating the information about each column. Note that all the columns together are
contained in a pair of parentheses. For each colum, we specify the name, the type, and

optional settings. For instance, the information we give about the first column is:

m The name, bird_id
m The type, INT (meaning it has to contain integers)
m The settings, AUTO_INCREMENT and PRIMARY KEY

The names of the columns can be anything other than words that are reserved for SQL
statements, clauses, and functions. Actually, you can use a reserve word, but it must
always be given within quotes to distinguish it. You can find a list of data types from
which to choose on the websites of MySQL and MariaDB, or in my book, MySQL in a
Nutshell.

We created this table with only five columns. You can have plenty of columns (up to 255),
but you shouldn’t have too many. If a table has too many columns, it can be cumbersome
to use and the table will be sluggish when it’s accessed. It’s better to break data into
multiple tables.

The first column in the birds table is a simple identification number, bird_id. It will be
the primary key column on which data will be indexed — hence the keywords, PRIMARY
KEY. We’ll discuss the importance of the primary key later.

The AUTO_INCREMENT option tells MySQL to automatically increment the value of this
field. It will start with the number 1, unless we specify a different number.

The next column will contain the scientific name of each bird (e.g., Charadrius vociferus,
instead of Killdeer). You might think that the scientific_name column would be the ideal
identifier to use as the primary key on which to index the birds table, and that we
wouldn’t need the bird_id column. But the scientific name can be very long and usually
in Latin or Greek (or sometimes a mix of both languages), and not everyone is
comfortable using words from these languages. In addition, would be awkward to enter
the scientific name of a bird when referencing a row in the table. We’ve set the
scientific_name column to have a variable-width character data type (VARCHAR). The 255
that we specify in the parentheses after it sets the maximum size (255 should be sufficient

http://shop.oreilly.com/product/9780596514334.do

for the long names we’ll need to accommodate).

If the scientific name of a bird has fewer than 255 characters, the storage engine will
reduce the size of the column for the row. This is different from the CHAR column data
type. If the data in a CHAR column is less than its maximum, space is still allocated for the
full width that you set. There are trade-offs with these two basic character data types. If
the storage engine knows exactly what to expect from a column, tables run faster and can
be indexed more easily with a CHAR column. However, a VARCHAR column can use less
space on the server’s hard drive and is less prone to fragmentation. That can improve
performance. When you know for sure that a column will have a set number of characters,
use CHAR. When the width may vary, use VARCHAR.

Next, we set the column data type for the common_name of each bird to a variable-width
character column of only 50 characters at most.

The fourth column (family_id) will be used as identification numbers for the family of
birds to which each bird belongs. They are integer data types (i.e., INT). We’ll create
another table for more information on the families. Then, when manipulating data, we can
join the two tables, use a number to identify each family, and link each bird to its family.

The last column is for the description of each bird. It’s a TEXT data type, which means that
it’s a variable-width column, and it can hold up 65,535 bytes of data for each row. This
will allow us to enter plenty of text about each bird. We could write multiple pages
describing a bird and put it in this column.

There are additional factors to consider when searching for a bird in a database, so there
are many columns we could add to this table: information about migratory patterns,
notable features for spotting them in the wild, and so on. In addition, there are many other
data types that may be used for columns. We can have columns that allow for larger and
smaller numbers, or for binary files to be included in each row. For instance, you might
want a column with a binary data type to store a photograph of each bird. However, this
basic table gives you a good sampling of the possibilities when creating tables.

To see how the table looks, use the DESCRIBE statement. It displays information about the
columns of a table, or the table schema — not the data itself. To use this SQL statement to
get information on the table we just created, you would enter the following SQL
statement:

DESCRIBE birds;

Fommmmmem e e aa Fommm e e e aaan Fe-m-a- [T toemmmaaa- Feommmmmee e e aa +
| Field | Type | Null | Key | Default | Extra |
Fommm e e e e aa Fommmmmem e aaaan Feo-eaa- [e Fommmmaaa- L +
bird_id	int(11)	NO	PRI	NULL	auto_increment
scientific_name	varchar(255)	YES	UNI	NULL	
common_name	varchar(50)	YES		NULL	
family_id	int(11)	YES		NULL	
description	text	YES		NULL	
Fommm e e eeeaaaa [TR - R [T tommmmaaa- T +

Notice that these results are displayed in a table format made with ASCII characters. It’s
not very slick looking, but it’s clean, quick, and provides the information requested. Let’s
study this layout, not the content, per se.

The first row of this results set contains column headings describing the rows of

information that follow it. In the first column of this results set, Field contains the fields or
columns of the table created.

The second column, Type, lists the data type for each field. Notice that for the table’s
columns in which we specified the data type VARCHAR with the specific widths within
parentheses, those settings are shown here (e.g., varchar (255)). Where we didn’t specify
the size for the INT columns, the defaults were assumed and are shown here. We’ll cover
later what INT(11) means and discuss the other possibilities for integer data types.

The third column in the preceding results, Null, indicates whether each field may contain
NULL values. NULL is nothing; it’s nonexistent data. This is different from blank or
empty content in a field. That may seem strange: just accept that there’s a difference at this
point. You’ll see that in action later in this book.

The fourth column, Key, indicates whether a field is a key field — an indexed column. It’s
not an indexed column if the result is blank, as it is with common_name. If a column is
indexed, the display will say which kind of index. Because of the limited space permitted
in the display, it truncates the words. In the example shown, the bird_id column is a
primary key, shortened to PRI in this display. We set scientific_name to another type of
key or index, one called UNIQUE, which is abbreviated UNI here.

The next-to-last column in the display, Default, would contain any default value set for
each field. We didn’t set any when creating the birds table, but we could have done so.
We can do that later.

The last column, Extra, provides any extra information the table maintains on each
column. In the example shown, we can see that the values for bird_id will be
incremented automatically. There’s usually nothing else listed in this column.

If we don’t like something within the structure of the table we created, we can use the
ALTER TABLE statement to change it (this SQL statement is covered in Chapter 5). If you
made some mistakes and just want to start over, you can delete the table and try again to
create it. To delete a table completely (including its data), you can use the DROP TABLE
statement, followed by the table name. Be careful with this SQL statement, as it’s not
reversible and it deletes any data in the table.

NOTE

Incidentally, when using the mysql client, you can press the up arrow on your keyboard to get to the previous lines
you entered. So if you create a table, then run the DESCRIBE statement and catch a mistake, you can just drop the table,
and use the up arrow to go back to your previous entry in which you created the table. Use the left arrow to move the
cursor over to the text you want to change and fix it. When you’ve finished modifying the CREATE TABLE statement,
press Enter. The modified CREATE TABLE statement will then be sent to the server.

Inserting Data

Those were a lot of details to absorb in the last section. Let’s take a break from creating
tables and enter data in the birds table. We’ll use an INSERT statement, which was
covered briefly in Chapter 3, and will be covered in more detail in the next section. For
now, don’t worry too much about understanding all of the possibilities with the INSERT
statement. Just enter the following on your server using the mysql client:

INSERT INTO birds (scientific_name, common_name)
VALUES ('Charadrius vociferus', 'Killdeer'),
('Gavia immer', 'Great Northern Loon'),

('Aix sponsa', 'Wood Duck'),

('Chordeiles minor', 'Common Nighthawk'),

('Sitta carolinensis', ' White-breasted Nuthatch'),
('Apteryx mantelli', 'North Island Brown Kiwi');

This will create six rows of data for six birds. Enter the following from the mysql client to
see the contents of the table:

SELECT * FROM birds;

Fommee o e S S Fomm e +
| bird_id | scientific_name | common_name | family_id | description |
Fomme o i S E S ——_ Fomm e +
| 1 | Charadrius vociferus | Killdeer [NULL | NULL |
| 2 | Gavia immer | Great Northern.. | NULL | NULL |

3	Aix sponsa	Wood Duck	NULL	NULL
4	Chordeiles minor	Common Nighthawk	NULL	NULL
5	Sitta carolinensis	White-breasted..	NULL	NULL

| 6 | Apteryx mantelli | North Island.. | NULL | NULL |

Fomm e e - o - Fom e e e e e oo B R Fomm e e o - Fomm e e +

As you can see from the results, MySQL put values in the two columns we gave it, and set
the other columns to their default values (i.e., NULL). We can change those values later.

Let’s create another table for a different database. We have information on birds in the
rookery database. Let’s create another database that contains information about people
who are interested in bird-watching. We’ll call it birdwatchers and we’ll create one table
for it that we’ll call humans, to correlate with the name of birds table:

CREATE DATABASE birdwatchers;

CREATE TABLE birdwatchers.humans
(human_id INT AUTO_INCREMENT PRIMARY KEY,
formal_title VARCHAR(25),

name_first VARCHAR(25),

name_last VARCHAR(25),

email_address VARCHAR(255));

This isn’t much of a table; we’re not collecting much information on members, but it will
do well for now. Let’s enter some data into this table. The following adds four people to
our table of members of the site:

INSERT INTO birdwatchers.humans
(name_first, name_last, email_address)

VALUES

('Mr.', 'Russell', 'Dyer', 'russell@mysqglresources.com'),
('Mr.', 'Richard', 'Stringer', 'richard@mysqlresources.com'),
('Ms.', 'Rusty', 'Osborne', 'rusty@mysglresources.com'),
('Ms.', 'Lexi', 'Hollar',6 'alexandra@mysqglresources.com');

This enters information for four humans. Notice that we left the first column NULL so that
MySQL can assign an identification number automatically and incrementally.

We’ve created some simple tables. We could do more, but this is enough for now to better

understand tables and their structure.

More Perspectives on Tables

Besides the DESCRIBE statement, there’s another way to look at how a table is structured.
You can use the SHOW CREATE TABLE statement. This basically shows how you might enter
the CREATE TABLE to create an existing table, perhaps in a different database. What’s
particularly interesting and useful about the SHOw CREATE TABLE statement is that it shows
the default settings assumed by the server, ones that you might not have specified when
you ran the CREATE TABLE statement. Here’s how you would enter this statement, with the
results shown after it:

SHOW CREATE TABLE birds \G

R Rk Sk kR S S R R O 1 row ER R S AR Rk R S

Table: birds
Create Table: CREATE TABLE “birds" (

“bird_id® int(11) NOT NULL AUTO_INCREMENT,

‘scientific_name® varchar(255) COLLATE latinl_bin DEFAULT NULL,

“common_name" varchar(50) COLLATE latinl_bin DEFAULT NULL,

“family_id" int(11) DEFAULT NULL,

‘description” text COLLATE latinl_bin,

PRIMARY KEY (bird_id"),

UNIQUE KEY ‘“scientific_name” (scientific_name’)

) ENGINE=MyISAM DEFAULT CHARSET=latinl COLLATE=latinl_bin

As mentioned earlier, there are more options that you can set for each column; if you don’t
specify them, the server will use the default choices. Here you can see those default
settings. Notice that we did not set a default value for any of the fields (except the first one
when we said to use an automatically incremented number), so it set each column to a
default of NULL. For the third column, the common_name column, the server set the set of
characters (i.e., the alphabet, numbers, and other characters) by which it will collate the
data in that column to latin1_bin (i.e., Latin binary characters). The server did the same
for three other columns. That’s because of how we set the database at the beginning of this
chapter, in the second CREATE DATABASE statement. This is where that comes into play. We
could set a column to a different one from the one we set for the database default, but it’s

usually not necessary.

You may have noticed in looking at the results that the options for the bird_id column
don’t indicate that it’s a primary key, although we specified that in CREATE TABLE. Instead,
the list of columns is followed by a list of keys or indexes used in the table. Here it lists
the primary key and specifies that that index is based on bird_id. It then shows a unique
key. For that kind of key, it gives a name of the index, scientific_name, which is the
same as the column it indexes, and it then shows in parentheses a lists of columns from
which the index is drawn. That could be more than one column, but it’s just one here.
We’ll cover indexes in Chapter 5 (see Indexes).

There’s one more aspect you should note in the results of SHow CREATE TABLE. Notice that
the last line shows a few other settings after the closing parentheses for the set of columns.
First is the type of table used, or rather the type of storage engine used for this table. In
this case, it’s MyISAM, which is the default for many servers. The default for your server
may be different. Data is stored and handled in different ways by different storage engines.
There are advantages and disadvantages to each.

The other two settings are the default character set (1atin1) and the default collation
(latini_bin) in the table. These come from the default values when the database was

created, or rather they came indirectly from there. You can set a different character and
collation, and you can even set a different character set and collation for an individual
column.

Let me give you an example where setting explicit values for the character set and
collation might be useful. Suppose you have a typical database for a bird-watcher group
located in England with most of its common names written in English. Suppose further
that the site attracts bird-watchers from other countries in Europe, so you might want to
include common bird names in other languages. Let’s say that you want to set up a table
for the Turkish bird-watchers. For that table, you would use a different character set and
collation, because the Turkish alphabet contains both Latin and other letters. For the
character set, you would use latin5, which has both Latin and other letters. For collation,
you would use latin5_turkish_ci, which orders text based on the order of the letters in
the Turkish alphabet. To make sure you don’t forget to use this character set and collation
when adding columns to this table later, you could set the CHARSET and COLLATE for the
table to these values.

Before moving on, let me make one more point about the SHOw CREATE TABLE statement:
if you want to create a table with plenty of special settings different from the default, you
can use the results of the SHOw CREATE TABLE statement as a starting point for constructing
a more elaborate CREATE TABLE statement. Mostly you would use it to see the assumptions
that the server made when it created a table, based on the default settings during
installation.

The next table we’ll create for the examples in this book is bird_families. This will hold
information about bird families, which are groupings of birds. This will tie into the
family_id column in the birds table. The new table will save us from having to enter the
name and other information related to each family of birds for each bird in the birds
table:

CREATE TABLE bird_families (

family id INT AUTO_INCREMENT PRIMARY KEY,

scientific_name VARCHAR(255) UNIQUE,

brief_description VARCHAR(255));
We’re creating three columns in the table. The first is the most interesting for our purposes
here. It’s the column that will be indexed and will be referenced by the birds table. That
sounds like there is a physical connection or something similar within the birds table, but
that’s not what will happen. Instead, the connection will be made only when we execute an
SQL statement, a query referencing both tables. With such SQL statements, we’ll join the
bird_families table to the birds table based on the family_id columns in both. For
instance, we would do this when we want a list of birds along with their corresponding
family names, or maybe when we want to get a list of birds for a particular family.

Now we can put all the information we want about a family of birds in one row. When we
enter data in the birds table, we’ll include the family_id identification number that will
reference a row of the bird_families table. This also helps to ensure consistency of data:
there’s less chance of spelling deviations when you only enter a number and not a Latin
name. It also saves space because you can store information in one row of bird_families
and refer to it from hundreds of rows in birds. We’ll see soon how this works.

The scientific_name column will hold the scientific name of the family of birds (e.g.,

Charadriidae). The third column is basically for the common names of families (e.g.,
Plovers). But people often associate several common names to a family of birds, as well as
vague names for the types of birds contained in the family. So we’ll just call the column
brief_description.

Let’s next create a table for information about the orders of the birds. This is a grouping of
families of birds. We’ll name it bird_orders. For this table, let’s try out some of the extra
options mentioned earlier. Enter the following SQL statement:

CREATE TABLE bird_orders (
order_id INT AUTO_INCREMENT PRIMARY KEY,
scientific_name VARCHAR(255) UNIQUE,
brief_description VARCHAR(255),
order_image BLOB

) DEFAULT CHARSET=utf8 COLLATE=utf8_general_ci;

This SQL statement creates a table named bird_orders with four columns to start. The
first one, order_id, is the key in which rows will be referenced from the bird_families
table. This is followed by scientific_name for the scientific name of the order of birds,
with a data type of VARCHAR. We’re allowing the maximum number of characters for it. It’s
more than we’ll need, but there won’t be many entries in this table and it’s difficult to
guess what what the longest description will be. So we’ll set it to the maximum allowed
for that data type. We’re naming this column brief_description, as we did in the earlier
bird_families table.

Because all three tables that we’ve created so far have similar names for some of the
columns (e.g., scientific_name), that may cause us a little trouble later if we try to join
all of these tables together. It might seem simpler to use distinct names for these columns
in each of these tables (e.g., order_scientific_name). However, we can resolve that
ambiguity easily when necessary.

In the previous SQL statement, notice that we have a column for an image to represent the
order of birds. We might put a photo of the most popular bird of the order or a drawing of
several birds from the order. Notice that for this image file, the data type we’re using is a
BLOB. While the name is cute and evocative, it also stands for binary large object. We can
store an image file, such as a JPEG file, in the column. That’s not always a good idea. It
can make the table large, which can be a problem when backing up the database. It might
be better to store the image files on the server and then store a file path or URL address in
the database, pointing to where the image file is located. I’ve included a BLOB here,
though, to show it as a possibility.

After the list of columns, we’ve included the default character set and collation to be used
when creating the columns. We’re using UTF-8 (i.e., UCS Transformation Format, 8-bit),
because some of the names may include characters that are not part of the default latin1
character set. For instance, if our fictitious bird-watcher site included German words, the
column brief_description would be able to accept the letters with umlauts over them
(i.e., d). The character set utfg allows for such letters.

For a real bird-watching database, both the bird_families and bird_orders tables would
have more columns. There would also be several more tables than the few we’re creating.
But for our purposes, these few tables as they are here will be fine for now.

Summary

You have many more possibilities when creating tables. There are options for setting
different types of storage engines. We touched on that in this chapter, but there’s much
more to that. You can also create some tables with certain storage engines that will allow
you to partition the data across different locations on the server’s hard drives. The storage
engine can have an impact on the table’s performance. Some options and settings are
rarely used, but they’re there for a reason. For now, we’ve covered enough options and
possibilities when creating tables.

What we have covered in this chapter may actually be a bit overwhelming, especially the
notion of reference tables like bird_families and bird_orders. Their purpose should
become clearer in time. Chapter 5 provides some clarification on tables, and will show
you how to alter them. There are additional examples of inserting and selecting data
interspersed throughout that chapter. Before moving on, make sure to complete the
exercises in the following section. They should help you to better understand how tables
work and are used.

Exercises

Besides the SQL statements you entered on your MySQL server while reading this
chapter, here are a few exercises to further reinforce what you’ve learned about creating
databases and tables. In some of these exercises, you will be asked to create tables that
will be used in later chapters, so it’s important that you complete the exercises that follow.

1. Use the DROP TABLE statement to delete the table bird_orders that we created
earlier in this chapter. Look for the CREATE TABLE statement that we used to create
that table. Copy or type it into a text editor and make changes to that SQL statement:
change the brief_description column to TEXT column type. Watch out for extra
commas when you remove columns from the list. When you’re finished, copy that
modified SQL statement into the mysql monitor on your computer and press Enter to
execute it.

If you get an error, look at the error message (which will probably be confusing) and
then look at the SQL statement in your text editor. Look where you made changes
and see if you have any mistakes. Make sure you have keywords and values in the
correct places and there are no typos. Fix any mistakes you find and try running the
statement again. Keep trying until you succeed.

2. I mentioned in this chapter that we might want to store data related to identifying
birds. Instead of putting that data in the birds table, create a table for that data,
which will be a reference table. Try creating that table with the CREATE TABLE
statement. Name it birds_wing_shapes. Give it three columns: the first column
should be named wing_id with a data type of CHAR with the maximum character
width set to 2. Make that column the index, as a UNIQUE key, but not an
AUTO_INCREMENT. We’ll enter two-letter codes manually to identify each row of data
— a feasible task because there will be probably only six rows of data in this table.
Name the second column wing_shape and set its data type to CHAR with the
maximum character width set to 25. This will be used to describe the type of wings a
bird may have (e.g., tapered wings). The third column should be called
wing_example and make it a BLOB column for storing example images of the shapes
of wings.

3. After creating the birds_wing_shapes table in the previous exercise, run the SHoOwW
CREATE TABLE statement for that table in mysql. Run it twice: once with the semi-
colon at the end of the SQL statement and another time with \G to see how the
different displays can be useful given the results.

Copy the results of the second statement, the CREATE TABLE statement it returns.
Paste that into a text editor. Then use the DROP TABLE statement to delete the table
birds_wing_shapes in mysql.

In your text editor, change a few things in the CREATE TABLE statement you copied.
First, change the storage engine — the value of ENGINE for the table — to a
MyISAM table, if it’s not already. Next, change the character set and collation for
the table. Set the character set to utf8 and the collation to utf8_general_ci.

Now copy the CREATE TABLE statement you modified in your text editor and paste it
into the mysql monitor and press [Enter] to run it. If you get an error, look at the
confusing error message and then look at the SQL statement in your text editor. Look
where you made changes and see if you have any mistakes. Make sure you have

keywords and values in the correct places and there are no typos. Fix any mistakes
you find and try running the statement again. Keep trying to fix it until you’re
successful. Once you’re successful, run the DESCRIBE statement for the table to see
how it looks.

. Create two more tables, similar to birds_wing_shapes. One table will store
information on the common shapes of bird bodies, and the other will store
information on the shapes of their bills. They will also be used for helping bird-
watchers to identify birds. Call these two tables birds_body_shapes and
birds_bill_shapes.

For the birds_body_shapes table, name the first column body_id, set the data type
to CHAR(3), and make it a UNIQUE key column. Name the second column body_shape
with CHAR(25), and the third column body_example, making it a BLOB column for
storing images of the bird shapes.

For the birds_bill_shapes table, create three similar columns: bill_id with
CHAR(2) and UNIQUE; bill shape with CHAR(25); and bill example, making it a
BLOB column for storing images of the bird shapes. Create both tables with the
ENGINE set to a MyISAM, the DEFAULT CHARSET, utf8, and the COLLATE as
utf8_general_ci. Run the SHOW CREATE TABLE statement for each table when
you’re finished to check your work.

Chapter 5. Altering Tables

Despite the best planning, you will need occasionally to change the structure or other
aspects of your tables. We cannot imagine everything that we might want to do with a
table, or how the data might look when it’s entered. Altering a table, though, is not very
difficult. Because of these factors, you shouldn’t worry too much about getting the table
structure exactly right when creating a table. You should see tables as more fluid. Perhaps
the term table structure makes that difficult to accept: the words table and structure have
such rigid senses to them. To offset these images, perhaps a modified version of a cliché
would be useful to give you a truer sense of the reality of table structures: they’re not
made of stone or wood, but of digital confines that are easily altered. I suspect that
sentence won’t be quoted much, but it’s a useful perspective.

In this chapter, we will explore the ways to alter tables: how to add and delete columns,
how to change their data types, how to add indexes, and how to change table and column
options. This chapter will also include some precautions about potential data problems you
can cause when altering a table containing data.

Prudence When Altering Tables

Before doing any structural changes to a table, especially if it contains data, you should
make a backup of the table to be changed. You should do this even if you’re making
simple changes. You might lose part of the data if you inadvertently change the column to
a different size, and may lose all of the data contained in a column if you change the
column type to one that’s incompatible (e.g., from a string to a numeric data type).

If you’re altering only one table, you can make a copy of the table within the same
database to use as a backup in case you make a mistake and want to restore the table to
how it was before you started. A better choice would be to make a copy of the table and
then alter the copy. You may even want to put the copy in the test database and alter the
table there. When you’re finished altering it, you can use it to replace the original table.
We’ll cover this method in more detail later in this chapter.

The best precaution to take, in addition to working with copies of tables, would be to use
the mysqldump utility to make a backup of the tables you’re altering or the whole
database. This utility is covered in Chapter 14 . However, to make it easier for you, here is
an example of what you should enter from the command line — not from the mysql client
— to make a backup of the birds table with mysgldump (you’ll need to have read and
write permission for the directory where you’re executing it; it’s set to the /tmp directory
here, but you should change that to a different directory, perhaps one to which only you
have access and the filesystem mysgl user has read and write permission):

mysqldump --user='russell' -p \

rookery birds > /tmp/birds.sql
As you can see, the username is given on the first line (you would enter your username
instead of mine) within single or double quotes, with the -p option to tell mysqldump to
prompt you for the password. There are many other mysqldump options, but for our
purposes, these are all that are necessary. Incidentally, this statement can be entered in one
line from the command line, or it can be entered on multiple lines as shown here by using
the back-slash (\) to let the shell know that more is to follow. On the second line in the
preceding code block, the database name is given, followed by the table name. The
redirect (>) tells the shell to send the results of the dump to a text file called birds.sql in
the /tmp directory.

The previous example makes a backup of just the birds table. It may be best to make a
backup of the whole rookery database. To do this with mysqldump, enter the following
from the command line:

mysqgldump --user='russell' -p \

rookery > rookery.sql
You should definitely do this, because having a backup of the rookery database will be
helpful in case you accidentally delete one of the tables or its data and then get confused
later when you’re working on the exercises in later chapters. In fact, it’s a good idea to
make a backup of the rookery database at the end of each chapter. Each dump file should
be named according to its chapter name (e.g., rookery-chl-end.sql, rookery-ch2-end.sql,
etc.) so that you can rewind to a specific point in the book.

Later on, if you have a problem and need to restore the database back to where you were

at the end of a chapter, you would enter something like the following from the command
line:

mysql --user='russell' -p \

rookery < rookery-ch2-end.sql
Notice that this line does not use the mysqgldump utility. We have to use the mysql client at
the command line to restore a dump file. When the dump file (rookery-ch2-end.sql) is read
into the database, it will delete the rookery database with its tables and data before
restoring the back up copy with its tables and data. Any data that users entered in the
interim into the rookery database will be lost. Notice that to restore from the dump file,
we’re using a different redirect, the less-than sign (<) to tell mysql to take input from the
contents of the text file, rookery-ch2-end.sql. It’s possible to restore only a table or to set
other limits on what is restored from a back up file. You can read about how to do that in
Chapter 14. Let’s move on to learning the essentials of altering tables in MySQL and
MariaDB.

Essential Changes

After you have created a table, entered data into it, and begun to use it, you will invariably
need to make changes to the table. You may need to add another column, change the data
type of the column (e.g., to allow for more characters), or perhaps rename a column for
clarity of purpose or to align the columns better with columns in other tables. To improve
the speed at which data is located in the column (i.e., make queries faster), you might want
to add or change an index. You may want to change one of the default values or set one of
the options. All of these changes can be made through the ALTER TABLE statement.

The basic syntax for the ALTER TABLE is simple:

ALTER TABLE table_name changes;

Replace table name with the name of the table you want to change. Enter the changes you
want to make on the rest of the line. We’ll cover the various changes possible with the
ALTER TABLE statement one at a time in this chapter.

This SQL statement starts simply. It’s the specifics of the changes that can make it
confusing. Actually, that isn’t always the reason for the confusion. The reason many
developers have trouble with the ALTER TABLE statement is because they most likely don’t
use it often. When you need to make a change to a table, you will probably look in a book
or in the documentation to see how to make a change, enter it on your server, and then
forget what you did. In contrast, because you will frequently use the SQL statements for
entering and retrieving data (i.e.,INSERT and SELECT), their syntax will be easier to
remember. So it’s natural that database developers don’t always remember how to make
some of the changes possible with the ALTER TABLE statement.

One of the most common alterations you will need to make to a table is adding a column.
To do this, include the ADD COLUMN clause as the changes at the end of the syntax shown
earlier. As an example of this clause, let’s add a column to the bird_families table to be
able to join it to the bird_orders table. You should have created these two tables in
Chapter 4. We’ll name the column order_id, the same as in the bird_orders table. It’s
acceptable and perhaps beneficial for it to have the same name as the related column in the
bird_orders table. To do this, enter the following from the mysql client:

ALTER TABLE bird_families

ADD COLUMN order_id INT;
This is pretty simple. It adds a column to the table with the name order_id. It will contain
integers, but it will not increment automatically like its counterpart in the bird_orders
table. You don’t want automatic increments for the column being added to
bird_families, because you’re just referring to existing orders, not adding new ones.

As another example of this clause, let’s add a couple of columns to the birds table to be
able to join it to the two tables you should have created in the exercises at the end of
Chapter 4 (i.e., birds_wing_shapes and birds_body_shapes). Before we do that, let’s
make a copy of the table and alter the copy instead of the original. When we’re finished,
we’ll use the table we altered to replace the original table.

To make a copy of the birds table, we’ll use the CREATE TABLE statement with the LIKE
clause. This was covered in Chapter 4) In fact, let’s create the new table in the test

database just to work separately on it (this isn’t necessary, but it’s a good practice to have
a development database separate from the live one. To do this, enter the following in
mysql on your server:

CREATE TABLE test.birds_new LIKE birds;

Next, enter the following two lines in mysql to switch the default database of the client and
to see how the new table looks:

USE test

DESCRIBE birds_new;

This DESCRIBE statement will show you the structure of the new table. Because we copied
only the structure of the birds table when we created the new table, there is no data in this
table. To do that, we could use an INSERT statement coupled with a SELECT like so:

INSERT INTO birds_new

SELECT * FROM rookery.birds;
This will work fine. However, there’s another method that creates a table based on another
table and copies over the data in the process:

CREATE TABLE birds_new_alternative

SELECT * FROM rookery.birds;
This will create the table birds_new_alternative with the data stored in it. However, if
you execute a DESCRIBE statement for the table, you will see that it did not set the bird_id
column to a PRIMARY KEY and did not set it to AUTO_INCREMENT. So in our situation, the
first method we used to create the table is preferred, followed by an INSERT INTO..SELECT
statement. Enter the following to delete the alternative table:

DROP TABLE birds_new_alternative;

Be careful with the DROP TABLE statement. Once you delete a table, there is usually no
way (or at least no easy way) to get it back, unless you have a backup copy of the
database. That’s why I suggested that you make a backup at the beginning of this chapter.

Let’s now alter the new table and add a column named wing_id to be able to join the table
to the birds_wing_shapes table. To add the column, enter the following SQL statement in
mysql:

ALTER TABLE birds_new

ADD COLUMN wing_id CHAR(2);
This will add a column named wing_id to the table with a fixed character data type and a
maximum width of two characters. I have made sure to give the column the exact same
data type and size as the corresponding column in birds_wing_shapes, because that
enables us to refer to the column in each table to join the tables.

Let’s look at the structure of the birds_new table to see how it looks now. Enter the
following in your mysql client:

DESCRIBE birds_new;

Fommmmmem e eeeaaaa Fommmmme e aaan Feo-ma-- +o-m-- Fommmmaaa T +
| Field | Type | Null | Key | Default | Extra |
Fommmmmem e eeeaaaa Fommmmme e aaan Feo-ma-- +o-m-- Fommmmaaa T +
bird_id	int(11)	NO	PRI	NULL	auto_increment
scientific_name	varchar(100)	YES	UNI	NULL	
common_name	varchar(50)	YES		NULL	
family id	int(11)	YES		NULL	
description	text	YES		NULL	

| wing_id | char(2) | YES | | NULL | |

o m e oo o m e oo oo Fo-o-n Fommmmeo - o e e oo +
Looking over the results set for the table, you should recognize the first six columns.
They’re based on the birds table that we created in Chapter 4. The only change is the
addition we just made. Notice that the new column, wing_id, was added to the end of the
table. Where a column is located matters little to MySQL or MariaDB. However, it may
matter to you as a developer, especially when working with wider tables or with tables that
have many columns. Let’s try adding this column again, but this time tell MySQL to put it
after the family_id. First, we’ll delete the column we just added. Because it’s a new
column, we can do this without losing data.

ALTER TABLE birds_new

DROP COLUMN wing_id;
This was even simpler than adding the column. Notice that we don’t mention the column
data type or other options. The command doesn’t need to know that in order to drop a
column. The DROP COLUMN clause removes the column and all of the data contained in the
column from the table. There’s no UNDO statement in MySQL or in MariaDB, so be careful
when working with a live table.

Let’s add the wing_id column again:

ALTER TABLE birds_new

ADD COLUMN wing_id CHAR(2) AFTER family_id;
This will put the wing_id column after the family id in the table. Run the DESCRIBE
statement again to see for yourself. By the way, to add a column to the first position, you
would use the keyword FIRST instead of AFTER. FIRST takes no column name.

With the ADD COLUMN clause of the ALTER TABLE statement, we can add more than one
column at a time and specify where each should go. Let’s add three more columns to the
birds_new table. We’ll add columns to join the table to the birds_body_shapes and
birds_bill_ shapes tables we created in the exercises at the end of Chapter 4. We’ll also
add a field to note whether a bird is an endangered species. While we’re making changes,
let’s change the width of the common_name column. It’s only 50 characters wide now. That
may not be enough for some birds that have lengthy common names. For that change,
we’ll use the CHANGE COLUMN clause. Enter the following in mysql:

ALTER TABLE birds_new

ADD COLUMN body_id CHAR(2) AFTER wing_id,

ADD COLUMN bill_id CHAR(2) AFTER body_id,

ADD COLUMN endangered BIT DEFAULT b'l' AFTER bill_id,

CHANGE COLUMN common_name common_name VARCHAR(255);
This is similar to the previous ALTER TABLE examples using the ADD COLUMN clause. There
are a few differences to note. First, we entered the ADD COLUMN clause three times,
separated by commas. You might think you should be able to specify the ADD COLUMN
keywords once, and then have each column addition listed after it, separated by commas.
This is a common mistake that even experienced developers make. You can include
multiple clauses in ALTER TABLE, but each clause must specify just one column. This
restriction may seem unnecessary, but altering a table can cause problems if you enter

something incorrectly. Being emphatic like this is a good precaution.

In one of the columns added here, the endangered column, we’re using a data type we
haven’t used yet in this book: BIT. This stores one bit, which takes a values of either set or

unset — basically, 1 or 0. We’ll use this to indicate whether a species is endangered or not.
Notice that we specified a default value for this column with the DEFAULT keyword
followed by the default value. Notice also that to set the bit, we put the letter b in front of
the value in quotes. There is one quirk — a bug with this data type. It stores the bit fine,
but it does not display the value. If the value is unset (0), it shows a blank space in the
results of a SELECT statement. If the value is set, it does not show anything, causing the
ASCII format of the results set to be indented by one space to the left. It’s a bug in
MySQL that they’ll resolve eventually — it may even be fixed by the time you read this.
We can still use the data type just fine with this bug. We’ll see this in action after we finish
loading the data into the table.

As for the CHANGE COLUMN clause, notice that we listed the name of the common_name
column twice. The first time is to name the column that is to be changed. The second time
is to provide the new name, if we wanted to change it. Even though we’re not changing
the name, we still must list it again. Otherwise, it will return an error message and reject
the SQL statement. After the column names, you must give the data type. Even if you
were using the CHANGE COLUMN statement to change only the name of the column, you
must give the data type again. Basically, when you type CHANGE COLUMN, the server
expects you to fully specify the new column, even if some parts of the specification
remain the same.

There is one more thing to note about the previous ALTER TABLE example. Notice that we
told the server where to locate each of columns that it’s adding using the AFTER clause. We
did this previously. However, what’s different is that for the second column, where we’re
adding bill_id, we said to locate it after body_id. You might imagine that would cause an
error because we’re adding the body_id column in the same statement. However, MySQL
executes the clauses of an ALTER TABLE statement in the order that they are given.
Depending on the version and operation, it creates a temporary copy of the table and alters
that copy based on the ALTER TABLE statement’s instructions, one clause at a time, from
left to right (or top to bottom in our layout). When it’s finished, if there are no errors, it
then replaces the original table with the altered temporary table — much like we’re doing
here, but rapidly and behind the scenes.

If there are errors in processing any clause of the ALTER TABLE statement, it just deletes
the temporary table and leaves the original table unchanged, and then returns an error
message to the client. So in the previous example, in the temporary table that MySQL
creates, it first added the column body_id. Once that was done, it then added the bill_id
column and put it after the body_id column in that temporary table. Your tendency might
have been to have entered AFTER wing_id at the end of each of the ADD COLUMN clauses.
That would have worked, but the columns would have been in reverse order (i.e., wing_id,
endangered, bill_id, body_id). So if we want body_id to be located after wing_id, and
bill id to be located after body_id, and so on, we have to say so in the SQL statement as
shown.

Let’s change now the value of the endangered column. The table only has five rows in it
at the moment and none of the birds they represent are endangered. Still, let’s set the value
of the endangered column to O for four of them. To do this, we use the UPDATE statement
(you’ll learn more about it in Chapter 8, so don’t worry if this is unfamiliar):

UPDATE birds_new SET endangered = 0

WHERE bird_id IN(1,2,4,5);
This will set the value of the endangered column to 0, or rather unset it, for the rows in
which the bird_id column has one of the values listed within the parentheses. Basically,
we’ll change four rows of data, but leave the one unchanged where bird_id equals 3.
Remember that when we created the endangered column, we gave a defaultof b'1",
meaning the bit is set by default. The preceding statement is unsetting that column for the
four rows identified in the WHERE clause.

Now we’ll retrieve data using the SELECT statement (covered in Chapters 3 and 7), based
on whether the endangered column is set. Because the birds_new table is now wider,
we’ll enter the following SQL statement using the \G for an easier-to-read display:

SELECT bird_id, scientific_name, common_name
FROM birds_new
WHERE endangered \G

B R 1 row R R S
bird_id: 3
scientific_name: Aix sponsa
common_name: Wood Duck

B R R 2. row EE
bird_id: 6
scientific_name: Apteryx mantelli
common_name: North Island Brown Kiwi

Notice that in the WHERE clause of the SELECT statement we are selecting rows where the
endangered column has a value. For the column data type of BIT, this is all that’s needed,
and it has the same effect as if we specified WHERE endangered = 1. To filter on the
reverse — to select rows in which the bit for the endangered column is not set — use the
NOT operator like so:

SELECT * FROM birds_new

WHERE NOT endangered \G
After looking over the display for the Wood Duck and that Kiwi bird, maybe we should
allow for other values for the endangered column. There are several degrees of
endangerment for birds. We could and should create a separate reference table for the
possibilities, but let’s just enumerate the choices in the column attributes so you can see
how that’s done. While we’re at it, we’ll also relocate the column to just after the
family_id column. For this, we’ll use a new clause, MODIFY COLUMN:

ALTER TABLE birds_new

MODIFY COLUMN endangered

ENUM('Extinct’,
'"Extinct in wild',
'Threatened - Critically Endangered',
'Threatened - Endangered',
'Threatened - Vulnerable',
'"Lower Risk - Conservation Dependent',
'"Lower Risk - Near Threatened',
'"Lower Risk - Least Concern')

AFTER family_id;

Notice that the syntax for the MODIFY COLUMN clause lists the name of the column once.
That’s because the clause does not allow you to change the column name. For that, you
must use the CHANGE COLUMN clause. Notice also that we used a new column data type that

lets us enumerate a list of acceptable values: the ENUM data type. The values are enclosed
in quotes, separated by commas, and the set is contained within a pair of parentheses.

Let’s run the SHOW COLUMNS statement with the LIKE clause to see just the column settings
for the endangered column:

SHOW COLUMNS FROM birds_new LIKE 'endangered' \G

LR R R R 1 row EE R R S I R I I I I

Field: endangered
Type: enum('Extinct', 'Extinct in wild',
'Threatened - Critically Endangered'
'Threatened - Endangered',
'Threatened - Vulnerable',
'"Lower Risk - Conservation Dependent',
'"Lower Risk - Near Threatened',
'"Lower Risk - Least Concern')
Null: YES
Key:
Default: NULL
Extra:
In addition to the values enumerated, notice that a NULL value is allowed and is the

default. We could have disallowed NULL values by including a NOT NULL clause.

If we want to add another value to the enumerated list, we would use the ALTER TABLE
statement again with the MODIFY COLUMN clause, without the AFTER clause extension —
unless we want to relocate the column again. We would have to list all of the enumerated
values again, with the addition of the new one.

To set the values in a column that has an enumerated list, you can either give a value
shown in the list, or refer to the value numerically, if you know the order of the values.
The first enumerated value would be 1. For instance, you could do an UPDATE statement
like this to set all birds in the table to Lower Risk - Least Concern, the seventh value:

UPDATE birds_new

SET endangered = 7;
I said earlier that using the ENUM data type can be an alternative to a reference table when
there are a few values. However, the endangered column as shown in this example is
cumbersome and not professional. We could still do a reference table in addition to this
enumerated list within the table. The reference table would have a row for each of these
choices, but with extra columns that would provide more information for them, for when
we wanted to display more information. Based on that, we could change the values in the
enumerated list in the birds table to something easier to type (e.g., LR-LC for Lower Risk
- Least Concern) and then put the lengthier description in the reference table that we’d
create.

It will be simpler, however, to treat the endangered column like the other reference tables
that we’ve created (e.g., birds_wing_shapes) and use numbers for the values in the birds
table. We should change the column and create another reference table for it. We’ll do that
later, though.

Dynamic Columns

We just covered ENUM, so let’s digress from ALTER TABLE for a moment to cover dynamic
columns. This is something that is available only in MariaDB, as of version 5.3. It’s
similar to an ENUM column, but with key/value pairs instead of a plain list of options. That
will initially sound confusing, but it make more sense when we look at some examples. So
let’s create a few tables with dynamic columns.

To make the bird-watchers site more interesting, suppose we’ve decided to do some
surveys of the preferences of bird-watchers. We’ll ask the members to rate birds they like
the most. That will be a simple start. In time, we might ask them to rate the best places to
see birds in an area, or maybe binocular makers and models they like the best. For this
scenario, let’s create a set of tables.

If you’re not using MariaDB and don’t want to replace MySQL with it, just read along. If
you do have MariaDB installed on your server, enter the following:

USE birdwatchers;

CREATE TABLE surveys
(survey_id INT AUTO_INCREMENT KEY,
survey_name VARCHAR(255));

CREATE TABLE survey_questions
(question_id INT AUTO_INCREMENT KEY,
survey_id INT,

question VARCHAR(255),

choices BLOB);

CREATE TABLE survey_answers

(answer_id INT AUTO_INCREMENT KEY,

human_id INT,

question_id INT,

date_answered DATETIME,

answer VARCHAR(255));
The first table we created here will contain a list of surveys. The second table is where
we’ll put the questions. Because we intend to do only polls, the choices column will
contain the survey choices. We defined it with a very generic type, BLOB, but we’ll use it to
store a dynamic column. The data type used has to be able to hold the data that will be

given to it when we create the dynamic column. BLOB can be a good choice for that.

The third table is where we will store the answers to the survey questions. This time we
define a VARCHAR column to hold the dynamic column. We will link survey_answers to
survey_questions based on the question_id, and survey_questions to surveys based
on the survey_id.

Now let’s put some data in these tables. If you’re using MariaDB, enter the following SQL
statements to add SQL statements:

INSERT INTO surveys (survey_name)
VALUES('"Favorite Birding Location");

INSERT INTO survey_questions

(survey_id, question, choices)

VALUES (LAST_INSERT_ID(),

"What's your favorite setting for bird-watching?",
COLUMN_CREATE('1', 'forest', '2', 'shore', '3', 'backyard'));

INSERT INTO surveys (survey_name)
VALUES("Preferred Birds");

INSERT INTO survey_questions

(survey_id, question, choices)

VALUES (LAST_INSERT_ID(),

"Which type of birds do you like best?",

COLUMN_CREATE('1', 'perching', '2', 'shore', '3', 'fowl', '4', 'rapture'));
That created two surveys: one with a set of choices about where the birders like to watch
birds; the second with a simple, not comprehensive set of bird types they prefer. We used
COLUMN_CREATE() to create the enumerated lists of choices: each choice has a key and a

value. Thus, in survey_questions, choice 1 is “forest,” choice 2 is “shore,” and choice 3

is “backyard.” Starting with MariaDB version 10.0.1, you can give strings for the keys
instead of numbers.

Let’s see now how data may be retrieved from a dynamic column:

SELECT COLUMN_GET(choices, 3 AS CHAR)
AS 'Location'

FROM survey_questions

WHERE survey_id = 1;

This returns the third choice. We used the COLUMN_GET () function to get the dynamic
column within the column given as the first argument. The second argument specifies the
key to use to get the data. We also included As to indicate the type of data type it should
use (i.e., CHAR) to cast the value it returns.

Now let’s enter a bunch of answers for our members. If you’re using an electronic version
of this book, just copy and paste the following into your MariaDB server:

INSERT INTO survey_answers
(human_id, question_id, date_answered, answer)
VALUES

(29, 1, NOwW(), 2),

(29, 2, NOW(), 2),

(35, 1, NOw(), 1),

(35, 2, NOW(), 1),

(26, 1, NOW(), 2),

(26, 2, NOW(), 1),

(27, 1, NOW(), 2),

(27, 2, NOW(), 4),

(16, 1, NOw(), 3),

(3, 1, NOw(), 1),

(3, 2, NOW(), 1);

NEFENENEDN

This isn’t many rows, but it’s enough for now. Let’s count the votes for the first survey
question by executing the following:

SELECT IFNULL(COLUMN_GET(choices, answer AS CHAR), 'total')
AS 'Birding Site', COUNT(*) AS 'Votes'

FROM survey_answers

JOIN survey_questions USING(question_id)

WHERE survey_id = 1

AND question_id = 1

GROUP BY answer WITH ROLLUP,

[SRR — [epepeppp—— +
| Birding Site | Votes |
[IR — [epepeppp—— +
forest	2
shore	3
backyard	1
total	6
[YSRUp e [e +

In the WHERE clause, survey_id chose the survey we want from survey_questions while
question_id chose the question we want from survey_answers. We retrieve all the
answers, group them, and count the rows for each answer to see how many bird-watchers
voted for each one.

That’s not much data, though. I’ll add more answers to give us a larger table with which to
work. You can download the table from my site. We’ll use it in examples later in this
book. Dynamic columns are still new and very much under development, so this brief a

http://mysqlresources.com/files

review will suffice for now. Let’s now get back to more standard table-related topics.

Optional Changes

In addition to the most common uses for the ALTER TABLE statement (i.e., adding and
renaming columns), you can use it to set some of the options of an existing table and its
columns. You can also use the ALTER TABLE statement to set the value of table variables,
as well as the default value of columns. This section covers how to change those settings
and values, as well as how to rename a table. Additionally, you can change indexes in a
table. That is covered in the section on Indexes.

Setting a Column’s Default Value

You may have noticed that the results of the DESCRIBE statements shown in earlier
examples have a heading called Default. You may have also noticed that almost all of the
fields have a default value of NULL. This means that when the user does not enter a value
for the column, the value of NULL will be used. If you would like to specify a default
value for a column, though, you could have done so when creating the table. For an
existing table, you can use the ALTER TABLE statement to specify a default value other than
NULL. This won’t change the values of existing rows — not even ones that previously
used a default value. You would use either the CHANGE clause or the ALTER clause. Let’s
look at an example of using the CHANGE clause first.

Suppose that most of the birds that we will list in our database would have a value of
Lower Risk - Least Concern in the endangered column. Rather than enter Lower Risk -
Least Concern or its numeric equivalent in each INSERT statement (which inserts data into
a table), we could change the default value of the endangered column. Let’s do that and
change the column from an ENUM to an INT data type to prepare for the creation of a
reference table for the conservation status of birds. Let’s also make this a little more
interesting by creating the reference table and inserting all of the data we had enumerated
in the settings for the endangered. We’ll start by entering the following in mysql to create
the reference table:

CREATE TABLE rookery.conservation_status
(status_id INT AUTO_INCREMENT PRIMARY KEY,
conservation_category CHAR(10),
conservation_state CHAR(25));

We named the reference table conservation_status, which is a better description than
endangered. Notice that we split each status into two columns. A value like Lower Risk -
Least Concern was meant to indicate the state of Least Concern in the category Lower
Risk. So we created two columns for those values. We’ll put Lower Risk in the

conservation_category column and Least Concern in another column called,
conservation_category.

Now let’s insert all of the data into this new reference table. We’ll use the INSERT
statement (covered briefly in Chapter 3):

INSERT INTO rookery.conservation_status
(conservation_category, conservation_state)
VALUES('Extinct', 'Extinct'),

('Extinct', 'Extinct in wild'),
('Threatened', 'Critically Endangered'),
('Threatened', 'Endangered'),

('Threatened', 'Vulnerable'),

('Lower Risk', 'Conservation Dependent'),
('Lower Risk', 'Near Threatened'),

('Lower Risk', 'Least Concern');

If you find this SQL statement confusing, just enter it and rest assured we’ll cover such
statements in detail in Chapter 6. For now, though, I wanted to show you a reference table
with data in it. Let’s use the SELECT statement to select all of the rows of data in the table.
Enter just the SQL statement (shown in bold), not the results that follow it:

SELECT * FROM rookery.conservation_status;

SRR S B +
| status_id | conservation_category | conservation_state |
Fomm e om o m e e oo o e e e oo +
| 1 | Extinct | Extinct

2	Extinct	Extinct in wild
3	Threatened	Critically Endangered
4	Threatened	Endangered
5	Threatened	Vulnerable
6	Lower Risk	Conservation Dependent
7	Lower Risk	Near Threatened
8	Lower Risk	Least Concern
R i o e e oo +

The first column gets default values, incrementing automatically as we asked when we
created the table, while the other two columns get the values we specified during our
insert.

Notice that we have been prefixing the table name with the database name (i.e.,
rookery.conservation_status). That’s because we had set the default database to test
with USE. Going back to the birds_new table, we’re ready to change the endangered
column. We decided earlier that we wanted to set the default value of this column to
Lower Risk - Least Concern, or rather to the value of the status_id for that combination
of columns in the conservation_status table. Looking at the results, you can see that the
value for the status_id we want for the default is 8. We can change the endangered
column’s name and default value by entering the following on the server:

ALTER TABLE birds_new

CHANGE COLUMN endangered conservation_status_id INT DEFAULT 8;
The syntax of this is mostly the same as previous examples in this chapter that use the
CHANGE clause (i.e., list the name of the column twice and restate the data types, even if
you don’t want to change them). The difference in this case is that we’ve added the
keyword DEFAULT followed by the default value — if the default value were a string, you
would put it within quotes. The example also changed the column name. But if we wanted
only to set the default value for a column, we could use the ALTER clause of the ALTER
TABLE statement. Let’s change the default of conservation_status_id to 7:

ALTER TABLE birds_new

ALTER conservation_status_id SET DEFAULT 7;
This is much simpler. It only sets the default value for the column. Notice that the second
line starts with ALTER and not CHANGE. It’s then followed by the column name, and the SET
subclause. Let’s see how that column looks now, running the SHow COLUMNS statement
only for that column:

SHOW COLUMNS FROM birds_new LIKE 'conservation_status_id' \G

E R O S S O I O O 1 row EE IR O O I O I o O O I O

Field: conservation_status_id
Type: int(11)
Null: YES
Key:
Default: 7

Extra:

As you can see, the default value is now 7. If we change our minds about having a default
value for conservation_status_id, we would enter the following to reset it back to
NULL, or whatever the initial default value would be based on the data type of the
column:

ALTER TABLE birds_new

ALTER conservation_status_id DROP DEFAULT;
This particular usage of the DROP keyword doesn’t delete data in the columns. It just alters
the column settings so there is no default value. Run the SHOw COLUMNS statement again on
your computer to see that the default has been reset. Then put the default back to 7.

Setting the Value of AUTO_INCREMENT

Many of the main tables in a database will have a primary key that uses the
AUTO_INCREMENT option. That creates an AUTO_INCREMENT variable in the table called
tables in the information_schema database. You may recognize that database name. We
saw the information_schema database in the results of the SHow DATABASE statement in
Starting to Explore Databases. When you create a table, MySQL adds a row to the table
called tables in the information_schema database. One of the columns of that table is
called auto_increment. That is where you can find the value of the next row to be created
in a table. This is initially set to a value of 1, unless you set it to a different number when
creating the table. Let’s run a SELECT statement to get that value from the
information_schema database, from the tables table:

SELECT auto_increment
FROM information_schema.tables
WHERE table_name = 'birds';

Sy +
| auto_increment |
Ry, +
I 7
Sy, +

Because we entered data for only six birds in the birds table, and the value of
AUTO_INCREMENT was not set when the table was created, it started at 1 and now has a
value of 7. That means the next row we add to the table will have 7 in the column.

If you would like to change the value of AUTO_INCREMENT for a particular table, you can do
so with the ALTER TABLE statement. Let’s set the value of AUTO_INCREMENT for the birds
table to 10, just to see how to change it this way. While we’re at it, let’s switch the default
database back to rookery. Enter the following in mysql:

USE rookery

ALTER TABLE birds
AUTO_INCREMENT = 10,

This will cause the bird_id to be set to 10 for the next row of data on a bird that we enter
into the birds table. Changing the auto-increment value is not usually necessary, but it’s
good to know that you can do even this with ALTER TABLE.

Another Method to Alter and Create a Table

There may be times when you realize that you’ve created a table that is too wide, with too
many columns. Perhaps some columns would be handled better in a separate table. Or

perhaps you started adding new columns to an existing table and found it became unruly
over time. In either case, you could create a smaller table and then move data from the
larger table into the new, smaller one. To do this, you can create a new table with the same
settings for the columns you want to move, then copy the data from the first table to the
new table, and then delete the columns you no longer need from the first table. If you
wanted to make this transition by the method just described, the individual column
settings will need to be same in the new table to prevent problems or loss of data.

An easier method for creating a table based on another table is to use the CREATE TABLE
with the LIKE clause. Let’s try that to create a copy of the birds table. Enter the following
in mysql on your server:

CREATE TABLE birds_new LIKE birds;

This creates an identical table like the birds table, but with the name birds_new. If you
enter the SHOW TABLES statement in mysql, you will see that you now have a birds table
and a new table, birds_new.

NOTE

You can use an underscore (i.e., _) in a table name, but you may want to avoid using hyphens. MySQL interprets a
hyphen as a minus sign and tries to do a calculation between the two words given, which causes an error. If you want
to use a hyphen, you must always reference the table name within quotes.

Execute the following three SQL statements to see what you now have:

DESCRIBE birds;
DESCRIBE birds_new;

SELECT * FROM birds_new;

Empty set (0.00 sec)
The first two SQL statements will show you the structure of both tables. They will confirm
that they are identical except for their names. To save space, I didn’t include the results of
those two SQL statements here.

The third SQL statement should show you all of the rows of data in the birds_new table.
Because we copied only the structure of the birds table when we created the new table,
there is no data — as indicated by the message returned. We could copy the data over
when we’re finished altering the table if that’s what we want to do.

This method can also be used when making major modifications to a table. In such a
situation, it’s good to work from a copy of the table. You would then use the ALTER TABLE
statement to change the new table (e.g., birds_new). When you’re finished making the
changes, you would then copy all of the data from the old table to the new table, delete the
original table, and then rename the new table.

In such a situation, you may have one minor problem. I said earlier that the tables are
identical except for the table names, but that’s not exactly true. There may be one other
difference. If the table has a column that uses AUTO_INCREMENT for the default value, the
counter will be set to O for the new table. You must determine the current value of
AUTO_INCREMENT for the birds table to be assured that the rows in the new table have the
correct identification numbers. Enter the following SQL statement in mysql:

SHOW CREATE TABLE birds \G

In the results, which are not shown, the last line will reveal the current value of the
AUTO_INCREMENT variable. For instance, the last line may look as follows:

) ENGINE=MyISAM AUTO_INCREMENT=6 DEFAULT CHARSET=latinl COLLATE=latinil_bin

In this excerpt of the results, you can see that the variable, AUTO_INCREMENT is currently 6.
Set AUTO_INCREMENT to the same value in the birds_new table by entering the following
SQL statement in mysql:

ALTER TABLE birds_new

AUTO_INCREMENT = 6,
When you’re ready to copy the data from one table to the other, you can use the INSERT...
SELECT syntax. This is covered in Other Possibilities.

Instead of copying the data after you’re finished modifying the new table, you can copy
the data while creating the new table. This might be useful when you want to move only
certain columns with their data to a new table, without any alterations to the columns. To
do this, you would still use the CREATE TABLE statement, but with a slightly different
syntax.

Let’s suppose that we have decided that we want to create a new table for details about
each bird (e.g., migratory patterns, habitats, etc.). Looking at the birds table, though, we
decide that the description column and its data belong in this new table. So we’ll create
a new table and copy that column’s settings and data, as well as the bird_id into the new
table. We can do that by entering the following from mysql to get the table started:

CREATE TABLE birds_details

SELECT bird_id, description

FROM birds;
This creates the birds_details table with two columns, based on the same columns in the
birds table. It also copies the data from the two columns in the birds table into the
birds_details table. There is one minor, but necessary, difference in one of the columns
in the new table. The difference has to do with AUTO_INCREMENT again, but not in the same
way as earlier examples. Enter the DESCRIBE statement to see the difference:

DESCRIBE birds_details;

[R Fomm e e oo Fomm oo L ep—— B Y oo o +
| Field | Type | Null | Key | Default | Extra |
TR D e +ocaaaa - L SR —— [Jepupepp +
| bird_id | int(11) | NO | | © | |
| description | text | YES | | NULL | |
L TR taemaeaeaa +ocaaaa [- L SR —— [Jepupepp +

The difference here is that the bird_id does not use AUTO_INCREMENT. This is good
because we have to manually set the value of the bird_id for each row that we enter. We
won’t have details for each bird, though, and we won’t necessarily be entering them in the
same order as we will in the birds table. We could change the bird_id column in this
table to an AUTO_INCREMENT column, but that would cause problems — trying to keep it in
line with the birds table would be maddening. We could, however, make an index for the
bird_id column in the birds_details table by using the ALTER TABLE statement and
setting the column to a UNIQUE key. That would allow only one entry per bird, which may
be a good idea. This is covered in Indexes.

The CREATE TABLE..SELECT statement created the birds_details table with only two

columns. We said, though, that we want more columns for keeping other information on
birds. We’ll add those additional columns later with the ALTER TABLE statement, in the
exercises at the end of the chapter. For now, let’s remove the column description from
the birds table by entering this from mysql:

ALTER TABLE birds

DROP COLUMN description;
This will delete the column and the data in that column. So be careful using it. This clause
will be covered in more depth in Chapter 6.

Renaming a Table

Earlier sections covered how to make changes to the columns in a table. This included
renaming columns. Sometimes, though, you may want to rename a table. You may do this
for style reasons or to change the name of a table to something more explanatory. You may
do it as a method of replacing an existing table, by deleting the existing table first and then
renaming the replacement table to the deleted table’s name. This is the situation in some of
the examples in the previous section.

We created a copy of the birds table that we called birds_new in the test database. Our
plan was to modify the birds_new table, then to delete the birds table from the rookery
database and replace it with birds_new table from the test database. To fully replace the
birds table, in this case, we will rename birds_new to birds. This is not done through the
ALTER TABLE statement. That’s used only for altering the structure of columns in a table,
not for renaming a table. Instead, we will use the RENAME TABLE statement. Let’s wait
before doing that. For now, a generic example follows of how you would rename a table.
Do not enter this statement, though:

RENAME TABLE tablel_altered

TO tablel;
This SQL statement would rename the tablel_altered table to tablei. This assumes that
a table named table1 doesn’t already exist in the database. If it does, it won’t overwrite
that table. Instead, you’ll get an error message and the table won’t be renamed.

The RENAME TABLE statement can also be used to move a table to another database. This
can be useful when you have a table that you’ve created in one database, as we did in the
test database, and now want to relocate it to a different database. Because you can both
rename and relocate a table in the same RENAME TABLE statement, let’s do that with our
example instead of using the previous syntax. (Incidentally, relocating a table without
renaming it is also allowed. You would give the name of the new database, with the same
table name.) In our examples, we will have to either delete or rename the unaltered table
in the rookery database first. Renaming the table that’s being replaced is a safer choice, so
we’ll go with that option.

Let’s rename the birds table in the rookery database to birds_old and then rename and
relocate the birds_new table from the test database to birds in the rookery database. To
do all of this in one SQL statement, enter the following:

RENAME TABLE rookery.birds TO rookery.birds_old,
test.birds_new TO rookery.birds;

If there was a problem in doing any of these changes, an error message would be

generated and none of the changes would be made. If all of it went well, though, we
should have two tables in the rookery database that are designed to hold data on birds.

Let’s run the SHOW TABLES statement to see the tables in the rookery database. We’ll
request only tables starting with the word birds by using the LIKE clause with the
wildcard, %. Enter the following in mysql:

SHOW TABLES IN rookery LIKE 'birds%';

| birds |
| birds_bill shapes |
| birds_body_shapes |
| birds_details |
| birds_new |
| birds_old |
| birds_wing_shapes |

The birds table used to be the birds_new table that we altered in the test database. The
original birds table has been renamed to birds_old. The other tables in the results set
here are the ones we created earlier in this chapter. Because their names start with birds,
they’re in the results. After running a SELECT statement to ensure that you haven’t lost any
data, you might want to delete the birds_old table. You would delete the birds_old table
with the DROP TABLE statement in mysql. It would look like the following, but don’t enter
this:

DROP TABLE birds_old;
Reordering a Table

The SELECT statement, which is used to retrieve data from a table, has an ORDER BY clause
that may be used to sort or order the results of the statement. This is useful when
displaying data, especially when viewing a table with many rows of data. Although it’s not
necessary, there may be times in which it would be desirable to resort the data within a
table. You might do this with tables in which the data is rarely changed, such as a
reference table. It can sometimes make a sequential search of the table faster, but a good
index will work fine and is usually better.

As an example of how to reorder a table, if you go to my website, you will find a table
listing country codes. We might use such a table in conjunction with members of the site
or maybe to have a list of birds spotted in each country. The country_codes table contains
two-character country codes, along with the names of the countries. Rather than type the
name of the country for each record in a related table for members or bird spottings, we
could enter a two-character code for the country (e.g., us for United States of America).
The table is already in alphabetical order by name, but you might want to reorder that
table to put rows in alphabetical order. Or perhaps you want to add a new country to the
list, perhaps a disputed territory that you want to recognize. You might want to reorder the
list after making the addition.

First, let’s see how the data in the table looks now. Let’s enter the following SELECT
statement in mysql, limiting the results to the first five rows of data:

SELECT * FROM country_codes
LIMIT 5;

________________ +

+
| country_name |
R +
af | Afghanistan |
| Aland Islands |
| Albania |
| Algeria |
| American Samoa |
—+

As you can see, the data is already in alphabetical order based on the values in the
country_name column. Let’s use the ALTER TABLE statement with its ORDER BY clause to
reorder the data in the table based on the country_code column. We would probably not
want the table in this order, but let’s do it just to experiment with this clause of the ALTER
TABLE statement. We can change it back afterwards. Enter the following in mysql:

ALTER TABLE country_codes

ORDER BY country_code;
That should have been processed quickly. Let’s run the SELECT statement again to see what
the first five rows in the table now contain:

SELECT * FROM
country_codes LIMIT 5;

SRS o eeeaaaaon +
| country_code | country_name |
[R S +
ac	Ascension Island
ad	Andorra
ae	United Arab Emirates
af	Afghanistan
ag	Antigua and Barbuda
R S +

Notice that the results are different and that the rows are now sorted on the country_code
columns without having to specify that order in the SELECT statement. To put the rows
back in order by country_name, enter the ALTER TABLE statement, but with the
country_name column instead of the country_code column.

Again, reordering a table is rarely necessary. You can order the results of a SELECT
statement with the ORDER BY clause like so:

SELECT * FROM country_codes
ORDER BY country_name
LIMIT 5;
The results of this SQL statement are the same as the previous SELECT statement, and the

difference in speed is usually indiscernible.

Indexes

One of the most irritating tasks for beginners in using the ALTER TABLE statement is
having to use it to change an index. If you try to rename a column that is indexed by using
only an ALTER TABLE statement, you will get a frustrating and confusing error message.
For instance, suppose we decide to rename the primary key column in the
conservation_status table from status_id to conservation_status_id. To do so, we
might try an SQL statement like this:

ALTER TABLE conservation_status
CHANGE status_id conservation_status_id INT AUTO_INCREMENT PRIMARY KEY;

ERROR 1068: Multiple primary key defined

When you first try doing this, you will probably think that you’re remembering the syntax
incorrectly. So you’ll try different combinations, but nothing will work. To avoid this and
to get it right the first time, you will need to understand indexes better and understand that
an index is separate from the column upon which the index is based.

Indexes are used by MySQL to locate data quickly. They work very much like the index in
the back of a book. Let’s use that metaphor to compare methods of searching this book.
For example, if you want to find the syntax for the ALTER TABLE statement, you could start
at the beginning of this book and flip through the pages rapidly and sequentially —
assuming you have a print version of this book — until you spot those keywords. That
would be searching for data without an index. Instead, you could flip to the beginning of
the book and search the Table of Contents, which is a broader index, for a chapter title
using the words alter table and then search within the chapters containing those words in
their title. That’s an example of a simple or poor index. A better choice would be to go to
the index at the back of this book, look for the list of pages in which ALTER TABLE can be
found, and go straight to those pages to find what you want.

An index in MySQL works similarly to the last example. Without an index, rows are
searched sequentially. Because an index is smaller and is structured to be traversed
quickly, it can be searched rapidly and then MySQL can jump directly to the row that
matches the search pattern. So when you create a table, especially one that will hold many
rows of data, create it with an index. The database will run faster.

With this metaphor of a book index in mind, you can better understand that an index is not
the same as a column, although it is related to columns. To illustrate this in a MySQL
table, let’s look at the index for the humans table we created in Chapter 4, by using the
SHow INDEX statement. Enter the following from mysql:

SHOW INDEX FROM birdwatchers.humans \G

E R I S O 1 row EE R O O O o O O I O

Table: humans
Non_unique: 0
Key_name: PRIMARY
Seg_in_index: 1
Column_name: human_id
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:

The output shows that behind the scenes there is an index associated with the human_id
(look in the preceding output where it says, Column_name). The human_id column is not
the index, but the data from which the index is drawn. The name of the column and name
of the index are the same and the index is bound to the column, but they are not the same.
Let’s alter this table and add another index to make this clearer.

Suppose that users of the humans table sometimes search based on the last name of the
member. Without an index, MySQL will search the 1ast_name column sequentially. Let’s
confirm that by using the EXPLAIN statement, coupled with the SELECT statement. This will
return information on how the SELECT statement searches the table and on what basis. It
will explain what the server did when executing the SELECT statement — so it won’t return
any rows from the table, but information on how the index would be used had you
executed only the SELECT statement. Enter the following in mysql:

EXPLAIN SELECT * FROM birdwatchers.humans
WHERE name_last = 'Hollar' \G

B R 1. row EE R R
id: 1
select_type: SIMPLE
table: humans
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 4
Extra: Using where
The EXPLAIN statement here analyzes the SELECT statement given, which is selecting all of
the columns in the humans table where the value for the name_last column equals Hollar.
What is of interest to us in the results is the possible_keys field and the key field — a
key is the column on which a table is indexed. However, the words key and index are
fairly interchangeable. The possible_keys field would show the keys that the SELECT
statement could have used. In this case, there is no index related to the name_last column.
The key would list the index that the statement actually used. Again, in this case there
were none, so it shows a value of NULL. There are only four names in this table, so an
index would not make a noticeable difference in performance. However, if this table might
one day have thousands of names, an index will greatly improve the performance of look-

ups on people’s names.

In addition to sometimes searching the humans table based on the member’s last name,
suppose that users sometimes search based on the first name, and sometimes based on
both the first and last names. To prepare for those possibilities and to improve
performance for a time when the table will have many records, let’s create an index that
combines the two columns. To do this, we will use the ALTER TABLE statement with the
ADD INDEX clause like so:

ALTER TABLE birdwatchers.humans

ADD INDEX human_names (name_last, name_first);
Now let’s run the SHOW CREATE TABLE statement to see how the index looks from that
perspective:

SHOW CREATE TABLE birdwatchers.humans \G

EE R I S S S S S 1 row EE R o O O I O O

Table: humans

Create Table: CREATE TABLE “humans’ (
“human_id" int(211) NOT NULL AUTO_INCREMENT,
“formal_title” varchar(25) COLLATE latinl bin DEFAULT NULL,
“name_first® varchar(25) COLLATE latini_bin DEFAULT NULL,
“name_last" varchar(25) COLLATE latinl_bin DEFAULT NULL,
“email_address® varchar(255) COLLATE latinl_bin DEFAULT NULL,
PRIMARY KEY (“human_id"),
KEY “human_names” (“name_last’, "name_first’)

) ENGINE=MyISAM DEFAULT CHARSET=latinl COLLATE=latinl_bin

The results show a new KEY after the list of columns. The key, or index, is called
human_names and is based on the values of the two columns listed in parentheses. Let’s use
another SQL statement to see more information about this new index. We’ll use the sHow
INDEX statement like so:

SHOW INDEX FROM birdwatchers.humans
WHERE Key_name = 'human_names' \G

R Rk Ik R R S R R R 1 row R S AR R S

Table: humans
Non_unique: 1
Key_name: human_names
Seq_in_index: 1
Column_name: name_last
Collation: A
Cardinality: NULL
Sub_part: NULL
Packed: NULL
Null: YES
Index_type: BTREE
Comment:
R EEE R RS EEREEEEEEEEEEEEEEEESE] 2. rOW IR S SRS SR EEEEEEEEEEREEEEEEEES]
Table: humans
Non_unique: 1
Key_name: human_names
Seq_in_index: 2
Column_name: name_first
Collation: A
Cardinality: NULL
Sub_part: NULL
Packed: NULL
Null: YES
Index_type: BTREE
Comment:

This SQL statement shows the components of the human_names index. The results show
two rows with information on the columns that were used to create the index. There’s
plenty of information here about this index. It’s not important that you understand what it
all means at this point in learning MySQL and MariaDB. What I want you to see here is
that the name of the index is different from the columns upon which it’s based. When
there’s only one column in the index and the index for it has the same name, it doesn’t
mean that they are the same thing.

Let’s try the EXPLAIN..SELECT again to see the difference from earlier when we didn’t have
the human_names index:

EXPLAIN SELECT * FROM birdwatchers.humans
WHERE name_last = 'Hollar' \G

E R O I O S O S 1 row EE R O S O o O O I

id:
select_type:
table:

type:
possible_keys:
key:

key_len:

ref:

rows:

1

SIMPLE
humans

ref
human_names
human_names
28

const

1

Extra: Using where

As shown in the results, this time the possible_keys field indicates that the human_names
key could be used. If there were more than one possible key that could be used, the line
would list them here. In line with the index’s presence in possible_keys, the key shows
that the human_names index was actually used. Basically, when a SELECT is run in which
the user wants to search the table based on the person’s last name, MySQL will use the
human_names index that we created, and not search the name_last column sequentially.
That’s what we want. That will make for a quicker search.

Now that you hopefully have a better understanding of indexes in general and their
relation to columns, let’s go back to the earlier task of renaming the column in the
conservation_status table from status_id to conservation_status_id. Because the
index is associated with the column, we need to remove that association in the index.
Otherwise, the index will be associated with a column that does not exist from its
perspective: it will be looking for the column by the old name. So, let’s delete the index
and rename the column, and then add a new index based on the new column name. To do
that, enter the following SQL statement in mysql:

ALTER TABLE conservation_status

DROP PRIMARY KEY,

CHANGE status_id conservation_status_id INT PRIMARY KEY AUTO_INCREMENT;
The clauses must be in the order shown, because the index must be dropped before the
column with which it’s associated can be renamed. Don’t worry about losing data: the data
in the columns is not deleted, only the index, which will be re-created easily by MySQL.
We don’t have to give the name of the associated column when dropping a PRIMARY KEY.
There is and can be only one primary key.

At this point, you should have a better sense of indexes and the procedure for changing
them with the ALTER TABLE statement. The order in which you make changes to indexes
and the columns on which they are based matters. Why it matters should be clear now. So
that you can get more practice with these concepts and syntax, though, in one of the
exercises at the end of the chapter you will be asked to change some columns and indexes.
Be sure to complete all of the exercises.

Summary

Good planning is certainly key to developing an efficient database. However, as you can
see from all of the examples of how to use the ALTER TABLE statement, MySQL is
malleable enough that a database and its tables can be reshaped without much trouble. Just
be sure to make a backup before restructuring a database, and work from a copy of a table
before altering it. Check your work and the data when you’re finished, before committing
the changes made.

With all of this in mind, after having had some experience altering tables in this chapter,
you should feel comfortable in creating tables, as you now know that they don’t have to be
perfect from the beginning. You should also have a good sense of the options available
with columns and how to set them. And you should have a basic understanding of indexes,
how they’re used, and how they may be created and changed.

If you have found this chapter confusing, though, it may be that you need more experience
using tables with data. In the next part of this book, you will get plenty of experience
working with tables, inserting data into columns, and changing the data. When you see
how the data comes together, you’ll have a better understanding of how to structure a table
and how to set columns in preparation for data. You’ll have a better appreciation of how
multiple tables may be joined together to get the results you want.

Exercises

Besides the SQL statements you entered on your MySQL or MariaDB server while
reading this chapter, here are a few practice exercises to further strengthen what we’ve
covered. They’re related to creating and altering tables. We’ll use these tables with the
modifications you’ll make in later chapters, so make sure to complete all of the exercises

here.
1.

Earlier in this chapter, we created a table called birds_details. We created the table
with two columns: bird_id and description. We took these two columns from the
birds table. Our intention in creating this table was to add columns to store a
description of each bird, notes about migratory patterns, areas in which they can be
found, and other information helpful in locating each bird in the wild. Let’s add a
couple of columns for capturing some of that information.

Using the ALTER TABLE statement, alter the birds_details table. In one SQL
statement, add two columns named migrate and bird_feeder, making them both
integer (INT) columns. These will contain values of 1 or 0 (i.e., Yes or No). In the
same SQL statement, using the CHANGE COLUMN clause, change the name of the
column, description to bird_description.

When you’re finished altering the table, run the SHow CREATE TABLE statement for
this table to see the results.

Using the CREATE TABLE statement, create a new reference table named,
habitat_codes. Create this table with two columns: name the first column
habitat_id and make it a primary key using AUTO_INCREMENT and the column type
of INT. Name the second column habitat and use the data type VARCHAR(25). Enter
the following SQL statement to add data to the table:

INSERT INTO habitat codes (habitat)

VALUES('Coasts'), ('Deserts'), ('Forests'),
('Grasslands'), ('Lakes, Rivers, Ponds'),
('Marshes, Swamps'), ('Mountains'), ('Oceans'),
('Urban');

Execute a SELECT statement for the table to confirm that the data was entered
correctly. It should look like this:

P,
| habitat_id
P,

E +
| habitat |
E +
| Coasts |
| Deserts |
| Forests |
| Grasslands |
| Lakes, Rivers, Ponds |
| Marshes, Swamps |
| Mountains |
| Oceans |
| Urban |
+

O©CoOo~NOOULA, WNERE

I
I
I
I
I
I
I
I
I
Fomm e e e e o

Create a second table named bird_habitats. Name the first column bird_id and
the second column habitat_id. Set the column type for both of them to INT. Don’t
make either column an indexed column.

When you’re finished creating both of these tables, execute the DESCRIBE and SHOW

CREATE TABLE statements for each of the two tables. Notice what information is
presented by each statement, and familiarize yourself with the structure of each table
and the components of each column.

Use the RENAME TABLE statement to rename the bird_habitats to birds_habitats
(i.e., make bird plural). This SQL statement was covered in Renaming a Table.

. Using the ALTER TABLE statement, add an index based on both bird_id and the
habitat_id columns combined (this was covered in Indexes). Instead of using the
INDEX keyword, use UNIQUE so that duplicates are not allowed. Call the index
birds_habitats.

Execute the SHOW CREATE TABLE statement for this table when you’re finished
altering it.

At this point, you should enter some data in the birds_habitats table. Execute
these two SELECT statements, to see what data you have in the birds and
habitat_codes tables:

SELECT bird_id, common_name
FROM birds;

SELECT * FROM habitat_codes;

The results of the first SELECT statement should show you a row for a loon and one
for a duck, along with some other birds. Both the loon and the duck can be found in
lakes, but ducks can also be found in marshes. So enter one row for the loon and two
rows for the duck in the birds_habitats table. Give the value of the bird_id for the
loon, and the value of habitat_id for Lakes, Rivers, Ponds. Then enter a row giving
the bird_id for the duck, and the value again of the habitat_id for lakes. Then
enter a third row giving again the bird_id for the duck and this time the habitat_id
for Marshes, Swamps. If you created the index properly, you should not get an error
about duplicate entries. When you’re done, execute the SELECT statement to see all
of the values of the table.

. Using the ALTER TABLE statement, change the name of the index you created for
birds_habitats in the previous exercise (this was covered near the end of this
chapter). The index is now called birds_habitats. Rename it to bird_habitat.

. Using the ALTER TABLE statement again, add three columns to the humans table in the
birdwatchers database. Use a single ALTER TABLE statement to add all three of these
columns. Add one column named country_id to contain two-character codes
representing the country where each member is located. Add another column named
membership_type with enumerated values of basic and premium. Add a third
column named membership_expiration with a data type of DATE so that we can
track when the membership of premium members will expire. These members will
have special privileges on the site and discounts for items that we sell related to bird-
watching.

Part I1I. Basics of Handling Data

The main point of a database is data. In Part II, you learned how to create and alter tables.
As interesting as that may have been, the data that will go in tables is essential. If you felt
a little confused when creating and altering tables in the previous chapters, it may be
because it’s difficult to envision how tables and their columns will come into play with
data, without having more experience adding data.

In this part, we will explore some of the fundamental ways in which data may be entered
into a database and inserted into tables. This will be covered in Chapter 6, Inserting Data.
It primarily involves the INSERT statement. The SQL statement for retrieving data from
tables is the SELECT statement, which is covered extensively in Chapter 7, Selecting Data.
You’ve seen both of these SQL statements in use several times in the previous chapters.
However, in the next two chapters you will learn more about the various syntax and
options for each of them, and you will be given plenty of practical examples of their use.

Data often needs to be changed and sometimes deleted, so in Chapter 8, Updating and
Deleting Data we’ll take a look at how to update and delete data. This chapter will help
you to learn how to use the UPDATE and the DELETE statements to do these common tasks.
These are important for managing data in a database.

The final chapter of this part, Chapter 9, Joining and Subquerying Data, is an advanced
one. It’s not too difficult to follow, but you should definitely not rush through it. In it, you
will learn how to select data from one or more tables, and to use that data as a basis for
inserting, selecting, updating, or deleting data in other tables. Thus, you should make sure
that you’ve mastered the material in the previous chapters before skipping ahead to
Chapter 9.

In each chapter of this part, there are practical examples that are used to explain the
various SQL statements and related factors. You should enter those examples into your
server. Even if you are reading this book from a digital version on your computer, I
recommend highly that you manually type all of the SQL statements you are instructed to
enter. It may seem like a little thing, but the process of typing them will aid your learning
process and help you remember the syntax and the deviations of each SQL statement.
When you make a mistake and type something incorrectly, you’ll get an error message.
Deciphering error messages is part of being a good MySQL and MariaDB developer. If
you copy and paste everything as I present it to you, you will only confirm the accuracy of
the book’s examples, and you will learn only a little. It’s easy to learn when you don’t
make any mistakes. It’s more difficult, but you will learn more when you manually enter
the SQL statements and get errors and then have to determine where you went wrong.

At the end of each chapter of this part, as with almost all of the chapters in this book, there
are exercises. For the same reasons that you should enter the SQL statements in the
examples throughout the chapters, you should also complete the exercises. This is not just
a book to be read. It’s meant to be a tool to help you to learn MySQL and MariaDB. To
accomplish that, you must do more than just read the chapters: you need to participate,
experiment, and research. If you make this kind of effort, you will benefit greatly from this
book. This is probably the most essential part of the book, so you should fully engage with
these concluding chapters.

Chapter 6. Inserting Data

After you have created a database and tables, the next step is to insert data. I’m
intentionally using the word insert because the most common and basic way to enter data
into a table is with the SQL statement INSERT. It’s easier to learn the language of MySQL
and MariaDB, if you use the keywords to describe what you are doing. In this chapter, we
will cover the INSERT statement, its different syntax, and many of its options. We’ll use the
tables that we created in Chapter 4 and altered in Chapter 5. We’ll also look at some
related statements on retrieving or selecting data, but they will be covered in greater detail
in Chapter 7.

When going through this chapter, participate. When examples are given showing the
INSERT statement and other SQL statements, try entering them on your server using the
mysql client. At the end of the chapter are some exercises — do them. They require you to
enter data in the tables that you created in Chapter 4. In doing the exercises, you may have
to refer back to the examples in this chapter and in Chapter 4. This will help to reinforce
what you’ve read. When you’re done, you should feel comfortable entering data in
MySQL and MariaDB.

The Syntax

The INSERT statement adds rows of data into a table. It can add a single row or multiple
rows at a time. The basic syntax of this SQL statement is:

INSERT INTO table [(column, ..)]

VALUES (value, ..), (.), -

The keywords INSERT INTO are followed by the name of the table and an optional list of
columns in parentheses. (Square brackets in a syntax indicate that the bracketed material is
optional.) Then comes the keyword VALUES and a pair of parentheses containing a list of
values for each column. There are several deviations of the syntax, but this is the basic
one. Commas separate the column names within the first list, and the values within the
second.

Let’s go through some examples that will show a few of the simpler syntaxes for the
INSERT statement. Don’t try to enter these on your system. These are generic examples
using INSERT to add data to nonexistent tables.

Here’s a generic example of the INSERT statement with the minimum required syntax:
INSERT INTO books
VALUES('The Big Sleep', 'Raymond Chandler', '1934');
This example adds text to a table called books. This table happens to contain only three
columns, so we don’t bother to list the columns. But because there are three columns, we
have to specify three values, which will go into the columns in the order that the columns
were defined in CREATE TABLE. So in our example, The Big Sleep will be inserted into the
first column of the table, Raymond Chandler will go into the second column, and 1934
will go into the third.

For columns that have a default value set, you can rely on the server to use that value and
omit the column from your INSERT statement. One way to do this is by entering a value of
DEFAULT or NULL, as shown in the following example:

INSERT INTO books
VALUES('The Thirty-Nine Steps', 'John Buchan', DEFAULT);

MySQL will use the default value for the third column. If the default value is NULL —
the usual default value if none is specified — that’s what the statement will put in the
column for the row. For a column defined with AUTO_INCREMENT, the server will put the
next number in the sequence for that column.

Another way to use defaults is to list just the columns into which you want to enter non-
default data, like so:

INSERT INTO books

(author, title)

VALUES('Evelyn Waugh', 'Brideshead Revisited');
Note that this example lists just two columns within parentheses. It’s also significant that
the statement lists them in a different order. The list of values must match the order of the
list of columns. For the third column (i.e., year) of this table, the default value will be
inserted.

When you have many rows of data to insert into the same table, it can be more efficient to
insert all of the rows in one SQL statement. To do this, you need to use a slightly different

syntax for the INSERT statement. Just add more sets of values in parentheses, each set
separated by a comma. Here’s an example of this:

INSERT INTO books
(title, author, year)
VALUES('Visitation of Spirits', 'Randall Kenan',6 '1989'),
('Heart of Darkness', 'Joseph Conrad', '1902'),
('The Idiot', 'Fyodor Dostoevsky',6 '1871');
This SQL statement enters three rows of data into the books table. Notice that the set of
column names and the VALUES keyword appear only once. Almost all SQL statements
allow only one instance of each clause (the VALUES clause in this case), although that

clause may contain multiple items and lists as it does here.

Practical Examples

Let’s get back to the rookery database that we created and altered in Chapters 4 and 5 for
more involved examples of inserting data into tables. If you haven’t created those tables
yet, I recommend you go back and do that before proceeding with this chapter.

Your natural tendency when putting data into a database will be to start by adding data to
the main or primary table of the database first and to worry about ancillary or reference
tables later. That will work well enough, but you may be creating more work for yourself
than needed. Starting with the main table is more interesting, and entering data in
reference tables is more tedious. But that’s the way of databases: they are tedious. It’s
inescapable.

Nevertheless, we don’t have to create all of the tables we will need for a database before
entering data; we don’t need to enter data into all of the secondary tables before working
on the primary tables. It will be difficult to plan ahead for all of the possible tables that
will be needed. Instead, database development is generally always a work in progress. You
will often add more tables, change the schema of existing tables, and shift large blocks of
data from one table to another to improve performance and to make the management of
the database easier. That takes some of the tediousness out of databases and makes
database management interesting.

With that approach in mind, we’ll enter data in some of the tables, using some simple
logic to decide which table to work on first. Remember how we are categorizing birds: a
bird species is a member of a bird family, and a bird family is part of a bird order. The
birds table needs the family_id to join with the bird_families table, and the
bird_families table needs an order_id from the bird_orders table to join with it. So,
we’ll add data to bird_orders first, then to bird_families, and then to birds.

Most people don’t know the scientific names of birds, bird families, and bird orders.
However, you can find this information on Wikipedia and sites dedicated specifically to
bird-watching and ornithology. But there’s no need for you to do research about birds to
participate in this book. I’ll provide you with the information to enter a few rows for each
table, and you can download complete tables from my website.

The Table for Bird Orders

Before entering data in the bird_orders table, let’s remind ourselves of the structure of
the table by executing the following SQL statement:

DESCRIBE bird_orders;

Fomm e em e e e e Fomm e e e aaan +e----- L - S R Fomm e e e e e m +
| Field | Type | Null | Key | Default | Extra

Fomm e em e e e e Fomm e e e aaan +e----- L - S TR Fomm e e e e e m +
order_id	int(11)	NO	PRI	NULL	auto_increment
scientific_name	varchar(255)	YES	UNI	NULL	
brief_description	varchar(255)	YES		NULL	
order_image	blob	YES		NULL	
Fommm e e e e e E - +eo-mm-- [T Fommmmaaa- T +

As you can see, this table has only four columns: an identification number that will be
used by the bird_families to join to this table, a column for the scientific name of the
bird order, a column for the description of the order; and a column with an image

http://mysqlresources.com/files

representing each order of birds. The order_id column starts with 1 for the first bird order
and is set automatically to the next number in sequence each time we add a bird order
(unless we told MySQL otherwise).

Before entering the orders of birds, let’s prime the order_id by initially setting the
AUTO_INCREMENT variable to 100, so that all of the bird order identification numbers will
be at least three digits in length. The numbering means nothing to MySQL; it’s only a
matter of personal style. To do this, we’ll use the ALTER TABLE statement (covered in
Chapter 5). Enter the following in the mysqgl client:

ALTER TABLE bird_orders
AUTO_INCREMENT = 100;

This SQL statement alters the table bird_orders, but only the value set on the server for
the AUTO_INCREMENT variable for the specified table. This will set the order_id to 100 for
the first order that we enter in our bird_orders table.

Let’s now enter the orders of birds. We can quickly enter a bunch of orders using the
multiple-row syntax for the INSERT statement. Because there are only 29 modern orders of
birds, let’s enter all of them. The following gigantic SQL statement is what I used to insert
data into the bird_orders table; you can download the table from my site or enter the
SQL statement in mysql (perhaps by cutting and pasting it from an ebook):

INSERT INTO bird _orders (scientific_name, brief_description)
VALUES('Anseriformes', "Waterfowl"),
('Galliformes', "Fowl"),
('Charadriiformes', "Gulls, Button Quails, Plovers"),
('Gaviiformes', "Loons"),
('Podicipediformes', "Grebes"),
('Procellariiformes', "Albatrosses, Petrels"),
('Sphenisciformes', "Penguins"),
('Pelecaniformes', "Pelicans"),
('Phaethontiformes', "Tropicbirds"),
('Ciconiiformes', "Storks"),
('Cathartiformes', "New-World Vultures"),
('Phoenicopteriformes', "Flamingos"),
('Falconiformes', "Falcons, Eagles, Hawks"),
('Gruiformes', "Cranes"),
('Pteroclidiformes', "Sandgrouse"),
('Columbiformes', "Doves and Pigeons"),
('Psittaciformes', "Parrots"),
('Cuculiformes', "Cuckoos and Turacos"),
('Opisthocomiformes', "Hoatzin"),
('Strigiformes', "Owls"),
('Struthioniformes', "Ostriches, Emus, Kiwis"),
('Tinamiformes', "Tinamous"),
('Caprimulgiformes', "Nightjars"),
('Apodiformes', "Swifts and Hummingbirds"),
('Coraciiformes', "Kingfishers"),
('Piciformes', "woodpeckers"),
('Trogoniformes', "Trogons"),
('Coliiformes', "Mousebirds"),
('Passeriformes', "Passerines");

As large as that statement was, it inserted only two of the four columns into each row. I
left out order_id, which I know will be assigned by the server with a value that starts at
what I asked for, 100, and increments for each row. The default of NULL will be assigned
to the order_image column, and we can insert images later if we want. However, we can’t
pretend the columns don’t exist. If we enter an INSERT statement and don’t provide data
for one or more of the columns that we specify, MySQL will reject the SQL statement and
return an error message like this one:

ERROR 1136 (21S01):

Column count doesn't match value count at row 1
This indicates that we didn’t give the server the number of columns it was expecting.

By now, I hope you see why I created a special table dedicated to orders and made it so
you have to enter each name only here, and not on every single bird in the main table.
Given the bird_orders table, you can use numbers in the order_id column to represent a
bird order in the bird_families table. This is one of the benefits of a reference table.
Typing in numbers is easier than typing in a scientific name each time, and should reduce
the frequency of typos.

The Table for Bird Families

Now that the bird_orders table is filled with data, let’s next add some data to the
bird_families table. First, execute the following statement:

DESCRIBE bird_families;

This SQL statement will show you the layout of the columns for the bird_families table.
We also need to know the order_id for the order of the families we will enter. To start,
we’ll enter a row for the Gaviidae bird family. This happens to be the family to which the
Great Northern Loon belongs — a bird we entered already in the birds table. The
Gaviidae family is part of the Gaviiformes order of birds. So enter the following on your
server to determine the order_id for that order:

SELECT order_id FROM bird_orders
WHERE scientific_name = 'Gaviiformes';

Now let’s enter the Gaviidae family in the bird_families table. We’ll do that like so:

INSERT INTO bird_families

VALUES (100, 'Gaviidae',

iggg?s or divers are aquatic birds found mainly in the Northern Hemisphere.",
This adds the name and description of the bird family, Gaviidae, into the bird_families
table. You may have noticed that although the family id column is set to increment
automatically, I put a value of 100 here. That’s not necessary, but it’s another way of
instituting my style of starting with an identification number that has a few digits. A
family id of 1 for an elegant and ancient bird family like that of the loons sounds either
presumptuous or lame to me. By giving it a specific value, I’ll not only give an ID of 100
to Gaviidae, but ensure that the server will give 101 to the next family I insert.

If we try to enter the INSERT statement with the correct number of columns, but not in the
order the server expects to receive the data based on the schema for the table, the server
may accept the data. It will generate a warning message if the data given for the columns
don’t match the column types. For instance, suppose we had tried to add another row to
the same table — this one for the bird family, Anatidae, the family for the Wood Duck,
another bird we entered already in the birds table. Suppose further that we had tried to
give the data in a different order from the way the columns are organized in the table. The
server would accept the SQL statement and process the data as best it can, but it would not
work the way we might want. The following example shows such a scenario:

INSERT INTO bird_families

VALUES('Anatidae', "This family includes ducks, geese and swans.", NULL, 103);

Query OK, 1 row affected, 1 warning (0.05 sec)
Notice that in this SQL statement we put the family’s name first, then the description, then
NULL for the family_id, and 103 for the order_id. MySQL is expecting the first column
to be a number or DEFAULT or NULL. Instead, we gave it text. Notice that the status line
returned by mysqgl after the INSERT statement says, Query OK, 1 row dffected, 1 warning.
That means that one row was added, but a warning message was generated, although it
wasn’t displayed. We’ll use the SHOw WARNINGS statement like so to see the warning
message:

SHOW WARNINGS \G

RR R Rk R R S R R R O 1 row ER RS S AR R Sk R S

Level: Warning
Code: 1366
Message: Incorrect integer value: 'Anatidae' for column 'family id' at row 1
1 row in set (0.15 sec)
Here we can see the warning message: the server was expecting an integer value, but
received text for the column, family_id. Let’s run the SELECT statement to see what we
have now in the bird_families table:
SELECT * FROM bird_families \G

RR R Ik Ik kS R S R R R R o 1 row ER R I R R R Sk

family_id: 100
scientific_name: Gaviidae
brief_description: Loons or divers are aquatic birds
found mainly in the Northern Hemisphere.
order_id: 103

ER Ik kI kS S S S Rk S 2 row EE R S R R Rk

family id: 101
scientific_name: This family includes ducks, geese and swans.
brief_description: NULL
order_id: 103
The first row is fine; we entered it correctly, before. But because MySQL didn’t receive a
good value for the family id column for the row we just entered, it ignored what we gave
it and automatically set the column to 101 — the default value based on AUTO_INCREMENT.
It took the description text that was intended for brief_description column and put that
in the scientific_name column. It put the NULL we meant for the family_id column
and put it in the brief_description column. This row needs to be fixed or deleted. Let’s
delete it and try again. We’ll use the DELETE statement like this:
DELETE FROM bird_families
WHERE family_id = 101;
This will delete only one row: the one where the family_id equals 101. Be careful with
the DELETE statement. There’s no UNDO statement, per se, when working with the data like
this. If you don’t include the WHERE clause, you will delete all of the data in the table. For
this table, which has only two rows of data, it’s not a problem to re-enter the data. But on a
server with thousands of rows of data, you could lose plenty of data — permanently, if
you don’t have a backup copy. Even if you do have a backup of the data, you’re not going
to be able to restore the data quickly or easily. So be careful with the DELETE statement and
always use a WHERE clause that limits greatly the data that’s to be deleted.

Let’s re-enter the data for the duck family, Anatidae, but this time we’ll try a different
syntax for the INSERT statement so that we don’t have to give data for all of the columns

and so that we can give data in a different order from how it’s structured in the table:

INSERT INTO bird_families

(scientific_name, order_id, brief_description)

VALUES('Anatidae', 103, "This family includes ducks, geese and swans.");
To let us give only three columns in this SQL statement, and in a different order, we put
the names of the columns in parentheses before the set of values. Listing the names of the
columns is optional, provided data is in the correct format for all of the columns and in
order. Because we are not doing that with this SQL statement, we had to list the columns
for which we are giving data, matching the order that the data is given in the VALUES
clause in the set of values and in parentheses. Basically, we’re telling the server what each
value represents; we’re mapping the data to the correct columns in the table. Again, for the
columns that we don’t provide data or don’t name in the SQL statement, the server will
use the default values. Let’s see what we have now for data in the bird_families table:

SELECT * FROM bird_families \G

RR Rk Sk kS R S R R R 1 row ER R S AR R Sk

family_id: 100
scientific_name: Gaviidae
brief_description: Loons or divers are aquatic birds
found mainly in the Northern Hemisphere.
order_id: 103

B R 2. row L S
family id: 102
scientific_name: Anatidae
brief_description: This family includes ducks, geese and swans.
order_id: 103
That’s better. Notice that the server put the family name, Anatidae, in the
scientific_name column, per the mapping instructions stipulated in the INSERT
statement. It also assigned a number to the family_id column. Because the family_id for
the previous row was set to 101, even though we deleted it, the server remembers
elsewhere in MySQL that the count is now at 101. So it incremented that number by 1 to
set this new row to 102. You could change the value of this row and reset the counter (i.e.,

the AUTO_INCREMENT variable for the column of the table), but it’s generally not important.

Let’s prepare now to enter some more bird families. We’ll keep the data simple this time.
We’ll give only the scientific name and the order identification number. To do that, we
need to know the order_id of each order. We’ll execute this SQL statement to get the data
we need:

SELECT order_id, scientific_name FROM bird_orders;

Fommmmmeman E o +
| order_id | scientific_name |
Fommmmmeman E o +
100	Anseriformes
101	Galliformes
102	Charadriiformes
103	Gaviiformes
104	Podicipediformes
105	Procellariiformes
106	Sphenisciformes
107	Pelecaniformes
108	Phaethontiformes
109	Ciconiiformes
110	Cathartiformes
111	Phoenicopteriformes
112	Falconiformes
113	Gruiformes
114	Pteroclidiformes
115	Columbiformes

116	Psittaciformes
117	Cuculiformes
118	Opisthocomiformes
119	Strigiformes
120	Struthioniformes
121	Tinamiformes
122	Caprimulgiformes [
123	Apodiformes
124	Coraciiformes
125	Piciformes [
126	Trogoniformes
127	Coliiformes
128	Passeriformes
e pppp—— e +

Now let’s enter one hefty INSERT statement to insert a bunch of bird families into the
bird_families table. We just list each set of data within its own parentheses, separated by
commas. After consulting our bird-watching guides, we determine which families belong
to which orders and then enter this in the mysqgl client:

INSERT INTO bird_families

(scientific_name, order_id)

VALUES('Charadriidae', 109),
('Laridae', 102),
('Sternidae', 102),
('Caprimulgidae’', 122),
('sSittidae', 128),
('Picidae', 125),
('Accipitridae', 112),
('Tyrannidae', 128),
('Formicariidae', 128),
('Laniidae', 128);

This statement enters 10 rows of data in one batch. Notice that we didn’t have to list the
names of the columns for each row. Notice also that we didn’t mention the family_id
column in this SQL statement. The server will assign automatically the next number in the

column’s sequence for that field. And we didn’t give the statement any text for the
brief_description column. We can enter that later if we want.

If you want a heftier bird_family table with more rows and the brief descriptions, you
can download it later from my site. This is enough data for now. Let’s execute the SELECT
statement to get the family_id numbers. We’ll need them when we enter birds in the
birds table:

SELECT family_id, scientific_name
FROM bird_families
ORDER BY scientific_name;

Feommmmmeeaaa Foemmmme e e e e n +
| family_id | scientific_name |
Fommmmmeaaa Foemmmmemm e e an +
109	Accipitridae
102	Anatidae
106	Caprimulgidae
103	Charadriidae
111	Formicariidae
100	Gaviidae
112	Laniidae
104	Laridae
108	Picidae
107	Sittidae
105	Sternidae
110	Tyrannidae
Fommmmmemaaa Fommmmmmmm e eeeeaaa +

I added an extra tweak to the previous SELECT statement: an ORDER BY clause, ensuring
that the results would be ordered alphabetically by the scientific name of the order. We’ll

cover the ORDER BY clause in more depth in Chapter 7.

We’re now ready to enter data in the birds table. The table already has a Killdeer, a small
shore bird that is part of the Charadriidae family. Let’s prepare to enter a few more shore
birds from the same family as the Killdeer. Looking at the preceding results, we can
determine that the family id is 103, because the Killdeer is in the Charadriidae family.
Incidentally, the values for the family id column might be different on your server.

Now that we have the family_id for shore birds, let’s look at the columns in the birds
table and decide which ones we’ll set. To do that, let’s use the SHOw COLUMNS statement
like this:

SHOW COLUMNS FROM birds;

o e e e mmm o SR Fommamm Ea g Fommmaom SRS — +
| Field | Type | Null | Key |Default| Extra |
o m e e e oo SR Fommmmm ERppp— Fommmamm R —— +
bird_id	int(11)	NO	PRI	NULL	auto_increment
scientific_name	varchar(100)	YES	UNI	NULL	
common_name	varchar(255)	YES		NULL	
family_id	int(11)	YES		NULL	
conservation_status_id	int(11)	YES		NULL	
wing_id	char(2)	YES		NULL	

body_id	char(2)	YES		NULL	
bill id	char(2)	YES		NULL	
description	text	YES		NULL	
Fom e e e e [S Fomm o - e E R ppp— Sy +

The results are the same as for the DESCRIBE statement. However, with SHow COLUMNS, you
can retrieve a list of columns based on a pattern. For instance, suppose you just want a list
of reference columns — columns that we labeled with the ending, _id. You could enter
this:

SHOW COLUMNS FROM birds LIKE '%id';

Fomm e e e e e Fomm e m e o - Fo-m o - L ep—— Fommm e m o B R +
| Field | Type | Null | Key | Default | Extra |
Fomm e e e e e Fomm e oo - +o-mm o - L ep—— Fommm e mm o R, +
bird_id	int(11)	NO	PRI	NULL	auto_increment
family id	int(11)	YES		NULL	
conservation_status_id	int(11)	YES		NULL	
wing_id	char(2)	YES		NULL	
body_id	char(2)	YES		NULL	
bill id	char(2)	YES		NULL	
Fom e e e e Fomm e e mo o +omm oo L pep—— Fommm e mm o R, +

We used the percent sign (%) as a wildcard — the asterisks won’t work here — to specify
the pattern of any text that starts with any characters but ends with _id. For a large table,
being able to refine the results like this might be useful. When naming your columns, keep
in mind that you can search easily based on a naming pattern (e.g., %_id). Incidentally, if
you add the FULL flag to this SQL statement (e.g., SHOW FULL COLUMNS FROM birds;), you
can get more information on each column. Try that on your system to see the results.

The Table for Birds

That was interesting, but let’s get back to data entry — the focus of this chapter. Now that
we have been reminded of the columns in the birds table, let’s enter data on some of
shore birds. Enter the following in mysql:

INSERT INTO birds
(common_name, scientific_name, family_id)
VALUES('Mountain Plover', 'Charadrius montanus', 103);

This adds a record for the Mountain Plover. Notice that I mixed up the order of the
columns, but it still works because the order of the values agrees with the order of the
columns. We indicate that the bird is in the family of Charadriidae by giving a value of
103 for the family_ id. There are more columns that need data, but we’ll worry about that
later. Let’s now enter a few more shore birds, using the multiple-row syntax for the INSERT
statement:

INSERT INTO birds

(common_name, scientific_name, family_id)

VALUES('Snowy Plover', 'Charadrius alexandrinus', 103),
('Black-bellied Plover', 'Pluvialis squatarola', 103),
('Pacific Golden Plover', 'Pluvialis fulva', 103);

In this example, we’ve added three shore birds in one statement, all of the same family of
birds. This is the same method that we used earlier to enter several bird families in the
bird_families table and several bird orders in the bird_orders table. Notice that the
number for the family_id is not enclosed here within quotes. That’s because the column
holds integers, using the INT data type. Therefore, we can pass exposed numbers like this.
If we put them in quotes, MySQL treats them first like characters, but then analyzes them
and realizes that they are numbers and stores them as numbers. That’s the long

explanation. The short explanation is that it doesn’t usually matter whether numbers are in
quotes or not.

Now that we have entered data for a few more birds, let’s connect a few of our tables
together and retrieve data from them. We’ll use a SELECT statement, but we’ll give a list of
the tables to merge the data in the results set. This is much more complicated than any of
the previous SELECT statements, but I want you to see the point of creating different tables,
especially the reference tables we have created. Try entering the following SQL statement
on your server:

SELECT common_name AS 'Bird',
birds.scientific_name AS 'Scientific Name',
bird_families.scientific_name AS 'Family',
bird_orders.scientific_name AS 'Order'

FROM birds,

bird_families,

bird_orders
WHERE birds.family_id = bird_families.family_id
AND bird_families.order_id = bird_orders.order_id;

---------------------- Fom et e m e e e}
Scientific Name | Family | Orders |
---------------------- e L Ly —
Charadrius montanus | Charadriidae | Ciconiiformes |
Charadrius alex.. | Charadriidae | Ciconiiformes |

Pluvialis squatarola | Charadriidae | Ciconiiformes |
Pluvialis fulva | Charadriidae | Ciconiiformes |
---------------------- T L L ry yepepp—"

| Mountain Plover

| Snowy Plover

| Black-bellied Plover
| Pacific Golden Plover

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1

+t—_——+— +

In this SELECT statement, we are connecting together three tables. Before looking at the
columns selected, let’s look at the FROM clause. Notice that all three tables are listed,
separated by commas. To assist you in making sense of this statement, I’ve added some
indenting. The table names don’t need to be on separate lines, as I have laid them out.

MySQL strings these three tables together based on the WHERE clause. First, we’re telling
MySQL to join the birds table to the bird_families table where the family id from
both tables equal or match. Using AND, we then give another condition in the WHERE clause.
We tell MySQL to join the bird_families table to the bird_orders table where the

order_id from both tables are equal.

That may seem pretty complicated, but if you had a sheet of paper in front of you showing
thousands of birds, and a sheet of paper containing a list of bird families, and another
sheet with a list of orders of birds, and you wanted to type on your screen a list of bird
with their names, along with the family and order to which each belonged, you would do
the same thing with your fingers, pointing from keywords on one sheet to the keyword on
the other. It’s really intuitive when you think about it.

Let’s look now at the columns we have selected. We are selecting the common_name and
scientific_name columns from the birds table. Again, I’ve added indenting and put
these columns on separate lines for clarity. Because all three tables have columns named
scientific_name, we must include the table name for each column (e.g.,
birds.scientific_name) to eliminate ambiguity. I’ve added also an AS clause to each
column selected to give the results table nicer column headings. The AsS clause has nothing
to do with the tables on the server; it affects only what you see in your output. So you can
choose the column headings in the results through the string you put after the As keyword.

Let’s take a moment to consider the results. Although we entered the scientific name of
each family and order referenced here only once, MySQL can pull them together easily by
way of the family id and order_id columns in the tables. That’s economical and very
cool.

As I said before, the SQL statement I’ve just shown is much more complicated than
anything we’ve looked at before. Don’t worry about taking in too much of it, though.
We’ll cover this kind of SQL statement in Chapter 7. For now, just know that this is the
point of what we’re doing. The kind of inquiries we can make of data this way is so much
better than one big table with columns for everything. For each shore bird, we had to enter
only 103 for the family_id column and didn’t have to type the scientific name for the
family, or enter the scientific name of the order for each bird. We don’t have to worry so
much about typos. This leverages your time and data efficiently.

Other Possibilities

A few times in this chapter, I mentioned that the INSERT statement offers extra options. In
this section, we’ll cover some of them. You may not use these often in the beginning, but
you should know about them.

Inserting Emphatically

Besides the basic syntax of the INSERT statement, there is a more emphatic syntax that
involves mapping individual columns to data given. Here’s an example in which
information on another bird family is inserted into the bird_families table; enter it in
mysql to see how you like the visceral feel of this syntax:

INSERT INTO bird_families

SET scientific_name = 'Rallidae’,

order_id = 113;
This syntax is somewhat awkward. However, there’s less likelihood of making a mistake
with this syntax, or at least it’s less likely that you will enter the column names or the data
in the wrong order, or not give enough columns of data. Because of its rigidity, most
people don’t normally use this syntax. But the precision it offers makes it a preferred
syntax for some people writing automated scripts. It’s primarily popular because the
syntax calls for naming the column and assigning a value immediately afterwards, in a
key/value pair format found in many programming languages. This makes it easier to
visually troubleshoot a programming script. Second, if the name of a column has been
changed or deleted since the creation of a script using this syntax, the statement will be
rejected by the server and data won’t be entered into the wrong columns. But it doesn’t
add any functionality to the standard syntax that we’ve used throughout the chapter, as
long as you list the columns explicitly in the standard syntax. Plus, you can insert only one
row at a time with this syntax

Inserting Data from Another Table

INSERT can be combined with a SELECT statement (we covered this briefly in Chapter 5).
Let’s look at an example of how it might be used. Before you do, I’ll warn you that the
examples in this section get complicated. You’re not expected to do the examples in this
section; just read along.

Earlier in this chapter, we entered data for a few bird families — 13 so far. You have the
option of downloading the table filled with data from my site, but I had to get the data
elsewhere (or endure manually entering 228 rows of data on bird families). So I went to
Cornell University’s website. The Cornell Lab of Ornithology teaches ornithology and is a
leading authority on the subject. On their site, I found a table of data that’s publicly
available. I loaded the table into the rookery database on my server and named it
cornell_birds_families_orders. Here’s how the table is structured and how the data
looks:

DESCRIBE cornell birds_families_orders;

Fommmmmee e Fommmmmmee e aaa [TR [Fommmmmmmn T +
| Field | Type | Null | Key | Default | Extra |
Fommmmmmme e Fommmmmme e aaa [TR +o-m-- Fommmmmmm- . +
fid	int(11)	NO	PRI	NULL	auto_increment
bird_family	varchar(255)	YES		NULL	
examples	varchar(255)	YES		NULL	

| bird_order | varchar(255) | YES | | NULL |
SRR T g —— A pp——— toooo- oo T T Tepepupp——— +

SELECT * FROM cornell_birds_families_orders

LIMIT 1;
toooo- oo ST R oo +
| fid | bird_family | examples | bird_order |
toooo- oo ST R oo +
| 1 | Struthionidae | Ostrich | Struthioniformes |
toeoo- oo Fomme - oo +

This is useful. I can take the family names, use the examples for the brief description, and
use them both to finish the data in the bird_families table. I don’t need their
identification number (i.e., fid) for each bird family — I’ll use my own. What I need is a
way to match the value of the bird_order column in this table to the scientific_name in
the bird_orders table so that I can put the correct order_id in the bird_families table.

There are a couple of ways I could do that. For now, I’ll add another column to my
bird_families table to take in the bird_order column from this table from Cornell. I’'1l
use the ALTER TABLE statement, as described in Chapter 5, and enter the following on my
server:

ALTER TABLE bird_families

ADD COLUMN cornell_bird_order VARCHAR(255);
With this change, I can now execute the following SQL statement to copy the data from
the Cornell table to my table containing data on bird families:

INSERT IGNORE INTO bird_families

(scientific_name, brief_description, cornell _bird_order)

SELECT bird_family, examples, bird_order

FROM cornell_birds_families_orders;
Look closely at this syntax. It may be useful to you one day. It starts with the normal
syntax of the INSERT statement, but where we would put the VALUES clause, we instead put
a complete SELECT statement. The syntax of the SELECT portion is the same as we’ve used

so far in other examples in this book. It’s simple, but neat and very powerful.

Conceptually, you can think of the embedded SELECT statement creating multiple rows,
each containing values in the order you specify in the SELECT. These values work just like
a VALUES clause, feeding values into the parent INSERT statement and filling the columns I
carefully specify in the right order.

One thing is different at the start of the previous INSERT statement. I’ve added the IGNORE
option. I used this because the bird_families table already had data in it. Because the
scientific_name column is set to UNIQUE, it does not permit duplicate values. If a
multiple-row INSERT statement like this encounters any errors, it will fail and return an
error message. The IGNORE flag instructs the server to ignore any errors it encounters while
processing the SQL statement, and to insert the rows that may be inserted without
problems. Instead of failing and showing an error message, warning messages are stored
on the server for you to look at later. When the server is finished, if you want, you can run
the SHOW WARNINGS statement to see which rows of data weren’t inserted into the table.
This is a graceful solution if you just want the server to process the rows that aren’t
duplicates and to ignore the duplicates.

Now that the data has been inserted, I’ll run the following SQL statement from mysql to
look at the last row in the table — the first rows contain the data I entered previously:

SELECT * FROM bird_families
ORDER BY family id DESC LIMIT 1;

S TR T T e epupp———— T T e epupup———— R g TR +
| family_id | scientific_name |brief_description| order_id | cornell_bird_order|
SRR T T g ———— T T Iepepupp———— Fommm o TP —_ +
| 330 | Vviduidae | Indigobirds | NULL | Passeriformes |
SRR T T g ———— T T Tepepupup———— Fommm oo TR +

In the SELECT statement here, I added an ORDER BY clause to order the results set by the
value of the family_id. The DESC after it indicates that the rows should by ordered in
descending order based on the value of family_id. The LIMIT clause tells MySQL to limit
the results to only one row. Looking at this one row of data, we can see that the INSERT
INTO..SELECT statement worked well.

A Digression: Setting the Right ID

Our INSERT from the previous section helped me fill my table with data I took from a free
database, but it’s still missing data: the bird order for each bird. I defined my own orders
of birds in the bird_orders table, giving each order an arbitrary order_id. However, the
Cornell data had nothing to do with the numbers assigned when I created my bird_orders
table. So now I need to set the value of the order_id column to the right order_id from
the bird_orders table — and to figure out that value, I have to find the order in the
cornell bird_order column.

This is a bit complicated, but I am showing my process here to illustrate the power of
relational databases. Basically, I’'ll join my own bird_orders table to the data I got from
Cornell. I loaded the bird orders from Cornell into a cornell_bird_order field. I have the
exact same orders in the scientific_name field of my bird_orders table. But I don’t
want to use the scientific name itself when I label each individual bird: instead, I want a
number (an order_id) to assign to that bird.

I need to set the value of the order_id column to the right order_id from the
bird_orders table. To figure out that value, I have to find the order in the
cornell_bird_order column.

For that, I’ll use the UPDATE statement. Before I change any data with UPDATE, though, I’1l
construct a SELECT statement for testing. I want to make sure my orders properly match up
with Cornell’s. So I'll enter this on my server:

SELECT DISTINCT bird_orders.order_id,

cornell _bird_order AS "Cornell's Order",
bird_orders.scientific_name AS 'My Order'

FROM bird_families, bird_orders

WHERE bird_families.order_id IS NULL

AND cornell_bird_order = bird_orders.scientific_name
LIMIT 5;

Fommmmmeman + +
| order_id | |
Fommmmmeman + +
120 | Struthioniformes | Struthioniformes |
I I
I I
I I
I I
+ +

I

| 121 Tinamiformes Tinamiformes |
| 100 Anseriformes Anseriformes |
| 101 Galliformes Galliformes |
| 104 Podicipediformes Podicipediformes |

o mm e e e e e e e e e e i e m e mmmmmemmaao oo +

We’re testing a WHERE clause here that we’ll use later when updating our bird_families
table. It’s worth looking at what a WHERE clause give us before we put all our trust in it and

use it in an UPDATE statement.

This WHERE clause contains two conditions. First, it changes the bird_families table only
where the order_id hasn’t been set yet. That’s kind of a sanity check. If I already set the
order_id field, there is no reason to change it.

After the AND comes the second condition, which is more important. I want to find the row
in my bird_orders table that has the right scientific name, the scientific name assigned by
Cornell. So I check where cornell_bird_order equals the scientific_name in the
bird_orders table.

This shows how, if you want to change data with INSERT..SELECT, REPLACE, or UPDATE, you
can test your WHERE clause first with a SELECT statement. If this statement returns the rows

you want and the data looks good, you can then use the same WHERE clause with one of the
other SQL statements to change data.

The SELECT statement just shown is similar to the one we executed in the previous section
of this chapter when we queried the birds, bird_families, and bird_orders tables in the
same SQL statement. There is, however, an extra option added to this statement: the
DISTINCT option. This selects only rows in which all of the columns are distinct.
Otherwise, because more than five bird families are members of the Struthioniformes
order, and I limited the results to five rows (i.e., LIMIT 5), we would see the first row
repeated five times. Adding the DISTINCT flag returns five distinct permutations and is
thereby more reassuring that the WHERE clause is correct.

Because the results look good, I’1l use the UPDATE statement to update the data in the
bird_families table. With this statement, you can change or update rows of data. The
basic syntax is to name the table you want to update and use the SET clause to set the value
of each column. This is like the syntax for the SELECT statement in Inserting Emphatically.
Use the WHERE clause you tested to tell MySQL which rows to change:

UPDATE bird_families, bird_orders

SET bird_families.order_id = bird_orders.order_id

WHERE bird_families.order_id IS NULL

AND cornell_bird_order = bird_orders.scientific_name;
This is fairly complicated, so let’s reiterate what’s happening here: the UPDATE statement
tells MySQL to set the order_id in the bird_families table to the value of the order_id
of the corresponding row in the bird_orders table — but thanks to the AND clause, I do
the update only where the cornell bird_order equals the scientific_name in the

bird_orders table.
That’s plenty to take in, I know. We’ll cover this statement in more detail in Chapter 8.

Let’s see the results now. We’ll execute the same SQL statement we did earlier, but limit it
to four rows this time to see a bit more:

SELECT * FROM bird_families
ORDER BY family_id DESC LIMIT 4;

Fommmmmemaaa Fommmmmmmm e eeeeaan . [+
| family_id | scientific_name | brief_description | order_id |
Fommmmmemaaa Fommmmmmmm e eeeeaan . [+
330	Viduidae	Indigobirds	128
329	Estrildidae	wWaxbills and Allies	128
328	Ploceidae	Weavers and Allies	128
327	Passeridae	01d World Sparrows	128
Fommmmmmeaam Fommmmmmem e eeeaaa T T Ry e Fommmmmmmmn +

That seems to have worked. The order_id column for the Viduidae bird family now has a
value other than NULL. Let’s check the bird _orders to see whether that’s the correct
value:

SELECT * FROM bird_orders
WHERE order_id = 128;

Fommmmmaa o S S S +
| order_id | scientific_name | brief_description | order_image |
Fommmmmaa o S S S +
| 128 | Passeriformes | Passerines | NULL |
R S S S +

That’s correct. The order_id of 128 is for Passeriformes, which is what the Cornell table
said is the order of the Viduidae family. Let’s see whether any rows in bird_families are
missing the order_id:

SELECT family_id, scientific_name, brief_description
FROM bird_families
WHERE order_id IS NULL;

SR S oo oo +
| family_id | scientific_name | brief_description |
SR S oo oo +
136	Fregatidae	Frigatebirds
137	Sulidae	Boobies and Gannets
138	Phalacrocoracidae	Cormorants and Shags
139	Anhingidae	Anhingas
145	Cathartidae	New World Vultures
146	Sagittariidae	Secretary-bird
147	Pandionidae	Osprey
148	Otididae	Bustards
149	Mesitornithidae	Mesites
150	Rhynochetidae	Kagu

151	Eurypygidae	Sunbittern
172	Pteroclidae	Sandgrouse
199	Bucconidae	Puffbirds
200	Galbulidae	Jacamars
207	Cariamidae	Seriemas
Fomm e e oo R e e e e e oo +

For some reason, the data didn’t match the 15 rows in the bird_orders table. I had to
determine why these didn’t match. Let’s look at how I resolved a couple of them.

I looked up the name of the order to which the Osprey belongs and found that there are
two possible names: Accipitriformes and Falconiformes. Cornell used the Accipitriformes,
whereas my bird_orders table has the Falconiformes (i.e., order_id 112). I’ll use that
one and update the bird_families table:

UPDATE bird_families

SET order_id = 112

WHERE cornell_bird_order = 'Accipitriformes';
I could have used the family_ id in the WHERE clause, but by doing what I did here, I
discovered two more bird families that are in the Accipitriformes order and updated all
three in one SQL statement. Digging some more, I found that four of these bird families
are part of a new order called Suliformes. So I added that order to the bird_orders table
and then updated the rows for those families in the bird_families table. This method of
clean-up is common when creating a database or when importing large amounts of data
from another database.

Next, I’'ll do some clean-up by dropping the extra column I added (cornell bird_order)
to the bird_families table and the cornell_birds_families_orders table:

ALTER TABLE bird_families

DROP COLUMN cornell_bird_order;

DROP TABLE cornell birds_families_orders;

That set of examples was complicated, so don’t be discouraged if you were confused by it.
In time, you will be constructing more complex SQL statements on your own. In fact, you
will come to look at what I did here and realize that I could have performed the same tasks
in fewer steps. For now, I wanted to show you the power of MySQL and MariaDB, as well
as their communities. I mention the communities because in the MySQL and MariaDB
communities, you can sometimes find tables with data like this that you can download for
free and then manipulate for your own use, thus saving you plenty of work and taking
some of the ever pesky tediousness out of database management. There are other methods
for bulk importing data, even when it’s not in a MySQL table. They’re covered in

Chapter 15.

Replacing Data

When you’re adding massive amounts of data to an existing table and you’re using the
multiple-row syntax, you could have a problem if one of the fields you’re importing gets
inserted into a key field in the table, as in the preceding example with the bird_families
table. In that example, the scientific_name column was a key field, set to UNIQUE so that
there is only one entry in the birds_families table for each bird family. When MySQL
finds a duplicate key value while running an INSERT statement, an error is generated and
the entire SQL statement will be rejected. Nothing will be inserted into the table.

You would then have to edit the INSERT statement, which might be lengthy, to remove the
duplicate entry and run the statement again. If there are many duplicates, you’d have to
run the SQL statement many times, watch for error messages, and remove duplicates until
it’s successful. We avoided this problem in the previous example by using the IGNORE
option with the INSERT statement. It tells MySQL to ignore the errors, not insert the rows
that are duplicates, and insert the ones that aren’t.

There may be times, though, when you don’t want to ignore the duplicate rows, but
replace duplicate rows in the table with the new data. For instance, in the UPDATE example
in the previous section, we have newer and better information, so we prefer to overwrite
duplicate rows. In situations such as this, instead of using INSERT, you could use the
REPLACE statement. With it, new rows of data will be inserted as they would with an
INSERT statement. Any rows with the same key value (e.g., same scientific_name code)
will replace the matching row already in the table. This can be very useful, and not
difficult. Let’s look at an example:

REPLACE INTO bird_families

(scientific_name, brief_description, order_id)

VALUES('Viduidae', 'Indigobirds & Whydahs', 128),
('Estrildidae', 'Waxbills, Weaver Finches, & Allies',6 128),
('Ploceidae', 'Weavers, Malimbe, & Bishops', 128);

Query OK, 6 rows affected (0.39 sec)
Records: 3 Duplicates: 3 Warnings: 0

Notice that the syntax is the same as an INSERT statement. The options all have the same
effect as well. Also, multiple rows may be inserted, but there’s no need for the IGNORE
option because duplicates are just overwritten.

Actually, when a row is replaced using the REPLACE statement, it’s first deleted completely

and the new row is then inserted. For any columns without values, the default values for
the columns will be used. None of the previous values are kept. So be careful that you
don’t replace a row that contains some data that you want. When you update a row with
REPLACE, you can’t choose to replace some columns and leave the others unchanged.
REPLACE replaces the whole row, unlike UPDATE. To change just specific columns, use the
UPDATE statement.

There are a couple of things that you should notice about this REPLACE statement and the
content we entered. You can see something unusual in the results message. It says that six
rows were affected by this SQL statement: three new records and three duplicates. The
value of six for the number of rows affected may seem strange. What happened is that
because three rows had the same value for the scientific_name, they were deleted. And
then three new rows were added with the new values, the replacements. That gives a total
of six affected rows: three deleted and three added.

The results contain no warnings, so all went well as far as MySQL knows. Let’s look at
the data for one of the bird families we changed in the bird_families table, the Viduidae
family:

SELECT * FROM bird_families
WHERE scientific_name = 'Viduidae' \G

B R R 1. row L
family id: 331
scientific_name: Viduidae
brief_description: Indigobirds & Whydahs
order_id: 128
It may not be apparent, but everything was replaced. This row has a new value in the
family_id column. If you look earlier in this chapter at the row for this family, you’ll see
that the family_id was 330. Because it was the last row in the table, when a new row was
created for its replacement, 331 was assigned to it. The brief_description has the new

value; it said before only Indigobirds.

The REPLACE statement is useful for replacing all of the data for a duplicate row and
inserting new rows of data for data that isn’t already in a given table. It has the potential
problem of replacing all of the columns when you might want to replace only some of
them. Also, in the previous examples, if the scientific_name column was not UNIQUE or
otherwise a key column, new rows would be created for the three families we tried to
replace with the REPLACE statement.

Priorities When Inserting Data

On a busy MySQL or MariaDB server, there will be times when many people will access
the server at the same time. There will be times when SQL statements are entered
simultaneously from different sources, perhaps many at the same instant. The server must
decide which statements to process first.

Statements that change data (INSERT, UPDATE, and DELETE) take priority over read
statements (SELECT statements). Someone who is adding data to the server seems to be
more important than someone reading data. One concern is that the one inserting data
might lose the connection and lose its opportunity. The user retrieving data, in contrast,
can generally wait. For example, on a website that uses MySQL to store purchases, a
customer entering an order will take priority over another customer who is just browsing

through the list of products.

When the server is executing an INSERT statement for a client, it locks the related tables
for exclusive access and forces other clients to wait until it’s finished. This isn’t the case
with InnoDB: it locks the rows, rather than the entire table. On a busy MySQL server that
has many simultaneous requests for data, locking a table could cause users to experience
delays, especially when someone is entering many rows of data by using the multiple-row
syntax of the INSERT statement.

Rather than accept the default priorities in MySQL, you can instead set the priority for an
INSERT. You can decide which SQL statements need to be entered as soon as possible and
which can wait. To specify you preferences, the INSERT statement offers priority options.
Enter them between the INSERT keyword and the INTO keyword. There are three of them:
LOW_PRIORITY, DELAYED, and HIGH_PRIORITY. Let’s look at each of them.

Lowering the priority of an insert

For an example of Low_PRIORITY, suppose that we’ve just received a file from a large
bird-watcher group with thousands of rows of data related to bird sightings. The table is a
MySQL dump file, a simple text file containing the necessary SQL statements to insert the
data into a table in MySQL. We open the dump file with a text editor and see that it
contains one huge INSERT statement that will insert all of the bird sightings (i.e.,
bird_sightings) with one SQL statement into a table on our server. We haven’t created a
table like this yet, but you can imagine what it might contain.

When the INSERT statement in the dump file from the large bird-watcher group is run, it
might tie up our server for quite a while. If there are users who are in the middle of
retrieving data from the bird_sightings table, we might prefer that those processes finish
before starting our huge INSERT statement. The Low_PRIORITY option instructs MySQL to
enter the rows when it’s finished with whatever else it’s doing. Here’s an abbreviated
version of how we would do that:

INSERT LOW_PRIORITY INTO bird_sightings

Of course, a real INSERT will have all the column and value listings you want where I left
the ellipsis (three dots).

The Low_PRIORITY flag puts the INSERT statement in a queue, waiting for all of the current
and pending requests to be completed before it’s performed. If new requests are made
while a low priority statement is waiting, they are put ahead of it in the queue. MySQL
does not begin to execute a low priority statement until there are no other requests waiting.

The table is locked and any other requests for data from the table that come in after the
INSERT statement starts must wait until it’s completed. MySQL locks the table once a low
priority statement has begun so it will prevent simultaneous insertions from other clients.
The server doesn’t stop in the middle of an insert to allow for other changes just because
of the LOW_PRIORITY setting. Incidentally, LOW_PRIORITY and HIGH_PRIORITY aren’t
supported by InnoDB tables. It’s unnecessary because it doesn’t lock the table, but locks
the relevant rows.

One potential inconvenience with an INSERT LOW_PRIORITY statement is that your mysql
client will be tied up waiting for the statement to be completed successfully by the server.

So if you’re inserting data into a busy server with a low priority setting using the mysql
client, your client could be locked up for minutes, maybe even hours, depending on how
busy the server is at the time. Using LOW_PRIORITY causes your client to wait until the
server starts the insert, and then the client is locked, as well as the related tables on the
server are locked.

Delaying an INSERT

As an alternative, you can use the DELAYED option instead of the Low_PRIORITY option.
This is deprecated in 5.6.6 of MySQL. However, if you’re using an older version, this is
how you would use it:

INSERT DELAYED INTO bird_sightings

This is very similar to Low_PRIORITY; MySQL will take the request as a low-priority one
and put it on its list of tasks to perform when it has a break. The difference and advantage
is that it will release the mysql client immediately so that the client can go on to enter
other SQL statements or even exit. Another advantage of this method is that multiple
INSERT DELAYED requests are batched together for block insertion when there is a gap in
server traffic, making the process potentially faster than INSERT LOW_PRIORITY.

The drawback to this choice is that the client is never informed whether the delayed
insertion is actually made. The client gets back error messages when the statement is
entered — the statement has to be valid before it will be queued — but it’s not told of
problems that occur after the SQL statement is accepted by the server.

This brings up another drawback: delayed insertions are stored in the server’s memory. So
if the MySQL daemon dies or is manually killed, the inserts are lost and the client is not
notified of the failure. You’ll have to manually check the database or the server’s logs to
determine whether the inserts failed. As a result, the DELAYED option is not always a good
alternative.

Raising the priority of an INSERT

The third priority option for the INSERT statement is HIGH_PRIORITY. INSERT statements by
default are usually given higher priority over read-only SQL statements so there would
seem to be no need for this option. However, the default of giving write statements
priority over read statements (e.g., INSERT over SELECT) can be removed. Post-Installation
touched on the configuration of MySQL and MariaDB. One of the server options that may
be set is - -low-priority-updates. This will make write statements by default a low
priority statement, or at least equal to read-only SQL statements. If a server has been set to
this default setting, you can add the HIGH_PRIORITY option to an INSERT statement to
override the default setting of Low_PRIORITY so that it has high priority over read
statements.

Summary

At this point, you should have a good understanding of MySQL and MariaDB. You should
understand the basic structure of a database and its tables. You should now see the value of
having smaller multiple tables. You should no longer envision a database as one large
table or like a spreadsheet. You should have a good sense of columns and how to enter
data into them, especially if you have done all of the exercises at the end of the previous
two chapters. You should not be overwhelmed at this point.

Chapter 7 delves more deeply into how to retrieve data from tables using the SELECT
statement. We have already touched on this SQL statement several times. However, you
saw only a sampling of how you might use SELECT in this chapter and in previous ones, to
give you a sense of why we were creating and adding data the way we did to tables. The
next chapter will cover the SELECT statement in much more detail.

The INSERT, SELECT, and the UPDATE statements are the most used SQL statements. If you
want to learn MySQL and MariaDB well, you need to know these statements well. You
need to know how to do the basics, as well as be familiar with the more specialized
aspects of using SELECT. You’ll accomplish that in the next chapter.

Before moving on to the next chapter, though, complete the following exercises. They will
help you to retain what you’ve learned about the INSERT statement in this chapter. Don’t
skip them. This is useful and necessary to building a solid foundation in learning MySQL
and MariaDB.

Exercises

Here are some exercises to get practice using the INSERT statement and a few others that
we covered in this chapter. So that these exercises won’t be strictly mundane data entry, a
couple of them call for you to create some tables mentioned in this chapter. The practice of
creating tables will help you to understand data entry better. The process of entering data
will help you to become wiser when creating tables. Both inform each other.

1. In the exercises at the end of Chapter 4, you were asked to create a table called
birds_body_shapes. This table will be used for identifying birds. It will be
referenced from the birds table by way of the column called body_id. The table is
to contain descriptions of body shapes of birds, which is a key factor in identifying
birds: if it looks like a duck, walks like a duck, and quacks like a duck, it may be a
goose — but it’s definitely not a hummingbird. Here is an initial list of names for
general shapes of birds:

Hummingbird
Long-Legged Wader
Marsh Hen

Owl

Perching Bird
Perching Water Bird
Pigeon

Raptor

Seabird

Shore Bird

Swallow

Tree Clinging
Waterfowl
Woodland Fowl

Construct an INSERT statement using the multiple-row syntax — not the emphatic
method — for inserting data into the birds_body_shapes table. You’ll have to set
the body_id to a three-letter code. You decide on that, but you might base it
somewhat on the names of the shapes themselves (e.g., Marsh Hen might be MHN
and Owl might be simply OWL). Just make sure each ID is unique. For the
body_shape column, use the text I have just shown, or reword it if you want. For
now, skip the third column, body_example.

2. You were asked also in the exercises at the end of Chapter 4 to create another table
for identifying birds, called birds_wing_shapes. This describes the shapes of bird
wings. Here’s an initial list of names for general wing shapes:

Broad
Rounded

Pointed

Tapered
Long
Very Long

Construct an INSERT statement to insert these items into the birds_wing_shapes
table using the emphatic syntax — the method that includes the SET clause. Set the
wing_id to a two-letter code. You decide these values, as you did earlier for
body_id. For the wing_shape column, use the text just shown. Don’t enter a value
for the wing_example column yet.

. The last bird identification table in which to enter data is birds_bill_shapes. Use
the INSERT statement to insert data into this table, but whichever multiple-row
method you prefer. You determine the two-letter values for bill id. Don’t enter
values for bill_example. Use the following list of bill shapes for the value of
bill_shape:

All Purpose
Cone

Curved

Dagger

Hooked
Hooked Seabird
Needle
Spatulate

Specialized

. Execute a SELECT statement to view the row from the birds_body_shapes table
where the value of the body_shape column is Woodland Fowl. Then replace that row
with a new value for the body_shape column. Replace it with Upland Ground Birds.
To do this, use the REPLACE statement, covered in Replacing Data. In the VALUES
clause of the REPLACE statement, provide the same value previously set for the
body_id so that it is not lost.

After you enter the REPLACE statement, execute a SELECT statement to retrieve all the
rows of data in the birds_body_shapes table. Look how the data changed for the
row you replaced. Make sure it’s correct. If not, try again either using REPLACE or
UPDATE.

Chapter 7. Selecting Data

Previous chapters discussed the important topics of organizing your tables well and getting
data in to them. In this chapter, we will cover a key objective that makes the others pay
off: retrieving the data stored in a database. This is commonly called a database query.

The simplest way to retrieve data from a MySQL or MariaDB database — to select data
— is to use the SQL statement, SELECT. We used this SQL statement a few times in
previous chapters. In this chapter, we will cover it in greater detail. It’s not necessary to
know or use all of the may options, but some techniques such as joining tables together are
basic to using relational databases.

We’ll begin this chapter by reviewing the basics of the SELECT statement, and then
progress to more involved variants. When you finish this chapter, you will hopefully have
a good understanding of how to use SELECT for most of your needs as you start out as a
database developer, as well as be prepared for the many possibilities and special situations
that may arise over the years of developing databases with MySQL and MariaDB.

In previous chapters, especially in the exercises, you were asked to enter data into the
tables that we created and altered in the chapters of the previous part of this book.
Entering data on your own was good for training purposes, but we now need much more
data in our database to better appreciate the examples in this chapter. If you haven’t done
so already, go to this book’s website and download the dump files that contain tables of
data.

Download rookery.sql to get the whole rookery database, with plenty of data for use in
our explorations. Once you have the dump file on your system (let’s assume you put it in
/tmp/rookery.sql), enter the following from the command line:

mysql --user='your_name' -p \

rookery < /tmp/rookery.sql
The command prompts for your password, logs you in using the username assigned to
you, and runs the statements in the rookery.sql file on the rookery database. If everything
goes well, there should be no message in response, just the command-line prompt when
it’s finished.

http://mysqlresources.com/files

Basic Selection

The basic elements of the syntax for the SELECT statement are the SELECT keyword, the
column you want to select, and the table from which to retrieve the data:
SELECT column FROM table;

If you want to select more than one column, list them separated by commas. If you want to
select all of the columns in a table, you can use the asterisk as a wildcard instead of listing
all of the columns. Let’s use the rookery database you just loaded with data to see a
practical example of this basic syntax. Enter the following SQL statement in mysql to get a
list of all of the columns and rows in the birds table:

USE rookery;

SELECT * FROM birds;

This is the most minimal SELECT statement that you can execute successfully. It tells
MySQL to retrieve all of the data contained in the birds table. It displays the columns in
the order you defined them in the table’s CREATE or ALTER statements, and displays rows in
the order they are found in the table, which is usually the order that the data was entered
into the table.

To select only certain columns, do something like this:

SELECT bird_id, scientific_name, common_name

FROM birds;
This SELECT statement selects only three columns from each row found in the birds table.
There are also many ways to choose particular rows, change the order in which they are
displayed, and limit the number shown. These are covered in the following sections of this
chapter.

Selecting by a Criteria

Suppose that we want to select only birds of a certain family, say the Charadriidae (i.e.,
Plovers). Looking in the bird_families table, we find that its family_ id is 103. Using a
WHERE clause with the SELECT statement, we can retrieve a list of birds from the birds
table for this particular family of birds like so:

SELECT common_name, scientific_name
FROM birds WHERE family id = 103
LIMIT 3;

e mem e e e e
| common_name

o e e e e e e e e e e e e m -
| Mountain Plover

| Snowy Plover

| Black-bellied Plover
e e e e e e e e e m e m e — =

_________________________ +
scientific_name |
_________________________ +
Charadrius montanus |
Charadrius alexandrinus |
Pluvialis squatarola |
_________________________ +

—_——+—

This SELECT statement requests two columns, in a different order from the way the data is
listed in the table — in the table itself, scientific_name precedes common_name. I also
added the LIMIT clause to keep the results down to the first three rows in the table. We’ll
talk more about the LIMIT clause in a little while.

NOTE

Because we separated families into a separate table, you had to look at the bird_families table to get the right ID
before selecting birds from the birds table. That seems round-about. There is a streamlined way to ask for a family
name such as Charadriidae instead of a number. They’re called joins. We’ll cover them later.

This is all fairly straightforward and in line with what we’ve seen in several other
examples in previous chapters. Let’s move on and take a look at how to change the order
of the results.

Ordering Results

The previous example selected specific columns from the birds table and limited the
results with the LIMIT clause. However, the rows were listed in whatever order they were
found in the table. We’ve decided to see only a tiny subset of the birds in the Charadriidae
family, so ordering can make a difference. If we want to put the results in alphabetical
order based on the values of the common_name column, we add an ORDER BY clause like
this:

SELECT common_name, scientific_name
FROM birds WHERE family_id = 103
ORDER BY common_nhame

LIMIT 3;

e e e eeaaooo- +

| common_name | scientific_name |
oo oo o eeaaaaon +
Black-bellied Plover	Pluvialis squatarola
Mountain Plover	Charadrius montanus
Pacific Golden Plover	Pluvialis fulva
o e e e o o o eeaaaaoon +

Notice that the ORDER BY clause is located after the WHERE clause and before the LIMIT
clause. Not only will this statement display the rows in order by common_name, but it will
retrieve only the first three rows based on the ordering. That is to say, MySQL will first
retrieve all of the rows based on the WHERE clause, store those results in a temporary table
behind the scenes, order the data based on the ORDER BY clause, and then return to the
mysql client the first three rows found in that temporary table based on the LIMIT clause.
This activity is the reason for the positioning of each clause.

By default, the ORDER BY clause uses ascending order, which means from A to Z for an
alphabetic column. If you want to display data in descending order, add the DESC option,
as in ORDER BY DESC. There’s also a contrasting ASC option, but you probably won’t need
to use it because ascending order is the default.

To order by more than one column, give all the columns in the ORDER BY clause in a
comma-separated list. Each column can be sorted in ascending or descending order. The
clause sorts all the data by the first column you specify, and then within that order by the
second column, etc. To illustrate this, we’ll select another column from the birds table,
family_id, and we’ll get birds from a few more families. We’ll select some other types of
shore birds: Oystercatchers (i.e., Haematopodidae), Stilts (e.g., Recurvirostridae), and
Sandpipers (e.g., Scolopacidae). First, we need the family id for each of these families.
Execute the following on your server:

SELECT * FROM bird_families
WHERE scientific_name
IN('Charadriidae', 'Haematopodidae', 'Recurvirostridae', 'Scolopacidae');

Fommmmmeeaam Fommmmmmmm e emeaaaa T Fommmmeeam +
| family_id | scientific_name | brief_description | order_id |
Fommmmmeeaam Fommmmmmmm e eeeeaaaa T Fommmmmeeam +
103	Charadriidae	Plovers, Dotterels, Lapwings	102
160	Haematopodidae	Oystercatchers	102
162	Recurvirostridae	Stilts and Avocets	102
164	Scolopacidae	Sandpipers and Allies	102
Fommmmmemaaa Fommmmmmmm e eeeaaaa T Fommmmmmeam +

In this SELECT statement, we added another item to the WHERE clause, the IN operator. It
lists, within parentheses, the various values we want in the scientific_name column.

Let’s use the IN operator again to get a list of birds and also test the LIMIT clause:

SELECT common_name, scientific_name, family id
FROM birds

WHERE family id IN(103, 160, 162, 164)

ORDER BY common_name

LIMIT 3;

[SRR o m e e e e e e e o o Fomm e e e o m +
| common_name | scientific_name | family_id |
[SRR o m e e e e e e e o o Fomm e e e o m +
	Charadrius obscurus aquilonius	103
	Numenius phaeopus phaeopus	164
	Tringa totanus eurhinus	164
[S REREpURUR U o m m e e e e e e oo Fomm e e e oo +

Notice that we didn’t put the numeric values in quotes as we did with the family names in
the previous SQL statement. Single or double quotes are necessary for strings, but they’re
optional for numeric values. However, it’s a better practice to not use quotes around
numeric values. They can affect performance and cause incorrect results if you mix them
with strings.

There is one odd thing about the results here: there aren’t any common names for the birds
returned. That’s not a mistake. About 10,000 birds in the birds table are true species of
birds, and about 20,000 are subspecies. Many subspecies don’t have a unique common
name. With about 30,000 species and subspecies of birds, with all of the minor nuances
between the subspecies bird families, there just aren’t common names for all of them.
Each bird has a scientific name assigned by ornithologists, but everyday people who use
the common names for birds don’t see the subtle distinctions that ornithologists see. This
is why the scientific_name column is necessary and why the common_name column
cannot be a key column in the table.

Let’s execute that SQL statement again, but add another factor to the WHERE clause to show
only birds with a value for the common_name column:

SELECT common_name, scientific_name, family_ id
FROM birds

WHERE family_id IN(103, 160, 162, 164)

AND common_name != ''

ORDER BY common_name

LIMIT 3;

Foom e e e e oo o Fommm e e oo +
| common_name | scientific_name | family_id |
o e e e e e e e e ao oo B Fomm e o= +
African Oystercatcher	Haematopus moquini	160
African Snipe	Gallinago nigripennis	164
Amami Woodcock	Scolopax mira	164
e L Y S S S —— +

In the WHERE clause, we added the AND logical operator to specify a second filter. For a row
to match the WHERE clause, the family_id must be one in the list given and the
common_name must not be equal to a blank value.

Nonprogrammers will have to learn a few conventions to use large WHERE clauses. We’ve
seen that an equals sign says, “The column must contain this value,” but the != construct
says, “The column must not contain this value.” And in our statement, we used ' ' to refer
to an empty string. So we’ll get the rows where the common name exists.

In this case, we couldn’t ask for non-NULL columns. We could have set up the table so
that birds without common names had NULL in the common_name column, but we chose to

instead use empty strings. That’s totally different in meaning: NULL means there is no
value, whereas the empty string is still a string even if there are no characters in it. We
could have used NULL, but having chosen the empty string, we must use the right value
in our WHERE clause.

Incidentally, != is the same as <> (i.e., less-than sign followed by greater-than sign).

Limiting Results

The birds table has nearly 30,000 rows, so selecting data without limits can return more
rows than you might want to view at a time. We’ve already used the LIMIT clause to
resolve this problem. We limited the results of the SELECT statement to three rows, the first
three rows based on the WHERE and ORDER BY clauses. If we’d like to see the subsequent
rows, maybe the next two based on the criteria we gave previously, we could change the
LIMIT clause to show five rows. But an alternative, which is often a better choice, is to do
something like this:

SELECT common_name, scientific_name, family_id
FROM birds

WHERE family_id IN(103, 160, 162, 164)

AND common_name != "'

ORDER BY common_name

LIMIT 3, 2;

e e e e e oo o e e e me oo Fommm oo +
| common_name | scientific_name | family id |
oo e e e e oo e e e oo Fommm e oo +
| American Avocet | Recurvirostra americana | 162 |
| American Golden-Plover | Pluvialis dominica | 103 |
e e e mee oo o e e e oo Fommm e oo +

This LIMIT clause has two values: the point where we want the results to begin, then the
number of rows to display. The result is to show rows 3 and 4. Incidentally, LIMIT 3 used
previously is the same as LIMIT 0, 3:the 0 tells MySQL not to skip any rows.

Combining Tables

So far in this chapter we’ve been working with just one table. Let’s look at some ways to
select data from more than one table. To do this, we will have to tell MySQL the tables
from which we want data and how to join them together.

For an example, let’s get a list of birds with their family names. To keep the query simple,
we’ll select birds from different families, but all in the same order of birds. In earlier
examples where we got a list of shore birds, they all had the same order_id of 102. We’ll
use that value again. Enter this SELECT statement on your server:

SELECT common_name AS 'Bird',
bird_families.scientific_name AS 'Family'

FROM birds, bird_families

WHERE birds.family_id = bird_families.family_id
AND order_id = 102

AND common_name != ''

ORDER BY common_name LIMIT 10;

+
I
+
African Jacana | Jacanidae
African Oystercatcher | Haematopodidae
African Skimmer | Laridae
African Snipe | Scolopacidae
| Laridae
| Scolopacidae
| Recurvirostridae
| Charadriidae
| Haematopodidae
| Scolopacidae
R +

I

I

I

I

| Aleutian Tern

| Amami Woodcock

| American Avocet

| American Golden-Plover
| American Oystercatcher
| American Woodcock

This SELECT statement returns one column from the birds table and one from the
bird_families table. This is a hefty SQL statement, but don’t let it fluster you. It’s like
previous statements in this chapter, but with some minor changes and one significant one.
First, let’s focus on the one significant change: how we’ve drawn data from two tables.

The FROM clause lists the two tables, separated by a comma. In the WHERE clause, we
indicated that we want rows in which the value of family_id in the two tables is equal.
Otherwise, we would have duplicate rows in the results. Because those columns have the
same name (family_id) in both tables, to prevent ambiguity, we put the table name before
the colum name, separated by a dot (e.g., birds.family_id). We did the same thing for
the scientific name in the column list (bird_families.scientific_name). If we don’t do
that, MySQL would be confused as to whether we want the scientific_name from the
birds or the bird_families table. This would generate an error like this:

ERROR 1052 (23000): Column 'scientific_name' in field list is ambiguous

You may have noticed that another new item was added to the SELECT statement: the AS
keyword. This specifies a substitute name, or alias, for the heading in the results set for
the column. Without the As keyword for the column containing the family names, the
heading would say bird_families.scientific_name. That’s not as attractive. This is
another style factor, but it can have more practical aspects that we’ll see later. The
keyword AS can also be used to specify a table name like so:

SELECT common_name AS 'Bird',
families.scientific_name AS 'Family'

FROM birds, bird_families AS families
WHERE birds.family_id = families.family_id

AND order_id = 102
AND common_name != "'
ORDER BY common_name LIMIT 10,
In this example, we provided an alias for the bird_families table. We set it to the shorter

name families. Note that aliases for table names must not be in quotes.

After setting the alias, we must use it wherever we want to refer to the table. So we have
to change the column selected in the field list from bird_families.scientific_name to
families.scientific_name. We also have to change the column name
bird_families.family_id in the WHERE clause to families.family_id. If we don’t make
this final change, we’ll get the following error:

ERROR 1054 (42S22):
Unknown column 'bird_families.family id' in 'where clause'

Let’s add a third table to the previous SQL statement, to get the name of the order of birds
to which the birds belong. You can do that by entering this SQL statement on your server:

SELECT common_name AS 'Bird',

families.scientific_name AS 'Family',

orders.scientific_name AS 'Order'

FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id families.family_id

AND families.order_id orders.order_id

AND families.order_id 102

AND common_name != "'

ORDER BY common_name LIMIT 10, 5;

R S Ry +
| Bird | Family | Order |
R S R +
Ancient Murrelet	Alcidae	Charadriiformes
Andean Avocet	Recurvirostridae	Charadriiformes
Andean Gull	Laridae	Charadriiformes
Andean Lapwing	Charadriidae	Charadriiformes
Andean Snipe	Scolopacidae	Charadriiformes
R S B R +

Let’s look at the changes from the previous statement to this one. We added the third table
to the FROM clause and gave it an alias of orders. To properly connect the third table, we
had to add another evaluator to the WHERE clause: families.order_id =
orders.order_id. This allows the SELECT to retrieve the right rows containing the
scientific names of the orders that correspond to the rows we select from the families. We
also added a column to the field list to display the name of the order. Because the families
we’ve selected are all from the same order, that field seems a little pointless in these
results but can be useful as we search more orders in the future. We gave a starting point
for the LIMIT clause so that we could see the next five birds in the results.

NOTE

It’s not necessary to put the field alias name for a column in quotes if the alias is only one word. However, if you use
a reserved word (e.g., Order), you will need to use quotes.

Expressions and the Like

Let’s change the latest SELECT statement to include birds from multiple orders. To do this,
we’ll focus in on the operator in the WHERE clause for the common_name:

AND common_name != "'

We’ll change the simple comparison here (i.e., the LIKE operator, which we saw in
Chapter 6) to select multiple names that are similar. Among many families of birds, there
are often bird species that are similar but have different sizes. The smallest is sometimes
referred to as the least in the common name. So let’s search the database for birds with
Least in their name:

SELECT common_name AS 'Bird',

families.scientific_name AS 'Family',

orders.scientific_name AS 'Order'

FROM birds, bird_families AS families, bird_orders AS orders

WHERE birds.family id = families.family_id

AND families.order_id = orders.order_id

AND common_name LIKE 'Least%'

ORDER BY orders.scientific_name, families.scientific_name, common_name

LIMIT 10;

R S Yy +
| Bird | Family | order |
R S Y +
Least Nighthawk	Caprimulgidae	Caprimulgiformes
Least Pauraque	Caprimulgidae	Caprimulgiformes
Least Auklet	Alcidae	Charadriiformes
Least Tern	Laridae	Charadriiformes
Least Sandpiper	Scolopacidae	Charadriiformes
Least Seedsnipe	Thinocoridae	Charadriiformes
Least Flycatcher	Tyrannidae	Passeriformes
Least Bittern	Ardeidae	Pelecaniformes
Least Honeyguide	Indicatoridae	Piciformes
Least Grebe	Podicipedidae	Podicipediformes
R Y Yy +

In the preceding example, using the LIKE operator, MySQL selected rows in which the
common_name starts with Least and ends with anything (i.e., the wildcard, %). We also
removed the families.order_id = 102 clause, so that we wouldn’t limit the birds to a
single order. The results now have birds from a few different orders.

We also changed the oRDER BY clause to have MySQL order the results in the temporary
table first by the bird order’s scientific name, then by the bird family’s scientific name,
and then by the bird’s common name. If you look at the results, you can see that’s what it
did: it sorted the orders first. If you look at the rows for the Charadriiformes, you can see
that the families for that order are in alphabetical order. The two birds in the
Caprimulgidae family are in alphabetical order.

NOTE

You cannot use alias names for columns in the ORDER BY clause, but you can use alias table names. In fact, they’re
required if you’ve used the aliases in the FROM clause.

The previous example used the LIKE operator, which has limited pattern matching
abilities. As an alternative, you can use REGEXP, which has many pattern matching
characters and classes. Let’s look at a simpler example, of the previous SELECT statement,
but using REGEXP. In the previous example we searched for small birds, birds with a
common name starting with the word Least. The largest bird in a family is typically called
Great. To add these birds, enter the following SQL statement on your server:

SELECT common_name AS 'Birds Great and Small'
FROM birds

WHERE common_name REGEXP 'Great|Least'

ORDER BY family_id LIMIT 10;

| Great Northern Loon |
| Greater Scaup |
| Greater White-fronted Goose |
| Greater Sand-Plover |
| Great Crested Tern |
| Least Tern

| Great Black-backed Gull |
| Least Nighthawk |
| Least Pauraque |
| Great Slaty Woodpecker |

The expression we’re giving with REGEXP, within the quote marks, contains two string
values: Great and Least. By default, MySQL assumes the text given for REGEXP is meant
to be for the start of the string. To be emphatic, you can insert a carat (i.e., ») at the start of
these string values, but it’s unnecessary. The vertical bar (i.e., |) between the two
expressions signifies that either value is acceptable — it means or.

In the results, you can see some common bird names starting with Greater, not just Great.
If we don’t want to include the Greater birds, we can exclude them with the NOT REGEXP
operator. Enter the following on your server:

SELECT common_name AS 'Birds Great and Small'
FROM birds

WHERE common_name REGEXP 'Great|Least'

AND common_name NOT REGEXP 'Greater'

ORDER BY family id LIMIT 10;

Foom e e e aoo oo +
| Birds Great and Small |
Foom e e e e e eao o - +
Great Northern Loon
Least Tern

Great Black-backed Gull
Great Crested Tern

Least Nighthawk

Pauraque

Great Slaty Woodpecker
Great Spotted Woodpecker
Great Black-Hawk

Least Flycatcher

-
[¢]
<))
(7]
+

Using NOT REGEXP eliminated all of the Greater birds. Notice that it was included with
AND, and not as part of the REGEXP.

Incidentally, we’re ordering here by family_id to keep similar birds together in the list
and to have a good mix of Great and Least birds. The results may seem awkward, though,
as the names of the birds are not ordered. We could add another column to the ORDER BY
clause to alphabetize them within each family.

REGEXP and NOT REGEXP are case insensitive. If we want an expression to be case sensitive,
we’ll need to add the BINARY option. Let’s get another list of birds to see this. This time
we’ll search for Hawks, with the first letter in uppercase. This is because we want only
Hawks and not other birds that have the word, hawk in their name, but are not a Hawk. For
instance, we don’t want Nighthawks and we don’t want Hawk-Owls. The way the data is
in the birds table, each word of a common name starts with an uppercase letter — the

names are in title case. So we’ll eliminate birds such as Nighthawks by using the BINARY
option to require that “Hawk” be spelled with an uppercase H and the other letters in
lowercase. We’ll use NOT REGEXP to not allow Hawk-Owls. Try the following on your
server:

SELECT common_name AS 'Hawks'

FROM birds

WHERE common_name REGEXP BINARY 'Hawk'
AND common_name NOT REGEXP 'Hawk-Owl'
ORDER BY family id LIMIT 10;

Red-tailed Hawk

Bicolored Hawk

Common Black-Hawk
Cuban Black-Hawk
Rufous Crab Hawk
Great Black-Hawk
Black-faced Hawk
White-browed Hawk
Ridgway's Hawk

Broad-winged Hawk

I stated that REGEXP and NOT REGEXP are case insensitive, unless you add the BINARY option
as we did to stipulate the collating method as binary (e.g., the letter H has a different
binary value fromn the letter h). For the common_name column, though, we didn’t need to
add the BINARY option because the column has a binary collation setting. We did this
unknowingly when we created the rookery database near the beginning of Chapter 4. See
how we created the database by entering this from the mysql client:

SHOW CREATE DATABASE rookery \G

Rk Ik Sk Sk Sk S S R O kO 1 row EE R R S R R kO

Database: rookery
Create Database: CREATE DATABASE ‘rookery ™ /*140100 DEFAULT
CHARACTER SET latinl COLLATE latinl_bin */

The COLLATE clause is set to latinl_bin, meaning Latinl binary. Any columns that we
create in tables in the rookery database, unless we specify otherwise, will be collated

using latini_bin. Execute the following statement to see how the common_name column
in the birds table is set:

SHOW FULL COLUMNS
FROM birds LIKE 'common_name' \G

khkkhkkkkkkkkkkkhkkhkhkhkhkhkhhhhkkkx*x 1 row LR S O O

Field: common_name
Type: varchar(255)
Collation: latinl_bin
Null: YES
Key:
Default: NULL
Extra:
Privileges: select,insert,update, references
Comment:

This shows information just on the common_name column. Notice that the Collation is
latini_bin. Because of that, regular expressions using REGEXP are case sensitive without
having to add the BINARY option.

Looking through the birds table, we discover some common names for birds that contain
the words, “Hawk Owls,” without the hyphen in between. We didn’t allow for that in the

expression we gave. We discover also that there are birds in which the word “Hawk” is not
in title case — so we can’t count on looking for the uppercase letter, H. Our previous
regular expression left those birds out of the results. So we’ll have to change the
expression and try a different method. Enter this on your server:

SELECT common_name AS 'Hawks'

FROM birds

WHERE common_name REGEXP '[[:space:]]Hawk|[[.hyphen.]]Hawk'

AND common_name NOT REGEXP 'Hawk-Owl|Hawk Owl'

ORDER BY family_id;
This first, rather long REGEXP expression uses a character class and a character name. The
format of character classes and character names is to put the type of character between two
sets of double brackets. A character class is given between a pair of colons (e.g.,
[[:alpha:]] for alphabetic characters). A character name is given between two dots (e.g.,
[[.hyphen.]] for a hyphen). Looking at the first expression, you can deduce that we want
rows in which the common_name contains either “Hawk” or “~-Hawk” — that is to say,
Hawk preceded by a space or a hyphen. This won’t allow for Hawk preceded by a letter

(e.g., Nighthawk). The second expression excludes Hawk-Owl and Hawk Owl.

Pattern matching in regular expressions in MySQL tends to be more verbose than they are
in other languages like Perl or PHP. But they do work for basic requirements. For
elaborate regular expressions, you’ll have to use an API like the Perl DBI to process the
data outside of MySQL. Because that may be a performance hit, it’s better to try to
accomplish such tasks within MySQL using REGEXP.

Counting and Grouping Results

In many of our examples, we displayed only a few rows of data because the results could
potentially contain thousands of rows. Suppose we’d like to know how many are
contained in the table. We can do that by adding a function to the statement. In this case,
we want the COUNT () function. Let’s see how that would work:

SELECT COUNT(*) FROM birds;

. +
| COUNT(*) |
oo +
[28891 |
. +

We put an asterisk within the parentheses of the function to indicate that we want all of the
rows. We could put a column name instead of an asterisk to count only rows that have
data. Using a column prevents MySQL from counting rows that have a NULL value in
that column. But it will count rows that have a blank or empty value (i.e., ' ").

It’s nice to know how many rows are in the birds table, but suppose we’d like to break
apart that count. Let’s use COUNT() to count the number of rows for a particular family of
birds, the Pelecanidae — those are Pelicans. Enter this SQL statement in the mysql client
on your server:

SELECT families.scientific_name AS 'Family',
COUNT(*) AS 'Number of Birds'

FROM birds, bird_families AS families

WHERE birds.family id = families.family_id
AND families.scientific_name = 'Pelecanidae’

oo e e oo +

| Family | Number of Birds |
Fomm e e B +

| Pelecanidae | 10 |

[SRS o e oo +
As you can see, there are 10 bird species recorded for the Pelecanidae family in the birds
table. In this example, we used the WHERE clause to limit the results to the Pelecanidae
family. Suppose we want to know the number of birds for other bird families in the same
order to which Pelicans belong, to the order called Pelecaniformes. To do this, we’ll add
the bird_orders table to the previous SELECT statement. Enter the following from the
mysql client:

SELECT orders.scientific_name AS 'Order',
families.scientific_name AS 'Family',

COUNT(*) AS 'Number of Birds'

FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id = families.family_ id

AND families.order_id = orders.order_id

AND orders.scientific_name = 'Pelecaniformes';

[YRS L e L USRS +

| Order | Family | Number of Birds |

[YRS L e Feocemeamaaaaaaaaas +

| Pelecaniformes | Pelecanidae | 224 |

[YRS L e Feocemeamaaaaaaaaas ++

This tells us that there are 224 birds in the birds table that belong to Pelecaniformes.
There are five families in that order of birds, but it returned only the first family name
found. If we want to know the name of each family and the number of birds in each
family, we need to get MySQL to group the results. To do this, we have to tell it the

column by which to group. This is where the GROUP BY clause comes in. This clause tells
MySQL to group the results based on the columns given with the clause. Let’s see how
that might look. Enter the following on your server:

SELECT orders.scientific_name AS 'Order’',
families.scientific_name AS 'Family',

COUNT(*) AS 'Number of Birds'

FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id = families.family_id

AND families.order_id = orders.order_id

AND orders.scientific_name = 'Pelecaniformes'

GROUP BY Family;

R SRRy S +
| Order | Family | Number of Birds |
R SRRy S +
| Pelecaniformes | Ardeidae | 157 |
| Pelecaniformes | Balaenicipitidae | 1
Pelecaniformes	Pelecanidae	10
Pelecaniformes	Scopidae	3
Pelecaniformes	Threskiornithidae	53
RS Ry S +

We gave the GROUP BY clause the Family alias, which is the scientific_name column
from the bird_families table. MySQL returns one results set for all five families, for one
SELECT statement.

The GROUP BY clause is very useful. You’ll use it often, so learn it well. This clause and
related functions are covered in greater detail in Chapter 12.

Summary

The SELECT statement offers quite a number of parameters and possibilities that I had to
skip to keep this chapter from becoming too lengthy and too advanced for a learning book.
For instance, there are several options for caching results and a clause for exporting a
results set to a text file. You can learn about these from other sources if you need them.

At this point, make sure you’re comfortable with the SELECT statement and its main
components: choosing columns and using field aliases; choosing multiple tables in the
FROM clause; how to construct a WHERE clause, including the basics of regular expressions;
using the ORDER BY and the GROUP BY clauses; and limiting results with the LIMIT clause.
It will take time and practice to become very comfortable with all of these components.
Before moving on to Chapter 8, make sure to complete the exercises in the next section.

Exercises

The following exercises will help cement your understanding of the SELECT statement. The
act of typing SQL statements, especially ones that you will use often like SELECT, helps
you to learn, memorize, and know them well.

1. Construct a SELECT statement to select the common names of birds from the birds
table. Use the LIKE operator to select only Pigeons from the table. Order the table by
the common_name column, but give it a field alias of Bird'. Don’t limit the results; let
MySQL retrieve all of the rows that match. Execute the statement on your server and
look over the results.

Next, use the same SELECT statement, but add a LIMIT clause. Limit the results to the
first ten rows and execute it. Compare the results to the previous SELECT statement to
make sure the results show the 1st through 10th row. Then modify the SELECT
statement again to display the next 10 rows. Compare these results to the results
from the first SELECT statement to make sure you retrieved the 11th through 20th
row. If you didn’t, find your mistake and correct it until you get it right.

2. In this exercise, you’ll begin with a simple SELECT statement and then make it more
complicated. To start, construct a SELECT statement in which you select the
scientific_name and the brief_description from the bird_orders table. Give the
field for the scientific_name an alias of Order — and don’t forget to put quotes
around it because it’s a reserved word. Use an alias of Types of Birds in Order for
brief_description. Don’t limit the results. When you think that you have the
SELECT statement constructed properly, execute it. If you have errors, try to
determine the problem and fix the statement until you get it right.

Construct another SELECT statement in which you retrieve data from the birds table.
Select the common_name and the scientific_name columns. Give them field aliases:
Common Name of Bird and Scientific Name of Bird. Exclude rows in which the
common_name column is blank. Order the data by the common_name column. Limit the
results to 25 rows of data. Execute the statement until it works without an error.
Merge the first and second SELECT statements together to form one SELECT statement
that retrieves the same four columns with the same alias from the same two tables
(this was covered in Combining Tables). It involves giving more than one table in
the FROM clause and providing value pairs in the WHERE clause for temporarily
connecting the tables to each other. This one may seem tricky. So take your time and
don’t get frustrated. If necessary, refer back to Combining Tables.

Limit the results to 25 rows. If you do it right, you should get the same 25 birds from
the second SELECT of this exercise, but with two more fields of data. Be sure to
exclude rows in which the common_name column is blank.

3. Use the SELECT statement in conjunction with REGEXP in the WHERE clause to get a list
of birds from the birds table in which the common_name contains the word “Pigeon”
or “Dove” (this was covered in Expressions and the Like). Give the field for the
common_name column the alias >Type of Columbidae — that’s the name of the family
to which Doves and Pigeons belong.

Chapter 8. Updating and Deleting Data

Data in databases will change often. There’s always something to change, some bit of
information to add, some record to delete. For these situations in which you want to
change or add pieces of data, you will mostly use the UPDATE statement. For situations in
which you want to delete an entire row of data, you’ll primarily use the DELETE statement.
Both of these SQL statements are covered extensively in this chapter.

Updating Data

The UPDATE statement changes the data in particular columns of existing records. The
basic syntax is the UPDATE keyword followed by the table name, then a SET clause.
Generally you add a WHERE clause so as not to update all of the data in a given table. Here
is a generic example of this SQL statement:

UPDATE table

SET column = value, ... ;
This syntax is similar to the emphatic version of the INSERT statement, which also uses the
SET clause. There isn’t a less emphatic syntax for UPDATE, as there is with INSERT. An
important distinction is that there is no INTO clause. Instead, the name of the affected table
is just given immediately after the UPDATE keyword.

Let’s look at an example of the UPDATE statement. In Chapter 5, we created a database
called birdwatchers and a table within it called humans that would contain data about
people who watch birds and use the rookery site. We then entered information on some of
those people. In one of the exercises at the end of Chapter 5, we added a column
(country_id) which contains the country code where the member resides. Suppose that of
the few members that we’ve entered already in the table, all of them live in the United
States. We could set the default value for the country_id column to us, but we’re
expecting most of our members to be in a few countries of Europe. For now, we just want
to update all of the rows in the humans table to set the country_id to us. Execute an
UPDATE statement like this:

UPDATE birdwatchers.humans

SET country_id = 'us';
This statement will set the value for the country_id for all of the rows in the table. All of
them had a NULL value before this, but if they had some other value — a different
country code — those values would be changed to us. That’s a very broad and
comprehensive action. Once you do this, there’s generally no way to undo it — unless you
do so in an InnoDB table and do it as part of a transaction. So be careful when you use the
UPDATE statement. Use a WHERE clause to pinpoint the rows you want to change, and test it
first, as we will soon see.

Note that the previous UPDATE statement included the name of the database, because in
previous chapters we set the mysqgl client to use rookery as the default database. Because
all of the examples in this chapter will use the birdwatchers database, let’s change the
default database to it with USE:

USE birdwatchers;

For the remainder of the examples in this chapter, you should download the rookery and
the birdwatchers databases from the MySQL Resources site. They will provide you
larger tables on which to work.

Updating Specific Rows

Most of the time, when you use the UPDATE statement you will need to include the WHERE
clause to stipulate which rows are updated by the values in the SET clause. The conditions
of a WHERE clause in an UPDATE statement are the same as that of a SELECT statement. In
fact, because they’re the same, you can use the SELECT statement to test the conditions of

http://mysqlresources.com/files

the WHERE clause before using it in the UPDATE statement. We’ll see examples of that soon
in this chapter. For now, let’s look at a simple method of conditionally updating a single
row.

The humans table contains a row for a young woman named Rusty Osborne. She was
married recently and wants to change her last name to her husband’s name, Johnson. We
can do this with the UPDATE statement. First, let’s retrieve the record for her. We’ll select
data based on her first and last name. There may be only one Rusty Osborne in the
database, but there may be a few members with the family name of Osborne. So we would
enter this in the mysqgl client:

SELECT human_id, name_first, name_last
FROM humans
WHERE name_first = 'Rusty'

AND name_last = 'Oshorne';

Fommm e e oo o [SRS Fommm e e e e oo +
| human_id | name_first | name_last |
Fommm e e oo o [SRS Fommm e e e e oo +
| 3 | Rusty | Osborne |
Fommm e e oo oo oo o U +

Looking at the results, we can see that there is indeed only Rusty Osborne, and that the
value of her human_id is 3. We’ll use that value in the UPDATE statement to be sure that we
update only this one row. Let’s enter the following:

UPDATE humans
SET name_last = 'Johnson'
WHERE human_id = 3;

SELECT human_id, name_first, name_last
FROM humans
WHERE human_id = 3;

[Fomm e e o oo e e o= +
| human_id | name_first | name_last |
Fomm e e oo Fomm e e o Fomm e e o= +
| 3 | Rusty | Johnson |
Fomm e e oo E R, oo e e o= +

That worked just fine. It’s easy to use the UPDATE statement, especially when you know the
identification number of the key column for the one row you want to change. Let’s
suppose that two of our members who are married women have asked us to change their
title from Mrs. to Ms. (this information is contained in an enumerated column called
formal_title). After running a SELECT statement to find their records, we see that their
human_id numbers are 24 and 32. We could then execute the following UPDATE statement
in MySQL.:

UPDATE humans

SET formal_title = 'Ms.'

WHERE human_id IN(24, 32);
Things get slightly more complicated when you want to change more than one row, but
it’s still easy if you know the key values. In this example, we used the IN operator to list

the human_id numbers to match specific rows in the table.

Suppose that after updating the title for the two women just shown, we decide that we
want to make this change for all married women in the database, to get with the modern
times. We would use the UPDATE statement again, but we’ll have to modify the wHERE
clause. There may be too many women with the formal_title of Mrs. in the table to
manually enter the human_id for all of them. Plus, there’s an easier way to do it. First, let’s

see how the formal title column looks now:

SHOW FULL COLUMNS
FROM humans
LIKE 'formal_title' \G

LR R I R I I 1. rOW EE R R I R R I I I I I
Field: formal_title
Type: enum('Mr.', 'Miss', 'Mrs."', 'Ms.")
Collation: latinl_bin
Null: YES
Key:
Default: NULL
Extra:
Privileges: select,insert,update, references
Comment:
Looking at the enumerated values of this column, we decide that the choices seem
somewhat sexist to us. We have one choice for boys and men, regardless of their age and
marital status, and three choices for women. We also don’t have other genderless choices
like Dr., but we decide to ignore those possibilities for now. In fact, we could eliminate the
column so as not to be gender biased, but we decide to wait before making that decision.
At this point, we want to change our schema so it limits the list of choices in the column to
Mr. or Ms. however, we should not make that change to the schema until we fix all the

existing values in the column. To do that, we’ll enter this UPDATE statement:

UPDATE humans

SET formal_title = 'Ms.'

WHERE formal_title IN('Miss', 'Mrs."');
Now that all of the members have either a value of Mr. or Ms. in the formal_title
column, we can change the settings of that column to eliminate the other choices. We’ll
use the ALTER TABLE statement covered in Chapter 4. Enter the following to change the
table on your server:

ALTER TABLE humans
CHANGE COLUMN formal_title formal_title ENUM('Mr.',6 'Ms.');

Query OK, 62 rows affected (0.13 sec)

Records: 62 Duplicates: © Warnings: 0
As you can see from the message in the results, the column change went well. However, if
we had forgotten to change the data for one of the rows (e.g., didn’t change Miss to Ms.
for one person), the Warnings would show a value of 1. In that case, you would then have
to execute the SHOW WARNINGS statement to see this warning;:

SHOW WARNINGS \G

LR O S S O O O O 1 row R R I O o O O I O

Level: Warning
Code: 1265
Message: Data truncated for column 'formal_ title' at row 44

This tells us that MySQL eliminated the value for the formal_title column of the 44th
row. We’d then have to use the UPDATE statement to try to set the formal_title for the
person whose title was clobbered and hope we set the title correctly. That’s why it’s
usually better to update the data before altering the table.

Sometimes, when changing bulk data, you have to alter the table before you can do the
update. For example, suppose that we decide that we prefer to have the enumerated values
of the formal_title set to Mr or Ms, without any periods. To do this, we would need to
add that pair of choices to the ENUM column before we eliminate the old values. Then we

can easily change the data to the new values. In this situation, we can tweak the criteria of
the WHERE clause of the UPDATE statement. The values have a pattern: the new values are
the same as the first two characters of the old value. So we can use a function to extract
that part of the string. We would do something like this:

ALTER TABLE humans
CHANGE COLUMN formal title formal_ title ENUM('Mr.','Ms.','Mr','Ms');

UPDATE humans
SET formal_title = SUBSTRING(formal_title, 1, 2);

ALTER TABLE humans

CHANGE COLUMN formal_title formal_title ENUM('Mr', 'Ms');
The first ALTER TABLE statement adds the two new choices of titles without a period to the
column, without yet eliminating the previous two choices because existing table contents
use them. The final ALTER TABLE statement removes the two old choices of titles with a
period from the column. Those two SQL statements are fine and not very interesting. The
second one is more interesting, the UPDATE.

In the SET clause, we set the value of the formal title column to a substring of its
current value. We’re using the SUBSTRING() function to extract the text. Within the
parentheses, we give the column from which to get a string (formal_title). Then we give
the start of the substring we want to extract: 1, meaning the first character of the original
string. We specify the number of characters we want to extract: 2. So wherever
SUBSTRING() encounters “Mr.” it will extract “Mr”, and wherever it encounters “Ms.” it
will extract “Ms”.

It’s critical to note that fuctions don’t change the data in the table. SUBSTRING() simply
gives you back the substring. In order to actually change the column, you need the SET
formal_title = clause. That changes formal_title to the value you got back from
SUBSTRING(). Note that, if you wanted, you could just as easily have run SUBSTRING() on
one column and used it to set the value of a different one.

In this chapter, we’ll work with a few string functions that are useful with the UPDATE
statement. We’ll cover many more string functions in Chapter 10.

Limiting Updates

As mentioned near the beginning of this chapter, UPDATE can be a powerful tool for
quickly changing large amounts of data in a MySQL database. As a result, you should
almost always use a WHERE clause with an UPDATE statement to limit updates to rows based
on certain conditions. There are times when you might also want to limit updates to a
specific number of rows. To do this, use the LIMIT clause with the UPDATE statement. This
clause functions the same as in the SELECT statement, but its purpose is different with
UPDATE. Let’s look at an example of how and why you might use the LIMIT clause with the
UPDATE statement.

Suppose that we decide to offer a small prize each month to two of the members of our
site to encourage people to join. Maybe we’ll offer them the choice of a booklet with a list
of birds found in their area, a nice pen with the Rookery name on it, or a water bottle with
a bird image on it. Suppose also that we want a person to win only once, and we want to
make sure that everyone wins eventually. To keep track of the winners, let’s create a table
to record who won and when, as well as what prize they were sent and when. We’ll use the

CREATE TABLE statement like so:

CREATE TABLE prize_winners
(winner_id INT AUTO_INCREMENT PRIMARY KEY,
human_id INT,
winner_date DATE,
prize_chosen VARCHAR(255),
prize_sent DATE);
In this statement, we created a table called prize_winners and gave it five columns: the
first (winner_id) is a standard identifier for each row; the second (human_id) is to
associate the rows in this table to the humans table; the third column (winner_date) is to
record the date that the winner was determined; the next (prize_chosen) is the prize the
member chose ultimately; and the last column (prize_sent) is to record the date the prize

was sent to the winner.

NOTE

The IDs in this table may be a bit confusing. winner_id will be used to select items from this table, such as the prize
and the dates. human_id will be used to find data about the winner in the humans table. You might think that there is
no need for two IDs, as they both refer to the same person. But think back to the ways we used IDs to link birds, bird
families, and bird orders. Giving each table its own identifier is more robust.

We could have set the prize_chosen column to an enumerated list of the choices, but the
choices may change over time. We may eventually create another table containing a list of
the many prizes and replace this column with a column that contains a reference number
to a table listing prizes. For now, we’ll use a large variable character column.

Because we want to make sure every member wins eventually, we’ll enter a row in the
prize_winners table for each member. Otherwise, we would enter a row only when the
member won. This is probably the better choice for maintaining the data, but we’ll use the
more straightforward method of inserting an entry for each member in the prize_winners
table. We’ll use an INSERT..SELECT statement to select the winners and insert them in the
new table (this type of SQL statement was covered in Inserting Data from Another Table):

INSERT INTO prize_winners

(human_id)

SELECT human_id

FROM humans;
This inserted a row in the prize_winners table for each member in the humans table. It
added only the value of the human_id column, because that’s all we need at this point as
no one has yet to win anything. The statement also automatically sets the winner_id
column, thanks to its AUTO_INCREMENT modifier, giving it a unique value for each human.
There is no reason this ID should be the same as the human_id column, because we’ll use
the human_id column whenever we need information from it. The other columns currently

have NULL for their values. We’ll update those values when someone wins a prize.

Now that we have a separate table for recording information about winners and their
prizes each month, let’s pick some winners. We’ll do that in the next subsection.

Ordering to Make a Difference

In the previous subsection, we decided to award prizes to members so as to encourage new
people to join the Rookery site, as well as to make current members feel good about
continuing their membership. So that new and old members have an equal chance of
winning, we’ll let MySQL randomly choose the winners each month. To do this, we’ll use

the UPDATE statement with the ORDER BY clause and the RAND () function. This function
picks an arbitrary floating-point number for each row found by the SQL statement in
which it’s used. By putting this function in the ORDER BY clause, we will order the results
based on the random values chosen for each row. If we couple that with the LIMIT clause,
we can limit the results to a different pair of rows each month we select winners:

UPDATE prize_winners
SET winner_date = CURDATE()
WHERE winner_date IS NULL
ORDER BY RAND()
LIMIT 2;
There are flaws in the RAND () function. It’s not so random and can sometimes return the

same results. So be careful about when you use it and for what purpose.

Let’s start at the bottom of this UPDATE statement. The ORDER BY clause is a bit ironic here
because the order it puts the columns in is random. The LIMIT clause limits the results to
only two rows. So everyone has an equal chance of being one of our two winners.

We can’t be sure that the top two rows are new winners, though; we might happen to
choose the same person through a random process on different months. So we add a WHERE
clause to update only rows in which winner_date has a value of NULL, which indicates
that the member hasn’t won previously. Finally, at the top of the statement, we set the
winner_date column for the winner to the current date, using a function we’ll learn about
in Chapter 11.

However, there are some problems with this SQL statement that may not be obvious. First,
the use of the RAND () function in an ORDER BY clause can be absurdly slow. You won’t
notice the difference when used on a small table, but it performs poorly on an extremely
large table that is used by a very active server. So, be mindful of which tables and
situations you use the RAND () function within the ORDER BY clause. Second, using the
ORDER BY clause with a LIMIT clause can cause problems if you use MySQL replication,
unless you use row-based replication. This is a feature that allows you to have a master
server and slave servers that replicate or copy exactly the databases on the master. That’s
an advanced topic, but I want to mention this potential problem because when you use this
combination of clauses with the UPDATE statement, you’ll see a warning message like this:
SHOW WARNINGS \G

khkkhkkhkkkkkkkkkkkhkhkhkhkhkhhhhkkxx*x 1 row kkhkkkhkkhkhkhkhkhkkkkkkkkhkrkhkhkdhhhkk*x

Level: Warning
Code: 1592
Message: Statement is not safe to log in statement format.

If you’re not using MySQL replication, you can ignore this warning. If you are using it,
though, you’ll have a situation in which one slave may update its data differently from the
data on the master or the other slaves — especially if you use the RAND() function (i.e., the
slave will have different random results). Again, at this stage of learning MySQL, you can
probably ignore this warning, and can safely use these clauses and this function. What’s
important is that you’re aware of these potential problems and that you get of a sense of
how extensive MySQL is.

Updating Multiple Tables

Thus far in this chapter, we have updated only one table at a time with the UPDATE

statement. We’ve also made updates based on the values of the table for which the changes
were made. You can also update values in one table based on values in another table. And
it’s possible to update more than one table with one UPDATE statement. Let’s look at some
examples of how and why you might do this.

Suppose that we’ve been giving out prizes for a couple of years now and that we’ve
decided we want to make a special bid to recruit and retain members from the United
Kingdom. To do this, we’ve decided to give four prizes each month to members of the
Rookery site: two prizes to members in the U.K, and two prizes to members in all other
countries. We’ll announce this change so that our skewing will be perceived fairly by
members of the site. We’ll even allow U.K. members who won previously to win again.
For this last component, we’ll need to reset the values of rows in the prize_winners table
based on the value of the country_id in the humans table. Let’s see how that would look:

UPDATE prize_winners, humans
SET winner_date = NULL,
prize_chosen = NULL,
prize_sent = NULL
WHERE country_id = 'uk'
AND prize_winners.human_id = humans.human_id;
This SQL statement checks rows in one table, associates those rows to the related rows in
another table, and changes those rows in that second table. Notice that we listed the two
tables involved in a comma-separated list. We then used the SET clause to set the values of
the columns related to winning a prize to NULL. In the WHERE clause, we give the
condition that the country_id from the humans table has a value of uk and that the

human_id in both tables equal.

Now that we’ve reset the prize information for the U.K. members, we’re ready to award
prizes for the new month. Let’s try the UPDATE statement that we used previously to
randomly select winners, but this time we’ll straddle both the humans and prize_winners
tables by entering the following:

UPDATE prize_winners, humans

SET winner_date = CURDATE()

WHERE winner_date IS NULL

AND country_id = 'uk'

AND prize_winners.human_id = humans.human_id
ORDER BY RAND()

LIMIT 2;

ERROR 1221 (HY@EO): Incorrect usage of UPDATE and ORDER BY

You would expect this to work well, but it doesn’t work at all. Instead, it fails and returns
the error message shown. When using the multiple-table syntax of UPDATE, it causes
problems for MySQL if you include an ORDER BY or a LIMIT clause — those clauses apply
to one table, not to multiple tables as in this UPDATE. Limitations like this can be
frustrating, but there are ways around them. For our current task, because the ORDER BY
RAND() and LIMIT clauses work with one table without problems, we can use a subquery
(i.e., a query within a query) to randomly select the winners from the humans table and
then update the prize_winners table. Let’s see how we would do that in this situation:

UPDATE prize_winners
SET winner_date = CURDATE()
WHERE winner_date IS NULL
AND human_id IN

(SELECT human_id

FROM humans

WHERE country_id = 'uk'

ORDER BY RAND())

LIMIT 2,
That may seem pretty complicated, but if we pull it apart, it’s not too difficult. First, let’s
look at the inner query, the SELECT statement contained within the parentheses. It’s
selecting the human_id for all members in the humans table, where the country_id has a
value of uk, and randomly ordering the results. Notice that we’re selecting all rows for
U.K. members and we’re not distinguishing whether the member was a previous winner.
That’s because the inner query cannot query the table that is the target of the UPDATE. So
we have to separate the conditions like we’re doing here: in the WHERE clause of the
UPDATE, we’re updating only rows in which the value of the winner_date is NULL. That
will be all of the U.K. members.But we could change the statement to select non-U.K.
members simply by changing the operator in the subquery to !=.

In the UPDATE statement, using the IN operator, we specify that only rows whose human_id
is in the results of the subquery should be updated. The LIMIT clause says to update only
two rows. The LIMIT clause here is part of the UPDATE, not the subquery (i.e., the SELECT).

Because MySQL executes the subquery first, and separately from the UPDATE, there’s no
problem with using the ORDER BY clause in it. Because the LIMIT clause is in an UPDATE
that’s not using the multiple-table syntax, there’s no problem using it either.

The preceding example may seem cumbersome, but it solves the problem. When you can’t
do something the way you would think in MySQL, you can sometimes accomplish a task
with methods like using a subquery. Subqueries are covered extensively in Chapter 9.

Handling Duplicates

In Chapter 6, we covered the INSERT statement in detail. We saw several variants on its
syntax and interesting ways to use it. This included INSERT..SELECT, a combination of the
INSERT and SELECT statements. There is another combination related to updating rows,
INSERT..ON DUPLICATE KEY UPDATE.

When inserting multiple rows of data, you may attempt inadvertently to insert rows that
would be duplicates: that is to say, rows with the same value that is supposed to be unique.
With the INSERT statement, you can add the IGNORE flag to indicate that duplicate rows
should be ignored and not inserted. With the REPLACE statement, MySQL will replace the
existing rows with the new data, or rather it will delete the existing rows and insert the
new rows. As an alternative, you might want to keep the existing rows, but make a
notation to them in each row. Such a situation is when INSERT..ON DUPLICATE KEY UPDATE
is useful. This will make more sense with an example.

Suppose there is another bird-watchers website similar to ours that’s called Better Birders.
Because that site has become inactive and the owner wants to close it, he contacts us and
offers to redirect the site’s traffic to our domain if we’ll add its members to our
membership. We accept this offer, so he gives us a plain-text file with a list of each
member’s name and email address. There are a few ways we might import those names;
some are covered in Chapter 15. But because some of the members of the other site may
already be members of our site, we don’t want to import them and have duplicate entries.
However, we do want to make note of those people as being members of the other site in
case we want that information later. Let’s try using INSERT..ON DUPLICATE KEY UPDATE to

do that. First we’ll add a column to indicate that a member came from the Better Birders
site by using the ALTER TABLE statement like so:

ALTER TABLE humans

ADD COLUMN better_birders_site TINYINT DEFAULT O;
This statement added a column named better_birders_site with a default value of 0. If
someone is a member of the Better Birders site, we’ll set the column to 1. We’ll set the
column to a value of 2 to indicate they are a member of both sites. Because two people can
have the same name, we use the email address to determine whether a row is a duplicate.
In the humans table, the email_address column is already set to UNIQUE. It will be the
basis by which rows will be updated with the combined SQL statement we’ll use. With
these factors in mind, let’s try to insert a few members:

INSERT INTO humans
(formal_title, name_first, name_last, email address, better_birders_site)
VALUES('Mr', 'Barry', 'Pilson', 'barry@gomail.com', 1),
('Ms', 'Lexi', 'Hollar', 'alexandra@mysqlresources.com', 1),
('Mr', 'Ricky', 'Adams', 'ricky@gomail.com', 1)
ON DUPLICATE KEY
UPDATE better_birders_site = 2;
Because of the ON DUPLICATE KEY component, when there are rows with the same email
address, the better_birders_site column will be set to 2. The rest will be inserted with

their better_birders_site column set to 1. That’s what we wanted.

We now need to insert rows for these new members in the prize_winners table. We’ll use
the INSERT..SELECT statement as we did earlier, but this time we’ll just insert rows where
the value of the better_birders_site column is 1:

INSERT INTO prize_winners

(human_id)

SELECT human_id

FROM humans

WHERE better_birders_site = 1;
Although these two SQL statements worked well, it’s possible that there might be two
entries for someone in the humans table if they used a different email address on the other
site. That possibility may already exist with our existing members if they registered on the
site more than once. Let’s check for this possibility and add a column to note it. We’ll
enter the following SQL statements to prepare:

ALTER TABLE humans
ADD COLUMN possible_duplicate TINYINT DEFAULT 0O;

CREATE TEMPORARY TABLE possible_duplicates

(name_1 varchar(25), name_2 varchar(25));
The first statement added a column to the humans table to note a row as a possible
duplicate entry. The second creates a temporary table. A temporary table is accessible only
to your MySQL client connection. When you exit from the client, the temporary table will
be dropped automatically. Because we cannot update the same table for which we’re
checking for duplicates, we can note them in this temporary table. We’ll use INSERT..
SELECT to do this:

INSERT INTO possible_duplicates
SELECT name_first, name_last
FROM
(SELECT name_first, name_last, COUNT(*) AS nbr_entries
FROM humans
GROUP BY name_first, name_last) AS derived_table
WHERE nbr_entries > 1;

This statement uses a subquery that selects the names and counts the number of entries
based on the GROUP BY clause. We saw how to use GROUP BY and COUNT () together in
Counting and Grouping Results, but their use here calls for a reiteration of how they work.
The subquery selects name_first and name_last, and groups them so that any rows
containing the same first and last names will be grouped together. They can then be
counted. We give the result of COUNT(*) an alias of nbr_entries so that we can reference
it elsewhere.

Back in the main SQL statement, the WHERE clause selects only rows from the subquery in
which there are more than one entry (i.e., nor_entries is greater than 1). These are
duplicate entries. This SQL statement will insert a row into the temporary table for rows
found in the humans table that have the same first and last name. It should enter only one
row in the temporary table for each person.

Now that we have a list of possible duplicates in the temporary table, let’s update the
humans table to note them:

UPDATE humans, possible_duplicates

SET possible_duplicate = 1

WHERE name_first = name_1

AND name_last = name_2;
That will set the value of the possible_duplicate column to 1 where the names in the
humans table match the names in possible_duplicates. When we’re ready, we can send
an email to these members telling them that we have two entries for their names and
asking if the entries are duplicates. If they are, we might be able to merge the information
together (such as by creating another column for a second email address) and delete the
duplicate rows. As for the temporary table, it will be deleted when we close the MySQL
client.

Deleting Data

With most databases, you will eventually need to delete rows from a table. To do this, you
can use the DELETE statement. As mentioned a few times earlier in this book, there is no
UNDELETE or UNDO statement for restoring rows that you delete. You can recover data from
backups, if you’re making backups as you should, but it’s not quick and easy to restore
data from them. If you use a storage engine like InnoDB, there is a method for wrapping
SQL statements in a transaction that can be rolled back after you delete rows. However,
once you commit such a transaction, you’ll have to look to backups or other cumbersome
methods to restore deleted data. Thus, you should alwaysbe careful when using the DELETE
statement.

The DELETE statement works much like the SELECT statement in that you may delete rows
based on conditions in the WHERE clause. You should always use the WHERE clause, unless
you really want to leave an empty table with no rows. You may also include an ORDER BY
clause to specify the order in which rows are deleted, and a LIMIT clause to limit the
number of rows deleted in a table. The basic syntax of the DELETE statement is:

DELETE FROM table

[WHERE condition]

[ORDER BY column]

[LIMIT row_count];
As the formatting indicates with square brackets, the WHERE, ORDER BY, and LIMIT clauses
are optional. There are additional options that may be given and deviations to the syntax
for deleting rows in multiple tables and for deletions based on multiple tables. Let’s look

at an example using this simpler syntax for now.

Suppose after sending out a notice to members who we suspect of having duplicate entries
in the humans table, one of them confirms that her membership has been duplicated. The
member, Elena Bokova from Russia, asks us to delete the entry that uses her old
yahoo.com email address. To do that, we could, but we won’t, enter this SQL statement:

DELETE FROM humans

WHERE name_first = 'Elena'

AND name_last = 'Bokova'

AND email_address LIKE '%yahoo.com';

This SQL statement will delete any rows in which the criteria expressed in the WHERE
clause are met. Notice that for checking the email address, we used the LIKE operator and
the wildcard (i.e., %) to match any email ending with yahoo.com.

The statement just shown would work fine, but we also need to delete the related entry in
the prize_winners table. So we should first get the human_id for this row before deleting
it. That’s why I said we won’t enter this SQL statement. It’s tedious, though, to execute
one SQL statement to retrieve the human_id, then another to delete the row in the humans
table, and then execute a third SQL statement to delete the related row in the
prize_winners table. Instead, it would be better to change the DELETE statement to include
both tables, deleting the desired rows from both in one SQL statement. We’ll cover that in
the next subsection.

Deleting in Multiple Tables

There are many situations where data in one table is dependent on data in another table. If

you use DELETE to delete a row in one table on which a row in another table is dependent,
you’ll have orphaned data. You could execute another DELETE to remove that other row,
but it’s usually better to delete rows in both tables in the same DELETE statement,
especially when there may be many rows of data to delete.

The syntax for the DELETE that deletes rows in multiple tables is:

DELETE FROM table[, table]

USING table[, . . .]

[WHERE condition];
In the FROM clause, list the tables in a comma-separated list. The USING clause specifies
how the tables are joined together (e.g., based on human_id). The WHERE clause is optional.
Like the UPDATE statement, because this syntax includes multiple tables, the ORDER BY and
LIMIT clauses are not permitted. This syntax can be tricky, but how much so may not be

evident from looking at the syntax. Let’s look at an example.

In the example at the end of the previous subsection, we needed to delete rows from two
tables that are related. We want to delete the rows for Elena Bokova in which she has a
yahoo.com email address in both the humans and the prize_winners tables. To do that
efficiently, we’ll enter this from the mysql client:

DELETE FROM humans, prize_winners

USING humans JOIN prize_winners

WHERE name_first = 'Elena'

AND name_last = 'Bokova'

AND email_address LIKE '%yahoo.com'

AND humans.human_id = prize_winners.human_id;
This DELETE statement is similar to other data manipulation statements (e.g., SELECT,
UPDATE). However, there is a difference in the syntax that may be unexpected and
confusing. The FROM clause lists the tables from which data is to be deleted. There is also a
USING clause that lists the tables again and how they are joined. What is significant about
this distinction is that we must list the tables in which rows are to be deleted in the FROM
clause. If we did not include prize_winners in that list, no rows would be deleted from it

— only rows from humans would be deleted.

There are several contortions and options in the syntax for DELETE. However, at this stage,
the methods we reviewed in this chapter will serve well for almost all situations you will
encounter as a MySQL and MariaDB developer or administrator.

Summary

The UPDATE and DELETE statements are very useful for changing data in tables; they are
essential to managing a MySQL or MariaDB database. They have many possibilities for
effecting changes to tables with ease. You can construct very complex SQL statements
with them to change precisely the data you want to change or to delete exactly the rows
you want to delete. However, it can be confusing and difficult at times. So be careful and
learn these SQL statements well.

If you’re nervous at times about using the UPDATE and DELETE statements, it’s because you
should be. You can change all of the rows in a table with one UPDATE statement, and you
can delete all of the rows in a table with one DELETE statement. On a huge database, that
could be thousands of rows of data changed or deleted in seconds. This is why good
backups are always necessary. Whenever using these two SQL statements, take your time
to be sure you’re right before you execute them. While you’re still learning especially, it
can be a good idea to make a duplicate of a table with its data using the CREATE TABLE...
SELECT statement before updating or deleting data. This SQL statement was covered in
Essential Changes. This way if you make a major mistake, you can put the data back as it
was before you started.

Because of the problems you can cause yourself and others who will use the databases on
which you will work, practice using the UPDATE and DELETE statements. More than any
other chapter in this book so far, you should make sure to complete the exercises in the
next section.

Exercises

Exercises follow for you to practice using the UPDATE and DELETE statements. If you
haven’t already, download the rookery and the birdwatchers databases from the MySQL
Resources site). This will give you some good-sized tables on which to practice these SQL
statements.

1. Use the CREATE TABLE..SELECT statement (see Essential Changes) to make a copies
of the humans and the prize_winners tables. Name the new tables humans_copy and
prize_winners_copy. Once you’ve created the copies, use the SELECT statement to
view all of the rows in both of the new tables. You should see the same values as are
contained in the original tables.

2. After you’ve done the previous exercise, use the SELECT statement to select all of the
members from Austria in the humans table. You’ll need to use a WHERE clause for that
SQL statement. The country_id for Austria is au. If you have problems, fix the SQL
statement until you get it right.

Next, using the same WHERE clause from the SELECT statement, construct an UPDATE
statement to change the value of the membership_type column for Austrian members
to premium. In the same UPDATE statement, set the value of the
membership_expiration to one year from the date you execute the SQL statement.
You will need to use the CURDATE () function inside the DATE_ADD() function. The
DATE_ADD() function was shown in an example earlier in this chapter (see Updating
Specific Rows). The CURDATE () has no arguments to it, nothing to go inside its
parentheses. Both functions are covered in Chapter 11. If you can’t figure out how to
combine these function, you can enter the date manually (e.g., ‘2014-11-03’ for
November 3, 2014; include the quote marks). Use the SELECT statement to check the
results when you’re done.

3. Using the DELETE statement, delete the rows associated with the member named
Barry Pilson from the humans and prize_winners tables. This was explained, along
with an example showing how to do it, in Deleting in Multiple Tables. After you do
this, use the SELECT statement to view all of the rows in both tables to make sure you
deleted both rows.

4. Using the DELETE statement, delete all of the rows in the humans table. Then delete
all of the rows of data in the prize_winners tables. Use the SELECT statement to
confirm that both tables are empty.

Now copy all of the data from the humans_copy and prize_winners_copy tables to
the humans and prize_winners tables. Do this with the INSERT..SELECT statement
(covered in Inserting Data from Another Table).

After you’ve restored the data by this method, execute the SELECT statement again to
confirm that both tables now have all of the data. If you were successful, use the
DROP TABLE statement to eliminate the humans_copy and prize_winners_copy
tables. This SQL statement was covered in Chapters 4 and 5. If you drop the wrong
tables or if you delete data from the wrong tables, you can always download the
whole database again from the MySQL Resources site.

http://mysqlresources.com/files

Chapter 9. Joining and Subquerying Data

Most of the examples used in this book thus far have intentionally involved one table per
SQL statement in order to allow you to focus on the basic syntax of each SQL statement.
When developing a MySQL or MariaDB database, though, you will often query multiple
tables. There are a few methods by which you may do that — you’ve seen some simple
examples of them in previous chapters. This chapter covers how to merge results from
multiple SQL statements, how to join tables, and how to use subqueries to achieve similar

results.

Unifying Results

Let’s start this chapter by looking at a simple method of unifying results from multiple
SQL statements. There may be times when you just want the unified results of two SELECT
statements that don’t interact with each other. In this situation, you can use the UNION
operator, which merges two SELECT statements to form a unified results set. You can
merge many SELECT statements together simply by placing the UNION between them in a
chain. Let’s look at an example.

In Counting and Grouping Results, we queried the birds table to get a count of the
number of birds in the Pelecanidae family (i.e., Pelicans). Suppose we want to also know
how many birds are in the Ardeidae family (i.e., Herons). That’s easy to do: we’d use a
copy of the same SELECT, but change the value in the WHERE clause. Suppose further that
we want to merge the results of the SELECT statement counting Pelicans with the results of
a SELECT counting Herons. We’ll do this with a UNION operator, so we can enter two
complete SELECT statements and unite them into one results set. Enter the following in the
mysql client:

SELECT 'Pelecanidae' AS 'Family',
COUNT(*) AS 'Species'
FROM birds, bird_families AS families
WHERE birds.family id = families.family_id
AND families.scientific_name = 'Pelecanidae’

UNION

SELECT 'Ardeidae',
COUNT(*)
FROM birds, bird_families AS families
WHERE birds.family id = families.family_id
AND families.scientific_name = 'Ardeidae';

[SRS P SRR +

| Family | Species |

[RS P SRR +

| Pelecanidae | 10 |

| Ardeidae | 157 |

[SRS PSR +
First notice that the column headings in the results is taken only from the first SELECT
statement. Next notice that for the first fields in both SELECT statements, we didn’t
reference a column. Instead, we gave plain text within quotes: 'Pelecanidae’' and
'Ardeidae’. That’s an acceptable choice in MySQL and MariaDB. It works well when
you want to fill a field with text like this. Notice that we gave field aliases for the columns
in the first SELECT statement, but not in the second one. MySQL uses the first ones it’s
given for the column headings of the results set when using the UNION operator. It ignores
any field aliases in subsequent SELECT statements, so they’re not needed. If you don’t give

aliases, it uses the column names of the first SQL statement of the UNION.

The reason a UNION was somewhat necessary in the preceding example is because we’re
using an aggregate function, COUNT () with GROUP BY. We can group by multiple columns,
but to get results like this which show separate counts for two specific values of the same
column, a UNION or some other method is necessary.

There are a few minor things to know about using a UNION. It’s used only with SELECT
statements. The SELECT statements can select columns from different tables. Duplicate
rows are combined into a single column in the results set.

You can use the ORDER BY clause to order the unified results. If you want to order the

results of a SELECT statements, independently of the unified results, you have to put that
SELECT statement within parentheses and add an ORDER BY clause to it. When specifying
the columns in the ORDER BY clauses, you cannot preface column names with the table
names (e.g., families.scientific_name). If using the column names would be
ambiguous, you should instead use column aliases. Let’s expand our previous example to
better illustrate how to use the ORDER BY clause with UNION. Let’s get a count for each bird
family within two orders: Pelecaniformes and Suliformes. Enter the following:

SELECT families.scientific_name AS 'Family',
COUNT(*) AS 'Species'
FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id = families.family_id
AND families.order_id = orders.order_id
AND orders.scientific_name = 'Pelecaniformes'
GROUP BY families.family_id

UNION

SELECT families.scientific_name, COUNT(*)
FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family id = families.family_id
AND families.order_id = orders.order_id
AND orders.scientific_name = 'Suliformes'
GROUP BY families.family_id,;

oo E A EpupUpEE +
| Family | Species |
e Fomm e e oo - +
Pelecanidae	10
Balaenicipitidae	1
Scopidae	3
Ardeidae	157
Threskiornithidae	53
Fregatidae	13
Sulidae	16
Phalacrocoracidae	61
Anhingidae	8
R Fomm e m oo - +

The first five rows are are Pelecaniformes and the remaining rows are Suliformes. The
results are not in alphabetical order, but in the order of each SELECT statement and the
order that server found the rows for each SELECT statement based on the family_id. If we
want to order the results alphabetically by the family name, we have to use an ORDER BY
clause, but after the unified results are generated. To do this, we’ll wrap the results set in
parentheses to tell MySQL to treat it as a table. Then we’ll select all of the columns and
rows of that results set and use the ORDER BY clause to order them based on the family
name. To avoid confusion, we’ll add the name of the order to the results. Enter the
following:

SELECT * FROM
(
SELECT families.scientific_name AS 'Family',
COUNT(*) AS 'Species',
orders.scientific_name AS 'Order'
FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id = families.family_id
AND families.order_id = orders.order_id
AND orders.scientific_name = 'Pelecaniformes’'
GROUP BY families.family_id
UNION
SELECT families.scientific_name, COUNT(*), orders.scientific_name
FROM birds, bird_families AS families, bird_orders AS orders
WHERE birds.family_id = families.family_id
AND families.order_id = orders.order_id
AND orders.scientific_name = 'Suliformes’
GROUP BY families.family_id) AS derived_1
ORDER BY Family;

o e e e ao oo s Fommme o o m e mae oo +

| Family | Species | Order

oo T R pp——— T Jepepepp———— +
Anhingidae	8	Suliformes
Ardeidae	157	Pelecaniformes
Balaenicipitidae	1	Pelecaniformes
Fregatidae	13	Suliformes
Pelecanidae	10	Pelecaniformes
Phalacrocoracidae	61	Suliformes
Scopidae	3	Pelecaniformes
Sulidae	16	Suliformes
Threskiornithidae	53	Pelecaniformes
T TR T T JepupEp———— +

In these examples, it may seem to be a lot of typing to achieve very little. But there are
times — albeit rare times — when UNION is the best or simplest choice. It’s more useful
when you retrieve data from very distinct, separate sources or other situations that would
require contortions to fit into a single SELECT statement and are executed more easily as
separate ones, still giving you a unified results set.

You can get the same results as the previous examples, though, with less effort by using a
subquery. Actually, when we put the UNION within parentheses, that became a subquery,
just not much of one. We’ll cover subqueries later in this chapter. For now, let’s consider
how to join multiple tables in one SQL statement.

Joining Tables

The JOIN clause links two tables together in a SELECT, UPDATE, or DELETE statement. JOIN
links tables based on columns with common data for purposes of selecting, updating, or
deleting data. In A Little Complexity, for instance, we joined two tables named books and
status_names, taking advantage of the design that put identical values in the status
column of books and the status_id column of status_names. That way, we could show
data from each table about the same book:

SELECT book_id, title, status_name

FROM books JOIN status_names

WHERE status = status_id;
Let’s review the way a join works, using this example. The status and status_id fields
both contain numbers that refer to a status. In the books table, the numbers have no
intrinsic meaning. But the status_names table associates the numbers with meaningful
text. Thus, by joining the tables, you can associate a book with its status.

Sometimes there are alternatives to the JOIN clause. For instance, when constructing an
SQL statement that includes multiple tables, a simple method is to list the tables in a
comma-separated list in the appropriate position of the SQL statement — for a SELECT
statement, you would list them in the FROM clause — and to provide pairing of columns in
the WHERE clause on which the tables will be joined. This is the method we have used
several times in the previous chapters. Although this method works fine and would seem
fairly straightforward, a more agreeable method is to use a JOIN clause to join both tables
and to specify the join point columns. When you have an error with an SQL statement,
keeping these items together and not having part of them in the WHERE clause makes
troubleshooting SQL statements easier.

With JOIN, tables are linked together based on columns with common data for purposes of
selecting, updating, or deleting data. The JOIN clause is entered in the relevant statement
where tables referenced are specified usually. This precludes the need to join the tables
based on key columns in the WHERE clause. The ON operator is used to indicate the pair of
columns by which the tables are to be joined (indicated with the equals-sign operator). If
needed, you may specify multiple pairs of columns, separated by AND. If the column names
by which the two tables are joined are the same in both tables, as an alternative method,
the USING operator may be given along with a comma-separated list of columns that both
tables have in common, contained within parentheses. The columns must be contained in
each table that is joined. To improve performance, join to a column that is indexed.

Here is how the first of these two syntax looks using a JOIN:

SELECT book_id, title, status_name

FROM books

JOIN status_names ON(status = status_id);
This is the same example as before, but without the WHERE clause. It doesn’t need it,
because it uses ON instead to indicate the join point. If we were to alter the books table to
modify the name of the status column to be status_id, so that the names of both
columns on which we join these two tables are the same, we could do the join like this:

SELECT book_id, title, status_name
FROM books
JOIN status_names USING(status_id);

Here we use the keyword USING in the JOIN clause to indicate the identical column by
which to join.

These syntaxes are only two of a few possible with the J0IN. They show how you might
construct a SELECT statement using a JOIN. It’s basically the same for the UPDATE and
DELETE statements. In the next subsections, we’ll consider the methods for using JOIN with
each of these three SQL statements, and look at some examples for each.

Selecting a Basic Join

Suppose we want to get a list of species of Geese whose existence is Threatened — that’s
a category of conservation states. We will need to construct a SELECT statement that takes
data from the birds table and the conservation_status table. The shared data in the
birds and the conservation_status tables is the conservation_status_id column of
each table. We didn’t have to give the column the same name in each table, but doing so
makes it easier to know where to join them.

Enter the following in the mysql client:

SELECT common_name, conservation_state

FROM birds

JOIN conservation_status

ON(birds.conservation_status_id = conservation_status.conservation_status_id)
WHERE conservation_category = 'Threatened'

AND common_name LIKE '%Goose%';

T S +
| common_name | conservation_state |
Foom e e e e e e oo - Fom e e e e oo oo - +
Swan Goose	Vulnerable
Lesser White-fronted Goose	Vulnerable
Hawaiian Goose	Vulnerable
Red-breasted Goose	Endangered
Blue-winged Goose	Vulnerable
+

o

]
1
1
1
1
1
1
]
]
]
1
1
1
1
1
]
]
]
]
1

+

The ON operator specifies the conservation_status_id columns from each table as the
common item on which to join the tables. MySQL knows the proper table in which to find
the conservation_category and common_name columns, and pulls the rows that match.

That works fine, but it’s a lot to type. Let’s modify this statement to use the USING
operator, specifing conservation_status_id just once to make the join. MySQL will
understand what to do. Here’s that same SQL statement, but with the USING operator:

SELECT common_name, conservation_state
FROM birds

JOIN conservation_status
USING(conservation_status_id)

WHERE conservation_category = 'Threatened'
AND common_name LIKE '%Goose%';

Now let’s modify the SQL statement to include the bird family. To do that, we’ll have to
add another table, the bird_families. Let’s also include Ducks in the list. Try executing
the following:

SELECT common_name AS 'Bird',

bird_families.scientific_name AS 'Family', conservation_state AS 'Status'
FROM birds

JOIN conservation_status USING(conservation_status_id)

JOIN bird_families USING(family_id)

WHERE conservation_category = 'Threatened'

AND common_name REGEXP 'Goose |Duck'

ORDER BY Status, Bird;

o e e e e e e oo Feomm e e e oo oo oo o +
| Bird | Family | Status |
o e e e e e e oo Feomm e e e oo oo oo o +
Laysan Duck	Anatidae	Critically Endangered
Pink-headed Duck	Anatidae	Critically Endangered
Blue Duck	Anatidae	Endangered
Hawaiian Duck	Anatidae	Endangered

| Meller's Duck | Anatidae | Endangered

Red-breasted Goose	Anatidae	Endangered
White-headed Duck	Anatidae	Endangered
White-winged Duck	Anatidae	Endangered
Blue-winged Goose	Anatidae	Vulnerable
Hawaiian Goose	Anatidae	Vulnerable
Lesser White-fronted Goose	Anatidae	Vulnerable
Long-tailed Duck	Anatidae	Vulnerable
Philippine Duck	Anatidae	Vulnerable
Swan Goose	Anatidae	Vulnerable
West Indian Whistling-Duck	Anatidae	Vulnerable
White-headed Steamer-Duck	Anatidae	Vulnerable
o m e e e e e e e e oo Fommmmema oo R +

We gave two JOIN clauses in this SQL statement. It doesn’t usually matter which table is
listed where. For instance, although bird_families is listed just after the join for the
conservation_statustable, MySQL determined that bird_families is to be joined to the
birds table. Without using JOIN, we would have to be more emphatic in specifying the
join points, and we would have to list them in the WHERE clause. It would have to be
entered like this:

SELECT common_name AS 'Bird',

bird_families.scientific_name AS 'Family', conservation_state AS 'Status'

FROM birds, conservation_status, bird_families

WHERE birds.conservation_status_id = conservation_status.conservation_status_id
AND birds.family_id = bird_families.family_id

AND conservation_category = 'Threatened'

AND common_name REGEXP 'Goose|Duck'

ORDER BY Status, Bird;

That’s a very cluttered WHERE clause, making it difficult to see clearly the conditions by
which we’re selecting data from the tables. Using JOIN clauses is much tidier.

Incidentally, the SQL statement with two JOIN clauses used a regular expression — the
REGEXP operator in the WHERE clause — to specify that the clause find either Goose or Duck.
We also added an ORDER BY clause to order first by Status, then by Bird name.

In this example, though, there’s little point in listing the bird family name, because the
birds are all of the same family. Plus, there may be similar birds that we might like to have
in the list, but that don’t have the words Goose or Duck in their name. So let’s change that
in the SQL statement. Let’s also order the results differently and list birds from the least
endangered to the most endangered. Enter the following:

SELECT common_name AS 'Bird from Anatidae'’,

conservation_state AS 'Conservation Status'

FROM birds

JOIN conservation_status AS states USING(conservation_status_id)
JOIN bird_families USING(family_id)

WHERE conservation_category = 'Threatened'

AND bird_families.scientific_name = 'Anatidae’

ORDER BY states.conservation_status_id DESC, common_name ASC;

T S +
| Bird from Anatidae | Conservation Status |
T T +
Auckland Islands Teal	Vulnerable
Blue-winged Goose	Vulnerable
Eaton's Pintail	Vulnerable
Hawaiian Goose	Vulnerable

| Lesser White-fronted Goose | Vulnerable |

Long-tailed Duck

Vulnerable

| | |
| Marbled Teal | Vulnerable [
| Philippine Duck | Vulnerable [
| Salvadori's Teal | Vulnerable [
| Steller's Eider | Vulnerable [
| Swan Goose | Vulnerable [
| West Indian Whistling-Duck | Vulnerable [
| White-headed Steamer-Duck | Vulnerable [
| Bernier's Teal | Endangered [
| Blue Duck | Endangered [
| Brown Teal | Endangered [
| Campbell Islands Teal | Endangered |
| Hawaiian Duck | Endangered |
| Meller's Duck | Endangered [
| Red-breasted Goose | Endangered |
| Scaly-sided Merganser | Endangered |
| White-headed Duck | Endangered

| White-winged Duck | Endangered

| White-winged Scoter | Endangered [
Baer's Pochard	Critically Endangered
Brazilian Merganser	Critically Endangered
Crested Shelduck	Critically Endangered
Laysan Duck	Critically Endangered
Madagascar Pochard	Critically Endangered
Pink-headed Duck	Critically Endangered
o m e e e e e e e oo oo oo +

An obvious change to this example is the elimination of
bird_families.scientific_name from the list of selected columns, so only two columns
appear in the output. Another change, which is cosmetic, is to provide the alias states to
the conservation_status table so we could refer to the short alias later instead of the
long name.

Finally, the ORDER BY clause orders the output by conservation_status_id, because that
value happens to be in the order of severity in the conservation_status table. We want to
override the default order, which puts the most threatened species first, so we add the DESC
option to put the least threatened first. We’re still ordering results secondarily by the
common name of the birds, but using the actual column name this time instead of an alias.
This is because we changed the alias for the common_name column from Birds to Birds
from Anatidae, because all the results are in that family. We could have used 'Birds

from Anatidae' in the ORDER BY clause, but that’s bothersome to type.

Let’s look at one more basic example of a JOIN. Suppose we wanted to get a list of
members located in Russia (i.e., where country_id has a value of ru) who have reported
sighting a bird from the Scolopacidae family (shore and wader birds like Sandpipers and
Curlews). Information on bird sightings is stored in the bird_sightings table. It includes
GPS coordinates recorded from a bird list application on the member’s mobile phone
when they note the sighting. Enter this SQL statement:

SELECT CONCAT(name_first, ' ', name_last) AS Birder,
common_name AS Bird, location_gps AS 'Location of Sighting'
FROM birdwatchers.humans

JOIN birdwatchers.bird_sightings USING(human_id)

JOIN rookery.birds USING(bird_id)

JOIN rookery.bird_families USING(family_id)

WHERE country_id = 'ru'

AND bird_families.scientific_name = 'Scolopacidae'’

ORDER BY Birder;

Fommm e e e e +
| Birder |
Fommmmmmme e eem e Fommmmmem e e e aaa- L T +
| Anahit Vanetsyan | Bar-tailed Godwit | 42.81958072; 133.02246094 |
| Elena Bokova | | 51.70469364; 58.63746643 |
| Elena Bokova | | 66.16051056;

Eurasian Curlew

Eskimo Curlew -162.7734375 |

| Katerina Smirnova | Eurasian Curlew | 42.69096856; 130.78185081 |
oo oo e +

This SQL statement joins together four tables, two from the birdwatchers database and
two from the birds database. Look closely at this SQL statement and consider the purpose
of including each of those four tables. All of them were needed to assemble the results
shown. Incidentally, we used the CONCAT () function to concatenate together the member’s
first and last name for the Birder field in the results.

There are other types of joins besides a plain JOIN. Let’s do another SELECT using another
type of JOIN. For an example of this, we’ll get a list of Egrets and their conservation
status. Enter the following SQL statement:

SELECT common_name AS 'Bird',

conservation_state AS 'Status'

FROM birds

LEFT JOIN conservation_status USING(conservation_status_id)
WHERE common_name LIKE '%Egret%'

ORDER BY Status, Bird;

+

I

+

Great Egret | NULL

Cattle Egret | Least Concern
Intermediate Egret | Least Concern
Little Egret |
Snowy Egret |
Reddish Egret |
Chinese Egret |
Slaty Egret |
e +

I
I
I
Least Concern |
Least Concern |
Near Threatened |
Vulnerable |
Vulnerable |

This SELECT statement is like the previous examples, except that instead of using a JOIN,
we’re using a LEFT JOIN. This type of join selects rows in the table on the left (i.e., birds)
regardless of whether there is a matching row in the table on the right (i.e.,
conservation_status). Because there is no match on the right, MySQL returns a NULL
value for columns it cannot reconcile from the table on the right. You can see this in the
results. The Great Egret has a value of NULL for its Status. This is because no value
was entered in the conservation_status_id column of the row related to that bird
species. It would return NULL if the value of that column is NULL, blank if the column
was set to empty (e.g., ' '), or any value that does not match in the right table.

Because of the LEFT JOIN, the results show all birds with the word Egret in the common
name even if we don’t know their conservation status. It also indicates which Egrets need
to set the value of conservation_status_id. We’ll need to update that row and others
like it. An UPDATE statement with this same LEFT JOIN can easily do that. We’ll show a
couple in the next section.

Updating Joined Tables

If you want to use the UPDATE statement to change the data in multiple tables, or change
data in a table based on criteria from multiple tables, you can use the J0OIN clause. The
syntax of the JOIN clause for UPDATE is the same as it is for SELECT. So let’s go straight to
some practical examples. We’ll start with the example at the end of the previous
subsection.

Let’s use UPDATE with LEFT JOIN to locate rows in the birds table that don’t have a value
in conservation_status_id. We could update all of the rows, but let’s do only rows for

one bird family, Ardeidae (i.e., Herons, Egrets, and Bitterns). First, execute this SELECT
statement to test our joins and WHERE clause:

SELECT common_name,

conservation_state

FROM birds

LEFT JOIN conservation_status USING(conservation_status_id)

JOIN bird_families USING(family_id)

WHERE bird_families.scientific_name = 'Ardeidae';
If you’re working from the data from the MySQL Resources site, you should have over
150 rows in the results. You’ll notice that many of the rows have nothing in the
common_name field. That’s because there are many bird species for which there are
scientific names, but no common names. Those rows also have no value for the
conservation_status_id. There are also a few rows for bird species that do have

comimon names.

Let’s add another row to the conservation_status, one for an unknown state. We’ll set
these unknown rows to that state. Enter these two SQL statements:

INSERT INTO conservation_status (conservation_state)
VALUES('Unknown');

SELECT LAST_INSERT_ID();

e e e e e oo - +
| LAST_INSERT_ID() |
e e e oo - +
I 9 |
e e e oo - +

In the first SQL statement here we entered only a value for conservation_state. The
defaults for the other columns are fine. We’ll use the UPDATE statement to set the rows for
the birds in Ardeidae to this new state, so we want to know the conservation_status_id
for it. To get that value, we issue a SELECT statement with the LAST_INSERT_ID() function.
It returns the identifier generated from the previous SQL statement entered, which added a
row for the current client connection (i.e., just us). Let’s use that number to set the
conservation_status_id in the birds table for bird species in Ardeidae. If your
identification number is different, use what you received in the following SQL statement:

UPDATE birds

LEFT JOIN conservation_status USING(conservation_status_id)

JOIN bird_families USING(family_id)

SET birds.conservation_status_id = 9

WHERE bird_families.scientific_name = 'Ardeidae'’

AND conservation_status.conservation_status_id IS NULL;
This UPDATE statement should have changed almost 100 rows on your server. The joins
here are the same as we used in the previous SELECT statement, in which we discovered
that we did not have a conservation status set for the Great Egret. Notice in the WHERE
clause here that one of the conditions is that
conservation_status.conservation_status_id has a value of NULL. We could have
removed the LEFT JOIN to the conservation_status table and then updated simply all of
the rows for the Ardeidae birds that have a NULL value in the conservation_status_id
column. But that would not have included any rows that might have other nonmatching
values (e.g., a blank column). By including this LEFT JOIN, we updated all of these
possibilities. However, it requires the condition that the
conservation_status.conservation_status_id is NULL, the column from the right

table — it will be assumed NULL if not matched.

Because the method of joining tables is the same for both the SELECT statement and the
UPDATE statement, you can easily test the JOIN clauses and WHERE clause using a SELECT
first. When that’s successful, you can then execute an UPDATE statement with the same
JOIN and WHERE clauses. That’s the best procedure to follow to ensure proper updating of
data when joining multiple tables.

Deleting Within Joined Tables

Having used JOIN with SELECT and UPDATE statements, let’s look at some practical
examples using DELETE. In Deleting in Multiple Tables, we saw an example of DELETE
with a JOIN. In that example, we wanted to delete the rows where the member Elena
Bokova has a yahoo.com email address from both the humans and the prize_winners
tables from the birdwatchers database. For that purpose, we constructed a DELETE
statement that worked fine, but there was potentially a problem with it. Here is that SQL
statement again:

DELETE FROM humans, prize_winners

USING humans JOIN prize_winners

WHERE name_first = 'Elena'

AND name_last = 'Bokova'

AND email_address LIKE '%yahoo.com'

AND humans.human_id = prize_winners.human_id;
Compared to the JOIN clauses we’ve been using, the syntax here may look strange. This is
how it works with a DELETE statement. Tables from which data is deleted are listed in the
FROM clause, while tables used in the WHERE clause to provide filters to determine which
rows to delete are listed in a USING clause. The clause “USING humans JOIN
prize_winners” just tells the server that those two tables provide the columns in the

WHERE clause.

NOTE

Don’t confuse a USING clause, which has JOIN subclauses, with the USING operator, which can be used in a JOIN
clause.

As the preceding DELETE SQL statement is constructed, if MySQL finds a row in the
humans table where the name and email information match, there has to be a matching row
in the prize_winners table for the human_id. If there’s not a row in both, MySQL won’t
delete the row in the humans table and no error will be returned — you might not realize it
failed. To allow for this possibility, we could use a LEFT JOIN like so:

DELETE FROM humans, prize_winners

USING humans LEFT JOIN prize_winners

ON humans.human_id = prize_winners.human_id

WHERE name_first = 'Elena'

AND name_last = 'Bokova'

AND email_address LIKE '%yahoo.com';
Notice that for this syntax we moved the valuation of the human_id columns to the USING
clause, adding a LEFT JOIN and an ON operator to replace that condition in the WHERE
clause. That’s necessary because if there’s not a match in the other table, the WHERE clause
won’t include that row in the results to be deleted. With the LEFT JOIN, all of the rows in
both the humans and the prize_winners tables that match the criteria given to it will be
deleted, and any rows found in the humans table for which there isn’t a match in the
prize_winners table, but which match the criteria of the WHERE clause will be deleted also.

This prevents what are known as orphaned rows.

For general maintenance, we should check occasionally to see if there are rows in the
prize_winners table that don’t have matching rows in the humans table, and then delete
them. Someone might have had us delete their account, but we may have forgotten to
remove entries for them in related tables. To handle that possibility, we could use RIGHT
JOIN instead of LEFT JOIN. We could enter something like this:

DELETE FROM prize_winners

USING humans RIGHT JOIN prize_winners

ON humans.human_id = prize_winners.human_id
WHERE humans.human_id IS NULL;

In this DELETE statement, we listed only the prize_winners table in the FROM clause
because that’s the only one from which we want to delete rows. It’s a good policy not to
list tables that are not to be affected in the FROM clause of a DELETE statement, even if you
think there’s no possible way that there is a row that would be deleted in the other tables.

Because we put the humans table first in the USING clause and the prize_winners table
second, we’re doing a RIGHT JOIN so that columns from the table on the right
(prize_winners) will be deleted even if there is no value in the table on the left. If we
reversed the order of the tables, we would then need a LEFT JOIN for this task.

It’s worth focusing for a moment on the final clause of the previous DELETE statement, a
WHERE clause checking for NULLs in one column. As we saw earlier, a LEFT JOIN or
RIGHT JOIN can return rows where there was nothing in the column you’re doing the join
on. The results contain NULL for the missing value. So in the WHERE clause here, we’re
using that as the condition for finding the orphaned rows in the prize_winners table.

There are many contortions to the JOIN clause. The basic JOIN syntaxes that we covered in
Selecting a Basic Join are worth learning well; they will be the ones you will use
primarily. You will sometimes have a need for using a LEFT JOIN or a RIGHT JOIN. Let’s
move on to a related topic that can be valuable in many situations: subqueries.

Subqueries

A subquery is a query within another query, a SELECT statement within another SQL
statement. A subquery returns a single value, a row of data, a single column from several
rows, or several columns from several rows. These are known respectively as scalar,
column, row, and table subqueries. I'll refer to these distinctions later in this chapter.

Although the same results can be accomplished by using the JOIN clause and sometimes
the UNION, depending on the situation, subqueries are a cleaner approach. They make a
complex query more modular, which makes it easier to create and to troubleshoot
problems. Here are two generic examples of subqueries (we also used a few subqueries in
Chapter 8):

UPDATE table 1
SET col_5 =1
WHERE col_id =
SELECT col_id
FROM table 2
WHERE col_1 = value;

SELECT column_a, column_1
FROM table_1
JOIN
(SELECT column_1, column_2
FROM table 2
WHERE column_2 = value) AS derived_table
USING(col_id);
In the first example, the SELECT statement is an inner query. The UPDATE statement is
referred to as the main or outer query. In the second example, the SELECT within
parentheses is the inner query and the SELECT outside of the parentheses is the outer query.
An outer query containing a subquery can be a SELECT, INSERT, UPDATE, DELETE, DO, or
even a SET statement. There are some limitations, though. An outer query cannot generally
select data or modify data from the same table of an inner query. This doesn’t apply

though if the subquery is part of a FROM clause.

These generic examples may be confusing. Generic examples aren’t usually easy to
follow. I’d rather present first the syntax for subqueries, but there is no syntax per se for
the use of subqueries — other than the syntax inherent in the SQL statements used for the
inner and outer queries. Subqueries are rather a method of constructing combinations of
SQL statements. As such, you need only to make sure of two basic factors with
subqueries.

The first factor of which you need to be mindful is how a subquery is contained within an
outer query, where you position it. For instance, if you construct an outer query which is
an UPDATE statement, you could place a subquery in the WHERE clause to provide a set of
values to which a column is equal (e.g., as in the first generic example). Or you might
locate a subquery in the FROM clause of an outer, SELECT statement (e.g., as in the second
generic example). These are where subqueries may be positioned. You can have multiple
subqueries within an outer query, but they will be positioned generally within the FROM
clause or the WHERE clause.

The second factor is whether the results returned from a subquery are in keeping with the
expectations of the outer query. For instance, in the first generic example, the UPDATE
clause has a WHERE clause that expects a single value from the subquery. If the subquery

returns several values, a row of columns, or a table of results, it will confuse MySQL and
cause an error. So you need to be sure that the subquery you construct will return the type
of values required by the outer query as you constructed it.

You’ll better understand these factors as we look at examples of them. As mentioned at the
start of this section, the different types of subqueries are scalar, column, row, and table
subqueries. In the following subsections, we’ll look at each of these types, along with
examples of them.

Scalar Subqueries

The most basic subquery is one that returns a single value, a scalar value. This type of
subquery is particularly useful in a WHERE clause in conjunction with an = operator, or in
other instances where a single value from an expression is permitted. Let’s look at simple
example of this. Let’s get a list of bird families that are members of the Galliformes bird
order (i.e., Grouse, Partridges, Quails, and Turkeys). This can be done easily with a JOIN
in which we join the birds and bird_families tables together based on the order_id for
Galliformes. We’ll use instead a scalar subquery to get the order_id we need. Enter this in
mysql:

SELECT scientific_name AS Family
FROM bird_families
WHERE order_id =

(SELECT order_id

FROM bird_orders

WHERE scientific_name = 'Galliformes');
Sy +
| Family |
Sy +
| Megapodiidae |
| Cracidae |
| Numididae |
| Odontophoridae |
| Phasianidae |
Sy +

The inner query (i.e., the subquery here) returns one value, the order_id. That’s used to
complete the WHERE clause of the outer query. That was pretty simple. Let’s look at another
example of a scalar subquery.

We had an example earlier in this chapter, in the section related to using a JOIN, in which
we selected members from Russia who had sighted birds of the family Scolopacidae. To
thank members in Russia for using our telephone application for recording sightings,
we’re going to give a one-year premium membership to one of those members. Enter this
hefty SQL statement in mysql:

UPDATE humans
SET membership_type = 'premium',
membership_expiration = DATE_ADD(IFNULL(membership_expiration,
CURDATE()), INTERVAL 1 YEAR)
WHERE human_id =
(SELECT human_id
FROM
(SELECT human_id, COUNT(*) AS sightings, join_date
FROM birdwatchers.bird_sightings
JOIN birdwatchers.humans USING(human_id)
JOIN rookery.birds USING(bird_id)
JOIN rookery.bird_families USING(family_id)
WHERE country_id = 'ru'
AND bird_families.scientific_name = 'Scolopacidae'
GROUP BY human_id) AS derived_1
WHERE sightings > 5

ORDER BY join_date ASC

LIMIT 1);
The most inner query here is basically the same as the one in the example mentioned
earlier. The difference is that here we’re not selecting the names involved. Instead, we’re
selecting the human_id and the join_date (i.e., the date that the member joined). With the
GROUP BY clause, we’re grouping members based on the human_id to get a count with the
COUNT () function. Put another way, we’re counting the number of entries of each
human_id in the bird_sightings table for the bird family and member country we
specified. That subquery will return a table of results; it’s a table subquery. We’ll talk
more about that type of subquery later in this chapter.

The query wrapped around the most inner query, which is also a subquery, selects only
rows where the number of sightings is more than five. It orders the rows with newer
members first based on the date the members joined — we want the newest Russian
member reporting several Curlews and the like to be awarded a year of premium
membership. This subquery is limited to one row with one column. It’s a scalar query.

The main query in the preceding example is using the single value from the scalar query to
determine which member to give one year of premium membership. If we hadn’t added
the LIMIT to the scalar query, it would have returned more than one value — it then
wouldn’t have been a scalar query. Based on the operator in the WHERE clause of its outer
query, MySQL would have returned an error message like this:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)

SQLSTATE = 21000

Message = "Subquery returns more than 1 row"
As with all subqueries, there’s always a way to get the same results without a subquery,
using JOIN or some other method to bring results together in complex ways. To some
extent, it’s a matter of style which method you decide to use. I generally prefer subqueries,
especially when using them in applications I develop in PHP or Perl. They’re easier for me
to decipher months or years later when I want to make changes to a program I’ve written.

Column Subqueries

In the preceding subsection, we discussed instances in which one scalar value was
obtained in a WHERE clause. However, there are times when you may want to match
multiple values. For those situations, you will need to use the subquery in conjunction
with an operator such as IN, which is used to specify a comma-separated list of values.
Let’s look at an example of this.

In one of the examples in the previous subsection, we used a scalar subquery to get a list
of bird families for the bird order Galliformes. Suppose that we also want the common
name of one bird species from each family in the order; we want to randomly select a bird
name from each. To do this, we will create a subquery that will select a list of bird family
names for the order. Enter the following SQL statement:

SELECT * FROM
(SELECT common_name AS 'Bird',
families.scientific_name AS 'Family'
FROM birds
JOIN bird_families AS families USING(family_id)
JOIN bird_orders AS orders USING(order_id)
WHERE common_name != ''
AND families.scientific_name IN

(SELECT DISTINCT families.scientific_name AS 'Family'
FROM bird_families AS families
JOIN bird_orders AS orders USING(order_id)
WHERE orders.scientific_name = 'Galliformes'
ORDER BY Family)
ORDER BY RAND()) AS derived_1
GROUP BY (Family);

o e e oo SR — +
| Bird | Family [
B [SRS — +
White-crested Guan	Cracidae
Forsten's Scrubfowl	Megapodiidae
Helmeted Guineafowl	Numididae
Mountain Quail	Odontophoridae
Gray-striped Francolin	Phasianidae
o e e e oo SR — +

In this example, we have two subqueries, a subquery within a subquery, within an outer
query. The most inner subquery is known as a nested subquery. The subqueries here are
executed before the outer query, so the results will be available before the WHERE clause of
the outer query is executed. In that vein, the nested subquery will be executed before the
subquery in which it is contained. In this example, the nested query is contained within the
parentheses of the IN operator — the most indented query. That SQL statement selects the
bird family name where the name of the order is Galliformes. The DISTINCT flag by the
alias Family instructs MySQL to return only one entry for each distinct family name. If we
had manually entered that information, it would look like this:
(‘Cracidae’,‘Megapodiidae’, ‘Numididae’, ‘Odontophoridae’, ‘Phasianidae’). This
subquery is a multiple-field or column subquery.

The inner subquery in the preceding example is a table subquery. It selects a list of all
birds that are in the list of bird families provided by its subquery. We could just select one
bird for each family at this level using a GROUP BY clause to group by the Family name to
get one bird species per family. But that would select the first rows found and the results
would be the same every time. We want to select randomly each time this SQL statement
is executed. To do that, we’re selecting all of the birds for each bird family and then using
ORDER BY RAND() to randomly order the rows of the results table. Then we’re wrapping
that in another query, the outer query to GROUP BY the bird family. That will give us one
entry for each bird family.

Row Subqueries

Row subqueries retrieve a single row of data that is then used by the outer query. It’s used
in a WHERE clause to compare one row of columns to one row of columns selected in the
subquery. Let’s consider an example of this and then we’ll discuss it more. Suppose
another bird-watcher site closes, this one in Eastern Europe. They send us their database,
which contains a table with the names of their members, and another table with
information members provided related to birds they spotted. We put both of these tables in
the birdwatchers database to import into our tables. In the process of importing these
members into our humans table, we discover people who are already members of our site.
That’s OK: we know how to avoid importing the duplicates. Now we want to import the
table of birds spottings. Because there were duplicate members, maybe those members
have logged information on birds they saw in the wild on this Eastern European site. So
we want to check that each entry is not a duplicate and then import it. Look at this SQL
statement:

INSERT INTO bird_sightings
(bird_id, human_id, time_seen, location_gps)
VALUES
(SELECT birds.bird_id, humans.human_id,
date_spotted, gps_coordinates

FROM
(SELECT personal_name, family_name, science_name, date_spotted,
CONCAT(latitude, '; ', longitude) AS gps_coordinates

FROM eastern_birders
JOIN eastern_birders_spottings USING(birder_id)

WHERE
(personal_name, family_ name,
science_name, CONCAT(latitude, '; ', longitude))
NOT IN

(SELECT name_first, name_last, scientific_name, location_gps
FROM humans
JOIN bird_sightings USING(human_id)
JOIN rookery.birds USING(bird_id))) AS derived_1
JOIN humans
ON(personal_name = name_first
AND family_name = name_last)
JOIN rookery.birds
ON(scientific_name = science_name));
This looks very complicated and can be difficult to understand or construct correctly. Let’s
discern the major elements here. Look first at the subquery in parentheses, the nested
subquery. We’re selecting data from tables in our database: the names of each person, the
bird species and where the member sighted it. This nested subquery is contained within
the WHERE clause of another subquery, a row subquery. Notice that a list of columns from
the tables of the row subquery is given in parentheses. So the condition of the WHERE
clause is that the values of those columns for each row of the joined tables are compared
to the values of the columns for each row from joined tables in its subquery. The outer

query inserts the relevant values into the bird_sightings table.

The preceding example is certainly an odd one and seemingly, unnecessarily complex. But
there are times when a row query like this can be useful. To put our example more simply,
if there’s a row with the same human name who spotted the same bird species at the exact
same map coordinates, don’t import it. If all of those values are not the same, then insert it
into the bird_sightings table. There are other ways, though, you can accomplish this
task. For instance, you might do this in stages with multiple SQL statements and a
temporary table. You could also do it in stages within a program using one of the
languages like Perl and an API like the Perl DBI. But it’s good to know you have the
option of doing it within one SQL statement if that’s what you want.

Table Subqueries

A subquery can be used to generate a results set, a table from which an outer query can
select data. That is to say, a subquery can be used in a FROM clause as if it were another
table in a database. It is said to be a derived table.

There are a few rules related to table subqueries. Each derived table must be assigned an
alias — any unique name is fine. You can use the keyword As for assigning an alias. Each
column in a subquery that is in part of a FROM clause must have a unique name. For
instance, if you select the same column twice in a subquery, you have to assign at least one
of them an alias that is unique. A subquery contained in a FROM clause cannot generally be
a correlated subquerys; it cannot reference the same table as the outer query.

For an example of a table subquery, let’s use the example near the beginning of this

chapter that used a UNION. In that example, we had two SELECT statements which counted
the number of rows for birds in two bird families: Pelecanidae and Ardeidae. With a
UNION, the results were merged into one results set. That was a bulky method. We can do
better with a table subquery. The subquery we’ll use will select just the bird family name
for each bird of the two families that we wanted to count. That may seem silly, to list the
bird family name multiple times, especially when we already know the name of the bird
families we want to count. But that’s how we can count them and use the name for our
results set. MySQL won’t display the names multiple times — that will go on behind the
scenes. It will display only one entry per family because of the GROUP BY clause. Enter the
following:

SELECT family AS 'Bird Family',
COUNT(*) AS 'Number of Birds'
FROM
(SELECT families.scientific_name AS family
FROM birds
JOIN bird_families AS families USING(family_id)
WHERE families.scientific_name IN('Pelecanidae', 'Ardeidae')) AS derived_1
GROUP BY family;

Fommm e e oo e e e e oo +
| Bird Family | Number of Birds |
Fommmmmmee oo Fmm e e e e e oo +
| Ardeidae | 157 |
| Pelecanidae | 10 |
[SRR U U R +

This a much better way to form this unified results set than using a UNION. We could add
more bird family names to the WHERE clause in the subquery to get more rows in the results
set, instead of having to copy the SELECT statement for each family we add.

You can see in this example that a table subquery is the same as a table in the FROM clause.
We can even give it an alias (e.g., derived_1) as we can with a normal table. The
subquery returns a table of results (i.e., the bird family names). The GROUP BY clause tells
MySQL to group the results based on the family field, the alias in the subquery for the
scientific_name column of the bird_families table. We used that same alias to select
that field in the column list of the outer query. When a column in a subquery is set to an
alias, you have to use the alias; the column name becomes inaccessible outside the
subquery when an alias is given.

Performance Considerations with Subqueries

Performance problems can occur with subqueries if they are not well constructed. There
can be a performance drain when a subquery is placed within an IN() operator as part of a
WHERE clause of the outer query. It’s generally better to use instead the = operator, along
with AND for each column=value pair. For situations in which you suspect poor
performance with a subquery, try reconstructing the SQL statement with JOIN and
compare the differences between the two SQL statements using the BENCHMARK() function.
For ideas on improving subquery performance, Oracle has tips on their site for Optimizing
Subqueries.

http://bit.ly/optimizing_subqueries

Summary

Many developers prefer subqueries — I do. They’re easier to construct and decipher when
you have problems later. If you work on a database that is very large and has a huge
amount of activity, subqueries may not be a good choice because they can sometimes
affect performance. For small databases, though, they’re fine. You should learn to use
subqueries and learn how to work without them (i.e, use JOIN) so you can handle any
situation presented to you. You cannot be sure which method your next employer and
team of developers may being using. It’s best to be versatile.

As for learning to use JOIN, that’s hardly optional. Very few developers don’t use JOIN.
Even if you prefer subqueries, they still call for JOIN. You can see this in almost all of the
examples of subqueries in this chapter. You may rarely use UNION. But there’s not much to
learn there. However, you should be proficient in using JOIN. So don’t avoid them;
practice manually entering SQL statements that use them. The act of typing them helps.

Exercises

The goal of the following exercises is to give you practice assembling tables using JOIN
and creating subqueries. In the process of doing these exercises, think about how tables
and data come together. Try to envision each table as a separate piece of paper with a list
of data on it, and how you might place them on a desk to find information on them in
relation to each other. In such a scenario, you might tend to place your left index finger at
one point on a page on the left and your right index finger on a point on another page on
your right. That’s a join. Where you point on each are the join points. As you type the
SQL statements in these exercises, think of this scene and say aloud what you’re doing,
what you’re telling MySQL to do. It helps to better understand the joining of tables and
creating of subqueries.

1. Inthe birdwatchers database, there is a table called bird_sightings in which there
are records of birds that members have seen in the wild. Suppose we have a contest
in which we will award a prize based on the most sightings of birds from the order
Galliformes. A member gets one point for each sighting of birds in this order.
Construct an SQL statement to count the number of entries from each member.
There should be two fields in the results set: one containing the human_id with
Birder as the alias; and the second field containing the number of entries with
Entries as its alias. To accomplish this, join the bird_sightings table to birds,
bird_families, and bird_orders. Remember that these tables are in a different
database. You will have to use the counT() function and a GRoOUP BY clause. Do all of
this with JOIN and not with subqueries. Your results should look like the following:

Fomm oo Fomm e m oo - +
| Birder | Entries |
R — oo e e oo - +
I 19 | 1
I 28 | 5|
R ppp— Fomm e mm o - +

When you have successfully constructed this SQL statement, modify it to join in the
humans table. In the column list, replace the field for human_id with the first and last
name of the member. Use the CONCAT () function to put them together into a single
field (with a space in between the names), with the same alias. Once you make the
needed changes and execute it, the results should look like this, but the number of
names and points may be different:

Fommm e e e aaas Feommmaa- +
| Birder | Points |
Fommmmm e e e Feomemea- +
| Elena Bokova | 4 |
| Marie Dyer | 8 |
Fommmmm e e e Feomemea- +

2. In the preceding exercises, you were asked to count the number of bird species the
members sighted from the Galliformes. So that the contest is more fun, instead of
giving one point for each bird species in that order, give a point for only one bird
species per bird family in the bird order. That means that a member doesn’t get more
points for sighting the same bird species multiple times. A member also doesn’t get
more points for spotting several birds in the same family. Instead, the member has to
look through bird guides to find a species for each species and then go looking for

one from each in their area. This should make the contest more of an adventure for
the members.

To allow for the change to the contest, you will need to modify the SQL statement
you constructed at the end of the previous exercise. First, you will need to add a
DISTINCT to the start of the column list in the outer query. You’ll need to remove the
CONCAT() and GROUP BY. When you’ve done that, execute the SQL statement to
make sure you have no errors. You should get a results set that shows multiple
entries for some members. Next, place the whole SQL statement inside another SQL
statement to make it a subquery. The new, outer query should include CONCAT() and
GROUP BY so that it can count the single entries from each family for each member. It
should return results like this:

S Fommemo +
| Birder | Points |
S Fommemo o +
| Elena Bokova | 1 |
| Marie Dyer | 5 |
S Fommeao s +

. There are five families in the Galliformes bird order. For the contest described in the
last two exercises, the most points that a member could achieve therefore is 5.
Change the SQL statement you entered at the end of the previous exercise to list
only members who have 5 points. To do this, you will need to wrap the previous
SQL statement inside another, creating a nested query. When you execute the full
SQL statement, the results should look like this:

| Marie Dyer
e e e e e e e - -

Part IV. Built-In Functions

MySQL has many built-in functions that can be used to manipulate data contained within
columns. With these functions, you can format data, extract text, or create search
expressions. In and of themselves, functions do not affect data within columns. Instead,
they manipulate data within results of queries. However, when used properly within SQL
statements such as UPDATE, they can be a tool for changing data within columns.
Incidentally, functions can be used for processing plain text or numbers — they don’t
require that data come from a column.

There are three major groupings of functions: string functions; date and time functions;
and numeric or arithmetic functions. String functions are functions that relate to
formatting and converting text, as well as finding and extracting text from columns. These
are covered in Chapter 10.

Date and time functions are covered in Chapter 11. These functions can be used for
formatting date and time values, as well as extracting specific values from a given date or
time. They can also be used to get date and time values from the system to use for
inserting or updating data in columns of a table.

The numeric or arithmetic functions are used for mathematical or statistical calculations
on data. They are covered in Chapter 12.

These three chapters will include the most popular and more useful functions from these
three major groups of functions, but not all functions from these categories. As part of
learning and developing MySQL and MariaDB, you should be aware of these functions,
and learn them well.

Chapter 10. String Functions

A string is a value that can contain alphabetical characters, digits, and other characters
(e.g., the ampersand, the dollar sign). Although a string can contain numbers, they are not
considered numeric values. It’s a matter of context and perspective. For instance, postal
codes in the United States are all digits, but you shouldn’t store them as integers because
the postal code for 02138 would become 2138. You should use a string to store the postal
code.

To make the handling of strings easier, MySQL provides many built-in functions. You can
format text for nicer results, make better expressions in a WHERE clause, or otherwise
extract and manipulate data from a string or column. Therefore, in this chapter, we’ll go
through several string functions, grouping them by similar features, and provide examples
of how they might be used.

-

BASIC RULES FOR USING FUNCTIONS

There are a few things to remember when using functions. String functions also have some conventions of their own.
Some of these rules can be different depending on how your server is configured:

m The basic syntax of a function is to a keyword immediately followed by arguments in parentheses. You cannot
generally have a space between the keyword and the opening parenthesis like you can with operators in SQL
statements (e.g., IN () within a WHERE clause).

= Some functions take no arguments, such as Now(), which returns the current date or time. Other functions accept
a particular number of arguments. Arguments are generally separated by commas, and some arguments can be
augmented with keywords.

= When you pass text as an argument to a string function, put the text in single or double quotes.

= When giving a column as an argument, you generally don’t use single quotes around the column name — if you
do, MySQL will think you mean the literal text given. You can use backticks around the column name if the name
is a reserved word or contains a character that might cause other problems.

m If by chance a string function tries to return a value that is larger (i.e., more characters) than allowed by the
system settings (set by the max_allowed_packet configuration option), MySQL will return NULL instead.

= Some arguments to string functions represent positions within the strings. The first character in a string is
numbered 1, not 0. Some functions let you count back from the end of the string, using negative integers. In these
arguments, -1 refers to the last character.

m Some string functions call for a character length as an argument. If you give a fractional value to these functions,
MySQL will round that value to the nearest integer.

Formatting Strings

Several string functions can format or reconstitute text for a better display. They allow you
to store data in columns in a raw form or in separate components and then create the
display you want when you retrieve the data.

For instance, in the humans table, we are able to store each member’s title, first name, and
last name in separate columns because we can put them together when needed. Breaking
apart the names allows us to sort easily based on last name or first name. You’ll see how
this is done in the next subsection.

Concatenating Strings

The CONCAT() function is very useful for pasting together the contents of different
columns, or adding some other text to the results retrieved from a column. This is
probably the most used string function — we’ve already used it in several examples in
previous chapters. Within the parentheses of the function, in a comma-separated list, you
give the strings, columns, and other elements that you want to merge together into one
string.

Let’s look at an example of how it might be used within a SELECT statement. Suppose we
want to get a list of a few members and birds that they’ve seen. We could enter an SQL
statement like this:

SELECT CONCAT(formal_title, '. ', name_first, SPACE(1), name_last) AS Birder,
CONCAT(common_name, ' - ', birds.scientific_name) AS Bird,

time_seen AS 'When Spotted'

FROM birdwatchers.bird_sightings

JOIN birdwatchers.humans USING(human_id)

JOIN rookery.birds USING(bird_id)

GROUP BY human_id DESC

LIMIT 4;

Fom e e e e e oo i B +
| Birder | Bird | When Spotted |
Fom e e e e e oo e e e e e e e e e o Ry +
| Ms. Marie Dyer | Red-billed Curassow - Crax blu..| 2013-10-02 07:39:44|

I
Ms. Anahit Vanetsyan	Bar-tailed Godwit - Limosa lap..	2013-10-01 05:40:00]
Ms. Katerina Smirnova	Eurasian Curlew - Numenius arq..	2013-10-01 07:06:46
Ms. Elena Bokova	Eskimo Curlew - Numenius borea..	2013-10-01 05:09:27
oo oo m e e e oo oo eeeaooo oo +
The first field displayed by this SQL statement is not a single column from the table, but a
CONCAT () function that merges the bird-watcher’s title, first name, and last name. We
added a period in quotes after the title, as we’ve decided to store the titles without a
period. We used quote marks to add spaces where needed. For the second field, we
concatenated the common name of each bird species with the scientific name, and put

spaces and a hyphen between them.

Without CONCAT (), we might be tempted to combine text in one column that really should
be separated. For instance, we might put the common and scientific names of bird species
in one column. Keeping values in separate columns makes a database more efficient and
flexible. String functions like CONCAT () alleviate the need to do otherwise.

A less common concatenating function is CONCAT_wS(). It puts together columns with a
separator between each. The first argument is the element you want to use as a separator
(e.g., a space) and the rest of the arguments are the values to be separated. This can be

useful when making data available for other programs.

For instance, suppose we have embroidered patches made with the name of the Rookery
site on them and we want to mail one to each premium member. To do this, we use an
advertising and marketing agency that will handle the mailing. The agency needs the
names and addresses of members, and would like that data in a text file, with the values of
each field separated by vertical bars. To do this, we’ll run mysql on the command line,
passing a single statement to it:

mysgl -p --skip-column-names -e \

"SELECT CONCAT_WS('|', formal_title, name_first, name_last,
street_address, city, state_province, postal_code, country_id)
FROM birdwatchers.humans WHERE membership_type = 'premium'

AND membership_expiration > CURDATE();" > rookery_patch_mailinglist.txt

This example uses mysql with several options. The - -skip-column-names option tells
MySQL not to display the column headings — we want just the data separated by bars.
The -e option says that what follows within quotes is to be executed. We then put the SQL
statement within double quotes. The first argument to CONCAT_WS() is the vertical bar that
the company wants as a separator. The remaining arguments are the columns to be strung
together. After the closing double quotes, we use > to redirect the results to a text file that
we’ll email to the agency. There is a potential problem with the SQL statement we used. If
a column has a NULL value, nothing will be exported and no bar will be put in the file to
indicate an empty field. Here’s an example of how the text file would look:

Ms|Rusty|Osborne|ch

Ms|Elena|Bokova|ru
We have only four fields for these members, although we told MySQL to export eight
fields. If these two records were in the midst of thousands of records, they would cause
errors that might not be obvious when imported. Although it’s more cumbersome, we
should wrap each column name in an IFNULL () function. Then we can give a value to
display if the column is NULL, such as the word unknown or a blank space. Here’s the
same example again, but with the IFNULL () function:

mysql -p --skip-column-names -e \

"SELECT CONCAT_WS('|', IFNULL(formal_title, ' '), IFNULL(name_first, ' '),
IFNULL(name_last, ' '), IFNULL(street_address, ' '),

IFNULL(city, ' '), IFNULL(state_province, ' '),

IFNULL(postal_code, ' '), IFNULL(country_id, ' '))

FROM birdwatchers.humans WHERE membership_type = 'premium'

AND membership_expiration > CURDATE();" > rookery_patch_mailinglist.txt

It looks daunting and excessive, but it’s simple to MySQL. The new contents of the text
file follow:

Ms|Rusty|Osborne| | | | |ch

Ms|Elena|Bokoval| | | | |ru
That’s a manageable data file. When the results are like this, the marketing company can
import all of the records without errors and then contact us to try to get the missing
information. They can add it to their system without having to reimport the text file.

Setting Case and Quotes

Occasionally, you might want to convert the text from a column to either all lowercase
letters or all uppercase letters. For these situations, there are LOWER() and UPPER(), which
can also be spelled LCASE () and UCASE(), respectively. In the example that follows, the

output of the first column is converted to lowercase and the second to uppercase:

SELECT LCASE(common_name) AS Species,
UCASE(bird_families.scientific_name) AS Family
FROM birds

JOIN bird_families USING(family_id)

WHERE common_name LIKE '%Wren%'

ORDER BY Species

LIMIT 5;

o e e e o o oSy +
| Species | Family |
o e e e e e o o oYy +
apolinar's wren	TROGLODYTIDAE
band-backed wren	TROGLODYTIDAE
banded wren	TROGLODYTIDAE
bar-winged wood-wren	TROGLODYTIDAE
bar-winged wren-babbler	TIMALIIDAE
o e e e e e a o oSSy +

The QUOTE () function takes a string and returns it enclosed in single quotes. But it does a
good deal more: it makes it input-safe by marking certain characters that could cause
trouble in SQL statements or other programming languages. These characters are single
quotes, backslashes, null (zero) bytes, and Ctrl-Z characters. The QUOTE() function
precedes each of these with a backslash so that they won’t be interpreted in some way or
(in the case of a single quote) cause SQL to prematurely terminate the string.

In the following example, we’re selecting a list of bird species named for a Prince or
Princess:

SELECT QUOTE(common_name)

FROM birds

WHERE common_name LIKE "%Prince%"
ORDER BY common_nhame;

| 'Prince Henry\'s Laughingthrush' |
| 'Prince Ruspolil's Turaco' |
| 'Princess Parrot' |

Notice in the results that because of the QUOTE() function, the strings returned are
enclosed in single quotes, and any single quotes within the strings are escaped with a
backslash. This can prevent errors if the value is passed to another program.

Trimming and Padding Strings

One of the problems with allowing the public to enter data into a website is that they’re
not always careful. They do things like adding spaces before and after the text. There are a
few functions for trimming any leading or trailing spaces from the values of a column.
The LTRIM() function eliminates any leading spaces to the left. For columns with spaces
on the right, RTRIM() will remove them. A more versatile trimming function, though, is
TRIM(). With it, you can trim both left and right spaces.

These trim functions can be useful for cleaning data with the UPDATE statement. Let’s look
at an example of their use. In these SQL statements, we’ll use LTRIM() and RTRIM() to
eliminate both leading and trailing spaces:

UPDATE humans
SET name_first = LTRIM(name_first),
name_last = LTRIM(name_last);

UPDATE humans

SET name_first = RTRIM(name_first),

name_last = RTRIM(name_last);
In this example, we trimmed the leading spaces with the first UPDATE and the trailing
spaces with the second one. Notice that we set the value of the columns to the same
values, but with the strings trimmed. We can combine these functions into one SQL
statement like so:

UPDATE humans

SET name_first = LTRIM(RTRIM(name_last)),

name_last = LTRIM(RTRIM(name_last));
You can always combine functions like this for a more dynamic result. In this case,
though, the TRIM() function is a better alternative. Here’s the same SQL statement using
it:

UPDATE humans

SET name_first = TRIM(name_first),

name_last = TRIM(name_last);
The TRIM() function also offers more options. You can specify something other than
spaces to remove. For instance, suppose we receive a small table with bird sightings from
another bird-watcher club, as we did in Row Subqueries. However, in this table, the
scientific names of bird species are within double quotes. If we wanted to insert that data
into our bird_sightings table, we could use the same SQL query as we did before, with
the addition of the TRIM() function. Here is the relevant excerpt, the last lines on which
we join their table to our birds table:

301N rookery.birds

ON(scientific_name = TRIM(BOTH '"' FROM science_name)));
It may be difficult to see, but we’re enclosing the character that we want trimmed — a
double quote — within single quotes. The keyword BOTH isn’t actually necessary because
it’s the default — that’s why we didn’t specify it in the previous example. If you don’t
want to remove the string given from one end or the other, you can specify LEADING or
TRAILING, thus making TRIM() work like LTRIM() or RTRIM(). The default string to trim is
a space, as we have seen.

When displaying data in web forms and other such settings, it’s sometimes useful to pad
the data displayed with dots or some other filler. This can be necessary when dealing with
VARCHAR columns where the width varies. Padding the results of a column selected can
help the user to see the column limits. There are two functions that may be used for
padding: LPAD() and RPAD(). There is also SPACE (), which pads the string with spaces:

SELECT CONCAT(RPAD(common_name, 20, '.'),
RPAD(Families.scientific_name, 15, '.'),
Orders.scientific_name) AS Birds

FROM birds

JOIN bird_families AS Families USING(family_id)
JOIN bird_orders AS Orders

WHERE common_name != ''

AND Orders.scientific_name = 'Ciconiiformes'
ORDER BY common_name LIMIT 3;

T T +
| Birds |
T T +
| Abbott's Babbler...Pellorneidae..Ciconiiformes |
| Abbott's Booby.....Sulidae.......Ciconiiformes |
| Abbott's Starling..Sturnidae.....Ciconiiformes |

Notice how all the bird families and orders are aligned vertically. This is because we
padded each value out to its maximum width using RPAD(). The first argument was the
column to read, the second was the total size of the resulting string we want, and the third
was a period so that periods apear for columns that have less text. This happens to work
because MySQL uses a fixed-width font. We could uses spaces instead of dots for a
similar effect. For web display, we might use as padding element for non-breaking
spaces.

Extracting Text

There are a few functions for extracting a piece of text from a string. You indicate the
point from which to start selecting text and how much text you want. There are four such
functions: LEFT(), MID(), RIGHT(), and SUBSTRING(). The SUBSTRING_INDEX() function is
also related. We’ll look at each one here.

Let’s look at the LEFT(), MID(), and RIGHT() functions first. Suppose our marketing
agency acquires a table called prospects containing a list of people who are known to be
bird-watchers. Each person’s title and first and last name is stored in a column called
prospect_name, with email addresses in another column. The prospect_name column is a
fixed character length data type, CHAR(54). The marketing agency tells us that the title is
contained in the first four characters, the first name in the next 25, and the last name in the
remaining 25. For the titles, they’re using only Mr. and Ms. with a space after each —
hence the first four characters — but we will extract just the first two characters for our
tables. Let’s see how that column looks by executing a simple SELECT to retrieve four
names:

SELECT prospect_name
FROM prospects LIMIT 4,

e +
| prospect_name |
o mm m e mmm o +
| Ms. Caryn-Amy Rose |
| Mr. Colin Charles |
| Mr. Kenneth Dyer |
| Ms. Sveta Smirnova |
o mm e mm e mmm— oo +

As you can see, the data is a fixed width for each element. Normally, with a CHAR column,
MySQL would not store the trailing spaces. Whoever created this table enforced the rigid
format (4, 25, and 25 characters) by executing SET sql_mode =
'"PAD_CHAR_TO_FULL_LENGTH'; before inserting data into the column.

With an INSERT INTO..SELECT statement and a few functions, we can extract and separate
the data we need and put these prospects in a new table we created that we call
membership_prospects. Let’s execute the SELECT first to test our organization of the
functions before we insert the data:

SELECT LEFT(prospect_name, 2) AS title,
MID(prospect_name, 5, 25) AS first_name,
RIGHT (prospect_name, 25) AS last_name
FROM prospects LIMIT 4;

Fommmaa- Fomm e m e ee e meeeaaa E T +
| title | first_name | last_name

Fommmaaa E E T T +
| Ms | Caryn-Amy | Rose |
| Mr | Kenneth | Dyer

| Mr | Colin | Charles

| Ms | Sveta | Smirnova

Fommmaaa E E +

In the example’s LEFT() function, the starting point for extracting data is the first
character. The number we gave as an argument (i.e., 2), is the number of characters we
want to extract starting from the first. The RIGHT() function is similar, but it starts from
the last character on the right, counting left. The MID() function is a little different. With
it, you can specify the starting point (i.e., the fifth character in our example) and how

many characters you want (i.e., 25 characters).

The SUBSTRING() function is synonymous with MID() and their syntax is the same. By
default, if the number of characters to capture isn’t specified, it’s assumed that all the
remaining ones are to be extracted. This makes these functions work like the LEFT()
function. If the second argument to SUBSTRING() or MID() is a negative number, the
function will start from the end of the string, making it like the RIGHT () function.

Because the SUBSTRING() function is so versatile, we can use it to accomplish all the text
extraction in the previous example. The equivalent SELECT would look like this:

SELECT SUBSTRING(prospect_name, 1, 2) AS title,
SUBSTRING(prospect_name FROM 5 FOR 25) AS first_name,
SUBSTRING(prospect_name, -25) AS last_name

FROM prospects LIMIT 3;

This example shows three ways to use SUBSTRING():
SUBSTRING(prospect_name, 1, 2) AS title

This has the same syntax we have used for other functions in this section: three
arguments to specify the column with the text, the starting point for extracting text, and
the number of characters to extract.

SUBSTRING(prospect_name FROM 5 FOR 25) AS first_name

This shows a different, wordier syntax. The starting point here is 5 and the number of
characters to extract is 25.

SUBSTRING(prospect_name, -25) AS last_name

This specifies a starting point of —25 characters. Because it doesn’t specify how many
to extract, MySQL takes the remaining characters from that starting point.

You can use whatever style you prefer.

The SUBSTRING_INDEX() is similar to the previous functions, but looks for elements that
separate data within a string. For example, suppose the prospect_name column was
constructed differently. Suppose that instead of having fixed width for the title and names,
the text had vertical bars between them. This would be odd for data in a column, but it is
possible. Here’s how we could separate the same column containing the vertical bar
character as the separator (the first and third third lines using SUBSTRING_INDEX() are
fairly understandable, but the second one is more complex):

SELECT SUBSTRING_INDEX(prospect_name, '|', 1) AS title,

SUBSTRING_INDEX(SUBSTRING_INDEX(prospect_name, '|', 2), '|', -1) AS first_name,

SUBSTRING_INDEX(prospect_name, '|', -1) AS last_name

FROM prospects WHERE prospect_id = 7;
The second argument to SUBSTRING_INDEX() tells MySQL how to break the string into the
pieces of text we want. In our example, we use ' | ' to specify the vertical bar. The number
in the third argument tells how many elements to take. So in the first line here we’re
saying to get the first element. In the third line, because it has a negative sign in front of
the number, we’re saying to count from the end and get one element there. In the second
line, we’re using SUBSTRING_INDEX() twice, one call embedded inside the other. The inner
call extracts the first two elements. Using those results, we then use an outer call to extract
its first element starting from the end.

Using SUBSTRING() is much nicer, but you need to know the starting point and how many
characters to take. In our vertical bar example, we’d need to know exactly where the
vertical bars are in each name. To do that, you will need to use other functions to search
strings. Those are covered in the next section.

Searching Strings and Using Lengths

MySQL and MariaDB do not have comprehensive functions for searching string based on
patterns. Yes, there’s the REGEXP operator that permits some pattern matching. But this
isn’t as robust and isn’t fine tuned as easily as the capabilities offered by programming
languages like PHP and Perl. But there are a few functions that assist in searching strings.
We’ll look at some of them in this section.

Locating Text Within a String

MySQL and MariaDB have a few built-in functions that can find characters within a
string. These functions return the location where the search parameter was found.

The LOCATE() function returns the numeric starting point just left of the first occurrence of
a given substring in a given string. It does not search beyond this point. Let’s look at an
example. Suppose we want a list of Avocet birds — they’re a type of shore birds that is
part of the Recurvirostridae family. We could enter something like this:

SELECT common_name AS 'Avocet'

FROM birds

JOIN bird_families USING(family_id)

WHERE bird_families.scientific_name = 'Recurvirostridae'
AND birds.common_name LIKE '%Avocet%';

| Pied Avocet |
| Red-necked Avocet |
| Andean Avocet |
| American Avocet |

Now suppose we want to eliminate the word Avocet from the names returned. There are a
few ways we might do that: one way is to use the LOCATE() function to find the word
Avocet, and extract all text before it with the SUBSTRING() function:

SELECT

SUBSTRING(common_name, 1, LOCATE(' Avocet', common_name)) AS 'Avocet'
FROM birds

JOIN bird_families USING(family_id)

WHERE bird_families.scientific_name = 'Recurvirostridae'

AND birds.common_name LIKE '%Avocet%';

Fomm e e o - +
| Avocet |
L TR +
| Pied |
| Red-necked |
| Andean |
| American |
[RS +

That’s a cumbersome example, but it shows you how you can use LOCATE() in conjunction
with other functions to get what you want from a string. Let’s look at another example.

Earlier in this chapter, in Trimming and Padding Strings, we had some examples involving
merging data from another bird-watcher group. That included using the TRIM() function to
remove quotes from around the scientific names of birds spotted by people in that group.
Let’s use that column again, but assume that it doesn’t have quotes. Instead, the bird
species is given with its bird family in this format: bird species - bird family. For
this, we can use the LOCATE () function to locate the hyphen and then the SUBSTRING() to

get the family name for the JOIN clause in that earlier example. Here’s just the excerpt
from the JOIN clause:

3OIN rookery.birds

ON(scientific_name = SUBSTRING(science_name, LOCATE(' - ', science_name) + 3));
Let’s pull this apart to understand it better. First, let’s focus on the inner function, the
LOCATE (). The search parameter it’s given is a hyphen surrounded by spaces. The
science_name column is the string to search. This function will return the position in the
string where the search parameter is found. We’re adding 3 to that because the search
parameter is three characters long — in other words, LOCATE () gives us the point before
the separator and we want to get the substring after the end of the separator. So the results
of LOCATE() + 3 is given as the starting point for the SUBSTRING() function. Because we’re
not specifying how many characters we want, MySQL will extract the remaining
characters. That will give us the scientific name of the bird in the table we’re joining to
birds.

The POSITION() function works like LOCATE(), except that it takes the keyword IN instead
of a comma between the substring you’re searching for and the containing string:

POSITION(" - " IN science_name)

In addition, LOCATE () accepts an optional argument to indicate the starting point for the
search, which is not available in POSITION().

Another function for searching a string is FIND_IN_SET(). If you have a string that
contains several pieces of data separated by commas, this function tells you which element
in that set of data contains the search pattern you give it. To understand this better,

suppose that we want to get a list of members from Russia, but ordered by the date when
the members joined. We would enter this:

SELECT human_id,

CONCAT (name_first, SPACE(1), name_last) AS Name,
join_date

FROM humans

WHERE country_id = 'ru'

ORDER BY join_date;

Fmm e e - -
| human_id

Elena Bokova | 2011-05-21 |
Anahit Vanetsyan | 2011-10-01 |
Katerina Smirnova | 2012-02-01 |
------------------- e ppepepepp—)

+
1
1
1
1
1
1
1
:
1

+———+— +
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

+
1
1
1
1
1
1
1
1
1
1
:

+

Now suppose that we want to know the position of the member Anahit Vanetsyan in the
list of Russian members. We can see easily from the results just shown that she is the third
member from Russia to join. That’s because there are very few results here. Imagine if the
results contained hundreds of names. We could use FIND_IN_SET() with a subquery to
determine this:

SELECT FIND_IN_SET('Anahit Vanetsyan', Names) AS Position
FROM
(SELECT GROUP_CONCAT(Name ORDER BY join_date) AS Names
FROM
(SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
join_date
FROM humans
WHERE country_id = 'ru')
AS derived_1)

AS derived_2;

Fomm oo +
| Position |
Fommm oo +
| 2 |
T pepep—_ +

This is a pretty complex SQL statement. The innermost SELECT is essentially the query we
saw earlier, but returning just the full name and join date for each Russian person. These
results are fed to GROUP_CONCAT, which produces a single huge string containing all the
names. The outermost SELECT finds the name we want and returns its position.

NOTE

When you put a SELECT statement inside parentheses and derive a table from it that you will use with an outer
statement, you must give that derived table a name using AS. For naming simplicity, we’ve named the derived tables
in this chapter derived_1 and derived_2. Almost any unique name is fine.

The statement can be useful if we associate it with a user profile page on the Rookery
website. We might want to use it to show members where they rank in different lists, such
as most sightings of birds or most sightings of birds in a particular category.

FIND_IN_SET() returns O if the string is not found in the set or if the string list is empty. It
returns NULL if the value of either argument is NULL.

String Lengths

There will be times you want to know how long a string is. There are a few functions that
return the character length of a string. This can be useful when adjusting formatting or
making other decisions related to a string, and they are commonly used with functions like
LOCATE () and SUBSTRING().

The CHAR_LENGTH() or CHARACTER_LENGTH() function returns the number of characters in
a string. This could be helpful when different rows have different-length strings in a
particular column.

For instance, suppose we want to display on the Rookery website a list of the birds most
recently sighted by members, as recorded in the bird_sightings table. We’ll include the
common and scientific name and other information about the bird species. Suppose that
we want to also include the comments that the member entered when they recorded the
sighting. Because this column can contain a lot of text, we want to know how many
characters it contains when displaying it. If there’s too much (i.e., more than 100
characters), we’ll limit the text and include a link on the web page to view all of the text.
To check the length, we could construct an SQL statement like this that would be part of a
program:

SELECT IF(CHAR_LENGTH(comments) > 100), 'long', 'short')

FROM bird_sightings

WHERE sighting_id = 2;
Here we’re using CHAR_LENGTH() to count the number of characters in the comments
column for the row selected. We’re using the 1F () function to determine whether the
character length of the comments is greater than 100 characters. If it is, the function will
return the word long. If not, it will return short. If this SQL statement was used in an API
script, the value in the WHERE clause for the sighting_id could be dynamically replaced

for each bird sighting.

CHAR_LENGTH() understands the character set in current use, as we touched on in Creating
a Database. Characters that take up multiple bytes — usually present in Asian languages
— are still considered one character. In contrast, the LENGTH() function returns the number
of bytes in a given string. Note that there are eight bits to a byte and that Western
languages normally use one byte for each letter. If you want to count the number of bits,
use the BIT_LENGTH() function.

As an example, suppose we notice that the comments column of the bird_sightings table
contains some odd binary characters. They have been entered into the column through the
mobile application we provide to members. To narrow the list of rows that have these odd
characters so that we can remove them, we can execute the following SQL statement:

SELECT sighting_id
FROM bird_sightings
WHERE CHARACTER_LENGTH(comments) != LENGTH(comments);
This will give us the sighting_id for the rows in which the number of characters does not

equal the number of bytes in the comments column.
Comparing and Searching Strings

The previous subsection used the output of CHAR_LENGTH() as input to an IF() statement
so that we had a choice of what to return. In this subsection, we’ll look at some functions
that compare strings, which can also be handy when used with a logical function such as
IF() or in a WHERE clause.

Let’s consider a situation where we might use one of these functions — specifically, the
STRCMP() function. The name of the function, in the manner much loved by computer
programmers, is a compressed version of “string compare.”

Email addresses are critical for communicating with members so we decide to require new
members to enter their email address twice during the registration process to ensure
accuracy. However, in case the connection is lost in the process or the joining member
does not correct a problem with their email address, we want to keep both addresses until
they do. So we’ll add a row to the humans table to store whatever information they give us,
and then store both email addresses in another table to compare them. For that
comparison, we could use the STRCMP () function in an SQL statement.

This scenario is the kind of situation that you would automate with an API program, a
program you would create to interface with MySQL or MariaDB. It would store the SQL
statements needed for processing the information the new member enters from the
website. To start the process related to checking the email, we might create a table that
will store the member’s identification number and the two email addresses. We could do
that like so:

CREATE TABLE possible_duplicate_email
(human_id INT,

email_addressl VARCHAR(255),
email_address2 VARCHAR(255),
entry_date datetime);

Now when new members register, after their information has been stored in the humans
table, our web interface can store conditionally the two email addresses provided in the

possible duplicate_email table. It might look like this:

INSERT IGNORE INTO possible_duplicate_email

(human_id, email_address_1, email_address_2, entry_date)

VALUES(LAST_INSERT_ID(), 'bobyfischer@mymail.com', 'bobbyfischer@mymail.com')

WHERE ABS(STRCMP('bobbyrobin@mymail.com', 'bobyrobin@mymail.com')) = 1 ;
For the email addresses, I’ve displayed the plain text. But in a more realistic example, this
SQL statement might be embedded in a PHP script and would refer to variables (e.g.,

$email_1 and $email_2) where the email addresses are here.

Using the STRCMP () in the WHERE clause, if the email addresses match, STRCMP () returns O.
If the addresses don’t match, it will return 1 or -1. It returns -1 if the first value is
alphabetically before the second. To allow for that possibility, we put it inside of ABS(),
which changes the value to the absolute value — it makes negative values positive. So, if
the two email addresses don’t match, the statement will insert the addresses into the
possible_duplicate_email table for an administrator to review. Incidentally, that would
normally return an error message, but IGNORE flag tells MySQL to ignore errors.

Another comparison function is MATCH() AGAINST(), which searches for a string and
returns matching rows from the table. It even ranks the rows by relevance, but that is
beyond the scope of this chapter. Among the complications of MATCH() AGAINST(), it
works only on columns that have been indexed with a special FULLTEXT index. To test this
function, we’ll first add a FULLTEXT index to the bird_sightings table, basing it on the
comments column because that’s a TEXT column:

CREATE FULLTEXT INDEX comment_index
ON bird_sightings (comments);

Now you can use MATCH() AGAINST(). It is commonly found in WHERE clauses as a
condition to find columns containing a given string. Text in the given string, which is
delimited by spaces or quotes, is parsed into separate words. Small words (i.e., three
characters or fewer) are generally ignored. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
common_name AS Bird,

SUBSTRING(comments, 1, 25) AS Comments

FROM birdwatchers.bird_sightings

JOIN birdwatchers.humans USING(human_id)

JOIN rookery.birds USING(bird_id)

WHERE MATCH (comments) AGAINST ('beautiful');

[T RS UpUp i ——— L YRS ——— Feceeeeeeeeeeeeeee e e e e e +
| Name | Bird | Comments

[T RS UpUp i ——— L YRS ——— Feceeeeeeeeeeeeeee e e e e e +
| Elena Bokova | Eskimo Curlew | It was a major effort get |
| Katerina Smirnova | Eurasian Curlew | Such a beautiful bird. I |
[RS S i ——— L YRS ——— Feceeeeeeeeeeeeeeee e e e +

In the WHERE clause, we’re able now to match the comments column against the string
beautiful. The comments column from the birdwatchers.bird_sightings is combined
in the results with three other columns: common_name from rookery.birds and
name_first and name_last from birdwatchers.humans.

We’re using the SUBSTRING function to limit the amount of text displayed. This cuts off the
text abruptly. You could use the CONCAT () function to append ellipses to indicate there is
more text. You might also use the IF() function to determine whether there is more text
before appending ellipses. There are other functions you can use for locating the
beautiful within the column so that you can display only the text around it. We’ll cover

that kind of function later in this chapter.

Replacing and Inserting into Strings

If you want to insert or replace certain text from a column (but not all of its contents), you
could use the INSERT() function. Don’t confuse this with the INSERT statement. The
syntax of this function consists of the string or column into which you want to insert text,
followed by the position in which to insert text. You may specify also how much text to
delete from that point, if you want. Finally, you give the text to insert. Let’s look at some
examples of this function.

We’ll start with a simple example. Suppose that on a page of the Rookery site, we are
thinking of adding some text to the common names of bird species with the word Least in
their name. We want to explain that it means Smallest, so that uninformed birders don’t
think it means these birds are the least important. To test this, we enter this SQL statement:

SELECT INSERT(common_name, 6, 0, ' (i.e., Smallest)')
AS 'Smallest Birds'

FROM birds

WHERE common_name LIKE 'Least %' LIMIT 1;

o m m e e e e e e oo +
| Smallest Birds |
e +
| Least (i.e., Smallest) Grebe |
e +

The first argument is the column containing the string we’re manipulating. The second

argument is the starting point for inserting text. Based on the WHERE clause, we’re looking
for common names that start with Least. That’s 5 characters. We add 1 to that because the
starting point for INSERT is 1. The third argument specifies how many characters after the
starting point should be replaced. In this case, we’re just inserting text, not replacing any.

The SQL statement uses INSERT() to change the results set, not the data in the table. So
we could use the INSERT() function to display the common names like this to new
members for the first month who have identified themselves as new to bird-watching. We
would have to construct a more complex SQL statement to check who is new, but this
example shows you how to insert text within a string. Let’s look now at an example in
which we will replace data using INSERT().

Suppose we discover that parts of some of the common bird species names are abbreviated
in the birds table (e.g., Great is abbreviated as Gt.). We prefer not to have any
abbreviations for the common names. Before changing the data, we’ll execute a SELECT
statement to test our use of the INSERT() function:

SELECT common_name AS Original,

INSERT(common_name, LOCATE('Gt.', common_name), 3, 'Great') AS Adjusted
FROM birds

WHERE common_name REGEXP 'Gt.' LIMIT 1;

Fommmmmeme e mee e e +
| Original | Adjusted |
Fommmmmeme e e e e e +
| Gt. Reed-Warbler | Great Reed-Warbler |
T L T a e +

We’ve already reviewed the arguments of the INSERT() function in the previous example.
The extra twist here is in the second argument, which contains the LOCATE (). We’re using
that function to determine the position in the string where text is to be replaced. In the

previous example, we assumed that the common name would start with the string we
wanted to modify. In this case, we’re not assuming the position of the string within the
column. Instead, we’re letting MySQL find it for us.

Another difference in this example is the third element: we’re telling the function to
replace three characters (i.e., the length of Gt.) from the starting point with the text given
for the fourth argument (i.e., Great). Although the text we’re adding is more than three
characters, it’s fine because when we update the table later, we’re updating a column with
plenty of space to hold the results.

If LOCATE() does not find the string we give it, it returns 0. A value of 0 for the position in
the INSERT() function negates it and returns the value of common_name unchanged. So with
this usage of INSERT(), because of the inclusion of LOCATE() for the starting location, the
WHERE clause is unnecessary — except to see that it works where we want it to.

Now that we’ve verified that our combination of functions works correctly, we can update
the data by entering the following SQL statement:

UPDATE birds

SET common_name = INSERT(common_name, LOCATE('Gt.', common_name), 3, 'Great')

WHERE common_name REGEXP 'Gt.';
There is an alternative to using INSERT () for replacing text in a string. In the previous
example, we had to use the LOCATE () function to determine the location of the text where
we wanted to insert text and we had to tell it how many characters to replace. A simpler
function for replacing text is REPLACE(). We could use this function to replace all
occurrences of Gt. with Great in the common_name column. Let’s test that with a SELECT
statement like so:

SELECT common_name AS Original,

REPLACE (common_name, 'Gt.', 'Great') AS Replaced
FROM birds

WHERE common_name REGEXP 'Gt.' LIMIT 1;

R e e oo +
| Original | Replaced |
R e e a o +
| Gt. Reed-Warbler | Great Reed-Warbler |
R e e a o +

This works much better. We can use the REPLACE () with the arguments we have here and
enter the following UPDATE to change the data in the table:

UPDATE birds
SET common_name = REPLACE(common_name, 'Gt.', 'Great');

Query OK, 8 rows affected (0.23 sec)

Rows matched: 28891 Changed: 8 Warnings: 0
Notice that we didn’t include the WHERE clause, but the results message says that only eight
rows were changed. This is because there were only eight rows that contained Gt. in the
common_name column. Updating data in a table with that many rows is intimidating and
dangerous without a WHERE clause. That’s why it’s good to use them and to test the
parameters with a SELECT statement first.

Converting String Types

There may be times when you will have to work with tables created by people who might
not have made the best choices for column data types. Sometimes you can alter the tables,
but sometimes you may not be allowed to do so. For manipulating data from such tables or
for importing data from them, you can use the CAST() or CONVERT() functions to change
the data type of columns. The effect just takes place within your SQL statement, not the
database itself. Let’s look at some examples of how and why you might use these two
functions, which are basically synonymous except for a minor syntax difference.

Suppose we’re given a table containing images of birds in a particular area, showing
female, male, and juvenile color patterns. One of the columns contains numbers for
ordering birds based loosely on the type of bird and the date when usually seen in the area.
This column isn’t a numeric data type like INT, but is CHAR. When we sort the data based
on this column, MySQL will sort the rows lexically, not numerically. Here’s an example of
how that might look:

SELECT sorting_id, bird_name, bird_image
FROM bird_images
ORDER BY sorting_id

LIMIT 5;

Fomm e e Ry B +
| sorting_id | bird_name | bird_image

Fomm e e - Ry o +
11	Arctic Loon	artic_loon_male.jpg
111	Wilson's Plover	wilson_plover_male.jpg
112	wilson's Plover	wilson_plover_female.jpg
113	wWilson's Plover	wilson_plover_juvenile.jpg
12	Pacific Loon	pacific_loon_male.jpg
R Ry B +

Notice that the rows with a sorting_id starting with 11n are listed before one with the
value of 12. That’s because MySQL is reading the data as characters and not numbers. The
two Loons should be together, before the Plovers are listed.

We can use the CAST() function to cast the values taken from sorting_id into the INT data
type:

SELECT sorting_id, bird_name, bird_image
FROM bird_images ORDER BY CAST(sorting_id AS INT) LIMIT 5;

F B S +
| sorting_id | bird_name | bird_image

[SRR —— L YRR —— e +
11	Arctic Loon	artic_loon_male.jpg
12	Pacific Loon	pacific_loon_male.jpg
111	Wilson's Plover	wilson_plover_male.jpg
112	Wilson's Plover	wilson_plover_female.jpg
113	Wilson's Plover	wilson_plover_juvenile.jpg
[YR Feocemeamaaaa e aaaas e +

That worked correctly. Let’s suppose now that we don’t want to use sorting_id, but
instead the gender_age column. This is an ENUM column specifying that the image file is
for a male, female, or a juvenile. The color patterns of most birds deviate based on these
factors. Let’s see how the results will look if we sort based on this column:

SELECT bird_name, gender_age, bird_image
FROM bird_images

WHERE bird_name LIKE '%Plover%'

ORDER BY gender_age

LIMIT 5;

o e e e e e e e o =
| bird_name

o e e e e e e e o =
| wWilson's Plover
| Snowy Plover

| wWilson's Plover
|

|

wilson_plover_male. jpg [
snowy_plover_male.jpg [
wilson_plover_female.jpg |
female |
juvenile |

snowy_plover_female. jpg
wilson_plover_juvenile. jpg

Snowy Plover
Wilson's Plover

t———— + — +
=
o]
[
o
—————+ — +

Notice that the rows are grouped together based on the gender_age column, but those
values are not in alphabetical order (i.e., female rows should be before male rows). This is
because of how the enumerated values are listed in the gender_age column:

SHOW COLUMNS FROM bird_images LIKE 'gender_age' \G

BRI R 1. row R R S
Field: gender_age
Type: enum('male', 'female', 'juvenile')
Null: YES
Key:
Default: NULL
Extra:

To MySQL, the value of male for the gender_age column is stored as 1, and female as 2.
This controls the order of the display, even though the values are rendered as text. If we
use though the CAST() or the CONVERT() function in the ORDER BY clause, MySQL will sort

the results based on their rendered values and not their column values. Here’s how that
would look:

SELECT bird_name, gender_age, bird_image
FROM bird_images

WHERE bird_name LIKE '%Plover%'

ORDER BY CONVERT(gender_age, CHAR)

LIMIT 5;
S R, B +
| bird_name | gender_age | bird_image

S Fomm e e o - R +
wilson's Plover	female	wilson_plover_female.jpg
Snowy Plover	female	snowy_plover_female.jpg
wilson's Plover	juvenile	wilson_plover_juvenile.jpg
Snowy Plover	juvenile	snowy_plover_juvenile.jpg
wilson's Plover	male	wilson_plover_male.jpg
S f R, B +

Notice that for the CONVERT () function, a comma is used to separate the string given from
the data type instead of the As keyword. The data type given as the second argument can
be BINARY, CHAR, DATE, DATETIME, SIGNED [INTEGER], TIME, or UNSIGNED [INTEGER].
BINARY converts a string to a binary string. You can add also CHARACTER SET to use a
different character set from the default for the value given. To convert the character set of
a given string to another, you have to use the USING option, like so:

SELECT bird_name, gender_age, bird_image
FROM bird_images

WHERE bird_name LIKE '%Plover%'

ORDER BY CONVERT(gender_age USING utf8)
LIMIT 5;

Compressing Strings

Some column data types allow large amounts of data. For instance, the BLOB column can
store plenty. To reduce the size of tables that use this column data type, you can compress
the data it contains when inserting the data. The COMPRESS () function compresses a string
and the UNCOMPRESS () function decompresses a compressed string. If you want to use
them, MySQL has to have been compiled with a compression library (i.e., z1ib). If it
wasn’t, a NULL value will be returned when using COMPRESS(). Let’s look at some
examples of their use.

The humans table has a column for birding_background which is a BLOB. Members can
write as much as they like about themselves, which could result in pages of information on
their experiences and education as bird-watchers. This could potentially slow down
queries and updates if many members do this. So we decide to use COMPRESS() to
compress the member’s background when inserting it into the humans table. Here’s how
that might look:

INSERT INTO humans

(formal_title, name_first, name_last, join_date, birding_background)

VALUES('Ms', 'Melissa', 'Lee', CURDATE(), COMPRESS("lengthy background.."));
This SQL statement inserts a new member’s information into the humans table — it has
more columns than shown here, but we’re trying to keep this example simple. The
statement uses the COMPRESS() function to compress the background information given
(which isn’t much for this simple example). You would normally get such data from an
API variable using something like PHP to store text entered by the user through a web
page. So instead of the text shown here, you would use a variable (e.g.,
$birding_background).

To see how the data looks in the compressed form, we could do this:

SELECT birding_background AS Background
FROM humans
WHERE name_first = 'Melissa' AND name_last = 'Lee' \G

khkkhkkkkkkkkkkkkkhkhkhk ik hhhkkxx*x 1 row kkhkkhkhkhkhhkhkhkkkkkkkkhhkrkhkhkhhhhkk*x

Background: X##H/ TTHIL##/ #H# B 2R3

Notice that the results are not normal text. The mysql client substitutes a hash sign (#) for
binary values. In order to see the text contained in this compressed format, we would use
UNCOMPRESS(). It returns NULL if the string is not compressed or if MySQL wasn’t
compiled with z1ib:

SELECT UNCOMPRESS(birding_background) AS Background
FROM humans
WHERE name_first = 'Melissa' AND name_last = 'Lee' \G

E R S S O 1 row EE R O O O O O O

Background: lengthy background..

For small amounts of text like this, compression takes more space than the plain text. But
for large amounts of text, it will save plenty of space. So use it sparingly and where
appropriate.

Summary

There are more string functions available in MySQL and MariaDB. A few of the functions
mentioned here have aliases or close alternatives. There are also functions for converting
between ASCII, binary, hexadecimal, and octal strings. And there are also string functions
related to text encryption and decryption that were not mentioned. However, I think this
chapter has given you a good collection of common string functions that will assist you in
building more powerful SQL statements and formatting results to be more attractive.

Exercises

String functions are very necessary to developing databases in MySQL and MariaDB. You
need to know them well. To become an expert, you need to practice using them, so be sure
to complete all of the following exercises.

1. One of the most commonly used string functions is CONCAT (). Construct a SELECT
statement to query the humans table. Use the CONCAT () function to merge together
values from the name_first column with the name_last column. Use the SPACE()
function to put a space between them in the results. Give that field an alias of Full
Name — and remember to put quotes around this alias, as it contains a space. Limit
the results to four people. Execute it to be sure it has no errors.

Add a wHERE clause to that SELECT statement. For the condition of the WHERE clause,
copy the CONCAT() you just assembled. List rows where the name is in a set of the
following names: Lexi Hollar, Michael Zabalaoui, and Rusty Johnson.

After you successfully execute the SELECT with that WHERE clause, add an ORDER BY
clause to sort the data based on the concatenated name. Do it without using
CONCAT().

2. Construct a SELECT statement that selects, from the birds table, the common_name
and the scientific_name. Use a string function to change the scientific_name to
all lowercase letters. Use the CONCAT() function to put them into one field, with a
space after the common name, followed by the scientific name in parentheses — for
example, African Desert Warbler (sylvia deserti). Don’t use the SPACE () function.
Instead, put the spaces and parentheses within single quote marks within the
CONCAT(). Give the resulting field an alias of Bird Species. Limit the results to 10
rows.

After you’ve successfully executed that SQL statement, modify that statement to join
in the bird_families and the bird_orders tables. The JOIN statement was covered
extensively in Unifying Results. Then add the scientific_name columns from both
of these tables to the fields returned.

Execute this modified statement to make sure your joins are correct. When they are,
move the scientific_name columns for the two additional tables into the CONCAT().
Using the RPAD() function, put dots after the bird species name, before the bird
family and the bird order names. The results for a field will look like this:

Speckled Warbler (pyrrholaemus sagittatus)...Acanthizidae..Passeriformes

This will probably require you to use CONCAT() twice. Use a WHERE clause to list only
Warblers. Limit the results to 10 rows.

3. Construct another SELECT statement to list all of the common names of bird species
from the birds table, where the common name contains the word Shrike. When you
execute that statement you should see some names with a hyphen after the word
Shrike. Add the REPLACE () function to the SELECT statement to replace those
hyphens with a space in the results, and then execute the SQL statement again.

4. Some of the names of the birds in the results from the SELECT statement in the
previous exercise have more than one hyphen (e.g., Yellow-browed Shrike-Vireo).
Redo that SQL statement to replace only the hyphens after the word Shrike (e.g., to

look like this: Yellow-browed Shrike Vireo). In order to do this, use LOCATE () with
REPLACE (). You will need to use LOCATE() twice: one within another.

. True Shrikes are of the Laniidae family. Construct another SELECT to select the
common bird names with the word Shrike, but belonging to Laniidae. This will
require a join to the bird_families table. Use one of the substring functions like
SUBSTRING () to extract the words before Shrike. To do this, you will need to use
LOCATE() or a similar function. Then use CONCAT () to display that value extracted
after Shrike with a comma and space in between. The results for each field should
look like this: Shrike, Rufous-tailed. Give the field an alias of Shrikes.

. The humans table contains entries in which the member used either all lowercase
letters or all uppercase letters to enter their first and last names (e.g., andy oram and
MICHAEL STONE). Use UPDATE to change the names to title case (i.e., the first letter
capital and the rest lowercase). First experiment with SELECT to make sure you have
the functions organized properly. Use the UCASE () and LCASE() functions to set the
cases. You will need to use SUBSTRING() or a similar function a few times, and
CONCAT() a couple of times.

Chapter 11. Date and Time Functions

For many of us, there is a morning and an afternoon in each day. Days are measured in
either two 12-hour blocks or one 24-hour block. There are 12 months in a year, with each
month consisting of 30 or 31 days, except for one month which usually contains 28 days,
but once every four years it contains 29. While this all may be rather natural or at least
familiar to humans, putting it in terms a computer can manipulate can make it seem very
unnatural and frustrating. However, the recording and manipulating of date and time in a
database is a very common requirement.

For storing dates and times, known as temporal data, one needs to know which type of
column to use in a table. More important is knowing how to record chronological data and
how to retrieve it in various formats. Although this seems to be basic, there are many
built-in time functions that can be used for more accurate SQL statements and better
formatting of data. In this chapter, we will explore these various aspects of date and time
functions in MySQL and MariaDB.

Date and Time Data Types

Because dates and times are ultimately just strings containing numbers, they could be
stored in a regular character column. However, there are data types designed specifically
for dates and times. By using temporal data type columns, you can make use of several
built-in functions offered by MySQL and MariaDB. So before we start learning about the
date and time functions, let’s look at the data types that are available for recording date
and time.

There are five temporal data types in MySQL and MariaDB: DATE for storing dates, TIME
for storing time, DATETIME and TIMESTAMP for both date and time, and YEAR for a year:

DATE

This records the date only, in the format yyyy-mm-dd. You may prefer a different format
(e.g., 02-14-2014 for St. Valentine’s Day), but you can’t change how the date is stored
— at least not without changing the source code of MySQL. But other functions
discussed in this chapter let you display the date in the format you like.

This data type has a limit to the range of dates it will accept. It allows dates from as
early as 1000-01-01 to as late as 9999-12-31. That’s far into the future, but you
wouldn’t use this for recording historical dates in the first millennium.

TIME

This records time in the format hhh:mm:ss. It accepts times ranging from -838:59:59 to
838:59:59. If you give it a time outside of that range or in some way not valid, it
records the time as all zeros.

You may be wondering how you could have a time in which you need three digits for
the hour. This is so that you can record how much time has elapsed for an event or when
comparing two times, rather than just recording the time of day. For instance, you might
want to note that something took 120 hours to complete. You could do this with two
columns, one for recording the start time and the other the end time, and then compare
them as needed. But this data type allows you to record the difference in one column,
rather than recalculate each time you want that result.

DATETIME
This records a combination of date and time in the format yyyy-mm-dd hh:mm:ss. It
accepts dates and times from 1000-01-01 00:00:00 to 9999-12-31 23:59:59. That’s

the same range as DATE, but with the addition of the full range of a 24-hour day. As of
version 5.6 of MySQL, fractions of a second are possible.

TIMESTAMP

This is similar to DATETIME, but more limited in its range of allowable time. Despite the
name, it’s not limited to time, but covers a range of dates from 1970-01-01 00:00:01
UTC to 2038-01-19 03:14:07 UTC. It’s meant for relatively current dates and
corresponds to the “epoch” chosen by the designers of the Unix operating system. As of
version 5.6 of MySQL, fractions of a second are possible.

Although you can set the value of a column manually using this data type, whenever
you insert a row or update a row without specifying an explicit value, MySQL
automatically updates the column’s value to the current date and time. That can be very
convenient for some applications such as logging, but can cause you problems if you’re
unaware of it or don’t allow for it. This is only for the first column in a table which uses
TIMESTAMP. For subsequent TIMESTAMP columns, you would have to specify a couple of
options to have the same effect: ON UPDATE CURRENT_TIMESTAMP and ON INSERT
CURRENT_TIMESTAMP.

YEAR

This records just a year in a column, in the format yyyy. It could be set to two digits (by
defining the column as YEAR(2) with an explicit number), but that’s deprecated and
causes problems. So don’t record years in two-digit formats with this data type. This
data type is also meant for birth years; it allows years from 1901 to 2155. If you give it
an invalid value or a year outside of the allowed range, it records the year as 0000.

NOTE

Given some of the limitations of these data types, you may need to use a nontemporal data type for dates outside of
the allowed ranges. You could use the INT data type to store each component of a date, or CHAR data type to store
dates in a fixed width. For instance, you might have one INT column for storing the month, another for the day, and
one CHAR(4) column to store years before the 20th century.

That can work generally, but it can be a problem when you try to do a calculation with these data types. Suppose you
want to store February 15 in two INT columns: 2 in my_month and 15 in my_day. If you were to add 20 days to the
value of my_day, you would get an invalid date of February 35. To deal with this, you would have to construct a
complex SQL statement to adjust the my_day and the my_month columns. Plus, you’d have to update the column you
create for the year value when a date change pushes the values into a different year. You’d have similar problems if
you tried to use INT to store times. All of this complexity is eliminated by using temporal data types for columns, so
that you can use date functions provided with MySQL and MariaDB. These types have built-into complex
calculations so that you don’t have to worry about that.

Now that you’re familiar with the temporal data types in MySQL and MariaDB (and
hopefully, appreciate them), let’s look at some examples of how you might use them with
date and time functions. For some of the examples in this chapter, we’ll use the tables
we’ve already created, which have columns with these data types.

Current Date and Time

The most basic date and time functions are those related to the current date and time. They
may be used for recording the current date and time in a column, for modifying results
based on the current date and time, or for displaying the date and time in a results set.
Let’s start with the simplest one, Now(), which determines what time it is when you
execute the statement. Enter the first line shown here in mysql (an example of the results
follow):

SELECT NOW();

o e e e +
[NOwW() |
o e oo e +
| 2014-02-08 09:43:09 |
o e oo e +

As you can see, that returns the date and time on a server in a format that matches the
format of the DATETIME data type So if you have a column in a table that uses that data
type, you can use the Now() function to conveniently insert the current date and time into
the column. The bird_sightings table has a column that uses the DATETIME data type, the
time_seen column. Here’s an example of how we might enter a row into that table using
NOW ()

INSERT INTO bird_sightings
(bird_id, human_id, time_seen, location_gps)
VALUES (104, 34, NOw(), '47.318875; 8.580119');
This function can also be used with an application, or with a script for a web interface so

that the user can record bird sightings without having to enter the time information.

NOTE

There are a few synonyms for the Now() function: CURRENT_TIMESTAMP(), LOCALTIME(), and LOCALTIMESTAMP().
They return the exact same results. Synonyms such as these are provided so that MySQL and MariaDB will conform
to functions in other SQL database systems. This way, if you have an application that uses another database (e.g.,
PostgreSQL, Sybase, Oracle), you can more easily replace it with MySQL without having to change the code in your
applications.

The Now() function returns the date and time at the start of the SQL statement containing
it. For most purposes, this is fine: the difference between the time at the start and at the
completion of an SQL statement is usually minimal and irrelevant. But you may have a
situation in which an SQL statement takes a long time to execute, and you want to record
the time at a certain point in that process. The SYSDATE () function records the time at
which the function is executed, not the end of the statement. To see the difference, we can
introduce the SLEEP () function to tell MySQL to pause execution for a given number of
seconds. Here’s a simple example showing the difference between NOw() and SYSDATE():

SELECT NOW(), SLEEP(4) AS 'Zzz', SYSDATE(), SLEEP(2) AS 'Zzz', SYSDATE();

oo e e oo - oo e e T o e e +
| NOW() | Zzz | SYSDATE() | Zzz | SYSDATE() |
oo e e S o e e T o e e +
| 2014-02-21 05:44:57 | 0O | 2014-02-21 05:45:01 | 0 | 2014-02-21 05:45:03 |
o e e aaa S o e e S oo e e +

1 row in set (6.14 sec)

Notice that the difference between the time returned for Now() and for the first SYSDATE ()
is four seconds, the amount given with the first execution of SLEEP(). The time between

the two executions of SYSDATE() is two seconds, the amount given with SLEEP() the
second time. Notice also that the message after the results shows it took a tad more than
six seconds to execute this SQL statement. You probably won’t use SYSDATE() often —
maybe never. It’s useful primarily when you execute very complex SQL statements or for
more advanced usage (e.g., within stored procedures and triggers). Let’s move on to more
common usage of functions related to the current date and time.

If the data type for a column is not DATETIME, you can still use the Now() to get and store
the values you need. For instance, if the time_seen column had a data type of DATE and
you entered the preceding INSERT statement, you’d get a warning saying data truncated
for column. However, it would still store the date correctly. A similar effect would occur
on a TIME column: you’d get a warning, but the time would be recorded correctly. It’s
better, though, to use the correct function. For DATE columns, use CURDATE (). For TIME
columns, use CURTIME(). The following example compares these temporal functions:

SELECT NOW(), CURDATE(), CURTIME();

o e e oo oo +
| NOW() | CURDATE() | CURTIME() |
e e oo oo +
| 2014-02-08 10:23:32 | 2014-02-08 | 10:23:32 |
e e oo oo +

All three of these functions and their synonyms use formats readable or easily
understandable by humans. There are, however, built-in functions that return the Unix
time, which is the number of seconds since the “epoch” mentioned earlier. These can be
useful when comparing two temporal values. The following example shows the equivalent
of NOw() as a TIMESTAMP:

SELECT UNIX_TIMESTAMP(), NOW();

e e e e oo - e e ee e +
| UNIX_TIMESTAMP() | NOW() |
e e ee oo - e e ea oo +
| 1391874612 | 2014-02-08 10:50:12 |
e e e oo - oo ea oo +

This returns the number of seconds since since January 1, 1970. Let’s test that. Here’s a
simple calculation to determine the number of years since the start of 1970, and a more
complicated way of determining it:

SELECT (2014 - 1970) AS 'Simple',
UNIX_TIMESTAMP() AS 'Seconds since Epoch',
ROUND (UNIX_TIMESTAMP() / 60 / 60 / 24 / 365.25) AS 'Complicated';

[Epepepep e L e pepeppp——— +
| Simple | Seconds since Epoch | Complicated |
[Epepepep e L e pepeppp——— +
| 44 | 1391875289 | 44 |
[SR B U —— LRy +

This was run near the start of the year 2014 so we used the ROUND() function to round
down the number of years for a simple comparison. It’s good to do exercises like this to
confirm and to better know functions like this one. It helps you to understand and trust
them.

Let’s look at a more meaningful example in which you might want to use Unix time.
Suppose you want to know how many days ago our bird-watchers spotted a particular
bird, a Black Guineafowl (bird_id 309). To do this, we can use a join like so:

SELECT CONCAT(name_first, SPACE(1), name_last) AS 'Birdwatcher’,

ROUND ((UNIX_TIMESTAMP() - UNIX_TIMESTAMP(time_seen)) / 60 / 60 / 24)
AS 'Days Since Spotted'

FROM bird_sightings JOIN humans USING(human_id)

WHERE bird_id = 309;

SRR T TR +
| Birdwatcher | Days Since Spotted |
SRR T TR +
| Marie Dyer | 129 |
SRR T TR +

In this example, we used CONCAT () to put together the bird-watcher’s first and last name.
We issued the first UNIX_TIMESTAMP() with no argument, so it used the current date and
time. The second UNIX_TIMESTAMP() specifies a column (time_seen) containing the date
our bird-watchers spotted each bird. The function changed the value to a Unix timestamp
so that we could do a comparison

There are other ways and other functions that may be used to compare dates and times.
We’ll look at those later in this chapter. Let’s look next at how to extract the date and time
components.

Extracting Date and Time Components

Temporal data types store more information than you may sometimes want. There will be
situations in which you don’t want a full date or a time to the second. Because of this,
there are functions that will extract any component of a temporal value you may want, as
well as some common permutations. Let’s look first at some basic functions for extracting
just the date and just the time, then we’ll look at ones for each component.

A DATETIME column, as the name implies, contains both the date and the time. If you want
to extract just the date from such a value, you can use the DATE () function. To extract just
the time, use TIME(). Let’s look at an example of these two. We’ll again select the
time_seen value for sightings of a Black Guineafowl:

SELECT CONCAT(name_first, SPACE(1), name_last) AS 'Birdwatcher’,
time_seen, DATE(time_seen), TIME(time_seen)

FROM bird_sightings

JOIN humans USING(human_id)

WHERE bird_id = 309;

E S ——— oo S S +
| Birdwatcher | time_seen | DATE(time_seen) | TIME(time_seen) |
S ——— o e S S +
| Marie Dyer | 2013-10-02 07:39:44 | 2013-10-02 | 07:39:44 |
Fomm e e e e e e e oo oo o R Fomm e e e o - +

That was easy: DATE() returned just the date from time_seen and TIME() just the time.
However, you may want to extract just one component of a date or time. You can do this
with all of the temporal data types, as long as the column contains the component you
want — you can’t get the hour from a YEAR column.

To extract only the hour of a time saved in a column, the HOUR () function could be used.
For the minute and second, there’s MINUTE () and SECOND(). These may be used with
DATETIME, TIME, and TIMESTAMP columns. Let’s see how the results from them might look.
Enter the following in mysql:

SELECT CONCAT(name_first, SPACE(1), name_last) AS 'Birdwatcher’,
time_seen, HOUR(time_seen), MINUTE(time_seen), SECOND(time_seen)
FROM bird_sightings JOIN humans USING(human_id)

WHERE bird_id = 309 \G

LR R R R R EEEEEEEREEEEEEEEEEESE] 1. row khkkhkkhkkhkkhkkhkkhkkhkhkdhkxdhkhkhkhkhhkhxkkx
Birdwatcher: Marie Dyer
time_seen: 2013-10-02 07:39:44
HOUR(time_seen): 7
MINUTE(time_seen): 39
SECOND(time_seen): 44
These functions will allow you to use, assess, and compare each component of the time for

a column. You can break apart a date, as well.

To extract the year, month, and day, you could use the YEAR()), MONTH(), and DAY()
functions. You have to give a date value as the argument for each function. This can be a
column that contains a date, or a string value that contains a date (e.g., ‘2014-02-14°,
including the quotes). It cannot be a number, unless the number is properly ordered. For
instance, the numeric value 20140214 is acceptable, but not 2014-02-14 (without quotes)
or 2014 02 14 (with spaces). Here’s the same SQL statement as before, but using these
functions instead:

SELECT CONCAT(name_first, SPACE(1), name_last) AS 'Birdwatcher’,
time_seen, YEAR(time_seen), MONTH(time_seen), DAY(time_seen),
MONTHNAME (time_seen), DAYNAME(time_seen)

FROM bird_sightings JOIN humans USING(human_id)
WHERE bird_id = 309 \G

LR I S I I O 1 row EE R R R S I R R I I I S I

Birdwatcher: Marie Dyer
time_seen: 2013-10-02 07:39:44
YEAR(time_seen): 2013
MONTH(time_seen): 10
DAY (time_seen): 2
MONTHNAME (time_seen): October
DAYNAME (time_seen): Wednesday

This example has a couple of other date functions: MONTHNAME () to get the name of the
month for the date; and DAYNAME () to get the name of the day of the week for the date.
Using all of these functions, you can put together nicer looking results or easily check date
information. Let’s look at how you might use the date and time functions to re-order date
results. Here’s an example that retrieves a list of endangered birds spotted by the members
of the site:

SELECT common_name AS 'Endangered Bird',

CONCAT (name_first, SPACE(1), name_last) AS 'Birdwatcher’,

CONCAT (DAYNAME (time_seen), ', ', MONTHNAME(time_seen), SPACE(1),
DAY(time_seen), ', ', YEAR(time_seen)) AS 'Date Spotted',

CONCAT(HOUR(time_seen), ':', MINUTE(time_seen),
IF(HOUR(time_seen) < 12, ' a.m.', ' p.m.')) AS 'Time Spotted'

FROM bird_sightings

JOIN humans USING(human_id)

JOIN rookery.birds USING(bird_id)

JOIN rookery.conservation_status USING(conservation_status_id)

WHERE conservation_category = 'Threatened' LIMIT 3;

Fom e e e e e e oo F R oo m e e e e meo o oo Y +
| Endangered Bird | Birdwatcher | Date Spotted | Time |
Fom e e o oo oo F e e e e e e amo o oo Y +
Eskimo Curlew	Elena Bokova	Tuesday, October 1, 2013	5:9 a.m.
Red-billed Curassow	Marie Dyer	Wednesday, October 2, 2013	7:39 a.m.
Red-billed Curassow	Elena Bokova	Wednesday, October 2, 2013	8:41 a.m.
Fom e e e e am oo B e e e e e e amo o oo Y +

This is a very cluttered SQL statement. Yes, because it involves using JOIN a few times,
it’s lengthy as one would expect. But using CONCAT() twice with so many date and time
functions clutters it unnecessarily. Notice that 5:9 is displayed for the hours and minutes,
instead of 5:09. That’s because the function, MINUTE () doesn’t pad with zeroes. We could
fix that by using the LPAD() function, but that would be more clutter. We complicated the
statement even further by using the IF() function to label the time morning or evening
(i.e., a.m. or p.m.).

There’s a cleaner, easier way to reformat dates and times using date and time formatting
functions, which are described in the next section. Meanwhile, you can reduce the number
of date and extraction functions to a single one: EXTRACT().

The EXTRACT () function can be used to extract any component of a date or time. The
syntax is simple and a little verbose: EXTRACT (interval FROM date_time). The intervals
given are similar to the names of the date and time extraction functions we’ve already
reviewed: MONTH for month, HOUR for hour, and so on. There are also some combined ones
such as YEAR_MONTH and HOUR_MINUTE. For a list of intervals allowed with EXTRACT() and
similar date and time functions, see Table 11-1.

Table 11-1. Date and time intervals and formats

INTERVAL Format for given values
DAY dd

DAY_HOUR ‘dd hh’
DAY_MICROSECOND ‘dd.nn’

DAY_MINUTE ‘dd hh:mm’
DAY_SECOND ‘dd hh:mm:ss’

HOUR hh

HOUR_MICROSECOND ‘hh.nn’

HOUR_MINUTE ‘hh:mm’
HOUR_SECOND ‘hh:mm:ss’
MICROSECOND nn

MINUTE mm
MINUTE_MICROSECOND ‘mm.nn’
MINUTE_SECOND ‘mm:ss’
MONTH mm
QUARTER qq

SECOND SS

SECOND_MICROSECOND ’ss.nn’

WEEK ww
YEAR yy
YEAR_MONTH ‘yy-mm’

Let’s look at a simple example of this function by redoing the example that queried for the
bird-watchers who saw the Black Guineafowl. Here it is again with EXTRACT():

SELECT time_seen,

EXTRACT(YEAR_MONTH FROM time_seen) AS 'Year & Month',
EXTRACT(MONTH FROM time_seen) AS 'Month Only',
EXTRACT(HOUR_MINUTE FROM time_seen) AS 'Hour & Minute',
EXTRACT(HOUR FROM time_seen) AS 'Hour Only'

FROM bird_sightings JOIN humans USING(human_id)

LIMIT 3;

oo R SRS R S SRS +
| time_seen | Year & Month | Month Only | Hour & Minute | Hour Only |
oo T e ——— RSP R S RSP +
2013-10-01 04:57:12	201310	10	457	4
2013-10-01 05:09:27	201310	10	509	5
2013-10-01 05:13:25	201310	10	513	5
oo o Fommm e R S R +

As you can see, when you use EXTRACT () with single intervals, it works fine as a
consistent substitute for the other temporal extraction functions. Asking for HOUR_MINUTE
doesn’t produce very nice results, because there is no colon between the hour and minute
(for instance, 4:57 is shown as 457). When you use EXTRACT () with combined intervals, it
returns results combined together with no formatting. That may be what you want
sometimes, but other times you might want to format a date or time. Once again, you’ll
need the date and time formatting functions in the next section.

Formatting Dates and Time

In the first section of this chapter, we looked briefly at the temporal data types in MySQL
and MariaDB, including the formats in which dates and times are stored. I mentioned that
if you don’t like those formats, there are built-in functions that may be used to return
temporal data in different formats. The most useful is the DATE_FORMAT () function, and a
similar one, TIME_FORMAT (). You can use these to format date and time values taken from
a column, a string, or another function. With these two functions, you can specify the
format you want with simple formatting codes. Let’s redo the SQL statement from the
example at the end of the previous section, using these functions:

SELECT common_name AS 'Endangered Bird',

CONCAT (name_first, SPACE(1), name_last) AS 'Birdwatcher’,
DATE_FORMAT (time_seen, '%W, %M %e, %Y') AS 'Date Spotted',
TIME_FORMAT(time_seen, '%1:%i %p') AS 'Time Spotted'

FROM bird_sightings

JOIN humans USING(human_id)

JOIN rookery.birds USING(bird_id)

JOIN rookery.conservation_status USING(conservation_status_id)
WHERE conservation_category = 'Threatened' LIMIT 3;

oo SRS i B SR —— +
| Endangered Bird | Birdwatcher | Date Spotted | Time |
Fom e e e e e m oo oo B —— e e e e e e eeom oo Y +
Eskimo Curlew	Elena Bokova	Tuesday, October 1, 2013	5:09 AM
Red-billed Curassow	Marie Dyer	Wednesday, October 2, 2013	7:39 AM
Red-billed Curassow	Elena Bokova	Wednesday, October 2, 2013	8:41 AM
Fom e e e e e m oo oo F R oo m e e e e e e e oo - Y +

This is still a hefty SQL statement, but the portions related to formatting the date and time
is more straightforward. With the DATE_FORMAT () and the TIME_FORMAT() functions, you
give the column to format as the first argument and then provide a string in quotes that
contains formatting codes and text to lay out how you want the date and time formatted.
Incidentally, the DATE_FORMAT () function will return times in addition to dates. So there’s
really no need to use TIME_FORMAT(). It’s just a matter of style.

The problems we had in the previous two examples (i.e., lack of padding for minutes, no
colon, and the need for IF() to indicate morning or evening), doesn’t exist here. We took
care of all of that by using the '%1:%i %p' formatting codes. If we were willing to include
the seconds, we could replace those three formatting codes with just '%r'. Table 11-2
shows a list of formatting codes and what they return.

Table 11-2. Date and time formatting codes

Code Description Results

%a Abbreviated weekday name (Sun...Sat)
%b Abbreviated month name (Jan...Dec)
%c Month (numeric) (1...12)
%d Day of the month (numeric) (00...31)

%D Day of the month with English suffix (1st, 2nd, 3rd, etc.)

%e

%f

%h

%H

%l

%l

%]

%k

%l

%m

%M

%op

%r

%s

%S

%T

%u

%U

%V

%V

%w

%W

%X

%X

Day of the month (numeric)

Microseconds (numeric)

Hour

Hour

Minutes (numeric)

Hour

Day of the year

Hour

Hour

Month (numeric)

Month name

AM or PM

Time, 12-hour

Seconds

Seconds

Time, 24-hour

Week, where Monday is the first day of the week

Week, where Sunday is the first day of the week

Week, where Monday is the first day of the week; used with "%x’

Week, where Sunday is the first day of the week; used with %X’

Day of the week

Weekday name

Year for the week, where Monday is the first day of the week (numeric, four digits);

used with “%v’

(0...31)

(000000...999999)

(01...12)
(00...23)
(00...59)
(01...12)
(001...366)
(0...23)
(1...12)
(01...12)

(January...December)

AM or PM

(hh:mm:ss [AP]M)

(00...59)
(00...59)
(hh:mm:ss)
(0...52)
(0...52)
(1...53)
(1...53)
(0=Sunday...

6=Saturday)

(Sunday...Saturday)

(yyyy)

Year for the week, where Sunday is the first day of the week (numeric, four digits); used (yyyy)

with "%V’

%y Year (numeric, two digits) vy)
%Y Year (numeric, four digits) (yyyy)
%% Aliteral "%’

Different places in the world prefer various standards for formatting the date and time. In
the next section, we’ll look at this and how to adjust to the time zones of other regions.

Adjusting to Standards and Time Zones

There a few standards for formatting the date and time. For instance, the last day of
December and the year could be written numerically as 12-31-2014 or 31-12-2014. Which
standard you will use on a server may be based on where you’re located in the world, or
your employer and client preferences, or some other factor. To get the date format for a
particular standard, you can use GET_FORMAT(). Enter the following to try this:

SELECT GET_FORMAT(DATE, 'USA');

o m e dmmamacacaaaaaa +
| GET_FORMAT(DATE, 'USA') |
e e e e +
| %m.%d.%Y |
o e e e +

As the name implies, GET_FORMAT () checks for a particular place or locale and returns the
string that can be used in DATE_FORMAT () to produce the desired format. It might be a bit
surprising that the U.S. format uses periods instead of hyphens to separate elements of the
date. In GET_FORMAT, the first argument indicates whether you want the date, the time, or
both (i.e., DATE, TIME, or DATETIME). The second argument specifies the date or time
standard, and can be one of the following:

EUR for Europe

INTERNAL for the format in which time is stored, without punctuation
1s0 for ISO 9075 standard

J1s for Japanese Industrial Standard

USA for United States

The 150 standard (yyyy-mm-dd hh:mm:ss) is the default for displaying the date and time in
MySQL.

Enter this simple example that uses GET_FORMAT():

SELECT GET_FORMAT(DATE, 'USA'), GET_FORMAT(TIME, 'USA');

e e m e e e e e oo - e +
| GET_FORMAT(DATE, 'USA') | GET_FORMAT(TIME, 'USA') |
e e m e e e e e oo - e +
| %m.%d.%Y | %h:%i:%s %p

e e m e e e ooo o B +

Try running GET_FORMAT for various standards in order to become familiar with the
different layouts — or check the documentation. After you’ve done that, execute the
following SQL statement to see how this function works in conjunction with
DATE_FORMAT():

SELECT DATE_FORMAT (CURDATE(), GET_FORMAT(DATE, 'EUR'))
AS 'Date in Europe',

DATE_FORMAT (CURDATE(), GET_FORMAT(DATE, 'USA'))
AS 'Date in U.S.',

REPLACE (DATE_FORMAT (CURDATE(), GET_FORMAT(DATE,'USA')), '.', '-'")
AS 'Another Date in U.S.';

Fommmmmem e eeea e o Fommmmmm e e maa - R LT T, +
| Date in Europe | Date in U.S. | Another Date in U.S. |
T Fommmmmmm e e aaa - R LT +
| 18.02.2014 | ©02.18.2014 | 02-18-2014 |
T Fommmmmmeeaea - Fommm e mm e mem e aeeaaa +

Because I don’t agree that U.S. dates should use periods, the last field shows how to use

http://bit.ly/get_format

the REPLACE () function to replace the periods with dashes. GET_FORMAT () isn’t a function
you’ll use often, but it’s good to know about it. A more useful and somewhat similar
function is CONVERT_TZ().

CONVERT_TZ() converts a time to a given time zone. Before we can convert to a given time
zone, though, we need to know which time zone our server is using. We can determine this
by entering the following from the mysql client:

SHOW VARIABLES LIKE 'time_zone';

[SRS Fommmm oo +
| variable_name | Value |
[SRS Fommm e oo +
| time_zone | SYSTEM |
[SRS Fommmm oo +

This shows that my server is using the filesystem time, which is probably the same time
zone where it’s located. Suppose the server we use for our bird-watching site is located in
Boston, Massachusetts, which is in the U.S. Eastern Time Zone. If a member enters
information in the morning about a bird sighting in Rome, Italy, which is in the Central
European Time Zone, we don’t want them to see the time in Boston after they save the
entry. We would want the time adjusted for the time zone in which the bird was sighted.
Otherwise people in the United States might think that Italians often see birds during the
night and nocturnal birds such as owls during the day. So we’ll use CONVERT_TZz() to
adjust the times appropriately.

The syntax for CONVERT_TZ() requires three arguments: the date and time to convert, the
time zone from whence the time came, and the time zone to which to convert. Let’s look at
an example:

SELECT common_name AS 'Bird',

CONCAT (name_first, SPACE(1), name_last) AS 'Birdwatcher’,

DATE_FORMAT (time_seen, '%r') AS 'System Time Spotted',

DATE_FORMAT (CONVERT_TZ(time_seen, 'US/Eastern', 'Europe/Rome'), '%r')
AS 'Birder Time Spotted'

FROM bird_sightings

JOIN humans USING(human_id)

JOIN rookery.birds USING(bird_id)

JOIN rookery.conservation_status USING(conservation_status_id) LIMIT 3;

SRy, B Ry R +
| Bird | Birdwatcher |System Time Spotted| Birder Time Spotted |
Yy R R R +
Whimbrel	Richard Stringer	04:57:12 AM	10:57:12 AM
Eskimo Curlew	Elena Bokova	05:09:27 AM	11:09:27 AM
Marbled Godwit	Rusty Osborne	05:13:25 AM	11:13:25 AM
[YRS ——— L RS ——— [T RS Sp——— [Y ——— +

Notice that the time zones on the system are six hours earlier than the converted times. Of
course, this is assuming that everyone is located in the same time zone as Rome. What we
could do is add a column to the humans table to include the time zone in which the user is
located or prefers. When a user registers, we can guess at their time zone based on what
their web browser tells us or some other clever method. But then we could give the user an
option of choosing another time zone in case we guessed wrong. However you determine
and store the time zone, you would modify the preceding SQL statement to change the
time to which CONVERT_TZ() converts to that value.

Notice that the time zones we’re giving for CONVERT_TZz() are not limited to three-
character code (e.g., CET for Central European time). They’re based on the time zone

names in MySQL, which include CET. If you ran the preceding SQL statement and it
returned null values for the field containing CONVERT_TZ(), it may be because the time
zone information hasn’t been loaded. When MySQL or MariaDB are installed, on Unix-
type systems you will find the time zone files in the /usr/share/zoneinfo directory. If you
get a listing of that directory, you’ll see the names that may be used for the time zone
arguments in CONVERT_TZ(). For instance, you will see a directory named US. Within it
will be a file named Eastern. It’s from these two pieces of information that we get the
value US/Eastern. To install the time zone file, enter the following, changing the file path
to wherever the time zone files are located:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysgl -p -u root mysqgl

If your server runs on Windows, you may have to go to Oracle’s site to download time
zone tables). That web page will provide some instructions on installing the package you
download. After you’ve installed the time zone files, try the previous SQL statement again
to be sure everything was installed properly.

Rather than use the time zone where our web server happens to be located, we could use
some other time zone. We could change the time zone for the server, without having to
relocate it or change the filesystem clock. We could set the server to a more global time
zone such as Greenwich Mean Time (GMT or UTC). Because birdwatching has some
roots in England thanks to botanists like Joseph Banks and Charles Darwin, let’s use
GMT. To set the time zone, we can use the SET statement like so:

SET GLOBAL time_zone = 'GMT';

If we wanted to set only the time zone for the current session, we wouldn’t include the
GLOBAL flag. It would be better to set this value globally in the server’s configuration file
(i.e., my.cnf or my.ini) so it isn’t reset when the server is rebooted. To do that, add this line
to the [mysqld] section:

default-time-zone="'GMT'

If you use that method, instead of using SET, you’ll have to restart the server for it to take
effect. Once you’ve done that, run the SHow VARIABLES statement again to see the results.

Setting the time zone on a server, knowing the user’s time zone, and adjusting times using
CONVERT_TZ() helps the user to feel he is part of the community of a website. Otherwise,
the times shown will make the user feel like he is an outsider. So learn to use
CONVERT_TZ() so that your sites and services will be part of the global community.

http://dev.mysql.com/downloads/timezones.html

Adding and Subtracting Dates and Time

MySQL and MariaDB include several built-in functions that may be used to change a
given date or time. You can use them to change a date to a future one by adding time, or
change a date to a past one by subtracting time. The main functions that do this, or perhaps
the most popular ones, are DATE_ADD() and DATE_SUB(). The syntax for both of these is
the same: the first argument is the date to be modified and the second argument is the
amount of time. The amount of time is presented with the keyword INTERVAL, followed by
a count of intervals, followed by the date or time factor (e.g., INTERVAL 1 DAY).

Let’s look at an example using DATE_ADD(). Suppose we want to extend the membership
of all of our members who live in the United Kingdom by three months. To do this, we
would enter the following:

UPDATE humans

SET membership_expiration = DATE_ADD(membership_expiration, INTERVAL 3 MONTH)

WHERE country_id = 'uk'

AND membership_expiration > CURDATE();
In this example, we’re adding three months to the current membership_expiration, but
just for members who are in the U.K., but not f