
Bales

Beginning Oracle PL/SQL gets you started using the built-in language that every
Oracle developer and database administrator must know. Oracle Database is
chock-full of built-in application features that are free for the using, and PL/SQL is
your ticket to learning about and using those features from your own code. With
it, you can centralize business logic in the database, you can offload application
logic, and you can automate database- and application-administration tasks.

Author Don Bales provides in Beginning Oracle PL/SQL a fast-paced and
example-filled tutorial. Learn from Don’s extensive experience to discover the most
commonly used aspects of PL/SQL, without wasting time on obscure and obsolete
features. This book covers the key topics that matter, presents code examples from
real-life, and teaches how to write production-level PL/SQL.

The author takes his 20+ years of experience and a wealth of statistics he’s
gathered on PL/SQL usage over those years and applies the 80/20 rule: cover
what’s most needed and used by PL/SQL professionals and avoid what’s not
 necessary! The result is a book that covers all the key features of PL/SQL without
wasting your time discussing esoteric and obsolete parts of the language. Learn
what really matters, so that you can get to work feeling confident with what you
know about PL/SQL.

In this book, you’ll learn to:

• Write PL/SQL in both relational and object-relational settings
• Create maintainable, modular, and reusable programming units
• Build debugging and testing capabilities directly into your code
• Centralize business logic inside the database engine
• Speed performance through bulk operations and data movements
• Profile your code to isolate slow-running segments for improvement

SECOND
EDITION

RELATED

Shelve in:
Databases/Oracle

User level:
Beginning–Intermediate

SOURCE CODE ONLINE

SECOND EDITION

9 781484 207383

54499
ISBN 978-1-4842-0738-3

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Foreword���xxiii

Introduction (The Big Picture)��xxv

Chapter 1: Relational SQL■■ ��� 1

Chapter 2: Blocks, Functions, and Procedures■■ ��� 37

Chapter 3: Types, Variables, and Scope■■ �� 61

Chapter 4: Single Row Processing■■ ��� 87

Chapter 5: Multirow Processing■■ ��� 119

Chapter 6: Object-Relational SQL■■ ��� 151

Chapter 7: Troubleshooting■■ �� 197

Chapter 8: Testing■■ ��� 257

Chapter 9: Documenting■■ ��� 327

Chapter 10: Examples■■ ��� 365

Appendix A: How to Download, Install, and Use Oracle■■ �������������������������������������� 425

Index�� 447

www.Apress.com
www.ioug.org
www.ioug.org/join

xxv

Introduction (The Big Picture)

This is a book about writing stored procedures for an Oracle database. A stored procedure in this context is
a generic term for a program written in the Procedure Language extension for SQL (PL/SQL) that is stored
inside the database when it is compiled. This means that you can then execute the program from inside the
database. Why would you want to do this? Because your program will run faster inside the database.

Let’s slow down for a minute, so I can explain what a stored procedure is and why you would want to
use one.

What’s a Stored Procedure?
In order for me to talk about stored procedures, I need to cover a little material on databases and networks
first. By now, you’ve probably already seen three of the four diagrams I’m about to show you a few hundred
times, but bear with me so I can make sure everyone is on the same page as we start out.

I’m going to assume, since you’re ready to start writing programs against an Oracle database, that you
already know what a relational database management system (RDBMS) is. For our purposes, an RDBMS,
or database as I’ll refer to it from here forward, is a hardware/software machine (server) that allows us
to store, retrieve, and manipulate data in a predictable and organized manner using Structured Query
Language (SQL).

SQL acts as the interface to the database. A client program, whether it exists on the same computer or
on another, makes a connection to the database, sends a request in the form of SQL to the server, and in
return gets back structured data, as in Figure I-1.

Figure I-1.  Client-server architecture on the same host

■ Introduction (The Big Picture)

xxvi

The communication between the two processes, client and server, in Figure I-2, is much slower than the
architecture shown in Figure I-1, where IPC is used. Even with the best network hardware available,
this connection is usually 20 times slower than IPC, or worse. Plus, a second software protocol stack, to allow
the network communication, must be added to the use of resources. What’s the net result? The connection
between the two processes becomes the slowest, most time-consuming part of any application.

Nowadays, not every application can be run on a computer attached to a high-speed network. Nor can
any one machine handle all the end-user requests, so architecture has effectively stretched the bus of the
good old mainframe on to the network, and created what is commonly called n-tier architecture. In n-tier
architecture, client programs communicate with an application server, which in turn communicates with
one or more servers. You might call this Client-Server Gone Wild, but don’t hold your breath waiting for the
video. Figure I-3 is a diagram that shows an example of n-tier architecture where a notebook computer, a cell
phone, and a tablet all communicate with an application server in order to use the same application through
different devices.

A client program that utilizes Oracle on the same host computer, as in Figure I-1, is a client-server
program because it accesses a server program to perform some of the client program’s work. The
communication between the two processes, client and server, takes place through an interprocess
communication (IPC) system provided by the host operating system. This is typically done through memory.
Suffice it to say that some communication overhead takes place when communicating between the client
and the server in this fashion. This overhead takes time and operating system resources. Regardless, it’s
pretty fast.

But not everyone can run the program on the same computer, so some applications resort to the use of
client-server architecture over a network. This is what is referred to when most people use the term client-server.
Figure I-2 is a diagram that shows the communication between the client and server in a networked
client-server architecture, specifically, a client-server diagram with one network connection in between the
client (program) and server (database).

Figure I-2.  Client-server architecture over a network

■ Introduction (The Big Picture)

xxvii

Now there are three different kinds of clients, with three different kinds of networks, using
networked client-server architecture to communicate with an application server, which in turn uses networked
client-server architecture to communicate with a database. Is this complex? Yes, but it’s still just
networked client-server architecture. Of course, this means that all the various networks involved conspire
to slow down the response time of the application!

With the network being a bottleneck for any networked application, if we can perform some of our
application’s computer processing without using the network at all, that portion will simply run faster. With
that in mind, examine Figure I-4. It’s a diagram that shows how a stored procedure exists inside the database.
Therefore, any computer processing that take place will occur inside the database before data is even sent to
a client program, regardless of what type of client-server communication is used. In turn, that portion of the
application will simply be more efficient and run faster.

Figure I-3.  N-tier architecture over a network

■ Introduction (The Big Picture)

xxviii

So what’s a stored procedure? In Figure I-4, it’s the box labeled “Program” that exists inside the
database. So a stored procedure is a program that resides inside an Oracle database that manipulates data in
the database before the data is used outside the database.

Why Use Stored Procedures?
Why use stored procedures? Well, I’ve already touched on that, haven’t I? Here are my favorite reasons to use
stored procedures:

They eliminate the net in work.

They allow you to more accurately model the real world in your database.

They provide you with access to functionality that is not available through the
standard database interface: SQL.

First, as I already stated in the previous section, using stored procedures allows you to eliminate the
network from your data processing work. I can’t emphasize this fact enough. If you write a Java Database
Connectivity (JDBC) program that retrieves one million rows from the database, then queries the database
for three related pieces of information, and then conditionally updates the retrieved rows, it can take days in
Java; it will take only minutes inside Oracle using PL/SQL. That’s a huge difference in performance. I often
like to say, “The difference between any fast and slow application is that the fast application uses stored
procedures.”

Second, we basically use computers to automate what we do in the real world. Most people use
databases to store only the characteristics of the real world, completely ignoring the behavior. Instead,
behavior is temporarily kept in the code base for an application. If a change in the code is required, past
behavior is lost forever. Yet no one would think of throwing away the data! What’s going on here? Is the
history of behavior unimportant or are we ignorant of the problem? I argue it’s the latter. If you want to
save both real-world characteristics and behavior, stored procedures allow you to do just that in either a
pseudo-object-oriented or a truly object-oriented manner.

Finally, the standard database interface, SQL, is great, but its use is limited to four operations: insert,
update, delete, and select. With stored procedures, you have unlimited possibilities. You are free to create
as many new operations as are needed to satisfy requirements. The important point here is to perform work
where it is done most efficiently. Presentation code should reside in the presentation layer, application code
should reside in the application layer (the application server), and persistence code, like entity behavior,
should reside in the persistence layer (the database).

Figure I-4.  A stored procedure resides inside an Oracle database

■ Introduction (The Big Picture)

xxix

Using PL/SQL, you can write stored procedures for the following:

Data processing

Data migration

Data warehousing

Entity behavior, including so-called business rules

Interfaces

Reports

Service-oriented-architecture routines

Now that you know the what and the why of stored procedures, are you still interested in learning
PL/SQL? If so, then please read the next section, where I will tell you what this book is about, how I’m going
to teach you PL/SQL, and why.

What’s This Book About?
This book is not a reference. It’s an immersion-based tutorial that teaches you how to program in PL/SQL by
making you mimic successful PL/SQL programming.

Do you know that you have free access to outstanding reference materials directly from Oracle? If you
download and install the database on your computer, these reference manuals will be accessible from
the installation. Or you can download just the manuals to your computer. Oracle has always had superior
technical documentation. I believe that has played a huge part in Oracle’s success as a company and a
product. Free access to Oracle’s documentation and software for trial purposes has removed any barriers
from anyone learning how to use Oracle.

How I’m Going to Teach You and Why
What do I mean by “an immersion-based tutorial?” I’m going to require you to read each and every program
listing as part of the learning process. I’m going to start showing you program listings right away. Most
listings will be complete contexts. By that, I mean there will be a lot of code in them that I have not yet
discussed. I do this because I want you to get used to looking at the code and where things belong in the
code from the get-go. Concentrate on the subject of the section and ignore the rest.

Whenever possible, I’m going to ask you to do an exercise that will make you think about and apply
what I’ve just covered in the section. You should almost always be able to mimic (or copy and change) code
that I’ve shown you before the exercise. I’m going to ask you to program all along. And the next section will
often be dependent on you completing a prior exercise, so there’s no skipping an exercise.

Why am I making you look at code, then read code, then try to understand my code, and then ask you to
prove you understand my code by having you write code? For several reasons:

You didn’t learn how to speak by having those around you discuss the merits and •	
drawbacks of various languages you might want to speak. You learned by mimicking
those who spoke.

You didn’t learn how to read by talking about reading. You learned by reading.•	

■ Introduction (The Big Picture)

xxx

You don’t learn a new language by reading about it. You need to speak it and then •	
write it.

You don’t learn a new concept by reading about it. You must do your homework, where •	
you actually use it.

So, how can you read a reference and be ready to solve business problems using a programming
language? You can’t. In the beginning, you must learn by mimicking someone else’s work (hopefully,
good examples)—something that someone has done before you. Then later, using your own creativity, you
expand upon your basic knowledge with a reference.

But there’s more to learning PL/SQL than just coding. I’m going to teach you good programming habits,
such as these:

Document as you go.

Leave bread crumbs.

Keep it simple for the next person’s sake.

Make it obvious by using prefixes or suffixes when it helps.

Make it obvious by using a coding style and sticking to it; consistency is
important.

Make it obvious by adding comments to your code when it’s not obvious.

Prepare for disaster ahead of time.

Prepare for testing ahead of time.

And finally, here are my assumptions:

You’ve programmed in another programming language, so you already know the
difference between a function and a procedure.

You already know SQL.

I’m going to get you started down the right path, not tell you everything about PL/SQL. Your time
is precious, so I’m not going to tell you anything that you don’t need to know to get started (except for
an occasional joke, or perhaps, my poor attempt at one). You may find my style terse. To me, that’s a
compliment.

This is not Oracle PL/SQL for Dummies. Remember that the examples are shown in a full-blown
context. Pay attention to the subject; ignore the rest. You can do it!

What PL/SQL Am I Going to Teach You?
What am I going to teach you? Succinctly, how to get you, a programmer, from a novice to professional
PL/SQL programmer in ten chapters.” I’ve spent 25 years hiring programmers and then teaching them how
to code properly, the past 15 years focusing on how to code in PL/SQL. In this book, I will apply the 80/20
rule in order to teach you the fundamentals of PL/SQL programming without bogging you down in the
ever-so-increasing details.

As a scientist, I gather data about what I do all the time, so I have statistics about all the stored
procedures that I and others have written since Oracle 7 became a production product. From these statistics,
I’ve learned what’s used often and not at all. In this book, I intend to touch on anything that is used 25% or
more of the time when writing stored procedures.

Here, I’d like to share some interesting fun facts derived from over 30,000 stored procedures.

■ Introduction (The Big Picture)

xxxi

PL/SQL Pie, Anyone?
Figure I-5 shows that on average, only 31% of a stored procedure is actually logic. The rest is declaration,
built-ins, and SQL. SQL makes up a whopping 26%. So if you don’t know SQL, you’re already behind the
eight ball when you start to learn how to write stored procedures using PL/SQL.

Figure I-5.  What is a PL/SQL stored procedure composed of ?

SQL, SQL, SQL!
The pretty little histogram in Figure I-6 shows the SQL keywords that are used in 25% or more of all stored
procedures. So I need to start out with a SQL refresher for those of you who say you know SQL, but don’t
actually have much SQL experience. After all, I want you to buy this book and then go back and buy
Beginning Oracle SQL, right?

Figure I-6.  SQL keywords used in 25% or more of all stored procedures

■ Introduction (The Big Picture)

xxxii

What About Those Declarations?
Figure I-7 shows the PL/SQL declaration keywords that are used in 25% or more of all stored procedures.
Why teach any more than these to a beginner?

And How About Those Built-ins?
Figure I-8 shows the PL/SQL built-ins (functions and procedures that are part of the language) that are used
in 25% or more of all stored procedures. Why teach any more than these to a beginner?

Figure I-7.  PL/SQL declaration keywords that are used in 25% or more of all stored procedures

■ Introduction (The Big Picture)

xxxiii

Figure I-8.  PL/SQL built-ins that are used in 25% or more of all stored procedures

Figure I-9.  PL/SQL logic keywords that are used in 25% or more of all stored procedures

What Exactly Am I Supposed to Be Doing?
And last, but certainly not least, the histogram in Figure I-9 shows the PL/SQL keywords that are used in
25% or more of all stored procedures. The list isn’t that large, so introducing these as we go will ease you right
into coding logic.

■ Introduction (The Big Picture)

xxxiv

In What Order Am I Going to Teach You PL/SQL?
First, I’m going to help you review your knowledge of SQL. If you don’t understand something in Chapter 1,
go buy the Apress book on SQL, as I mentioned earlier, then continue.

Next, I’m going to teach you the basic structure of every PL/SQL program unit type. I’ll show you
each program unit type. Concentrate on understanding PL/SQL block structure, and you’ll be OK. Try to
understand all the stuff I show you and don’t discuss, and you’ll be totally lost. Remember to focus on the
subject being discussed. If you were mining for gold, you wouldn’t stop and examine every grain of dirt, rock,
and sand you encountered along the way; you would concentrate on the gold. So concentrate on the gold!

Assuming you understand block structure, the next chapter discusses the use of memory. Basically,
it covers data types and variable declarations. You’re a programmer, so there should be nothing really
mind-boggling and new for you in this chapter, except maybe NULL.

The next topic is the singleton SQL statement. Whether it’s a select, an insert, an update, or a delete, a
singleton should always return one result. So what happens when it doesn’t? Read Chapter 4 to find out!

From singletons to multitons? Something isn’t right here. Anyway, Chapter 5 will cover the use of
cursors. Cursors allow you to retrieve multiple rows from a database, one row at a time. At this point, you’ll
have coded a couple stored procedures.

In Chapter 6, you’re going to learn to model an entity just as it exists in the real world. You’ll be introduced
to object-relational technology. And then you can decide which way to go: relational or object-relational.

Chapter 7 is about troubleshooting. It’s always nice to know how to find an insect in your program. I’ll
also show you how to prevent insects in the first place. Oh yeah, did I tell you that I like to call defects defects,
not bugs?

Professional programmers create programs with few defects. How do they do that? By testing. Chapter 8
is about automating the testing of your PL/SQL program units. Low error rates mean higher paychecks, too.
So don’t skip Chapter 8.

Concerning object-oriented development, it allows you to build reusable components, but reusable
components are only valuable if you provide others with documentation, so they know the components exist
and how they can use them! Professional programmers document as they go! That's what Chapter 9 is all about.

And finally, I’ll tell you how use polymorphism to create reusable packages. I'll show you the
polymorphic patterns I used for years to more quickly solve previously encountered business problems.

OK, I was lying about that “finally.” The book’s appendix explains how to acquire and install Oracle
RDBMS, and how to use SQL*Plus for PL/SQL programming, in case you really don’t have any experience
with SQL before you start with PL/SQL (I knew it).

If you have access to an Oracle database where you can create objects like tables, indexes, types, and
stored procedures, then you’re ready to dive right in to Chapter 1. Otherwise, you may want to flip to the
appendix, which tells you how to download and install a trial version of Oracle.

Good skill!

http://dx.doi.org/10.1007/9781484207383_1
http://dx.doi.org/10.1007/9781484207383_4
http://dx.doi.org/10.1007/9781484207383_5
http://dx.doi.org/10.1007/9781484207383_6
http://dx.doi.org/10.1007/9781484207383_7
http://dx.doi.org/10.1007/9781484207383_8
http://dx.doi.org/10.1007/9781484207383_8
http://dx.doi.org/10.1007/9781484207383_9
http://dx.doi.org/10.1007/9781484207383_1

1

Chapter 1

Relational SQL

The question is, “Where do I start?” In the beginning, Codd created the paper “A Relational Model of Data
for Large Shared Data Banks.” Now the relational database was formless and empty, darkness was over
the surface of the media, and the spirit of Codd was hovering over the requirements. Codd said, “Let there
be Alpha,” but as usual, the development team said, “Let there be something else,” so SEQUEL (SQL) was
created. Codd saw that SQL wasn’t what he had in mind, but it was too late, for the Ellison separated the
darkness from the SQL and called it Oracle. OK, that’s enough of that silliness. But that’s the short of it.

Did you know that about 25% of the average stored procedures written in the Procedural Language
for SQL (PL/SQL) is, in fact, just SQL? Well, I’m a metrics junkie. I’ve kept statistics on every program I’ve
ever written, and that’s the statistic. After writing more than 30,000 stored procedures, 26% of my PL/SQL is
nothing but SQL. So it’s really important for you to know SQL!

OK, maybe you don’t know SQL that well after all. If not, continue reading this light-speed refresher
on relational SQL. Otherwise, move on to the exercises in the last section of the chapter (“Your Working
Example”).

This chapter covers Data Definition Language (DDL) and Data Manipulation Language (DML), from
table creation to queries. Please keep in mind that this chapter is not a tutorial on SQL. It’s simply a review.
SQL is a large topic that can be covered fully only with several books. What I’m trying to accomplish here is
to help you determine how familiar you are with SQL, so you’ll be able to decide whether you need to spend
some additional time learning SQL after or while you learn PL/SQL.

Tables
The core idea behind a relational database and SQL is so simple it’s elusive. Take a look at Tables 1-1 and 1-2.

Table 1-1.  Relational Database Geniuses (Authors)

ID Name Born Gender

100 Edgar F Codd 1923 Male

200 Chris J Date 1941 Male

300 Hugh Darwen 1943 Male

Chapter 1 ■ Relational SQL

2

You can find which publications were written by each genius simply by using the common datum in
both of these tables: the ID. If you look at Codd’s data in Table 1-1, you see he has ID 100. Next, if you look at
ID 100’s (Codd’s) data in Table 1-2, you see he has written two titles:

A Relational Model of Data for Large Shared Data Banks (1970)•	

The Relational Model for Database Management (1990)•	

These two tables have a relationship, because they share an ID column with the same values. They
don’t have many entries, so figuring out what was written by each author is pretty easy. But what would you
do if there were, say, one million authors with about three publications each? Yes! It’s time for a computer
and a database—a relational database.

A relational database allows you to store multiple tables, like Tables 1-1 and 1-2, in a database
management system (DBMS). By doing so, you can manipulate the data in the tables using a query language
on a computer, instead of a pencil on a sheet of paper. The current query language of choice is Structured
Query Language (SQL). SQL is a set of nonprocedural commands, or language if you will, which you can use
to manipulate the data in tables in a relational database management system (RDBMS).

A table in a relational database is a logical definition for how data is to be organized when it is stored.
For example, in Table 1-3, I decided to order the columns of the database genius data just as it appeared
horizontally in Table 1-1.

Table 1-2.  Relational Genius’s Publications (Author Publications)

ID Author ID Title Written

10 100 A Relational Model of Data for Large Shared Data Banks 1970

20 100 The Relational Model for Database Management 1990

30 200 An Introduction to Database Systems 2003

40 200 The Third Manifesto 2000

50 200 Temporal Data and the Relational Model 2002

60 200 Database in Depth: Relational Theory for Practitioners 2005

70 300 The Third Manifesto 2000

80 300 Temporal Data and the Relational Model 2002

Table 1-3.  A Table Definition for Table 1-1

Column Number Column Name Data Type

1 ID Number

2 Name Character

3 Birth Date Date

4 Gender Character

Perhaps I could give the relational table defined in Table 1-3 the name geniuses? In practice, a name
like that tends to be too specific. It’s better to find a more general name, like authors or persons. So how do
you document your database design decisions?

Chapter 1 ■ Relational SQL

3

An Entity-Relationship Diagram
Just as home builders have an architectural diagram or blueprint, which enables them to communicate
clearly and objectively about what they are going to build, so do relational database builders. In our case,
the architectural diagram is called an entity-relationship diagram (ERD).

Figure 1-1 is an ERD for the tables shown in Tables 1-1 and 1-2, now named authors and
author_publications. It shows that one author may have zero or more publications. Additionally, it shows
that an author’s ID is his primary key (PK), or unique way to identify him, and an author’s primary key is
also used to identify his publications.

ERDs, like blueprints, may have varying levels of detail, depending on your audience. For example, to
simplify the ERD in Figure 1-1, I’ve left out the data types.

In an ERD, the tables are called entities. The lines that connect the tables—I mean entities—are called
relations. So given an ERD, or even a narrative documentation as in Table 1-3, you can write a script to create
a table.

Data Definition Language (DDL)
To create the authors table, as defined in Table 1-3, in Oracle, you’ll need to create a SQL script
(for SQL*Plus) that in SQL jargon is called Data Definition Language. That is, it’s SQL for defining the
relational database. Listing 1-1 shows the authors table’s DDL.

Listing 1-1.  DDL for Creating the Author Table, authors.tab

1 CREATE TABLE authors (
2 id number(38),
3 name varchar2(100),
4 birth_date date,
5 gender varchar2(30));
 

The syntax for the CREATE TABLE statement used in Listing 1-1 is as follows:
 
CREATE TABLE <table_name> (
<column_name_1> <data_type_1>,
<column_name_2> <data_type_2>,
<column_name_N> <data_type_N>);
 
where <table_name> is the name of the table, <column_name> is the name of a column, and <data_type> is
one of the Oracle data types.

AUTHORS

PK id

name
birth_date
gender

AUTHOR_PUBLICATIONS

FK 1 author_id

PK id

title
written_date

Figure 1-1.  An entity-relationship diagram for the authors and author publications tables

Chapter 1 ■ Relational SQL

4

The following are the Oracle data types you’ll use most often:

•	 VARCHAR2: Allows you to store up to 32,767 bytes (4,000 in versions prior to 12c) ,
data like ABCD..., in a column. You must define the maximum number of characters
(or constrain the number of characters) by specifying the desired number in
parentheses after the keyword VARCHAR2. For example, in Listing 1-1, line 3 specifies
varchar2(100), which means a name can be up to 100 characters in length.

•	 NUMBER: Allows you to store a decimal number with 38 digits of precision. You do not
need to constrain the size of a number, but you can. You can specify the maximum
number of digits (1, 2, 3, 4 . . .) to the left of a decimal point, followed by a comma (,),
and optionally the maximum number of decimal digits to the right of the decimal
point, by specifying the desired constraint in parentheses after the keyword NUMBER.
For example, if you want to make sure that the id column in Listing 1-1, line 2 is an
integer, you could specify number(38).

•	 DATE: Allows you to store a date and time value. One great thing about Oracle DATE
types is that they allow you to easily perform time calculations between dates;
just subtract an earlier date from a later date. In addition, it’s also easy to convert
between VARCHAR2 and DATE values. For example, if you want to store the date and
time of birth for someone born on January 1, 1980 at 8 a.m., you could use the Oracle
to_date() function to convert a VARCHAR2 value in a proper format into a DATE data
type as follows: to_date('19800101080000', 'YYYYMMDDHH24MISS').

Of course, there are other Oracle data types, but you’ll end up using VARCHAR2, NUMBER, and DATE most of
the time. The rest are specialized versions of these three, or they are designed for specialized uses.

It’s Your Turn to Create a Table
OK, it’s time to stop reading and start doing. This section gives you chance to put into practice some of what
you’ve learned so far. I’ll be asking you to perform exercises like this as we go along in order for you to verify
that you understood what you just read well enough to put it into practice.

Tip■■   First, if you don’t have access to Oracle, see this book’s appendix. Second, create a directory for the
book’s source code listings. Next, download the source code listings from the Source Code/Download section
of the Apress web site (www.apress.com), and work within the book’s source code listing directory structure
for each chapter. Add your source code listings to the book’s directory structure as you work. Last, create
a shortcut, an icon, or whatever you want to call it, to start SQL*Plus from your working source code listing
directory. Then you won’t need to specify the entire path when trying to execute your scripts in SQL*Plus.

To create the author_publications table, follow these steps.

	 1.	 Start your Oracle database if it’s not already running.

	 2.	 Start SQL*Plus, logging in as username RPS with password RPS.

	 3.	 Open your favorite text editor.

	 4.	 Write a DDL script to create a table for author_publications, as in Table 1-2.

http://www.apress.com/

Chapter 1 ■ Relational SQL

5

	 5.	 Save the DDL script with the same filename as your table name,
but with a .tab extension.

	 6.	 Execute your script in SQL*Plus by typing an at sign (@) followed by the filename
at the SQL> prompt.

If you didn’t have any errors in your script, the table will now exist in the database, just waiting for you
to populate it with data. If it didn’t work, try to make some sense out of the error message(s) you got, correct
your script, and then try again.

Listing 1-2 is my try.

Listing 1-2.  DDL for Creating the Publication Table, author_publications.tab

1 CREATE TABLE author_publications (
2 id number(38),
3 title varchar2(100),
4 written_date date);
 

Now you know how to create a table, but what if you put a lot of data in those two tables? Then
accessing them will be very slow, because none of the columns in the tables are indexed.

Indexes
Imagine, if you will, that a new phone book shows up on your doorstep. You put it in the drawer and throw
out the old one. You pull the phone book out on Saturday evening so you can order some pizza, but when
you open it, you get confused. Why? Well, when they printed the last set of phone books, including yours,
they forgot to sort it by last name, first name, and street address. Instead, it’s not sorted at all! The numbers
show up the way they were put into the directory over the years—a complete mess.

You want that pizza! So you start at the beginning of the phone book, reading every last name, first
name, and address until you finally find your local pizza place. Too bad it was closed by the time you found
the phone number! If only that phone book had been sorted, or properly indexed.

Without an index to search on, you had to read through the entire phone book to make sure you got the
right pizza place phone number. Well, the same holds true for the tables you create in a relational database.

You need to carefully analyze how data will be queried from each table, and then create an appropriate
set of indexes. You don’t want to index everything, because that would unnecessarily slow down the process
of inserting, updating, and deleting data. That’s why I said “carefully.”

DDL Again
You should (must, in my opinion) create a unique index on each table’s primary key column(s)—you know,
the one that uniquely identifies entries in the table. In the authors table, that column is id. However, you
will create a unique index on the id column when we talk about constraints in the next section. Instead, let’s
create a unique index on the name, birth_date, and gender columns of the authors table. Listing 1-3 shows
the example.

Listing 1-3.  DDL for Creating an Index on the Author Table, authors_uk1.ndx.

1 CREATE UNIQUE INDEX authors_uk1
2 on authors (
3 name,
4 birth_date,
5 gender);
 

Chapter 1 ■ Relational SQL

6

The syntax for the CREATE INDEX statement is as follows:
 
CREATE [UNIQUE] INDEX <index_name>
on <table_name> (
<column_name_1>,
<column_name_2>,
<column_name_N>);
 
where <index_name> is the name of the index, <table_name> is the name of the table, and <column_name>
is the name of a column. The keyword UNIQUE is optional, as denoted by the brackets ([]) around it. It just
means that the database must check to make sure that the column’s combination of the values is unique
within the table. Unique indexes are old-fashioned; now it’s more common to see a unique constraint, which
I’ll discuss shortly.

It’s Your Turn to Create an Index
OK, it’s time to stop listening to me talk about indexes, and time for you to start creating one. Here’s the drill.

	 1.	 Write a DDL script to create a non-unique index on the author_publications table.

	 2.	 Save the DDL script with the same file name as your index name, but with an
.ndx extension.

	 3.	 Execute your script in SQL*Plus by typing an at sign (@) followed by the file name
at the SQL> prompt.

You should now have a non-unique index in the database, just waiting for you to query against it. If not,
try to make some sense out of the error message(s) you got, correct your script, and then try again.

My shot at this is shown in Listing 1-4.

Listing 1-4.  DDL for Creating an Index on the Title Column in the Publication Table,
author_publications_k1.ndx

1 CREATE INDEX author_publications_k1
2 on author_publications (
3 title);
 

Now you know how to create a table and an index or two, to make accessing it efficient, but what
prevents someone from entering bad data? Well, that’s what constrains are for.

Constraints
Constraints are rules for a table and its columns that constrain how and what data can be inserted, updated,
or deleted. Constraints are available for both columns and tables.

Column Constraints
Columns may have rules that define what list of values or what kind of values may be entered into them.
Although there are several types of column constraints, the one you will undoubtedly use most often is NOT
NULL. The NOT NULL constraint simply means that a column must have a value. It can’t be unknown, or blank,
or in SQL jargon, NULL. Listing 1-5 shows the authors table script updated with NOT NULL constraints on the
id and name columns.

Chapter 1 ■ Relational SQL

7

Listing 1-5.  DDL for Creating the Authors Table with NOT NULL Column Constraints, authors.tab

1 CREATE TABLE authors (
2 id number(38) not null,
3 name varchar2(100) not null,
4 birth_date date,
5 gender varchar2(30));
 

Now if you try to insert data into the authors table, but don’t supply values for the id or name column,
the database will respond with an error message.

Table Constraints
Tables may have rules that enforce uniqueness of column values and the validity of relationships to other
rows in other tables. Once again, although there are many forms of table constraints, I’ll discuss only three
here: unique key, primary key, and foreign key.

Unique Key Constraint
A unique key constraint (UKC) is a rule against one or more columns of a table that requires their
combination of values to be unique for a row within the table. Columns in a unique index or unique
constraint may be NULL, but that is not true for columns in a primary key constraint.

As an example, if I were going to create a unique key constraint against the authors table columns name,
birth_date, and gender, the DDL to do that would look something like Listing 1-6.

Listing 1-6.  DDL for Creating a Unique Constraint Against the Author Table, authors_uk1.ukc

1 ALTER TABLE authors ADD
2 CONSTRAINT authors_uk1
3 UNIQUE (
4 name,
5 birth_date,
6 gender);

Primary Key Constraint
A primary key constraint (PKC) is a rule against one or more columns of a table that requires their
combination of values to be unique for a row within the table. Although similar to a unique key, one big
difference is that the unique key called the primary key is acknowledged to be the primary key, or primary
index, of the table, and may not have NULL values. Semantics, right? No, not really, as you’ll see when I talk
about foreign keys in the next section.

You should have a primary key constraint defined for every table in your database. I say “should,”
because it isn’t mandatory, but it’s a really good idea. Listing 1-7 shows the DDL to create a primary key
constraint against the authors table.

Listing 1-7.  DDL to Create a Primary Key Constraint Against the Authors Table, authors_pk.pkc

1 ALTER TABLE authors ADD
2 CONSTRAINT authors_pk
3 primary key (
4 id);
 

Chapter 1 ■ Relational SQL

8

The syntax used in Listing 1-7 for creating a primary key constraint is as follows:
 
ALTER TABLE <table_name> ADD
CONSTRAINT <constraint_name>
PRIMARY KEY (
<column_name_1>,
<column_name_2>,...
<column_name_N>);
 
where <table_name> is the name of the table, <constraint_name> is the name of the primary key constraint,
and <column_name> is a column to use in the constraint.

Now that you have a primary key defined on the authors table, you can point to it from the
author_publications table.

Foreign Key Constraint
A foreign key is one or more columns from another table that point to, or are connected to, the primary key
of the first table. Since primary keys are defined using primary key constraints, it follows that foreign keys are
defined with foreign key constraints (FKC). However, a foreign key constraint is defined against a dependent,
or child, table.

So what’s a dependent or child table? Well, in this example, you know that the author_publications
table is dependent on, or points to, the authors table. So you need to define a foreign key constraint against
the author_publications table, not the authors table. The foreign key constraint is represented by the
relation (line with crow’s feet) in the ERD in Figure 1-1.

Listing 1-8 shows the DDL to create a foreign key constraint against the author_publications table that
defines its relationship with the authors table in the database.

Listing 1-8.  DDL for Creating a Foreign Key Constraint Against the Author Publications Table,
author_publications_fk1.fkc

1 ALTER TABLE author_publications ADD
2 CONSTRAINT author_publications_fk1
3 FOREIGN KEY (author_id)
4 REFERENCES authors (id);
 

The syntax used in Listing 1-8 for creating a foreign key constraint is as follows:
 
ALTER TABLE <table_name> ADD
CONSTRAINT <constraint_name>
FOREIGN KEY (
<column_name_1>,
<column_name_2>,...
<column_name_N>)
REFERENCES <referenced_table_name> (
<column_name_1>,
<column_name_2>,...
<column_name_N>);
 
where <table_name> is the name of the table to be constrained, <constraint_name> is the name of the
foreign key constraint, <referenced_table_name> is the name of the table to be referenced (or pointed to),
and <column_name> is a column that is both part of the referenced table’s key and corresponds to a column
with the same value in the child or dependent table.

Chapter 1 ■ Relational SQL

9

Now that you have a foreign key defined on the author_publications table, you can no longer delete
a referenced row in the authors table. Or, put another way, you can’t have any parentless children in the
author_publications table. That’s why the primary and foreign key constraints in SQL jargon are called
referential integrity constraints. They ensure the integrity of the relational references between rows in related
tables. In addition, it is a best practice to always create an index on a foreign key column or columns.

It’s Your Turn to Create a Constraint
It’s time to put you to work creating a primary key constraint against the author_publications table.

	 1.	 Write a DDL script to create a primary key constraint against the
author_publications table.

	 2.	 Save the DDL script with the same file name as your constraint name, but with a
.pkc extension.

	 3.	 Execute your script in SQL*Plus by typing an at sign (@) followed by the file name
at the SQL> prompt.

The primary key constraint should now exist against the author_publications table in the database,
just waiting for you to slip up and try putting in a duplicate row. Otherwise, try to make some sense out of the
error message(s) you got, correct your script, and then try again.

My version of a DDL script to create a primary key constraint against the author_publications table is
shown in Listing 1-9.

Listing 1-9.  DDL for Creating a Primary Key Constraint Against the Author Publications Table,
author_publications_pk.pkc

1 ALTER TABLE author_publications ADD
2 CONSTRAINT author_publications_pk
3 PRIMARY KEY (
4 id);
 

Now you know how to create a table along with any required indexes and constraints, but what do you
do if you need a really complex constraint? Or, what if you need other actions to be triggered when a row or
column in a table is inserted, updated, or deleted? Well, that’s the purpose of triggers.

Triggers
Triggers are PL/SQL programs that are set up to execute in response to a particular event on a table in the
database. The events in question can take place FOR EACH ROW or for a SQL statement, so I call them
row-level or statement-level triggers.

The actual events associated with triggers can take place BEFORE, AFTER, or INSTEAD OF an INSERT, an
UPDATE, or a DELETE SQL statement. Accordingly, you can create triggers for any of the events in Table 1-4.

Chapter 1 ■ Relational SQL

10

So let’s say we want to play a practical joke. Are you with me here? We don’t want anyone to ever be able
to add the name Jonathan Gennick (my editor, who is actually a genius in his own right, but it’s fun to mess
with him) to the list of database geniuses. Listing 1-10 shows a trigger created to prevent such an erroneous
thing from happening.

Listing 1-10.  A Trigger Against the Authors Table, authors_bir.trg

01 CREATE OR REPLACE TRIGGER authors_bir
02 BEFORE INSERT ON authors
03 FOR EACH ROW
04
05 BEGIN
06 if upper(:new.name) = 'JONATHAN GENNICK' then
07 raise_application_error(20000, 'Sorry, that genius is not allowed.');
08 end if;
09 END;
10 /
 

Table 1-4.  Possible Trigger Events Against a Table

Event SQL Level

BEFORE DELETE FOR EACH ROW

BEFORE DELETE

BEFORE INSERT FOR EACH ROW

BEFORE INSERT

BEFORE UPDATE FOR EACH ROW

BEFORE UPDATE

AFTER DELETE FOR EACH ROW

AFTER DELETE

AFTER INSERT FOR EACH ROW

AFTER INSERT

AFTER UPDATE FOR EACH ROW

AFTER UPDATE

INSTEAD OF DELETE FOR EACH ROW

INSTEAD OF DELETE

INSTEAD OF INSERT FOR EACH ROW

INSTEAD OF INSERT

INSTEAD OF UPDATE FOR EACH ROW

INSTEAD OF UPDATE

Chapter 1 ■ Relational SQL

11

The syntax used in Listing 1-10 is as follows:
 
CREATE [OR REPLACE] TRIGGER <trigger_name>
BEFORE INSERT ON <table_name>
FOR EACH ROW
BEGIN
 <pl/sql>
END;
 
where <trigger_name> is the name of the trigger, <table_name> is the name of the table for which you’re
creating the trigger, and <pl/sql> is the PL/SQL program you’ve written to be executed BEFORE someone
INSERTs EACH ROW. The brackets ([]) around the OR REPLACE keyword denote that it is optional. The OR
REPLACE clause will allow you to re-create your trigger if it already exists.

Views
A view represents the definition of a SQL query (SELECT statement) as though it were just another table in the
database. Hence, you can INSERT into and UPDATE, DELETE, and SELECT from a view just as you can any table.
(There are some restrictions on updating a view, but they can be resolved by the use of INSTEAD OF triggers.)

Here are just a few of the uses of views:

Transform the data from multiple tables into what appears to be one table.•	

Nest multiple outer joins against different tables, which is not possible in a single •	
SELECT statement.

Implement a seamless layer of user-defined security against tables and columns.•	

Let’s say you want to create a view that combines the authors and author_publications tables so it’s
easier for a novice SQL*Plus user to write a report about the publications written by each author. Listing 1-11
shows the DDL to create a view that contains the required SQL SELECT statement.

Listing 1-11.  DDL to Create an Authors Publications View, authors_publications.vw

1 CREATE OR REPLACE VIEW authors_publications as
2 SELECT authors.id,
3 authors.name,
4 author_publications.title,
5 author_publications.written_date
6 FROM authors,
7 author_publications
8 WHERE authors.id = author_publications.author_id;
 

The syntax for the CREATE VIEW statement used in Listing 1-11 is as follows:

CREATE [OR REPLACE] VIEW <view_name> AS
<sql_select_statement>;

where <view_name> is the name of the view (the name that will be used in other SQL statements as though
it’s a table name), and <sql_select_statement> is a SQL SELECT statement against one or more tables in
the database. Once again, the brackets around the OR REPLACE clause denote that it is optional. Using OR
REPLACE also preserves any privileges (grants) that exist on a view.

Chapter 1 ■ Relational SQL

12

That does it for your DDL review. Now let’s move on to the SQL for manipulating data—SQL keywords
like INSERT, UPDATE, DELETE, and SELECT.

Insert
At this point in your journey, you should have two tables—authors and author_publications—created in
your Oracle database. Now it’s time to put some data in them. You do that by using the SQL keyword INSERT.

INSERT is one of the SQL keywords that are part of SQL’s Data Manipulation Language. As the term
implies, DML allows you to manipulate data in your relational database. Let’s start with the first form of an
INSERT statement, INSERT...VALUES.

Insert . . .Values
First, let’s add Codd’s entry to the authors table. Listing 1-12 is a DML INSERT statement that uses a VALUES
clause to do just that.

Listing 1-12.  DML to Insert Codd’s Entry into the Authors Table, authors_100.ins

01 INSERT INTO authors (
02 id,
03 name,
04 birth_date,
05 gender)
06 VALUES (
07 100,
08 'Edgar F Codd',
09 to_date('19230823', 'YYYYMMDD'),
10 'MALE');
11 COMMIT;
 

The syntax for the INSERT VALUES statement used in Listing 1-12 is as follows:
 
INSERT INTO <table_name> (
 <column_name_1>,
 <column_name_2>, ...
 <column_name_N>)
VALUES (
 <column_value_1>,
 <column_value_2>,...
 <column_value_N>);
 
where <table_name> is the name of the table you wish to INSERT VALUES INTO, <column_name> is one of the
columns from the table into which you wish to insert a value, and <column_value> is the value to place into
the corresponding column. The COMMIT statement that follows the INSERT VALUES statement in Listing 1-12
simply commits your inserted values in the database.

Chapter 1 ■ Relational SQL

13

So let’s break down Listing 1-12 and look at what it does:

Line 1 specifies the table to insert values into: •	 authors.

Lines 2 through 5 list the columns in which to insert data.•	

Line 6 specifies the •	 VALUES syntax.

Lines 7 through 10 supply values to insert into corresponding columns •	
in the list on lines 2 through 5.

Line 11 commits the •	 INSERT statement.

It’s Your Turn to Insert with Values
Insert the entries for Codd’s publications into the author_publications table. Here are the steps to follow.

	 1.	 If you haven’t actually executed the scripts for the authors table yet, you need to
do so now. The files are authors.tab, authors_uk1.ndx, authors_pk.pkc, and
authors_100.ins. Execute them in that order.

	 2.	 Write a DML script to insert Codd’s two publications from Table 1-2.
(Hint: Use January 1 for the month and day of the written date, since you
don’t know those values.)

	 3.	 Save the DML script with the same file name as your table name, but with a _100
suffix and an .ins extension.

	 4.	 Execute your script in SQL*Plus by typing an at sign (@) followed by the file name
at the SQL> prompt.

The author_publications table should now have two rows in it—congratulations! If it didn’t work, try
to make some sense out of the error message(s) you got, correct your script, and then try again.

Listing 1-13 shows how I would insert the publications into the table.

Listing 1-13.  DML for Inserting Codd’s Publications, author_publications_100.ins

01 INSERT INTO author_publications (
02 id,
03 author_id,
04 title,
05 written_date)
06 VALUES (
07 10,
08 100,
09 'A Relation Model of Data for Large Shared Data Banks',
10 to_date('19700101', 'YYYYMMDD'));
11
12 INSERT INTO author_publications (
13 id,
14 author_id,
15 title,
16 written_date)

Chapter 1 ■ Relational SQL

14

17 VALUES (
18 20,
19 100,
20 'The Relational Model for Database Management',
21 to_date('19900101', 'YYYYMMDD'));
22
23 COMMIT;
24
25 execute SYS.DBMS_STATS.gather_table_stats(USER, 'AUTHOR_PUBLICATIONS');
 

There’s a second form of the INSERT statement that can be quite useful. Let’s look at it next.

Insert . . . Select
The second form of an INSERT statement uses a SELECT statement instead of a list of column values.
Although we haven’t covered the SELECT statement yet, I think you’re intuitive enough to follow along.
Listing 1-14 inserts Chris Date’s entry using the INSERT ... SELECT syntax.

Listing 1-14.  DML to Insert Date’s Entry into the Author Table, authors_200.ins

01 INSERT INTO authors (
02 id,
03 name,
04 birth_date,
05 gender)
06 SELECT 200,
07 'Chris J Date',
08 to_date('19410101', 'YYYYMMDD')
09 'MALE'
10 FROM dual;
11
12 COMMIT;
 

The syntax for the INSERT SELECT statement used in Listing 1-14 is as follows:
 
INSERT INTO <table_name> (
 <column_name_1>,
 <column_name_2>, ...
 <column_name_N>)
SELECT <column_value_1>,
 <column_value_2>,...
 <column_value_N>
FROM <from_table_name> ...;
 
where <table_name> is the name of the table you wish to INSERT INTO, <column_name> is one of the
columns from the table into which you wish to insert a value, <column_value> is the value to place into the
corresponding column, and <from_table_name> is the table or tables from which to select the values. The
COMMIT statement that follows the INSERT SELECT statement in Listing 1-14 simply commits your inserted
values in the database.

Chapter 1 ■ Relational SQL

15

Let’s break down Listing 1-14:

Line 1 specifies the table to insert values into: •	 authors.

Lines 2 through 5 list the columns in which to insert values.•	

Line 6 specifies the •	 SELECT syntax.

Lines 6 through 9 supply values to insert into corresponding columns in the list on •	
lines 2 through 5.

Line 10 specifies the table or tables from which to select the values.•	

Line 12 commits the •	 INSERT statement.

So what’s the big deal about this second INSERT syntax? First, it allows you to insert values into a table
from other tables. Also, the SQL query to retrieve those values can be as complex as it needs to be. But its
most handy use is to create conditional INSERT statements like the one in Listing 1-15.

Listing 1-15.  Conditional INSERT ... SELECT Statement, authors_300.ins

01 INSERT INTO authors (
02 id,
03 name,
04 birth_date,
05 gender)
06 SELECT 300,
07 'Hugh Darwen',
08 to_date('19430101', 'YYYYMMDD')09 'MALE'
10 FROM dual d
11 WHERE not exists (
12 SELECT 1
13 FROM authors x
14 WHERE x.id = 300);
15
16 COMMIT;
 

The subquery in Listing 1-15’s SQL SELECT statement, in lines 11 through 14, first checks to see if the
desired entry already exists in the database. If it does, Oracle does not attempt the INSERT; otherwise, it adds
the row. You’ll see in time, as your experience grows, that being able to do a conditional insert is very useful!

THE DUAL TABLE

Have you noticed that I’m using a table by the name of dual in the conditional INSERT . . . SELECT
statement? dual is a table owned by the Oracle database (owner SYS) that has one column and one
row. It is very handy, because anytime you select against this table, you get one, and only one,
row back.

So if you want to evaluate the addition of 1 + 1, you can simply execute the following SQL SELECT
statement:
 
SELECT 1 + 1 FROM dual;
 

Chapter 1 ■ Relational SQL

16

Oracle will tell you the answer is 2. Not so handy? Say you want to quickly figure out how Oracle will
evaluate your use of the built-in function length()? Perhaps you might try this:
 
SELECT length(NULL) FROM dual;
 
Oh! It returns NULL. You need a number, so you try again. This time, you try wrapping length() in the
SQL function nvl() so you can substitute a zero for a NULL value:
 
SELECT nvl(length(NULL), 0) FROM DUAL;
 
Now it returns zero, even if you pass a NULL string to it. That’s how you want it to work!

See how using dual to test how a SQL function might work can be handy? It allows you to hack away
without any huge commitment in code.

It’s Your Turn to Insert with Select
It’s time to practice inserting data once again. This time, insert the publications for Date and Darwen, but
use the conditional INSERT SELECT syntax with detection for Darwen’s publications.

	 1.	 Add Darwen’s entry to the authors table by executing the script
authors_200.ins.

	 2.	 Write the DML scripts to insert the publications by Date and Darwen
from Table 1-2.

	 3.	 Save each DML script with the same file name as your table name, but with a
_200 suffix for Date and a _300 suffix for Darwen, and add an .ins extension to
both files.

	 4.	 Execute your scripts in SQL*Plus by typing an at sign (@) followed by the file
name at the SQL> prompt.

The author_publications table should now have eight rows. And, if you run the Darwen script again,
you won’t get any duplicate-value errors, because the SQL detects whether Darwen’s entries already exist in
the database.

Listings 1-16 and 1-17 show my solutions.

Listing 1-16.  DML for Inserting Date’s Publications, author_publications_200.ins

01 INSERT INTO author_publications (
02 id,
03 author_id,
04 title,
05 written_date)
06 VALUES (
07 30,
08 200,
09 'An introduction to Database Systems',
10 to_date('20030101', 'YYYYMMDD'));
11

Chapter 1 ■ Relational SQL

17

12 INSERT INTO author_publications (
13 id,
14 author_id,
15 title,
16 written_date)
17 VALUES (
18 40,
19 200,
20 'The Third Manifesto',
21 to_date('20000101', 'YYYYMMDD'));
22
23 INSERT INTO author_publications (
24 id,
25 author_id,
26 title,
27 written_date)
28 VALUES (
29 50,
30 200,
31 'Temporal Data and the Relational Model',
32 to_date('20020101', 'YYYYMMDD'));
33
34 INSERT INTO author_publications (
35 id,
36 author_id,
37 title,
38 written_date)
39 VALUES (
40 60,
41 200,
42 'Database in Depth: Relational Theory for Practitioners',
43 to_date('20050101', 'YYYYMMDD'));
44
45 COMMIT;
46
47 execute SYS.DBMS_STATS.gather_table_stats(USER, 'AUTHOR_PUBLICATIONS'); 

Listing 1-17.  DML for Inserting Darwen’s Publications, author_publications_300.ins

01 INSERT INTO author_publications (
02 id,
03 author_id,
04 title,
05 written_date)
06 SELECT 70,
07 300,
08 'The Third Manifesto',
09 to_date('20000101', 'YYYYMMDD')

Chapter 1 ■ Relational SQL

18

10 FROM dual
11 where not exists (
12 SELECT 1
13 FROM author_publications x
14 WHERE x.author_id = '300'
15 AND x.title = 'The Third Manifesto');
16
17 INSERT INTO author_publications (
18 id,
19 author_id,
20 title,
21 written_date)
22 SELECT 80,
23 300,
24 'Temporal Data and the Relational Model',
25 to_date('20020101', 'YYYYMMDD')
26 FROM dual
27 where not exists (
28 SELECT 1
29 FROM author_publications x
30 WHERE x.author_id = '300'
31 AND x.title = 'Temporal Data and the Relational Model');
32
33 COMMIT;
34
35 execute SYS.DBMS_STATS.gather_table_stats(USER, 'AUTHOR_PUBLICATIONS');
 

It didn’t work? Well, try, try again until it does—or look at the examples in the appropriate source code
listing directory for the book.

Hey, you know what? I was supposed to put the data in the database in uppercase so we could perform
efficient case-insensitive queries. Well, I should fix that. Let’s use the UPDATE statement.

Update
An UPDATE statement allows you to selectively update one or more column values for one or more rows in a
specified table. In order to selectively update, you need to specify a WHERE clause in your UPDATE statement.
Let’s first take a look at an UPDATE statement without a WHERE clause.

Fix a Mistake with Update
As I alluded to earlier, I forgot to make the text values in the database all in uppercase. Listing 1-18 is my
solution to this problem for the authors table.

Listing 1-18.  A DML Statement for Updating the Authors Table, authors.upd

1 UPDATE authors
2 SET name = upper(name);
3
4 COMMIT;
 

Chapter 1 ■ Relational SQL

19

The syntax used by Listing 1-18 is as follows:
 
UPDATE <table_name>
SET <column_name_1> = <column_value_1>,
 <column_name_2> = <column_value_2>,...
 <column_name_N> = <column_value_N>;
 
where <table_name> is the name of the table to update, <column_name> is the name of a column to update,
and <column_value> is the value to which to update the column in question.

In this case, an UPDATE statement without a WHERE clause is just what I needed. However, in practice,
that’s rarely the case. And, if you find yourself coding such an SQL statement, think twice.

An unconstrained UPDATE statement can be one of the most destructive SQL statements you’ll ever execute
by mistake. You can turn a lot of good data into garbage in seconds. So it’s always a good idea to specify which
rows to update with an additional WHERE clause. For example, I could have added the following line:
 
WHERE name <> upper(name)
 

That would have limited the UPDATE to only those rows that are not already in uppercase.

It’s Your Turn to Update
I’ve fixed my uppercase mistake in the authors table. Now you can do the same for the author_
publications table. So please update the publication titles to uppercase.

	 1.	 Write the DML script.

	 2.	 Save the DML script with the same file name as your table name, but add a .upd
extension.

	 3.	 Execute your script in SQL*Plus.

The titles in the author_publications table should now be in uppercase—good job.
Listing 1-19 shows how I fixed this mistake.

Listing 1-19.  DML for Updating Titles in the Publications Table, author_publications.upd

1 UPDATE author_publications
2 SET title = upper(title)
3 WHERE title <> upper(title);
4
5 COMMIT;
 

UPDATE statements can be quite complex. They can pull data values from other tables, for each column,
or for multiple columns using subqueries. Let’s look at the use of subqueries.

Update and Subqueries
One of the biggest mistakes PL/SQL programmers make is to write a PL/SQL program to update selected
values in one table with selected values from another table. Why is this a big mistake? Because you don’t
need PL/SQL to do it. And, in fact, if you use PL/SQL, it will be slower than just doing it in SQL!

Chapter 1 ■ Relational SQL

20

You haven’t yet had an opportunity to work with any complex data, nor have I talked much about the
SQL SELECT statement, so I won’t show you an example yet. But look at the possible syntax:
 
UPDATE <table_name> U
SET U.<column_name_N> = (
 SELECT S.<subquery_column_name_N>
 FROM <subquery_table_name> S
 WHERE S.<column_name_N> = U.<column_name_N>
 AND ...)
WHERE u.<column_name_N> = <some_value>...;
 

This syntax allows you to update the value of a column in table <table_name>, aliased with the name U,
with values in table <subquery_table_name>, aliased with the name S, based on the current value in the
current row in table U. If that isn’t powerful enough, look at this:
 
UPDATE <table_name> U
SET (U.<column_name_1>,
 U.<column_name_2>, ...
 U.<column_name_N>) = (
 SELECT S.<subquery_column_name_1>,
 S.<subquery_column_name_2>, ...
 S.<subquery_column_name_N>
 FROM <subquery_table_name> S
 WHERE S.<column_name_N> = U.<column_name_N>
 AND ...)
WHERE u.<column_name_N> = <some_value>...;
 

Yes! You can update multiple columns at the same time simply by grouping them with parentheses.
The moral of the story is, don’t use PL/SQL to do something you can already do with SQL. I’ll be harping
on this moral throughout the book, so if you didn’t get my point, relax, you’ll hear it again and again in the
coming chapters.

Delete
In practice, data is rarely deleted from a relational database when compared to how much is input, updated,
and queried. Regardless, you should know how to delete data. With DELETE, however, you need to do things
backwards.

A Change in Order
So you don’t think Hugh Darwen is a genius? Well I do, but for the sake of our tutorial, let’s say you want to
delete his entries from the database.

Since you created an integrity constraint on the author_publications table (a foreign key), you need to
delete Darwen’s publications before you delete him from the authors table. Listing 1-20 is the DML to delete
Darwen’s entries from the author_publications table.

Listing 1-20.  DML to Delete Darwen’s Publications, author_publications_300.del

1 DELETE FROM author_publications
2 WHERE id = 300;

 

Chapter 1 ■ Relational SQL

21

The syntax for the DELETE statement used in Listing 1-20 is as follows:
 
DELETE FROM <table_name>
WHERE <column_name_N> = <column_value_N>...;
 
where <table_name> is the name of the table to DELETE FROM, and <column_name> is one or more columns
for which you specify some criteria.

Did you happen to notice that I didn’t include a COMMIT statement? I will wait until you’re finished with
your part first.

It’s Your Turn to Delete
Now that I’ve deleted the publications, it’s time for you to delete the author.

	 1.	 Write the DML script without a COMMIT statement.

	 2.	 Save the DML script with the same file name as your table name,
suffix it with _300, and then add a .del extension.

	 3.	 Execute your script in SQL*Plus.

Darwen should no longer be in the database. Listing 1-21 shows how I got rid of him.

Listing 1-21.  DML for Deleting Darwen from the Authors Table, authors_300.del

1 DELETE FROM authors
2 WHERE id = 300;
 

Oops, no more Darwen. I changed my mind. Let’s fix that quickly!
Type ROLLBACK; at your SQL*Plus prompt and then press the Enter key. The transaction—everything you

did from the last time you executed a COMMIT or ROLLBACK statement—has been rolled back. So it’s as though
you never deleted Darwen’s entries. You didn’t really think I was going to let you delete Darwen, did you?

Now we are ready to review the most used SQL statement: SELECT.

Select
In the end, all the power of a relational database comes down to its ability to manipulate data. At the heart of
that ability lies the SQL SELECT statement. I could write an entire book about it, but I’ve got only a couple of
pages to spare, so pay attention.

Listing 1-22 is a query for selecting all the author names from the authors table. There’s no WHERE clause
to constrain which rows you will see.

Listing 1-22.  DML to Query the Author Table, author_names.sql

1 SELECT name
2 FROM authors
3 ORDER BY name;

NAME

CHRIS J DATE
EDGAR F CODD
HUGH DARWEN 

Chapter 1 ■ Relational SQL

22

Listing 1-22 actually shows the query (SELECT statement) executed in SQL*Plus, along with the
database’s response.

The syntax of the SELECT statement in Listing 1-22 is as follows:
 
SELECT <column_name_1>,
 <column_name_2>,
 <column_name_N>
FROM <table_name>
[ORDER BY <order_by_column_name_N>]
 
where <column_name> is one of the columns in the table listed, <table_name> is the table to query, and
<order_by_column_name> is one or more columns by which to sort the results.

In Listing 1-23, I add a WHERE clause to constrain the output to only those authors born before
the year 1940.

Listing 1-23.  DML to Show Only Authors Born Before 1940, author_names_before_1940.sql

1 SELECT name
2 FROM authors
3 WHERE birth_date < to_date('19400101', 'YYYYMMDD')
4 ORDER BY name;

NAME

EDGAR F CODD 

So while this is all very nice, we’ve only started to scratch the surface of the SELECT statement’s
capabilities. Next, let’s look at querying more than one table at a time.

Joins
Do you remember that way back in the beginning of this chapter you went through the mental exercise
of matching the value of the id column in the authors table against the author_id column in the
author_publications table in order to find out which publications were written by each author? What you
were doing back then was joining the two tables on the id column.

Also recall that to demonstrate views, I created an authors_publications view? In that view,
I joined the two tables, authors and author_publications, by their related columns, authors.id and
author_publications.author_id. That too was an example of joining two tables on the id column.

Joins in a Where Clause
Listing 1-24 shows the SQL SELECT statement from that view created in Listing 1-11 with an added ORDER BY
clause. In this example, I am joining the two tables using the WHERE clause (sometimes called traditional
Oracle join syntax).

Chapter 1 ■ Relational SQL

23

Listing 1-24.  DML to Join the Authors and Publications Tables, authors_publications_where_join.sql

SQL> SELECT a.id,
 2 a.name,
 3 p.title,
 4 p.written_date
 5 FROM authors a,
 6 author_publications p
 7 WHERE a.id = p.author_id
 8 ORDER BY a.name,
 9 p.written_date,
 10 p.title;

 ID NAME TITLE
----- ------------------ ---
 200 CHRIS J DATE THE THIRD MANIFESTO
 200 CHRIS J DATE TEMPORAL DATA AND THE RELATIONAL MODEL
 200 CHRIS J DATE AN INTRODUCTION TO DATABASE SYSTEMS
 200 CHRIS J DATE DATABASE IN DEPTH: RELATIONAL THEORY FOR PRACTITION
 100 EDGAR F CODD A RELATION MODEL OF DATA FOR LARGE SHARED DATA BANK
 100 EDGAR F CODD THE RELATIONAL MODEL FOR DATABASE MANAGEMENT
 300 HUGH DARWEN THE THIRD MANIFESTO
 300 HUGH DARWEN TEMPORAL DATA AND THE RELATIONAL MODEL
 
8 rows selected. 

Line 7 in Listing 1-24 has this code:
 
WHERE a.id = p.author_id.
 

Line 7 joins the authors table a with the author_publications table p, on the columns id and
author_id respectively.

However, there’s a second, newer form of join syntax that uses the FROM clause in a SQL SELECT
statement instead of the WHERE clause.

Joins in a From Clause
Listing 1-25 shows the newer join syntax. The newer join syntax is part of the ANSI standard. If you use it,
it may make it easier to move to another ANSI standard compliant SQL database in the future. The join takes
place in lines 5 through 6 in the FROM...ON clause.

Listing 1-25.  DML to Join the Authors and Publications Tables, authors_publications_from_join.sql

SQL> SELECT a.id,
 2 a.name,
 3 p.title,
 4 p.written_date
 5 FROM authors a JOIN
 6 author_publications p

Chapter 1 ■ Relational SQL

24

 7 ON a.id = p.author_id
 8 ORDER BY a.name,
 9 p.written_date,
 10 p.title;
 

Both forms of the join syntax give the same results. I suggest you use the syntax that is consistent with
the previous use of join syntax in the application you’re currently working on, or follow the conventions of
your development team.

It’s Your Turn to Select
It’s time to for you to try to use the SELECT statement. Show me all the authors who have coauthored a book.

	 1.	 Write the DML script.

	 2.	 Save the DML script with the file name coauthors.sql.

	 3.	 Execute your script in SQL*Plus.

You should get results something like this:

NAME

CHRIS J DATE
HUGH DARWEN 

Next, show me all the publications that have been coauthored along with the author’s name. Save the
script with the file name coauthor_publications.sql. You should get results like this:

TITLE NAME
-- ------------------
TEMPORAL DATA AND THE RELATIONAL MODEL CHRIS J DATE
TEMPORAL DATA AND THE RELATIONAL MODEL HUGH DARWEN
THE THIRD MANIFESTO CHRIS J DATE
THE THIRD MANIFESTO HUGH DARWEN 

You can find my solutions to these two exercises in the source code listings you downloaded for the
book. If you had difficulty writing the queries for these two exercises, then you need more experience with
SQL queries before you can be proficient with PL/SQL. You’ll be able to learn and use PL/SQL, but you’ll be
handicapped by your SQL skills.

In fact, everything we just covered should have been a review for you. If any of it was new, I recommend
that you follow up learning PL/SQL with some additional training in SQL. As I said when we started on this
journey together, you need to know SQL really well, because it makes up about 25% of every PL/SQL stored
procedure.

Now that we have reviewed the SQL basics, I need to introduce you to a fictional example that you will
use in the rest of the book.

Chapter 1 ■ Relational SQL

25

Your Working Example
I know it’s a lot of work, but you really need to buy into the following fictional example in order to have
something realistic to work with as you proceed through this book. I would love to take on one of your real
business problems, but I don’t work at the same company you do, so that would be very difficult. So let me
start by telling you a short story.

Your Example Narrative
You’re going to do some software development for a company called Very Dirty Manufacturing, Inc. (VDMI).
VDMI prides itself with being able to take on the most environmentally damaging manufacturing jobs (dirty)
in the most environmentally responsible way possible (clean).

Of course, VDMI gets paid big bucks for taking on such legally risky work, but the firm is also dedicated
to preventing any of its employees from injury due to the work. The managers are so dedicated to the health
and well-being of their workforce that they plan on having their industrial hygiene (IH), occupational health
(OH), and safety records available on the Internet for public viewing (more on what IH and OH are about in
just a moment).

Your job is the development of the worker demographics subsystem for maintaining the IH, OH, and
safety records for VDMI. Internally, management will need to review worker data by the following:

Organization in which a person works•	

Location where the employee works•	

Job and tasks the employee performs while working•	

For IH, environmental samples will be taken in the areas where people work to make sure they
are not being exposed to hazardous chemicals or noise without the right protections in place. For
OH, workers who do work in dirty areas will be under regular medical surveillance to make sure that
they are not being harmed while doing their work. And last, any accidents involving workers will also
be documented so that no similar accidents take place, and to ensure that the workers are properly
compensated for their injuries.

Externally, the sensitivity of the information will prevent the company from identifying for whom
the data presented exists, but the information will still be presented by the high-level organization,
location, and job. Therefore, the same demographic data and its relationship to workers in the firm need
to be in place.

Your Example ERD
Now that you have an overview of the situation, let’s take a look at an architectural representation of the
demographic subsystem. Figure 1-2 shows the ERD for the demographic subsystem.

Chapter 1 ■ Relational SQL

26

W O R K E R S

P K id
F K 1 wo rker_type_id

external_id
firs t_nam e
middle_name
las t_nam e
birth_date

F K 2 gender_type_id

W O R K _A S S IG N ME N T S

P K id
F K 1 wo rker_id
F K 2 wo rk_id

active_date
inactive_date

LO G IC A L_A S S IG N ME N T S

P K id
F K 1 wo rker_id
F K 2 lo g ical_wo rkp lace_id

active_date
inactive_date

P H Y S IC A L_W O R K P LA C E S

P K id
F K 1 parent_id

id_co ntext
F K 2 wo rkp lace_type_id

co de
nam e
active_date
inactive_date

W O R K S

P K id
co de
nam e
active_date
inactive_date

LO G IC A L_W O R K P LA C E S

P K id
F K 1 parent_id

id_co ntext
F K 2 wo rkp lace_type_id

co de
nam e
active_date
inactive_date

W O R K E R _T Y P E S

P K id
co de
descrip tio n
active_date
inactive_date

G E N D E R _T Y P E S

P K id
co de
descrip tio n
active_date
inactive_date

W O R K P LA C E _T Y P E S

P K id
lo g ical_ind icato r
phys ical_ind icato r
co de
descrip tio n
active_date
inactive_date

T A S K S

P K id
nam e
narrative

F K 1 hazard_level_type_id
active_date
inactive_date

W O R K _T A S K S

P K id
F K 1 wo rk_id
F K 2 task_id
F K 3 hazard_level_type_id

active_date
inactive_date

P H Y S IC A L_A S S IG N ME N T S

P K id
F K 1 wo rker_id
F K 2 phys ical_wo rkp lace_id

active_date
inactive_date

S U B S T A N C E S

P K id
cas_number
nam e
active_date
inactive_date

T A S K _S U B S T A N C E S

P K id
F K 1 task_id
F K 2 substance_id
F K 3 hazard_level_type_id

active_date
inactive_date

H A Z A R D _LE V E L_T Y P E S

P K id
co de
descrip tio n
m agnitude
active_date
inactive_date

Figure 1-2.  VMDI’s IH, OH, and safety demographic subsystem ERD

Chapter 1 ■ Relational SQL

27

In order for you to get a better understanding of the ERD, think of each table in the diagram as one of
the following:

Content•	

Codes•	

Intersections•	

What do these terms mean?

Content
Think of content as anything your users may actually need to type into the system, which varies greatly.
For example, information like a worker’s name and birth date changes a lot from one worker to the next.
Since that data is kept in the WORKERS table, think of the WORKERS table as a content table.

Data in the WORKERS table is the kind of information that you’re unlikely to translate into another
language should you present the information in a report. I would also classify as content tables the
LOGICAL_WORKPLACES, PHYSICAL_WORKPLACES, and WORKS tables, which describe the organization, location,
and the job of a worker, respectively. However, you might also think of them as codes.

Codes
In order to make the categorization, classification, or typing of data specified in a content table consistent
across all entries—for example, workers entered into the WORKERS table—I’ve added some code tables.
There are only a limited number of types of workers, and definitely only a limited number of genders, so I’ve
added a WORKER_TYPES code table and a GENDER_TYPES code table. Code tables act as the definitive source of
categories, classes, types, and so on when specifying codified information in a content table like WORKERS.

Here are some of the reasons that it’s important to use code tables:

They constrain the values entered into a table to an authoritative list of entries. •	
This improves quality.

The primary key of a code table is typically an identifier (ID) that is a sequence-•	
generated number with no inherent meaning other than it is the primary key’s
value. An ID value is a compact value that can then be stored in the content table to
reference the much larger code and description values. This improves performance.

Storing the sequence-generated ID of a code table in a content table will allow you to •	
later change the code or description values for a particular code without needing to
do so in the content table. This improves application maintenance.

Storing the sequence-generated ID of a code table in a content table will also •	
allow you to later change the code or description for a code on the fly for an
internationalized application. This improves flexibility.

Think of the WORKER_TYPES, GENDER_TYPES, WORKPLACE_TYPES, and HAZARD_LEVEL_TYPES tables as code
tables. They all have a similar set of behaviors that you will later make accessible with PL/SQL functions and
procedures.

Chapter 1 ■ Relational SQL

28

Intersections
Think of intersections as a means of documenting history. Understanding that there is a history of
information is the single-most portion missing in the analyses of business problems. Most often, a many-
to-many relationship table (an intersection) will be created that captures only the “current” relationship
between content entities, but there’s always a history, and the history is almost always what’s actually
needed to solve the business problem in question.

In the refresher earlier in this chapter, you worked with two tables (or entities) that did not require you
to keep a history. However, in the example here, you definitely need to maintain a history of who workers
reported to, where they actually did their work, and what they did. Intersections document timelines, as
shown in Figure 1-3.

Examining Figure 1-3, you can see that the employee in question has the following history:

Worked in the Chemicals department from 1994 through 1999, and then in the •	
Biologicals department since (logical assignment)

Worked at the Newark, New Jersey location from 1994 through 1996, in Gary, Indiana •	
through 2002, and then in sunny San Diego since (physical assignment)

Worked as a chemist from 1994 through 1996, and then as a chemical engineer since •	
(work assignment)

An intersection table has a beginning and end date for every assignment period. Think of the
LOGICAL_ASSIGNMENTS, PHYSICAL_ASSIGNMENTS, and WORK_ASSIGNMENTS tables as history tables that hold an
intersection in time between the WORKERS table and the LOGICAL_WORKPLACES, PHYSICAL_WORKPLACES, and
WORKS tables, respectively.

Now that you’re familiar with the ERD, you can start creating the tables.

Create a Code Table
Let’s create some code tables. I’ll write the script for the first code table, and then you do the other three.
Listing 1-26 is a script to create the WORKER_TYPES code table.

Listing 1-26.  DDL for Creating the WORKER_TYPES Code Table, worker_types.tab

01 rem worker_types.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem
04
05 --drop table WORKER_TYPES;
06 create table WORKER_TYPES (
07 id number(38) not null,
08 code varchar2(30) not null,

200520001995

Chem Bio
Newark Gary San Diego
Chemist Chemical Engineer

org
loc
job

hi
re

d

Figure 1-3.  An employment timeline

Chapter 1 ■ Relational SQL

29

09 description varchar2(80) not null,
10 active_date date default SYSDATE not null,
11 inactive_date date default '31-DEC-9999' not null);
12
13 --drop sequence WORKER_TYPES_ID;
14 create sequence WORKER_TYPES_ID
15 start with 1;
16
17 alter table WORKER_TYPES add
18 constraint WORKER_TYPES_PK
19 primary key (id)
20 using index;
21
22 alter table WORKER_TYPES add
23 constraint WORKER_TYPES_UK
24 unique (code, active_date)
25 using index;
26
27 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKER_TYPES');
 

This listing is more complex than the previous ones in this chapter. Here’s the breakdown:

Lines 1 through 3 document the name of the script, the author, and the date it was •	
written. This is typical—everyone wants to know who to blame.

Lines 5 and 13 have •	 DROP statements that I’ve commented out. Those were really
handy when I was in the iterative development cycle, where I had to edit my script to
refine it and then recompile.

Lines 6 through 11 contain the DDL to create the table •	 WORKER_TYPES.

Lines 14 and 15 contain the DDL to create •	 WORKER_TYPES_ID, a sequence for the
table’s primary key column, id.

Lines 17 through 20 contain the DDL to alter the table in order to add a primary key •	
constraint.

Lines 22 through 25 contain the DDL to alter the table in order to add a unique key •	
constraint. This constraint will allow only unique code values in the code table.

Since it’s a code table, I can seed it with some initial values. I’ve written a second script for that,
shown in Listing 1-27.

Listing 1-27.  DML Script to Populate the WORKER_TYPES Code Table, worker_types.ins

01 rem worker_types.ins
02 rem by Donald J. Bales on 2014-10-20
03 rem
04
05 insert into WORKER_TYPES (
06 id,
07 code,
08 description)

Chapter 1 ■ Relational SQL

30

09 values (
10 WORKER_TYPES_ID.nextval,
11 'C',
12 'Contractor');
13
14 insert into WORKER_TYPES (
15 id,
16 code,
17 description)
18 values (
19 WORKER_TYPES_ID.nextval,
20 'E',
21 'Employee');
22
23 insert into WORKER_TYPES (
24 id,
25 code,
26 description)
27 values (
28 WORKER_TYPES_ID.nextval,
29 'U',
30 'Unknown');
31
32 commit;
33
34 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKER_TYPES');
 

Here’s what’s happening in Listing 1-27:

In lines 1 through 3, I’ve added the author and written date.•	

In lines 5 through 12, 14 through 21, and 23 through 30, I’ve added three DML •	 INSERT
VALUES statements in order to add three worker types to the WORKER_TYPES table.

In lines 10, 19, and 28, I’m allocating a new sequence value from the primary key’s •	
sequence using the pseudo-column .nextval.

In line 32, I commit the inserts so they are permanently accessible to everyone on •	
the database.

After I execute these two scripts, I can query WORKER_TYPES and get results like this:
 
SQL> column code format a4;
SQL> column description format a13;
SQL> column active_date format a13;
SQL> column inactive_date format a13;
SQL>
SQL> select *
 2 from WORKER_TYPES
 3 order by code;
 

Chapter 1 ■ Relational SQL

31

 ID CODE DESCRIPTION ACTIVE_DATE INACTIVE_DATE
---------- ---- ------------- ------------- -------------
 1 C Contractor 07-DEC-14 31-DEC-99
 2 E Employee 07-DEC-14 31-DEC-99
 3 U Unknown 07-DEC-14 31-DEC-99
 

CODING CONVENTIONS

Coding conventions (or standards) are something all professional programmers follow religiously.

SQL Coding Conventions

In the refresher part of this chapter, I capitalized the SQL keywords so it was easy for you to notice them
in the syntax statement that followed their use. In practice, I don’t do that. When I code SQL, I follow
these simple rules:

I type table names in all caps, literals in uppercase/lowercase/mixed case as required, and •	
everything else in lowercase. Why? First, since SQL is table-centric, I want table names
to stick out like a sore thumb. Second, lowercase is actually easier to read. And finally,
lowercase is easier to type, and after 30 years of typing, you’ll know why that’s important.

I format my code so column names, table names, and parameters in •	 WHERE clauses all
line up in nice left-justified columns. That way, the text is easy to scan.

I name scripts with the same name as the object they are creating, dropping, inserting, •	
updating, and so on, and an appropriate filename extension in order to make the names
of the scripts as obvious as possible.

SQL Filename Extension Conventions

The following are the filename extensions I use:

•	 .tab: Create table

•	 .alt: Alter table (to add, modify, or drop a column)

•	 .ndx: Create index

•	 .pkc: Alter table/add constraint/primary key (usually included in the create table script)

•	 .fkc: Alter table/add constraint/foreign key (usually included in the create table script)

.•	 ukc: Alter table/add constraint/unique (usually included in the create table script)

.•	 drp: Drop table

•	 .ins: Insert into

•	 .upd: Update

•	 .del: Delete from

•	 .sql: Select from

Chapter 1 ■ Relational SQL

32

It’s Your Turn to Create Code Tables
Now that you’ve seen me do it, you should be able to code the scripts to do the same for the GENDER_TYPES,
HAZARD_LEVEL_TYPES, and WORKPLACE_TYPES code tables. Code the scripts, saving them with the filenames
gender_types.tab, hazard_level_types.tab, and workplace_types.tab, respectively. Then execute each
script. You can see my solutions to these scripts in the book’s source code directory for Chapter 1. Now let’s
move on to creating content tables.

Create a Content Table
This time, let’s create some content tables. I’ll write the first two scripts, and then you do the rest. Listing 1-28
is a script to create the WORKERS table.

Listing 1-28.  DDL to Create the WORKERS Table, workers.tab

01 rem workers.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem
04
05 --drop table WORKERS;
06 create table WORKERS (
07 id number(38) not null,
08 worker_type_id number(38) not null,
09 external_id varchar2(30) not null,
10 first_name varchar2(30) not null,
11 middle_name varchar2(30),
12 last_name varchar2(30) not null,
13 name varchar2(100) not null,
14 birth_date date not null,
15 gender_type_id number not null);
16
17 --drop sequence WORKERS_ID;
18 create sequence WORKERS_ID
19 start with 1;
20
21 --drop sequence EXTERNAL_ID_SEQ;
22 create sequence EXTERNAL_ID_SEQ
23 start with 100000000 order;
24
25 alter table WORKERS add
26 constraint WORKERS_PK
27 primary key (id)
28 using index;
29
30 alter table WORKERS add
31 constraint WORKERS_UK1
32 unique (external_id)
33 using index;
34

http://dx.doi.org/10.1007/9781484207383_1

Chapter 1 ■ Relational SQL

33

35 alter table WORKERS add
36 constraint WORKERS_UK2
37 unique (
38 name,
39 birth_date,
40 gender_type_id)
41 using index;
42
43 alter table WORKERS add
44 constraint WORKERS_FK1
45 foreign key (worker_type_id)
46 references WORKER_TYPES (id);
47
48 alter table WORKERS add
49 constraint WORKERS_FK2
50 foreign key (gender_type_id)
51 references GENDER_TYPES (id);
52
53 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKERS');
 

Looks familiar, doesn’t it? It looks a lot like the code table scripts you created earlier. The exceptions are
lines 43 through 46 and 48 through 51, where I’ve added DDL to create two foreign key constraints. The first
foreign key creates an integrity constraint between the code table WORKER_TYPES, while the second does the
same for code table GENDER_TYPES. These constraints will prevent anyone from deleting a code that is in use
by the WORKERS table.

Listing 1-29 shows the code to create the LOGICAL_WORKPLACES table. I’m showing you this listing
because this table has some interesting new columns: parent_id and id_context.

Listing 1-29.  DDL to Create the LOGICAL_WORKPLACES Table, logical_workplaces.tab

01 rem logical_workplaces.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem
04
05 --drop table LOGICAL_WORKPLACES;
06 create table LOGICAL_WORKPLACES (
07 id number(38) not null,
08 parent_id number(38),
09 id_context varchar2(100) not null,
10 workplace_type_id number not null,
11 code varchar2(30) not null,
12 name varchar2(80) not null,
13 active_date date default SYSDATE not null,
14 inactive_date date default '31-DEC-9999' not null);
15
16 --drop sequence LOGICAL_WORKPLACES_ID;
17 create sequence LOGICAL_WORKPLACES_ID
18 start with 1;
19

Chapter 1 ■ Relational SQL

34

20 alter table LOGICAL_WORKPLACES add
21 constraint LOGICAL_WORKPLACES_PK
22 primary key (
23 id)
24 using index;
25
26 alter table LOGICAL_WORKPLACES add
27 constraint LOGICAL_WORKPLACES_UK1
28 unique (
29 id_context)
30 using index;
31
32 alter table LOGICAL_WORKPLACES add
33 constraint LOGICAL_WORKPLACES_UK2
34 unique (
35 code,
36 name,
37 active_date)
38 using index;
39
40 alter table LOGICAL_WORKPLACES add
41 constraint LOGICAL_WORKPLACES_FK1
42 foreign key (parent_id)
43 references LOGICAL_WORKPLACES (id);
44
45 alter table LOGICAL_WORKPLACES add
46 constraint LOGICAL_WORKPLACES_FK2
47 foreign key (workplace_type_id)
48 references WORKPLACE_TYPES (id);
49
50 execute SYS.DBMS_STATS.gather_table_stats(USER, 'LOGICAL_WORKPLACES');
 

A logical workplace like a department may belong to a business unit, while its business unit may belong
to a company. The parent_id column allows you to store the id of a department’s parent business unit with
the department, so you can document the organization hierarchy. With this information, you can present an
organization chart, find everyone in a business unit, and so on.

The id_context column is a convenience or performance column for the mechanics of querying the
database. You are going to write a PL/SQL function that will create an ID context string for this column. The
ID context string will list all of the parent IDs, plus the logical workplace ID of the current row, separated by
a known character, such as a period (.)—for example, 1.13.14. This will greatly improve the performance of
any LIKE queries against the hierarchy of the organizations in the table.

It’s Your Turn to Create Content Tables
Now that you’ve seen me do it, you should be able to code the scripts to do the same for the
PHYSICAL_WORKPLACES , TASKS, and WORKS tables. So code the scripts, saving them with the filenames
physical_workplaces.tab, tasks.tab, and works.tab, respectively. Then execute each script. You can
view my solutions to these scripts in the book’s source code directory for Chapter 1.

Now let’s move on to creating intersection tables.

http://dx.doi.org/10.1007/9781484207383_1

Chapter 1 ■ Relational SQL

35

Create an Intersection Table
It’s time to create some intersection tables. I’ll write the first script, and then you write the rest. Listing 1-30 is
a script to create the LOGICAL_ASSIGNMENTS table.

Listing 1-30.  DDL to Create the LOGICAL_ASSIGNMENTS Table, logical_assignments.tab

01 rem logical_assignments.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem
04
05 --drop table LOGICAL_ASSIGNMENTS;
06 create table LOGICAL_ASSIGNMENTS (
07 id number(38) not null,
08 worker_id number(38) not null,
09 logical_workplace_id number(38) not null,
10 active_date date default SYSDATE not null,
11 inactive_date date default '31-DEC-9999' not null);
12
13 --drop sequence LOGICAL_ASSIGNMENTS_ID;
14 create sequence LOGICAL_ASSIGNMENTS_ID
15 start with 1;
16
17 alter table LOGICAL_ASSIGNMENTS add
18 constraint LOGICAL_ASSIGNMENTS_PK
19 primary key (id)
20 using index;
21
22 alter table LOGICAL_ASSIGNMENTS add
23 constraint LOGICAL_ASSIGNMENTS_UK
24 unique (
25 worker_id,
26 active_date)
27 using index;
28
29 alter table LOGICAL_ASSIGNMENTS add
30 constraint LOGICAL_ASSIGNMENTS_FK1
31 foreign key (worker_id)
32 references WORKERS (id);
33
34 alter table LOGICAL_ASSIGNMENTS add
35 constraint LOGICAL_ASSIGNMENTS_FK2
36 foreign key (logical_workplace_id)
37 references LOGICAL_WORKPLACES (id);
38
39 execute SYS.DBMS_STATS.gather_table_stats(USER, 'LOGICAL_ASSIGNMENTS');
 

I know; you don’t even need me to explain it anymore. I just wanted to make sure you have a nice
pattern to mimic.

Chapter 1 ■ Relational SQL

36

It’s Your Turn to Create Intersection Tables
Just do it! Create tables PHYSICAL_ASSIGNMENTS, WORK_ASSIGNMENTS, and WORK_TASKS. Code your scripts
with file names physical_assignments.tab, work_assignments.tab, and work_tasks.tab. Then execute
your scripts.

Summary
By now you should have a fairly complete set of sample tables that you can work with when programming
in PL/SQL. You’ve reviewed the basics of relational SQL, and then put that to work to create your
working example. If you had any trouble with the SQL used so far, I sincerely encourage you to get some
supplemental materials and/or training in order to improve your SQL skills. You’ve heard the old adage,
“A chain is only as strong as its weakest link,” haven’t you?

So you think your SQL is up to the task of programming in PL/SQL? Well, let’s get started!

37

Chapter 2

Blocks, Functions, and Procedures

In this chapter, as the title suggests, you’ll learn about the foundational structures of PL/SQL: blocks,
functions, and procedures. Blocks define the structures upon which functions and procedures are built.
Functions and procedures are very similar, but distinct, in that a function returns a value to a calling function
or procedure, while a procedure does not. So let’s begin our discussion of PL/SQL by starting with its
foundation: the block.

Blocks
The Procedure Language extension for SQL (PL/SQL) has a block structure. Every piece of code executes
in a block, similar to Java, JavaScript, and PHP’s try-catch clause; Python’s try-except clause; or Ruby’s
begin-rescue-end clause. However, PL/SQL has four keywords:

•	 DECLARE: Every PL/SQL block has a declaration section. This is where you allocate
memory for cursors, data type definitions, variables, embedded functions, and
procedures (don’t worry—you’ll learn about all of these in this book, beginning with
functions and procedures in this chapter). Sometimes when you code a PL/SQL
program, you won’t even use the declaration section, but it’s still there.

•	 BEGIN: Every PL/SQL block has an executable section. It starts with the keyword
BEGIN. BEGIN marks the beginning of where you put your program logic. And every
PL/SQL program must have at least one line of executable code, even if it’s the
keyword NULL, which in this context means no operation.

•	 EXCEPTION: Every PL/SQL block has an exception-handling section. It starts with the
keyword EXCEPTION. This is where you will catch any database or PL/SQL errors, or
as they are affectionately known, exceptions. Like the declaration section, sometimes
you won’t even use an exception-handling section, but it’s still there.

•	 END: Every PL/SQL block ends with the keyword END.

Anonymous Blocks
We’ll start with an anonymous PL/SQL block. It’s called anonymous because it’s not going to be saved in
the database, so it will never have a name. In practice, you won’t find yourself using anonymous blocks in
production, but you’ll use them throughout the development process. They’re perfect for creating test units
that you’ll eventually move into your stored PL/SQL blocks. You’ll learn more about that in Chapter 8.
For now, let’s look at an example.

http://dx.doi.org/10.1007/9781484207383_8

Chapter 2 ■ Blocks, Functions, and Procedures

38

Anonymous Block Example
Listing 2-1 is an example of an anonymous PL/SQL block. Comments describe the different sections.

Listing 2-1.  An Anonymous PL/SQL Block, anonymous.sql

01 -- This is an anonymous procedure, so it has no name
02 DECLARE
03 /*
04 You declare local cursors, variables, and methods here,
05 but you don't need to have a declaration section.
06 */
07 BEGIN
08 -- You write your executable code here
09
10 NULL; -- Ahhh, you've got to have at least one command!
11 EXCEPTION
12 when NO_DATA_FOUND then
13 raise_application_error(-20000,
14 'Hey, This is in the exception-handling section!');
15 END;
16 /
17 -- the forward slash on a line by itself says execute this procedure
 

Let’s go through Listing 2-1 line by line:

Line 1 is a single-line comment. Single-line comments start with a double-dash (•	 --),
but line 1 is not part of the PL/SQL block or program because it exists outside the
block structure.

Line 2 starts the block with the keyword •	 DECLARE. This anonymous PL/SQL
block could have started with the keyword BEGIN because it doesn’t have anything
to declare.

Lines 3 through 6 are a multiline comment in the declaration section. Multiline •	
comments start with a slash and asterisk (/*) and end with an asterisk and slash (*/).

Line 7 starts the PL/SQL executable section of the PL/SQL block with the •	
keyword BEGIN.

Line 8 is a single-line comment in the executable section.•	

Line 10 is the PL/SQL keyword •	 NULL followed by a single-line comment. NULL in this
context means no operation. I put it there because every PL/SQL block must have at
least one line of code, or it won’t compile. The NULL command is terminated with a
semicolon. In PL/SQL, a semicolon denotes the end of a command.

Line 11 starts the exception-handling section with the keyword •	 EXCEPTION. If you
code an exception-handling section, you must catch at least one exception. In this
case, I’ve coded a NO_DATA_FOUND exception, which will raise an application error
with my message should a NO_DATA_FOUND exception occur.

Line 15 ends the PL/SQL block or program with the keyword •	 END.

Chapter 2 ■ Blocks, Functions, and Procedures

39

Line 16 has •	 a single forward slash (/), which is a signal to SQL*Plus to execute the
PL/SQL block. In this case—that is, with an anonymous PL/SQL block—the Oracle
database will compile and then run the code in the PL/SQL block.

Line 17 is another single-line comment that, too, exists outside the PL/SQL block.•	

It’s Your Turn to Execute an Anonymous Block
Now it’s time for you to execute an anonymous PL/SQL block/program.

	 1.	 Open SQL*Plus and connect to the database with username RPS.

	 2.	 At the SQL> prompt, type the following:
 
set serveroutput on size 1000000
begin
 SYS.DBMS_OUTPUT.put_line('Hi there genius!');
end;
/
 

After you type the forward slash on a line by itself, you will have executed your very first PL/SQL
procedure, and a very complimentary one at that.

The first line tells SQL*Plus to echo the database’s output for your session to the screen after the PL/SQL
procedure is finished executing. Note that set serveroutput on size 1000000 is a SQL*Plus command
and is not part of the anonymous block.

The line that starts with begin starts your PL/SQL procedure’s executable code section. The next line
calls the put_line procedure in package (library of stored procedures) DBMS_OUTPUT, owned by user SYS:
 
sys.dbms_output.put_line('Hi there genius!');
 

Here, put_line stores your text in a buffer until the PL/SQL procedure ends. Then SQL*Plus displays
the text from that buffer on the screen for you to see.

The fourth line, which starts with end, ends the anonymous PL/SQL procedure. Finally, as stated earlier,
the forward slash (/) on a line by itself tells SQL*Plus to execute the procedure.

In this example, you didn’t code declaration or exception-handling sections, but they’re still there! If an
error occurs between the BEGIN and END keywords, PL/SQL will use the default (invisible) exception handler
to raise the error to the enclosing program unit, which, in this case, is SQL*Plus.

Exceptions
Exceptions allow you to catch errors as your PL/SQL program executes, so you have control over what
happens in response to those errors. PL/SQL predefines more than 20 named exceptions, but you’ll probably
use only a few.

Note■■  A fter you’ve gained more PL/SQL experience, you may even want to define your own named
exceptions. For more information about custom exceptions, see Oracle’s PL/SQL User’s Guide and Reference.

Chapter 2 ■ Blocks, Functions, and Procedures

40

Common Exceptions
As you’ll learn in future chapters, there are a handful of commonly seen exceptions. The rest occur only
when there are catastrophic problems with the database, the network, or your PL/SQL code.

Two exceptions are very common:

•	 NO_DATA_FOUND: You’ll get a NO_DATA_FOUND exception anytime you code a SQL
SELECT statement that does not return any rows.

•	 TOO_MANY_ROWS: If you code a SELECT statement where you expect only one row but
you get more than one, you’ll get a TOO_MANY_ROWS exception.

Catching an Exception
You add the keyword EXCEPTION between the keywords BEGIN and END in order to add an exception-handling
section to your PL/SQL block. Once you do that, any error that occurs between the keywords BEGIN and
EXCEPTION will be handled by your exception-handling section.

Functions
A FUNCTION is a PL/SQL block or method that returns a value, so it can be used on the right-hand side of an
assignment. Here is an example:
 
n_value := to_number('123.45');
 

In this line of PL/SQL code, n_value is a numeric variable (we’ll cover variables in the next chapter).
n_value is followed by an assignment operator, which is a colon followed by an equal sign (:=). Next is the
PL/SQL built-in function to_number(text in varchar2), which parses a varchar2 data type, and then
returns its numeric value—that is, if the varchar2 represents a number; otherwise, the function raises an
INVALID_NUMBER exception.

Since a FUNCTION returns a value, you can also use it in a SQL statement, as in this example:
 
SQL> select to_number('A') from dual;
select to_number('A') from dual
 *
ERROR at line 1:
ORA-01722: invalid number
 

Look, there’s that INVALID_NUMBER exception I was talking about!

Create a Function
Instead of dealing with errors when we try to convert a varchar2 (character string) to a number on the fly as
in a SELECT statement, let’s create an errorless to_number() function. Listing 2-2 is the DDL to do just that.

Listing 2-2.  An Errorless to_number( ) Function, to_number_or_null.fun

01 CREATE OR REPLACE FUNCTION to_number_or_null (
02 aiv_number IN varchar2)
03 return number is

Chapter 2 ■ Blocks, Functions, and Procedures

41

04 /*
05 to_number_or_null.fun
06 by Donald J. Bales on 2014-10-20
07 An errorless to_number() method
08 */
09 begin
10 return to_number(aiv_number);
11 exception
12 when OTHERS then
13 return NULL;
14 end to_number_or_null;
15 /
16 @fe.sql to_number_or_null;
 

The DDL syntax used in Listing 2-2 to create the function is as follows:
 
CREATE [OR REPLACE] FUNCTION <function_name> [(
<parameter_name_1> [IN] [OUT] <parameter_data_type_1>,
<parameter_name_2> [IN] [OUT] <parameter_data_type_2>,...
<parameter_name_N> [IN] [OUT] <parameter_data_type_N>)]
RETURN <return_data_type> IS
 --the declaration section
BEGIN
 -- the executable section
 return <return_data_type>;
EXCEPTION
 -- the exception-handling section
END;
/
 
where <function_name> is the name of the FUNCTION; <parameter_name> is the name of a parameter being
passed IN, OUT, or IN and OUT; <parameter_data_type> is the PL/SQL data type of the corresponding
parameter; and <return_data_type> is the PL/SQL data type of the value that will be returned by the
FUNCTION when it completes its execution. The brackets ([]) around the keywords OR REPLACE denote that
they are optional. The brackets around the parameters denote that they are optional, too.

The block structure of a FUNCTION is exactly the same as an anonymous procedure, except for the
addition of the Data Definition Language (DDL) CREATE FUNCTION keywords, the optional parameters, and
the RETURN clause.

Let’s take a look at Listing 2-2 line by line:

Line 1 has the DDL keywords to •	 CREATE a stored FUNCTION. These take the place of
the keyword DECLARE used earlier in the anonymous PL/SQL block.

Line 2 declares one parameter, •	 aiv_number, a varchar2 value passed INto the
FUNCTION.

Line 3 contains the •	 RETURN clause. In this case, I’m returning a number.

Lines 4 through 8 contain a multiline comment that lists the function’s source •	
code filename, the name of the author, the date the function was written, and a
description of the function’s purpose. So the only thing in the declaration section of
this PL/SQL block is the multiline comment.

Chapter 2 ■ Blocks, Functions, and Procedures

42

On line 9, the keyword •	 BEGIN starts the execution section of the PL/SQL block.

On line 10, I return the built-in •	 to_number()’s return value for converting the
varchar2 variable aiv_number to a number. Then the program ends. However,
if the built-in to_number() raises an exception, the program’s execution branches
to the exception-handling section.

On line 11, the keyword •	 EXCEPTION starts the exception-handling section of this
PL/SQL block.

On line 12, the exception handler checks to see if the raised exception is the named •	
exception OTHERS (a catch-all exception). If it is, it executes the code that
follows it on line 13. It may have sufficed to use the execption INVALID_NUMBER;
however, in practice, Oracle may define additional numeric conversion exceptions in
the future, and consequently, my errorless routine might actually report an error!

On line 13, I return •	 NULL if there is an OTHERS, which includes INVALID_NUMBER,
exception. That’s what makes this an errorless to_number() function. If there are
any other exceptions, the exception hander will not raise the error to the enclosing
PL/SQL block or program, which in this case, will be SQL*Plus.

On line 14, the keyword •	 END denotes the end of the PL/SQL block, and hence the
FUNCTION.

On line 15, the single slash character (•	 /) tells SQL*Plus to execute the DDL, which
stores the PL/SQL in the database and then compiles it.

Line 16 contains a helper SQL script that will list any compilation errors. Most of the •	
time, this script will simply have one line of code that says show errors. However,
if you’re compiling into another schema (other than the username you’re logged in
with), you may need a more complex SQL script to display errors.

Now let’s try using this errorless FUNCTION in a SELECT statement:
 
SQL> select to_number_or_null('A') from DUAL;

TO_NUMBER_OR_NULL('A')

Ta da! It returned a NULL value since the letter A is not a number. Just in case you’re a skeptic, here’s a
second test:
 
SQL> select to_number_or_null('234.56') from DUAL;

TO_NUMBER_OR_NULL('234.56')

 234.56 

Yes, indeed, it works correctly!

Chapter 2 ■ Blocks, Functions, and Procedures

43

It’s Your Turn to Create a Function
For this exercise, you’ll create a function that returns a date value. You can use the function in Listing 2-2
as a model. This time, you’ll pass this new function a varchar2 value that represents a date in the form
MM/DD/YYYY. Your function will parse the varchar2 value and return a date data type if the varchar2
value is actually a date in the form MM/DD/YYYY; otherwise, it will return NULL.

You can use the PL/SQL built-in function to_date(text in varchar2, format in varchar2) in your
function to do the actual parsing of the date. In the following form, to_date() will return a date value if it
successfully parses the passed varchar2 value, or raise an exception if the passed varchar2 value is not a
date in the format MM/DD/YYYY:
 
return to_date(aiv_date, 'MM/DD/YYYY');
 

Using this built-in function, create your function by following these steps.

	 1.	 Open your text editor, and code the DDL to create your function.

	 2.	 Save your new DDL script with the file name to_mmsddsyyyy_or_null.fun.

	 3.	 At your SQL*Plus prompt, type the at sign (@) followed by the name of your file in
order to store and compile your new function.

	 4.	 Test your new function by using it in a SELECT statement against table DUAL.

Listing 2-3 shows my solution for this exercise.

Listing 2-3.  An Errorless to_date() Function, to_mmsddsyyyy_or_null.fun

01 create or replace FUNCTION to_mmsddsyyyy_or_null (
02 aiv_date in varchar2)
03 return date is
04 /*
05 to_mmsddsyyyy_or_null.fun
06 by Donald J. Bales on 2014-10-20
07 An errorless to_date() method
08 */
09 begin
10 return to_date(aiv_date, 'MM/DD/YYYY');
11 exception
12 /*
13 There are too many possible errors, for example:
14 ORA-01830: date format picture ends before
15 converting entire input string
16 ORA-01843: not a valid month
17 ORA-01847: day of month must be between 1
18 and last day of month
19 ORA-01858: a non-numeric character was found
20 where a numeric was expected
21 so I used the exception OTHERS
22 */
23 when OTHERS then
24 return NULL;
25 end to_mmsddsyyyy_or_null;
26 /
27 @fe.sql to_mmsddsyyyy_or_null;
 

Chapter 2 ■ Blocks, Functions, and Procedures

44

First, I’ll test it using a SELECT statement against DUAL:
 
SQL> select to_mmsddsyyyy_or_null('A') from DUAL;

TO_MMSDDSYYYY_OR

Well, that worked. The to_mmsddsyyyy_or_null() function returned a NULL because the letter A is not
a date in the form MM/DD/YYYY. So let’s try a date string. This time, however, I’ll execute the anonymous
PL/SQL block in Listing 2-4 as a test unit in order to test the function.

Listing 2-4.  A Test Unit for Function to_mmsddsyyyy_or_null(), to_mmsddsyyyy_or_null.sql

01 rem to_mmsddsyyyy_or_null.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem FUNCTION to_mmsddsyyyy_or_null() test unit
04
05 begin
06 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('01/01/1980'));
07 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('02/29/1980'));
08 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('02/29/1981'));
09 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('9/9/2006'));
10 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('9/9/9999'));
11 sys.dbms_output.put_line(to_mmsddsyyyy_or_null('1/1/4712 BC'));
12 end;
13 /
 

The following output from executing function to_mmsddsyyyy_or_null()’s test unit shows that it’s
working great. The tests on lines 8 and 11 should have returned NULL because I passed invalid date strings,
and they did!
 
SQL> @to_mmsddsyyyy_or_null.sql

01-JAN-80
29-FEB-80
09-SEP-06
09-SEP-99
PL/SQL procedure successfully completed. 

Up to this point, you’ve seen an anonymous PL/SQL block and a function’s PL/SQL block. The
differences between the two are that an anonymous block is not permanently stored in the database with a
name, nor can it return a value. Now let’s take a look at PL/SQL blocks that do have names, but don’t return
values: procedures.

Procedures
PL/SQL procedures don’t return a value. They just perform their instructions and return. Of course, this
means that you can’t use procedures on the right-hand side of an assignment statement like a function.

Chapter 2 ■ Blocks, Functions, and Procedures

45

Create a Procedure
Listing 2-5 is a very simple example of a procedure. It’s a wrapper around the Oracle SYS.DBMS_LOCK
package’s procedure sleep(seconds in number). This procedure will stop executing (or sleep) without
using many CPU cycles for the number of seconds specified. I’ll admit, it’s kind of lame, but we’re just
starting out here, so I’m keeping things simple.

Note■■   By default, the SYS.DBMS_LOCK package is not accessible by non-DBA users. The username creation
script in this book’s appendix will grant you access, but if you don’t use that script, you may need to ask your
DBA to explicitly grant you execute access to package SYS.DBMS_LOCK.

Listing 2-5.  A Wrapper Procedure for SYS.DBMS_LOCK.sleep( ), wait.prc

01 CREATE OR REPLACE PROCEDURE wait(
02 ain_seconds IN number) is
03 /*
04 wait.prc
05 by Donald J. Bales on 2014-10-20
06 Wrapper for SYS.DBMS_LOCK.sleep()
07 */
08 begin
09 SYS.DBMS_LOCK.sleep(ain_seconds);
10 end wait;
11 /
12 @pe.sql wait
 

The DDL syntax used by Listing 2-5 is as follows:
 
CREATE [OR REPLACE] PROCEDURE <procedure_name> [(
<parameter_name_1> [IN] [OUT] <parameter_data_type_1>,
<parameter_name_2> [IN] [OUT] <parameter_data_type_2>,...
<parameter_name_N> [IN] [OUT] <parameter_data_type_N>)] IS
 --the declaration section
BEGIN
 -- the executable section
EXCEPTION
 -- the exception-handling section
END;
/
 
where <procedure_name> is the name of the PROCEDURE; <parameter_name> is the name of a parameter being
passed IN, OUT, or IN and OUT; and <parameter_data_type> is the PL/SQL data type of the corresponding
parameter. The brackets around the keywords OR REPLACE denote that they are optional. In addition, just as
with a function, the brackets around the parameters denote that they are optional.

The block structure of a PROCEDURE is exactly the same as an anonymous block, except for the addition
of the DDL CREATE PROCEDURE keywords and the optional parameters. A procedure differs from a function in
that it does not have a RETURN parameter.

Chapter 2 ■ Blocks, Functions, and Procedures

46

Let’s take a look at Listing 2-5, line by line:

Line 1 contains the DDL keywords to •	 CREATE a stored PROCEDURE.

Line 2 passes in one parameter: the number of seconds to wait.•	

Lines 3 through 7, in the declaration section, have a multiline comment that •	
documents the procedure’s source code filename, author, date the procedure was
written, and finally a comment about what the procedure does.

On line 8, the keyword •	 BEGIN starts the executable section.

On line 9, I call the procedure •	 sleep() located in package DBMS_LOCK, owned by user
SYS. sleep() calls the host operating system’s sleep() or wait function and then
returns sometime after the specified period in seconds.

On line 10, the keyword •	 END ends the executable section. Did you notice that there
is no defined exception-handling section? Since I didn’t code one, PL/SQL will use
the default exception handler, which will simply raise the error to the enclosing
program unit.

On line 11, the slash (•	 /) tells Oracle to store and then compile the procedure.

Line 12 calls a helper script to show any compilation errors.•	

The PL/SQL block structure for the stored procedure in Listing 2-5 was really not that much different
from the structure of the anonymous procedure and the stored function. The wait() procedure has a name
and parameters, while an anonymous procedure does not. In addition, wait() does not return a value, while
a stored function does.

It’s Your Turn to Create a Procedure
Now you’ll create a procedure that wraps the SYS.DBMS_OUTPUT.put_line() procedure, but uses a very
short name. You’ll end up using the SYS.DBMS_OUTPUT.put_line() procedure a lot. It gets tiresome to type
a 24-character method name every time you want to display a line of text on the screen in SQL*Plus. So,
to save keystrokes, you will give your SYS.DBMS_OUTPUT.put_line() wrapper procedure the name pl(), as in
p for put and l for line.

You can use the procedure in Listing 2-5 as a model. Just replace the parameter on line 2 with aiv_text
in varchar2, and write line 9 with a call to SYS.DBMS_OUTPUT.put_line(aiv_text).

	 1.	 Write the DDL to create your procedure.

	 2.	 Save your new DDL script with the file name pl.prc.

	 3.	 At your SQL*Plus prompt, type the at sign (@) followed by the name of your file to
store and compile your new procedure.

	 4.	 Test your new procedure by using it in an anonymous procedure.

Listing 2-6 shows my solution for this exercise.

Chapter 2 ■ Blocks, Functions, and Procedures

47

Listing 2-6.  A Lazy Typist’s SYS.DBMS_OUTPUT.put_line( ), pl.prc

01 create or replace PROCEDURE pl(
02 aiv_text in varchar2) is
03 /*
04 pl.prc
05 by Donald J. Bales on 2014-10-20
06 A wrapper procedure for SYS.DBMS_OUTPUT.put_line()
07 for the lazy typist.
08 */
09
10 begin
11 SYS.DBMS_OUTPUT.put_line(aiv_text);
12 end pl;
13 /
14 @pe.sql pl
 

Listing 2-7 is my test unit for procedure pl().I’ve named it with the same file name as my procedure,
except for the extension: I used .prc for the stored procedure and .sql for the anonymous procedure,
its test unit. Since this is a wrapper procedure, I’m simply testing the known limits of procedure
SYS.DBMS_OUTPUT.put_line() to make sure pl() is working properly.

Listing 2-7.  A Test Unit for Procedure pl( ), pl.sql

01 rem pl.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem pl's test unit
04
05 declare
06
07 v_max_line varchar2(32767);
08
09 begin
10 -- The next three lines initialize the
11 -- variable v_max_line with 32,767 spaces.
12 for i in 1..32767 loop
13 v_max_line := v_max_line || ' ';
14 end loop;
15
16 pl('Test a line of text.');
17
18 pl('Test a number, such as 1?');
19 pl(1);
20
21 pl('Test a date, such as 01/01/1980?');
22 pl(to_date('19800101', 'YYYYMMDD'));
23
24 pl('Test a line <= 32767');
25 pl(v_max_line);
26
27 pl('Test a line > 32767');
28 pl(v_max_line||' ');
29

Chapter 2 ■ Blocks, Functions, and Procedures

48

30 pl('Test a multi-line');
31 pl('12345678901234567890123456789012345678901234567890'||
32 '12345678901234567890123456789012345678901234567890'||chr(10)||
33 '12345678901234567890123456789012345678901234567890'||
34 '12345678901234567890123456789012345678901234567890'||chr(10)||
35 '12345678901234567890123456789012345678901234567890'||
36 '12345678901234567890123456789012345678901234567890');
37 end;
38 /
 

Here’s the output from my test unit:
 
SQL> @pl.sql

Test a line of text.
Test a number, such as 1?
1
Test a date, such as 01/01/1980?
01-JAN-80
Test a line <= 32767
Test a line > 32767
declare
*
ERROR at line 1:
ORA-20000: ORU-10028: line length overflow, limit of 32767 bytes per line
ORA-06512: at "SYS.DBMS_OUTPUT", line 32
ORA-06512: at "SYS.DBMS_OUTPUT", line 91
ORA-06512: at "SYS.DBMS_OUTPUT", line 112
ORA-06512: at "RPS.PL", line 11
ORA-06512: at line 24 

The line of text, number 1, date 01/01/1980, and line <= 32767 characters tests ran, but the last test,
multiline, didn’t because the > 32767 test threw an exception that was not handled. Let’s see how the code
can handle this problem.

Nested Blocks
You can, and should when necessary, nest PL/SQL blocks. To nest a PL/SQL block means to embed one or
more PL/SQL blocks inside another PL/SQL block. Nesting PL/SQL blocks allows you greater control over
your PL/SQL program’s execution. You can wrap one or more PL/SQL or SQL statements in their own
PL/SQL block, so you can catch an exception that is generated within that block. I call this “blocking” code.
Let’s look at an example.

An Example of Nesting Blocks
As you saw, the test unit for procedure pl() in Listing 2-7 stopped executing after line 28 because line 28
caused the following error:
 
ORA-20000: ORU-10028: line length overflow, limit of 32767 bytes per line
 

Chapter 2 ■ Blocks, Functions, and Procedures

49

In Listing 2-8, I’ve recoded the pl() test unit. This time, I’ve blocked the lines that I expect to fail, so
the program will catch any raised exceptions and continue processing the code all the way to the end of the
source code listing.

Listing 2-8.  The New, Improved pl( ) Test Unit, pl2.sql

01 rem pl2.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Test unit for procedure pl
04
05 declare
06 v_max_line varchar2(32767);
07
08 begin
09 -- The next three lines initialize a variable v_max_line with 32,767 spaces.
10 for i in 1..32767 loop
11 v_max_line := v_max_line || ' ';
12 end loop;
13
14 pl('Test a line of text.');
15
16 pl('Test a number, such as 1?');
17 pl(1);
18
19 pl('Test a date, such as 01/01/1980?');
20 pl(to_date('19800101', 'YYYYMMDD'));
21
22 pl('Test a line <= 32767');
23 pl(v_max_line);
24
25 pl('Test a line > 32767');
26 begin
27 pl(v_max_line||' ');
28 exception
29 when OTHERS then
30 pl(SQLERRM);
31 end;
32
33 pl('Test a multi-line');
34 begin
35 pl('12345678901234567890123456789012345678901234567890'||
36 '12345678901234567890123456789012345678901234567890'||chr(10)||
37 '12345678901234567890123456789012345678901234567890'||
38 '12345678901234567890123456789012345678901234567890'||chr(10)||
39 '12345678901234567890123456789012345678901234567890'||
40 '12345678901234567890123456789012345678901234567890');
41 exception
42 when OTHERS then
43 pl(SQLERRM);
44 end;
45 end;
46 /
 

Chapter 2 ■ Blocks, Functions, and Procedures

50

The changed lines (highlighted in the listing) are as follows:

Line 26 starts a nested block with the keyword •	 BEGIN around the PL/SQL statement
that will actually test > 32767.

Line 28 contains a corresponding keyword •	 EXCEPTION in order to create an
exception-handling section for the nested PL/SQL block.

Line 29 has the phrase •	 when OTHERS then in order to catch all exceptions that can be
generated within the nested block.

On line 30, I once again call procedure •	 pl(), but this time I display the exception
error message: SQLERRM.

On line 31, the nested block ends with the keyword •	 END.

Once again, on lines 34 and 41 through 44, I create a nested block around the next •	
PL/SQL statement that I expect may fail.

Let’s see the results of these changes:
 
SQL> @pl2.sql
Test a line of text.
Test a number, such as 1?
1
Test a date, such as 01/01/1980?
01-JAN-80
Test a line <= 32767
Test a line > 32767
ORA-20000: ORU-10028: line length overflow, limit of 32767 bytes per line
Test a multi-line
1234567890123456789012345678901234567890123456789012345678901234567890...
 
PL/SQL procedure successfully completed.
 

Great! Now my test unit completed successfully, and it reported the errors I expected to see. As we move
through the chapters ahead, you’ll get plenty of experience nesting PL/SQL blocks.

Rules for Nesting
Here are the rules I employ when it comes to blocking PL/SQL code:

Block every SQL statement except cursors (you’ll learn about cursors in Chapter •	 5).

Block any PL/SQL statement where you are converting from one data type to •	
another, or moving a possibly larger character string into a smaller character string
variable (you’ll learn about variables in Chapter 3).

Block any PL/SQL statement that you expect will raise an exception.•	

The important point about these nesting rules is that blocking will enable you to identify the reason for
and the location of an exception when it is raised. In turn, that will make your software development easier
and the resulting programs more robust.

http://dx.doi.org/10.1007/9781484207383_5
http://dx.doi.org/10.1007/9781484207383_3

Chapter 2 ■ Blocks, Functions, and Procedures

51

Packages
In practice, you’ll rarely create a stand-alone stored function or procedure. Instead, you’ll use a package.
What is a package? A package is a means to organize related functions and procedures together, like creating
a library, but in PL/SQL jargon the library is called a package.

A PL/SQL package has two parts:

A package specification•	

A package body•	

A package specification (spec) is the public face to the package. It lists any globally accessible constants,
cursors, functions, procedures, and variables. By “globally accessible,” I mean those procedures, functions,
and other items that other PL/SQL programs can access. If you consider a package as a sort of library,
then the package spec describes what you can read from that library, while the package body contains the
behind-the-scenes code that implements the package spec.

Create a Package Specification
Listing 2-9 is an example of a package spec. It shows the package spec for the package DATE_, which is a
utility package for date-related constants and functions.

Listing 2-9.  The DATE_ Package Spec, date_.pks

01 create or replace package DATE_ AS
02 /*
03 date_.pks
04 by Donald J. Bales on 2014-10-20
05 Additional DATE data type methods.
06 */
07
08 -- The maximum and minimum date values.
09
10 d_MAX constant date :=
11 to_date('99991231235959', 'YYYYMMDDHH24MISS');
12 d_MIN constant date :=
13 to_date('-47120101', 'SYYYYMMDD');
14
15
16 -- Returns the specified date with the time set to 23:59:59, therefore,
17 -- the end of the day.
18
19 FUNCTION end_of_day(
20 aid_date in date)
21 return date;
22
23
24 -- Returns constant d_MAX. This is useful in SQL statements where the
25 -- constant DATE_.d_MAX is not accessible.
26

Chapter 2 ■ Blocks, Functions, and Procedures

52

27 FUNCTION get_max
28 return date;
29
30
31 -- Returns constant d_MIN. This is useful in SQL statements where the
32 -- constant DATE_.d_MIN is not accessible.
33
34 FUNCTION get_min
35 return date;
36
37
38 -- Text-based help for this package. "set serveroutput on" in SQL*Plus.
39
40 PROCEDURE help;
41
42
43 -- Returns a randomly generated date that exists between the years specified.
44
45 FUNCTION random(
46 ain_starting_year in number,
47 ain_ending_year in number)
48 return date;
49
50
51 -- Returns the specified date with the time set to 00:00:00, therefore, the
52 -- start of the day.
53
54 FUNCTION start_of_day(
55 aid_date in date)
56 return date;
57
58
59 -- Test unit for this package.
60
61 PROCEDURE test;
62
63
64 end DATE_;
65 /
66 @se.sql DATE_
 

The DDL syntax used to create the package spec in Listing 2-9 is as follows:
 
CREATE [OR REPLACE] PACKAGE <package_name> AS
-- one or more: constant, cursor, function, procedure, or variable declarations
END <package_name>;
 
where <package_name> is the name of the package you’re creating.

Not much to a package spec? Sure there is. Now, instead of using the DDL CREATE FUNCTION or
CREATE PROCEDURE, you’ll use the keywords FUNCTION and PROCEDURE for each PL/SQL method you want to
declare globally.

Chapter 2 ■ Blocks, Functions, and Procedures

53

Let’s take a look at the package spec in Listing 2-9:

Line 1 uses the DDL keywords to •	 CREATE a stored PACKAGE specification.

Lines 10 and 12 declare two global constants (ones available to any other PL/SQL •	
stored procedure), d_MAX and d_MIN, which are the current maximum and minimum
date values supported by Oracle.

Lines 19, 27, 34, 45, and 54 declare five date functions. Please note that these are only •	
declarations; they have no code. The code will be found in the package body.

Lines 40 and 61 declare two “helper” procedures. I will discuss these helper •	
procedures in great length in Chapters 7, 8, and 9.

Line 64 ends the •	 PACKAGE declaration with the keyword END.

On line 65, I tell Oracle to store and compile the package spec.•	

Line 66 calls a helper SQL script to show any errors.•	

You may also have noticed that I took the time to document the purpose of every declaration in the
package spec. You should do the same. Documenting as you go is one of the major characteristics of a
professional PL/SQL programmer.

It’s Your Turn to Create a Package Specification
Do you remember the function to_number_or_null() in Listing 2-2? Now you will create a package called
NUMBER_ that has it as one of its methods. Mimic what I just showed you as you follow these steps.

	 1.	 Write the DDL to create a package spec called NUMBER_.

	 2.	 Save your DDL script as number_.pks.

	 3.	 Execute your DDL script in SQL*Plus: SQL> @number_.pks.

	 4.	 Type desc number_ at the SQL*Plus prompt to verify that your package spec
exists.

As usual, if you get any errors, figure out what’s wrong so you can compile the script successfully.
Remember to use the script in Listing 2-9 as a model. Listing 2-10 shows my solution.

Listing 2-10.  The NUMBER_ Package Spec, number_.pks

01 create or replace package NUMBER_ as
02 /*
03 number_.pks
04 by Donald J. Bales on 2014-10-20
05 A utility package for the data type NUMBER
06 */
07
08 /*
09 Returns the passed varchar2 as a number if it represents a number,
10 otherwise, it returns NULL
11 */

http://dx.doi.org/10.1007/9781484207383_7
http://dx.doi.org/10.1007/9781484207383_8
http://dx.doi.org/10.1007/9781484207383_9

Chapter 2 ■ Blocks, Functions, and Procedures

54

12 FUNCTION to_number_or_null (
13 aiv_number in varchar2)
14 return number;
15
16 end NUMBER_;
17 /
18 @se.sql
 

There’s no way to test the package spec, because there’s no code yet. The code goes in the package body.

Create a Package Body
A package body is the implementation for a package spec. It must contain the code for any functions or
procedures declared in its corresponding package spec. In addition, the body can also contain any constant,
cursor, function, procedure, or variable that should be accessible within the package body (that is, not
publicly accessible). Let’s take a look at the corresponding package body for package DATE_.

I’m about to show you a package body that has a lot of PL/SQL code that we haven’t covered yet. Don’t
worry too much about the code itself. You won’t understand it all now, but you’ll be able to understand it
after finishing this book. What you need to take away from this example is the package body structure, which
is also a PL/SQL block structure. Let’s look at Listing 2-11.

Listing 2-11.  The DATE_ Package Body, date_.pkb

001 create or replace package body DATE_ AS
002 /*
003 date_.pkb
004 by Donald J. Bales on 2014-10-20
005 Additional DATE data type methods
006 */
007
008
009 FUNCTION end_of_day(
010 aid_date in date)
011 return date is
012
013 begin
014 return to_date(to_char(aid_date, 'SYYYYMMDD')||'235959',
015 'SYYYYMMDDHH24MISS');
016 end end_of_day;
017
018
019 FUNCTION get_max
020 return date is
021
022 begin
023 return d_MAX;
024 end get_max;
025
026

Chapter 2 ■ Blocks, Functions, and Procedures

55

027 FUNCTION get_min
028 return date is
029
030 begin
031 return d_MIN;
032 end get_min;
033
034
035 FUNCTION random(
036 ain_starting_year in number,
037 ain_ending_year in number)
038 return date is
039
040 d_random date;
041 n_day number;
042 n_month number;
043 n_year number;
044
045 begin
046 n_year := round(DBMS_RANDOM.value(
047 ain_starting_year, ain_ending_year), 0);
048 --pl('n_year='||n_year);
049 loop
050 n_month := round(DBMS_RANDOM.value(1, 12), 0);
051 --pl('n_month='||n_month);
052 n_day := round(DBMS_RANDOM.value(1, 31), 0);
053 --pl('n_day='||n_day);
054 begin
055 d_random := to_date(lpad(to_char(n_year), 4, '0')||
056 lpad(to_char(n_month), 2, '0')||
057 lpad(to_char(n_day), 2, '0'),
058 'YYYYMMDD');
059 exit;
060 exception
061 when OTHERS then
062 if SQLCODE <> -1839 then
063 pl(SQLERRM);
064 --else
065 -- pl('29-31');
066 end if;
067 end;
068 end loop;
069 return d_random;
070 end random;
071
072
073 FUNCTION start_of_day(
074 aid_date in date)
075 return date is
076

Chapter 2 ■ Blocks, Functions, and Procedures

56

077 begin
078 return trunc(aid_date);
079 end start_of_day;
080
081
082 -- Write up the help text here in this help method
083 PROCEDURE help is
084
085 begin
086 -- 1234567890123456789012345678901234567890123456789012345678901234567890
087 pl('============================== PACKAGE ==============================');
088 pl(chr(9));
089 pl('DATE_');
090 pl(chr(9));
091 pl('------------------------------ CONSTANTS ----------------------------');
092 pl(chr(9));
093 pl('d_MAX');
094 pl(chr(9)||'Represents the maximum value for the DATE data type.');
095 pl('d_MIN');
096 pl(chr(9)||'Represents the minimum value for the DATE data type.');
097 pl(chr(9));
098 pl('------------------------------ FUNCTIONS ----------------------------');
099 pl(chr(9));
100 pl('DATE_.end_of_day(');
101 pl('aid_date in date)');
102 pl('return date;');
103 pl(chr(9)||'Returns the passed date with the time portion set to the end ');
104 pl(chr(9)||'of the day:');
105 pl(chr(9)||'23:59:59 (HH24:MI:SS).');
106 pl(chr(9));
107 pl('DATE_.get_max()');
108 pl('return date;');
109 pl(chr(9)||'Returns the constant DATE_.d_MAX.');
110 pl(chr(9));
111 pl('DATE_.get_mim()');
112 pl('return date;');
113 pl(chr(9)||'Returns the constant DATE_.d_MIN.');
114 pl(chr(9));
115 pl('DATE_.random(');
116 pl('ain_starting_year in number,');
117 pl('ain_ending_year in number)');
118 pl('return date;');
119 pl(chr(9)||'Returns a random date that exists between the specified years.');
120 pl(chr(9));
121 pl('DATE_.start_of_day(');
122 pl('aid_date in date)');
123 pl('return date;');
124 pl(chr(9)||'Returns the passed date with the time portion set to the start');
125 pl(chr(9)||'of the day:');
126 pl(chr(9)||'00:00:00 (HH24:MI:SS).');
127 pl(chr(9));

Chapter 2 ■ Blocks, Functions, and Procedures

57

128 pl('------------------------------ PROCEDURES ----------------------------');
129 pl(chr(9));
130 pl('DATE_.help();');
131 pl(chr(9)||'Displays this help text if set serveroutput is on.');
132 pl(chr(9));
133 pl('DATE_.test();');
134 pl(chr(9)||'Built-in test unit. It will report success or error for each');
135 pl(chr(9)||'test if set');
136 pl(chr(9)||'serveroutput is on.');
137 pl(chr(9));
138 end help;
139
140
141 PROCEDURE test is
142
143 d_date date;
144
145 begin
146 pl('============================== PACKAGE ===============================');
147 pl(chr(9));
148 pl('DATE_');
149 pl(chr(9));
150 pl('1. Testing constants d_MIN and d_MAX');
151 if d_MIN < d_MAX then
152 pl('SUCCESS');
153 else
154 pl('ERROR: d_MIN is not less than d_MAX');
155 end if;
156
157 pl('2. Testing end_of_day()');
158 if to_char(end_of_day(SYSDATE), 'HH24MISS') = '235959' then
159 pl('SUCCESS');
160 else
161 pl('ERROR: end_of_day is not 23:59:59');
162 end if;
163
164 pl('3. Testing get_max()');
165 if get_max() = d_MAX then
166 pl('SUCCESS');
167 else
168 pl('ERROR: get_max() is not equal to d_MAX');
169 end if;
170
171 pl('4. Testing get_min()');
172 if get_min() = d_MIN then
173 pl('SUCCESS');
174 else
175 pl('ERROR: get_min() is not equal to d_MIN');
176 end if;
177

Chapter 2 ■ Blocks, Functions, and Procedures

58

178 pl('5. Testing random() 1000 times');
179 for i in 1..1000 loop
180 d_date := random(1, 9999);
181 --pl(to_char(d_date, 'YYYY-MM-DD HH24:MI:SS'));
182 end loop;
183 pl('SUCCESS');
184
185 pl('6. Testing start_of_day()');
186 if to_char(start_of_day(SYSDATE), 'HH24MISS') = '000000' then
187 pl('SUCCESS');
188 else
189 pl('ERROR: start_of_day is not 00:00:00');
190 end if;
191 end test;
192
193
194 end DATE_;
195 /
196 @be.sql DATE_
 

The DDL syntax used to create the package body in Listing 2-11 is as follows:
 
CREATE [OR REPLACE] PACKAGE BODY <package_name> AS
-- one or more constant, cursor, or variable declarations
-- one or more function, or procedure implementations
[BEGIN]
-- you can code a PL/SQL block called an initialization section that is
-- executed only once per session, when the package is first instantiated
-- into memory
[EXCEPTION]
-- you can code an exception-handling section for the initialization section
END <package_name>;
 
where <package_name> is the name of the package body you’re creating.

Did you notice the two optional sections? If you have some initialization code that you want to run the
first time a package is loaded into memory, you can use the keyword BEGIN to start an initialization section.
And if you want an exception-handling section for your initialization section, you can add it by using the
keyword EXCEPTION. This is classic PL/SQL block structure.

Your implementations of functions and procedures are actually embedded functions and procedures
in the declaration section of a PL/SQL block! Any constant, cursor, or variable that you declare in the
declaration section of the package body is accessible to all the declared functions and procedures in that
section, but not globally to other stored procedures. Only the items you declared in the package spec are
accessible to other stored procedures.

As I noted at the beginning of this section, Listing 2-11 contains a lot of code that we haven’t yet
discussed, so I’ll leave its explanation for later chapters.

Chapter 2 ■ Blocks, Functions, and Procedures

59

Note■■  I n Listing 2-11, if I had declared any package body (or instance) functions or procedures—ones not
accessible outside the package body—I would take time to document the purpose of the instance declaration
in the package body. You should do the same. Once again, I declare that professional PL/SQL programmers
document as they go.

It’s Your Turn to Create a Package Body
You should already have a package spec created for the NUMBER_ package, as in Listing 2-10. Now it’s time
create the corresponding package body. It’s almost like the package spec, except for the keyword BODY in the
DDL and the function to_number_or_null()’s implementation, as in Listing 2-2. Create your package body
by following these steps.

	 1.	 Write the DDL to create a package body called NUMBER_.

	 2.	 Save your DDL script as number_.pkb.

	 3.	 Execute your DDL script in SQL*Plus: SQL> @number_.pkb.

	 4.	 Test your function using a SELECT statement, just as you did way back in the
section on functions. This time, however, you’ll prefix the function name with the
name of your package.

Again, if you get any errors, work on your script until you figure out what’s wrong so you can compile the
script successfully. Listing 2-12 shows my solution.

Listing 2-12.  The NUMBER_ Package Body, number_.pkb

01 create or replace package body NUMBER_ as
02 /*
03 number_.pkb
04 by Donald J. Bales on 2014-10-20
05 A utility package for the data type NUMBER
06 */
07
08 FUNCTION to_number_or_null (
09 aiv_number in varchar2)
10 return number is
11 begin
12 return to_number(aiv_number);
13 exception
14 when OTHERS then
15 return NULL;
16 end to_number_or_null;
17
18 end NUMBER_;
19 /
20 @be.sql

Chapter 2 ■ Blocks, Functions, and Procedures

60

Benefits of Using Packages
As I mentioned earlier, anything declared in a package spec can be seen by any username that has execute
privileges on the package. Package specs also reduce dependency invalidation issues. What does that mean?

Say that procedure1 calls function1 and is called by procedure2. Then if you change function1,
function1 becomes invalid, and so do procedure1 and procedure2. This means you need to recompile all
three PL/SQL programs. This chain of dependency can be broken by using packages.

Now suppose that you use packages: package1.procedure1 calls package2.function1, and it is called
by package3.procedure2. If you change the package implementation, or body, of package2.function1, it
will not cause the invalidation of the function, nor any dependent PL/SQL blocks. You will cause dependent
PL/SQL blocks to be invalidated only if you change the package spec.

Summary
Table 2-1 shows a side-by-side comparison of the syntax used for the various types of PL/SQL blocks covered
in this chapter. The point here is that PL/SQL code always exists in a PL/SQL block, and that PL/SQL blocks
are quite consistent in their structure. Even nested PL/SQL blocks are consistent with the ones shown in
Table 2-1.

Now that you have a firm understanding of the block structure of PL/SQL, you’re ready to move on to
the next step: learning about PL/SQL data types and variables.

Table 2-1.  A Comparison of PL/SQL Block Syntax

ANONYMOUS
[DECLARE]

CREATE
FUNCTION

CREATE
PROCEDURE

CREATE
PACKAGE

CREATE
PACKAGE BODY

  [parameters] [parameters]    

  RETURN      

[declaration
section]

declaration section declaration section declaration section declaration section

BEGIN BEGIN BEGIN   [BEGIN]

executable
section

executable section executable section   executable section]

[EXCEPTION] [EXCEPTION] [EXCEPTION]   [EXCEPTION]

[exception-
handling section]

[exception-handling
section]

[exception-handling
section]

  [exception-handling
section]

END; END; END; END; END;

/ / / / /

61

Chapter 3

Types, Variables, and Scope

This chapter is all about how to keep track of variables in a PL/SQL program. Before this chapter ends, you’ll
learn about PL/SQL data types, variables, scope, types, and parameters. Let’s get started.

PL/SQL Data Types
Given that PL/SQL is the Procedural Language extension for SQL, you would think that it supports and uses
the same data types as SQL does for the database, right? Right! It turns out that is almost the case, but not
quite. PL/SQL can handle any database data type and also some data types of its own.

Do you remember the “Data Definition Language (DDL)” section in Chapter 1? In it, I talked about
the three basic data types that you will use all the time: character (VARCHAR2), numeric (NUMBER), and time
(DATE). Here’s how those types work in PL/SQL:

•	 VARCHAR2: Just as in the database, most of the time you’ll work with character strings
in PL/SQL using the data type VARCHAR2. However, unlike the database VARCHAR2
type, a PL/SQL VARCHAR2 can hold as many as 32,767 characters, whereas the
database type prior to Oracle12c only holds up to 4,000.

•	 NUMBER: Just as in the database, most of the time you’ll work with numbers in
PL/SQL using the data type NUMBER. And, just like the database, PL/SQL has
additional numeric data types available. For example, you can use the type
PLS_INTEGER, which has an integer range from –2147483648 to 2147483647.
PLS_INTEGER also uses the computer’s hardware to do its calculations instead of
library routines, so it’s faster. However, until you’re comfortable writing stored
procedures with PL/SQL, I don’t think you need to bother with them. You can always
take a look at them in Oracle’s PL/SQL User’s Guide and Reference when you’re ready.

•	 DATE: Just as in the database, most of the time you’ll work with dates and times in
PL/SQL using data type DATE. Like NUMBER, PL/SQL has additional time-related data
types. Check them out in Oracle’s reference once you’re up and coding confidently.

PL/SQL also has a BOOLEAN data type that allows you to store the logical values FALSE or TRUE in a
variable. SQL has no equivalent. So you can pass BOOLEAN values between methods and use them as
variables in your PL/SQL program units, but you can’t store them in the database.

Of course, there are many more Oracle SQL and PL/SQL data types, but the ones I just covered are the
ones you’ll use most often.

http://dx.doi.org/10.1007/9781484207383_1

Chapter 3 ■ Types, Variables, and Scope

62

Variables
Variables are named temporary storage locations that support a particular data type in your PL/SQL
program. You must declare them in the declaration section of a PL/SQL block.

By “named,” I mean that you give each of your variables a name. They are temporary because the values
you assign to variables typically exist only in memory (or are accessible in memory) while the PL/SQL block
in which they are declared is executing. They are storage locations in memory. And they are declared to store
a particular data type so PL/SQL knows how to create, store, access, and destroy them.

Let’s start by looking at how to name your variables.

Variable Naming
Like a SQL or database data type, PL/SQL variables must follow the identifier naming rules:

A variable name must be less than 31 characters in length.•	

A variable name must start with an uppercase or lowercase ASCII letter: A–Z or a–z. •	
PL/SQL is not case-sensitive.

A variable name may be composed of 1 letter, followed by up to 29 letters, numbers, •	
or the underscore (_) character. You can also use the number (#) and dollar sign ($)
characters.

As a matter of fact, all PL/SQL identifiers, like stored function and procedure names, must follow these
naming rules!

I like to use the following conventions when naming variables:

Use the two-character prefix for each data type, as defined in Table •	 3-1.

Make its purpose obvious. If the variable will hold a value from the database, use the •	
same name as in the database, but with the appropriate prefix.

Table 3-1.  My PL/SQL Variable Naming Prefixes

Prefix Data Type

c_ CURSOR

d_ DATE

n_ NUMBER

r_ ROW

t_ TABLE

v_ VARCHAR2

For example, if I were to declare variables to hold data from the columns in the AUTHORS table, I would
use the following identifier names:

•	 n_id

•	 v_name

•	 d_birth_date

•	 v_gender

Chapter 3 ■ Types, Variables, and Scope

63

The advantage of using these prefixes is that you’ll always know the variable’s data type and its scope.
(I’ll cover scope shortly.) In addition, since you made the name obvious, you’ll also know where it comes
from or where it’s going.

By “obvious,” I mean that you shouldn’t use a synonym for an already existing identifier. For example,
don’t create variables named d_born, d_date_of_birth, and d_bday for a value from the birth_date column
in the database. Why? All those name variations will just make what you’re referring to unclear, and all
professional PL/SQL programmers want to make it absolutely clear what is going on in their code!

Now that you know how to name your variables, let’s look at how to declare them.

Variable Declarations
To declare a variable, type the variable name (identifier) followed by the data type definition, as you would
use in SQL, terminated by a semicolon (;). The data type definition is the name of the data type, possibly
followed by length constraints in a set of parentheses. For example, to declare variables to hold the data from
columns in the AUTHORS table, I could code the following in a PL/SQL block’s declaration section:
 
declare
 
 n_id number;
 v_name varchar2(100);
 d_birth_date date;
 v_gender varchar2(30);
 
begin
 ...
end;
 

The DDL syntax used to declare the preceding variables is as follows:
 
<variable_name> <data_type>;
 
where <variable_name> is the name of the variable (or identifier), and <data_type> is one of the PL/SQL
data types.

You’ll notice that if you get rid of the data type prefixes, variable declarations look just like the SQL in
the table definition for AUTHORS in Chapter 1, and that’s the whole point. They should! It wouldn’t make
much sense to declare varchar2 variables that are smaller than the ones in the database because that could
cause an error. And it doesn’t make much sense to name them differently than what they’re named in the
database because that would just make things confusing. That’s why I use those prefixes shown in Table 3-1.

Most of the time, you’ll end up declaring variables that temporarily hold values from or that are going
into the database, and PL/SQL has a keyword for simplifying just that situation: %TYPE.

Variable Anchors
An anchor refers to the use of the keyword %TYPE to “anchor” a PL/SQL data type definition in a PL/SQL
variable to the corresponding SQL data type definition of a column in a table. Steven Feuerstein coined the
term anchor, and I’ve always liked it, so I use it whenever I talk about the keyword %TYPE.

http://dx.doi.org/10.1007/9781484207383_1

Chapter 3 ■ Types, Variables, and Scope

64

Here’s an example of the PL/SQL variables for the table AUTHORS declared using column anchors (the
%TYPE keyword):
 
n_id AUTHORS.id%TYPE;
v_name AUTHORS.name%TYPE;
d_birth_date AUTHORS.birth_date%TYPE;
v_gender AUTHORS.gender%TYPE;
 

The syntax used to declare the preceding variables is as follows:
 
<variable_name> <table_name>.<column_name>%TYPE;
 
where <variable_name> is the name of the variable (or identifier), <table_name> is the name of the table
used to anchor the data type, and <column_name> is the name of the column used to anchor the data type.

Programming in PL/SQL just keeps getting better, doesn’t it? By using anchors, you now know that the
variables use the same data types and sizes as the table that will be the source of, or permanent storage for,
each variable’s value. Even when I use anchors, I still use data type prefixes in order to remind me of the
variables’ data types.

Now that you’ve seen how to declare variables, let’s talk about how to assign values to them.

Variable Assignments
To assign a literal value to a variable in PL/SQL, you use the assignment operator, which is a colon (:)
followed by an equal sign (=): :=. For example, I can make the following assignments:
 
declare
 ...
begin
 
 n_id := 400;
 v_name := 'STEVEN FEUERSTEIN';
 d_birth_date := to_date('19800101', 'YYYYMMDD');
 v_gender := 'M';
 
end;
 

What do I mean by “a literal value”? OK, let’s back up a second.

A numeric literal is just a number without any formatting, such as •	 400.

A character literal is just a string of characters enclosed in a pair of tick (•	 ') characters
(or single quotes), such as 'STEVEN FEUERSTEIN'.

There is no such thing as a date literal. You can assign a character literal and hope the format you
decided to use matches the current NLS_DATE_FORMAT (automatic type conversion—dangerous, very
dangerous), or you can use the built-in function,

to_date(aiv_date in varchar2, aiv_date_format in varchar2)

Chapter 3 ■ Types, Variables, and Scope

65

A second way to assign a value to a variable is to use an INTO clause in a SQL SELECT statement. Here’s
an example:
 
select id,
 name,
 birth_date,
 gender
into n_id
 v_name,
 d_birth_date,
 v_gender
from AUTHORS
where AUTHORS.id = (
 select AUTHOR_PUBLICATIONS.author_id
 from AUTHRO_PUBLICATIONS
 where title = 'ORACLE PL/SQL PROGRAMMING');
 

In this example, the PL/SQL keyword INTO moves the values from the SELECT statement’s column list
into the corresponding PL/SQL variables. I’ll talk a lot more about this in Chapter 4.

By default, variables are uninitialized and hence are NULL. You can initialize them to a value when they
are declared by simply assigning them a value in the declaration section. For example, you could initialize
the AUTHORS variables as follows:
 
declare
 
 n_id AUTHORS.id%TYPE := 400;
 v_name AUTHORS.name%TYPE := 'STEVEN FEUERSTEIN';
 d_birth_date AUTHORS.birth_date%TYPE := to_date('19800101', 'YYYYMMDD');
 v_gender AUTHORS.gender%TYPE := NULL;
 
begin
 ...
end;
 

The syntax used to declare the preceding variables is as follows:
 
<variable_name> <table_name>.<column_name>%TYPE := <value>;
 
where <variable_name> is the name of the variable (or identifier), <table_name> is the name of the table
used to anchor the data type, <column_name> is the name of the column used to anchor the data type, and
<value> is the initial value for the variable. But what exactly is NULL?

http://dx.doi.org/10.1007/9781484207383_4

Chapter 3 ■ Types, Variables, and Scope

66

NULL Value
The term NULL value is a bit of a misnomer. The keyword NULL means I don’t know! The keyword NULL means
you don’t know! The keyword NULL means it is not possible to know what the value is, so how can there be
something such as a NULL value? Let’s further define NULL:

•	 NULL is not equal to anything, not even NULL.

•	 NULL is not less than or greater than anything else, not even NULL.

•	 NULL means nothing knows, not even NULL.

You can test for NULL values in a SQL statement or PL/SQL code by using one of two phrases:

•	 is NULL

•	 is not NULL

Although the PL/SQL compiler may let you, you cannot use a logical operator with NULL, like
 
= NULL
 
or
 
<> NULL
 
and get the logical results you’re seeking.

You must use is NULL and is not NULL. Remember this and you will save yourself many hours of
troubleshooting erratic behavior.

It’s Your Turn to Declare Variables
Now that you’re familiar with the declaration of variables, let’s put you to work. Create an anonymous
PL/SQL procedure where you declare variables using anchors, and with default values, for the columns in
the WORKERS table. Follow these steps.

	 1.	 Code your anonymous procedure.

	 2.	 Save it with the file name workers_variables.sql.

	 3.	 Execute your script in SQL*Plus: SQL> @workers_variables.sql.

Listing 3-1 is my solution for this problem.

Listing 3-1.  An Anonymous PL/SQL Procedure with Variable Declarations, workers_variables.sql 

01 declare
02 n_id WORKERS.id%TYPE := 1;
03 n_worker_type_id WORKERS.worker_type_id%TYPE := 3;
04 v_external_id WORKERS.external_id%TYPE := '6305551212';
05 v_first_name WORKERS.first_name%TYPE := 'JANE';
06 v_middle_name WORKERS.middle_name%TYPE := 'E';
07 v_last_name WORKERS.last_name%TYPE := 'DOE';
08 v_name WORKERS.name%TYPE := 'JANEDOEE';
09 d_birth_date WORKERS.birth_date%TYPE :=
10 to_date('19800101', 'YYYYMMDD');

Chapter 3 ■ Types, Variables, and Scope

67

11 n_gender_type_id WORKERS.gender_type_id%TYPE := 1;
12 begin
13 null;
14 end;
15 /
 

Let’s break Listing 3-1 down line by line:

Line 1 uses the keyword •	 DECLARE to start an anonymous PL/SQL procedure.

Lines 2 through 11 declare variables to hold the contents of the columns from the •	
WORKERS table.

Line 12 starts the executable section of the procedure with the keyword •	 BEGIN.

On line 13, I coded a no operation (•	 NULL) so the block will compile.

Line 14 ends the procedure with the keyword •	 END.

On line 15, I tell Oracle to compile and execute the procedure.•	

Now that you’re an expert at declaring variables, let’s take a look at when they are in scope.

Scope
In this context, scope refers to when a declared item can be seen by another PL/SQL block. And yes, I’m not
just talking about variables here; I’m talking about any kind of declared item: a constant, cursor, function,
procedure, or variable.

Scope Rules
The following is a list of rules for scope. As you go through the list, it may be helpful for you to examine
Figure 3-1.

Any item declared in the declaration section of a function or procedure is visible only •	
within the same function or procedure.

Any item declared in the declaration section of a package body is visible only within •	
any other item in the same package body.

Any item declared in a package specification is visible to any other stored function, •	
stored procedure, and package for which the owner of the calling method has
execute privileges.

Chapter 3 ■ Types, Variables, and Scope

68

Figure 3-1.  Where an item is declared detemines its scope

Listings 3-2 and 3-3 are a package spec and package body, respectively, to test scope. Listing 3-2
declares a global function, procedure, and variable in the package spec. Listing 3-3 declares an instance
function, a procedure, and a variable. And, in the function and procedure implementations, I’ve declared
local variables.

Listing 3-2.  A Package Spec to Test Scope, scope.pks

01 create or replace package SCOPE as
02 /*
03 scope.pks
04 by Donald J. Bales on 2014-10-20
05 A package to test scope
06 */
07

Chapter 3 ■ Types, Variables, and Scope

69

08 -- Here's a global variable declaration
09 gv_scope varchar2(80) :=
10 'I''m a global (or package spec) variable';
11
12 -- Here's a global (or package spec) function declaration
13 FUNCTION my_scope_is_global
14 return varchar2;
15
16 -- Here's a global (or package spec) procedure declaration
17 PROCEDURE my_scope_is_global;
18
19
20 end SCOPE;
21 /
22 @se.sql SCOPE
 

Listing 3-3.  A Package Body to Test Scope, scope.pkb

01 create or replace package body SCOPE as
02 /*
03 scope.pkb
04 by Donald J. Bales on 2014-10-20
05 A package to test scope
06 */
07
08 -- Here's an instance (or package body) variable declaration
09 iv_scope varchar2(80) :=
10 'I''m an instance (or package body) variable';
11
12
13 -- Here's an instance (or package body) function declaration
14 FUNCTION my_scope_is_instance
15 return varchar2 is
16 v_answer_1 varchar2(3) := 'Yes';
17 begin
18 pl(chr(9)||'Can function my_scope_is_instance see variable gv_scope?');
19 pl(chr(9)||gv_scope);
20 return v_answer_1;
21 end my_scope_is_instance;
22
23
24 -- Here's a global (or package spec) function declaration
25 FUNCTION my_scope_is_global
26 return varchar2 is
27 v_answer_2 varchar2(3) := 'Yes';
28 begin
29 pl(chr(9)||'Can function my_scope_is_global see variable iv_scope?');
30 pl(chr(9)||iv_scope);
31 return v_answer_2;
32 end my_scope_is_global;

Chapter 3 ■ Types, Variables, and Scope

70

33
34
35 -- Here's an instance (or package body) procedure declaration
36 PROCEDURE my_scope_is_instance is
37 v_answer_3 varchar2(3) := 'Yes';
38 begin
39 pl(chr(9)||'Can procedure my_scope_is_instance see variable gv_scope?');
40 pl(chr(9)||gv_scope);
41 pl(v_answer_3);
42 end my_scope_is_instance;
43
44
45 -- Here's a global (or package spec) procedure declaration
46 PROCEDURE my_scope_is_global is
47 v_answer_4 varchar2(3) := 'Yes';
48 begin
49 pl(chr(9)||'Can procedure my_scope_is_global see variable iv_scope?');
50 pl(chr(9)||iv_scope);
51 pl(v_answer_4);
52 end my_scope_is_global;
53
54
55 end SCOPE;
56 /
57 @se.sql SCOPE
 

Take some time to look over the two code listings. At this point, you should be able to understand the
PL/SQL block structure of the package, and the methods declared and implemented in it, along with the
variable declarations. The point now is to understand when a given function, procedure, or variable is in
scope.

Listing 3-4 is an anonymous PL/SQL procedure that I wrote as a test unit for package SCOPE, specifically
to help you understand when a declared item is in scope.

Listing 3-4.  A Test Unit for Package SCOPE, scope.sql

01 rem scope.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Test unit for package scope
04
05 declare
06
07 -- ANONYMOUS PL/SQL BLOCK'S DECLARATION SECTION --
08
09 v_scope varchar2(40) :=
10 'I''m a local variable';
11

Chapter 3 ■ Types, Variables, and Scope

71

12 -- This is a local (or embedded) function
13 FUNCTION my_scope_is_local
14 return varchar2 is
15 v_answer_0 varchar2(3) := 'Yes';
16 begin
17 return v_answer_0;
18 end my_scope_is_local;
19
20 -- This is a local (or embedded) procedure
21 PROCEDURE my_scope_is_local is
22 v_answer varchar2(3) := 'Yes';
23 begin
24 pl(v_answer);
25 end my_scope_is_local;
26
27 begin
28
29 -- ANONYMOUS PL/SQL BLOCK'S EXECUTABLE SECTION --
30
31 pl('Can I access my local variable?');
32 pl(v_scope);
33 pl('Can I access SCOPE'' global variable?');
34 pl(SCOPE.gv_scope);
35 pl('Can I access SCOPE'' instance variable?');
36 --pl(SCOPE.iv_scope);
37 pl('No!');
38
39 pl('Can I access my local function?');
40 pl(my_scope_is_local());
41 pl('Can I access SCOPE'' global function?');
42 pl(SCOPE.my_scope_is_global());
43 pl('Can I access SCOPE'' instance function?');
44 --pl(SCOPE.my_scope_is_instance());
45 pl('No!');
46
47 pl('Can I access my local procedure?');
48 my_scope_is_local();
49 pl('Can I access SCOPE'' global procedure?');
50 SCOPE.my_scope_is_global();
51 pl('Can I access SCOPE'' instance procedure?');
52 --SCOPE.my_scope_is_instance();
53 pl('No!');
54
55 end;
56 /
 

Chapter 3 ■ Types, Variables, and Scope

72

After I have compile scope.pks and scope.pkb, when I execute scopes.sql from Listing 3-4, I get the
following output from SQL*Plus:
 
SQL> @scopes.sql

Can I access my local variable?
I'm a local variable
Can I access SCOPE' global variable?
I'm a global (or package spec) variable
Can I access SCOPE' instance variable?
No!
Can I access my local function?
Yes
Can I access SCOPE' global function?
 Can function my_scope_is_global see variable iv_scope?
 I'm an instance (or package body) variable
Yes
Can I access SCOPE' instance function?
No!
Can I access my local procedure?
Yes
Can I access SCOPE' global procedure?
 Can procedure my_scope_is_global see variable iv_scope?
 I'm an instance (or package body) variable
Yes
Can I access SCOPE' instance procedure?
No!
 
PL/SQL procedure successfully completed.

 
If you examine all three code listings and the SQL*Plus output carefully, you’ll see that you can access

any item

Declared in a package specification, granted you have access to it.•	

Declared in a package body, if the calling declared item also exists in the same •	
package body.

Declared in a function or procedure, if you’re trying to access it from the same •	
function or procedure.

Perhaps you would like to try testing the scope rules yourself?

It’s Your Turn to Scope Things Out
There’s nothing like hacking to see how things work. So put on your hacker’s hat and take the anonymous
procedure in scope.sql for a ride.

	 1.	 Compile scope.pks.

	 2.	 Compile scope.pkb.

	 3.	 Try alternatively removing the single-line comments characters on lines 36, 44,
and 52 in scopes.sql, and then execute the script.

Chapter 3 ■ Types, Variables, and Scope

73

Each time you try to access a declared item that is out of scope, PL/SQL will let you know exactly where
the coding problem exists in you source code.

Now that you have a firm understanding of scope, let’s step it up a notch.

Types
No discussion of declaring variables would be complete, nor would any programming language itself be
complete, without mentioning arrays. PL/SQL supports three kinds of arrays, or as they are known in
PL/SQL jargon, collections. I will discuss only one kind here: associative arrays. Originally called PL/SQL
tables, associative arrays provide you with the means to create a single-dimension array. Associative arrays
can be based on almost any data type. However, you’ll typically use one of the data types already covered.

Table Types
By table TYPEs, I’m not referring to SQL tables that are used to permanently store data, but PL/SQL tables
(or associative arrays), which are used to temporarily store data in memory. Listing 3-5 is an anonymous
PL/SQL procedure that demonstrates how to declare an associative array (or PL/SQL table). You’ll see that
declaring an associative array consists of two steps.

	 1.	 Declare the new TYPE.

	 2.	 Declare a new variable of that TYPE.

Listing 3-5.  Declaring a PL/SQL Table with a Column Data Type, table.sql

01 rem table.sql
02 rem by Don Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to demonstrate
04 rem the elementary use of PL/SQL tables
05
06 declare
07
08 TYPE name_table IS TABLE OF WORKERS.name%TYPE
09 INDEX BY BINARY_INTEGER;
10
11 t_name name_table;
12
13 n_name binary_integer;
14
15 begin
16 t_name(1) := 'DOE, JOHN';
17 t_name(10) := 'DOE, JANE';
18
19 pl(t_name(1));
20 pl(t_name(10));
21 pl('There are '||t_name.count()||' elements.');
22 n_name := t_name.first();
23 pl('The first element is '||n_name||'.');
24 n_name := t_name.next(n_name);
25 pl('The next element is '||n_name||'.');
26 n_name := t_name.last();

Chapter 3 ■ Types, Variables, and Scope

74

27 pl('The last element is '||n_name||'.');
28 n_name := t_name.prior(n_name);
29 pl('The prior element is '||n_name||'.');
30 if t_name.exists(1) then
31 pl('Element 1 exists.');
32 end if;
33 pl('I''m deleting element 10');
34 t_name.delete(10);
35 pl('There are '||t_name.count()||' elements.');
36 if not t_name.exists(10) then
37 pl('Element 10 no longer exists.');
38 end if;
39 pl('There are '||t_name.count()||' elements.');
40 pl('I''m deleting all elements');
41 t_name.delete();
42 pl('There are '||t_name.count()||' elements.');
43 end;
44 /
 

The syntax used in Listing 3-5 on lines 8 and 9 to declare the associative array is as follows:
 
TYPE <plsql_table_type_name> IS TABLE OF <data_type>
INDEX BY BINARY_INTEGER;
 
where <plsql_table_type_name> is the name you are giving to the new PL/SQL table TYPE, and
<data_type> is the data type to use for the elements in the table (or associative array).

Then, on line 11, I declare an associative array based on the new type with the following syntax:
 
<variable_name> <plsql_table_type_name>;
 
where <variable_name> is an identifier for the PL/SQL table, and <plsql_table_type_name> is the name of
the TYPE.

One of the unique characteristics of an associative array is that it can be sparsely populated. That
means you don’t need to add items consecutively to the array. Instead, you can add them to any index value
between –2,147,483,647 and 2,147,483,647. Did you notice how I did just that in Listing 3-5, on lines 16 and
17? This can be very handy when copying values from a database table into a PL/SQL table because database
tables are generally sparsely populated. You can then use the commands FIRST and NEXT to iterate through
the list consecutively, or look up a value using the index randomly. (You can find more information about
the FIRST and NEXT commands in the PL/SQL User’s Guide and Reference.)

Table 3-2 lists the PL/SQL table built-in functions and procedures. With PL/SQL tables, it’s also possible
to use a varchar2 data type as the index value. So anywhere you see a reference to binary_integer, you can
replace it with varchar2 (up to 32,767 characters long).

Chapter 3 ■ Types, Variables, and Scope

75

Table 3-2.  PL/SQL Table (Associative Array) Built-in Functions and Procedures

Method Description

count() Returns the number of elements

delete(ain_index in binary_integer) Deletes the specified element

delete() Deletes all elements

exists(ain_index in binary_integer) Returns TRUE if the element exists; otherwise, FALSE

first() Returns the index of the first element

last() Returns the index of the last element

prior(ain_index in binary_integer) Returns the index of the first element before the specified
element

next(ain_index in binary_integer) Returns the index of the first element after the specified
element

The following is the output from SQL*Plus when I execute table.sql from Listing 3-5:
 
SQL> @table.sql

DOE, JOHN
DOE, JANE
There are 2 elements.
The first element is 1.
The next element is 10.
The last element is 10.
The prior element is 1.
Element 1 exists.
I'm deleting element 10
There are 1 elements.
Element 10 no longer exists.
There are 1 elements.
I'm deleting all elements
There are 0 elements.
 
PL/SQL procedure successfully completed.

 
As you can see from the output, the procedure in the table.sql script exercises each of the associative

array’s methods.
Do you remember that I said it was possible to declare a PL/SQL table of almost any data type? Let’s

look at creating one with a composite data type next. Listing 3-6 is an example of a PL/SQL table (associative
array) based on a row-level anchor.

Chapter 3 ■ Types, Variables, and Scope

76

Listing 3-6.  Declaring a PL/SQL Table with a Row Type Anchor, row.sql

01 rem row.sql
02 rem by Don Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to demonstrate
04 rem the elementary use of PL/SQL tables
05
06 declare
07
08 TYPE name_table IS TABLE OF WORKERS%ROWTYPE
09 INDEX BY BINARY_INTEGER;
10
11 t_name name_table;
12
13 n_name binary_integer;
14
15 begin
16 t_name(1).name := 'DOE, JOHN';
17 t_name(10).name := 'DOE, JANE';
18 pl(t_name(1).name);
19 pl(t_name(10).name);
20 pl('There are '||t_name.count()||' elements.');
21 n_name := t_name.first();
22 pl('The first element is '||n_name||'.');
23 n_name := t_name.next(n_name);
24 pl('The next element is '||n_name||'.');
25 n_name := t_name.last();
26 pl('The last element is '||n_name||'.');
27 n_name := t_name.prior(n_name);
28 pl('The prior element is '||n_name||'.');
29 if t_name.exists(1) then
30 pl('Element 1 exists.');
31 end if;
32 pl('I''m deleting element 10');
33 t_name.delete(10);
34 pl('There are '||t_name.count()||' elements.');
35 if not t_name.exists(10) then
36 pl('Element 10 no longer exists.');
37 end if;
38 pl('There are '||t_name.count()||' elements.');
39 pl('I''m deleting all elements');
40 t_name.delete();
41 pl('There are '||t_name.count()||' elements.');
42 end;
43 /
 

Chapter 3 ■ Types, Variables, and Scope

77

A couple of new things are happening in Listing 3-6. First, line 8 uses the keyword %ROWTYPE to anchor to
a composite record type based on the columns in the WORKERS table. Second, on lines 16 and 17 I appended
the composite record’s field name name with a dot operator (.) to the PL/SQL table’s name and index, in
order to store the name value in the associative array. Other than those items, the procedures in Listing 3-5
and Listing 3-6 are identical. I did this to point out how to address the fields in a PL/SQL record in a PL/SQL
table, and also to show that the use of the PL/SQL table operators remains the same, regardless of which
data type is used.

Perhaps you would like to declare your own composite record type. Let’s see how you can do that next.

Record Types
Just as you can use the TYPE keyword to declare a new PL/SQL table, you can also use it to declare a PL/SQL
record. Listing 3-7 is an example of doing just that.

Listing 3-7.  Declaring a PL/SQL Record, record.sql

01 rem record.sql
02 rem by Don Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to demonstrate
04 rem the use of PL/SQL records
05
06 declare
07
08 TYPE name_record is record (
09 first_name WORKERS.first_name%TYPE,
10 middle_name WORKERS.middle_name%TYPE,
11 last_name WORKERS.last_name%TYPE);
12
13 TYPE name_table is table of name_record
14 index by binary_integer;
15
16 t_name name_table;
17
18 begin
19 t_name(1).first_name := 'JOHN';
20 t_name(1).last_name := 'DOE';
21 t_name(2).first_name := 'JANE';
22 t_name(2).last_name := 'DOE';
23
24 pl(t_name(1).last_name||', '||t_name(1).first_name);
25 pl(t_name(2).last_name||', '||t_name(2).first_name);
26 end;
27 /
 

Chapter 3 ■ Types, Variables, and Scope

78

The syntax used in Listing 3-7 to declare a PL/SQL record is as follows:
 
TYPE <plsql_record_type_name> IS RECORD (
<field_name_1> <data_type_1>,
<field_name_2> <data_type_2>,...
<field_name_N> <data_type_N>);
 
where <plsql_record_type_name> is the name for the new PL/SQL record type, <field_name> is the name
of a field in the record, and <data_type> is the data type for the corresponding field.

As with the program in Listing 3-6, on lines 19 through 25 in Listing 3-7 I use the dot operator (.)
followed by the name of the field in the record to address the composite data type values in the PL/SQL
table.

WHAT’S WITH THIS NOMENCLATURE INCONSISTENCY ANYWAY?

I like things, especially programming code, to be consistent. Consistency makes things obvious. Obvious
makes program code easy to maintain. Along those lines, I would feel much better if Oracle had called
the syntax for creating a composite data type in a PL/SQL block a row instead of a record. Then we
could refer to a field as column. The syntax would then be as follows:
 
TYPE <plsql_row_type_name> IS ROW (
<column_name_1> <data_type_1>,
<column_name_2> <data_type_2>,...
<column_name_N> <data_type_N>);
 
OK, now I feel better. I just needed to share how much that irritates me!

Multidimensional Arrays
Earlier, I said that associative arrays will support only a single dimension. In other words, you can’t declare
a multidimensional array and address it like this: t_name(1, 7).name. Well, there’s a way around that
limitation. Every good problem deserves a good hack. Listing 3-8 demonstrates how to use a PL/SQL table
inside a PL/SQL record in order to work around the one-dimension limit.

Listing 3-8.  A Hack to Work Around the PL/SQL Table One-Dimension Limit, multidimensional.sql

01 rem multidimensional.sql
02 rem Copyright by Don Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to demonstrate
04 rem the use of nested PL/SQL tables
05
06 declare
07
08 TYPE name_table is table of WORKERS.name%TYPE
09 index by binary_integer;
10
11 TYPE name_record is record (
12 dim2 name_table);
13

Chapter 3 ■ Types, Variables, and Scope

79

14 TYPE dim1 is table of name_record
15 index by binary_integer;
16
17 t_dim1 dim1;
18
19 begin
20 t_dim1(1).dim2(1) := 'DOE, JOHN';
21 t_dim1(1).dim2(2) := 'DOE, JANE';
22
23 t_dim1(2).dim2(1) := 'DOUGH, JAYNE';
24 t_dim1(2).dim2(2) := 'DOUGH, JON';
25
26 pl(t_dim1(1).dim2(1));
27 pl(t_dim1(1).dim2(2));
28 pl(t_dim1(2).dim2(1));
29 pl(t_dim1(2).dim2(2));
30 end;
31 /
 

Here’s how Listing 3-8 works:

Lines 8 and 9 declare a table type, •	 name_table, to hold a list of names.

Lines 11 and 12 declare a record type, •	 name_record, with one field named dim2,
where the data type is name_table, a PL/SQL table.

Lines 14 and 15 declare a second table type, •	 dim1, which is based on record type
dim2.

On lines 20 through 29, with the pseudo-two-dimension table in place, I exercise •	
accessing it using two indexes.

Since the use of arrays is a rather advanced topic, I’m going to skip the exercise here.
Next, let’s look at the most temporary of variables, which aren’t really variables at all: parameters.

Parameters
Parameters allow you to pass values into (IN), pass values out of (OUT), or pass values into and out of
(IN OUT) a cursor, function, or procedure. (Cursors are covered in Chapter 5.) You’ve already seen
parameters used in earlier code listings. I’m covering parameters here because they use declaration syntax
similar to variables, and they themselves are variables.

Parameter Naming
Parameters follow the same PL/SQL identifier naming rules as variables. In practice, however, I like to use a
couple of additional prefix characters on parameter names so I can also tell their scope, along with the data
type. Table 3-3 is a list of those parameter prefix values.

http://dx.doi.org/10.1007/9781484207383_5

Chapter 3 ■ Types, Variables, and Scope

80

For example, if I were to declare parameters to pass data from the columns in the AUTHORS table into
and/or out of a method, I would use the identifier names in Table 3-4.

Table 3-3.  My PL/SQL Parameter Naming Prefixes

Prefix Description

ai Argument IN

ao Argument OUT

aio Argument IN OUT

Table 3-4.  Parameter Name Examples Using My Prefixing Scheme

Scope

IN OUT IN OUT

ain_id aon_id aion_id

aiv_name aov_name aiov_name

aid_birth_date aod_birth_date aiod_birth_date

aiv_gender aov_gender aiov_gender

The advantage of using these prefixes is that you’ll always know the scope and data type of the
parameter with which you’re working.

Parameter Declarations
Listing 3-9 and 3-10 create a package named PARAMETER, which I’ll use to explain the parameter declaration
syntax and parameter scope.

Listing 3-9.  A Package Spec to Test Parameter Scope, parameter.pks

01 create or replace package PARAMETER as
02 /*
03 parameter.pks
04 by Donald J. Bales on 2014-10-20
05 A packge to test parameter scope
06 */
07
08 -- A function that execises the scope of parameters
09 FUNCTION in_out_inout(
10 aiv_in in varchar2,
11 aov_out out varchar2,
12 aiov_inout in out varchar2)
13 return varchar2;
14
15

Chapter 3 ■ Types, Variables, and Scope

81

16 -- A procedure that execises the scope of parameters
17 PROCEDURE in_out_inout(
18 aiv_in in varchar2,
19 aov_out out varchar2,
20 aiov_inout in out varchar2);
21
22
23 end PARAMETER;
24 /
25 @se.sql PARAMETER
 

The syntax used to declare the parameters in the function and procedure in Listing 3-9 is as follows:
 
(
<parameter_name_1> [IN][OUT] <data_type_1>,
<parameter_name_2> [IN][OUT] <data_type_2>,...
<parameter_name_N> [IN][OUT] <data_type_N>)
 
where <parameter_name> is the name of the parameter; the scope is IN, OUT, or IN OUT; and <data_type>
is the data type of the parameter. As you have already seen in previous listings, you can use column or row
anchors to specify the data type (you know—%TYPE or %ROWTYPE). However, the value of the parameter will
not be constrained by the specified size in the anchor. Only the data type is used from the anchor.

Parameter Scope
The parameter keywords IN and OUT determine the accessibility, or scope, of the parameters.

•	 IN makes your parameters’ data available to the called cursor, function, or procedure.

•	 OUT allows the called function or procedure to set the parameter’s value within the
called PL/SQL block.

The combination of •	 IN and OUT allows both levels of accessibility.

Seeing is believing, so take some time to study Listings 3-10 and 3-11, and the output of Listing 3-11.

Listing 3-10.  A Package Body to Test Parameter Scope, parameter.pkb

01 create or replace package body PARAMETER as
02 /*
03 parameter.pkb
04 by Donald J. Bales on 2014-10-20
05 A packge to test parameter scope
06 */
07
08 FUNCTION in_out_inout(
09 aiv_in in varchar2,
10 aov_out out varchar2,
11 aiov_inout in out varchar2)
12 return varchar2 is

Chapter 3 ■ Types, Variables, and Scope

82

13 begin
14 pl(chr(9)||'Before assignments...');
15 pl(chr(9)||'Inside function in_out_inout, aiv_in = '||aiv_in);
16 pl(chr(9)||'Inside function in_out_inout, aov_out = '||aov_out);
17 pl(chr(9)||'Inside function in_out_inout, aiov_inout = '||aiov_inout);
18 -- You can only assign a value (write) to an OUT
19 -- parameter, you can't read it!
20 aov_out := 'OUT';
21
22 -- You can only read an IN parameter
23 aiov_inout := aiv_in;
24
25 -- You can read and write an IN OUT parameter
26 aiov_inout := aiov_inout||'OUT';
27
28 pl(chr(9)||'After assignments...');
29 pl(chr(9)||'Inside function in_out_inout, aiv_in = '||aiv_in);
30 pl(chr(9)||'Inside function in_out_inout, aov_out = '||aov_out);
31 pl(chr(9)||'Inside function in_out_inout, aiov_inout = '||aiov_inout);
32 return 'OK'; -- a function must return a value!
33 end in_out_inout;
34
35
36 PROCEDURE in_out_inout(
37 aiv_in in varchar2,
38 aov_out out varchar2,
39 aiov_inout in out varchar2) is
40 begin
41 pl(chr(9)||'Before assignments...');
42 pl(chr(9)||'Inside procedure in_out_inout, aiv_in = '||aiv_in);
43 pl(chr(9)||'Inside procedure in_out_inout, aov_out = '||aov_out);
44 pl(chr(9)||'Inside procedure in_out_inout, aiov_inout = '||aiov_inout);
45 -- You can only assign a value (write) to an OUT
46 -- parameter, you can't read it!
47 aov_out := 'OUT';
48
49 -- You can only read an IN parameter
50 aiov_inout := aiv_in;
51
52 -- You can read and write an IN OUT parameter
53 aiov_inout := aiov_inout||'OUT';
54 pl(chr(9)||'After assignments...');
55 pl(chr(9)||'Inside procedure in_out_inout, aiv_in = '||aiv_in);
56 pl(chr(9)||'Inside procedure in_out_inout, aov_out = '||aov_out);
57 pl(chr(9)||'Inside procedure in_out_inout, aiov_inout = '||aiov_inout);
58 end in_out_inout;
59
60
61 end PARAMETER;
62 /
63 @be.sql PARAMETER
 

Chapter 3 ■ Types, Variables, and Scope

83

Listing 3-11 is an anonymous PL/SQL procedure to test the scope defined by the use of IN, OUT,
or IN OUT.

Listing 3-11.  A Test Unit for Package PARAMETER, parameter.sql

01 rem parameter.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem A test unit for package PARAMETER
04
05 declare
06
07 v_in varchar2(30) := 'IN';
08 v_out varchar2(30) :=
09 'Na na, you can''t see me!';
10 v_inout varchar2(30) :=
11 'But you can see me!';
12 v_return varchar2(30);
13
14 begin
15 pl('Before calling the function...');
16 pl('Inside test unit parameter v_in = '||v_in);
17 pl('Inside test unit parameter v_out = '||v_out);
18 pl('Inside test unit parameter v_inout = '||v_inout);
19 pl('Test function PARAMETER.in_out_inout(v_in, v_out, v_inout).');
20 v_return := PARAMETER.in_out_inout(v_in, v_out, v_inout);
21 pl(v_return);
22 pl('After calling the function...');
23 pl('Inside test unit parameter v_in = '||v_in);
24 pl('Inside test unit parameter v_out = '||v_out);
25 pl('Inside test unit parameter v_inout = '||v_inout);
26 pl('Resetting initial values...');
27 v_out := 'Na na, you can''t see me!';
28 v_inout := 'But you can see me!';
29 pl('Before calling the procedure...');
30 pl('Inside test unit parameter v_in = '||v_in);
31 pl('Inside test unit parameter v_out = '||v_out);
32 pl('Inside test unit parameter v_inout = '||v_inout);
33 pl('Test procedure PARAMETER.in_out_inout(v_in, v_out, v_inout).');
34 PARAMETER.in_out_inout(v_in, v_out, v_inout);
35 pl('OK');
36 pl('After calling the procedure...');
37 pl('Inside test unit parameter v_in = '||v_in);
38 pl('Inside test unit parameter v_out = '||v_out);
39 pl('Inside test unit parameter v_inout = '||v_inout);
40 end;
41 /
 

Chapter 3 ■ Types, Variables, and Scope

84

Here’s the SQL*Plus output from the parameter.sql script (Listing 3-11):
 
SQL> @parameter.sql

Before calling the function...
Inside test unit parameter v_in = IN
Inside test unit parameter v_out = Na na, you can't see me!
Inside test unit parameter v_inout = But you can see me!
Test function PARAMETER.in_out_inout(v_in, v_out, v_inout).
 Before assignments...
 Inside function in_out_inout, aiv_in = IN
 Inside function in_out_inout, aov_out =
 Inside function in_out_inout, aiov_inout = But you can see me!
 After assignments...
 Inside function in_out_inout, aiv_in = IN
 Inside function in_out_inout, aov_out = OUT
 Inside function in_out_inout, aiov_inout = INOUT
OK
After calling the function...
Inside test unit parameter v_in = IN
Inside test unit parameter v_out = OUT
Inside test unit parameter v_inout = INOUT
Resetting initial values...
Before calling the procedure...
Inside test unit parameter v_in = IN
Inside test unit parameter v_out = Na na, you can't see me!
Inside test unit parameter v_inout = But you can see me!
Test procedure PARAMETER.in_out_inout(v_in, v_out, v_inout).
 Before assignments...
 Inside procedure in_out_inout, aiv_in = IN
 Inside procedure in_out_inout, aov_out =
 Inside procedure in_out_inout, aiov_inout = But you can see me!
 After assignments...
 Inside procedure in_out_inout, aiv_in = IN
 Inside procedure in_out_inout, aov_out = OUT
 Inside procedure in_out_inout, aiov_inout = INOUT
OK
After calling the procedure...
Inside test unit parameter v_in = IN
Inside test unit parameter v_out = OUT
Inside test unit parameter v_inout = INOUT
 
PL/SQL procedure successfully completed.

 

Chapter 3 ■ Types, Variables, and Scope

85

As you can verify from studying Listing 3-11 and the output from test unit parameter.sql,

An •	 IN parameter can be used to pass a value into a cursor, function, or procedure.

An •	 OUT parameter can be used to pass a value out of a function or procedure.

An •	 IN OUT parameter can be used to do both.

It’s Your Turn to Declare Parameters
You’ll have plenty of practice declaring parameters in the coming chapters. So I want you to do this instead:

	 1.	 Start on Chapter 4.

Summary
At this point, you should be a master of variable and parameter declarations. And you should understand the
scope in which they are accessible. Next, let’s start working with some SQL in your PL/SQL.

http://dx.doi.org/10.1007/9781484207383_4

87

Chapter 4

Single Row Processing

Now you’ll begin your journey of using SQL in PL/SQL. You’ll start out slowly, inserting one row at a time,
then updating one row at a time, then deleting one row at a time, and finally selecting one row at a time. I
take this approach because you first have to insert data into a database before you can update, delete, or
select it. I call these kinds of SQL statements singletons because they return one row of results. So let’s get
started by putting some data into the database.

Inserts
The context here is inserting data into a relational database. To insert data into a relational database from
PL/SQL, you simply write a SQL INSERT statement, where the values are PL/SQL literals, PL/SQL variables,
or SQL columns.

I begin with examples that represent what is most commonly done, and then continually improve the
architecture and design as you progress through the chapter. To start out, you’ll see what most PL/SQL
programmers do, and then how to improve the code. Please keep in mind that there is a time and place for
each of these solutions. In the end, you’re the one who will need to make the decision about which is the
best solution based on the business problem you’re solving.

Rarely do you just perform a simple atomic INSERT statement in PL/SQL. You can do that using a
SQL*Plus script, without using PL/SQL at all. More often, you’ll want to insert or update depending on
whether the data you intend to insert already exists in the database. If it does, you’ll probably want to check
if you need to update the values already in the database. So the process you decide to use to insert and/or
update becomes a proverbial chicken vs. egg dilemma—which do you do first? Let’s start by looking at what
can happen if a duplicate row already exists.

You’re going to see me use SELECT when I INSERT because, in a modern database design, you need to
SELECT sequence and code ID values to use them in an INSERT statement. Let’s check it out. Listing 4-1 is an
anonymous PL/SQL procedure that inserts values into the WORKERS table.

Listing 4-1.  An Insert Example Using PL/SQL Literals and Variables, insert.sql

001 rem insert.sql
002 rem by Donald J. Bales on 2014-10-20
003 rem An anonymous PL/SQL procedure to insert
004 rem values using PL/SQL literals and variables
005
006 set serveroutput on size 1000000;
007
008 declare
009

Chapter 4 ■ Single Row Processing

88

010 -- I declared these variables so I can get
011 -- the required ID values before I insert.
012 n_id WORKERS.id%TYPE;
013 n_worker_type_id WORKERS.worker_type_id%TYPE;
014 v_external_id WORKERS.external_id%TYPE;
015 n_gender_type_id WORKERS.gender_type_id%TYPE;
016
017 -- I'll use this variable to hold the result
018 -- of the SQL insert statement.
019 n_count number;
020
021 begin
022
023 -- First, let's get the WORKER_TYPES id for a contractor
024 begin
025 select id
026 into n_worker_type_id
027 from WORKER_TYPES
028 where code = 'C';
029 exception
030 when OTHERS then
031 raise_application_error(-20002, SQLERRM||
032 ' on select WORKER_TYPES'||
033 ' in filename insert.sql');
034 end;
035
036 -- Next, let's get the GENDER_TYPES id for a male
037 begin
038 select id
039 into n_gender_type_id
040 from GENDER_TYPES
041 where code = 'M';
042 exception
043 when OTHERS then
044 raise_application_error(-20004, SQLERRM||
045 ' on select GENDER_TYPES'||
046 ' in filename insert.sql');
047 end;
048
049 -- Now, let's get the next WORKERS id sequence
050 begin
051 select WORKERS_ID.nextval
052 into n_id
053 from SYS.DUAL;
054 exception
055 when OTHERS then
056 raise_application_error(-20001, SQLERRM||
057 ' on select WORKERS_ID.nextval'||
058 ' in filename insert.sql');
059 end;
060

Chapter 4 ■ Single Row Processing

89

061 -- And then, let's get the next external_id sequence
062 begin
063 select lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0')
064 into v_external_id
065 from SYS.DUAL;
066 exception
067 when OTHERS then
068 raise_application_error(-20003, SQLERRM||
069 ' on select EXTERNAL_ID_SEQ.nextval'||
070 ' in filename insert.sql');
071 end;
072
073 -- Now that we have all the necessary ID values
074 -- we can finally insert a row!
075 begin
076 insert into WORKERS (
077 id,
078 worker_type_id,
079 external_id,
080 first_name,
081 middle_name,
082 last_name,
083 name,
084 birth_date,
085 gender_type_id)
086 values (
087 n_id, -- a variable
088 n_worker_type_id, -- a variable
089 v_external_id, -- a variable
090 'JOHN', -- a literal
091 'J.', -- a literal
092 'DOE', -- a literal
093 'DOE, JOHN J.', -- a literal
094 to_date('19800101', 'YYYYMMDD'), -- a function
095 n_gender_type_id); -- a variable
096
097 n_count := sql%rowcount;
098 exception
099 when OTHERS then
100 raise_application_error(-20005, SQLERRM||
101 ' on insert WORKERS'||
102 ' in filename insert.sql');
103 end;
104
105 pl(to_char(n_count)||' row(s) inserted.');
106 end;
107 /
108
109 commit; 

Chapter 4 ■ Single Row Processing

90

The SQL INSERT syntax used in Listing 4-1 is as follows:
 
INSERT INTO <table_name> (
 <column_name_1>,
 <column_name_2>,...
 <column_name_N>)
VALUES (
 <column_value_1>,
 <column_value_2>,...
 <column_value_N>);
 
where <table_name> is the name of the table to INSERT VALUES INTO, <column_name> is the name of a
column in the table, and <column_value> is the value for a corresponding <column_name>. The column
values can be PL/SQL literals, variables, qualifying function results, or SQL column values.

You should always use a list of columns in your INSERT statements in order to maintain the validity of
your code, in case someone later adds a column to a table definition (and, in practice, that happens).

Let’s break down the code in Listing 4-1:

Lines 12 through 15 declare four variables to hold the ID values from related •	
sequence and code tables.

Line 19 declares a number to hold the resulting row count from the INSERT •	
statement.

Lines 25 through 28 contain a •	 SELECT statement to get the worker_type_id value for
a contractor.

On lines 24 through 34, I’ve blocked (put the code in a nested PL/SQL block) •	
the SELECT statement so I can catch any catastrophic error, and report it to the
presentation layer with an error number and message that are unique to the PL/SQL
program. This practice greatly simplifies troubleshooting. You’ll know exactly what
went wrong and where it went wrong, and that’s nice.

On lines 37 through 47, I get the •	 gender_type_id value for a male.

On lines 50 through 59, I get the next •	 id sequence value, storing that value in variable
n_id.

On lines 62 through 71, I get the next •	 external_id value. I use the SQL function
to_char() to do an explicit data type conversion from numeric to character. I wrap
the character value with the SQL function lpad() in order to left-pad the number
string with zeros so it’s nine characters long.

Lines 76 through 95 contain an •	 INSERT statement to insert John Doe’s data into the
WORKERS table.

Lines 77 through 85 list the names of the columns I’m going to insert values •	 INTO.
This is an important practice. If I didn’t list the columns, the procedure would
become invalid any time someone modified the WORKERS table.

Lines 87 through 95 specify the column values using a combination of PL/SQL •	
literals, PL/SQL variables, and even the return value of the SQL function to_date()
for the value of column birth_date.

Chapter 4 ■ Single Row Processing

91

On line 97, I store the result value of the •	 INSERT statement, which is the number
of rows inserted. To accomplish this, I use the pseudo-cursor name sql% and its
variable rowcount.

On lines 75 through 103 collectively, I’ve blocked the •	 INSERT statement so I can
detect and report the exact type and location of an error in the PL/SQL procedure.

The following is the output from the first time the insert.sql script is executed:
 
SQL> @insert.sql

1 row(s) inserted.
PL/SQL procedure successfully completed. 

If you examine the code in Listing 4-1 and its output, you’ll see that the procedure inserted one row into
the database, as reported by the output from the INSERT statement through the sql%rowcount variable. But
what happens if we run the script again? Here’s the output from the script’s second execution:
 
SQL> @insert.sql

declare
*
ERROR at line 1:
ORA-20005: ORA-00001: unique constraint (RPS.WORKERS_UK2) violated on insert WORKERS in
filename insert.sql
ORA-06512: at line 93 

No PL/SQL procedure successfully completed message this time! An unhandled unique constraint
exception was raised as an application error, number 20005, along with a meaningful message.

Now if you want to handle this particular kind of exception, you can use one of three tactics:

Catch exception •	 DUP_VAL_ON_INDEX (good).

Use additional PL/SQL code to predetect the duplicate’s presence (better).•	

Use additional SQL code to predetect the duplicate’s presence (best).•	

Let’s take a look at these solutions, from good to best.

Catching a DUP_VAL_ON_INDEX Exception
When it comes to dealing with code that may raise a DUP_VAL_ON_INDEX exception (or any exception, for
that matter), catching the exception is the laziest of solutions, yet perfectly legitimate. Actually, catching a
DUP_VAL_ON_INDEX exception during an INSERT is the only way to determine that a duplicate row exists. So
regardless of which process you use to insert a row, you always need to catch any possible exceptions during
the execution of a SQL statement and handle them appropriately.

Figure 4-1 shows a simple process flow diagram for inserting a row and catching a DUP_VAL_ON_INDEX
exception if a duplicate row already exists in the database. The process in Figure 4-1 starts out by executing a
SQL INSERT statement. When you do this, Oracle will check for duplicate values in any existing unique index
or unique key entries for the table in question. If a duplicate entry is found, PL/SQL will raise a DUP_VAL_ON_
INDEX exception. So how do you handle that?

Chapter 4 ■ Single Row Processing

92

What you know at this point in your program is that a duplicate entry existed at the moment the
SQL engine tried to insert your row. But that does not guarantee that the same duplicate row exists
microseconds later in the exception handler. Someone or something else using the database could have
deleted it in the meantime.

So perhaps you decide to try to UPDATE the supposedly existing entry. If you choose that tactic, you can
be 100% sure that the entry was updated only if you examine sql%rowcount for the number of rows updated
after your attempted update. If the row count isn’t equal to one, then you need to try to insert the row again.

This “classic” solution is perfectly legitimate and arguably the only correct way to insert values. Or is it? I
don’t like this approach because it’s a reactive solution where you are not in complete control of the process.
Is it better to gain control after an error or to maintain control all along? Let’s look at an example in order
to get a better understanding of the problem, before you decide on a solution. Listing 4-2 shows a modified
version of Listing 4-1, where the ORA-00001: unique constraint ... violated, or DUP_VAL_ON_INDEX
exception, is handled.

INSERT

DUP_VAL_
ON_INDEX?

UPDATE

COMMIT

ORACLE
READS

 UNIQUE
INDEXES

YES

NO

Oracle must read index
blocks from the database in
order to see if a duplicate
row exists, so Oracle is in

control.

UPDATE
rowcount = 1?

YES

NO

Figure 4-1.  Updating after an insert fails

Chapter 4 ■ Single Row Processing

93

Listing 4-2.  An Insert Example, Modified to Catch DUP_VAL_ON_INDEX, insert_with_handled_exception.sql

073 -- Now that we have all the necessary ID values
074 -- we can finally insert a row!
075 begin
076 insert into WORKERS (
077 id,
078 worker_type_id,
079 external_id,
080 first_name,
081 middle_name,
082 last_name,
083 name,
084 birth_date,
085 gender_type_id)
086 values (
087 n_id, -- a variable
088 n_worker_type_id, -- a variable
089 v_external_id, -- a variable
090 'JOHN', -- a literal
091 'J.', -- a literal
092 'DOE', -- a literal
093 'DOE, JOHN J.', -- a literal
094 to_date('19800101', 'YYYYMMDD'), -- a function
095 n_gender_type_id); -- a variable
096
097 n_count := sql%rowcount;
098 exception
099 when DUP_VAL_ON_INDEX then
100 n_count := 0;
101 pl('Caught a DUP_VAL_ON_INDEX exception');
102 when OTHERS then
103 raise_application_error(-20005, SQLERRM||
104 ' on insert WORKERS'||
105 ' in filename insert_with_handled_exception.sql');
106 end; 

Note■■  L isting 4-2 is a partial code listing. I’ll use this technique whenever there’s a lot of repeated code
from one listing to the next. Because of this, you didn’t have to pay as much for this book, nor did we have to
kill as many trees; less paper, fewer dead trees, lower cost.

So what changed?

Line 99 now has a •	 WHEN DUP_VAL_ON_INDEX clause, which catches a DUP_VAL_ON_
INDEX exception. The scope of the clause extends until the next use of the keyword
WHEN or the keyword END for the enclosing PL/SQL block.

Chapter 4 ■ Single Row Processing

94

On line 100, I set the row count variable, •	 n_count, to 0 because lines 96 and 97 are
not executed when an exception occurs. Instead, the program’s execution jumps
from line 95, where the error takes place, directly to line 98, in order to start handling
exceptions.

On line 101, I display a custom error message, but I don’t raise the exception, so the •	
program executes successfully.

Here’s the output of the modified script, insert_with_handled_exception.sql: 

SQL> @insert_with_handle_exception.sql

Caught a DUP_VAL_ON_INDEX exception
0 row(s) inserted.
 
PL/SQL procedure successfully completed. 

But a nagging question remains. Is it better to gain control after an error or to maintain control all
along? Let’s take a look at tactic number two.

Using PL/SQL to Predetect a Duplicate
Using additional PL/SQL code to predetect the presence of duplicate values is, in my opinion, better than
catching a DUP_VAL_ON_INDEX exception, for these reasons:

You maintain control of your PL/SQL program’s execution.•	

You can conditionally decide how to handle duplicate values.•	

You can use your detection scheme to acquire the primary key for the row that is a •	
duplicate, and then update that row.

Figure 4-2 is a simple process flow diagram for predetecting a duplicate entry using PL/SQL, and then
acting accordingly—that is, inserting or updating as needed. In this process, you start out by selecting the
primary key value from the database for the table entry in question. If you find an existing entry, you can
determine whether the entry needs to be updated, and then execute an UPDATE statement. Alternatively, you
execute an INSERT statement if the SELECT statement raises a NO_DATA_FOUND exception.

Chapter 4 ■ Single Row Processing

95

However, you cannot ignore the possibility that, even though a duplicate entry did not exist at the
moment you executed a SELECT statement against the database, someone or something has since inserted
a duplicate entry. This could happen in the microseconds between the raised exception and the execution
of your INSERT statement, so you must still catch any possible exceptions on the execution of the INSERT
statement and act accordingly.

This time, if the sql%rowcount variable is not equal to one, you need to try selecting the entry again.
So which solution is better? Once again, let’s look at an example before you decide. Listing 4-3 is

another modification of Listing 4-1. This time, I’ve added a nested block of PL/SQL code to detect possible
duplicate values.

Listing 4-3.  An Insert Example, Modified to Detect Duplicates with PL/SQL, insert_with_plsql_detection.sql

015 v_first_name WORKERS.first_name%TYPE;
016 v_middle_name WORKERS.middle_name%TYPE;
017 v_last_name WORKERS.last_name%TYPE;
018 v_name WORKERS.name%TYPE;
019 d_birth_date WORKERS.birth_date%TYPE;
...
027 v_first_name := 'JOHN';
028 v_middle_name := 'J.';
029 v_last_name := 'DOE';

SELECT

NO_DATA_
FOUND?

INSERT

COMMIT

NO

YES

Your program reads index
blocks from the database in
order to see if a duplicate

row exists, so your program
is in control.

UPDATE

YES

DUP_VAL_
ON_INDEX?

NO

YES

UPDATE
rowcount = 1?

NO

Figure 4-2.  Select, then insert or update as needed

Chapter 4 ■ Single Row Processing

96

030 v_name :=
031 rtrim(v_last_name||', '||v_first_name||' '||v_middle_name);
032 d_birth_date :=
033 to_date('19800101', 'YYYYMMDD'); -- I'm guessing
...
061 -- Detect any existing entries with the unique
062 -- combination of columns as in this constraint:
063 -- constraint WORKERS_UK2
064 -- unique (
065 -- name,
066 -- birth_date,
067 -- gender_type_id)
068 begin
069 select count(1)
070 into n_count
071 from WORKERS
072 where name = v_name
073 and birth_date = d_birth_date
074 and gender_type_id = n_gender_type_id;
075 exception
076 when OTHERS then
077 raise_application_error(-20005, SQLERRM||
078 ' on select WORKERS'||
079 ' in filename insert_with_plsql_detection.sql');
080 end;
081
082 -- Conditionally insert the row
083 if n_count = 0 then
084 -- Now, let's get the next id sequence
085 begin
086 select WORKERS_ID.nextval
087 into n_id
088 from SYS.DUAL;
089 exception
090 when OTHERS then
091 raise_application_error(-20001, SQLERRM||
092 ' on select WORKERS_ID.nextval'||
093 ' in filename insert_with_plsql_detection.sql');
094 end;
095
096 -- And then, let's get the next external_id sequence
097 begin
098 select lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0')
099 into v_external_id
100 from SYS.DUAL;
101 exception
102 when OTHERS then
103 raise_application_error(-20003, SQLERRM||
104 ' on select EXTERNAL_ID_SEQ.nextval'||
105 ' in filename insert_with_plsql_detection.sql');
106 end;
107

Chapter 4 ■ Single Row Processing

97

108 -- Now that we have all the necessary ID values
109 -- we can finally insert a row!
110 begin
111 insert into WORKERS (
112 id,
113 worker_type_id,
114 external_id,
115 first_name,
116 middle_name,
117 last_name,
118 name,
119 birth_date,
120 gender_type_id)
121 values (
122 n_id,
123 n_worker_type_id,
124 v_external_id,
125 v_first_name,
126 v_middle_name,
127 v_last_name,
128 v_name,
129 d_birth_date,
130 n_gender_type_id);
131
132 n_count := sql%rowcount;
133 exception
134 when OTHERS then
135 raise_application_error(-20006, SQLERRM||
136 ' on insert WORKERS'||
137 ' in filename insert_with_plsql_detection.sql');
138 end;
139 else
140 n_count := 0;
141 end if;
   

Let’s review the modifications:

On lines 15 through 19, I’ve added variables to hold column values. I’ve done this •	
because I need to specify the column values more than once. This way, I can set their
values once, and then know that I will consistently use the same values twice.

Lines 27 through 33 initialize the variables I added on lines 15 through 19. A •	
particularly troublesome issue is the variable v_name for column WORKERS.name. It’s a
computed value that will be stored in the database in order to improve performance.
This tactic will cause any relational database purist to have a hissy fit. But that’s not
what I find troublesome. Since it’s a computed value, you must make sure it’s always
computed the same way. Hmm, that sounds like a job for a function dedicated to the
WORKERS table. You’ll create one to handle this issue in Chapter 5, so don’t sweat it yet.

Chapter 4 ■ Single Row Processing

98

Lines 68 through 80 contain a new nested PL/SQL block that queries the •	 WORKERS table
against the columns that make up the unique constraint in question, to see if an entry
with duplicate values already exists in the table. The SQL statement simply counts the
number of rows with duplicate values, storing the count in variable n_count.

Line 83 has a new •	 IF statement, which determines whether to insert a row. If the
value of the variable n_count is 0, I go ahead and insert the row. Otherwise, on line
140, I set n_count to 0 in order to correctly report the number of rows inserted.

In Listing 4-3, I was able to maintain control of the execution of my PL/SQL program. But what if
I wanted to update the row that already existed? Then I would have coded the detection block as shown
in Listing 4-4.

Listing 4-4.  An Insert Example, Modified to Detect Duplicates with PL/SQL for Update, insert_with_plsql_
detection_for_update.sql

069 begin
070 select id
071 into n_id
072 from WORKERS
073 where name = v_name
074 and birth_date = d_birth_date
075 and gender_type_id = n_gender_type_id;
076 exception
077 when NO_DATA_FOUND then
078 n_id := NULL; -- Is this really needed?
079 when OTHERS then
080 raise_application_error(-20003, SQLERRM||
081 ' on select WORKERS'||
082 ' in filename insert_with_plsql_detection_for_update.sql');
083 end;
084
085 -- Conditionally insert the row
086 if n_id is NULL then
087 -- Now, let's get the next id sequence
088 begin
089 select WORKERS_ID.nextval
090 into n_id
091 from SYS.DUAL;
092 exception
093 when OTHERS then
094 raise_application_error(-20004, SQLERRM||
095 ' on select WORKERS_ID.nextval'||
096 ' in filename insert_with_plsql_detection_for_update.sql');
097 end;
098
099 -- And then, let's get the next external_id sequence
100 begin
101 select lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0')
102 into v_external_id
103 from SYS.DUAL;
104 exception
105 when OTHERS then

Chapter 4 ■ Single Row Processing

99

106 raise_application_error(-20005, SQLERRM||
107 ' on select EXTERNAL_ID_SEQ.nextval'||
108 ' in filename insert_with_plsql_detection_for_update.sql');
109 end;
110
111 -- Now that we have all the necessary ID values
112 -- we can finally insert a row!
113 begin
114 insert into WORKERS (
115 id,
116 worker_type_id,
117 external_id,
118 first_name,
119 middle_name,
120 last_name,
121 name,
122 birth_date,
123 gender_type_id)
124 values (
125 n_id,
126 n_worker_type_id,
127 v_external_id,
128 v_first_name,
129 v_middle_name,
130 v_last_name,
131 v_name,
132 d_birth_date,
133 n_gender_type_id);
134
135 n_inserted := sql%rowcount;
136 exception
137 when OTHERS then
138 raise_application_error(-20006, SQLERRM||
139 ' on insert WORKERS'||
140 ' in filename insert_with_plsql_detection_for_update.sql');
141 end;
142 else
143 begin
144 update WORKERS
145 set worker_type_id = n_worker_type_id
146 where id = n_id;
147
148 n_updated := sql%rowcount;
149 exception
150 when OTHERS then
151 raise_application_error(-20007, SQLERRM||
152 ' on update WORKERS'||
153 ' in filename insert_with_plsql_detection_for_update.sql');
154 end;
155 end if; 

Chapter 4 ■ Single Row Processing

100

On lines 69 through 83, I’ve recoded the detection block to retrieve the primary key value for a row with
duplicate values. If a duplicate row exists, variable n_id, initially NULL, will be set to the value of the primary
key. Otherwise, if a duplicate row does not exist, a NO_DATA_FOUND exception will be raised. In turn, the
exception will be handled by the WHEN NO_DATA_FOUND clause in the enclosing PL/SQL block’s exception-
handling section. There, in the EXCEPTION clause, I set the value of variable n_id to NULL to flag that I did not
find a duplicate. I actually don’t need to set it NULL because it remained NULL when the exception was raised.
But the Oracle PL/SQL documentation does not explicitly guarantee this behavior, so I set it to NULL.

Also, on line 86, now I use the n_id variable to determine if I found a duplicate row. If n_id is NULL, I insert
the row. Otherwise, on lines 143 through 154, I update the duplicate row with the worker_type_id value.

So if this was a better tactic, what’s best? Before I answer that question, let’s first digress a moment so
I can finally explain the syntax of all those IF statements I’ve been using all along!

IF I Don’t Tell You Now, When ELSE Can I?
This seems a good a time as any to finally get around to defining just what an IF statement is. Let’s look at the
IF statement syntax used in Listing 4-4:
 
IF <boolean_evaluation> THEN
 -- do this if it's TRUE
[ELSE
 -- do this if it's not TRUE]
END IF;
 
where <boolean_evaluation> is PL/SQL that evaluates to a Boolean value. If the <boolean_evaluation> is
TRUE, then the lines of code between the THEN and ELSE keywords are executed. Otherwise, if the <boolean_
evaluation> is not TRUE or NULL, then the lines of code between keywords ELSE and END IF are executed.

In Listing 4-4, on line 86, I evaluate id is NULL. If it’s TRUE, PL/SQL executes lines 87 through 141;
otherwise (ELSE), it executes lines 143 through 154. You can also use the following syntaxes:
 
IF <boolean_evaluation> THEN
 -- do this if it's TRUE
END IF;
 
or
 
IF <boolean_evaluation> THEN
 
 -- do this if it's TRUE
[ELSIF <boolean_evaluation> THEN
 -- do this if it's TRUE
ELSIF ...
 
ELSE
 -- do this if it's not TRUE]
END IF;
 

Now, let’s get back to the subject of inserting.

Using SQL to Predetect a Duplicate
It’s almost always best to let SQL simply do its job! You can’t imagine how much PL/SQL code I’ve seen
that can be replaced by one SQL statement—for example, all the code you’ve seen so far in this chapter in
Listings 4-1 through 4-4.

Chapter 4 ■ Single Row Processing

101

Figure 4-3 is a simple process flow diagram for predetecting a duplicate entry using SQL. In this process,
SQL performs the work of predetection using an EXISTS clause. If a duplicate entry does not exist at the
moment the EXISTS clause is executed, the SQL engine immediately follows with an INSERT. Regardless, this
does not mean you can’t get a DUP_VAL_ON_INDEX exception. In the microseconds between the evaluation of
the EXISTS clause and the INSERT, it is possible that someone or something has inserted a duplicate value into
the database. So you must still catch any exceptions from the SELECT...INTO statement and act accordingly.

SELECT

WHERE
EXISTS?

INSERT

COMMIT

NO

The INSERT...SELECT SQL
statement reads index blocks
from the database in order to
see if a duplicate row exists,
so the SQL statement is in

control of the INSERT.

UPDATE

YES

DUP_VAL_
ON_INDEX?

YES

NO

UPDATE
rowcount = 1?

NO

INSERT
rowcount = 1?

NO

Figure 4-3.  INSERT...SELECT, then update if needed

Chapter 4 ■ Single Row Processing

102

There appears to be no “perfect” solution, and indeed, that is the case. It’s always possible that someone
or something has deleted or inserted an entry in the database between your duplicate row detection and
corresponding action. Now let’s take a look at an example that uses SQL predetection.

Listing 4-5 is an example of letting SQL determine whether there’s a duplicate row, and then
conditionally inserting values into the WORKERS table.

Listing 4-5.  An Insert Example, Modified to Detect Duplicates with SQL, insert_with_sql_detection.sql

01 rem insert_with_sql_detection.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to insert
04 rem values using PL/SQL literals and variables
05
06 set serveroutput on size 1000000;
07
08 declare
09
10 v_first_name WORKERS.first_name%TYPE;
11 v_middle_name WORKERS.middle_name%TYPE;
12 v_last_name WORKERS.last_name%TYPE;
13 v_name WORKERS.name%TYPE;
14 d_birth_date WORKERS.birth_date%TYPE;
15
16 -- I'll use this variable to hold the result
17 -- of the SQL insert statement.
18 n_count number;
19
20 begin
21 -- Since I use these values more than once,
22 -- I set them here, and then use the variables
23 v_first_name := 'JOHN';
24 v_middle_name := 'J.';
25 v_last_name := 'DOE';
26 v_name :=
27 rtrim(v_last_name||', '||v_first_name||' '||v_middle_name);
28 d_birth_date :=
29 to_date('19800101', 'YYYYMMDD'); -- I'm guessing
30
31 -- Now I can just let SQL do all the work. Who needs PL/SQL!
32 begin
33 insert into WORKERS (
34 id,
35 worker_type_id,
36 external_id,
37 first_name,
38 middle_name,
39 last_name,
40 name,
41 birth_date,
42 gender_type_id)
43 select WORKERS_ID.nextval,
44 c1.id,

Chapter 4 ■ Single Row Processing

103

45 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
46 v_first_name,
47 v_middle_name,
48 v_last_name,
49 v_name,
50 d_birth_date,
51 c2.id
52 from WORKER_TYPES c1,
53 GENDER_TYPES c2
54 where c1.code = 'C'
55 and c2.code = 'M'
56 and not exists (
57 select 1
58 from WORKERS x
59 where x.name = v_name
60 and x.birth_date = d_birth_date
61 and x.gender_type_id = c2.id);
62
63 n_count := sql%rowcount;
64 exception
65 when OTHERS then
66 raise_application_error(-20006, SQLERRM||
67 ' on insert WORKERS'||
68 ' in filename insert_with_sql_detection.sql');
69 end;
70
71 pl(to_char(n_count)||' row(s) inserted.');
72 end;
73 /
74
75 commit; 

Listing 4-5 isn’t a partial listing; it’s the whole program! Where did all the PL/SQL go? Well, let’s see.
First, I’m using a different syntax for this program’s INSERT statement, as follows:
 
INSERT INTO <insert_table_name> (
 <column_name_1>,
 <column_name_2>,...
 <column_name_N>)
SELECT <column_name_or_value_1>,
 <column_name_or_value_2>,...
 <column_name_or_value_N>
FROM <select_table_name_1> <select_table_alias_1>,
 <select_table_name_2> <select_table_alias_2>,...
 <select_table_name_N> <select_table_alias_N>
WHERE <where _clause>;
 
where <insert_table_name> is the name of the table to INSERT INTO, <column_name> is the name of a
column in that table, <column_name_or_value> is the value for a corresponding <column_name> from one
of the SELECT statement’s tables, <select_table_name> is one of the tables being queried by the SELECT
statement, <select_table_alias> is a corresponding table name alias, and <where_clause> is the SELECT
statement’s WHERE clause. The column values can be PL/SQL literals, variables, qualifying function results, or
SQL column values.

Chapter 4 ■ Single Row Processing

104

I’ll say it again: you should always use a list of columns in your INSERT statements in order to maintain
the validity of your code in the event that someone later adds a column to the table.

Back to the SQL statement:

On lines 54 and 55, since the •	 WHERE clause selects one row from the WORKER_TYPES
and GENDER_TYPES tables, the SELECT statement will return only one row of values.

On lines 56 through 61, the •	 NOT EXISTS subquery performs the detection of a
duplicate entry and, accordingly, the conditional insert of a row.

All the work that was done by five other SQL SELECT statements is now accomplished in one INSERT
SELECT statement. What’s the moral of this story? Know thy SQL! Each solution presented here has its strengths
and weaknesses. As I stated earlier, it’s up to you to decide which is the best tactic to apply to each situation.

I favor predetection instead of postdetection (reacting to the DUP_VAL_ON_INDEX exception) because I
can maintain control of my program. And I have never found a situation where my PL/SQL batch programs
were working on inserting and/or updating the exact same set of data at the same time. So, in 20 plus
years of writing stored procedures, and after more than 40,000 stored procedures, I’ve never seen a DUP_
VAL_ON_INDEX exception when using predetection. This means you must also consider the nature of the
business environment in which you are going to run your stored procedures when deciding whether to use
postdetection or predetection.

Tip■■   You should check out the functionality of the newer SQL DML statement MERGE. It can do a lot of what
has already been covered in this chapter, using just SQL. However, it suffers from the same predetection issues
I just covered.

It’s Your Turn to Insert
Are you just going to watch me do all the work? No way! Here’s what I need you to do, and you’ve got to do it,
or the coming examples won’t work.

	 1.	 Use whatever PL/SQL insert technique you want to code a script to insert rows
into the WORKERS table for four workers: JANE J. DOE, her husband JOHN J. DOE,
her daughter JANIE E. DOE, and her son JOHNNIE E. DOE.

	 2.	 Save your script as insert_the_doe_family.sql.

	 3.	 Execute your script.

	 4.	 Test your script by executing it again. Make sure you don’t get any errors but still
get the desired rows in the WORKERS table.

Listing 4-6 is my solution to this exercise.

Listing 4-6.  An Anonymous Procedure to Insert the Doe Family into the Worker Table,
insert_the_doe_family.sql

01 rem insert_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to insert
04 rem values using PL/SQL literals and variables
05

Chapter 4 ■ Single Row Processing

105

06 set serveroutput on size 1000000;
07
08 declare
09
10 -- I'll use this variable to hold the result
11 -- of the SQL insert statement.
12 n_count number := 0;
13
14 -- I've declared this local (or embedded) function to
15 -- do the actual work of inserting values. It uses
16 -- SQL detection to prevent DUP_VAL_ON_INDEX exceptions.
17 FUNCTION add_worker(
18 aiv_first_name WORKERS.first_name%TYPE,
19 aiv_middle_name WORKERS.middle_name%TYPE,
20 aiv_last_name WORKERS.last_name%TYPE,
21 aid_birth_date WORKERS.birth_date%TYPE,
22 aiv_gender_code GENDER_TYPES.code%TYPE,
23 aiv_worker_type_code WORKER_TYPES.code%TYPE)
24 return number is
25
26 v_name WORKERS.name%TYPE;
27
28 begin
29 v_name :=
30 rtrim(aiv_last_name||', '||aiv_first_name||' '||aiv_middle_name);
31
32 -- Now I can just let SQL do all the work. Who needs PL/SQL!
33 begin
34 insert into WORKERS (
35 id,
36 worker_type_id,
37 external_id,
38 first_name,
39 middle_name,
40 last_name,
41 name,
42 birth_date,
43 gender_type_id)
44 select WORKERS_ID.nextval,
45 c1.id,
46 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
47 aiv_first_name,
48 aiv_middle_name,
49 aiv_last_name,
50 v_name,
51 aid_birth_date,
52 c2.id
53 from WORKER_TYPES c1,
54 GENDER_TYPES c2
55 where c1.code = aiv_worker_type_code
56 and c2.code = aiv_gender_code

Chapter 4 ■ Single Row Processing

106

57 and not exists (
58 select 1
59 from WORKERS x
60 where x.name = v_name
61 and x.birth_date = aid_birth_date
62 and x.gender_type_id = c2.id);
63
64 return sql%rowcount;
65 exception
66 when OTHERS then
67 raise_application_error(-20001, SQLERRM||
68 ' on insert WORKERS'||
69 ' in add_worker');
70 end;
71 end add_worker;
72
73 begin
74 -- All I have to do now, is call the add_worker function
75 -- four times with each Doe family member's values.
76 n_count := n_count + add_worker(
77 'JOHN', 'J.', 'DOE', to_date('19800101', 'YYYYMMDD'), 'M', 'C');
78 n_count := n_count + add_worker(
79 'JANE', 'J.', 'DOE', to_date('19800101', 'YYYYMMDD'), 'F', 'E');
80 n_count := n_count + add_worker(
81 'JOHNNY', 'E.', 'DOE', to_date('19980101', 'YYYYMMDD'), 'M', 'E');
82 n_count := n_count + add_worker(
83 'JANIE', 'E.', 'DOE', to_date('19980101', 'YYYYMMDD'), 'F', 'E');
84
85 pl(to_char(n_count)||' row(s) inserted.');
86 end;
87 /
88
89 commit; 

In practice, you’ll find that you primarily use an INSERT statement in PL/SQL when you do the
following:

Move data from one application to another for data migration•	

Transform data for data processing•	

Beyond those two applications, a program written in some other programming language like Java or a
data-loading utility like SQL*Loader will be used to insert values into the database.

Now that you have four entries in the WORKERS table, let’s update a couple of them!

Updates
Here, I’m talking about updating a row or rows of data in a relational database from PL/SQL. Let’s start with
a simple update.

Chapter 4 ■ Single Row Processing

107

Updating a Row
Listing 4-7 is an example of using a SQL UPDATE statement in PL/SQL. It’s just a good, old-fashioned UPDATE
statement, where you can also use PL/SQL literals, PL/SQL variables, or SQL functions.

Listing 4-7.  An Update Example Using Variables, insert_with_plsql_detection_for_update.sql

143 begin
144 update WORKERS
145 set worker_type_id = n_worker_type_id
146 where id = n_id;
147
148 n_updated := sql%rowcount;
149 exception
150 when OTHERS then
151 raise_application_error(-20007, SQLERRM||
152 ' on update WORKERS'||
153 ' in filename insert_with_plsql_detection_for_update.sql');
154 end; 

The syntax used for the SQL UPDATE statement in Listing 4-7 is as follows:
 
UPDATE <table_name>
SET <column_name_1> = <column_value_1>,
 <column_name_2> = <column_value_2>,...
 <column_name_N> = <column_value_N>
WHERE <where_clause>;
 
where <table_name> is the name of the table to be updated, <column_name> is the name of a column to
update, <column_value> is the corresponding value to use for the column, and <where_clause> is a WHERE
clause that appropriately selects the rows to be updated.

I said it earlier, and I’ll say it again: you should almost always have a WHERE clause with an UPDATE
statement. I’ve seen some really catastrophic disasters in my day when someone has executed an UPDATE
statement without a WHERE clause. I even go so far as to run a PL/SQL program against the database’s source
table, SYS.DBA_SOURCE, to look for UPDATE statements without WHERE clauses.

As for the code in this listing, well, there’s nothing earth-shattering about it:

Lines 144 through 146 contain a SQL •	 UPDATE statement to update a worker’s type if a
duplicate row already exists in the database.

Line 148 gets the result of the •	 UPDATE statement: the number of rows updated.

On lines 143 through 154 collectively, I’ve blocked the •	 UPDATE statement in order to
capture and report the exact type and location of any unexpected error.

The number one abuse of PL/SQL when used for data processing is using it to update values in a table
in a row-by-row fashion. Why is that an abuse of PL/SQL? Because that’s what SQL is for.

Using SQL to Perform Complex Updates
The SQL UPDATE statement is very powerful. It can update one or more columns for a predetermined set
of rows in a single statement. Why am I spending so much time on this soapbox about knowing SQL? The
whole purpose of PL/SQL is to control when to execute an appropriate SQL statement. It is not intended to
replace SQL with a bunch of poorly performing PL/SQL statements.

Chapter 4 ■ Single Row Processing

108

You can update multiple columns at a time in a SQL UPDATE statement, as demonstrated in Listing 4-8.

Listing 4-8.  Updating Multiple Columns with an UPDATE Statement, update_multiple.sql

1 update WORKERS u
2 set (u.worker_type_id, u.gender_type_id) = (
3 select c1.id, c2.id
4 from WORKER_TYPES c1,
5 GENDER_TYPES c2
6 where c1.code = decode(instr(u.first_name, 'JOHN'), 0, 'E', 'C')
7 and c2.code = decode(instr(u.first_name, 'JOHN'), 0, 'F', 'M'))
8 where u.last_name = 'DOE'; 

The syntax used in the UPDATE statement in Listing 4-8 is as follows:
 
UPDATE <update_table_name>
SET (<update_column_name_1>, <update_column_name_2>,... <update_column_name_N>) =
(SELECT <select_column_name_1>, <select_column_name_2>,... <select_column_name_N>
FROM <select_table_name_1>,
 <select_table_name_2>,...
 <select_table_name_N>
WHERE <select_column_name_3> = <update_column_name_3>
AND <select_column_name_4> = <update_column_name_4>
AND <select_column_name_N> = <update_column_name_N>)
WHERE <update_column_name_4> = ... ;
 

The UPDATE statement in Listing 4-8 will set the worker type and gender type to C (contractor) and M
(male), respectively, for anyone with the first name John and the last name Doe. Yes, this is a silly example,
but the point here is that the use of subqueries in the SET and WHERE clauses of a SQL UPDATE statement
make it possible to update almost anything. All you should need PL/SQL for is deciding when to execute an
appropriate SQL UPDATE statement.

Let’s take a close look at Listing 4-8:

Line 1 specifies the name of the table to be updated.•	

Line 2 specifies a list of columns in that table to be updated. The list is enclosed in •	
parentheses followed by an equal sign, and then an opening parenthesis, which is
the start of a subquery.

Lines 3 through 7 contain a subquery that will conditionally select which values to •	
update the columns with based on information in the table to be updated.

Line 3 has a list of the same number of values (columns) in the •	 SELECT statement’s
column list as in the UPDATE statement’s SET list.

Lines 4 and 5 specify two code tables from which to draw update values.•	

On line 6, I conditionally specify the code value for •	 C (contractor) or E (employee),
based on whether or not the worker’s first_name contains the string 'JOHN'.

On line 7, I conditionally specify the code value for •	 F (female) or M (male), based on
whether or not the worker’s first name contains the string 'JOHN'.

On line 8, I constrain the rows that will be updated to those with the •	 last_name equal
to 'DOE'.

The lesson here: know thy SQL!

Chapter 4 ■ Single Row Processing

109

As I stated earlier, in practice, you’ll primarily use an UPDATE statement in PL/SQL in the following
situations:

The conditions for updating are too complex to be determined using a SQL •	 WHERE
clause; that is, you need a more procedural decision-making process.

Deriving the values to use to update a table’s column values is too complex to be •	
done by SQL; that is, you need a more procedural decision-making process.

You need to use a PL/SQL program unit’s ability to formulate a larger and more •	
complex multistatement transaction context.

Hence, the reason PL/SQL exists: to add procedure decision-making capabilities to the use of
nonprocedural SQL statements!

Guess what? There’s even less to say about deleting rows.

Deletes
In practice, the SQL DELETE command is rarely used when compared to its siblings INSERT, UPDATE, and
SELECT. However, for completeness, let’s look at how you use it in PL/SQL. Listing 4-9 is an example of using
a DELETE statement in PL/SQL, where I use a PL/SQL literal, a SQL function, and a subquery that uses a
PL/SQL variable.

Listing 4-9.  A Delete Example Using a PL/SQL Literal and Variable, delete.sql

01 rem delete.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to delete
04 rem rows using PL/SQL literals and variables
05
06 set serveroutput on size 1000000;
07
08 declare
09
10 -- I'll use this variable to hold the result
11 -- of the SQL delete statement.
12 n_count number;
13
14 v_code GENDER_TYPES.code%TYPE := 'M';
15
16 begin
17
18 begin
19 delete from WORKERS d
20 where d.name = 'DOE, JOHN J.' -- a literal
21 and d.birth_date = to_date('19800101', 'YYYYMMDD') -- a function
22 and d.gender_type_id = (-- a sub-query
23 select c.id
24 from GENDER_TYPES c
25 where c.code = v_code); -- a variable
26
27 n_count := sql%rowcount;
28 exception

Chapter 4 ■ Single Row Processing

110

29 when OTHERS then
30 raise_application_error(-20001, SQLERRM||
31 ' on delete WORKERS'||
32 ' in filename delete.sql');
33 end;
34
35 pl(to_char(n_count)||' row(s) deleted.');
36 end;
37 /
38
39 commit; 

The syntax for the SQL DELETE statement used in Listing 4-9 is as follows:
 
DELETE [FROM] <delete_table_name>
WHERE <where_clause> ;
 
where <delete_table_name> is the name of the table from which to delete rows, and <where_clause> is a
SQL WHERE clause that appropriately specifies the rows within the table to delete.

On line 27, I capture the result of the SQL DELETE statement: the number of rows deleted. Just as with an
UPDATE statement, every DELETE statement should have a WHERE clause.

Let’s discuss how you might apply a DELETE statement in PL/SQL. In practice, you’ll primarily use a
DELETE statement in PL/SQL when the conditions for deleting are too complex to be determined by using a
WHERE clause. So you’ll find that you rarely use DELETE at all!

Finally, let’s look at the SELECT statement.

Selects
The SQL SELECT statement is the most used SQL statement in PL/SQL, and for a good reason. PL/SQL
is all about encompassing set-based operations with procedural logic. Yet a SQL SELECT statement is a
nonprocedural construct, hence the need for the PL in PL/SQL. In this section, I’ll discuss the singleton
SELECT statement—the one that is supposed to return one row.

You’ve seen me use SELECT statements over and over again at this point. As I’ve said, I assume
you already know SQL. Regardless, I’ve tried to take some time to review what you know about SQL,
so you’ll be ready for PL/SQL. Most PL/SQL stored procedures you write will have one or more SELECT
statements in them. So what you can accomplish using PL/SQL—whether it’s object-oriented architecture,
service-oriented architecture, data processing, data migration, or reporting—will be constrained by your
competency in writing a SQL SELECT statement.

Let’s look back at the first source code listing in this chapter, Listing 4-3. For your convenience (and
mine), I’m going to show part of it to you again in Listing 4-10.

Listing 4-10.  An Example of Using Singleton SELECT Statements in PL/SQL, insert_with_plsql_detection.sql

048 -- Next, let's get the GENDER_TYPES id for a male
049 begin
050 select id
051 into n_gender_type_id
052 from GENDER_TYPES
053 where code = 'M';
054 exception
055 when OTHERS then

Chapter 4 ■ Single Row Processing

111

056 raise_application_error(-20004, SQLERRM||
057 ' on select GENDER_TYPES'||
058 ' in filename insert_with_plsql_detection.sql');
059 end;
060
061 -- Detect any existing entries with the unique
062 -- combination of columns as in this constraint:
063 -- constraint WORKERS_UK2
064 -- unique (
065 -- name,
066 -- birth_date,
067 -- gender_type_id)
068 begin
069 select count(1)
070 into n_count
071 from WORKERS
072 where name = v_name
073 and birth_date = d_birth_date
074 and gender_type_id = n_gender_type_id;
075 exception
076 when OTHERS then
077 raise_application_error(-20005, SQLERRM||
078 ' on select WORKERS'||
079 ' in filename insert_with_plsql_detection.sql');
080 end;
081
082 -- Conditionally insert the row
083 if n_count = 0 then
084 -- Now, let's get the next id sequence
085 begin
086 select WORKERS_ID.nextval
087 into n_id
088 from SYS.DUAL;
089 exception
090 when OTHERS then
091 raise_application_error(-20001, SQLERRM||
092 ' on select WORKERS_ID.nextval'||
093 ' in filename insert_with_plsql_detection.sql');
094 end; 

The syntax used for the SQL SELECT statements in Listing 4-10 is as follows:
 
SELECT <column_name_1>,
 <column_name_2>,...
 <column_name_N>
INTO <plsql_variable_1>,
 <plsql_variable_2>,...
 <plsql_variable_N>
FROM <table_name_1>,
 <table_name_2>,...
 <table_name_N>
WHERE <where_clause>... ;
 

Chapter 4 ■ Single Row Processing

112

where <column_name> is the name of a column in one of the tables in the FROM list, <plsql_variable> is the
corresponding variable to copy the column value to, <table_name> is a table to query, and <where_clause>
is an appropriate WHERE clause.

Let’s examine the three SQL SELECT INTO statements in Listing 4-10:

Lines 50 through 53 get the corresponding •	 gender_type_id value for the code 'M'.

Line 50 selects the column name, •	 GENDER_TYPES.id.

Line 51 specifies the PL/SQL variable •	 n_gender_type_id in the INTO clause.

Line 52 specifies the code table’s name, •	 GENDER_TYPES.

Line 53 specifies a •	 WHERE clause, where the code is equal to 'M'.

On lines 49 through 59 collectively, I block the SQL •	 SELECT statement in order to
catch and report any catastrophic errors (WHEN OTHERS). This is a SELECT statement
where I don’t expect any exceptions. I always expect the corresponding values to
exist in the database.

On lines 69 through 74, I use a SQL group operator, •	 count(), to determine the
number of rows in the table that match the criteria of the associated WHERE clause.

On lines 68 through 80 collectively, I block the SQL •	 SELECT statement for OTHERS.
This is a safe SQL SELECT statement. It will always have a result, except in the case of
some unforeseeable database error.

Lines 86 through 88 get the next sequence value for the column •	 id from sequence
WORKERS_ID.

On lines 85 through 94 collectively, I block the SQL •	 SELECT statement for any
unforeseeable errors, but I never expect this SQL SELECT statement to raise an
exception.

But what do you do if you expect an error? For example, perhaps a row matching the WHERE clause
criteria is not in the table! Or maybe too many rows match the WHERE clause criteria. What do you do then?

No Data Found
As I stated earlier when I first discussed exceptions in Chapter 2, there are two very commonly used
exceptions. The most commonly used exception is NO_DATA_FOUND. When a singleton SELECT statement can’t
find a row to match its WHERE clause’s criteria, it will raise a NO_DATA_FOUND exception. You saw an example of
this earlier in Listing 4-4. Listing 4-11 highlights the SELECT statement in question.

Listing 4-11.  An Example of a SELECT Statement That May Raise a NO_DATA_FOUND Exception, insert_
with_plsql_detection_for_update.sql

069 begin
070 select id
071 into n_id
072 from WORKERS
073 where name = v_name
074 and birth_date = d_birth_date
075 and gender_type_id = n_gender_type_id;
076 exception
077 when NO_DATA_FOUND then

Chapter 4 ■ Single Row Processing

113

078 n_id := NULL; -- Is this really needed?
079 when OTHERS then
080 raise_application_error(-20003, SQLERRM||
081 ' on select WORKERS'||
082 ' in filename insert_with_plsql_detection_for_update.sql');
083 end; 

This SELECT statement may raise a NO_DATA_FOUND exception because the database might not contain
a matching row. As a matter of fact, that’s just what I’m trying to determine here. If the SELECT statement
returns an id value, then the program knows that an entry already exists, so it will update the existing entry.
Otherwise, the program will insert a new entry. It’s the otherwise condition that will raise the exception.

When the NO_DATA_FOUND exception is raised, program execution jumps from the SELECT statement
directly to the enclosing WHEN NO_DATA_FOUND clause. In this case, I set the n_id to NULL in that clause, and
then later in the program, I use that fact to conditionally insert a new row.

Since the SELECT statement returns one set of columns—one row—from the database, there’s no way
for it to report the number of rows found, right? No, you can still get the number of rows returned from
sql%rowcount. Take a look at Listing 4-12.

Listing 4-12.  An Example of a SELECT Statement That Captures the Selected Row Count, select_no_data_
found.sql

40 begin
41 select id
42 into n_id
43 from WORKERS
44 where name = v_name
45 and birth_date = d_birth_date
46 and gender_type_id = n_gender_type_id;
47
48 n_selected := sql%rowcount;
49 exception
50 when NO_DATA_FOUND then
51 n_selected := sql%rowcount;
52 pl('Caught raised exception NO_DATA_FOUND');
53 when OTHERS then
54 raise_application_error(-20002, SQLERRM||
55 ' on select WORKERS'||
56 ' in filename select_no_data_found.sql');
57 end; 

In Listing 4-12, I initially set the value of n_selected to –1 just so I can prove the value is changed later
in the program. If the SELECT statement executes successfully, n_selected is equal to 1 because its value is
set on line 48. However, if the SELECT statement raises the NO_DATA_FOUND exception, n_selected is equal to
0 because I set its value on line 51.

The number of rows returned from the SELECT statement is reported by the database, so why do I need a
NO_DATA_FOUND exception? Why does it even exist? Quite frankly, I don’t know. I think the exception exists as
a matter of programming convenience. It’s syntactic sugar. So even though it breaks my “You should always
maintain control in your program” rule, it’s commonly used to detect that no matching row was found for a
WHERE clause’s criteria. Even I use it.

I’ll show you another tactic for detecting no data found for a singleton in the next chapter when I cover
cursors. If you’re going to rely on the NO_DATA_FOUND exception, you must keep in mind that any code that
comes after your SELECT statement will not be executed if your SELECT statement raises NO_DATA_FOUND.

Next, let’s look at the other singleton SELECT issue: too many rows are returned.

Chapter 4 ■ Single Row Processing

114

Too Many Rows
In the context of a singleton SELECT, PL/SQL is always going to expect your SELECT statement to return one
and only one row. I just finished discussing what happens when a SELECT statement doesn’t get at least one
row. So what happens when a SELECT statement gets one (or more) too many? It raises the exception TOO_
MANY_ROWS. Listing 4-13 is an example of a SELECT statement that will raise the exception TOO_MANY_ROWS.

Listing 4-13.  An Example of a SELECT Statement That Raises a TOO_MANY_ROWS Exception, select_too_
many_rows.sql

40 begin
41 select id
42 into n_id
43 from WORKERS;
44 -- Let's comment the WHERE clause so I get all the rows
45 -- where name = v_name
46 -- and birth_date = d_birth_date
47 -- and gender_type_id = n_gender_type_id;
48 n_selected := sql%rowcount;
49 exception
50 when NO_DATA_FOUND then
51 n_selected := sql%rowcount;
52 pl('Caught raised exception NO_DATA_FOUND');
53 when TOO_MANY_ROWS then
54 n_selected := sql%rowcount;
55 pl('Caught raised exception TOO_MANY_ROWS');
56 when OTHERS then
57 raise_application_error(-20002, SQLERRM||
58 ' on select WORKERS'||
59 ' in filename select_too_many_rows.sql');
60 end; 

In Listing 4-13, I’ve commented out the WHERE clause so the SELECT statement will see all four Doe
family entries and will raise a TOO_MANY_ROWS exception. On lines 53 through 55, I’ve also added a WHEN
TOO_MANY_ROWS clause to catch the raised exception and, in turn, capture the number of rows returned by the
SELECT statement.

Guess what? On line 53, sql%rowcount reports that only one row was selected. So PL/SQL has no idea
how many rows actually match the query. It only knows that more than one exists, and that’s a problem—
where will PL/SQL put the data from rows 2 and on? There’s actually no place for the data, so PL/SQL
appropriately throws an exception. After all, the query was supposed to be a singleton query!

You can add PL/SQL code to predetect too many rows, similar to the technique demonstrated in
Listing 4-3, when I was trying to predetect a duplicate row.

If count() returns a value greater than one, the program will know that there’s more than one row. But
once again, PL/SQL provides some syntactic sugar that allows me to use an exception to detect a condition.
Yes, again that syntactic sugar—catching a TOO_MANY_ROWS exception—breaks my rule of “You should always
maintain control over your program!” I’ll admit it, I use it. I catch the exception. I don’t like it. But as I’ll show
you in the next chapter, you’ll need to write a lot of extra code to maintain control, so PL/SQL programmers
commonly use the exception TOO_MANY_ROWS.

Once again, if you’re going to rely on the TOO_MANY_ROWS exception, you must keep in mind that any
code that comes after your SELECT statement will not be executed if your SELECT statement raises TOO_
MANY_ROWS!

That’s enough of that. Now let’s see you put what I just said to work.

Chapter 4 ■ Single Row Processing

115

It’s Your Turn to Select
Your assignment is to write an anonymous procedure that displays the first name of each of the Doe family
members from the WORKERS table—remember, the ones you added in the previous exercise? To that end,
follow these steps.

	 1.	 Write you script using at least one singleton SELECT.

	 2.	 Save your script as select_the_doe_family.sql.

	 3.	 Execute your script.

	 4.	 Test your script by executing it again. Make sure you don’t get any errors but still
get the desired rows from the WORKERS table.

Listing 4-14 is my lousy solution. Why lousy? Because my solution involves repeatedly executing a
singleton SELECT statement in order to read multiple rows from the WORKERS table. I really need a better way
to handle this situation, and a better solution for this problem is just what I’ll cover in the next chapter.

Listing 4-14.  A Really Bad Way to Select Multiple Rows from a Table, select_the_doe_family.sql

01 rem select_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to select
04 rem the first names for the Doe family from
05 rem the Worker table.
06
07 set serveroutput on size 1000000;
08
09 declare
10
11 v_first_name WORKERS.first_name%TYPE;
12 n_id WORKERS.id%TYPE;
13
14 -- A local function that will be called over-and-over again
15 -- to find the next first_name for the specified id
16 -- and last_name.
17 FUNCTION get_first_name(
18 aion_id in out WORKERS.id%TYPE,
19 aiv_last_name in WORKERS.last_name%TYPE)
20 return WORKERS.first_name%TYPE is
21
22 v_first_name WORKERS.first_name%TYPE;
23
24 begin
25 -- Use SQL pseudo-column rownum in order
26 -- to limit the SELECT to the first row
27 select id,
28 first_name
29 into aion_id,
30 v_first_name
31 from WORKERS
32 where id > aion_id
33 and last_name like aiv_last_name||'%'

Chapter 4 ■ Single Row Processing

116

34 and rownum = 1;
35
36 return v_first_name;
37 exception
38 when NO_DATA_FOUND then
39 return v_first_name;
40 when OTHERS then
41 raise_application_error(-20001, SQLERRM||
42 ' on select WORKERS'||
43 ' in show_worker');
44 end get_first_name;
45
46 begin
47 -- Keep track of the primary key so you
48 -- only retrieve the SELECTed row once
49 n_id := 0;
50 -- Loop until there's NO_DATA_FOUND
51 loop
52 -- get the first name from the local function
53 v_first_name := get_first_name(n_id, 'DOE');
54 -- detect NO_DATA_FOUND
55 if v_first_name is NULL then
56 exit; -- Exit the loop
57 end if;
58 -- show the first_name
59 pl(v_first_name);
60 end loop;
61 end;
62 / 

In practice, you’ll find that you primarily use a singleton SELECT statement in PL/SQL when you want to
do the following:

Select the IDs for some code values that you will reference repeatedly•	

Allocate a sequence value for a new primary key value•	

Predetect the presence of a matching row•	

Let’s review what you’ve learned.

Summary
At this point, it should be evident that a singleton is a SQL statement that returns one row of results. Table 4-1
is a side-by-side comparison of the results returned by each of the singletons I’ve covered: INSERT, UPDATE,
DELETE, and SELECT.

Chapter 4 ■ Single Row Processing

117

When you’re working with the INSERT INTO and SELECT...INTO statements, you may as well expect an
exception and write your PL/SQL accordingly. Of the four singletons, you’ll use the SELECT statement the
most. After all, you are working with a database.

The last exercise left me looking for a better solution to selecting more than one row at a time. In the
next chapter, I’ll look at the PL/SQL solution to this problem: a CURSOR.

Table 4-1.  Singleton Results for INSERT, UPDATE, DELETE, and SELECT

Statement Returns Common Exceptions

INSERT INTO Row count DUP_VAL_ON_INDEX

UPDATE Row count

DELETE FROM Row count

SELECT...INTO Row count and column values NO_DATA_FOUND, TOO_MANY_ROWS

119

Chapter 5

Multirow Processing

In the last chapter, you left off trying to retrieve the first names of the Doe family members from table
WORKERS using a singleton SELECT. As you may have already guessed, Oracle has a better way to handle this
multi-row processing problem.

Cursors
A cursor in this context is a named SQL SELECT statement that you can use in your PL/SQL program to access
multiple rows from a table, yet retrieve them one row at a time.

Cursor Declarations
You declare cursors in the declaration section of a PL/SQL block just as you declare functions, procedures,
and variables. And you should declare them with parameters, if required, just as you do with functions and
procedures.

Listing 5-1 is a better solution to the last exercise in Chapter 4, where you were assigned the task of
listing the Doe family’s first names.

Listing 5-1.  An Example of Using a Cursor to Select Multiple Rows from a Table, cursor_the_doe_family.sql

01 rem cursor_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to select
04 rem the first names for the Doe family from
05 rem the Worker table.
06
07 set serveroutput on size 1000000;
08
09 declare
10
11 cursor c_workers(
12 aiv_last_name in WORKERS.last_name%TYPE) is
13 select first_name
14 from WORKERS
15 where last_name like aiv_last_name||'%'
16 order by id;
17

http://dx.doi.org/10.1007/9781484207383_4

Chapter 5 ■ Multirow Processing

120

18 v_first_name WORKERS.first_name%TYPE;
19
20 begin
21 open c_workers('DOE');
22 loop
23 fetch c_workers into v_first_name;
24
25 if c_workers%notfound then
26 close c_workers;
27 exit;
28 end if;
29
30 pl(v_first_name);
31 end loop;
32 end;
33 /
 

There’s a lot of new PL/SQL in this example. Let’s start with syntax. The syntax used in Listing 5-1 to
declare CURSOR c_worker is as follows:
 
CURSOR <cursor_name> [(
<parameter_name_1> [IN] <parameter_data_type_1>,
<parameter_name_2> [IN] <parameter_data_type_2>,...
<parameter_name_N> [IN] <parameter_data_type_N>)] IS
<select_statement>;
 
where <cursor_name> is the name of the CURSOR, <parameter_name> is the name of a parameter being passed
IN, <parameter_data_type> is the PL/SQL data type of the corresponding parameter, and <select_statement>
is a SQL SELECT statement. The brackets ([]) around the parameters denote that they are optional.

Of course, there’s more to using cursors than just declaring them. Read on, as the next few subsections
tell you all about what you can accomplish using cursors.

Fetching Rows from a Cursor Manually
The procedural PL/SQL, or control structure, syntax used to retrieve rows using the declared CURSOR in
Listing 5-1 is as follows:
 
OPEN <cursor_name> [(
 <parameter_value_1,
 <parameter_value_2>,...
 <parameter_value_N>)];
 
LOOP
 -- loop until you manually EXIT;
FETCH <cursor_name> INTO
 <variable_name_1>,
 <variable_name_2>,...
 <variable_name_N>;
 

Chapter 5 ■ Multirow Processing

121

END LOOP;
 
CLOSE <cursor_name>;
 
EXIT;
 
where <cursor_name> is the name of a declared CURSOR, <parameter_value> is a value to pass in to the
CURSOR that will be utilized somewhere in its SQL SELECT statement, and <variable_name> is a PL/SQL
variable to receive one of the SQL SELECT statement’s column values from the CURSOR.

The keyword OPEN is used to pass parameters to, and then execute, the cursor’s SQL SELECT statement.
FETCH retrieves one row of column values from the cursor’s SELECT statement into a comma-separated list of
PL/SQL variables. CLOSE does just that—it closes a CURSOR, releasing the cursor’s resources back to PL/SQL
and the database.

The keyword LOOP is used to start an unconstrained loop. In this context, any PL/SQL code between the
keywords LOOP and END LOOP will continue to be executed over and over again until you manually exit the
loop with the keyword EXIT. It’s what I call a manual loop.

Here’s the output from the cursor_the_doe_family.sql script (Listing 5-1):
 
SQL> @cursor_the_doe_family

JOHN
JANE
JOHNNY
JANIE
 
PL/SQL procedure successfully completed.

 

Let’s take a moment to look at Listing 5-1, line by line:

Lines 11 through 16 declare •	 CURSOR c_workers, which will select the first name
column from the table WORKERS, where the last name is like the one passed in.

Line 18 declares a variable to hold the column value from the cursor.•	

On line 21, I open the cursor, passing it the last name •	 'DOE'. This should give me
all the first names for anyone with a name like DOE.

Line 22 starts a manual loop. Lines 23 through 30 will be repeated endlessly •	
until I exit manually, as I do on line 27.

On line 23, I fetch the value of the column •	 first_name into variable v_first_name.

On line 25, I test the cursor •	 c_workers for %notfound. If the SELECT statement did not
find a row in the database for the current loop, the cursor c_worker will report no
data found through the cursor variable %notfound.

On line 26, if there is no data found, I •	 CLOSE the cursor, and then EXIT the
loop on line 27.

On line 30, if a row is found, I display the first name on the screen using •	 pl().

On line 31, the keywords •	 END LOOP signify the end of the LOOP.

Using a cursor for this type of problem—that is, retrieving multiple rows one row at a time—is definitely
a better solution, if for no other reason than it was easier to maintain control over the program. But PL/SQL’s
solutions to this problem are going to get even better.

Chapter 5 ■ Multirow Processing

122

Cursor Records
On line 18 in Listing 5-1, I declared the variable v_first_name to hold the value from the database during
each iteration of the LOOP. You can also use the keyword %ROWTYPE to declare a record for a cursor. So with
one declaration, you can declare a record that has as many columns as the cursor it is defined for, with the
same field names as the column names in the SELECT statement of the cursor. For example, I could have
declared a record for CURSOR c_workers on line 18 as follows:
 
r_worker c_workers%ROWTYPE;
 

Pretty neat, huh? You’ll see an example of this later in the chapter in Listing 5-7. Now let’s take a look at
using a cursor as a singleton SELECT.

A Singleton Cursor
By using a cursor, you can eliminate having to give up control of your programs when a NO_DATA_FOUND
exception is raised because one is never raised. Instead, you can check the cursor variable for the status
%notfound. Listing 5-2 is an example of using a cursor for a singleton SELECT. As you will see as you review
the listing, sometimes using a cursor to retrieve one row can cost more in code than it’s worth.

Listing 5-2.  An Example of Using a Cursor for a Singleton SELECT, insert_with_plsql_cursor_detection_for_
update.sql

001 rem insert_with_plsql_cursor_detection_for_update.sql
002 rem by Donald J. Bales on 2014-10-20
003 rem An anonymous PL/SQL procedure to insert
004 rem values using PL/SQL literals and variables
005
006 set serveroutput on size 1000000;
007
008 declare
009
010 cursor c_worker_types(
011 aiv_code in WORKER_TYPES.code%TYPE) is
012 select id
013 from WORKER_TYPES
014 where code = aiv_code;
015
016 cursor c_gender_types(
017 aiv_code in GENDER_TYPES.code%TYPE) is
018 select id
019 from GENDER_TYPES
020 where code = aiv_code;
021
022 cursor c_workers(
023 aiv_name in WORKERS.name%TYPE,
024 aid_birth_date in WORKERS.birth_date%TYPE,
025 ain_gender_type_id in WORKERS.gender_type_id%TYPE) is
026 select id

Chapter 5 ■ Multirow Processing

123

027 from WORKERS
028 where name = aiv_name
029 and birth_date = aid_birth_date
030 and gender_type_id = ain_gender_type_id;
031
032 cursor c_worker_ids is
033 select WORKERS_ID.nextval worker_id
034 from SYS.DUAL;
035
036 cursor c_external_ids is
037 select lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0') external_id
038 from SYS.DUAL;
039
040 -- I declared these variables so I can get
041 -- the required ID values before I insert.
042 n_id WORKERS.id%TYPE;
043 n_worker_type_id WORKERS.worker_type_id%TYPE;
044 v_external_id WORKERS.external_id%TYPE;
045 v_first_name WORKERS.first_name%TYPE;
046 v_middle_name WORKERS.middle_name%TYPE;
047 v_last_name WORKERS.last_name%TYPE;
048 v_name WORKERS.name%TYPE;
049 d_birth_date WORKERS.birth_date%TYPE;
050 n_gender_type_id WORKERS.gender_type_id%TYPE;
051
052 -- I'll use these variables to hold the result
053 -- of the SQL insert and update statements.
054 n_inserted number := 0;
055 n_updated number := 0;
056
057 begin
058 v_first_name := 'JOHN';
059 v_middle_name := 'J.';
060 v_last_name := 'DOE';
061 v_name :=
062 rtrim(v_last_name||', '||v_first_name||' '||v_middle_name);
063 d_birth_date :=
064 to_date('19800101', 'YYYYMMDD'); -- I'm guessing
065
066 -- First, let's get the worker_type_id for a contractor
067 begin
068 open c_worker_types('C');
069 fetch c_worker_types
070 into n_worker_type_id;
071 if c_worker_types%notfound then
072 raise_application_error(-20001,
073 'Can''t find the worker types ID for Contractor.'||
074 ' on select WORKER_TYPES'||
075 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
076 end if;
077 close c_worker_types;

Chapter 5 ■ Multirow Processing

124

078 exception
079 when OTHERS then
080 raise_application_error(-20002, SQLERRM||
081 ' on select WORKER_TYPES'||
082 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
083 end;
084
085 -- Next, let's get the gender_id for a male
086 begin
087 open c_gender_types('M');
088 fetch c_gender_types
089 into n_gender_type_id;
090 if c_gender_types%notfound then
091 raise_application_error(-20003,
092 'Can''t find the gender ID for Male.'||
093 ' on select GENDER_TYPES'||
094 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
095 end if;
096 close c_gender_types;
097 exception
098 when OTHERS then
099 raise_application_error(-20004, SQLERRM||
100 ' on select GENDER_TYPES'||
101 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
102 end;
103
104 -- Detect any existing entries with the unique
105 -- combination of columns as in this constraint:
106 -- constraint WORKERS_UK2
107 -- unique (
108 -- name,
109 -- birth_date,
110 -- gender_id)
111 begin
112 open c_workers(v_name, d_birth_date, n_gender_type_id);
113 fetch c_workers
114 into n_id;
115 if c_workers%notfound then
116 n_id := NULL;
117 end if;
118 close c_workers;
119 exception
120 when OTHERS then
121 raise_application_error(-20005, SQLERRM||
122 ' on select WORKERS'||
123 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
124 end;
125

Chapter 5 ■ Multirow Processing

125

126 -- Conditionally insert the row
127 if n_id is NULL then
128 -- Now, let's get the next worker_id sequence
129 begin
130 open c_worker_ids;
131 fetch c_worker_ids
132 into n_id;
133 close c_worker_ids;
134 exception
135 when OTHERS then
136 raise_application_error(-20006, SQLERRM||
137 ' on select WORKER_IDS.nextval'||
138 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
139 end;
140
141 -- And then, let's get the next external_id sequence
142 begin
143 open c_external_ids;
144 fetch c_external_ids
145 into v_external_id;
146 if c_external_ids%notfound then
147 v_external_id := NULL;
148 end if;
149 close c_external_ids;
150 exception
151 when OTHERS then
152 raise_application_error(-20006, SQLERRM||
153 ' on select EXTERNAL_ID_SEQ.nextval'||
154 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
155 end;
156
157 -- Now that we have all the necessary ID values
158 -- we can finally insert a row!
159 begin
160 insert into WORKERS (
161 id,
162 worker_type_id,
163 external_id,
164 first_name,
165 middle_name,
166 last_name,
167 name,
168 birth_date,
169 gender_type_id)
170 values (
171 n_id,
172 n_worker_type_id,
173 v_external_id,
174 v_first_name,
175 v_middle_name,
176 v_last_name,

Chapter 5 ■ Multirow Processing

126

177 v_name,
178 d_birth_date,
179 n_gender_type_id);
180
181 n_inserted := sql%rowcount;
182 exception
183 when OTHERS then
184 raise_application_error(-20007, SQLERRM||
185 ' on insert WORKERS'||
186 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
187 end;
188 else
189 begin
190 update WORKERS
191 set worker_type_id = n_worker_type_id
192 where id = n_id;
193
194 n_updated := sql%rowcount;
195 exception
196 when OTHERS then
197 raise_application_error(-20008, SQLERRM||
198 ' on update WORKERS'||
199 ' in filename insert_with_plsql_cursor_detection_for_update.sql');
200 end;
201 end if;
202
203 pl(to_char(n_inserted)||' row(s) inserted.');
204 pl(to_char(n_updated)||' row(s) updated.');
205 end;
206 /
207
208 commit;
 

Listing 5-2 doesn’t have any new syntax, but it does show a different utilization of the keywords OPEN,
FETCH, and CLOSE. You may recall seeing a form of this source code originally in Listing 4-4. Now it has been
modified to use cursors for its singleton SELECT statements, so I can argue when it’s a good idea to use
cursors for singletons and when it’s not.

Let’s break down the listing:

Lines 10 through 14 declare a cursor for table •	 WORKER_TYPES.

Lines 16 through 20 declare a cursor for table •	 GENDER_TYPES.

Lines 22 through 30 declare a cursor for table •	 WORKERS. Later in the executable
section, I’ll pass parameters for the worker’s name, birth date, and gender
in order to try to find an existing row in the database.

Lines 32 through 34 declare a cursor for allocating the next worker ID •	
sequence value.

Lines 36 through 38 declare a cursor for allocating the external ID sequence value.•	

On line 68, I open the cursor for the worker type, passing the code value •	 C
as a parameter.

Chapter 5 ■ Multirow Processing

127

On line 69 and 70, I try to fetch the corresponding •	 worker_type_id value into
variable n_worker_type_id.

On line 71, I test the cursor variable •	 c_worker_types%notfound to see if a
corresponding ID value was found. If not, I raise an application error, which stops
the execution of the program.

Line 77 closes the cursor (that’s a mandatory programming task).•	

On lines 68 through 83 collectively, I’ve blocked •	 OPEN, FETCH, and CLOSE in order to
capture any unusual errors.

On lines 86 through 102 collectively, I do the same for table •	 GENDER_TYPES as I have
done for table WORKER_TYPES. My assessment: using a cursor for getting the code IDs
gains me nothing. I don’t expect there to be an exception, so I really don’t gain any
more control over the program by using a cursor for singleton SELECT as in this
situation.

On lines 111 through 124 collectively, I use a cursor to select a matching •	 id from
WORKERS. This time, there is an advantage in using a cursor for a singleton SELECT.
Since I expect that the SELECT may not find any data, I can query the cursor variable
c_workers%notfound to determine this. If the SELECT statement did not find a
matching entry in the table, I set variable n_id to NULL to flag that no matching entry
exists. In this instance, I no longer needed to code a WHEN NO_DATA_FOUND exception.

On lines 129 through 139, and 142 through 155 collectively, I’ve used cursors to •	
select the next sequence values from the database. Once again, since I don’t expect
any possible errors, using cursors for singleton SELECT statements adds a lot of code
but little value.

The moral of the story is that you may want to use a cursor for a singleton SELECT if you expect a
NO_DATA_FOUND exception may be raised; otherwise, you may as well stick to a simple SELECT statement. In
practice, I personally have no problem with utilizing the exception NO_DATA_FOUND, syntactic sugar that it is,
but the choice is now yours.

It’s Your Turn to Fetch Manually
In this section, your assignment is to write a program using cursors. But first, I’ll present a point of view on
why good use of cursors is so important.

Do you ever think about how many times you’ve written a given SQL statement? Do you ever find
yourself writing the same statement more than once in your program? Just how many times should you write
the same SQL statement? In my opinion, the answer is just once! There are a lot of reasons to avoid writing
the same statement more than once. Let’s start with these:

One SQL statement to accomplish one goal means fewer cursors in use on your •	
database, and that means better performance.

One SQL statement to accomplish one task means consistent behavior across your •	
application’s presentation layers.

One SQL statement to accomplish one requirement means it will be easier to •	
maintain and modify your application’s code.

One SQL statement to attain the goals just mentioned means saving money, and •	
saved money is profit.

Chapter 5 ■ Multirow Processing

128

To attain better performance, consistent behavior, more maintainable code, and profit, you’re going to
have to start thinking like an object-oriented programmer.

What’s your assignment? Write three packages for three tables. I’ll show you two out of the three so you
have some models for your coding, but I expect you to stretch during the third exercise and it all on your
own. Let’s start by modularizing a code table.

A Code Table Package
In the listings in Chapter 4 and now Chapter 5, I’ve repeatedly coded the same SQL SELECT statement in order
to get the corresponding ID value for a given code. So rather than keep writing the same code over and over,
I’ve created a package called WORKER_TYPE for table WORKER_TYPES. This is what I call a pseudo-object-oriented
approach to programming in PL/SQL. Listing 5-3 is the worker type codes package spec, and Listing 5-4 is its
implementation, or package body.

Listing 5-3.  The WORKER_TYPE Package Spec, worker_type.pks

01 create or replace PACKAGE WORKER_TYPE as
02 /*
03 worker_type.pks
04 by Don Bales on 2014-10-20
05 Code Table WORKER_TYPES' methods.
06 */
07
08
09 -- Returns the id for the specified code value.
10
11 FUNCTION get_id(
12 aiv_code in WORKER_TYPES.code%TYPE)
13 return WORKER_TYPES.id%TYPE;
14
15
16 end WORKER_TYPE;
17 /
18 @se.sql WORKER_TYPE
 

In Listing 5-3, I’ve declared one function, get_id(aiv_code) return id. Now if programmers—whether
they are coding in a PL/SQL program, a JDBC program, C, C++, Perl, PowerScript, and so on—want to
get the id value for a corresponding code value, all they need to do is call the PL/SQL function
WORKER_TYPE.get_id(), passing it an existing code value.

Listing 5-4.  The WORKER_TYPE Package Body, worker_type.pkb

01 create or replace PACKAGE BODY WORKER_TYPE as
02 /*
03 worker_type.pkb
04 by Don Bales on 2014-10-20
05 Table WORKER_TYPES' methods
06 */
07
08

http://dx.doi.org/10.1007/9781484207383_4
http://dx.doi.org/10.1007/9781484207383_5

Chapter 5 ■ Multirow Processing

129

09 -- FUNCTIONS
10
11 FUNCTION get_id(
12 aiv_code in WORKER_TYPES.code%TYPE)
13 return WORKER_TYPES.id%TYPE is
14
15 n_id WORKER_TYPES.id%TYPE;
16
17 begin
18 select id
19 into n_id
20 from WORKER_TYPES
21 where code = aiv_code;
22
23 return n_id;
24 end get_id;
25
26
27 end WORKER_TYPE;
28 /
29 @be.sql WORKER_TYPE
 

Let’s look at the implementation, Listing 5-4:

Line 11 declares the implementation for function •	 get_id().

Line 12 specifies that a calling program must pass in a code value.•	

Line 13 specifies that the function will return a worker type ID value.•	

Line 15 declares a local variable called •	 n_id to hold the ID value retrieved
from the database.

Lines 18 through 21 contain a SQL •	 SELECT statement to retrieve a corresponding ID
value for the given code value in parameter aiv_code.

On line 23, I return the retrieved ID value to the calling program unit.•	

Lines 11 through 24 collectively implement a SQL •	 SELECT statement to retrieve an
ID value for a corresponding code value. I have not blocked this SQL statement, so
it will raise a NO_DATA_FOUND exception should one occur. This means the calling
program may want to block the call to WORKER_TYPE.get_id() in order to be able to
report the exact error and the location where it occurred in the program.

Now, anywhere I would have coded another SQL statement to select an ID from table WORKER_TYPES for
a given code, I can simply code
 
n_worker_type_id := WORKER_TYPE.get_id('C');
 
or better yet
 

Chapter 5 ■ Multirow Processing

130

begin
 n_worker_type_id := WORKER_TYPE.get_id('C');
exception
 when OTHERS then
 raise_application_error(-20???, SQLERRM||
 ' on call WORKERT_TYPE.get_id()'||
 ' in <my_program_unit>');
end;
 

The latter example, although more code, will make it easier to troubleshoot your program when an error
does occur.

So what’s part one of your assignment? Create a code package for table GENDER_TYPES, and that includes
compiling and testing it. When you’re finished, continue reading for part two.

A Worker Table Package
In a similar fashion to the code tables, I’ve written SQL SELECT statements numerous times in order to
allocate database-generated sequence values. So I’ve created package WORKER to hold functions and
procedures for table WORKERS. The first function I’ve added is get_id(). However, this time, get_id() is
called without parameters and returns the next available sequence number for the WORKERS id column.

Take a look at package WORKER. Listing 5-5 is its package spec, and Listing 5-6 is its implementation.

Listing 5-5.  The WORKER Package Spec, worker.pks

01 create or replace PACKAGE WORKER as
02 /*
03 worker.pks
04 by Donald J. Bales on 2014-10-20
05 Table WORKERS' methods.
06 */
07
08
09 -- Return the next ID sequence value
10
11 FUNCTION get_id
12 return WORKERS.id%TYPE;
13
14
15 end WORKER;
16 /
17 @se.sql WORKER
 

In Listing 5-5, I’ve declared one function: get_id(). It will return the next WORKERS_ID sequence value.

Chapter 5 ■ Multirow Processing

131

Listing 5-6.  The WORKER Package Body, worker.pkb

01 create or replace PACKAGE BODY WORKER as
02 /*
03 worker.pkb
04 by Donald J. Bales on 2014-10-20
05 Table WORKERS' methods
06 */
07
08
09 -- FUNCTIONS
10
11 FUNCTION get_id
12 return WORKERS.id%TYPE is
13
14 n_id WORKERS.id%TYPE;
15
16 begin
17 select WORKERS_ID.nextval
18 into n_id
19 from SYS.DUAL;
20
21 return n_id;
22 end get_id;
23
24
25 end WORKER;
26 /
27 @be.sql WORKER
 

In Listing 5-6, I’ve coded a function that queries and returns the sequence value from WORKERS_ID.nextval.
Remember that the SYS.DUAL table has one row, so selecting any value against it will return one value.

Your assignment for part two is to add three functions to package WORKER:

A •	 get_external_id() function, which will return a value from sequence
EXTERNAL_ID_SEQ as a properly zero-left-padded varchar2.

A •	 get_unformatted_name() function, which will return a concatenated value for
three parameters: aiv_first_name, aiv_middle_name, and aiv_last_name. Use the
concatenation operator—two vertical bars (||)—to concatenate the varchar2 values
together. (Hint: I’ve already coded this concatenation time and time again in the
previous listings.)

An •	 is_duplicate() function, which you will pass three parameters: aiv_name,
aid_birth_date, and ain_gender_type_id. It should return a Boolean value of
TRUE if a duplicate exists; otherwise, it should return FALSE.

Remember to test all three functions. Yes, write a test unit for each one!
Let’s move on to part three of your assignment.

Chapter 5 ■ Multirow Processing

132

Write a Modularized Version of Insert with PL/SQL Detection
Do you remember Listing 4-3? Now that you have functions for five out of the five blocked singleton SELECT
statements, rewrite Listing 4-3 (insert_with_plsql_detection.sql), but this time replace all the singletons
and the creation of the value for v_name with function calls to the appropriate packages. Save your script as
insert_with_modularity.sql. Then execute it until it works.

My Solution
Listing 5-7 is my solution to this third part of the exercise.

Listing 5-7.  A Modular Approach to Inserting, insert_with_modularity.sql

01 rem insert_with_modularity.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to insert
04 rem values using PL/SQL functions
05
06 set serveroutput on size 1000000;
07
08 declare
09
10 -- I declared this record, so I can get
11 -- the required ID values before I insert.
12 r_worker WORKERS%ROWTYPE;
13
14 -- I'll use this variable to hold the result
15 -- of the SQL insert statement.
16 n_count number := 0;
17
18 begin
19 r_worker.first_name := 'JOHN';
20 r_worker.middle_name := 'J.';
21 r_worker.last_name := 'DOE';
22 -- Using the same function to get this derived value
23 -- from all programs will ensure its value is consistent
24 r_worker.name := WORKER.get_formatted_name(
25 r_worker.first_name, r_worker.middle_name, r_worker.last_name);
26 r_worker.birth_date :=
27 to_date('19800101', 'YYYYMMDD'); -- I'm guessing
28
29 -- First, let's get the worker_type_id for a contractor
30 begin
31 r_worker.worker_type_id := WORKER_TYPE.get_id('C');
32 exception
33 when OTHERS then
34 raise_application_error(-20001, SQLERRM||
35 ' on call WORKER_TYPE.get_id(''C'')'||
36 ' in filename insert_with_modularity.sql');
37 end;
38

Chapter 5 ■ Multirow Processing

133

39 -- Next, let's get the gender_id for a male
40 begin
41 r_worker.gender_type_id := GENDER_TYPE.get_id('M');
42 exception
43 when OTHERS then
44 raise_application_error(-20002, SQLERRM||
45 ' on call GENDER_TYPE.get_id(''M'')'||
46 ' in filename insert_with_modularity.sql');
47 end;
48
49 -- Detect any existing entries, and
50 -- then conditionally insert the row
51 if not WORKER.is_duplicate(
52 r_worker.name, r_worker.birth_date, r_worker.gender_type_id) then
53 -- I'm not going to block the next two calls,
54 -- because it's highly unlikely that I could
55 -- ever get an error allocating a sequnce.
56
57 -- Now, let's get the next id sequence.
58 -- no parameters, so no parentheses needed
59 r_worker.id := WORKER.get_id;
60
61 -- And then, let's get the next external_id sequence
62 -- no parameters, so no parentheses needed
63 r_worker.external_id := WORKER.get_external_id;
64
65 -- Now that we have all the necessary ID values
66 -- we can finally insert a row!
67 begin
68 -- Since I declared r_worker based on WORKERS, I
69 -- can skip the column list and just use the record.
70 insert into WORKERS values r_worker;
71
72 n_count := sql%rowcount;
73 exception
74 when OTHERS then
75 raise_application_error(-20003, SQLERRM||
76 ' on insert WORKERS'||
77 ' in filename insert_with_modularity.sql');
78 end;
79 end if;
80
81 pl(to_char(n_count)||' row(s) inserted.');
82 end;
83 /
84
85 commit;
 

I’m not going to explain Listing 5-7 in detail, because it’s well commented and you should be able to
understand it by now. But I will say that, unless there’s more you have to do between the selection of codes
and sequences and before the insert, you’re probably still better off using SQL to do all the work!

Now let me introduce you to the star of the PL/SQL show: CURSOR FOR LOOP.

Chapter 5 ■ Multirow Processing

134

Fetching Rows from a Cursor Automatically
CURSOR FOR LOOP is the heart and soul of PL/SQL’s abilities. The CURSOR FOR LOOP allows you to work
with a cursor that returns multiple rows, one row at a time, using a very nice and neat structure that does
everything for you automatically.

Listing 5-8 is a revision of Listing 5-1. The difference is that Listing 5-8 utilizes the “automatic” CURSOR
FOR LOOP, instead of the manually coded loop involving OPEN, FETCH, and CLOSE.

Listing 5-8.  An Example of Using a CURSOR FOR LOOP, cursor_for_loop_the_doe_family.sql

01 rem cursor_for_loop_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to select
04 rem the first names for the Doe family from
05 rem the Workers table.
06
07 set serveroutput on size 1000000;
08
09 declare
10
11 cursor c_workers(
12 aiv_last_name in WORKERS.last_name%TYPE) is
13 select first_name
14 from WORKERS
15 where last_name like aiv_last_name||'%'
16 order by id;
17
18 begin
19 for r_worker in c_workers('DOE') loop
20 pl(r_worker.first_name);
21 end loop;
22 end;
23 /
 

The CURSOR FOR LOOP syntax used in Listing 5-8 is as follows:
 
FOR <record_name> IN <cursor_name> [(<cursor_parameters>)] LOOP
 -- Put your PL/SQL to be executed for each row here
END LOOP;
 
where <record_name> is the name of the record that will contain fields that correspond to columns
in the associated cursor’s SELECT statement, <cursor_name> is the name of the associated CURSOR, and
<cursor_parameters> is a list of zero or more parameters to be passed to the CURSOR. The brackets around
the parameters denote that they are optional; they are needed only if the associated CURSOR was declared
with parameters.

Listing 5-8 is short but powerful. In lines 11 through 16, I declare a CURSOR c_workers. Then, on line 19,
I use the CURSOR FOR LOOP syntax to automatically OPEN the CURSOR and LOOP until there’s no data found,
placing any column values in an automatically declared record r_worker that is in scope only inside the FOR
LOOP. If at least one row was retrieved from the database, the CURSOR FOR LOOP automatically CLOSEs the
OPEN CURSOR when the LOOP ENDs. As I documented earlier in Table 3-1, I use the prefix c_ for cursors and
the prefix r_ for records. This naming convention makes it easy to see exactly what is going on in PL/SQL.

Chapter 5 ■ Multirow Processing

135

I told you PL/SQL’s solution to the last exercise in Chapter 4 was going to get even better. As you can see,
the CURSOR FOR LOOP represents some powerfully compact syntax!

You can use a CURSOR FOR LOOP as long as you don’t need the values of the fields in the automatically
declared record outside the loop. And it will do you no good to declare the record outside the loop because
the CURSOR FOR LOOP will still declare its own. If you do need the cursor values beyond the fetch, you’ll
need to assign the record values to variables declared outside the loop or use a manual loop, as I did
earlier in Listing 5-1.

Enough talk—it’s time you put CURSOR FOR LOOP to work for you.

It’s Your Turn to Fetch Automatically
In the development process, you’ll eventually need to test what you’ve built with some realistic data;
otherwise, you won’t know how your code will perform in production. So your assignment here is to create a
PL/SQL procedure that will populate table WORKERS with test data.

If you combine 100 last names, 100 first names, and 26 different middle initials, you get 260,000 entries
for table WORKERS. A quarter of a million entries in a table is a fair amount of data for testing.

To help you out with this assignment, I’ve created three scripts to create the TOP_100_FIRST_NAMES,
TOP_100_LAST_NAMES, and A_THRU_Z tables for you. I’ve placed these table scripts in the downloaded source
code directory for Chapter 5, as top_100_first_names.tab, top_100_last_names.tab, and a_thru_z.tab,
respectively. You can create those tables by running these scripts.

In order to populate table WORKERS, I suggest you create a PL/SQL procedure that uses nested CURSOR
FOR LOOPs to iterate through each table’s entries, inserting an entry into the table for each loop, in the most
nested FOR LOOP. Your executable code will look something like this:
 
begin
 for r_last in c_last loop
 for r_first in c_first loop
 for r_middle in c_middle loop
 -- initialize the variables to be used in the insert statement here.
 insert into WORKERS ...
 end loop;
 end loop;
 end loop;
end;
 

Of course, you’ll need to supply values for other columns. For those, I suggest you do the following:

For •	 id, call function WORKER.get_id().

For •	 worker_type_id, use an IF statement to flip back and forth between the ID
values for an employee vs. contractor on every other entry.

For •	 external_id, call function WORKER.get_external_id().

For •	 birth_date, call function DATES.random(1940, 1990); this will give you a
randomly generated date between the years 1940 and 1990.

For •	 gender_type_id, use an IF statement to specify the correct ID value for the
corresponding code found in the TOP_100_FIRST_NAME table.

Add a variable to keep track of how many inserts you’ve made, and then display that number on the
screen when you’re finished inserting. Save the script as worker cursor_for_loop.ins, and then execute it.
I know this is a hard assignment, but you have everything you need to get it done.

http://dx.doi.org/10.1007/9781484207383_4
http://dx.doi.org/10.1007/9781484207383_5

Chapter 5 ■ Multirow Processing

136

Listing 5-9 is my solution to this exercise. When I ran this script on my computer, it inserted 260,000
rows in an average time of 72 seconds—that’s about 3,611 rows per second.

Listing 5-9.  Using CURSOR FOR LOOPs to Insert Test Data, workers _cursor_for_loop.ins

001 rem workers_cursor_for_loop.ins
002 rem by Donald J. Bales on 2014-10-20
003 rem Seed the Workers table with the top 100 names
004 rem 100 last x 100 first x 26 middle = 260,000 entries
005
006 set serveroutput on size 1000000;
007
008 declare
009
010 -- This is the cursor for the last names.
011 cursor c_last is
012 select last_name
013 from TOP_100_LAST_NAMES;
014
015 -- This is the cursor for the first names.
016 cursor c_first is
017 select first_name,
018 gender_code
019 from TOP_100_FIRST_NAMES;
020
021 -- This is the cursor for the middle initials.
022 cursor c_middle is
023 select letter
024 from A_THRU_Z;
025
026 -- This is the number of seconds since midnight
027 -- I'll use it to profile my code's performance.
028 n_start number :=
029 to_number(to_char(SYSDATE, 'SSSSS'));
030
031 -- Here, I declare four psuedo-constants to hold the
032 -- ID values from the code tables, rather than look
033 -- them up repeatedly during the insert process.
034 n_G_FEMALE GENDER_TYPES.id%TYPE;
035 n_G_MALE GENDER_TYPES.id%TYPE;
036 n_WT_CONTRACTOR WORKER_TYPES.id%TYPE;
037 n_WT_EMPLOYEE WORKER_TYPES.id%TYPE;
038
039 -- I'll use this to keep track of the number of
040 -- rows inserted.
041 n_inserted number := 0;
042
043 -- Here, I declare a record anchored to the table so
044 -- I can set the column values and then insert using
045 -- the record.
046 r_worker WORKERS%ROWTYPE;
047

Chapter 5 ■ Multirow Processing

137

048 begin
049 -- Get the ID values for the codes
050 n_G_FEMALE := GENDER_TYPE.get_id('F');
051 n_G_MALE := GENDER_TYPE.get_id('M');
052 n_WT_CONTRACTOR := WORKER_TYPE.get_id('C');
053 n_WT_EMPLOYEE := WORKER_TYPE.get_id('E');
054
055 -- Loop through the last names
056 for r_last in c_last loop
057
058 -- While looping through the last names,
059 -- loop through the first names
060 for r_first in c_first loop
061
062 -- While looping through the last and first names
063 -- loop through the 26 letters in the English
064 -- Alphabet in order to get middle initials
065 -- As an alternative, I could have used a FOR LOOP:
066 -- for i in ascii('A')..ascii('Z') loop
067 for r_middle in c_middle loop
068
069 -- Initialize the record
070
071 -- Get the PK using the table's package
072 r_worker.id := WORKER.get_id();
073
074 -- Flip flop from contractor to employee and back again
075 if r_worker.worker_type_id = n_WT_CONTRACTOR then
076 r_worker.worker_type_id := n_WT_EMPLOYEE;
077 else
078 r_worker.worker_type_id := n_WT_CONTRACTOR;
079 end if;
080
081 -- Get the External ID using the table's package
082 r_worker.external_id := WORKER.get_external_id();
083
084 -- The first, middle, and last names come from the cursors
085 r_worker.first_name := r_first.first_name;
086 -- r_worker.middle_name := chr(i)||'.';
087 r_worker.middle_name := r_middle.letter||'.';
088 r_worker.last_name := r_last.last_name;
089
090 -- get the name using the table's package
091 r_worker.name := WORKER.get_formatted_name(
092 r_worker.first_name, r_worker.middle_name, r_worker.last_name);
093
094 -- get a random date for a birth date
095 r_worker.birth_date := DATES.random(
096 to_number(to_char(SYSDATE, 'YYYY')) - 65,
097 to_number(to_char(SYSDATE, 'YYYY')) - 18);
098

Chapter 5 ■ Multirow Processing

138

099 -- selecrt the corresponding ID value
100 if r_first.gender_code = 'F' then
101 r_worker.gender_type_id := n_G_FEMALE;
102 else
103 r_worker.gender_type_id := n_G_MALE;
104 end if;
105
106 -- Insert the row into the database
107 insert into WORKERS values r_worker;
108
109 -- keep track of the number of inserts
110 n_inserted := n_inserted + sql%rowcount;
111 end loop; -- c_middle
112 -- end loop; -- for i
113 commit; -- commit every 26 rows
114
115 end loop; -- c_first
116
117 end loop; -- c_last
118 -- Display the results
119 pl(to_char(n_inserted)||' rows inserted in '||
120 (to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
121 ' seconds.');
122 end;
123 /
 

I won’t elaborate on my solution here, because I’ve commented the code heavily. Notice that I’ve added
a variable to hold the start time in seconds, so I can test the performance of this solution against others.
You’ll see me profile code this way as we move forward. It’s part of the testing process. The question now is,
“Can we make this PL/SQL procedure faster?”

In Oracle8, some additional functionality was added to PL/SQL to improve performance. Let’s look at
one of those additions next.

Bulk Collect
In this context, BULK COLLECT is about reducing the number of transitions between the PL/SQL engine and
SQL engine in order to improve efficiency and speed of your PL/SQL program.

The idea is simple. Every time you execute SQL from your PL/SQL program, PL/SQL must hand off the
SQL statement to the Oracle database’s SQL engine. When the SQL engine is finished, it returns its result to
the PL/SQL engine. Flip-flopping back and forth from PL/SQL to SQL and back again takes time.

Since version 8 of Oracle, you can reduce the number of transitions between PL/SQL and SQL by
using the BULK COLLECT command. Rather than fetch one row at a time from the SQL engine, you can fetch
perhaps 100 at a time into a PL/SQL collection, which can be a PL/SQL table (or array).

Although three types of PL/SQL collections exist, I’m going to cover only the use of associative arrays, or
as they were once called, PL/SQL tables. Once you’re comfortable programming in PL/SQL, I recommend
you go back and learn about the other two in a good reference (such as PL/SQL Programming by Steven
Feuerstein and Bill Pribyl).

Chapter 5 ■ Multirow Processing

139

Bulk Collect with a Cursor
Since we’ve been working with cursors, let’s continue to talk about them. Listing 5-10 is yet another
incarnation of Listing 5-1, the “select the Doe family” assignment. This time, however, it has been coded to
use BULK COLLECT.

Listing 5-10.  An Example of Using BULK COLLECT with a CURSOR, cursor_bulk_collect_the_doe_family.sql.

01 rem cursor_bulk_collect_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to select
04 rem the first names for the Doe family from
05 rem the Workers table.
06
07 set serveroutput on size 1000000;
08
09 declare
10
11 cursor c_workers(
12 aiv_last_name in WORKERS.last_name%TYPE) is
13 select first_name
14 from WORKERS
15 where last_name like aiv_last_name||'%'
16 order by id;
17
18 TYPE c_worker_table is table of c_workers%ROWTYPE
19 index by binary_integer;
20
21 t_workers c_worker_table;
22
23 begin
24 open c_workers('DOE');
25 loop
26 fetch c_workers bulk collect into t_workers limit 2;
27
28 exit when t_workers.count = 0;
29
30 for i in t_workers.first..t_workers.last loop
31 pl(t_workers(i).first_name);
32 end loop;
33 end loop;
34 end;
35 /
 

The FETCH syntax used in the manual loop in Listing 5-10 is as follows:
 
FETCH <cursor_name> BULK COLLECT INTO <plsql_table_name> LIMIT <limit>;
 
where <cursor_name> is the name of an open cursor from which to fetch, and <plsql_table_name> is the
name of the associative array in which to fetch the <limit> number of rows.

Chapter 5 ■ Multirow Processing

140

And the FOR LOOP syntax used in the listing is as follows:
 
FOR <index> IN <from_index>..<through_index> LOOP
 -- Put your PL/SQL code to execute during the loop here.
END LOOP
 
where <index> is an index value to use in the loop to address PL/SQL table elements, <from_index> is a valid
index value to start with, and <through_index> is a valid index value to end with.

There’s nothing like dissecting a program line by line to help explain it, so here it is:

Lines 11 through 16 declare a cursor to select the first names of a specified family. •	
There’s nothing new here. You’ve seen this time and again.

Lines 18 and 19 declare an associative array, or PL/SQL table, based on the row type •	
of CURSOR c_workers.

Line 21 declares a variable of •	 TYPE c_worker_table that will be the target of the
FETCH ... BULK COLLECT command.

Line 24 opens the cursor •	 c_workers.

Line 25 starts a manual •	 LOOP.

On line 26, I fetch rows from the database, two rows at a time, into table •	 t_workers.
Because I’ve reduce the number of transitions, or context switches, by two, this
PL/SQL program will run roughly twice as fast. I specified the number of rows to
retrieve with the LIMIT clause at the end of the FETCH ... BULK COLLECT statement.
I could have set the limit to 10, 100, 1000, 9999, or whatever. But keep in mind that
the limit also determines how much memory will be consumed by holding the rows
in memory between each call, so you need to use a reasonable value or bring your
database to a screeching halt—it’s your choice.

On line 28, instead of checking the cursor variable •	 c_workers%notfound, I need to
check the PL/SQL table t_workers’ %count variable to see how many rows were
inserted into the table from the last FETCH. If t_workers%count is zero, there are no
more rows to retrieve from the cursor, so I EXIT the LOOP.

On line 30, now that the fetched data resides in PL/SQL table •	 t_workers, I use a
FOR LOOP to iterate through the entries, from the first, t_worker.first through (..)
the last, t_worker.last. In this context, first and last are PL/SQL table variables
that tell you the first and last rows in the table, respectively.

Line 31, inside the •	 FOR LOOP, displays the first names on the screen. However, this time,
since the PL/SQL table was based on a cursor’s row type, I need to use the form table
name, index, dot, field name—t_workers(i).first_name—in order to address the field.

Using BULK COLLECT with a FETCH statement for a cursor can lead to a significant performance
improvement if you set a moderately sized LIMIT. If you specify too large of a LIMIT, you’ll use up memory
needed for other database sessions.

Another thing to consider is that using BULK COLLECT requires additional programming. So is the extra
memory consumption and additional programming worth the investment? Or will a simple CURSOR FOR LOOP
do the job?

In practice, I always start out with a CURSOR FOR LOOP. If I find that a particular PL/SQL program is a
performance bottleneck, or needs to run faster for business purposes, I take the extra time to transform
the PL/SQL module to use BULK COLLECT. But then I test its performance gains against every other PL/SQL
program’s performance loss due to the additional consumption of memory. Yes, I test, test, and test again.

Chapter 5 ■ Multirow Processing

141

Note■■  O racle Database 10g introduced an “auto bulk collect” feature. I suggest you investigate this later by
reading Oracle’s PL/SQL User’s Guide and Reference for a version of Oracle Database 10g or later.

Bulk Collect with a Select Statement
If you know that the result of your SQL SELECT statement will always be a small number of rows, you can
simplify your PL/SQL programming by using BULK COLLECT with a SELECT statement. The result is a SELECT
statement that looks a lot like a singleton SELECT, with the difference being that rather than returning only
one row at a time, your use of BULK COLLECT allows the statement to return a number of rows at a time.

Listing 5-11 demonstrates the use of BULK COLLECT with a SELECT statement. The difference with this
listing compared to Listing 5-10 is that I no longer use an explicit CURSOR.

Listing 5-11.  An Example of Using BULK COLLECT with a SELECT statement, bulk_collect_the_doe_family.sql

01 rem bulk_collect_the_doe_family.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem An anonymous PL/SQL procedure to select
04 rem the first names for the Doe family from
05 rem the Workers table.
06
07 set serveroutput on size 1000000;
08
09 declare
10
11 TYPE worker_table is table of WORKERS.first_name%TYPE
12 index by binary_integer;
13
14 t_workers worker_table;
15
16 begin
17 select first_name
18 BULK COLLECT
19 into t_workers
20 from WORKERS
21 where last_name like 'DOE%'
22 order by id;
23
24 for i in t_workers.first..t_workers.last loop
25 pl(t_workers(i));
26 end loop;
27 end;
28 /
 

Chapter 5 ■ Multirow Processing

142

The BULK COLLECT syntax used in Listing 5-11 is as follows:
 
SELECT <column_list>
BULK COLLECT
INTO <plsql_table_name>
FROM <table_name>
WHERE <where_clause>
ORDER BY <order_by_colunmn_list>;
 

where <column_list> is a single column name from the table or an asterisk (*) to denote all columns
from the table (or row), <plsql_table_name> is the name of one or more associative array(s) declared to
match the column list’s data types, <table_name> is the name of the table to query, <where_clause> is an
appropriate WHERE clause for the query, and <order_by_column_list> is a list of column(s) by which to order
the SELECT statement’s results.

Let’s break down Listing 5-11:

Lines 11 and 12 declare a •	 TYPE based on the first_name column of the
WORKERS table.

Line 14 declares a table for the •	 TYPE worker_table specified on lines 11 and 12.

On lines 17 through 22, the magic occurs. This is where I’ve used the •	 SELECT BULK
COLLECT INTO syntax to load all the resulting rows from the query into the PL/SQL
table t_workers in just one context switch!

Lines 24 through 26 contain a •	 FOR LOOP to iterate through the rows in PL/SQL table
t_workers, displaying the results on the screen.

Sweet and simple, from disk to memory in one context switch, this is indeed a powerful syntax.
However, it has all the same baggage as its CURSOR-based sibling in the previous section. So use it carefully,
if at all.

In practice, I never use this syntax because I can’t guarantee that the tables I’m coding against won’t
grow to require an unreasonable amount of memory for the BULK COLLECT. Instead, I play it safe and use the
CURSOR BULK COLLECT syntax. But now it’s your choice.

It’s Your Turn to Bulk Collect
Now that you know how to make your code more efficient by using BULK COLLECT, put it to the test by taking
your solution to the last exercise and modifying it to use BULK COLLECT. This means you’ll get rid of the three
cursors you declared in that solution and replace them with three TYPE and three PL/SQL table declarations.
Next, you’ll change your CURSOR FOR LOOPs to FOR LOOPs, as in the following example:
 
begin
 for l in t_last.first..t_last.last loop
 for f in t_first.first..t_first.last loop
 for m in t_middle.first..t_middle.last loop
 -- initialize the variables to be used in the insert statement here.
 insert into WORKERS ...
 end loop;
 end loop;
 end loop;
end;
 

Chapter 5 ■ Multirow Processing

143

Listing 5-12 is my solution to this exercise. When I ran this script on my computer, it inserted 260,000
rows in an average time of 65 seconds—that’s about 4000 rows per second, for an 11% improvement. The small
amount of improvement is understandable here, because while there were 223 context switches saved by using
BULK COLLECT, there were still 260,000 context switches due to inserts.

Listing 5-12.  Using BULK COLLECT to Improve the Insertion of Test Data, workers_bulk_collect.ins

001 rem workers_bulk_collect.ins
002 rem by Donald J. Bales on 2014-10-20
003 rem Seed the Workers table with the top 100 names
004 rem 100 last x 100 first x 26 middle = 260,000 entries
005
006 set serveroutput on size 1000000;
007
008 declare
009
010 -- Declare a type for a PL/SQL table of last names
011 TYPE last_name_table is table of TOP_100_LAST_NAMES%ROWTYPE
012 index by binary_integer;
013
014 -- Declare a type for a PL/SQL table of first names
015 TYPE first_name_table is table of TOP_100_FIRST_NAMES%ROWTYPE
016 index by binary_integer;
017
018 -- Declare a type for a PL/SQL table of middle initials
019 TYPE middle_name_table is table of A_THRU_Z%ROWTYPE
020 index by binary_integer;
021
022 -- This is the number of seconds since midnight
023 -- I'll use it to profile my code's performance.
024 n_start number :=
025 to_number(to_char(SYSDATE, 'SSSSS'));
026
027 -- Here, I declare four psuedo-constants to hold the
028 -- ID values from the code tables, rather than look
029 -- them up repeatedly during the insert process.
030 n_G_FEMALE GENDER_TYPES.id%TYPE;
031 n_G_MALE GENDER_TYPES.id%TYPE;
032 n_WT_CONTRACTOR WORKER_TYPES.id%TYPE;
033 n_WT_EMPLOYEE WORKER_TYPES.id%TYPE;
034
035 -- I'll use this to keep track of the number of
036 -- rows inserted.
037 n_inserted number := 0;
038
039 -- Here, I declare a record anchored to the table so
040 -- I can set the column values and then insert using
041 -- the record.
042 r_worker WORKERS%ROWTYPE;
043
044 -- Declare the three PL/SQL tables that replace cursors
045 t_first first_name_table;

Chapter 5 ■ Multirow Processing

144

046 t_middle middle_name_table;
047 t_last last_name_table;
048
049 begin
050 -- Get the ID values for the codes
051 n_G_FEMALE := GENDER_TYPE.get_id('F');
052 n_G_MALE := GENDER_TYPE.get_id('M');
053 n_WT_CONTRACTOR := WORKER_TYPE.get_id('C');
054 n_WT_EMPLOYEE := WORKER_TYPE.get_id('E');
055
056 -- Bulk collect the tables into the PL/SQL tables
057 select * bulk collect into t_last from TOP_100_LAST_NAMES;
058 select * bulk collect into t_first from TOP_100_FIRST_NAMES;
059 select * bulk collect into t_middle from A_THRU_Z;
060
061 -- Loop through the last names
062 for l in t_last.first..t_last.last loop
063
064 -- While looping through the last names,
065 -- loop through the first names
066 for f in t_first.first..t_first.last loop
067
068 -- While looping through the last and first names
069 -- loop through the 26 letters in the English
070 -- Alphabet in order to get middle initials
071 for m in t_middle.first..t_middle.last loop
072
073 -- Initialize the record
074
075 -- Get the PK using the table's package
076 r_worker.id := WORKER.get_id();
077
078 -- Flip flop from contractor to employee and back again
079 if r_worker.worker_type_id = n_WT_CONTRACTOR then
080 r_worker.worker_type_id := n_WT_EMPLOYEE;
081 else
082 r_worker.worker_type_id := n_WT_CONTRACTOR;
083 end if;
084
085 -- Get the External ID using the table's package
086 r_worker.external_id := WORKER.get_external_id();
087
088 -- The first, middle, and last names come from the cursors
089 r_worker.first_name := t_first(f).first_name;
090 r_worker.middle_name := t_middle(m).letter||'.';
091 r_worker.last_name := t_last(l).last_name;
092
093 -- get the name using the table's package
094 r_worker.name := WORKER.get_formatted_name(
095 r_worker.first_name, r_worker.middle_name, r_worker.last_name);
096

Chapter 5 ■ Multirow Processing

145

097 -- get a random date for a birth date
098 r_worker.birth_date := DATES.random(
099 to_number(to_char(SYSDATE, 'YYYY')) - 65,
100 to_number(to_char(SYSDATE, 'YYYY')) - 18);
101
102 -- selecrt the corresponding ID value
103 if t_first(f).gender_code = 'F' then
104 r_worker.gender_type_id := n_G_FEMALE;
105 else
106 r_worker.gender_type_id := n_G_MALE;
107 end if;
108
109 -- Insert the row into the database
110 insert into WORKERS values r_worker;
111
112 -- keep track of the number of inserts
113 n_inserted := n_inserted + sql%rowcount;
114 end loop; -- t_middle
115 commit; -- commit every 26 rows
116
117 end loop; -- t_first
118
119 end loop; -- t_last
120 -- Display the results
121 pl(to_char(n_inserted)||' rows inserted in '||
122 (to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
123 ' seconds.');
124 end;
125 /
 

Once again, I won’t elaborate on my solution here because I’ve commented the code heavily. The question
remains, “Can we make this PL/SQL procedure faster?”

Well, we’ve already used BULK COLLECT. What else is in PL/SQL’s bag of tricks?

FORALL
For the sake of completeness, I’m going to mention the FORALL statement here. It’s kind of like the inverse of
the BULK COLLECT statement. Given that you have a populated collection, like an associative array, you can
bulk execute the same SQL statement for every entry or for selected entries in your collection(s).

For example, if you have 26 entries in your PL/SQL table, you can write a FORALL statement that will
execute the same SQL statement 26 times, once for each row in your PL/SQL table. The assumption here is
that you’ll use the values from your PL/SQL table in each SQL statement.

The problem I have with FORALL is that the data for a collection usually comes from a table in the
database in the first place. If that’s the case, then a complex SQL statement can do everything a FORALL
statement can do, with one context switch, just like FORALL, but using less memory. So why does FORALL
exist? Frankly, I don’t know. Perhaps it’s syntactic sugar for PL/SQL programmers that have weak SQL skills.
Or maybe I’ve just never run across a need for it. That’s always possible. However, in practice, I never use it.
I always seem to find a better solution using a complex SQL statement.

Let me show you what I mean. Listing 5-13 is a rewrite of the “populate the Worker table” assignment,
where I use FORALL to bind 26 SQL statements per context switch. I could have rearranged my code some
more so I could do 100 at a time, but the improvement from doing so is not significant.

Chapter 5 ■ Multirow Processing

146

Listing 5-13.  Using FORALL to Improve the Insertion of Test Data, workers_forall.ins

001 rem workers_forall.ins
002 rem by Donald J. Bales on 2014-10-20
003 rem Seed the Workers table with the top 100 names
004 rem 100 last x 100 first x 26 middle = 260,000 entries
005
006 set serveroutput on size 1000000;
007
008 declare
009
010 -- Declare a type for a PL/SQL table of last names
011 TYPE last_name_table is table of TOP_100_LAST_NAMES%ROWTYPE
012 index by binary_integer;
013
014 -- Declare a type for a PL/SQL table of first names
015 TYPE first_name_table is table of TOP_100_FIRST_NAMES%ROWTYPE
016 index by binary_integer;
017
018 -- Declare a type for a PL/SQL table of middle initials
019 TYPE middle_name_table is table of A_THRU_Z%ROWTYPE
020 index by binary_integer;
021
022 -- Declare a type for a PL/SQL table of workers
023 TYPE worker_table is table of WORKERS%ROWTYPE
024 index by binary_integer;
025
026 -- This is the number of seconds since midnight
027 -- I'll use it to profile my code's performance.
028 n_start number :=
029 to_number(to_char(SYSDATE, 'SSSSS'));
030
031 -- Here, I declare four psuedo-constants to hold the
032 -- ID values from the code tables, rather than look
033 -- them up repeatedly during the insert process.
034 n_G_FEMALE GENDER_TYPES.id%TYPE;
035 n_G_MALE GENDER_TYPES.id%TYPE;
036 n_WT_CONTRACTOR WORKER_TYPES.id%TYPE;
037 n_WT_EMPLOYEE WORKER_TYPES.id%TYPE;
038
039 -- I'll use this to keep track of the number of
040 -- rows inserted.
041 n_inserted number := 0;
042
043 -- Declare the four PL/SQL tables that replace cursors
044 -- and the worker record
045 t_first first_name_table;
046 t_middle middle_name_table;
047 t_last last_name_table;
048 t_workers worker_table;
049
050 begin

Chapter 5 ■ Multirow Processing

147

051 -- Get the ID values for the codes
052 n_G_FEMALE := GENDER_TYPE.get_id('F');
053 n_G_MALE := GENDER_TYPE.get_id('M');
054 n_WT_CONTRACTOR := WORKER_TYPE.get_id('C');
055 n_WT_EMPLOYEE := WORKER_TYPE.get_id('E');
056
057 -- Bulk collect the tables into the PL/SQL tables
058 select * bulk collect into t_last from TOP_100_LAST_NAMES;
059 select * bulk collect into t_first from TOP_100_FIRST_NAMES;
060 select * bulk collect into t_middle from A_THRU_Z;
061
062 -- Loop through the last names
063 for l in t_last.first..t_last.last loop
064
065 -- While looping through the last names,
066 -- loop through the first names
067 for f in t_first.first..t_first.last loop
068
069 -- While looping through the last and first names
070 -- loop through the 26 letters in the English
071 -- Alphabet in order to get middle initials
072 for m in t_middle.first..t_middle.last loop
073
074 -- Initialize the table's rows
075
076 -- Get the PK using the table's package
077 t_workers(m).id := WORKER.get_id();
078
079 -- Flip flop from contractor to employee and back again
080 if t_workers(m).worker_type_id = n_WT_CONTRACTOR then
081 t_workers(m).worker_type_id := n_WT_EMPLOYEE;
082 else
083 t_workers(m).worker_type_id := n_WT_CONTRACTOR;
084 end if;
085
086 -- Get the External ID using the table's package
087 t_workers(m).external_id := WORKER.get_external_id();
088
089 -- The first, middle, and last names come from the cursors
090 t_workers(m).first_name := t_first(f).first_name;
091 t_workers(m).middle_name := t_middle(m).letter||'.';
092 t_workers(m).last_name := t_last(l).last_name;
093
094 -- get the name using the table's package
095 t_workers(m).name := WORKER.get_formatted_name(
096 t_workers(m).first_name,
097 t_workers(m).middle_name,
098 t_workers(m).last_name);
099

Chapter 5 ■ Multirow Processing

148

100 -- get a random date for a birth date
101 t_workers(m).birth_date := DATES.random(
102 to_number(to_char(SYSDATE, 'YYYY')) - 65,
103 to_number(to_char(SYSDATE, 'YYYY')) - 18);
104
105 -- select the corresponding ID value
106 if t_first(f).gender_code = 'F' then
107 t_workers(m).gender_type_id := n_G_FEMALE;
108 else
109 t_workers(m).gender_type_id := n_G_MALE;
110 end if;
111
112 end loop; -- t_middle
113
114 -- Now bulk bind the 26 insert statements
115 forall i in t_workers.first..t_workers.last
116 insert into WORKERS values t_workers(i);
117
118 n_inserted := n_inserted + sql%rowcount;
119
120 end loop; -- t_first
121
122 end loop; -- t_last
123 commit;
124 -- Display the results
125 pl(to_char(n_inserted)||' rows inserted in '||
126 (to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
127 ' seconds.');
128 end;
129 /
 

In Listing 5-13, the magic happens on lines 74 through 110, where I populate a PL/SQL table’s records
with values, and then, on lines 115 and 116, where I bulk bind the insert statements, so I have only one
context switch for each set of 26 records. Using FORALL, my program now inserts 260,000 rows in an average
time of 38 seconds. That’s about 6,842 rows per second, for a 71% improvement. That’s great, right? Well,
what if I just use SQL?

Listing 5-14 is the “populate the Worker table” assignment, where I use a single SQL statement. How
does it fare?

Listing 5-14.  Using SQL to Improve the Insertion of Test Data, workers.ins

01 rem workers.ins
02 rem by Donald J. Bales on 2014-10-20
03 rem Seed the Worker table with the top 100 names
04 rem 100 last x 100 first x 26 middle = 260,000 entries
05
06 set serveroutput on size 1000000;
07
08 declare
09
10 -- This is the number of seconds since midnight
11 -- I'll use it to profile my code's performance.

Chapter 5 ■ Multirow Processing

149

12 n_start number :=
13 to_number(to_char(SYSDATE, 'SSSSS'));
14
15 -- Here, I declare four psuedo-constants to hold the
16 -- ID values from the code tables, rather than look
17 -- them up repeatedly during the insert process.
18 n_G_FEMALE GENDER_TYPES.id%TYPE;
19 n_G_MALE GENDER_TYPES.id%TYPE;
20 n_WT_CONTRACTOR WORKER_TYPES.id%TYPE;
21 n_WT_EMPLOYEE WORKER_TYPES.id%TYPE;
22
23 -- I'll use this to keep track of the number of
24 -- rows inserted.
25 n_inserted number := 0;
26
27 begin
28 -- Get the ID values for the codes
29 n_G_FEMALE := GENDER_TYPE.get_id('F');
30 n_G_MALE := GENDER_TYPE.get_id('M');
31 n_WT_CONTRACTOR := WORKER_TYPE.get_id('C');
32 n_WT_EMPLOYEE := WORKER_TYPE.get_id('E');
33
34 -- Use an INSERT INTO SELECT SQL statement
35 insert into WORKERS (
36 id,
37 worker_type_id,
38 external_id,
39 first_name,
40 middle_name,
41 last_name,
42 name,
43 birth_date,
44 gender_type_id)
45 select WORKERS_ID.nextval,
46 decode(mod(WORKERS_ID.currval, 2),
47 0, n_WT_EMPLOYEE, n_WT_CONTRACTOR),
48 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
49 first_name,
50 letter||'.',
51 last_name,
52 WORKER.get_formatted_name(
53 first_name, letter||'.', last_name),
54 DATES.random(
55 to_number(to_char(SYSDATE, 'YYYY')) - 65,
56 to_number(to_char(SYSDATE, 'YYYY')) - 18),
57 decode(gender_code, 'F', n_G_FEMALE, n_G_MALE)
58 from TOP_100_LAST_NAMES,
59 TOP_100_FIRST_NAMES,
60 A_THRU_Z;
61
62 n_inserted := n_inserted + sql%rowcount;
63

Chapter 5 ■ Multirow Processing

150

64 commit;
65
66 pl(to_char(n_inserted)||' rows inserted in '||
67 (to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
68 ' seconds.');
69 end;
70 /
 

In Listing 5-14, a single INSERT ... SELECT statement, albeit a complex one, does almost all the work
done by lines and lines of PL/SQL. But how does it perform? It inserts 260,000 rows in an average time of 21
seconds. That’s about 12,381 rows per second, for a 200% improvement. You can’t get any faster than using
plain-old SQL. So what’s the moral of this story? Let me hear you say it. Know thy SQL!

When you’re comfortable with PL/SQL and are up to challenging yourself, pull out a good PL/SQL
reference and read up on FORALL. For now, I think you’ll do better by improving your SQL skills instead.

Summary
In this chapter, you’ve gone from curs(or)ing, to fetching, to bulk collecting, to bulk binding, and then back
to SQL again. CURSORs allow you to FETCH multiple rows from a SQL SELECT statement. You can FETCH rows
manually or automatically, using a CURSOR FOR LOOP. You can use BULK COLLECT to improve the efficiency
of loading an array with values from the database, and you can use FORALL to improve the efficiency of
executing SQL statements with values from an array. But most important, you probably realize by now that
when I stated in Chapter 1 that “knowing SQL is a prerequisite to learning PL/SQL,” I wasn’t joking.

All too often, I see poorly performing PL/SQL programs that are bloated with PL/SQL code that tries to
do what SQL can simply do better. After all, it is the Procedural Language extension to SQL. PL/SQL’s job is
to handle the procedural tasks, while SQL’s job is to handle manipulating data. Keep that in mind whenever
you write a PL/SQL program.

Up to this point, although you’ve been keeping functions and procedures in a package for each table,
you’ve still been acting as though these behaviors were something apart from the data they work with. In
fact, in the real world, the opposite is true. Things in the real world don’t keep their behavior or actions
someplace away from themselves; they are part of a whole, and that’s what you are going to look at next.
You’ll explore storing the behavior with the attributes, or as I like to think of it: object-relational technology.

http://dx.doi.org/10.1007/9781484207383_1

151

Chapter 6

Object-Relational SQL

It was the philosopher George Santayana who stated, “Those who cannot remember the past are condemned
to repeat it.” Philosophy is an interesting pursuit from my point of view because it looks at very high-level
abstract patterns of behavior. Patterns are repeated data or behavior of a simple or complex nature.

When we build an application, we attempt to model the workflow of the real world in order to automate
or organize the workflow to improve how quickly or accurately we can perform its associated work. However,
modeling is not only representing what data is used, but also recognizing the patterns of usage: behavior.
Restated simply, we attempt to model the real world, and those who get modeling right profit from it the most.

Information Modeling
As business analysts and computer scientists, we have come a long way. Relational database technology has
freed us from the tyranny of the high priests of database administration, so we are all capable of storing and
retrieving data in sets of highly organized, two-dimensional tables. But, up to this point, we store only the
data we use, for the most part ignoring the behavior.

As an analyst, I know that the accuracy of a real-world model depends on its use of the following:

•	 Current data: Data (words, numbers, and dates) about what happened last. I say
“last” because usually, by the time you record the information, it’s data about what
just happened, not what’s about to happen.

•	 Hierarchical data: Data about the relationships of like datum. For example, in a
business organization, a department may belong to a subdivision, which may in turn
belong to a division, which may in turn belong to a particular operating company;
these are all levels of organization that have a hierarchical relationship to each other.

•	 Historical data: Multiple occurrences of “current” data; that is, data about what
has happened over time, not just the last occurrence of behavior. Yes, data is about
behavior.

•	 Current behavior: Methods (functions or procedures) used to accomplish the last
act of work. Once again, I say “last” because by the time the act of work is recorded,
these are the methods just used, not what will be used in the future.

•	 Hierarchical behavior: Methods used with hierarchical data.

•	 Historical behavior: Multiple occurrences of “current” methods; that is, methods
used to accomplish acts of work at a particular point in time.

So I submit that in order for you to have an accurate model of the real world, you need to employ all six
facets of information in your model. Is that what we do today? For the most part, no.

Chapter 6 ■ Object-Relational SQL

152

Today, simple applications store current data in a database and store current methods (behavior) in a
presentation layer’s codebase. When I say presentation layer, I mean the software you use to enter data into
the application (data entry) or to view data from an application (reporting).

More sophisticated applications may store hierarchical data and try to separate the code (program
logic) used to present information from the rules of work, or so-called business (busyness) rules. Then they
have one database and two codebases: a database for the persistence of data, a codebase for the “current”
business rules or behavior, and a second codebase for presenting or interfacing with a human role player.
When business rules are changed in the mid-tier codebase, the old rules are lost forever.

Rarely do applications store the behavior that belongs to an entity with the entity. And even more rarely
is the behavior that is stored with an entity temporal in nature; that is, sensitive to at what time the behavior
takes place. Yet, that’s how the real world is. No wonder business people have problems with our software
solutions. We’re not modeling the real world as it is!

To make matters worse, there’s a disturbing trend toward the presentation layer defining the model.
Mapping tools like Hibernate (java) or Django (Python) will create database entities for you. That’s very
convenient. However, what may be a convenient way to pass current data for data entry is not necessarily an
accurate model of the real world.

Often, using the presentation layer to build the underlying real-world model leads to denormalized
data, which leads to fat rows in a database, which because of physics, leads to poor performance. The mantra
behind tools like Enterprise JavaBeans (EJB), Hibernate, Django and so on is database independence—as if
to suggest that all databases are created equal, which they certainly are not.

Oracle is dominant among its peers because it is superior. It’s that simple. If you’re not going to
use Oracle, I suggest checking out PostgreSQL, which is a high-quality, object-relational, open source
alternative, but it’s not Oracle by any stretch of imagination.

We’ve had the capability of modeling the real world accurately in object-relational databases for some
time now, so why don’t we? The following are my answers to that question:

•	 “Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare.”: Newton’s
first law translated for our purposes: everyone uses relational databases, so everyone
will continue to use relational databases unless there is a compelling enough reason
to move in a different direction.

•	 Ignorance, not stupidity (business community): The level of awareness that the real
world is a combination of fact and action, or data and methods, and the value of that
information is not commonly understood by business people. Yet, they are the ones
who drive the need for applications. If the business community doesn’t understand
its own work problems, then no information technology department within that
community will ever understand the associated work problems either because the
business community defines applications of business.

•	 Ignorance, not stupidity (technical community): The level of awareness that
technology developers have currently attained does not commonly include object-
relational technology. Heck, most techies I talk to don’t even know what object-
relational means. You’ll hear more evidence about this in this chapter.

In order for you to understand and communicate these newer ideas (my answers), you need to come up
to speed on some technology jargon. Let’s start with object orientation.

Chapter 6 ■ Object-Relational SQL

153

Object Orientation
What’s the big deal about object orientation anyway? First and foremost, it’s about modeling the real world.
Here are some examples:

Rather than being concerned about a particular process, the emphasis is on •	
independent entities that can actually perform the process.

Rather than write one large procedure that does everything, and would also need •	
to be tossed if the process in question changed, it’s about assigning the appropriate
parts of a procedure to the various role players in the procedure.

Instead of having one large program, it’s about modularity—having multiple, •	
independent, and reusable components that act appropriately together to complete
an act of work.

So it’s about teamwork.

Key Tenets
Object orientation has three key tenets:

•	 Encapsulation: This refers to packaging related data and methods together. Object
orientation is the natural way to think about things; natural, as in nature. It’s the
way nature does it. Nature creates things that have both attributes and behavior.
For example, I don’t think about what I’d like to eat for dinner, and then you go eat
it for me. It doesn’t work that way. My thoughts about food affect me, not you. We
are separate entities. All my attributes and behaviors are encapsulated in me. All
your attributes and behaviors are encapsulated in you. If someone tells each of us to
do something, odds are, we’ll do it differently, or may not do it at all. How’s that for
modularity?

•	 Inheritance: This is the ability to reuse the data and methods of a more abstract type.
If we continue on about the idea of asking each of us to perform a particular task,
we’ll most likely do it differently because we inherited different genetic attributes
from our parents, and they taught us different behaviors, too. So we inherited
different attributes and behaviors from our parents, upon which we will add new
ones, or override what our parents taught us and do it our own way.

•	 Polymorphism: This refers to hiding different implementations behind a common
interface. Polymorphism is the use of the same name for a particular behavior,
yet knowing that each object, or person in our case, may perform the behavior
differently. If I’m asked to clean the floor, I’ll get out the vacuum cleaner, and then
follow up by washing the floor with a bucket of clear water, while you may hire
someone to do the job. All the same, the floor gets cleaned, and that’s the behavior
that was requested.

Using these three tenets, you can naturally model both the attributes and behavior, or data and
methods, for any real-world entity. Let’s talk more about reuse.

Chapter 6 ■ Object-Relational SQL

154

Reuse
What is reuse anyway? I consider it reuse any time you can abstract multiple lines of code into a larger block
of code that will then be called by more than one actor. I also think there are multiple levels of reuse. Let’s
start with the smallest unit of reuse: method-level reuse.

Method-Level Reuse
I always tell programmers who I work with that if they must code the same lines of code more than once to
accomplish the same task, then they need to create a method. That’s what I call method-level reuse.

The trick is where to put the method. That’s an easy question to answer for an object-oriented
programmer: put the method with the entity that’s executing the behavior! That’s what object-orientation is
all about.

Next up is what I call component-level reuse.

Component-Level Reuse
Component-level reuse is when you can reuse a particular class of an entity, or in SQL jargon, a TYPE. You
can reuse a class in two ways: through direct application (composition) or inheritance. Direct application
would be where you create a TYPE called PERSON, and then create a table based on that type, called PERSONS.
In this case, you’ll have used the TYPE PERSON directly.

On the other hand, you could create a sub-TYPE called WORKER based on TYPE PERSON. Now TYPE WORKER
would inherit all the data attributes and methods from its parent PERSON, possibly adding some of its own
attributes and methods. This would be a case where you reused component PERSON by using inheritance.

Finally, if you define these TYPEs, and then reuse them in more than one application, that’s also an
example of component reuse, and an example of reuse at the most intriguing level. For example, if a human
resource information system (HRIS) uses the TYPE PERSON in its TYPE hierarchy for TYPE EMPLOYEE, and
then a safety application on the same database uses PERSON in its TYPE hierarchy for TYPE WORKER, then both
applications can TREAT their sub-TYPEs as a PERSON in order to share (or reuse) related information.

The last example sounds like it could also be called application-level reuse.

Application-Level Reuse
You can also design an entire set of applications such that they all use the same underlying abstract TYPEs.
This allows each application to share a common set of applications that act as infrastructure for more
complex applications. The use of common TYPEs in the inheritance hierarchy of sub-TYPEs would allow the
common use of the same tables for all related applications. Now that’s what I call reuse!

Service Orientation
Object-oriented programmers have been building service-oriented applications for ages. That’s the entire
nature of object-oriented programming. You build independent components that provide supporting
services through their method calls. You test them, and then you don’t have to recode the same service
ever again.

Even if you continue to build relational instead of object-relational databases, you can still provide
service-oriented routines by properly associating your methods with your data. That’s what I’ve been having
you do up to this point. I’ve asked you to create what I called a “table package” for each table. Each “table
package” contains a set of methods that logically belong to the data that is stored in the associated table.

Chapter 6 ■ Object-Relational SQL

155

For example, I named the relational Worker table WORKERS. Then I asked you to create a package called
WORKER that contained a method for allocating a new primary key value. I’ve been using this pseudo-object
orientation since PL/SQL became available, and it’s a tactic that has worked well. Every programmer I’ve
worked with has quickly come up to speed on the technique, and then reused the methods in the table
package over and over again to accomplish the same logical task consistently every time.

In addition, although applications have been written in multiple programming languages and tools,
all of them call the same “table package” methods to perform a particular service. Once again, even though
different presentation layers are coded in different languages by different programmers, the same consistent
behavior is seen across all presentations for all services—and that is reuse of the best kind.

Do these varying presentation layers recode the same behavior in varying languages? No. They all use
the same code stored with the data. That’s object orientation and service orientation in use. So how do you
get there from here?

A Roadmap to Reality
So how do you get to using object-relational technology from relational technology? It’s not as hard as you
might think. Just like the function of life, f(l), you’ll get out whatever you put in to it. You can fully implement
object-oriented technology in four progressive steps.

	 1.	 Create table packages.

	 2.	 Create user-defined types.

	 3.	 Create object views.

	 4.	 Create object tables.

Yes, you can implement four different levels of object orientation in your database, and based on what
you implement, gain a level of consistency and reusability equal to your level of implementation.

Step 1: Table Packages
The first step is to start thinking in an object-oriented fashion, or as I call it, thinking naturally. This means
organizing your data and methods in a related fashion, as I had you do earlier with table packages. I always
name tables with a plural name, and then name their related packages with a singular name, so the package
names are the singular of the table names. You can use whatever convention you want. By doing so, you
should at least be able to employ encapsulation and polymorphism.

Table Method Encapsulation
You’ll be employing encapsulation by gathering behavior and hiding it behind a public method call
specification. Create a table package for every table in your database that has the same SQL statement
executed on it more than once. Create a method for such a SQL statement, so the same behavior can
be shared by multiple program units. Also, add any other related methods that perform calculations,
concatenations, or locale-specific behavior.

Chapter 6 ■ Object-Relational SQL

156

Table Method Polymorphism
Next, look at the bigger picture. Notice the patterns of use of your table package methods, and use the same
names for a particular pattern of use across all table packages.

For example, I use a FUNCTION named get_id() in every table package where I need a method that
allocates a new primary key sequence value. Then, for a code table like WORKER_TYPES, if I need to get an ID
value for a new entry, I call WORKER_TYPE.get_id(). Similarly, getting an ID value for a new WORKERS table
entry will be a different package name, but the same method name: WORKER.get_id().

That’s polymorphism in action.

Step 2: User-Defined Types
The second step is to create a new object type, a user-defined type, that encapsulates both data attributes
and method call specifications in a permanent new “data” or object type in the database.

Gather the list of column names you use in the relational table, and then collect the methods you
specify in each table’s package specification. Use this information along with the keyword TYPE to create a
new object type in the database.

Unlike the table’s associated package specification, where all methods are essentially STATIC (always
available), you’ll need to decide whether methods will operate on an instance of an object, a MEMBER method,
or will be available through the object’s TYPE definition, a STATIC method. In addition, you may want to add
your own CONSTRUCTOR method(s) in order to make it easier to create a new object instance. And you may
also want to define a MAP MEMBER method to specify how objects are sorted.

When you create user-defined types, you have the opportunity to use all three facets of object
orientation. As with table packages, you’ll be employing encapsulation and polymorphism. But you may also
be able to leverage inheritance, so keep on the lookout for higher-level patterns between user-defined types.
If you see a high-level pattern, consider defining a super-TYPE, and then inheriting from that super-TYPE for
similar sub-TYPEs.

If you stop at this level of implementation, you’ll still be able to use data from relational tables as objects
by TREATing the relational data as objects on the fly in your SQL statements. But, if you get this far, I would at
least do step 3.

Step 3: Object Views
The third step involves creating object views for your relational tables. An object view presents the
underlying relational table data as a table of the newly created user-defined object type.

If you use more than one table in an object view, you can write INSTEAD OF triggers that will then
appropriately update the underlying relational tables if you execute a SQL INSERT, UPDATE, or DELETE
statement against an object view.

One of the advantages to using object views is that you can still use object-relational-ignorant tools
against the relational tables. But if I were you, and you went this far, I would go all the way and reap the full
benefit of object-oriented technology in an Oracle database; I would do step 4.

Step 4: Object Tables
The last step is where you create an object-relational database or objectbase, one where real-world entities
are accurately modeled for both attributes and behavior. I’m not advocating moving all of an application’s
code into the database—I mean objectbase; actually, just the opposite. The only items that should reside
in the objectbase are the entities, along with their data attributes and methods that are in scope for the
particular application.

Chapter 6 ■ Object-Relational SQL

157

This means that what is normally thought of as data in a relational database should be stored in the
objectbase, along with its associated entity business rules. Whatever code is used to present the object-
relational model—data-entry screens, reports, graphics, and so on—should continue to reside in an external
codebase. Regardless of the presentation layer, any entity-related business rule should be executed in the
objectbase, not in the presentation layer.

That may seem like a radical departure from what you’re currently doing, or perhaps not. If you’re using
EJBs, you’re already making a remote procedure call to employ business rules in a so-called middle tier. Why
not do it correctly, and employ the authoritative rules that permanently reside side by side with the data
attributes, instead of supposedly recoding the same rules again and again (with inconsistency) in another
codebase?

A Change in Order
Building an object-relational database, or objectbase, calls for a change in order. When building a relational
database, you follow this order:

	 1.	 Create tables with columns (attributes).

	 2.	 Create table packages with methods (behavior).

	 3.	 Code presentation by accessing the data in tables and the behaviors in their
associated packages.

When you build an object-relational database, or objectbase, you follow this order:

	 1.	 Create user-defined types with attributes and behaviors.

	 2.	 Create tables based on your user-defined types.

	 3.	 Code presentation by accessing attributes and behaviors in user-defined type
tables.

With that change of order in mind, I think it’s time I actually show you example of what I’m talking
about. Enough philosophy—it’s time for action. We’ll begin with how to create a new user-defined type, an
object type.

Object Types
You remember the keyword TYPE from Chapter 3, right? You used it to declare the equivalent of an array in
PL/SQL: a PL/SQL table. Well in this context, you’re going to use it to permanently create a new user-defined
data type in the database. Using the term data type is a bit of a misnomer. You’re really going to be creating
new types of classes of entities, or object types. Yes, here’s a new word for your vocabulary: object type. An
object type defines both data attributes and related methods. So the SQL keywords you’ll use to create user-
defined object types are CREATE TYPE.

By creating a user-defined type, you’ll permanently marry data and its associated methods in the
database so they can’t be separated, not even accidentally. It’s a marriage for life; no divorce allowed. Of
course, you’ll be able to change data and behavior over time, but you’ll be coding behavior so it will be
time-dependent, and therefore be coding behavior over time.

Some day, we will store universal behavioral executables the same way we store data. But today, the
best we can do is to store our code with our data, not as separate entities, and to modify our code to be
point-in-time-dependent, so we can reproduce behavior as it existed at any point in time.

Chapter 6 ■ Object-Relational SQL

158

Since you probably have little experience with this form of SQL, I’m going to show you two examples,
with you doing some of the coding along the way. First, let’s create a user-defined TYPE for one of your code
tables: Gender Type.

Note■■  I n Chapters 1–5, you were using an Oracle username of RPS to log into the database. This meant
you were using the RPS schema. In this chapter, you need to use Oracle username OPS to log into the database
so you won’t encounter naming conflicts. By the end of this chapter, you will have object-relational types and
tables in schema OPS that have the same names as relational packages and tables in schema RPS.

Create a User-Defined Type Specification
Creating a user-defined type takes two steps. First, you create a specification, and then you create a
type body, or implementation, similar to creating a package. Listing 6-1 is an example of a CREATE TYPE
specification script for creating a user-defined type for code table Gender.

Listing 6-1.  An Example of a CREATE TYPE Statement for a Code Table, gender_type.tps

01 create TYPE GENDER_TYPE as object (
02 /*
03 gender_type.tps
04 by Don Bales on 2014-10-20
05 Type GENDER's attributes and methods.
06 */
07 id number,
08 code varchar2(30),
09 description varchar2(80),
10 active_date date,
11 inactive_date date,
12 /*
13 A constructor for creating a new instance of type GENDER_TYPE with NULL
14 values.
15 */
16 CONSTRUCTOR FUNCTION gender_type(
17 self in out gender_type)
18 return self as result,
19 /*
20 A constructor for creating a new instance of type GENDER_TYPE for insert.
21 */
22 CONSTRUCTOR FUNCTION gender_type(
23 self in out gender_type,
24 aiv_code varchar2,
25 aiv_description varchar2)
26 return self as result,
27 /*
28 Gets the code and decription values for the specified id.
29 */
30 STATIC PROCEDURE get_code_descr(
31 ain_id in number,

Chapter 6 ■ Object-Relational SQL

159

32 aov_code out varchar2,
33 aov_description out varchar2),
34 /*
35 Verifies that the passed code value is an exact or like match on the
36 date specified.
37 */
38 STATIC PROCEDURE get_code_id_descr(
39 aiov_code in out varchar2,
40 aon_id out number,
41 aov_description out varchar2,
42 aid_on in date),
43 /*
44 Verifies that the passed code value is currently an exact or like match.
45 */
46 STATIC PROCEDURE get_code_id_descr(
47 aiov_code in out varchar2,
48 aon_id out number,
49 aov_description out varchar2),
50 /*
51 Returns a new primary key id value for a row.
52 */
53 MEMBER FUNCTION get_id
54 return number,
55 /*
56 Returns the id for the specified code value.
57 */
58 STATIC FUNCTION get_id(
59 aiv_code in varchar2)
60 return number,
61 /*
62 Test-based help for this package. "set serveroutput on" in SQL*Plus.
63 */
64 STATIC PROCEDURE help,
65 /*
66 Test units for this package.
67 */
68 STATIC PROCEDURE test,
69 /*
70 A MAP function for sorting at the object level.
71 */
72 MAP MEMBER FUNCTION to_varchar2
73 return varchar2
74);
75 /
76 @se.sql GENDER_TYPE
  

The CREATE TYPE specification syntax used by Listing 6-1 is as follows:

CREATE [OR REPLACE] TYPE <type_name> AS OBJECT (
<attribute_name_1> <attribute_type_1>,
<attribute_name_2> <attribute_type_2>,...
<attribute_name_N> <attribute_type_N>,

Chapter 6 ■ Object-Relational SQL

160

[MAP]MEMBER or STATIC FUNCTION or PROCEDURE <method_name> [(
SELF [IN OUT][NOCOPY]<type_name>,
<parameter_name_1> [IN OUT] <parameter_type_1>,
<parameter_name_2> [IN OUT] <parameter_type_2>,...
<parameter_name_N> [IN OUT] <parameter_type_N>)]
[RETURN <return_type>],
CONSTRUCTOR FUNCTION <type_name> (
SELF [IN OUT][NOCOPY]<type_name>,[
<parameter_name_1> [IN OUT] <parameter_type_1>,
<parameter_name_2> [IN OUT] <parameter_type_2>,...
<parameter_name_N> [IN OUT] <parameter_type_N>)],
);
  
where

•	 <type_name> is the name of your user-defined TYPE.

•	 <attribute_name> is the name of a data item in your user-defined TYPE.

•	 <attribute_type> is a predefined scalar data type or a user-defined type.

•	 <method_name> is the name of a MEMBER or STATIC, FUNCTION or PROCEDURE.

•	 <parameter_name> is the name of a parameter being passed into or out of a method.

•	 <parameter_type> is a predefined scalar data type or a user-defined type.

•	 <return_type> is also a predefined scalar data type or a user-defined type to be
returned by an associated FUNCTION.

Wow! As you can see by Listing 6-1, I’ve added a lot of methods to my Gender Type code user-defined
TYPE. Let’s take a look at the listing line by line:

Line 1 uses the DDL keywords •	 CREATE TYPE ... AS OBJECT to declare a new user-
defined TYPE specification for my schema in the database. I call my new type
GENDER_TYPE, as in it’s the Gender Type code’s user-defined object type.

Lines 2 through 6 contain my usual source code preamble that documents the name •	
of the source file, the author, date written, and purpose.

On lines 7 through 11, I list the attributes for the •	 TYPE. Theses are the names of
the columns from the original relational table. Did you notice that I ended the last
attribute with a comma (,), which means I intend to continue specifying attributes
or methods for the TYPE?

Lines 12 through 18 declare a user-defined •	 CONSTRUCTOR method. You’ll call a
CONSTRUCTOR any time you want to create a new instance of a TYPE. For example, all
user-defined TYPEs come with a default CONSTRUCTOR, where you pass in attribute
values in the order they are specified in the TYPE specification. So to create a new
instance of Gender Type using the default CONSTRUCTOR, you would code something
like this:

o_gender_type := GENDER_TYPE(3, ‘U’, ‘Unknown’, SYSDATE, NULL);

The CONSTRUCTOR I’ve declared here will create an instance of the TYPE with all its
attributes initialized to NULL values. This is handy when I want to access a member
function without actually working with a permanent instance of a TYPE.

Chapter 6 ■ Object-Relational SQL

161

Lines 12 through 15 hold a multiline comment that documents the purpose of the •	
method. Remember to document as you go.

Lines 19 through 26 declare a user-defined •	 CONSTRUCTOR for coding convenience.
Using it, you can create a new instance of Gender Type by simply passing the code
and description like this:

o_gender_type := GENDER_TYPE(‘U’, ‘Unknown’);

On lines 27 through 33, I specify my first •	 STATIC method for the TYPE. If I specify
a method as STATIC, it’s available for execution through the TYPE’s name, like a
package, but not available through an instance of the type. For example, to execute
PROCEDURE get_code_descr(), I would code GENDER_TYPE.get_code_desc(...),
not using a variable of the TYPE in the method call like this:
o_gender_type.get_code_desc(...).

Skipping down, lines 50 through 54 declare a •	 MEMBER method, get_id(), to allocate
the next primary key value. This is the same method I asked you to create in a table
package in Chapter 5. Now it has become a MEMBER method for the TYPE.

Finally, lines 69 through 73 declare a •	 MAP MEMBER FUNCTION. This method will be
used by the Oracle database any time it needs to sort object-level instances of the
TYPE.

Let’s review. How did I get here, to a TYPE specification, from there, a relational table and associated
table package? Here’s what I did:

	 1.	 Took the columns from the relational table and made them the attributes of the
TYPE.

	 2.	 Took the methods from the relational table’s package specification and made
them MEMBER or STATIC methods of the TYPE.

	 3.	 Added a MAP MEMBER FUNCTION for sorting.

	 4.	 Added user-defined CONSTRUCTOR FUNCTIONs for convenience.

Now that you’ve seen the specification, let’s look at the implementation!

Create a User-Defined Type Implementation
Listing 6-2 is a CREATE TYPE BODY ... AS (implementation) script for the TYPE GENDER_TYPE specification
shown in Listing 6-1. I’ll cover all the methods implemented in this TYPE in subsequent chapters, when I take
a polymorphic look at methods required by the TYPE and presentation layers: data entry, data migration,
data processing, reporting, graphing, and so on. For now, it’s important for you to focus on the method
implementations that are unique to a TYPE, namely the MAP MEMBER and CONSTRUCTOR FUNCTIONs.

Listing 6-2.  An Example of a CREATE TYPE BODY Statement for a Code Table, gender_type.tpb

001 create or replace TYPE BODY GENDER_TYPE as
002 /*
003 gender_type.tpb
004 by Don Bales on 2014-10-20
005 Type GENDER_TYPE's attributes and methods
006 */
007

Chapter 6 ■ Object-Relational SQL

162

008 CONSTRUCTOR FUNCTION gender_type(
009 self in out gender_type)
010 return self as result is
011
012 begin
013 id := NULL;
014 code := NULL;
015 description := NULL;
016 active_date := NULL;
017 inactive_date := NULL;
018 return;
019 end gender_type;
020
021
022 CONSTRUCTOR FUNCTION gender_type(
023 self in out gender_type,
024 aiv_code varchar2,
025 aiv_description varchar2)
026 return self as result is
027
028 begin
029 id := get_id();
030 code := aiv_code;
031 description := aiv_description;
032 active_date := SYSDATE;
033 inactive_date := DATE_.d_MAX;
034 return;
035 end gender_type;
036
037
038 STATIC PROCEDURE get_code_descr(
039 ain_id in number,
040 aov_code out varchar2,
041 aov_description out varchar2) is
042
043 begin
044 select code,
045 description
046 into aov_code,
047 aov_description
048 from GENDER_TYPES
049 where id = ain_id;
050 end get_code_descr;
051
052
053 STATIC PROCEDURE get_code_id_descr(
054 aiov_code in out varchar2,
055 aon_id out number,
056 aov_description out varchar2,
057 aid_on in date) is
058
059 v_code varchar2(30);

Chapter 6 ■ Object-Relational SQL

163

060
061 begin
062 select id,
063 description
064 into aon_id,
065 aov_description
066 from GENDER_TYPES
067 where code = aiov_code
068 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
069 exception
070 when NO_DATA_FOUND then
071 select id,
072 code,
073 description
074 into aon_id,
075 v_code,
076 aov_description
077 from GENDER_TYPES
078 where code like aiov_code||'%'
079 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
080 aiov_code := v_code;
081 end get_code_id_descr;
082
083
084 STATIC PROCEDURE get_code_id_descr(
085 aiov_code in out varchar2,
086 aon_id out number,
087 aov_description out varchar2) is
088
089 begin
090 get_code_id_descr(
091 aiov_code,
092 aon_id,
093 aov_description,
094 SYSDATE);
095 end get_code_id_descr;
096
097
098 MEMBER FUNCTION get_id
099 return number is
100
101 n_id number;
102
103 begin
104 select GENDERS_ID.nextval
105 into n_id
106 from SYS.DUAL;
107
108 return n_id;
109 end get_id;
110
111

Chapter 6 ■ Object-Relational SQL

164

112 STATIC FUNCTION get_id(
113 aiv_code in varchar2)
114 return number is
115
116 n_id number;
117
118 begin
119 select id
120 into n_id
121 from GENDER_TYPES
122 where code = aiv_code;
123
124 return n_id;
125 end get_id;
126
127
128 STATIC PROCEDURE help is
129
130 begin
131 pl('No help at this time.');
132 end help;
133
134
135 STATIC PROCEDURE test is
136
137 begin
138 pl('No tests coded at this time');
139 end test;
140
141
142 MAP MEMBER FUNCTION to_varchar2
143 return varchar2 is
144
145 begin
146 return description||to_char(active_date, 'YYYYMMDDHH24MISS');
147 end to_varchar2;
148
149
150 end;
151 /
152 @be.sql GENDER_TYPE
 

The CREATE TYPE BODY syntax used by Listing 6-2 is as follows:
  
CREATE [OR REPLACE] TYPE BODY <type_name> AS
[MAP]MEMBER or STATIC FUNCTION or PROCEDURE <method_name> [(
SELF [IN OUT][NOCOPY]<type_name>,
<parameter_name_1> [IN OUT] <parameter_type_1>,
<parameter_name_2> [IN OUT] <parameter_type_2>,...
<parameter_name_N> [IN OUT] <parameter_type_N>),]
[RETURN <return_type>],

Chapter 6 ■ Object-Relational SQL

165

CONSTRUCTOR FUNCTION <type_name> (
SELF [IN OUT][NOCOPY]<type_name>,[
<parameter_name_1> [IN OUT] <parameter_type_1>,
<parameter_name_2> [IN OUT] <parameter_type_2>,...
<parameter_name_N> [IN OUT] <parameter_type_N>),]
END;
 
where

•	 <type_name> is the name of your user-defined TYPE.

•	 <method_name> is the name of a MEMBER or STATIC, FUNCTION or PROCEDURE.

•	 <parameter_name> is the name of a parameter being passed INto or OUT of a method.

•	 <parameter_type> is a predefined scalar data type or a user-defined type.

•	 <return_type> is also a predefined scalar data type or a user-defined type to be
returned by an associated FUNCTION.

As you can see by Listing 6-2, I’ve added quite a bit of behavior to my Gender Type code user-defined
type. Let’s break down the listing:

Line 1 uses the DDL keywords •	 CREATE TYPE BODY ... AS to create a TYPE BODY for
TYPE specification GENDER_TYPE. The BODY consists of method implementations for
the methods declare in the TYPE specification.

Lines 9 through 19 implement a •	 CONSTRUCTOR FUNCTION that will return an instance
of a Gender Type object initialized to NULL values.

Lines 22 through 35 implement a •	 CONSTRUCTOR FUNCTION for coding convenience
that requires you to pass in only a code and description in order to create a new
Gender Type object instance. As you can see on line 29, the method initializes the id
attribute using the MEMBER FUNCTION get_id().

Lines 98 through 109 implement the •	 MEMBER FUNCTION get_id() in order to allocate
the next primary key value.

Lines 198 through 203 implement the •	 MAP MEMBER FUNCTION to_varchar2(),
which returns the description for a given code along with its creation date, all as
one long varchar2 value. Oracle will use this value to determine precedence when
ordering object instances in a SQL SELECT statement. You don’t need to declare and
implement a MAP MEMBER FUNCTION, but I always do.

Which came first, the chicken or the egg? Now, if you’re real sharp, you may have noticed that I have
some dependency issues with the implementation. In order for the TYPE BODY to compile, an object table
named GENDER_TYPES must already exist! Yes, the STATIC methods refer to an object table GENDER_TYPES,
based on object TYPE GENDER_TYPE. This isn’t a big problem. I can address it one of two ways:

Compile the •	 TYPE specification, create the object table based on the TYPE
specification, and then compile the TYPE BODY.

Use dynamic SQL in the •	 STATIC methods so the dependent table name in the SQL
statements doesn’t get resolved until runtime.

I normally choose the first alternative, for performance reasons.

Chapter 6 ■ Object-Relational SQL

166

It’s Your Turn to Create a User-Defined Type
Now that you’ve seen me transform the Gender Type table and table package into a user-defined TYPE, it’s
time for you to do the same for the Worker Type table.

	 1.	 Make sure to log into the database using username OPS, password OPS.

	 2.	 Get the list of columns from the relational SQL WORKER_TYPES table (from Chapter 5),
and at least the one method you created in table package WORKER_TYPE, and use that
information to code a WORKER_TYPE TYPE specification.

	 3.	 Save your specification script as worker_type.tps.

	 4.	 Compile your specification: @worker_type.tps.

	 5.	 Create a WORKER_TYPE TYPE BODY script, which will contain the implementation
for your method get_id().

	 6.	 Save you body script as worker_type.tpb.

	 7.	 Compile your body: @worker_type.tpb.

	 8.	 Test your user-defined type to at least see that it compiled.

To test your user-defined type, you can use an anonymous PL/SQL procedure like the following.
 
declare
-- Declare a worker_type_o variable
o_worker_type WORKER_TYPE;
 
begin
 -- Now use the default constructor to create a new instance
 -- of the object
 o_worker_type := new WORKER_TYPE(
 NULL, 'H', 'A hard worker', SYSDATE, NULL);
 -- Now allocate a new ID using the member function get_id()
 o_worker_type.id := o_worker_type.get_id();
 -- Now show the values of the attributes in the instance
 pl('o_worker_type.id = '||o_worker_type.id);
 pl('o_worker_type.code = '||o_worker_type.code);
 pl('o_worker_type.description = '||o_worker_type.description);
 pl('o_worker_type.active_date = '||o_worker_type.active_date);
 pl('o_worker_type.inactive_date = '||o_worker_type.inactive_date);
end;
/
 

Your results should look something like this:
 

o_worker_type.id = 111
o_worker_type.code = H
o_worker_type.description = A hard worker
o_worker_type.active_date = 20070223 100918
o_worker_type.inactive_date =
 
PL/SQL procedure successfully completed.

 

Chapter 6 ■ Object-Relational SQL

167

Listings 6-3 and 6-4 demonstrate my solution for this exercise. Once again, I’m showing you a fully
implemented TYPE.

Listing 6-3.  A Worker Type Used-Defined TYPE Specification, worker_type.tps

01 create TYPE WORKER_TYPE as object (
02 /*
03 worker_type.tps
04 by Don Bales on 2014-10-20
05 Type WORKER_TYPE's attributes and methods.
06 */
07 id number,
08 code varchar2(30),
09 description varchar2(80),
10 active_date date,
11 inactive_date date,
12 -- Gets the code and decription values for the specified work_type_id.
13 STATIC PROCEDURE get_code_descr(
14 ain_id in number,
15 aov_code out varchar2,
16 aov_description out varchar2),
17 -- Verifies the passed aiov_code value is an exact or like match on the
18 -- date specified.
19 STATIC PROCEDURE get_code_id_descr(
20 aiov_code in out varchar2,
21 aon_id out number,
22 aov_description out varchar2,
23 aid_on in date),
24 -- Verifies the passed aiov_code value is currently an exact or like match.
25 STATIC PROCEDURE get_code_id_descr(
26 aiov_code in out varchar2,
27 aon_id out number,
28 aov_description out varchar2),
29 -- Returns a newly allocated id value.
30 MEMBER FUNCTION get_id
31 return number,
32 -- Returns the id for the specified code value.
33 STATIC FUNCTION get_id(
34 aiv_code in varchar2)
35 return number,
36 -- Test-based help for this package. "set serveroutput on" in SQL*Plus.
37 STATIC PROCEDURE help,
38 -- Test units for this package.
39 STATIC PROCEDURE test,
40 -- A MAP function for sorting at the object level.
41 MAP MEMBER FUNCTION to_varchar2
42 return varchar2,
43 -- A constructor for creating a new instance of type WORKER_TYPE
44 -- with NULL values.
45 CONSTRUCTOR FUNCTION worker_type(
46 self in out worker_type)
47 return self as result,

Chapter 6 ■ Object-Relational SQL

168

48 -- A constructor for creating a new instance of type WORKER_TYPE
49 -- for insert.
50 CONSTRUCTOR FUNCTION worker_type(
51 self in out worker_type,
52 aiv_code in varchar2,
53 aiv_description in varchar2)
54 return self as result
55);
56 /
57 @se.sql WORKER_TYPE 

Listing 6-4.  A Worker Type User-Defined TYPE BODY, worker_type.tpb

001 create or replace TYPE BODY WORKER_TYPE as
002 /*
003 worker_type.tpb
004 by Don Bales on 2014-10-20
005 Type WORKER_TYPE's methods
006 */
007
008
009 MEMBER FUNCTION get_id
010 return number is
011
012 n_id number;
013
014 begin
015 select WORKER_TYPES_ID.nextval
016 into n_id
017 from SYS.DUAL;
018
019 return n_id;
020 end get_id;
021
022
023 STATIC FUNCTION get_id(
024 aiv_code in varchar2)
025 return number is
026
027 n_id number;
028
029 begin
030 select id
031 into n_id
032 from WORKER_TYPES
033 where code = aiv_code;
034
035 return n_id;
036 end get_id;
037
038

Chapter 6 ■ Object-Relational SQL

169

039 STATIC PROCEDURE get_code_descr(
040 ain_id in number,
041 aov_code out varchar2,
042 aov_description out varchar2) is
043
044 begin
045 select code,
046 description
047 into aov_code,
048 aov_description
049 from WORKER_TYPES
050 where id = ain_id;
051 end get_code_descr;
052
053
054 STATIC PROCEDURE get_code_id_descr(
055 aiov_code in out varchar2,
056 aon_id out number,
057 aov_description out varchar2,
058 aid_on in date) is
059
060 v_code varchar2(30);
061
062 begin
063 select id,
064 description
065 into aon_id,
066 aov_description
067 from WORKER_TYPES
068 where code = aiov_code
069 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
070 exception
071 when NO_DATA_FOUND then
072 select id,
073 code,
074 description
075 into aon_id,
076 v_code,
077 aov_description
078 from WORKER_TYPES
079 where code like aiov_code||'%'
080 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
081
082 aiov_code := v_code;
083 end get_code_id_descr;
084
085
086 STATIC PROCEDURE get_code_id_descr(
087 aiov_code in out varchar2,
088 aon_id out number,
089 aov_description out varchar2) is
090

Chapter 6 ■ Object-Relational SQL

170

091 begin
092 get_code_id_descr(
093 aiov_code,
094 aon_id,
095 aov_description,
096 SYSDATE);
097 end get_code_id_descr;
098
099
100 STATIC PROCEDURE help is
101
102 begin
103 pl('No help coded at this time.');
104 end help;
105
106
107 STATIC PROCEDURE test is
108
109 begin
110 pl('No tests coded at this time.');
111 end test;
112
113
114 MAP MEMBER FUNCTION to_varchar2
115 return varchar2 is
116
117 begin
118 return description||to_char(active_date, 'YYYYMMDDHH24MISS');
119 end to_varchar2;
120
121
122 CONSTRUCTOR FUNCTION worker_type(
123 self in out worker_type)
124 return self as result is
125
126 begin
127 id := NULL;
128 code := NULL;
129 description := NULL;
130 active_date := NULL;
131 inactive_date := NULL;
132 return;
133 end worker_type;
134
135
136 CONSTRUCTOR FUNCTION worker_type(
137 self in out worker_type,
138 aiv_code in varchar2,
139 aiv_description in varchar2)
140 return self as result is
141

Chapter 6 ■ Object-Relational SQL

171

142 begin
143 id := get_id();
144 code := aiv_code;
145 description := aiv_description;
146 active_date := SYSDATE;
147 inactive_date := DATE_.d_MAX;
148 return;
149 end worker_type;
150
151
152 end;
153 /
154 @be.sql WORKER_TYPE
 

Why don’t we create an object view next!

Object Views
Think of this as a cloning project. You can seamlessly transition into the use of user-defined objects by
intelligently overlaying your relational database structure with a set of object views. An object view takes the
columns from one or more relational tables and morphs them into a pseudo-table of user-defined objects,
complete with attributes and behavior.

Create an Object View
Listing 6-5 is a script to create an object view for the relational Gender Type code table GENDER_TYPES. This
view automatically maps the column values in table GENDER_TYPES to the attributes of user-defined TYPE
GENDER_TYPE, producing what appears to be a table of GENDER_TYPE objects called GENDER_TYPEZ.

Listing 6-5.  An Example of an Object View Script for Table GENDER_TYPES, gender_typez.vw

01 rem gender_typez.vw
02 rem by Donald J. Bales on 2014-10-20
03 rem Create an object view for relational table GENDER_TYPES
04
05 create view GENDER_TYPEZ of GENDER_TYPE
06 with object identifier (id) as
07 select id,
08 code,
09 description,
10 active_date,
11 inactive_date
12 from RPS.GENDER_TYPES;
 

The CREATE VIEW syntax used in Listing 6-5 is as follows:
 
CREATE [OR REPLACE] VIEW <view_name> OF <type_name>
WITH OBJECT IDENTIFIER (<primary_key_attributes>) AS
SELECT <column_name_1>,
 <column_name_2>,...
 <column_name_N>
FROM <table_name>;
 

Chapter 6 ■ Object-Relational SQL

172

where

•	 <view_name> is the name of the view to create.

•	 <type_name> is the user-defined TYPE to map the columns to in the relational table.

•	 <primary_key_attributes> is one or more attributes in the user-defined TYPE that
map to the primary key column(s) of the underlying table.

•	 <column_name> is the name of a column in the table to map to the attributes of the
user-defined TYPE.

•	 <table_name> is the underlying table to map to the user-defined TYPE.

That wasn’t much work, was it? OK, now let’s test the view. Listing 6-6 is an anonymous PL/SQL
procedure to test the object view. It’s well commented, so you can see what is being tested. Note that you can
execute INSERT, UPDATE, DELETE, and SELECT statements against an object view or its underlying table and
get the same results. An object view therefore provides a means for your database to be both relational and
object-oriented at the same time!

Note■■   On line 12, I’ve added RPS. to GENDER_TYPES so the anchor points to the relational SQL schema’s
GENDER_TYPES table.

Listing 6-6.  A Test Unit for View GENDER_TYPEZ, gender_typez.sql

01 rem gender_typez.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem test unit for object view GENDER_TYPEZ
04
05 declare
06 -- Declare a variable of the user-define type
07 o_gender_type GENDER_TYPE;
08 -- Declare a variable for the underlying table
09 r_gender_type RPS.GENDER_TYPES%ROWTYPE;
10
11 begin
12 -- Insert a test object using the convenience constructor
13 insert into GENDER_TYPEZ
14 values (GENDER_TYPE('T', 'Test'));
15
16 -- Now update the inactive date on the object
17 update GENDER_TYPEZ
18 set inactive_date = SYSDATE
19 where code = 'T';
20
21 -- Retrieve the object in order to show its values
22 select value(g)
23 into o_gender_type
24 from GENDER_TYPEZ g
25 where code = 'T';
26

Chapter 6 ■ Object-Relational SQL

173

27 -- Show the object's values
28 pl('o_gender_type.id = '||o_gender_type.id);
29 pl('o_gender_type.code = '||o_gender_type.code);
30 pl('o_gender_type.description = '||o_gender_type.description);
31 pl('o_gender_type.active_date = '||o_gender_type.active_date);
32 pl('o_gender_type.inactive_date = '||o_gender_type.inactive_date);
33
34 -- Delete the test object
35 delete GENDER_TYPEZ
36 where code = 'T';
37
38 -- This time insert the test object using the instance variable
39 insert into GENDER_TYPEZ
40 values (o_gender_type);
41
42 -- Now, select the values from the underlying relational table
43 select *
44 into r_gender_type
45 from RPS.GENDER_TYPES
46 where code = 'T';
47
48 -- Show the record's values
49 pl('r_gender_type.id = '||r_gender_type.id);
50 pl('r_gender_type.code = '||r_gender_type.code);
51 pl('r_gender_type.description = '||r_gender_type.description);
52 pl('r_gender_type.active_date = '||r_gender_type.active_date);
53 pl('r_gender_type.inactive_date = '||r_gender_type.inactive_date);
54
55 -- Last, delete the object from the relational table
56 delete RPS.GENDER_TYPES
57 where code = 'T';
58
59 -- Commit all these operations
60 commit;
61
62 -- Confirm that the test completed successfully
63 pl('Test completed successfully.');
64 end;
65 /
 

Chapter 6 ■ Object-Relational SQL

174

And, here are the results of the test unit in Listing 6-6:
 
SQL> @gender_ov.sql

o_gender.id = 131
o_gender.code = T
o_gender.description = Test
o_gender.active_date = 20070223 140020
o_gender.inactive_date = 20070223 140020
r_gender.id = 131
r_gender.code = T
r_gender.description = Test
r_gender.active_date = 20070223 140020
r_gender.inactive_date = 20070223 140020
Test completed successfully.
 
PL/SQL procedure successfully completed.

 

Note■■   On line 9, I’ve added RPS. to GENDER_TYPES%ROWTYPE so the anchor points to the relational SQL
schema’s GENDER_TYPES table.

It’s Your Turn to Create an Object View
Yes, it’s your turn. Can you guess what I’m going to ask you to do next? I thought so.

	 1.	 Make sure you are logged in to the database using Oracle username OPS.

	 2.	 Create a script to create an object view for table RPS.WORKER_TYPES that maps its
values to user-defined type WORKER_TYPE. You know, the TYPE you just finished
creating in the previous exercise.

	 3.	 Save your script as worker_typez.vw.

	 4.	 Execute your script to create the object view: @worker_typez.vw.

	 5.	 Create a test unit script and test your new object view.

Nope, I’m not going to show you my solution. This is so simple you don’t need my help!
Next, let’s do step four of the four-step transformation to object-orientation.

Object Tables
Once you’ve created a TYPE, it’s no harder to create an object (-relational) table than it is to build a relational
table.

Create an Object Table
As a matter of fact, Listing 6-7 is nothing more than my table-creation script for the Gender Types table,
gendertypes.tab, from Chapter 5, with a few minor changes.

Chapter 6 ■ Object-Relational SQL

175

Listing 6-7.  An Example of an Object Table Script for GENDER_TYPES, gender_types.tab

01 rem gender_types.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem Create an object table for the Gender Type codes
04
05 --drop table GENDER_TYPES;
06 create table GENDER_TYPES of GENDER_TYPE;
07
08 --drop sequence GENDERS_ID;
09 create sequence GENDERS_ID
10 start with 1;
11
12 alter table GENDER_TYPES add
13 constraint GENDER_TYPES_PK
14 primary key (id)
15 using index;
16
17 alter table GENDER_TYPES add
18 constraint GENDER_TYPES_UK
19 unique (code, active_date)
20 using index;
21
22 execute SYS.DBMS_STATS.gather_table_stats(USER, 'GENDER_TYPES');
 

The CREATE TABLE syntax used in Listing 6-7 is as follows:
 
CREATE TABLE <table_name> OF <type_name>;
 
where <table_name> is the name of the table to create, and <type_name> is the user-defined TYPE to use
instead of column names for the table.

There isn’t a lot of extra work to creating an object table vs. a relational table, now is there? Here’s the
rundown:

On line 6, I use the new syntax to create a table of one user-defined •	 TYPE instead of
one or more predefined scalar data types.

On lines 10 through 12, I create a sequence for the object (-relational) table.•	

On lines 12 through 15, I create a primary key on the object table, just as I did on the •	
relational table.

On lines 17 through 20, I create a unique key on the object table, just as I did on the •	
relational table.

Chapter 6 ■ Object-Relational SQL

176

It’s Your Turn to Create an Object Table
Once again, it’s your turn. For this exercise, create an object table named WORKER_TYPES for the Worker Type
code table.

	 1.	 Write a script to create an object table based on user-defined TYPE WORKER_TYPE.

	 2.	 Save your script as worker_types.tab.

	 3.	 Execute your script to create the object view: @worker_types.tab.

	 4.	 Create a test unit script and test your new object table.

I’ll indulge you. Listing 6-8 is my solution to this exercise.

Listing 6-8.  An Example of an Object Table Script for WORKER_TYPES, worker_types.tab

01 rem worker_type.tab
02 rem copyright by Donald J. Bales on 2014-10-20
03 rem Create an object table for the Worker Type codes
04
05 --drop table WORKER_TYPES;
06 create table WORKER_TYPES of WORKER_TYPE;
07
08 --drop sequence WORKER_TYPES_ID;
09 create sequence WORKER_TYPES_ID
10 start with 1;
11
12 alter table WORKER_TYPES add
13 constraint WORKER_TYPES_PK
14 primary key (id)
15 using index;
16
17 alter table WORKER_TYPES add
18 constraint WORKER_TYPES_UK
19 unique (code)
20 using index;
21
22 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKER_TYPES');
 

To test this object table, I just save my object view test unit as worker_types.sql, change the object view
name to the object table name, and get rid of the relational table tests, and then ta da! Listing 6-9 shows my
test unit for WORKER_TYPES.

Listing 6-9.  A Test Unit for Table WORKER_TYPES, worker_types.sql

01 rem worker_types.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem test unit for object table WORKER_TYPES
04
05 declare
06 -- Declare a variable of the user-define type
07 o_worker_type WORKER_TYPE;
08

Chapter 6 ■ Object-Relational SQL

177

09 begin
10 -- Insert a test object using the convenience constructor
11 insert into WORKER_TYPES
12 values (WORKER_TYPE('T', 'Test'));
13
14 -- Now update the inactive date on the object
15 update WORKER_TYPES
16 set inactive_date = SYSDATE
17 where code = 'T';
18
19 -- Retrieve the object in order to show its values
20 select value(g)
21 into o_worker_type
22 from WORKER_TYPES g
23 where code = 'T';
24
25 -- Show the object's values
26 pl('o_worker_type.id = '||o_worker_type.id);
27 pl('o_worker_type.code = '||o_worker_type.code);
28 pl('o_worker_type.description = '||o_worker_type.description);
29 pl('o_worker_type.active_date = '||o_worker_type.active_date);
30 pl('o_worker_type.inactive_date = '||o_worker_type.inactive_date);
31
32 -- Delete the test object
33 delete WORKER_TYPES
34 where code = 'T';
35
36 -- This time insert the test object using the instance variable
37 insert into WORKER_TYPES
38 values (o_worker_type);
39
40 -- Last, delete the object from the relational table
41 delete WORKER_TYPES
42 where code = 'T';
43
44 -- Commit all these operations
45 commit;
46
47 -- Confirm that the test completed successfully
48 pl('Test completed successfully.');
49 end;
50 /
 

Chapter 6 ■ Object-Relational SQL

178

The results of the test unit in Listing 6-9 should look something like this:
 
SQL> @worker_types.sql

o_worker_type.id = 1
o_worker_type.code = T
o_worker_type.description = Test
o_worker_type.active_date = 29-DEC-14
o_worker_type.inactive_date = 29-DEC-14
Test completed successfully.

PL/SQL procedure successfully completed. 

Come on, you have to admit it. It’s pretty easy to make a transition to object orientation, right? Perhaps,
or perhaps not. Some argue that there is a problem between how object-oriented languages represent data
and how data is stored in a relational database, calling it an impedance mismatch.

Impedance Mismatch?
I argue that if done properly, there is little so-called “mismatch” between the classes used in an object-
oriented language like Java and object-relational user-defined types in Oracle—that is, if they both properly
model the real world.

I have an entire section dedicated to the use of Java Database Connectivity (JDBC) and object-relational
user-defined types in one of my previous books (Java Programming with Oracle JDBC, OReilly, 2001). My 30
plus years of experience in both programming with object-oriented languages and using relational and now
object-relational databases has led me to the conclusion that the mismatch is one of improper analysis vs.
the reality of the problem domain.

The only time I see a mismatch is when one of the following occurs:

“Catchall” classes are used in the presentation layer, which make it easy to represent •	
and move objects around in the presentation layer, but they don’t actually model the
real world at all.

Denormalized attributes in classes, which once again make it easier to work with •	
data in the presentation layer, but don’t even remotely represent the cardinality of
the real world.

No time is taken to do a proper analysis. It’s build a presentation and then create a •	
database that fits it, or restated, shoot, ready, aim! Right.

Target databases use a different programming language from the presentation layer’s •	
object-oriented programming environment, so the database programming language
is misunderstood, misused, or ignored altogether.

Chapter 6 ■ Object-Relational SQL

179

Don’t take these in any particular order, because there are more reasons than I am willing to list. I seem
to remember the same phenomena—you know, all the reasons not to adopt better technology—years ago
when relational technology first appeared, say 1984?

So what haven’t I told you? There are, in fact, a few topics I have not covered yet. Let’s delve into
those next.

Nested Types and Collections
First, I haven’t shown any examples with nested types. For example, I could create a TYPE ADDRESS for
address information, and then use that TYPE as an attribute in another TYPE like CONTACT. You can do that; it’s
not a problem.

Nor have I shown you any examples of a TYPE that contain arrays of other TYPEs. That’s certainly
possible. You can create what is called a nested TYPE, and implement it as a nested table where you can
have an unlimited number of entries, or as a varying array that has a fixed number of entries. I don’t like
the sound of the latter. It’s not very relational in nature. And nesting is where all the so-called impedance
mismatch occurs.

In the minds of some object-oriented programmers, it’s necessary to create huge, complex, object types
that contain everything remotely similar. You know this; if you’re an object-oriented programmer, you’ve
seen them, or worse, created them.

Consider Figure 6-1, a class diagram to replace the ERD for the problem domain from Chapter 1. Are all
three historical entities—LocgicalAssignment, PhysicalAssignment, and WorkAssignment—part of Worker
in an object-oriented setting? No, they may be related, but you won’t find them on any particular worker,
will you? They are actually stand-alone entities. However, in most cases, someone would create a class
Worker that contained these three entities as arrays. There’s the mismatch. It’s a break between reality and
programming convenience.

Chapter 6 ■ Object-Relational SQL

180

Figure 6-1.  A partial class diagram for the sample problem domain

Chapter 6 ■ Object-Relational SQL

181

It’s Your Turn to Prove There’s No Impedance Mismatch
At this point, I’ve coded the scripts to create the Gender code object table, and you’ve done the same for the
Worker Type object table. Now you can put these to work as you code the scripts for and create a Worker
object table. Here’s what to do.

	 1.	 Verify that you successfully executed the following scripts: gender_type.tps,
gender_type.tpb, gender_types.tab, and gender_types.ins.

	 2.	 Verify that you successfully coded and executed the following scripts:
worker_type.tps, worker_type.tpb, worker_types.tab, and worker_types.ins.

	 3.	 Write a script to create a TYPE specification for the Worker entity. You can get the
attributes from the column names in file worker_types.tab from Chapter 5.
You can get the method names from package file worker_type.pks from
Chapter 5.

	 4.	 Save your script as worker.tps.

	 5.	 Compile your script: @worker.tps.

	 6.	 Write a script to create an object table named WORKERS using the user-defined
type WORKER you just created.

	 7.	 Save your script as workers.tab.

	 8.	 Compile your script: @workers.tab.

	 9.	 Write a script to implement the TYPE BODY for the Worker entity. You can get the
method implementations from package file worker_type.pkb from Chapter 5.

	 10.	 Save your script as worker.tpb.

	 11.	 Compile your script: @worker.tps.

	 12.	 At this point, you should have a valid WORKERS object table. So now modify the
script you used to populate the WORKERS table in Chapter 5, workers.ins, to
populate the WORKERS object table.

	 13.	 Save your script as workers.ins.

	 14.	 Execute your script in order to populate the object table: @workers.ins.

	 15.	 Create a test unit script and test your new object table.

Listings 6-10 through 6-13 show my solutions for this exercise. Listing 6-10 is my specification for the
TYPE WORKER.

Listing 6-10.  The Specification Script for User-Defined TYPE WORKER, worker.tps

001 create type WORKER as object (
002 /*
003 worker.tps
004 by Don Bales on 2014-10-20
005 Type WORKER's attributes and methods.
006 */
007 id number(38),
008 worker_type_id number(38),
009 external_id varchar2(30),

Chapter 6 ■ Object-Relational SQL

182

010 first_name varchar2(30),
011 middle_name varchar2(30),
012 last_name varchar2(30),
013 name varchar2(100),
014 birth_date date,
015 gender_type_id number(38),
016 /*
017 Get the worker's current age.
018 */
019 MEMBER FUNCTION get_age
020 return number,
021 /*
022 Get the worker's age on the specified date.
023 */
024 MEMBER FUNCTION get_age(
025 aid_on date)
026 return number,
027 /*
028 Calculate a worker's age for the given birth date
029 and point in time.
030 */
031 STATIC FUNCTION get_age(
032 aid_birth_date in date,
033 aid_on in date)
034 return number,
035 /*
036 Calculate a worker's current age for the given bith date.
037 */
038 STATIC FUNCTION get_age(
039 aid_birth_date in date)
040 return number,
041 /*
042 Get the specified worker's age at the given point in time.
043 */
044 STATIC FUNCTION get_age(
045 ain_id in number,
046 aid_on in date)
047 return number,
048 /*
049 Get the specified worker's current age.
050 */
051 STATIC FUNCTION get_age(
052 ain_id in number)
053 return number,
054 /*
055 Get the specified worker's birth date.
056 */
057 STATIC FUNCTION get_birth_date(
058 ain_id in number)
059 return date,
060 /*

Chapter 6 ■ Object-Relational SQL

183

061 Get the specified worker's external ID.
062 */
063 STATIC FUNCTION get_external_id
064 return varchar2,
065 /*
066 Calculate the locale specific formatted name.
067 */
068 STATIC FUNCTION get_formatted_name(
069 aiv_first_name in varchar2,
070 aiv_middle_name in varchar2,
071 aiv_last_name in varchar2)
072 return varchar2,
073 /*
074 Get the specified worker's formatted name.
075 */
076 STATIC FUNCTION get_formatted_name(
077 ain_id in number)
078 return varchar2,
079 /*
080 Get the next primary key value for the table.
081 */
082 STATIC FUNCTION get_id
083 return number,
084 /*
085 Get the specified worker's internal ID.
086 */
087 STATIC FUNCTION get_id(
088 aiv_external_id in varchar2)
089 return number,
090 /*
091 Get the specified worker's row object.
092 */
093 STATIC FUNCTION get_row(
094 aio_worker in WORKER)
095 return WORKER,
096 /*
097 Calculate the non-locale specific unformmated name.
098 */
099 STATIC FUNCTION get_unformatted_name(
100 aiv_first_name in varchar2,
101 aiv_middle_name in varchar2,
102 aiv_last_name in varchar2)
103 return varchar2,
104 /*
105 Display the help text for this TYPE.
106 */
107 MEMBER PROCEDURE help,
108 /*
109 Check to see if a worker with the same name, birth_date and
110 gender already exists in the database.
111 */

Chapter 6 ■ Object-Relational SQL

184

112 STATIC FUNCTION is_duplicate(
113 aiv_name in varchar2,
114 aid_birth_date in varchar2,
115 ain_gender_type_id in varchar2)
116 return boolean,
117 /*
118 Set the specified worker's row object.
119 */
120 STATIC PROCEDURE set_row(
121 aioo_worker in out WORKER),
122 /*
123 Execute the test unit for this TYPE.
124 */
125 MEMBER PROCEDURE test,
126 /*
127 The MAP function for this TYPE.
128 */
129 MAP MEMBER FUNCTION to_varchar2
130 return varchar2,
131 /*
132 A convenience constructor for this TYPE.
133 */
134 CONSTRUCTOR FUNCTION worker(
135 self in out worker,
136 ain_worker_type_id in number,
137 aiv_first_name in varchar2,
138 aiv_middle_name in varchar2,
139 aiv_last_name in varchar2,
140 aid_birth_date in date,
141 ain_gender_type_id in number)
142 return self as result,
143 /*
144 A NULL values constructor for this TYPE.
145 */
146 CONSTRUCTOR FUNCTION worker(
147 self in out worker)
148 return self as result
149);
150 /
151 @se.sql 

Listing 6-11.  The CREATE TABLE Script for Object Table WORKERS, workers.tab

01 rem worker_ot.tab
02 rem by Donald J. Bales on 2014-10-20
03 rem Create an object table for Workers
04
05 --drop table WORKERS;
06 create table WORKERS of WORKER;
07

Chapter 6 ■ Object-Relational SQL

185

08 --drop sequence WORKERS_ID;
09 create sequence WORKERS_ID
10 start with 1;
11
12 --drop sequence EXTERNAL_ID_SEQ;
13 create sequence EXTERNAL_ID_SEQ
14 start with 100000000 order;
15
16 alter table WORKERS add
17 constraint WORKERS_PK
18 primary key (id)
19 using index;
20
21 alter table WORKERS add
22 constraint WORKERS_UK1
23 unique (external_id)
24 using index;
25
26 alter table WORKERS add
27 constraint WORKERS_UK2
28 unique (
29 name,
30 birth_date,
31 gender_type_id)
32 using index;
33
34 alter table WORKERS add
35 constraint WORKERS_FK1
36 foreign key (worker_type_id)
37 references WORKER_TYPES (id);
38
39 alter table WORKERS add
40 constraint WORKERS_FK2
41 foreign key (gender_type_id)
42 references GENDER_TYPES (id);
43
44 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKERS'); 

Listing 6-12.  The BODY Implementation Script for TYPE WORKER , worker.tpb

001 create or replace type body WORKER as
002 /*
003 worker.tpb
004 by Don Bales on 2014-10-20
005 TYPE WORKER's methods
006 */
007
008 MEMBER FUNCTION get_age(
009 aid_on in date)
010 return number is
011

Chapter 6 ■ Object-Relational SQL

186

012 begin
013 return WORKER.get_age(birth_date, aid_on);
014 end get_age;
015
016
017 MEMBER FUNCTION get_age
018 return number is
019
020 begin
021 return WORKER.get_age(birth_date, SYSDATE);
022 end get_age;
023
024
025 STATIC FUNCTION get_age(
026 aid_birth_date in date,
027 aid_on in date)
028 return number is
029
030 begin
031 if aid_birth_date is not NULL and
032 aid_on is not NULL then
033 return trunc(months_between(aid_on, aid_birth_date) / 12);
034 else
035 return NULL;
036 end if;
037 exception
038 when OTHERS then
039 return NULL;
040 end get_age;
041
042
043 STATIC FUNCTION get_age(
044 aid_birth_date in date)
045 return number is
046
047 begin
048 return WORKER.get_age(aid_birth_date, SYSDATE);
049 end get_age;
050
051
052 STATIC FUNCTION get_age(
053 ain_id in number,
054 aid_on in date)
055 return number is
056
057 begin
058 return WORKER.get_age(WORKER.get_birth_date(ain_id), aid_on);
059 end get_age;
060
061

Chapter 6 ■ Object-Relational SQL

187

062 STATIC FUNCTION get_age(
063 ain_id in number)
064 return number is
065
066 begin
067 return WORKER.get_age(WORKER.get_birth_date(ain_id));
068 end get_age;
069
070
071 STATIC FUNCTION get_birth_date(
072 ain_id in number)
073 return date is
074
075 d_birth_date date;
076
077 begin
078 select birth_date
079 into d_birth_date
080 from WORKERS
081 where id = ain_id;
082
083 return d_birth_date;
084 end get_birth_date;
085
086
087 STATIC FUNCTION get_external_id
088 return varchar2 is
089
090 v_external_id varchar2(30);
091
092 begin
093 select lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0')
094 into v_external_id
095 from SYS.DUAL;
096
097 return v_external_id;
098 end get_external_id;
099
100
101 STATIC FUNCTION get_id
102 return number is
103
104 n_id number;
105
106 begin
107 select WORKERS_ID.nextval
108 into n_id
109 from SYS.DUAL;
110
111 return n_id;
112 end get_id;

Chapter 6 ■ Object-Relational SQL

188

113
114
115 STATIC FUNCTION get_id(
116 aiv_external_id in varchar2)
117 return number is
118
119 n_id number;
120
121 begin
122 select id
123 into n_id
124 from WORKERS
125 where external_id = aiv_external_id;
126
127 return n_id;
128 end get_id;
129
130
131 STATIC FUNCTION get_formatted_name(
132 aiv_first_name in varchar2,
133 aiv_middle_name in varchar2,
134 aiv_last_name in varchar2)
135 return varchar2 is
136
137 begin
138 return aiv_last_name||', '||aiv_first_name||' '||aiv_middle_name;
139 end get_formatted_name;
140
141
142 STATIC FUNCTION get_formatted_name(
143 ain_id in number)
144 return varchar2 is
145
146 v_first_name varchar2(30);
147 v_middle_name varchar2(30);
148 v_last_name varchar2(30);
149
150 begin
151 select first_name,
152 middle_name,
153 last_name
154 into v_first_name,
155 v_middle_name,
156 v_last_name
157 from WORKERS
158 where id = ain_id;
159
160 return get_formatted_name(
161 v_first_name,
162 v_middle_name,
163 v_last_name);

Chapter 6 ■ Object-Relational SQL

189

164 end get_formatted_name;
165
166
167 STATIC FUNCTION get_row(
168 aio_worker in WORKER)
169 return WORKER is
170
171 o_worker WORKER;
172
173 begin
174 if aio_worker.id is not NULL then
175 -- retrieve the row by the primary key
176 select value(w)
177 into o_worker
178 from WORKERS w
179 where id = aio_worker.id;
180 elsif aio_worker.external_id is not NULL then
181 -- retrieve the row by the external unique key
182 select value(w)
183 into o_worker
184 from WORKERS w
185 where external_id = aio_worker.external_id;
186 else
187 -- retrieve the row by the name, birth_date, and gender
188 select value(w)
189 into o_worker
190 from WORKERS w
191 where name = worker.get_formatted_name(
192 aio_worker.first_name,
193 aio_worker.middle_name,
194 aio_worker.last_name)
195 and birth_date = aio_worker.birth_date
196 and gender_type_id = aio_worker.gender_type_id;
197 end if;
198 return o_worker;
199 exception
200 when NO_DATA_FOUND then
201 raise;
202 when OTHERS then
203 raise_application_error(-20001, SQLERRM||
204 ' on select WORKERS'||
205 ' in WORKER.get_row()');
206 end get_row;
207
208
209 STATIC FUNCTION get_unformatted_name(
210 aiv_first_name in varchar2,
211 aiv_middle_name in varchar2,
212 aiv_last_name in varchar2)
213 return varchar2 is
214

Chapter 6 ■ Object-Relational SQL

190

215 begin
216 return upper(replace(replace(replace(replace(replace(
217 aiv_last_name||aiv_first_name||aiv_middle_name,
218 '''', NULL), ',', NULL), '-', NULL), '.', NULL), ' ', NULL));
219 end get_unformatted_name;
220
221
222 STATIC FUNCTION is_duplicate(
223 aiv_name in varchar2,
224 aid_birth_date in varchar2,
225 ain_gender_type_id in varchar2)
226 return boolean is
227
228 n_selected number;
229
230 begin
231 execute immediate
232 'select count(1)
233 from WORKERS
234 where name = aiv_name
235 and birth_date = aid_birth_date
236 and gender_type_id = ain_gender_type_id'
237 into n_selected
238 using in aiv_name,
239 in aid_birth_date,
240 in ain_gender_type_id;
241
242 if nvl(n_selected, 0) > 0 then
243 return TRUE;
244 else
245 return FALSE;
246 end if;
247 end is_duplicate;
248
249
250 MEMBER PROCEDURE help is
251
252 begin
253 -- 12345678901234567890123456789012345678901234567890123456789012345678901234567890
254 pl('================================== PACKAGE ===================================');
255 pl(chr(9));
256 pl('WORKER');
257 pl(chr(9));
258 pl('---------------------------------- FUNCTIONS ---------------------------------');
259 pl(chr(9));
260 pl('YOU GOTTA CODE THIS BUDDY WORKER.get_id');
261 pl('return number;');
262 pl(chr(9)||'Returns a newly allocated sequence value for id.');
263 pl(chr(9));
264 pl('WORKER.get_id(');
265 pl('aiv_external_id in varchar2)');

Chapter 6 ■ Object-Relational SQL

191

266 pl('return number;');
267 pl(chr(9)||'Returns the corresponding id for the specified external_id.');
268 pl(chr(9));
269 pl('---------------------------------- PROCEDURES --------------------------------');
270 pl(chr(9));
271 pl('WORKER.get_external_id_descr(');
272 pl('ain_id in number,');
273 pl('aov_external_id out varchar2,');
274 pl('aov_description out WORKERS.description%TYPE);');
275 pl(chr(9)||'Gets the corresponding external_id and description for the specified');
276 pl(chr(9)||'id.');
277 pl(chr(9));
278 pl('WORKER.get_external_id_id_descr(');
279 pl('aiov_external_id in out varchar2,');
280 pl('aon_id out number,');
281 pl('aov_description out WORKERS.description%TYPE,');
282 pl('aid_on in WORKERS.active%TYPE);');
283 pl(chr(9)||'Gets the corresponding external_id, id, and description for');
284 �pl(chr(9)||'the specified external_id. First it trys to find an exact match.

If one');
285 pl(chr(9)||'cannot be found, it trys to find a like match. It may throw a');
286 pl(chr(9)||'NO_DATA_FOUND or a TOO_MANY_ROWS exception if a match cannot be');
287 pl(chr(9)||'found for the specified external_id and point in time.');
288 pl(chr(9));
289 pl('WORKER.get_external_id_id_descr(');
290 pl('aiov_external_id in out varchar2,');
291 pl('aon_id out number,');
292 pl('aov_description out WORKERS.description%TYPE);');
293 pl(chr(9)||'Gets the corresponding external_id, id, and description for');
294 �pl(chr(9)||'the specified external_id. First it trys to find an exact match.

If one');
295 pl(chr(9)||'cannot be found, it trys to find a like match. It may throw a');
296 pl(chr(9)||'NO_DATA_FOUND or a TOO_MANY_ROWS exception if a match cannot be');
297 pl(chr(9)||'found for the specified external_id at the current point in time.');
298 pl(chr(9));
299 pl('WORKER.help();');
300 pl(chr(9)||'Displays this help text if set serveroutput is on.');
301 pl(chr(9));
302 pl('WORKER.test();');
303 �pl(chr(9)||'Built-in test unit. It will report success or error for each test

if set');
304 pl(chr(9)||'serveroutput is on.');
305 pl(chr(9));
306 end help;
307
308
309 STATIC PROCEDURE set_row(
310 aioo_worker in out WORKER) is
311
312 d_null constant date := DATE_.d_MIN;
313 n_null constant number := 0;

Chapter 6 ■ Object-Relational SQL

192

314 v_null constant varchar2(1) := ' ';
315 o_worker WORKER;
316
317 begin
318 -- set the formatted name
319 aioo_worker.name := worker.get_formatted_name(
320 aioo_worker.first_name,
321 aioo_worker.middle_name,
322 aioo_worker.last_name);
323 -- get the existing row
324 begin
325 o_worker := get_row(aioo_worker);
326 exception
327 when NO_DATA_FOUND then
328 o_worker := NULL;
329 end;
330 -- if a row exists, update it if needed
331 if o_worker is not NULL then
332 aioo_worker.id := o_worker.id;
333 if nvl(o_worker.worker_type_id, n_null) <>
334 nvl(aioo_worker.worker_type_id, n_null) or
335 nvl(o_worker.external_id, n_null) <>
336 nvl(aioo_worker.external_id, n_null) or
337 nvl(o_worker.first_name, v_null) <>
338 nvl(aioo_worker.first_name, v_null) or
339 nvl(o_worker.middle_name, v_null) <>
340 nvl(aioo_worker.middle_name, v_null) or
341 nvl(o_worker.last_name, v_null) <>
342 nvl(aioo_worker.last_name, v_null) or
343 nvl(o_worker.birth_date, d_null) <>
344 nvl(aioo_worker.birth_date, d_null) or
345 nvl(o_worker.gender_type_id, n_null) <>
346 nvl(aioo_worker.gender_type_id, n_null) then
347 begin
348 update WORKERS
349 set worker_type_id = aioo_worker.worker_type_id,
350 external_id = aioo_worker.external_id,
351 first_name = aioo_worker.first_name,
352 middle_name = aioo_worker.middle_name,
353 last_name = aioo_worker.last_name,
354 name = aioo_worker.name,
355 birth_date = aioo_worker.birth_date,
356 gender_type_id = aioo_worker.gender_type_id
357 where id = aioo_worker.id;
358
359 -- n_updated := nvl(n_updated, 0) + nvl(sql%rowcount, 0);
360 exception
361 when OTHERS then
362 raise_application_error(-20002, SQLERRM||
363 ' on update WORKERS'||
364 ' in WORKER.set_row()');

Chapter 6 ■ Object-Relational SQL

193

365 end;
366 end if;
367 else
368 -- add the row if it does not exist
369 begin
370 aioo_worker.id := get_id();
371 insert into WORKERS
372 values (aioo_worker);
373
374 -- n_inserted := nvl(n_inserted, 0) + nvl(sql%rowcount, 0);
375 exception
376 when OTHERS then
377 raise_application_error(-20003, SQLERRM||
378 ' on insert WORKERS'||
379 ' in WORKER.set_row()');
380 end;
381 end if;
382 end set_row;
383
384
385 MEMBER PROCEDURE test(
386 self in out nocopy worker) is
387
388 begin
389 pl('================================== PACKAGE ===================================');
390 pl(chr(9));
391 pl('WORKER');
392 pl(chr(9));
393 pl(chr(9)||'No tests for WORKER at this time');
394 end test;
395
396
397 MAP MEMBER FUNCTION to_varchar2
398 return varchar2 is
399
400 begin
401 return rtrim(name||to_char(birth_date, 'YYYYMMDDHH24MISS'));
402 end to_varchar2;
403
404
405 CONSTRUCTOR FUNCTION worker(
406 self in out worker,
407 ain_worker_type_id in number,
408 aiv_first_name in varchar2,
409 aiv_middle_name in varchar2,
410 aiv_last_name in varchar2,
411 aid_birth_date in date,
412 ain_gender_type_id in number)
413 return self as result is
414

Chapter 6 ■ Object-Relational SQL

194

415 begin
416 id := WORKER.get_id();
417 worker_type_id := ain_worker_type_id;
418 external_id := WORKER.get_external_id();
419 first_name := aiv_first_name;
420 middle_name := aiv_middle_name;
421 last_name := aiv_last_name;
422 name := WORKER.get_formatted_name(
423 first_name, middle_name, last_name);
424 birth_date := aid_birth_date;
425 gender_type_id := ain_gender_type_id;
426 return;
427 end worker;
428
429
430 CONSTRUCTOR FUNCTION worker(
431 self in out worker)
432 return self as result is
433
434 begin
435 id := NULL;
436 worker_type_id := NULL;
437 external_id := NULL;
438 first_name := NULL;
439 middle_name := NULL;
440 last_name := NULL;
441 name := NULL;
442 birth_date := NULL;
443 gender_type_id := NULL;
444 return;
445 end worker;
446
447
448 end; --WORKER;
449 /
450 @be.sql WORKER 

Note ■■   Make sure you execute scripts gender_types.ins and worker_types.ins before executing
workers.ins (Listing 6-13); otherwise, the script will be missing required code values.

Listing 6-13.  The Populate Table Script for Object Table WORKERS, workers.ins

01 rem workers.ins
02 rem by Donald J. Bales on 2014-10-20
03 rem Seed the Worker table with the top 100 names
04 rem 100 last x 100 first x 26 middle = 260,000 entries
05
06 set serveroutput on size 1000000;
07

Chapter 6 ■ Object-Relational SQL

195

08 declare
09
10 -- This is the number of seconds since midnight
11 -- I'll use it to profile my code's performance.
12 n_start number :=
13 to_number(to_char(SYSDATE, 'SSSSS'));
14
15 -- Here, I declare four psuedo-constants to hold the
16 -- ID values from the code tables, rather `than look
17 -- them up repeatedly during the insert process.
18 n_G_FEMALE GENDER_TYPES.id%TYPE;
19 n_G_MALE GENDER_TYPES.id%TYPE;
20 n_WT_CONTRACTOR WORKER_TYPES.id%TYPE;
21 n_WT_EMPLOYEE WORKER_TYPES.id%TYPE;
22
23 -- I'll use this to keep track of the number of
24 -- rows inserted.
25 n_inserted number := 0;
26
27 begin
28 -- Get the ID values for the codes
29 n_G_FEMALE := GENDER_TYPE.get_id('F');
30 n_G_MALE := GENDER_TYPE.get_id('M');
31 n_WT_CONTRACTOR := WORKER_TYPE.get_id('C');
32 n_WT_EMPLOYEE := WORKER_TYPE.get_id('E');
33
34 -- Use an INSERT INTO SELECT SQL statement
35 insert into WORKERS
36 select WORKER(
37 WORKERS_ID.nextval,
38 decode(mod(WORKERS_ID.currval, 2),
39 0, n_WT_EMPLOYEE, n_WT_CONTRACTOR),
40 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
41 first_name,
42 letter||'.',
43 last_name,
44 WORKER.get_formatted_name(
45 first_name, letter||'.', last_name),
46 DATE_.random(
47 to_number(to_char(SYSDATE, 'YYYY')) - 65,
48 to_number(to_char(SYSDATE, 'YYYY')) - 18),
49 decode(gender_code, 'F', n_G_FEMALE, n_G_MALE))
50 from RPS.TOP_100_LAST_NAMES,
51 RPS.TOP_100_FIRST_NAMES,
52 RPS.A_THRU_Z;
53
54 n_inserted := n_inserted + sql%rowcount;
55
56 commit;
57
58 pl(to_char(n_inserted)||' rows inserted in '||

Chapter 6 ■ Object-Relational SQL

196

59 (to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
60 ' seconds.');
61 end;
62 /
63
64 execute SYS.DBMS_STATS.gather_table_stats(USER, 'WORKERS');
 

If you compare the three object tables—GENDER_TYPES, WORKER_TYPES, and WORKERS—against the class
diagram in Figure 6-1, you’ll see that you’ve fully implemented both the attributes and methods of the
classes: GENDER_TYPE, WORKER_TYPE, and WORKER in the database using user-defined TYPEs. Congratulations.

Is there a performance penalty for using object-relational technology? Sure there is! You didn’t think
you could do extra work, that is, instatiating classes (TYPES) for free did you? How much of a performance
penalty? Well, workers.ins inserted 260,000 objects in 126 seconds. That’s 2063 objects per second, or about
six times slower than its relational counterpart. Is it worth the extra functionality? I think so, but now it’s up
to you.

Summary
To sum it all up, the real world is made up of things, or objects. Objects have both attributes and behaviors.
Using attributes alone, you can answer only the question “What was that?” But with behaviors, you can also
answer the question “When did it behave that way?” So you decide which way to go. Try one, then the other!

Table 6-1 is a summary of the SQL and PL/SQL objects that are used in order to fully model a business,
scientific, or any real-world problem accurately.

Table 6-1.  A Summary of SQL and PL/SQL Objects Used to Model the Real World

Item Data Behavior

Relational table (SQL) Columns

Relational view (SQL) Columns

Table package (PL/SQL) Methods

User-defined type (SQL and PL/SQL) Attributes Methods

Object view (SQL) Columns mapped to attributes Methods

Object table (SQL) Attributes Methods

The single most important point of this chapter is that you can’t accurately model anything without
attributes and behavior, or data and methods. And as the saying goes, “Those who cannot remember the
past are condemned to repeat it.” We, the business and technical community, can now accurately model
the real world. So we can remember the past and no longer repeat our mistakes. We can profit from our
knowledge, the information we have gathered, as we all move through time and space.

Now that you know how to write some PL/SQL, let’s look at how you can see what’s going on as your
PL/SQL program executes.

197

Chapter 7

Troubleshooting

I believe programmers are no better than their knowledge of the debugging and troubleshooting tools
available for the programming language they’re using. Why? Well, first, all programmers make coding
mistakes. I often remark that the day I code something that compiles and runs correctly the first time,
I’m going to retire because that would be the peak of my programming career. Second, programmers make
logic mistakes. When is the last time you had to write some parsing code? That’s one of the toughest types of
programming to get right the first, second, third, or nth time around.

To find and solve our mistakes, we need a means to be able to discover exactly what is going on in our
programs at that point in time when an error occurs. Sadly enough, when PL/SQL first appeared and for
quite some time after, there was virtually no way to debug a stored PL/SQL program unit. The best we could
do was to use SYS.DBMS_OUTPUT.put_line() to display a bunch of messages on the screen after the stored
procedure finished executing.

Then along came the package SYS.DBMS_PIPE, where the most adventurous of us could write our own
utilities to monitor an executing stored PL/SQL program unit in “real time” from a second session. That
was an improvement, but not one that most PL/SQL programmers could use. Next, the pragma autonomous
transaction showed up, which allowed us to write logging utilities that used a second session in order to
monitor a stored PL/SQL program unit, and could permanently save the monitoring messages to a table.
That was better, but still not very good.

More recently, the package SYS.DBMS_DEBUG became available. It allows us to write our own programs
to actually run a remote debugging utility against a stored PL/SQL program unit. And now Oracle has made
a PL/SQL debugger freely available to its programming communities with a product (written in Java) called
Oracle SQL Developer. Other vendors have followed suit, and now you can remotely debug from graphical
user interface (GUI) integrated development environments (IDEs) like TOAD for Oracle and Visual Studio,
to name just a few. With a real remote debugger in our hands, we can actually see just what’s happening in
our PL/SQL programs.

When it comes to SQL, we’ve had access to EXPLAIN PLAN and TKPROF for as long as I can remember.
Both give us the means to see the plans that the Oracle SQL Optimizer is going to use to access the
underlying objects that are part of our SQL statements. Once again, using these tools, we can actually see
just what’s happening in our SQL.

However, having access to these fine troubleshooting tools is not enough. You also need to prepare for
trouble ahead of time. You need to build troubleshooting capabilities into your program units. To that end,
I'm going to show you how to do the following:

Prevent trouble in the first place•	

Prepare for trouble so you’re ready for troubleshooting when an error does occur•	

Use •	 SYS.DBMS_OUTPUT.put_line() to provide meaningful troubleshooting
information after a program unit finishes executing

Chapter 7 ■ Troubleshooting

198

Use a logging utility to provide meaningful troubleshooting information in real time•	

Use a remote debugger to walk through a program unit as it executes•	

Use •	 EXPLAIN PLAN to troubleshoot the performance of your SQL statements

Let’s start out with some prevention techniques.

Prevention
If you want to prevent problems, then assume nothing. A handful of capabilities built into PL/SQL are
nothing but an invitation for trouble. They are all centered on data types and implicit conversion. What’s
implicit conversion? Let’s say you have number held in a varchar2 data type variable, v_value. You try
assigning n_value, a number data type variable, that value with the following line of code:
 
n_value := v_value;
 

That should work, right? Yes, it should, but when it doesn’t, because you don’t actually have a numeric
literal stored in variable v_value, the implicit data type conversion will raise an “unexpected” exception in
your program unit, which will be hard to identify. By “identify,” I mean determine which line of code caused
the error and why. Before we get to the solution for this problem, let’s look at another example.

This time, let’s say you want pass a date value to a function that will return the time in seconds since
midnight, January 1, 1980. The function requires the date be passed as a varchar2 parameter in the form
DD-MON-YY. Hey, no problem. Just pass the date variable like so:
 
...
d_value date := SYSDATE;
n_value number;
 
begin
 n_value := date_to_long(d_value);
...
 

Oracle’s default date format is DD-MON-YY, so it will work fine, right? Not exactly. If the current
NLS_DATE_FORMAT for the session is DD-MON-YY (the default), it will work, but not if it is YYYYMMDD HH24MISS,
as I set mine every time I log in to SQL*Plus.

What’s the solution? Use a combination of anchors, data type prefixes, and explicit conversions with
blocking.

Anchors
I’ve already discussed anchors in Chapter 3. They are those wacky looking data type declarations that use the
%TYPE or %ROWTYPE keyword. For example, here’s a list of variables declared in a manner so they match the
data types of their corresponding table columns:
 
...
d_birth_date WORKER.birth_date%TYPE;
n_gender_type_id WORKER.gender_type_id%TYPE;
v_name WORKER.name%TYPE;
...
 

Chapter 7 ■ Troubleshooting

199

How does using anchors help prevent errors? Since each variable is anchored to the data type of the
column in a table for which it will be used to temporarily hold a value, SQL and PL/SQL will not need to
perform an implicit data type conversion when values are moved between the SQL and PL/SQL. Explicitly
anchoring the data types of variables to their database counterparts prevents implicit conversions.
Preventing implicit conversions prevents errors.

But if you’re going to anchor variables to their corresponding database columns or attributes, why use
data type prefixes?

Data Type Prefixes
Data type prefixes help prevent errors in two ways. One is that when you declare a variable with a data type
prefix, you’re documenting that you understand that the data type is a date, number, or varchar2. You’re
saying, “Hey, I know what this is!” From that point in your coding forward, you can work with that assertion
in place, to make sure that you’re not doing any implicit conversions. Preventing implicit conversions
prevents errors.

Data type prefixes also make it clear that a data type conversion is necessary. If you find yourself coding
away in the far recesses of your stored procedure, and you come to a line where you’re going to make an
assignment and the data type prefixes are not the same, you know that you need to code an explicit data
type conversion. In turn, coding an explicit data type conversion will prevent an implicit conversion. Again,
preventing implicit conversions prevents errors.

So let’s look at how you code an explicit data type conversion.

Explicit Conversions
When you perform an explicit conversion, you can wrap your PL/SQL statements in their own PL/SQL block,
or as I like to say, “block your code.” This allows you to catch any exceptions raised during the data type
conversion, so you can do something intelligent with your newfound knowledge of the error.

You perform an explicit data type conversion by using one of the following functions:

•	 to_char(): Used to convert a date or number to a varchar2 data type

•	 to_date(): Used to convert a varchar2 to a date data type

•	 to_number(): Used to convert a varchar2 to a number data type

For example, to convert the value January 1, 1980 in variable d_date to a varchar2 data type for variable
v_date in the form YYYYMMDD, you could use the following code:
 
v_date := to_char(d_date, 'YYYYMMDD');
 

It’s unlikely that converting from a date (or number) to a varchar2 is ever going to cause an error as long
as the receiving variable is declared large enough to hold the result, but, on the other hand, it’s very likely an
error will occur if you convert from a varchar2 to a date, as in the following:
 
...
 begin
 d_date := to_date(v_date, 'YYYYMMDD');
 exception
 when OTHERS then
 pl(SQLERRM);
 pl('Converting "'||v_date||'" to a date using format YYYYMMDD');
 raise_application_error(-20001, SQLERRM||

Chapter 7 ■ Troubleshooting

200

 ' converting v_date to d_date'||
 ' in my_program_unit.method');
 end;
... 

Note■■   Way back in Chapter 1 I created a script named pl.prc that created a procedure called pl()
that calls SYS.DBMS_OUTPUT.put_line() because I’m a lazy programmer who does not like to type
SYS.DBMS_OUTPUT.put_line() everywhere I want to post a message.

In this example, if the character representation of the date in variable v_date is not in the format
YYYYMMDD, the to_date() function will raise an appropriate exception. The enclosing PL/SQL block will
echo the details to the screen using put_line() via pl(), and then raise an application error that will report
exactly where the error occurred in the program. This, in turn, will give you details as to why there was an
error, so you are armed with good error information when you start troubleshooting, not some time after you
are well into troubleshooting.

Just as to_date() and to_char() have formats they can use to specify the conversion parameters, so
does to_number(). You can find the details on these formats in the freely available PL/SQL User’s Guide and
Reference. You can find this and the rest of the Oracle documentation set online at http://otn.oracle.com.

So the proper use of the combination of anchors, data type prefixes, and explicit conversion functions
will prevent many unexpected errors. Next, let’s see how you can better prepare for those that will still
eventually arrive.

Preparation
Preparing for trouble ahead of time means preparing for troubleshooting ahead of time. How do you prepare
for troubleshooting? You can do that by using blocks and bread crumbs.

You can block (wrap code in its own PL/SQL block) risky code ahead of time. When I say “risky code,”
I mean

Explicit data type conversions•	

Movement of larger character strings to shorter character variables•	

Singleton SQL statements•	

And what about bread crumbs? You know the fairy tale about Hansel and Gretel, right? They dropped
bread crumbs on the ground as they walked through the forest so they could find their way back. Well, I want
you to drop code on your listings as you type through your program, so you, too, can find your way back—
back to the source of a problem.

Let’s start our discussion of blocking and bread crumbs with the former.

Blocking
I just showed you an example of blocking—wrapping a small piece of your PL/SQL in its own PL/SQL block
in order to catch a raised exception and dealing with it—when I discussed explicit conversions. Now I’ll
show you another example, where I move a larger character string into a smaller character variable.

http://otn.oracle.com/

Chapter 7 ■ Troubleshooting

201

It’s not uncommon when coding a data migration or data processing program to move a larger
varchar2 variable into a smaller one. In such a situation, you can substring the larger variable in order to
blindly truncate the larger string, or you can block the assignment so it raises an exception that you can deal
with intelligently. Here’s an example of the latter:
 
declare
 
v_large varchar2(80);
v_small varchar2(30);
 
begin
 -- I'm assigning the variable in the executable section because
 -- assignment errors in the declaration section are also very hard
 -- to troubleshoot!
 -- 12345678901234567890123456789012345678901234567890123456789012345678
 v_large :=
 'This is a large string of characters, at least longer than 30 bytes!';
 
 -- Now let's raise an exception
 begin
 -- This won't work! 68 bytes won't fit in 30 bytes!
 v_small := v_large;
 exception
 when OTHERS then
 pl(SQLERRM);
 pl('Moving v_large, length '||
 to_char(length(v_large))||' into v_small.');
 raise_application_error(-20001, SQLERRM||
 ' on v_small := v_large'||
 ' in my anonymous procedure');
 end;
 
 pl(v_small);
end;
/
 

Executing this example results in the following output from SQL*Plus:
 

ORA-06502: PL/SQL: numeric or value error: character string buffer too small
Moving v_large, length 68 into v_small.
declare
*
ERROR at line 1:
ORA-20001: ORA-06502: PL/SQL: numeric or value error: character string
buffer too small on v_small := v_large in my anonymous procedure
ORA-06512: at line 23

 

Chapter 7 ■ Troubleshooting

202

As you can see from the output, the first three lines come from the pl() messages, while the last four
come from the raised application error. The important point here is that without the “extra” information
displayed by pl() or the raised application error, you wouldn’t know where in the program the assignment
error occurred. So by “blocking” the code, you can use pl() or raise_application_error(), or both, in
order to identify the location and reason for an error in your PL/SQL program.

This is invaluable information when troubleshooting. And, by now, you’re probably tired of me stating
that, but I can’t impress on you enough how taking the time to add a few additional lines of PL/SQL code
while you’re programming can later drastically reduce the amount of time it takes to test and troubleshoot
your code.

So how about those bread crumbs?

Bread Crumbs
What do I mean by “bread crumbs?” I mean adding columns to staging tables, adding logging from your
PL/SQL programs, and so on, as you initially write your code, in preparation for trouble. I suppose you may
think, “That’s not a very optimistic way to think about my work.” However, programming is highly detailed
logical work. Therefore, human beings are bound to make mistakes, since we are, by nature, emotionally
“big picture” thinkers.

With that in mind, here are some ideas for leaving behind bread crumbs:

Never use •	 WHEN OTHERS THEN NULL in an exception-handling section. OK, how
about almost never use WHEN OTHERS THEN NULL. It’s a rare occasion when you’ll
actually want to suppress all errors and do nothing. Think about it. The only example
I’ve ever run into is my errorless to_number_or_null() and to_date_or_null()
functions. If there are errors, you need to know, and you need to fix your program’s
logic so it deals with the errors intelligently, which means predictably.

Never handle exceptions in a table package’s methods or a type’s methods. You want •	
these to show up in the presentation layer so the end user (the programmer) can
deal with them appropriately, which means predictably.

Use •	 SYS.DBMS_OUTPUT.put_line() to display success and error messages as the
output of any data migration or data processing program unit.

Use a procedure that utilizes •	 pragma autonomous transaction to log your data
migration or data processing program’s progress to a table so you can see where
in the process your program is currently executing or later review the program’s
execution.

If you’re involved in building interfaces that migrate data from another system into •	
yours, add columns to the interface’s staging tables, with the same names as the
primary key columns in the destination tables. Then store the mappings used by
your PL/SQL program (the primary key values) in the corresponding staging table
columns when moving the data. This will allow you to see where your program
moved the data.

You’ll see some of these ideas in action in Chapter 10, when I talk about the polymorphic use of method
names among the various table package methods and type methods.

I’ll talk more about the use of put_line() and logging next. put_line() was the original means of
debugging available to PL/SQL programmers, and even though it’s not as powerful as a full-blown debugger,
it remains useful. Let’s see why.

Chapter 7 ■ Troubleshooting

203

After the Fact
Up to this point, you’ve seen the stored package procedure SYS.DBMS_OUTPUT.put_line() in action time
and time again. Do you remember how, back in Chapter 2, I wrapped SYS.DBMS_OUTPUT.put_line() with
a stored procedure named pl() so I wouldn’t have to type that long name every time I wanted to display
something on the screen?

Just because put_line() is the simplest of debugging tools in your arsenal does not by any means make
it useless. If fact, because of its simplicity, it will probably be the first tool you use to debug any PL/SQL
program unit. However, keep in mind that when you use put_line(), you’re saying, “I can’t wait to find out
what’s going on. OK, maybe I can.” Why? Because you don’t see any output from put_line() until your
PL/SQL program unit has finished executing.

All the output from put_line() is stored in a temporary buffer until your PL/SQL program unit
completes its execution, successfully or not. Then whatever tool you are using to execute your PL/SQL must
query the DBMS_OUTPUT buffer and display your buffered messages on its screen. SQL*Plus does this for you
automatically. However, if you were to write your own PL/SQL execution tool, you would need to program
it to pull the messages from the DBMS_OUTPUT buffer after your PL/SQL program completed executing. The
point is that put_line() messages appear after the fact.

In addition, you may be limited to the amount of message text you can output during any PL/SQL
program unit’s execution. You set this value in SQL*Plus using this command:
 
set serveroutput on size 1000000;
 

The size you specify is the maximum amount of memory to use for the DBMS_OUTPUT buffer. It used to
be that you could specify 1,000,000 bytes at most, as in the preceding line. However, now you can use an
unlimited amount, but is that a good idea?

And then there’s the third limitation to put_line(). No single message can be more that 32,767 bytes
in length. While that’s not much of limitation, large messages can easily use up the buffer, so you must be
careful about how you specify your messages.

In the end, the value of the information you get from put_line() is going to be equal to the quality of
the messages you add to your PL/SQL code. So let’s discuss that next.

Success Messages
It’s just as important to display messages of successful operation as it is those related to failure. If you’re
writing a data processing or data migration program, it’s likely that you’ll leave your put_line() message in
place. The thoughtful placement of success messages will narrow down the number of lines to investigate if
an error does occur. For example, in Listing 7-1, I have five success messages. When an application error is
raised on line 14, these messages will narrow the location of where the error actually took place.

Listing 7-1.  An Example of Success Messages Narrowing the Scope of an Error, success.sql

01 rem success.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem a script with success messages
04
05 declare
06
07 n_number number;
08
09 begin
10 pl('begin');
11

Chapter 7 ■ Troubleshooting

204

12 n_number := -1;
13
14 pl('No error here!');
15
16 n_number := 0;
17
18 pl('Still no error here!');
19
20 n_number := 'one';
21
22 pl('After the error.');
23
24 pl('end');
25 exception
26 when OTHERS then
27 raise_application_error(-20000, SQLERRM||
28 ' on assigning a value to n_number'||
29 ' in success.sql');
30 end;
31 /
 

When the script success.sql is executed, SQL*Plus outputs the following:
 
SQL> @success.sql

begin
No error here!
Still no error here!
declare
*
ERROR at line 1:
ORA-20000: ORA-06502: PL/SQL: numeric or value error: character to number
conversion error on assigning a value to n_number in success.sql
ORA-06512: at line 23

 
So, PL/SQL is reporting an ERROR at line 1:? That doesn’t make much sense. Yet, further down it

reports an error at line 23. Hey, that doesn’t help much either. It’s just a line number by the exception, but it
can’t be the error—it’s a blank line! Where did the error occur? It took place somewhere in the block of
PL/SQL code in scope for the exception-handling section.

Regardless, if we rely on our success messages, we can see that the error took place some time after the
message Still no error here! and before After the error, and thus narrow down our search to
lines 19 through 21. That helps.

In addition to using success messages to narrow the scope of an error, I like to keep track of the number
of inserts, updates, deletes, and selects, and then display them at the end of the procedure to verify that
something has actually happened.

If, on the other hand, you’re writing table package or type service methods, you may use put_line()
messages during the development process, and then manually comment them out before going into
production. Why just comment them out and not delete them altogether? By leaving them commented out,
you give support programmers a clue about a hard-to-understand or an error-prone section of code, and
give them an opportunity to comment the put_line() back into play to help them debug your code
in the future.

Chapter 7 ■ Troubleshooting

205

So how can you use failure messages?

Failure Messages
In practice, I rely on method raise_application_error() to send a meaningful error number and message
to the presentation layer. I simply number application error messages from -20000 to -20199, from top down
in my package body. The messages include the variable SQLERRM, a very brief note about what I was doing
in the section of code, and the package and/or function or procedure name as a location of the error. The
description in the message needs to be brief because raise_application_error() allows a maximum
message size of only 2,048 bytes (255 bytes in earlier versions).

Since my message size is limited by raise_application_error(), I supplement the error message with
extra lines of output using put_line() before the call to raise_application_error(). With the “extra” lines
of output, I list the values of variables. By including the extra lines of error information, I can call the PL/
SQL program unit that raised an error message with the same values as the presentation layer in order to re-
create and then correct my code defect.

Now that you have some idea how to go about using put_line(), let’s see you put it to use.

It’s Your Turn to Use put_line( )
It’s your turn to put your knowledge of put_line() and raise_application_error() to work by following
these steps.

	 1.	 Write an anonymous PL/SQL procedure that adds a number in a number variable
to a “number” in a varchar2 variable together. Here’s the hitch: you should spell
out the second number in the varchar2 variable so it will raise an exception
when added.

	 2.	 “Block” the line of code where you do your addition and then catch the error, list
the contents of the variables with pl(), and then raise an application error.

	 3.	 Save your script as failure.sql.

	 4.	 Execute your script, @failure.sql.

Did your script and results turn out similar to mine? Listing 7-2 is my solution to this exercise.

Note■■   You won’t get any output if you haven’t executed the SQL*Plus command set serveroutput on
size 1000000;, which I have already placed in the script login.sql that SQL*Plus executes every time it starts.

Listing 7-2.  An Example of Using put_line( ) to List Variable Values, failure.sql

01 rem failure.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem a script that fails on purpose
04
05 declare
06
07 n_number number;
08 v_number varchar2(30);
09

Chapter 7 ■ Troubleshooting

206

10 begin
11 pl('begin');
12
13 pl('before n_number assignment');
14
15 n_number := 1;
16
17 pl('after n_number assignment');
18
19 pl('before v_number assignment');
20
21 v_number := 'two';
22
23 pl('after v_number assignment');
24
25 pl('before addition');
26 begin
27 pl('n_number + v_number = '||to_char(n_number + to_number(v_number)));
28 exception
29 when OTHERS then
30 pl('n_number = '||to_char(n_number));
31 pl('v_number = '||v_number);
32 raise_application_error(-20000, SQLERRM||
33 ' on n_number + v_number'||
34 ' in failure.sql');
35 end;
36 pl('after addition');
37
38 pl('end');
39 end;
40 /
 

And here are the results from executing the failure.sql script:
 
SQL> @failure.sql

begin
before n_number assignment
after n_number assignment
before v_number assignment
after v_number assignment
before addition
n_number = 1
v_number = two
declare
*
ERROR at line 1:
ORA-20000: ORA-06502: PL/SQL: numeric or value error: character to
number conversion error on n_number + v_number in failure.sql
ORA-06512: at line 28

 

Chapter 7 ■ Troubleshooting

207

This time, since I blocked the one line where I’m performing the addition, the line number for the error
reported by PL/SQL is fairly accurate. Still, the success messages do more to narrow the location of the error
than does the error message from PL/SQL’s raise_application_error(). In addition, since I use pl() to
display the variable values, it’s fairly easy to discern the reason for the program’s error.

But what happens if you have a long-running procedure, and you want to get some ongoing feedback
about its success? Then it’s time to take advantage of logging from another session.

As It Happens
By utilizing the PL/SQL pragma autonomous transaction, you can build your own logging utility that can
do the following:

Insert and commit messages into a logging table from your PL/SQL program unit •	
without committing your PL/SQL program’s own transaction context

Select the committed messages from a log table immediately after they are written •	
from any other session

In essence, it’s as if you’re saying, “No, I’ve changed my mind. I can’t wait after all.” This technique
of logging from another transaction context using an autonomous transaction allows you to see what’s
happening in your PL/SQL program unit almost in real time. You’ll start by building your own logging utility,
and then putting it to work in an example. First, you need a table to store messages.

A DEBUG Table
Should I build a relational example or an object-relational example? This time I’ll build an object-relational
example, and then you’ll build its relational equivalent. So what do I need to store about a message?
How about the list of attributes in Table 7-1?

Table 7-1.  Attributes for a Debugging Message Table

Attribute Description

id A primary key column for the object table

text The message to log from the calling PL/SQL program unit

unique_session_id The unique session ID from the calling PL/SQL program unit

insert_user The user from the calling PL/SQL program unit

insert_date The date and time (SYSDATE) from the calling PL/SQL program unit

And don’t forget about the behavior! What will my debug TYPE or package need to do for me?
How about the list of behaviors in Table 7-2?

Chapter 7 ■ Troubleshooting

208

Since I’m building the object-relational version, I need to create the TYPE first, the table second, and
then the TYPE BODY last. Listing 7-3 is my source code for the object TYPE DEBUG_O.

Listing 7-3.  Type DEBUG’s Specification, ops.debug.tps

01 create type DEBUG as object (
02 /*
03 debug.tps
04 by Donald Bales on 2014-10-20
05 Type DEBUG's specification:
06 A type for logging debug information
07 */
08 id number(38),
09 text varchar2(256),
10 unique_session_id varchar2(24),
11 insert_user varchar2(30),
12 insert_date date,
13 -- Get the next primary key value
14 STATIC FUNCTION get_id
15 return number,
16 -- A NULL values constructor
17 CONSTRUCTOR FUNCTION debug(
18 self in out nocopy debug)
19 return self as result,
20 -- A convenience constructor
21 CONSTRUCTOR FUNCTION debug(
22 self in out nocopy debug,
23 ain_id in number,
24 aiv_text in varchar2)
25 return self as result,
26 -- Override the default constructor
27 CONSTRUCTOR FUNCTION debug(
28 self in out nocopy debug,
29 id in number,
30 text in varchar2,
31 unique_session_id in varchar2,

Table 7-2.  Behaviors for a Debugging Message Table

Behavior Description

get_id() Allocate a primary key from the corresponding sequence

Null constructor Return an object initialized to NULL values

Convenience constructor Return an object initialized and ready for INSERT

Map method Return a value to sort an object by

enable() Enable set_text() for the specified program unit

disable() Disable set_text() for the specified program unit

set_text() Log the text to the debug table

Chapter 7 ■ Troubleshooting

209

32 insert_user in varchar2,
33 insert_date in date)
34 return self as result,
35 -- Write to the debug object table
36 STATIC PROCEDURE set_text(
37 aiv_program_unit in varchar2,
38 aiv_text in varchar2),
39 -- A map function
40 MAP MEMBER FUNCTION to_map
41 return number
42) not final;
43 /
44 @se.sql
 

Let’s take a close look at Listing 7-3.

Lines 8 through 12 declare the five attributes for the •	 TYPE.

Lines 14 and 15 declare a static function •	 get_id() to allocate the next primary key
value. Since it’s a static method, the function is executed using the TYPE rather than
an instance of the TYPE.

Lines 17 and 18 declare a constructor that returns an instance of the •	 TYPE initialized
to NULL values.

Lines 21 through 25 declare a convenience constructor that will return a fully •	
initialized instance of the TYPE, ready to be inserted into the DEBUGS table.

Lines 27 through 34 declare a constructor that will override the default constructor •	
definition provided by SQL.

Lines 36 through 38 declare static procedure •	 set_text(), which will insert an
entry into the DEBUGS table using an autonomous transaction. This will allow me to
commit the log entry without committing anything in the session where I’m using
this method to log debug information.

Lines 40 and 41 declare a •	 MAP method used by SQL to compare and sort objects of
this TYPE.

The next step in the development process is to create an object table based on the TYPE. You may have
thought that I needed to code the TYPE’s implementation first. In this case, I’m going to reference the object
table in the TYPE BODY, so I must create the table first. Listing 7-4 is the DDL for creating an object table
based on TYPE DEBUG.

Listing 7-4.  DDL for Creating an Object Table Based on Type DEBUG, ops.debugs.tab

01 rem debugs.tab
02 rem by Donald Bales on 2014-10-20
03 rem Create debugging message table
04
05 -- drop table DEBUGS;
06 create table DEBUGS of DEBUG;
07
08 alter table DEBUGS add
09 constraint DEBUGS_PK

Chapter 7 ■ Troubleshooting

210

10 primary key (
11 id)
12 using index;
13
14 -- drop sequence DEBUGS_ID;
15 create sequence DEBUGS_ID
16 start with 1 order;
17
18 execute SYS.DBMS_STATS.gather_table_stats(USER, 'DEBUGS');
19
20 grant all on DEBUGS to PUBLIC;
 

Let’s look at Listing 7-4 line by line:

Line 6 creates object table •	 DEBUGS based on TYPE DEBUG.

Lines 8 through 12 create a primary key on the object table •	 DEBUGS.

Lines 15 through 16 declare a sequence to be used to allocate primary key values for •	
table DEBUGS.

On line 18, I analyze table •	 DEBUGS to give the Optimizer some initial statistics to
work with.

On line 20, I grant all privileges to •	 PUBLIC so anyone on the database can use the
debug table facility I’m creating.

Now that the table exists, I can compile the TYPE BODY without dependency errors. Listing 7-5 is the
TYPE BODY for TYPE DEBUG.

Listing 7-5.  Type DEBUG’s Implementation, debug.tpb

001 create or replace type body DEBUG as
002 /*
003 debug.tpb
004 by Donald Bales on 2014-10-20
005 Type DEBUG's implementation
006 A type for logging debug information
007 */
008
009 STATIC FUNCTION get_id
010 return number is
011
012 n_id number;
013
014 begin
015 select DEBUGS_ID.nextval
016 into n_id
017 from SYS.DUAL;
018
019 return n_id;
020 end get_id;
021
022

Chapter 7 ■ Troubleshooting

211

023 CONSTRUCTOR FUNCTION debug(
024 self in out nocopy debug)
025 return self as result is
026
027 begin
028 pl('debug(zero param)');
029 self.id := NULL;
030 self.text := NULL;
031 self.unique_session_id := NULL;
032 self.insert_user := NULL;
033 self.insert_date := NULL;
034
035 return;
036 end debug;
037
038
039 CONSTRUCTOR FUNCTION debug(
040 self in out nocopy debug,
041 ain_id in number,
042 aiv_text in varchar2)
043 return self as result is
044
045 begin
046 pl('debug(two params)');
047 self.id := ain_id;
048 self.text := aiv_text;
049 self.unique_session_id := SYS.DBMS_SESSION.unique_session_id;
050 self.insert_user := USER;
051 self.insert_date := SYSDATE;
052
053 return;
054 end debug;
055
056
057 -- Override the default constructor. To do so, you must
058 -- use the same attributes names for the parameter names
059 -- and use them in the order specified in the type spec.
060 CONSTRUCTOR FUNCTION debug(
061 self in out nocopy debug,
062 id in number,
063 text in varchar2,
064 unique_session_id in varchar2,
065 insert_user in varchar2,
066 insert_date in date)
067 return self as result is
068
069 begin
070 pl('debug(five params)');
071 self.id := id;
072 self.text := text;
073 self.unique_session_id := unique_session_id;

Chapter 7 ■ Troubleshooting

212

074 self.insert_user := insert_user;
075 self.insert_date := insert_date;
076
077 return;
078 end debug;
079
080
081 STATIC PROCEDURE set_text(
082 aiv_program_unit in varchar2,
083 aiv_text in varchar2) is
084
085 pragma autonomous_transaction;
086
087 v_text varchar2(256);
088
089 begin
090 v_text := substrb(aiv_program_unit||': '||aiv_text, 1, 256);
091
092 insert into DEBUGS
093 values (DEBUG(DEBUGS_ID.nextval, aiv_text));
094 -- A defect in SQL prevented me from using the
095 -- function get_id() as follows:
096 -- values (DEBUG(DEBUG.get_id(), aiv_text));
097 commit;
098 end set_text;
099
100
101 MAP MEMBER FUNCTION to_map
102 return number is
103
104 begin
105 return id;
106 end to_map;
107
108
109 end;
110 /
111 @be.sql DEBUG
 

Listing 7-5 doesn’t have any new code, so I’ll just point out two details. The first centers around the
second constructor found on lines 39 through 51. In this constructor, I should be able to code line 47 to read
as follows:
 
self.id := DEBUG.get_id();
 

However, in SQL the constructor is called repeatedly, seemingly the number of times that there are
attributes in the TYPE. Accordingly, SQL calls the constructor for this TYPE five times. I consider this a defect.
It causes extra CPU and memory consumption, along with the wasted allocation of sequence values that will
not be used if implemented in a reasonably object-oriented fashion. I’ve left in some troubleshooting pl()
statements to prove that the constructors are called multiple times. To work around this defect, I’ve added
parameter ain_id on line 41, and used the sequence directly in the SQL—for example, on line 93.

Chapter 7 ■ Troubleshooting

213

How long it will take Oracle to get around to fixing this problem is anyone’s guess. I first pointed out this
error in 2006, and it’s still not fixed, so for the time being, I’m coding the convenience constructor for two
parameters instead of one. So, I’ve just shown you an example of using pl() to help troubleshoot a problem.

The second item to notice is the use of the following on line 85:
 
pragma autonomous_transaction;
 

This effectively executes method set_text() in its own session, so committing the inserted debugging
information will not affect the transaction state in the calling program unit.

My next step is to test what I’ve coded. To do that, I actually have three listings. Listing 7-6 is a test unit
for TYPE DEBUG.

Listing 7-6.  Type DEBUG’s Test Unit, ops.debug.sql

01 rem debug.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem A test unit for type DEBUG
04
05 declare
06
07 begin
08 DEBUG.set_text('DEBUG.SQL', 'before the loop');
09 for i in 1..10 loop
10 DEBUG.set_text('DEBUG.SQL', 'loop '||to_char(i)||' before sleep');
11 SYS.DBMS_LOCK.sleep(3);
12 DEBUG.set_text('DEBUG.SQL', 'loop '||to_char(i)||' after sleep');
13 end loop;
14 DEBUG.set_text('DEBUG.SQL:', 'after the loop');
15 end;
16 /
 

When executed, Listing 7-6 will log debug messages to object table DEBUGS. But before you execute it,
you may want to determine your session’s unique ID so you can specify that value from a second session in
order to filter the debug messages that appear as your program executes.

Listing 7-7 is a very short anonymous PL/SQL program to get your session’s unique ID. Then when you
want to see what’s going on with the program from which you’re debug logging, you can specify your first
session’s unique session ID on the SQL*Plus command line when you execute the SQL query from Listing 7-8.

Listing 7-7.  An Example of How to Get Your Unique Session ID, usi.sql

1 rem usi.sql
2 rem by Donald J. Bales on 2014-10-20
3 rem Show me my unique session ID
4
5 execute pl('unique_session_id='||SYS.DBMS_SESSION.unique_session_id);
 

Chapter 7 ■ Troubleshooting

214

For example, if I execute usi.sql in SQL*Plus from my first session, session 1, it reports the following:
 
SQL> @usi.sql

unique_session_id= 000487240001
 
PL/SQL procedure successfully completed.

 
Next, I open a second session, session 2. I execute the following at the SQL> prompt:

 
@debug_a_session.sql 000487240001
 

Of course, I get no rows selected because I haven’t started my test unit in session 1. So I go back to
session 1 and execute the following at the SQL> prompt:
 
@debug.sql
 

Then I switch back to session 2 and simply type a forward slash at the SQL> prompt to see the PL/SQL
program in session 1’s progress:
 
SQL> @debug_a_session.sql 000487240001

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 
no rows selected

SQL> /

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 
 ID TEXT
---------- --
 203 before the loop
 204 loop 1 before sleep
 205 loop 1 after sleep
 206 loop 2 before sleep

SQL> /

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 

Chapter 7 ■ Troubleshooting

215

 ID TEXT
---------- --
 203 before the loop
 204 loop 1 before sleep
 205 loop 1 after sleep
 206 loop 2 before sleep
 207 loop 2 after sleep
 208 loop 3 before sleep
 209 loop 3 after sleep
 210 loop 4 before sleep
 211 loop 4 after sleep
 212 loop 5 before sleep
 213 loop 5 after sleep
 214 loop 6 before sleep
 
12 rows selected.

SQL> /

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 
 ID TEXT
---------- --
 203 before the loop
 204 loop 1 before sleep
 205 loop 1 after sleep
 206 loop 2 before sleep
 207 loop 2 after sleep
 208 loop 3 before sleep
 209 loop 3 after sleep
 210 loop 4 before sleep
 211 loop 4 after sleep
 212 loop 5 before sleep
 213 loop 5 after sleep
 214 loop 6 before sleep
 215 loop 6 after sleep
 216 loop 7 before sleep
 217 loop 7 after sleep
 218 loop 8 before sleep
 219 loop 8 after sleep
 220 loop 9 before sleep
 221 loop 9 after sleep
 222 loop 10 before sleep
 223 loop 10 after sleep
 224 after the loop
 
22 rows selected.

 
As you can see from the preceding output, I reexecuted the SQL SELECT statement three times (using the

forward slash, /) during the 33 seconds it took to run the test unit, and I got more debug information as the
program unit executed.

Chapter 7 ■ Troubleshooting

216

If you examine Listing 7-8, which I used to query the table DEBUGS, you can see that I am limiting the
information to a specified unique session ID and for the last ten minutes (the expression (10/(24*60))
means ten minutes).

Listing 7-8.  An Example of How to Check on Progress in Real Time, ops.debug_a_session.sql

01 rem debug_a_sesion.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Query DEBUGS uing the specified unique session ID
04
05 define unique_session_id=&1;
06
07 select id,
08 text
09 from DEBUGS
10 where unique_session_id = upper('&unique_session_id')
11 and insert_date > SYSDATE - (10/(24*60))
12 order by id;
 

A debug table can be very handy. It gives you the kind of information you get from put_line(), but as it
happens. Now you can just add the following command to your code as needed:
 
DEBUG.set_text(<aiv_program_unit>, <aiv_text>);
 

However, you’ll need to wrap set_text() in an IF statement if you want to turn it on or off as needed.
I have a better solution. How about a debug package?

A DEBUGGER Package
I’m going to create a DEBUGGER package in order to extend the table DEBUGS and its underlying TYPE DEBUG’s
functionality. I have two methods that I wasn’t able to add to TYPE DEBUG because there’s no way to maintain
temporary state in a TYPE’s BODY. That’s not the case for a package, so I’m going to create a “role” package
DEBUGGER for table DEBUGS, which will implement methods disable(), enable(), and a conditional set_text().

Method enable() will add a specified program unit to a list of program units for which to log debug
information to table DEBUGS. If a program calls DEBUGGER.enable(), passing its name, then any calls to
DEBUGGER.set_text() will be logged to table DEBUGS. If a program doesn’t enable debug logging, nothing
will happen when it calls DEBUGGER.set_text(). Conversely, method DEBUGGER.disable() will remove a
specified program unit from the “debug logging enabled” list. Listing 7-9 is the package specification, and
Listing 7-10 is its corresponding package body.

Listing 7-9.  A Role Package Specification for Object Table DEBUGS, ops.debugger.pks

01 create or replace package DEBUGGER as
02 /*
03 debugger.pks
04 by Donald J. Bales on 2014-10-20
05 Object Table DEBUGS's package
06 */
07

Chapter 7 ■ Troubleshooting

217

08 -- Disable debug logging for the specified program unit
09 PROCEDURE disable(
10 aiv_program_unit in varchar2);
11
12 -- Enable debug logging for the specified program unit
13 PROCEDURE enable(
14 aiv_program_unit in varchar2);
15
16 -- Conditionally log the debug information for the specified
17 -- program unit, if it is enabled
18 PROCEDURE set_text(
19 aiv_program_unit in varchar2,
20 aiv_text in DEBUGS.text%TYPE);
21
22
23 end DEBUGGER;
24 /
25 @se.sql DEBUGGER;

Listing 7-10.  A Role Package Body for Object Table DEBUGS, ops.debugger.pkb

01 create or replace package body DEBUGGER as
02 /*
03 debugger.pkb
04 by Donald J. Bales on 2014-10-20
05 Object Table DEBUGS' package
06 */
07
08 -- Declare a table type and then table to hold the
09 -- enabled program units
10 TYPE program_unit_table is table of varchar2(1)
11 index by varchar2(30);
12
13 t_program_unit program_unit_table;
14
15
16 PROCEDURE disable(
17 aiv_program_unit in varchar2) is
18
19 v_program_unit varchar2(30);
20
21 begin
22 v_program_unit := upper(aiv_program_unit);
23
24 if t_program_unit.exists(v_program_unit) then
25 t_program_unit.delete(v_program_unit);
26 end if;
27 end disable;
28
29
30 PROCEDURE enable(
31 aiv_program_unit in varchar2) is
32

Chapter 7 ■ Troubleshooting

218

33 v_program_unit varchar2(30);
34
35 begin
36 v_program_unit := upper(aiv_program_unit);
37
38 if not t_program_unit.exists(v_program_unit) then
39 t_program_unit(v_program_unit) := NULL;
40 end if;
41 end enable;
42
43
44 PROCEDURE set_text(
45 aiv_program_unit in varchar2,
46 aiv_text in DEBUGS.text%TYPE) is
47
48 v_program_unit varchar2(30);
49
50 begin
51 v_program_unit := upper(aiv_program_unit);
52
53 if t_program_unit.exists(v_program_unit) then
54 DEBUG.set_text(v_program_unit, aiv_text);
55 end if;
56 end set_text;
57
58
59 end DEBUGGER;
60 /
61 @be.sql DEBUGGER;
 

Let’s take a detailed look at Listing 7-10:

Lines 10 and 11 declare a PL/SQL table •	 TYPE indexed by a varchar2. You can’t do this
with older versions of Oracle, but you can now. I’m taking advantage of that fact, so
PL/SQL can do the work instead of me writing a lot more code.

Line 13 declares an “enabled program unit list” table, which will temporarily hold a •	
list of program units for which to log debug information to table DEBUGS.

Lines 16 through 27 implement method •	 disable(). This method looks to see if an
entry exists in the “enabled program unit” PL/SQL table for the specified program
unit. If it does exist, it deletes the PL/SQL table entry, effectively disabling debug
logging for the specified program unit.

Lines 30 through 41 implement the •	 enable() method. This method looks to see if an
entry exists in the “enabled program unit” PL/SQL table for the specified program
unit. If it does not exist, the method adds an entry to the PL/SQL table, effectively
enabling debug logging for the specified program unit.

Lines 44 through 56 implement the •	 set_text() method. This method simply calls
the autonomous procedure set_text() in the underlying TYPE DEBUG if the program
unit in question is enabled.

“Big deal—so what?” you say. The implications are staggering. You can add DEBUGGER.set_text() calls
to your long-running or complicated PL/SQL programs and leave them there to be enabled as needed when
trouble rears its ugly head!

Chapter 7 ■ Troubleshooting

219

Listing 7-11 is a test unit for package DEBUG_OTS that turns debug logging on then off, repeating the same
test twice.

Listing 7-11.  A Test Unit for Package DEBUGGER, ops.debugger.sql

01 rem debugger.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem A test unit for package DEBUGGER
04
05 declare
06
07 begin
08 -- Enable debug output
09 DEBUGGER.enable('DEBUGGER.SQL');
10 -- Test
11 DEBUGGER.set_text('DEBUGGER.SQL', 'before the loop ');
12 for i in 1..10 loop
13 DEBUGGER.set_text('DEBUGGER.SQL', 'loop '||to_char(i)||' before sleep');
14 SYS.DBMS_LOCK.sleep(3);
15 DEBUGGER.set_text('DEBUGGER.SQL', 'loop '||to_char(i)||' after sleep');
16 end loop;
17 DEBUGGER.set_text('DEBUGGER.SQL', 'after the loop ');
18
19 -- Disable debug output
20 DEBUGGER.disable('DEBUGGER.SQL');
21 -- Test
22 DEBUGGER.set_text('DEBUGGER.SQL', 'before the loop ');
23 for i in 1..10 loop
24 DEBUGGER.set_text('DEBUGGER.SQL', 'loop '||to_char(i)||' before sleep');
25 -- SYS.DBMS_LOCK.sleep(3);
26 DEBUGGER.set_text('DEBUGGER.SQL', 'loop '||to_char(i)||' after sleep');
27 end loop;
28 DEBUGGER.set_text('DEBUGGER.SQL', 'after the loop ');
29 end;
30 /
 

Given that you have your unique session ID and start debugger.sql in session 1, and then switch to
session 2 and query table DEBUGS with debug_a_session.sql, you’ll see output like this:
 
SQL> @debug_a_session.sql 000487240001

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 
 ID TEXT
---------- --
 225 before the loop
 226 loop 1 before sleep
 227 loop 1 after sleep
 228 loop 2 before sleep
 
4 rows selected.

Chapter 7 ■ Troubleshooting

220

SQL> /

old 4: where unique_session_id = upper('&unique_session_id')
new 4: where unique_session_id = upper('000487240001')
 
 ID TEXT
---------- --
 225 before the loop
 226 loop 1 before sleep
 227 loop 1 after sleep
 228 loop 2 before sleep
 229 loop 2 after sleep
 230 loop 3 before sleep
 231 loop 3 after sleep
 232 loop 4 before sleep
 233 loop 4 after sleep
 234 loop 5 before sleep
 235 loop 5 after sleep
 236 loop 6 before sleep
 237 loop 6 after sleep
 238 loop 7 before sleep
 239 loop 7 after sleep
 240 loop 8 before sleep
 241 loop 8 after sleep
 242 loop 9 before sleep
 243 loop 9 after sleep
 244 loop 10 before sleep
 245 loop 10 after sleep
 246 after the loop
 
22 rows selected.

 
In the preceding output, you see the first half of the test unit where the program unit was enabled, but

not the second half of the program unit where it was disabled. This means you can turn debug logging on
and off programmatically as needed. That’s a powerful troubleshooting tool!

Now that you’ve seen me do the object-relational version, it’s your turn to do the relational version.

It’s Your Turn to Use Debug Logging
Your assignment is to create a relational debug table and table package that incorporate the same
functionality as the object-relational example I just showed you. Yes, you should also include the test unit.
Follow these steps.

	 1.	 Write a DDL script to create a relational table called DEBUGS with the same
columns as the attributes found in TYPE DEBUG.

	 2.	 Save your script as rps.debugs.tab.

	 3.	 Create your table DEBUGS by executing script @rps.debugs.tab.

	 4.	 Write a DDL script to create a table package specification for DEBUG. You should
have three methods: disable(), enable(), and set_text().

Chapter 7 ■ Troubleshooting

221

	 5.	 Save your script as rps.debug.pks.

	 6.	 Create your package specification by executing script @rps.debug.pks.

	 7.	 Write a DDL script to create a table package body for DEBUG. Remember to use
the pragma autonomous_transaction; in set_text()!

	 8.	 Save your script as rps.debug.pkb.

	 9.	 Create your package body by executing script @rps.debug.pkb.

	 10.	 Write a test unit for package DEBUG, saving your script as rps.debug.sql.

	 11.	 Open two SQL*Plus sessions. Get the unique session ID from the first session
by executing script usi.sql. Then start your test unit in the first session by
executing script @rps.debug.sql.

	 12.	 Quickly switch to session 2, and then execute a SELECT statement against table
DEBUGS so you can see the output of your test unit as it executes.

Listings 7-12 through 7-15 are my solution to this exercise. Listing 7-12 is a script to create a relational
table for debug logging output.

Listing 7-12.  A DDL Script to Create Table DEBUGS, rps.debugs.tab

01 rem debugs.tab
02 rem by Donald Bales on 2014-10-20
03 rem Create debugging message table
04
05 --drop table DEBUGS;
06 create table DEBUGS (
07 id number not null,
08 text varchar2(256),
09 unique_session_id varchar2(24) not null,
10 insert_user varchar2(30) default USER not null,
11 insert_date date default SYSDATE not null);
12
13 alter table DEBUGS add
14 constraint DEBUGS_PK
15 primary key (
16 id)
17 using index;
18
19 --drop sequence DEBUGS_ID;
20 create sequence DEBUGS_ID
21 start with 1 order;
22
23 execute SYS.DBMS_STATS.gather_table_stats(USER, 'DEBUGS');
24
25 grant all on DEBUGS to PUBLIC;
 

Listing 7-13 is the specification for the table package for table DEBUG. I’ve declared three methods:
disable(), enable(), and conditional set_text().

Chapter 7 ■ Troubleshooting

222

Listing 7-13.  A DDL Script to Create Table Package Spec DEBUG, rps.debug.pks

01 create or replace package DEBUG as
02 /*
03 debug.pks
04 by Donald J. Bales on 2014-10-20
05 Table DEBUGS's package
06 */
07
08 n_id number := 0;
09
10 -- Get the next primary key value for the table
11 FUNCTION get_id
12 return DEBUGS.id%TYPE;
13
14 -- Enable debug output for the specified program unit
15 PROCEDURE enable(
16 aiv_program_unit in varchar2);
17
18 -- Disable debug output for the specified program unit
19 PROCEDURE disable(
20 aiv_program_unit in varchar2);
21
22 -- Log debug output if enabled for the specified program unit
23 PROCEDURE set_text(
24 aiv_program_unit in varchar2,
25 aiv_text in DEBUGS.text%TYPE);
26
27
28 end DEBUG;
29 /
30 @se.sql DEBUG
 

Listing 7-14 is the body for table package DEBUG. In it, I’ve declared a PL/SQL table TYPE and PL/SQL
table to hold the “enabled program units,” and then implemented methods disable(), enable(), and
set_text().

Listing 7-14.  A DDL Script to Create Table Package Body DEBUG, rps.debug.pkb

01 create or replace package body DEBUG as
02 /*
03 debug.pkb
04 by Donald J. Bales on 2014-10-20
05 Table DEBUGS's package
06 */
07
08 -- A table to hold the list of program units for which
09 -- to store debug information
10 TYPE program_unit_table is table of varchar2(1)
11 index by varchar2(30);
12

Chapter 7 ■ Troubleshooting

223

13 t_program_unit program_unit_table;
14
15
16 FUNCTION get_id
17 return DEBUGS.id%TYPE is
18
19 n_id DEBUGS.id%TYPE;
20
21 begin
22 select DEBUGS_ID.nextval
23 into n_id
24 from SYS.DUAL;
25
26 return n_id;
27 end get_id;
28
29
30 PROCEDURE disable(
31 aiv_program_unit in varchar2) is
32
33 v_program_unit varchar2(30);
34
35 begin
36 v_program_unit := upper(aiv_program_unit);
37
38 if t_program_unit.exists(v_program_unit) then
39 t_program_unit.delete(v_program_unit);
40 end if;
41 end disable;
42
43
44 PROCEDURE enable(
45 aiv_program_unit in varchar2) is
46
47 v_program_unit varchar2(30);
48
49 begin
50 v_program_unit := upper(aiv_program_unit);
51
52 if not t_program_unit.exists(v_program_unit) then
53 t_program_unit(v_program_unit) := NULL;
54 end if;
55 end enable;
56
57
58 PROCEDURE set_text(
59 aiv_program_unit in varchar2,
60 aiv_text in DEBUGS.text%TYPE) is
61
62 pragma autonomous_transaction;
63

Chapter 7 ■ Troubleshooting

224

64 v_program_unit varchar2(30);
65
66 begin
67 v_program_unit := upper(aiv_program_unit);
68
69 if t_program_unit.exists(v_program_unit) then
70 insert into DEBUGS (
71 id,
72 text,
73 unique_session_id)
74 values (
75 DEBUG.get_id(),
76 substrb(v_program_unit||': '||aiv_text, 1, 256),
77 SYS.DBMS_SESSION.unique_session_id);
78 end if;
79 commit;
80 end set_text;
81
82
83 end DEBUG;
84 /
85 @be.sql DEBUG
 

In Listing 7-14, method set_text() logs information to table DEBUGS only if the specified program unit
is “enabled.” Listing 7-15 is a test unit for table package DEBUG.

Listing 7-15.  An Anonymous PL/SQL Script to Test Table Package DEBUG, rps.debug.sql

01 rem debug.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Test unit for package DEBUG
04
05 declare
06
07 v_program_unit varchar2(30) :=
08 'debug.sql';
09
10 begin
11 DEBUG.enable(v_program_unit);
12 DEBUG.set_text(v_program_unit, 'before the loop ');
13 for i in 1..1000 loop
14 DEBUG.set_text(v_program_unit, 'loop '||to_char(i)||' before sleep');
15 SYS.DBMS_LOCK.sleep(3);
16 DEBUG.set_text(v_program_unit, 'loop '||to_char(i)||' after sleep');
17 end loop;
18 DEBUG.set_text(v_program_unit, 'after the loop ');
19 DEBUG.disable(v_program_unit);
20 DEBUG.set_text(v_program_unit, 'before the loop ');
21 for i in 1..1000 loop

Chapter 7 ■ Troubleshooting

225

22 DEBUG.set_text(v_program_unit, 'loop '||to_char(i)||' before sleep');
23 -- SYS.DBMS_LOCK.sleep(3);
24 DEBUG.set_text(v_program_unit, 'loop '||to_char(i)||' after sleep');
25 end loop;
26 DEBUG.set_text(v_program_unit, 'after the loop ');
27 end;
28 /
 

The following is the output from a query against the debug table DEBUGS:
 
SQL> select * from debugs;

 ID TEXT
---------- --
 313 debug.sql: before the loop
 314 debug.sql: loop 1 before sleep
 315 debug.sql: loop 1 after sleep
 316 debug.sql: loop 2 before sleep

SQL> /

 ID TEXT
---------- --
 313 debug.sql: before the loop
 314 debug.sql: loop 1 before sleep
 315 debug.sql: loop 1 after sleep
 316 debug.sql: loop 2 before sleep

SQL> /

 ID TEXT
---------- --
 313 debug.sql: before the loop
 314 debug.sql: loop 1 before sleep
 315 debug.sql: loop 1 after sleep
 316 debug.sql: loop 2 before sleep
 317 debug.sql: loop 2 after sleep
 318 debug.sql: loop 3 before sleep
 319 debug.sql: loop 3 after sleep
 320 debug.sql: loop 4 before sleep
 321 debug.sql: loop 4 after sleep
 322 debug.sql: loop 5 before sleep
 323 debug.sql: loop 5 after sleep
 324 debug.sql: loop 6 before sleep
 
12 rows selected.

Chapter 7 ■ Troubleshooting

226

SQL> /

 ID TEXT
---------- --
 313 debug.sql: before the loop
 314 debug.sql: loop 1 before sleep
 315 debug.sql: loop 1 after sleep
 316 debug.sql: loop 2 before sleep
 317 debug.sql: loop 2 after sleep
 318 debug.sql: loop 3 before sleep
 319 debug.sql: loop 3 after sleep
 320 debug.sql: loop 4 before sleep
 321 debug.sql: loop 4 after sleep
 322 debug.sql: loop 5 before sleep
 323 debug.sql: loop 5 after sleep
 324 debug.sql: loop 6 before sleep
 325 debug.sql: loop 6 after sleep
 326 debug.sql: loop 7 before sleep
 327 debug.sql: loop 7 after sleep
 328 debug.sql: loop 8 before sleep
 329 debug.sql: loop 8 after sleep
 330 debug.sql: loop 9 before sleep
 331 debug.sql: loop 9 after sleep
 332 debug.sql: loop 10 before sleep
 333 debug.sql: loop 10 after sleep
 334 debug.sql: after the loop
 
22 rows selected.

 
As you can see from this output, you are able to view the progress of the test unit as it executes. Armed

with this troubleshooting tool, you can monitor your long-running or short-running data processing or data
migration programs.

In practice, I’ve even found this technique useful in some table package or TYPE methods that are called
by the presentation layer. One example is when I worked with a table package that built SQL statements
dynamically using information from the database, and then passed them back to the presentation layer. If a
user got an error, I could see what SQL was passed back to his web page by looking in the debug table in the
database. It didn’t take long for me to figure out that I had some data-entry errors in the tables used to build the
dynamic queries, but it would have been next to impossible to identify the problem in the presentation layer.

As an alternative to debug logging, you may decide to use package SYS.DBMS_TRACE to trace the
execution of a session to a file that you can later examine, line by line, or using a utility like TKPROF. However,
I’ve found that DBMS_TRACE creates too much information to be useful. With it, you have limited control of the
volume of information collected. In contrast, with a debug logging utility, you determine what information is
logged and when.

Another alternative package you may want to investigate is SYS.DBMS_ERRLOG. With this package, you
can write debug information to a table anytime an exception occurs in your PL/SQL program unit. I still find
the use of my “homegrown” debug logging to be more useful.

Debug logging is a good tool, but in some situations, a real debugging tool is more appropriate. Let’s
look at Oracle’s debugger next.

Chapter 7 ■ Troubleshooting

227

One Step at a Time
After what seemed an eternity, PL/SQL programmers now have a real, honest-to-goodness debugger. What’s
a debugger? It allows you to step through your PL/SQL code as it executes, one step at a time, line by line,
inspecting the value of variables, and seeing how your program executes your logic. It’s a remote debugger—
remote in the fact that your PL/SQL program unit must be stored in the database, and it must be executable.
By “executable,” I mean it must be a stored function, procedure, or packaged function or procedure.

So how did this revolution come about? It started with a PL/SQL package called SYS.DBMS_DEBUG.
Oracle database PL/SQL package DBMS_DEBUG provides communication hooks into the PL/SQL debugger
layer in the database. Using this package, you can build your own remote debugger, but it’s much easier to
use Oracle SQL Developer.

Debugging with Oracle SQL Developer
Oracle SQL Developer is an SQL and PL/SQL development tool for the Oracle database. You can download a
free copy from the Oracle Technology Network site, http://otn.oracle.com.

I’m not going to give you a lesson on how to use Oracle SQL Developer here, because that would be a
book in itself, but I will show you some highlights to debugging with it.

Your first step in using a remote debugger with Oracle is to grant debugging rights to the username for
which you intend to debug a stored program unit. That’s done by the system administrator or DBA using the
following syntax:
 
grant debug connect session to <username>;
grant debug any procedure to <username>;
 
where <username> is the name of the user for which to grant the debug privileges.

Your next step is to recompile the stored program units in question with the DEBUG option, using the
appropriate syntax for the object type from the following list:
 
alter function <name> compile debug;
alter package <name> compile debug package;
alter package <name> compile debug specification;
alter package <name> compile debug body;
alter procedure <name> compile debug;
alter trigger <name> compile debug;
alter type <name> compile debug specification;
alter type <name> compile debug body;
 

Alternatively, you can recompile the code from Oracle SQL Developer! Let me show you an example
of debugging (of all things) the DEBUG TYPE and the DEBUGGER package. In this example, I’ve already started
Oracle SQL Developer and logged in to database ORCL, where, incidentally, I have already granted debug
connect session and debug any procedure rights to the username.

In Figure 7-1, I used the tree view on the left side of the screen to drill down and select the BODY for
TYPE DEBUG. From there, I right-clicked and chose Edit. That action displayed the tab DEBUG Body, where I
subsequently added a breakpoint to the constructor.

http://otn.oracle.com/

Chapter 7 ■ Troubleshooting

228

In Figure 7-2, I used the tree view to find the package body for DEBUGGER. Next, I right-clicked and
selected Edit. That action displayed the tab DEBUGGER Body, where I added a breakpoint for procedure
set_text(). Then I clicked the icon to recompile the item with debug.

Figure 7-1.  Setting a breakpoint in TYPE DEBUG’s constructor

Chapter 7 ■ Troubleshooting

229

At this point, I’ve set two breakpoints: one in TYPE DEBUG’s constructor and a second in package body
DEBUGGER’s set_text() method. Now when I execute a program unit that calls either DEBUG’s constructor
or DEBUGGER.set_text(), the debugger will stop execution so I can inspect variable values or single-step
through each line of code.

My next task is to select an executable target and then debug it. That’s what I did in Figure 7-3. Once
again, I used the tree view to select the package specification for DEBUGGER. Then I right-clicked and selected
Edit. That action displayed the tab DEBUGGER. From there, I clicked the debug icon. Since I’m in a package
specification, the target is runnable, so Oracle SQL Developer prompts me for an anonymous procedure that
I can use to execute the target.

Figure 7-2.  Setting a breakpoint in package body method DEBUGGER.set_text( )

Chapter 7 ■ Troubleshooting

230

When I clicked the debug icon in Figure 7-3, the Debug PL/SQL dialog box appeared, as shown in
Figure 7-4. Here, I selected the target method to debug—in this case, set_text. Next, I needed to modify the
anonymous PL/SQL procedure stub presented by Oracle SQL Developer or select one from the file system by
clicking the From File button. Since I already had a test unit script written, ops.debug.sql, I selected it from
the file system, deleted the remark lines and the trailing compile slash, and then clicked the OK button to
start the procedure, thus starting the debugging session.

Figure 7-3.  Editing the package specification for DEBUGGER in order to debug it

Chapter 7 ■ Troubleshooting

231

In Figure 7-5, the debugger stopped the execution of the program when it encountered the breakpoint
set on method set_text(). From there, I clicked the Step Into icon in order to execute the code line by line.
In the lower-right corner of the screen, you can see the value of variable v_program_unit because I set up a
watch on that variable.

Figure 7-4.  Specifying the anonymous PL/SQL script to execute the runnable target

Chapter 7 ■ Troubleshooting

232

As you can see from this short example, you have total access to both the values of variables and how
program logic is being executed when you’re in a debugger. This is the ultimate troubleshooting tool. Or is it?

For a simple troubleshooting task, you are probably better off using put_line(). For a long-running
program unit, you’re probably better off using debug logging. Then once you’ve narrowed down the
problem, if you haven’t already solved it, you may want to use a debugger. Why?

Using a debugger requires a great deal of setup, arranging access to the username of the stored program
unit, grants for debugging, and the creation of an access control list. And it can take a lot of time to use for
the simple fact that stepping through a program line by line can be extremely time-consuming. It’s up to you
to use the appropriate tool at the appropriate time.

Figure 7-5.  Stepping into code after a breakpoint has been encountered

Chapter 7 ■ Troubleshooting

233

Debugging Anonymous PL/SQL
So far, I’ve been talking only about debugging stored program units. What about anonymous PL/SQL
procedures? Sorry, you cannot debug anonymous PL/SQL program units. And that should not be a big deal.
If you have an anonymous PL/SQL program that’s so big that it needs debugging, it probably needs to be
permanently stored in the database. Once you store it in the database, you can use Oracle SQL Developer to
debug it.

Debugging with TOAD for Oracle
TOAD for Oracle is a very popular SQL and PL/SQL development tool by Quest Software. There’s a freeware
version available for download from Dell (formerly Quest Software) at http://software.dell.com/
products/toad-for-oracle/. However, the free version does not include debugging capability. To get a
copy of TOAD with a debugger, you must download the trial version. The TOAD debugger has almost the
same set of debugging features as Oracle SQL Developer, but I prefer Oracle SQL Developer.

Debugging with Visual Studio
Oracle has a plug-in module that allows you to use the remote debugger from Microsoft’s Visual Studio.
Once again, you can download this plug-in from Oracle’s Technology Network web site at
http://otn.oracle.com.

It’s Your Turn to Use a Debugger
I know I haven’t taken the time to show you how to use the PL/SQL debugger; I’ve only walked through an
example. As a professional, it will be invaluable for you to know how to use the PL/SQL debugger. So, follow
these somewhat loosely defined steps to install the PL/SQL debugger and get some experience using it.

	 1.	 Go to http://otn.oracle.com and search for “Oracle SQL Developer download.”
This should bring you to the Oracle SQL Developer page, where you can
download a copy of the software, get its installation instructions, and access
tutorials for using the product.

	 2.	 Download Oracle SQL Developer.

	 3.	 Print a copy of the tutorials “Creating a database connection” and “Loading,
executing and debugging PL/SQL.”

	 4.	 Install Oracle SQL Developer.

	 5.	 Run Oracle SQL Developer and create a connection to the database you’re using
for username RPS for working on your exercises.

	 6.	 Using the “Loading, executing and debugging PL/SQL” tutorial as your guide,
find table package DEBUG in the tree view.

	 7.	 Edit the package body by right-clicking its name in the tree view, and then
recompile it with debug.

	 8.	 Create breakpoints in DEBUG’s three methods: disable(), enable(), and
set_text().

	 9.	 Edit the package specification, and click the ladybug icon to run the debugger.

http://software.dell.com/products/toad-for-oracle/
http://software.dell.com/products/toad-for-oracle/
http://otn.oracle.com/
http://otn.oracle.com/

Chapter 7 ■ Troubleshooting

234

	 10.	 When the Debug PL/SQL dialog box appears, click the From File button, and
then load your test unit script, rps.debug.sql.

	 11.	 Remove the comment lines at the top of the test unit script and the trailing
compile slash at the end of the script, and then click OK to start your debug
session.

	 12.	 After the first breakpoint is triggered, click the Step Into icon to walk through the
code line by line.

	 13.	 Add some watches so you can see the variable’s values change as the program
executes.

	 14.	 Sit back and think how helpful this tool can be in your future.

At this point, you should now have three tools in your troubleshooting arsenal: put_line(), table
package DEBUG, and a real live debugger! With these tools, you should be able to troubleshoot any logic
problem, but what about performance?

If you have a long-running or large stored procedure, how do you know where in its code it’s slow?
You can get this information with runtime profiling, our next topic.

Profiling PL/SQL
Profiling in this context is about collecting runtime statistics from your PL/SQL program units in order to
determine which lines of code are consuming the most resources, usually in a unit of time. Armed with these
statistics, you can quickly see what part of your PL/SQL program is taking the most time to execute, so you
can concentrate your efforts on improving performance on those lines of code that are poor performers.

In days of yore, you had to write your own profiling package in order to collect runtime statistics. Then
you had to sprinkle your code with calls to your profiling package in order to collect the statistics. In fact,
I did just that, creating a profiling package with architecture similar to the debug logging package.

Nowadays, you have access to a built-in profiling package, SYS.DBMS_PROFILER, which can hook itself
into you session and profile your PL/SQL code line by line, without you needing to add many lines of code
to your listings. Here, you’ll look at the three tables where DBMS_PROFILER stores its collected statistics, the
package’s methods, and an example of its use. Then you’ll finish up this section by profiling your own code.

Profiler’s Tables
The profiling package DBMS_PROFILER stores the statistics it collects during its use in memory, until you call
its flush_data() method, at which point it moves the statistics to three tables:

•	 PLSQL_PROFILER_RUNS: Holds information about a particular run

•	 PLSQL_PROFILER_UNITS: Holds the names of program units for a particular run

•	 PLSQL_PROFILE_DATA: Holds the profiling statistics for every line of each program
unit accessed in a particular run

Your Oracle system administrator or DBA must create these tables globally using the profload.sql script,
or in the schema you’re logged in to using the proftab.sql script, before you try to use the profiler.
In addition, you must have the same rights granted to your username as you need for debugging.

You can find detailed information about the DBMS_PROFILER package and these three tables in Oracle’s
PL/SQL Packages and Types Reference. Let’s look at the package’s methods next.

Chapter 7 ■ Troubleshooting

235

Profiler’s Methods
The DBMS_PROFILER package has seven methods, of which you must use at least three to profile an
application. Here are the three I am referring to:

•	 start_profiler(): Initializes and starts a profiling “run” in order to collect statistics.
You can specify a description for the run so you can identify the run number after
the run, or you can use an overloaded version of the method that returns the run
number when you start the run.

•	 stop_profile(): Stops a previously started run.

•	 flush_data(): Stores the statistics for the current run into three tables:
PLSQL_PROFILER_RUNS, PLSQL_PROFILER_UNITS, and PLSQL_PROFILER_DATA.

To start a profiling session, you need to execute procedure start_profiler() in your PL/SQL program
unit where you want to start collecting performance statistics. To stop collecting statistics, you need to
execute stop_profile(), usually followed by flush_data(), in order to permanently store the statistics in
the profiler’s tables.

Listing 7-16 is a SQL*Plus script that can run any anonymous PL/SQL script with profiling turned on.

Listing 7-16.  A Script to Execute Another Script with Profiling, run_profile.sql

01 rem run_profile.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Capture DBMS_PROFILER information for the specified script
04
05 define script="&1";
06
07 set verify off;
08
09 declare
10
11 n_run_number number;
12
13 begin
14 DBMS_PROFILER.start_profiler(
15 '&script'||' on '||to_char(SYSDATE, 'YYYYMMDD HH24MISS'),
16 ' ',
17 n_run_number);
18
19 pl('DBMS_PROFILER run_number = '||to_char(n_run_number));
20 end;
21 /
22
23 @&script
24
25 execute DBMS_PROFILER.stop_profiler;
26 execute DBMS_PROFILER.flush_data;
27
28 set verify on;
 

Chapter 7 ■ Troubleshooting

236

To execute the script, type the name of the script in Listing 7-16 followed by the name of the script you
wish to execute after the SQL*Plus prompt, as follows:
 
SQL> @run_profile.sql <script_name>
 

For example, to profile TYPE DEBUG and role package DEBUGGER, I first log in with username OPS, create
the profiler tables by executing script C:\oracle12c\product\12.1.0\dbhome_1\RDBMS\ADMIN\proftab.sql,
and then execute the script run_profile.sql, passing in the name of my test unit script, ops.debugger.sql:
 
SQL> @run_profile.sql ops.debugger.sql
 

Here’s the output from executing the script in SQL*Plus:
 
SQL> @run_profile ops.debugger.sql

DBMS_PROFILER run_number = 4
 
PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.
 
PL/SQL procedure successfully completed.
 
PL/SQL procedure successfully completed.

 
run_profile.sql displays the run number for a profile run on the screen, so you can then run a report to
view the profiling data.

Profiling Reports
I find two profiling reports helpful: one to display the average percent of processing time in descending
order, and another to order average time consumption by program unit and line number. The SQL*Plus
script avg_profile.sql, shown in Listing 7-17, displays what percent of processing time was consumed by
each program unit and line of code, in the descending order of time consumption.

Listing 7-17.  A Script to Create an Average Percent Profiling Report, avg_profile.sql

01 rem avg_profile.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Create a DBMS_PROFILER report by avg desc
04
05 define runid="&1";
06
07 column avg_pct format 990.99;
08 column line# format 9999;
09 column occur format 9999
10 column text format a42 trunc;
11 column unit_name format a11;
12
13 set linesize 1000;

Chapter 7 ■ Troubleshooting

237

14 set newpage 1;
15 set pagesize 32767;
16 set trimspool on;
17 set verify off;
18
19 spool avg_profile_&runid..txt;
20
21 select v.unit_name,
22 round(v.avg_time/t.avg_time*100, 2) avg_pct,
23 v.occur,
24 v.line#,
25 ltrim(s.text) text
26 from SYS.ALL_SOURCE s,
27 (select u.runid,
28 u.unit_owner,
29 u.unit_type,
30 u.unit_name,
31 d.min_time,
32 to_number(decode(d.total_occur,
33 NULL, NULL,
34 0, 0,
35 round(d.total_time/d.total_occur))) avg_time,
36 d.max_time,
37 d.total_time,
38 d.total_occur occur,
39 d.line#
40 from PLSQL_PROFILER_UNITS u,
41 PLSQL_PROFILER_DATA d
42 where u.runid = d.runid
43 and u.unit_number = d.unit_number
44 and d.runid = &runid) v,
45 (select sum(to_number(decode(d.total_occur,
46 NULL, NULL,
47 0, 0,
48 round(d.total_time/d.total_occur)))) avg_time
49 from PLSQL_PROFILER_UNITS u,
50 PLSQL_PROFILER_DATA d
51 where u.runid = d.runid
52 and u.unit_number = d.unit_number
53 and d.runid = &runid) t
54 where v.unit_owner = s.owner(+)
55 and v.unit_type = s.type(+)
56 and v.unit_name = s.name(+)
57 and v.line# = s.line(+)
58 and v.avg_time > 0
59 order by v.avg_time desc,
60 v.unit_name,
61 v.line#;
62
63 spool off;
64
65 set verify on;
 

Chapter 7 ■ Troubleshooting

238

The avg_profile.sql script produces a report that shows the following information:

The program unit’s name•	

Its average consumption of time•	

How many times the line was executed during the run•	

The line number and text from the PL/SQL program unit in question•	

Listing 7-18 is an example of a report created by avg_profile.sql from Listing 7-17.

Listing 7-18.  An Average Percent Time Consumption Report for Test Unit ops.debugger.sql

UNIT_NAME AVG_PCT OCCUR LINE# TEXT
----------- ------- ----- ----- --
DEBUG 39.72 22 92 insert into DEBUGS
DEBUG 15.28 22 97 commit;
<anonymous> 9.53 2 1
<anonymous> 6.57 1 5
<anonymous> 6.11 18 1
<anonymous> 5.06 1 11
<anonymous> 1.56 2 1
<anonymous> 1.28 10 11
DEBUGGER 0.97 1 36 v_program_unit := upper(aiv_program_unit);
DEBUG 0.86 132 46 pl('debug(two params)');
<anonymous> 0.83 10 9
DEBUG 0.82 132 49 self.unique_session_id := SYS.DBMS_SESSION
DEBUG 0.80 132 50 self.insert_user := USER;
<anonymous> 0.75 10 10
PL 0.75 133 11 SYS.DBMS_OUTPUT.put_line(aiv_text);
DEBUG 0.65 132 53 return;
DEBUG 0.62 22 89 begin
DEBUG 0.59 22 90 v_text := substrb(aiv_program_unit||': '||
DEBUGGER 0.54 1 25 t_program_unit.delete(v_program_unit);
DEBUG 0.46 22 98 end set_text;
DEBUGGER 0.43 1 30 PROCEDURE enable(
DEBUGGER 0.43 1 39 t_program_unit(v_program_unit) := NULL;
DEBUGGER 0.40 22 54 DEBUG.set_text(v_program_unit, aiv_text);
DEBUG 0.34 132 39 CONSTRUCTOR FUNCTION debug(
DEBUGGER 0.32 1 22 v_program_unit := upper(aiv_program_unit);
DEBUGGER 0.32 1 38 if not t_program_unit.exists(v_program_uni
DEBUGGER 0.32 44 51 v_program_unit := upper(aiv_program_unit);
DEBUG 0.28 22 81 STATIC PROCEDURE set_text(
DEBUGGER 0.28 44 44 PROCEDURE set_text(
DEBUGGER 0.25 44 53 if t_program_unit.exists(v_program_unit) t
DEBUG 0.24 132 51 self.insert_date := SYSDATE;
<anonymous> 0.23 10 20
<anonymous> 0.22 1 16
<anonymous> 0.22 1 18
<anonymous> 0.22 1 25
DEBUGGER 0.22 1 16 PROCEDURE disable(
DEBUGGER 0.22 1 24 if t_program_unit.exists(v_program_unit) t
DEBUG 0.20 132 54 end debug;

Chapter 7 ■ Troubleshooting

239

DEBUG 0.16 132 47 self.id := ain_id;
<anonymous> 0.13 10 22
<anonymous> 0.11 1 7
<anonymous> 0.11 1 12
<anonymous> 0.11 1 13
DEBUGGER 0.11 1 27 end disable;
DEBUGGER 0.11 1 41 end enable;
<anonymous> 0.09 11 8
PL 0.08 133 12 end pl;
DEBUGGER 0.05 44 56 end set_text;
DEBUG 0.05 132 48 self.text := aiv_text;
<anonymous> 0.04 11 19
 
50 rows selected.
 

Looking at Listing 7-18, it’s easy to see that the bulk of time consumption is taken by the INSERT
statement. This is typical. The slowest portion of any PL/SQL procedure is usually one or more SQL
statements. That’s why it’s important to always maximize the efficiency of your SQL statements. You’ll
learn about one of the tools you can use to do that shortly, in the section about EXPLAIN PLAN. For now,
it’s important for you to understand just how valuable this report is when considering how to approach
performance enhancements to your PL/SQL program units. With data like this, you can significantly narrow
down the lines of code for which you need to improve performance, and not waste a lot of time guessing
which ones are the poor performers.

A second report I like to use orders the average time consumption by program unit and line number.
The script I execute for this report is named ord_profile.sql (you can find the listing for this report in
the downloadable source code for the book). Just as with avg_profile.sql, you execute the script at the
SQL*Plus prompt, passing in the run number as a parameter. Here’s an example:
 
SQL> @ord_profile.sql 4
 

This command produced the report example shown in Listing 7-19. This report is helpful because it
shows which lines in your program were actually executed. And even more interesting, you can add up the
statistics for a function or procedure call by totaling the statistics from the line where the method is defined
down to the line where it ends. For example, doing this for the constructor debug in Listing 7-19, you can
calculate that it consumed 38,265 nanoseconds of processing time.

Listing 7-19.  An Average Time Consumption Report by Program Unit and Line Number for Test Unit
ops.debugger.sql

UNIT_NAME AVG_TIME OCCUR LINE# TEXT
------------- -------- ----- ----- --
<anonymous> 14497 2 1
<anonymous> 56766 18 1
<anonymous> 0 0 1
<anonymous> 88482 2 1
<anonymous> 0 0 1
<anonymous> 60987 1 5
<anonymous> 0 0 6
<anonymous> 999 1 7
<anonymous> 818 11 8
<anonymous> 7698 10 9
<anonymous> 6999 10 10

Chapter 7 ■ Troubleshooting

240

<anonymous> 11898 10 11
<anonymous> 46990 1 11
<anonymous> 999 1 12
<anonymous> 999 1 13
<anonymous> 1999 1 16
<anonymous> 1999 1 18
<anonymous> 364 11 19
<anonymous> 2100 10 20
<anonymous> 1200 10 22
<anonymous> 0 1 24
<anonymous> 1999 1 25
DEBUG 0 0 9 STATIC FUNCTION get_id
DEBUG 0 0 14 begin
DEBUG 0 0 15 select DEBUGS_ID.nextval
DEBUG 0 0 19 return n_id;
DEBUG 0 0 20 end get_id;
DEBUG 0 0 23 CONSTRUCTOR FUNCTION debug(
DEBUG 0 0 27 begin
DEBUG 0 0 28 pl('debug(zero param)');
DEBUG 0 0 29 self.id := NULL;
DEBUG 0 0 30 self.text := NULL;
DEBUG 0 0 31 self.unique_session_id := NULL;
DEBUG 0 0 32 self.insert_user := NULL;
DEBUG 0 0 33 self.insert_date := NULL;
DEBUG 0 0 35 return;
DEBUG 0 0 36 end debug;
DEBUG 3174 132 39 CONSTRUCTOR FUNCTION debug(
DEBUG 0 132 45 begin
DEBUG 8029 132 46 pl('debug(two params)');
DEBUG 1469 132 47 self.id := ain_id;
DEBUG 477 132 48 self.text := aiv_text;
DEBUG 7604 132 49 self.unique_session_id := SYS.DBMS_SESSI
DEBUG 7445 132 50 self.insert_user := USER;
DEBUG 2197 132 51 self.insert_date := SYSDATE;
DEBUG 6037 132 53 return;
DEBUG 1833 132 54 end debug;
DEBUG 0 0 60 CONSTRUCTOR FUNCTION debug(
DEBUG 0 0 69 begin
DEBUG 0 0 70 pl('debug(five params)');
DEBUG 0 0 71 self.id := id;
DEBUG 0 0 72 self.text := text;
DEBUG 0 0 73 self.unique_session_id := unique_session
DEBUG 0 0 74 self.insert_user := insert_user;
DEBUG 0 0 75 self.insert_date := insert_date;
DEBUG 0 0 77 return;
DEBUG 0 0 78 end debug;
DEBUG 2636 22 81 STATIC PROCEDURE set_text(
DEBUG 5726 22 89 begin
DEBUG 5453 22 90 v_text := substrb(aiv_program_unit||': '
DEBUG 368832 22 92 insert into DEBUGS
DEBUG 141880 22 97 commit;

Chapter 7 ■ Troubleshooting

241

DEBUG 4226 22 98 end set_text;
DEBUG 0 0 101 MAP MEMBER FUNCTION to_map
DEBUG 0 0 104 begin
DEBUG 0 0 105 return id;
DEBUG 0 0 106 end to_map;
DEBUGGER 0 0 1 package body DEBUGGER as
DEBUGGER 1999 1 16 PROCEDURE disable(
DEBUGGER 0 1 21 begin
DEBUGGER 2999 1 22 v_program_unit := upper(aiv_program_unit
DEBUGGER 1999 1 24 if t_program_unit.exists(v_program_unit)
DEBUGGER 4998 1 25 t_program_unit.delete(v_program_unit);
DEBUGGER 0 1 26 end if;
DEBUGGER 999 1 27 end disable;
DEBUGGER 3999 1 30 PROCEDURE enable(
DEBUGGER 0 1 35 begin
DEBUGGER 8998 1 36 v_program_unit := upper(aiv_program_unit
DEBUGGER 2999 1 38 if not t_program_unit.exists(v_program_u
DEBUGGER 3999 1 39 t_program_unit(v_program_unit) := NULL;
DEBUGGER 0 1 40 end if;
DEBUGGER 999 1 41 end enable;
DEBUGGER 2636 44 44 PROCEDURE set_text(
DEBUGGER 0 44 50 begin
DEBUGGER 2931 44 51 v_program_unit := upper(aiv_program_unit
DEBUGGER 2363 44 53 if t_program_unit.exists(v_program_unit)
DEBUGGER 3726 22 54 DEBUG.set_text(v_program_unit, aiv_text)
DEBUGGER 0 44 55 end if;
DEBUGGER 500 44 56 end set_text;
DEBUGGER 0 0 59 end DEBUGGER;
PL 0 0 1 PROCEDURE pl(
PL 6953 133 11 SYS.DBMS_OUTPUT.put_line(aiv_text);
PL 729 133 12 end pl;
 
93 rows selected.
 

Utilizing the statistics provided by DBMS_PROFILER, you can easily determine any bottlenecks in your
PL/SQL programs and approach performance tuning in an efficient manner. DBMS_PROFILER data can also
be used to detect defects in your code, in a fashion similar to debug logging.

Did you notice that, in both reports, the constructor for DEBUG was called 132 times, yet the INSERT
statement was executed only 22 times? That means that SQL executed the constructor six times during each
insert, clearly a defect in the SQL layer of the database, and subsequently a performance problem.

Now that I’ve profiled the object-relational version of the debug logger, it’s your turn to profile the
relational version.

It’s Your Turn to Profile
The value of profiling code grows with the number of lines of code you’re profiling. Still, you’ll start out small
by using DBMS_PROFILER on a smaller set of program units: your own code.

Before you begin, it’s a good idea to see if DBMS_PROFILER is installed and if there are tables that it can
store its data into when method flush_data() is called. To that end, execute a script like is_profiler.sql,
as shown in Listing 7-20.

Chapter 7 ■ Troubleshooting

242

Listing 7-20.  A Script to Detemine If SYS.DBMS_PROFILER Is Installed Properly, is_profiler.sql

01 rem is_profiler.sql
02 rem by Donaled J. Bales on 2014-10-20
03 rem Check to see if the profiler is installed and accessible
04
05 declare
06
07 n_major number;
08 n_minor number;
09 n_package number;
10 n_local number;
11 n_global number;
12
13 begin
14 select count(1)
15 into n_package
16 from SYS.ALL_OBJECTS
17 where object_type = 'PACKAGE'
18 and object_name = 'DBMS_PROFILER'
19 and owner = 'SYS';
20
21 if n_package > 0 then
22 SYS.DBMS_PROFILER.get_version(n_major, n_minor);
23
24 pl('DBMS_PROFILER Version '||
25 to_char(n_major)||'.'||
26 to_char(n_minor));
27
28 pl('DBMS_PROFILER.internal_version_check = '||
29 to_char(SYS.DBMS_PROFILER.internal_version_check));
30 else
31 pl('Sorry, either the profile does not exist, or you'||
32 'don''t have access to it. Contact your DBA!');
33 end if;
34
35 select count(1)
36 into n_local
37 from SYS.ALL_OBJECTS
38 where object_type = 'TABLE'
39 and object_name in (
40 'PLSQL_PROFILER_RUNS',
41 'PLSQL_PROFILER_UNITS',
42 'PLSQL_PROFILER_DATA')
43 and owner = USER;
44
45 if n_local = 3 then
46 pl('You have access to locally defined profiler tables '||
47 'for your current username: '||USER);
48 end if;
49
50 select count(1)

Chapter 7 ■ Troubleshooting

243

51 into n_global
52 from SYS.ALL_OBJECTS
53 where object_type = 'TABLE'
54 and object_name in (
55 'PLSQL_PROFILER_RUNS',
56 'PLSQL_PROFILER_UNITS',
57 'PLSQL_PROFILER_DATA')
58 and owner = 'SYS';
59
60 if n_global = 3 then
61 pl('You have access to gloablly defined profiler tables '||
62 'under username SYS');
63 end if;
64
65 if n_local <> 3 and
66 n_global <> 3 then
67 pl('Sorry, either the profile tables do not exist, or you'||
68 'don''t have access to them. Contact your DBA!');
69 end if;
70
71 end;
72 /
 

You should see SQL*Plus output like this:
 
SQL> @is_profiler.sql

DBMS_PROFILER Version 2.0
DBMS_PROFILER.internal_version_check = 0
You have access to locally defined profiler tables for your current username: RPS
 
PL/SQL procedure successfully completed.

 
Given that you have access to the profiler, profile your relational version of the debug logger by

following these steps.

	 1.	 Profile your debug logger by executing the following at the SQL*Plus prompt:
 

SQL> @run_profile.sql rps.debug.sql
 
		 This profiles your debug logging table package by executing your test unit for said

package. The run_profiler.sql script should have displayed the run number on
the screen. Jot down this number because you’ll need it to run the two profiling
reports next.

	 2.	 Create an “average percent consumption” report by executing the following at
the SQL*Plus prompt:

 
SQL> @avg_profile.sql <run_number>

 
		 where <run_number> is the run number you got from executing script

run_profile.sql.

Chapter 7 ■ Troubleshooting

244

	 3.	 Examine the file avg_profile_<run_number>.txt. Ask yourself, “What’s the
biggest consumer of resources?”

	 4.	 Create an “order by program unit and line number” report by executing the
following at the SQL*Plus prompt:

 
SQL> @ord_profile.sql <run_number>

 
	 5.	 Examine the file ord_profile_<run_number>.txt. Scan down the report. Find

where your methods start and stop. Add up the average time consumption in
nanoseconds. Ask yourself, “What’s the biggest consumer of resources?”

Interestingly enough, in both cases, when you ask yourself to identify the biggest consumer of resources,
you’ll see that the answer is your SQL statements. Yes, we’re back to dealing with SQL again. It’s important to
verify that your PL/SQL program logic is sound and it performs well, but it’s even more important to make sure
that your SQL is efficient. So let’s see how you can determine just what’s going on in a SQL statement next.

Profiling SQL
It’s undeniable. You must make sure your SQL statements are as efficient as possible and that they are doing
as much of the data manipulation work as is possible because SQL is more efficient at manipulating data
than PL/SQL. So how do you see what’s going on when it comes to a SQL statement?

Oracle provides two tools that you can use to examine the underlying access plan generated by the
Oracle SQL Optimizer:

•	 EXPLAIN PLAN: Shows the execution plan generated by the Optimizer for a SQL
statement you execute under the Oracle keywords EXPLAIN PLAN

•	 TKPROF: A utility program that can produce execution plans for all SQL statements
executed again a database

Let’s start out by looking at EXPLAIN PLAN.

Explain Plan
“Why does this take so long to run?” EXPLAIN PLAN will tell you, in just a bit more time than it takes you wrap
your SQL statement in the keywords EXPLAIN PLAN FOR, exactly how the database intends to execute your SQL
statement. Armed with this information, you can quickly determine if you need to do any of the following:

Add an index to a table (or remove it)•	

Rewrite your SQL statement•	

Break your data processing into smaller chunks of work•	

Just live with what you have•	

Given what you just learned in the section on profiling about performance in a PL/SQL program, your
first step should always be to use EXPLAIN PLAN on every SQL statement in your PL/SQL program unit. So
how do you do that?

	 1.	 Execute your SQL statement prefixed with the keywords EXPLAIN PLAN FOR.

	 2.	 Query the table PLAN_TABLE to extract the statistics.

Chapter 7 ■ Troubleshooting

245

In the olden days, you had to write your own SQL statements to query the PLAN_TABLE, but now you
have access to package SYS.DBMS_XPLAN, which will do all the work of formatting the statistics for you.

Listing 7-21 is a SQL*Plus script named xp.sql that will explain the Optimizer’s plan for a SQL
statement stored in a file, with the filename passed to the script as the first parameter.

Listing 7-21.  A Script to Explain the Optimizer Plan for SQL Statements, xp.sql

01 rem xp.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Display the execution plan for the last executed cursor
04
05 define script="&1";
06
07 set linesize 1000;
08 set newpage 1;
09 set pagesize 0;
10 set trimspool on;
11 set verify off;
12
13 EXPLAIN PLAN FOR
14 select 1 from DUAL;
15
16 spool &script..pln;
17
18 EXPLAIN PLAN FOR
19 @&script
20
21 set echo off;
22
23 select * from table(SYS.DBMS_XPLAN.DISPLAY);
24
25 spool off;
26
27 set pagesize 32767;
28 set verify on;
 

For example, first I save the following simple query in file select_workers_equlato.sql:
 
select *
from WORKERS
where name = 'DOE, JOHN J.'
order by 1;
 

Next, I execute xp.sql in SQL*Plus, passing it the filename as follows:
 
SQL> @xp.sql select_workers_equalto.sql
 

Chapter 7 ■ Troubleshooting

246

This produces the following plan:
 
Explained.
 
Plan hash value: 2276017427
 
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	66
1	SORT ORDER BY		1	66
2	TABLE ACCESS BY INDEX ROWID BATCHED	WORKERS	1	66
* 3	INDEX RANGE SCAN	WORKERS_UK2	1	
--

| Cost (%CPU)| Time |

6 (17)	00:00:01
6 (17)	00:00:01
5 (0)	00:00:01
3 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("NAME"='DOE, JOHN J.')
 
15 rows selected.
 

If you examine the plan, you’ll see that the query is retrieving the values from the database by first
scanning index WORKERS_UK2. Since I know how the indexes were built, I can be assured by looking at the plan
that the Optimizer has chosen the best plan for accessing the WORKERS table. Now let’s see what the Optimizer
decides to do when I change the query from an “equal to” to a “like literal ending with a wildcard” query.

First, I save the following query in file select_workers_likepct.sql:
 
select *
from WORKERS
where name like 'DOE%'
order by 1;
 

Next, I execute xp.sql against that filename as follows:
 
SQL> @xp.sql select_workers_likepct.sql
 

Chapter 7 ■ Troubleshooting

247

This produces the following plan:
 
Explained.
 
Plan hash value: 2276017427

--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	66
1	SORT ORDER BY		1	66
2	TABLE ACCESS BY INDEX ROWID BATCHED	WORKERS	1	66
* 3	INDEX RANGE SCAN	WORKERS_UK2	1	
--

| Cost (%CPU)| Time |

6 (17)	00:00:01
6 (17)	00:00:01
5 (0)	00:00:01
3 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("NAME" LIKE 'DOE%')
 filter("NAME" LIKE 'DOE%')
 
16 rows selected.
 

The Optimizer chose the same plan for this query as it did that last one.
Now let’s try a worst-case scenario for any LIKE statement. I’ll use the (%) wildcard on both sides of the

literal. I would assume that this SQL statement will lead to a full index scan, instead of an index range scan.
Does it?

First, I save the following query in file select_workers_pctlikepct.sql:
 
select *
from WORKERS
where name like '%DOE%'
order by 1;
 

Next, I pass the filename to xp.sql as follows:
 
SQL> @xp.sql select_workers_pctlikepct.sql
 

Chapter 7 ■ Troubleshooting

248

This produces the following plan:
 
Explained.
 
Plan hash value: 412163233
 
--
| Id | Operation | Name | Rows | Bytes |TempSpc|
--
0	SELECT STATEMENT		13000	837K	
1	SORT ORDER BY		13000	837K	1144K
* 2	TABLE ACCESS FULL	WORKERS	13000	837K	
--

| Cost (%CPU)| Time |

1065 (1)	00:00:01
1065 (1)	00:00:01
856 (1)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("NAME" LIKE '%DOE%' AND "NAME" IS NOT NULL)
 
14 rows selected.
 

No, it doesn’t use an index at all. Instead, it resorted to the worst of all options: a full table scan. Ouch!
The cost went from 6 to 1065. That means it will take about 177 times longer for this query to respond than
the first two. It looks like if I want to maintain performance in my application, I’m going to have to devise
another solution for allowing my end users to find someone with a name like %<name>%. Is there something
I can do in Oracle to improve this situation? Yes, sometimes there is.

Physics vs. Explain Plan
If you have a table that has much larger row sizes than an applicable index, you can use simple physics to
improve your query response time. For example, the average row size for the table WORKERS is 87 bytes.
The average row size for index WORKERS_UK2 is 17 bytes. If I add a hint to the query forcing it to full scan the
index WORKERS_UK2, the database will be able to retrieve five times as many index blocks per retrieval that it
can table blocks. What does the Optimizer have to say about this plan? Let’s find out.

First, I save the following query as select_workers_pctlikepct2.sql:
 
select /*+ INDEX(WORKERS WORKERS_UK2) */
 *
from WORKERS
where name like '%DOE%'
order by 1;
 

Chapter 7 ■ Troubleshooting

249

In this query, I’ve added the hint /*+ INDEX(WORKERS WORKERS_UK2) */, which tells the Optimizer to
use index WORKERS_UK2. Next, I use xp.sql to do explain the Optimizer’s plan as follows:
 
SQL> xp.sql select_workerS_pctlikepct2.sql
 

This produces the following plan:
 
Explained.
 
Plan hash value: 2470337875
 
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		13000	837K
1	SORT ORDER BY		13000	837K
2	TABLE ACCESS BY INDEX ROWID BATCHED	WORKERS	13000	837K
* 3	INDEX FULL SCAN	WORKERS_UK2	13000	
--

|TempSpc| Cost (%CPU)| Time |

	14787 (1)	00:00:01
1144K	14787 (1)	00:00:01
	14579 (1)	00:00:01
	1576 (1)	00:00:01

Predicate Information (identified by operation id):

 3 - filter("NAME" LIKE '%DOE%' AND "NAME" IS NOT NULL)
 
15 rows selected.
 

Indeed, the Optimizer understands my hint and is prepared to scan the index, but the cost is
astronomical! Well guess what—the Optimizer is wrong. It doesn’t understand the underlying physics
involved.

Since there are 260,000 rows of data, with an average length of 87 bytes, if the Oracle database retrieves
the data in 4KB blocks, it will require the retrieval of at least 5,500 blocks from the disk drive. On the other
hand, it will require the retrieval of only about 1,080 blocks to identify which data rows to retrieve. Since, in
this context, searching for part of a name will return a small set of rows, the application’s performance can
permanently benefit from the use of the hint, regardless of how the Optimizer feels about it. But the proof
is in testing. And that is testing a snapshot of a fully loaded production database, not your development
database. It’s not until there are millions of rows in tables that you will probably need to “out think” Oracle’s
optimizer.

If I execute the first query select_worker_ot_pctlikepct.sql, which does not have the hint, against
260,000 rows, it takes on average three seconds to retrieve the matching rows. If I execute the second query,
select_worker_ot_pctlikepct2.sql, which does have the hint to scan the index, it takes on average one
second to retrieve the matching rows.

Chapter 7 ■ Troubleshooting

250

What’s the moral of this story? The Optimizer doesn’t always know the best way to retrieve data. It works
with what it knows—basically statistics gathered when you analyze a table. On the other hand, you’re an
intelligent programmer who is much more knowledgeable and can therefore consider things like physics.

It’s Your Turn to Use Explain Plan
Do you remember the section on FORALL in Chapter 5? That’s where I nailed down the value of using
the power of SQL instead of writing a whole lot of PL/SQL code to do the same work. The following SQL
statement comes from Listing 5-14:
 
insert into WORKERS (
 worker_id,
 worker_type_id,
 external_id,
 first_name,
 middle_name,
 last_name,
 name,
 birth_date,
 gender_id)
select WORKERS_ID.nextval,
 decode(mod(WORKER_ID_SEQ.currval, 2),
 0, n_WT_EMPLOYEE, n_WT_CONTRACTOR),
 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
 first_name,
 letter||'.',
 last_name,
 WORKER.get_formatted_name(
 first_name, letter||'.', last_name),
 DATE_.random(
 to_number(to_char(SYSDATE, 'YYYY')) - 65,
 to_number(to_char(SYSDATE, 'YYYY')) - 18),
 decode(gender_code, 'F', n_G_FEMALE, n_G_MALE)
from TOP_100_LAST_NAMES,
 TOP_100_FIRST_NAMES,
 A_THRU_Z;
 

In this code, I use pseudo-constants n_WT_EMPLOYEE, n_WT_CONTRACTOR, n_G_FEMALE, and n_G_MALE,
which were preselected from the database, instead of selecting those values from the database in the SQL
INSERT statement. Why?

It’s another one of those tricks I’ve learned along the way. After years of using EXPLAIN PLAN on every
SQL statement I’ve written, I noticed that I can improve the performance of a SQL statement if I reduce the
number of tables accessed in the statement. If a SQL statement has three or less tables being selected, it
performs pretty well. Add more tables, and its performance goes downhill fast.

Chapter 7 ■ Troubleshooting

251

So, if I have fairly limited number of constant values, I select them into pseudo-constant variables
ahead of time, and then use those pseudo-constants in my SQL statement. Here’s the Optimizer’s plan for
the preceding SQL INSERT statement:
 
Explained.
 
Plan hash value: 3139420850
 
--
| Id | Operation | Name | Rows | Bytes |
--
0	INSERT STATEMENT		260K	4570K
1	LOAD TABLE CONVENTIONAL	WORKERS		
2	SEQUENCE	WORKERS_ID		
3	MERGE JOIN CARTESIAN		260K	4570K
4	MERGE JOIN CARTESIAN		2600	23400
5	INDEX FULL SCAN	A_THRU_Z_PK	26	52
6	BUFFER SORT		100	700
7	INDEX FAST FULL SCAN	TOP_100_LAST_NAMES_PK	100	700
8	BUFFER SORT		100	900
9	INDEX FAST FULL SCAN	TOP_100_FIRST_NAMES_PK	100	900
--

| Cost (%CPU)| Time |

717 (1)	00:00:01
717 (1)	00:00:01
10 (0)	00:00:01
1 (0)	00:00:01
9 (0)	00:00:01
0 (0)	00:00:01
717 (1)	00:00:01
0 (0)	00:00:01

16 rows selected.
 

So here’s your assignment. Rewrite the preceding SQL INSERT statement, which takes 47 seconds on
average to execute on my machine, so the ID values for EMPLOYEE, CONTRACTOR, FEMALE, and MALE come from
tables in the SQL INSERT statement’s SELECT statement. Figure out if my working assumption about the
number of tables in a SQL statement was true for this case, too. Follow these steps in order to find out for
yourself.

	 1.	 Rewrite the SQL INSERT statement from Listing 5-14, adding two more tables to
the SELECT statement, so you can get the ID values for corresponding codes from
the database in the SQL statement.

	 2.	 Do an EXPLAIN PLAN on your SQL INSERT statement to determine what the
Optimizer is planning. Is your plan better than the one for the SQL INSERT
statement from Listing 5-14?

Chapter 7 ■ Troubleshooting

252

	 3.	 Look up the ID values for EMPLOYEE, CONTRACTOR, FEMALE, and MALE, and then
substitute these values into the SQL INSERT statement from Listing 5-14.

	 4.	 Delete the contents of table WORKERS, and then execute the SQL INSERT statement
from Listing 5-14 that you just modified, keeping track of how long it takes to
execute. I suggest you do this at least three times, and then calculate the average
value for how long it takes for the INSERT statement to execute.

	 5.	 Delete the contents of table WORKERS, and then execute your SQL INSERT
statement where you include the GENDER_TYPES and WORKER_TYPES tables in
its SELECT statement. Once again, I suggest you do this three times, and then
calculate the average response time.

	 6.	 Compare the results of your timings between the two SQL INSERT statements.
Which one was faster? Which SQL INSERT would you choose?

I’ll show you my solution to this exercise. First, here’s the SQL INSERT statement from Listing 5-14,
modified to include tables GENDER_TYPES and WORKER_TYPES in its SELECT statement:
 
insert into WORKERS (
 id,
 worker_type_id,
 external_id,
 first_name,
 middle_name,
 last_name,
 name,
 birth_date,
 gender_type_id)
select WORKERS_ID.nextval,
 decode(mod(WORKERS_ID.currval, 2),
 0, c1.id, c2.id),
 lpad(to_char(EXTERNAL_ID_SEQ.nextval), 9, '0'),
 first_name,
 letter||'.',
 last_name,
 WORKER.get_formatted_name(
 first_name, letter||'.', last_name),
 DATE_.random(
 to_number(to_char(SYSDATE, 'YYYY')) - 65,
 to_number(to_char(SYSDATE, 'YYYY')) - 18),
 decode(gender_code, 'F', c3.id, c4.id)
from TOP_100_LAST_NAMES,
 TOP_100_FIRST_NAMES,
 A_THRU_Z,
 WORKER_TYPES c1,
 WORKER_TYPES c2,
 GENDER_TYPES c3,
 GENDER_TYPES c4
where c1.code = 'E'
and c2.code = 'C'
and c3.code = 'F'
and c4.code = 'M';
 

Chapter 7 ■ Troubleshooting

253

And here’s the Optimizer’s plan for this SQL INSERT statement:
 
Explained.
 
Plan hash value: 599918850

| Id | Operation | Name |

0	INSERT STATEMENT	
1	LOAD TABLE CONVENTIONAL	WORKERS
2	SEQUENCE	WORKERS_ID
3	MERGE JOIN CARTESIAN	
4	MERGE JOIN CARTESIAN	
5	MERGE JOIN CARTESIAN	
6	MERGE JOIN CARTESIAN	
7	NESTED LOOPS	
8	NESTED LOOPS	
9	TABLE ACCESS BY INDEX ROWID	GENDER_TYPES
* 10	INDEX UNIQUE SCAN	GENDER_TYPES_UK
11	TABLE ACCESS BY INDEX ROWID	GENDER_TYPES
* 12	INDEX UNIQUE SCAN	GENDER_TYPES_UK
13	TABLE ACCESS BY INDEX ROWID	WORKER_TYPES
* 14	INDEX RANGE SCAN	WORKER_TYPES_UK
15	BUFFER SORT	
16	TABLE ACCESS BY INDEX ROWID BATCHED	WORKER_TYPES
* 17	INDEX RANGE SCAN	WORKER_TYPES_UK
18	BUFFER SORT	
19	INDEX FULL SCAN	A_THRU_Z_PK
20	BUFFER SORT	
21	INDEX FAST FULL SCAN	TOP_100_LAST_NAMES_PK
22	BUFFER SORT	
23	INDEX FAST FULL SCAN	TOP_100_FIRST_NAMES_PK

Chapter 7 ■ Troubleshooting

254

------ ---
| Id | Rows | Bytes | Cost (%CPU)| Time |
------ ---
0	260K	9648K	723 (1)	00:00:01
1				
2				
3	260K	9648K	723 (1)	00:00:01
4	2600	75400	16 (0)	00:00:01
5	26	572	7 (0)	00:00:01
6	1	20	6 (0)	00:00:01
7	1	15	4 (0)	00:00:01
8	1	10	2 (0)	00:00:01
9	1	5	1 (0)	00:00:01
* 10	1		0 (0)	00:00:01
11	1	5	1 (0)	00:00:01
* 12	1		0 (0)	00:00:01
13	1	5	2 (0)	00:00:01
* 14	1		1 (0)	00:00:01
15	1	5	4 (0)	00:00:01
16	1	5	2 (0)	00:00:01
* 17	1		1 (0)	00:00:01
18	26	52	5 (0)	00:00:01
19	26	52	1 (0)	00:00:01
20	100	700	15 (0)	00:00:01
21	100	700	0 (0)	00:00:01
22	100	900	723 (1)	00:00:01
23	100	900	0 (0)	00:00:01
------ ---
 
Predicate Information (identified by operation id):

 10 - access("C4"."CODE"='M')
 12 - access("C3"."CODE"='F')
 14 - access("C1"."CODE"='E')
 17 - access("C2"."CODE"='C')
 
38 rows selected.
 

The SQL INSERT statement with the GENDER_TYPES and WORKER_TYPES tables in its SQL SELECT statement
is less efficient (cost equal to 723 vs. 717) according to EXPLAIN PLAN. What about how long it actually takes
to execute? On my machine, it’s actually three seconds faster than the SQL INSERT statement from Listing 5-14!
So much for my experience!

The moral of this story is that you can’t assume anything. You must always test the actual performance
of your SQL statements before and after you’ve made modifications to the database, or to your SQL
statements, in order to improve performance.

If you want a larger view of SQL statement performance, then perhaps you should use TKPROF.

Chapter 7 ■ Troubleshooting

255

TKPROF
TKPROF is a tool that’s normally available only to your DBA. You’re nice to your DBA, aren’t you? So asking for
his or her help in accessing trace files won’t be a problem, right?

TKPROF is a utility that you can use in conjunction with session or system tracing to format the output
of tracing into plans similar to those generated by EXPLAIN PLAN. The big difference is that you can gather
statistics using package SYS.DBMS_MONITOR, which in turn will create trace files. Then you can use the
trcsess utility to format the trace information into a format for TKPROF, and use TKPROF to format the output
of the trace files into information you can use to examine the efficiency of an application’s SQL statements as
they were actually executed in a database.

To use TKPROF, follow these steps.

	 1.	 Utilize package DBMS_MONITOR to trace your application’s use of SQL.

	 2.	 Use the trcsess utility to consolidate trace information into a file that can be
analyzed using TKPROF.

	 3.	 Examine the consolidated trace file using TKPROF, in order to determine
high-cost SQL statements in your application.

Using TKPROF, you’ll be able to see the following for each SQL statement executed while you’re
monitoring the database:

Resources consumed•	

Number of times it was called•	

Number of rows processed•	

Optimizer’s execution plan•	

Once you’re armed with this information, you can use EXPLAIN PLAN to determine if there is a better
alternative SQL statement, or if you need to come up with an entirely new solution. You may also want to
investigate using package SYS.DBMS_SQLTUNE to help you decide how to properly tune a SQL statement.

You can find more information about performance tuning and EXPLAIN PLAN in the Oracle Database
Performance Tuning Guide. You can find more information about the SYS.DBMS_* PL/SQL packages
mentioned in this chapter in the PL/SQL Packages and Types Reference.

So what have you learned?

Summary
This chapter was all about troubleshooting. First, I discussed how to reduce the amount of troubleshooting
you may have to do by simply preventing trouble in the first place. Second, I talked about adding
troubleshooting-enabling code into your PL/SQL program units as you go, in anticipation of and preparation
for trouble. Next, I covered four different troubleshooting tools:

•	 put_line()

Debug logging•	

Remote debugging•	

•	 EXPLAIN PLAN

Armed with these tools, you’ll be able to handle any PL/SQL problem that comes your way. Now that
you know how to fix any defect, how do you go about finding them all? By testing! And that’s what I’m going
to cover next.

257

Chapter 8

Testing

After 30 plus years of enterprise application development, I’ve found that the actual application
development process for programmers consists of three high-level tasks:

Coding•	

Testing•	

Documenting•	

The graph in Figure 8-1 is what I consider the ideal distribution of time for those three tasks. Yes, that’s
60% of the development time spent on testing. The first response I get from most developers and project
managers is, “Wow, that’s an awful lot of time for testing, isn’t it?” Not really. All the time you spend testing is
time you won’t have to spend supporting the application. And it costs a lot more to fix a defect in production
than it does to take care of the problem earlier. It’s as simple as that.

Figure 8-1.  An ideal distribution of development work

Chapter 8 ■ Testing

258

Professional PL/SQL programmers write test units for their PL/SQL program units as they write their
program units. I’ve been having you write them all along, haven’t I? These are the only proper ways to reduce
the amount of time spent testing:

Develop with modularity (object orientation) because once a well-encapsulated •	
software component is tested, it’s unlikely it will break or need testing if a different
unrelated module is modified.

Automate testing by writing automated test units for every program unit (within •	
reason) and/or by using a testing application suite.

Write rerunnable test units. You should be able to run test units over and over again •	
until there are no errors, without having to do any extra work to run them again.

Update test units with additional tests if a defect not caught by the current test unit •	
rears its ugly head.

Don’t lose your test units.•	

Document your test units.•	

In contrast, nowadays it seems that everyone’s favorite way to reduce the amount of time spent testing
is to not test at all, which means passing testing on to the end user (not a good idea), which in turn means
passing it on to support personnel (even worse). Why is passing testing on to support personnel even worse?
At least the end users have a good idea how things should work. Support personnel usually know even less. It
becomes a case of the proverbial “blind leading the blind.”

So just whose responsibility is testing?

	 1.	 You are primarily responsible for testing your own code. You need to write test
plans and test units to execute those test plans.

	 2.	 Your peers on your programming team are also responsible if they run into an
error when using one of your components. Their responsibility is to inform you
that there is a defect in your code, to ask you to update your test plans, update
your test units, and then to test your code again.

	 3.	 Your supervisor, whether a technical lead, project manager, or in another
position, is responsible for verifying that you have executed your test plans and
that there are no errors. Your supervisor is also responsible for verifying that your
test plans are updated if someone encounters an error.

	 4.	 An application’s support personnel are responsible for reporting errors to the
development team so defects can be fixed, and then test plans and test units can
be updated and rerun.

	 5.	 An application’s end users are responsible for reporting errors to the support
team so defects can be fixed, and then test plans and test units can be updated
and rerun.

I used a numbered list for these responsibilities to emphasize that you are the one most responsible for
testing.

Chapter 8 ■ Testing

259

So just what do I mean by “test plan” and “test unit”? A test plan is a document that outlines how an
application is to be tested. It should at least answer the following questions:

How will the persistence layer (database) be tested?•	

How will the application layer (middle tier) be tested?•	

How will the presentation layer (the various presentation layers: data entry, •	
reporting, interfaces, and so on) be tested?

What technique will be used to keep track of what needs to be tested?•	

What technique will be used to record that something has been tested?•	

Who will sign off that the testing has been completed successfully and that there are •	
no errors?

How many rounds of testing will there be, and who will perform each round of •	
testing?

A test unit is a list of tests to be executed by a tester (a person who tests) or executed by a program,
written or scripted, which executes the test steps in an automated fashion. This chapter is about writing
test units:

The commonly executed steps in a PL/SQL test unit for SQL•	

The commonly executed steps in a PL/SQL test unit for PL/SQL•	

A table to store the tests performed and their results•	

A package to aid in writing PL/SQL test units•	

A framework for keeping track of what needs to be tested in a persistence layer •	
(database/objectbase)

Let’s start by looking at the common tasks involved in testing SQL.

SQL Test Patterns
If you have a PL/SQL method that uses SQL, then you must devise some method to test that the SQL in that
program unit works correctly. From an abstract point of view, that boils down to executing some or all of
these steps in the following order:

	 1.	 DELETE

	 2.	 INSERT

	 3.	 SELECT

	 4.	 UPDATE

	 5.	 DELETE

If you’re going to test a program unit’s ability to INSERT a new entry into a table, you first need to
decide on an acceptable set of values to use during the INSERT, and then you must clean up after yourself by
removing what you’ve just added so the test unit can be run again. Since it’s entirely possible that an error
may have occurred before your INSERT operation, you need to DELETE first. Otherwise, when you rerun your
test on INSERT, you may get an error due to a row that was not properly cleaned up or removed during a prior
test. That’s why I have DELETE as the number one high-level operation for testing any PL/SQL program unit
that automates SQL testing.

Chapter 8 ■ Testing

260

Next, if you’re going to test a PL/SQL program unit’s ability to retrieve values from a table, you first need
to INSERT those values so they are available. That means you must INSERT before you SELECT, which, in turn,
means you need to DELETE, INSERT, SELECT, and then DELETE in your test unit.

Now if you’re going to test a program unit’s ability to UPDATE, it follows that you must first SELECT to
verify that there is something to UPDATE, which requires you to INSERT before you SELECT and DELETE before
you INSERT. Then you need to DELETE in order to clean up after yourself.

Last, if you’re going to test a program unit’s ability to DELETE, you need to perform a DELETE, then an
INSERT, followed by a SELECT, (yes, you can skip UPDATE) and then a DELETE. I like to call this abstract pattern
the SQL Circle of Life, as illustrated in Figure 8-2.

At this moment, this discussion may seem quite silly. But you’ll see soon enough, when you start writing test
units, you will need to keep the SQL Circle of Life in mind when writing rerunnable SQL test units in PL/SQL.

Let’s look at patterns found when testing PL/SQL methods next.

PL/SQL Test Patterns
Just as there is an abstract pattern to testing SQL in PL/SQL, there is also a pattern you’ll need to follow to
test PL/SQL program units themselves. The PL/SQL testing pattern is “blocking” your test code.

You need to wrap each of your PL/SQL tests in a PL/SQL block so you can programmatically maintain
control in your test unit. If you can’t maintain control in your test unit, it may end abruptly without
performing all your tests. Here’s an example:
 
...
begin
 -- Perform your test by calling a method with test data here
 
 -- Then check to ensure test success here
exception
 when OTHERS then
 -- Catch any PL/SQL exception and report the error here
end;
-- Go on to the next test
...
 

You’ll end up testing your PL/SQL methods by calling them with test values in your test unit, and then
inspecting the results of the operation to verify it worked correctly. In order to maintain control, you’ll need
to catch any raised exceptions, hence the when OTHERS then clause in the exception-handling section of
the PL/SQL block surrounding your code. From the exception-handling section, you’ll report any errors
that take place, therefore handling the exception, not raising the exception to the outer (enclosing) PL/SQL
block. Then you’ll go on to perform your next method test.

DELETE INSERT

SELECTUPDATE

Figure 8-2.  The SQL Circle of Life

Chapter 8 ■ Testing

261

How will you report and keep track of success or failure in your test units? You’ll do that with a testing
tool. Let’s look at that next.

A Testing Tool
Humans are very good at creating their own tools. To that end, I’ve created a “testing tool” that helps me
code my PL/SQL test units.

I have two high-level requirements for this testing tool. It needs to

Provide a set of constants that I can use for column values when testing.•	

Provide a set of methods that I can use to save tests and results for later analysis.•	

Do you recall that in the “SQL Test Patterns” section, I stated that you first need to decide on an
acceptable set of values to use during the INSERT? How do you go about that?

Well here’s how I do it: I ask the database! Listing 8-1 is a SQL*Plus query I run to determine the
varchar2 lengths that are in common use. For the most part, there should only be a few. While in the
past, the lengths of a character field may have had some meaning, they no longer do. With the advent of
globalization, the lengths of character fields only amount to specifying an upper limit on the amount of
storage you’re willing to use for a given string value.

Listing 8-1.  A Query to Determine Commonly Used Lengths for Varchar2 Columns, data_length_histogram.sql

01 rem data_length_histogram.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Create a histogram of VARCHAR2 data lengths in use
04
05 column column_name format a30;
06
07 set linesize 1000;
08 set newpage 1;
09 set pagesize 32767;
10 set trimspool on;
11
12 spool data_length_histogram.txt;
13
14 select column_name,
15 min(data_length) min,
16 avg(data_length) avg,
17 max(data_length) max,
18 count(1) occurs
19 from SYS.ALL_TAB_COLUMNS
20 where owner = USER
21 and data_type like 'VARCHAR%'
22 and table_name not in (
23 'AUTHORS',
24 'AUTHOR_PUBLICATIONS',
25 'A_THRU_Z',
26 'DEBUGS',
27 'PLAN_TABLE',
28 'PLSQL_PROFILER_RUNS',
29 'PLSQL_PROFILER_UNITS',

Chapter 8 ■ Testing

262

30 'PLSQL_PROFILER_DATA',
31 'TOP_100_FIRST_NAMES',
32 'TOP_100_LAST_NAMES')
33 group by column_name
34 order by max(data_length),
35 column_name
36 /
37
38 spool off;
 

And here’s the output from the query in Listing 8-1:
 
COLUMN_NAME MIN AVG MAX OCCURS
------------------------------ ---------- ---------- ---------- ----------
LOGICAL_INDICATOR 1 1 1 1
PHYSICAL_INDICATOR 1 1 1 1
CAS_NUMBER 30 30 30 1
CODE 30 30 30 7
EXTERNAL_ID 30 30 30 1
FIRST_NAME 30 30 30 1
LAST_NAME 30 30 30 1
MIDDLE_NAME 30 30 30 1
DESCRIPTION 80 80 80 4
ID_CONTEXT 100 100 100 2
NAME 80 85.7142857 100 7
TITLE 100 100 100 1
NARRATIVE 2000 2000 2000 1
 
13 rows selected.
 

Analyzing this output, I have concluded that I will need the following constants for testing:

A •	 TRUE value for the indicator variables

A •	 FALSE value for the indicator variables

A 30-character code value that I can specify any time I test inserting a new code or •	
partial name value into a code or content table

An 80-character description value that I can specify any time I test inserting a new •	
description into a code or content table

A 100-character value that I can specify any time I test inserting a new ID context or •	
title into a content or intersection table

A 2,000-character value that I can specify any time I test inserting a new comment or •	
narrative into a content table

I’ll keep this list of requirements in mind when I code my testing tool’s package specification, so the
constants will be accessible to all other program units, and therefore available when writing their test units.

Chapter 8 ■ Testing

263

WHY ARE WE SPECIFYING CHARACTER COLUMN
LENGTHS ANYWAY?

After having internationalized a number of enterprise applications, I began to wonder why we have to
specify a maximum column length for character columns at all. In the future, I don’t think we’ll need to
do this; the database will handle the length automatically, and why not?

One programmer I know argued that was important and gave me what he thought was a valid example:
“It’s important to constrain a number column for money. It should be NUMBER(11,2), because dollars
have hundredths values (dimes and pennies).” But that’s only valid for dollars; other currencies have
thousandths.

Consider that characters used in the English language use one byte of storage. Other languages use
characters that require two to four bytes of storage. In addition, sentences, even words, in English are
quite compact when compared with other languages. For example, an idea expressed in 30 characters
in English may take four to five times as many words and/or characters in German.

So just what are we specifying when we constrain a varchar2’s length? I think it’s just our expectation
that nothing entered into the column will ever need to be larger than what we’ve specified. So until
Oracle gets with my line of thinking, we might as well decide on a standard set of character column
lengths and stick to it. Here are the lengths I commonly use for character fields in applications:

•	 Code: 30 English only; 60 internationalized

•	 Code context: 500 English only; 1,000 internationalized

•	 Comments: 2,000 English only; 4,000 internationalized

•	 Description: 80 English only; 160

ID context•	 : 100 English only; 200 internationalized

•	 Name: 80 English only; 160 internationalized

•	 Name context: 1,000 English only; 2,000 internationalized

•	 Title: 80 English only; 160 internationalized

I would like to hear your thoughts: don@donaldbales.com. Now back to testing.

How about some behavior? What will I call the methods that aid me with writing test units? Here’s a
preliminary set of requirements:

•	 clear(): To erase the results of a previous test run from table TESTS

•	 get_id(): To allocate a new primary key value for the table TESTS

•	 test(): To test the testing tool

•	 set_test(): To start a new test

•	 set_result(): To store the results of a test

However, before I write a testing tool package, I need to create a table to permanently store the results of
my tests.

Chapter 8 ■ Testing

264

A TEST Table
Why store my test results in a table? Because then I can use SQL to query the table to analyze the results of
my testing. No tool is more powerful at manipulating data than SQL, so a table is the ideal place to save the
results of testing.

What do I need to store? Here’s my short list of data to store:

The name of the package or user-defined •	 TYPE (object name) that contains the
method being tested

The name of the method being tested•	

An external identifier for the test being performed on a given method so I can •	
identify a given test if it fails

A short but meaningful description of the test•	

The result of the test•	

In order to store this data, I’ve written the DDL script in Listing 8-2. It creates a test table named TESTS. I’ve
also added an ID column for a primary key. This will be a unique session ID, so testing in one session does not
collide with testing going on in another session. I’ve also included insert user and insert date columns, which
are standard columns I add to all tables (to add those bread crumbs I talked about in Chapter 7).

Listing 8-2.  A DDL Script to Create a Testing Results Table, rps.tests.tab

01 rem tests.tab
02 rem by Donald Bales on 2014-10-20
03 rem Create test results
04
05 create table TESTS (
06 id number not null,
07 object_name varchar2(30),
08 method_name varchar2(30),
09 test_number number,
10 description varchar2(80),
11 result varchar2(256),
12 unique_session_id varchar2(24) not null,
13 insert_user varchar2(30) default USER not null,
14 insert_date date default SYSDATE not null);
15
16 alter table TESTS add
17 constraint TESTS_PK
18 primary key (
19 id)
20 using index
21 tablespace USERS pctfree 0
22 storage (initial 1M next 1M pctincrease 0);
23
24 create sequence TESTS_ID
25 start with 1 order;
26
27 execute SYS.DBMS_STATS.gather_table_stats(USER, 'TESTS');
28
29 grant all on TESTS to PUBLIC;
31 grant all on TESTS to PUBLIC;
 

Now that I have a table to store results, let’s get to writing a testing tool package.

Chapter 8 ■ Testing

265

A TEST Package Specification
In my testing tool’s package, I define a set of variables or constants that are suitable as insert values for
SQL statements. I can then use these predefined values when writing test units. This approach has several
advantages. First, global use of these testing values will create an environment where testing is done with
consistency. In turn, because of that consistency, everyone involved in testing will know what these predefined
values are, and then know that they are looking at test data if they encounter these values while testing.

Listing 8-3 is the package specification for my testing tool. On the top half of the specification, I’ve
added globally accessible constants to be utilized by all programmers when writing their test units. These are
followed by methods designed to aid programmers when writing their test units. By using these methods,
the test data is consistently formatted and stored for easy analysis.

Listing 8-3.  A Testing Tool Package Spec, rps.test.pks

001 create or replace package TEST as
002 /*
003 test.pks
004 by Donald J. Bales on 2014-10-20
005 A Testing package
006 */
007
008 -- Result constants
009 v_TEST_ERROR constant varchar2(5) := 'ERROR';
010 v_TEST_OK constant varchar2(2) := 'OK';
011 v_TEST_SUCCESS constant varchar2(7) := 'SUCCESS';
012
013 -- Testing constants
014 d_TEST_19000101 constant date :=
015 to_date('19000101', 'YYYYMMDD');
016 d_TEST_99991231 constant date :=
017 to_date('99991231', 'YYYYMMDD');
018
019 v_TEST_N constant varchar2(1) := 'N';
020
021 v_TEST_Y constant varchar2(1) := 'Y';
022
023 v_TEST_30 constant varchar2(30) :=
024 'TEST TEST TEST TEST TEST TESTx';
025
026 v_TEST_30_1 constant varchar2(30) :=
027 'TEST1 TEST1 TEST1 TEST1 TEST1x';
028
029 v_TEST_30_2 constant varchar2(30) :=
030 'TEST2 TEST2 TEST2 TEST2 TEST2x';
031
032 v_TEST_80 constant varchar2(80) :=
033 'Test Test Test Test Test Test Test Test '||
034 'Test Test Test Test Test Test Test Testx';
035

Chapter 8 ■ Testing

266

036 v_TEST_100 constant varchar2(100) :=
037 'Test Test Test Test Test Test Test Test Test Test '||
038 'Test Test Test Test Test Test Test Test Test Testx';
039
040 v_TEST_2000 constant varchar2(2000) :=
041 'Test Test Test Test Test Test Test Test Test Test '||
042 'Test Test Test Test Test Test Test Test Test Test '||
043 'Test Test Test Test Test Test Test Test Test Test '||
044 'Test Test Test Test Test Test Test Test Test Test '||
045 'Test Test Test Test Test Test Test Test Test Test '||
046 'Test Test Test Test Test Test Test Test Test Test '||
047 'Test Test Test Test Test Test Test Test Test Test '||
048 'Test Test Test Test Test Test Test Test Test Test '||
049 'Test Test Test Test Test Test Test Test Test Test '||
050 'Test Test Test Test Test Test Test Test Test Test '||
051 'Test Test Test Test Test Test Test Test Test Test '||
052 'Test Test Test Test Test Test Test Test Test Test '||
053 'Test Test Test Test Test Test Test Test Test Test '||
054 'Test Test Test Test Test Test Test Test Test Test '||
055 'Test Test Test Test Test Test Test Test Test Test '||
056 'Test Test Test Test Test Test Test Test Test Test '||
057 'Test Test Test Test Test Test Test Test Test Test '||
058 'Test Test Test Test Test Test Test Test Test Test '||
059 'Test Test Test Test Test Test Test Test Test Test '||
060 'Test Test Test Test Test Test Test Test Test Test '||
061 'Test Test Test Test Test Test Test Test Test Test '||
062 'Test Test Test Test Test Test Test Test Test Test '||
063 'Test Test Test Test Test Test Test Test Test Test '||
064 'Test Test Test Test Test Test Test Test Test Test '||
065 'Test Test Test Test Test Test Test Test Test Test '||
066 'Test Test Test Test Test Test Test Test Test Test '||
067 'Test Test Test Test Test Test Test Test Test Test '||
068 'Test Test Test Test Test Test Test Test Test Test '||
069 'Test Test Test Test Test Test Test Test Test Test '||
070 'Test Test Test Test Test Test Test Test Test Test '||
071 'Test Test Test Test Test Test Test Test Test Test '||
072 'Test Test Test Test Test Test Test Test Test Test '||
073 'Test Test Test Test Test Test Test Test Test Test '||
074 'Test Test Test Test Test Test Test Test Test Test '||
075 'Test Test Test Test Test Test Test Test Test Test '||
076 'Test Test Test Test Test Test Test Test Test Test '||
077 'Test Test Test Test Test Test Test Test Test Test '||
078 'Test Test Test Test Test Test Test Test Test Test '||
079 'Test Test Test Test Test Test Test Test Test Test '||
080 'Test Test Test Test Test Test Test Test Test Testx';
081
082 -- 1 2 3 4 5
083 -- 12345678901234567890123456789012345678901234567890
084
085 -- Clear the results of the last test
086 PROCEDURE clear(

Chapter 8 ■ Testing

267

087 aiv_object_name TESTS.object_name%TYPE);
088
089
090 -- Set the result of the last test to v_TEST_ERROR
091 PROCEDURE error;
092
093
094 -- Set the result of the last test to the passed Oracle error
095 PROCEDURE error(
096 aiv_result in TESTS.result%TYPE);
097
098
099 -- Display help text
100 PROCEDURE help;
101
102
103 -- Instantiate the package
104 PROCEDURE initialize;
105
106
107 -- Set the result of the last test to v_TEST_OK
108 PROCEDURE ok;
109
110
111 -- Update the test with its results
112 PROCEDURE set_result(
113 aiv_result in TESTS.result%TYPE);
114
115
116 -- Add a test
117 PROCEDURE set_test(
118 aiv_object_name in TESTS.object_name%TYPE,
119 aiv_method_name in TESTS.method_name%TYPE,
120 ain_test_number in TESTS.test_number%TYPE,
121 aiv_description in TESTS.description%TYPE);
122
123
124 -- Set the result of the last test to v_TEST_SUCCESS
125 PROCEDURE success;
126
127
128 -- Test unit
129 PROCEDURE test;
130
131
132 end TEST;
133 /
134 @se.sql TEST
 

Chapter 8 ■ Testing

268

Let’s examine Listing 8-3, line by line:

Lines 9 through 11 add three character constants, •	 ERROR, OK, and SUCCESS, to be used
as values for parameter aiv_result, when calling method result(). OK means the
test completed successfully, and ERROR means the test did not complete successfully.
Constant SUCCESS is called only at the end of a program unit’s test unit after
recording a test for the package or user-defined TYPE in question, in order to flag that
the package or TYPE’s test unit completely successfully, without raising any uncaught
exceptions. If an uncaught exception does occur, the programmer should pass the
value of SQLERRM as the result.

Lines 14 through 80 add constants to be used globally for testing inserts into SQL •	
tables. These “testing” values not only self-document their values as test values, but
also exercise the maximum column size constraints on the columns for tables for
which they are used to test.

Lines 86 and 87 declare method •	 clear(), which a program should call at the
beginning of a test unit in order to clear any previous test results before starting a
new round of tests.

Line 91 declares method •	 error(), which a program should call to record that the test
resulted in an error.

Lines 95 and 96 declare an overridden version of method •	 error(), which takes
one argument. A program should call this method if it needs to record an Oracle
exception error message.

Lines 107 and 108 declare method •	 ok(), which a program should call to record that
an individual test completed without errors.

Lines 112 and 113 declare the method •	 set_result(). Methods error(), ok(),
and success() call this method to record testing results. This method uses pragma
autonomous_transaction so entries are not lost if the test fails in the program unit in
question because of an uncaught exception.

Lines 117 through 121 declare the method •	 set_test(), which a programmer should
use to record a test that is about to be executed inside a test unit. This method also
uses pragma autonomous_transaction so entries are not lost if the test fails in the
program unit in question because of an uncaught exception.

Line 125 declares method •	 success(), which a program should call at the end of a
test unit to flag that the entire test unit completed successfully. That doesn’t mean
that there weren’t errors during the individual tests; it means that the method test()
itself was completely executed.

Line 129 declares the standard test unit method to be used by every package and •	
user-defined TYPE: test(). This is where a programmer codes the test units for every
associated PL/SQL program unit. You’ll see an example in the testing tool’s package
body shortly.

The test result constants OK, ERROR, and SUCCESS make it easy to identify errors after tests are run. If
you want to know which test unit methods failed, just write a query where you list every object in the table
TESTS that doesn’t have a row where the object_name can also be found with a result value of SUCCESS. If
you want to know which individual tests failed, write a query to list the rows where column result starts
with ERR or ORA. I’ll show you a couple of sample queries like these in the “Automating Testing” section later
in this chapter.

Now let’s look at the implementation.

Chapter 8 ■ Testing

269

A TEST Package Body
Now that you’ve seen the specification for my testing tool, let’s look at its implementation, including an
example of its use. Listing 8-4 is the DDL to create the package body for package TEST.

Listing 8-4.  A Testing Tool Package Body, rps.test.pkb

001 create or replace package body TEST as
002 /*
003 test.pkb
004 by Donald J. Bales on 2014-10-20
005 A Testing package
006 */
007
008 -- Hold this value across calls to test() and result()
009 n_id TESTS.id%TYPE;
010
011
012 PROCEDURE clear(
013 aiv_object_name TESTS.object_name%TYPE) is
014
015 pragma autonomous_transaction;
016
017 begin
018 delete TESTS
019 where object_name = aiv_object_name
020 and unique_session_id = SYS.DBMS_SESSION.unique_session_id;
021
022 commit;
023 end clear;
024
025
026 PROCEDURE error is
027
028 begin
029 set_result(v_TEST_ERROR);
030 end error;
031
032
033 PROCEDURE error(
034 aiv_result in TESTS.result%TYPE) is
035
036 begin
037 set_result(aiv_result);
038 end error;
039
040
041 FUNCTION get_id
042 return TESTS.id%TYPE is
043
044 n_id TESTS.id%TYPE;
045

Chapter 8 ■ Testing

270

046 begin
047 select TESTS_ID.nextval
048 into n_id
049 from SYS.DUAL;
050
051 return n_id;
052 end get_id;
053
054
055 PROCEDURE help is
056 begin
057 pl('You're on your own buddy.');
058 end help;
059
060
061 PROCEDURE initialize is
062 begin
063 null;
064 end;
065
066
067 PROCEDURE ok is
068
069 begin
070 set_result(v_TEST_OK);
071 end ok;
072
073
074 PROCEDURE set_result(
075 aiv_result in TESTS.result%TYPE) is
076
077 pragma autonomous_transaction;
078
079 begin
080 update TESTS
081 set result = aiv_result
082 where id = n_id;
083
084 if nvl(sql%rowcount, 0) = 0 then
085 raise_application_error(-20000, 'Can''t find test'||
086 to_char(n_id)||
087 ' on update TEST'||
088 ' in TEST.test');
089 end if;
090
091 n_id := NULL;
092
093 commit;
094 end set_result;
095
096

Chapter 8 ■ Testing

271

097 PROCEDURE set_test(
098 aiv_object_name in TESTS.object_name%TYPE,
099 aiv_method_name in TESTS.method_name%TYPE,
100 ain_test_number in TESTS.test_number%TYPE,
101 aiv_description in TESTS.description%TYPE) is
102
103 pragma autonomous_transaction;
104
105 begin
106 n_id := get_id();
107
108 begin
109 insert into TESTS (
110 id,
111 object_name,
112 method_name,
113 test_number,
114 description,
115 result,
116 unique_session_id,
117 insert_user,
118 insert_date)
119 values (
120 n_id,
121 upper(aiv_object_name),
122 upper(aiv_method_name),
123 ain_test_number,
124 aiv_description,
125 NULL,
126 SYS.DBMS_SESSION.unique_session_id,
127 USER,
128 SYSDATE);
129 exception
130 when OTHERS then
131 raise_application_error(-20000, SQLERRM||
132 ' on insert TEST'||
133 ' in TEST.test');
134 end;
135 commit;
136 end set_test;
137
138
139 PROCEDURE success is
140
141 begin
142 set_result(v_TEST_SUCCESS);
143 end success;
144
145
146 PROCEDURE test is
147

Chapter 8 ■ Testing

272

148 n_number number;
149
150 begin
151 pl('TESTS.test()');
152 clear('TEST');
153
154 set_test('TEST', NULL, 1,
155 'Is v_TEST_N equal to N?');
156 if v_TEST_N = 'N' then
157 ok();
158 else
159 error();
160 end if;
161
162 set_test('TEST', NULL, 2,
163 'Is the length of v_TEST_N equal to 1?');
164 if nvl(length(v_TEST_N), 0) = 1 then
165 ok();
166 else
167 error();
168 end if;
169
170 set_test('TEST', NULL, 3,
171 'Is v_TEST_Y equal to Y?');
172 if v_TEST_Y = 'Y' then
173 ok();
174 else
175 error();
176 end if;
177
178 set_test('TEST', NULL, 4,
179 'Is the length of v_TEST_Y equal to 1?');
180 if nvl(length(v_TEST_Y), 0) = 1 then
181 ok();
182 else
183 error();
184 end if;
185
186 set_test('TEST', NULL, 5,
187 'Is the length of v_TEST_30 equal to 30?');
188 if nvl(length(v_TEST_30), 0) = 30 then
189 ok();
190 else
191 error();
192 end if;
193
194 set_test('TEST', NULL, 6,
195 'Is the length of v_TEST_30_1 equal to 30?');
196 if nvl(length(v_TEST_30_1), 0) = 30 then
197 ok();
198 else

Chapter 8 ■ Testing

273

199 error();
200 end if;
201
202 set_test('TEST', NULL, 7,
203 'Is the length of v_TEST_30_2 equal to 30?');
204 if nvl(length(v_TEST_30_2), 0) = 30 then
205 ok();
206 else
207 error();
208 end if;
209
210 set_test('TEST', NULL, 8,
211 'Is the length of v_TEST_80 equal to 80?');
212 if nvl(length(v_TEST_80), 0) = 80 then
213 ok();
214 else
215 error();
216 end if;
217
218 set_test('TEST', NULL, 9,
219 'Is the length of v_TEST_100 equal to 100?');
220 if nvl(length(v_TEST_100), 0) = 100 then
221 ok();
222 else
223 error();
224 end if;
225
226 set_test('TEST', NULL, 10,
227 'Is the length of v_TEST_2000 equal to 2000?');
228 if nvl(length(v_TEST_2000), 0) = 2000 then
229 ok();
230 else
231 error();
232 end if;
233
234 set_test('TEST', 'get_id', 11,
235 'Does get_id() work?');
236 begin
237 n_number := get_id();
238 if n_number > 0 then
239 ok();
240 else
241 error();
242 end if;
243 exception
244 when OTHERS then
245 error(SQLERRM);
246 end;
247
248 set_test('TEST', 'help', 12,
249 'Does help() work?');

Chapter 8 ■ Testing

274

250 begin
251 help();
252 -- raise_application_error(-20999, 'Testing test unit report');
253 ok();
254 exception
255 when OTHERS then
256 error(SQLERRM);
257 end;
258
259 set_test('TEST', NULL, NULL, NULL);
260 success();
261 end test;
262
263
264 end TEST;
265 /
266 @be.sql TESTS
 

Let’s look at Listing 8-4 in detail:

Lines 12 through 23 implement procedure •	 clear(), which is called by method
test() to remove any previous test for the same unique session ID.

Lines 26 through 30 implement procedure •	 error(), which is called by method
test() to record a generic error.

Lines 33 through 38 implement procedure •	 error(), which is called by method
test() inside an exception handler in order to record an Oracle exception’s error
message.

Note■■   Do you find the use of the same method names for more than one purpose disturbing? This is called
overloading the method names. One error() method is used to record a generic error, while the second is used
to record an Oracle error message. 

Lines 41 through 52 implement function •	 get_id(), which returns the next primary
key value to be used when inserting a row into table TESTS.

Lines 67 through 71 implement procedure •	 ok(), which is called by method test() to
record the success of an individual test.

Lines 74 through 94 implement procedure •	 set_result(), which updates the last
recorded test with the passed result value. This method uses an instance-level
variable, n_id, in coordination with procedure test(). test() saves the last id it
allocates to variable n_id in the package’s memory, and then set_result() uses that
value when saving the result. I do this to reduce the amount of coding required by
the test unit writer.

Lines 97 through 136 implement procedure •	 set_test(), which is used by test unit
writers to record that a test is about to take place.

Chapter 8 ■ Testing

275

Lines 139 through 143 implement procedure •	 success(), which is called by method
test() to indicate the successful execution of the test unit itself.

Lines 146 through 260 implement procedure •	 test(), which is the actual test unit for
package TEST. Yes, I’ve used the testing tool to test the testing tool. Neat, huh?

Line 148, inside the test unit method •	 test(), declares a number variable to
temporarily hold the result of one of the tests.

Line 151 calls •	 pl() to give feedback to the tester that the test has been started.

Line 152 calls procedure •	 TEST.clear(), passing the name of the object in order to
remove any previous test results.

Lines 154 and 155 call procedure •	 TEST.test(), passing it the information about the
test I’m about to perform.

Line 156 performs my first test, to see if the constant •	 TEST.v_TEST_N has the correct
value. Since I’m certain that this test cannot cause an exception, I have not blocked
the code for the test.

Line 157 sets the result for the test to constant •	 TEST.v_TEST_OK by calling procedure
ok() if v_TEST_N is indeed the character N; otherwise, on line 159, I set the result to
TEST.v_TEST_ERROR by calling procedure error().

Lines 162 through 232 perform tests on the remaining constants in a similar fashion. •	
With all these tests, I’m confident that an exception cannot possibly be raised,
so I don’t block the test code. This is not so for the next test.

Lines 234 and 235 call procedure •	 TEST.test() in order to record that I’m about to
perform a test of function get_id().

Lines 236 through 246 block the call to method •	 get_id() in order to catch any
unexpected exception. Next, I execute my actual test, a call to get_id(). If there is no
unexpected exception, the next line, 238, tests to see if the ID value was greater than
zero. If so, I call method ok(); otherwise, I call error(). If an exception does occur,
I call error(), passing the value of SQLERRM.

Lines 250 through 256 block a call to •	 help() and then test it in a fashion similar to
the previous test.

Line 258 calls •	 test() for the package, therefore passing only the object’s name.

Line 259 calls procedure •	 success(). These last two calls will indicate that the
test procedure test() itself completed successfully, instead of possibly aborting
somewhere in the midst of the test from an unhandled exception.

Now that I’ve shown you my relational testing tool, it’s your turn to create an object-relational version.

It’s Your Turn to Create a Testing Tool
Your assignment is to recreate the testing tool I’ve just shown you as an object-relational TYPE instead of a
package. There’s one twist, though. You can’t declare constants, pseudo-constants, or variables in a TYPE,
as I did in the TEST package specification, so you’ll need to declare additional parameterless functions that
return the constant values.

Chapter 8 ■ Testing

276

To create an object-relational testing tool, follow these steps.

	 1.	 Write a DDL script to create a TYPE specification named TEST. This type should
have an attribute for every column name in table TESTS. It should also have
corresponding methods for each method found in package TEST. In addition,
you’ll add parameterless functions in the place of the constants in package
TEST. Include the method signature for, but skip coding the methods help() and
test(). We’ll work on coding test() in the next section, and help() in the next
chapter.

	 2.	 Save your script as ops.test.tps.

	 3.	 Log in as username OPS.

	 4.	 Compile your script: SQL> @ops.test.tps.

	 5.	 Write a DDL script to create the object table TESTS of TEST.

	 6.	 Save your script as ops.tests.tab.

	 7.	 Compile your script: SQL> @ops.tests.tab.

	 8.	 Write a DDL script to create the TYPE BODY for TEST.

	 9.	 Save your script as ops.test.tpb.

	 10.	 Compile your script: SQL> @ops.test.tpb.

But what about testing your new test tool? I’ll devote the entire next section to that task. Do you want to
see my solution for this exercise? Listings 8-5, 8-6, and 8-7 are the DDL for the TYPE specification, table, and
body, respectively, for my version of TYPE TEST.

Listing 8-5.  A DDL Script for TYPE TEST’s Spec, ops.test.tps

001 drop type TEST;
002 create type TEST as object (
003 /*
004 test.tps
005 by Donald J. Bales on 2014-10-20
006 A Type for logging test results
007 */
008 -- Type TEST's attributes
009 id number,
010 object_name varchar2(30),
011 method_name varchar2(30),
012 test_number number,
013 description varchar2(80),
014 result varchar2(256),
015 unique_session_id varchar2(24),
016 insert_user varchar2(30),
017 insert_date date,
018
019 -- Allocate the next primary key value fir id
020 STATIC FUNCTION get_id
021 return number,
022
023 -- Get the test value for January 1, 1900

Chapter 8 ■ Testing

277

024 STATIC FUNCTION get_test_19000101
025 return date,
026
027 -- Get the test value for December 31, 1999
028 STATIC FUNCTION get_test_19991231
029 return date,
030
031 -- Get the test value N for any indicators
032 STATIC FUNCTION get_test_n
033 return varchar2,
034
035 -- Get the test value Y for any indicators
036 STATIC FUNCTION get_test_y
037 return varchar2,
038
039 -- Get the 30 character test value
040 STATIC FUNCTION get_test_30
041 return varchar2,
042
043 -- Get the first 30 character test value duplicate for LIKE
044 STATIC FUNCTION get_test_30_1
045 return varchar2,
046
047 -- Get the second 30 character test value duplicate for LIKE
048 STATIC FUNCTION get_test_30_2
049 return varchar2,
050
051 -- Get the 80 character test value
052 STATIC FUNCTION get_test_80
053 return varchar2,
054
055 -- Get the 100 character test value
056 STATIC FUNCTION get_test_100
057 return varchar2,
058
059 -- Get the 2000 character test value
060 STATIC FUNCTION get_test_2000
061 return varchar2,
062
063 -- Clear any previous test run for the specified object name
064 STATIC PROCEDURE clear(
065 aiv_object_name varchar2),
066
067 -- Set the result to ERROR
068 MEMBER PROCEDURE error,
069
070 -- Set the result to Oracle ERROR
071 MEMBER PROCEDURE error(
072 aiv_result in varchar2),
073

Chapter 8 ■ Testing

278

074 -- Set the result to the specified result value
075 MEMBER PROCEDURE set_result(
076 aiv_result in varchar2),
077
078 -- Show the help text for this object
079 STATIC PROCEDURE help,
080
081 -- Set the result to OK
082 MEMBER PROCEDURE ok,
083
084 -- Set the result of the execution of test() to SUCCESS
085 MEMBER PROCEDURE success,
086
087 -- Test this object
088 STATIC PROCEDURE "test",
089
090 -- Set the test about to be performed
091 MEMBER PROCEDURE set_test(
092 aiv_object_name in varchar2,
093 aiv_method_name in varchar2,
094 ain_test_number in number,
095 aiv_description in varchar2),
096
097 -- Get the map value
098 MAP MEMBER FUNCTION to_map
099 return number,
100
101 -- Parameter-less constructor
102 CONSTRUCTOR FUNCTION test(
103 self in out nocopy test)
104 return self as result,
105
106 -- Convenience constructor
107 CONSTRUCTOR FUNCTION test(
108 self in out nocopy test,
109 ain_id in number,
110 aiv_object_name in varchar2,
111 aiv_method_name in varchar2,
112 ain_test_number in number,
113 aiv_description in varchar2)
114 return self as result
115);
116 /
117 @se.sql
118
119 grant execute on TEST to public;
 

In Listing 8-5, the TYPE specification for TEST, I added the static functions get_test_19000101()
through get_test_2000() to act as and replace the constants d_TEST_19000101 through v_TEST_2000 from
the package TEST specification on lines 14 through 80.

Chapter 8 ■ Testing

279

Listing 8-6.  The DDL Script for Table TESTS, ops.tests.tab

01 rem tests.tab
02 rem by Donald Bales on 2014-10-20
03 rem Create test results
04
05 --drop table TESTS;
06 create table TESTS of TEST
07 tablespace USERS pctfree 0
08 storage (initial 1M next 1M pctincrease 0);
09
10 alter table TESTS add
11 constraint TESTS_PK
12 primary key (
13 id)
14 using index
15 tablespace USERS pctfree 0
16 storage (initial 1M next 1M pctincrease 0);
17
18 --drop sequence TESTS_ID;
19 create sequence TESTS_ID
20 start with 1 order;
21
22 execute SYS.DBMS_STATS.gather_table_stats(USER, 'TESTS');
23
24 grant all on TESTS to PUBLIC;
 

There’s nothing really new in Listing 8-6, the script to create a table based on TYPE TEST.

Listing 8-7.  A DDL Script for TYPE TEST’s BODY, ops.test.tpb

001 create or replace type body TEST as
002 /*
003 test.tpb
004 by Donald J. Bales on 2014-10-20
005 A Type for logging test results
006 */
007
008 STATIC PROCEDURE clear(
009 aiv_object_name varchar2) is
010
011 pragma autonomous_transaction;
012
013 begin
014 delete TESTS
015 where object_name = aiv_object_name
016 and unique_session_id = SYS.DBMS_SESSION.unique_session_id;
017
018 commit;
019 end clear;
020
021

Chapter 8 ■ Testing

280

022 STATIC FUNCTION get_id
023 return number is
024
025 n_id number;
026
027 begin
028 select TESTS_ID.nextval
029 into n_id
030 from SYS.DUAL;
031
032 return n_id;
033 end get_id;
034
035
036 STATIC FUNCTION get_test_19000101
037 return date is
038
039 begin
040 return to_date('19000101', 'YYYYMMDD');
041 end get_test_19000101;
042
043
044 STATIC FUNCTION get_test_19991231
045 return date is
046
047 begin
048 return to_date('19991231', 'YYYYMMDD');
049 end get_test_19991231;
050
051
052 STATIC FUNCTION get_test_n
053 return varchar2 is
054
055 begin
056 return 'N';
057 end get_test_n;
058
059
060 STATIC FUNCTION get_test_y
061 return varchar2 is
062
063 begin
064 return 'Y';
065 end get_test_y;
066
067
068 STATIC FUNCTION get_test_30
069 return varchar2 is
070
071 begin
072 return 'TEST TEST TEST TEST TEST TESTx';
073 end get_test_30;

Chapter 8 ■ Testing

281

074
075
076 STATIC FUNCTION get_test_30_1
077 return varchar2 is
078
079 begin
080 return 'TEST1 TEST1 TEST1 TEST1 TEST1x';
081 end get_test_30_1;
082
083
084 STATIC FUNCTION get_test_30_2
085 return varchar2 is
086
087 begin
088 return 'TEST2 TEST2 TEST2 TEST2 TEST2x';
089 end get_test_30_2;
090
091
092 STATIC FUNCTION get_test_80
093 return varchar2 is
094
095 begin
096 return 'Test Test Test Test Test Test Test Test '||
097 'Test Test Test Test Test Test Test Testx';
098 end get_test_80;
099
100
101 STATIC FUNCTION get_test_100
102 return varchar2 is
103
104 begin
105 return 'Test Test Test Test Test Test Test Test Test Test '||
106 'Test Test Test Test Test Test Test Test Test Testx';
107 end get_test_100;
108
109
110 STATIC FUNCTION get_test_2000
111 return varchar2 is
112 -- 1 2 3 4 5
113 -- 12345678901234567890123456789012345678901234567890
114 begin
115 return 'Test Test Test Test Test Test Test Test Test Test '||
116 'Test Test Test Test Test Test Test Test Test Test '||
117 'Test Test Test Test Test Test Test Test Test Test '||
118 'Test Test Test Test Test Test Test Test Test Test '||
119 'Test Test Test Test Test Test Test Test Test Test '||
120 'Test Test Test Test Test Test Test Test Test Test '||
121 'Test Test Test Test Test Test Test Test Test Test '||
122 'Test Test Test Test Test Test Test Test Test Test '||
123 'Test Test Test Test Test Test Test Test Test Test '||

Chapter 8 ■ Testing

282

124 'Test Test Test Test Test Test Test Test Test Test '||
125 'Test Test Test Test Test Test Test Test Test Test '||
126 'Test Test Test Test Test Test Test Test Test Test '||
127 'Test Test Test Test Test Test Test Test Test Test '||
128 'Test Test Test Test Test Test Test Test Test Test '||
129 'Test Test Test Test Test Test Test Test Test Test '||
130 'Test Test Test Test Test Test Test Test Test Test '||
131 'Test Test Test Test Test Test Test Test Test Test '||
132 'Test Test Test Test Test Test Test Test Test Test '||
133 'Test Test Test Test Test Test Test Test Test Test '||
134 'Test Test Test Test Test Test Test Test Test Test '||
135 'Test Test Test Test Test Test Test Test Test Test '||
136 'Test Test Test Test Test Test Test Test Test Test '||
137 'Test Test Test Test Test Test Test Test Test Test '||
138 'Test Test Test Test Test Test Test Test Test Test '||
139 'Test Test Test Test Test Test Test Test Test Test '||
140 'Test Test Test Test Test Test Test Test Test Test '||
141 'Test Test Test Test Test Test Test Test Test Test '||
142 'Test Test Test Test Test Test Test Test Test Test '||
143 'Test Test Test Test Test Test Test Test Test Test '||
144 'Test Test Test Test Test Test Test Test Test Test '||
145 'Test Test Test Test Test Test Test Test Test Test '||
146 'Test Test Test Test Test Test Test Test Test Test '||
147 'Test Test Test Test Test Test Test Test Test Test '||
148 'Test Test Test Test Test Test Test Test Test Test '||
149 'Test Test Test Test Test Test Test Test Test Test '||
150 'Test Test Test Test Test Test Test Test Test Test '||
151 'Test Test Test Test Test Test Test Test Test Test '||
152 'Test Test Test Test Test Test Test Test Test Test '||
153 'Test Test Test Test Test Test Test Test Test Test '||
154 'Test Test Test Test Test Test Test Test Test Testx';
155 end get_test_2000;
156
157
158 STATIC PROCEDURE help is
159 begin
160 pl('You''re on your own buddy.');
161 end help;
162
163
164 MEMBER PROCEDURE error is
165
166 begin
167 set_result('ERROR');
168 end error;
169
170
171 MEMBER PROCEDURE error(
172 aiv_result in varchar2) is
173

Chapter 8 ■ Testing

283

174 begin
175 set_result(aiv_result);
176 end error;
177
178
179 MEMBER PROCEDURE ok is
180
181 begin
182 set_result('OK');
183 end ok;
184
185
186 MEMBER PROCEDURE set_result(
187 aiv_result in varchar2) is
188
189 pragma autonomous_transaction;
190
191 begin
192 result := aiv_result;
193
194 update TESTS
195 set result = self.result
196 where id = self.id;
197
198 if nvl(sql%rowcount, 0) = 0 then
199 raise_application_error(-20000, 'Can''t find test'||
200 to_char(self.id)||
201 ' on update TEST'||
202 ' in TEST_TS.test');
203 end if;
204
205 self := new test();
206
207 commit;
208 end set_result;
209
210
211 MEMBER PROCEDURE set_test(
212 aiv_object_name in varchar2,
213 aiv_method_name in varchar2,
214 ain_test_number in number,
215 aiv_description in varchar2) is
216
217 pragma autonomous_transaction;
218
219 begin
220 self.id := TEST.get_id();
221 self.object_name := upper(aiv_object_name);
222 self.method_name := upper(aiv_method_name);
223 self.test_number := ain_test_number;
224 self.description := aiv_description;
225 self.result := NULL;

Chapter 8 ■ Testing

284

226 self.unique_session_id := SYS.DBMS_SESSION.unique_session_id;
227 self.insert_user := USER;
228 self.insert_date := SYSDATE;
229
230 begin
231 insert into TESTS values (self);
232 exception
233 when OTHERS then
234 raise_application_error(-20000, SQLERRM||
235 ' on insert TESTS'||
236 ' in TEST.set_test');
237 end;
238 commit;
239 end set_test;
240
241
242 MEMBER PROCEDURE success is
243
244 begin
245 set_result('SUCCESS');
246 end success;
247
248
249 STATIC PROCEDURE "test" is
250
251 n_number number;
252 o_test TEST;
253
254 begin
255 pl('TEST.test()');
256
257 -- A defect requires the schema owner
258 &_USER..TEST.clear('TEST');
259
260 o_test := new TEST();
261 o_test.set_test('TEST', NULL, 1,
262 'Is get_test_N equal to N?');
263 if TEST.get_test_N = 'N' then
264 o_test.success();
265 else
266 o_test.error();
267 end if;
268
269 o_test.set_test('TEST', NULL, 2,
270 'Is the length of get_test_N equal to 1?');
271 if nvl(length(TEST.get_test_N), 0) = 1 then
272 o_test.success();
273 else
274 o_test.error();
275 end if;
276

Chapter 8 ■ Testing

285

277 o_test.set_test('TEST', NULL, 3,
278 'Is get_test_Y equal to Y?');
279 if TEST.get_test_Y = 'Y' then
280 o_test.success();
281 else
282 o_test.error();
283 end if;
284
285 o_test.set_test('TEST', NULL, 4,
286 'Is the length of get_test_Y equal to 1?');
287 if nvl(length(TEST.get_test_Y), 0) = 1 then
288 o_test.success();
289 else
290 o_test.error();
291 end if;
292
293 o_test.set_test('TEST', NULL, 5,
294 'Is the length of get_test_30 equal to 30?');
295 if nvl(length(TEST.get_test_30), 0) = 30 then
296 o_test.success();
297 else
298 o_test.error();
299 end if;
300
301 o_test.set_test('TEST', NULL, 6,
302 'Is the length of get_test_30_1 equal to 30?');
303 if nvl(length(TEST.get_test_30_1), 0) = 30 then
304 o_test.success();
305 else
306 o_test.error();
307 end if;
308
309 o_test.set_test('TEST', NULL, 7,
310 'Is the length of get_test_30_2 equal to 30?');
311 if nvl(length(TEST.get_test_30_2), 0) = 30 then
312 o_test.success();
313 else
314 o_test.error();
315 end if;
316
317 o_test.set_test('TEST', NULL, 8,
318 'Is the length of get_test_80 equal to 80?');
319 if nvl(length(TEST.get_test_80), 0) = 80 then
320 o_test.success();
321 else
322 o_test.error();
323 end if;
324
325 o_test.set_test('TEST', NULL, 9,
326 'Is the length of get_test_100 equal to 100?');
327 if nvl(length(TEST.get_test_100), 0) = 100 then

Chapter 8 ■ Testing

286

328 o_test.success();
329 else
330 o_test.error();
331 end if;
332
333 o_test.set_test('TEST', NULL, 10,
334 'Is the length of get_test_2000 equal to 2000?');
335 if nvl(length(TEST.get_test_2000), 0) = 2000 then
336 o_test.success();
337 else
338 o_test.error();
339 end if;
340
341 o_test.set_test('TEST', 'get_id', 11,
342 'Does get_id() work?');
343 begin
344 n_number := TEST.get_id();
345 if n_number > 0 then
346 o_test.success();
347 else
348 o_test.error();
349 end if;
350 exception
351 when OTHERS then
352 o_test.error(SQLERRM);
353 end;
354
355 o_test.set_test('TEST', 'help', 12,
356 'Does help() work?');
357 begin
358 &_USER..TEST.help();
359 raise_application_error(-20999, 'Testing the error routine');
360 o_test.success();
361 exception
362 when OTHERS then
363 o_test.error(SQLERRM);
364 end;
365
366 o_test.set_test('TEST', NULL, NULL, NULL);
367 o_test.success();
368 end "test";
369
370
371 MAP MEMBER FUNCTION to_map
372 return number is
373
374 begin
375 return self.id;
376 end to_map;
377
378

Chapter 8 ■ Testing

287

379 CONSTRUCTOR FUNCTION test(
380 self in out nocopy test)
381 return self as result is
382
383 begin
384 self.id := NULL;
385 self.object_name := NULL;
386 self.method_name := NULL;
387 self.test_number := NULL;
388 self.description := NULL;
389 self.result := NULL;
390 self.unique_session_id := NULL;
391 self.insert_user := NULL;
392 self.insert_date := NULL;
393
394 return;
395 end test;
396
397
398 CONSTRUCTOR FUNCTION test(
399 self in out nocopy test,
400 ain_id in number,
401 aiv_object_name in varchar2,
402 aiv_method_name in varchar2,
403 ain_test_number in number,
404 aiv_description in varchar2)
405 return self as result is
406
407 begin
408 self.id := ain_id;
409 self.object_name := aiv_object_name;
410 self.method_name := aiv_method_name;
411 self.test_number := ain_test_number;
412 self.description := aiv_description;
413 self.result := NULL;
414 self.unique_session_id := SYS.DBMS_SESSION.unique_session_id;
415 self.insert_user := USER;
416 self.insert_date := SYSDATE;
417
418 return;
419 end test;
420
421
422 end;
423 /
424 @be.sql TEST
 

Did you notice in Listing 8-6 that I used the SQL*Plus defined variable &USER in the source listing? This
is a work-around to a defect in the Oracle compiler when trying to resolve the name of a method that is part
of the same TYPE BODY.

Chapter 8 ■ Testing

288

In the sections that follow, I’ll use the relational testing tool to test packages and the object-relational
tool I just created to test TYPEs. So let’s move on to a discussion of testing with these new testing tools.

Testing
Do you recall the discussion about table types early in Chapter 1, where I said that tables fall into one of
three categories: content, codes, or intersections? The types of methods and method names used by each
of these three categories will follow a pattern. Content table packages (or TYPEs) will all have a similar set
of methods and method names. Code table packages (or TYPEs) will also have a similar set of methods and
method names. And so will intersection table packages (or TYPEs).

Accordingly, these three categories will have a pattern of tests that follows the set of methods and
method names used by each category. Content table packages will generally have methods to insert, update,
delete, and select a specified row from a table. In contrast, a code table will have only a method to get the ID
value for a specified code, or code and description for a specified ID. Intersection table packages will have
methods like content table packages, and additional methods suitable only for intersections.

So the SQL Circle of Life I talked about earlier in this chapter will be fully employed for content and
intersection table packages but not for code table packages. Since content tables are usually dependent
on one or more code tables, and intersection tables are dependent on two content tables, let’s start with a
code table package. I’ll cover the testing of the WORKER_TYPE table package now, and you’ll code and test the
GENDER_TYPE table package later in this section.

Testing a Code Table Package
As usual, let’s dive right into a code listing. Listings 8-8 and 8-9 are the full-blown, production-ready
packages for the WORKER_TYPE table.

The package specification lists methods that are specific to a code table.

•	 get_code_descr(): Used to retrieve the code and description values for a specified ID.

•	 get_code_id_descr(): Used to retrieve the code, ID, and description values for a
fully or partially specified code. For a partially specified code, the method may return
a single matching set of values or raise exception TOO_MANY_ROWS if more than one
matching entry exists in the table.

•	 get_id(): Returns the ID that corresponds to the specified code.

The package specification also lists some methods that are universal to all table packages.

•	 get_id(): Returns a newly allocated primary key value for the table.

•	 help(): Displays help text for the package.

•	 test(): Tests the package.

Listing 8-8.  The Specification for Table Package WORKER_TYPE,rps.worker_type.pks

01 create or replace PACKAGE WORKER_TYPE as
02 /*
03 worker_type.pks
04 by Don Bales on 2014-10-20
05 Code Table WORKER_TYPES's methods.
06 */
07

Chapter 8 ■ Testing

289

08
09 -- Gets the code and decription values for the specified ain_id.
10 PROCEDURE get_code_descr(
11 ain_id in WORKER_TYPES.id%TYPE,
12 aov_code out WORKER_TYPES.code%TYPE,
13 aov_description out WORKER_TYPES.description%TYPE);
14
15
16 -- Verifies the passed aiov_code value is an exact or like match on
17 -- the date specified.
18 PROCEDURE get_code_id_descr(
19 aiov_code in out WORKER_TYPES.code%TYPE,
20 aon_id out WORKER_TYPES.id%TYPE,
21 aov_description out WORKER_TYPES.description%TYPE,
22 aid_on in WORKER_TYPES.active_date%TYPE);
23
24
25 -- Verifies the passed aiov_code value is currently an exact or like
26 -- match.
27 PROCEDURE get_code_id_descr(
28 aiov_code in out WORKER_TYPES.code%TYPE,
29 aon_id out WORKER_TYPES.id%TYPE,
30 aov_description out WORKER_TYPES.description%TYPE);
31
32
33 -- Returns a newly allocated id value.
34 FUNCTION get_id
35 return WORKER_TYPES.id%TYPE;
36
37
38 -- Returns the id for the specified code value.
39 FUNCTION get_id(
40 aiv_code in WORKER_TYPES.code%TYPE)
41 return WORKER_TYPES.id%TYPE;
42
43
44 -- Test-based help for this package. "set serveroutput on" in
45 -- SQL*Plus.
46 PROCEDURE help;
47
48
49 -- Test units for this package.
50 PROCEDURE test;
51
52
53 end WORKER_TYPE;
54 /
55 @se.sql WORKER_TYPE
 

Chapter 8 ■ Testing

290

Listing 8-9.  The Body for Table Package WORKER_TYPE ,rps. worker_type.pkb

001 create or replace PACKAGE BODY WORKER_TYPE as
002 /*
003 worker_type.pkb
004 by Don Bales on 2014-10-20
005 Table WORKER_TYPES's methods
006 */
007
008
009 PROCEDURE get_code_descr(
010 ain_id in WORKER_TYPES.id%TYPE,
011 aov_code out WORKER_TYPES.code%TYPE,
012 aov_description out WORKER_TYPES.description%TYPE) is
013
014 begin
015 select code,
016 description
017 into aov_code,
018 aov_description
019 from WORKER_TYPES
020 where id = ain_id;
021 end get_code_descr;
022
023
024 PROCEDURE get_code_id_descr(
025 aiov_code in out WORKER_TYPES.code%TYPE,
026 aon_id out WORKER_TYPES.id%TYPE,
027 aov_description out WORKER_TYPES.description%TYPE,
028 aid_on in WORKER_TYPES.active_date%TYPE) is
029
030 v_code WORKER_TYPES.code%TYPE;
031
032 begin
033 select id,
034 description
035 into aon_id,
036 aov_description
037 from WORKER_TYPES
038 where code = aiov_code
039 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
040 exception
041 when NO_DATA_FOUND then
042 select id,
043 code,
044 description
045 into aon_id,
046 v_code,
047 aov_description
048 from WORKER_TYPES
049 where code like aiov_code||'%'
050 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);

Chapter 8 ■ Testing

291

051
052 aiov_code := v_code;
053 end get_code_id_descr;
054
055
056 PROCEDURE get_code_id_descr(
057 aiov_code in out WORKER_TYPES.code%TYPE,
058 aon_id out WORKER_TYPES.id%TYPE,
059 aov_description out WORKER_TYPES.description%TYPE) is
060
061 begin
062 get_code_id_descr(
063 aiov_code,
064 aon_id,
065 aov_description,
066 SYSDATE);
067 end get_code_id_descr;
068
069
070 FUNCTION get_id
071 return WORKER_TYPES.id%TYPE is
072
073 n_id WORKER_TYPES.id%TYPE;
074
075 begin
076 select WORKER_TYPES_ID.nextval
077 into n_id
078 from SYS.DUAL;
079
080 return n_id;
081 end get_id;
082
083
084 FUNCTION get_id(
085 aiv_code in WORKER_TYPES.code%TYPE)
086 return WORKER_TYPES.id%TYPE is
087
088 n_id WORKER_TYPES.id%TYPE;
089
090 begin
091 select id
092 into n_id
093 from WORKER_TYPES
094 where code = aiv_code;
095
096 return n_id;
097 end get_id;
098
099
100 PROCEDURE help is
101

Chapter 8 ■ Testing

292

102 begin
103 -- 12345678901234567890123456789012345678901234567890123456789012345678901234567890
104 pl('=================================== PACKAGE ====================================');
105 pl(chr(9));
106 pl('WORKER_TYPE');
107 pl(chr(9));
108 pl('----------------------------------- FUNCTIONS ----------------------------------');
109 pl(chr(9));
110 pl('WORKER_TYPE.get_id');
111 pl('return WORKER_TYPES.id%TYPE;');
112 pl(chr(9)||'Returns a newly allocated sequence value for id.');
113 pl(chr(9));
114 pl('WORKER_TYPE.get_id(');
115 pl('aiv_code in WORKER_TYPES.code%TYPE)');
116 pl('return WORKER_TYPES.id%TYPE;');
117 pl(chr(9)||'Returns the corresponding id for the specified code.');
118 pl(chr(9));
119 pl('----------------------------------- PROCEDURES ---------------------------------');
120 pl(chr(9));
121 pl('WORKER_TYPE.get_code_descr(');
122 pl('ain_id in WORKER_TYPES.id%TYPE,');
123 pl('aov_code out WORKER_TYPES.code%TYPE,');
124 pl('aov_description out WORKER_TYPES.description%TYPE);');
125 pl(chr(9)||'Gets the corresponding code and description for the specified');
126 pl(chr(9)||'id.');
127 pl(chr(9));
128 pl('WORKER_TYPE.get_code_id_descr(');
129 pl('aiov_code in out WORKER_TYPES.code%TYPE,');
130 pl('aon_id out WORKER_TYPES.id%TYPE,');
131 pl('aov_description out WORKER_TYPES.description%TYPE,');
132 pl('aid_on in WORKER_TYPES.active_date%TYPE);');
133 pl(chr(9)||'Gets the corresponding code, id, and description for');
134 pl(chr(9)||'the specified code. First it trys to find an exact match. If one');
135 pl(chr(9)||'cannot be found, it trys to find a like match. It may throw a');
136 pl(chr(9)||'NO_DATA_FOUND or a TOO_MANY_ROWS exception if a match cannot be');
137 pl(chr(9)||'found for the specified code and point in time.');
138 pl(chr(9));
139 pl('WORKER_TYPE.get_code_id_descr(');
140 pl('aiov_code in out WORKER_TYPES.code%TYPE,');
141 pl('aon_id out WORKER_TYPES.id%TYPE,');
142 pl('aov_description out WORKER_TYPES.description%TYPE);');
143 pl(chr(9)||'Gets the corresponding code, id, and description for');
144 pl(chr(9)||'the specified code. First it trys to find an exact match. If one');
145 pl(chr(9)||'cannot be found, it trys to find a like match. It may throw a');
146 pl(chr(9)||'NO_DATA_FOUND or a TOO_MANY_ROWS exception if a match cannot be');
147 pl(chr(9)||'found for the specified code at the current point in time.');
148 pl(chr(9));

Chapter 8 ■ Testing

293

149 pl('WORKER_TYPE.help();');
150 pl(chr(9)||'Displays this help text if set serveroutput is on.');
151 pl(chr(9));
152 pl('WORKER_TYPE.test();');
153 pl(chr(9)||'Built-in test unit. It will report success or error for each test if
set');
154 pl(chr(9)||'serveroutput is on.');
155 pl(chr(9));
156 end help;
157
158
159 PROCEDURE test is
160
161 n_id WORKER_TYPES.id%TYPE;
162 v_code WORKER_TYPES.code%TYPE;
163 v_description WORKER_TYPES.description%TYPE;
164
165 begin
166 -- Send feedback that the test ran
167 pl('WORKER_TYPE.test()');
168
169 -- Clear the last set of test results
170 &_USER..TEST.clear('WORKER_TYPE');
171
172 -- First, we need some test values
173
174 -- Let's make sure they don't already exist: DELETE
175 &_USER..TEST.set_test('WORKER_TYPE', 'DELETE', 0,
176 'Delete test entries');
177 begin
178 delete WORKER_TYPES
179 where code in (
180 &_USER..TEST.v_TEST_30,
181 &_USER..TEST.v_TEST_30_1,
182 &_USER..TEST.v_TEST_30_2);
183 &_USER..TEST.ok();
184 exception
185 when OTHERS then
186 &_USER..TEST.error(SQLERRM);
187 end;
188
189 -- Now let's add three test codes: INSERT
190 &_USER..TEST.set_test('WORKER_TYPE', 'INSERT', 1,
191 'Insert 3 test entries');
192 begin
193 insert into WORKER_TYPES (
194 id,
195 code,
196 description,
197 active_date,
198 inactive_date)

Chapter 8 ■ Testing

294

199 values (
200 get_id(),
201 &_USER..TEST.v_TEST_30,
202 &_USER..TEST.v_TEST_80,
203 &_USER..TEST.d_TEST_19000101,
204 &_USER..TEST.d_TEST_99991231);
205
206 insert into WORKER_TYPES (
207 id,
208 code,
209 description,
210 active_date,
211 inactive_date)
212 values (
213 get_id(),
214 &_USER..TEST.v_TEST_30_1,
215 &_USER..TEST.v_TEST_80,
216 &_USER..TEST.d_TEST_19000101,
217 &_USER..TEST.d_TEST_99991231);
218
219 insert into WORKER_TYPES (
220 id,
221 code,
222 description,
223 active_date,
224 inactive_date)
225 values (
226 get_id(),
227 &_USER..TEST.v_TEST_30_2,
228 &_USER..TEST.v_TEST_80,
229 &_USER..TEST.d_TEST_19000101,
230 &_USER..TEST.d_TEST_99991231);
231
232 &_USER..TEST.ok();
233 exception
234 when OTHERS then
235 &_USER..TEST.error(SQLERRM);
236 end;
237
238 -- Now that we have test entries,
239 -- let's test the package methods
240 &_USER..TEST.set_test('WORKER_TYPE', 'get_id()', 2,
241 'Get the ID for the specified code');
242 begin
243 n_id := get_id(&_USER..TEST.v_TEST_30);
244
245 if n_id > 0 then
246 &_USER..TEST.ok();
247 else
248 &_USER..TEST.error();
249 end if;

Chapter 8 ■ Testing

295

250 exception
251 when OTHERS then
252 &_USER..TEST.error(SQLERRM);
253 end;
254
255 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_descr()', 3,
256 'Get the code and description for the specified ID');
257 begin
258 get_code_descr(
259 n_id,
260 v_code,
261 v_description);
262 if v_code = &_USER..TEST.v_TEST_30 and
263 v_description = &_USER..TEST.v_TEST_80 then
264 &_USER..TEST.ok();
265 else
266 &_USER..TEST.error();
267 end if;
268 exception
269 when OTHERS then
270 &_USER..TEST.error(SQLERRM);
271 end;
272
273 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_id_descr()', 4,
274 'Get the code, ID, and description for the specified code');
275 begin
276 v_code := &_USER..TEST.v_TEST_30;
277 get_code_id_descr(
278 v_code,
279 n_id,
280 v_description);
281 if v_code = &_USER..TEST.v_TEST_30 and
282 n_id > 0 and
283 v_description = &_USER..TEST.v_TEST_80 then
284 &_USER..TEST.ok();
285 else
286 &_USER..TEST.error();
287 end if;
288 exception
289 when OTHERS then
290 &_USER..TEST.error(SQLERRM);
291 end;
292
293 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_id_descr()', 5,
294 'Get the code, ID, and description for the specified date');
295 begin
296 v_code := 'TEST';
297 -- This test should raise a TOO_MANY_ROWS exception
298 -- because at least three duplicate values will
299 -- on the date specified
300 get_code_id_descr(

Chapter 8 ■ Testing

296

301 v_code,
302 n_id,
303 v_description,
304 &_USER..TEST.d_TEST_99991231);
305 if v_code = &_USER..TEST.v_TEST_30 and
306 n_id > 0 and
307 v_description = &_USER..TEST.v_TEST_80 then
308 &_USER..TEST.ok();
309 else
310 &_USER..TEST.error();
311 end if;
312 exception
313 when TOO_MANY_ROWS then
314 &_USER..TEST.ok();
315 when OTHERS then
316 &_USER..TEST.error(SQLERRM);
317 end;
318
319 &_USER..TEST.set_test('WORKER_TYPE', 'help()', 6,
320 'Display help');
321 begin
322 help();
323 &_USER..TEST.ok();
324 exception
325 when OTHERS then
326 &_USER..TEST.error(SQLERRM);
327 end;
328
329 -- Let's make sure they don't already exist: DELETE
330 &_USER..TEST.set_test('WORKER_TYPE', 'DELETE', 7,
331 'Delete test entries');
332 begin
333 delete WORKER_TYPES
334 where code in (
335 &_USER..TEST.v_TEST_30,
336 &_USER..TEST.v_TEST_30_1,
337 &_USER..TEST.v_TEST_30_2);
338 &_USER..TEST.ok();
339 exception
340 when OTHERS then
341 &_USER..TEST.error(SQLERRM);
342 end;
343
344 &_USER..TEST.set_test('WORKER_TYPE', NULL, NULL, NULL);
345 &_USER..TEST.success();
346 end test;
347
348
349 end WORKER_TYPE;
350 /
351 @be.sql WORKER_TYPE
 

Chapter 8 ■ Testing

297

I’ll explain only the test unit method test() in Listing 8-9 this time around.

Lines 161 through 163 declare a handful of variables that I will need while testing the •	
package’s methods.

Line 167 uses •	 pl() to output some feedback to the tester that the test method did
indeed execute.

Line 170 clears any previous test results for this package.•	

Lines 175 through 187 delete any existing “test” entries so they don’t cause a •	
problem with the current test. I do this with a SQL DELETE statement because the
code table package pattern of methods has no ongoing use for a routine that deletes
code values.

Lines 190 through 236 insert three “test” entries into the code table. The first entry •	
uses the standard 30-character value for the code. I’ll try to find an exact match for
this value later in testing. The second and third entries exist to cause a TOO_MANY_
ROWS exception later in testing. Without explicitly testing the method, get_id(), the
method that returns a new primary key value is also tested during the insertion of the
three “test” entries.

Lines 240 through 253 test the second •	 get_id() method, the code table package
pattern method, which returns a code’s ID value.

Lines 255 through 271 test method •	 get_code_descr().

Lines 273 through 291 test the method •	 get_code_id_descr() for an exact match on
today’s date.

Lines 293 through 317 test the method •	 get_code_id_descr() to verify it will raise
exception TOO_MANY_ROWS when there is no exact match.

Lines 319 through 327 test method •	 help().

Lines 330 through 342 delete the “test” entries I added at the beginning of the test. •	
This means I’ve used DELETE, INSERT, and then DELETE as the SQL Circle of Life for
testing this code table package.

Lines 344 and 345 add the entry to the testing table that indicates the test method •	
itself ran successfully.

I can now query the table TESTS to find the results of the test. Listing 8-10 is a SQL*Plus script to list the
results of the last performed test.

Listing 8-10.  A Report to Show the Results of the Last Test, rps.last_test_results.sql

01 rem last_test_results.sql
02 rem by Donald J. Bales on 2014-10-20
03 rem Display the last test results
04
05 set linesize 1000;
06 set newpage 1;
07 set pagesize 32767;
08 set trimspool on;
09
10 column test format a34;
11 column t# format 99;

Chapter 8 ■ Testing

298

12 column description format a27;
13 column result format a7;
14
15 spool last_test_results.txt;
16
17 select t.object_name||
18 decode(substr(t.method_name, -1, 1), ')', '.', ' ')||
19 t.method_name test,
20 t.test_number t#,
21 t.description,
22 t.result
23 from TESTS t
24 where t.unique_session_id = SYS.DBMS_SESSION.unique_session_id
25 and t.object_name = (
26 select e.object_name
27 from TESTS e
28 where e.unique_session_id = SYS.DBMS_SESSION.unique_session_id
29 and e.id = (
30 select max(x.id)
31 from TESTS x
32 where x.unique_session_id = SYS.DBMS_SESSION.unique_session_id))
33 order by t.id;
34
35 spool off;
 

When I run script last_test_results.sql after testing WORKER_TYPE I get the following output from
SQL*Plus:
 
TEST T# DESCRIPTION RESULT
---------------------------------- --- --------------------------------- -------
WORKER_TYPE DELETE 0 Delete test entries OK
WORKER_TYPE INSERT 1 Insert 3 test entries OK
WORKER_TYPE.GET_ID() 2 Get the ID for the specified code OK

 WORKER_TYPE.GET_CODE_DESCR() 3 Get the code and description OK
 for the specified ID
 
WORKER_TYPE.GET_CODE_ID_DESCR() 4 Get the code, ID, and OK
 description for the specified code

WORKER_TYPE.GET_CODE_ID_DESCR() 5 Get the code, ID, and descr OK
 iption for the specified date

WORKER_TYPE.HELP() 6 Display help OK
WORKER_TYPE DELETE 7 Delete test entries OK
WORKER_TYPE SUCCESS
 
9 rows selected.
 

Chapter 8 ■ Testing

299

If any of the tests failed, the enclosing PL/SQL block caught any raised exception, then the column result
would list the word ERROR or the reported Oracle error message from any raised exception. If the enclosing PL/
SQL block around a test failed to catch a raised exception, then the test unit itself would not complete, and the
last entry in the report, SUCCESS, would not exist. Now that you’ve seen me do it, it’s your turn.

It’s Your Turn to Test a Code Table Package
I tested the WORKER_TYPE code table package, and you’ll test the GENDER_TYPE code table package. The two
tests should be very similar. You can find a full-blown, production-ready version of package GENDER_TYPE in
the downloaded code directory for Chapter 8. I suggest you proceed as follows.

	 1.	 Copy the method WORKER_TYPE.test() and paste it into package body
GENDER_TYPE.

	 2.	 Modify the method for any column name and other changes.

	 3.	 Save and compile the package body.

	 4.	 Execute the test against GENDER_TYPE by executing method test().

	 5.	 Use report last_test_results.sql to see the results of your test.

No, I’m not going to show you my solution because it follows the same pattern as any other code table
package’s test() method. Instead, let’s move on to testing a content table’s package.

Testing a Content Table Package
This time, for an example of a content table test unit, I’m going to show you only a partial code listing.
Listing 8-11 is the test unit from the full-blown, production-ready package for the LOGICAL_WORKPLACES
table. Its package specification (not shown) lists the following methods that are specific to a content table
package (or TYPE):

•	 get_name() or get_name_context(): Actually, in this case, since table
LOGICAL_WORKPLACES has a hierarchal relationship with itself, the method is
get_name_context(), which shows all the names in the hierarchy
separated by periods (.).

•	 get_external_id() or get_code_context(): Once again, since table
LOGICAL_WORKPLACES has a hierarchal relationship with itself, the method is
named get_code_context(), which shows all the external IDs in the hierarchy
separated by periods (.).

•	 get_row(): Returns a matching row depending on primary key column or unique
key column value(s) set in the record passed to the method.

•	 set_row(): Updates an existing matching row, using the same rules implemented by
get_row() to find a matching row, or inserts a new row if a match is not found.

The package specification has one method that is unique to a hierarchal table:

•	 create_id_context(): Creates a hierarchal unique key that represents the
hierarchal relationship between rows in the same table as a character value
separated by periods (.)

Chapter 8 ■ Testing

300

And it also has some methods that are universal to all table packages:

•	 get_id()Returns a newly allocated primary key value for the table

•	 help()help text for the package

•	 test()package

Listing 8-11.  The test( ) Method from Table Package Body LOGICAL_WORKPLACE, rps.logical_workplace.pkb

264 PROCEDURE test is
265
266 /*
267 LOGICAL_WORKPLACES
268 Name Null? Type
269 -- -------- -------------
270 LOGICAL_WORKPLACE_ID NOT NULL NUMBER
271 PARENT_ID NUMBER
272 ID_CONTEXT NOT NULL VARCHAR2(100)
273 WORKPLACE_TYPE_ID NOT NULL NUMBER
274 CODE NOT NULL VARCHAR2(30)
275 NAME NOT NULL VARCHAR2(80)
276 ACTIVE_DATE NOT NULL DATE
277 INACTIVE_DATE DATE
278 */
279
280 v_id_context
281 LOGICAL_WORKPLACES.id_context%TYPE;
282 r_logical_workplace LOGICAL_WORKPLACES%ROWTYPE;
283
284 begin
285 pl('LOGICAL_WORKPLACE.test()');
286
287 &_USER..TEST.clear('LOGICAL_WORKPLACE');
288
289 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'DELETE', 0,
290 'Delete existing test entries');
291 begin
292 delete LOGICAL_WORKPLACES
293 where code in (
294 &_USER..TEST.v_TEST_30_1,
295 &_USER..TEST.v_TEST_30_2);
296
297 delete LOGICAL_WORKPLACES
298 where code = &_USER..TEST.v_TEST_30;
299
300 &_USER..TEST.ok();
301 exception
302 when OTHERS then
303 &_USER..TEST.error(SQLERRM);
304 end;
305

Chapter 8 ■ Testing

301

306 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_id()', 1,
307 'Allocate the next primary key value');
308 begin
309 r_logical_workplace.id := get_id();
310
311 if r_logical_workplace.id > 0 then
312 &_USER..TEST.ok();
313 else
314 &_USER..TEST.error();
315 end if;
316 exception
317 when OTHERS then
318 &_USER..TEST.error(SQLERRM);
319 end;
320
321 &_USER..TEST.set_test('LOGICAL_WORKPLACE',
322 'create_id_context()', 2, 'Create an ID context value');
323 begin
324 r_logical_workplace.parent_id := NULL;
325 r_logical_workplace.id_context :=
326 create_id_context(
327 r_logical_workplace.parent_id,
328 r_logical_workplace.id);
329
330 if r_logical_workplace.id_context =
331 to_char(r_logical_workplace.id) then
332 &_USER..TEST.ok();
333 else
334 &_USER..TEST.error();
335 end if;
336 exception
337 when OTHERS then
338 &_USER..TEST.error(SQLERRM);
339 end;
340
341 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'set_row()', 3,
342 'Insert parent test entry');
343 begin
344 r_logical_workplace.workplace_type_id :=
345 WORKPLACE_TYPE.get_id('C');
346 r_logical_workplace.code :=
347 &_USER..TEST.v_TEST_30;
348 r_logical_workplace.name :=
349 &_USER..TEST.v_TEST_80;
350 r_logical_workplace.active_date :=
351 &_USER..TEST.d_TEST_19000101;
352 r_logical_workplace.inactive_date :=
353 &_USER..TEST.d_TEST_99991231;
354 set_row(r_logical_workplace);
355
356 &_USER..TEST.ok();
357 exception

Chapter 8 ■ Testing

302

358 when OTHERS then
359 &_USER..TEST.error(SQLERRM);
360 end;
361
362 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'set_row()', 4,
363 'Insert child entries');
364 begin
365 r_logical_workplace.parent_id :=
366 r_logical_workplace.id;
367 r_logical_workplace.id := get_id();
368 r_logical_workplace.id_context :=
369 create_id_context(
370 r_logical_workplace.parent_id,
371 r_logical_workplace.id);
372 -- save this value for testing get_row()
373 v_id_context :=
374 r_logical_workplace.id_context;
375 r_logical_workplace.workplace_type_id :=
376 WORKPLACE_TYPE.get_id('B');
377 r_logical_workplace.code :=
378 &_USER..TEST.v_TEST_30_1;
379 r_logical_workplace.name :=
380 &_USER..TEST.v_TEST_80;
381 set_row(r_logical_workplace);
382
383 r_logical_workplace.id := get_id();
384 r_logical_workplace.id_context :=
385 create_id_context(
386 r_logical_workplace.parent_id,
387 r_logical_workplace.id);
388 r_logical_workplace.code :=
389 &_USER..TEST.v_TEST_30_2;
390 set_row(r_logical_workplace);
391
392 &_USER..TEST.ok();
393 exception
394 when OTHERS then
395 &_USER..TEST.error(SQLERRM);
396 end;
397
398 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_code_context()', 5,
399 'Get the code context for v_TEST_30_2');
400 begin
401 pl(get_code_context(
402 r_logical_workplace.id));
403
404 &_USER..TEST.ok();
405 exception
406 when OTHERS then
407 &_USER..TEST.error(SQLERRM);
408 end;
409

Chapter 8 ■ Testing

303

410 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_name_context()', 6,
411 'Get the name context for v_TEST_30_2');
412 begin
413 pl(get_name_context(
414 r_logical_workplace.id));
415
416 &_USER..TEST.ok();
417 exception
418 when OTHERS then
419 &_USER..TEST.error(SQLERRM);
420 end;
421
422 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_row()', 7,
423 'Get the row using the id for v_TEST_30_2');
424 begin
425 -- r_logical_workplace.id := NULL;
426 r_logical_workplace.parent_id := NULL;
427 r_logical_workplace.id_context := NULL;
428 r_logical_workplace.workplace_type_id := NULL;
429 r_logical_workplace.code := NULL;
430 r_logical_workplace.name := NULL;
431 r_logical_workplace.active_date := NULL;
432 r_logical_workplace.inactive_date := NULL;
433
434 r_logical_workplace := get_row(r_logical_workplace);
435
436 if r_logical_workplace.id_context is not NULL then
437 &_USER..TEST.ok();
438 else
439 &_USER..TEST.error();
440 end if;
441 exception
442 when OTHERS then
443 &_USER..TEST.error(SQLERRM);
444 end;
445
446 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_row()', 8,
447 'Get the row using the id_context for v_TEST_30_1');
448 begin
449 r_logical_workplace.id := NULL;
450 r_logical_workplace.parent_id := NULL;
451 r_logical_workplace.id_context :=
452 v_id_context;
453 r_logical_workplace.workplace_type_id := NULL;
454 r_logical_workplace.code := NULL;
455 r_logical_workplace.name := NULL;
456 r_logical_workplace.active_date := NULL;
457 r_logical_workplace.inactive_date := NULL;
458
459 r_logical_workplace := get_row(r_logical_workplace);
460

Chapter 8 ■ Testing

304

461 if r_logical_workplace.id is not NULL then
462 &_USER..TEST.ok();
463 else
464 &_USER..TEST.error();
465 end if;
466 exception
467 when OTHERS then
468 pl('v_id_context="'||v_id_context||'"');
469 &_USER..TEST.error(SQLERRM);
470 end;
471
472 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'get_row()', 9,
473 'Get the row using the code for v_TEST_30');
474 begin
475 r_logical_workplace.id := NULL;
476 r_logical_workplace.parent_id := NULL;
477 r_logical_workplace.id_context := NULL;
478 r_logical_workplace.workplace_type_id := NULL;
479 r_logical_workplace.code :=
480 &_USER..TEST.v_TEST_30;
481 r_logical_workplace.name :=
482 &_USER..TEST.v_TEST_80;
483 r_logical_workplace.active_date :=
484 &_USER..TEST.d_TEST_19000101;
485 r_logical_workplace.inactive_date := NULL;
486
487 r_logical_workplace := get_row(r_logical_workplace);
488
489 if r_logical_workplace.id is not NULL then
490 &_USER..TEST.ok();
491 else
492 &_USER..TEST.error();
493 end if;
494 exception
495 when OTHERS then
496 &_USER..TEST.error(SQLERRM);
497 end;
498
499 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'help()', 10,
500 'Display the help text');
501 begin
502 help();
503
504 &_USER..TEST.ok();
505 exception
506 when OTHERS then
507 &_USER..TEST.error(SQLERRM);
508 end;
509
510 &_USER..TEST.set_test('LOGICAL_WORKPLACE', 'DELETE', 11,
511 'Delete test entries');

Chapter 8 ■ Testing

305

512 begin
513 delete LOGICAL_WORKPLACES
514 where code in (
515 &_USER..TEST.v_TEST_30_1,
516 &_USER..TEST.v_TEST_30_2);
517
518 delete LOGICAL_WORKPLACES
519 where code = &_USER..TEST.v_TEST_30;
520
521 &_USER..TEST.ok();
522 exception
523 when OTHERS then
524 &_USER..TEST.error(SQLERRM);
525 end;
526
527 commit;
528 &_USER..TEST.set_test('LOGICAL_WORKPLACE', NULL, NULL, NULL);
529 &_USER..TEST.success();
530 end test;
 

The test unit for package LOGICAL_WORKPLACE is quite lengthy, so that’s why I’m using a partial listing in
Listing 8-11. You can find the entire listing in the download directory for Chapter 8.

Let’s examine this content table package’s test unit line by line:

Lines 280 through 282 declare two variables that I use during the test.•	

Line 285 outputs some feedback so the tester knows the test has actually executed.•	

Line 287 clears any previous test data.•	

Lines 287 through 304 start the SQL Circle of Life for my test entries by pre-deleting •	
any that may still exist.

Lines 306 through 319 test method •	 get_id().

Lines 321 through 339 test method •	 create_id_context().

Lines 341 through 360 test method •	 set_row() by inserting a parent company row
based on TEST.v_TEST_30. This begins the INSERT portion of the SQL Circle of Life.

Lines 362 through 396 test method •	 set_row() again, this time inserting two child
rows, business units, based on TEST.v_TEST_30_1 and TEST.v_TEST_30_2. This
begins the INSERT or UPDATE portion of the SQL Circle of Life.

Lines 398 through 408 test method •	 get_code_context(). This starts the SELECT
portion of the SQL Circle of Life.

Lines 410 through 420 test method •	 get_name_context().

Lines 422 through 444 test method •	 get_row() using the primary key column.

Lines 446 through 470 test method •	 get_row() a second time, using the unique
id_context column.

Lines 472 through 497 test method •	 get_row() a third time, this time using unique
columns code, name, and active_date.

Chapter 8 ■ Testing

306

Lines 499 through 508 test method •	 help().

Lines 510 through 525 delete my test entries from the table. This brings me full circle •	
on my SQL Circle of Life, from DELETE to INSERT to UPDATE to SELECT, and then back
to DELETE.

Finally, on lines 528 through 529, I record that the test unit executed successfully.•	

Did you notice that in this example, a content table package’s test unit used the full SQL Circle of Life,
whereas the code table package used only a portion of it? And did you see that every test was blocked—
executed in its own PL/SQL block in order to catch any raised exceptions, rather than abort the test unit?
Now it’s your turn.

It’s Your Turn to Test a Content Table Package
Now you will create a test unit for content table package PHYSICAL_WORKPLACE. In case you haven’t noticed
yet, table PHYSICAL_WORKPLACES is extremely similar to table LOGICAL_WORKPLACES, so you should be able
to do some “code borrowing” to create a table package for PHYSICAL_WORKPLACES, including its test unit
method test(). Please follow these steps.

	 1.	 Write the DDL scripts to create a table package for table PHYSICAL_WORKPLACES
by borrowing the code from LOGICAL_WORKPLACE. This means you’ll need to do
some thinking about the differences between the two tables, and the resulting
differences between the two packages, and then make the appropriate changes.

	 2.	 Save your specification script as rps.physical_workplace.pks, and your body
script as rp.physical_workplace.pkb.

	 3.	 Compile the WORKER package because your solution may require it as a
dependency: rps.worker.pks and rps.worker.pkb.

	 4.	 Compile your package.

	 5.	 Execute the test unit: SQL> execute physical_workplace.test();.

	 6.	 Use script last_test_results.sql to view the outcome of your test unit.

	 7.	 Add a test to your test unit to change the inactive date for business unit
TEST_TS.v_TEST_CODE_30_2 to TEST_TS.d_TEST_19991231.

	 8.	 Execute the test unit again: SQL> execute physical_workplace.test();.

	 9.	 Use script last_test_results.sql to view the outcome of your test unit.

Once again, I’m not going to show you my solution. But you can find it in the solutions download
directory for Chapter 8.

Next, let’s test an intersection table package.

Testing an Intersection Table Package
It’s time to test the third category of the dynamic trio: an intersection table package. As in the previous
example, Listing 8-12 is a partial code listing, showing the test unit from the full-blown, production-ready
package for the LOGICAL_ASSIGNMENTS table. In case you’ve forgotten, LOGICAL_ASSIGNMENTS holds a list

Chapter 8 ■ Testing

307

(a history) of logical assignments for a worker, such as which department the person worked for from
one point in time to another. Its package specification lists the following methods that are specific to an
intersection table package (or TYPE):

•	 get_logical_workplace(): Returns the LOGICAL_WORKPLACES assigned at the
specified point in time

•	 is_active(): Returns TRUE if the specified worker has a logical assignment at the
specified point in time

The package specification contains several methods in common with a content table package:

•	 get_row(): Returns a matching row depending on primary key column or unique
key column value(s) set in the record passed to the method

•	 set_row(): Updates an existing matching row, using the same rules implemented by
get_row() to find a matching row, or inserts a new row if a match is not found

And the package specification also has some methods that are universal to all table packages:

•	 get_id()Returns a newly allocated primary key value for the table

•	 help()Display help text for the package

•	 test()the package

Listing 8-12.  The test( ) Method from Table Package Body LOGICAL_ASSIGNMENT,rps.
logical_assignment.pkb

195 PROCEDURE test is
196
197 n_logical_workplace_id LOGICAL_WORKPLACES.id%TYPE;
198 n_logical_workplace_id_1 LOGICAL_WORKPLACES.id%TYPE;
199 n_logical_workplace_id_2 LOGICAL_WORKPLACES.id%TYPE;
200 n_worker_id WORKERS.id%TYPE;
201 n_worker_id_1 WORKERS.id%TYPE;
202 n_worker_id_2 WORKERS.id%TYPE;
203 r_worker WORKERS%ROWTYPE;
204 r_logical_workplace LOGICAL_WORKPLACES%ROWTYPE;
205 r_logical_assignment LOGICAL_ASSIGNMENTS%ROWTYPE;
206
207 begin
208 pl('LOGICAL_ASSIGNMENT.test()');
209
210 &_USER..TEST.clear('LOGICAL_ASSIGNMENT');
211
212 -- In order to make entries into an Intersection table
213 -- you first have to have entries in the two tables
214 -- for which an entry will create an intersection
215 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 0,
216 'Delete existing test entries from LOGICAL_ASSIGNMENTS');
217 begin
218 delete LOGICAL_ASSIGNMENTS
219 where logical_workplace_id in (
220 select logical_workplace_id
221 from LOGICAL_WORKPLACES
222 where code in (

Chapter 8 ■ Testing

308

223 &_USER..TEST.v_TEST_30,
224 &_USER..TEST.v_TEST_30_1,
225 &_USER..TEST.v_TEST_30_2));
226
227 delete LOGICAL_ASSIGNMENTS
228 where worker_id in (
229 select worker_id
230 from WORKERS
231 where external_id in (
232 &_USER..TEST.v_TEST_30,
233 &_USER..TEST.v_TEST_30_1,
234 &_USER..TEST.v_TEST_30_2));
235
236 &_USER..TEST.ok();
237 exception
238 when OTHERS then
239 &_USER..TEST.error(SQLERRM);
240 end;
241
242 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 1,
243 'Delete existing test entries from LOGICAL_WORKPLACES');
244 begin
245 delete LOGICAL_WORKPLACES
246 where code in (
247 &_USER..TEST.v_TEST_30_1,
248 &_USER..TEST.v_TEST_30_2);
249
250 delete LOGICAL_WORKPLACES
251 where code in (
252 &_USER..TEST.v_TEST_30);
253
254 &_USER..TEST.ok;
255 exception
256 when OTHERS then
257 &_USER..TEST.error(SQLERRM);
258 end;
259
260 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 2,
261 'Delete existing test entries from WORKERS');
262 begin
263 delete WORKERS
264 where external_id in (
265 &_USER..TEST.v_TEST_30,
266 &_USER..TEST.v_TEST_30_1,
267 &_USER..TEST.v_TEST_30_2);
268
269 &_USER..TEST.ok();
270 exception
271 when OTHERS then
272 &_USER..TEST.error(SQLERRM);
273 end;
274

Chapter 8 ■ Testing

309

275 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'INSERT', 3,
276 'Insert WORKERS test entries using set_row()');
277 begin
278 r_worker.id := WORKER.get_id();
279 r_worker.worker_type_id := WORKER_TYPE.get_id('E');
280 r_worker.external_id := &_USER..TEST.v_TEST_30;
281 r_worker.first_name := &_USER..TEST.v_TEST_30;
282 r_worker.middle_name := &_USER..TEST.v_TEST_30;
283 r_worker.last_name := &_USER..TEST.v_TEST_30;
284 r_worker.name := WORKER.get_formatted_name(
285 r_worker.first_name,
286 r_worker.middle_name,
287 r_worker.last_name);
288 r_worker.birth_date := to_date('19800101', 'YYYYMMDD');
289 r_worker.gender_type_id := GENDER_TYPE.get_id('M');
290 WORKER.set_row(r_worker);
291 n_worker_id := r_worker.id;
292
293 r_worker.id := WORKER.get_id();
294 r_worker.worker_type_id := WORKER_TYPE.get_id('E');
295 r_worker.external_id := &_USER..TEST.v_TEST_30_1;
296 r_worker.first_name := &_USER..TEST.v_TEST_30_1;
297 r_worker.middle_name := &_USER..TEST.v_TEST_30_1;
298 r_worker.last_name := &_USER..TEST.v_TEST_30_1;
299 r_worker.name := WORKER.get_formatted_name(
300 r_worker.first_name,
301 r_worker.middle_name,
302 r_worker.last_name);
303 r_worker.birth_date := to_date('19700101', 'YYYYMMDD');
304 r_worker.gender_type_id := GENDER_TYPE.get_id('F');
305 WORKER.set_row(r_worker);
306 n_worker_id_1 := r_worker.id;
307
308 r_worker.id := WORKER.get_id();
309 r_worker.worker_type_id := WORKER_TYPE.get_id('C');
310 r_worker.external_id := &_USER..TEST.v_TEST_30_2;
311 r_worker.first_name := &_USER..TEST.v_TEST_30_2;
312 r_worker.middle_name := &_USER..TEST.v_TEST_30_2;
313 r_worker.last_name := &_USER..TEST.v_TEST_30_2;
314 r_worker.name := WORKER.get_formatted_name(
315 r_worker.first_name,
316 r_worker.middle_name,
317 r_worker.last_name);
318 r_worker.birth_date := to_date('19600101', 'YYYYMMDD');
319 r_worker.gender_type_id := GENDER_TYPE.get_id('M');
320 WORKER.set_row(r_worker);
321 n_worker_id_2 := r_worker.id;
322

Chapter 8 ■ Testing

310

323 &_USER..TEST.ok();
324 exception
325 when OTHERS then
326 &_USER..TEST.error(SQLERRM);
327 end;
328
329 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'INSERT', 4,
330 'Insert LOGICAL_WORKPLACES test entries using set_row()');
331 begin
332 r_logical_workplace.id :=
333 LOGICAL_WORKPLACESS.get_id();
334 r_logical_workplace.parent_id := NULL;
335 r_logical_workplace.id_context :=
336 LOGICAL_WORKPLACESS.create_id_context(
337 r_logical_workplace.parent_id,
338 r_logical_workplace.id);
339 r_logical_workplace.workplace_type_id :=
340 WORKPLACE_TYPE_TS.get_id('C');
341 r_logical_workplace.code := &_USER..TEST.v_TEST_30;
342 r_logical_workplace.name := &_USER..TEST.v_TEST_80;
343 r_logical_workplace.active_date := &_USER..TEST.d_TEST_19000101;
344 r_logical_workplace.inactive_date := &_USER..TEST.d_TEST_99991231;
345 LOGICAL_WORKPLACESS.set_row(r_logical_workplace);
346 n_logical_workplace_id :=
347 r_logical_workplace.id;
348
349 r_logical_workplace.id :=
350 LOGICAL_WORKPLACESS.get_id();
351 r_logical_workplace.parent_id :=
352 n_logical_workplace_id;
353 r_logical_workplace.id_context :=
354 LOGICAL_WORKPLACESS.create_id_context(
355 r_logical_workplace.parent_id,
356 r_logical_workplace.id);
357 r_logical_workplace.workplace_type_id :=
358 WORKPLACE_TYPE_TS.get_id('B');
359 r_logical_workplace.code := &_USER..TEST.v_TEST_30_1;
360 r_logical_workplace.name := &_USER..TEST.v_TEST_80;
361 r_logical_workplace.active_date := &_USER..TEST.d_TEST_19000101;
362 r_logical_workplace.inactive_date := &_USER..TEST.d_TEST_99991231;
363 LOGICAL_WORKPLACESS.set_row(r_logical_workplace);
364 n_logical_workplace_id_1 :=
365 r_logical_workplace.id;
366
367 r_logical_workplace.id :=
368 LOGICAL_WORKPLACESS.get_id();
369 r_logical_workplace.parent_id :=
370 n_logical_workplace_id;
371 r_logical_workplace.id_context :=
372 LOGICAL_WORKPLACESS.create_id_context(
373 r_logical_workplace.parent_id,

Chapter 8 ■ Testing

311

374 r_logical_workplace.id);
375 r_logical_workplace.workplace_type_id :=
376 WORKPLACE_TYPE_TS.get_id('B');
377 r_logical_workplace.code := &_USER..TEST.v_TEST_30_2;
378 r_logical_workplace.name := &_USER..TEST.v_TEST_80;
379 r_logical_workplace.active_date := &_USER..TEST.d_TEST_19000101;
380 r_logical_workplace.inactive_date := &_USER..TEST.d_TEST_99991231;
381 LOGICAL_WORKPLACESS.set_row(r_logical_workplace);
382 n_logical_workplace_id_2 :=
383 r_logical_workplace.id;
384
385 &_USER..TEST.ok();
386 exception
387 when OTHERS then
388 &_USER..TEST.error(SQLERRM);
389 end;
390
391 -- Now that I have entries in the two tables being intersected
392 -- I can now start testing this package...
393 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'get_id()', 5,
394 'Allocate the next primary key value using get_id()');
395 begin
396 r_logical_assignment.id :=
397 LOGICAL_ASSIGNMENT.get_id();
398
399 if nvl(r_logical_assignment.id, 0) > 0 then
400 &_USER..TEST.ok();
401 else
402 &_USER..TEST.error();
403 end if;
404 exception
405 when OTHERS then
406 &_USER..TEST.error(SQLERRM);
407 end;
408
409 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'set_row()', 6,
410 'Insert history for v_TEST_30 using set_row()');
411 begin
412 r_logical_assignment.worker_id := n_worker_id;
413 r_logical_assignment.logical_workplace_id :=
414 n_logical_workplace_id_2;
415 r_logical_assignment.active_date :=
416 to_date('20000101', 'YYYYMMDD');
417 r_logical_assignment.inactive_date := NULL;
418 LOGICAL_ASSIGNMENT.set_row(r_logical_assignment);
419
420 &_USER..TEST.ok;
421 exception
422 when OTHERS then
423 &_USER..TEST.error(SQLERRM);
424 end;
425

Chapter 8 ■ Testing

312

426 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'set_row()', 7,
427 'Insert history for V_TEST_30_1 using set_row()');
428 begin
429 r_logical_assignment.id :=
430 LOGICAL_ASSIGNMENT.get_id();
431 r_logical_assignment.worker_id := n_worker_id_1;
432 r_logical_assignment.logical_workplace_id :=
433 n_logical_workplace_id_1;
434 r_logical_assignment.active_date :=
435 to_date('19900101', 'YYYYMMDD');
436 r_logical_assignment.inactive_date :=
437 to_date('19991231', 'YYYYMMDD');
438 LOGICAL_ASSIGNMENT.set_row(r_logical_assignment);
439
440 r_logical_assignment.id :=
441 LOGICAL_ASSIGNMENT.get_id();
442 r_logical_assignment.worker_id := n_worker_id_1;
443 r_logical_assignment.logical_workplace_id :=
444 n_logical_workplace_id_2;
445 r_logical_assignment.active_date :=
446 to_date('20000101', 'YYYYMMDD');
447 r_logical_assignment.inactive_date := NULL;
448 LOGICAL_ASSIGNMENT.set_row(r_logical_assignment);
449
450 &_USER..TEST.ok;
451 exception
452 when OTHERS then
453 &_USER..TEST.error(SQLERRM);
454 end;
455
456 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'set_row()', 8,
457 'Insert history for V_TEST_30_2 using set_row()');
458 begin
459 r_logical_assignment.id :=
460 LOGICAL_ASSIGNMENT.get_id();
461 r_logical_assignment.worker_id := n_worker_id_2;
462 r_logical_assignment.logical_workplace_id :=
463 n_logical_workplace_id_1;
464 r_logical_assignment.active_date :=
465 to_date('19800101', 'YYYYMMDD');
466 r_logical_assignment.inactive_date :=
467 to_date('19891231', 'YYYYMMDD');
468 LOGICAL_ASSIGNMENT.set_row(r_logical_assignment);
469
470 r_logical_assignment.id :=
471 LOGICAL_ASSIGNMENT.get_id();
472 r_logical_assignment.worker_id := n_worker_id_2;
473 r_logical_assignment.logical_workplace_id :=
474 n_logical_workplace_id_2;
475 r_logical_assignment.active_date :=
476 to_date('19900101', 'YYYYMMDD');

Chapter 8 ■ Testing

313

477 r_logical_assignment.inactive_date :=
478 to_date('19901231', 'YYYYMMDD');
479 LOGICAL_ASSIGNMENT.set_row(r_logical_assignment);
480
481 &_USER..TEST.ok;
482 exception
483 when OTHERS then
484 &_USER..TEST.error(SQLERRM);
485 end;
486
487 -- Commit the deletes and inserts
488 commit;
489
490 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT',
491 'get_logical_workplace()', 9,
492 'Get the current logical workplace for v_TEST_30');
493 begin
494 r_logical_workplace := NULL;
495 r_logical_workplace := get_logical_workplace(n_worker_id);
496
497 if nvl(r_logical_workplace.id, 0) > 0 then
498 &_USER..TEST.ok();
499 else
500 &_USER..TEST.error();
501 end if;
502 exception
503 when OTHERS then
504 &_USER..TEST.error(SQLERRM);
505 end;
506
507 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT',
508 'get_logical_workplace()', 10,
509 'Get the logical workplace on 6/30/1995 for v_TEST_30_1');
510 begin
511 r_logical_workplace := NULL;
512 r_logical_workplace := get_logical_workplace(
513 n_worker_id_1,
514 to_date('19950630', 'YYYYMMDD'));
515
516 if nvl(r_logical_workplace.id, 0) > 0 then
517 &_USER..TEST.ok();
518 else
519 &_USER..TEST.error();
520 end if;
521 exception
522 when OTHERS then
523 &_USER..TEST.error(SQLERRM);
524 end;
525
526 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT',
527 'get_logical_workplace()', 11,

Chapter 8 ■ Testing

314

528 'Get the logical workplace on 6/30/1995 for v_TEST_30_2');
529 begin
530 -- this should fail
531 r_logical_workplace := NULL;
532 r_logical_workplace := get_logical_workplace(
533 n_worker_id_2,
534 to_date('19950630', 'YYYYMMDD'));
535
536 if nvl(r_logical_workplace.id, 0) > 0 then
537 &_USER..TEST.error();
538 else
539 &_USER..TEST.ok();
540 end if;
541 exception
542 when NO_DATA_FOUND then
543 &_USER..TEST.ok();
544 when OTHERS then
545 &_USER..TEST.error(SQLERRM);
546 end;
547
548 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'help()', 12,
549 'Test help()');
550 begin
551 help();
552
553 &_USER..TEST.ok;
554 exception
555 when OTHERS then
556 &_USER..TEST.error(SQLERRM);
557 end;
558
559 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'is_active()', 13,
560 'Is there an active assignment on 6/30/1995 for v_TEST_30?');
561 -- No
562 begin
563 if is_active(n_worker_id, to_date('19950630', 'YYYYMMDD')) then
564 &_USER..TEST.error();
565 else
566 &_USER..TEST.ok();
567 end if;
568 exception
569 when OTHERS then
570 &_USER..TEST.error(SQLERRM);
571 end;
572
573 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'is_active()', 14,
574 'Is there an active assignment on 6/30/1995 for v_TEST_30_1?');
575 -- Yes
576 begin
577 if is_active(n_worker_id_1, to_date('19950630', 'YYYYMMDD')) then
578 &_USER..TEST.ok();

Chapter 8 ■ Testing

315

579 else
580 &_USER..TEST.error();
581 end if;
582 exception
583 when OTHERS then
584 &_USER..TEST.error(SQLERRM);
585 end;
586
587 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'is_active()', 15,
588 'Is there currently an active assignment for v_TEST_30_2?');
589 -- No
590 begin
591 if is_active(n_worker_id_2) then
592 &_USER..TEST.error();
593 else
594 &_USER..TEST.ok();
595 end if;
596 exception
597 when OTHERS then
598 &_USER..TEST.error(SQLERRM);
599 end;
600
601 -- Now clean up after the tests by deleting the test entries
602 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 16,
603 'Delete existing test entries from LOGICAL_ASSIGNMENTS');
604 begin
605 delete LOGICAL_ASSIGNMENTS
606 where logical_workplace_id in (
607 select logical_workplace_id
608 from LOGICAL_WORKPLACES
609 where code in (
610 &_USER..TEST.v_TEST_30,
611 &_USER..TEST.v_TEST_30_1,
612 &_USER..TEST.v_TEST_30_2));
613
614 delete LOGICAL_ASSIGNMENTS
615 where worker_id in (
616 select worker_id
617 from WORKER_T
618 where external_id in (
619 &_USER..TEST.v_TEST_30,
620 &_USER..TEST.v_TEST_30_1,
621 &_USER..TEST.v_TEST_30_2));
622
623 &_USER..TEST.ok();
624 exception
625 when OTHERS then
626 &_USER..TEST.error(SQLERRM);
627 end;
628

Chapter 8 ■ Testing

316

629 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 17,
630 'Delete existing test entries from LOGICAL_WORKPLACES');
631 begin
632 delete LOGICAL_WORKPLACES
633 where code in (
634 &_USER..TEST.v_TEST_30_1,
635 &_USER..TEST.v_TEST_30_2);
636
637 delete LOGICAL_WORKPLACES
638 where code in (
639 &_USER..TEST.v_TEST_30);
640
641 &_USER..TEST.ok;
642 exception
643 when OTHERS then
644 &_USER..TEST.error(SQLERRM);
645 end;
646
647 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', 'DELETE', 18,
648 'Delete existing test entries from WORKERS');
649 begin
650 delete WORKERS
651 where external_id in (
652 &_USER..TEST.v_TEST_30,
653 &_USER..TEST.v_TEST_30_1,
654 &_USER..TEST.v_TEST_30_2);
655
656 &_USER..TEST.ok();
657 exception
658 when OTHERS then
659 &_USER..TEST.error(SQLERRM);
660 end;
661
662 commit;
663 &_USER..TEST.set_test('LOGICAL_ASSIGNMENT', NULL, NULL, NULL);
664 &_USER..TEST.success();
665 end test;
 

The important point about an intersection table package is that it is dependent on test entries in the two
tables it intersects. So you’ll see that on lines 215 through 392, I must start out by deleting any test entries
in the “intersected” tables, WORKERS and LOGICAL_WORKPLACES, and then I must add entries to these tables
in order to have entries from which to establish an intersection entry. So every intersection table package
must also insert and delete entries from the tables on which it is depends. Now it’s your turn to work on an
intersection table package.

It’s Your Turn to Test an Intersection Table Package
You will now create a test unit for intersection table package PHYSICAL_ASSIGNMENT. Just as in the last
exercise, the corresponding table for this exercise, PHYSICAL_ASSIGNMENTS, is extremely similar to table
LOGICAL_ASSIGNMENTS, so you should once again be able to do some “code borrowing” to create a table
package for PHYSICAL_ASSIGNMENTS, including its test unit method test(). Follow these steps.

Chapter 8 ■ Testing

317

	 1.	 Write the DDL scripts to create a table package for table PHYSICAL_ASSIGNMENTS
by borrowing the code from LOGICAL_ASSIGNMENT.

	 2.	 Save your specification script as rps.physical_assignment.pks, and your body
script as rps.physical_assignment.pkb.

	 3.	 Compile your package.

	 4.	 Execute the test unit: SQL> execute physical_assignment.test();.

	 5.	 Use script last_test_results.sql to view the outcome of your test unit.

Once again, I’m not going to show you my solution. But you can find it in the solutions download
directory for Chapter 8.

So just how different can it be to test a TYPE instead of a package? Let’s find out.

Testing a Type
Testing a TYPE is not all that different from testing a package. The only significant difference is that when
you declare the test() method in a TYPE, it must be declared as a STATIC method. And when you code the
method, you must remember that you’ll need to work with a variable of that TYPE, and instance, as well as
the TYPE when performing your testing. If you don’t have an instance of the TYPE, you won’t be able to access
and test all its methods.

Listing 8-13 is a partial listing of the TYPE TEST, an object-relational testing tool. This listing shows only
the test unit for the TYPE itself.

Listing 8-13.  The Test Unit from TYPE TEST, ops.test.tpb

416 STATIC PROCEDURE "test" is
417
418 n_number number;
419 o_test TEST;
420
421 begin
422 pl('TEST.test()');
423
424 -- A defect requires the schema owner
425 &_USER..TEST.clear('TEST');
426
427 o_test := new TEST();
428 o_test.set_test('TEST', NULL, 1,
429 'Is get_test_N equal to N?');
430 if TEST.get_test_N = 'N' then
431 o_test.success();
432 else
433 o_test.error();
434 end if;
435
436 o_test.set_test('TEST', NULL, 2,
437 'Is the length of get_test_N equal to 1?');
438 if nvl(length(TEST.get_test_N), 0) = 1 then
439 o_test.success();

Chapter 8 ■ Testing

318

440 else
441 o_test.error();
442 end if;
443
444 o_test.set_test('TEST', NULL, 3,
445 'Is get_test_Y equal to Y?');
446 if TEST.get_test_Y = 'Y' then
447 o_test.success();
448 else
449 o_test.error();
450 end if;
451
452 o_test.set_test('TEST', NULL, 4,
453 'Is the length of get_test_Y equal to 1?');
454 if nvl(length(TEST.get_test_Y), 0) = 1 then
455 o_test.success();
456 else
457 o_test.error();
458 end if;
459
460 o_test.set_test('TEST', NULL, 5,
461 'Is the length of get_test_30 equal to 30?');
462 if nvl(length(TEST.get_test_30), 0) = 30 then
463 o_test.success();
464 else
465 o_test.error();
466 end if;
467
468 o_test.set_test('TEST', NULL, 6,
469 'Is the length of get_test_30_1 equal to 30?');
470 if nvl(length(TEST.get_test_30_1), 0) = 30 then
471 o_test.success();
472 else
473 o_test.error();
474 end if;
475
476 o_test.set_test('TEST', NULL, 7,
477 'Is the length of get_test_30_2 equal to 30?');
478 if nvl(length(TEST.get_test_30_2), 0) = 30 then
479 o_test.success();
480 else
481 o_test.error();
482 end if;
483
484 o_test.set_test('TEST', NULL, 8,
485 'Is the length of get_test_80 equal to 80?');
486 if nvl(length(TEST.get_test_80), 0) = 80 then
487 o_test.success();
488 else
489 o_test.error();
490 end if;
491

Chapter 8 ■ Testing

319

492 o_test.set_test('TEST', NULL, 9,
493 'Is the length of get_test_100 equal to 100?');
494 if nvl(length(TEST.get_test_100), 0) = 100 then
495 o_test.success();
496 else
497 o_test.error();
498 end if;
499
500 o_test.set_test('TEST', NULL, 10,
501 'Is the length of get_test_2000 equal to 2000?');
502 if nvl(length(TEST.get_test_2000), 0) = 2000 then
503 o_test.success();
504 else
505 o_test.error();
506 end if;
507
508 o_test.set_test('TEST', 'get_id', 11,
509 'Does get_id() work?');
510 begin
511 n_number := TEST.get_id();
512 if n_number > 0 then
513 o_test.success();
514 else
515 o_test.error();
516 end if;
517 exception
518 when OTHERS then
519 o_test.error(SQLERRM);
520 end;
521
522 o_test.set_test('TEST', 'help', 12,
523 'Does help() work?');
524 begin
525 &_USER..TEST.help();
526 raise_application_error(-20999, 'Testing the error routine');
527 o_test.success();
528 exception
529 when OTHERS then
530 o_test.error(SQLERRM);
531 end;
532
533 o_test.set_test('TEST', NULL, NULL, NULL);
534 o_test.success();
535 end "test";...
 

First, notice that I’ve declared the method as a STATIC procedure. This means it will be accessible from
the TYPE itself, not through an instance of the type.

Chapter 8 ■ Testing

320

Second, on line 419, I declare a variable of the TYPE and then on line 427, I set the variable to a new
instance of the TYPE. Then I use this instance when calling MEMBER methods in the test unit. Beyond those
two major changes, the differences in methods test() in package TEST and TYPE TEST are only semantic
(as in the variations in the programmer-created language). One last detail! I had to test the method “test”
in order to get around a name space error. I could have named it test_ or TEST_ or anything other than the
name of the TYPE itself, but I like to keep things obvious, so I forced Oracle to name it test in lower case.

Now that you have seen an example of testing a TYPE, it’s your turn.

It’s Your Turn to Test a Type
Now you’ll select any TYPE that you’ve created so far, and code its test unit method test(). However, you’ll
use your object-relational testing tool. This means you’ll also need to modify the SQL*Plus report last_
test_results.sql so it queries your testing tool’s object table TESTS. This time, I’m not even going to give
you any steps. You’ve seen enough examples that you should be able to list the steps you need to complete in
order to do this exercise. Good skill!

Now, it’s time we move on to the automation of testing.

Automating Testing
Do you remember that in the beginning of this chapter I promised you a framework for automating your
testing? Well, by utilizing information from Oracle’s data dictionary and writing another program unit that
calls all your test units, you can execute one PL/SQL method that will in turn execute every test() method
you’ve written, and then report on the test results.

There are several data dictionary views that have information about packages, TYPEs, and their
methods. The three best suited to my needs of identifying every package and TYPE that does and does not
have a test() method are SYS.ALL_ARGUMENTS, SYS.USER_PROCDURES, and SYS.USER_TYPE_METHODS.
The following are SQL*Plus descriptions of the views:
 
SYS.USER_ARGUMENTS
 Name Null? Type
 -- -------- ---------------------------
 OBJECT_NAME VARCHAR2(128)
 PACKAGE_NAME VARCHAR2(128)
 OBJECT_ID NOT NULL NUMBER
 OVERLOAD VARCHAR2(40)
 SUBPROGRAM_ID NUMBER
 ARGUMENT_NAME VARCHAR2(128)
 ...
SYS.USER_TYPE_METHODS
 Name Null? Type
 -- -------- ---------------------------
 TYPE_NAME NOT NULL VARCHAR2(128)
 METHOD_NAME NOT NULL VARCHAR2(128)
 METHOD_NO NOT NULL NUMBER
 METHOD_TYPE VARCHAR2(6)
 PARAMETERS NOT NULL NUMBER
 ...
 
 

Chapter 8 ■ Testing

321

SYS.USER_PROCEDURES
 Name Null? Type
 -- -------- -------------
 OBJECT_NAME VARCHAR2(128)
 PROCEDURE_NAME VARCHAR2(128)
 OBJECT_ID NUMBER
 SUBPROGRAM_ID NUMBER
 OVERLOAD VARCHAR2(40)
 OBJECT_TYPE VARCHAR2(13)
 ...
 

Using the information provided by these views, I can write a query that does the following:

Lists the name of every package and •	 TYPE that has a test() method

Lists the name of every package and •	 TYPE that does not have a test() method

If I couple that information with the output of the test units that is stored in table TESTS, I can write a
query that does the following:

Lists information about every test that failed•	

Lists the name of every package or •	 TYPE where its test method failed

So the information provided by the data dictionary views and the testing tool’s table TESTS arms me
with all the information I need to automate the testing of the PL/SQL program units and to report on the test
results. Therefore, to automate the testing of the PL/SQL program units, all I need to do is follow these two
simple steps.

	 1.	 Add a test unit method test() to every PL/SQL package or TYPE definition.

	 2.	 Execute a process to execute each test unit method and report the results.

You already know how to do the first step, so let’s see an example of how to do the second step.

Automate Test Processing
Listing 8-14 is an example of a PL/SQL program unit that executes all coded test() methods for the current
schema, and then reports on the results. It queries view SYS.ALL_ARGUMENTS to get a list of packages and TYPEs
that do and do not have test() methods. It executes each test() method, recording the results of execution,
as the test method itself records the results of each of its tests. Finally, it reports the results of the tests.

Listing 8-14.  An Example of a Test Unit Processing, test.sql

001 rem test.sql
002 rem by Donald J. Bales on 2014-10-20
003 rem An anonymous PL/SQL procedure to execute all test units
004 rem and to report on the results of each test.
005
006 declare
007
008 -- Get the names of all packages and types that have a test unit
009 cursor c_test is
010 select p.object_name package_name
011 from SYS.USER_PROCEDURES p

Chapter 8 ■ Testing

322

012 where p.object_type = 'PACKAGE'
013 and upper(p.procedure_name) = 'TEST'
014 and not exists (
015 select 1
016 from SYS.USER_ARGUMENTS x
017 where x.package_name = p.object_name
018 and x.object_name = p.procedure_name)
019 UNION
020 select m.type_name package_name
021 from SYS.USER_TYPE_METHODS m
022 where upper(m.method_name) = 'TEST'
023 and m.parameters = 0
024 order by 1;
025
026 -- Get the names of all packages and types that don't have a test unit
027 cursor c_missing is
028 (select p.object_name package_name
029 from SYS.USER_PROCEDURES p
030 where p.object_type = 'PACKAGE'
031 UNION
032 select m.type_name package_name
033 from SYS.USER_TYPE_METHODS m)
034 MINUS
035 (select p.object_name package_name
036 from SYS.USER_PROCEDURES p
037 where upper(p.procedure_name) = 'TEST'
038 and not exists (
039 select 1
040 from SYS.USER_ARGUMENTS x
041 where x.package_name = p.object_name
042 and x.object_name = p.procedure_name)
043 UNION
044 select m.type_name package_name
045 from SYS.USER_TYPE_METHODS m
046 where upper(m.method_name) = 'TEST'
047 and m.parameters = 0)
048 order by 1;
049
050 -- Get the names of all packages and types that have test unit errors
051 cursor c_error is
052 select object_name||
053 decode(substr(method_name, -1, 1), ')', '.', ' ')||
054 method_name object_method,
055 test_number,
056 result
057 from TESTS
058 where result <> 'OK'
059 and result <> 'SUCCESS'
060 order by 1;
061

Chapter 8 ■ Testing

323

062 TYPE error_message_table is table of varchar2(32767)
063 index by binary_integer;
064
065 n_error_message number := 0;
066 n_object_method_width number := 39;
067 n_result_width number := 29;
068 n_status number;
069 n_test_number_width number := 5;
070
071 t_error_message error_message_table;
072
073 v_line varchar2(32767);
074
075 begin
076 -- execute the test units
077 for r_test in c_test loop
078 begin
079 execute immediate 'begin '||r_test.package_name||'.test(); end;';
080 exception
081 when OTHERS then
082 n_error_message := n_error_message + 1;
083 t_error_message(n_error_message) :=
084 r_test.package_name||'.test() '||SQLERRM;
085 end;
086 end loop;
087 -- Empty the output buffer
088 loop
089 SYS.DBMS_OUTPUT.get_line(v_line, n_status);
090 if nvl(n_status, 0) < 1 then
091 exit;
092 end if;
093 end loop;
094 -- Show the test units that had errors
095 for r_error in c_error loop
096 if c_error%rowcount = 1 then
097 pl(chr(9));
098 pl('THE FOLLOWING OBJECT''S TEST UNITS HAD ERRORS:');
099 pl(chr(9));
100 pl(
101 rpad(
102 substr('OBJECT/METHOD',
103 1, n_object_method_width),
104 n_object_method_width, ' ')||
105 ' '||
106 lpad(
107 substr('TEST#',
108 1, n_test_number_width),
109 n_test_number_width, ' ')||
110 ' '||
111 rpad(
112 substr('ERROR',
113 1, n_result_width),

Chapter 8 ■ Testing

324

114 n_result_width, ' ')
115);
116 pl(
117 rpad(
118 substr('-------------',
119 1, n_object_method_width),
120 n_object_method_width, '-')||
121 ' '||
122 lpad(
123 substr('-----',
124 1, n_test_number_width),
125 n_test_number_width, '-')||
126 ' '||
127 rpad(
128 substr('-----',
129 1, n_result_width),
130 n_result_width, '-')
131);
132 end if;
133 pl(
134 rpad(
135 substr(r_error.object_method,
136 1, n_object_method_width),
137 n_object_method_width, ' ')||
138 ' '||
139 lpad(
140 substr(ltrim(to_char(r_error.test_number)),
141 1, n_test_number_width),
142 n_test_number_width, ' ')||
143 ' '||
144 rpad(
145 substr(r_error.result,
146 1, n_result_width),
147 n_result_width, ' ')
148);
149 end loop;
150 -- Show the test units that failed to run
151 if t_error_message.count > 0 then
152 for i in t_error_message.first..t_error_message.last loop
153 if i = t_error_message.first then
154 pl(chr(9));
155 pl('THE FOLLOWING OBJECT''S TEST UNITS FAILED:');
156 end if;
157 pl(chr(9));
158 pl(t_error_message(i));
159 end loop;
160 end if;
161 -- Show the object that missing test units
162 for r_missing in c_missing loop
163 if c_missing%rowcount = 1 then
164 pl(chr(9));

Chapter 8 ■ Testing

325

165 pl('THE FOLLOWING OBJECTS ARE MISSING TEST UNITS:');
166 pl(chr(9));
167 end if;
168 pl(r_missing.package_name);
169 end loop;
170 end;
171 /
 

Let’s break this listing down line by line:

Lines 9 through 24 declare a cursor, •	 c_test, against data dictionary views
SYS.USER_ARGUMENTS, SYS.USER_PROCEDURES, and SYS.USER_TYPE_METHODS,
which gives me a list of packages and TYPEs that have a method test().

Lines 27 through 48 declare second cursor, •	 c_missing, against SYS.USER_ARGUMENTS,
SYS.USER_PROCEDURES, and SYS.USER_TYPE_METHODSwhich gives me a list of
packages and TYPEs that do not have a test() method.

Lines 51 through 60 declare a cursor, •	 c_error, against table TESTS that lists all the
individual tests that failed during the current test run.

Lines 62 and 63 declare a PL/SQL table •	 TYPE, error_message_table, which I will use
to declare an array of exceptions raised during the execution of each test() method.

Lines 77 through 86 execute a cursor for loop, where I call each package and •	 TYPE’s
test() method. I’ve blocked the dynamic call to each method, so I can capture and
later report on any raised exceptions (test() method failures).

Lines 88 through 93 use a manual for loop to empty the •	 SYS.DBMS_OUTPUT.put_
line() buffer after having executed every test unit method. I do this to throw out any
put_line() messages generated by each test unit.

Lines 95 through 149 report, using •	 put_line(), about any test failures during the test run.

Lines 151 through 160 report any •	 test() method failures during the test run. I could
have created a fourth cursor to show me the test() methods that failed during
execution, but I’m already getting this information from the blocked dynamic PL/
SQL call to each method on lines 77 through 86.

Lines 162 through 169 list any packages or •	 TYPEs that do not have a test unit method
test().

The only thing this procedure cannot do is determine whether or not a programmer has actually taken
the time to code the test unit. The following is sample output from this procedure while I was coding in my
environment:
 
SQL> @test.sql
 
THE FOLLOWING OBJECT'S TEST UNITS HAD ERRORS:
 
OBJECT/METHOD TEST# ERROR
--------------------------------------- ----- -----------------------------
LOGICAL_WORKPLACE.GET_ROW() 7 ORA-01403: no data found
LOGICAL_WORKPLACE.GET_ROW() 8 ORA-01403: no data found
LOGICAL_WORKPLACE.GET_ROW() 9 ORA-01403: no data found
LOGICAL_WORKPLACE.SET_ROW() 4 ORA-01403: no data found
LOGICAL_WORKPLACE.SET_ROW() 3 ORA-20003: ORA-01400: cannot
 

Chapter 8 ■ Testing

326

THE FOLLOWING OBJECTS ARE MISSING TEST UNITS:
 
DEBUG
PARAMETER
SCOPE
 
PL/SQL procedure successfully completed.
 

The first part of the report, test unit errors, shows that exception ORA-20003 was raised while testing
method LOGICAL_WORKPLACE.SET_ROW(). This information tells me to go directly to package LOGICAL_
WORKPLACE to examine what might be wrong with the test or the method set_row().

The second part of the report, missing test units, lists the packages and TYPEs that are missing a test unit
method. With this information, I can add the task of coding test units for these to my to-do list. Don’t ignore
this list. Anything not tested is something that can and probably will produce errors.

In practice, on an enterprise application, I’ve seen a test unit process like this take two to three hours
to execute. In addition, it always finds one to three errors in each newly coded package. As time goes by,
and new defects are detected by end users and others, it’s your responsibility to go back and update the
test unit method to test for any newly reported defect. Using this kind of automated testing, combined with
consistently adding any new test cases, you can make your persistence layer statistically error-free.

I don’t think that the “processing” procedure just described should be external (losable) to the
database/objectbase. Instead, it should be added to package TEST as method process(). That way, you will
be able to test any package or procedure by calling its test() method, and you can test the entire persistence
layer by calling TEST.process(). Now that’s a powerful testing tool!

It’s Your Turn to Automate Test Processing
For your final assignment in this chapter, modify your object-relational testing tool to add STATIC procedure
process(), which will execute a program unit similar to test.sql using your testing tool’s result table TESTS.
Then execute TEST.process() to see the results of testing your object-relational persistence layer.

Summary
My hope is that you now realize how important, and easy, it is to properly test your PL/SQL program
units. A couple of hours of extra coding up front for each program unit can save your hundreds of hours
of troubleshooting later on. More important, it will save your end users from hundreds of hours of lost
productivity and frustration.

I’ve shown you the coding patterns involved when coding test units for SQL and PL/SQL. I’ve shown
you how to create a relational and object-relational testing tool that can automatically test every program
unit and access to their associated tables in your database by executing one procedure: process().

My final suggestion is that you decide on the use of a relational or an object-relation testing tool and
then add the required test units that access that tool to each and every program unit you write.
As a developer of enterprise applications, I have historically had low error rates. I’ve achieved them by
incorporating testing into the process of developing. Assume nothing. Test everything.

Just how important is it to test everything? During the coding of the examples for this book, this testing
framework found an average of two errors for each package or TYPE. And I’ve been coding in PL/SQL for
more than 20 years!

There’s one last tactic you can employ to help prevent errors: provide access to good documentation to
your developers. And that’s what I’m going to cover in the next chapter.

327

Chapter 9

Documenting

Once, when I was a young executive, I reported to the chief financial officer (CFO). Upon arriving at the new
organization, I formulated a strategy to bring the company’s computer technology up to date. Part of that
plan was to provide each computer user in the organization with a computer that best suited that user’s
needs. This meant that executive administrators got high-powered desktop computers, while executives
and consultants were armed with top-of-the-line notebooks. Not only did we make sure everyone was using
the latest office automation software and groupware, we also built a state-of-the-art Executive Information
System (EIS) that was tightly integrated with the accounting system.

The management team had no issues with authorizing capital expenditures for the computer hardware.
Nor did the team balk about the investment in software. But when it came to spending money to provide
personnel with training so they could take advantage of the new hardware and software, I could not get
approval from the CFO. Why? He explained to me that any time you train people, they just move on to a
better-paying job, so training was counterproductive.

To say the least, I was amazed and dismayed at the same time. I thought to myself, and further argued
with the management team, “Why did you invest in hardware and software if you never had any intention
of training people how to use it?” No amount of arguing could move them on this issue. So from my
perspective, they attained minimal gains from their investment in hardware and software. Do you find this
attitude as strange as I do?

If you do, then you’ll logically also have to agree with me that the development of any reusable software
component has no value if you don’t inform your programming staff members that the reusable component
exists, and then educate them on how to use the component. At the very least, you should have some
documentation they can refer to in order to find out what is available and how to use it!

Here’s a second story. I once worked on a project for a major retailer to package some of its software for
distribution to regional offices in the company. As part of that work, I wrote the (missing) technical reference
and end-user tutorial documentation so the support staff could figure out how to support the software, and
the end users would know how to use the software. A novel idea, don’t you think? When it came time to
send the software to each regional office, I was told that I first had to remove the documentation from the
distribution. Why? Because the documentation held trade secrets that the personnel of the firm could not be
trusted with. Argh!

If I ran a tool and die company that made nuts and bolts, created a catalog of available parts, but
then never distributed it to perspective customers, I would be out of business in no time at all. If I ran an
integrated circuit manufacturing firm, but didn’t let anyone know that the firm existed and what electronic
components it manufactured, once again, I would be filing for bankruptcy in less than a month.

What’s my point? The day and age of software components has been here for more than 30 years, but
reuse depends on the distribution of documentation. Since the first machine language subroutine was
written, that subroutine has been available as a reusable component. Since the first procedure programming
language library was created, that library has been available as a reusable component. Since object-oriented
languages first appeared on the scene, the creation of software components was made simple.

Chapter 9 ■ Documenting

328

If you’ve created a web application using PHP, Python Django, or Ruby on Rails, you know how
important API documentation is in order to use those programming languages or frameworks. If you’ve
programmed in Java, you’ve used the Java Foundation Classes (JFC) or Java Enterprise Edition (JEE)
framework. If you’ve programmed in PL/SQL, you’ve at least used the standard library. I could go on and on.
These are all reusable software components.

If you’re developing a solution to a business problem, you should have use-case narratives, use-case
diagrams, process-flow diagrams, and so on to use a set of requirements for doing your programming work.
During the creation of these documents, it should have become obvious what higher-level abstractions and
patterns could be discerned from the end user’s requirements. Using these abstractions and patterns, you
can create components that are reusable through inheritance.

Furthermore, while developing, if you find yourself writing the same SQL statement or PL/SQL routine
more than once, it’s time to abstract that repeated pattern into a reusable component that can then be used
by other components in your solution. If you do this, great! But if you don’t document the existence of each
and every component, what it does, and how to use it, it doesn’t exist outside the realm of your own mind. So
you must—I mean must—document as you go. And second, you must provide other possible users a means
to know that reusable (even non-reusable) components exist, what they can do, and how to use them. And
that is what this chapter is all about.

In this chapter, I’ll cover the following:

Documentation that cannot be lost or thrown away•	

Documentation that is available on demand•	

Distributable documentation•	

Let’s start with documentation that cannot be lost or thrown away.

Indestructible Documentation
What a silly notion—indestructible documentation. Or perhaps not? You know of Murphy’s Law, don’t you?
“Anything that can go wrong will go wrong.” It’s easy to lose your documentation if it’s stored on a file system
that is not part of the ongoing application.

One beautiful thing about PL/SQL is that the source code is permanently stored in the database. The
only way to lose it is to lose the database, and at that point, who needs the source code?

Another beautiful thing about PL/SQL is that most executable code resides in either a package or TYPE
specification. And these specifications allow you to comment the code. So the easiest way to document your
packages and TYPEs is to put meaningful and properly formatted comments in each object’s specification. At
the very least, the text of the specification will then be available via the SYS.USER_SOURCE view.

But before you make up your mind on what to document, how to document it, and where to put any
documentation you do create, let’s look at what SQL*Plus provides for package and TYPE documentation.

SQL*Plus Documentation Tools
In SQL*Plus, you can use the describe command to determine the format of a table or the call specifications
of a function, procedure, package, or TYPE. Here’s an example of using describe on the table WORKER_TYPE_T:
 
SQL> desc WORKER_TYPES
 
WORKER_TYPES

Chapter 9 ■ Documenting

329

 Name Null? Type
 -- -------- ------------
 ID NOT NULL NUMBER(38)
 CODE NOT NULL VARCHAR2(30)
 DESCRIPTION NOT NULL VARCHAR2(80)
 ACTIVE_DATE NOT NULL DATE
 INACTIVE_DATE NOT NULL DATE
 

And here’s an example of using the describe command on the package WORKER_TYPE: 

SQL> desc WORKER_TYPES 

WORKER_TYPES
 Name Null? Type
 -- -------- --------------------
 ID NOT NULL NUMBER(38)
 CODE NOT NULL VARCHAR2(30)
 DESCRIPTION NOT NULL VARCHAR2(80)
 ACTIVE_DATE NOT NULL DATE
 INACTIVE_DATE NOT NULL DATE
 
SQL> @desc WORKER_TYPE
WORKER_TYPE
PROCEDURE GET_CODE_DESCR
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 AIN_ID NUMBER(38) IN
 AOV_CODE VARCHAR2(30) OUT
 AOV_DESCRIPTION VARCHAR2(80) OUT
PROCEDURE GET_CODE_ID_DESCR
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 AIOV_CODE VARCHAR2(30) IN/OUT
 AON_ID NUMBER(38) OUT
 AOV_DESCRIPTION VARCHAR2(80) OUT
 AID_ON DATE IN
PROCEDURE GET_CODE_ID_DESCR
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 AIOV_CODE VARCHAR2(30) IN/OUT
 AON_ID NUMBER(38) OUT
 AOV_DESCRIPTION VARCHAR2(80) OUT
FUNCTION GET_ID RETURNS NUMBER(38)
FUNCTION GET_ID RETURNS NUMBER(38)
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 AIV_CODE VARCHAR2(30) IN
PROCEDURE HELP
PROCEDURE TEST 

Chapter 9 ■ Documenting

330

The describe command shows the format of the table, or the signature of the methods, but nothing
else. It doesn’t provide an explanation as to what the column names in the table are supposed to store, nor
what the methods may actually do.

Sometimes, you’ll already know what a method can do, and you’re just looking for its method signature.
In that case, describe will suit your purpose. But describe will never be a suitable means of looking up
documentation on how something works.

Let’s see what GUI development environment tools can provide.

GUI Development Environment Tools
Tools like Oracle SQL Developer and TOAD for Oracle also show table formats and method signatures in
much the same manner as SQL*Plus does. In Figures 9-1 and 9-2, you can see how Oracle SQL Developer
presents information about table and package methods. When it comes to help with a package or TYPE
definition, Oracle SQL Developer simply displays the source for the package specification.

Figure 9-1.  A table definition as presented in Oracle SQL Developer

Chapter 9 ■ Documenting

331

So how does TOAD present the same information? Look in Figures 9-3 and 9-4 for the answer. When it
comes to package or TYPE information, TOAD also presents the source code of the package specification, just
as Oracle SQL Developer does.

Figure 9-2.  A package definition as presented in Oracle SQL Developer

Chapter 9 ■ Documenting

332

Figure 9-3.  A table definition as presented in TOAD

Chapter 9 ■ Documenting

333

Looking at the examples from these two IDEs, it occurs to me, once again, that the best place for
documentation on what methods are for and how they actually work is right there in the specification source
code itself, as properly formatted comments.

So if you properly format comments in a package or TYPE specification, you should be able to create a
tool to display those comments, along with method call specifications as text or in any format. But first, you’ll
need to follow some commenting rules.

Rules for Documentation Comments
In order to be able to do any level of manipulation with the comments placed in the specifications for a
package or TYPE, the use of the comments needs to be consistent from one specification to the next. To that
end, following a minimal set of rules for adding comments to a specification will enable you to later display
that information in various formats. The rules consist of the following:

Place a multiline descriptive comment at the very beginning of each package and •	
TYPE specification. This comment includes the object name, author, date written,
and modification history.

Place a single or multiline comment before every•	

Figure 9-4.  A type specification as presented in TOAD

Chapter 9 ■ Documenting

334

Package constant•	

Package variable•	

List of •	 TYPE attributes

Method signature•	

If you follow these two simple rules, you can next provide developers with documentation on demand.

Documentation on Demand
You can provide developers with documentation on demand by adding procedure help() to every package
and TYPE specification. Then anytime they want to know what an executable object is for and what it can do,
all they need to is execute its help() method. Here’s an example:
 
SQL> WORKER_TYPE.help();
 

But first, you need to code those help() methods so they do something when executed! Let’s build
a text-based documentation formatting tool for package and TYPE specifications—and then add it as a
command in each help() method.

A Text-Based Documentation Formatting Tool
So what tasks should this text-based formatting tool perform? How about the following?

Read a specification and format the output.•	

Remove any single-line or multiline comment delimiters.•	

Preserve any hard carriage returns in order to maintain vertical spacing.•	

Preserve any space or tab indentation in order to maintain horizontal spacing.•	

Using PL/SQL, I can accomplish the following tasks:

Read through the source code of a specification by accessing view •	 SYS.USER_SOURCE.

Parse out and replace any single-line or multiline comment delimiters.•	

Identify a hard carriage return and forward it to •	 put_line().

But the last requirement will be difficult. put_line(), the only means of displaying text from PL/SQL,
will just truncate any leading spaces, so the best I can do is provide a hack where I send put_line() a tab
character any time I have a source line that starts with a space character.

Now that I have some requirements to work with, I can build the text-based help tool. Listing 9-1 is
the package specification for a text-based documentation formatting tool, or “text-help” tool appropriately
named TEXT_HELP.

Listing 9-1.  A Package Spec to Create Text-Based Help, text_help.pks

01 create or replace PACKAGE TEXT_HELP as
02 /*
03 test_help.pkb
04 by Donald J. Bales on 2014-10-20
05 A package to produce text based help

Chapter 9 ■ Documenting

335

06 */
07
08 /*
09 The help text for this package.
10 */
11 PROCEDURE help;
12
13
14 /*
15 Generate help text for the specified object using its specification.
16 */
17 PROCEDURE process(
18 aiv_object_name in varchar2);
19
20
21 /*
22 The test unit for this package.
23 */
24 PROCEDURE test;
25
26
27 end text_help;
28 /
29 @se.sql 

TEXT_HELP has three methods:

•	 help() displays on-demand help for this package by utilizing its second method
process().

•	 process() retrieves the specified specification from view SYS.USER_SOURCE, and
then displays the specification as nicely formatted text.

•	 test() is the test unit for this package.

Also notice that in Listing 9-1, I followed the commenting rules outlined earlier. Do as I say, and as I do!
Listing 9-2 is the implementation for TEXT_HELP. The only “new” method is process(). It’s an ugly

combination of parsing with substr() and an if-then-elsif-then-else tree that implements the
requirements outlined earlier in this section.

Listing 9-2.  A Package Body to Create Text-Based Help, text_help.pkb

001 create or replace PACKAGE BODY TEXT_HELP as
002 /*
003 test_help.pkb
004 by Donald J. Bales on 2014-10-20
005 A package to produce text based help
006 */
007
008 PROCEDURE help is
009
010 begin
011 TEXT_HELP.process('TEXT_HELP');
012 end help;

Chapter 9 ■ Documenting

336

013
014
015 /*
016 A procedure to output formatted package or TYPE text
017 */
018 PROCEDURE out(
019 aiv_text in varchar2) is
020
021 v_text varchar(255);
022 n_text number := 1;
023
024 begin
025 if nvl(length(aiv_text), 0) < 256 then
026 v_text := aiv_text;
027 else
028 v_text := substr(aiv_text, 1, 252)||'...';
029 end if;
030 if nvl(substr(v_text, 1, 1), chr(32)) = chr(32) then
031 if length(v_text) > 0 then
032 for i in 1..length(v_text) loop
033 if nvl(substr(v_text, i, 1), chr(32)) <> chr(32) then
034 n_text := i;
035 exit;
036 end if;
037 end loop;
038 end if;
039 SYS.DBMS_OUTPUT.put_line(chr(9)||substr(v_text, n_text));
040 else
041 SYS.DBMS_OUTPUT.put_line(v_text);
042 end if;
043 end out;
044
045
046 PROCEDURE process(
047 aiv_object_name in varchar2) is
048
049 cursor c1(
050 aiv_object_name in varchar2) is
051 select text
052 from SYS.USER_SOURCE
053 where name = upper(aiv_object_name)
054 and type in ('PACKAGE', 'TYPE')
055 order by line;
056
057 b_method boolean := FALSE;
058 b_comment boolean := FALSE;
059 v_text SYS.USER_SOURCE.text%TYPE;
060
061 begin
062 for r1 in c1(aiv_object_name) loop
063 v_text := replace(replace(r1.text, chr(13), NULL), chr(10), NULL);

Chapter 9 ■ Documenting

337

064 if substr(ltrim(v_text), 1, 3) = '/* ' then
065 if nvl(instr(v_text, '*/'), 0) = 0 then
066 b_comment := TRUE;
067 end if;
068 out(substr(ltrim(v_text), 4));
069 elsif substr(ltrim(v_text), 1, 2) = '/*' then
070 if nvl(instr(v_text, '*/'), 0) = 0 then
071 b_comment := TRUE;
072 end if;
073 out(substr(ltrim(v_text), 3));
074 elsif b_comment and
075 substr(rtrim(v_text), -2, 2) = '*/' then
076 b_comment := FALSE;
077 out(substr(rtrim(v_text), 1, length(rtrim(v_text)) - 2));
078 elsif b_comment then
079 out(v_text);
080 elsif substr(ltrim(v_text), 1, 3) = '-- ' then
081 out(substr(ltrim(v_text), 4));
082 elsif substr(ltrim(v_text), 1, 2) = '--' then
083 out(substr(ltrim(v_text), 3));
084 elsif upper(substr(ltrim(v_text), 1, 8)) = 'FUNCTION' or
085 upper(substr(ltrim(v_text), 1, 9)) = 'PROCEDURE' or
086 upper(substr(ltrim(v_text), 1, 15)) = 'MEMBER FUNCTION' or
087 upper(substr(ltrim(v_text), 1, 16)) = 'MEMBER PROCEDURE' or
088 upper(substr(ltrim(v_text), 1, 16)) = 'STATIC FUNCTION' or
089 upper(substr(ltrim(v_text), 1, 16)) = 'STATIC PROCEDURE' then
090 if nvl(instr(v_text, ';'), 0) = 0 then
091 b_method := TRUE;
092 end if;
093 out(v_text);
094 elsif b_method and
095 substr(rtrim(v_text), -1, 1) = ';' then
096 b_method := FALSE;
097 out(v_text);
098 elsif b_method then
099 out(v_text);
100 elsif c1%rowcount = 1 then
101 out(v_text);
102 elsif upper(substr(ltrim(v_text), 1, 3)) = 'END' then
103 out(chr(12)); -- form feed
104 exit;
105 else
106 out(v_text);
107 end if;
108 end loop;
109 SYS.DBMS_OUTPUT.new_line();
110 end process;
111
112
113 PROCEDURE test is
114

Chapter 9 ■ Documenting

338

115 begin
116 pl('TEXT_HELP.test()');
117
118 &_USER..TEST.clear('TEXT_HELP');
119
120 &_USER..TEST.set_test('TEXT_HELP', 'help()', 1,
121 'Test method help()');
122 begin
123 help();
124
125 &_USER..TEST.ok();
126 exception
127 when OTHERS then
128 &_USER..TEST.error(SQLERRM);
129 end;
130
131 &_USER..TEST.set_test('TEXT_HELP', 'process()', 2,
132 'Test method help()');
133 begin
134 process('TEXT_HELP');
135
136 &_USER..TEST.ok();
137 exception
138 when OTHERS then
139 &_USER..TEST.error(SQLERRM);
140 end;
141
142 &_USER..TEST.set_test('TEXT_HELP', NULL, NULL, NULL);
143 &_USER..TEST.success();
144 end test;
145
146
147 end text_help;
148 /
149 @be.sql 

The code in this package body is not all that impressive, nor important. It’s its use that is important, so
let’s see how to use it.

On lines 8 through 12 in Listing 9-2, I’ve coded the help() method for TEXT_HELP. In order to produce
the text-based help for the package, all I need to do is pass the name of the package or TYPE to method
TEXT_HELP.process().

Now, let’s see what it produces.

Accessing Documentation on Demand
As I mentioned earlier, now all I need do to get documentation on demand is to execute a package or TYPE’s
help() method, assuming that the help() method in turn calls TEXT_HELP.process() to produce the output.

Figure 9-5 is an example of executing the help() method for package WORKER_TYPE. As you can see in
Figure 9-5, the output is much more significant than the result from using describe in SQL*Plus or what the
IDEs had to offer.

Chapter 9 ■ Documenting

339

The only limit to the depth of the documentation is the amount of time you’re willing to spend writing
it as you code each specification. Yes, once again, you are responsible for the quality of the outcome of your
activities. But that’s what it means to be a “professional.” You’re responsible, you know it, and you live up to
that responsibility.

Now that you have access to TEXT_HELP, it’s your turn to put it to work.

It’s Your Turn to Access Documentation on Demand
Here are your tasks for this assignment.

	 1.	 Go back to every package and TYPE specification you’ve written, and add
properly formatted comments (come on, at least do a couple).

	 2.	 Add the specification for procedure help() to each of those specifications, if you
haven’t already.

	 3.	 Access your help text by executing the help() command on each of your PL/SQL
executables.

What do you think? Wouldn’t you find immediate and easy access to documentation on what an object
is for and how to use it invaluable? In practice, I’ve found that programmers are twice as likely to reuse a
component if they have easy access to its documentation. But you can do even better.

Figure 9-5.  Sample output from TEXT_HELP.process()

Chapter 9 ■ Documenting

340

Programmers are four times as likely to use a component if they know it exists beforehand and they
also know how to use it. That sounds like training, doesn’t it? Will your CFO or project manager tell you that
you may not provide training; in other words, that you may not reuse your components? If not, then you’ll
need documentation you can distribute freely. To that end, let’s look at the ability to create distributable
documentation from a package or TYPE specification next.

Distributable Documentation
All that’s necessary to create a set of distributable documentation for every specification in the database is
to query the database’s data dictionary for a list of those specifications, and then save each document to an
operating system file. And that can be done by calling the help() method for each executable object.
But let’s do better than that. Text-based documentation can look quite boring and be quite unfriendly.

I know, let’s use HTML instead! Let’s create an HTML-based documentation formatting tool, or
“HTML-help” tool. I’ll even go so far as to call it HTML_HELP!

An HTML-Based Documentation Formatting Tool
Listing 9-3 is the package specification for an HTML-based help tool. Working with the capabilities of
SQL*Plus, I can use it to produce an HTML help file for each executable object, and then an index to all those
documents.

Listing 9-3.  A Package Spec to Create HTML-Based Help, html_help.pks

01 create or replace PACKAGE HTML_HELP as
02 /*
03 html_help.pks
04 by Donald J. Bales on 2014-10-20
05 Package to create HTML-based help files for packages.
06 */
07
08 -- Creates a "object_index" html file for the current USER.
09
10 PROCEDURE create_index;
11
12
13 -- Creates a "<object_name>" html for each package for the current USER.
14
15 PROCEDURE create_help(
16 aiv_object_name in varchar2);
17
18
19 -- Text-based help for this package. "set serveroutput on" in SQL*Plus.
20
21 PROCEDURE help;
22
23
24 PROCEDURE test;
25
26

Chapter 9 ■ Documenting

341

27 end HTML_HELP;
28 /
29 @se.sql HTML_HELP 

HTML_HELP has four methods:

•	 create_index() creates an index to all the documents created using the next
method, create_help().

•	 create_help() creates an HTML-based document from the comments and method
signatures in a specification.

•	 help() produces on-demand help for this package.

•	 test() is the test unit for this package.

Methods create_index() and create_help() require the use of a SQL*Plus script in order to write the
output to operating system files.

Listing 9-4 is the implementation for HTML_HELP. In this case, I’m showing only a partial listing; you
will find the full listing in the chapter’s download directory. What’s important here is the outcome of this
package: documentation. And that outcome can be distributable if I save it as individual files on a file
system.

Listing 9-4.  A Package Body to Create HTML-Based Help, html_help.pkb

001 create or replace PACKAGE BODY HTML_HELP as
002 /*
003 html_help.pkb
004 by Donald J. Bales on 2014-10-20
005 Package to create HTML-based help files for packages
006 */
007
008 -- TYPES
009
010 TYPE spec_record is record (
011 line_type varchar2(1),
012 line_number number,
013 line_text varchar2(2000),
014 method_name varchar2(2000),
015 first_sentence varchar2(2000));
016
017 TYPE spec_table is table of spec_record index by binary_integer;
018
019 TYPE buffer_table is table of varchar2(2000) index by binary_integer;
020
021 -- CONSTANTS
022
023 v_LT_COMMENT constant varchar2(1) := 'C';
024 v_LT_METHOD constant varchar2(1) := 'M';
025 v_LT_OTHER constant varchar2(1) := 'O';
026
027 -- FORWARD DECLARATIONS
028

Chapter 9 ■ Documenting

342

029 FUNCTION get_comment_start(
030 aiv_text in varchar2)
031 return number;
032
033
034 FUNCTION get_comment_end(
035 aiv_text in varchar2)
036 return number;
037
038
039 FUNCTION get_method_end(
040 aiv_text in varchar2)
041 return number;
042
043
044 FUNCTION get_method_name_start(
045 aiv_text in varchar2)
046 return number;
047
048
049 FUNCTION get_method_name_end(
050 aiv_text in varchar2)
051 return number;
052
053
054 FUNCTION is_comment_start(
055 aiv_text in varchar2)
056 return boolean;
057
058
059 FUNCTION is_comment_end(
060 aiv_text in varchar2)
061 return boolean;
062
063
064 FUNCTION is_method_end(
065 aiv_text in varchar2)
066 return boolean;
067
068
069 PROCEDURE out(
070 aiv_text in varchar2);
071
072
073 PROCEDURE open_html(
074 aiv_title in varchar2);
075
076
077 PROCEDURE close_html;
078
079

Chapter 9 ■ Documenting

343

080 -- FUNCTIONS
081
082 FUNCTION get_comment_line_text(
083 aiv_text in varchar2)
084 return varchar2 is
085
086 n_start number := 1;
087 n_end number;
088
089 begin
090 if is_comment_start(aiv_text) then
091 n_start := get_comment_start(aiv_text);
092 end if;
093 if is_comment_end(aiv_text) then
094 n_end := get_comment_end(aiv_text);
095 else
096 n_end := nvl(length(aiv_text), 0);
097 end if;
098 if n_end > n_start then
099 return substr(aiv_text, n_start, (n_end + 1) - n_start);
100 else
101 return NULL;
102 end if;
103 end get_comment_line_text;
104
105
106 FUNCTION get_comment_end(
107 aiv_text in varchar2)
108 return number is
109
110 n_position number;
111
112 begin
113 n_position := nvl(instr(upper(aiv_text), '*/'), 0);
114 if n_position > 0 then
115 return n_position - 1;
116 else
117 n_position := nvl(instr(upper(aiv_text), '--'), 0);
118 if n_position > 0 then
119 return nvl(length(aiv_text), 0);
120 else
121 return -1;
122 end if;
123 end if;
124 end get_comment_end;
125
126
127 FUNCTION get_comment_start(
128 aiv_text in varchar2)
129 return number is
130

Chapter 9 ■ Documenting

344

131 n_position number;
132
133 begin
134 n_position := nvl(instr(upper(aiv_text), '/*'), 0);
135 if n_position > 0 then
136 return n_position + 2;
137 else
138 n_position := nvl(instr(upper(aiv_text), '--'), 0);
139 if n_position > 0 then
140 return n_position + 2;
141 else
142 return -1;
143 end if;
144 end if;
145 end get_comment_start;
146
147
148 FUNCTION get_first_sentence(
149 aiv_text in varchar2)
150 return varchar2 is
151
152 n_start number := 1;
153 n_end number;
154
155 begin
156 if is_comment_start(aiv_text) then
157 n_start := get_comment_start(aiv_text);
158 end if;
159 n_end := nvl(instr(aiv_text, '.') - 1, -1);
160 if n_end = -1 then
161 n_end := nvl(length(aiv_text), 0);
162 end if;
163 if n_end > n_start then
164 return substr(aiv_text, n_start, (n_end + 1) - n_start);
165 else
166 return NULL;
167 end if;
168 end get_first_sentence;
169
170
171 FUNCTION get_method_end(
172 aiv_text in varchar2)
173 return number is
174
175 n_position number;
176
177 begin
178 n_position := nvl(instr(upper(aiv_text), ';'), 0);
179 if n_position > 0 then
180 return n_position - 1;
181 else

Chapter 9 ■ Documenting

345

182 return length(aiv_text);
183 end if;
184 end get_method_end;
185
186
187 FUNCTION get_method_line_text(
188 aiv_text in varchar2)
189 return varchar2 is
190
191 n_start number := 1;
192 n_end number;
193
194 begin
195 if is_method_end(aiv_text) then
196 n_end := get_method_end(aiv_text);
197 else
198 n_end := nvl(length(aiv_text), 0);
199 end if;
200 if n_end > 0 then
201 return substr(aiv_text, n_start, (n_end + 1) - n_start);
202 else
203 return NULL;
204 end if;
205 end get_method_line_text;
206
207
208 FUNCTION get_method_name(
209 aiv_text in varchar2)
210 return varchar2 is
211
212 n_first number;
213 n_end number;
214
215 begin
216 n_first := get_method_name_start(aiv_text);
217 n_end := get_method_name_end(aiv_text);
218 if n_end > n_first then
219 return substr(aiv_text, n_first, (n_end + 1) - n_first);
220 else
221 return NULL;
222 end if;
223 end get_method_name;
224
225
226 FUNCTION get_method_name_start(
227 aiv_text in varchar2)
228 return number is
229
230 n_position number;
231

Chapter 9 ■ Documenting

346

232 begin
233 n_position := nvl(instr(upper(aiv_text), 'FUNCTION '), 0);
234 if n_position > 0 then
235 return n_position + 9;
236 else
237 n_position := nvl(instr(upper(aiv_text), 'PROCEDURE '), 0);
238 if n_position > 0 then
239 return n_position + 10;
240 else
241 return 0;
242 end if;
243 end if;
244 end get_method_name_start;
245
246
247 FUNCTION get_method_name_end(
248 aiv_text in varchar2)
249 return number is
250
251 n_position number;
252
253 begin
254 n_position := nvl(instr(upper(aiv_text), '('), 0);
255 if n_position > 0 then
256 return n_position - 1;
257 else
258 n_position := get_method_end(aiv_text);
259 if n_position > 0 then
260 return n_position;
261 else
262 return nvl(length(aiv_text), 0);
263 end if;
264 end if;
265 end get_method_name_end;
266
267
268 FUNCTION is_comment_end(
269 aiv_text in varchar2)
270 return boolean is
271
272 n_position number;
273
274 begin
275 if get_comment_end(aiv_text) >= 0 then
276 return TRUE;
277 else
278 return FALSE;
279 end if;
280 end is_comment_end;
281
282

Chapter 9 ■ Documenting

347

283 FUNCTION is_comment_start(
284 aiv_text in varchar2)
285 return boolean is
286
287 n_position number;
288
289 begin
290 if get_comment_start(aiv_text) >= 0 then
291 return TRUE;
292 else
293 return FALSE;
294 end if;
295 end is_comment_start;
296
297
298 FUNCTION is_method_end(
299 aiv_text in varchar2)
300 return boolean is
301
302 n_position number;
303
304 begin
305 if nvl(instr(aiv_text, ';'), 0) > 0 then
306 return TRUE;
307 else
308 return FALSE;
309 end if;
310 end is_method_end;
311
312
313 FUNCTION is_method_start(
314 aiv_text in varchar2)
315 return boolean is
316
317 n_position number;
318
319 begin
320 if get_method_name_start(aiv_text) > 0 then
321 return TRUE;
322 else
323 return FALSE;
324 end if;
325 end is_method_start;
326
327
328 FUNCTION comments_span(
329 aiv_text in varchar2)
330 return varchar2 is
331 begin
332 return ''||aiv_text||'';
333 end comments_span;
334
335

Chapter 9 ■ Documenting

348

336 FUNCTION first_sentence_span(
337 aiv_text in varchar2)
338 return varchar2 is
339 begin
340 return ''||aiv_text||'';
341 end first_sentence_span;
342
343
344 FUNCTION method_span(
345 aiv_text in varchar2)
346 return varchar2 is
347 begin
348 return ''||aiv_text||'';
349 end method_span;
350
351
352 FUNCTION method_name_span(
353 aiv_text in varchar2)
354 return varchar2 is
355 begin
356 return ''||aiv_text||'';
357 end method_name_span;
358
359
360 FUNCTION package_name_span(
361 aiv_text in varchar2)
362 return varchar2 is
363 begin
364 return ''||aiv_text||'';
365 end package_name_span;
366
367
368 PROCEDURE create_index is
369
370 cursor c1 is
371 select distinct name
372 from SYS.USER_SOURCE
373 where type in ('PACKAGE', 'TYPE')
374 order by 1;
375
376 cursor c2(
377 aiv_name in varchar2) is
378 select text
379 from SYS.USER_SOURCE
380 where type in ('PACKAGE', 'TYPE')
381 and name = aiv_name
382 order by line;
383
384 b_comment boolean;
385 n_period number;
386

Chapter 9 ■ Documenting

349

387 begin
388 open_html('Package/Type index');
389 out('<h2>Owner '||user||'</h2>');
390 out('<table>');
391 for r1 in c1 loop
392 if c1%rowcount = 1 then
393 out('<tr><th colspan="2">Packages/Types</th></tr>');
394 end if;
395 b_comment := FALSE;
396 for r2 in c2(r1.name) loop
397 if nvl(instr(r2.text, '/*'), 0) > 0 or
398 nvl(instr(r2.text, '--'), 0) > 0 then
399 b_comment := TRUE;
400 end if;
401 if b_comment and
402 nvl(instr(upper(r2.text), '.PKS'), 0) = 0 and
403 substr(upper(ltrim(r2.text)), 1, 3) <> 'BY ' and
404 substr(upper(ltrim(r2.text)), 1, 13) <> 'COPYRIGHT BY ' then
405 n_period := nvl(instr(ltrim(r2.text), '.'), 0);
406 if n_period > 0 then
407 out('<tr><td class="package_name_td"><a href="'||lower(r1.name)||
 '.html">'||package_name_span(r1.name)||'</td><td class="comments_
 td">'||comments_span(substr(ltrim(r2.text), 1, n_period))||'</td></tr>');
408 exit;
409 end if;
410 end if;
411 end loop;
412 end loop;
413 out('</table>');
414 close_html();
415 end create_index;
416
417
418 PROCEDURE create_help(
419 aiv_object_name in varchar2) is
420
421 cursor c1(
422 aiv_object_name in varchar2) is
423 select text,
424 type
425 from SYS.USER_SOURCE
426 where name = upper(aiv_object_name)
427 and type in ('PACKAGE', 'TYPE')
428 and line > 1
429 order by line;
430
431 b_comment boolean := FALSE;
432 b_first_sentence boolean := FALSE;
433 b_method boolean := FALSE;
434 b_method_name boolean := FALSE;
435 b_other boolean := FALSE;

Chapter 9 ■ Documenting

350

436 n_backward number;
437 n_line_number number;
438 n_spec number := 0;
439 t_spec spec_table;
440 v_comment varchar2(2000);
441 v_first_sentence varchar2(2000);
442 v_method varchar2(2000);
443 v_method_name varchar2(2000);
444 v_text varchar2(2000);
445 v_type varchar2(30);
446
447 begin
448 for r1 in c1(aiv_object_name) loop
449 if c1%rowcount = 1 then
450 v_type := r1.type;
451 end if;
452
453 -- strip away any carriage-returns and line-feeds
454 v_text := replace(replace(r1.text, chr(13), NULL), chr(10), NULL);
455 -- detect comments and methods
456 if is_comment_start(v_text) then
457 b_comment := TRUE;
458 b_first_sentence := FALSE;
459 if not b_first_sentence then
460 v_first_sentence := get_first_sentence(v_text);
461 if v_first_sentence is not NULL then
462 b_first_sentence := TRUE;
463 n_line_number := 1;
464 n_spec := n_spec + 1;
465 t_spec(n_spec).line_type := v_LT_COMMENT;
466 t_spec(n_spec).line_number := n_line_number;
467 t_spec(n_spec).line_text := get_comment_line_text(v_text);
468 t_spec(n_spec).first_sentence := v_first_sentence;
469 end if;
470 else
471 v_comment := get_comment_line_text(v_text);
472 if v_comment is not NULL then
473 n_line_number := 1;
474 n_spec := n_spec + 1;
475 t_spec(n_spec).line_type := v_LT_COMMENT;
476 t_spec(n_spec).line_number := n_line_number;
477 t_spec(n_spec).line_text := get_comment_line_text(v_text);
478 t_spec(n_spec).first_sentence := NULL;
479 end if;
480 end if;
481 if is_comment_end(v_text) then
482 b_comment := FALSE;
483 b_first_sentence := FALSE;
484 end if;
485 elsif b_comment and
486 is_comment_end(v_text) then

Chapter 9 ■ Documenting

351

487 if not b_first_sentence then
488 v_first_sentence := get_first_sentence(v_text);
489 if v_first_sentence is not NULL then
490 b_first_sentence := TRUE;
491 n_line_number := 1;
492 n_spec := n_spec + 1;
493 t_spec(n_spec).line_type := v_LT_COMMENT;
494 t_spec(n_spec).line_number := n_line_number;
495 t_spec(n_spec).line_text := get_comment_line_text(v_text);
496 t_spec(n_spec).first_sentence := v_first_sentence;
497 end if;
498 else
499 v_comment := get_comment_line_text(v_text);
500 if v_comment is not NULL then
501 n_line_number := n_line_number + 1;
502 n_spec := n_spec + 1;
503 t_spec(n_spec).line_type := v_LT_COMMENT;
504 t_spec(n_spec).line_number := n_line_number;
505 t_spec(n_spec).line_text := get_comment_line_text(v_text);
506 t_spec(n_spec).first_sentence := NULL;
507 end if;
508 end if;
509 b_comment := FALSE;
510 b_first_sentence := FALSE;
511 elsif b_comment then
512 if not b_first_sentence then
513 v_first_sentence := get_first_sentence(v_text);
514 if v_first_sentence is not NULL then
515 b_first_sentence := TRUE;
516 n_line_number := 1;
517 n_spec := n_spec + 1;
518 t_spec(n_spec).line_type := v_LT_COMMENT;
519 t_spec(n_spec).line_number := n_line_number;
520 t_spec(n_spec).line_text := get_comment_line_text(v_text);
521 t_spec(n_spec).first_sentence := v_first_sentence;
522 end if;
523 else
524 v_comment := get_comment_line_text(v_text);
525 if v_comment is not NULL then
526 n_line_number := n_line_number + 1;
527 n_spec := n_spec + 1;
528 t_spec(n_spec).line_type := v_LT_COMMENT;
529 t_spec(n_spec).line_number := n_line_number;
530 t_spec(n_spec).line_text := get_comment_line_text(v_text);
531 t_spec(n_spec).first_sentence := NULL;
532 end if;
533 end if;
534 elsif is_method_start(v_text) then
535 b_method := TRUE;
536 b_method_name := FALSE;
537 if not b_method_name then

Chapter 9 ■ Documenting

352

538 v_method_name := get_method_name(v_text);
539 if v_method_name is not NULL then
540 b_method_name := TRUE;
541 n_line_number := 1;
542 n_spec := n_spec + 1;
543 t_spec(n_spec).line_type := v_LT_METHOD;
544 t_spec(n_spec).line_number := n_line_number;
545 t_spec(n_spec).line_text := get_method_line_text(v_text);
546 t_spec(n_spec).method_name := v_method_name;
547 else
548 n_line_number := 1;
549 n_spec := n_spec + 1;
550 t_spec(n_spec).line_type := v_LT_METHOD;
551 t_spec(n_spec).line_number := n_line_number;
552 t_spec(n_spec).line_text := get_method_line_text(v_text);
553 t_spec(n_spec).method_name := NULL;
554 end if;
555 else
556 v_method := get_method_line_text(v_text);
557 if v_method is not NULL then
558 n_line_number := n_line_number + 1;
559 n_spec := n_spec + 1;
560 t_spec(n_spec).line_type := v_LT_METHOD;
561 t_spec(n_spec).line_number := n_line_number;
562 t_spec(n_spec).line_text := v_method;
563 t_spec(n_spec).method_name := NULL;
564 end if;
565 end if;
566 if is_method_end(v_text) then
567 b_method := FALSE;
568 b_method_name := FALSE;
569 end if;
570 elsif b_method and
571 is_method_end(v_text) then
572 if not b_method_name then
573 v_method_name := get_method_name(v_text);
574 if v_method_name is not NULL then
575 b_method_name := TRUE;
576 n_line_number := 1;
577 n_spec := n_spec + 1;
578 t_spec(n_spec).line_type := v_LT_METHOD;
579 t_spec(n_spec).line_number := n_line_number;
580 t_spec(n_spec).line_text := get_method_line_text(v_text);
581 t_spec(n_spec).method_name := v_method_name;
582 else
583 n_line_number := 1;
584 n_spec := n_spec + 1;
585 t_spec(n_spec).line_type := v_LT_METHOD;
586 t_spec(n_spec).line_number := n_line_number;
587 t_spec(n_spec).line_text := get_method_line_text(v_text);
588 t_spec(n_spec).method_name := NULL;

Chapter 9 ■ Documenting

353

589 end if;
590 else
591 v_method := get_method_line_text(v_text);
592 if v_method is not NULL then
593 n_line_number := n_line_number + 1;
594 n_spec := n_spec + 1;
595 t_spec(n_spec).line_type := v_LT_METHOD;
596 t_spec(n_spec).line_number := n_line_number;
597 t_spec(n_spec).line_text := v_method;
598 t_spec(n_spec).method_name := NULL;
599 end if;
600 end if;
601 b_method := FALSE;
602 b_method_name := FALSE;
603 elsif b_method then
604 v_method := get_method_line_text(v_text);
605 if v_method is not NULL then
606 n_line_number := n_line_number + 1;
607 n_spec := n_spec + 1;
608 t_spec(n_spec).line_type := v_LT_METHOD;
609 t_spec(n_spec).line_number := n_line_number;
610 t_spec(n_spec).line_text := v_method;
611 t_spec(n_spec).method_name := NULL;
612 end if;
613 elsif upper(substr(ltrim(v_text), 1, 3)) = 'END' then
614 exit;
615 elsif nvl(length(rtrim(v_text)), 0) > 0 then
616 n_line_number := 1;
617 n_spec := n_spec + 1;
618 t_spec(n_spec).line_type := v_LT_OTHER;
619 t_spec(n_spec).line_number := n_line_number;
620 t_spec(n_spec).line_text := v_text;
621 end if;
622 end loop;
623
624 -- Now create the HTML
625 open_html(aiv_object_name);
626 -- Package name and comments
627 if v_type = 'PACKAGE' then
628 out('<h2>Package '||upper(aiv_object_name)||'</h2>');
629 else
630 out('<h2>Type '||upper(aiv_object_name)||'</h2>');
631 end if;
632 if n_spec > 0 then
633 for i in 1..n_spec loop
634 if t_spec(i).first_sentence is not NULL then
635 out('<p class="comments_p">');
636 n_line_number := t_spec(i).line_number;
637 for j in i..n_spec loop
638 if j > 1 and
639 t_spec(j).line_number <= n_line_number then

Chapter 9 ■ Documenting

354

640 exit;
641 end if;
642 out(t_spec(j).line_text);
643 end loop;
644 out('</p>');
645 exit;
646 end if;
647 end loop;
648 out('<hr/>
');
649 -- Other
650 for i in 1..n_spec loop
651 if t_spec(i).line_type = v_LT_OTHER then
652 if not b_other then
653 out('<table>');
654 if v_type = 'PACKAGE' then
655 out('<tr><th colspan="2">Global Constants and Variables</th></tr>');
656 else
657 out('<tr><th colspan="2">Attributes</th></tr>');
658 end if;
659 out('</table>');
660 out('<pre class="other_pre">');
661 b_other := TRUE;
662 end if;
663 if i > 1 and
664 t_spec(i - 1).line_type = v_LT_COMMENT then
665 n_backward := i - t_spec(i - 1).line_number;
666 if n_backward > 0 then
667 out('</pre><p class="comments_p">');
668 for j in n_backward..(i - 1) loop
669 out(t_spec(j).line_text);
670 end loop;
671 out('</p><pre class="other_pre">');
672 end if;
673 end if;
674 out(t_spec(i).line_text);
675 end if;
676 end loop;
677 if b_other then
678 out('</pre>');
679 out('<hr/>
');
680 end if;
681 /* -- Debug Output
682 out('<!--');
683 out('<h2>Debug Output</h2>');
684 for i in 1..n_spec loop
685 if i = 1 then
686 out('<table>');
687 �out('<tr><th>line_type</th><th>line_number</th><th>line_text</th>

<th>first_sentence</th><th>method_name</th></tr>');
688 end if;

Chapter 9 ■ Documenting

355

689 �out('<tr><td>'||t_spec(i).line_type||'</td><td>'||t_spec(i).line_number||
'</td><td>'||t_spec(i).line_text||'</td><td>'||t_spec(i).first_sentence||
'</td><td>'||t_spec(i).method_name||'</td></tr>');

690 if i = n_spec then
691 out('</table>');
692 out('<hr/>');
693 end if;
694 end loop;
695 out('<hr/>
');
696 out('-->'); */
697 -- Method Summary
698 out('<table>');
699 out('<tr><th colspan="2">Method Summary</th></tr>');
700 for i in 1..n_spec loop
701 if t_spec(i).method_name is not NULL then
702 v_first_sentence := '
';
703 n_backward := i - 1;
704 if n_backward > 0 then
705 loop
706 if t_spec(n_backward).method_name is not NULL then
707 exit;
708 end if;
709 if t_spec(n_backward).first_sentence is not NULL then
710 v_first_sentence := t_spec(n_backward).first_sentence;
711 exit;
712 end if;
713 n_backward := n_backward - 1;
714 if n_backward < 1 then
715 exit;
716 end if;
717 end loop;
718 end if;
719 �out('<tr><td class="method_name_td"><a href="#'||t_spec(i).method_name||'_'

||to_char(i)||'">'||method_name_span(t_spec(i).method_name)||'</td>');
720 �out(' <td class="first_sentence_td">'||first_sentence_span(nvl(v_first_

sentence, '
'))||'</td></tr>');
721 end if;
722 end loop;
723 out('</table>');
724 out('
<hr/>
');
725 -- Method Details
726 out('<table>');
727 out('<tr><th colspan="2">Method Detail</th></tr>');
728 out('</table>');
729 for i in 1..n_spec loop
730 if t_spec(i).method_name is not NULL then
731 �out('<h3>'||

t_spec(i).method_name||'</h3>');
732 out('<pre class="method_pre">');
733 for j in i..n_spec loop
734 if t_spec(j).line_type <> v_LT_METHOD or
735 (j > i and

Chapter 9 ■ Documenting

356

736 t_spec(j).method_name is not NULL) then
737 exit;
738 end if;
739 out(t_spec(j).line_text);
740 end loop;
741 out('</pre>');
742 if i > 1 and
743 t_spec(i - 1).line_type = v_LT_COMMENT then
744 n_backward := i - t_spec(i - 1).line_number;
745 if n_backward > 0 then
746 out('<p class="comments_p">');
747 for j in n_backward..(i - 1) loop
748 out(t_spec(j).line_text);
749 end loop;
750 out('</p>');
751 end if;
752 end if;
753 out('<hr/>');
754 end if;
755 end loop;
756 end if;
757 close_html();
758 end create_help;
759
760
761 PROCEDURE help is
762
763 begin
764 TEXT_HELP.process('HTML_HELP');
765 end help;
766
767
768 PROCEDURE out(
769 aiv_text in varchar2) is
770
771 TYPE split_table is table of varchar2(255)
772 index by binary_integer;
773
774 n_length number;
775 n_split number := 255;
776 n_start number := 1;
777 n_stop number;
778 n_text number := 0;
779
780 t_text split_table;
781
782 n_limit_1 number := 0;
783 n_limit_2 number := 0;
784
785 begin
786 n_length := nvl(length(aiv_text), 0);
787

Chapter 9 ■ Documenting

357

788 if n_length > 255 then
789 loop
790 n_limit_1 := n_limit_1 + 1;
791 n_stop := least(n_start + n_split, n_length);
792 loop
793 n_limit_2 := n_limit_2 + 1;
794
795 if n_stop = n_start then
796 n_stop := n_length;
797 exit;
798 elsif substr(aiv_text, n_stop, 1) = chr(32) then
799 exit;
800 else
801 n_stop := n_stop - 1;
802 end if;
803 end loop;
804 n_text := n_text + 1;
805 t_text(n_text) := substr(aiv_text, n_start, n_stop - n_start);
806 n_start := n_stop;
807 if n_start >= n_length then
808 exit;
809 end if;
810 end loop;
811 for i in t_text.first..t_text.last loop
812 SYS.DBMS_OUTPUT.put_line(t_text(i));
813 end loop;
814 else
815 SYS.DBMS_OUTPUT.put_line(aiv_text);
816 end if;
817 end out;
818
819
820 PROCEDURE open_html(
821 aiv_title in varchar2) is
822
823 begin
824 out('<html>
825 <head>
826 <title>'||aiv_title||'</title>
827 <link rel="stylesheet" type="text/css" href="stylesheet.css"/>
828 </head>
829 <body>');
830 end open_html;
831
832
833 PROCEDURE close_html is
834
835 begin
836 out('</body>
837 </html>');
838 end close_html;

Chapter 9 ■ Documenting

358

839
840
841 PROCEDURE test is
842
843 begin
844 pl('HTML_HELP.test()');
845
846 &_USER..TEST.clear('HTML_HELP');
847
848 &_USER..TEST.set_test('HTML_HELP', 'create_package_index()', 1,
849 'Test method create_package_index()');
850 begin
851 create_index();
852
853 &_USER..TEST.ok();
854 exception
855 when OTHERS then
856 &_USER..TEST.error(SQLERRM);
857 end;
858
859 &_USER..TEST.set_test('HTML_HELP', 'create_package_help()', 2,
860 'Test method create_package_help()');
861 begin
862 create_help('HTML_HELP');
863
864 &_USER..TEST.ok();
865 exception
866 when OTHERS then
867 &_USER..TEST.error(SQLERRM);
868 end;
869
870 &_USER..TEST.set_test('HTML_HELP', 'help()', 3,
871 'Test method help()');
872 begin
873 help();
874
875 &_USER..TEST.ok();
876 exception
877 when OTHERS then
878 &_USER..TEST.error(SQLERRM);
879 end;
880
881 &_USER..TEST.set_test('HTML_HELP', NULL, NULL, NULL);
882 &_USER..TEST.success();
883 end test;
884
885
886 end HTML_HELP;
887 /
888 @be.sql HTML_HELP 

Chapter 9 ■ Documenting

359

Listing 9-5 is a SQL*Plus script, create_html_help.sql, which in turn writes and executes a SQL*Plus
script, html_help.sql, in order to generate distributable HTML-based documentation for the executable
objects in a schema, as files in a file system.

Listing 9-5.  A SQL*Plus Script to Create HTML-Based Help, create_html_help.sql

01 rem create_html_help.sql
02 rem by Don Bales on 2014-10-20
03 rem SQL*Plus script to create a SQL*Plus script to create html help for
04 rem the current user.
05
06 set feedback off;
07 set linesize 1000;
08 set newpage 1;
09 set pagesize 0;
10 set trimspool on;
11 set serveroutput on size 1000000;
12
13 spool html_help.sql;
14
15 prompt rem html_help.sql
16 prompt rem by Don Bales on 2014-10-20
17 prompt rem Created by SQL*Plus script create_html_help.sql
18 prompt;
19 prompt set feedback off;;
20 prompt set linesize 1000;;
21 prompt set newpage 1;;
22 prompt set pagesize 32767;;
23 prompt set trimspool on;;
24 prompt;
25 select 'spool '||lower(name)||'.html;'||
26 chr(10)||'execute HTML_HELP.create_help('''||name||''');'||
27 chr(10)||'spool off;'||chr(10)
28 from SYS.USER_SOURCE
29 where type in ('PACKAGE', 'TYPE')
30 group by name
31 order by name;
32
33 prompt spool object_index.html;;
34 prompt execute HTML_HELP.create_index();;
35 prompt spool off;;
36 prompt;
37 prompt set feedback on;;
38 prompt set linesize 1000;;
39 prompt set newpage 1;;
40 prompt set pagesize 32767;;
41 prompt set trimspool on;;
42
43 spool off;
44
45 @html_help.sql 

Chapter 9 ■ Documenting

360

Now that the HTML-help tool has been built, let’s see how easy it is to generate distributable
documentation.

Generating Distributable Documentation
All I need to do to generate distributable documentation is compile package HTML_HELP, and then execute
SQL*Plus script create_html_help.sql, as in the following example:
 
SQL> @create_html_help.sql
 

Doing so will create an HTML file with the same name as the executable PL/SQL object, but with
an .html suffix. It will also create an index named index.html, which you can open from your browser.
Figure 9-6 is an example of what index.html looks like in a browser. The format of this, as well as the rest of
the documentation files, is controlled by a CSS style sheet named stylesheet.css, which is placed in the
same directory as the HTML files.

Figure 9-6.  Sample output from HTML_HELP.create_index()

When I select the DATE_ package from the index in Figure 9-6, my browser opens the generated
documentation for the DATE_ specification, as shown in Figure 9-7. When I select method end_of_day()
from the method summary, my browser forwards me to another location in the same document where the
detail about the method is listed, as shown in Figure 9-8.

Chapter 9 ■ Documenting

361

Figure 9-7.  Page 1 of sample output from HTML_HELP.create_help()

Figure 9-8.  Page 2 of sample output from HTML_HELP.create_help()

Chapter 9 ■ Documenting

362

Once again, the depth of the information is bounded only by your imagination and effort. By zipping
these HTML files into an archive along with the style sheet, you now have freely distributable, and quite
handsome, documentation about your reusable (and non-reusable) components.

Now that you’ve seen me do it, it’s your turn to generate distributable documentation.

It’s Your Turn to Generate Distributable Documentation
It’s time to generate distributable documentation for your PL/SQL executables. Follow these steps.

	 1.	 Find and compile package HTML_HELP, files html_help.pks and html_help.pkb.

	 2.	 Create a staging directory where you wish to place the HTML files produced by
script create_html_files.sql.

	 3.	 Copy script create_html_files.sql and style sheet stylesheet.css to your
staging directory.

	 4.	 Start a SQL*Plus session from your staging directory.

	 5.	 Execute script create_html_files.sql from your staging directory.

You should now have as many .html files as you have PL/SQL executables, plus one for the index.html
file in your staging directory. Now you need to take the last step, which is to distribute your documentation.

Documentation Distribution
You’re almost finished. You’re on the home stretch. But the job is not complete until you actually distribute
your documentation. Just how do you do that? Here’s how I’ve done it in the past.

	 1.	 Create a list of recipients.

	 2.	 Send recipients the create_html_help.sql script and style sheet so they can
generate their own copy.

	 3.	 Package it into an archive like a .zip file.

	 4.	 Publish it on a web site.

Your first step in the distribution process is creating a list of recipients. Just who needs to know about
this software? You should maintain this list in a database. Not only can you then keep track of who you
sent the documentation to, but you can also keep a categorized list of the recipients’ feedback. With this
information, you can determine who is actually using the software, what incremental improvements need to
be made, and also who is not using the software. If you find you have recipients that should be, but are not,
using your software components, then remedial training is in order. You know, “hands-on” training, where
you can not only see how they have tried using it in the past, but also find out what they think is wrong with
using it in the first place!

Your next step is deciding how to package it for distribution. Should you let users generate their own?
Should you send them an archive? Or should you host the documentation on a web site? I suppose it all
depends on how large the audience is, and how often the components are changed.

In a small development group, I like to regenerate the documentation on a daily basis and then have
everyone on the team make a copy. In a highly distributed environment and with components that are not
modified, it makes more sense to send an archive. If the software changes frequently, it’s easier to host the
files on a web site.

Chapter 9 ■ Documenting

363

Regardless of how you distribute the documentation, you should also write some summary
documentation about how the components can be used together or about the patterns employed in the use
of polymorphic names in the components. I’ll talk about the latter in the next chapter.

Keep in mind that just as software development is cyclical and recursive, so is the creation and
distribution of any documentation for said software. So you must continually maintain your list of recipients
and then redistribute your documentation as needed. Don’t stop short of this last step. Otherwise, someone
will tell a story about your weird behavior in a book someday.

Summary
I started out this chapter trying to impress upon you how important it is to have documentation for your
software components. There is no reuse without proper documentation. Second, I showed you how
following a small set of commenting rules can turn your package and TYPE specification source into self-
documenting source, which also makes losing the documentation impossible.

Next, I showed you how to build and employ a text-based help tool so programmers have access to
text-based documentation for any component on demand. Then I showed you how to build and employ an
HTML-based help tool so you can generate a distributable form of the documentation embedded in your
package and TYPE specifications.

Finally, I gave you some pointers on distributing your software. One last suggestion is that you
consider actually training your programmers on how to create new software components and use existing
components.

Next, I’m going to share with you some stories of my successful use of PL/SQL, and why they were
successful. So grab a cup of joe and let’s go.

365

Chapter 10

Examples

One could argue that polymorphism is the subject of this chapter. Polymorphism is about using the same
message (or command) in order to get the same result, but for different kinds of objects. Let’s look at a
simple example. Figure 10-1 shows the use of the command draw() for three different geometric shapes:
a square, a triangle, and a circle.

Figure 10-1.  An example of polymorphic command use with different objects

Although the three geometric shapes in Figure 10-1 are different objects, using the same command, you
can communicate what you want each object to do, and the object knows how to do it.

The polymorphic use of commands or messages reduces the use of synonyms in a programming
language. If you’re a writer, synonyms are wonderful things. They allow you to use words that have similar
meanings but sound different, so that your resulting prose can have a somewhat rhythmic cadence. It can
sound beautiful.

If you’re a programmer, synonyms are awful things. They cause ambiguity because you can’t know from
“the sound” of the synonym if it means something similar (LIKE) or if it means exactly the same thing (=).
And in programming, ambiguity is a really bad thing. Furthermore, synonyms expand the size of a language
and make it harder to learn and use. The harder the language is to use, the more defects will be created when
using it, and that too is bad.

Let’s go back to Figure 10-1 for a second. I could have named the command to draw each geometric
shape in the figure draw_square(), draw_triangle(), and draw_circle(). That’s the procedural
programming paradigm. But by doing so, I would have made the programming language three times larger
than when I simply used the same command, draw(), in the context of the object to which it belongs.

Chapter 10 ■ Examples

366

Even if you’re not using an object-oriented language, you can still use an object-oriented approach
by employing modularity and polymorphism. Employing modularity means abstracting large program
units into smaller components that can then be reused and assembled to accomplish a larger purpose.
Employing polymorphism means abstracting out a set of commands that communicate the same action;
however, the action taken will be appropriate for the object executing the command. And that’s what I’m
going to cover in this chapter, by doing the following:

Show you a list of polymorphic commands that I have used repeatedly, project after •	
project, always with the same meaning and to take the same action, but an action
appropriate to each object.

Tell you a handful of stories in which I use each polymorphic command, so you’ll •	
have some real-world examples to draw from when you employ polymorphism in
your next project.

Leave you with some advice about what you should do next.•	

I’ll get you jump-started with a list of time-tempered polymorphic commands.

Polymorphic Commands
Any time you write or rewrite a program or application, you have an opportunity to abstract out patterns
of use that you have experienced beforehand, and employ that experience as the intelligent and wise use
of object-orientation. As I’ve already stated several times, you do not need to be using an object-oriented
language in order to employ object-orientation.

Earlier in this book, I introduced you to the idea of creating a “table package” for every table. Each table
package contains any executable behavior that “belongs to” the data held in the table in question. Then,
in Chapter 6, I showed you how to create an object table, based on a new object TYPE, that contains any
executable behavior that “belongs to” its associated object attributes.

Creating a table package is an example of employing object-orientation in a procedural language
setting, and creating an object table with a TYPE is an example of employing object-orientation in an object-
oriented language setting. Both examples take advantage of polymorphism.

After more than 20 years of coding in PL/SQL, I’ve created a list of 50 polymorphic commands that
can be employed to name most, if not all, of the methods you will use while developing components (and
applications) with PL/SQL. Table 10-1 is a list of the top 20 polymorphic commands I commonly use for
table packages and TYPEs The first column of the table lists the method name, including whether it is a
FUNCTION or PROCEDURE. If a method name is not followed by parentheses, it means that there is a form of
the method that takes no parameters. In columns two through four, I indicate whether a method is used for
each “kind” of table: a code table, a content table, or an intersection table. Finally, in column five, I indicate
whether the method is used in a hierarchical version of one of the three previous table types.

http://dx.doi.org/10.1007/9781484207383_6

Chapter 10 ■ Examples

367

Table 10-2 is a list of polymorphic commands employed by packages and TYPEs that play a particular
role in a process, rather than act as merely a persistence entity like a table and table package or object table.
The first column of Table 10-2 lists method names along with the type of method. Columns two through six
indicate the use of the method name by each of the roles listed in the headings:

•	 Data migration: A one-time process where data is moved and/or transformed from
one location to another, typically from a “staging table” to an “application table.”

•	 On-demand data processing: A process that manipulates data in the database, on
demand, for the purpose of completing some ongoing business-related task.

•	 Polling data processing: A process that manipulates data in the database by managing
tasks in a queue or simply sleeping between invocations of the process in question,
once again for the purpose of completing some ongoing business-related processing.

•	 Data entry: In support of a presentation layer process of entering data into the
database for some ongoing business related task.

•	 Reporting: In support of a presentation layer process of viewing data in the database
for some ongoing or ad hoc business-related task.

Table 10-1.  Polymorphic Commands for Package Tables and TYPEs

Method Name Code Content Intersect Hierarchical

FUNCTION create_id_context() X

FUNCTION get_code() X

FUNCTION get_code_context() X

FUNCTION get_descr() X

FUNCTION get_id X X X

FUNCTION get_id() X

FUNCTION get_id_context() X

FUNCTION get_name() X X

FUNCTION get_name_context() X

FUNCTION get_row() X X

FUNCTION is_active() X X X

FUNCTION is_duplicate() X X

FUNCTION is_history() X

PROCEDURE get_code_descr() X

PROCEDURE get_code_id_descr() X

PROCEDURE get_code_id_name() X

PROCEDURE help X X X

PROCEDURE inactivate() X X

PROCEDURE set_row() X X

PROCEDURE test X X X

Chapter 10 ■ Examples

368

Table 10-2.  Polymorphic Commands for Roles

Method Name Data Migration Demand Process Polling Process Data Entry Report

FUNCTION calculate() X X X X

FUNCTION get_next() X

FUNCTION get_report X

FUNCTION get_report() X

FUNCTION get_status X X

FUNCTION is_authorized() X

FUNCTION is_downloaded X X

FUNCTION is_uploaded X X

FUNCTION process X X X

FUNCTION process() X X X

PROCEDURE calculate() X X X X

PROCEDURE disable X X

PROCEDURE download X X

PROCEDURE enable X X

PROCEDURE help X X X X X

PROCEDURE initialize X X X X X

PROCEDURE load X X

PROCEDURE post_query() X

PROCEDURE process X X X

PROCEDURE process() X X X

PROCEDURE quit X X

PROCEDURE report X

PROCEDURE report() X

PROCEDURE set_downloaded X X

PROCEDURE set_processed X X X

PROCEDURE set_report() X

PROCEDURE set_status() X X

PROCEDURE set_uploaded X X X

PROCEDURE start_logging() X X X

PROCEDURE status X X

PROCEDURE stop_logging() X X X

PROCEDURE test X X X X X

PROCEDURE upload X

Chapter 10 ■ Examples

369

There is some overlap between these five role definitions. For example, a service-oriented interface
between two systems will employ data migration, data processing, and table package routines. But that’s OK.
What I’m trying to do is to get you to think in polymorphic terms.

If you learn to think in polymorphic terms, and then employ polymorphism, once you know what a
polymorphic command does on one object, you’ll already have a good idea of what it does on the next.
And that’s quite similar to how we think about the real world. If you tell me you ride a bike, I might respond
that I ride a horse. We both know what the other means, even if we’ve never done the other activity, simply
because we apply the word ride polymorphically to the context—in your case, a bicycle; in my case, a horse.

In the sections that follow, I’m going to tell you how I’ve used some (it would take another book to
explain them all) of these commands in a particular setting.

Let’s start with table packages and TYPEs.

Parametric SQL
I could call this story “The Man Who Hated SQL.” The programmer in question was unhappy because he had
to break the rhythm of his coding from a procedure language (PL/SQL) to a nonprocedural language (SQL)
and back again—back and forth, back and forth, PL/SQL and SQL, PL/SQL and SQL.

While our unhappy programmer was complaining about the nonprocedural nature of SQL and how bad
SQL is, he should have been more concerned about reducing the number of different SQL statements used
against the database, because reducing the number of SQL statements used against an Oracle database can
improve the database’s overall performance.

I find it surprising, and at the same time somewhat amusing, how many people hate SQL. You would
think its creation was the work of the devil. In contrast, my opinion is that SQL is very effective. You can
accomplish a lot of data processing work with very little actual programming effort using SQL. OK, I agree,
some things don’t work consistently from one implementation to the next, but all in all, no viable alternative
has taken its place yet, nor does it appear one will any time soon.

It’s really amazing how easy data processing is with SQL. Regardless, one goal during the development
of an application should be to write a particular SQL statement once and only once, just as it should be a goal
to write the same code routine once and only once, and then use it as a subroutine. To that end, I create table
packages or TYPEs that employ the same set of polymorphic commands to provide a PL/SQL method in
place of writing many of the same SQL statements over and over again.

Code Table Methods
As you saw earlier in the book, I use a database architecture where I always store the primary key, which is a
sequence-generated ID value that points to a code, into a content or intersection table. I never store the code
or description value. Why?

First, modifying the code or description of a given code table entry will require only an UPDATE against
the code table. The next time the code and description values are retrieved for a particular ID value, they
will then be the “new” values. The primary key, the ID, will always be the same value, but the code and
description values can change without impacting the content and intersection tables that have stored the ID
value in question.

Second, in an internationalized application, I can transparently switch the code and description values
to those with the same meaning in another language, because the only value that is immutable is the ID.
With that in mind, think about this. We code programs in English, therefore we should be able to program
access to codes in English, and that’s why the first method I’m going to talk about exists.

Chapter 10 ■ Examples

370

get_id( )
Since we code our programs in English, we should be able to specify our code entries as constant values
in our programs in English. So any time you need to get the ID value for a particular code value in English,
you call FUNCTION get_id(aiv_code), passing it a code value in English, and it returns the corresponding
ID value. If the code you specify does not exist, the underlying singleton SQL SELECT statement raises a
NO_DATA_FOUND exception, which you must handle in your calling program unit. Here’s an example of the
method from code table package WORKER_TYPE:
 
FUNCTION get_id(
aiv_code in WORKER_TYPES.code%TYPE)
return WORKER_TYPES.id%TYPE is
 
n_id WORKER_TYPES.id%TYPE;
 
begin
 select id
 into n_id
 from WORKER_TYPES
 where code = aiv_code;
  
 return n_id;
end get_id;
 

Once this method is written and in use, one and only one SQL statement need ever be written to
retrieve an ID for a specified code value. You will see me use this method quite often in a data migration,
data processing, and reporting program units. First, I get the ID values as pseudo-constants in the
initialization section of a package whenever there is a small number codes in scope. Next, I reduce the
number of tables used in a corresponding cursor’s SQL SELECT statement. Instead, I use an IF statement to
assign the code entry’s code and description values inside the cursor’s FOR LOOP. You’ll see some examples
of this practice later in this chapter, in the “Reporting” section.

get_code_descr( )
Once you’ve decided to use a database architecture where every assigned code value is stored as an ID
value, you’ll need some way to retrieve the code and description values so they can be displayed in the
presentation layer, whether it is for data entry or reporting. And that’s the purpose of this method. If
you need the code and description values for a specific ID value, you simply call PROCEDURE get_code_
descr(ain_id, aov_code, aov_descr), passing it the corresponding ID value. The method returns the
code and description values as OUT parameter values If the ID you specify does not exist, the underlying
singleton SQL SELECT statement raises a NO_DATA_FOUND exception, which you must handle in your calling
program unit. Here’s an example of the method from code table package WORKER_TYPE:
 
PROCEDURE get_code_descr(
ain_id in WORKER_TYPES.id%TYPE,
aov_code out WORKER_TYPES.code%TYPE,
aov_description out WORKER_TYPES.description%TYPE) is
 

Chapter 10 ■ Examples

371

begin
 select code,
 description
 into aov_code,
 aov_description
 from WORKER_TYPES
 where id = ain_id;
end get_code_descr;
 

Once again, after this method is written and in use, one and only one SQL statement need ever be written
to retrieve a code and description for a specified code ID value. Similar functions can be written to get just the
code value or description value, and they would be appropriately named get_code() and get_descr().

get_code_id_descr( )
If an application is written for a high volume of data entry, the GUI in question will present a field for the
entry of a code value and a second field to display the specified code’s description value. The users may also
have an icon they can click to see a pop-up list of code values from which to select.

The typical end-user action in this design is for the end user to specify all or part of a code value, and
then to tab into the next modifiable field, at which point the presentation layer validates the user’s code
value entry. That’s what this method is for: validation.

In order to validate a code value, simply pass the code value to PROCEDURE get_code_id_descr(aiov_
code, aon_id, aov_description, aid_on). This procedure first tries to find an exact code value match
for the specified point in time. If it does not find a match, the procedure tries to find a single LIKE match. If
it does not find a single LIKE match, it may return a NO_DATA_FOUND or TOO_MANY_ROWS exception, which the
presentation layer will need to handle. Both exceptions mean that the user has specified an invalid code
value. Here’s an example from code table package WORKER_TYPE:
 
PROCEDURE get_code_id_descr(
aiov_code in out WORKER_TYPES.code%TYPE,
aon_id out WORKER_TYPES.id%TYPE,
aov_description out WORKER_TYPES.description%TYPE,
aid_on in WORKER_TYPES.active_date%TYPE) is
 
v_code WORKER_TYPES.code%TYPE;
 
begin
 select id,
 description
 into aon_id,
 aov_description
 from WORKER_TYPES
 where code = aiov_code
 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
exception
 when NO_DATA_FOUND then
 select id,
 code,
 description

Chapter 10 ■ Examples

372

 into aon_id,
 v_code,
 aov_description
 from WORKER_TYPES
 where code like aiov_code||'%'
 and aid_on between active_date and nvl(inactive_date, DATE_.d_MAX);
 
 aiov_code := v_code;
end get_code_id_descr;
 

Variable v_code is used in the second half of the method, during the LIKE match, to capture the full-
length code value from the database and return it to the presentation layer. You can call this method from
the WHEN-VALIDATE-ITEM event in Developer/2000 forms, from the item_changed() event in PowerBuilder,
from JavaScript (through a servlet) in the onChange event of an AJAX-based web page, and so on.

Now let’s look at methods used with content tables.

Content Table Methods
What’s the difference between a code table and a content table? In most cases, code tables have a very
limited number of entries—values agreed upon by the consensus of users or dictation of management.
These “agreed-upon” values are used to categorize the input of content and sometimes intersection entries.
In contrast, content tables have an unlimited number of entries, where end users select or specify code
values, enter numeric values, or enter textual values as part of doing business.

In response to the unlimited number of entries possible in content tables, it’s not uncommon to take
the effort to code methods to eliminate the repeated coding of the SQL singleton SELECT, INSERT, and UPDATE
statements with parametric method calls. Let’s start out by looking at one such method.

get_row( )
Method get_row returns a PL/SQL record (a row) from a relational table or an instance of an object TYPE (a
row) from an object table, based on the criteria specified in the record or object passed to the method. As the
programmer, it’s your responsibility to code the method to retrieve by the primary key and any other unique
keys defined for the table in question. Then, to use this method, follow these steps.

	 1.	 Set column or attribute values in a corresponding PL/SQL record or object
instance for only those columns or attributes that are used in a particular
primary or unique key constraint.

	 2.	 Pass the PL/SQL record or object instance to the method.

get_row() then returns a matching row from the database if a matching row exists; otherwise, it returns
a NULL PL/SQL record or object instance.

This method replaces a singleton SQL SELECT statement with a parametric method call based on a set of
primary or unique key values. We never need to code that SQL statement ever again. Where’s that unhappy
SQL programmer now?

The following is an example of the get_row method from content table package LOGICAL_WORKPLACE:
 
FUNCTION get_row(
air_logical_workplace in LOGICAL_WORKPLACES%ROWTYPE)
return LOGICAL_WORKPLACES%ROWTYPE is
 
r_logical_workplace LOGICAL_WORKPLACES%ROWTYPE;
 

Chapter 10 ■ Examples

373

begin
 if air_logical_workplace.id is not NULL then
 --pl('retrieve the row by the primary key');
 select *
 into r_logical_workplace
 from LOGICAL_WORKPLACES
 where id = air_logical_workplace.id;
 elsif air_logical_workplace.id_context is not NULL then
 --pl('retrieve the row by the id_context unique key');
 select *
 into r_logical_workplace
 from LOGICAL_WORKPLACES
 where id_context = air_logical_workplace.id_context;
 else
 --pl('retrieve the row by the code, name, and active_date');
 select *
 into r_logical_workplace
 from LOGICAL_WORKPLACES
 where code = air_logical_workplace.code
 and name = air_logical_workplace.name
 and active_date = air_logical_workplace.active_date;
 end if;
 return r_logical_workplace;
exception
 when NO_DATA_FOUND then
 raise;
 when OTHERS then
 raise_application_error(-20001, SQLERRM||
 ' on select LOGICAL_WORKPLACES'||
 ' in LOGICAL_WORKPLACE.get_row()');
end get_row;
 

As you will see shortly, get_row() is called by set_row() in order to determine whether to insert or
update.

get_code_id_name( ), get_code( ), and get_name( )
The methods get_code_id_name(), get_code(), and get_name() serve the same purpose as their
counterparts in code table packages. See the section about get_code_id_descr() earlier in the chapter for
an explanation.

is_duplicate( )
In a database design where you use sequence-generated ID values for primary keys, every table will have a
primary key that is an ID value, and at least one unique key that acts as a “primary key” made up of real-
world values. Method is_duplicate() allows the presentation layer to verify that the values specified in
fields on a screen are not going to create a row with duplicate values when an entry is saved to the database.

Chapter 10 ■ Examples

374

Here’s an example of FUNCTION is_duplicate(aiv_code, aiv_name, aid_active_date) from content
table package LOGICAL_WORKPLACE:
 
FUNCTION is_duplicate(
aiv_code in LOGICAL_WORKPLACES.code%TYPE,
aiv_name in LOGICAL_WORKPLACES.name%TYPE,
aid_active_date in LOGICAL_WORKPLACES.active_date%TYPE)
return boolean is
 
n_count number;
 
begin
 --pl('retrieve the row by the code, name, and active_date');
 select count(1)
 into n_count
 from LOGICAL_WORKPLACES
 where code = aiv_code
 and name = aiv_name
 and trunc(active_date) = trunc(aid_active_date);
 
 if nvl(n_count, 0) > 0 then
 return TRUE;
 else
 return FALSE;
 end if;
end is_duplicate;
 

Like its presentation layer counterpart get_code_id_name(), is_duplicate() can be called from
any presentation layer This time, however, in order to provide immediate feedback to users that they are
specifying duplicate values, before they try to save an entry to the database, because it will return TRUE if
the values already exist in the database. If you’re working with a programming language in the presentation
layer that does not support a Boolean value from SQL, such as Java, you can simply wrap your call to this
function in a stand-alone database function like the following:
 
create or replace FUNCTION to_boolean_number(
aib_boolean in boolean)
return number is
/*
to_boolean_number.fun
by Donald J. Bales on 2014-10-20
A method to return a numeric value for false (0) and true (1).
This is very handy for calling functions that return boolean
values from JDBC, which can't handle boolean database values.
*/
begin
 if aib_boolean is not null then
 if aib_boolean then
 return 1;
 else
 return 0;
 end if;

Chapter 10 ■ Examples

375

 else
 return NULL;
 end if;
end to_boolean_number;
 

FUNCTION to_boolean_number() takes a Boolean value as a parameter, and then returns a 1 for TRUE
or 0 for FALSE. If you call is_duplicate() from a Java program, you’ll need to wrap is_duplicate() with
to_boolean_number() so you’ll get a numeric value 1 for TRUE and 0 for FALSE. For example, you would code
your JDBC stored procedure call as follows:
 
...
int duplicate = 0;
CallableStatement cstmt = null;
 
try {
 // Create the callable statement
 cstmt = conn.prepareCall(
 "{ ? = call to_boolean_number(is_duplicate(?, ?, ?)) }");
  
 // Register the OUT parameter
 cstmt.registerOutParameter(1, Types.INTEGER);
  
 // Set the IN parameters
 cstmt.setString(2, code);
 cstmt.setString(3, name);
 cstmt.setTimestamp(4, activeDate);
  
 // Execute the stored procedure
 cstmt.execute();
  
 duplicate = cstmt.getInt(1);
}
catch (SQLException e) {
 System.err.println("SQL Error: " + e.getMessage());
}
finally {
 if (cstmt != null)
 try { cstmt.close(); } catch (SQLException ignore) { }
}
...
 

Enough JDBC, let’s get back to PL/SQL.

set_row( )
Method set_row is the ultimate parametric method replacement for SQL—that is, as far as our unhappy SQL
programmer is concerned! To INSERT or UPDATE the database with the row you desire, you simply pass the
row in question, a PL/SQL record or object instance, to PROCEDURE set_row(air_row). When you do, here’s
what set_row() does.

Chapter 10 ■ Examples

376

	 1.	 It calls get_row() to determine if a row with the specified primary or unique key
values already exists in the database. If it does, get_row() returns the matching
row. Otherwise, get_row() returns a NULL row.

	 2.	 If the desired row already exists in the database, set_row() will compare the
non-primary key columns. If any non-primary key column values are different,
set_row() will UPDATE the database with the modified values.

	 3.	 If the desired row doesn’t exist in the database, set_row() will allocate a primary
key value if necessary, and then INSERT the desired row into the database. The
row passed to set_row() is an IN OUT parameter, so the value of any allocated
primary key will be updated in the passed row if a new row is inserted into the
database.

This is a very handy method when you’re coding a data migration program. You can call set_row() as
many times as you like with the same values, and it will insert a row only once, and update it only if values
have changed. This allows you to code data migration programs that can be rerun as needed until you get
the “correct” results.

The following is an example of method set_row() from content table package LOGICAL_WORKPLACE:
 
PROCEDURE set_row(
aior_logical_workplace in out LOGICAL_WORKPLACES%ROWTYPE) is
 
d_null constant date := DATES.d_MIN;
n_null constant number := 0;
v_null constant varchar2(1) := ' ';
r_logical_workplace LOGICAL_WORKPLACES%ROWTYPE;
 
begin
 -- get the existing row
 begin
 r_logical_workplace := get_row(aior_logical_workplace);
 exception
 when NO_DATA_FOUND then
 r_logical_workplace := NULL;
 end;
 -- if a row exists, update it if needed
 if r_logical_workplace.id is not NULL then
 aior_logical_workplace.id := r_logical_workplace.id;
 aior_logical_workplace.parent_id := r_logical_workplace.parent_id;
 aior_logical_workplace.id_context := r_logical_workplace.id_context;
 if nvl(r_logical_workplace.workplace_type_id, n_null) <>
 nvl(aior_logical_workplace.workplace_type_id, n_null) or
 nvl(r_logical_workplace.code, v_null) <>
 nvl(aior_logical_workplace.code, v_null) or
 nvl(r_logical_workplace.name, v_null) <>
 nvl(aior_logical_workplace.name, v_null) or
 nvl(r_logical_workplace.active_date, d_null) <>
 nvl(aior_logical_workplace.active_date, d_null) or
 nvl(r_logical_workplace.inactive_date, d_null) <>
 nvl(aior_logical_workplace.inactive_date, d_null) then

Chapter 10 ■ Examples

377

 begin
 update LOGICAL_WORKPLACES
 set workplace_type_id = aior_logical_workplace.workplace_type_id,
 code = aior_logical_workplace.code,
 name = aior_logical_workplace.name,
 active_date = aior_logical_workplace.active_date,
 inactive_date = aior_logical_workplace.inactive_date
 where id = aior_logical_workplace.id;
 
 n_updated := nvl(n_updated, 0) + nvl(sql%rowcount, 0);
 exception
 when OTHERS then
 raise_application_error(-20002, SQLERRM||
 ' on update LOGICAL_WORKPLACES'||
 ' in LOGICAL_WORKPLACE.set_row()');
 end;
 end if;
 else
 -- add the row if it does not exist
 begin
 if aior_logical_workplace.id is NULL then
 aior_logical_workplace.id := get_id();
 end if;
 aior_logical_workplace.id_context :=
 create_id_context(
 aior_logical_workplace.parent_id,
 aior_logical_workplace.id);
 insert into LOGICAL_WORKPLACES (
 id,
 parent_id,
 id_context,
 workplace_type_id,
 code,
 name,
 active_date,
 inactive_date)
 values (
 aior_logical_workplace.id,
 aior_logical_workplace.parent_id,
 aior_logical_workplace.id_context,
 aior_logical_workplace.workplace_type_id,
 aior_logical_workplace.code,
 aior_logical_workplace.name,
 aior_logical_workplace.active_date,
 aior_logical_workplace.inactive_date);
 
 n_inserted := nvl(n_inserted, 0) + nvl(sql%rowcount, 0);
 exception

Chapter 10 ■ Examples

378

 when OTHERS then
 raise_application_error(-20003, SQLERRM||
 ' on insert LOGICAL_WORKPLACES'||
 ' in LOGICAL_WORKPLACE.set_row()');
 end;
 end if;
end set_row;
 

You have to admit that that is a pretty cool method—that is, if you hate to code SQL.

WHAT? NO METHODS TO REPLACE CURSORS?

Have you noticed that I have all kinds of table package methods that wrap singleton SQL statements
with a method, yet I have none to wrap a cursor with a method call? An esteemed peer of mine, Steven
Feuerstein, has written about doing just that: wrapping a cursor with a method that returns a collection.
A program is then written to loop through the rows of a collection instead of the rows of a cursor.

Used judiciously—that is, with cursors that return a small number of rows—Steven’s method can be
quite effective. However, in practice, I don’t find much use for this technique. Remember that I advocate
the use of PL/SQL methods in order to eliminate “duplicate” code. In contrast, I find that most stored
procedures that use cursors use a rather unique cursor. So, because of that, I see very little opportunity
for reuse.

At the same time, misuse of wrapping cursors with methods that return collections can lead to
inordinately large amounts of shared memory use in an Oracle database. This in turn leads to poor
performance. Regardless, at some point in time, I suggest you check out Steven’s ideas. Every good
idea has its place.

Intersection Table Methods
Tables that act as the intersection between two content tables (commonly called a many-to-many
relationship/entity) use all the same methods as a content tables and a few more. So let’s start by listing the
methods that an intersection table has in common with a content table:

•	 get_row(): Used to detect and retrieve an existing row based on primary key or
unique key data.

•	 is_duplicate(): Used to detect a duplicate entry before a presentation layer
program tries to insert the values in question into the database.

•	 set_row(): Used to conditionally insert or update a row in the database, based on
use of get_row() to detect an existing entry.

An intersection table has two additional methods that are concerned about the existence of intersection
history: is_active() and is_history(). Let’s look at is_active() first.

is_active( )
Method is_active() returns a Boolean value based on whether or not an “active” entry exists in an
intersection table for the specified “primary” content entity at the specified point in time. By “primary”
content entity, I mean the content entity that is the subject of the query.

Chapter 10 ■ Examples

379

For example, the three intersection entities in the example’s ERD from Chapter 1—LOGICAL_ASSIGNMENTS,
PHYSICAL_ASSIGNMENTS, and WORK_ASSIGNMENTS—have a primary content entity, WORKERS, that is the subject
of the relationship. And they have a secondary content entity—LOGICAL_WORKPLACES, PHYSICAL_WORKPLACES,
and WORKS, respectively—that is the object of the relationship.

By “active,” I mean that the specified point in time is between an entry’s active date and inactive date.
Figure 10-2 illustrates the method’s use.

200520001995

Chem Bio
Newark Gary San Diego
Chemist Chemical Engineer

org
loc
job

hi
re

d

Is there an active entry
on this date?

Figure 10-2.  An illustration of method is_active()’s use

If an active entry exists, FUNCTION is_active(ain_primary_id, aid_on) returns TRUE; otherwise,
it returns FALSE. The following is an example of the method from intersection table package LOGICAL_
ASSIGNMENT:
 
FUNCTION is_active(
ain_worker_id in LOGICAL_ASSIGNMENTS.worker_id%TYPE,
aid_on in date)
return boolean is
 
pragma AUTONOMOUS_TRANSACTION;
 
n_count number;
 
begin
 select count(1)
 into n_count
 from LOGICAL_ASSIGNMENTS
 where worker_id = ain_worker_id
 and aid_on between active_date
 and nvl(inactive_date, DATE_.d_MAX);
 
 if nvl(n_count,0) > 0 then
 return TRUE;
 else
 return FALSE;
 end if;
 
 commit;
end is_active;
 

In the example above and below, for functions is_inactive() and is_history(), I am judiciously
using pragma AUTONOMOUS_TRANSACTION so these methods can “see” outside of the current transaction
context. That’s a bit of an advanced topic. So until you’re ready to study up on that topic, make sure you use
that pragma extremely carefully, or not at all.

http://dx.doi.org/10.1007/9781484207383_1

Chapter 10 ■ Examples

380

is_history( )
The second intersection table package method, is_history(), exists for a whole different reason. It
determines whether there is any history of an active entry over a specified period of time. FUNCTION is_
history(ain_primary_id, aid_active_date, aid_inactive_date) is designed to return TRUE if history
does exist; otherwise, it returns FALSE. It also uses pragma autonomous transaction, so it can be used in
a before insert for each row (BIR) trigger on an intersection table, to prevent overlapping historical
entries. Figure 10-3 illustrates the use of is_history().

200520001995

Chem Bio
Newark Gary San Diego
Chemist Chemical Engineer

org
loc
job

hi
re

d

Is there an active history
during this period of time?

Figure 10-3.  An illustration of method is_history()’s use

The following is an example of method is_history() from intersection table package LOGICAL_
ASSIGNMENT:
 
kFUNCTION is_history(
ain_worker_id in LOGICAL_ASSIGNMENTS.worker_id%TYPE,
aid_active_date in LOGICAL_ASSIGNMENTS.active_date%TYPE,
aid_inactive_date in LOGICAL_ASSIGNMENTS.inactive_date%TYPE)
return boolean is
 
pragma AUTONOMOUS_TRANSACTION;
 
n_count number;
 
begin
 select count(1)
 into n_count
 from LOGICAL_ASSIGNMENTS
 where worker_id = ain_worker_id
 and active_date <=
 nvl(aid_inactive_date, DATE_.d_MAX)
 and nvl(inactive_date, DATE_.d_MAX) >= aid_active_date;
 commit;
 
 if nvl(n_count,0) > 0 then
 return TRUE;
 else
 return FALSE;
 end if;
end is_history;
 

Chapter 10 ■ Examples

381

At first glance, most programmers think I’ve coded the comparisons between the dates in this method
incorrectly, but examine Figure 10-4. What I’m asking the database in the query is, “Are there any entries
where the active date takes place before the end of the range (inactive date) I’m specifying and at the same
time the inactive date takes place after the start of the range (active_date) I’m specifying?” If there are, then
these entries are active at some point (or points) in time during the range I’ve specified.

Is there an active history during this period of time?

My specified
ain_active_date

My specified
aid_inactive_date

An existing entry’s
inactive_date

An existing entry’s
active_date

Figure 10-4.  An illustration of overlapping historical entries

The use of an autonomous transaction in this method allows it to be used to verify that no existing
entries overlap the history of the new entry, without generating a mutating table error.

Hierarchical Table Methods
Hierarchical entities—those that have a relationship with themselves—have three additional methods,
which are centered on the hierarchy. A common example of a hierarchical entity is one that stores
organization information, as the LOGICAL_WORKPLACE entity does in the example schema from Chapter 1.
From data in this entity, we can build an organization chart, as in Figure 10-5.

VDMI

MARKETINGACCOUNTING SALES
PRODUCT

DEVELOPMENT
MANUFACTURING

METALSCHEMICALSBIOLOGICALS REUSABLESDISPOSABLES

HUMAN
RESOURCES

Figure 10-5.  An example of a hierarchical relationship

Determining who reports to an intermediate organization, like Manufacturing in Figure 10-5, can
be quite complex and time-consuming. One option is to use Oracle’s CONNECT BY clause in a SQL SELECT
statement, but the retrieval times can be onerous. So as a performance work-around, I create what I call a
“contextual primary key string,” which is made up of a list of primary keys in the hierarchy separated by some
predetermined separator character. I prefer to use a period (.).

http://dx.doi.org/10.1007/9781484207383_1

Chapter 10 ■ Examples

382

When I want to identify everyone who works for Manufacturing, I look up the ID context for
Manufacturing, and then ask for any entry that is LIKE it. Let’s investigate this design further by looking at a
method to create the ID context.

create_id_context( )
Method create_id_context() returns an ID context string for the specified parent entry and new logical
workplace ID. An application programmer must make sure that the associated ID context column in the
associated table is set to the return value of FUNCTION create_id_context(ain_parent_id, ain_id) any
time a row is inserted into the database. Here’s an example of the method for hierarchical content table
package LOGICAL_WORKPLACE:
 
FUNCTION create_id_context(
ain_parent_id in LOGICAL_WORKPLACES.parent_id%TYPE,
ain_id in LOGICAL_WORKPLACES.id%TYPE)
return varchar2 is
 
v_id_context LOGICAL_WORKPLACES.id_context%TYPE;
 
begin
 v_id_context := get_parent_id_context(ain_parent_id);
  
 if v_id_context is not NULL then
 return substr(v_id_context||'.'||to_char(ain_id), 1, 2000);
 else
 return to_char(ain_id);
 end if;
end create_id_context;
 

Let’s work through an example using the primary key ID values for the organizations represented in
Figure 10-5. Table 10-3 lists the primary key values for some of the organizations shown in that figure.

Table 10-3.  Selected LOGICAL WORKPLACE Entries

Code Name logical_workplace_id id_context

VDMI Very Dirty Manufacturing, Inc. 1 1

MFG Manufacturing 5 1.5

CHEM Chemicals 8 1.5.8

BIO Biologicals 9 1.5.9

METL Metals 10 1.5.10

RUSE Reusables 11 1.5.11

DISP Disposables 12 1.5.12

The Chemicals department (ID = 8) is part of the Manufacturing business unit (ID = 5). So when
FUNCTION create_id_context() is called, its parent’s ID value, 5, is passed as ain_parent_id, and its ID
value, 8, is passed as ain_logical_workplace_id.

Chapter 10 ■ Examples

383

First, the function retrieves the parent’s ID context, 1.5. Then the method appends a period and the ID
value, 8, to the parent’s ID context, to get 1.5.8. This is the value returned by the function.

Once that value is stored in the database, if I want a list of everyone under Manufacturing, all I need to
do is add the following SQL to a query:
 
where id_context like aiv_id_context||'%'.

get_code_context( )
Method get_code_context() returns the hierarchical list of code values as a context string for the specified
ID. For example, executing FUNCTION get_code_context(ain_id) will return the string VDMI.MFG.CHEM for
the Chemicals department listed in Table 10-3. Here’s an example of the method from hierarchical content
table package LOGICAL_WORKPLACE:
 
FUNCTION get_code_context(
ain_id in LOGICAL_WORKPLACES.id%TYPE)
return varchar2 is
 
cursor c_code_context(
ain_id in LOGICAL_WORKPLACES.id%TYPE) is
select upper(code) code
from LOGICAL_WORKPLACES
connect by prior parent_id = id
start with id = ain_id
order by level desc;
 
v_code_context varchar2(2000);
 
begin
 for r_code_context in c_code_context(ain_id) loop
 v_code_context := substr(v_code_context||'.'||r_code_context.code, 1, 2000);
 end loop;
 return v_code_context;
end get_code_context;
 

In this case, I do use the CONNECT BY SQL clause in the method’s cursor, c_code_context, to get the list
of code values for the context string.

get_id_context( )
Method get_id_context() returns the ID context for the specified ID. For example, calling FUNCTION get_
id_context(ain_id) for Manufacturing (ID = 5) as in Table 10-3 will return the value 1.5. Here’s an example
of the method from hierarchical content table package LOGCAL_WORKPLACE:
 
FUNCTION get_id_context(
ain_id in LOGICAL_WORKPLACES.id%TYPE)
return varchar2 is
 
v_id_context LOGICAL_WORKPLACES.id_context%TYPE;
 

Chapter 10 ■ Examples

384

begin
 if ain_id is not NULL then
 select id_context
 into v_id_context
 from LOGICAL_WORKPLACES
 where id = ain_id;
 end if;
 
 return v_id_context;
end get_id_context;
 

This method is used by method create_id_context() to get the ID context for a new entry’s parent entry.

get_name_context( )
Similar to its sibling get_code_context(), get_name_context() returns the hierarchical list of name values
as a context string for the specified ID. For example, executing FUNCTION get_name_context(ain_id)
will return the string Very Dirty Manufacturing, Inc..Manufacturing.Chemicals for the Chemicals
department listed in Table 10-3. Here’s an example of the method from hierarchical content table package
LOGICAL_WORKPLACE:
 
FUNCTION get_name_context(
ain_id in LOGICAL_WORKPLACES.id%TYPE)
return varchar2 is
 
cursor c_name_context(
ain_id in LOGICAL_WORKPLACES.id%TYPE) is
select initcap(name) name
from LOGICAL_WORKPLACES
connect by prior parent_id = id
start with id = ain_id
order by level desc;
 
v_name_context varchar2(2000);
 
begin
 for r_name_context in c_name_context(ain_id) loop
 v_name_context := substr(v_name_context||'.'||r_name_context.name, 1, 2000);
 end loop;
 return v_name_context;
end get_name_context;
 

As with get_code_context(), I use the CONNECT BY SQL clause in the method’s cursor, c_name_context,
to get the list of name values for the context string.

That’s almost the entire list of table package or object TYPE methods. A few more are also used by most
executables, so I will discuss them next.

Chapter 10 ■ Examples

385

The Black Box
The notion of a “black box” is something that you use but have no idea how it works. A lot of people drive
cars, yet they don’t actually know how they work. Even more people use electronic devices, yet they don’t
know how they work either. To these users, these are black boxes.

These black boxes have an interface. In the case of a car, the interface consists of an ignition switch,
steering wheel, gas pedal, brake pedal, and so on. But beyond the use of the interface, users know little about
how gasoline put in the tank turns into mechanical energy that takes them from place to place. And why
should they?

In this section, I’m going to introduce you to a handful of methods that are used in almost every table
package, object TYPE, or role package. Let’s start with those that are common to all table packages and
object TYPEs.

Table Methods
A couple methods are applicable to almost all, if not all, table packages and object TYPEs. They are get_id
and inactivate(). The method get_id is shown without parentheses because it takes no arguments. From
my point of view, these “black box” methods should exist in every table package and object TYPE. Let’s start
with get_id.

get_id
Method get_id allocates and returns a new primary key value from an underlying Oracle sequence.
FUNCTION get_id() acts as an abstraction layer between the underlying Oracle sequence and PL/SQL. This
abstraction layer allows you to later change the means by which you allocate a primary key value without
having to recode any PL/SQL program units that call the method.

The following is an example of the get_id method from code table package WORKER_TYPE:
 
FUNCTION get_id
return WORKER_TYPES.id%TYPE is
 
n_id WORKER_TYPES.id%TYPE;
 
begin
 select WORKER_TYPES_ID.nextval
 into n_id
 from SYS.DUAL;
 
 return n_id;
end get_id; 

inactivate( )
Rarely have I encountered an application where I actually delete data from a table. Instead, applications
work with the idea of inactivating or invalidating an entry. Method inactivate() handles inactivation.

If you have a code table, you can’t delete a code value that’s in use (one that has any relationships).
Yet you may want to stop users from using an “outdated” code value. To do so, you write your code value’s
SELECT statement to utilize the code’s inactive date, and then you set a code’s inactive date so users can no
longer select it from a list of values.

Chapter 10 ■ Examples

386

Along the same line of thinking, if you have a content table, and a particular entry has relationships, but
you no longer want users to select the content table entry, you can set its inactive date and prevent it from
appearing in the presentation layer. Just as with the code, the content entry has historical significance but is
no longer to be used.

With an intersection table, the concept is slightly different. With an intersection, the assignment of a
relationship between two tables exists for the period of time defined from its active date through its inactive
date. So when you inactivate an intersection entry, you’re simply defining the end of a historical relationship.

Regardless of the type of table for which an entry is inactivated, inactivate() does the same thing: it
sets the inactive date. The following is an example of an inactivate() method from content table package
LOGICAL_WORKPLACE:
 
PROCEDURE inactivate(
ain_id in LOGICAL_WORKPLACES.id%TYPE,
aid_inactive_date in LOGICAL_WORKPLACES.inactive_date%TYPE) is
 
begin
 update LOGICAL_WORKPLACES
 set inactive_date = aid_inactive_date
 where id = ain_id;
end inactivate;
 

That’s straightforward enough. Now let’s look at methods used by all packages and TYPEs.

Universal Methods
I expect some methods to exist in every package or TYPE. You’ve already been introduced to methods help
and test. I have one new one here named initialize. Let’s start with help.

help
Method help should display help text for the package or TYPE for which it is executed. PROCEDURE help was
covered extensively in Chapter 9. You should code this method to display help text in whatever manner
you find suitable. What I showed you in Chapter 9 was just an example. But, whatever you do, you must be
consistent; otherwise, programmers won’t consider the help as reliable documentation, and then you’ll have
defeated the purpose of coding the method altogether.

The following is an example of the method from code table package WORKER_TYPE:
 
PROCEDURE help is
 
begin
 TEXT_HELP.process('WORKER_TYPE');
end help;
 

In this example, PROCEDURE process in package TEXT_HELP will format and display the contents of the
associated specification.

http://dx.doi.org/10.1007/9781484207383_9
http://dx.doi.org/10.1007/9781484207383_9

Chapter 10 ■ Examples

387

initialize
I know I have not talked about method initialize before, but I feel it’s an important part of testing and
should exist in any package that uses its initialization section. Just in case you don’t know what I mean by
“initialization section,” let me elaborate.

A package body is a PL/SQL block. Because it is a PL/SQL block, it has a declaration section, which is
where you code any instance variables, functions, procedures, and so on, and it has an executable section.
Really, it does. If, after all the functions and procedures you coded, you add the keyword BEGIN, any code
from the keyword BEGIN to keyword END at the end of the package body is executed once, and only once, any
time the package is instantiated. By “instantiated,” I mean loaded into memory and initialized. There it is,
that word: initialized.

So for any package where I use the “initialization section,” I add a public PROCEDURE initialize to the
package. Why? So I can test the code in the initialization section.

One of the mysterious errors developers, support personnel, and end users encounter is NO_DATA_FOUND
the first time they try to use a particular package, and then the error magically goes away. This is almost
always caused by a SQL SELECT statement executed in the initialization section of a package that can’t find a
matching row in the database. It happens once, and only once, because the package is initialized once, and
only once.

A problem like this can be quite elusive. You can go crazy troubleshooting the problem and then
testing that your solution works. How do you fix it? Create a PROCEDURE initialize where you put your
initialization code, and then execute that procedure in the initialization section of your package. Then, you
can execute PROCEDURE initialize as many times as you like during testing, without having to log out and
in, in order to get the database to initialize the package.

Here’s an example of the method:
 
PROCEDURE initialize is
 
begin
 n_contractor := get_id(v_contractor);
 n_employee := get_id(v_employee);
 n_unknown := get_id(v_unknown);
end initialize;
 

Then add a call to initialize in the initialization section of your package, like so:
 
...
-- Initialization section
begin
 initialize;
 
end WORKER_TYPE;
 

Once this code is in place, any time you access the package the first time, the package will execute the
code in method initialize. And any time you need to test the code from the initialization section of a
package, all you need do is execute method initialize. Take a look at source file top_100_names.pkb for a
complete example.

Chapter 10 ■ Examples

388

test
The test procedure should be coded so it performs all necessary tests on its package or TYPE’s methods.
I covered this method extensively in Chapter 8. Here’s a partial example of the method from code table
package WORKER_TYPE:
 
PROCEDURE test is
 
n_id WORKER_TYPES.id%TYPE;
v_code WORKER_TYPES.code%TYPE;
v_description WORKER_TYPES.description%TYPE;
 
begin
 -- Send feedback that the test ran
 pl('WORKER_TYPE.test()');
  
 -- Clear the last set of test results
 &_USER..TEST.clear('WORKER_TYPE');
  
 -- First, we need some test values
 
 -- Let's make sure they don't already exist: DELETE
 &_USER..TEST.set_test('WORKER_TYPE', 'DELETE', 0,
 'Delete test entries');
 begin
 delete WORKER_TYPES
 where code in (
 &_USER..TEST.v_TEST_30,
 &_USER..TEST.v_TEST_30_1,
 &_USER..TEST.v_TEST_30_2);
 &_USER..TEST.ok();
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
  
 -- Now let's add three test codes: INSERT
 &_USER..TEST.set_test('WORKER_TYPE', 'INSERT', 1,
 'Insert 3 test entries');
 begin
 insert into WORKER_TYPES (
 id,
 code,
 description,
 active_date,
 inactive_date)
 values (
 get_id(),
 &_USER..TEST.v_TEST_30,
 &_USER..TEST.v_TEST_80,
 &_USER..TEST.d_TEST_19000101,
 &_USER..TEST.d_TEST_99991231);
 

http://dx.doi.org/10.1007/9781484207383_8

Chapter 10 ■ Examples

389

 insert into WORKER_TYPES (
 id,
 code,
 description,
 active_date,
 inactive_date)
 values (
 get_id(),
 &_USER..TEST.v_TEST_30_1,
 &_USER..TEST.v_TEST_80,
 &_USER..TEST.d_TEST_19000101,
 &_USER..TEST.d_TEST_99991231);
 
 insert into WORKER_TYPES (
 id,
 code,
 description,
 active_date,
 inactive_date)
 values (
 get_id(),
 &_USER..TEST.v_TEST_30_2,
 &_USER..TEST.v_TEST_80,
 &_USER..TEST.d_TEST_19000101,
 &_USER..TEST.d_TEST_99991231);
 
 &_USER..TEST.ok();
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
  
 -- Now that we have test entries,
 -- let's test the package methods
 &_USER..TEST.set_test('WORKER_TYPE', 'get_id()', 2,
 'Get the ID for the specified code');
 begin
 n_id := get_id(&_USER..TEST.v_TEST_30);
  
 if n_id > 0 then
 &_USER..TEST.ok();
 else
 &_USER..TEST.error();
 end if;
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
 

Chapter 10 ■ Examples

390

 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_descr()', 3,
 'Get the code and description for the specified ID');
 begin
 get_code_descr(
 n_id,
 v_code,
 v_description);
 if v_code = &_USER..TEST.v_TEST_30 and
 v_description = &_USER..TEST.v_TEST_80 then
 &_USER..TEST.ok();
 else
 &_USER..TEST.error();
 end if;
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
 
 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_id_descr()', 4,
 'Get the code, ID, and description for the specified code');
 begin
 v_code := &_USER..TEST.v_TEST_30;
 get_code_id_descr(
 v_code,
 n_id,
 v_description);
 if v_code = &_USER..TEST.v_TEST_30 and
 n_id > 0 and
 v_description = &_USER..TEST.v_TEST_80 then
 &_USER..TEST.ok();
 else
 &_USER..TEST.error();
 end if;
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
 
 &_USER..TEST.set_test('WORKER_TYPE', 'get_code_id_descr()', 5,
 'Get the code, ID, and description for the specified date');
 begin
 v_code := 'TEST';
 -- This test should raise a TOO_MANY_ROWS exception
 -- because at least three duplicate values will
 -- on the date specified
 get_code_id_descr(
 v_code,
 n_id,
 v_description,
 &_USER..TEST.d_TEST_99991231);

Chapter 10 ■ Examples

391

 if v_code = &_USER..TEST.v_TEST_30 and
 n_id > 0 and
 v_description = &_USER..TEST.v_TEST_80 then
 &_USER..TEST.ok();
 else
 &_USER..TEST.error();
 end if;
 exception
 when TOO_MANY_ROWS then
 &_USER..TEST.ok();
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
 
 &_USER..TEST.set_test('WORKER_TYPE', 'help()', 6,
 'Display help');
 begin
 help();
 &_USER..TEST.ok();
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
 
 -- Let's make sure they don't already exist: DELETE
 &_USER..TEST.set_test('WORKER_TYPE', 'DELETE', 7,
 'Delete test entries');
 begin
 delete WORKER_TYPES
 where code in (
 &_USER..TEST.v_TEST_30,
 &_USER..TEST.v_TEST_30_1,
 &_USER..TEST.v_TEST_30_2);
 &_USER..TEST.ok();
 exception
 when OTHERS then
 &_USER..TEST.error(SQLERRM);
 end;
  
 &_USER..TEST.set_test('WORKER_TYPE', NULL, NULL, NULL);
 &_USER..TEST.success();
end test;
 

If you include and code method test in every package, then you can totally automate the testing of your
PL/SQL executables, as I outlined at the end of Chapter 9.

Divide and Conquer
The traditional concept of “divide and conquer” is a tactic to destroy teamwork. Your actions cause
dissention among team members, so they no longer work together toward a mutual goal, but instead each
works on his own goals. Hence, they are no longer a team.

http://dx.doi.org/10.1007/9781484207383_9

Chapter 10 ■ Examples

392

So where you had a team of discrete members working together at various tasks to achieve a common
goal, you end up with a group of individuals competing with each other to achieve many goals. The latter is
what we normally end up with in an application.

The database tries to optimize its work around the overall use of reads and writes to •	
the file system while maintaining a transaction context.

SQL tries to optimize the overall access to data in the database.•	

PL/SQL tries to optimize the overall performance of its executables.•	

The communication network tries to optimize the overall consumption of •	
bandwidth.

The application server tries to optimize the overall performance of its hosted •	
executables.

The presentation layer tries to optimize the overall end-user experience.•	

What do these layers of technology all have in common? They are all optimized for a fictitious set of events:
“the average.” They work as a group of individuals competing with each other to achieve their own goals. So how
can you turn them into a team whose members work together for a common goal? You divide and conquer. But
this time, divide and conquer means you divide up a larger goal into tasks, and then have the best team member
perform each task. I know, it’s 180 degrees from the traditional definition of divide and conquer, but it works.

For example, if there is data-intensive work to be accomplished, it should be done in the database.
Retrieving data from the database through a network to an application server, or worse, a presentation layer,
in order to accomplish data migration or data processing is ludicrous. In addition, you should use SQL and
PL/SQL to manipulate data. When you combine the use of these two languages, you have the easiest to code,
yet most powerful combination for data processing that has ever existed.

In addition, if there is behavior related to data, like so-called business rules, it should reside in the database.
Otherwise, each additional layer may have its own version of “the rules,” and you’ll end up with business rule
anarchy. As I tried to convince you earlier, behavior is just as important to store as the data to which it “belongs.”

Overall, I’m suggesting that you use PL/SQL and SQL to create actors—program units to fulfill particular
roles—in order to accomplish the following kinds of tasks:

Data migration•	

Data processing•	

Reporting•	

Accordingly, this section will cover each of these roles and the polymorphic commands they typically
employ.

Data Migration
As I stated earlier, my concept of data migration (DM) is a one-time task where you move external data into
a highly structured schema in a database. The notion of it being a “one-time” task is important here. If you
needed to move external data into a database on a regular basis, I would call it data processing instead.

Here’s the high-level idea: load the external data that is to be moved into an application’s data structure
into staging tables with whatever method is quickest, and then use a PL/SQL data processing program unit
to move the data into the application’s data structure.

As illustrated in Figure 10-6, you can use an Oracle database link if you’re moving data from one
database to another, or you can use C/C++ with the Oracle Call Interface (OCI) API, Java and JDBC, XML, or
better yet SQL*Loader, if you’re loading the data from a file system into the database. Use whatever method
is the most efficient.

Chapter 10 ■ Examples

393

After the data is loaded into the database, you can then write a PL/SQL package to move the data from
the staging tables into a target application’s schema. Such a package would have at least one public method:
process. When executed, process would do the following:

	 1.	 Use the package’s initialization section to load code value IDs that can then be
used in a cross-reference IF statement to map external code values to ones in the
target schema.

	 2.	 Initialize the set_row() counters—the public package variables n_inserted and
n_updated—to zero for each target table.

	 3.	 Use a cursor and cursor FOR LOOP to read through the rows of the staging table.

	 4.	 Use the set_row() method on the target table(s) to insert the external data.

	 5.	 Display the n_insert and n_update counts upon completion in order to confirm
that the data migration completed successfully.

After you’ve coded PROCEDURE process, all you would need to do is execute the method in order to
move the data from a staging table to a (or set of) corresponding application table(s).

process
Method process is used to start an on-demand or polling process. The following is an example of the
method from data migration package TOP_100_NAME:
 
PROCEDURE process is
 
-- This is the cursor for the last names.
cursor c_last is
select last_name
from TOP_100_LAST_NAMES
order by 1;
 
-- This is the cursor for the first names.
cursor c_first is
select first_name,
 gender_code
from TOP_100_FIRST_NAMES
order by 1;
 

Oracle

Staging
Tables

Application
Tables

File System

Database Link

C/C++

JDBC

SQL*Loader

XML

PL/SQL

Oracle

Figure 10-6.  An illustration of data migration

Chapter 10 ■ Examples

394

-- This is the cursor for the middle initials.
cursor c_middle is
select letter
from A_THRU_Z
order by 1;
 
-- This is the number of seconds since midnight
-- I'll use it to profile my code's performance.
n_start number :=
 to_number(to_char(SYSDATE, 'SSSSS'));
 
-- I'll use this to keep track of how many rows were selected
n_selected number := 0;
 
-- Here, I declare a record anchored to the table so
-- I can set the column values and then insert using
-- the record.
r_worker WORKERS%ROWTYPE;
 
begin
 -- Reset the insert/update counters for set_row()
 WORKER.n_inserted := 0;
 WORKER.n_updated := 0;
  
 -- Loop through the last names
 for r_last in c_last loop
 
 -- While looping through the last names,
 -- loop through the first names
 for r_first in c_first loop
 
 -- While looping through the last and first names
 -- loop through the 26 letters in the English
 -- Alphabet in order to get middle initials
 for r_middle in c_middle loop
 n_selected := n_selected + 1;
 -- Initialize the record
 
 -- Set the PK to NULL so set_row() determines
 -- whether or not the entry already exists
 -- by it's unique keys
 r_worker.id := NULL;
 
 -- Flip flop from contractor to employee and back again
 if r_worker.worker_type_id = WORKER_TYPE.contractor then
 r_worker.worker_type_id := WORKER_TYPE.employee;
 else
 r_worker.worker_type_id := WORKER_TYPE.contractor;
 end if;
 

Chapter 10 ■ Examples

395

 -- Set the External ID, UK1, to NULL so set_row() determines
 -- whether or not the entry already exists
 -- by it's unique keys
 r_worker.external_id := NULL;
 
 -- The first, middle, and last names come from the cursors
 r_worker.first_name := r_first.first_name;
 r_worker.middle_name := r_middle.letter||'.';
 r_worker.last_name := r_last.last_name;
 
 -- get the name using the table's package
 r_worker.name := WORKER.get_formatted_name(
 r_worker.first_name, r_worker.middle_name, r_worker.last_name);
 
 -- get the date from determinate function create_birth_date()
 r_worker.birth_date := create_birth_date(r_worker.name);
 
 -- select the corresponding ID value
 if r_first.gender_code = 'F' then
 r_worker.gender_type_id := GENDER_TYPE.female;
 else
 r_worker.gender_type_id := GENDER_TYPE.male;
 end if;
 
 -- Insert the row into the database
 begin
 WORKER.set_row(r_worker);
 exception
 when OTHERS then
 raise_application_error(-20001, SQLERRM||
 ' on call WORKER.set_row()'||
 ' in TOP_100_NAME.process()');
 end;
 end loop; -- c_middle
 
 commit; -- commit every 26 rows
  
 end loop; -- c_first
  
 end loop; -- c_last
 
 -- Display the results
 pl(to_char(n_selected)||' rows selected');
 pl(to_char(WORKER.n_inserted)||' rows inserted');
 pl(to_char(WORKER.n_updated)||' rows updated');
 pl('in '||to_char(to_number(to_char(SYSDATE, 'SSSSS')) - n_start)||
 ' seconds.');
end process;
 

When migrating data, you should be able to take advantage of methods get_row() and set_row() on
the target content or intersection tables. Now let’s take a look at an on-demand, data processing PL/SQL
program unit.

Chapter 10 ■ Examples

396

On-Demand Data Processing
If you have a task that needs to be done now, or on an hourly, daily, weekly, or monthly basis, you’ll use
some kind of external scheduler like cron in UNIX or Linux, or a Scheduled Tasks in Windows, or perhaps
the internal Oracle job queue to execute the process. I call this kind of processing on-demand data
processing (ODDP).

Just like its data migration sibling, on-demand data processing is executed through PROCEDURE process.
What’s different here is the fact that this is not a one-time event. You expect to use this process over and
over again. Accordingly, I usually create a table to log when the process runs, along with any performance
statistics like how long it took to run, how many rows it inserted, how many rows it updated, and so on.

Since I want to keep track of when a process executes, I now have three common method names used
for an on-demand data processing program unit: process, start_logging(), and stop_logging(). Let’s
look at process first.

process
As before, process is used to start an on-demand or polling process. This time, process incorporates the use
of a log so it can record that the process took place, along with some performance statistics. The following is
an example of the method from package REPORT_STAGING_TABLE:
 
PROCEDURE process is
 
-- Get a list of all the tables that start with REPORT_ in the USER's schema
cursor c_table is
select table_name
from SYS.USER_TABLES
where table_name like 'REPORT_%' escape '\'
order by 1;
 
n_selected number := 0;
n_deleted number := 0;
 
begin
 -- Start logging
 ON_DEMAND_PROCESS_LOG.start_logging(
 'REPORT_STAGING_TABLE', 'process');
  
 -- For each report "staging" table, delete any data over 2 days old
 for r_table in c_table loop
 n_selected := n_selected + 1;
  
 execute immediate 'delete '||
 r_table.table_name||
 ' where insert_date < SYSDATE - 2';
  
 n_deleted := n_deleted + nvl(sql%rowcount, 0);
 end loop;
  
 -- Stop logging
 ON_DEMAND_PROCESS_LOG.stop_logging(
 n_selected, NULL, NULL, n_deleted, NULL);

Chapter 10 ■ Examples

397

exception
 when OTHERS then
 -- Stop logging, but report an error
 ON_DEMAND_PROCESS_LOG.stop_logging(
 n_selected, NULL, NULL, n_deleted, SQLERRM);
 raise;
end process;
 

If you examine this example, you’ll see that the process starts out by calling method start_logging() at
the beginning, and then calls method stop_logging() at the end. The underlying log package, ON_DEMAND_
PROCESS_LOG, keeps track of the start and stop time, and then records the statistics to table ON_DEMAND_
PROCESS_LOGS when method stop_logging() is called.

The process itself deletes any staged reporting data that is over two days old. As with its data migration
sibling, if processing data, you should be able to take advantage of methods get_row() and set_row() on
any target content or intersection tables.

Now let’s take a look at what supporting method start_logging() does.

start_logging( )
Method start_logging() stores the time it was called, in memory, allocates and stores a new primary key
value, and then inserts a “starting” row in a log table. In this case, it inserts a row into table ON_DEMAND_
PROCESS_LOGS as defined in the following partial listing from script on_demand_process_logs.tab:
 
create table ON_DEMAND_PROCESS_LOGS (
id number not null,
object_name varchar2(30) not null,
method_name varchar2(30) not null,
rows_selected number,
rows_inserted number,
rows_updated number,
rows_deleted number,
result varchar2(256),
elapsed_time number,
insert_user varchar2(30) default USER not null,
insert_date date default SYSDATE not null,
update_user varchar2(30) default USER not null,
update_date date default SYSDATE not null)
 
...
 

This log table holds information about how long it took to execute the process, row processing statistics,
and the time when the process was started and stopped. The following is an example of the method start_
logging() from package ON_DEMAND_PROCESS_LOG:
 
PROCEDURE start_logging(
aiv_object_name in ON_DEMAND_PROCESS_LOGS.object_name%TYPE,
aiv_method_name in ON_DEMAND_PROCESS_LOGS.method_name%TYPE) is
 
pragma AUTONOMOUS_TRANSACTION;
 

Chapter 10 ■ Examples

398

begin
 n_start := to_number(to_char(SYSDATE, 'SSSSS'));
 n_id := get_id();
 
 insert into ON_DEMAND_PROCESS_LOGS (
 id,
 object_name,
 method_name)
 values (
 n_id,
 upper(aiv_object_name),
 upper(aiv_method_name));
 commit;
end start_logging;
 

Variable n_start in method start_logging() is an instance (package body) variable used to capture
the time when the method was called. Similarly, variable n_ id is used to capture the new log entry’s
primary key so the same entry can be updated in method stop_logging(). In addition, this method employs
the use of pragma autonomous_transaction so a process that starts but fails will still leave a starting entry in
the log.

Now let’s look at stop_logging().

stop_logging( )
Method stop_logging() takes the row processing information and a result description passed to it, and uses
that information along with the stored start time and primary key to update the starting log entry. As part
of updating the log entry, the method calculates the elapsed time in seconds between the start and stop of
logging. The following is an example of the method from package ON_DEMAND_PROCESS_LOG:
 
PROCEDURE stop_logging(
ain_rows_selected in ON_DEMAND_PROCESS_LOGS.rows_selected%TYPE,
ain_rows_inserted in ON_DEMAND_PROCESS_LOGS.rows_inserted%TYPE,
ain_rows_updated in ON_DEMAND_PROCESS_LOGS.rows_updated%TYPE,
ain_rows_deleted in ON_DEMAND_PROCESS_LOGS.rows_deleted%TYPE,
aiv_result in ON_DEMAND_PROCESS_LOGS.result%TYPE) is
 
pragma AUTONOMOUS_TRANSACTION;
 
n_elapsed_time number;
 
begin
 n_elapsed_time := to_number(to_char(SYSDATE, 'SSSSS')) - n_start;
 
 update ON_DEMAND_PROCESS_LOGS
 set rows_selected = ain_rows_selected,
 rows_inserted = ain_rows_inserted,
 rows_updated = ain_rows_updated,
 rows_deleted = ain_rows_deleted,
 result = aiv_result,
 elapsed_time = n_elapsed_time,

Chapter 10 ■ Examples

399

 update_user = USER,
 update_date = SYSDATE
 where id = n_id;
 commit;
  
 n_id := NULL;
 
 -- Display the results
 if ain_rows_selected is not null then
 pl(to_char(ain_rows_selected)||' rows selected.');
 end if;
 if ain_rows_inserted is not null then
 pl(to_char(ain_rows_inserted)||' rows inserted.');
 end if;
 if ain_rows_updated is not null then
 pl(to_char(ain_rows_updated)||' rows updated.');
 end if;
 if ain_rows_deleted is not null then
 pl(to_char(ain_rows_deleted)||' rows deleted.');
 end if;
 if aiv_result is not null then
 pl(aiv_result);
 end if;
 pl('Elapsed time: '||to_char(n_elapsed_time)||' seconds.');
end stop_logging;
 

In addition to recording the log statistics, stop_logging() also echoes those statistics to the screen if
serveroutput is set to on in SQL*Plus. Like its sibling start_logging(), this method employs the use of
pragma autonomous_transaction, so a process that fails can still leave a completed log entry.

Having log information about when on-demand processes execute is an important part of managing
their use. Access to statistics about each on-demand process is even more invaluable. Using these statistics,
you can determine whether a process is fast and efficient, and make adjustments accordingly.

If you find you’re running an on-demand process every few minutes, or if you’re interested in offloading
a long-running process from the presentation layer, then the process is probably better done as a polling
process. Let’s look at that next.

Polling Data Processing
Unlike an on-demand process, a polling data process (PDP) just keeps running. It follows three high-level steps.

	 1.	 Check a queue for commands.

	 2.	 Process the “next” command.

	 3.	 Sleep for a predetermined period of time, then go back to step 1.

I’ll give you three common examples here of using “divide and conquer” to offload a portion of
data processing to the database rather than the presentation or application layer. Doing so makes the
presentation or application layer appear to be fast and efficient. And, since the best place to perform data
processing is in the database, the offloaded portion of the larger process is fast and efficient. First, let’s look
at an example with the application layer.

Chapter 10 ■ Examples

400

Let’s say you have web or message services that, in turn, update your database whenever there is a
transaction on an external system. Rather than tie up the services with the entire business process, you can
have your services update a set of staging tables in your database, and then have a polling process on your
database wake up every so often and finish processing the staged data.

A second example is one where you have a long-running process in the presentation layer. Let’s say
you have a security system where an administrator can assign access to worker data based on business
organization, location, and so on. Rather than tie up the administrator’s computer while the mass
assignments take place, you can have the presentation layer submit the processing request to your polling
process’s queue. Then, when your polling process wakes up from its sleep period, it will process your long-
running request in the background. What’s the result? To the end user using the presentation layer, the
application appears easy, fast, and efficient.

A third example is along the same line of thinking. This time, however, you set up your end user’s
reporting subsystem to submit long-running reports to your polling process’s queue, and then have your
polling process email the end user with a link (URL) to a completed report when it finishes executing the
report in the background. Once again, the end user’s experience is one where submitting the report is easy,
fast, and efficient.

Using a polling process requires a different design than an on-demand process. Instead of logging each
time a process executes (which you can still do), you need to create a queue for process and processing-
related commands, and possibly a table to hold the current status of the polling process. I’ll start out by
showing you an example of the process method, and then follow up with discussions on each of the
supporting methods.

process
Once again, process is used to start an on-demand or polling process. In this case, it’s a polling data
process. A polling process is one that does its thing, goes to sleep, and then wakes up to do its thing all over
again and again. A polling process is dependent on a queue, at the very least, so you can tell the process to
quit executing.

The queue can also be used to indicate what needs to be processed. For example, if you have a long-
running process that must take place as part of inserting an entry into a particular table, you could have a
trigger on that table insert a row into a polling process’s queue, like a primary key ID value, and then have
the polling process finish the long-running process asynchronously.

The following is an example of a polling process that you can find in package POLLING_PROCESS:
 
PROCEDURE process is
 
r_polling_process_queues POLLING_PROCESS_QUEUES%ROWTYPE;
 
begin
 DEBUG.set_text('POLLING_PROCESS', 'Starting');
 
 -- perform a manual loop until it recieves a command to quit
 loop
 DEBUG.set_text('POLLING_PROCESS', 'Getting next command');
 
 -- Get the next command from the queue
 r_polling_process_queues :=
 POLLING_PROCESS_QUEUE.get_next(r_polling_process_queues);
  

Chapter 10 ■ Examples

401

 -- If it's time to quit, pool the queue once more to delete
 -- the quit command, and then exit
 if r_polling_process_queues.command =
 POLLING_PROCESS_QUEUE.v_QUIT then
 
 POLLING_PROCESS_STATUS.set_status('Quiting');
  
 DEBUG.set_text('POLLING_PROCESS', 'Quiting');
 
 r_polling_process_queues :=
 POLLING_PROCESS_QUEUE.get_next(r_polling_process_queues);
 exit;
 elsif r_polling_process_queues.command = 'DISABLE' then
 DEBUG.disable('POLLING_PROCESS');
 elsif r_polling_process_queues.command = 'ENABLE' then
 DEBUG.enable('POLLING_PROCESS');
 end if;
  
 -- *** Now do all your groovy data processing here! ***
 
 POLLING_PROCESS_STATUS.set_status('Processing');
  
 DEBUG.set_text('POLLING_PROCESS',
 'I''m doing some groovy data processing at '||
 to_char(SYSDATE, 'HH:MI:SS'));
  
 -- *** End of your groovy data processing section. ***
  
 POLLING_PROCESS_STATUS.set_status('Sleeping');
 
 DEBUG.set_text('POLLING_PROCESS', 'Sleeping');
 
 -- Sleep for 10 seconds
 SYS.DBMS_LOCK.sleep(10);
 
 DEBUG.set_text('POLLING_PROCESS', 'Awake');
 end loop;
end process;
 

This example currently has many lines that employ the use of DEBUG.set_text() to record what’s
going on in the process as it runs. The debug logging, as it is called, can be turned on before running the
process, or it can be turned on by executing method enable. Conversely, debug logging can be turned off
by executing disable. This means you can enable and disable debug logging on this process from any
other database session at any point in time while the process is running. That’s helpful when it comes to
troubleshooting a new polling process.

This example also employs method quit to tell the polling process to stop executing. In addition,
it updates a status table POLLING_PROCESS_STATUSES with the current status of the process, so you can
determine what it’s working on at any point in time while it’s executing.

Chapter 10 ■ Examples

402

In this example, it’s sleeping for only 10 seconds in between processing. I’ve just coded it that way in
order to make it easy to demonstrate. In practice, I normally have a polling process sleep 3 to 5 minutes
(180 to 300 seconds).

Let’s look at method get_next() next.

get_next( )
Method get_next() deletes the last item processed from the queue as specified by the passed parameter,
and then retrieves the next command from a queue. In this case, it deletes and selects an entry from table
POLLING_PROCESS_QUEUES. The following is an example of a queue table definition from file polling_
process_queues.tab:
 
create table POLLING_PROCESS_QUEUES (
id number not null,
command varchar2(256) not null,
insert_user varchar2(30) default USER not null,
insert_date date default SYSDATE not null)
 
...
 

FUNCTION get_next(air_queue_entry) is the “heart and soul” of the polling process. Here’s an
example of the method from table package POLLING_PROCESS_QUEUE:
 
FUNCTION get_next(
air_polling_process_queues in POLLING_PROCESS_QUEUES%ROWTYPE)
return POLLING_PROCESS_QUEUES%ROWTYPE is
 
pragma AUTONOMOUS_TRANSACTION;
 
r_polling_process_queues POLLING_PROCESS_QUEUES%ROWTYPE;
 
begin
 delete POLLING_PROCESS_QUEUES
 where id = air_polling_process_queues.id;
  
 begin
 select q.*
 into r_polling_process_queues
 from POLLING_PROCESS_QUEUES q
 where q.id = (
 select min(n.id)
 from POLLING_PROCESS_QUEUES n);
 exception
 when NO_DATA_FOUND then
 r_polling_process_queues := NULL;
 end;
  
 commit;
 
 return r_polling_process_queues;
end get_next;
 

Chapter 10 ■ Examples

403

The way that this method is written, an entry is removed from the queue only after it has completed
successfully.

Let’s look at the one method that always uses the queue, quit, next.

quit
Method quit is used to tell a polling or long-running process to quit before its next round of processing.
With a polling process, this method stores a quit command in the polling process’s queue, so the next time it
wakes and starts processing, it quits executing.

PROCEDURE quit inserts a new message into its queue table with a primary key value of –1 so the
command jumps to the top of the queue. Here’s an example of the method from table package
POLLING_PROCESS_QUEUE:
 
PROCEDURE quit is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 begin
 insert into POLLING_PROCESS_QUEUES (
 id,
 command,
 insert_user,
 insert_date)
 values (
 -1,
 v_QUIT,
 USER,
 SYSDATE);
 pl('Queued to quit.');
 exception
 when DUP_VAL_ON_INDEX then
 pl('Already queued to quit.');
 end;
 
 commit;
end quit;
 

A convenience method quit also exists in package POLLING_PROCESS, because it’s easier to remember to
execute POLLING_PROCESS.quit to stop the execution of POLLING_PROCESS.process than it is to remember
the name of the queue’s table package.

So you can now start and quit the process. Wouldn’t it be nice to be able to see what the process is doing
whenever you need to? Well that’s what method enable is for. Let’s look at it next.

Chapter 10 ■ Examples

404

enable
Method enable is used to enable something—in this case, the logging of debug information at any desired
point in time. PROCEDURE enable inserts a new command into the queue with a primary key value of -2, so
enabling debug logging has an even higher priority than quitting. Here’s an example of the method from
package POLLING_PROCESS_QUEUE:
 
PROCEDURE enable is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 begin
 insert into POLLING_PROCESS_QUEUES (
 id,
 command,
 insert_user,
 insert_date)
 values (
 -2,
 v_ENABLE,
 USER,
 SYSDATE);
 pl('Queued to enable logging.');
 exception
 when DUP_VAL_ON_INDEX then
 pl('Already queued enable logging.');
 end;
 
 commit;
end enable;
 

After executing PROCEDURE enable, and after the polling process’s next access to the queue, PROCEDURE
process enables debug logging. As with its sibling method quit, a convenience method enable also exists in
package POLLING_PROCESS.

And disable?

disable
Method disable is used to disable something—in this case, the logging of debug information at any desired
point in time. PROCEDURE disable inserts a new command into the queue with a primary key value of -3,
so disabling debug logging has an even higher priority than enabling debug logging and quitting. Here’s an
example of the method from package POLLING_PROCESS_QUEUE:
 
PROCEDURE disable is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 begin

Chapter 10 ■ Examples

405

 insert into POLLING_PROCESS_QUEUES (
 id,
 command,
 insert_user,
 insert_date)
 values (
 -3,
 v_DISABLE,
 USER,
 SYSDATE);
 pl('Queued to disable logging.');
 exception
 when DUP_VAL_ON_INDEX then
 pl('Already queued to disable logging.');
 end;
 
 commit;
end disable;
 

After executing PROCEDURE disable, and after the polling process’s next access to the queue, PROCEDURE
process disables debug logging. As with its sibling methods quit and enable, a convenience method
disable also exists in package POLLING_PROCESS.

Now let’s look at the methods used to record and read the current status of a polling process.

set_status( )
Method set_status() is used to record a process’s current status in a status table. In this case, set_status()
is updating a row in table POLLING_PROCESS_STATUSES, as defined from following partial listing of file
polling_process_statuses.tab:
 
create table POLLING_PROCESS_STATUSES (
status varchar2(256) not null,
update_user varchar2(30) default USER not null,
update_date date default SYSDATE not null)
 
...
 

This table is supposed to have one, and only one, row at any point in time. PROCEDURE set_status(aiv_
status) updates or inserts an entry in this table as needed. The following is an example of this method from
table package POLLING_PROCESS_STATUS:
 
PROCEDURE set_status(
aiv_status in POLLING_PROCESS_STATUSES.status%TYPE) is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 update POLLING_PROCESS_STATUSES
 set status = aiv_status,
 update_user = USER,
 update_date = SYSDATE;
  

Chapter 10 ■ Examples

406

 if nvl(sql%rowcount, 0) = 0 then
 insert into POLLING_PROCESS_STATUSES (
 status,
 update_user,
 update_date)
 values (
 aiv_status,
 USER,
 SYSDATE);
 end if;
  
 commit;
exception
 when OTHERS then
 raise_application_error(-20002, SQLERRM||
 ' on update or insert POLLING_PROCESS_STATUSES'||
 ' in POLLING_PROCESS_STATUS.set_status()');
end set_status;
 

So how do you get the status? Come on now . . .

get_status
Method get_status returns the current status for the associated process from its status table. FUNCTION
get_status retrieves the one, and only, row from the table, and then returns the value of column status.
Here’s an example of the method from table package POLLING_PROCESS_STATUS:
 
FUNCTION get_status
return POLLING_PROCESS_STATUSES.status%TYPE is
 
v_status POLLING_PROCESS_STATUSES.status%TYPE;
 
begin
 select status
 into v_status
 from POLLING_PROCESS_STATUSES;
  
 return v_status;
exception
 when NO_DATA_FOUND then
 return 'UNKNOWN';
 when OTHERS then
 raise_application_error(-20001, SQLERRM||
 ' on select POLLING_PROCESS_STATUSES'||
 ' in POLLING_PROCESS_STATUS.get_status()');
end get_status;
 

And finally, the last polling process method: status.

Chapter 10 ■ Examples

407

status
Since we are in such a “commanding (or demanding) mood” with this section, status is a convenience
method that exists in the polling process’s package that executes method get_status from the table package
for the status table. Once again, it exists in the polling process package because it’s simply more intuitive to
execute commands for a given process from its own package.

Here’s an example from polling process package POLLING_PROCESS:
 
PROCEDURE status is
 
begin
 pl(POLLING_PROCESS_STATUS.get_status);
end status;
 

With the queue and status tables and their associated table packages in place, you can now tell the
polling process to do the following:

Quit•	

Enable debug logging•	

Disable debug logging•	

Process a given command•	

Display its current status•	

A common use for on-demand or polling processing is to build interfaces between systems. Let’s
discuss some common method names used for just that next.

Interfacing
Interfacing, systems integration, or whatever you want to call it, is just data processing. It is commonly a
multistep data process (MSDP) that follows a fairly standard set of tasks.

	 1.	 Log that you are going to attempt to download data from a source to your
target system.

	 2.	 Download data from the source to your target system.

	 3.	 Log that you downloaded the data successfully.

	 4.	 Verify that you have cross-reference values for all mapped fields.

	 5.	 Upload data from its staging tables to its target tables.

	 6.	 Log that you uploaded the data successfully.

As you can see, interfacing consists of two high-level steps: downloading and uploading (for lack
of better terms). Figure 10-7 shows a visual representation of this division of tasks. These steps can be
accomplished synchronously or asynchronously. Regardless, I like to separate the major steps by recording
their success or failure in a status table. This allows me to rerun the process, as needed, until both steps are
completed.

Chapter 10 ■ Examples

408

Whether or not I use a program external to the database to move data from a source to destination
staging tables, the “download” program can record when it starts its processing and when it completes.
Then when the upload process starts, it can check to see if the download process has been completed. If the
download has been completed, the upload process can log when it starts and when it completes.

Dividing a long-running process into multiple smaller processes like this not only allows you to do
asynchronous processing, but also provides you with a framework to build robust processes that can be
rerun over and over again until they finish there processing.

For example, if you build an interface with multistep processing that should move data into your
database once a week, it can be scheduled to run every day of the week with cron or Scheduled Tasks, and it
will just quit if the weekly work has already been completed.

Here, I’ll discuss commonly used method names for a multistep interface on-demand process. Let’s
start with process.

process
Again, process is used to start an on-demand or polling process. In this case, it’s a multistep data process. A
multistep process is one that checks which portion of a process needs to be done and (re)starts the process
at the required step. A multistep process is dependent on a status table that is used to record when a step is
completed successfully.

The following is an example of a multistep process that you can find in package WEEKLY_INTERFACE:
 
PROCEDURE process is
 
begin
 if not WEEKLY_INTERFACE_STATUS.is_downloaded() then
 download();
 if not WEEKLY_INTERFACE_STATUS.is_downloaded() then
 pl('WARNING: download() did not complete successfully.');
 end if;
 end if;
  
 if WEEKLY_INTERFACE_STATUS.is_downloaded() then
 if not WEEKLY_INTERFACE_STATUS.is_uploaded() then
 upload();

Oracle

Staging
Tables

Application
Tables

File System

Database Link

C/C++

JDBC

SQL*Loader

XML

PL/SQL

Downloading Uploading

Oracle

Figure 10-7.  Interfacing with external systems, two steps: downloading and uploading

Chapter 10 ■ Examples

409

 if not WEEKLY_INTERFACE_STATUS.is_uploaded() then
 pl('WARNING: upload() did not complete successfully.');
 end if;
 end if;
 end if;
 
 pl('process() completed successfully.');
end process;
 

As you can see from this example, PROCEDURE process is concerned only with the status of the multistep
process and calls other procedures to accomplish its required steps.

Let’s take a look at the supporting methods. We’ll start with is_downloaded.

is_downloaded
Method is_downloaded returns a Boolean value that indicates whether the first step, downloading, has
been accomplished. FUNCTION is_downloaded returns TRUE if the download process has been completed;
otherwise, it returns FALSE.

The following is an example of the method from supporting table package WEEKLY_INTERFACE_STATUS:
 
FUNCTION is_downloaded
return boolean is
 
pragma AUTONOMOUS_TRANSACTION;
 
d_download_date
 WEEKLY_INTERFACE_STATUSES.download_date%TYPE;
 
begin
 begin
 select download_date
 into d_download_date
 from WEEKLY_INTERFACE_STATUSES
 where id =
 WEEKLY_INTERFACE_STATUS.get_week();
 exception
 when NO_DATA_FOUND then
 d_download_date := NULL;
 end;
  
 if d_download_date is not NULL then
 return TRUE;
 else
 return FALSE;
 end if;
end is_downloaded;
 

PROCEDURE WEEKLY_INTERFACE.process calls this method directly from package WEEKLY_INTERFACE_STATUS.
In addition, I’ve added a convenience method, is_downloaded, which returns the number 1 for TRUE and 0
for FALSE to package WEEKLY_INTERFACE, because external programs that might want to know the status of

Chapter 10 ■ Examples

410

the download process, such as a Java JDBC program, cannot call a stored procedure that returns a Boolean
value. Here’s an example of the is_downloaded convenience method from package WEEKLY_INTERFACE:
 
FUNCTION is_downloaded
return number is
 
begin
 -- A function that returns a 1 or 0 from TRUE and FALSE
 -- from WEEKLY_INTERFACE_STATUS.is_downloaded()
 return to_boolean_number(WEEKLY_INTERFACE_STATUS.is_downloaded());
end is_downloaded;
 

Next, let’s take a look at the download method.

download
Method download is used to start a download process—that is, a process to move data between systems—
from a data source to your target staging tables. PROCEDURE download can be utilized in your multistep
process if the data can be moved from its source to the destination staging tables from inside the database.
You can do this in a variety of ways, using the following:

A database link between systems•	

An embedded JDBC program to access an external database•	

Package •	 SYS.UTL_MAIL to access an email server

Package •	 SYS.UTL_HTTP to access a web server

Package •	 SYS.UTL_FILE to access the database server’s file system

If you need to perform this step externally with another program, you can simply code a put_line()
message that reminds the user that this step is accomplished externally. By handling the external process in
this fashion, you don’t need to modify the code in method process.

The following is an example of the method from package WEEKLY_INTERFACE:
 
PROCEDURE download is
 
begin
 pl('Executing download()');
 -- You can code this procedure to move data between systems
 -- using an Oracle database link, loaded JDBC driver and class,
 -- etc. Or, you can change this message to remind the user
 -- that this is an asynchronous process handled by an external
 -- program.
 
 set_downloaded();
end download;
 

If you code this method, then you’ll call set_downloaded upon a successful download. If, on the
other hand, you code the download process externally, that program will need to call WEEKLY_INTERFACE.
set_downloaded in order to let process know that the first step of the multistep process has been completed
asynchronously.

While we’re on the topic, let’s look at set_downloaded next.

Chapter 10 ■ Examples

411

set_downloaded
Method set_downloaded is used to set the status of the download process to complete. Supporting table
package’s PROCEDURE WEEKLY_INTERFACE_STATUS.set_downloaded is called from inside download, if the
download method is actually coded to perform the download process.

The following is an example of the supporting status table WEEKLY_INTERFACE_STATUSES from script
weekly_interface_statuses.tab:
 
create table WEEKLY_INTERFACE_STATUSES (
id number not null,
download_date date,
upload_date date,
insert_user varchar2(30) default USER not null,
insert_date date default SYSDATE not null,
update_user varchar2(30) default USER not null,
update_date date default SYSDATE not null)
 
...
 

And, here’s an example of the method set_downloaded supporting table package
WEEKLY_INTERFACE_STATUS:
 
PROCEDURE set_downloaded is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 update WEEKLY_INTERFACE_STATUSES
 set download_date = SYSDATE,
 update_user = USER,
 update_date = SYSDATE
 where id =
 WEEKLY_INTERFACE_STATUS.get_week();
 
 if nvl(sql%rowcount, 0) = 0 then
 insert into WEEKLY_INTERFACE_STATUSES (
 id,
 download_date)
 values (
 WEEKLY_INTERFACE_STATUS.get_week(),
 SYSDATE);
 end if;
  
 commit;
end set_downloaded;
 

Chapter 10 ■ Examples

412

I’ve also created a convenience method set_downloaded in package WEEKLY_INTERFACE, which can be
called by an external download program in order to set the download process to complete, as follows:
 
PROCEDURE set_downloaded is
 
begin
 WEEKLY_INTERFACE_STATUS.set_downloaded();
end set_downloaded;
 

Enough with the download business. Now let’s talk about uploading, starting with method is_uploaded.

is_uploaded
Method is_uploaded returns a Boolean value that indicates whether the second step, uploading, has been
accomplished. FUNCTION is_uploaded returns TRUE if the upload process has been completed; otherwise, it
returns FALSE.

The following is an example of the method from supporting table package WEEKLY_INTERFACE_STATUS:
 
FUNCTION is_uploaded
return boolean is
 
pragma AUTONOMOUS_TRANSACTION;
 
d_upload_date
 WEEKLY_INTERFACE_STATUSES.upload_date%TYPE;
 
begin
 begin
 select upload_date
 into d_upload_date
 from WEEKLY_INTERFACE_STATUSES
 where id =
 WEEKLY_INTERFACE_STATUS.get_week();
 exception
 when NO_DATA_FOUND then
 d_upload_date := NULL;
 end;
  
 if d_upload_date is not NULL then
 return TRUE;
 else
 return FALSE;
 end if;
end is_uploaded;
 

PROCEDURE WEEKLY_INTERFACE.process calls this method directly from package WEEKLY_INTERFACE_
STATUS. Unlike its sibling, is_downloaded, there’s no need for a convenience method, because the whole
point of the multistep process package is to upload the data from staging to application tables. So no external
process will ever be used, and hence no convenience method is required.

Now let’s look at upload.

Chapter 10 ■ Examples

413

upload
Method upload is used to start an upload process—that is, a process to move data from staging tables to an
application’s tables. This is where you code all your groovy data processing.

Here’s an example of the method from package WEEKLY_INTERFACE:
 
PROCEDURE upload is
 
-- Add cursor(s) used to loop through the staging data here.
 
begin
 pl('Executing upload()');
 if is_verified() then
 
 -- Add your data migration code here.
 
 WEEKLY_INTERFACE_STATUS.set_uploaded();
 end if;
end upload;
 

And last, but not least, is set_uploaded.

set_uploaded
Method set_uploaded is used to set the status of the upload process to complete. Supporting table package’s
PROCEDURE WEEKLY_INTERFACE_STATUS.set_uploaded is called from inside upload, if the upload method
completes successfully.

The following is an example of the method from supporting table package WEEKLY_INTERFACE_STATUS:
 
PROCEDURE set_uploaded is
 
pragma AUTONOMOUS_TRANSACTION;
 
begin
 update WEEKLY_INTERFACE_STATUSES
 set upload_date = SYSDATE,
 update_user = USER,
 update_date = SYSDATE
 where id =
 WEEKLY_INTERFACE_STATUS.get_week();
 
 if nvl(sql%rowcount, 0) = 0 then
 insert into WEEKLY_INTERFACE_STATUSES (
 id,
 upload_date)
 values (
 WEEKLY_INTERFACE_STATUS.get_week(),
 SYSDATE);
 end if;
  
 commit;
end set_uploaded;
 

Chapter 10 ■ Examples

414

Using the WEEKLY_INTERFACE package as a framework for your database destination interfaces, you can
provide a consistent treatment to all interfaces and at the same time have the freedom to perform each high-
level step in a manner that is suitable for solving the associated business requirements.

Next, let’s look at the polymorphic use of method names in support of the reporting presentation layer.

Reporting
It has become quite fashionable in our industry to develop or implement the data-entry portion of an
application and then throw a reporting utility—like Cognos Impromptu, Business Objects, Crystal Reports,
BIRT, and so on—at the application’s relational database or data warehouse for reporting needs. Since
I’m not selling any of these “solutions,” I can share my honest opinion. Throwing a reporting utility at an
application for its reporting needs is a poor idea. Suddenly, we’ve decided to give our customers half of
a solution. What’s with that? I know that it’s all about the money. But I’ve never seen much large-scale
reporting success with end users with this strategy. Here’s why:

Most end users know very little about how the information they work with is actually •	
organized and related.

Most end users know very little about how information is input into their application •	
and how it is consequently stored in the application’s database.

Most end users have no time to spend trying to engineer a set of complex reports to •	
help them run the business.

That’s not to say that there aren’t exceptions. But for the most part, reporting requirements and
deliverables should be a required part of any application’s development or implementation (depending on
whether you build or buy).

For those exceptional end users who are information and system architects, when they do use reporting
utilities, they usually get poor performance from the database. It’s not necessarily the database’s fault; it’s a
matter of physics.

A well-designed relational or object-relational database will have tables that are all in their third normal
form. Accordingly, any SELECT statements written against a well-designed database will have many tables in
the FROM clause of a given SELECT statement. The more tables, the more data must be physically read from
physical devices, the more physical devices have to work, the longer it takes. It’s not a database problem; it’s
a physics problem.

Now if you recall from previous chapters, I’ve spent some time showing you the consequences of
physics and a database. You can use the following tactics to “divide and conquer” in order to improve the
speed and efficiency of retrieving data for reporting:

Use pseudo-constants and PL/SQL •	 IF statements to replace code tables in a FROM
clause of a SELECT statement. This reduces the use of physical devices.

Retrieve data from the smallest table that will produce the smallest set of results, and •	
then do programmatic nested loops with cursors to retrieve the “rest” of the data.
This reduces the use of physical devices.

Create thin (narrow) row extracts of data, and then join them together in a •	 SELECT
statement. This reduces the use of memory and physical devices. For example, if the
source table has an average row size of 297 bytes, you may extract data from it into a
temporary table that has an average row size of 13 bytes. The temporary table is what
I call a narrow row table.

Post-sort results. Sort the rows for a report after the report data has already been •	
placed in a staging table(s). This reduces the use of memory and CPU cycles.

Chapter 10 ■ Examples

415

However, you can use these tactics only if you write stored procedures to produce the result sets for your
reports, placing the results in staging tables, which are then later queried by the presentation layer. What I’m
advocating here is heresy to some, and bliss for others. I know many of you may want to send me an email
explaining why this is such a bad idea. Do it. I would love to argue with you about it. Here’s what I do know:

In applications with well over one million rows in each content table, I’m able to •	
produce short reports in less than 3 seconds, most in less than 1 second. That’s
compared to over 3 minutes trying to accomplish the same task with a large,
complicated SQL SELECT statement.

In the same large enterprise applications, I’ve been able to produce large reports •	
in less than 3 minutes. That’s compared to 20 minutes to 28 hours for some of the
largest reports. Yes, even reports that took 28 hours to produce using a very large
and complicated SQL SELECT statement took less than 3 minutes when these “divide
and conquer” principles were applied. And no, there were no accidental Cartesian
products in the SELECT statement.

When this architecture is adopted, the business intelligence on how to produce the •	
report permanently resides in the database where it is easiest and most efficient
to process data. This means that any presentation layer can be used to produce
the result set for a given report by executing it in the database, and then simply
formatting and displaying the data in whatever fashion is desired. Presentation layers
come and go. Does the business knowledge that produces your reports have to go
with it? No.

Figure 10-8 demonstrates the reporting architecture I’m advocating. In this architecture, producing a
report consists of these three high-level steps.

	 1.	 The presentation layer calls a function get_report() in the database, passing it
any required parameters for producing a report.

	 2.	 get_report() produces the result set for the report, placing the results in a
staging table specific to the report. Then get_report() returns an ID for the
results.

	 3.	 The presentation layer executes a SELECT statement against the report’s staging
table, where the report ID is the one returned from get_report(), and orders the
results by the report’s sequence. 

Oracle
Application

TablesPL/SQL
Staging
TableReport Presentation

Report Parameters

Presentation Layer

Figure 10-8.  A modular PL/SQL- and SQL-driven reporting architecture

Chapter 10 ■ Examples

416

I call reports produced in this manner “staged data reports.” In practice, I’ve used this architecture to
impressively improve the performance and complexity of reports, while also reducing the consumption
of server resources. That’s a win-win situation. I’ve called the same report stored procedure from Oracle
Reports, PowerBuilder, and a J2EE, Python Django or Ruby on Rails application on the Web. Here, the same
result set is used by six different presentation layers. This means you can consistently produce the results for
a report, and present the results in whatever way you see fit.

Accordingly, in this section, I’m going to cover the polymorphic method names I use in this reporting
architecture. Let’s get started with get_report().

get_report( )
Method get_report() produces a report result set by retrieving data from application tables, placing
the results in a report-specific set of staging tables, and then returning an ID to the result set. FUNCTION
get_report(...) takes runtime parameters passed to it from the presentation layer and uses those to
efficiently retrieve and stage the data for a report. Most often, you’ll use get_report() to simply improve
the performance of a report. However, some reports cannot be created with just SQL statements, and that’s
where the use of get_report() becomes critically important.

Here’s an example of the method from a report stored procedure that produces a work history report for
a given worker_id. This method is from package REPORT_WKHST:
 
FUNCTION get_report(
ain_worker_id in REPORT_WKHSTS.worker_id%TYPE)
return REPORT_WKHSTS.report_wkhst_id%TYPE is
 
cursor c_date(
ain_worker_id in REPORT_WKHSTS.worker_id%TYPE) is
select v1.active_date
from (select active_date
 from LOGICAL_ASSIGNMENTS
 where worker_id = ain_worker_id
 UNION
 select active_date
 from PHYSICAL_ASSIGNMENTS
 where worker_id = ain_worker_id
 UNION
 select active_date
 from WORK_ASSIGNMENTS
 where worker_id = ain_worker_id) v1
order by 1;
 
d_logical_inactive_date REPORT_WKHSTS.inactive_date%TYPE;
d_physical_inactive_date REPORT_WKHSTS.inactive_date%TYPE;
d_work_inactive_date REPORT_WKHSTS.inactive_date%TYPE;
 
r_worker WORKERS%ROWTYPE;
 
r_report_wkhsts REPORT_WKHSTS%ROWTYPE;
 

Chapter 10 ■ Examples

417

begin
 r_report_wkhsts.report_wkhst_id := get_id();
 r_report_wkhsts.report_wkhst_seq := 0;
 
 r_worker.id := ain_worker_id;
 r_worker := WORKER.get_row(r_worker);
  
 r_report_wkhsts.worker_id := r_worker.id;
 r_report_wkhsts.worker_name :=
 WORKER.get_formatted_name(
 r_worker.first_name,
 r_worker.middle_name,
 r_worker.last_name);
 
 for r_date in c_date(ain_worker_id) loop
 r_report_wkhsts.active_date := r_date.active_date;
 
 get_logical_workplace_name(
 r_report_wkhsts.worker_id,
 r_report_wkhsts.active_date,
 r_report_wkhsts.logical_workplace_name,
 d_logical_inactive_date);
 
 get_physical_workplace_name(
 r_report_wkhsts.worker_id,
 r_report_wkhsts.active_date,
 r_report_wkhsts.physical_workplace_name,
 d_physical_inactive_date);
  
 get_work_name(
 r_report_wkhsts.worker_id,
 r_report_wkhsts.active_date,
 r_report_wkhsts.work_name,
 d_work_inactive_date);
  
 r_report_wkhsts.inactive_date :=
 least(
 d_logical_inactive_date,
 d_physical_inactive_date,
 d_work_inactive_date);
  
 set_report(r_report_wkhsts);
 end loop;
 
 commit;
 
 return r_report_wkhsts.report_wkhst_id;
end get_report;
 

Chapter 10 ■ Examples

418

If you examine the listing, you’ll notice that I call three private methods: get_logical_workplace_
name(), get_physical_workplace_name(), and get_work_name(), which are used to get the data in a
programmatic nested loop fashion. I suppose if I spent enough time, I could write a SQL SELECT statement to
get these results, but in this case, it’s much easier and faster to use PL/SQL.

The following script, report_wkhst.get_report.sql, is a test unit I use to run the report from SQL*Plus
during development and troubleshooting:
 
rem report_wkhst.get_report.sql
rem by Donald J. Bales on 2014-10-20
rem Test Unit for REPORT_WKHSTS_TS.get_report()
 
column worker_name format a21 trunc;
column logical_workplace_name format a11 trunc;
column physical_workplace_name format a11 trunc;
column work_name format a11 trunc;
column active_date format a8;
column inactive_date format a8;
 
execute pl('report_wkhst_id='||to_char(REPORT_WKHST.get_report(11649889)));
 
select worker_name,
 logical_workplace_name,
 physical_workplace_name,
 work_name,
 to_char(active_date, 'YYYYMMDD') active_date,
 to_char(inactive_date, 'YYYYMMDD') inactive_date
from REPORT_WKHSTS
where report_wkhst_id = &report_wkhst_id
order by report_wkhsts_seq;
;
 

When executed with worker_id 11649889, the script produces the following output:

WORKER_NAME LOGICAL_WOR PHYSICAL_WO WORK_NAME ACTIVE_D INACTIVE
--------------------- ----------- ----------- ----------- -------- --------
PATTERSON, MICHELLE D BIOLOGICALS GRAVITRON 1 ENGINEER1 19740520 19850507
PATTERSON, MICHELLE D BIOLOGICALS GRAVITRON 1 ENGINEER2 19850508 19960425
PATTERSON, MICHELLE D BIOLOGICALS GRAVITRON 1 ENGINEER3 19960426

In practice, every report has a different package name that starts with REPORT_, whose associated
table is the plural form of the package’s name. All reports use the same method name, get_report(), with
the presentation layer passing the method any required parameter values. Since a report package has an
associated table, it’s only fitting for it to have an associated method name for inserting values into that table,
and that name is set_report().

Chapter 10 ■ Examples

419

set_report( )
Since you’re an astute reader, you’re probably thinking, “Why doesn’t he just use the method name set_row()?”
It’s because set_report() does something different than set_row(), so I consistently use the name
set_report() in order to emphasize that difference.

Before I get into an explanation of the difference, let’s look at an example of the definition of an
associated report staging table. This is the report staging table definition for the work history report. You can
find this listing in script report_wkhsts.tab:
 
create table REPORT_WKHSTS (
report_wkhst_id number not null,
report_wkhst_seq number not null,
worker_id number not null,
worker_name varchar2(100) not null,
active_date date,
logical_workplace_name varchar2(80),
physical_workplace_name varchar2(80),
work_name varchar2(80),
inactive_date date,
insert_user varchar2(30) default USER not null,
insert_date date default SYSDATE not null)
nologging
 

And here is an example of method set_report() that inserts the data into the report staging table:
 
PROCEDURE set_report(
aior_report_wkhsts in out REPORT_WKHSTS%ROWTYPE) is
 
begin
 aior_report_wkhsts.report_wkhst_seq := aior_report_wkhsts.report_wkhst_seq + 1;
 
 if aior_report_wkhsts.inactive_date = DATE_.d_max then
 aior_report_wkhsts.inactive_date := NULL;
 end if;
  
 aior_report_wkhsts.insert_user := USER;
 aior_report_wkhsts.insert_date := SYSDATE;
  
 insert into REPORT_WKHSTS values aior_report_wkhsts;
exception
 when OTHERS then
 raise_application_error(-20004, SQLERRM||
 ' on insert REPORT_WKHSTS'||
 ' in REPORT_WKHST.set_report()');
end;
 

In contrast to method set_row(), which selects and then inserts or updates, PROCEDURE set_
report(air_row) strictly inserts. In addition, set_report() increments the value of the report’s sequence
number. The sequence number is the second half of a two-column primary key for the staging table. With
this design, get_report() can return a single value, an ID, that will allow the presentation layer to select all
the subject rows for a report, and then sort against the sequence value.

This means that the order of the information on the report is driven by a given report’s engine in the
database, not the presentation layer. This is also what allows you to, as I mentioned earlier, post-sort.

Chapter 10 ■ Examples

420

You can code a report stored procedure so that, after it places all of its data in its staging table, you sort
the data in the table by opening a cursor against the staging table with an ORDER BY clause, and then update
the sequence numbers in the same staging table so the results will have a new sort order.

Now you have a means to get the presentation layer to use a modular and efficient approach to creating
reports, but what if you want to email a report from the database? That’s the purpose of method report().

report( )
Not all reports need human interaction to produce them. Sometimes, an application has a list of reports
that should be produced on an hourly, daily, weekly, or monthly basis. Why should you require users to
run them? A better design is to provide end users with a set of batch-processed report distribution screens,
where they can configure who gets what report, and then have the application produce the reports for them.

If the database produces the reports, it can send the report via email as fixed-length text, HTML, PDF, and
so on, or as a link. The following is an example of an HTML emailed report from report procedure REPORT_WKHST:
 
PROCEDURE report(
ain_worker_id in REPORT_WKHSTS.worker_id%TYPE,
aiv_to in varchar2) is
 
cursor c_report_wkhsts(
ain_report_wkhst_id in REPORT_WKHSTS.report_wkhst_id%TYPE) is
select initcap(worker_name) worker_name,
 active_date,
 initcap(logical_workplace_name) logical_workplace_name,
 initcap(physical_workplace_name) physical_workplace_name,
 initcap(work_name) work_name,
 inactive_date
from REPORT_WKHSTS
where report_wkhst_id = ain_report_wkhst_id
order by report_wkhst_seq;
 
n_line number;
t_lines EMAIL.LINES;
n_report_wkhst_id REPORT_WKHSTS.report_wkhst_id%TYPE;
v_worker_name REPORT_WKHSTS.worker_name%TYPE;
 
begin
 n_report_wkhst_id := get_report(ain_worker_id);
 
 t_lines(incr(n_line)) := '</pre><table>';
 for r_report_wkhsts in c_report_wkhsts(n_report_wkhst_id) loop
 if c_report_wkhsts%rowcount = 1 then
 v_worker_name := r_report_wkhsts.worker_name;
 t_lines(incr(n_line)) := '<tr><td align="center" colspan="5">'||
 '<big>Work History Report</big></td></tr>';
 t_lines(incr(n_line)) := '<tr><td align="center" colspan="5">'||
 'for '||v_worker_name||'</td></tr>';
 t_lines(incr(n_line)) := '<tr><td align="center" colspan="5">'||
 '</td></tr>';

Chapter 10 ■ Examples

421

 t_lines(incr(n_line)) := '<tr>'||
 '<th align="left">Logical</th>'||
 '<th align="left">Physical</th>'||
 '<th align="left"></th>'||
 '<th align="left">Active</th>'||
 '<th align="left">Inactive</th>'||
 '</tr>';
 t_lines(incr(n_line)) := '<tr>'||
 '<th align="left">Workplace</th>'||
 '<th align="left">Workplace</th>'||
 '<th align="left">Work</th>'||
 '<th align="left">Date</th>'||
 '<th align="left">Date</th>'||
 '</tr>';
 end if;
 t_lines(incr(n_line)) := '<tr>'||
 '<td align="left">'||
 r_report_wkhsts.logical_workplace_name||'</td>'||
 '<td align="left">'||
 r_report_wkhsts.physical_workplace_name||'</td>'||
 '<td align="left">'||
 r_report_wkhsts.work_name||'</td>'||
 '<td align="left">'||
 to_char(r_report_wkhsts.active_date, 'MM/DD/YYYY')||'</td>'||
 '<td align="left">'||
 to_char(r_report_wkhsts.inactive_date, 'MM/DD/YYYY')||'</td>'||
 '</tr>';
 end loop;
 t_lines(incr(n_line)) := '</table><pre>';
 
 EMAIL.send(
 EMAIL.get_username,
 aiv_to,
 'Work History Report for '||v_worker_name,
 t_lines);
end report;
 

In this case, PROCEDURE report(ain_worker_id, aiv_to) calls get_report() to produce the result
set, and then queries the staging table to produce an HTML report. report() then calls supporting package
EMAIL.send() to send the report.

The following is an example of a test unit for report(). This is from script report_wkhst.report.sql:
 
rem report_wkhst.report.sql
rem by Donald J. Bales on 2014-10-20
rem Test Unit for REPORT_WKHSTS_TS.report()
 
execute REPORT_WKHST.report(11649889, 'don@donaldbales.com');
 

After I execute this test unit, I get an email report, as shown in Figure 10-9. In practice, I even use this
functionality to send an email report to the support personnel any time a user encounters an error. That way,
support personnel can start troubleshooting a given problem before the customer even calls. How’s that for
customer service?

Chapter 10 ■ Examples

422

Well, that’s it for polymorphism. I hope you can appreciate the power and simplicity that the use of
polymorphic command names provides when used in the development of software. I also hope you take
the time to sit down and think about what method names you should use before you start coding your next
program.

Summary
In this chapter, I introduced the concept of organizing the nature of behavior behind a common set of
method names. In addition, I demonstrated how I’ve used each method name in the past. With all the
content you’ve seen in this book, you should be well on your way to solving business and science problems
with the use of SQL and PL/SQL in a relational of object-relational setting.

Some have given me the feedback that perhaps the object-relational stuff should be treated as an
advanced topic. Phooey! There’s nothing advanced about object-relational. It’s actually the correct and
natural way of thinking. We should have been doing it this way for at least the past 20 years. So I hope you’ll
find yourself in a position to use it.

Just how astute are you? Did you notice that I even used polymorphism with table column names?
Normally, I even use id for the primary key column name, and then the singular of the table name
concatenated to _id for the corresponding foreign key column name. I used the same names in this book in
order to make the relationships obvious. By treating column names polymorphically, you can implicitly note
what the column is for in every table, just as you do with method names in executable code.

Figure 10-9.  An example of an emailed report

Chapter 10 ■ Examples

423

Wow! That was fast, wasn’t it? Did I make you work hard? Did you learn anything? I sure hope so.
As I stated in the introduction, this was a tutorial—a place to get started. The only way you can learn how to
program is to discover the possibilities of a programming language and start mimicking someone else’s work
by writing programs.

I’ve been extremely successful in my career when working with Oracle and PL/SQL, so if you mimic my
coding behavior, I’m guessing that you will be successful, too. But you’ve just started. Here’s what I suggest
you do next:

Browse the •	 Oracle Database SQL Reference, so you can get an idea of what can
be accomplished using SQL. You don’t have to remember it all; you just need
to remember where to look for the information when you realize you can put a
possibility to work!

Read Oracle’s •	 PL/SQL User’s Guide and Reference, or Steven Feuerstein’s Oracle
PL/SQL Programming (O’Reilly, 2014). These are both good references. Once again,
you don’t need to remember everything you read, just the possibilities. You can
always refer to the reference later. You have better use for your memory, like
remembering your lover’s birthday or your anniversary!

Browse Oracle’s •	 PL/SQL Packages and Types Reference. Why should you build
something that’s already been built by experts? Just catalog the possibilities in your
gray matter.

Check out Oracle’s •	 Application Developer’s Guides.

Share your ideas by writing an article, a white paper, or at least an email about your •	
experience. After you do, go back and write an INSERT statement in order to add
yourself to the list of database geniuses from Chapter 1.

As I said before, good skill. Luck is for losers.

http://dx.doi.org/10.1007/9781484207383_1

425

Appendix A

How to Download, Install, and Use
Oracle

Since knowing Oracle SQL is a prerequisite for learning PL/SQL, I could simply assume that you already
have resource-level access to Oracle (you can create objects like tables, views, and so on), already have
access to SQL*Plus, and already know SQL. But that might not be the case.

Just in case you don’t have access to Oracle, I’m going to give you some advice on the following subjects:

How to download Oracle Database software•	

How to install Oracle Database software•	

How to use Oracle SQL*Plus•	

This should get you started in the right direction. Keep in mind that I have no idea what the Apress and
Oracle web sites or the Oracle software will look like by the time you read this. Nothing may have changed,
but I kind of doubt that. It’s more likely that everything will have changed. So my directions will probably no
longer be correct, but I think some direction is better than none.

How to Download Oracle Database Software
At the time of this writing, you can download a trial copy of Oracle Database software from Oracle’s web site.
You can use this trial software for learning purposes only. If you decide to do something commercial with
it, like write software that you can then sell, then you’ll need to pay for a license. Keep that in mind. Play for
free, but earn a fee and you must pay. You should read the license agreement so you know exactly what you
can do.

The URL you use to download trial software at Oracle changes all the time. Try www.oracle.com/
technetwork/index.html. When you get to that web page, as in the example in Figure A-1, look for a menu
item that says Downloads.

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/index.html

Appendix A ■ How to Download, Install, and Use Oracle

426

Figure A-1.  An example of an Oracle Technology Network web page

Appendix A ■ How to Download, Install, and Use Oracle

427

When you find the Downloads link, click it. When you do, a web page like the one in Figure A-2 may
appear. I say “may appear” because who knows how this web site will be organized in the future.

Figure A-2.  An example of an Oracle Downloads menu

Appendix A ■ How to Download, Install, and Use Oracle

428

Figure A-3.  An example of an Oracle Database Software Downloads web page

On the Oracle Software Downloads menu, click the Oracle Database option. When you do, a web page
like the one in Figure A-3 may appear.

Appendix A ■ How to Download, Install, and Use Oracle

429

On the Oracle Database Software Downloads page, first click the Accept License Agreement radio button.
Next, find the latest version of the database software (currently Oracle Database 12c) and click the link for
File 1. A file download dialog like the one in Figure A-4 may appear.

Figure A-4.  An example of a Firefox File Download dialog

Appendix A ■ How to Download, Install, and Use Oracle

430

Write down the name of the archive so you know it when you go to install the software. Click the OK
button in the File Download dialog box. When you do, the Oracle Single Sign On web page will appear, as
in Figure A-5.

Figure A-5.  An example of Oracle’s Single Sign On web page

Appendix A ■ How to Download, Install, and Use Oracle

431

At this point, if you already have an account, sign in, and then Firefox will save the file in your
Downloads directory. If you don’t have an Oracle Technet account, you’ll need to create one. Just click the
Create Account button, and then return to this page to sign in and continue the download.

Once the download is complete, return to the Oracle Database Downloads web page and repeat the
process for File2, as shown in Figure A-6.

Figure A-6.  An example of a Firefox file download dialog for file 2

Once again, write down the name of the archive so you know it when you go to install the software. Click
the OK button in the File Download dialog box.

After both files have been downloaded, you can move on to the next step, which is to install the Oracle
Database software. But first, I suggest you go back to the Downloads link web page and download the
installation instructions. Read them before you start the installation.

How to Install Oracle Database Software
I’m going to show you an overview of installing the Oracle database software on a Windows machine. On a
computer running the Windows OS, here are the steps.

	 1.	 Unzip the archives in the Downloads directory.

	 2.	 Navigate to the directory where you unzipped the files with Windows Explorer,
and then run setup.exe in the database directory.

	 3.	 Follow the instructions on the installation screens, answering any prompts as
required.

Appendix A ■ How to Download, Install, and Use Oracle

432

The following screen shots are from an installation I made on one of my desktop PCs called windows8-
pc. It’s important that you name your machine (in the OS) before you install Oracle because this is the name
that will be used to specify the machine’s network address throughout the installation process.

When you execute setup.exe, the Oracle Universal Installer will start and display the Configure
Security Updates screen, as shown in Figure A-7. Specify your email address and uncheck “I wish to receive
security updates via My Oracle Support.”

Figure A-7.  An example of the first Oracle Universal Installer screen

Appendix A ■ How to Download, Install, and Use Oracle

433

Click Next and the Installation Option screen will appear, as shown in Figure A-8. Here, I suggest you
specify “Create and conFigure 1 database.”

Figure A-8.  An example of the second Oracle Universal Installer screen

Appendix A ■ How to Download, Install, and Use Oracle

434

Figure A-9.  An example of the Oracle Univeral Installer’s Prerequisites screen

Click Next and the System Class screen may appear, as shown in Figure A-9. Select Desktop class.

Appendix A ■ How to Download, Install, and Use Oracle

435

Click Next and the Oracle Home User Selection screen may appear, as in Figure A-10. Select Use
Windows Built-in Account.

Figure A-10.  An example of the Oracle Universal Installer’s Oracle Home User Selection screen

Appendix A ■ How to Download, Install, and Use Oracle

436

Figure A-11.  An example of the Oracle Universal Installer’s Typical Installation Configuration screen

Click Next and the Typical Installation Configuration screen may appear, as in Figure A-11.
Here I suggest you specify the following:

An Oracle base of •	 C:\oracle

A Character set of Unicode (AL32UTF8)•	

A password that will be used by the SYSTEM account•	

Uncheck the Create as Container Database box•	

Appendix A ■ How to Download, Install, and Use Oracle

437

Click Next and the Summary screen may appear, as in Figure A-12.

Figure A-12.  An example of the Oracle Universal Installer’s Summary screen

Appendix A ■ How to Download, Install, and Use Oracle

438

Figure A-13.  An example of the Oracle Universal Installer’s Install Product screen

Assuming that the summary is correct, you should click the Install button. Clicking the Install button
may display the Install screen, as shown in Figure A-13. This is where you can get up and get a cup of
coffee (joe).

Appendix A ■ How to Download, Install, and Use Oracle

439

After some annoying period of time, the Database Configuration Assistant screen may display, as shown
in Figure A-14.

Figure A-14.  An example of the Oracle Universal Installer’s Configuration Assitant screen

Appendix A ■ How to Download, Install, and Use Oracle

440

Write down the URLs on this screen. You will need them!
You’re on the home stretch now! After you click the OK button to dismiss the summary screen, the

Finish screen may appear, as shown in Figure A-15.

Figure A-15.  An example of the Oracle Universal Installer’s Finish screen

Click Exit to complete the installation. At this point, Oracle should be installed, and up and running on
your computer. Congratulations!

To manage Oracle from this point forward, access the Enterprice Manager from your browser using the
URL displayed on Figure A-14 of your installation, which is typically https://localhost:5500/em.

Now you need to open SQL*Plus to create a resource-enabled account.

How to Use SQL*Plus
You are going to be using SQL*Plus as your primary user interface to the Oracle database. With it, you will do
the following:

Create two usernames to use when doing the assignments in this book: •	 rps and ops.

Execute Data Definition Language (DDL) in order to create tables, indexes, views, •	
types, and stored procedures.

Execute Data Manipulation Language (DML) in order to insert into, update, delete •	
from, and select data from tables in the database.

Appendix A ■ How to Download, Install, and Use Oracle

441

To get started, create a directory named \bps on your file system. You’ll download this book’s source
code and solutions to that directory.

How to Download This Book’s Source Code
To download the source code for this book, go to the Apress web site at www.apress.com, which may look
something like Figure A-16. Click the Source Code menu item, and then search for and download the source
code for this book.

Figure A-16.  An example of the Apress web site’s home page

Next, decompress the archive (unzip it) into a \bops directory.
Now that you have the book’s source code in place, you can create a shortcut to SQL*Plus in directory

\bops\Appendix.

	 1.	 Navigate to directory Appendix using Windows Explorer.

	 2.	 Right-click any empty part of the directory’s listing window.

	 3.	 Select New ~TRA Shortcut.

	 4.	 Specify the location of the SQL*Plus executable, sqlplus.exe, and then click
the Next button. The SQL*Plus executable should be in the “Oracle Home” BIN
directory, such as c:\oracle\product\12.1.0\dbhome_1\BIN\sqlplus.exe.

http://www.apress.com/

Appendix A ■ How to Download, Install, and Use Oracle

442

	 5.	 Specify the name for the shortcut. I name the shortcut after the database,
so I suggest orcl. Click the Finish button.

	 6.	 Right-click your new shortcut and select Properties.

	 7.	 Delete the entry for the Start-in directory, then type in one space character, as
in Figure A-17, and then click the OK button. This will make SQL*Plus use the
directory where the shortcut exists as the default source directory when running
a script, and that will make your life a lot easier.

Figure A-17.  An example of a shortcut’s Properties dialog box for SQL*Plus

At this point, you should have a SQL*Plus shortcut icon in directory \bops\Appendix. Double-click the icon
to start SQL*Plus. When you do, SQL*Plus will display a Login dialog box, where you specify the following:

The username •	 SYSTEM

The password you decided to use•	

Host string •	 orcl, or whatever you decided to name the database

Appendix A ■ How to Download, Install, and Use Oracle

443

After you specify the login information, SQL*Plus should log you in to the database as user SYSTEM. If you
see a screen like the one shown in Figure A-18, you have successfully logged in to your Oracle database.

Figure A-18.  An example of a SQL*Plus screen and the window’s Properties screen

The reason you create the shortcut in the same directory that contains the example source code files
is to give yourself easy access to those files. When you invoke SQL*Plus using the shortcut that you’ve just
created, the source code directory becomes the default directory that SQL*Plus will search when you invoke
a SQL script.

Appendix A ■ How to Download, Install, and Use Oracle

444

If you click the icon in the upper left hand corner, the window’s Properties screen will appear, as in
Figure A-18. Here I suggest you specify the following:

A screen buffer size width of 132•	

A screen buffer size height of 9999•	

A window size width of 132•	

A window size height of at least 50•	

The click OK to save your new shortcut’s windows property settings. The next time you open SQL*Plus
the window will be larger by default. This will also make your life easier.

How to Create a New Username
I suggest you create two usernames, ops and rps, just for working with the examples and doing the exercises
in this book. To do that, type the following at the SQL*Plus prompt (SQL>), and then press the Enter key:
 
SQL> @create_users.sql
 

This will execute SQL*Plus script create_users.sql in directory \bops\Appendix, which will create two
new usernames (ops with password ops, and rps with password rps) that you can use while learning from
this book. The next time your log in to your database, use username rps.

How to Write a SQL*Plus Script
You may type a command directly into SQL*Plus. However, I don’t recommend this if you’re programming.
I think you should write a SQL*Plus script so you can make corrections to your code as needed, and then execute
the code again without needing to retype it. Having your code in a script file will allow you to do just that.

You may use any text editor you like—Notepad++, WordPad, TextPad, SQLDeveloper, and so on—but
you can’t use Word. (I prefer to use TextPad when I edit my SQL or PL/SQL scripts. You can search for
TextPad on the Internet, and download a trial copy.)

To create a SQL*Plus script, follow these steps.

	 1.	 Open a new text file.

	 2.	 Type one or more SQL or PL/SQL commands using the correct syntax.

	 3.	 Save the script to a directory that is accessible by SQL*Plus.

Once you’ve created a script, you can run it whenever you like, and your commands will not be lost.
They will forever reside in your script file. So how do you execute a SQL*Plus script?

How to Execute a SQL*Plus Script
I had you execute a SQL*Plus script earlier in order to create usernames ops and rps for this book. To
execute a SQL*Plus script, you type an at sign character (@) followed by the name of the script to execute.
SQL*Plus expects this script to exist in the SQL*Plus startup directory.

Appendix A ■ How to Download, Install, and Use Oracle

445

If the script isn’t in the startup directory, you must specify the entire path and filename. If the path or
filename has space characters in it, you need to enclose the path and filename in double quote characters
("). Here’s an example:
 
SQL> @"c:\Program Files\Not a convenient location\my script.sql"
 

So I suggest you be lazy and create a shortcut with a blank (space) “start in” directory in every directory
where you have scripts. This way, you can start a SQL*Plus session with the default directory set to where
your script files exist.

How to Describe Your Tables and Stored Procedures
While you’re in SQL*Plus, you can use the describe command to display the definition of a table or stored
procedure. For example, you can type the following to get a definition for view SYS.USER_OBJECTS:
 
SQL> desc SYS.USER_OBJECTS
 

SQL*Plus will respond with the following:
 
Name Null? Type
--- -------- -------------
OBJECT_NAME VARCHAR2(128)
SUBOBJECT_NAME VARCHAR2(128)
OBJECT_ID NUMBER
DATA_OBJECT_ID NUMBER
OBJECT_TYPE VARCHAR2(23)
CREATED DATE
LAST_DDL_TIME DATE
TIMESTAMP VARCHAR2(19)
STATUS VARCHAR2(7)
TEMPORARY VARCHAR2(1)
GENERATED VARCHAR2(1)
SECONDARY VARCHAR2(1)
NAMESPACE NUMBER
EDITION_NAME VARCHAR2(128)
SHARING VARCHAR2(13)
EDITIONABLE VARCHAR2(1)
ORACLE_MAINTAINED VARCHAR2(1)
 

However, SQL*Plus has this annoying feature: it aligns the right portion of a table description to the
right side of the line width, and that usually prevents you from seeing the Type, so I use a script, desc.sql, to
describe a table or stored procedure instead. For example, to describe utility package SYS.DBMS_OUTPUT,
I type the following at the SQL*Plus prompt (SQL>):
 
SQL> @desc SYS.DBMS_OUTPUT
 

Appendix A ■ How to Download, Install, and Use Oracle

446

SQL*Plus will respond with the following:
 
SYS.DBMS_OUTPUT
SQL> @desc SYS.DBMS_OUTPUT
SYS.DBMS_OUTPUT
PROCEDURE DISABLE
PROCEDURE ENABLE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 BUFFER_SIZE NUMBER(38) IN DEFAULT
PROCEDURE GET_LINE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 LINE VARCHAR2 OUT
 STATUS NUMBER(38) OUT
PROCEDURE GET_LINES
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 LINES TABLE OF VARCHAR2(32767) OUT
 NUMLINES NUMBER(38) IN/OUT
PROCEDURE GET_LINES
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 LINES DBMSOUTPUT_LINESARRAY OUT
 NUMLINES NUMBER(38) IN/OUT
PROCEDURE NEW_LINE
PROCEDURE PUT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 A VARCHAR2 IN
PROCEDURE PUT_LINE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 A VARCHAR2 IN
 

This description looks different from the first one, not because I used @desc.sql, but because the
described object is a stored procedure, not a view. All that @desc.sql does for you is set the SQL*Plus
linesize property to 80, use the describe command, and then return the linesize to its prior length.

At this point, you should know how to do the following:

Download Oracle•	

Install Oracle•	

Create usernames •	 ops and rps

Write a SQL*Plus script•	

Execute a SQL*Plus script•	

Describe a table or stored procedure•	

So now it’s time for you to get started with Chapter 1. I wish you good skill on your journey. Feel free to
contact me if you have any questions about the book.

http://dx.doi.org/10.1007/9781484207383_1

447

A�       �
Anonymous blocks

declaration, 37–38
END keyword, 37
exceptions, 37, 39
execution, 37, 39

Application-level reuse, 154
Assignment operator, 40
Associative array

Column Data Type, 73
functions and procedures, 75
multidimensional arrays, 78
output, 75
record types, 77
Row Type Anchor, 76

B�       �
Black box

get_id method, 385
inactivate() method, 385
universal methods

help, 386
initialize, 387
test procedure, 388

BULK COLLECT command
with cursor, 139
definition, 138
with SELECT statement, 141
workers_bulk_collect.ins, 143

C�       �
Chief financial officer (CFO), 327
clear() method, 263
Code table package

GENDER_TYPE package, 299
get_code_descr(), 288, 370
get_code_id_descr(), 288, 371
get_id(), 288, 370
rps.last_test_results.sql, 297

rps.worker_type.pkb, 290
rps.worker_type.pks, 288

Component-level reuse, 154
Constraints

creation, 9
columns, 6
foreign key, 8
primary key, 7
unique key, 7

Content table package
code borrowing, 306
create_id_context(), 299
get_code(), 373
get_code_id_name(), 373
get_external_id(), 299
get_name(), 299, 373
get_row(), 299, 372
is_duplicate(), 373
rps.logical_workplace.pkb, 300
set_row(), 299, 375
worker_type.pkb, 128
worker_type.pks, 128

count() method, 112
create_id_context() method, 299, 382
Cursor

code table package, 128
CURSOR FOR LOOP

cursor_for_loop_the_doe_family.sql, 134–135
workers_cursor_for_loop.ins, 135–136

declaration, 119
insert_with_modularity.sql, 132
records, 122
singleton cursor, 122
SQL statement, 127
worker table package, 130

D�       �
Data Definition Language (DDL), 440

author_publications table, 4–5
constraints

creation, 9
columns, 6

Index

■ index

448

foreign key, 8
primary key, 7
unique key, 7

CREATE TABLE statement, 3
DATE, 4
indexes, 5
LOGICAL_ASSIGNMENTS table, 35
LOGICAL_WORKPLACES table, 33
NUMBER, 4
VARCHAR2, 4
views, 11
WORKERS table, 32
WORKER_TYPES code table, 28

Data Manipulation Language (DML), 440
DELETE statement, 20
INSERT SELECT statement

COMMIT statement, 14
conditional statements, 15
Darwen’s Publications, 17
Date’s Publications, 16

INSERT VALUES
statement, 12

SELECT statement
author_names.sql, 21
From clause, 23
Where clause, 22

UPDATE statement, 18
WORKER_TYPES code table, 29

Data migration (DM), 376, 392
Debugging. See Troubleshooting
Debug logging

DDL script
rps.debug.pkb, 222, 224
rps.debug.pks, 222
rps.debugs.tab, 221

debug table and table
package, 220

SYS.DBMS_ERRLOG, 226
SYS.DBMS_TRACE, 226
test unit, 224

Disable method, 404
Divide and conquer

business rules, 392
common goal, 392
data migration, 392
interfacing

download method, 407, 410
is_downloaded method, 409
is_uploaded method, 412
MSDP, 407
process, 408
set_downloaded method, 411
set_uploaded method, 413
upload method, 407, 413
visual representation, 407

ODDP
process, 396
start_logging(), 397
stop_logging(), 398

PDP
disable method, 404
enable method, 404
get_next(), 402
get_status, 406
process, 400
quit method, 403
set_status(), 405
status, 407

reporting
architecture, 415
BIRT, 414
get_report(), 416
report(), 420
retrieving data, 414
SELECT statement, 414
set_report(), 419

Documentation
on demand

access documentation, 338
help() methods, 334
text-based formatting tool (see Text-based

documentation formatting tool)
distribution, 362

create_html_help.sql, 360
HTML-based documentation formatting

tool, 340
SQL*Plus script, 359

indestructible documentation
GUI development environment tools, 330
Murphy’s Law, 328
package/TYPE specification, 328
rules, 333
SQL*Plus, 328

Download method, 410

E�       �
Enable method, 404
Encapsulation, 153, 155
Enterprise JavaBeans (EJB), 152
Entity-relationship diagram (ERD)

authors and author_publications, 3
codes, 27
content, 27
demographic subsystem, 26
intersections, 28

Executive Information System (EIS), 327
EXISTS clause, 101
EXPLAIN PLAN

definition, 244
INSERT statement, 250

Data Definition Language (DDL) (cont.)

■ Index

449

Optimizer plan, 245
vs. physics, 248–249
PL/SQL program unit, 244
SELECT statement, 250
select_workers_equlato.sql, 245
select_workers_likepct.sql, 246
select_workers_pctlikepct.sql, 247
SYS.DBMS_XPLAN package, 245
xp.sql script, 246–248

F�       �
flush_data() method, 234
FORALL statement

SQL statement, 148
workers_forall.ins, 146

Foreign key constraints (FKC), 8
Function

block structure, 41
creation, 43
date value return, 43
errorless to_date(), 43
errorless to_number(), 40
RETURN clause, 41
SELECT statement, 42
SQL statement, 40
test unit, 44

G�       �
get_code_context() method, 383
get_code_descr() method, 288, 370
get_code_id_descr() method, 288, 371
get_code_id_name() method, 373
get_code() method, 373
get_external_id() method, 299
get_id_context() method, 383
get_id() method, 263, 288, 370, 385
get_logical_workplace() method, 307
get_name_context() method, 384
get_name() method, 299, 373
get_next() method, 402
get_report() method, 416
get_row() method, 299, 372
get_status method, 406

H�       �
help() method, 338, 386
Hierarchical table methods

create_id_context(), 382
get_code_context(), 383

get_id_context(), 383
get_name_context(), 384
LOGICAL WORKPLACE entries, 382

I�       �
inactivate() method, 385
Inheritance, 153
Initialize method, 387
Intersection table package

code borrowing, 316
get_logical_workplace(), 307
get_row(), 307, 378
is_active(), 307, 378
is_duplicate(), 378
is_history(), 380
rps.logical_assignment.pkb, 307
set_row(), 307, 378

is_active() method, 307, 378
is_downloaded method, 409
is_duplicate() method, 373
is_history() method, 380
is_uploaded method, 412

J, K, L�       �
Java Database Connectivity (JDBC), 178
Java Enterprise Edition (JEE), 328
Java Foundation Classes (JFC), 328

M�       �
Method-level reuse, 154
Multi-row processing

BULK COLLECT command
definition, 138
with cursor, 139
with SELECT statement, 141
workers_bulk_collect.ins, 143

cursor
code table package, 128
CURSOR FOR LOOP, 134–136
declaration, 119
insert_with_modularity.sql, 132
records, 122
singleton cursor, 122
SQL statement, 127
worker table package, 130

FORALL statement
SQL statement, 148
workers_forall.ins, 146

Multistep data process (MSDP), 407

■ index

450

N�       �
Nested block

pl() test unit, 49
rules, 50

NO_DATA_FOUND exception, 40

O�       �
Object-relational SQL

encapsulation, 153
impedance mismatch

nested types and collections, 179
worker object table, 181
worker.tpb, 185
worker.tps, 181
workers.ins, 194

information modeling, 151
inheritance, 153
object-relational database building, 157
object tables, 156

GENDER_TYPES and gender_types.tab, 175
object table vs. relational table, 175
worker_types.sql, 176
worker_types.tab, 176

object types
CREATE TYPE BODY statement, 161
CREATE TYPE BODY syntax, 164
CREATE TYPE statement, 158
my Gender Type code, 165
Worker Type table, 166

object views, 156
CREATE VIEW syntax, 171
gender_typez.sql, 172
gender_typez.vw, 171

object-relational database building, 178
polymorphism, 153
reuse, 154
service orientation, 154
table packages, 155
user-defined types, 156

On-demand data processing (ODDP), 396
Oracle Call Interface (OCI), 392
Oracle database software

downloading
Create Account, 431
file download dialog box, 429, 431
license agreement, 429
menu option, 427
trail software, 426

installation
Configuration Assistant screen, 439
Configuration screen, 436
Configure Security Updates screen, 432
Finish screen, 440

Home User Selection screen, 435
machine’s network address, 432
Product screen, 438
setup.exe, 432
Summary screen, 437
System Class screen, 434

SQL*Plus (see SQL*Plus
Oracle SQL Developer

constructor, 227
DEBUGGER.set_text(), 228–229
debug logging, 232
DEBUG_O TYPE and

DEBUG_OTS, 227
Debug PL/SQL dialog box, 230
download location, 227
encountering breakpoint, 231–232
executable target, 229, 231
From File button, 230
setting breakpoints, 229
stored program units, 227
system administrator, 227
TYPE DEBUG’s constructor, 228

Oracle Technology Network, 227, 233
ord_profile.sql script, 239

P�       �
Parameters

declarations, 80
naming, 79
scope, 81

Parametric SQL
code table methods

get_code_descr(), 370
get_code_id_descr(), 371
get_id(), 370

content table methods
get_code(), 373
get_code_id_name(), 373
get_name(), 373
get_row(), 372
is_duplicate(), 373
set_row(), 375

hierarchical table methods
create_id_context(), 382
get_code_context(), 383
get_id_context(), 383
get_name_context(), 384

intersection table methods
get_row(), 378
is_active(), 378
is_duplicate(), 378
is_history(), 380
set_row(), 378

■ Index

451

Procedure Language extension for SQL (PL/SQL)
blocks

declaration, 37–38
END keyword, 37
exceptions, 37, 39
execution, 37, 39

data types, 61
function, 40

block structure, 41
built-in function, 43
date value return, 43
errorless to_date() Function, 43
errorless to_number() Function, 40
RETURN clause, 41
SELECT statement, 42
SQL statement, 40
test unit, 44

nested block
pl() test unit, 49
rules, 50

package
benefit, 60
DATE_ Package Body, 54
DATE_ Package Spec, 51
DDL syntax, 52, 58
definition, 51
NUMBER_ Package Body, 59
NUMBER_ Package Spec, 53
package spec, 53
to_number_or_null(), 53

procedure
block structure, 45
DDL syntax, 45
pl() function, 47
RETURN parameter, 45
SYS.DBMS_LOCK package, 45
SYS.DBMS_OUTPUT.put_line, 46

profiling (see PL/SQL profiling)
table types

Column Data Type, 73
functions and procedures, 75
multidimensional arrays, 78
output, 75
record types, 77
Row Type Anchor, 76

testing, 260
test patterns, 260
triggers, 9

PL/SQL profiling
avg_profile.sql

creation, 236–237
detecting code defects, 241
ord_profile.sql script, 239

program unit and line
number, 239

test unit, 238–239
collecting runtime statistics, 234
DBMS_PROFILER package, 234
definition, 234
flush_data(), 235
is_profiler.sql, 242
PLSQL_PROFILE_DATA, 234
PLSQL_PROFILER_RUNS, 234
PLSQL_PROFILER_UNITS, 234
relational version, 243–244
run_profile.sql, 235–236
start_profiler(), 235
stop_profile(), 235

Polling data process (PDP), 399
disable method, 404
enable method, 404
get_next(), 402
get_status, 406
process, 400
quit method, 403
set_status(), 405
status, 407

Polymorphic commands
data entry, 367
data migration, 367
employing modularity, 366
employing object-orientation, 366
geometric shapes, 365
On-demand data processing, 367
Package Tables and TYPEs, 367
polling data processing, 367
reporting, 367
roles, 368
synonyms, 365

Polymorphism, 153, 366
Primary key constraint (PKC), 7
profload.sql script, 234
proftab.sql script, 234

Q�       �
Quit method, 403

R�       �
Relational SQL

DDL (see Data Definition Language (DDL)
DML (see Data Manipulation Language (DML)
triggers, 9
VDMI, 25

report() method, 420

■ index

452

S�       �
Scope, 67
set_downloaded method, 411
set_report() method, 419
set_result() method, 263
set_row() method, 299, 375
set_status() method, 405
set_test() method, 263
set_uploaded method, 413
Single row processing

DELETE statement, 109
INSERT statement

column values, 103
detection block, 98
DUP_VAL_ON_INDEX exception, 91
EXISTS clause, 101
IF statement syntax, 100
insert.sql script, 91
insert_the_doe_family.sql, 104
insert_with_plsql_detection.sql, 95
insert_with_sql_detection.sql, 102
modifications, 97–98
NO_DATA_FOUND exception, 94
in PL/SQL, 106
PL/SQL literals and variables, 87
postdetection, 104
process flow diagram, 94, 101
syntax, 90, 103
table definition, 90–91
unique constraint exception, 91

SELECT statement
insert_with_plsql_detection.sql, 110–111
INTO statements, 112
NO_DATA_FOUND, 112
PL/SQL, 110, 116
select_the_doe_family.sql, 115–116
syntax, 111
TOO_MANY_ROWS exception, 114

UPDATE statement
insert_with_plsql_detection_for

_update.sql, 107
in PL/SQL, 109
SET clause, 108
syntax, 107–108
SYS.DBA_SOURCE, 107
update_multiple.sql, 108
WHERE clause, 107–108

SQL*Plus
create_users.sql, 444
creation and execution, script file, 444
DDL execution, 440
DML execution, 440
downloading

\bops\Appendix, 441
\bops directory, 441

Source Code menu, 441
window’s Properties screen, 443

table/stored procedure, 445
SQL test patterns, 259
start_logging() method, 397
stop_logging() method, 398

T�       �
Table method polymorphism, 156
Test automation process

execution, 321
missing test units, 326
SQL*Plus descriptions, 320
test unit errors, 326

Testing
automation process

execution, 321
missing test units, 326
SQL*Plus descriptions, 320
test unit errors, 326

character column length, 263
code table package, 299

get_code_descr(), 288
get_code_id_descr(), 288
get_id(), 288
rps.last_test_results.sql, 297
rps. worker_type.pkb, 290
rps.worker_type.pks, 288

content table package
code borrowing, 306
create_id_context(), 299
get_external_id(), 299
get_name(), 299
get_row(), 299
rps.logical_workplace.pkb, 300
set_row(), 299

data_length_histogram.sql, 261
high-level tasks, 257
intersection table package

code borrowing, 316
get_logical_workplace(), 307
get_row(), 307
is_active(), 307
rps.logical_assignment.pkb, 307
set_row(), 307

object-relational version, 276
ops.tests.tab, 279
ops.test.tpb, 279
ops.test.tps, 276

PL/SQL test patterns, 259–260
responsibilities, 258
rps.test.pkb, 269
rps.test.pks, 265
rps.tests.tab, 264
set of constants, 261–262

■ Index

453

set of methods, 261
STATIC method, 317
test plan, 259
test unit, 259
TYPE TEST, 317

Text-based documentation formatting tool
package body, 335
package specification, 334
put_line(), 334
TEXT_HELP, 335

TKPROF, 255
TOAD, 233
TOO_MANY_ROWS exception, 40
Troubleshooting

anchors, 198
blocking, 200–202
bread crumbs, 202
data type prefixes, 199
DBMS_OUTPUT

buffer, 203
DEBUGGER package

package body, 217–218
specification, 216–217
test unit, 219

debug logging (see Debug logging)
explicit conversion, 199–200
implicit conversion, 198
Oracle SQL Optimizer

EXPLAIN PLAN (see EXPLAIN PLAN)
TKPROF, 255

pragma autonomous
transaction, 197, 207

profiling (see PL/SQL profiling)
put_line()

failure messages, 205
failure.sql script, 205–206
output, 203
raise_application_error(), 205
success.sql script, 203–204

remote debugger
Oracle SQL Developer (see Oracle SQL

Developer)
PL/SQL debugger, 233–234
PL/SQL program units, 233
SYS.DBMS_DEBUG, 227
TOAD, 233
Visual Studio, 233

risky code, 200
SYS.DBMS_DEBUG package, 197
SYS.DBMS_PIPE, 197
TYPE DEBUG_O (see TYPE DEBUG_O object)
unexpected exception, 198

TYPE DEBUG_O object
DDL, 209–210
implementation, 210
message table, 207–208
ops.debug_a_session.sql, 216
pl() statements, 212
set_text(), 213
specification, 208–209
SQL> prompt, 214
test unit, 213
unique session ID, 213–214

U�       �
Unique key constraint (UKC), 7
Upload method, 413

V, W, X, Y, Z�       �
Variables

anchors, 63
assignments, 64–65
declaration of, 66–67
declarations, 63
naming, 62–63
NULL value, 66

Beginning Oracle
PL/SQL
Second Edition

Donald J. Bales

Beginning Oracle PL/SQL

Copyright © 2015 by Donald J. Bales

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0738-3

ISBN-13 (electronic): 978-1-4842-0737-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Douglas Pundick
Technical Reviewer: Michael Rosenblum
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my wife, Terry Moro,
you’re the wind that feeds the flame

To my daughter, Kristyn,
“Every day, in every way, you get better and better!”

To Antoneo Bolagnao,
my Buddha

vii

Contents

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Foreword���xxiii

Introduction (The Big Picture)��xxv

Chapter 1: Relational SQL■■ ��� 1

Tables�� 1

An Entity-Relationship Diagram��� 3

Data Definition Language (DDL)��� 3

It’s Your Turn to Create a Table�� 4

Indexes�� 5

DDL Again�� 5

It’s Your Turn to Create an Index�� 6

Constraints�� 6

Column Constraints��� 6

Table Constraints��� 7

It’s Your Turn to Create a Constraint�� 9

Triggers��� 9

Views��� 11

Insert��� 12

Insert . . .Values��� 12

It’s Your Turn to Insert with Values��� 13

■ Contents

viii

Insert . . . Select�� 14

It’s Your Turn to Insert with Select��� 16

Update��� 18

Fix a Mistake with Update��� 18

It’s Your Turn to Update�� 19

Update and Subqueries��� 19

Delete�� 20

A Change in Order�� 20

It’s Your Turn to Delete��� 21

Select�� 21

Joins�� 22

It’s Your Turn to Select��� 24

Your Working Example��� 25

Your Example Narrative��� 25

Your Example ERD��� 25

Create a Code Table��� 28

It’s Your Turn to Create Code Tables��� 32

Create a Content Table��� 32

It’s Your Turn to Create Content Tables�� 34

Create an Intersection Table�� 35

It’s Your Turn to Create Intersection Tables�� 36

Summary��� 36

Chapter 2: Blocks, Functions, and Procedures■■ ��� 37

Blocks�� 37

Anonymous Blocks�� 37

Exceptions��� 39

Common Exceptions�� 40

Catching an Exception��� 40

Functions��� 40

Create a Function�� 40

It’s Your Turn to Create a Function��� 43

■ Contents

ix

Procedures�� 44

Create a Procedure�� 45

It’s Your Turn to Create a Procedure�� 46

Nested Blocks��� 48

An Example of Nesting Blocks��� 48

Rules for Nesting��� 50

Packages��� 51

Create a Package Specification��� 51

It’s Your Turn to Create a Package Specification��� 53

Create a Package Body�� 54

It’s Your Turn to Create a Package Body�� 59

Benefits of Using Packages��� 60

Summary��� 60

Chapter 3: Types, Variables, and Scope■■ �� 61

PL/SQL Data Types�� 61

Variables�� 62

Variable Naming�� 62

Variable Declarations��� 63

Variable Anchors�� 63

Variable Assignments�� 64

NULL Value��� 66

It’s Your Turn to Declare Variables��� 66

Scope�� 67

Scope Rules��� 67

It’s Your Turn to Scope Things Out��� 72

Types��� 73

Table Types�� 73

Record Types��� 77

Multidimensional Arrays�� 78

■ Contents

x

Parameters�� 79

Parameter Naming��� 79

Parameter Declarations��� 80

Parameter Scope��� 81

It’s Your Turn to Declare Parameters��� 85

Summary��� 85

Chapter 4: Single Row Processing■■ ��� 87

Inserts��� 87

Catching a DUP_VAL_ON_INDEX Exception��� 91

Using PL/SQL to Predetect a Duplicate�� 94

IF I Don’t Tell You Now, When ELSE Can I?��� 100

Using SQL to Predetect a Duplicate��� 100

It’s Your Turn to Insert�� 104

Updates��� 106

Updating a Row��� 107

Using SQL to Perform Complex Updates��� 107

Deletes�� 109

Selects�� 110

No Data Found��� 112

Too Many Rows�� 114

It’s Your Turn to Select��� 115

Summary��� 116

Chapter 5: Multirow Processing■■ ��� 119

Cursors�� 119

Cursor Declarations��� 119

Fetching Rows from a Cursor Manually��� 120

Cursor Records�� 122

A Singleton Cursor��� 122

It’s Your Turn to Fetch Manually��� 127

■ Contents

xi

Fetching Rows from a Cursor Automatically��� 134

It’s Your Turn to Fetch Automatically�� 135

Bulk Collect��� 138

Bulk Collect with a Cursor��� 139

Bulk Collect with a Select Statement�� 141

It’s Your Turn to Bulk Collect�� 142

FORALL�� 145

Summary��� 150

Chapter 6: Object-Relational SQL■■ ��� 151

Information Modeling�� 151

Object Orientation��� 153

Key Tenets��� 153

Reuse��� 154

Service Orientation�� 154

A Roadmap to Reality�� 155

Step 1: Table Packages�� 155

Step 2: User-Defined Types�� 156

Step 3: Object Views�� 156

Step 4: Object Tables��� 156

A Change in Order��� 157

Object Types�� 157

Create a User-Defined Type Specification��� 158

Create a User-Defined Type Implementation��� 161

It’s Your Turn to Create a User-Defined Type�� 166

Object Views�� 171

Create an Object View��� 171

It’s Your Turn to Create an Object View�� 174

Object Tables��� 174

Create an Object Table��� 174

It’s Your Turn to Create an Object Table��� 176

■ Contents

xii

Impedance Mismatch?�� 178

Nested Types and Collections�� 179

It’s Your Turn to Prove There’s No Impedance Mismatch��� 181

Summary��� 196

Chapter 7: Troubleshooting■■ �� 197

Prevention��� 198

Anchors��� 198

Data Type Prefixes��� 199

Explicit Conversions�� 199

Preparation�� 200

Blocking��� 200

Bread Crumbs�� 202

After the Fact��� 203

Success Messages�� 203

Failure Messages�� 205

It’s Your Turn to Use put_line( )�� 205

As It Happens�� 207

A DEBUG Table��� 207

A DEBUGGER Package��� 216

It’s Your Turn to Use Debug Logging�� 220

One Step at a Time�� 227

Debugging with Oracle SQL Developer�� 227

Debugging Anonymous PL/SQL��� 233

Debugging with TOAD for Oracle��� 233

Debugging with Visual Studio�� 233

It’s Your Turn to Use a Debugger�� 233

Profiling PL/SQL�� 234

Profiler’s Tables��� 234

Profiler’s Methods��� 235

■ Contents

xiii

Profiling Reports�� 236

It’s Your Turn to Profile��� 241

Profiling SQL�� 244

Explain Plan��� 244

Physics vs. Explain Plan�� 248

It’s Your Turn to Use Explain Plan��� 250

TKPROF�� 255

Summary��� 255

Chapter 8: Testing■■ ��� 257

SQL Test Patterns�� 259

PL/SQL Test Patterns��� 260

A Testing Tool��� 261

A TEST Table�� 264

A TEST Package Specification��� 265

A TEST Package Body�� 269

It’s Your Turn to Create a Testing Tool�� 275

Testing��� 288

Testing a Code Table Package��� 288

It’s Your Turn to Test a Code Table Package��� 299

Testing a Content Table Package��� 299

It’s Your Turn to Test a Content Table Package��� 306

Testing an Intersection Table Package�� 306

It’s Your Turn to Test an Intersection Table Package�� 316

Testing a Type�� 317

It’s Your Turn to Test a Type�� 320

Automating Testing�� 320

Automate Test Processing��� 321

It’s Your Turn to Automate Test Processing�� 326

Summary��� 326

■ Contents

xiv

Chapter 9: Documenting■■ ��� 327

Indestructible Documentation��� 328

SQL*Plus Documentation Tools�� 328

GUI Development Environment Tools��� 330

Rules for Documentation Comments��� 333

Documentation on Demand��� 334

A Text-Based Documentation Formatting Tool��� 334

Accessing Documentation on Demand�� 338

It’s Your Turn to Access Documentation on Demand��� 339

Distributable Documentation��� 340

An HTML-Based Documentation Formatting Tool�� 340

Generating Distributable Documentation��� 360

It’s Your Turn to Generate Distributable Documentation�� 362

Documentation Distribution��� 362

Summary��� 363

Chapter 10: Examples■■ ��� 365

Polymorphic Commands��� 366

Parametric SQL��� 369

Code Table Methods�� 369

Content Table Methods�� 372

Intersection Table Methods�� 378

Hierarchical Table Methods��� 381

The Black Box�� 385

Table Methods��� 385

Universal Methods��� 386

Divide and Conquer��� 391

Data Migration��� 392

On-Demand Data Processing��� 396

Polling Data Processing��� 399

■ Contents

xv

Interfacing��� 407

Reporting��� 414

Summary��� 422

Appendix A: How to Download, Install, and Use Oracle■■ �������������������������������������� 425

How to Download Oracle Database Software�� 425

How to Install Oracle Database Software�� 431

How to Use SQL*Plus�� 440

How to Download This Book’s Source Code�� 441

How to Create a New Username�� 444

How to Write a SQL*Plus Script��� 444

How to Execute a SQL*Plus Script��� 444

How to Describe Your Tables and Stored Procedures�� 445

Index�� 447

xvii

About the Author

Donald Bales is an Information/Systems Architect, Business/Systems
Analyst, Designer, and Programmer with over 30 years of professional
experience in Business and Information Technology. He’s an author of
books and articles on Oracle, Java, and PL/SQL. His area of expertise is in
the use of object-oriented analysis, design, and programming, along with
service-oriented architecture, for scientific data analysis, business process
modeling, enterprise application development and integration, most
recently using Python Django, Ruby on Rails, Java JEE, XML, HTML,
CSS, JavaScript, AJAX, Oracle, and Postgresql, to name a few. In addition,
he possess more than 30 years of IT project management experience.

When he is not developing software applications, Don can often be
found working with horses, or playing the piano or Native American flute.
Don has had several careers, and has at various times been a mechanic,
a general contractor, Mr. Mom, a developer, and a consultant. He is
currently the Principal Technology Lead, Environmental Software and

Data Management at Argonne National Laboratory. He has a bachelor of science degree in business from
Elmhurst College in Illinois. Don resides in Downers Grove, Illinois, with his wife, Terry Moro. He can be
contacted by e-mail at don@donaldbales.com.

xix

About the Technical Reviewer

Michael Rosenblum is a Software Architect/Senior DBA at Dulcian, Inc.
where he is responsible for system tuning and application architecture.
Michael supports Dulcian developers by writing complex PL/SQL routines
and researching new features. He is the co-author of Oracle
PL/SQL Performance Tuning Tips & Techniques (McGraw-Hill, 2014)
and PL/SQL for Dummies (Wiley Press, 2006), contributing author of
Expert PL/SQL Practices (Apress, 2011), and author of a number of
database-related articles (IOUG Select Journal, ODTUG Tech Journal,
OTech Magazine) and conference papers. Michael is an Oracle ACE,
a frequent presenter at various Oracle user group conferences
(Oracle OpenWorld, ODTUG, IOUG Collaborate, RMOUG, NYOUG),
and winner of the ODTUG Kaleidoscope 2009 Best Speaker Award. In his
native Ukraine, he graduated summa cum laude from the Kiev National
Economic University where he received a Master of Science degree in
Information Systems.

xxi

Acknowledgments

Everything in the universe is constantly trying to change the behavior of everything else in the universe, all
the time. Some behavioral modifications promote order; others promote chaos. So nothing we do–any of
us–is actually a totally independent action. Whether we realize it or not, others as well as ourselves are taking
part in both our successes and failures.

With that in mind, you should be able to understand why I say this book is the result of collaboration.
Every person I’ve known, along with every situation I’ve experienced, has helped shape the text of this tutorial.

Since I have a seeming limited amount of memory, let me at least thank those who are directly
responsible for bringing it to you:

Terry Moro, my wife, for reminding me how to maintain balance, even when
I’m writing a book!

Jonathan Gennick, Lead Editor, for his friendship and leadership

Jill Balzano, Editor, for her encouragement

Michael Rosenblum, Technical Reviewer, for his excellent comments
and suggestions

Mary Behr, Copy Editor, for making me look like a good writer

SPi Global, Compositor, Indexer, and Artist, for putting all the pieces together,
for making it easy to dip into the book, and for making my artwork look good.

xxiii

Foreword

I have some bad news and some good news. The bad news is: when you first meet Don Bales, he seems like
an overly confident know-it-all. The good news is: he’s not. Actually, he’s a great teacher/author and perhaps
does know it all when it comes to Oracle! I’ve not only read this book, but lived it. You see, I ended up working
for him. Because of this, I think I am the perfect person to introduce you to Beginning Oracle PL/SQL.

A good programmer knows that the purpose of a good book, like this one, is to introduce the concepts
of, the application of, and good examples of the subject: PL/SQL. Beginning Oracle PL/SQL goes above and
beyond the call by explaining when you can use PL/SQL and when you should not. It starts with a low level
understanding of basic SQL and builds your skills into understanding all types of complex PL/SQL.

My background may help you understand the profound effect that this book had on my career.
I graduated with a computer science degree from a small private school. When I graduated, I had a basic
understanding of databases and a good understanding of object-oriented programming languages.

My first job was at that same school, and it involved a lot of Java and a fair bit of PL/SQL. I was hired to
be an object-oriented Java programmer and to hack through whatever else needed to be done. Although
I never had formal training in it, or even understood the fundamentals of PL/SQL, I was able to hack
together applications written in the language.

Before reading this book and working with Don, I had programmed in PL/SQL for five years. Working
with Don reading this book changed the trajectory of my career. I looked both backward and forward to
identify my mistakes and future direction. Since reading this book, I write much less PL/SQL to accomplish
much more. It’s amazing what a difference the strong fundamentals taught in Beginning Oracle PL/SQL
provide to a person who has been effectively writing code for years, and that’s not even who it was written for!

I believe Don asked me to write this forward because he saw my abilities before and after reading and
learning from his book. I am the poster child for what his book can do for a programmer who has always
been able to cobble things together. It turned me from someone who was able to accomplish a task into
someone who can write PL/SQL in an efficient and consistent manner, and know when and why to use the
various features of the language.

The nature of this book sets it apart from others in its category. PL/SQL is a procedural language.
Therefore, it only makes sense that everything is taught in a procedural way, right? This is not the case, nor
should it be. Don is able to apply object-oriented principles where they make sense to greatly enhance the
use and effectiveness of PL/SQL.

Don is the perfect person to write this book. His background is unparalleled. He started off as a general
contractor and was able to teach himself how to be a strong programmer. That’s the least of it. Yes, his
programming skills are superior, but he has two, much bigger, assets: building skills/getting the most out of
others and delivering products that satisfy his customer’s needs. He does both with this book. If you read and
study it, your skills will be enhanced and you will become a confident PL/SQL programmer.

■ Foreword

xxiv

Don approached writing Beginning Oracle PL/SQL like everything else he does, by asking, “What is the
goal?” The goal of this book is to teach you, the reader, everything you should know about PL/SQL. This is
not an encyclopedia of every last Oracle function, procedure, etc. Instead, it’s a great tool that will show you
how to use PL/SQL, when to use PL/SQL, and what is possible with PL/SQL, when writing an application
that utilizes Oracle.

—T.J. Eakle
Web Developer

Argonne National Laboratory

www.ioug.org/join

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction (The Big Picture)
	Chapter 1: Relational SQL
	Tables
	An Entity-Relationship Diagram
	Data Definition Language (DDL)
	It’s Your Turn to Create a Table

	Indexes
	DDL Again
	It’s Your Turn to Create an Index

	Constraints
	Column Constraints
	Table Constraints
	Unique Key Constraint
	Primary Key Constraint
	Foreign Key Constraint

	It’s Your Turn to Create a Constraint

	Triggers
	Views
	Insert
	Insert . . .Values
	It’s Your Turn to Insert with Values
	Insert . . . Select
	It’s Your Turn to Insert with Select

	Update
	Fix a Mistake with Update
	It’s Your Turn to Update
	Update and Subqueries

	Delete
	A Change in Order
	It’s Your Turn to Delete

	Select
	Joins
	Joins in a Where Clause
	Joins in a From Clause

	It’s Your Turn to Select

	Your Working Example
	Your Example Narrative
	Your Example ERD
	Content
	Codes
	Intersections

	Create a Code Table
	It’s Your Turn to Create Code Tables
	Create a Content Table
	It’s Your Turn to Create Content Tables
	Create an Intersection Table
	It’s Your Turn to Create Intersection Tables

	Summary

	Chapter 2: Blocks, Functions, and Procedures
	Blocks
	Anonymous Blocks
	Anonymous Block Example
	It’s Your Turn to Execute an Anonymous Block

	Exceptions
	Common Exceptions
	Catching an Exception

	Functions
	Create a Function
	It’s Your Turn to Create a Function

	Procedures
	Create a Procedure
	It’s Your Turn to Create a Procedure

	Nested Blocks
	An Example of Nesting Blocks
	Rules for Nesting

	Packages
	Create a Package Specification
	It’s Your Turn to Create a Package Specification
	Create a Package Body
	It’s Your Turn to Create a Package Body
	Benefits of Using Packages

	Summary

	Chapter 3: Types, Variables, and Scope
	PL/SQL Data Types
	Variables
	Variable Naming
	Variable Declarations
	Variable Anchors
	Variable Assignments
	NULL Value
	It’s Your Turn to Declare Variables

	Scope
	Scope Rules
	It’s Your Turn to Scope Things Out

	Types
	Table Types
	Record Types
	Multidimensional Arrays

	Parameters
	Parameter Naming
	Parameter Declarations
	Parameter Scope
	It’s Your Turn to Declare Parameters

	Summary

	Chapter 4: Single Row Processing
	Inserts
	Catching a DUP_VAL_ON_INDEX Exception
	Using PL/SQL to Predetect a Duplicate
	IF I Don’t Tell You Now, When ELSE Can I?
	Using SQL to Predetect a Duplicate
	It’s Your Turn to Insert

	Updates
	Updating a Row
	Using SQL to Perform Complex Updates

	Deletes
	Selects
	No Data Found
	Too Many Rows
	It’s Your Turn to Select

	Summary

	Chapter 5: Multirow Processing
	Cursors
	Cursor Declarations
	Fetching Rows from a C ursor Manually
	Cursor Records
	A Singleton Cursor
	It’s Your Turn to Fetch Manually
	A Code Table Package
	A Worker Table Package
	Write a Modularized Version of In sert with PL/SQL Detection
	My Solution

	Fetching Rows from a Cursor Automatically
	It’s Your Turn to Fetch Automatically

	Bulk Collect
	Bulk Collect with a Cursor
	Bulk Collect with a Select Statement
	It’s Your Turn to Bulk Collect

	FORALL
	Summary

	Chapter 6: Object-Relational SQL
	Information Modeling
	Object Orientation
	Key Tenets
	Reuse
	Method-Level Reuse
	Component-Level Reuse
	Application-Level Reuse

	Service Orientation
	A Roadmap to Reality
	Step 1: Table Packages
	Table Method Encapsulation
	Table Method Polymorphism

	Step 2: User-Defined Types
	Step 3: Object Views
	Step 4: Object Tables

	A Change in Order
	Object Types
	Create a User-Defined Type Specification
	Create a User-Defined Type Implementation
	It’s Your Turn to Create a User-Defined Type

	Object Views
	Create an Object View
	It’s Your Turn to Create an Object View

	Object Tables
	Create an Object Table
	It’s Your Turn to Create an Object Table

	Impedance Mismatch?
	Nested Types and Collections
	It’s Your Turn to Prove There’s No Impedance Mismatch

	Summary

	Chapter 7: Troubleshooting
	Prevention
	Anchors
	Data Type Prefixes
	Explicit Conversions

	Preparation
	Blocking
	Bread Crumbs

	After the Fact
	Success Messages
	Failure Messages
	It’s Your Turn to Use put_line( )

	As It Happens
	A DEBUG Table
	A DEBUGGER Package
	It’s Your Turn to Use Debug Logging

	One Step at a Time
	Debugging with Oracle SQL Developer
	Debugging Anonymous PL/SQL
	Debugging with TOAD for Oracle
	Debugging with Visual Studio
	It’s Your Turn to Use a Debugger

	Profiling PL/SQL
	Profiler’s Tables
	Profiler’s Methods
	Profiling Reports
	It’s Your Turn to Profile

	Profiling SQL
	Explain Plan
	Physics vs . Explain Plan
	It’s Your Turn to Use Explain Plan
	TKPROF

	Summary

	Chapter 8: Testing
	SQL Test Patter ns
	PL/SQL Test P atterns
	A Testing Tool
	A TEST Table
	A TEST Package Specification
	A TEST Package Bod y
	It’s Your Turn to Create a Testing Tool

	Testing
	Testing a Code Table Package
	It’s Your Turn to Test a Code Table Package
	Testing a Content Table Package
	It’s Your Turn to Test a Co ntent Table Package
	Testing an Intersection Table Package
	It’s Your Tur n to Test an Intersection Table Package
	Testing a Type
	It’s Your Turn to Test a Type

	Automating Testing
	Automate Test Processing
	It’s Your Turn to Automate Test Processing

	Summary

	Chapter 9: Documenting
	Indestructible Documentation
	SQL*Plus Documentation Tools
	GUI Development Environment Tools
	Rules for Documentation Comments

	Documentation on Demand
	A Text-Based Documentation Formatting Tool
	Accessing Documentation on Demand
	It’s Your Turn to Access Documentation on Demand

	Distributable Documentation
	An HTML-Based Documentation Formatting Tool
	Generating Distributable Documentation
	It’s Your Turn to Generate Distributable Documentation

	Documentation Distribution
	Summary

	Chapter 10: Examples
	Polymorphic Commands
	Parametric SQL
	Code Table Methods
	get_id( )
	get_code_descr( )
	get_code_id_descr( )

	Content Table Methods
	get_row( )
	get_code_id_name( ), get_code( ), and get_name( )
	is_duplicate( )
	set_row( )

	Intersection Table Methods
	is_active( )
	is_history( )

	Hierarchical Table Methods
	create_id_context( )
	get_code_context( )
	get_id_context( )
	get_name_context( )

	The Black Box
	Table Methods
	get_id
	inactivate( )

	Universal Methods
	help
	initialize
	test

	Divide and Conquer
	Data Migration
	process

	On-Demand Data Processing
	process
	start_logging( )
	stop_logging( )

	Polling Data Processing
	process
	get_next( )
	quit
	enable
	disable
	set_status( )
	get_status
	status

	Interfacing
	process
	is_downloaded
	download
	set_downloaded
	is_uploaded
	upload
	set_uploaded

	Reporting
	get_report( )
	set_report( )
	report( )

	Summary

	Appendix A: How to Download, Install, and Use Oracle
	How to Download Oracle Database Software
	How to Install Oracle Database Software
	How to Use SQL*Plus
	How to Download This Book’s Source Code
	How to Create a New Username
	How to Write a SQL*Plus Script
	How to Execute a SQL*Plus Script
	How to Describe Your Tables and Stored Procedures

	Index

