oue

Teach Yourself SQL in 21 Days, Second Edition

(> MextChapter

Table of Contents:

Introduction

Week 1 at a Glance

Day 1 Introduction to SQL

Day 2 Introduction to the Query: The SELECT Statement

Day 3 Expressions, Conditions, and Operators

Day 4 Functions: Malding the Data You Retrieve

Day 5 Clausesin SQL

Day 6 Joining Tables

Day 7 Subqueries: The Embedded SELECT Statement

Week 1in Review

Week 2 at a Glance

Day 8 Manipulating Data

Day 9 Creating and Maintaining Tables

Day 10 Creating Views and I ndexes

Day 11 Controlling Transactions

Day 12 Database Security

Day 13 Advanced SQL Topics

Day 14 Dynamic Uses of SQL

Week 2in Review

Week 3 at a Glance

Day 15 Streamlining SQL Statementsfor Improved Performance

Day 16 Using Viewsto Retrieve Useful I nfor mation from the Data Dictionary

Day 17 Using SQL to Generate SQL Statements

Day 18 PL/SQL : An Introduction

Day 19 Transact-SQL : An Introduction

Day 20 SQL *Plus

Day 21 Common SQL Mistakes/Errors and Resolutions

Week 3in Review

Appendixes

A Glossary of Common SQL Statements

B Source Code Listingsfor the C++ Program Used on Day 14

C Source Code Listingsfor the Delphi Program Used on Day 14

D Resources

E ASCII Table

F Answersto Quizzes and Excercises

(> MextChapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘.h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

Join the National Guard Car Computer

Serve in your own backyard Get Free Info Here. No Complete Diagnostic Software Tool DTC Codes,
Obligation Sensor Readings & More!
www.military.com www.digimoto.com

PUBLISHING

(5 NextChapter

Teach Yourself SQL in 21 Days, Second Edition

Acknowledgments

A special thanks to the following individuals: foremost to my loving wife, Tina, for her tolerance and endless support, to Dan Wilson for
his contributions, and to Thomas McCarthy at IUPUI. Also, thank you Jordan for your encouragement over the past few years.

- Ryan K. Sephens

Special thanks to my wife for putting up with me through this busiest of times. | apologize to my mom for not seeing her as often as |
should (I'll make it up to you). Also, thanks to my loyal dog, Toby. He was with me every night and wouldn't leave my side.

- Ronald Plew

Special thanks to the following people: Jeff Perkins, David Blankenbeckler, Shannon Little, Jr., Clint and Linda Morgan, and Shannon and
Kaye Little.

This book is dedicated to my beautiful wife, Becky. | am truly appreciative to you for your support, encouragement, and love. Thanks for
staying up with me during all those late-night sessions. Y ou are absol utely the best.

- Bryan Morgan
Thanks to my family, Leslie, Laura, Kelly, Valerie, Jeff, Mom, and Dad. Their support made working on this book possible.

- Jeff Perkins

About the Authors

Ryan K. Stephens

Ryan K. Stephens started using SQL as a programmer/analyst while serving on active duty in the Indiana Army National Guard. Hundreds
of programs later, Ryan became a database administrator. He currently works for Unisys Federal Systems, where he is responsible for
government-owned databases throughout the United States. In addition to his full-time job, Ryan teaches SQL and various database classes
at Indiana University-Purdue University Indianapolis. He also serves part-time as a programmer for the Indiana Army National Guard.
Along with Ron Plew and two others, Ryan owns a U.S. patent on a modified chess game. Some of his interests include active sports,
chess, nature, and writing. Ryan livesin Indianapolis with his wife, Tina, and their three doas, Bailey, Onyx, and Sugar

Ronald R. Plew

Ronald R. Plew is a database administrator for Unisys Federal Systems. He holds a bachelor of science degree in business
administration/management from the Indiana Institute of Technology. He is an instructor for Indiana University-Purdue University
Indianapolis where he teaches SQL and various database classes. Ron also serves as a programmer for the Indiana Army National Guard.
His hobbies include collecting Indy 500 racing memorabilia. He also owns and operates Plew's Indy 500 Museum. He livesin Indianapolis
with hiswife, Linda. They have four grown children (Leslie, Nancy, Angela, and Wendy) and eight grandchildren (Andy, Ryan, Hally,
Morgan, Schyler, Heather, Gavin, and Regan).

Bryan Morgan

Bryan Morgan is a software developer with TASC, Inc., in Fort Walton Beach, Florida. In addition to writing code and chasing the golf
balls he hits, Bryan has authored several books for Sams Publishing includingVisual J++ Unleashed, Java Developer's Reference, and
Teach Yourself ODBC Programming in 21 Days He livesin Navarre, Florida, with his wife, Becky, and their daughter, Emma.

Jeff Perkins

Jeff Perkinsis asenior software engineer with TYBRIN Corporation. He has been a program manager, team leader, project lead, technical
lead, and analyst. A graduate of the United States Air Force Academy, he is a veteran with more than 2,500 hours of flying time asa
navigator and bombardier in the B-52. He has co-authored three other books, Teach Yourself NT Workstation in 24 Hours Teach Yourself
ODBC Programming in 21 Days and Teach Yourself ActiveX in 21 Days.

Tel UsWhat You Think!

Asareader, you are the most important critic and commentator of our books. We value your opinion and want to know what we're doing
right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.
Y ou can help us make strong books thatmeet your needs and give you the computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our CompuServe forum by typingGO SAMS at any prompt.
If you prefer the World Wide Web, check out our siteatht t p: / / www. ncp. com

NOTE: If you have atechnical question about this book, call the technical support line at 317%581-3833 or send e-mail to
su ort .com,

Asthe team leader of the group that created this book, | welcome your comments. Y ou can fax, email, or write me directly to let me know
what you did or didn't like about this book-as well as what we can do to make our books stronger. Here's the information:

FAX: 317-581-4669

E-mail: enterprise ngr @ans. ncp. com

Mail: Rosemarie Graham
Comments Department
Sams Publishing

201 W. 103rd Street
Indianapolis, IN 46290

I ntroduction

Who Should Read ThisBook?

Late one Friday afternoon your boss comesinto your undersized cubicle and drops a new project on your desk. This project looksjust like
the others you have been working on except it includes ties to several databases. Recently your company decided to move away from
homegrown, flat-file dataand is now using arelational database. Y ou have seen terms like SQL, tables, records, queries, and RDBMS, but
you don't remember exactly what they all mean. Y ou notice the due date on the program is three, no, make that two, weeks away.
(Apparently it had been on your boss's desk for aweek!) Asyou begin looking for definitions and sample code to put those definitions into
context, vou discover this book.

This book is for people who want to learn the fundamentals of Structured Query Language (SQL)-quickly. Through the use of countless
examples, this book depicts all the major components of SQL aswell as options that are available with various database implementations.
Y ou should be able to apply what you learn here to relational databases in a business setting.

Overview

Thefirst 14 days of this book show you how to use SQL to incorporate the power of modern relationa databases into your code. By the
end of Week 1, you will be able to use basic SQL commands to retrieve selected data.

NOTE: If you are familiar with the basics and history of SQL, we suggest you skim the first week's chapters and begin in
earnest with Day 8, "Manipulating Data."

At the end of Week 2, you will be able to use the more advanced features of SQL., such as stored procedures and triggers, to make your
programs more powerful. Week 3 teaches you how to streamline SQL code; use the data dictionary; use SQL to generate more SQL code;
work with PL/SQL, Transact-SQL, and SQL* Plus; and handle common SQL mistakes and errors.

The syntax of SQL is explained and then brought to life in examples using Personal Oracle?, Microsoft Query, and other database tools.
Y ou don't need access to any of these products to use this book—-it can stand alone as an SQL syntax reference. However, using one of
these platforms and walking though the examples will help you understand the nuances.

Conventions Used in This Book

This book uses the following typeface conventions:

¢ Menu names are separated from menu options by a vertical bar (]). For example, File | Open means "select the Open option from
the File menu.”

* New terms appear initalic.

« All codein the listings that you typein (input) appearsinbol df ace nmonospace. Output appearsin standard monospace.
e Theinput label and output label also identify the nature of the code.

¢ Many code-related terms within the text also appear inmonospace,

o Paragraphs that begin with the analysis label explain the preceding code sample.

¢ The syntax label identifies syntax statements.

The following specia design features enhance the text:

NOTE: Notes explain interesting or important points that can help you understand SQL concepts and techniques.

TIP: Tipsare little pieces of information to begin to help you in real-world situations. Tips often offer shortcuts or
information to make atask easier or faster.

WARNING: Warnings provide information about detrimental performance issues or dangerous errors. Pay careful
attention to Warnings.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

Week 1 At A Glance

Let's Get Started

Week 1 introduces SQL from a historical and theoretical perspective. The first statement you learn about isthe SELECT statement, which enables
you to retrieve data from the database based on various user-specified options. Also during Week 1 you study SQL functions, query joins, and SQL
subqueries (a query within a query). Many examples help you understand these important topics. These examples use Oracle?, Sybase SQL Server,
Microsoft Access, and Microsoft Query and highlight some of the similarities and differences among the products. The content of the examples

should be useful and interesting to a broad group of readers.

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

-Day 1-
I ntroduction to SQL

A Brief History of SQL

The history of SQL beginsin an IBM laboratory in San Jose, California, where SQL was developed in the late 1970s. The initials stand for
Structured Query Language, and the language itself is often referred to as "sequel.” It was originally developed for IBM's DB2 product (arelational
database management system, or RDBMS, that can still be bought today for various platforms and environments). In fact, SQL makes an RDBMS
possible. SQL is anonprocedural language, in contrast to the procedural or third-generation languages (3GLSs) such as COBOL and C that had been
created up to that time.

NOTE: Nonprocedural means what rather than how. For example, SQL describes what data to retrieve, delete, or insert, rather than
how to perform the operation.

The characteristic that differentiatesa DBMS from an RDBMS is that the RDBM S provides a set-oriented database language. For most RDBM S,
this set-oriented database language is SQL. Set oriented means that SQL processes sets of data in groups.

Two standards organizations, the American National Standards Institute (ANSI) and the International Standards Organization (1SO), currently
promote SQL standards to industry. The ANSI-92 standard is the standard for the SQL used throughout this book. Although these standard-making
bodies prepare standards for database system designers to follow, all database products differ from the ANSI standard to some degree. In addition,
most systems provide some proprietary extensionsto SQL that extend the language into atrue procedural language. We have used various RDBM Ss
to prepare the examplesin this book to give you an idea of what to expect from the common database systems. (We discuss procedural SQL --known
as PL/SQL--on Day 18, "PL/SQL: An Introduction,” and Transact-SQL on Day 19, "Transact-SQL: An Introduction.")

A Brief History of Databases

A little background on the evolution of databases and database theory will help you understand the workings of SQL. Database systems store
information in every conceivable business environment. From large tracking databases such as airline reservation systemsto a child's baseball card
collection, database systems store and distribute the data that we depend on. Until the last few years, large database systems could be run only on
large mainframe computers. These machines have traditionally been expensive to design, purchase, and maintain. However, today's generation of
powerful, inexpensive workstation computers enables programmers to design software that maintains and distributes data quickly and inexpensively.

Dr. Codd's 12 Rulesfor a Relational Database M odel

The most popular data storage model is the relational database, which grew from the seminal paper "A Relational Model of Datafor Large Shared
Data Banks," written by Dr. E. F. Codd in 1970. SQL evolved to service the concepts of the relational database model. Dr. Codd defined 13 rules,
oddly enough referred to as Codd's 12 Rules, for the relational model:

0. A relational DBMS must be able to manage databases entirely through its relational capabilities.
1. Information rule-- All information in arelationa database (including table and column names) is represented explicitly as valuesin tables.

2. Guaranteed access-Every value in arelational database is guaranteed to be accessible by using a combination of the table name, primary
key value, and column name.

3. Systematic null value support--The DBMS provides systematic support for the treatment of null values (unknown or inapplicable data),

distinct from default values, and independent of any domain.

4. Active, online relational catalog--The description of the database and its contents is represented at the logical level as tables and can
therefore be queried using the database language.

5. Comprehensive data sublanguage--At least one supported language must have a well-defined syntax and be comprehensive. It must
support data definition, manipulation, integrity rules, authorization, and transactions.

6. View updating rule--All views that are theoretically updatable can be updated through the system.
7. Set-level insertion, update, and deletion--The DBM S supports not only set-level retrievals but also set-level inserts, updates, and deletes.

8. Physical dataindependence--Application programs and ad hoc programs are logically unaffected when physical access methods or
storage structures are altered.

9. Logical data independence--Application programs and ad hoc programs are logically unaffected, to the extent possible, when changes are
made to the table structures.

10. Integrity independence--The database |anguage must be capable of defining integrity rules. They must be stored in the online catalog,
and they cannot be bypassed.

11. Distribution independence--Application programs and ad hoc requests are logically unaffected when datais first distributed or when it is
redistributed.

12. Nonsubversion--1t must not be possible to bypass the integrity rules defined through the database language by using lower-level
languages.

Most databases have had a " parent/child" relationship; that is, a parent node would contain file pointersto its children. (See Figure 1.1.)

Figure1.1.
Codd'srelational database management system.

This method has several advantages and many disadvantages. In its favor is the fact that the physical structure of data on a disk becomes
unimportant. The programmer simply stores pointers to the next location, so data can be accessed in this manner. Also, data can be added and
deleted easily. However, different groups of information could not be easily joined to form new information. The format of the data on the disk
could not be arbitrarily changed after the database was created. Doing so would require the creation of a new database structure.

Codd'sideafor an RDBMS uses the mathematical concepts of relational algebrato break down datainto sets and related common subsets.

Because information can naturally be grouped into distinct sets, Dr. Codd organized his database system around this concept. Under the relational
model, datais separated into sets that resemble a table structure. This table structure consists of individual data elements called columns or fields. A
single set of agroup of fields is known as arecord or row. For instance, to create arelational database consisting of employee data, you might start
with atable called EMPLOYEE that contains the following pieces of information: Nane, Age, and Cccupat i on. These three pieces of data make up
the fields in the EMPLOYEE table, shownin Table 1.1.

Table1.1. The EMPLOYEE table.

|Name ||Age||Occupation |
|will williams |25 ||Electrical engineer|
[Dave Davidson |[34 |[Museum curator |
[Jan Janis |[42]|Chef |
[Bill Jackson |[19 |{Student |
[Don DeMarco |[32 ||Game programmer]|
|Becky Boudreaux||25 ||Mode| |

The six rows are the records in the EMPLOYEE table. To retrieve a specific record from this table, for example, Dave Davidson, a user would instruct
the database management system to retrieve the records where the NAME field was equal to Dave Davidson. If the DBM S had been instructed to
retrieve al the fieldsin the record, the employee's name, age, and occupation would be returned to the user. SQL isthe language that tells the
database to retrieve this data. A sample SQL statement that makes this query is

SELECT *
FROM EMPLOYEE

Remember that the exact syntax is not important at this point. We cover this topic in much greater detail beginning tomorrow.

Because the various data items can be grouped according to obvious relationships (such as the relationship of Enpl oyee Nane to Enpl oyee Age),
therelational database model gives the database designer a great deal of flexibility to describe the relationships between the data elements. Through
the mathematical concepts of join and union, relational databases can quickly retrieve pieces of data from different sets (tables) and return them to
the user or program as one "joined" collection of data. (See Figure 1.2.) The join feature enables the designer to store sets of information in separate
tables to reduce repetition.

Figure1.2.
Thejoin feature.

Figure 1.3 shows a union. The union would return only data common to both sources.

Figure1.3.
The union feature.

Here's a simple example that shows how data can be logically divided between two tables. Table 1.2 is called RESPONSI BI LI TI ES and contains two
fields: NAME and DUTI ES.

Table1.2. The RESPONSIBILITIEStable.

|Name ||Duti&s |
[Becky Boudreaux|[Smile |
|Becky Boudreaux”WaIk |
|
!

Bill Jackson ||Study
Bill Jackson |Interview for jobs|

It would be improper to duplicate the employee's AGE and OCCUPATI ON fields for each record. Over time, unnecessary duplication of data would
waste a great deal of hard disk space and increase access time for the RDBMS. However, if NAME and DUTI ES were stored in a separate table named
RESPONSI BI LI TI ES, the user could join the RESPONSI BI LI TI ES and EMPLOYEE tables on the NAVE field. Instructing the RDBMSto retrieve all
fields from the RESPONSI BI LI TI ES and EMPLOYEE tables where the NAME field equals Becky Boudr eaux would return Table 1.3.

Table 1.3. Return valuesfrom retrieval where NAM E equals Becky Boudreaux.

|Name ||Age||Occupation||Duti&s|
|Becky Boudreaux||25 ||Mode| ||Smi|e |
[Becky Boudreaux|[25 |[Model [[walk |

More detailed examples of joins begin on Day 6, "Joining Tables."

Designing the Database Structure

The most important decision for a database designer, after the hardware platform and the RDBM S have been chosen, is the structure of the tables.
Decisions made at this stage of the design can affect performance and programming later during the development process. The process of separating
datainto distinct, unique setsis called normalization.

Today's Database L andscape

Computing technology has made a permanent change in the ways businesses work around the world. Information that was at one time stored in
warehouses full of filing cabinets can now be accessed instantaneously at the click of a mouse button. Orders placed by customersin foreign
countries can now be instantly processed on the floor of a manufacturing facility. Although 20 years ago much of this information had been
transported onto corporate mainframe databases, offices till operated in a batch-processing environment. If a query needed to be performed,
someone notified the management information systems (M1S) department; the requested data was delivered as soon as possible (though often not
soon enough).

In addition to the development of the relational database model, two technologies led to the rapid growth of what are now called client/server
database systems. The first important technology was the personal computer. Inexpensive, easy-to-use applications such as Lotus 1-2-3 and Word
Perfect enabled employees (and home computer users) to create documents and manage data quickly and accurately. Users became accustomed to

continually upgrading systems because the rate of change was so rapid, even as the price of the more advanced systems continued to fall.

The second important technology was the local area network (LAN) and its integration into offices across the world. Although users were
accustomed to terminal connections to a corporate mainframe, now word processing files could be stored locally within an office and accessed from
any computer attached to the network. After the Apple Macintosh introduced a friendly graphical user interface, computers were not only
inexpensive and powerful but also easy to use. In addition, they could be accessed from remote sites, and large amounts of data could be off-loaded
to departmental data servers.

During this time of rapid change and advancement, a new type of system appeared. Called client/server development because processing is split
between client computers and a database server, this new breed of application was aradical change from mainframe-based application programming.
Among the many advantages of this type of architecture are

1 Reduced maintenance costs
1+ Reduced network load (processing occurs on database server or client computer)
1 Multiple operating systems that can interoperate as long as they share a common network protocol

1 Improved dataintegrity owing to centralized data location
In Implementing Client/Server Computing, Bernard H. Boar defines client/server computing as follows:

Client/server computing is a processing model in which asingle application is partitioned between multiple processors (front-end and back-
end) and the processors cooperate (transparent to the end user) to complete the processing as a single unified task. Implementing
Client/Server Computing A client/server bond product ties the processors together to provide a single system image (illusion). Shareable
resources are positioned as requestor clients that access authorized services. The architecture is endlessly recursive; in turn, servers can
become clients and request services of other servers on the network, and so on and so on.

This type of application devel opment requires an entirely new set of programming skills. User interface programming is now written for graphical
user interfaces, whether it be MS Windows, IBM OS/2, Apple Macintosh, or the UNIX X-Window system. Using SQL and a hetwork connection,
the application can interface to a database residing on aremote server. The increased power of personal computer hardware enables critical database
information to be stored on arelatively inexpensive standalone server. In addition, this server can be replaced later with little or no change to the
client applications.

A Cross-Product Language

Y ou can apply the basic concepts introduced in this book in many environments--for example, Microsoft Access running on a single-user Windows
application or SQL Server running with 100 user connections. One of SQL's greatest benefitsis that it is truly a cross-platform language and a cross-
product language. Because it is also what programmers refer to as a high-level or fourth-generation language (4GL), alarge amount of work can be
donehigher-level language 4GL (fourth-generation) language fourth-generation (4GL) language in fewer lines of code.

Early Implementations

Oracle Corporation released the first commercial RDBM S that used SQL. Although the original versions were developed for VAX/VMS systems,
Oracle was one of the first vendors to release a DOS version of its RDBMS. (Oracle is now available on more than 70 platforms.) In the mid-1980s
Sybase released its RDBM S, SQL Server. With client libraries for database access, support for stored procedures (discussed on Day 14, "Dynamic
Uses of SQL"), and interoperability with various networks, SQL Server became a successful product, particularly in client/server environments. One
of the strongest points for both of theseSQL Server powerful database systemsis their scalability across platforms. C language code (combined with
SQL) written for Oracle on aPC is virtually identical to its counterpart written for an Oracle database running on aVAX system.

SQL and Client/Server Application Development

The common thread that runs throughout client/server application development is the use client/server computing of SQL and relational databases.
Also, using this database technology in a single-user business application positions the application for future growth.

An Overview of SQL

SQL isthe de facto standard language used to manipulate and retrieve data from these relational databases. SQL enables a programmer or database
administrator to do the following:

1 Modify adatabase's structure

1 Change system security settings

1 Add user permissions on databases or tables
1 Query adatabase for information

1 Update the contents of a database

NOTE: Theterm SQL can be confusing. The S, for Structured, and the L, for Language, are straightforward enough, but the Q isa
little misleading. Q, of course, stands for "Query," which--if taken literally--would restrict you to asking the database questions. But
SQL does much more than ask questions. With SQL you can also create tables, add data, delete data, splice data together, trigger
actions based on changes to the database, and store your queries within your program or database.

Unfortunately, there is no good substitute for Query. Obviously, Structured Add Modify Delete Join Store Trigger and Query
Language (SAMDJSTQL) isabit cumbersome. In the interest of harmony, we will stay with SQL. However, you now know that its
function is bigger than its name.

The most commonly used statement in SQL is the SELECT statement (see Day 2, "Introduction to the Query: The SELECT Statement"), which
retrieves data from the database and returns the data to the user. The EMPLOYEE table exampleillustrates atypical example of a SELECT statement
situation. In addition to the SELECT statement, SQL provides statements for creating new databases, tables, fields, and indexes, as well as statements
for inserting and deleting records. ANSI SQL also recommends a core group of data manipulation functions. As you will find out, many database
systems also have tools for ensuring data integrity and enforcing security (see Day 11, "Controlling Transactions") that enable programmers to stop
the execution of agroup of commands if a certain condition occurs.

Popular SQL Implementations

This section introduces some of the more popular implementations of SQL, each of which hasits own strengths and weaknesses. Where some
implementations of SQL have been developed for PC use and easy user interactivity, others have been developed to accommodate very large
databases (VLDB). This sections introduces selected key features of some implementations.

NOTE: In addition to serving as an SQL reference, this book also contains many practical software development examples. SQL is
useful only when it solves your real-world problems, which occur inside your code.

Microsoft Access

We use Microsoft Access, a PC-based DBMS, to illustrate some of the examplesin thistext. Accessis very easy to use. Y ou can use GUI tools or
manually enter your SQL statements.

Personal Oracle7

We use Personal Oracle7, which represents the larger corporate database world, to demonstrate command-line SQL and database management
techniques. (These techniques are important because the days of the standalone machine are drawing to an end, as are the days when knowing one
database or one operating system was enough.) In command-line REI, simple stand+[cedillalone SQL statements are entered into Oracle's SQL*Plus
tool. Thistool then returns data to the screen for the user to see, or it performs the appropriate action on the database.

Most examples are directed toward the beginning programmer or first-time user of SQL. We begin with the simplest of SQL statements and advance
to the topics of transaction management and stored procedure programming. The Oracle RDBMS is distributed with afull complement of
development tools. It includes a C++ and Visual Basic language library (Oracle Objects for OLE) that can link an application to a Personal Oracle
database. It also comes with graphical tools for database, user, and object administration, as well asthe SQL*Loader utility, which is used to import
and export data to and from Oracle.

NOTE: Personal Oracle7 is a scaled-down version of the full-blown Oracle7 server product. Personal Oracle7 allows only single-
user connections (as the name implies). However, the SQL syntax used on this product is identical to that used on the larger, more
expensive versions of Oracle. In addition, the tools used in Personal Oracle7 have much in common with the Oracle7 product.

We chose the Personal Oracle7 RDBMS for several reasons:

1 Itincludes nearly all the tools needed to demonstrate the topics discussed in this book.
1 Itisavailable on virtually every platform in use today and is one of the most popular RDBM S products worldwide.

1 A 90-day trial copy can be downloaded from Oracle Corporation's World Wide Web server (http://www.or acle.com).

Figure 1.4 shows SQL* Plus from this suite of tools.

Figure 1.4.
Oracle's SQL*Plus.

TIP: Keep in mind that nearly all the SQL code given in this book is portable to other database management systems. In cases
where syntax differs greatly among different vendors' products, examples are given to illustrate these differences.

Microsoft Query

Microsoft Query (see Figure 1.5) isauseful query tool that comes packaged with Microsoft's Windows devel opment tools, Visual C++, and Visua
Basic. It uses the ODBC standard to communicate with underlying databases. Microsoft Query passes SQL statements to a driver, which processes
the statements before passing them to a database system.

Figure 1.5.
Microsoft Query.

Open Database Connectivity (ODBC)

ODBC isafunctiona library designed to provide a common Application Programming Interface (API) to underlying database systems. It
communicates with the database through alibrary driver, just as Windows communicates with a printer via a printer driver. Depending on the
database being used, a networking driver may be required to connect to aremote database. The architecture of ODBC isillustrated in Figure 1.6.

Figure 1.6.
ODBC structure.

The unique feature of ODBC (as compared to the Oracle or Sybase libraries) is that none of its functions are database-vendor specific. For instance,
you can use the same code to perform queries against a Microsoft Access table or an Informix database with little or no modification. Once again, it
should be noted that most vendors add some proprietary extensions to the SQL standard, such as Microsoft's and Sybase's Transact-SQL and
Oracle's PL/SQL.

Y ou should always consult the documentation before beginning to work with a new data source. ODBC has developed into a standard adopted into
many products, including Visual Basic, Visual C++, FoxPro, Borland Delphi, and PowerBuilder. As always, application developers need to weigh
the benefit of using the emerging ODBC standard, which enables you to design code without regard for a specific database, versus the speed gained
by using a database specific function library. In other words, using ODBC will be more portable but slower than using the Oracle7 or Sybase
libraries.

SQL in Application Programming

SQL was originally made an ANSI standard in 1986. The ANSI 1989 standard (often called SQL-89) defines three types of interfacing to SQL
within an application program:

1 Module Language-- Uses procedures within programs. These procedures can be called by the application program and can return values to
the program via parameter passing.

1 Embedded SQL--Uses SQL statements embedded with actual program code. This method often requires the use of a precompiler to process
the SQL statements. The standard defines statements for Pascal, FORTRAN, COBOL, and PL/1.

1 Direct Invocation--Left up to the implementor.

Before the concept of dynamic SQL evolved, embedded SQL was the most popular way to use SQL within a program. Embedded SQL, which is still
used, uses static SQL--meaning that the SQL statement is compiled into the application and cannot be changed at runtime. The principleis much the
same as a compiler versus an interpreter. The performance for this type of SQL is good; however, it is not flexible--and cannot always meet the
needs of today's changing business environments. Dynamic SQL is discussed shortly.

The ANSI 1992 standard (SQL-92) extended the language and became an international standard. It defines three levels of SQL compliance: entry,
intermediate, and full. The new features introduced include the following:

1 Connections to databases
1+ Scrollable cursors
1 Dynamic SQL

1 Outer joins

This book covers not only all these extensions but also some proprietary extensions used by RDBMS vendors. Dynamic SQL allows you to prepare
the SQL statement at runtime. Although the performance for this type of SQL is not as good as that of embedded SQL, it provides the application
developer (and user) with agreat degree of flexibility. A call-level interface, such as ODBC or Sybase's DB-Library, is an example of dynamic SQL.

Call-level interfaces should not be a new concept to application programmers. When using ODBC, for instance, you simply fill avariable with your
SQL statement and call the function to send the SQL statement to the database. Errors or results can be returned to the program through the use of
other function calls designed for those purposes. Results are returned through a process known as the binding of variables.

Summary

Day 1 covers some of the history and structure behind SQL. Because SQL and relational databases are so closely linked, Day 1 also covers (albeit
briefly) the history and function of relational databases. Tomorrow is devoted to the most important component of SQL: the query.

Q&A

Q Why should | be concerned about SQL?

A Until recently, if you weren't working on a large database system, you probably had only a passing knowledge of SQL. With the advent of
client/server development tools (such as Visual Basic, Visual C++, ODBC, Borland's Delphi, and Powersoft's PowerBuilder) and the
movement of several large databases (Oracle and Sybase) to the PC platform, most business applications being devel oped today require a
working knowledge of SQL.

Q Why do | need to know anything about relational database theory to use SQL?

A SQL was developed to service relational databases. Without a minimal understanding of relational database theory, you will not be able to
use SQL effectively except in the most trivial cases.

Q All the new GUI tools enable meto click a button to write SQL. Why should | spend time learning to write SQL manually?

A GUI tools have their place, and manually writing SQL hasiits place. Manually written SQL is generally more efficient than GUI-written
SQL. Also, aGUI SQL statement is not as easy to read as a manually written SQL statement. Finally, knowing what is going on behind the
scenes when you use GUI tools will help you get the most out of them.

Q So, if SQL isstandardized, should | be able to program with SQL on any databases?

A No, you will be able to program with SQL only on RDBM S databases that support SQL, such as MS-Access, Oracle, Sybase, and

Informix. Although each vendor's implementation will differ slightly from the others, you should be able to use SQL with very few
adjustments.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. What makes SQL a nonprocedural language?

2. How can you tell whether a database istruly relational ?

3. What can you do with SQL?

4. Name the process that separates data into distinct, unique sets.
Exercise

Determine whether the database you use at work or at homeistruly relational.

{ % Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
(‘JA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 2 -
Introduction to the Query: The SeLECT Statement
Objectives
Welcome to Day 2! By the end of the day you will be able to do the following:
1 Writean SQL query
1 Select and list al rows and columns from atable
1 Select and list selected columns from atable

1 Select and list columns from multiple tables

Background

To fully use the power of arelational database as described briefly on Day 1, "Introduction to SQL," you need to communicate with it. The ultimate
communication would be to turn to your computer and say, in aclear, distinct voice, "Show me all the left-handed, brown-eyed bean counters who
have worked for this company for at least 10 years." A few of you may aready be doing so (talking to your computer, not listing bean counters).
Everyone else needs a more conventional way of retrieving information from the database. Y ou can make this vital link through SQL's middle name,
"Query."

Asmentioned on Day 1, the name Query is really amisnomer in this context. An SQL query is not necessarily a question to the database. It can be a
command to do one of the following:

1 Build or delete atable

1 Insert, modify, or delete rows or fields

1 Search several tables for specific information and return the results in a specific order
1 Modify security information

A query can also be asimple question to the database. To use this powerful tool, you need to learn how to write an SQL query.

General Rulesof Syntax

Asyou will find, syntax in SQL is quite flexible, although there are rules to follow asin any programming language. A simple query illustrates the
basic syntax of an SQL select statement. Pay close attention to the case, spacing, and logical separation of the components of each query by SQL
keywords.

SELECT NAME, STARTTERM ENDTERM
FROM PRESI DENTS
VWHERE NAME = ' LI NCOLN ;

In this example everything is capitalized, but it doesn't have to be. The preceding query would work just aswell if it were written like this:

sel ect nane, startterm endterm
from presidents
where nane = ' LI NCOLN ;

Notice that LI NCOLN appearsin capital |ettersin both examples. Although actual SQL statements are not case sensitive, referencesto datain a
database are. For instance, many companies store their datain uppercase. In the preceding example, assume that the column name stores its contents
in uppercase. Therefore, a query searching for 'Lincoln’ in the name column would not find any data to return. Check your implementation and/or
company policies for any case requirements.

NOTE: Commandsin SQL are not case sensitive.

Take another ook at the sample query. I's there something magical in the spacing? Again the answer is no. The following code would work as well:

sel ect nane, startterm endtermfrom presidents where name = ' LI NCOLN ;

However, some regard for spacing and capitalization makes your statements much easier to read. It also makes your statements much easier to
maintain when they become a part of your project.

Another important feature of ; (semicolon)semicolon (;)the sample query is the semicolon at the end of the expression. This punctuation mark tells
the command-line SQL program that your query is complete.

If the magic isn't in the capitalization or the format, then just which elements are important? The answer is keywords, or the words in SQL that are
reserved as a part of syntax. (Depending on the SQL statement, a keyword can be either a mandatory element of the statement or optional.) The
keywords in the current example are

1 SELECT
1 FROM
1 WHERE

Check the table of contentsto see some of the SQL keywords you will learn and on what days.

The Building Blocks of Data Retrieval: SELECT and FROM

Asyour experience with SQL grows, you will notice that you are typing the words SELECT and FROMmore than any other words in the SQL
vocabulary. They aren't as glamorous as CREATE or as ruthless as DROP, but they are indispensable to any conversation you hope to have with the
computer concerning dataretrieval. And isn't dataretrieval the reason that you entered mountains of information into your very expensive database
in the first place?

This discussion starts with SELECT because most of your statements will also start with SELECT:
SYNTAX:

SELECT <COLUMN NAMES>

The commands, see also statementsbasic SELECT statement couldn't be simpler. However, SELECT does not work alone. If you typed just SELECT
into your system, you might get the following response:

INPUT:
SQL> SELECT;
OUTPUT:

SELECT
*

ERROR at line 1:
ORA-00936: mi ssing expression

The asterisk under the offending line indicates where Oracle7 thinks the offense occurred. The error message tells you that something is missing.
That something is the FROM clause:

SYNTAX:

FROM <TABLE>

Together, the statements SELECT and FROMbegin to unlock the power behind your database.

NOTE: keywordsclausesAt this point you may be wondering what the difference is between a keyword, a statement, and a clause.
SQL keywords refer to individual SQL elements, such as SELECT and FROM A clauseis a part of an SQL statement; for example,
SELECT columnl, column, ... isaclause. SQL clauses combine to form a complete SQL statement. For example, you can combine
a SELECT clause and a FROM clause to write an SQL statement.

NOTE: Each implementation of SQL has a unique way of indicating errors. Microsoft Query, for example, saysit can't show the
query, leaving you to find the problem. Borland's I nterbase pops up a dialog box with the error. Personal Oracle?, the engine used in
the preceding example, gives you an error number (so you can look up the detailed explanation in your manuals) and a short
explanation of the problem.

Examples

Before going any further, look at the sample database that is the basis for the following examples. This database illustrates the basic functions of
SELECT and FROM In the real world you would use the techniques described on Day 8, "Manipulating Data," to build this database, but for the
purpose of describing how to use SELECT and FROV, assume it already exists. This example uses the CHECKS table to retrieve information about
checks that an individual has written.

The CHECKS table:
CHECK# PAYEE AVOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel I ul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
6 Cash 25 WIld N ght Qut
7 Joans Gas 25.1 Gas

Your First Query

INPUT:

SQL> select * from checks;

OUTPUT:
quer i esCHECK# PAYEE AMOUNT REMARKS
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel I ul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
6 Cash 25 Wld Night Qut
7 Joans Gas 25.1 Gas

7 rows sel ected.
ANALYSIS:

This output looks just like the code in the example. Notice that columns 1 and 3 in the output statement are right-justified and that columns 2 and 4
are left-justified. This format follows the alignment convention in which numeric data types are right-justified and character data types are left-
justified. Data types are discussed on Day 9, "Creating and Maintaining Tables."

The asterisk (*) insel ect * tellsthe database to return all the columns associated with the given table described in the FROM clause. The database
determines the order in which to return the columns.

Terminating an SQL Statement

In some implementations of SQL, the semicolon at the end of the statement tells the interpreter that you are finished writing the query. For example,
Oracle's SQL*PLUS won't execute the query until it finds a semicolon (or a slash). On the other hand, some implementations of SQL do not use the
semicolon as aterminator. For example, Microsoft Query and Borland's ISQL don't require a terminator, because your query istyped in an edit box
and executed when you push a button.

Changing the Order of the Columns

The preceding example of an SQL statement used the * to select all columns from atable, the order of their appearance in the output being
determined by the database. To specify the order of the columns, you could type something like:

INPUT:

SQL> SELECT payee, remarks, anmount, check# from checks;

Notice that each column nameislisted in the SELECT clause. The order in which the columns are listed is the order in which they will appear in the
output. Notice both the commas that separate the column names and the space between the final column name and the subsequent clause (in this case
FROW). The output would look like this:

OUTPUT:

PAYEE REMARKS AMOUNT CHECK#
Ma Bel | Have sons next tinme 150 1
Reading R R Train to Chicago 245. 34 2
Ma Bel | Cel | ul ar Phone 200. 32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash W1d N ght Qut 25 6
Joans Gas Gas 25.1 7

7 rows sel ected.
Another way to write the same statement follows.

INPUT:

SELECT payee, renarks, amount, check#
FROM checks;

Notice that the FROM clause has been carried over to the second line. This convention is a matter of personal taste when writing SQL code. The
output would look like this:

OUTPUT:

PAYEE REMARKS AMOUNT CHECK#
Ma Bel | Have sons next tine 150 1
Readi ng R R Train to Chicago 245. 34 2
Ma Bel | Cel | ul ar Phone 200. 32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash WIld N ght Qut 25 6

Joans Gas Gas 25.1 7

7 rows sel ected.
ANALYSIS:

The output isidentical because only the format of the statement changed. Now that you have established control over the order of the columns, you
will be able to specify which columns you want to see.

Selecting Individual Columns

Suppose you do not want to see every column in the database. Y ou used SELECT * to find out what information was available, and now you want to
concentrate on the check number and the amount. Y ou type

INPUT:

SQL> SELECT CHECK#, anpunt from checks;

which returns

OUTPUT:

7 rows selected.

ANALYSIS:

Now you have the columns you want to see. Notice the use of upper- and lowercase in the query. It did not affect the result.
What if you need information from a different table?

Selecting Different Tables

Suppose you had a table called DEPGSI TS with this structure:

DEPGCSI T# WHOPAI D AMOUNT REMARKS
1 Rich Uncle 200 Take of f Xmas |i st
2 Enpl oyer 1000 15 June Payday
3 Credit Union 500 Loan

Y ou would simply change the FROM clause to the desired table and type the following statement:
INPUT:

SQL> select * from deposits

Theresultis
OUTPUT:
DEPQSI T# WHOPAI D AMOUNT REMARKS
1 Rich Uncle 200 Take of f Xmas |i st

2 Enpl oyer 1000 15 June Payday

3 Credit Union 500 Loan
ANALYSIS:

With a single change you have a new data source.

Querieswith Distinction

If you look at the original table, CHECKS, you see that some of the data repeats. For example, if you looked at the AMOUNT column using
INPUT:

SQ.> sel ect amount from checks;

you would see

OUTPUT:

Notice that the amount 150 is repeated. What if you wanted to see how may different amounts were in this column? Try this:
INPUT:

SQL> sel ect DI STINCT anount from checks;

The result would be

OUTPUT:

150
200. 32
245. 34

6 rows sel ected.
ANALYSIS:

Notice that only six rows are selected. Because you specified DI STI NCT, only one instance of the duplicated data is shown, which means that one
less row isreturned. ALL isakeyword that isimplied in the basic SELECT statement. Y ou almost never see ALL because SELECT <Tabl e> and
SELECT ALL <Tabl e> have the same resullt.

Try this example--for the first (and only!) time in your SQL career:
INPUT:

SQL.> SELECT ALL AMOUNT
2 FROM CHECKS;

OUTPUT:

7 rows sel ected.

Itisthe same asa SELECT <Col urm>. Who needs the extra keystrokes?

Summary

The keywords SELECT and FROMenable the query to retrieve data. Y ou can make a broad statement and include all tables with a SELECT *
statement, or you can rearrange or retrieve specific tables. The keyword DI STI NCT limits the output so that you do not see duplicate valuesin a
column. Tomorrow you learn how to make your queries even more selective.

Q&A
Q Wheredid thisdata come from and how do | connect toit?

A The data was created using the methods described on Day 8. The database connection depends on how you are using SQL. The method
shown isthe traditional command-line method used on commercial-quality databases. These databases have traditionally been the domain of
the mainframe or the workstation, but recently they have migrated to the PC.

Q OK, but if | don't use one of these databases, how will | use SQL?

A You can aso use SQL from within a programming language. Embedded SQL Embedded SQL is normally alanguage extension, most
commonly seen in COBOL, in which SQL iswritten inside of and compiled with the program. Microsoft has created an entire Application
Programming Interface (API) that enables programmers to use SQL from inside Visual Basic, C, or C++. Libraries available from Sybase
and Oracle also enable you to put SQL in your programs. Borland has encapsulated SQL into database objects in Delphi. The conceptsin
this book apply in all these languages.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises," and make sure you understand the answers before starting tomorrow's work.

Quiz
1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
sel ect * from checks;?

2. The following queries do not work. Why not?

a. Sel ect *

b. Sel ect * from checks

c. Sel ect anpbunt nanme payee FROM checks;

3. Which of the following SQL statements will work?

a.select *

from checks;
b.sel ect * from checks;

c.select * from checks

Exercises
1. Using the CHECKS table from earlier today, write a query to return just the check numbers and the remarks.
2. Rewrite the query from exercise 1 so that the remarks will appear as the first column in your query results.

3. Using the CHECKS table, write a query to return al the unique remarks.

(¢ Previous Chapter JER.—> Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 3 -
Expressions, Conditions, and Operators
Objectives

On Day 2, "Introduction to the Query: The SELECT Statement," you used SELECT and FROMto manipulate data in interesting (and useful) ways.
Today you learn more about SELECT and FROMand expand the basic query with some new termsto go with query, table, and row, aswell as anew
clause and a group of handy items called operators. When the sun sets on Day 3, you will

1 Know what an expression is and how to use it

1 Know what a condition isand how to useit

1 Befamiliar with the basic uses of the WHERE clause

1 Beableto use arithmetic, comparison, character, logical, and set operators

1 Have aworking knowledge of some miscellaneous operators

NOTE: We used Oracle's Personal Oracle? to generate today's examples. Other implementations of SQL may differ slightly in the
way in which commands are entered or output is displayed, but the results are basically the same for al implementations that
conform to the ANSI standard.

Expressions

The definition of an expression is simple: An expression returns a value. Expression types are very broad, covering different data types such as
String, Numeric, and Boolean. In fact, pretty much anything following a clause (SELECT or FROM, for example) is an expression. In the following
example anmount is an expression that returns the value contained in the anount column.

SELECT anopunt FROM checks;
In the following statement NAME, ADDRESS, PHONE and ADDRESSBOCK are expressions:

SELECT NAME, ADDRESS, PHONE
FROM ADDRESSBQOCK;

Now, examine the following expression:
VHERE NAME = ' BROW

It contains a condition, NAME = ' BROWN , which is an example of a Boolean expression. NAVE = ' BROAN will be either TRUE or FALSE,
depending on the condition =.

Conditions

If you ever want to find a particular item or group of itemsin your database, you need one or more conditions. Conditions are contained in the
VHERE clause. In the preceding example, the condition is

NAME = ' BROWN
To find everyone in your organization who worked more than 100 hours last month, your condition would be
NUMBEROFHOURS > 100

Conditions enable you to make selective queries. In their most common form, conditions comprise a variable, a constant, and a comparison operator.
In the first example the variable is NAME, the constant is' BROWN , and the comparison operator is =. In the second example the variable is
NUMBEROFHOURS, the constant is 100, and the comparison operator is>. Y ou need to know about two more elements before you can write
conditional queries: the WHERE clause and operators.

The WHERE Clause

The syntax of the WHERE clause is
SYNTAX:

WHERE <SEARCH CONDI TI ON>

SELECT, FROM and WHERE are the three most frequently used clausesin SQL. WHERE simply causes your queries to be more selective. Without the
WHERE clause, the most useful thing you could do with aquery is display all recordsin the selected table(s). For example:

INPUT:
SQL> SELECT * FROM BI KES;

listsall rows of datain the table BI KES.

OUTPUT:

NANVE FRAMESI ZE COVPGOSI TION - M LESRI DDEN TYPE
TREK 2300 22.5 CARBON FI BER 3500 RACI NG
BURLEY 22 STEEL 2000 TANDEM
G ANT 19 STEEL 1500 COVMUTER
FUJI 20 STEEL 500 TOURI NG
SPECI ALI ZED 16 STEEL 100 MOUNTAI N
CANNONDALE 22.5 ALUM NUM 3000 RACI NG

6 rows sel ected.

If you wanted a particular bike, you could type
INPUT/OUTPUT:

SQL> SELECT *
FROM Bl KES
WHERE NAME = ' BURLEY ;

which would yield only one record:

NANVE FRAVMESI ZE COVPCSI TI ON M LESRI DDEN TYPE

BURLEY 22 STEEL 2000 TANDEM

ANALYSIS:

This simple example shows how you can place a condition on the data that you want to retrieve.

Operators

Operators are the elements you use inside an expression to articulate how you want specified conditions to retrieve data. Operators fall into six
groups:. arithmetic, comparison, character, logical, set, and miscellaneous.

Arithmetic Operators

The arithmetic operators are plus (+), minus (-), divide (/), multiply (*), and modulo (9. Thefirst four are self-explanatory. Modulo returns the
integer remainder of adivision. Here are two examples:

1
0

The modulo operator does not work with data types that have decimals, such as Real or Number.

If you place several of these arithmetic operators in an expression without any parentheses, the operators are resolved in this order: multiplication,
division, modulo, addition, and subtraction. For example, the expression

2*6+9/ 3

equals

12 + 3 = 15

However, the expression

2% (6+9) / 3

equals

2* 15/ 3 =10

Watch where you put those parentheses! Sometimes the expression does exactly what you tell it to do, rather than what you want it to do.
The following sections examine the arithmetic operators in some detail and give you a chance to write some queries.
Plus (+)

Y ou can use the plus sign in several ways. Type the following statement to display the PRI CE table:

INPUT:

SQ.> SELECT * FROM PRI CE;

OUTPUT:

| TEM VHOLESALE
TOVATOES 34
POTATCES 51
BANANAS 67
TURNI PS 45
CHEESE .89
APPLES .23

6 rows sel ected.

Now type:

INPUT/OUTPUT:

SQ.> SELECT | TEM WHOLESALE, WHOLESALE + 0. 15
FROM PRI CE;

Here the + adds 15 cents to each price to produce the following:

| TEM VWHOLESALE WHOLESALE+O. 15
TOVATOES 34 49
POTATCES 51 66
BANANAS 67 82
TURNI PS .45 .60
CHEESE .89 1.04
APPLES .23 .38

6 rows sel ected.
ANALYSIS:

What is thislast column with the unattractive column heading WHOLESALE+0. 15? It's not in the origina table. (Remember, you used * inthe
SELECT clause, which causes al the columns to be shown.) SQL allows you to create avirtual or derived column by combining or modifying
existing columns.

Retype the original entry:
INPUT/OUTPUT:

SQL> SELECT * FROM PRI CE;

The following table results:

| TEM VWHOLESALE
TOVATOES 34
POTATCES 51
BANANAS 67
TURNI PS 45
CHEESE 89
APPLES 23

6 rows sel ected.
ANALYSIS:

The output confirms that the original data has not been changed and that the column heading WHOLESALE+0. 15 is not a permanent part of it. In fact,
the column heading is so unattractive that you should do something about it.

Type the following:

INPUT/OUTPUT:

SQ.> SELECT | TEM WHOLESALE, (WHOLESALE + 0.15) RETAIL
FROM PRI CE;

Here's the resullt:

| TEM WHOLESALE RETAI L
TOVATOES 34 49
POTATCES 51 66
BANANAS 67 82
TURNI PS .45 . 60
CHEESE .89 1.04

APPLES .23 . 38

6 rows sel ected.
ANALYSIS:

Thisiswonderful! Not only can you create new columns, but you can also rename them on the fly. Y ou can rename any of the columns using the
syntax col utm_nane al i as (note the space between col unm_nane and al i as).

For example, the query
INPUT/OUTPUT:

SQL> SELECT | TEM PRODUCE, WHOLESALE, WHOLESALE + 0.25 RETAIL
FROM PRI CE;

renames the columns as follows:

PRODUCE VWHOLESALE RETAI L
TOVATOES 34 59
POTATCES 51 76
BANANAS 67 92
TURNI PS 45 70
CHEESE .89 1.14
APPLES .23 .48

NOTE: Someimplementations of SQL use the syntax <col um nane = al i as>. The preceding example would be written as
follows:

SQ.> SELECT | TEM = PRODUCE,
VWHOLESALE,
WHOLESALE + 0.25 = RETAIL,
FROM PRI CE;

Check your implementation for the exact syntax.

Y ou might be wondering what use aliasing isif you are not using command-line SQL. Fair enough. Have you ever wondered how report builders
work? Someday, when you are asked to write areport generator, you'll remember this and not spend weeks reinventing what Dr. Codd and I1BM
have wrought.

So far, you have seen two uses of the plus sign. The first instance was the use of the plus sign in the SELECT clause to perform a calculation on the
data and display the calculation. The second use of the plus sign isin the WHERE clause. Using operators in the WHERE clause gives you more
flexibility when you specify conditions for retrieving data.

In some implementations of SQL, the plus sign does double duty as a character operator. Y ou'll see that side of the plus alittle later today.
Minus(-)
Minus a so has two uses. First, it can change the sign of anumber. Y ou can use the table H LOWto demonstrate this function.

INPUT:

SQL> SELECT * FROM HI LOW

OUTPUT:

STATE H GHTEMP LONMEMP
CA -50 120
FL 20 110
LA 15 99
ND -70 101

For example, here's away to manipulate the data:
INPUT/OUTPUT:

SQL> SELECT STATE, -H GHTEMP LOWS, - LOAMEMP HI GHS

FROM HI LOW
STATE LONS H GHS
CA 50 120
FL -20 110
LA -15 99
ND 70 101
NE 60 100

The second (and obvious) use of the minus sign isto subtract one column from another. For example:
INPUT/OUTPUT:

SQL> SELECT STATE,
2 H GHTEMP LOWS,
3 LOMEMP HI GHS,
4 (LOANEWMP - HI GHTEMP) DI FFERENCE
5

FROM HI LOW
STATE LOWS HI GHS DI FFERENCE
CA -50 120 170
FL 20 110 90
LA 15 99 84
ND -70 101 171
NE - 60 100 160

Notice the use of aliasesto fix the data that was entered incorrectly. This remedy is merely atemporary patch, though, and not a permanent fix. You
should seeto it that the datais corrected and entered correctly in the future. On Day 21, "Common SQL Mistakes/Errors and Resolutions,” you'll
learn how to correct bad data.

This query not only fixed (at least visually) the incorrect data but also created a new column containing the difference between the highs and lows of
each state.

If you accidentally use the minus sign on a character field, you get something like this:
INPUT/OUTPUT:

SQL> SELECT - STATE FROM HI LOW

ERROR:
ORA-01722: invalid nunber
no rows sel ected

The exact error message varies with implementation, but the result is the same.
Divide (/)
The division operator has only the one obvious meaning. Using the table PRI CE, type the following:

INPUT:

SQ.> SELECT * FROM PRI CE;

OUTPUT:
| TEM VWHOLESALE
TOVATOES 34

BANANAS .67

TURNI PS .45
CHEESE .89
APPLES .23

6 rows sel ected.

Y ou can show the effects of atwo-for-one sale by typing the next statement:
INPUT/OUTPUT:

SQL> SELECT | TEM WHOLESALE, (WHOLESALE/2) SALEPRI CE
2 FROM PRI CE;

| TEM VWHOLESALE SALEPRI CE
TOVATCOES 34 17
POTATCES 51 255
BANANAS .67 . 335
TURNI PS .45 . 225
CHEESE .89 . 445
APPLES .23 . 115

6 rows selected.

The use of division in the preceding SELECT statement is straightforward (except that coming up with haf pennies can be tough).
Multiply (*)

The multiplication operator is also straightforward. Again, using the PRI CE table, type the following:

INPUT:

SQ.> SELECT * FROM PRI CE;

OUTPUT:

| TEM VWHOLESALE
TOVATCOES 34
POTATCES 51
BANANAS 67
TURNI PS 45
CHEESE 89
APPLES 23

6 rows sel ected.

This query changes the table to reflect an across-the-board 10 percent discount:
INPUT/OUTPUT:

SQL> SELECT | TEM WHCOLESALE, WHCLESALE * 0.9 NEWPRI CE

FROM PRI CE;
| TEM VWHOLESALE NEWPRI CE
TOVATOES 34 306
POTATCES 51 459
BANANAS 67 603
TURNI PS 45 405
CHEESE .89 . 801
APPLES .23 . 207

6 rows sel ected.

These operators enable you to perform powerful calculationsin a SELECT statement.

Modulo (%)

The modulo operator returns the integer remainder of the division operation. Using the table REMAI NS, type the following:
INPUT:

SQL> SELECT * FROM REMAI NS;

OUTPUT:

NUVERATOR DENOM NATOR

10 5

8 3

23 9
40 17
1024 16
85 34

6 rows sel ected.
Y ou can also create a new column, REMAI NDER, to hold the values of NUVERATOR % DENOM NATOR:

INPUT/OUTPUT:

SQL> SELECT NUMERATOR,
DENOM NATOR,
NUVERATORYDENOM NATOR REMAI NDER
FROM REMAI NS;

NUVERATOR DENOM NATOR REMAI NDER

10 5 0

8 3 2

23 9 5
40 17 6
1024 16 0
85 34 17

6 rows sel ected.

Some implementations of SQL implement modulo as a function called MOD (see Day 4, "Functions: Molding the Data Y ou Retrieve"). The following
statement produces results that are identical to the resultsin the preceding statement:

SQL> SELECT NUMERATOR,
DENOM NATOR,
MOD(NUMERATOR, DENOM NATOR) RENMAI NDER
FROM RENAI NS;

Precedence
This section examines the use of precedence in a SELECT statement. Using the database PRECEDENCE, type the following:

SQL> SELECT * FROM PRECEDENCE;

N1 N2 N3 N4
1 2 3 4
13 24 35 46
9 3 23 5
63 2 45 3
7 2 1 4

Use the following code segment to test precedence:

INPUT/OUTPUT:

SQL> SELECT
2 NL+N2* N3/ N4,
3 (N1+N2) * N3/ N4,
4 N1+(N2*N3)/ N4
5 FROM PRECEDENCE;

NL+N2* N3/ N4 ((N1+N2) * N3/ N4 N1+(N2*N3) / N4

2.5 2.25 2.5

31. 26087 28.152174 31. 26087
22.8 55.2 22.8

93 975 93

7.5 2.25 7.5

Notice that the first and last columns are identical. If you added a fourth column N1+N2* (N3/ N4) , its values would also be identical to those of the
current first and last columns.

Comparison Operators

True to their name, comparison operators compare expressions and return one of three values: TRUE, FALSE, or Unknown. Wait a minute! Unknown?
TRUE and FALSE are self-explanatory, but what is Unknown?

To understand how you could get an Unknown, you need to know alittle about the concept of NULL. In database terms NULL is the absence of datain
afield. It does not mean a column has azero or ablank init. A zero or ablank isavalue. NULL means nothing isin that field. If you make a
comparison likeFi el d = 9 and the only value for Fi el d isNULL, the comparison will come back Unknown. Because Unknown is an uncomfortable
condition, most flavors of SQL change Unknown to FALSE and provide a special operator, | S NULL, to test for aNULL condition.

Here's an example of NULL: Suppose an entry in the PRI CE table does not contain a value for WHOLESALE. The results of a query might look like
this:

INPUT:

SQ.> SELECT * FROM PRI CE;

OUTPUT:

| TEM VHOLESALE
TOVATOES 34
POTATCES 51
BANANAS 67
TURNI PS 45
CHEESE 89
APPLES 23
ORANGES

Notice that nothing is printed out in the WHOLESALE field position for oranges. The value for the field WHOLESALE for orangesisNULL. The NULL is
noticeable in this case because it isin anumeric column. However, if the NULL appeared in the | TEMcolumn, it would be impossible to tell the
difference between NULL and a blank.

Try to find the NULL:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 WWHERE WHOLESALE 1S NULL;

| TEM VWHOLESALE

ANALYSIS:

Asyou can see by the output, ORANGES is the only item whose value for WHOLESALE isNULL or does not contain avalue. What if you use the equal
sign (=) instead?

INPUT/OUTPUT:

SQL> SELECT *
FROM PRI CE
WHERE WHOLESALE = NULL;

no rows sel ected
ANALYSIS:

Y ou didn't find anything because the comparison WHOLESALE = NULL returned a FALSE--the result was unknown. It would be more appropriate to
usean! S NULL instead of =, changing the WHERE statement to WHERE WHOLESALE |'S NULL. In this case you would get all the rows where a NULL
existed.

This example aso illustrates both the use of the most common comparison operator, the equal sign (=), and the playground of all comparison
operators, the WHERE clause. Y ou already know about the WHERE clause, so here's abrief |ook at the equal sign.

Equal (=)

Earlier today you saw how some implementations of SQL use the equal sign in the SELECT clause to assign an dlias. In the WHERE clause, the equal
sign isthe most commonly used comparison operator. Used alone, the equal signis avery convenient way of selecting one value out of many. Try
this:

INPUT:

SQL> SELECT * FROM FRI ENDS;

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 |IL 23332

Let'sfind JD's row. (On ashort list this task appearstrivial, but you may have more friends than we do--or you may have alist with thousands of
records.)

INPUT/OUTPUT:

SQL> SELECT *
FROM FRI ENDS
WHERE FI RSTNAME = ' JD ;

LASTNAMVE FI RSTNAMVE AREACODE PHONE ST ZIP

We got the result that we expected. Try this:
INPUT/OUTPUT:

SQ.> SELECT *
FROM FRI ENDS
WHERE FI RSTNAME = " AL';

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP

MEZA AL 200 555-2222 WK

NOTE: Hereyou see that = can pull in multiple records. Notice that ZI P is blank on the second record. ZI P is a character field (you
learn how to create and popul ate tables on Day 8, "Manipulating Data"), and in this particular record the NULL demonstrates that a
NULL in acharacter field isimpossible to differentiate from ablank field.

Here's another very important lesson concerning case sensitivity:
INPUT/OUTPUT:

SQL> SELECT * FROM FRI ENDS
WHERE FI RSTNAMVE = ' BUD ;

FI RSTNAME

BUD
1 row sel ect ed.

Now try this:
INPUT/OUTPUT:

SQL> select * fromfriends
where firstnane = 'Bud';

no rows sel ected.
ANALYSIS:

Even though SQL syntax is not case sensitive, datais. Most companies prefer to store datain uppercase to provide data consistency. Y ou should
always store data either in all uppercase or in all lowercase. Mixing case creates difficulties when you try to retrieve accurate data.

Greater Than (>) and Greater Than or Equal To (>=)
The greater than operator (>) works like this:

INPUT:

SQL> SELECT *
FROM FRI ENDS
WHERE AREACODE > 300;

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 |L 23332
ANALYSIS:

This example found all the area codes greater than (but not including) 300. To include 300, type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WWHERE AREACODE >= 300;

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

BULHER FERRI S 345 555-3223 |IL 23332

ANALYSIS:

With this change you get area codes starting at 300 and going up. Y ou could achieve the same results with the statement AREACCDE > 299.

NOTE: Notice that no quotes surround 300 in this SQL statement. Number-defined fieldsnumber-defined fields do not require
quotes.

Less Than (<) and Less Than or Equal To (<=)
Asyou might expect, these comparison operators work the same way as > and >= work, only in reverse:

INPUT:

SQ.> SELECT *
2 FROM FRI ENDS
3 VWHERE STATE < 'LA';

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
MERRI CK BUD 300 555-6666 CO 80212
BULHER FERRI S 345 555-3223 |L 23332

NOTE: How did STATE get changed to ST? Because the column has only two characters, the column name is shortened to two
charactersin the returned rows. If the column name had been COW5, it would come out CO. The widths of AREACODE and PHONE are
wider than their column names, so they are not truncated.

ANALYSIS:

Wait aminute. Did you just use < on a character field? Of course you did. Y ou can use any of these operators on any data type. The result varies by
datatype. For example, use lowercase in the following state search:

INPUT/OUTPUT:

SQ.> SELECT *
2 FROM FRI ENDS
3 VWHERE STATE < 'la';

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332
ANALYSIS:

Uppercase is usually sorted before lowercase; therefore, the uppercase codes returned arelessthan ' | a' . Again, to be safe, check your
implementation.

TIP: To be sure of how these operators will behave, check your language tables. Most PC implementations use the ASCI| tables.
Some other platforms use EBCDIC.

To include the state of Louisianain the original search, type

INPUT/OUTPUT:

SQ.> SELECT *
2 FROM FRI ENDS
3 VWHERE STATE <= 'LA';

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP

BUNDY AL 100 555-1111 IL 22333
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

Inequalities (< > or !=)

When you need to find everything except for certain data, use the inequality symbol, which can be either < > or ! =, depending on your SQL
implementation. For example, to find everyone who is not AL, type this:

INPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WWHERE FI RSTNAME <> 'AL';

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 |IL 23332

To find everyone not living in California, type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS

3 WHERE STATE != 'CA';
LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 | L 23332

NOTE: Notice that both symbols, <> and ! =, can express "not equals.”

Character Operators

Y ou can use character operators to manipulate the way character strings are represented, both in the output of data and in the process of placing
conditions on data to be retrieved. This section describes two character operators: the LI KE operator and the || operator, which conveys the concept
of character concatenation.

| Want toBeLike Ll KE

What if you wanted to select parts of a database that fit a pattern but weren't quite exact matches? Y ou could use the equal sign and run through all
the possible cases, but that process would be boring and time-consuming. Instead, you could use LI KE. Consider the following:

INPUT:

SQL> SELECT * FROM PARTS;

OUTPUT:

NANVE LOCATI ON PARTNUMBER
APPENDI X M D- STOVACH 1
ADAMS APPLE THROAT 2
HEART CHEST 3
SPI NE BACK 4
ANVI L EAR 5
KI DNEY M D- BACK 6

How can you find all the parts located in the back? A quick visual inspection of this simple table shows that it has two parts, but unfortunately the
locations have dightly different names. Try this:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PARTS
3 \HERE LOCATI ON LI KE ' %BACK% ;

NANVE LOCATI ON PARTNUMBER
SPI NE BACK 4
KI DNEY M D- BACK 6
ANALYSIS:

Y ou can see the use of the percent sign (%) in the statement after LI KE. When used inside a LI KE expression, % is awildcard. What you asked for
was any occurrence of BACK in the column location. If you queried

INPUT:

SQL> SELECT *
FROM PARTS
WHERE LOCATI ON LI KE ' BACK% ;

you would get any occurrence that started with BACK:

OUTPUT:

NANME LOCATI ON PARTNUVBER
SPINE BAK "
If you queried

INPUT:

SQ.> SELECT *
FROM PARTS
WHERE NAME LI KE ' A% ;

you would get any name that starts with A:

OUTPUT:

NANVE LOCATI ON PARTNUMBER
APPENDI X M D- STOVACH 1
ADAMS APPLE THROAT 2
ANVI L EAR 5

IS LI KE case sensitive? Try the next query to find out.

INPUT/OUTPUT:

SQ.> SELECT *
FROM PARTS
VWHERE NAME LIKE '"a%;

no rows sel ected
ANALYSIS:
The answer is yes. References to data are always case sensitive.

What if you want to find data that matches all but one character in a certain pattern? In this case you could use a different type of wildcard: the
underscore.

Underscore (1)
The underscore is the single-character wildcard. Using a modified version of the table FRI ENDS, type this:
INPUT:

SQ.> SELECT * FROM FRI ENDS;

OUTPUT:

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK ub 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 |L 23332
PERKI NS ALTON 911 555-3116 CA 95633
BGSS SIR 204 555-2345 CT 95633

To find all the records where STATE starts with C, type the following:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WWHERE STATE LIKE 'C';

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP

MERRI CK BUD 300 555-6666 CO 80212
PERKI NS ALTON 911 555-3116 CA 95633
BGOSS SIR 204 555-2345 CT 95633

Y ou can use several underscores in a statement:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 \WHERE PHONE LIKE 555-6_6_';

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

The previous statement could also be written as follows:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 \WHERE PHONE LI KE ' 555- 6% ;

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
MVERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

Notice that the results are identical. These two wildcards can be combined. The next example finds all records with L as the second character:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 \WHERE FIRSTNAME LIKE ' L% ;

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 1L 22333
MEZA AL 200 555-2222 WK

PERKI NS ALTON 911 555-3116 CA 95633

Concatenation (|])
The| | (double pipe) symbol concatenates two strings. Try this:
INPUT:

SQL> SELECT FI RSTNAME || LASTNAME ENTI RENAME
2 FROM FRI ENDS;

OUTPUT:

ENTI RENAME

AL BUNDY
AL VEZA
BUD MVERRI CK
JD MAST
FERRI S BULHER
ALTON PERKI NS
SIR BGOSS

7 rows sel ected.
ANALYSIS:

Noticethat | | isused instead of +. If you use + to try to concatenate the strings, the SQL interpreter used for this example (Persona Oracle7) returns
the following error:

INPUT/OUTPUT:

SQL> SELECT FI RSTNAME + LASTNAME ENTI RENAME
FROM FRI ENDS;

ERROR:
ORA-01722: invalid nunber

It islooking for two numbersto add and throws the error i nval i d nurber when it doesn't find any.

NOTE: Some implementations of SQL use the plus sign to concatenate strings. Check your implementation.

Here'samore practical example using concatenation:

INPUT/OUTPUT:

SQL> SELECT LASTNAME || ',' || FIRSTNAVE NANE
FROM FRI ENDS;

NAVE

BUNDY AL

VEZA , AL

MERRI CK , BUD

MAST JD

BULHER , FERRI'S

PERKINS , ALTON

BOSS , SIR

7 rows sel ected.

ANALYSIS:

This statement inserted a comma between the last name and the first name.

NOTE: Notice the extra spaces between the first name and the last name in these examples. These spaces are actually part of the
data. With certain data types, spaces are right-padded to values |ess than the total length allocated for afield. See your
implementation. Data types will be discussed on Day 9, "Creating and Maintaining Tables."

So far you have performed the comparisons one at atime. That method is fine for some problems, but what if you need to find all the people at work
with last names starting with P who have less than three days of vacation time?

Logical Operators
logical operatorsLogical operators separate two or more conditions in the WHERE clause of an SQL statement.
Vacation time is always a hot topic around the workplace. Say you designed atable called VACATI ON for the accounting department:

INPUT:

SQL> SELECT * FROM VACATI ON,

OUTPUT:

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
ABLE 101 2 4
BAKER 104 5 23
BLEDSCE 107 8 45
BOLI VAR 233 4 80
BOLD 210 15 100
COSTALES 211 10 78

6 rows sel ected.

Suppose your company gives each employee 12 days of leave each year. Using what you have learned and alogical operator, find al the employees
whose names start with B and who have more than 50 days of |eave coming.

INPUT/OUTPUT:

SQL> SELECT LASTNAME,

YEARS * 12 - LEAVETAKEN REMVAI NI NG
FROM VACATI ON

VWHERE LASTNAME LI KE ' B%

AND

YEARS * 12 - LEAVETAKEN > 50;

DU~ WN

LASTNAMVE REMAI NI NG

ANALYSIS:

This query isthe most complicated you have done so far. The SELECT clause (lines 1 and 2) uses arithmetic operators to determine how many days
of leave each employee has remaining. The normal precedence computes YEARS * 12 - LEAVETAKEN. (A clearer approach would be to write
(YEARS * 12) - LEAVETAKEN.)

LI KE isused in line 4 with the wildcard %to find all the B names. Line 6 uses the > to find all occurrences greater than 50.
The new element ison line 5. Y ou used the logical operator AND to ensure that you found records that met the criteriain lines 4 and 6.
AND

AND means that the expressions on both sides must be true to return TRUE. If either expression is false, AND returns FALSE. For example, to find out
which employees have been with the company for 5 years or less and have taken more than 20 days leave, try this:

INPUT:

SQ.> SELECT LASTNAME
2 FROM VACATI ON
3 WHERE YEARS <= 5
4 AND
5 LEAVETAKEN > 20 ;

OUTPUT:

LASTNAME

BAKER
BOLI VAR

If you want to know which employees have been with the company for 5 years or more and have taken less than 50 percent of their leave, you could
write:

INPUT/OUTPUT:

SQL> SELECT LASTNAME WORKAHOLI CS
FROM VACATI ON

WHERE YEARS >= 5

AND

((YEARS *12) - LEAVETAKEN) / (YEARS * 12) < 0.50;

abhwN

Check these people for burnout. Also check out how we used the AND to combine these two conditions.
OR

Y ou can also use OR to sum up a series of conditions. If any of the comparisonsistrue, OR returns TRUE. To illustrate the difference, conditionsrun
the last query with ORinstead of with AND:

INPUT:

SQL> SELECT LASTNAME WORKAHOLI CS
2 FROM VACATI ON
3 WHERE YEARS >= 5
4 R
5 ((YEARS *12) - LEAVETAKEN) / (YEARS * 12) >= 0.50;

OUTPUT:

ANALYSIS:

The original names are still in the list, but you have three new entries (who would probably resent being called workaholics). These three new names
made the list because they satisfied one of the conditions. OR requires that only one of the conditions be true in order for data to be returned.

NOT

NOT means just that. If the condition it applies to evaluates to TRUE, NOT make it FALSE. If the condition after the NOT is FALSE, it becomes TRUE.
For example, the following SELECT returns the only two names not beginning with B in the table:

INPUT:

SQ.> SELECT *
2 FROM VACATI ON
3 VWHERE LASTNAME NOT LIKE ' B% ;

OUTPUT:

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
ABLE 101 2 4
COSTALES 211 10 78

NOT can also be used with the operator | S when applied to NULL. Recall the PRI CES table where we put a NULL value in the WHOLESALE column
opposite the item ORANGES.

INPUT/OUTPUT:

SQL> SELECT * FROM PRI CE;

| TEM VWHOLESALE
TOVATOES 34
POTATCES 51
BANANAS 67
TURNI PS 45
CHEESE .89
APPLES .23
ORANGES

7 rows sel ected.
To find the non-NULL items, type this:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 WWHERE WHOLESALE |'S NOT NULL;

| TEM VWHOLESALE
TOVATOES 34
POTATCES 51
BANANAS 67
TURNI PS 45

APPLES .23

6 rows selected.

Set Operators

On Day 1, "Introduction to SQL," you learned that SQL is based on the theory of sets. The following sections examine set operators.
UNION and UNION ALL

UNI ON returns the results of two queries minus the duplicate rows. The following two tables represent the rosters of teams:

INPUT:

SQL> SELECT * FROM FOOTBALL;

OUTPUT:

7 rows sel ected.

INPUT:
SQL> SELECT * FROM SCOFTBALL,;

OUTPUT:

7 rows sel ected.
How many different people play on one team or another?

INPUT/OUTPUT:

SQ.> SELECT NAME FROM SOFTBALL
2 UNION
3 SELECT NAME FROM FOOTBALL;

FALCONER

FUBAR
GOOBER

10 rows sel ected.
UNI ON returns 10 distinct names from the two lists. How many names are on both lists (including duplicates)?
INPUT/OUTPUT:

SQ.> SELECT NAME FROM SOFTBALL
2 UNION ALL
3 SELECT NAME FROM FOOTBALL;

14 rows sel ected.
ANALYSIS:

The combined list--courtesy of the UNI ON ALL statement--has 14 names. UNI ON ALL works just like UNI ON except it does not eliminate duplicates.
Now show me alist of players who are on both teams. Y ou can't do that with UNI ON--you need to learn | NTERSECT.

INTERSECT
I NTERSECT returns only the rows found by both queries. The next SELECT statement shows the list of players who play on both teams:

INPUT:

SQ.> SELECT * FROM FOOTBALL
2 | NTERSECT
3 SELECT * FROM SOFTBALL;

OUTPUT:

ANALYSIS:

In this example | NTERSECT finds the short list of players who are on both teams by combining the results of the two SELECT statements.
MINUS (Difference)

M nus returns the rows from the first query that were not present in the second. For example:

INPUT:

SQL> SELECT * FROM FOOTBALL
2 MNUs
3 SELECT * FROM SOFTBALL;

OUTPUT:

ANALYSIS:

The preceding query shows the three football players who are not on the softball team. If you reverse the order, you get the three softball players
who aren't on the football team:

INPUT:

SQ.> SELECT * FROM SOFTBALL
2 M NUS
3 SELECT * FROM FOOTBALL;

OUTPUT:

FALCONER

Miscellaneous Operators: IN and BETWEEN

The two operators | N and BETVEEN provide a shorthand for functions you already know how to do. If you wanted to find friends in Colorado,
California, and Louisiana, you could type the following:

INPUT:

SQ.> SELECT *

2 FROM FRI ENDS

3 VHERE STATE= ' CA'

4 OR

5 STATE = CO

6 OR

7 STATE = 'LA';
OUTPUT:
LASTNAVE FI RSTNAVE AREACCODE PHONE ST ZIP
MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKI NS ALTON 911 555-3116 CA 95633
Or you could type this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 WWHERE STATE IN(' CA','CO,'LA);

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

PERKI NS ALTON 911 555-3116 CA 95633
ANALYSIS:

The second example is shorter and more readable than the first. Y ou never know when you might have to go back and work on something you wrote
months ago. I N also works with numbers. Consider the following, where the column AREACODE is a number:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM FRI ENDS
3 VWHERE AREACODE | N(100, 381, 204);

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP

BUNDY AL 100 555-1111 IL 22333
MAST JD 381 555-6767 LA 23456
BCOSS SIR 204 555-2345 CT 95633

If you needed a range of things from the PRI CE table, you could write the following:

INPUT/OUTPUT:

SQ.> SELECT *
2 FROM PRI CE
3 WHERE WHCLESALE > 0. 25
4 AND
5 WHOLESALE < 0. 75;

| TEM VWHOLESALE
TOVATOES 34
POTATCES 51
BANANAS . 67
TURNI PS .45

Or using BETWEEN, you would write this:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRI CE
3 WWHERE WHOLESALE BETVEEN 0. 25 AND 0. 75;

| TEM VHOLESALE
TOVATOES 34
POTATCES 51
BANANAS . 67
TURNI PS .45

Again, the second example is a cleaner, more readabl e solution than the first.

NOTE: If aWHOLESALE value of 0. 25 existed in the PRI CE table, that record would have been retrieved also. Parameters used in
the BETVEEEN operator are inclusive parametersinclusive.

Summary

At the beginning of Day 3, you knew how to use the basic SELECT and FROMclauses. Now you know how to use a host of operators that enable you
to fine-tune your requests to the database. Y ou learned how to use arithmetic, comparison, character, logical, and set operators. This powerful set of
tools provides the cornerstone of your SQL knowledge.

Q&A

Q How does all of thisinformation apply to meif I am not using SQL from the command line as depicted in the examples?

A Whether you use SQL in COBOL as Embedded SQL or in Microsoft's Open Database Connectivity (ODBC), you use the same basic
constructions. Y ou will use what you learned today and yesterday repeatedly as you work with SQL.

Q Why areyou constantly telling meto check my implementation? | thought there was a standard!

A Thereisan ANSI standard (the most recent version is 1992); however, most vendors modify it somewhat to suit their databases. The
basics are similar if not identical, and each instance has extensions that other vendors copy and improve. We have chosen to use ANSI asa
starting point but point out the differences as we go along.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises.”

Quiz

Use the FRI ENDS table to answer the following questions.

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 |IL 23332
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

1. Write aquery that returns everyone in the database whose last name begins with M
2. Write aquery that returns everyone who livesin Illinois with afirst name of AL.

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how would you find out which part numbers are in both tables?
Write the query.

4. What shorthand could you use instead of WHERE a >= 10 AND a <=307

5. What will this query return?

SELECT FI RSTNAME

FROM FRI ENDS

WHERE FI RSTNAME = " AL’
AND LASTNAME = ' BULHER ;

Exercises

1. Using the FRI ENDS table, write a query that returns the following:

SQL> SELECT (FIRSTNAME || ' FROM) NAME, STATE
FROM FRI ENDS

WHERE STATE = 'IL'

AND

LASTNAME = ' BUNDY' ;

abwnN

OUTPUT:

NAVE ST

AL FROM | L

2. Using the FRI ENDS table, write a query that returns the following:

NANVE PHONE

MERRI CK, BUD 300-555-6666
MAST, JD 381-555-6767
BULHER, FERRI S 345-555-3223

(¢ Previous Chapter JER.—> Mext Chapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘.h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

- Day 4 -
Functions: Molding the Data You Retrieve
Objectives

Today we talk about functions. Functionsin SQL enable you to perform feats such as determining the sum of a column or converting all the
characters of astring to uppercase. By the end of the day, you will understand and be able to use al the following:

1 Aggregate functions

1 Date and time functions
1 Arithmetic functions

1 Character functions

1 Conversion functions

1 Miscellaneous functions

These functions greatly increase your ability to manipulate the information you retrieved using the basic functions of SQL that were described earlier
this week. The first five aggregate functions, COUNT, SUM AVG, MAX, and M N, are defined in the ANSI standard. Most implementations of SQL have
extensions to these aggregate functions, some of which are covered today. Some implementations may use different names for these functions.

Aggregate Functions

These functions are also referred to as group functions. They return a value based on the values in a column. (After al, you wouldn't ask for the
average of asinglefield.) The examplesin this section use the table TEAVSTATS:

INPUT:

SQ.> SELECT * FROM TEAMSTATS;

OUTPUT:

NANVE PCS AB HI TS WALKS SI NGLES DOUBLES TRI PLES HR SO
JONES 1B 145 45 34 31 8 1 5 10
DONKNOW 3B 175 65 23 50 10 1 4 15
WORLEY LF 157 49 15 35 8 3 3 16
DAVI D COF 187 70 24 48 4 0 17 42
HAVHOCKER 3B 50 12 10 10 2 0 0 13
CASEY DH 1 0 O 0 0 0 0 1

6 rows sel ected.

COUNT

The function COUNT returns the number of rows that satisfy the condition in the WHERE clause. Say you wanted to know how many ball players were
hitting under 350. Y ou would type

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
2 FROM TEAVBTATS
3 VHERE HI TS/ AB < . 35;

To make the code more readable, try an dias:
INPUT/OUTPUT:

SQL> SELECT COUNT(*) NUM BELOW 350
2 FROM TEAVBTATS
3 VHERE HI TS/ AB < . 35;

NUM BELOW 350

Would it make any difference if you tried a column name instead of the asterisk? (Notice the use of parentheses around the column names.) Try this:
INPUT/OUTPUT:

SQL> SELECT COUNT(NAME) NUM BELOW 350
2 FROM TEAMSTATS
3 WHERE HI TS/ AB < . 35;

NUM BELOW 350

The answer is no. The NAVE column that you selected was not involved in the WHERE statement. If you use COUNT without a WHERE clause, it returns
the number of recordsin the table.

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
2 FROM TEAVBTATS;

SUM
SUMdoesjust that. It returns the sum of all valuesin a column. To find out how many singles have been hit, type
INPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES
2 FROM TEAMSTATS;

OUTPUT:

TOTAL_SI NGLES

To get several sums, use

INPUT/OUTPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES, SUM DOUBLES) TOTAL_DOUBLES,
SUM TRI PLES) TOTAL_TRI PLES, SUM HR) TOTAL_HR
2 FROM TEAMSTATS;

TOTAL_SI NGLES TOTAL_DOUBLES TOTAL_TRI PLES TOTAL_HR

To collect similar information on all 300 or better players, type
INPUT/OUTPUT:

SQL> SELECT SUM SI NGLES) TOTAL_SI NGLES, SUM DOUBLES) TOTAL_DOUBLES,
SUM TRI PLES) TOTAL_TRI PLES, SUMHR) TOTAL_ HR

2 FROM TEAVBTATS

3 WHERE HI TS/ AB >= . 300;

TOTAL_SI NGLES TOTAL_DOUBLES TOTAL_TRI PLES TOTAL_HR

To compute ateam batting average, type
INPUT/OUTPUT:

SQL> SELECT SUM HI TS)/ SUM AB) TEAM AVERAGE
2 FROM TEAVBTATS;

TEAM _AVERACE

. 33706294
SuMworks only with numbers. If you try it on a nonnumerical field, you get

INPUT/OUTPUT:

SQL> SELECT SUM NAME)
2 FROM TEAMSTATS;

ERROR:
ORA-01722: invalid nunber
no rows sel ected

This error message islogical because you cannot sum a group of names.
AVG
The AVG function computes the average of a column. To find the average number of strike outs, use this:

INPUT:

SQL> SELECT AVE SO AVE_STRI KE_QUTS
2 FROM TEAMSTATS;

OUTPUT:

AVE_STRI KE_OUTS

16. 166667

The following example illustrates the difference between SUMand AVG,

INPUT/OUTPUT:

SQL> SELECT AVG(H TS/ AB) TEAM AVERAGE
2 FROM TEAMSTATS;

TEAM _AVERACE

. 26803448
ANALYSIS:

The team was batting over 300 in the previous example! What happened? AVG computed the average of the combined column hits divided by at bats,
whereas the example with SUMdivided the total number of hits by the number of at bats. For example, player A gets 50 hitsin 100 at bats for a.500
average. Player B gets O hitsin 1 at bat for a 0.0 average. The average of 0.0 and 0.5 is.250. If you compute the combined average of 50 hitsin 101
at bats, the answer is arespectable .495. The following statement returns the correct batting average:

INPUT/OUTPUT:

SQL> SELECT AVG(HI TS)/ AVG(AB) TEAM AVERAGE
2 FROM TEAVSTATS;

TEAM AVERAGE

. 33706294
Like the SuMfunction, AVG works only with numbers.
MAX
If you want to find the largest value in a column, use MAX. For example, what is the highest number of hits?

INPUT:

SQL> SELECT MAX(HI TS)
2 FROM TEAVSTATS;

OUTPUT:

MAX(HI TS)

Can you find out who has the most hits?
INPUT/OUTPUT:

SQL> SELECT NAME
2 FROM TEAMSTATS
3 WHERE HI TS = MAX(HITS);

ERROR at line 3:
ORA- 00934: group function is not allowed here

Unfortunately, you can't. The error message is areminder that this group function (remember that aggregate functions are also called group
functions) does not work in the WHERE clause. Don't despair, Day 7, "Subqueries: The Embedded SELECT Statement,” covers the concept of
subqueries and explains away to find who has the MAX hits.

What happens if you try a nonnumerical column?
INPUT/OUTPUT:

SQL> SELECT MAX(NAME)
2 FROM TEAMSTATS;

WORLEY
Here's something new. MAX returns the highest (closest to Z) string. Finally, a function that works with both characters and numbers.

MIN
M N does the expected thing and works like MAX except it returns the lowest member of a column. To find out the fewest at bats, type

INPUT:

SQL> SELECT M N(AB)
2 FROM TEAVSTATS;

OUTPUT:

M N(AB)

The following statement returns the name closest to the beginning of the al phabet:
INPUT/OUTPUT:

SQL> SELECT M N(NAME)
2 FROM TEAMBTATS:

M N(NAVE)

Y ou can combine M N with MAX to give arange of values. For example:
INPUT/OUTPUT:

SQL> SELECT M N(AB), MAX(AB)
2 FROM TEAMVBTATS;

M N(AB) MAX(AB)

This sort of information can be useful when using statistical functions.

NOTE: Aswe mentioned in the introduction, the first five aggregate functions are described in the ANSI standard. The remaining
aggregate functions have become de facto standards, present in all important implementations of SQL. We use the Oracle7 names
for these functions. Other implementations may use different names.

VARIANCE
VARI ANCE produces the square of the standard deviation, a number vital to many statistical calculations. It works like this:

INPUT:

SQL> SELECT VARI ANCE(H TS)
2 FROM TEAMSTATS;

OUTPUT:

VARI ANCE(HI TS)

802. 96667

If you try astring
INPUT/OUTPUT:

SQL> SELECT VARI ANCE(NANE)
2 FROM TEAMSTATS;

ERROR:

ORA-01722: invalid nunber
no rows sel ected

you find that VARI ANCE is another function that works exclusively with numbers.

STDDEV
Thefinal group function, STDDEV, finds the standard deviation of a column of humbers, as demonstrated by this example:

INPUT:

SQL> SELECT STDDEV(HI TS)
2 FROM TEAMSTATS;

OUTPUT:

STDDEV(HI TS)

28. 336666

It also returns an error when confronted by a string:
INPUT/OUTPUT:

SQL> SELECT STDDEV(NAVE)
2 FROM TEAMBTATS;

ERROR:
ORA-01722: invalid nunber
no rows sel ected

These aggregate functions can also be used in various combinations:
INPUT/OUTPUT:

SQL> SELECT COUNT(AB),
AVG AB)

M N(AB) ,

MAX(AB) ,

STDDEV(AB)

VARI ANCE(AB) ,
SUM AB)

FROM TEANMSTATS;

oO~NO O WN

COUNT(AB) AVG(AB) M N(AB) MAX(AB) STDDEV(AB) VARI ANCE(AB) SUM AB)

6 119. 167 1 187 75. 589 5712. 97 715
The next time you hear a sportscaster use statistics to fill the time between plays, you will know that SQL is at work somewhere behind the scenes.

Date and Time Functions

Welivein acivilization governed by times and dates, and most major implementations of SQL have functions to cope with these concepts. This
section uses the table PRQJECT to demonstrate the time and date functions.

INPUT:

SQ.> SELECT * FROM PRQIECT;

OUTPUT:

TASK STARTDATE ENDDATE

KI CKOFF MIG 01- APR-95 01- APR- 95
TECH SURVEY 02- APR-95 01- MAY- 95
USER MIGS 15- MAY- 95 30- MVAY- 95
DESI GN W DGET 01-JUN-95 30-JUN- 95
CCODE W DGET 01-JUL-95 02- SEP-95
TESTI NG 03-SEP-95 17-JAN- 96

6 rows sel ected.

NOTE: This table used the Date data type. Most implementations of SQL have a Date data type, but the exact syntax may vary.

ADD_MONTHS

This function adds a number of months to a specified date. For example, say something extraordinary happened, and the preceding project slipped to
the right by two months. Y ou could make a new schedule by typing

INPUT:

SQL> SELECT TASK,
STARTDATE,

ENDDATE ORI Gl NAL_END,
ADD_NMONTHS(ENDDATE, 2)
FROM PROJECT;

abhwN

OUTPUT:

TASK STARTDATE ORI G NAL_ ADD_MONTH
KI CKOFF MIG 01- APR-95 01- APR-95 01-JUN-95
TECH SURVEY 02- APR-95 01- MAY-95 01-JUL-95
USER MIGS 15- MAY- 95 30- MAY-95 30-JUL-95
DESI GN W DGET 01-JUN-95 30-JUN-95 31- AUG 95
CCDE W DGET 01-JUL-95 02- SEP-95 02- NOV- 95
TESTI NG 03-SEP-95 17-JAN-96 17- VAR- 96

6 rows sel ected.
Not that adip like thisis possible, but it's nice to have a function that makes it so easy. ADD_MONTHS also works outside the SELECT clause. Typing

INPUT:

SQL> SELECT TASK TASKS_SHORTER THAN_ONE_MONTH
2 FROM PRQJECT
3 WHERE ADD_MONTHS(STARTDATE, 1) > ENDDATE;

produces the following result:
OUTPUT:

TASKS_SHORTER_THAN_ONE_MONTH
KI CKOFF MIG

TECH SURVEY

USER MIGS

DESI GN W DGET

ANALYSIS:

You will find that all the functionsin this section work in more than one place. However, ADD MONTHS does not work with other data types like
character or number without the help of functions TO_CHAR and TO_DATE, which are discussed later today.

LAST_DAY

LAST_DAY returns the last day of a specified month. It is for those of us who haven't mastered the "Thirty days has September..." rhyme--or at least
those of us who have not yet taught it to our computers. If, for example, you need to know what the last day of the month isin the column ENDDATE,
you would type

INPUT:

SQL> SELECT ENDDATE, LAST_DAY(ENDDATE)
2 FROM PRQJECT;

Here's the result:

OUTPUT:

ENDDATE LAST_DAY(ENDDATE)

01- APR- 95 30- APR- 95
01- MAY- 95 31- MAY-95
30- MAY- 95 31- MAY-95
30- JUN- 95 30- JUN- 95
02- SEP- 95 30- SEP- 95
17-JAN- 96 31-JAN-96

6 rows selected.
How does LAST DAY handle leap years?

INPUT/OUTPUT:

SQL> SELECT LAST DAY(' 1- FEB-95') NON LEAP,
2 LAST DAY(' 1-FEB-96') LEAP
3 FROM PRQJECT;

28- FEB- 95 29- FEB- 96
28- FEB- 95 29- FEB- 96
28- FEB- 95 29- FEB- 96
28- FEB- 95 29- FEB- 96
28- FEB- 95 29- FEB- 96
28- FEB- 95 29- FEB- 96

6 rows sel ected.
ANALYSIS:

Y ou got the right result, but why were so many rows returned? Because you didn't specify an existing column or any conditions, the SQL engine
applied the date functionsin the statement to each existing row. Let's get something less redundant by using the following:

INPUT:

SQL> SELECT DI STINCT LAST_DAY(' 1- FEB-95') NON_LEAP,
2 LAST DAY(' 1-FEB-96') LEAP
3 FROM PRQJECT;

This statement uses the word DI STI NCT (see Day 2, "Introduction to the Query: The SELECT Statement") to produce the singular result

OUTPUT:

28- FEB- 95 29- FEB- 96

Unlike me, this function knows which years are leap years. But before you trust your own or your company's financial future to this or any other
function, check your implementation!

MONTHS BETWEEN
If you need to know how many months fall between month x and month y, use MONTHS_BETWEEN like this:
INPUT:

SQL> SELECT TASK, STARTDATE, ENDDATE, MONTHS BETWEEN(STARTDATE, ENDDATE)
DURATI ON
2 FROM PRQJECT;

OUTPUT:

TASK STARTDATE ENDDATE DURATI ON
KI CKOFF MG 01- APR-95 01- APR- 95 0
TECH SURVEY 02- APR-95 01- MAY-95 -.9677419
USER MIGS 15- MAY- 95 30- MAY-95 -.483871

DESI GN W DGET 01-JUN-95 30-JUN-95 -.9354839
CCODE W DGET 01-JUL-95 02-SEP-95 -2.032258
TESTI NG 03-SEP-95 17-JAN-96 -4.451613

6 rows sel ected.

Wait a minute--that doesn't ook right. Try this:
INPUT/OUTPUT:

SQL> SELECT TASK, STARTDATE, ENDDATE,
2 MONTHS_BETWEEN(ENDDATE, STARTDATE) DURATI ON
3 FROM PRQIJECT;

TASK STARTDATE ENDDATE DURATI ON
KI CKOFF MIG 01- APR-95 01- APR- 95 0
TECH SURVEY 02- APR-95 01- MAY-95 . 96774194
USER MIGS 15- MAY- 95 30- MAY-95 . 48387097

DESI GN W DGET 01-JUN-95 30-JUN-95 . 93548387
CCDE W DGET 01-JUL-95 02- SEP-95 2. 0322581
TESTI NG 03-SEP-95 17-JAN-96 4. 4516129

6 rows sel ected.
ANALYSIS:

That's better. Y ou see that MONTHS_BETVEEN is sensitive to the way you order the months. Negative months might not be bad. For example, you
could use a negative result to determine whether one date happened before another. For example, the following statement shows all the tasks that
started before May 19, 1995:

INPUT:

SQL> SELECT *
2 FROM PRQJECT
3 WWHERE MONTHS BETWEEN(' 19 MAY 95', STARTDATE) > O;

OUTPUT:

TASK STARTDATE ENDDATE

KI CKOFF MIG 01- APR-95 01- APR- 95
TECH SURVEY 02- APR- 95 01- MAY- 95
USER MIGS 15- MAY-95 30- MAY- 95

NEW_TIME

If you need to adjust the time according to the time zone you are in, the New_TI ME function is for you. Here are the time zones you can use with this
function:

|Abbre\/iation||Time Zone |
[AST or ADT ||Atlantic standard or daylight time |
BST or BDT		Bering standard or daylight time
CST or CDT		Central standard or daylight time
EST or EDT		Eastern standard or daylight time
[GmMT	[Greenwich mean time	
!		

[HST or HDT ||Alaska-Hawaii standard or daylight time]
[MST or MDT|[Mountain standard or daylight time
[NST |[Newfoundland standard time

[PST or PDT |[Pacific standard or daylight time

[YST or YDT ||Yukon standard or daylight time

Y ou can adjust your time like this:
INPUT:

SQ.> SELECT ENDDATE EDT,
2 NEW.TI ME(ENDDATE, ' EDT',' PDT")
3 FROM PRQJECT;

OUTPUT:

EDT NEW TI ME(ENDDATE

01- APR-95 1200AM 31- MAR-95 0900PM
01- MAY- 95 1200AM 30- APR-95 0900PM
30- VAY- 95 1200AM 29- MAY- 95 0900PM
30- JUN- 95 1200AM 29- JUN- 95 0900PM
02- SEP- 95 1200AM 01- SEP-95 0900PM
17- JAN- 96 1200AM 16- JAN- 96 0900PM

6 rows sel ected.
Like magic, all the times are in the new time zone and the dates are adjusted.
NEXT_DAY

NEXT_DAY finds the name of the first day of the week that is equal to or later than another specified date. For example, to send areport on the Friday
following the first day of each event, you would type

INPUT:

SQL> SELECT STARTDATE,
2 NEXT_DAY(STARTDATE, ' FRI DAY")
3 FROM PRQIJECT;

which would return

OUTPUT:

STARTDATE NEXT_DAY(
01- APR-95 07- APR- 95
02- APR- 95 07- APR- 95
15- MAY- 95 19- MAY- 95

01- JUN- 95 02- JUN- 95
01-JUL-95 07-JUL-95
03- SEP- 95 08- SEP-95

6 rows sel ected.
ANALYSIS:

The output tells you the date of the first Friday that occurs after your STARTDATE.

SYSDATE
SYSDATE returns the system time and date:

INPUT:

SQL> SELECT DI STI NCT SYSDATE
2 FROM PRQIJECT;

OUTPUT:

SYSDATE

18- JUN- 95 1020PM
If you wanted to see where you stood today in a certain project, you could type

INPUT/OUTPUT:

SQL> SELECT *
2 FROM PRQJECT
3 \WHERE STARTDATE > SYSDATE;

TASK STARTDATE ENDDATE

CCDE W DGET 01-JUL-95 02- SEP-95
TESTI NG 03-SEP-95 17- JAN- 96

Now you can see what parts of the project start after today.

Arithmetic Functions

Many of the uses you have for the data you retrieve involve mathematics. Most implementations of SQL provide arithmetic functions similar to the
functions covered here. The examplesin this section use the NUVBERS table:

INPUT:

SQ.> SELECT *
2 FROM NUMBERS;

OUTPUT:
A B
3. 1415 4
-45 . 707
5 9
-57. 667 42
15 55
-7.2 5.3

6 rows sel ected.

ABS

The ABS function returns the absolute value of the number you point to. For example:

INPUT:

SQL> SELECT ABS(A) ABSOLUTE_VALUE
2 FROM NUMBERS;

OUTPUT:

ABSOLUTE_VALUE

7.2
6 rows sel ected.

ABS changes all the negative numbers to positive and leaves positive numbers alone.

CEIL and FLOOR

CEl L returns the smallest integer greater than or equal to its argument. FLOOR does just the reverse, returning the largest integer equal to or less than
its argument. For example:

INPUT:

SQ.> SELECT B, CEIL(B) CEILING
2 FROM NUMBERS;

OUTPUT:

6 rows sel ected.

And

INPUT/OUTPUT:

SQL> SELECT A, FLOOR(A) FLOOR
2 FROM NUMBERS;

A FLOOR

3. 1415 3
-45 -45

5 5

-57. 667 -58
15 15

-7.2 -8

6 rows sel ected.

COS, COSH, SIN, SINH, TAN, and TANH

The CGs, SI N, and TAN functions provide support for various trigonometric concepts. They all work on the assumption that nisin radians. The
following statement returns some unexpected valuesif you don't realize COS expects A to bein radians.

INPUT:

SQL> SELECT A, COS(A)
2 FROM NUMBERS

OUTPUT:
A Cos(A)
3.1415 -1
-45 52532199
5 .28366219
-57.667 .437183
15 -. 7596879

-7.2 .60835131
ANALYSIS:

Y ou would expect the CCS of 45 degrees to be in the neighborhood of . 707, not . 525. To make this function work the way you would expect it to in
adegree-oriented world, you need to convert degrees to radians. (When was the last time you heard a news broadcast report that a politician had
done a pi-radian turn? Y ou hear about a 180-degree turn.) Because 360 degrees = 2 pi radians, you can write

INPUT/OUTPUT:

SQL> SELECT A, COS(A* 0.01745329251994)
2 FROM NUMBERS;

A COS(A*0.01745329251994)

3. 1415 . 99849724

-45 . 70710678

5 . 9961947

-57. 667 . 5348391

15 . 96592583

-7.2 . 9921147
ANALYSIS:

Note that the number 0. 01745329251994 isradians divided by degrees. The trigonometric functions work as follows:
INPUT/OUTPUT:

SQ.> SELECT A, COS(A*0.017453), COSH(A*0.017453)
2 FROM NUMBERS;

A COS(A*0.017453) COSH(A*0. 017453)

3. 1415 . 99849729 1. 0015035
-45 . 70711609 1. 3245977

5 . 99619483 1.00381

-57. 667 . 53485335 1.5507072
15 . 96592696 1. 0344645

-7.2 . 99211497 1. 0079058

6 rows sel ected.

And

INPUT/OUTPUT:

SQL> SELECT A, SIN(A*0.017453), SINH(A*0.017453)
2 FROM NUMBERS;

A SIN(A*0.017453) SI NH(A*0.017453)

-45 -. 7070975 -. 8686535

5 . 08715429 . 0873758

-57. 667 -. 8449449 -1.185197
15 . 25881481 . 26479569

-7.2 -. 1253311 -. 1259926

6 rows sel ected.

And

INPUT/OUTPUT:

SQ.> SELECT A, TAN(A*0.017453), TANH(A*0.017453)
2 FROM NUMBERS;

A TAN(A*0. 017453) TANH(A*0.017453)

3. 1415 . 05488361 . 05477372
-45 -.9999737 -. 6557867

5 . 08748719 . 08704416

-57. 667 -1.579769 -. 7642948
15 . 26794449 . 25597369

-7.2 -.1263272 -.1250043

6 rows sel ected.

EXP
EXP enables you to raise e (e is amathematical constant used in various formulas) to a power. Here's how EXP raises e by the valuesin column A:

INPUT:

SQL> SELECT A, EXP(A)
2 FROM NUMBERS;

OUTPUT:

A EXP(A)

3.1415 23.138549
-45 2.863E-20

5 148.41316
-57.667 9.027E-26
15 3269017.4

-7.2 .00074659

6 rows sel ected.

LN and LOG
These two functions center on logarithms. LN returns the natural logarithm of its argument. For example:

INPUT:

SQL> SELECT A, LN(A)
2 FROM NUMBERS;

OUTPUT:

ERROR:
ORA-01428: argunent '-45" is out of range

Did we neglect to mention that the argument had to be positive? Write

INPUT/OUTPUT:

SQL> SELECT A, LN(ABS(A))
2 FROM NUMBERS;

A LN(ABS(A))

3. 1415 1.1447004
-45 3.8066625

5 1.6094379
-57.667 4.0546851
15 2.7080502

-7.2 1.974081
6 rows sel ected.
ANALYSIS:

Notice how you can embed the function ABS inside the LN call. The other logarith-mic function, LOG, takes two arguments, returning the logarithm
of the first argument in the base of the second. The following query returns the logarithms of column B in base 10.

INPUT/OUTPUT:

SQL> SELECT B, LOJB, 10)
2 FROM NUMBERS;

B LOG(B, 10)

4 1.660964
. 707 -6.640962
9 1.0479516
42 .61604832
55 . 57459287
5.3 1.3806894

6 rows sel ected.
MOD

Y ou have encountered MOD before. On Day 3, "Expressions, Conditions, and Operators,” you saw that the ANSI standard for the modul o operator %
is sometimes implemented as the function MOD. Here's a query that returns a table showing the remainder of A divided by B:

INPUT:

SQL> SELECT A, B, MOD(A, B)
2 FROM NUMBERS;

OUTPUT:

A B MDA B)

3. 1415 4 3. 1415
-45 . 707 -. 459

5 9 5

-57.667 42 -15.667
15 55 15

-7.2 5.3 -1.9

6 rows sel ected.

POWER
To raise one number to the power of another, use POVER. In this function the first argument is raised to the power of the second:

INPUT:

SQL> SELECT A, B, PONER(A, B)
2 FROM NUMBERS;

OUTPUT:

ERROR:
ORA-01428: argunent '-45" is out of range

ANALYSIS:

At first glance you are likely to think that the first argument can't be negative. But that impression can't be true, because a number like -4 can be
raised to a power. Therefore, if the first number in the POVER function is negative, the second must be an integer. Y ou can work around this problem
by using CEl L (or FLOOR):

INPUT:

SQL> SELECT A, CEIL(B), POWER(A, CElL(B))
2 FROM NUMBERS;

OUTPUT:

A CEIL(B) POWER(A, CEI L(B))

3. 1415 4 97. 3976
-45 1 -45

5 9 1953125

-57. 667 42 9. 098E+73
15 55 4. 842E+64

-7.2 6 139314. 07

6 rows sel ected.
That's better!
SIGN

SI GNreturns - 1 if itsargument islessthan 0, 0 if itsargument is equal to 0, and 1 if its argument is greater than 0, as shown in the following
example:

INPUT:

SQL> SELECT A, SI GN(A)
2 FROM NUMBERS;

OUTPUT:
A SIGN(A)
3. 1415 1
-45 -1
5 1
-57. 667 -1
15 1
-7.2 -1
0 0

7 rows sel ected.

You could also use SI GNin aSELECT WHERE clause like this:

INPUT:

SQL> SELECT A
2 FROM NUMBERS
3 WHERE SIGN(A) = 1;

OUTPUT:

SQRT

The function SQRT returns the square root of an argument. Because the square root of a negative number is undefined, you cannot use SQRT on
negative numbers.

INPUT/OUTPUT:

SQL> SELECT A, SQRT(A)
2 FROM NUMBERS

ERROR:
ORA-01428: argunent '-45" is out of range

However, you can fix this limitation with ABS:

INPUT/OUTPUT:

SQL> SELECT ABS(A), SQRT(ABS(A))
2 FROM NUMBERS

ABS(A) SQRT(ABS(A))
3.1415 1.7724277
45 6.7082039

5 2. 236068
57.667 7.5938791
15 3.8729833

7.2 2.6832816

0 0

7 rows sel ected.

Character Functions

Many implementations of SQL provide functions to manipulate characters and strings of characters. This section covers the most common character
functions. The examplesin this section use the table CHARACTERS.

INPUT/OUTPUT:

SQ.> SELECT * FROM CHARACTERS;

LASTNAME FI RSTNAME M CODE
PURVI S KELLY A 32
TAYLOR CHUCK J 67
CHRI STI NE LAURA C 65
ADANB FESTER M 87
COSTALES ARVANDO A 77
KONG MAJOR G 52

6 rows sel ected.

CHR

CHR returns the character equivalent of the number it uses as an argument. The character it returns depends on the character set of the database. For
this example the database is set to ASCII. The column CODE includes numbers.

INPUT:

SQL> SELECT CODE, CHR(CODE)
2 FROM CHARACTERS;

OUTPUT:

6 rows sel ected.
The space opposite the 32 shows that 32 isa space in the ASCI| character set.

CONCAT

Y ou used the equivalent of this function on Day 3, when you learned about operators. The | | symbol splices two strings together, as does CONCAT. It
workslikethis:

INPUT:

SQL> SELECT CONCAT(FI RSTNAME, LASTNAME) "FI RST AND LAST NAMES'
2 FROM CHARACTERS;

OUTPUT:

FI RST AND LAST NAMES

KELLY PURVI S
CHUCK TAYLOR
LAURA CHRI STI NE
FESTER ADANS
ARVANDO COSTALES
MAJOR KONG

6 rows sel ected.
ANALYSIS:

Quotation marks surround the multiple-word alias FI RST AND LAST NAMES. Again, it is safest to check your implementation to seeif it allows
multiple-word aliases.

Also notice that even though the table looks like two separate columns, what you are seeing is one column. The first value you concatenated,
FI RSTNAME, is 15 characters wide. This operation retained all the charactersin the field.

INITCAP
I NI TCAP capitalizes thefirst letter of aword and makes all other characters lowercase.

INPUT:

SQL> SELECT FI RSTNAME BEFORE, | NI TCAP(FI RSTNAME) AFTER
2 FROM CHARACTERS;

OUTPUT:

BEFORE AFTER
KELLY Kel l'y
CHUCK Chuck
LAURA Laur a

FESTER Fester

ARMANDO Ar mando
MAJOR Maj or

6 rows sel ected.
LOWER and UPPER
Asyou might expect, LOAER changes all the characters to lowercase; UPPER does just the reverse.

The following example starts by doing alittle magic with the UPDATE function (you learn more about this next week) to change one of the values to
lowercase:

INPUT:

SQL> UPDATE CHARACTERS
2 SET FIRSTNAME = ' kel |y
3 WHERE FI RSTNAME = ' KELLY";

OUTPUT:
1 row updat ed.
INPUT:

SQL> SELECT FI RSTNAME
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAME

6 rows sel ected.

Then you write
INPUT:

SQL> SELECT FI RSTNAME, UPPER(FI RSTNAME), LOWER(FI RSTNAME)
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAMVE UPPER(FI RSTNAMVE LOWER(FI RSTNAMVE
kel l'y KELLY kel l'y

CHUCK CHUCK chuck

LAURA LAURA | aura

FESTER FESTER fester

ARMANDO ARMANDO ar mando

MAJOR MAJOR maj or

6 rows sel ected.
Now you see the desired behavior.

LPAD and RPAD

LPAD and RPAD take a minimum of two and a maximum of three arguments. The first argument is the character string to be operated on. The second
isthe number of charactersto pad it with, and the optional third argument is the character to pad it with. The third argument defaultsto a blank, or it
can be asingle character or a character string. The following statement adds five pad characters, assuming that the field LASTNAME is defined as a
15-character field:

INPUT:

SQL> SELECT LASTNAME, LPAD(LASTNAME, 20,'*")
2 FROM CHARACTERS;

OUTPUT:

LASTNAME LPAD(LASTNAME, 20, ' **
PURVI S **xxx PURVI S

TAYLOR *xxx* TAYLOR

CHRI STI NE ***Fx*CHRI STI NE
ADANMS *x*xx ADAVS

COSTALES *xxxx COSTALES

KONG *xxxx KONG

6 rows sel ected.
ANALYSIS:

Why were only five pad characters added? Remember that the LASTNAME column is 15 characters wide and that LASTNAME includes the blanks to the
right of the characters that make up the name. Some column data types eliminate padding charactersif the width of the column value isless than the
total width allocated for the column. Check your implementation. Now try the right side:

INPUT:

SQL> SELECT LASTNAME, RPAD(LASTNAME, 20,"' *')
2 FROM CHARACTERS;

OUTPUT:

LASTNAME RPAD(LASTNAME, 20, ' **
PURVI S PURVI S FrEEE
TAYLOR TAYLOR FRHEE
CHRI STI NE CHRI STI NE FRHEE
ADANMS ADANB FrEE
COSTALES COSTALES FrEE
KONG KONG FRHEE

6 rows sel ected.
ANALYSIS:

Here you see that the blanks are considered part of the field name for these operations. The next two functions come in handy in this type of
situation.

LTRI Mand RTRI M

LTRI Mand RTRI Mtake at least one and at most two arguments. The first argument, like LPAD and RPAD, is a character string. The optional second
element is either a character or character string or defaultsto a blank. If you use a second argument that is not a blank, these trim functions will trim
that character the same way they trim the blanks in the following examples.

INPUT:

SQL> SELECT LASTNAME, RTRI M LASTNANME)
2 FROM CHARACTERS;

OUTPUT:

LASTNAME RTRI M LASTNANE)

PURVI S PURVI S
TAYLOR TAYLOR
CHRI STI NE CHRI STI NE
ADANS ADANB
COSTALES COSTALES
KONG KONG

6 rows sel ected.

Y ou can make sure that the characters have been trimmed with the following statement:
INPUT:

SQL> SELECT LASTNAME, RPAD(RTRI M LASTNAME), 20, *")
2 FROM CHARACTERS;

OUTPUT:

LASTNANVE RPAD(RTRI M LASTNAME)
PURMIS PURML GH o x es s a s mn s
TAYLOR TAYLORF * % % % % % % % % % % % %
CHRI STI NE CHRI STI NE* * * * % % % % % % %
ADANB ADAN* * * ¥ * % % % % % % % % ¥ *
COSTALES COSTALESH * * * * % % % % % % %
KONG KONGH * * % % & % % % % & & % % % %

6 rows sel ected.

The output proves that trim isworking. Now try LTRI M
INPUT:

SQL> SELECT LASTNAME, LTRI M LASTNAME, 'C)
2 FROM CHARACTERS;

OUTPUT:

LASTNAME LTRI M LASTNANME,
PURVI S PURVI S

TAYLOR TAYLOR

CHRI STI NE HRI STI NE

ADANS ADANB

COSTALES OSTALES

KONG KONG

6 rows sel ected.
Note the missing Cs in the third and fifth rows.
REPLACE

REPLACE does just that. Of its three arguments, the first is the string to be searched. The second is the search key. The last is the optional
replacement string. If the third argument isleft out or NULL, each occurrence of the search key on the string to be searched is removed and is not
replaced with anything.

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST') REPLACEMENT
2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACEMENT

PURVI S PURVI S
TAYLOR TAYLOR
CHRI STI NE CHRI | NE
ADANS ADANB
COSTALES COALES
KONG KONG

6 rows sel ected.

If you have athird argument, it is substituted for each occurrence of the search key in the target string. For example:
INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST','**') REPLACEMENT
2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACEMENT
PURVI S PURVI S
TAYLOR TAYLOR

CHRI STI NE CHRI **| NE
ADANMS ADANB
COSTALES CO"**ALES
KONG KONG

6 rows sel ected.

If the second argument is NULL, the target string is returned with no changes.
INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, NULL) REPLACEMENT
2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACENMENT
PURVI S PURVI S
TAYLOR TAYLOR

CHRI STI NE CHRI STI NE
ADANMS ADANB
COSTALES COSTALES
KONG KONG

6 rows sel ected.
SUBSTR

This three-argument function enables you to take a piece out of atarget string. The first argument isthe target string. The second argument is the
position of the first character to be output. The third argument is the number of characters to show.

INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNAME, 2, 3)
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAME SUB

CHUCK HUC

LAURA AUR
FESTER EST
ARVANDO RVA
MAJOR AJO

6 rows sel ected.

If you use a negative number as the second argument, the starting point is determined by counting backwards from the end, like this:
INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNAME, - 13, 2)
2 FROM CHARACTERS;

OUTPUT:
FI RSTNAVE SuU
kel ly N

CHUCK uc
LAURA UR
FESTER ST
ARMANDO MA
MAJOR JO

6 rows sel ected.
ANALYSIS:

Remember the character field FI RSTNAME in this example is 15 characters long. That iswhy you used a - 13 to start at the third character. Counting
back from 15 puts you at the start of the third character, not at the start of the second. If you don't have a third argument, use the following statement
instead:

INPUT:

SQL> SELECT FI RSTNAME, SUBSTR(FI RSTNANE, 3)
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAMVE SUBSTR(FI RSTN
kel l'y Iy

CHUCK UCK

LAURA URA

FESTER STER

ARMANDO MANDO

MAJOR JOR

6 rows sel ected.

Therest of the target string is returned.
INPUT:

SQL> SELECT * FROM SSN_TABLE;
OUTPUT:

SSN

301457111
459789998

3 rows sel ected.
ANALYSIS:

Reading the results of the preceding output is difficult--Social Security numbers usually have dashes. Now try something fancy and see whether you
like the results:

INPUT:

SQL> SELECT SUBSTR(SSN, 1,3)||' -' || SUBSTR(SSN, 4,2)||" -' || SUBSTR(SSN, 6, 4) SSN
2 FROM SSN_TABLE;

OUTPUT:

SSN

301-45-7111
459- 78- 9998

3 rows sel ected.

NOTE: Thisparticular use of the subst r function could comein very handy with large numbers using commas such as
1,343,178,128 and in area codes and phone humbers such as 317-787-2915 using dashes.

Here is another good use of the SUBSTR function. Suppose you are writing a report and afew columns are more than 50 characters wide. Y ou can
use the SUBSTR function to reduce the width of the columns to a more manageable size if you know the nature of the actual data. Consider the
following two examples:

INPUT:

SQL> SELECT NAME, JOB, DEPARTMENT FROM JOB_TBL;

OUTPUT:

NANVE

JOoB DEPARTMENT
ALVIN SM TH

VI CEPRESI DENT MARKETI NG

1 ROW SELECTED.

ANALYSIS:

Notice how the columns wrapped around, which makes reading the results alittle too difficult. Now try this sel ect :
INPUT:

SQL> SELECT SUBSTR(NAME, 1,15) NAME, SUBSTR(JOB, 1, 15) JOB,
DEPARTMENT
2 FROM JOB_TBL;

OUTPUT:

NANVE JOB DEPARTMENT___
ALVIN SM TH VI CEPRESI DENT MARKETI NG
Much better!

TRANSLATE

The function TRANSLATE takes three arguments: the target string, the FROMstring, and the TO string. Elements of the target string that occur in the
FROMstring are tranglated to the corresponding element in the TO string.

INPUT:

SQL> SELECT FI RSTNAME, TRANSLATE(FI RSTNAVE
2 ' 0123456789ABCDEFGH JKLMNOPQRSTUVWKYZ
3" NNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAAA)
4 FROM CHARACTERS;

OUTPUT:

FI RSTNAME TRANSLATE(FI RST
kel l'y kel l'y

CHUCK AAAAA

LAURA AAAAA

FESTER AAAAAA

ARVANDO AAAAAAA

MAJOR AAAAA

6 rows sel ected.
Notice that the function is case sensitive.
INSTR

To find out where in a string a particular pattern occurs, use I NSTR. Its first argument is the target string. The second argument is the pattern to
match. The third and forth are numbers representing where to start looking and which match to report. This example returns a number representing
the first occurrence of O starting with the second character:

INPUT:

SQL> SELECT LASTNAME, | NSTR(LASTNAME, 'O, 2, 1)
2 FROM CHARACTERS;

OUTPUT:

LASTNAME I NSTR(LASTNAME, ' O , 2, 1)

0
TAYLOR 5
CHRI STI NE 0
ADANB 0
COSTALES 2
KONG 2

6 rows sel ected.
ANALYSIS:

The default for the third and fourth argumentsis 1. If the third argument is negative, the search starts at a position determined from the end of the
string, instead of from the beginning.

LENGTH
LENGTH returns the length of itslone character argument. For example:

INPUT:

SQL> SELECT FI RSTNAME, LENGTH(RTRI M FI RSTNAME))
2 FROM CHARACTERS;

OUTPUT:

FI RSTNAVE LENGTH(RTRI M FI RSTNAME))

6 rows sel ected
ANALYSIS:

Note the use of the RTRI Mfunction. Otherwise, LENGTH would return 15 for every value.

Conversion Functions
These three conversion functions provide a handy way of converting one type of data to another. These examples use the table CONVERSI ONS.

INPUT:

SQ.> SELECT * FROM CONVERSI ONS;

OUTPUT:
NANVE TESTNUM
40 95
13 23
74 68

The NAME column is a character string 15 characters wide, and TESTNUMis a number.
TO_CHAR

The primary use of TO_CHAR isto convert a number into a character. Different implementations may also use it to convert other data types, like
Date, into a character, or to include different formatting arguments. The next exampleillustrates the primary use of TO_CHAR:

INPUT:

SQL.> SELECT TESTNUM TO CHAR(TESTNUM
2 FROM CONVERT;

OUTPUT:

TESTNUM TO_CHAR(TESTNUM

95 95
23 23
68 68

Not very exciting, or convincing. Here's how to verify that the function returned a character string:
INPUT:

SQL> SELECT TESTNUM LENGTH(TO CHAR(TESTNUM))
2 FROM CONVERT;

OUTPUT:

TESTNUM LENGTH(TO_CHAR(TESTNUM))

68 2
ANALYSIS:

LENGTH of a number would have returned an error. Notice the difference between TO CHAR and the CHR function discussed earlier. CHR would have
turned this number into a character or a symbol, depending on the character set.

TO_NUMBER

TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a string into a number. For example:
INPUT:

SQL> SELECT NAME, TESTNUM TESTNUMF TO NUVBER(NAME)
2 FROM CONVERT;

OUTPUT:

NANVE TESTNUM TESTNUMF TO_NUVBER(NAME)
40 95 3800
13 23 299
74 68 5032
ANALYSIS:

This test would have returned an error if TO_NUMBER had returned a character.

Miscellaneous Functions
Here are three miscellaneous functions you may find useful.
GREATEST and LEAST

These functions find the GREATEST or the LEAST member from a series of expressions. For example:
INPUT:

SQL> SELECT GREATEST(' ALPHA', 'BRAVO ,' FOXTROT', 'DELTA')
2 FROM CONVERT;

OUTPUT:

GREATEST

ANALYSIS:

Notice GREATEST found the word closest to the end of the alphabet. Notice also a seemingly unnecessary FROMand three occurrences of FOXTROT. If
FROMis missing, you will get an error. Every SELECT needs a FROM The particular table used in the FROMhas three rows, so the function in the
SELECT clauseis performed for each of them.

INPUT:

SQL> SELECT LEAST(34, 567, 3, 45, 1090)
2 FROM CONVERT;

OUTPUT:

LEAST(34, 567, 3, 45, 1090)

Asyou can see, GREATEST and LEAST also work with numbers.

USER
USER returns the character name of the current user of the database.

INPUT:
SQL> SELECT USER FROM CONVERT;

OUTPUT:

PERKI NS
PERKI NS
PERKI NS

Therereally is only one of me. Again, the echo occurs because of the number of rows in the table. USER is similar to the date functions explained
earlier today. Even though USER is not an actual column in the table, it is selected for each row that is contained in the table.

Summary

It has been along day. We covered 47 functions--from aggregates to conversions. Y ou don't have to remember every function--just knowing the
general types (aggregate functions, date and time functions, arithmetic functions, character functions, conversion functions, and miscellaneous
functions) is enough to point you in the right direction when you build a query that requires a function.

Q&A
Q Why are so few functions defined in the ANSI standard and so many defined by the individual implementations?

A ANSI standards are broad strokes and are not meant to drive companies into bankruptcy by forcing all implementations to have dozens of
functions. On the other hand, when company X adds a statistical package to its SQL and it sellswell, you can bet company Y and Z will
follow suit.

Q | thought you said SQL wassimple. Will | really use all of these functions?

A The answer to this question is similar to the way atrigonometry teacher might respond to the question, Will | ever need to know how to
figure the area of an isoscelestrianglein real life? The answer, of course, depends on your profession. The same concept applies with the
functions and all the other options available with SQL. How you use functionsin SQL depends mostly on you company's needs. Aslong as
you understand how functions work as awhole, you can apply the same concepts to your own queries.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises.”

Quiz
1. Which function capitalizes the first letter of a character string and makes the rest lowercase?
2. Which functions are a so known by the name group functions?

3. Will this query work?

SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;

4. How about this one?

SQL> SELECT SUM LASTNAME) FROM CHARACTERS;

5. Assuming that they are separate columns, which function(s) would splice together FI RSTNAVE and LASTNAVE?

6. What does the answer 6 mean from the following SELECT?

INPUT:

SQL> SELECT COUNT(*) FROM TEANMSTATS;

OUTPUT:

COUNT(*)

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME, 1,5 FROVI NAVE_TBL;
Exercises

1. Using today's TEAMSTATS table, write a query to determine who is batting under .25. (For the baseball-challenged reader, batting average
is hits/ab.)

2. Using today's CHARACTERS table, write a query that will return the following:

INTIALS __ CODE

K. A P. 32
1 row sel ect ed.

{ % Previous Chapter JEK.—* Mext Chapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

- Day 5 -
Clausesin SQL

Objectives

Today's topic is clauses--not the kind that distribute presents during the holidays, but the ones you use with a SELECT statement. By the end of the
day you will understand and be able to use the following clauses:

1 WHERE

1 STARTI NG W TH
1 ORDER BY

1 GROUP BY

1 HAVI NG

To get afeel for where these functions fit in, examine the genera syntax for a SELECT statement:
SYNTAX:

SELECT [DISTINCT | ALL] { *
| { [schema.]{table | view | snapshot}.*
| expr } [[AS] c_alias]
[, { [schema.]{table | view | snapshot}.*
| expr } [[AS] c_alias]] ...}
FROM [schema.]{table | view | snapshot}[@lblink] [t_alias]
[, [schena.]{table | view | snapshot}[@lblink] [t_alias]]
[WHERE condi tion]
[GROUP BY expr [, expr] ... [HAVING condition]]
[{UNION | UNION ALL | I NTERSECT | M NUS} SELECT command]
[ORDER BY {expr|position} [ASC | DESC]
[, {expr|position} [ASC | DESC]] ...]

NOTE: In my experience with SQL, the ANS| standard is really more of an ANSI "suggestion." The preceding syntax will
generally work with any SQL engine, but you may find some slight variations.

NOTE: You haven't yet had to deal with acomplicated syntax diagram. Because many people find syntax diagrams more puzzling
than illuminating when learning something new, this book has used simple examples to illustrate particular points. However, we are
now at the point where a syntax diagram can help tie the familiar concepts to today's new material.

Don't worry about the exact syntax--it varies slightly from implementation to implementation anyway. Instead, focus on the relationships. At the top

of this statement is SELECT, which you have used many timesin the last few days. SELECT is followed by FROM which should appear with every
SELECT statement you typed. (Y ou learn anew use for FROMtomorrow.) WHERE, GROUP BY, HAVI NG, and ORDER BY all follow. (The other clauses
in the diagram--UNI ON, UNI ON ALL, | NTERSECT, and M NUS--were covered in Day 3, "Expressions, Conditions, and Operators.") Each clause plays
an important part in selecting and manipulating data.

NOTE: We have used two implementations of SQL to prepare today's examples. One implementation has an SQL> prompt and line
numbers (Personal Oracle7), and the other (Borland's ISQL) does not. Y ou will also notice that the output displays vary slightly,
depending on the implementation.

The WHERE Clause

Using just SELECT and FROM, you are limited to returning every row in atable. For example, using these two key words on the CHECKS table, you
get al seven rows:

INPUT:

SQL> SELECT *
2 FROM CHECKS;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel | ul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
16 Cash 25 Wld Night Qut
17 Joans Gas 25.1 Gas

7 rows selected.
With WHERE in your vocabulary, you can be more selective. To find all the checks you wrote with a value of more than 100 dollars, write this:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 WHERE AMOUNT > 100;

The WHERE clause returns the four instances in the table that meet the required condition:

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel I ul ar Phone
5 Joes Stale $ Dent 150 Groceries

VHERE can also solve other popular puzzles. Given the following table of names and locations, you can ask that popular question, Where's Waldo?

INPUT:

SQL> SELECT *
2 FROM PUZZLE;

OUTPUT:

NANVE LOCATI ON

TYLER BACKYARD

MAJOR KI TCHEN

SPEEDY LI VI NG ROOM
WALDO GARACE

LADDI E UTILITY CLOSET
ARNCLD TV ROOM

6 rows sel ected.
INPUT:

SQL> SELECT LOCATI ON AS "WHERE' S WALDO?"
2 FROM PUZZLE
3 WHERE NAME = 'WALDO ;

OUTPUT:

VWHERE' S WALDO?

Sorry, we couldn't resist. We promise no more corny queries. (We're saving those for that SQL bathroom humor book everyone's been wanting.)
Nevertheless, this query shows that the column used in the condition of the WHERE statement does not have to be mentioned in the SELECT clause. In
this example you selected the location column but used WHERE on the name, which is perfectly legal. Also notice the AS on the SELECT line. AS isan
optional assignment operator, assigning the alias WHERE' S WALDO? to LOCATI ON. Y ou might never see the AS again, because it involves extra
typing. In most implementations of SQL you can type

INPUT:

SQL.> SELECT LOCATI ON "WHERE' S WALDO?"
2 FROM PUZZLE
3 WHERE NAME ='WALDO ;

and get the same result as the previous query without using AS:

OUTPUT:

VWHERE' S WALDO?

After SELECT and FROM WHERE is the third most frequently used SQL term.

The STARTING WITH Clause

STARTI NG W TH is an addition to the WHERE clause that works exactly like LI KE(<exp>%) . Compare the results of the following query:
INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
WHERE PAYEE LI KE(' Ca%) ;

OUTPUT:

PAYEE AMOUNT RENMARKS

Cash 25 Wld N ght Qut
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

with the results from this query:

INPUT:

SELECT PAYEE, AMOUNT, RENMARKS
FROM CHECKS
WHERE PAYEE STARTING WTH(' Ca');

OUTPUT:

PAYEE AMOUNT REMARKS

Cash 25 Wld Night Qut
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

Theresults are identical. Y ou can even use them together, as shown here:
INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS

WHERE PAYEE STARTING W TH(' Ca')
OoR

REMARKS LIKE ' G% ;

OUTPUT:

PAYEE AMOUNT REMARKS

Local Utilities 98 Gas

Joes Stale $ Dent 150 Groceries
Cash 25 Wld Night Qut
Joans Gas 25.1 Gas

Cash 60 Trip to Boston
Cash 34 Trip to Dayton
Joans Gas 15.75 Gas

WARNING: STARTI NG W TH isacommon feature of many implementations of SQL. Check your implementation before you
grow fond of it.

Order from Chaos: The ORDER BY Clause

From time to time you will want to present the results of your query in some kind of order. Asyou know, however, SELECT FROMgivesyou a
listing, and unless you have defined a primary key (see Day 10, "Creating Views and Indexes"), your query comes out in the order the rows were

entered. Consider a beefed-up CHECKS table:

INPUT:

SQL> SELECT * FROM CHECKS;

OUTPUT:

CHECK# PAYEE AMOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel | ul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
16 Cash 25 Wld Night Qut
17 Joans Gas 25.1 Gas

9 Abes C eaners . X-Tra Starch

20 Abes C eaners 10.5 Al Dry Cean
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton

11 rows sel ected.

ANALYSIS:

Y ou're going to have to trust me on this one, but the order of the output is exactly the same order as the order in which the data was entered. After
you read Day 8, "Manipulating Data," and know how to use | NSERT to create tables, you can test how datais ordered by default on your own.

The ORDER BY clause gives you away of ordering your results. For example, to order the preceding listing by check number, you would use the
following ORDER BY clause:

INPUT:

SQ.> SELECT *
2 FROM CHECKS
3 ORDER BY CHECK#;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200. 32 Cel | ul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
8 Cash 60 Trip to Boston
9 Abes C eaners 24.35 X-Tra Starch
16 Cash 25 WIld Night Qut
17 Joans Gas 25.1 Gas
20 Abes C eaners 10.5 Al Dry Cean
21 Cash 34 Trip to Dayton

11 rows sel ect ed.

Now the datais ordered the way you want it, not the way in which it was entered. Asthe following example shows, ORDER requires BY; BY is not
optional.

INPUT/OUTPUT:

SQ.> SELECT * FROM CHECKS ORDER CHECK#;

SELECT * FROM CHECKS ORDER CHECK#
*

ERROR at line 1:
ORA-00924: missing BY keyword

What if you want to list the datain reverse order, with the highest number or letter first? You'rein luck! The following query generates alist of
PAYEESs that stars at the end of the al phabet:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY PAYEE DESC;

CHECK# PAYEE REMARKS

2 Reading R R 245.34 Train to Chicago
1 Ma Bell 150 Have sons next tine
3 Ma Bell 200. 32 Cel I ul ar Phone

4 Local Uilities 98 Gas

5 Joes Stale $ Dent 150 Groceries

17 Joans Gas 25.1 Gas

16 Cash 25 WIld Night Qut

8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
9 Abes C eaners 24.35 X-Tra Starch

20 Abes C eaners 10.5 Al Dry Cean

11 rows sel ect ed.

ANALYSIS:

The DESC at the end of the ORDER BY clause orders the list in descending order instead of the default (ascending) order. The rarely used, optional
keyword ASC appears in the following statement:

INPUT:

SQL> SELECT PAYEE, AMOUNT
2 FROM CHECKS
3 ORDER BY CHECK# ASC,

OUTPUT:

PAYEE AMOUNT
Ma Bel | 150
Reading R R 245. 34
Ma Bel | 200. 32
Local Utilities 98
Joes Stale $ Dent 150
Cash 60
Abes C eaners 24. 35
Cash 25
Joans (Gas 25.1
Abes C eaners 10.5
Cash 34

11 rows sel ect ed.
ANALYSIS:

The ordering in thislist isidentical to the ordering of thelist at the beginning of the section (without ASC) because ASC is the default. This query also
shows that the expression used after the ORDER BY clause does not have to be in the SELECT statement. Although you selected only PAYEE and
AMOUNT, you were still able to order the list by CHECK#.

Y ou can also use ORDER BY on more than one field. To order CHECKS by PAYEE and REMARKS, you would query as follows:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY PAYEE, REMARKS;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

20 Abes C eaners 10.5 Al Dry Cean
9 Abes C eaners 24.35 X-Tra Starch
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
16 Cash 25 Wld Night Qut
17 Joans Gas 25.1 Gas
5 Joes Stale $ Dent 150 Groceries
4 Local Uilities 98 Gas
3 Ma Bell 200. 32 Cel I ul ar Phone
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago

ANALYSIS:

Notice the entries for Cash in the PAYEE column. In the previous ORDER BY, the CHECK#s werein the order 16, 21, 8. Adding the field REMARKS to
the ORDER BY clause puts the entriesin alphabetical order according to REMARKS. Does the order of multiple columnsin the ORDER BY clause make
adifference? Try the same query again but reverse PAYEE and REMARKS:

INPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY REMARKS, PAYEE;

OUTPUT:
CHECK# PAYEE AMOUNT REMARKS

20 Abes C eaners 10.5 Al Dry Cean
3 Ma Bell 200. 32 Cel I ul ar Phone
17 Joans Gas 25.1 Gas
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
16 Cash 25 Wld Night Qut
9 Abes C eaners 24.35 X-Tra Starch

11 rows sel ected.
ANALYSIS:

Asyou probably guessed, the results are completely different. Here's how to list one column in alphabetical order and list the second columnin
reverse aphabetical order:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY PAYEE ASC, REMARKS DESC;

CHECK# PAYEE AMOUNT REMARKS
9 Abes C eaners 24.35 X-Tra Starch
20 Abes C eaners 10.5 Al Dry Cean
16 Cash 25 WIld Night Qut
21 Cash 34 Trip to Dayton
8 Cash 60 Trip to Boston
17 Joans Gas 25.1 Gas
5 Joes Stale $ Dent 150 Groceries
4 Local Uilities 98 Gas
1 Ma Bell 150 Have sons next tine
3 Ma Bell 200. 32 Cel I ul ar Phone
2 Reading R R 245.34 Train to Chicago

11 rows sel ect ed.
ANALYSIS:

In this example PAYEE is sorted alphabetically, and REMARKS appears in descending order. Note how the remarks in the three checks with a PAYEE of
Cash are sorted.

TIP: If you know that acolumn you want to order your results by isthe first column in atable, then you can type ORDER BY 1 in
place of spelling out the column name. See the following example.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM CHECKS
3 ORDER BY 1;

CHECK# PAYEE AMOUNT REMARKS
1 Ma Bell 150 Have sons next tinme
2 Reading R R 245.34 Train to Chicago

3 Ma Bell 200. 32 Cel I ul ar Phone

4 Local Uilities 98 Gas

5 Joes Stale $ Dent 150 Groceries

8 Cash 60 Trip to Boston
9 Abes C eaners 24.35 X-Tra Starch

16 Cash 25 Wld Night Qut
17 Joans Gas 25.1 Gas

20 Abes C eaners 10.5 Al Dry Cl ean
21 Cash 34 Trip to Dayton

11 rows sel ected.
ANALYSIS:
Thisresult isidentical to the result produced by the SELECT statement that you used earlier today:

SELECT * FROM CHECKS ORDER BY CHECK#;

The GROUP BY Clause

On Day 3 you learned how to use aggregate functions (COUNT, SUM AVG, M N, and MAX). If you wanted to find the total amount of money spent from
the dightly changed CHECKS table, you would type:

INPUT:

SELECT *
FROM CHECKS;

Here's the modified table:

OUTPUT:

CHECKNUM PAYEE AMOUNT REMARKS
1 Ma Bell 150 Have sons next tine
2 Reading R R 245.34 Train to Chicago
3 Ma Bell 200.33 Cel lul ar Phone
4 Local Uilities 98 Gas
5 Joes Stale $ Dent 150 Groceries
16 Cash 25 WId N ght Qut
17 Joans Gas 25.1 Gas
9 Abes C eaners 24.35 X-Tra Starch
20 Abes C eaners 10.5 Al Dry Cean
8 Cash 60 Trip to Boston
21 Cash 34 Trip to Dayton
30 Local Uilities 87.5 Water
31 Local Uilities 34 Sewer
25 Joans Gas 15.75 Gas

Then you would type:

INPUT/OUTPUT:

SELECT SUM AMOUNT)
FROM CHECKS;

1159. 87
ANALYSIS:

This statement returns the sum of the column AMOUNT. What if you wanted to find out how much you have spent on each PAYEE? SQL helps you
with the GROUP BY clause. To find out whom you have paid and how much, you would query like this:

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT)
FROM CHECKS
GROUP BY PAYEE;

PAYEE SUM
Abes C eaners 34. 849998
Cash 119
Joans Gas 40. 849998
Joes Stale $ Dent 150
Local Utilities 219.5
Ma Bel | 350. 33002
Reading R R 245. 34
ANALYSIS:

The SELECT clause has anormal column selection, PAYEE, followed by the aggregate function SUM AMOUNT). If you had tried this query with only
the FROM CHECKS that follows, here's what you would see:

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT)
FROM CHECKS;

Dynam ¢ SQL Error
-SQL error code = -104
-invalid colum reference

ANALYSIS:

SQL is complaining about the combination of the normal column and the aggregate function. This condition requires the GROUP BY clause. GROUP
BY runs the aggregate function described in the SELECT statement for each grouping of the column that follows the GROUP BY clause. The table
CHECKS returned 14 rows when queried with SELECT * FROM CHECKS. The query on the sametable, SELECT PAYEE, SUM AMOUNT) FROM
CHECKS GROUP BY PAYEE, took the 14 rowsin the table and made seven groupings, returning the SUMof each grouping.

Suppose you wanted to know how much you gave to whom with how many checks. Can you use more than one aggregate function?
INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE;

PAYEE SUM COUNT
Abes C eaners 34. 849998 2
Cash 119 3
Joans (Gas 40. 849998 2
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bel | 350. 33002 2
Readi ng R R 245. 34 1
ANALYSIS:

This SQL is becoming increasingly useful! In the preceding example, you were able to perform group functions on unique groups using the GROUP
BY clause. Also notice that the results were ordered by payee. GROUP BY also acts like the ORDER BY clause. What would happen if you tried to
group by more than one column? Try this:

INPUT/OUTPUT:

SELECT PAYEE, SUM AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE, REMARKS;

PAYEE SUM COUNT

Abes C eaners 10.5 1
Abes C eaners 24. 35 1
Cash 60 1
Cash 34 1
Cash 25 1
Joans Gas 40. 849998 2
Joes Stale $ Dent 150 1
Local Utilities 98 1
Local Utilities 34 1
Local Utilities 87.5 1
Ma Bel | 200. 33 1
Ma Bel | 150 1
Reading R R 245. 34 1
ANALYSIS:

The output has gone from 7 groupings of 14 rowsto 13 groupings. What is different about the one grouping with more than one check associated
with it? Look at the entries for Joans Gas:

INPUT/OUTPUT:

SELECT PAYEE, RENMARKS
FROM CHECKS
WHERE PAYEE = 'Joans Gas';

PAYEE REMARKS
Joans Gas Gas
Joans Gas Gas
ANALYSIS:

Y ou see that the combination of PAYEE and REMARKS creates identical entities, which SQL groups together into one line with the GROUP BY clause.
The other rows produce unique combinations of PAYEE and REMARKS and are assigned their own unique groupings.

The next example finds the largest and smallest amounts, grouped by REMARKS:

INPUT/OUTPUT:

SELECT M N(AMOUNT) , MAX(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

M N MAX
245. 34 245. 34
10.5 10.5
200. 33 200. 33
15.75 98
150 150
150 150

34 34

60 60

34 34
87.5 87.5
25 25
24.35 24.35

Here's what will happen if you try to include in the sel ect statement a column that has several different values within the group formed by GROUP
BY:

INPUT/OUTPUT:

SELECT PAYEE, MAX(AMOUNT), M N(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

Dynam ¢ SQL Error
-SQL error code = -104
-invalid colum reference

ANALYSIS:

This query triesto group CHECKS by REMARK. When the query finds two records with the same REMARK but different PAYEES, such as the rows that
have GAS as a REMARK but have PAYEES of LOCAL UTI LI Tl ES and JOANS GAS, it throws an error.

Theruleis, Don't use the SELECT statement on columns that have multiple values for the GROUP BY clause column. The reverseis not true. Y ou can
use GROUP BY on columns not mentioned in the SELECT statement. For example:

INPUT/OUTPUT:

SELECT PAYEE, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE, AMOUNT;

PAYEE

g
£

Abes C eaners
Abes C eaners
Cash

Cash

Cash

Joans Gas
Joans Gas

Joes Stale $ Dent
Local Utilities
Local Utilities
Local Utilities
Ma Bel |

Ma Bel |

Readi ng R R

PRRPRRPRPRRPRRPRRRPRRERRRRER

ANALYSIS:

This silly query shows how many checks you had written for identical amounts to the same PAYEE. Itsreal purpose is to show that you can use
AMOUNT in the GROUP BY clause, even though it is not mentioned in the SELECT clause. Try moving AMOUNT out of the GROUP BY clause and into
the SELECT clause, like this:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE;

Dynam ¢ SQL Error
-SQ. error code = -104
-invalid colum reference

ANALYSIS:
SQL cannot run the query, which makes sense if you play the part of SQL for amoment. Say you had to group the following lines:
INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, RENMARKS
FROM CHECKS
WHERE PAYEE =' Cash';

PAYEE AMOUNT REMARKS
Cash 25 Wld N ght Qut
Cash 60 Trip to Boston

Cash 34 Trip to Dayton

If the user asked you to output all three columns and group by PAYEE only, where would you put the unique remarks? Remember you have only one
row per group when you use GROUP BY. SQL can't do two things at once, so it complains: Error #31: Can't do two things at once.

The HAVI NG Clause

How can you qualify the data used in your GROUP BY clause? Use the table ORGCHART and try this:
INPUT:

SELECT * FROM ORGCHART;

OUTPUT:

NANVE TEAM SALARY SI CKLEAVE ANNUALLEAVE
ADANS RESEARCH 34000. 00 34 12
W LKES MARKETI NG 31000. 00 40 9
STOKES MARKETI NG 36000. 00 20 19
VEZA COLLECTI ONS 40000. 00 30 27
MERRI CK RESEARCH 45000. 00 20 17
RI CHARDSON MARKETI NG 42000. 00 25 18
FURY COLLECTI ONS 35000. 00 22 14
PRECOURT PR 37500. 00 24 24

If you wanted to group the output into divisions and show the average salary in each division, you would type:
INPUT/OUTPUT:

SELECT TEAM AV SALARY)
FROM CRGCHART
GROUP BY TEAM

TEAM AVG
COLLECTI ONS 37500. 00
MARKETI NG 36333. 33
PR 37500. 00
RESEARCH 39500. 00

The following statement qualifies this query to return only those departments with average salaries under 38000:
INPUT/OUTPUT:

SELECT TEAM AVG(SALARY)
FROM CRGCHART

WHERE AVG(SALARY) < 38000
GROUP BY TEAM

Dynam ¢ SQL Error
-SQ error code = -104

-Invalid aggregate reference
ANALYSIS:

This error occurred because WHERE does not work with aggregate functions. To make this query work, you need something new: the HAVI NG clause.
If you type the following query, you get what you ask for:

INPUT/OUTPUT:

SELECT TEAM AVG(SALARY)
FROM CRGCHART

GROUP BY TEAM

HAVI NG AVG(SALARY) < 38000;

TEAM AVG

COLLECTI ONS 37500. 00
MARKETI NG 36333. 33
PR 37500. 00
ANALYSIS:

HAVI NG enables you to use aggregate functions in a comparison statement, providing for aggregate functions what WHERE provides for individual
rows. Does HAVI NG work with nonaggregate expressions? Try this:

INPUT/OUTPUT:

SELECT TEAM AVG(SALARY)
FROM CRGCHART

GROUP BY TEAM

HAVI NG SALARY < 38000;

TEAM AVG
PR 37500. 00
ANALYSIS:

Why isthisresult different from the last query? The HAVI NG AVG(SALARY) < 38000 clause evaluated each grouping and returned only those with
an average saary of under 38000, just what you expected. HAVI NG SALARY < 38000, on the other hand, had a different outcome. Take on the role
of the SQL engine again. If the user asks you to evaluate and return groups of divisions where SALARY < 38000, you would examine each group
and reject those where an individual SALARY is greater than 38000. In each division except PR, you would find at least one salary greater than
38000:

INPUT/OUTPUT:

SELECT NAME, TEAM SALARY
FROM CRGCHART
ORDER BY TEAM

NANMVE TEAM SALARY
FURY COLLECTI ONS 35000. 00
VEZA COLLECTI ONS 40000. 00
W LKES MARKETI NG 31000. 00
STOKES MARKETI NG 36000. 00
Rl CHARDSON MARKETI NG 42000. 00
PRECOURT PR 37500. 00
ADANMS RESEARCH 34000. 00
MVERRI CK RESEARCH 45000. 00
ANALYSIS:

Therefore, you would reject all other groups except PR. What you really asked was Sel ect al | groups where no individual makes nore
t han 38000. Don't you just hate it when the computer does exactly what you tell it to?

WARNING: Some implementations of SQL return an error if you use anything other than an aggregate function in a HAVI NG
clause. Don't bet the farm on using the previous example until you check the implementation of the particular SQL you use.

Can you use more than one condition in your HAVI NG clause? Try this:
INPUT:

SELECT TEAM AV SI CKLEAVE) , AVG{ ANNUALLEAVE)
FROM CRGCHART
GROUP BY TEAM

HAVI NG AVE SI CKLEAVE) >25 AND
AVG(ANNUALLEAVE) <20;

ANALYSIS:

Thefollowing table is grouped by TEAM It shows all the teams with SI CKLEAVE averages above 25 days and ANNUALLEAVE averages below 20
days.

OUTPUT:

TEAM AVG AVG
MARKETI NG 28 15
RESEARCH 27 15

Y ou can also use an aggregate function in the HAVI NG clause that was not in the SELECT statement. For example:
INPUT/OUTPUT:

SELECT TEAM AV S| CKLEAVE) , AVG{ ANNUAL L EAVE)
FROM ORGCHART

GROUP BY TEAM

HAVI NG COUNT(TEAM) > 1;

TEAM AVG AVG
COLLECTI ONS 26 21
MARKETI NG 28 15
RESEARCH 27 15
ANALYSIS:

This query returns the number of TEAMs with more than one member. COUNT(TEAM) is not used in the SELECT statement but till functions as
expected in the HAVI NG clause.

The other logical operators all work well within the HAVI NG clause. Consider this:

INPUT/OUTPUT:

SELECT TEAM M N(SALARY) , MAX(SALARY)
FROM ORGCHART

GROUP BY TEAM

HAVI NG AVG(SALARY) > 37000

R

M N(SALARY) > 32000;

TEAM M N MAX
COLLECTI ONS 35000. 00 40000. 00
PR 37500. 00 37500. 00
RESEARCH 34000. 00 45000. 00

The operator | N also worksin a HAVI NG clause, as demonstrated here:
INPUT/OUTPUT:

SELECT TEAM AVG(SALARY)

FROM CRGCHART

GROUP BY TEAM

HAVING TEAM I N (' PR , ' RESEARCH);

TEAM AVG

PR 37500. 00

RESEARCH 39500. 00

Combining Clauses

Nothing exists in avacuum, so this section takes you through some composite examples that demonstrate how combinations of clauses perform
together.

Example5.1
Find al the checks written for Cash and Gas in the CHECKS table and order them by REMARKS.

INPUT:

SELECT PAYEE, RENMARKS
FROM CHECKS

VWHERE PAYEE = ' Cash’
OR REMARKS LI KE' Ga%
ORDER BY REMARKS;

OUTPUT:

PAYEE REMARKS

Joans Gas Gas

Joans Gas Gas

Local Utilities Gas

Cash Trip to Boston
Cash Trip to Dayton
Cash Wld N ght Qut
ANALYSIS:

Note the use of LI KE to find the REMARKS that started with Ga. With the use of OR, data was returned if the WHERE clause met either one of the two
conditions.

What if you asked for the same information and group it by PAYEE? The query would look something like this:

INPUT:

SELECT PAYEE, RENMARKS
FROM CHECKS

WHERE PAYEE = ' Cash'
OR REMARKS LI KE' Ga%
GROUP BY PAYEE

CRDER BY REMARKS;

ANALYSIS:

This query would not work because the SQL engine would not know what to do with the remarks. Remember that whatever columns you put in the
SELECT clause must also be in the GROUP BY clause--unless you don't specify any columnsin the SELECT clause.

Example 5.2
Using the table ORGCHART, find the salary of everyone with less than 25 days of sick leave. Order the results by NAME.

INPUT:

SELECT NAME, SALARY
FROM CRGCHART
WHERE SI CKLEAVE < 25
ORDER BY NAME;

OUTPUT:

NANVE SALARY

FURY 35000. 00
MERRI CK 45000. 00
PRECOURT 37500. 00
STOKES 36000. 00
ANALYSIS:

This query is straightforward and enables you to use your new-found skills with WHERE and ORDER BY.

Example 5.3

Again, using ORGCHART, display TEAM, AVG SALARY), AVG(S| CKLEAVE), and AVG(ANNUALLEAVE) on each team:
INPUT:

SELECT TEAM
AVG(SALARY)

AVG(SI CKLEAVE) ,
AVG(ANNUAL LEAVE)
FROM ORGCHART
GROUP BY TEAM

OUTPUT:

TEAM AVG AVG AVG
COLLECTI ONS 37500. 00 26 21
MARKETI NG 36333. 33 28 15
PR 37500. 00 24 24
RESEARCH 39500. 00 26 15

An interesting variation on this query follows. See if you can figure out what happened:
INPUT/OUTPUT:

SELECT TEAM
AVG(SALARY)
AVG(SI CKLEAVE) ,
AVG(ANNUAL L EAVE)
FROM ORGCHART
GROUP BY TEAM
ORDER BY NAME;

TEAM AVG AVG AVG
RESEARCH 39500. 00 27 15
COLLECTI ONS 37500. 00 26 21
PR 37500. 00 24 24
MARKETI NG 36333. 33 28 15

A simpler query using ORDER BY might offer aclue:

INPUT/OUTPUT:

SELECT NAMVE, TEAM
FROM CRGCHART
ORDER BY NAME, TEAM

NANVE TEAM

ADANB RESEARCH
FURY COLLECTI ONS
MVERRI CK RESEARCH

VEZA COLLECTI ONS

PRECOURT PR

RI CHARDSON MARKETI NG
STOKES MARKETI NG
W LKES MARKETI NG
ANALYSIS:

When the SQL engine got around to ordering the results of the query, it used the NAVE column (remember, it is perfectly legal to use a column not
specified in the SELECT statement), ignored duplicate TEAMentries, and came up with the order RESEARCH, COLLECTI ONS, PR, and MARKETI NG.
Including TEAMin the ORDER BY clause is unnecessary, because you have unique values in the NAME column. Y ou can get the same result by typing
this statement:

INPUT/OUTPUT:

SELECT NAME, TEAM
FROM CRGCHART
ORDER BY NAME;

NANVE TEAM

ADANMS RESEARCH
FURY COLLECTI ONS
MERRI CK RESEARCH
VEZA COLLECTI ONS
PRECOURT PR

RI CHARDSON MARKETI NG
STOKES MARKETI NG
W LKES MARKETI NG

While you are looking at variations, don't forget you can also reverse the order:
INPUT/OUTPUT:

SELECT NAMVE, TEAM
FROM CRGCHART
ORDER BY NAME DESC,

NAVE TEAM

W LKES MARKETI NG
STOKES MARKETI NG
RI CHARDSON MARKETI NG
PRECOURT PR

VEZA COLLECTI ONS
MERRI CK RESEARCH
FURY COLLECTI ONS
ADANB RESEARCH

Example 5.4: The Big Finale

Isit possible to use everything you have learned in one query? It is, but the results will be convoluted because in many ways you are working with
apples and oranges--or aggregates and nonaggregates. For example, WHERE and ORDER BY are usually found in queries that act on single rows, such
asthis:

INPUT/OUTPUT:

SELECT *
FROM CORGCHART
ORDER BY NAME DESC,

NANVE TEAM SALARY SI CKLEAVE ANNUALLEAVE
W LKES MARKETI NG 31000. 00 40 9
STOKES MARKETI NG 36000. 00 20 19
RI CHARDSON MARKETI NG 42000. 00 25 18
PRECOURT PR 37500. 00 24 24
VEZA COLLECTI ONS 40000. 00 30 27
MERRI CK RESEARCH 45000. 00 20 17

FURY COLLECTI ONS 35000. 00 22 14

ADANB RESEARCH 34000. 00 34 12
GROUP BY and HAVI NG are normally seen in the company of aggregates:

INPUT/OUTPUT:

SELECT PAYEE,
SUM AMOUNT) TOTAL,

COUNT(PAYEE) NUMVBER VIR TTEN
FROM CHECKS

GROUP BY PAYEE

HAVI NG SUM AMDUNT) > 50;

PAYEE TOTAL NUMBER _V\RI TTEN
Cash 119 3
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bel | 350. 33002 2
Reading R R 245. 34 1

Y ou have seen that combining these two groups of clauses can have unexpected results, including the following:
INPUT:

SELECT PAYEE,
SUM AMOUNT) TOTAL,

COUNT(PAYEE) NUMVBER VIR TTEN
FROM CHECKS

WHERE AMOUNT >= 100

GROUP BY PAYEE

HAVI NG SUM AMOUNT) > 50;

OUTPUT:

PAYEE TOTAL NUMBER_WV\RI TTEN
Joes Stale $ Dent 150 1
Ma Bel | 350. 33002 2
Readi ng R R 245. 34 1

Compare these two result sets and examine the raw data:
INPUT/OUTPUT:

SELECT PAYEE, AMOUNT
FROM CHECKS
ORDER BY PAYEE;

PAYEE AMOUNT
Abes C eaners 10.5
Abes C eaners 24,35
Cash 25
Cash 34
Cash 60
Joans (Gas 15.75
Joans Gas 25.1
Joes Stale $ Dent 150
Local Utilities 34
Local Utilities 87.5
Local Utilities 98
Ma Bel | 150
Ma Bel | 200. 33
Reading R R 245. 34
ANALYSIS:

Y ou see how the WHERE clause filtered out all the checks less than 100 dollars before the GROUP BY was performed on the query. We are not trying

to tell you not to mix these groups--you may have arequirement that this sort of construction will meet. However, you should not casually mix
aggregate and nonaggregate functions. The previous examples have been tables with only a handful of rows. (Otherwise, you would need a cart to
carry thisbook.) In the real world you will be working with thousands and thousands (or billions and billions) of rows, and the subtle changes caused
by mixing these clauses might not be so apparent.

Summary

Today you learned all the clauses you need to exploit the power of a SELECT statement. Remember to be careful what you ask for because you just
might get it. Your basic SQL education is complete. Y ou already know enough to work effectively with single tables. Tomorrow (Day 6, "Joining
Tables") you will have the opportunity to work with multiple tables.

Q&A
Q | thought we cover ed some of these functions earlier thisweek? If so, why are we covering them again?

A Wedid indeed cover WHERE on Day 3. Y ou needed a knowledge of WHERE to understand how certain operators worked. WHERE appears
again today because it is a clause, and today's topic is clauses.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. Which clause works just like LI KE(<exp>%) ?
2. What is the function of the GROUP BY clause, and what other clause does it act like?
3. Will this SELECT work?

INPUT:

SQL> SELECT NAME, AVG(SALARY), DEPARTMENT
FROM PAY_TBL
VWHERE DEPARTMENT = ' ACCOUNTI NG
ORDER BY NAME
GROUP BY DEPARTMENT, SALARY;

4, When using the HAVI NG clause, do you always have to use a GROUP BY also?
5. Can you use ORDER BY on a column that is not one of the columnsin the SELECT statement?
Exercises
1. Using the ORGCHART table from the preceding examples, find out how many people on each team have 30 or more days of sick leave.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:
CHECK# PAYEE AMOUNT
1 VA BELL 150

{ ¢ Previous Chapter JR.—* Mext Chapter

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 6 -
Joining Tables
Objectives

Today you will learn about joins. Thisinformation will enable you to gather and manipulate data across several tables. By the end of the day, you
will understand and be able to do the following:

1 Perform an outer join

1 Perform aleft join

1 Perform aright join

1 Perform an equi-join

1 Perform anon-equi-join

1 Join atableto itself

Introduction

One of the most powerful features of SQL isits capability to gather and manipulate data from across several tables. Without this feature you would
have to store all the data elements necessary for each application in one table. Without common tables you would need to store the same datain
several tables. Imagine having to redesign, rebuild, and repopulate your tables and databases every time your user needed a query with anew piece
of information. The JO N statement of SQL enables you to design smaller, more specific tables that are easier to maintain than larger tables.

Multiple Tablesin a Single SELECT Statement

Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day 2, "Introduction to the Query: The SELECT Statement,” when
you learned about SELECT and FROM Unlike Dorothy, you don't have to click you heels together three times to perform ajoin. Use the following two
tables, named, cleverly enough, TABLEL and TABLE2.

NOTE: The queriesin today's examples were produced using Borland's ISQL tool. Y ou will notice some differences between these
queries and the ones that we used earlier in the book. For example, these queries do not begin with an SQL prompt. Another
differenceisthat ISQL does not require a semicolon at the end of the statement. (The semicolon is optional in ISQL.) But the SQL
basics are till the same.

INPUT:

SELECT *
FROM TABLE1L

OUTPUT:

ROW REMARKS
row 1 Table 1
row 2 Table 1
row 3 Table 1
row 4 Table 1
row 5 Table 1
row 6 Table 1
INPUT:

SELECT *

FROM TABLE2
OUTPUT:

ROW REMARKS
row 1 table 2
row 2 table 2
row 3 table 2
row 4 table 2
row 5 table 2
row 6 table 2

To join these two tables, type this:
INPUT:

SELECT *
FROM TABLEL, TABLE2

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2
row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2
row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2
row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2
row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2
row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2
row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2
row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2
row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2
row 6 Table 1 row 1 table 2

row 6 Table 1 row 2 table 2
row 6 Table 1 row 3 table 2
row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from? And what kind of join is this?
ANALYSIS:

A close examination of the result of your first join shows that each row from TABLE1 was added to each row from TABLE2. An extract from thisjoin
shows what happened:

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

Notice how each row in TABLE2 was combined with row 1 in TABLEL. Congratulations! Y ou have performed your first join. But what kind of join?
Aninner join? an outer join? or what? Well, actually this type of join is called a cross-join. A cross-join isnot normally as useful as the other joins
covered today, but this join does illustrate the basic combining property of all joins: Joins bring tables together.

Suppose you sold parts to bike shops for aliving. When you designed your database, you built one big table with all the pertinent columns. Every
time you had a new requirement, you added a new column or started a new table with all the old data plus the new data required to create a specific
query. Eventually, your database would collapse from its own weight--not a pretty sight. An alternative design, based on arelational model, would
have you put al related data into one table. Here's how your customer table would look:

INPUT:

SELECT *
FROM CUSTOVER

OUTPUT:

NANVE ADDRESS STATE ZIP PHONE REMARKS
TRUE WHEEL 550 HUSKER NE 58702 555 - 4545 NONE

Bl KE SPEC CPT SHRI VE LA 45678 555-1234 NONE

LE SHOPPE HOVETOMWN KS 54678 555-1278 NONE

AAA BIKE 10 OLDTOMN NE 56784 555 -3421 JOHN- MGR
JACKS BI KE 24 EGLIN FL 34567 555 -2314 NONE
ANALYSIS:

Thistable contains all the information you need to describe your customers. The items you sold would go into another table:
INPUT:

SELECT *
FROM PART

OUTPUT:

PARTNUM DESCRI PTI ON PRI CE

54 PEDALS 54.25
42 SEATS 24.50

46 TI RES 15. 25

23 MOUNTAI'N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

And the orders you take would have their own table:

INPUT:
SELECT *
FROM CRDERS
OUTPUT:

ORDEREDON NANME PARTNUM QUANTI TY REMARKS
15- MAY- 1996 TRUE WHEEL 23 6 PAID
19- MAY- 1996 TRUE WHEEL 76 3 PAID

2- SEP- 1996 TRUE WHEEL 10 1 PAID
30- JUN- 1996 TRUE WHEEL 42 8 PAID
30- JUN- 1996 BI KE SPEC 54 10 PAID
30- VAY- 1996 BI KE SPEC 10 2 PAID
30- VAY- 1996 BI KE SPEC 23 8 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN- 1996 LE SHOPPE 76 5 PAID

1-JUN- 1996 LE SHOPPE 10 3 PAID
1-JUN- 1996 AAA BI KE 10 1 PAID
1-JUL- 1996 AAA BI KE 76 4 PAID

1-JUL- 1996 AAA BI KE 46 14 PAI D
11-JUL- 1996 JACKS BI KE 76 14 PAI D

One advantage of this approach isthat you can have three specialized people or departments responsible for maintaining their own data. Y ou don't
need a database administrator who is conversant with all aspects of your project to shepherd one gigantic, multidepartmental database. Another
advantage is that in the age of networks, each table could reside on a different machine. People who understand the data could maintain it, and it
could reside on an appropriate machine (rather than that nasty corporate mainframe protected by legions of system administrators).

Now join PARTS and ORDERS:

INPUT/OUTPUT:

SELECT O ORDEREDON, O NAME, O. PARTNUM
P. PARTNUM P. DESCRI PTI ON
FROM CRDERS O, PART P

ORDEREDON NANME PARTNUM PARTNUM DESCRI PTI ON
15- MAY- 1996 TRUE WHEEL 23 54 PEDALS
19- MAY- 1996 TRUE WHEEL 76 54 PEDALS

2- SEP- 1996 TRUE WHEEL 10 54 PEDALS
30- JUN- 1996 TRUE WHEEL 42 54 PEDALS
30- JUN- 1996 BI KE SPEC 54 54 PEDALS
30- VAY- 1996 BI KE SPEC 10 54 PEDALS
30- VAY- 1996 BI KE SPEC 23 54 PEDALS
17- JAN- 1996 BI KE SPEC 76 54 PEDALS
17-JAN- 1996 LE SHOPPE 76 54 PEDALS

1-JUN- 1996 LE SHOPPE 10 54 PEDALS

1- JUN- 1996 AAA BI KE 10 54 PEDALS

1-JUL- 1996 AAA BI KE 76 54 PEDALS

1-JUL- 1996 AAA BI KE 46 54 PEDALS
11-JUL- 1996 JACKS BI KE 76 54 PEDALS
ANALYSIS:

The preceding code is just a portion of the result set. The actual set is 14 (number of rows in ORDERS) x 6 (number of rowsin PART), or 84 rows. Itis
similar to the result from joining TABLE1 and TABLE2 earlier today, and it is still one statement shy of being useful. Before we reveal that statement,
we need to regress alittle and talk about another use for the dlias.

Finding the Correct Column

When you joined TABLEL and TABLE2, you used SELECT *, which returned all the columnsin both tables. In joining ORDERS to PART, the SELECT
statement is a bit more complicated:

SELECT O ORDEREDON, O NAME, O. PARTNUM
P. PARTNUM P. DESCRI PTI ON

SQL is smart enough to know that ORDEREDON and NAME exist only in ORDERS and that DESCRI PTI ON exists only in PART, but what about PARTNUM,
which existsin both? If you have a column that has the same name in two tables, you must use an aliasin your SELECT clause to specify which
column you want to display. A common technique is to assign a single character to each table, as you did in the FROMclause:

FROM CRDERS O, PART P

Y ou use that character with each column name, as you did in the preceding SELECT clause. The SELECT clause could a so be written like this:

SELECT ORDEREDON, NAME, O. PARTNUM P. PARTNUM DESCRI PTI ON

But remember, someday you might have to come back and maintain this query. It doesn't hurt to make it more readable. Now back to the missing
Statement.

Equi-Joins

An extract from the PART/ ORDERS join provides a clue as to what is missing:

30- JUN- 1996 TRUE WHEEL 42 54 PEDALS
30- JUN- 1996 BI KE SPEC 54 54 PEDALS
30- VAY- 1996 BI KE SPEC 10 54 PEDALS

Notice the PARTNUMfields that are common to both tables. What if you wrote the following?

INPUT:

SELECT O ORDEREDON, O NAME, O. PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM CRDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

OUTPUT:
ORDEREDON NANME PARTNUM PARTNUM DESCRI PTI ON
1- JUN- 1996 AAA BI KE 10 10 TANDEM
30- VAY- 1996 BI KE SPEC 10 10 TANDEM
2- SEP- 1996 TRUE WHEEL 10 10 TANDEM
1-JUN- 1996 LE SHOPPE 10 10 TANDEM
30- VAY- 1996 BI KE SPEC 23 23 MOUNTAI N Bl KE
15- MAY- 1996 TRUE WHEEL 23 23 MOUNTAI N Bl KE
30- JUN- 1996 TRUE WHEEL 42 42 SEATS
1-JUL- 1996 AAA BI KE 46 46 TI RES
30- JUN- 1996 BI KE SPEC 54 54 PEDALS
1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE
17-JAN- 1996 BI KE SPEC 76 76 ROAD BI KE
19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL- 1996 JACKS BI KE 76 76 ROAD BI KE
17- JAN- 1996 LE SHOPPE 76 76 ROAD BI KE
ANALYSIS:

Using the column PARTNUMthat exists in both of the preceding tables, you have just combined the information you had stored in the ORDERS table
with information from the PART table to show a description of the parts the bike shops have ordered from you. The join that was used is called an
equi-join because the goal isto match the values of a column in one table to the corresponding values in the second table.

Y ou can further qualify this query by adding more conditions in the WHERE clause. For example:
INPUT/OUTPUT:

SELECT O ORDEREDON, O NAME, O. PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND O. PARTNUM = 76

ORDEREDON NANME PARTNUM PARTNUM DESCRI PTI ON
1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE
17-JAN- 1996 BI KE SPEC 76 76 ROAD BI KE
19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL- 1996 JACKS BI KE 76 76 ROAD BI KE
17-JAN- 1996 LE SHOPPE 76 76 ROAD BI KE

The number 76 is not very descriptive, and you wouldn't want your sales people to have to memorize a part number. (We have had the misfortune to
see many data information systemsin the field that require the end user to know some obscure code for something that had a perfectly good name.
Please don't write one of those!) Here's another way to write the query:

INPUT/OUTPUT:

SELECT O ORDEREDON, O NAME, O. PARTNUM
P. PARTNUM P. DESCRI PTI ON

FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE'

ORDEREDON NANME PARTNUM PARTNUM DESCRI PTI ON
1-JUL- 1996 AAA BI KE 76 76 ROAD BI KE
17-JAN- 1996 BI KE SPEC 76 76 ROAD BI KE
19- MAY- 1996 TRUE WHEEL 76 76 ROAD BI KE
11-JUL- 1996 JACKS BI KE 76 76 ROAD BI KE
17- JAN- 1996 LE SHOPPE 76 76 ROAD BI KE

Along the same line, take alook at two more tables to see how they can be joined. In this example the enpl oyee_i d column should obviously be
unigue. Y ou could have employees with the same name, they could work in the same department, and earn the same salary. However, each
employee would have his or her own enpl oyee_i d. Tojoin these two tables, you would use the enpl oyee_i d column.

EMPLOYEE_TABLE EMPLOYEE_PAY_TABLE
enpl oyee_i d enpl oyee_i d

| ast _nane sal ary

first_nane depar t nent

m ddl e_nane supervi sor

marital _status

INPUT:

SELECT E. EMPLOYEE | D, E. LAST_NAME, EP. SALARY
FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL EP
VWHERE E. EMPLOYEE | D = EP. EMPLOYEE_I D
AND E. LAST_NAME = 'SM TH ;

OUTPUT:

E. EMPLOYEE | D E. LAST_NAME EP. SALARY

13245 SM TH 35000. 00

TIP: When you join two tables without the use of a WHERE clause, you are performing a Cartesian join. Thisjoin combines all rows
from all the tables in the FROMclause. If each table has 200 rows, then you will end up with 40,000 rows in your results (200 x 200).
Always join your tables in the WHERE clause unless you have areal need to join al the rows of all the selected tables.

Back to the original tables. Now you are ready to use al thisinformation about joins to do something really useful: finding out how much money
you have made from selling road bikes:

INPUT/OUTPUT:

SELECT SUM O QUANTITY * P. PRI CE) TOTAL
FROM CRDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE'

19610. 00
ANALYSIS:

With this setup, the sales people can keep the ORDERS table updated, the production department can keep the PART table current, and you can find
your bottom line without redesigning your database.

NOTE: Notice the consistent use of table and column aliases in the SQL statement examples. Y ou will save many, many keystrokes
by using aiases. They also help to make your statement more readable.

Can you join more than one table? For example, to generate information to send out an invoice, you could type this statement:
INPUT/OUTPUT:

SELECT C. NAME, C. ADDRESS, (O QUANTITY * P.PRICE) TOTAL
FROM CRDER O, PART P, CUSTOMER C

VWHERE O PARTNUM = P. PARTNUM

AND O. NAME = C. NAME

NANVE ADDRESS TOTAL
TRUE WHEEL 550 HUSKER 1200. 00
Bl KE SPEC CPT SHRI VE 2400. 00
LE SHOPPE HOVETOMN 3600. 00
AAA BIKE 10 OLDTOMWN 1200. 00
TRUE WHEEL 550 HUSKER 2102.70
Bl KE SPEC CPT SHRI VE 2803. 60
TRUE WHEEL 550 HUSKER 196. 00
AAA BIKE 10 OLDTOMWN 213.50
Bl KE SPEC CPT SHRI VE 542.50
TRUE WHEEL 550 HUSKER 1590. 00
Bl KE SPEC CPT SHRI VE 5830. 00
JACKS BI KE 24 EGLIN 7420. 00
LE SHOPPE HOVETOMN 2650. 00
AAA BIKE 10 OLDTOMWN 2120. 00

Y ou could make the output more readable by writing the statement like this:
INPUT/OUTPUT:

SELECT C. NAME, C. ADDRESS,

O QUANTI TY * P. PRI CE TOTAL

FROM CRDERS O, PART P, CUSTOMER C
VWHERE O PARTNUM = P. PARTNUM

AND O. NAME = C. NAME

ORDER BY C. NAME

NANVE ADDRESS TOTAL
AAA BIKE 10 OLDTOMWN 213.50
AAA BIKE 10 OLDTOMWN 2120. 00
AAA BIKE 10 OLDTOMWN 1200. 00
Bl KE SPEC CPT SHRI VE 542. 50
Bl KE SPEC CPT SHRI VE 2803. 60
Bl KE SPEC CPT SHRI VE 5830. 00
Bl KE SPEC CPT SHRI VE 2400. 00
JACKS BI KE 24 EGLIN 7420. 00
LE SHOPPE HOVETOMN 2650. 00
LE SHOPPE HOVETOWN 3600. 00
TRUE WHEEL 550 HUSKER 196. 00
TRUE WHEEL 550 HUSKER 2102.70
TRUE WHEEL 550 HUSKER 1590. 00
TRUE WHEEL 550 HUSKER 1200. 00

NOTE: Notice that when joining the three tables (ORDERS, PART, and CUSTOVER) that the ORDERS table was used in two joins and
the other tables were used only once. Tables that will return the fewest rows with the given conditions are commonly referred to as
driving tables, or base tables. Tables other than the base table in a query are usually joined to the base table for more efficient data
retrieval. Consequently, the ORDERS table is the base table in this example. In most databases a few base tables join (either directly
or indirectly) al the other tables. (See Day 15, "Streamlining SQL Statements for Improved Performance,” for more on base tables.)

Y ou can make the previous query more specific, thus more useful, by adding the DESCRI PTI ON column asin the following example:
INPUT/OUTPUT:

SELECT C. NAMVE, C. ADDRESS,

O QUANTI TY * P. PRI CE TOTAL,

P. DESCRI PTI ON

FROM CRDERS O, PART P, CUSTOMER C
WHERE O PARTNUM = P. PARTNUM

AND O. NAME = C. NAME

ORDER BY C. NAME

NANVE ADDRESS TOTAL DESCRI PTI ON
AAA BIKE 10 OLDTOMWN 213.50 TIRES

AAA BIKE 10 OLDTOMWN 2120. 00 ROAD BI KE
AAA BIKE 10 OLDTOMWN 1200. 00 TANDEM

Bl KE SPEC CPT SHRI VE 542.50 PEDALS

Bl KE SPEC CPT SHRI VE 2803. 60 MOUNTAI N BI KE
Bl KE SPEC CPT SHRI VE 5830. 00 ROAD BI KE

Bl KE SPEC CPT SHRI VE 2400. 00 TANDEM

JACKS BI KE 24 EGLIN 7420. 00 ROAD BI KE

LE SHOPPE HOVETOMN 2650. 00 ROAD BI KE

LE SHOPPE HOVETOMN 3600. 00 TANDEM

TRUE WHEEL 550 HUSKER 196. 00 SEATS

TRUE WHEEL 550 HUSKER 2102. 70 MOUNTAI N BI KE
TRUE WHEEL 550 HUSKER 1590. 00 ROAD BI KE
TRUE WHEEL 550 HUSKER 1200. 00 TANDEM
ANALYSIS:

Thisinformation is aresult of joining three tables. Y ou can now use this information to create an invoice.

NOTE: In the example at the beginning of the day, SQL grouped TABLE1 and TABLE2 to create a new table with X (rowsin
TABLE1) X Y (rowsin TABLE2) number of rows. A physical tableis not created by the join, but rather in avirtual sense. The join
between the two tables produces a new set that meets all conditions in the WHERE clause, including the join itself. The SELECT
statement has reduced the number of rows displayed, but to evaluate the WHERE clause SQL still creates all the possible rows. The
sample tablesin today's examples have only a handful of rows. Y our actual data may have thousands of rows. If you are working on
aplatform with lots of horsepower, using a multiple-table join might not visibly affect performance. However, if you are working in
a slower environment, joins could cause a significant slowdown.

We aren't telling you not to use joins, because you have seen the advantages to be gained from arelational design. Just be aware of
the platform you are using and your customer's requirements for speed versusreliability.

Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-equi-join. Y ou would be right! Whereas the egui-join uses an = sign
in the WHERE statement, the non-equi-join uses everything but an = sign. For example:

INPUT:

SELECT O NAME, O PARTNUM P. PARTNUM
O QUANTI TY * P. PRI CE TOTAL

FROM CRDERS O, PART P

VWHERE O PARTNUM > P. PARTNUM

OUTPUT:

NANVE PARTNUM PARTNUM TOTAL
TRUE WHEEL 76 54 162. 75
Bl KE SPEC 76 54 596. 75
LE SHOPPE 76 54 271. 25
AAA BI KE 76 54 217.00
JACKS BI KE 76 54 759. 50
TRUE WHEEL 76 42 73.50
Bl KE SPEC 54 42 245. 00
Bl KE SPEC 76 42 269. 50
LE SHOPPE 76 42 122.50
AAA BI KE 76 42 98. 00
AAA BI KE 46 42 343. 00
JACKS BI KE 76 42 343. 00
TRUE WHEEL 76 46 45.75
Bl KE SPEC 54 46 152.50
Bl KE SPEC 76 46 167. 75
LE SHOPPE 76 46 76. 25
AAA BI KE 76 46 61. 00
JACKS BI KE 76 46 213.50
TRUE WHEEL 76 23 1051. 35
TRUE WHEEL 42 23 2803. 60
ANALYSIS:

Thislisting goes on to describe all the rowsin the join WHERE O. PARTNUM > P. PARTNUM. In the context of your bicycle shop, thisinformation
doesn't have much meaning, and in the real world the equi-join is far more common than the non-equi-join. However, you may encounter an
application in which a non-equi-join produces the perfect result.

Outer Joinsversus|nner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the inner join. An inner join is where the rows of the tables are combined
with each other, producing a number of new rows equal to the product of the number of rows in each table. Also, the inner join uses these rowsto
determine the result of the WHERE clause. An outer join groups the two tablesin a dlightly different way. Using the PART and ORDERS tables from the
previous examples, perform the following inner join:

INPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE,
O NAME, O PARTNUM

FROM PART P

JO N ORDERS O ON ORDERS. PARTNUM = 54

OUTPUT:

PARTNUM DESCRI PTI ON PRI CE NAME PARTNUM

54 PEDALS

42 SEATS

46 TI RES

23 MOUNTAI N BI KE
76 ROAD BI KE

10 TANDEM

54. 25 BI KE SPEC
24.50 BI KE SPEC
15. 25 BI KE SPEC
350. 45 Bl KE SPEC
530. 00 BI KE SPEC
1200. 00 BI KE SPEC

NOTE: The syntax you used to get thisjoin--JO N ON--is not ANSI standard. The implementation you used for this example has
additional syntax. You are using it here to specify an inner and an outer join. Most implementations of SQL have similar extensions.
Notice the absence of the WHERE clause in this type of join.

ANALYSIS:

Theresult isthat all the rowsin PART are spliced on to specific rows in ORDERS where the column PARTNUMis 54. Here'saRI GHT OUTER JO N
statement:

INPUT/OUTPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE

O NAME, O PARTNUM

FROM PART P

RI GHT QUTER JO N ORDERS O ON ORDERS. PARTNUM = 54

PARTNUM DESCRI PTI ON PRI CE NAVE PARTNUM
<nul | > <nul | > <nul | > TRUE WHEEL 23
<nul | > <nul | > <nul | > TRUE WHEEL 76
<nul | > <nul | > <nul | > TRUE WHEEL 10
<nul | > <nul | > <nul | > TRUE WHEEL 42

54 PEDALS 54. 25 BI KE SPEC 54
42 SEATS 24.50 Bl KE SPEC 54
46 TI RES 15. 25 BI KE SPEC 54
23 MOUNTAI N BI KE 350. 45 BlI KE SPEC 54
76 ROAD BI KE 530. 00 BI KE SPEC 54
10 TANDEM 1200. 00 BI KE SPEC 54
<nul | > <nul | > <nul | > Bl KE SPEC 10
<nul | > <nul | > <nul | > Bl KE SPEC 23
<nul | > <nul | > <nul | > Bl KE SPEC 76
<nul | > <nul | > <nul | > LE SHOPPE 76
<nul | > <nul | > <nul | > LE SHOPPE 10
<nul | > <nul | > <nul | > AAA BI KE 10
<nul | > <nul | > <nul | > AAA BI KE 76
<nul | > <nul | > <nul | > AAA BI KE 46
<nul | > <nul | > <nul | > JACKS BI KE 76

ANALYSIS:

Thistype of query is new. First you specified aRI GHT OUTER JO N, which caused SQL to return afull set of the right table, ORDERS, and to place
nullsin the fields where ORDERS. PARTNUM <> 54, FollowingisaLEFT OUTER JO N statement:

INPUT/OUTPUT:

SELECT P. PARTNUM P. DESCRI PTI ON, P. PRI CE

O NAME, O. PARTNUM

FROM PART P

LEFT QUTER JO N CRDERS O ON ORDERS. PARTNUM = 54

PARTNUM DESCRI PTI ON PRI CE NAMVE PARTNUM
54 PEDALS 54.25 Bl KE SPEC 54
42 SEATS 24.50 BI KE SPEC 54
46 TI RES 15. 25 BI KE SPEC 54
23 MOUNTAI N BI KE 350. 45 Bl KE SPEC 54
76 ROAD BI KE 530. 00 Bl KE SPEC 54

10 TANDEM 1200. 00 BI KE SPEC 54

ANALYSIS:

Y ou get the same six rows asthe | NNER JO N. Because you specified LEFT (the LEFT table), PART determined the number of rows you would
return. Because PART is smaller than ORDERS, SQL saw no need to pad those ather fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine the optimum JO N for your query. In fact, if you are placing your
query into a stored procedure (or using it inside a program (both stored procedures and Embedded SQL covered on Day 13, "Advanced SQL
Topics'), you should not specify ajoin type even if your SQL implementation provides the proper syntax. If you do specify ajoin type, the optimizer
chooses your way instead of the optimum way.

Some implementations of SQL use the + sign instead of an OQUTER JO N statement. The + simply means "Show me everything even if something is
missing." Here's the syntax:

SYNTAX:

SQL> sel ect e.nane, e.enployee_id, ep.salary,
ep.marital _status
frome, pl oyee_thl e,
enpl oyee_pay_tbl ep
where e.enpl oyee_id = ep. enployee_id(+)
and e.nane like '9% TH ;

ANALYSIS:

This statement is joining the two tables. The + sign on the ep. enpl oyee_i d column will return all rows even if they are empty.

Joining a Tableto Itself

Today's final topic is the often-used technique of joining atable to itself. The syntax of this operation is similar to joining two tables. For example, to
join table TABLEL to itself, type this:

INPUT:

SELECT *
FROM TABLE1, TABLEl

OUTPUT:

ROW REMARKS ROW REMARKS
row 1 Table 1 row 1 Table 1
row 1 Table 1 row 2 Table 1
row 1 Table 1 row 3 Table 1
row 1 Table 1 row 4 Table 1
row 1 Table 1 row 5 Table 1
row 1 Table 1 row 6 Table 1
row 2 Table 1 row 1 Table 1
row 2 Table 1 row 2 Table 1
row 2 Table 1 row 3 Table 1
row 2 Table 1 row 4 Table 1
row 2 Table 1 row 5 Table 1
row 2 Table 1 row 6 Table 1
row 3 Table 1 row 1 Table 1
row 3 Table 1 row 2 Table 1
row 3 Table 1 row 3 Table 1
row 3 Table 1 row 4 Table 1
row 3 Table 1 row 5 Table 1
row 3 Table 1 row 6 Table 1
row 4 Table 1 row 1 Table 1
row 4 Table 1 row 2 Table 1
ANALYSIS:

In its complete form, thisjoin produces the same number of combinations as joining two 6-row tables. This type of join could be useful to check the
internal consistency of data. What would happen if someone fell asleep in the production department and entered a new part with a PARTNUMthat

aready existed? That would be bad news for everybody: Invoices would be wrong; your application would probably blow up; and in general you
would bein for avery bad time. And the cause of al your problems would be the duplicate PARTNUMin the following table:

INPUT/OUTPUT:

SELECT * FROM PART

PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TIRES 15. 25
23 MOUNTAI N Bl KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00
76 CLI PPLESS SHCE 65. 00 <-NOTE SAME #

Y ou saved your company from this bad situation by checking PART before anyone used it:
INPUT/OUTPUT:

SELECT F. PARTNUM F. DESCRI PTI ON,

S. PARTNUM S. DESCRI PTI ON

FROM PART F, PART S

VWHERE F. PARTNUM = S. PARTNUM

AND F. DESCRI PTI ON <> S. DESCRI PTI ON

PARTNUM DESCRI PTI ON PARTNUM DESCRI PTI ON
76 ROAD BI KE 76 CLI PPLESS SHOE
76 CLI PPLESS SHOE 76 ROAD BI KE
ANALYSIS:

Now you are a hero until someone asks why the table has only two entries. Y ou, remembering what you have learned about JO Ns, retain your hero
status by explaining how the join produced two rows that satisfied the condition WHERE F. PARTNUM = S. PARTNUM AND F. DESCRI PTI ON <>
S. DESCRI PTI ON. Of course, at some point, the row of data containing the duplicate PARTNUMwould have to be corrected.

Summary

Today you learned that ajoin combines all possible combinations of rows present in the selected tables. These new rows are then available for
selection based on the information that you want.

Congratulations--you have learned almost everything thereis to know about the SELECT clause. The one remaining item, subqueries, is covered
tomorrow (Day 7, "Subqueries: The Embedded SELECT Statement").

Q&A
Q Why cover outer, inner, left, and right joinswhen | probably won't ever usethem?

A A little knowledge is a dangerous thing, and no knowledge can be expensive. Y ou now know enough to understand the basics of what
your SQL engine might try while optimizing you queries.

Q How many tables can you join on?

A That depends on the implementation. Some implementations have a 25-table limit, whereas others have no limit. Just remember, the more
tables you join on, the slower the response time will be. To be safe, check your implementation to find out the maximum number of tables
alowed in aquery.

Q Would it befair to say that when tables arejoined, they actually become one table?

A Very simply put, that is just about what happens. When you join the tables, you can select from any of the columnsin either table.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. How many rows would a two-table join produce if one table had 50,000 rows and the other had 100,000?
2. What type of join appears in the following SELECT statement?
sel ect e.name, e.enployee_id, ep.salary
from enpl oyee_thl e,
enpl oyee_pay_thbl ep
where e.enployee_id = ep. enpl oyee_id;
3. Will the following SELECT statements work?
a sel ect nane, enployee_id, salary
fromenpl oyee_thl e,
enpl oyee_pay_thbl ep
where enpl oyee_id = enpl oyee_id
and nane like '9%M TH ;
b.sel ect e.nanme, e.enployee id, ep.salary
from enpl oyee_thl e,
enpl oyee_pay_thbl ep
where name like "%M TH ;
c.sel ect e.nane, e.enployee_id, ep.salary
fromenpl oyee_thl e,
enpl oyee_pay_thbl ep
where e.enployee_id = ep.enployee_id
and e.nane like "9 TH ;
4. In the WHERE clause, when joining the tables, should you do the join first or the conditions?
5. In joining tables are you limited to one-column joins, or can you join on more than one column?
Exercises

1. In the section on joining tables to themselves, the last example returned two combinations. Rewrite the query so only one entry comes up
for each redundant part number.

2. Rewrite the following query to make it more readable and shorter.
INPUT:

sel ect orders. orderedon, orders.name, part.partnum
part.price, part.description fromorders, part
where orders. partnum = part.partnum and orders. orderedon
between ' 1-SEP-96' and ' 30- SEP- 96'
order by part.partnum

3. From the PART table and the ORDERS table, make up a query that will return the following:

OUTPUT:

ORDEREDON NANVE PARTNUM QUANTI TY

2- SEP- 96 TRUE WHEEL 10 1

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

-Day 7 -
Subqueries: The Embedded SELECT Statement
Objectives

A subguery is a query whose results are passed as the argument for another query. Subgueries enable you to bind several queries together. By the
end of the day, you will understand and be able to do the following:

1 Build asubquery
1 Usethe keywords EXI STS, ANY, and ALL with your subqueries

1 Build and use correlated subqueries

NOTE: The examples for today's lesson were created using Borland's ISQL, the same implementation used on Day 6, "Joining
Tables." Remember, thisimplementation does not use the SQL> prompt or line numbers.

Building a Subquery
Simply put, asubquery lets you tie the result set of one query to another. The general syntax is as follows:

SYNTAX:

SELECT *

FROM TABLE1L

VWHERE TABLELl. SOVECOLUWN =

(SELECT SOVEOTHERCOLUMWN

FROM TABLE2

WHERE SOVEOTHERCCOLUWN = SOVEVALUE)

Notice how the second query is nested inside the first. Here's areal-world example that uses the PART and ORDERS tables:

INPUT:
SELECT *
FROM PART
OUTPUT:
PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50

46 TI RES 15. 25

23 MOUNTAI N BI KE 350. 45

76 ROAD BI KE 530. 00
10 TANDEM 1200. 00
INPUT/OUTPUT:
SELECT *
FROM CRDERS
ORDEREDON NANME PARTNUM QUANTI TY REMARKS

15- MAY- 1996 TRUE WHEEL 23 6 PAID
19- MAY- 1996 TRUE WHEEL 76 3 PAID

2- SEP- 1996 TRUE WHEEL 10 1 PAID
30- JUN- 1996 TRUE WHEEL 42 8 PAID
30- JUN- 1996 BI KE SPEC 54 10 PAID
30- VAY- 1996 BI KE SPEC 10 2 PAID
30- VAY- 1996 BI KE SPEC 23 8 PAID
17-JAN- 1996 BI KE SPEC 76 11 PAID
17-JAN- 1996 LE SHOPPE 76 5 PAID

1- JUN- 1996 LE SHOPPE 10 3 PAID

1- JUN- 1996 AAA BI KE 10 1 PAID

1-JUL- 1996 AAA BI KE 76 4 PAI D

1-JUL- 1996 AAA BI KE 46 14 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAID
ANALYSIS:

The tables share acommon field called PARTNUM Suppose that you didn't know (or didn't want to know) the PARTNUM, but instead wanted to work
with the description of the part. Using a subquery, you could type this:

INPUT/OUTPUT:

SELECT *

FROM CRDERS

VWHERE PARTNUM =

(SELECT PARTNUM

FROM PART

WHERE DESCRI PTI ON LI KE " ROADY%)

ORDEREDON NANME PARTNUM QUANTI TY REMARKS
19- MAY- 1996 TRUE WHEEL 76 3 PAID
17-JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN- 1996 LE SHOPPE 76 5 PAID

1-JUL- 1996 AAA BI KE 76 4 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAID
ANALYSIS:

Even better, if you use the concepts you learned on Day 6, you could enhance the PARTNUM column in the result by including the DESCRI PTI ON,
making PARTNUM clearer for anyone who hasn't memorized it. Try this:

INPUT/OUTPUT:

SELECT O. ORDEREDON, O PARTNUM

P. DESCRI PTI ON, O. QUANTI TY, O. REMARKS
FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND

O PARTNUM =

(SELECT PARTNUM

FROM PART

VWHERE DESCRI PTI ON LI KE " ROADY%)

ORDEREDON PARTNUM DESCRI PTI ON QUANTI TY REMARKS

19- MAY- 1996 76 ROAD BI KE 3 PAID

1-JUL- 1996 76 ROAD BI KE 4 PAI D

17- JAN- 1996 76 ROAD BI KE 5 PAI D
17- JAN- 1996 76 ROAD BI KE 11 PAID
11-JUL- 1996 76 ROAD BI KE 14 PAI D
ANALYSIS:

Thefirst part of the query isvery familiar:

SELECT O. ORDEREDON, O PARTNUM
P. DESCRI PTI ON, O QUANTI TY, O REMARKS
FROM CRDERS O, PART P

Here you are using the aliases Oand P for tables ORDERS and PART to select the five columns you are interested in. In this case the aliases were not
necessary because each of the columns you asked to return is unique. However, it is easier to make a readable query now than to haveto figure it out
later. The first WHERE clause you encounter

VWHERE O PARTNUM = P. PARTNUM

is standard language for the join of tables PART and ORDERS specified in the FROMclause. If you didn't use this WHERE clause, you would have al the
possible row combinations of the two tables. The next section includes the subquery. The statement

AND

O PARTNUM =

(SELECT PARTNUM

FROM PART

VWHERE DESCRI PTI ON LI KE " ROADY)

adds the qualification that O. PARTNUM must be equal to the result of your simple subquery. The subquery is straightforward, finding all the part
numbersthat are LI KE " ROADY . The use of LI KE was somewhat lazy, saving you the keystrokes required to type ROAD Bl KE. However, it turns
out you were lucky thistime. What if someone in the Parts department had added a new part called ROADKI LL? The revised PART table would look
likethis:

INPUT/OUTPUT:

SELECT *

FROM PART

PARTNUM DESCRI PTI ON PRI CE

54 PEDALS 54. 25
42 SEATS 24.50
46 TI RES 15. 25
23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00
77 ROADKI LL 7.99

Suppose you are blissfully unaware of this change and try your query after this new product was added. If you enter this:

SELECT O. ORDEREDON, O PARTNUM

P. DESCRI PTI ON, O QUANTI TY, O. REMARKS
FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND

O PARTNUM =

(SELECT PARTNUM

FROM PART

WHERE DESCRI PTI ON LI KE " ROADY%)

the SQL engine complains

mul tiple rows in singleton select

and you don't get any results. The response from your SQL engine may vary, but it still complains and returns nothing.

To find out why you get this undesirable result, assume the role of the SQL engine. Y ou will probably evaluate the subquery first. Y ou would return
this:

INPUT/OUTPUT:

SELECT PARTNUM
FROM PART
VWHERE DESCRI PTI ON LI KE " ROADY

PARTNUM

Y ou would take this result and apply it to O. PARTNUM =, which is the step that causes the problem.
ANALYSIS:

How can PARTNUM be equal to both 76 and 77?2 This must be what the engine meant when it accused you of being a simpleton. When you used the
LI KE clause, you opened yourself up for this error. When you combine the results of arelational operator with another relational operator, such as =,
<, or >, you need to make sure the result is singular. In the case of the example we have been using, the solution would be to rewrite the query using
an = instead of the LI KE, like this:

INPUT/OUTPUT:

SELECT O. ORDEREDQON, O PARTNUM

P. DESCRI PTI ON, O QUANTI TY, O. REMARKS
FROM CRDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

AND
O PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRI PTI ON = "ROAD BI KE")
ORDEREDON PARTNUM DESCRI PTI ON QUANTI TY REMARKS

19- MAY- 1996 76 ROAD BI KE 3 PAID

1-JUL- 1996 76 ROAD BI KE 4 PAI D
17- JAN- 1996 76 ROAD BI KE 5 PAID
17- JAN- 1996 76 ROAD BI KE 11 PAID
11-JUL- 1996 76 ROAD BI KE 14 PAID
ANALYSIS:

This subquery returns only one unique result; therefore narrowing your = condition to asingle value. How can you be sure the subquery won't return
multiple valuesif you are looking for only one value?

Avoiding the use of LI KE isastart. Another approach is to ensure the uniqueness of the search field during table design. If you are the untrusting
type, you could use the method (described yesterday) for joining atable to itself to check a given field for uniqueness. If you design the table
yourself (see Day 9, "Creating and Maintaining Tables") or trust the person who designed the table, you could require the column you are searching
to have aunique value. Y ou could also use a part of SQL that returns only one answer: the aggregate function.

Using Aggregate Functions with Subqueries
The aggregate functions SUM COUNT, M N, MAX, and AVG dll return asingle value. To find the average amount of an order, type this:

INPUT:

SELECT AVGE O. QUANTI TY * P. PRI CE)
FROM CRDERS O, PART P
VWHERE O PARTNUM = P. PARTNUM

OUTPUT:

2419. 16
ANALYSIS:

This statement returns only one value. To find out which orders were above average, use the preceding SELECT statement for your subquery. The
complete query and result are as follows:

INPUT/OUTPUT:

SELECT O. NAME, O. ORDEREDON,

O. QUANTI TY * P. PRI CE TOTAL

FROM ORDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVG(O. QUANTI TY * P. PRI CE)
FROM ORDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM)

NANVE ORDEREDON TOTAL
LE SHOPPE 1-JUN- 1996 3600. 00
Bl KE SPEC 30- MAY- 1996 2803. 60
LE SHOPPE 17-JAN- 1996 2650. 00
Bl KE SPEC 17-JAN- 1996 5830. 00
JACKS Bl KE 11-JUL-1996 7420. 00
ANALYSIS:

This example contains arather unremarkable SELECT/ FROM WHERE clause:

SELECT O. NAME, O. ORDEREDON,
O QUANTITY * P. PRI CE TOTAL
FROM CRDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

These lines represent the common way of joining these two tables. Thisjoin is necessary because the priceisin PART and the quantity isin ORDERS.
The WHERE ensures that you examine only the join-formed rows that are related. Y ou then add the subquery:

AND

O QUANTITY * P.PRICE >

(SELECT AVG(O. QUANTI TY * P. PRI CE)
FROM ORDERS O, PART P

WHERE O PARTNUM = P. PARTNUM)

The preceding condition compares the total of each order with the average you computed in the subquery. Note that the join in the subquery is
required for the same reasons as in the main SELECT statement. Thisjoin is aso constructed exactly the same way. There are no secret handshakesin
subqueries; they have exactly the same syntax as a standalone query. In fact, most subqueries start out as standal one queries and are incorporated as
subqueries after their results are tested.

Nested Subqueries

Nesting is the act of embedding a subquery within another subquery. For example:

Sel ect * FROM SOVETHI NG WHERE (SUBQUERY(SUBQUERY(SUBQUERY))) ;

Subqueries can be nested as deeply as your implementation of SQL allows. For example, to send out special notices to customers who spend more
than the average amount of money, you would combine the information in the table CUSTOVER

INPUT:

SELECT *

FROM CUSTOVER

OUTPUT:

NANVE ADDRESS STATE ZIP PHONE REVARKS
TRUE WHEEL 550 HUSKER NE 58702 555 - 4545 NONE

Bl KE SPEC CPT SHRI VE LA 45678 555-1234 NONE

LE SHOPPE HOVETOMN KS 54678 555-1278 NONE

AAA BIKE 10 OLDTOMN NE 56784 555 -3421 JOHN- MGR
JACKS BI KE 24 EGIN FL 34567 555-2314 NONE

with adlightly modified version of the query you used to find the above-average orders:
INPUT/OUTPUT:

SELECT ALL C. NAME, C. ADDRESS, C. STATE, C. ZIP
FROM CUSTOVER C

VWHERE C. NAME | N

(SELECT O NAME

FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVG(O QUANTITY * P. PRI CE)
FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM)

NANVE ADDRESS STATE ZIP
Bl KE SPEC CPT SHRI VE LA 45678
LE SHOPPE HOVETOMN KS 54678
JACKS BIKE 24 EGLIN FL 34567
ANALYSIS:

Here'salook at what you asked for. In the innermost set of parentheses, you find afamiliar statement:

SELECT AVGE O. QUANTI TY * P. PRI CE)
FROM CRDERS O, PART P
VWHERE O PARTNUM = P. PARTNUM

This result feeds into a slightly modified version of the SELECT clause you used before:

SELECT O. NAME

FROM CRDERS O, PART P

VWHERE O PARTNUM = P. PARTNUM
AND

O QUANTITY * P.PRICE >

(...)

Note the SELECT clause has been modified to return a single column, NAME, which, not so coincidentally, is common with the table CUSTOVER.
Running this statement by itself you get:

INPUT/OUTPUT:

SELECT O NAME

FROM CRDERS O, PART P

WHERE O PARTNUM = P. PARTNUM

AND

O QUANTITY * P.PRICE >

(SELECT AVGE O QUANTITY * P. PRI CE)
FROM CRDERS O, PART P

WHERE O. PARTNUM = P. PARTNUM

NANVE

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS BI KE

ANALYSIS:

Wejust spent some time discussing why your subqueries should return just one value. The reason this query was able to return more than one value
becomes apparent in a moment.

Y ou bring these results to the statement:

SELECT C. NAME, C. ADDRESS, C. STATE, C.ZIP
FROM CUSTOVER C
VWHERE C. NAME | N

ANALYSIS:

Thefirst two lines are unremarkable. The third reintroduces the keyword | N, last seen on Day 2, "Introduction to the Query: The SELECT
Statement.” | Nis the tool that enables you to use the multiple-row output of your subquery. I N, as you remember, looks for matches in the following
set of values enclosed by parentheses, which in the this case produces the following values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS BI KE

This subquery provides the conditions that give you the mailing list:

NANVE ADDRESS STATE ZIP

Bl KE SPEC CPT SHRI VE LA 45678
LE SHOPPE HOVETOMN KS 54678
JACKS BI KE 24 EGLIN FL 34567

Thisuse of | Nisvery common in subqueries. Because | N uses a set of values for its comparison, it does not cause the SQL engine to feel conflicted
and inadequate.

Subqueries can also be used with GROUP BY and HAVI NG clauses. Examine the following query:

INPUT/OUTPUT:

SELECT NAME, AVG QUANTI TY)
FROM ORDERS

GROUP BY NAME

HAVI NG AVG(QUANTI TY) >

(SELECT AVG({ QUANTI TY)

FROM ORDERS)

NANVE AVG
Bl KE SPEC 8
JACKS BI KE 14
ANALYSIS:

Let's examine this query in the order the SQL engine would. First, look at the subquery:

INPUT/OUTPUT:

SELECT AVG(QUANTI TY)
FROM ORDERS

By itself, the query is asfollows:
INPUT/OUTPUT:

SELECT NAME, AVG(QUANTI TY)
FROM CRDERS
GRCUP BY NAME

NAVE AVG
AAA BI KE 6
Bl KE SPEC 8
JACKS BI KE 14
LE SHOPPE 4
TRUE WHEEL 5

When combined through the HAVI NG clause, the subquery produces two rows that have above-average QUANTI TY.

INPUT/OUTPUT:

HAVI NG AVG(QUANTI TY) >
(SELECT AVG({ QUANTI TY)

FROM ORDERS)

NANVE AVG
Bl KE SPEC 8
JACKS BI KE 14

Correlated Subqueries

The subqueries you have written so far are self-contained. None of them have used a reference from outside the subquery. Correlated subqueries
enable you to use an outside reference with some strange and wonderful results. Look at the following query:

INPUT:

SELECT *

FROM ORDERS O

WHERE ' ROAD BI KE' =

(SELECT DESCRI PTI ON

FROM PART P

VWHERE P. PARTNUM = O. PARTNUM

OUTPUT:

ORDEREDON NANME PARTNUM QUANTI TY REMARKS
19- MAY- 1996 TRUE WHEEL 76 3 PAID
17-JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN- 1996 LE SHOPPE 76 5 PAID

1-JUL- 1996 AAA BI KE 76 4 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAI D

This query actually resembles the following JO N:

INPUT:

SELECT O. ORDEREDQN, O. NAME,

O PARTNUM O QUANTI TY, O REMARKS
FROM CRDERS O, PART P

VWHERE P. PARTNUM = O. PARTNUM

AND P. DESCRI PTI ON = ' ROAD BI KE'

OUTPUT:

ORDEREDON NANME PARTNUM QUANTI TY REMARKS
19- MAY- 1996 TRUE WHEEL 76 3 PAID

1-JUL- 1996 AAA BI KE 76 4 PAID
17-JAN- 1996 LE SHOPPE 76 5 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAI D
ANALYSIS:

In fact, except for the order, the results are identical. The correlated subquery acts very much like ajoin. The correlation is established by using an
element from the query in the subquery. In this example the correlation was established by the statement

WHERE P. PARTNUM = O PARTNUM

in which you compare P. PARTNUM, from the table inside your subguery, to O. PARTNUM, from the table outside your query. Because O. PARTNUM can

have a different value for every row, the correlated subquery is executed for each row in the query. In the next example each row in the table
CORDERS

INPUT/OUTPUT:
SELECT *
FROM CRDERS
ORDEREDON NANME PARTNUM QUANTI TY REMARKS
15- MAY- 1996 TRUE WHEEL 23 6 PAI D
19- MAY- 1996 TRUE WHEEL 76 3 PAID
2- SEP- 1996 TRUE WHEEL 10 1 PAID
30- JUN- 1996 TRUE WHEEL 42 8 PAID
30- JUN- 1996 BI KE SPEC 54 10 PAID
30- VAY- 1996 BI KE SPEC 10 2 PAID
30- VAY- 1996 BI KE SPEC 23 8 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN- 1996 LE SHOPPE 76 5 PAID
1-JUN- 1996 LE SHOPPE 10 3 PAID
1-JUN- 1996 AAA BI KE 10 1 PAID
1-JUL- 1996 AAA BI KE 76 4 PAID
1-JUL- 1996 AAA BI KE 46 14 PAI D
11-JUL- 1996 JACKS BI KE 76 14 PAI D

is processed against the subquery criteria:

SELECT DESCRI PTI ON
FROM PART P
WHERE P. PARTNUM = O, PARTNUM

ANALYSIS:

This operation returns the DESCRI PTI ON of every row in PART where P. PARTNUM = O. PARTNUM. These descriptions are then compared in the
WHERE clause:

VWHERE ' ROAD BI KE' =

Because each row is examined, the subquery in a correlated subquery can have more than one value. However, don't try to return multiple columns
or columns that don't make sense in the context of the WHERE clause. The values returned still must match up against the operation specified in the

VHERE clause. For example, in the query you just did, returning the PRI CE to compare with ROAD BI KE would have the following result:
INPUT/OUTPUT:

SELECT *

FROM ORDERS O

WHERE ' ROAD BI KE' =

(SELECT PRI CE

FROM PART P

VWHERE P. PARTNUM = O. PARTNUM

conversion error fromstring "ROAD Bl KE"

Here's another example of something not to do:

SELECT *
FROM ORDERS O

WHERE ' ROAD BI KE' =

(SELECT *

FROM PART P

WHERE P. PARTNUM = O. PARTNUM)

ANALYSIS:

This SELECT caused a Genera Protection Fault on my Windows operating system. The SQL engine simply can't correlate all the columnsin PART
with the operator =.

Correlated subqueries can also be used with the GROUP BY and HAVI NG clauses. The following query uses a correlated subquery to find the average
total order for a particular part and then applies that average value to filter the total order grouped by PARTNUM

INPUT/OUTPUT:

SELECT O PARTNUM SUM O. QUANTI TY*P. PRI CE), COUNT(PARTNUM)
FROM ORDERS O, PART P

WHERE P. PARTNUM = O PARTNUM

GROUP BY O PARTNUM

HAVI NG SUM O. QUANTI TY*P. PRI CE) >

(SELECT AVG(OL. QUANTI TY*P1. PRI CE)

FROM PART P1, ORDERS OL

WHERE P1. PARTNUM = OL. PARTNUM

AND P1. PARTNUM = O. PARTNUM)

PARTNUM SUM COUNT
10 8400. 00 4
23 4906. 30 2
76 19610. 00 5

ANALYSIS:

The subquery does not just compute one

AVG(OL. QUANTI TY* P1. PRI CE)

Because of the correlation between the query and the subquery,

AND P1. PARTNUM = O PARTNUM

this average is computed for every group of parts and then compared:

HAVI NG SUM O. QUANTI TY*P. PRI CE) >

TIP: When using correlated subqueries with GROUP BY and HAVI NG, the columns in the HAVI NG clause must exist in either the

SELECT clause or the GROUP BY clause. Otherwise, you get an error message along thelinesof i nval i d col um reference
because the subquery is evoked for each group, not each row. Y ou cannot make a valid comparison to something that is not used in
forming the group.

Using EXISTS, ANY, and ALL

The usage of the keywords EXI STS, ANY, and ALL is not intuitively obvious to the casual observer. EXI STS takes a subquery as an argument and
returns TRUE if the subquery returns anything and FALSE if the result set is empty. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE EXI STS

(SELECT *

FROM ORDERS

WHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY-1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
Bl KE SPEC 30-JUN- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 17-JAN- 1996
LE SHOPPE 17-JAN- 1996
LE SHOPPE 1-JUN- 1996
AAA BI KE 1-JUN- 1996
AAA BI KE 1-JUL-1996
AAA BI KE 1-JUL-1996
JACKS BI KE 11-JUL-1996

ANALYSIS:

Not what you might expect. The subquery inside EXI STS is evaluated only once in this uncorrelated example. Because the return from the subquery
has at least one row, EXI STS evaluates to TRUE and al the rows in the query are printed. If you change the subquery as shown next, you don't get
back any resullts.

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE EXI STS

(SELECT *

FROM ORDERS

WHERE NAME =' MOSTLY HARMLESS')

ANALYSIS:

EXI STS evaluates to FALSE. The subquery does not generate aresult set because MOSTLY HARMLESS is not one of your names.

NOTE: Noticethe use of SELECT * in the subquery inside the EXI STS. EXI STS does not care how many columns are returned.

Y ou could use EXI STS in this way to check on the existence of certain rows and control the output of your query based on whether they exist.
If you use EXI STS in a correlated subquery, it is evaluated for every case implied by the correlation you set up. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS O

WHERE EXI STS

(SELECT *

FROM CUSTQVER C
WHERE STATE =' NE'
AND C. NAME = O NAME)

NANVE ORDEREDON

TRUE WHEEL 15- MAY-1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
AAA BI KE 1-JUN- 1996
AAA BI KE 1-JUL-1996
AAA BI KE 1-JUL-1996

This dight modification of your first, uncorrelated query returns al the bike shops from Nebraska that made orders. The following subquery isrun
for every row in the query correlated on the CUSTOVER name and ORDERS name:

(SELECT *

FROM CUSTQVER C
WHERE STATE =' NE'
AND C. NAME = O NAME)

ANALYSIS:
EXI STS is TRUE for those rows that have corresponding names in CUSTOMER located in NE. Otherwise, it returns FALSE.

Closely related to EXI STS are the keywords ANY, ALL, and SOVE. ANY and SOME areidentical in function. An optimist would say this feature
provides the user with a choice. A pessimist would see this condition as one more complication. Look at this query:

INPUT:

SELECT NAME, ORDEREDON
FROM CRDERS

VWHERE NAME = ANY

(SELECT NAME

FROM CRDERS

WHERE NAME =' TRUE WHEEL')

OUTPUT:

NANVE ORDEREDON

TRUE WHEEL 15- MVAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:

ANY compared the output of the following subquery to each row in the query, returning TRUE for each row of the query that has aresult from the
subquery.

(SELECT NAME
FROM ORDERS
WHERE NAME =' TRUE WHEEL')

Replacing ANY with SOVE produces an identical result:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME = SOVE

(SELECT NAME

FROM CRDERS
VWHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY-1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:
Y ou may have already noticed the similarity to I N. The same query using | Nis asfollows:
INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

VHERE NAME | N

(SELECT NAME

FROM ORDERS

WHERE NAME =' TRUE WHEEL')

NANVE ORDEREDON

TRUE WHEEL 15- MAY-1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996

ANALYSIS:
Asyou can see, | Nreturns the same result as ANY and SOVE. Has the world gone mad? Not yet. Can | N do this?

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME > ANY

(SELECT NAME

FROM ORDERS

WHERE NAME =' JACKS BI KE')

NANVE ORDEREDON

TRUE WHEEL 15- MVAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
LE SHOPPE 17-JAN- 1996
LE SHOPPE 1-JUN- 1996

The answer isno. | Nworks like multiple equals. ANY and SOVE can be used with other relational operators such as greater than or less than. Add this
tool to your kit.

ALL returns TRUE only if all the results of a subquery meet the condition. Oddly enough, ALL is used most commonly as adouble negative, asin this
query:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM CRDERS

VWHERE NAME <> ALL

(SELECT NAME

FROM CRDERS

WHERE NAME =' JACKS BI KE')

NANVE ORDEREDON

TRUE WHEEL 15- MVAY- 1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
Bl KE SPEC 30- JUN- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 30- MAY- 1996
Bl KE SPEC 17-JAN- 1996
LE SHOPPE 17-JAN- 1996
LE SHOPPE 1-JUN- 1996
AAA BI KE 1-JUN- 1996
AAA BI KE 1-JUL-1996
AAA BI KE 1-JUL-1996

ANALYSIS:

This statement returns everybody except JACKS Bl KE. <>ALL evaluatesto TRUE only if the result set does not contain what is on the left of the <>.

Summary

Today you performed dozens of exercises involving subqueries. Y ou learned how to use one of the most important parts of SQL. Y ou also tackled
one of the most difficult parts of SQL: a correlated subquery. The correlated subquery creates a relationship between the query and the subquery that
is evaluated for every instance of that relationship. Don't be intimidated by the length of the queries. Y ou can easily examine them one subquery at a
time.

Q&A
Q In some cases SQL offers several waysto get the sameresult. Isn't thisflexibility confusing?

A No, not really. Having so many ways to achieve the same result enables you to create some really neat statements. Flexibility is the virtue
of SQL.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. In the section on nested subqueries, the sample subquery returned several values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS BI KE

Some of these are duplicates. Why aren't these duplicatesin the final result set?

2. Arethefollowing statements true or false?

The aggregate functions SUM, COUNT, M N, MAX, and AVG all return multiple values.
The maximum number of subqueriesthat can be nested is two.

Correlated subqueries are completely self-contained.

3. Will the following subqueries work using the ORDERS table and the PART table?

INPUT/OUTPUT:

SQL> SELECT *
FROM PART;

PARTNUM DESCRI PTI ON PRI CE

54 PEDALS 54. 25
42 SEATS 24.50
46 TIRES 15. 25
23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

6 rows sel ected.

INPUT/OUTPUT:

SQL> SELECT *

FROM ORDERS;
ORDEREDON NANVE PARTNUM QUANITY REMARKS
15- VAY- 96 TRUE WHEEL 23 6 PAID
19- VAY- 96 TRUE WHEEL 76 3 PAD
2- SEP- 96 TRUE WHEEL 10 1 PAID
30- JUN- 96 Bl KE SPEC 54 10 PAID
30- MAY- 96 Bl KE SPEC 10 2 PAID
30- MAY- 96 Bl KE SPEC 23 8 PAID
17- JAN- 96 Bl KE SPEC 76 11 PAID
17- JAN- 96 LE SHOPPE 76 5 PAID
1-JUN- 96 LE SHOPPE 10 3 PAID
1- JUN- 96 AAA BI KE 10 1 PAID
1- JUN- 96 AAA BI KE 76 4 PAID
1-JUN- 96 AAA BI KE 46 14 PAID
11-JUL-96 JACKS BI KE 76 14 PAID

13 rows sel ect ed.

a. SQL> SELECT * FROM ORDERS
WHERE PARTNUM =
SELECT PARTNUM FROM PART
VWHERE DESCRI PTION = ' TRUE WHEEL' ;

b. SQL> SELECT PARTNUM

FROM CRDERS

WHERE PARTNUM =

(SELECT * FROM PART

WHERE DESCRI PTI ON = ' LE SHOPPE');

C. SQL> SELECT NAME, PARTNUM

FROM CRDERS
VWHERE EXI STS
(SELECT * FROM ORDERS

WHERE NAME = ' TRUE WHEEL');

Exercise

Write a query using the table ORDERS to return all the NAMES and ORDEREDON dates for every store that comes after JACKS BI KE in the
alphabet.

{ % Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

Week 11n Review

After setting the stage with a quick survey of database history and theory, Week 1 moved right into the heart of SQL with the SELECT statement. The
following summary of the SELECT statement syntax includes cross-references to the days on which the particular aspect was covered:

1 SELECT [DISTINCT | ALL] (Day 2)--Columns (Day 1), Functions (Day 4)
1 FROM(Day 2)--Tables or Views (Day 1), Aggregate Functions (Day 4)

1 WHERE (Day 5)--Condition (Day 3), Join (Day 6), Subquery (Day 7)

1 GROUP BY (Day 5)--Columns (Day 3)

1 HAVI NG (Day 5)--Aggregate Function (Day 4)

1 UNION | | NTERSECT (Day 3)--(Placed between two SELECT statements)

1 ORDER BY (Day 5)--Columns (Day 1)

If you build amillion queriesin your programming career, more than 80 percent of them will begin with SELECT. The other 20 percent will fall into
the categories covered in Week 2.

Preview

The new skillsyou learn in Week 2 cover database administration. During Week 2 you will learn how to
1 Create and destroy tables
1 Assign permissions to your friends and prevent your enemies from even looking at your data

1 Update and delete datain tables

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

Week 2 At A Glance

What's Covered ThisWeek

Week 1 covered the basic SQL query using the SELECT statement. Beginning with the simplest SELECT statement, you learned how to retrieve data
from the database. Then you moved on to the SQL functions, which are useful in converting to money or date formats, for example. Y ou quickly
learned that you can retrieve data from a database in many ways. Clauses such as WHERE, ORDER BY, and GROUP BY enable you to tailor a query to
return a specific set of records. Y ou can use ajoin to return a set of datafrom a group of tables. Subqueries are especially useful when you need to
execute severa queries, each of which depends on data returned from an earlier query.

Week 2 moves on to the more advanced uses of SQL :

1 Day 8 shows you how to modify data within a database. Y ou may have been dreading the idea of typing in al your data, but manually
entering datais not always necessary. Modern database systems often supply useful tools for importing and exporting data from various
database formats. In addition, SQL provides several useful statements for manipulating data within a database.

1 Day 9 teaches you how to create and maintain tables within a database. Y ou a so learn how to create a database and manage that database's
disk space.

1 Day 10 explains how to create, maintain, and use views and indexes within a database.

1 Day 11 covers transaction control. Transactions commit and roll back changes to a database, and the use of transactionsis essential in online
transaction processing (OLTP) applications.

1 Day 12 focuses on database security. A knowledge of your database's security capabilitiesis essential to manage a database effectively.

1 Day 13 describes how to use SQL within larger application programs. Embedded SQL is often used to execute SQL within a host language
such as C or COBOL. In addition, the open database connectivity (ODBC) standard enables application programmers to write code that can
use database drivers to connect with many database management systems. Day 13 also covers various advanced SQL topics.

1 Day 14 discusses dynamic uses of SQL and provides numerous examples that illustrate how SQL is used in applications.

(< Prevous Chapter JRC>NextChapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 8 -
Manipulating Data
Objectives
Today we discuss data manipulation. By the end of the day, you should understand:
1 How to manipulate data using the | NSERT, UPDATE, and DELETE commands
1 The importance of using the WHERE clause when you are manipulating data

1 Thebasics of importing and exporting data from foreign data sources

Introduction to Data M anipulation Statements

Up to this point you have learned how to retrieve data from a database using every selection criterion imaginable. After this datais retrieved, you can
useit in an application program or edit it. Week 1 focused on retrieving data. However, you may have wondered how to enter datainto the database
in the first place. Y ou may also be wondering what to do with data that has been edited. Today we discuss three SQL statements that enable you to
manipulate the data within a database's table. The three statements are as follows:

1 Thel NSERT statement
1 The UPDATE statement
1 The DELETE statement

Y ou may have used a PC-based product such as Access, dBASE IV, or FoxPro to enter your data in the past. These products come packaged with
excellent tools to enter, edit, and delete records from databases. One reason that SQL provides data manipulation statementsisthat it is primarily
used within application programs that enable the user to edit the data using the application's own tools. The SQL programmer needs to be able to
return the data to the database using SQL . In addition, most |arge-scale database systems are not designed with the database designer or programmer
in mind. Because these systems are designed to be used in high-volume, multiuser environments, the primary design emphasisis placed on the query
optimizer and dataretrieval engines.

Most commercial relational database systems also provide tools for importing and exporting data. This datais traditionally stored in a delimited text
file format. Often aformat file is stored that contains information about the table being imported. Tools such as Oracle's SQL* Loader, SQL Server's
bep (bulk copy), and Microsoft Access Import/Export are covered at the end of the day.

NOTE: Today's examples were generated with Personal Oracle7. Please note the minor differences in the appearance of commands
and the way datais displayed in the various implementations.

The INSERT Statement

The | NSERT statement enables you to enter data into the database. It can be broken down into two statements:

| NSERT. . . VALUES

and

| NSERT. . . SELECT

The INSERT...VALUES Statement

The ! NSERT. . . VALUES statement enters data into a table one record at atime. It is useful for small operations that deal with just afew records. The
syntax of this statement is as follows:

SYNTAX:

I NSERT | NTO t abl e_nane
(coll1, col2...)
VALUES(val uel, value2...)

The basic format of the | NSERT. . . VALUES statement adds arecord to a table using the columns you give it and the corresponding values you
instruct it to add. Y ou must follow three rules when inserting datainto a table with the | NSERT. . . VALUES statement:

1 The values used must be the same data type as the fields they are being added to.
1 The data's size must be within the column's size. For instance, you cannot add an 80-character string to a 40-character column.

1 Thedata'slocation in the VALUES list must correspond to the location in the column list of the column it is being added to. (That is, the first
value must be entered into the first column, the second value into the second column, and so on.)

Example 8.1
Assume you have a COLLECTI ON table that lists all the important stuff you have collected. Y ou can display the table's contents by writing

INPUT:

SQ.> SELECT * FROM COLLECTI ON;

which would yield this:

OUTPUT:

| TEM WORTH REMARKS

NBA ALL STAR CARDS 300 SOVE STILL I'N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET

If you wanted to add a new record to this table, you would write
INPUTOUTPUT:

SQL> | NSERT | NTO COLLECTI ON
2 (ITEM WORTH, REMARKS)
3 VALUES(' SUPERVMANS CAPE', 250.00, 'TUGGED ON IT");

1 row creat ed.
Y ou can execute a Simple SELECT statement to verify the insertion:

INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON,;

| TEM WORTH RENMARKS

NBA ALL STAR CARDS 300 SOME STILL I'N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK OF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

ANALYSIS:

The | NSERT statement does not require column names. If the column names are not entered, SQL lines up the values with their corresponding
column numbers. In other words, SQL insertsthe first value into the first column, the second value into the second column, and so on.

Example 8.2
The following statement inserts the values from Example 8.1 into the table:

INPUT:

SQL> | NSERT | NTO COLLECTI ON VALUES
2 (' STRING , 1000.00,"' SOVE DAY IT WLL BE VALUABLE');

1 row created.
ANALYSIS:
By issuing the same SELECT statement as you did in Example 8.1, you can verify that the insertion worked as expected:

INPUT:

SQ.> SELECT * FROM COLLECTI ON;

OUTPUT:

| TEM WORTH RENMARKS

NBA ALL STAR CARDS 300 SOMVE STILL I'N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK COF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

STRI NG 1000 SOVE DAY I T WLL BE VALUABLE

6 rows sel ected.

Inserting NULL Values

On Day 9, "Creating and Maintaining Tables," you learn how to create tables using the SQL CREATE TABLE statement. For now, all you need to
know isthat when a column is created, it can have several different limitations placed upon it. One of these limitationsis that the column should (or
should not) be allowed to contain NULL values. A NULL value means that the value is empty. It is neither a zero, in the case of an integer, nor a space,
in the case of astring. Instead, no data at all exists for that record's column. If acolumn is defined as NOT NULL (that column is not allowed to
contain aNULL value), you must insert avalue for that column when using the | NSERT statement. The | NSERT is canceled if thisruleis broken, and
you should receive a descriptive error message concerning your error.

WARNING: You could insert spaces for anull column, but these spaces will be treated as avalue. NULL simply means nothing is
there.

INPUT:

SQL> insert into collection values
2 (' SPORES M LDEW FUNGUS', 50.00, ' ');

OUTPUT:
1 row inserted.
ANALYSIS:
Using' ' instead of NULL inserted aspacein thecol | ecti on table. Y ou then can select the space.
INPUT/OUTPUT:

SQL> select * fromcollection
2 where remarks ="' ';

| TEM WORTH REMARKS

SPORES M LDEW FUNGUS 50. 00

1 row sel ect ed.
ANALYSIS:

The resulting answer comes back asif aNULL isthere. With the output of character fields, it isimpossible to tell the difference between anull value
and a mere space.

Assume the column REMARKS in the preceding table has been defined as NOT NULL. Typing
INPUT/OUTPUT:

SQL> | NSERT | NTO COLLECTI ON
2 VALUES(' SPORES M LDEW FUNGUS' , 50. 00, NULL) ;

produces the following error:

I NSERT | NTO COLLECTI ON
*

ERROR at line 1:
ORA-01400: mandatory (NOT NULL) colum is mssing or NULL during insert

NOTE: Notice the syntax. Number data types do not require quotes; NULL does not require quotes; character data types do require
quotes.

Inserting Unique Values

Many database management systems also allow you to create a UNI QUE column attribute. This attribute means that within the current table, the
values within this column must be completely unique and cannot appear more than once. This limitation can cause problems when inserting or
updating valuesinto an existing table, as the following exchange demonstrates:

INPUT:
SQL> | NSERT | NTO COLLECTI ON VALUES(' STRING , 50, 'MORE STRING);
OUTPUT:

I NSERT | NTO COLLECTI ON VALUES(' STRING , 50, ' MORE STRING)
*

ERROR at line 1:
ORA- 00001: uni que constraint (PERKINS, UNQ COLLECTI ON_|I TEM vi ol at ed

ANALYSIS:

In this example you tried to insert another | TEMcalled STRI NG into the COLLECT! ON table. Because this table was created with | TEMas a unique

value, it returned the appropriate error. ANSI SQL does not offer a solution to this problem, but several commercial implementations include
extensions that would allow you to use something like the following:

I F NOT EXI STS (SELECT * FROM COLLECTI ON WHERE NAME = ' STRI NG

I NSERT | NTO COLLECTI ON VALUES(' STRING , 50, ' MORE STRING)
This particular example is supported in the Sybase system.

A properly normalized table should have a unique, or key, field. Thisfield is useful for joining data between tables, and it often improves the speed
of your queries when using indexes. (See Day 10, "Creating Views and Indexes.")

NOTE: Here'san | NSERT statement that inserts a new employee into atable:

SQL> insert into enployee_tbl values
(*300500177', "SMTHH , "JOHN);

1 row inserted.

After hitting Enter, you noticed that you misspelled SM TH. Not to fret! All you have to do isissue the ROLLBACK command, and the
row will not be inserted. See Day 11, "Controlling Transactions," for more on the ROLLBACK command.

TheINSERT...SELECT Statement

Thel NSERT. . . VALUES statement is useful when adding single records to a database table, but it obviously has limitations. Would you like to use it
to add 25,000 records to atable? In situations like this, the | NSERT. . . SELECT statement is much more beneficial. It enables the programmer to
copy information from atable or group of tables into another table. Y ou will want to use this statement in several situations. Lookup tables are often
created for performance gains. Lookup tables can contain data that is spread out across multiple tables in multiple databases. Because multiple-table
joins are slower to process than simple queries, it is much quicker to execute a SELECT query against alookup table than to execute along,
complicated joined query. Lookup tables are often stored on the client machines in client/server environments to reduce network traffic.

Many database systems also support temporary tables. (See Day 14, "Dynamic Uses of SQL.") Temporary tables exist for the life of your database
connection and are deleted when your connection isterminated. The | NSERT. . . SELECT statement can take the output of a SELECT statement and
insert these values into a temporary table.

Hereisan example:
INPUT:

SQL> insert into tnp_tbl
2 select * fromtable;

OUTPUT:

19,999 rows inserted.
ANALYSIS:

You are selecting all therowsthat areint abl e and inserting them into t np_t bl .

NOTE: Not all database management systems support temporary tables. Check the documentation for the specific system you are
using to determine if thisfeature is supported. Also, see Day 14 for a more detailed treatment of this topic.

The syntax of the | NSERT. . . SELECT statement is as follows:

SYNTAX:

I NSERT | NTO t abl e_nane

(coll, col2...)

SELECT col 1, col 2...
FROM t abl enane

WHERE search_condi tion

Essentially, the output of a standard SELECT query is then input into a database table. The same rules that applied to the | NSERT. . . VALUES
statement apply to the | NSERT. . . SELECT statement. To copy the contents of the COLLECTI ON table into a new table called | NVENTORY, execute the
set of statementsin Example 8.3.

Example 8.3
This example creates the new table | NVENTORY.

INPUT:

SQL> CREATE TABLE | NVENTORY
2 (1 TEM CHAR(20),
3 COST NUMBER
4 ROOM CHAR(20),
5 REMARKS CHAR(40));

OUTPUT:
Tabl e created.
The following | NSERT fills the new | NVENTORY table with data from COLLECTI ON.

INPUT/OUTPUT:

SQL> | NSERT | NTO | NVENTORY (I TEM COST, REMARKS)
2 SELECT I TEM WORTH, REMARKS
3 FROM COLLECTI ON,;

6 rows created.
Y ou can verify that the | NSERT works with this SELECT statement:

INPUT/OUTPUT:

SQ.> SELECT * FROM | NVENTORY;

| TEM COST ROOM REVARKS

NBA ALL STAR CARDS 300 SOVE STILL I N Bl KE SPOKES
MALI BU BARBI E 150 TAN NEEDS WORK

STAR WARS GLASS 5.5 HANDLE CHI PPED

LOCK COF SPOUSES HAI R 1 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 250 TUGGED ON I T

STRI NG 1000 SOVE DAY I T WLL BE VALUABLE

6 rows sel ected.

NOTE: The data appears to be in the table; however, the transaction is not finalized until a COW T isissued. The transaction can be
committed either by issuing the COVW T command or by simply exiting. See Day 11 for more on the COMM T command.

ANALYSIS:
Y ou have successfully, and somewhat painlessly, moved the data from the COLLECTI ON table to the new | NVENTCORY table!
The | NSERT. . . SELECT statement requires you to follow several new rules:

1 The SELECT statement cannot select rows from the table that is being inserted into.

1 The number of columnsin the | NSERT | NTO statement must equal the number of columns returned from the SELECT statement.

1 Thedatatypes of the columnsin the | NSERT | NTO statement must be the same as the data types of the columns returned from the SELECT
Statement.

Another use of the | NSERT. . . SELECT statement is to back up atable that you are going to drop, truncate for repopulation, or rebuild. The process
requires you to create atemporary table and insert data that is contained in your original table into the temporary table by selecting everything from
the original table. For example:

SQL> insert into copy_table
2 select * fromoriginal _table

Now you can make changes to the original table with a clear conscience.

NOTE: Later today you learn how to input datainto atable using data from another database format. Nearly all businesses use a
variety of database formatsto store data for their organizations. The applications programmer is often expected to convert these
formats, and you will learn some common methods for doing just that.

The UPDATE Statement

The purpose of the UPDATE statement is to change the values of existing records. The syntax is
SYNTAX:

UPDATE t abl e_nane

SET col ummnanel = val uel
[, columane2 = value2]...
WHERE search_condi tion

This statement checks the WHERE clause first. For all records in the given table in which the WHERE clause evaluates to TRUE, the corresponding value
is updated.

Example 8.4
This exampleillustrates the use of the UPDATE statement:

INPUT:

SQL> UPDATE COLLECTI ON
2 SET WORTH = 900
3 VHERE | TEM = ' STRING ;

OUTPUT:

1 row updat ed.

To confirm the change, the query
INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON
2 VHERE | TEM = ' STRING ;

yields

| TEM WORTH REMARKS

STRI NG 900 SOVE DAY I T WLL BE VALUABLE

Here is a multiple-column update:
INPUT/OUTPUT:

SQL> update collection
2 set worth = 900, item= ball
3 where item="STRING ;

1 row updat ed.

NOTE: Y our implementation might use a different syntax for multiple-row updates.

NOTE: Noticein the set that 900 does not have quotes, because it is a numeric data type. On the other hand, St ri ng is acharacter
data type, which requires the quotes.

Example 8.5
If the WHERE clause is omitted, every record in the COLLECTI ON table is updated with the value given.

INPUT/OUTPUT:

SQ.> UPDATE COLLECTI ON
2 SET WORTH = 555;

6 rows updat ed.
Performing a SELECT query shows that every record in the database was updated with that value:

INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON,;

| TEM WORTH REMARKS

NBA ALL STAR CARDS 555 SOME STILL IN Bl KE SPCKES
MALI BU BARBI E 555 TAN NEEDS WORK

STAR WARS GLASS 555 HANDLE CHI PPED

LOCK CF SPOUSES HAI R 555 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 555 TUGGED ON I T

STRI NG 555 SOMVE DAY I T WLL BE VALUABLE

6 rows sel ected.

Y ou, of course, should check whether the column you are updating allows unique values only.

WARNING: If you omit the WHERE clause from the UPDATE statement, all records in the given table are updated.

Some database systems provide an extension to the standard UPDATE syntax. SQL Server's Transact-SQL language, for instance, enables
programmers to update the contents of atable based on the contents of several other tables by using a FROMclause. The extended syntax looks like
this:

SYNTAX:

UPDATE t abl e_nane

SET col ummnanel = val uel
[, columane2 = value2]...
FROM t abl e_I i st

WHERE search_condi tion

Example 8.6
Here's an example of the extension:
INPUT:

SQ.> UPDATE COLLECTI ON
2 SET WORTH = WORTH * 0. 005;

that changes the table to this:

INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON;

| TEM WORTH REMARKS

NBA ALL STAR CARDS 2.775 SQOVE STILL I N Bl KE SPOKES
MALI BU BARBI E 2.775 TAN NEEDS WORK

STAR WARS GLASS 2. 775 HANDLE CHI PPED

LOCK CF SPOUSES HAI R 2.775 HASN T NOTI CED BALD SPOT YET
SUPERVANS CAPE 2.775 TUGGED ON I T

STRI NG 2.775 SOVE DAY I T WLL BE VALUABLE

6 rows sel ected.
ANALYSIS:

This syntax is useful when the contents of one table need to be updated following the manipulation of the contents of several other tables. Keepin
mind that this syntax is nonstandard and that you need to consult the documentation for your particular database management system before you use
it.

The UPDATE statement can also update columns based on the result of an arithmetic expression. When using this technique, remember the
requirement that the data type of the result of the expression must be the same as the data type of the field that is being modified. Also, the size of
the value must fit within the size of the field that is being modified.

Two problems can result from the use of calculated values: truncation and overflow. Truncation results when the database system converts a
fractional number to an integer, for instance. Overflow results when the resulting value is larger than the capacity of the modified column, which will
cause an error to be returned by your database system.

NOTE: Some database systems handle the overflow problem for you. Oracle7 converts the number to exponential notation and
presents the number that way. Y ou should keep this potential error in mind when using number data types.

TIP: If you update a column(s) and notice an error after you run the update, issue the ROLLBACK command (as you would for an
incorrect insert) to void the update. See Day 11 for more on the ROLLBACK command.

The DELETE Statement
In addition to adding data to a database, you will also need to delete data from a database. The syntax for the DELETE statement is

SYNTAX:

DELETE FROM t abl enane
WHERE condi tion

Thefirst thing you will probably notice about the DELETE command is that it doesn't have a prompt. Users are accustomed to being prompted for
assurance when, for instance, adirectory or fileis deleted at the operating system level. Are you sure? (Y/N) isacommon question asked before
the operation is performed. Using SQL, when you instruct the DBMS to delete a group of records from atable, it obeys your command without
asking. That is, when you tell SQL to delete a group of records, it will really do it!

On Day 11 you will learn about transaction control. Transactions are database operations that enable programmers to either COMM T or ROLLBACK
changes to the database. These operations are very useful in online transaction-processing applications in which you want to execute a batch of
modifications to the database in one logical execution. Dataintegrity problemswill occur if operations are performed while other users are
modifying the data at the same time. For now, assume that no transactions are being undertaken.

NOTE: Some implementations, for example, Oracle, automatically issue a COvMM T command when you exit SQL.

Depending on the use of the DELETE statement's WHERE clause, SQL can do the following:
1 Delete single rows
1 Delete multiple rows
1 Deleteall rows
1 Deleteno rows
Here are several points to remember when using the DELETE statement:

1 The DELETE statement cannot delete an individual field's values (use UPDATE instead). The DELETE statement deletes entire records from a
singletable.

1 Like ! NSERT and UPDATE, deleting records from one table can cause referential integrity problems within other tables. Keep this potential
problem areain mind when modifying data within a database.

1 Using the DELETE statement deletes only records, not the table itself. Use the DROP TABLE statement (see Day 9) to remove an entire table.
Example 8.7
This example shows you how to delete all the records from COLLECTI ON where WORTH is less than 275.

INPUT:

SQL> DELETE FROM COLLECTI ON
2 VWHERE WORTH < 275;

4 rows del et ed.
Theresult is atable that looks like this:

INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON;

| TEM WORTH RENMARKS
NBA ALL STAR CARDS 300 SOME STILL I'N Bl KE SPCKES
STRI NG 1000 SOME DAY I T WLL BE VALUABLE

WARNING: Likethe UPDATE statement, if you omit a WHERE clause from the DELETE statement, all rowsin that particular table
will be deleted.

Example 8.8 uses all three data manipulation statements to perform a set of database operations.

Example 8.8

This example inserts some new rows into the COLLECTI ON table you used earlier today.
INPUT:

SQL> | NSERT | NTO COLLECTI ON
2 VALUES(' CHI A PET', 5,'VEDDI NG G FT'");

OUTPUT:
1 row created.
INPUT:

SQ.> | NSERT | NTO COLLECTI ON
2 VALUES('TRS MODEL I11", 50, 'FIRST COVWPUTER);

OUTPUT:

1 row created.

Now create a new table and copy this datato it:
INPUT/OUTPUT:

SQL> CREATE TABLE TEMP
2 (NAME CHAR(20)
3 VALUE NUVBER
4 REMARKS CHAR(40));

Tabl e creat ed.

INPUT/OUTPUT:

SQL> | NSERT | NTO TEMP(NAMVE, VALUE, REMARKS)
2 SELECT I TEM WORTH, REMARKS
3 FROM COLLECTI ON,

4 rows created.

INPUT/OUTPUT:

SQL> SELECT * FROM TEMP;

NANVE VALUE RENMARKS

NBA ALL STAR CARDS 300 SOME STILL IN Bl KE SPCKES
STRI NG 1000 SOVE DAY IT WLL BE VALUABLE
CH A PET 5 WEDDI NG G FT

TRS MODEL I11 50 FI RST COWVPUTER

Now change some values:
INPUT/OUTPUT:

SQL> UPDATE TEMP
2 SET VALUE = 100
3 WHERE NAME = 'TRS MODEL II1";

1 row updat ed.

INPUT/OUTPUT:

SQL> UPDATE TEMP
2 SET VALUE = 8
3 VWHERE NAME = 'CHI A PET';

1 row updat ed.

INPUT/OUTPUT:

SQ.> SELECT * FROM TEMP,

NANVE VALUE RENARKS

NBA ALL STAR CARDS 300 SOME STILL I'N Bl KE SPCKES
STRI NG 1000 SOME DAY I T WLL BE VALUABLE
CH A PET 8 VEDDI NG G FT

TRS MODEL 111 100 FI RST COVPUTER

And update these values back to the original table:
INPUT:

I NSERT COLLECTI ON
SELECT * FROM TEMP,
DROP TABLE TEMP,

ANALYSIS:

The DROP TABLE and CREATE TABLE statements are discussed in greater detail on Day 9. For now, these statements basically do what their names
suggest. CREATE TABLE builds a new table with the format you giveit, and DROP TABLE deletes the table. Keep in mind that DROP TABLE
permanently removes atable, whereas DELETE FROM <Tabl eNarme> removes only the records from atable.

To check what you have done, select out the records from the COLLECTI ON table. Y ou will see that the changes you made now exist in the
COLLECTI ON table.

INPUT/OUTPUT:

SQ.> SELECT * FROM COLLECTI ON,;

NANVE VALUE RENARKS

NBA ALL STAR CARDS 300 SOME STILL I'N Bl KE SPCKES
STRI NG 1000 SOVE DAY IT WLL BE VALUABLE
CH A PET 8 WEDDI NG G FT

TRS MODEL I11 100 FI RST COVPUTER

ANALYSIS:

The previous example used all three data manipulation commands--1 NSERT, UPDATE, and DELETE--to perform a set of operations on atable. The
DELETE statement is the easiest of the threeto use.

WARNING: Always keep in mind that any modifications can affect the referential integrity of your database. Think through all
your database editing steps to make sure that you have updated all tables correctly.

Importing and Exporting Data from Foreign Sources

The | NSERT, UPDATE, and DELETE statements are extremely useful from within a database program. They are used with the SELECT statement to
provide the foundation for all other database operations you will perform. However, SQL as alanguage does not have away to import or export of
data from foreign data sources. For instance, your office may have been using a dBA SE application for several years now that has outgrown itself.
Now your manager wants to convert this application to a client/server application using the Oracle RDBMS. Unfortunately for you, these dBASE
files contain thousands of records that must be converted to an Oracle database. Obviously, the | NSERT, UPDATE, and DELETE commands will help
you after your Oracle database has been populated, but you would rather quit than retype 300,000 records. Fortunately, Oracle and other
manufacturers provide tools that will assist you in this task.

Nearly all database systems allow you to import and export data using ASCI| text file formats. Although the SQL language does not include this
feature, SQL will not do you (or your boss) much good when you have an empty database. We will examine the import/export tools available in the
following products: Microsoft Access, Microsoft and Sybase SQL Server, and Personal Oracle?.

Microsoft Access

Microsoft Accessis a PC-only database product that contains many of the features of arelational database management system. Access also includes
powerful reporting tools, a macro language similar to Visua Basic, and the capability to import and export data from various database and text file
formats. This section examines this last feature, particularly the capability to export to delimited text files. Delimited meansthat each field is
separated, or delimited, by some specia character. This character is often a comma, a quotation mark, or a space.

Access alows you to import and export various database formats, including dBASE, FoxPro, and SQL Database. The SQL Database option is
actually an ODBC data source connection. (Microsoft ODBC is covered on Day 13, "Advanced SQL Topics.") For this discussion, you want to
select the Export option and then choose the Text (Fixed Width) option.

After opening an Access database (with the File | Open), select Export. A Destination dialog box (for Exporting) is displayed. Select the Text (Fixed
Width) option. This option allows you to output your Access tables to text files in which each data type is a fixed width. For example, a character
datafield of length 30 will be output to the file as afield 30 characterslong. If the field's data takes up less space than 30 characters, it will be
padded with spaces. Eventually, you will be asked to set up the export file format. Figure 8.1 shows the Import/Export Setup dialog box.

Figure8.1.
The Import/Export Setup dialog box.

Notice that in this dialog box you can select the Text Delimiter and the Field Separator for your export file. Asafina step, save the specification for
use later. This specification is stored internally within the database.

Microsoft and Sybase SQL Server

Microsoft and Sybase have jointly devel oped a powerful database system that is very popular in client/server application development. The name of
this system is SQL Server. Microsoft has agreed to develop versions of the RDBM S for some platforms, and Sybase has devel oped its version for all
the other platforms (usually the larger ones). Although the arrangement has changed somewhat in recent years, we mention this agreement here to
help you avoid confusion when you begin examining the various database systems available on the market today.

SQL Server provides file import/export capabilities with the bep tool. bep is short for "bulk copy." The basic concept behind bep is the same as that
behind Microsoft Access. Unfortunately, the bep tool requires you to issue commands from the operating system command prompt, instead of
through dialog boxes or windows.

Bcp imports and exports fixed-width text files. It is possible to export afile using the Microsoft Access method described earlier and then import that
same file directly into an SQL Server table using bep. bep uses format files (usually with an . FMT extension) to store the import specification. This
specification tells bep the column names, field widths, and field delimiters. Y ou can run bep from within an SQL database build script to completely
import data after the database has been built.

Personal Oracle7

Personal Oracle? allows you to import and export data from ASCI| text files containing delimited or fixed-length records. The tool you useis
SQL*Loader. This graphical tool uses a control file (with the . CTL extension). Thisfileissimilar to SQL Server'sformat (FMT) file. The
information contained in thisfile tells SQL* Loader what it needs to know to load the data from thefile.

The SQL*Loader dialog box appearsin Figure 8.2.

Figure 8.2.
The SQL* Loader dialog box.

Summary
SQL provides three statements that you can use to manipul ate data within a database.

The | NSERT statement has two variations. The | NSERT. . . VALUES statement inserts a set of valuesinto onerecord. The | NSERT. . . SELECT
statement is used in combination with a SELECT statement to insert multiple records into atable based on the contents of one or more tables. The
SELECT statement can join multiple tables, and the results of thisjoin can be added to another table.

The UPDATE statement changes the values of one or more columns based on some condition. This updated value can a so be the result of an
expression or calculation.

The DELETE statement is the simplest of the three statements. It deletes all rows from atable based on the result of an optional WHERE clause. If the

WHERE clause is omitted, all records from the table are del eted.

Modern database systems supply various tools for data manipulation. Some of these tools enable developers to import or export data from foreign
sources. Thisfeatureis particularly useful when a database is upsized or downsized to a different system. Microsoft Access, Microsoft and Sybase
SQL Server, and Personal Oracle7 include many options that support the migration of data between systems.

Q&A

Q Does SQL have a statement for file import/export operations?

A No. Import and export are implementation-specific operations. In other words, the ANSI committee allows individual manufacturers to
create whatever features or enhancements they feel are necessary.

Q Can | copy datafrom atableintoitself using the INSERT command? | would like to make duplicate copies of all the existing
records and change the value of onefield.

A No, you cannot insert data into the same table that you selected from. However, you can select the original data into atemporary table.
(True temporary tables are discussed on Day 14.) Then modify the datain this temporary table and select back into the original table. Make
sure that you watch out for unique fields you may have already created. A unique field means that the particular field must contain a unique
value for each row of datathat existsin itstable.

Q You have stressed using caution when issuing INSERT, UPDATE, and DELETE commands, but simple fixes seem to be available
to correct whatever | did wrong. Isthat a fair statement?

A Yes. For example, asimple way to fix amisspelled nameis to issue a ROLLBACK command and redo the insert. Another fix would be to
do an update to fix the name. Or you could delete the row and redo the insert with the corrected spelling of the name.

But suppose you inserted a million rows into a table and didn't notice that you had misspelled a name when you issued the COM T
command. A few weeks |ater, someone notices some bad data. Y ou have had two weeks worth of database activity. Y ou would more than
likely havetoissue individual updates to make individual corrections, instead of making any type of global change. In most cases you
probably will not know what to change. Y ou may have to restore the database.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz

1. What is wrong with the following statement?

DELETE COLLECTI ON;

2. What iswrong with the following statement?

I NSERT | NTO COLLECTI ON
SELECT * FROM TABLE_2

3. What iswrong with the following statement?

UPDATE COLLECTI ON (" HONUS WAGNER CARD',
25000, "FOUND I T");

4, What would happen if you issued the following statement?

SQL> DELETE * FROM CCLLECTI ON;

5. What would happen if you issued the following statement?

SQL> DELETE FROM COLLECTI ON,

6. What would happen if you issued the following statement?

SQ.> UPDATE COLLECTI ON
SET WORTH = 555
SET REMARKS = ' UP FROM 525';

7. Will the following SQL statement work?

SQL> | NSERT | NTO COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

8. Will the following SQL statement work?

SQL> UPDATE COLLECTI ON
SET VALUES = 900
WHERE | TEM = ' STRI NG ;

Exercises

1. Try inserting values with incorrect data typesinto a table. Note the errors and then insert values with correct data types into the same
table.

2. Using your database system, try exporting atable (or an entire database) to some other format. Then import the data back into your
database. Familiarize yourself with this capability. Also, export the tables to another database format if your DBM S supports this feature.
Then use the other system to open these files and examine them.

(¢ Previous Chapter JER.—> Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 9 -
Creating and Maintaining Tables
Objectives

Today you learn about creating databases. Day 9 coversthe CREATE DATABASE, CREATE TABLE, ALTER TABLE, DROP TABLE, and DROP
DATABASE statements, which are collectively known as data definition statements. (In contrast, the SELECT, UPDATE, | NSERT, and DELETE
statements are often described as data manipulation statements.) By the end of the day, you will understand and be able to do the following:

1 Createkey fields

1 Create adatabase with its associated tables
1 Create, dter, and drop atable

1 Add data to the database

1 Modify the datain a database

1+ Drop databases

Y ou now know much of the SQL vocabulary and have examined the SQL query in some detail, beginning with its basic syntax. On Day 2,
"Introduction to the Query: The SELECT Statement," you learned how to select data from the database. On Day 8, "Manipulating Data," you learned
how to insert, update, and del ete data from the database. Now, nine days into the learning process, you probably have been wondering just where
these databases come from. For simplicity's sake, we have been ignoring the process of creating databases and tables. We have assumed that these
data objects existed currently on your system. Today you finally create these objects.

The syntax of the CREATE statements can range from the extremely simple to the complex, depending on the options your database management
system (DBMS) supports and how detailed you want to be when building a database.

NOTE: The examples used today were generated using Personal Oracle?. Please see the documentation for your specific SQL
implementation for any minor differences in syntax.

The CREATE DATABASE Statement

Thefirst data management step in any database project is to create the database. This task can range from the elementary to the complicated,
depending on your needs and the database management system you have chosen. Many modern systems (including Personal Oracle?) include
graphical tools that enable you to completely build the database with the click of a mouse button. This time-saving feature is certainly helpful, but
you should understand the SQL statements that execute in response to the mouse clicks.

Through personal experience, we have learned the importance of creating a good SQL install script. This script file contains the necessary SQL code
to completely rebuild a database or databases; the script often includes database objects such as indexes, stored procedures, and triggers. Y ou will
see the value of this script during devel opment as you continually make changes to the underlying database and on occasion want to completely
rebuild the database with all the latest changes. Using the graphical tools each time you need to perform arebuild can become extremely time-

consuming. In addition, knowing the SQL syntax for this procedure enables you to apply your knowledge to other database systems.
The syntax for the typical CREATE DATABASE statement |looks like this:

SYNTAX:

CREATE DATABASE dat abase_nane

Because the syntax varies so widely from system to system, we will not expand on the CREATE DATABASE statement's syntax. Many systems do not
even support an SQL CREATE DATABASE command. However, all the popular, more powerful, relational database management systems (RDBM Ss)
do provideit. Instead of focusing on its syntax, we will spend some time discussing the options to consider when creating a database.

CREATE DATABASE Options

The syntax for the CREATE DATABASE statement can vary widely. Many SQL texts skip over the CREATE DATABASE statement and move directly
on to the CREATE TABLE statement. Because you must create a database before you can build atable, this section focuses on some of the concepts a
developer must consider when building a database. The first consideration isyour level of permission. If you are using arelational database
management system (RDBMS) that supports user permissions, you must make sure that either you have system administrator-level permission
settings or the system administrator has granted you CREATE DATABASE permission. Refer to your RDBM S documentation for more information.

Most RDBM Ss aso alow you to specify a default database size, usually in terms of hard disk space (such as megabytes). Y ou will need to
understand how your database system stores and locates data on the disk to accurately estimate the size you need. The responsibility for managing
this space falls primarily to system administrators, and possibly at your location a database administrator will build you atest database.

Don't let the CREATE DATABASE statement intimidate you. At its simplest, you can create a database named PAYMENTS with the following statement:
SYNTAX:

SQL> CREATE DATABASE PAYMENTS

NOTE: Again, be sure to consult your database management system's documentation to learn the specifics of building a database,
asthe CREATE DATABASE statement can and does vary for the different implementations. Each implementation also has some
unigue options.

Database Design

Designing a database properly is extremely important to the success of your application. The introductory material on Day 1, "Introduction to SQL,"
touched on the topics of relational database theory and database normalization.

Normalization is the process of breaking your data into separate components to reduce the repetition of data. Each level of normalization reduces the
repetition of data. Normalizing your data can be an extremely complex process, and numerous database design tools enable you to plan this process
inalogical fashion.

Many factors can influence the design of your database, including the following:
1 Security
1 Disk space available
1 Speed of database searches and retrievals
1 Speed of database updates
1 Speed of multiple-table joins to retrieve data
1 RDBMS support for temporary tables

Disk space is always an important factor. Although you may not think that disk space is amajor concern in an age of multigigabyte storage,

remember that the bigger your database is, the longer it takes to retrieve records. If you have done a poor job of designing your table structure,
chances are that you have needlessly repeated much of your data.

Often the opposite problem can occur. Y ou may have sought to completely normalize your tables design with the database and in doing so created
many tables. Although you may have approached database-design nirvana, any query operations done against this database may take a very long
time to execute. Databases designed in this manner are sometimes difficult to maintain because the table structure might obscure the designer's
intent. This problem underlines the importance of always documenting your code or design so that others can come in after you (or work with you)
and have some idea of what you were thinking at the time you created your database structure. In database designer's terms, this documentation is
known as a data dictionary.

Creating a Data Dictionary
A datadictionary is the database designer's most important form of documentation. It performs the following functions:
1 Describes the purpose of the database and who will be using it.

1 Documents the specifics behind the database itself: what device it was created on, the database's default size, or the size of thelog file (used
to store database operations information in some RDBMSs).

1 Contains SQL source code for any database install or uninstall scripts, including documentation on the use of import/export tools, such as
those introduced yesterday (Day 8).

1 Provides a detailed description of each table within the database and explains its purpose in business process terminology.

1 Documents the internal structure of each table, including all fields and their data types with comments, al indexes, and all views. (See Day
10, "Creating Views and Indexes.")

1 Contains SQL source code for al stored procedures and triggers.

1 Describes database constraints such as the use of unique values or NOT NULL values. The documentation should also mention whether these
constraints are enforced at the RDBMS level or whether the database programmer is expected to check for these constraints within the
source code.

Many computer-aided software engineering (CASE) tools aid the database designer in the creation of this data dictionary. For instance, Microsoft
Access comes prepackaged with a database documenting tool that prints out a detailed description of every object in the database. See Day 17,
"Using SQL to Generate SQL Statements,” for more details on the data dictionary.

NOTE: Most of the major RDBMS packages come with either the data dic-tionary installed or scriptsto install it.

Creating Key Fields

Along with documenting your database design, the most important design goal you should have is to create your table structure so that each table has
aprimary key and aforeign key. The primary key should meet the following goals:

1 Each record is unique within a table (no other record within the table has al of its columns equal to any other).
1 For arecord to be unique, all the columns are necessary; that is, data in one column should not be repeated anywhere elsein the table.

Regarding the second goal, the column that has completely unique data throughout the table is known asthe primary key field. A foreign key field is
afield that links one table to another table's primary or foreign key. The following example should clarify this situation.

Assume you have three tables: Bl LLS, BANK_ACCOUNTS, and COVPANY. Table 9.1 shows the format of these three tables.

Table9.1. Tablestructurefor the PAYMENTS database.

|Bi||s ||Bank_Accounts ||Company |
[NAVE, CHAR(30) |[ACCOUNT_I D, NUMBER||NAME, CHAR(30) |

|AMOUNT, NUVBER || TYPE, CHAR(30) ||ADDRESS, CHAR(50) |
[ACCOUNT_I D, NUMBER|(BALANCE, NUMBER [[CI TY, CHAR(20) |
[BANK, CHAR(30) |[STATE, CHAR(2) |

Take amoment to examine these tables. Which fields do you think are the primary keys? Which are the foreign keys?

The primary key inthe Bl LLS tableis the NAME field. This field should not be duplicated because you have only one bill with this amount. (In
reality, you would probably have a check number or a date to make this record truly unique, but assume for now that the NAME field works.) The
ACCOUNT_I D field in the BANK_ACCOUNTS table isthe primary key for that table. The NAME field is the primary key for the COMPANY table.

The foreign keys in this example are probably easy to spot. The ACCOUNT_I D field in the BI LLS table joinsthe BI LLS table with the
BANK_ACCOUNTS table. The NAMVE field in the BI LLS table joins the BI LLS table with the COVMPANY table. If this were a full-fledged database design,
you would have many more tables and data breakdowns. For instance, the BANK field in the BANK_ACCOUNTS table could point to a BANK table
containing bank information such as addresses and phone numbers. The COMPANY table could be linked with another table (or database for that
matter) containing information about the company and its products.

Exercise 9.1

Let's take a moment to examine an incorrect database design using the same information contained in the Bl LLS, BANK_ACCOUNTS, and COVPANY
tables. A mistake many beginning users make is not breaking down their datainto as many logical groups as possible. For instance, one poorly
designed BI LLS table might look like this:

|Co|umn Names ||Comments
[NAME, CHAR(30) |[Name of company that bill is owed to
[AMOUNT, NUMBER |[Amount of bill in dollars

|ADDRESS, CHAR(30) ||Address of company that bill is owed to
|C| TY, CHAR(15) ||City of company that bill is owed to
[STATE, CHAR(2) ||State of company that hill is owed to

|
|
|
[ACCOUNT _I D, NUMBER||Bank account number of bill (linked to BANK_ACCOUNTS table)|
|
|
|

The results may look correct, but take a moment to really look at the data here. If over several months you wrote several hills to the company in the
NAME field, each time a hew record was added for a bill, the company's ADDRESS, CI TY, and STATE information would be duplicated. Now multiply
that duplication over severa hundred or thousand records and then multiply that figure by 10, 20, or 30 tables. Y ou can begin to see the importance
of aproperly normalized database.

Before you actually fill these tables with data, you will need to know how to create atable.

The CREATE TABLE Statement

The process of creating atable is far more standardized than the CREATE DATABASE statement. Here's the basic syntax for the CREATE TABLE
Statement:

SYNTAX:

CREATE TABLE tabl e_nane

(fieldl datatype [NOT NULL],
field2 datatype [NOT NULL],
field3 datatype [NOT NULL]...)

A simple example of a CREATE TABLE statement follows.

INPUT/OUTPUT:

SQL> CREATE TABLE BI LLS (
2 NAME CHAR(30),

3 AMOUNT NUMBER,

4 ACCOUNT | D NUVBER) ;

Tabl e created.

ANALYSIS:

This statement creates atable named BI LLS. Within the BI LLS table are three fields: NAME, AMOUNT, and ACCOUNT _I D. The NAME field has a data
type of character and can store strings up to 30 characters long. The AMOUNT and ACCOUNT_LI D fields can contain number values only.

The following section examines components of the CREATE TABLE command.
The Table Name

When creating a table using Personal Oracle?, several constraints apply when naming the table. First, the table name can be no more than 30
characterslong. Because Oracle is case insensitive, you can use either uppercase or lowercase for the individual characters. However, the first
character of the name must be aletter between A and Z. The remaining characters can be letters or the symbols _, #, $, and @ Of course, the table
name must be unique within its schema. The name also cannot be one of the Oracle or SQL reserved words (such as SELECT).

NOTE: You can have duplicate table names as long as the owner or schemais different. Table names in the same schema must be
unique.

TheField Name

The same constraints that apply to the table name also apply to the field name. However, afield name can be duplicated within the database. The
restriction is that the field name must be unique within its table. For instance, assume that you have two tablesin your database: TABLE1and TABLE2,
Both of these tables could have fields called ID. Y ou cannot, however, have two fields within TABLEL called | D, even if they are of different data

types.
TheField's Data Type

If you have ever programmed in any language, you are familiar with the concept of data types, or the type of datathat is to be stored in a specific
field. For instance, a character data type constitutes a field that stores only character string data. Table 9.2 shows the data types supported by
Personal Oracle?.

Table 9.2. Data types supported by Personal Oracle?.

.I?%aé Comments

CHAR Alphanumeric data with alength between 1 and 255 characters. Spaces are padded to the right of the value to supplement the total
allocated length of the column.

|DATE ||I ncluded as part of the date are century, year, month, day, hour, minute, and second.

[LONG |[Variable-length al phanumeric strings up to 2 gigabytes. (See the following note.)

[LONG RAW|(Binary data up to 2 gigabytes. (See the following note.)

[NUMBER |[Numeric 0, positive or negative fixed or floating-point data.

[RAW |[Binary data up to 255 bytes.

[ROWD |[Hexadecimal string representing the unique address of arow in atable. (See the following note.)
[VARCHARZ |[Alphanumeric data that is variable length; this field must be between 1 and 2,000 characters long.

NOTE: The LONG datatype is often called a MEMO data type in other database management systems. It is primarily used to store
large amounts of text for retrieval at some later time.

The LONG RAWdatatype is often called a binary large object (BLOB) in other database management systems. It is typically used to
store graphics, sound, or video data. Although relational database management systems were not originally designed to serve this
type of data, many multimedia systemstoday store their datain LONG RAW or BLOB, fields.

The ROW D field type is used to give each record within your table a unique, nonduplicating value. Many other database systems
support this concept with a COUNTER field (Microsoft Access) or an | DENTI TY field (SQL Server).

NOTE: Check your implementation for supported data types as they may vary.

TheNULL Value

SQL also enables you to identify what can be stored within acolumn. A NULL value is almost an oxymoron, because having a field with avalue of
NULL means that the field actually has no value stored in it.

When building atable, most database systems enable you to denote a column with the NOT NULL keywords. NOT NULL means the column cannot
contain any NULL values for any recordsin the table. Conversely, NOT NULL means that every record must have an actual value in this column. The
following example illustrates the use of the NOT NULL keywords.

INPUT:

SQL> CREATE TABLE BILLS (

2 NAVE CHAR(30) NOT NULL,
3 AMOUNT NUMBER

4 ACCOUNT_I D NOT NULL);

ANALYSIS:

In this table you want to save the name of the company you owe the money to, along with the bill's amount. If the NAME field and/or the
ACCOUNT_I D were not stored, the record would be meaningless. Y ou would end up with arecord with a bill, but you would have no idea whom you
should pay.

Thefirst statement in the next example inserts avalid record containing data for a bill to be sent to Joe's Computer Service for $25.
INPUT/OUTPUT:

SQL> | NSERT I NTO BI LLS VALUES("Joe's Conputer Service", 25, 1);

1 row inserted.

INPUT/OUTPUT:

SQL> | NSERT I NTO BI LLS VALUES("", 25000, 1);

1 row inserted.
ANALYSIS:

Notice that the second record in the preceding example does not contain a NAVE value. (Y ou might think that a missing payeeisto your advantage
because the bill amount is $25,000, but we won't consider that.) If the table had been created with aNOT NULL value for the NAME field, the second
insert would have raised an error.

A good rule of thumb is that the primary key field and all foreign key fields should never contain NULL values.
Unique Fields

One of your design goals should be to have one unique column within each table. This column or field is a primary key field. Some database
management systems allow you to set afield as unique. Other database management systems, such as Oracle and SQL Server, alow you to create a
unigue index on afield. (See Day 10.) This feature keeps you from inserting duplicate key field values into the database.

Y ou should notice several things when choosing a key field. Aswe mentioned, Oracle provides a ROW D field that is incremented for each row that i<
added, which makes this field by default always a unique key. RON D fields make excellent key fields for several reasons. First, it is much faster to
join on an integer value than on an 80-character string. Such joinsresult in smaller database sizes over timeif you store an integer valuein every
primary and foreign key as opposed to along CHAR value. Another advantage is that you can use RON D fields to see how atableis organized. Also,
using CHAR values |leaves you open to a number of data entry problems. For instance, what would happen if one person entered 111 Fi r st

St reet , another entered 111 1st Street , and yet another entered 111 Fi rst St. ? With today's graphical user environments, the correct string
could be entered into alist box. When a user makes a selection from the list box, the code would convert this string to aunique ID and save thisID
to the database.

Now you can create the tables you used earlier today. Y ou will use these tables for the rest of today, so you will want to fill them with some data.
Use the | NSERT command covered yesterday to |oad the tables with the datain Tables 9.3, 9.4, and 9.5.

INPUT/OUTPUT:

SQ.> create database PAYMENTS;
St at enent processed.

SQL> create table BILLS (
2 NAME CHAR(30) NOT NULL,
3 AMOUNT NUMBER,
4 ACCOUNT_I D NUVMBER NOT NULL) ;

Tabl e creat ed.

SQL> create table BANK_ACCOUNTS (
2 ACCOUNT_I D NUVBER NOT NULL,
3 TYPE CHAR(30),
4 BALANCE NUMBER,
5 BANK CHAR(30));

Tabl e creat ed.

SQL> create table COVPANY (
2 NAVE CHAR(30) NOT NULL,
3 ADDRESS CHAR(50),
4 ClI TY CHAR(30),
5 STATE CHAR(2));

Tabl e created.

Table9.3. Sampledata for the BILL Stable.

|Name ||Amount||Account_I D|
[Phone Company |[125 |1

|
[Power Company |[75 |[x |
[Record Club 5 |2 |
[Software Company |[250 ||1 |
[Cable TV Company][35_|[3 |

Table9.4. Sample data for the BANK_ACCOUNTStable.

|Account_| D||Type ||Ba|ance||Band |
[1 |[Checking |[500 ||First Federal |
[2 |[Money Market|[1200 ||First Investor's]
3 |[Checking |[90 |[Credit Union |

Table9.5. Sample data for the COMPANY table.

|Name ||Addrees ||City ||State|
|Phone Company ||111 1st Street ||At| anta ||GA |
[Power Company |[222 2nd Street ||Jacksonville |[FL |
[Record Club |[333 3rd Avenuel|Los Angeles |[CA |
[Software Company |[444 4th Drive ||San Francisco||CA |
|Cable TV Company|[555 5th Drive ||Austin [[Tx |

Table Storage and Sizing

Most major RDBM Ss have default settings for table sizes and table locations. If you do not specify table size and location, then the table will take

the defaults. The defaults may be very undesirable, especially for large tables. The default sizes and locations will vary among the implementations.
Hereis an example of a CREATE TABLE statement with a storage clause (from Oracle).

INPUT:

SQ> CREATE TABLE TABLENANME

(COLUMNL CHAR NOT NULL,
COLUMN2 NUMBER,
COLUWNS DATE)
TABLESPACE TABLESPACE NAME
STORAGE
I NI TI AL SI ZE,
NEXT Sl ZE,
M NEXTENTS val ue,
MAXEXTENTS val ue,
PCTI NCREASE val ue) ;

POOWOOO~NOOBWN

e

OUTPUT:

Tabl e created.
ANALYSIS:

In Oracle you can specify atablespace in which you want the table to reside. A decision is usually made according to the space available, often by
the database administrator (DBA). I NI TI AL SI ZE isthe size for the initial extent of the table (theinitial allocated space). NEXT Sl ZE isthe value
for any additional extents the table may take through growth. M NEXTENTS and MAXEXTENTS identify the minimum and maximum extents allowed
for the table, and PCTI NCREASE identifies the percentage the next extent will be increased each time the table grows, or takes another extent.

Creating a Table from an Existing Table

The most common way to create atable is with the CREATE TABLE command. However, some database management systems provide an aternative
method of creating tables, using the format and data of an existing table. This method is useful when you want to select the data out of atable for
temporary modification. It can also be useful when you have to create atable similar to the existing table and fill it with similar data. (Y ou won't
have to reenter al thisinformation.) The syntax for Oracle follows.

SYNTAX:

CREATE TABLE NEW TABLE(FI ELD1, FIELD2, FIELD3)
AS (SELECT FI ELD1, FIELD2, FIELD3
FROM OLD_TABLE <WHERE...>

This syntax allows you to create a new table with the same data types as those of the fields that are selected from the old table. It also allows you to
rename the fieldsin the new table by giving them new names.

INPUT/OUTPUT:

SQL> CREATE TABLE NEW BI LLS(NAME, AMOUNT, ACCOUNT_I D)
2 AS (SELECT * FROM BI LLS WHERE AMOUNT < 50);

Tabl e created.

ANALYSIS:

The preceding statement creates a new table (NEW BI LLS) with all the records from the Bl LLS table that have an AMOUNT |ess than 50.
Some database systems also allow you to use the following syntax:

SYNTAX:

| NSERT NEW TABLE
SELECT <fieldl, field2... | *> from OLD TABLE
<WHERE. . . >

The preceding syntax would create a new table with the exact field structure and data found in the old table. Using SQL Server's Transact-SQL

language in the following example illustrates this technique.
INPUT:

| NSERT NEW BI LLS
1> select * fromBILLS where AMOUNT < 50
2> go

(The GO statement in SQL Server processes the SQL statements in the command buffer. It is equivalent to the semicolon (;) used in Oracle7.)

The ALTER TABLE Statement

Many times your database design does not account for everything it should. Also, requirements for applications and databases are always subject to
change. The ALTER TABLE statement enables the database administrator or designer to change the structure of atable after it has been created.

The ALTER TABLE command enables you to do two things:
1 Add acolumn to an existing table
1 Modify acolumn that already exists

The syntax for the ALTER TABLE statement is as follows:

SYNTAX:

ALTER TABLE t abl e_nane
<ADD col um_nane data_type; |
MODI FY col umm_nane data_type; >

The following command changes the NAME field of the BI LLS table to hold 40 characters:

INPUT/OUTPUT:

SQL> ALTER TABLE BILLS
2 MODIFY NAME CHAR(40);

Tabl e altered.

NOTE: You canincrease or decrease the length of columns; however, you can not decrease a column's length if the current size of
one of itsvaluesis greater than the value you want to assign to the column length.

Here's a statement to add a new column to the NEW BI LLS table;
INPUT/OUTPUT:

SQ.> ALTER TABLE NEWBILLS
2 ADD COMVENTS CHAR(80) ;

Tabl e altered.
ANALYSIS:

This statement would add a new column named COMVENTS capabl e of holding 80 characters. The field would be added to the right of all the existing
fields.

Several restrictions apply to using the ALTER TABLE statement. Y ou cannot use it to add or delete fields from a database. It can change a column
from NOT NULL to NULL, but not necessarily the other way around. A column specification can be changed from NULL to NOT NULL only if the
column does not contain any NULL values. To change a column from NOT NULL to NULL, use the following syntax:

SYNTAX:

ALTER TABLE table_name MODIFY (colum_nanme data_type NULL);
To change a column from NULL to NOT NULL, you might have to take several steps:
1. Determine whether the column has any NULL values.
2. Deal with any NULL values that you find. (Delete those records, update the column's value, and so on.)

3. Issuethe ALTER TABLE command.

NOTE: Some database management systems allow the use of the MODI FY clause; others do not. Still others have added other
clausesto the ALTER TABLE statement. In Oracle, you can even alter the table's storage parameters. Check the documentation of the
system you are using to determine the implementation of the ALTER TABLE statement.

The DROP TABLE Statement

SQL provides a command to completely remove atable from a database. The DROP TABLE command deletes a table along with al its associated
views and indexes. (See Day 10 for details.) After this command has been issued, there is no turning back. The most common use of the DROP
TABLE statement is when you have created atable for temporary use. When you have completed all operations on the table that you planned to do,
issue the DROP TABLE statement with the following syntax:

SYNTAX:

DROP TABLE t abl e_nane;

Here's how to drop the NEW BI LLS table:
INPUT/OUTPUT:

SQL> DROP TABLE NEWBILLS;

Tabl e dropped.
ANALYSIS:

Notice the absence of system prompts. This command did not ask Are you sure? (Y/ N) . After the DROP TABLE command isissued, thetableis
permanently deleted.

WARNING: If you issue

SQL> DROP TABLE NEWBI LLS;

you could be dropping the incorrect table. When dropping tables, you should always use the owner or schema name. The
recommended syntax is

SQL> DROP TABLE OWNER. NEW BI LLS;

We are stressing this syntax because we once had to repair a production database from which the wrong table had been dropped.
The table was not properly identified with the schema name. Restoring the database was an eight-hour job, and we had to work until
well past midnight.

The DROP DATABASE Statement

Some database management systems also provide the DROP DATABASE statement, which isidentical in usage to the DROP TABLE statement. The

syntax for this statement is as follows:

DROP DATABASE dat abase_nane

Don't drop the Bl LLS database now because you will useit for the rest of today, as well as on Day 10.

NOTE: The various relational database implementations require you to take diff-erent steps to drop a database. After the database is
dropped, you will need to clean up the operating system files that compose the database.

Exercise 9.2

Create a database with one table in it. Issue the DROP TABLE command and the issue the DROP DATABASE command. Does your database system
alow you to do this? Single-file-based systems, such as Microsoft Access, do not support this command. The database is contained in asinglefile.
To create a database, you must use the menu options provided in the product itself. To delete a database, simply delete the file from the hard drive.

Summary

Day 9 covers the major features of SQL's Data Manipulation Language (DML). In particular, you learned five new statements: CREATE DATABASE,
CREATE TABLE, ALTER TABLE, DROP TABLE, and DROP DATABASE. Today's lesson also discusses the importance of creating a good database
design.

A datadictionary is one of the most important pieces of documentation you can create when designing a database. This dictionary should include a
complete description of all objectsin the database: tables, fields, views, indexes, stored procedures, triggers, and so forth. A complete data dictionary
also contains a brief comment explaining the purpose behind each item in the database. Y ou should update the data dictionary whenever you make
changes to the database.

Before using any of the data manipulation statements, it is also important to create a good database design. Break down the required information into
logical groups and try to identify a primary key field that other groups (or tables) can use to reference this logical group. Use foreign key fieldsto
point to the primary or foreign key fieldsin other tables.

Y ou learned that the CREATE DATABASE statement is not a standard element within database systems. This variation is primarily due to the many
different ways vendors store their databases on disk. Each implementation enables a different set of features and options, which resultsin a
completely different CREATE DATABASE statement. Simply issuing CREATE DATABASE dat abase_nane creates a default database with a default
size on most systems. The DROP DATABASE statement permanently removes that database.

The CREATE TABLE statement creates a new table. With this command, you can create the fields you need and identify their data types. Some
database management systems also allow you to specify other attributes for the field, such as whether it can allow NULL values or whether that field
should be unique throughout the table. The ALTER TABLE statement can alter the structure of an existing table. The DROP TABLE statement can
delete atable from a database.

Q&A
Q Why doesthe CREATE DATABASE statement vary so much from one system to another ?

A CREATE DATABASE varies because the actual process of creating a database varies from one database system to another. Small PC-based
databases usually rely on files that are created within some type of application program. To distribute the database on alarge server, related
database files are smply distributed over several disk drives. When your code accesses these databases, there is no database process running
on the compuiter, just your application accessing the files directly. More powerful database systems must take into account disk space
management as well as support features such as security, transaction control, and stored procedures embedded within the database itself.
When your application program accesses a database, a database server manages your requests (along with many others' requests) and returns
data to you through a sometimes complex layer of middleware. These topics are discussed more in Week 3. For now, learn all you can about
how your particular database management system creates and manages databases.

Q Can | createatabletemporarily and then automatically drop it when | am donewith it?

A Yes. Many database management systems support the concept of atemporary table. Thistype of table is created for temporary usage and
is automatically deleted when your user's process ends or when you issue the DROP TABLE command. The use of temporary tablesis
discussed on Day 14, "Dynamic Uses of SQL."

Q Can | remove columnswith the ALTER TABLE statement?

A No. The ALTER TABLE command can be used only to add or modify columns within atable. To remove columns, create a new table with
the desired format and then select the records from the old table into the new table.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz

1. Trueor False: The ALTER DATABASE statement is often used to modify an existing table's structure.

2. True or False: The DROP TABLE command is functionally equivalent to the DELETE FROM <t abl e_nanme> command.
3. True or False: To add a new table to a database, use the CREATE TABLE command.

4, What is wrong with the following statement?

INPUT:

CREATE TABLE new_table (
I D NUMBER,

FI ELD1 char (40),

FI ELD2 char (80),

I D char (40);

5. What is wrong with the following statement?

INPUT:

ALTER DATABASE BI LLS (
COWPANY char (80));

6. When atableis created, who is the owner?
7. If datain a character column has varying lengths, what is the best choice for the data type?

8. Can you have duplicate table names?

Exercises

1. Add two tables to the Bl LLS database named BANK and ACCOUNT_TYPE using any format you like. The BANK table should contain
information about the BANK field used in the BANK_ACCOUNTS table in the examples. The ACCOUNT_TYPE table should contain information
about the ACCOUNT_TYPE field in the BANK_ACCOUNTS table also. Try to reduce the data as much as possible.

2. With the five tables that you have created--Bl LLS, BANK_ACCOUNTS, COVPANY, BANK, and ACCOUNT _TYPE--change the table structure so
that instead of using CHAR fields as keys, you use integer | D fields as keys.

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several queriesto join the tablesin the Bl LLS database.

{ ¢ Previous Chapter JR.—* Mext Chapter

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 10 -
Creating Views and | ndexes
Objectives

Today we begin to cover topics that may be new even to programmers or database users who have aready had some exposureto SQL. Days 1
through 8 covered nearly all the introductory material you need to get started using SQL and relational databases. Day 9, "Creating and Manipulating
Tables," was devoted to a discussion of database design, table creation, and other data manipulation commands. The common feature of the objects
discussed so far--databases, tables, records, and fields—-is that they are all physical objectslocated on a hard disk. Today the focus shiftsto two
features of SQL that enable you to view or present datain a different format than it appears on the disk. These two features are the view and the
index. By the end of today, you will know the following:

1 How to distinguish between indexes and views
1 How to create views

1 How to create indexes

1 How to modify data using views

1 What indexes do

A view is often referred to as a virtual table. Views are created by using the CREATE VI EWstatement. After the view has been created, you can use
the following SQL commands to refer to that view:

1 SELECT
1 | NSERT
1 I NPUT

1 UPDATE
1 DELETE

Anindex is another way of presenting data differently than it appears on the disk. Specia types of indexes reorder the record's physical location
within atable. Indexes can be created on a column within atable or on a combination of columns within atable. When an index is used, the datais
presented to the user in a sorted order, which you can control with the CREATE | NDEX statement. Y ou can usually gain substantial performance
improvements by indexing on the correct fields, particularly fields that are being joined between tables.

NOTE: Views and indexes are two totally different objects, but they have one thing in common: They are both associated with a
table in the database. Although each object's association with atable is unique, they both enhance atable, thus unveiling powerful
features such as presorted data and predefined queries.

NOTE: We used Personal Oracle7 to generate today's examples. Please see the documentation for your specific SQL
implementation for any minor differences in syntax.

Using Views

Y ou can use views, or virtua tables, to encapsulate complex queries. After aview on a set of data has been created, you can treat that view as
another table. However, special restrictions are placed on modifying the data within views. When datain a table changes, what you see when you
query the view also changes. Views do not take up physical space in the database as tables do.

The syntax for the CREATE VI EWstatement is

SYNTAX:

CREATE VI EW <vi ew_nane> [(columl, colum2...)] AS
SELECT <t abl e_nane col um_nanes>
FROM <t abl e_nane>

As usual, this syntax may not be clear at first glance, but today's material contains many examples that illustrate the uses and advantages of views.
This command tells SQL to create a view (with the name of your choice) that comprises columns (with the names of your choice if you like). An
SQL SELECT statement determines the fields in these columns and their data types. Y es, thisis the same SELECT statement that you have used
repeatedly for the last nine days.

Before you can do anything useful with views, you need to populate the Bl LLS database with alittle more data. Don't worry if you got excited and
took advantage of your newfound knowledge of the DROP DATABASE command. Y ou can simply re-create it. (See Tables 10.1, 10.2, and 10.3 for
sample data.)

INPUTOUTPUT:

SQL> create database BILLS;

St at enent processed.

INPUTOUTPUT:

SQL> create table BILLS (
2 NAME CHAR(30) NOT NULL,
3 AMOUNT NUMBER,
4 ACCOUNT_I D NUVMBER NOT NULL) ;

Tabl e creat ed.

INPUTOUTPUT:

SQL> create tabl e BANK_ACCOUNTS (
2 ACCOUNT_| D NUMBER NOT NULL,
3 TYPE CHAR(30),
4 BALANCE NUMBER,
5 BANK CHAR(30));

Tabl e creat ed.

INPUTOUTPUT:

SQL> create table COVPANY (
2 NAME CHAR(30) NOT NULL,
3 ADDRESS CHAR(50),

4 CITY CHAR(30),
5 STATE CHAR(2));

Tabl e creat ed.

Table 10.1. Sample data for the BILL Stable.

[Phone Company |15 |1 |
[Power Company R |
[Record Club [[25 [[2 |
|Software Company 250 |1 |
[Cable TV Company |[35 |E |
[Joe's Car Palace I[350 |[5 |
[S.C. Student Loan [[200 |6 |
|Florida Water Company |20 [[1 |
|U-O-Us Insurance Company||125 ||5 |
[Debtor's Credit Card |[35 |[4 |

Table 10.2. Sample data for the BANK_ACCOUNTStable.

|Account_| D||Type ||Balance||Bank |
[1 |[Checking |[500 ||First Federal |
[2 |[Money Market|[1200 ||First Investor's|
3 |[Checking |[90 ||Credit Union |
4 ||savings |[400 ||First Federal |
5 |[Checking ~ |[2500 |[Second Mutual|
l6 |[Business |[4500 |[Fidelity |

Table 10.3. Sample data for the COMPANY table.

|Name ||Address ||City ||State|
[Phone Company |[111 15t Street |[Atlanta llcA |
[Power Company |[222 2nd Street |[Jacksonville |[FL |
[Record Club |[333 3rd Avenue |[Los Angeles [[CA |
[Software Company ||444 4th Drive ||San Franciscol[CA |
[Cable TV Company ||555 5th Drive |[Austin [Tx |
[Joe's Car Palace |[1000 Govt. BIvd |[Miami [FL |
[SC. Student Loan |[25 CollegeBlvd |[Columbia |[SC |
[Florida Water Company||1883 Hwy 87 |[Navarre |[FL |
[U-O-Usinsurance |[295 Beltline Hwy|[Macon |lcA |
|Company |

[Debtor's Credit Card |{115 2nd Avenue |[Newark [(NJ]

Now that you have successfully used the CREATE DATABASE, CREATE TABLE, and | NSERT commands to input all thisinformation, you are ready
for an in-depth discussion of the view.

A Simple View

Let's begin with the simplest of al views. Suppose, for some unknown reason, you want to make aview on the Bl LLS table that looks identical to
the table but has a different name. (We call it DEBTS.) Here's the statement:

INPUT:

SQL> CREATE VI EW DEBTS AS
SELECT * FROM BI LLS;

To confirm that this operation did what it should, you can treat the view just like atable:

INPUT/OUTPUT:

SQL> SELECT * FROM DEBTS;

NAME AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Water Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.

Y ou can even create new views from existing views. Be careful when creating views of views. Although this practice is acceptable, it complicates
maintenance. Suppose you have aview three levels down from atable, such asaview of aview of aview of atable. What do you think will happen
if the first view on the table is dropped? The other two views will still exist, but they will be usel ess because they get part of their information from
thefirst view. Remember, after the view has been created, it functions as a virtua table.

INPUT:

SQL> CREATE VI EW CREDI TCARD_DEBTS AS
2 SELECT * FROM DEBTS
3 VWHERE ACCOUNT_I D = 4;

SQ.> SELECT * FROM CREDI TCARD_DEBTS;

OUTPUT:
NANVE ANMOUNT ACCOUNT_I D
Debtor's Credit Card 35 4

1 row sel ect ed.

The CREATE VI EWalso enables you to select individual columns from atable and place them in aview. The following example selects the NAVE and
STATE fields from the COVPANY table.

INPUT:

SQL> CREATE VI EW COVPANY_I NFO (NAME, STATE) AS
2 SELECT * FROM COVPANY;
SQ.> SELECT * FROM COVPANY_I NFQ,

OUTPUT:

NAMVE STATE
Phone Conpany GA
Power Conpany FL
Record Cl ub CA
Sof t war e Conpany CA
Cabl e TV Conpany X
Joe's Car Pal ace FL
S.C. Student Loan SC
Fl ori da Water Conpany FL
U- O Us | nsurance Conpany GA
Debtor's Credit Card NJ

10 rows sel ect ed.

NOTE: Users may create views to query specific data. Say you have atable with 50 columns and hundreds of thousands of rows,
but you need to see datain only 2 columns. Y ou can create a view on these two columns, and then by querying from the view, you
should see aremarkabl e difference in the amount of time it takes for your query results to be returned.

Renaming Columns

Views simplify the representation of data. In addition to naming the view, the SQL syntax for the CREATE VI EWstatement enables you to rename

selected columns. Consider the preceding example alittle more closely. What if you wanted to combine the ADDRESS, CI TY, and STATE fields from
the COMPANY table to print them on an envelope? The following exampleillustrates this. This example uses the SQL + operator to combine the
address fields into one long address by combining spaces and commas with the character data.

INPUT:

SQL.> CREATE VI EW ENVELOPE (COVPANY, MNAI LI NG _ADDRESS) AS
2 SELECT NAME, ADDRESS + " " + CITY + ", " + STATE
3 FROM COVPANY;

SQ.> SELECT * FROM ENVELOPE;

OUTPUT:

COVPANY MAI LI NG_ADDRESS

Phone Conpany 111 1st Street Atlanta, GA
Power Conpany 222 2nd Street Jacksonville, FL
Record d ub 333 3rd Avenue Los Angeles, CA
Sof t war e Conpany 444 4th Drive San Francisco, CA
Cabl e TV Conmpany 555 5th Drive Austin, TX

Joe's Car Pal ace 1000 Govt. Blvd Mam, FL

S.C. Student Loan 25 Col | ege Blvd. Col unbia, SC
Fl ori da Water Conpany 1883 Hwy. 87 Navarre, FL

U- O Us | nsurance Conpany 295 Beltline Hw. Macon, GA
Debtor's Credit Card 115 2nd Avenue Newark, NJ

10 rows sel ect ed.
ANALYSIS:

The SQL syntax requires you to supply avirtual field name whenever the view's virtual field is created using a calculation or SQL function. This
pro- cedure makes sense because you wouldn't want a view's column name to be COUNT(*) or AVG(PAYMENT) .

NOTE: Check your implementation for the use of the + operator.

SQL View Processing

Views can represent data within tablesin a more convenient fashion than what actually exists in the database's table structure. Views can also be
extremely convenient when performing several complex queriesin a series (such as within a stored procedure or application program). To solidify
your understanding of the view and the SELECT statement, the next section examines the way in which SQL processes a query against aview.
Suppose you have a query that occurs often, for example, you routinely join the Bl LLS table with the BANK_ACCOUNTS table to retrieve information
on your payments.

INPUT:

SQL> SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE,
2 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS
3 WHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D

OUTPUT:

Bl LLS. NAME Bl LLS. AMOUNT ~ BANK_ACCOUNTS. BALANCE =~ BANK_ACCOUNTS. BANK
Phone Conpany 125 500 Fi rst Federal
Power Conpany 75 500 First Federal
Record d ub 25 1200 First Investor's
Sof t war e Conpany 250 500 First Federal
Cabl e TV Conmpany 35 90 Credit Union
Joe's Car Pal ace 350 2500 Second Mt ual

S.C. Student Loan 200 4500 Fidelity

Fl ori da Water Conpany 20 500 Fi rst Federal

U- O Us | nsurance Conpany 125 2500 Second Mut ual

9 rows sel ected.

Y ou could convert this processinto aview using the following statement:

INPUT/OUTPUT:

SQL> CREATE VI EW BI LLS DUE (NAME, AMOUNT, ACCT_BALANCE, BANK) AS
2 SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE,
3 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS
4 VWHERE BI LLS. ACCOUNT_I D = BANK_ACCQOUNTS. ACCOUNT_I D

Vi ew creat ed.
If you queried the BI LLS_DUE view using some condition, the statement would look like this:

INPUT/OUTPUT:

SQ.> SELECT * FROM BI LLS DUE
2 VWHERE ACCT_BALANCE > 500;

NAME AMOUNT ACCT_BALANCE BANK

Record d ub 25 1200 First Investor's
Joe's Car Pal ace 350 2500 Second Mt ual
S.C. Student Loan 200 4500 Fidelity

U- O Us | nsurance Conpany 125 2500 Second Mut ual

4 rows sel ected.
ANALYSIS:

SQL uses several stepsto process the preceding statement. Because BI LLS_DUE is aview, not an actual table, SQL first looks for atable named
Bl LLS_DUE and finds nothing. The SQL processor will probably (depending on what database system you are using) find out from a system table
that BI LLS_DUE isaview. It will then use the view's plan to construct the following query:

SQL> SELECT BI LLS. NAME, BI LLS. AMOUNT, BANK_ACCOUNTS. BALANCE,
2 BANK_ACCOUNTS. BANK FROM BI LLS, BANK_ACCOUNTS
3 WHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D
4 AND BANK_ACCOUNTS. BALANCE > 500;

Example 10.1

Construct aview that shows all statesto which the bills are being sent. Also display the total amount of money and the total number of bills being
sent to each state.

First of all, you know that the CREATE VI EWpart of the statement will look like this:

CREATE VI EW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS...

Now you must determine what the SELECT query will look like. Y ou know that you want to select the STATE field first usingt he SELECT
DI STI NCT syntax based on the regquirement to show the states to which bills are being sent. For example:

INPUT:

SQL> SELECT DI STI NCT STATE FROM COVPANY;

OUTPUT:

STATE
GA

FL

CA

X

SC

NJ

6 rows sel ected.

In addition to selecting the STATE field, you need to total the number of payments sent to that STATE. Therefore, you need to join the BI LLS table
and the COVPANY table.

INPUT/OUTPUT:

SQL> SELECT DI STI NCT COVPANY. STATE, COUNT(BILLS.*) FROM BI LLS, COVPANY
2 GROUP BY COVPANY. STATE
3 HAVI NG BI LLS. NAME = COVPANY. NAME;

STATE COUNT(BI LLS. *)
GA
FL
CA
X
SC
NJ

PRFRPEFEPNWON

6 rows sel ected.

Now that you have successfully returned two-thirds of the desired result, you can add the final required return value. Use the SUMfunction to total
the amount of money sent to each state.

INPUT/OUTPUT:

SQ.> SELECT DI STI NCT COVPANY. STATE, COUNT(BI LLS. NAME), SUM BI LLS. AMOUNT)
2 FROM BI LLS, COVPANY
3 GROUP BY COWPANY. STATE
4 HAVI NG BI LLS. NAME = COVPANY. NAME;

STATE COUNT(BI LLS. *) SUM BI LLS. AMOUNT)
GA 2 250

FL 3 445

CA 2 275

TX 1 35

SC 1 200

NJ 1 35

6 rows sel ected.
Asthefina step, you can combine this SELECT statement with the CREATE VI EWstatement you created at the beginning of this project:

INPUT/OUTPUT:

SQL> CREATE VI EW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS
2 SELECT DI STI NCT COVPANY. STATE, COUNT(BI LLS. NAME) , SUM BI LLS. AMOUNT)
3 FROM BI LLS, COVPANY
4 GROUP BY COWPANY. STATE
5 HAVI NG BI LLS. NAME = COVPANY. NAME;

Vi ew creat ed.

INPUT/OUTPUT:

SQL> SELECT * FROM EXAMPLE;

STATE TOTAL_BI LLS TOTAL_AMOUNT
GA 2 250

FL 3 445

CA 2 275

X 1 35

SC 1 200

NJ 1 35

6 rows sel ected.

The preceding example shows you how to plan the CREATE VI Ewstatement and the SELECT statements. This code tests the SELECT statements to
see whether they will generate the proper results and then combines the statements to create the view.

Example 10.2

Assume that your creditors charge a 10 percent service charge for all late payments, and unfortunately you are late on everything this month. You
want to see this late charge along with the type of accounts the payments are coming from.

Thisjoinis straightforward. (Y ou don't need to use anything like COUNT or SUM) However, you will discover one of the primary benefits of using
views. Y ou can add the 10 percent service charge and present it as a field within the view. From that point on, you can select records from the view
and already have the total amount calculated for you. The statement would look like this:

INPUT:

SQL> CREATE VI EW LATE_PAYMENT (NAME, NEW TOTAL, ACCOUNT_TYPE) AS
2 SELECT BILLS. NAMVE, BILLS. AMOUNT * 1.10, BANK_ACCOUNTS. TYPE
3 FROM BI LLS, BANK_ACCOUNTS
4 \WHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D

OUTPUT:
Vi ew creat ed.
INPUT/OUTPUT:

SQL.> SELECT * FROM LATE_PAYMENT;

NAME NEW _TOTAL ACCOUNT_TYPE
Phone Conpany 137.50 Checki ng
Power Conpany 82.50 Checki ng
Record d ub 27.50 Money Mar ket
Sof t war e Conpany 275 Checki ng
Cabl e TV Conmpany 38.50 Checki ng
Joe's Car Pal ace 385 Checki ng
S.C. Student Loan 220 Busi ness

Fl ori da Water Conpany 22 Checki ng

U- O Us | nsurance Conpany 137.50 Busi ness
Debtor's Credit Card 38.50 Savi ngs

10 rows sel ect ed.

Restrictionson Using SELECT
SQL places certain restrictions on using the SELECT statement to formulate a view. The following two rules apply when using the SELECT statement:
1 You cannot use the UNI ON operator.

1 You cannot use the ORDER BY clause. However, you can use the GROUP BY clause in aview to perform the same functions as the ORDER BY
clause.

Modifying Datain a View

Asyou have learned, by creating a view on one or more physical tables within a database, you can create a virtual table for use throughout an SQL
script or a database application. After the view has been created using the CREATE VI EW . . SELECT statement, you can update, insert, or delete
view data using the UPDATE, | NSERT, and DELETE commands you learned about on Day 8, "Manipulating Data."

We discuss the limitations on modifying aview's datain greater detail later. The next group of examplesillustrates how to manipulate datathat isin
aview.

To continue on the work you did in Example 10.2, update the BI LLS table to reflect that unfortunate 10 percent late charge.

INPUT/OUTPUT:

SQL> CREATE VI EW LATE_PAYMENT AS
2 SELECT * FROM BI LLS;

Vi ew creat ed.

SQL> UPDATE LATE_PAYMENT
2 SET AMOUNT = AMOUNT * 1.10;

1 row updat ed.

SQL> SELECT * FROM LATE_PAYMENT;

NAME NEW TOTAL ACCOUNT_I D
Phone Conpany 137. 50 1
Power Conpany 82.50 1
Record d ub 27.50 2
Sof t war e Conpany 275 1
Cabl e TV Company 38.50 3
Joe's Car Pal ace 385 5
S.C. Student Loan 220 6
Fl ori da Water Conpany 22 1
U- O Us | nsurance Conpany 137.50 5
Debtor's Credit Card 38.50 4

10 rows sel ect ed.
To verify that the UPDATE actually updated the underlying table, Bl LLS, query the BI LLS table:

INPUT/OUTPUT:

SQ.> SELECT * FROM BI LLS;

NAME NEW TOTAL ACCOUNT_I D
Phone Conpany 137.50 1
Power Conpany 82.50 1
Record Cl ub 27.50 2
Sof t war e Conpany 275 1
Cabl e TV Conpany 38.50 3
Joe's Car Pal ace 385 5
S.C. Student Loan 220 6
Fl ori da Water Conpany 22 1
U- O Us | nsurance Conpany 137.50 5
Debtor's Credit Card 38.50 4
10 rows sel ected.
Now delete arow from the view:
INPUT/OUTPUT:
SQL> DELETE FROM LATE_PAYNMENT

2 WHERE ACCOUNT_I D = 4,
1 row del et ed.
SQL> SELECT * FROM LATE_PAYMENT;
NAVE NEW TOTAL ACCOUNT_I D
Phone Conpany 137.50 1
Power Conpany 82.50 1
Record Cl ub 27.50 2
Sof t war e Conpany 275 1
Cabl e TV Conpany 38.50 3
Joe's Car Pal ace 385 5
S.C. Student Loan 220 6
Fl ori da Water Conpany 22 1
U- O Us | nsurance Conpany 137.50 5

9 rows sel ected.
Thefinal step isto test the UPDATE function. For al billsthat have a NEW TOTAL greater than 100, add an additional 10.

INPUT/OUTPUT:

SQL> UPDATE LATE_PAYNMENT
2 SET NEW.TOTAL = NEWTOTAL + 10
3 VWHERE NEW TOTAL > 100;

9 rows updat ed.

SQL> SELECT * FROM LATE_PAYMENT;

NANVE NEW TOTAL ACCOUNT_I D

Phone Conpany 147. 50 1
Power Conpany 82.50 1
Record Cl ub 27.50 2
Sof t war e Conpany 285 1
Cabl e TV Conpany 38.50 3
Joe's Car Pal ace 395 5
S.C. Student Loan 230 6
Fl ori da Water Conpany 22 1
U- O Us | nsurance Conpany 147. 50 5

9 rows sel ect ed.

Problemswith Modifying Data Using Views

Because what you see through a view can be some set of a group of tables, modifying the datain the underlying tablesis not always as
straightforward as the previous examples. Following isalist of the most common restrictions you will encounter while working with views:

1 You cannot use DELETE statements on multiple table views.

1 You cannot use the | NSERT statement unless all NOT NULL columns used in the underlying table are included in the view. This restriction
applies because the SQL processor does not know which valuesto insert into the NOT NULL columns.

1+ If you do insert or update records through ajoin view, all records that are updated must belong to the same physical table.
1 If you usethe DI STI NCT clause to create a view, you cannot update or insert records within that view.
1 You cannot update a virtual column (a column that is the result of an expression or function).
Common Applications of Views
Here are afew of the tasks that views can perform:
1+ Providing user security functions
1 Converting between units
1 Creating anew virtual table format
1 Simplifying the construction of complex queries
Viewsand Security

Although a complete discussion of database security appearsin Day 12, "Database Security,” we briefly touch on the topic now to explain how you
can use views in performing security functions.

All relational database systems in use today include a full suite of built-in security features. Users of the database system are generally divided into
groups based on their use of the database. Common group types are database administrators, database developers, data entry personnel, and public
users. These groups of users have varying degrees of privileges when using the database. The database administrator will probably have complete
control of the system, including UPDATE, | NSERT, DELETE, and ALTER database privileges. The public group may be granted only SELECT
privileges--and perhaps may be allowed to SELECT only from certain tables within certain databases.

Views are commonly used in this situation to control the information that the database user has access to. For instance, if you wanted users to have
access only to the NAME field of the Bl LLS table, you could simply create aview called Bl LLS_NAME:

INPUT/OUTPUT:

SQL> CREATE VI EW Bl LLS_NAME AS
2 SELECT NAME FROM BI LLS;

Vi ew creat ed.

Someone with system administrator-level privileges could grant the public group SELECT privileges on the Bl LLS_NAVME view. This group would not

have any privileges on the underlying Bl LLS table. Asyou might guess, SQL has provided data security statements for your use also. Keep in mind
that views are very useful for implementing database security.

Using Viewsto Convert Units

Views are also useful in situations in which you need to present the user with datathat is different from the data that actually exists within the
database. For instance, if the AMOUNT field is actually stored in U.S. dollars and you don't want Canadian users to have to continually do mental
calculations to see the AMOUNT total in Canadian dollars, you could create asimple view called CANADI AN_BI LLS:

INPUT/OUTPUT:

SQL> CREATE VI EW CANADI AN _BI LLS (NAME, CAN_AMOUNT) AS
2 SELECT NAME, AMOUNT / 1.10
3 FROM BI LLS;

Vi ew Creat ed.

SQL> SELECT * FROM CANADI AN _BI LLS;

NAME CAN_AMOUNT
Phone Conpany 125

Power Conpany 75

Record C ub 25
Sof t war e Conpany 250

Cabl e TV Conmpany 35

Joe's Car Pal ace 350

S.C. Student Loan 200

Fl ori da Water Conpany 20

U- O Us | nsurance Conpany 125

9 rows sel ected.
ANALYSIS:

When converting units like this, keep in mind the possible problems inherent in modifying the underlying data in atable when a calculation (such as
the preceding example) was used to create one of the columns of the view. As always, you should consult your database system's documentation to
determine exactly how the system implements the CREATE VI EWcommand.

Simplifying Complex Queries Using Views

Views are also useful in situations that require you to perform a sequence of queriesto arrive at aresult. The following example illustrates the use of
aview in this situation.

To give the name of all banks that sent hills to the state of Texas with an amount less than $50, you would break the problem into two separate
problems:

1 Retrieve adl billsthat were sent to Texas
1 Retrieveal billslessthan $50
Let's solve this problem using two separate views: Bl LLS_1 and Bl LLS_2:

INPUT/OUTPUT:

SQL> CREATE TABLE BI LLS1 AS
2 SELECT * FROM BI LLS
3 WHERE AMOUNT < 50;

Tabl e created.
SQ.> CREATE TABLE BILLS2 (NAME, AMOUNT, ACCOUNT_I D) AS
2 SELECT BILLS.* FROM BI LLS, COVPANY
3 WHERE BI LLS. NAVE = COVPANY. NAVE AND COWVPANY. STATE = "TX";

Tabl e creat ed.

ANALYSIS:

Because you want to find all bills sent to Texas and all bills that were less than $50, you can now use the SQL I N clause to find which billsin
Bl LLS1 were sent to Texas. Use thisinformation to create anew view called Bl LLS3:

INPUT/OUTPUT:

SQL> CREATE VI EW BI LLS3 AS
2 SELECT * FROM BI LLS2 WHERE NAME | N
3 (SELECT * FROM BI LLS1);

Vi ew creat ed.
Now combine the preceding query with the BANK_ACCOUNTS table to satisfy the original requirements of this example:

INPUT/OUTPUT:

SQL> CREATE VI EW BANKS | N_TEXAS (BANK) AS

2 SELECT BANK_ACCOUNTS. BANK

3 FROM BANK_ACCOUNTS, BILLS3

4 \WHERE BI LLS3. ACCOUNT | D = BANK_ACCOUNTS. ACCOUNT I D
Vi ew creat ed.
SQL> SELECT * FROM BANK | N_TEXAS;

BANK
Credit Union

1 row sel ect ed.
ANALYSIS:

Asyou can see, after the queries were broken down into separate views, the final query was rather simple. Also, you can reuse the individual views
as often as necessary.

The DROP VIEW Statement
In common with every other SQL CREATE... command, CREATE VI EwWhas a corresponding DROP... command. The syntax is as follows:

SYNTAX:

SQL> DROP VI EW vi ew_nane;

The only thing to remember when using the DROP VI EWcommand isthat all other views that reference that view are now invalid. Some database
systems even drop all views that used the view you dropped. Using Personal Oracle?, if you drop the view Bl LLS1, the final query would produce
the following error:

INPUT/OUTPUT:

SQL> DROP VI EWBI LLS1;

Vi ew dr opped.

SQL> SELECT * FROM BANKS_| N_TEXAS;
*

ERROR at line 1:
ORA- 04063: vi ew "PERKI NS. BANKS | N TEXAS" has errors

NOTE: A view can be dropped without any of the actual tables being modified, which explains why we often refer to views as
virtual tables. (The same logic can be applied to the technology of virtual reality.)

Using Indexes

Another way to present datain a different format than it physically exists on the disk is to use an index. In addition, indexes can also reorder the data
stored on the disk (something views cannot do).

Indexes are used in an SQL database for three primary reasons:
1 Toenforcereferential integrity constraints by using the UNI QUE keyword
1 Tofacilitate the ordering of data based on the contents of the index's field or fields
1 To optimize the execution speed of queries

What Arelndexes?

Data can be retrieved from a database using two methods. The first method, often called the Sequential Access Method, requires SQL to go through
each record looking for amatch. This search method is inefficient, but it is the only way for SQL to locate the correct record. Think back to the days
when libraries had massive card catalog filing systems. Suppose the librarian removed the a phabetical index cards, tossed the cards into the air, then
placed them back into the filing cabinets. When you wanted to look up this book's shelf location, you would probably start at the very beginning,
then go through one card at atime until you found the information you wanted. (Chances are, you would stop searching as soon as you found any
book on this topic!)

Now suppose the librarian sorted the book titles alphabetically. Y ou could quickly access this book's information by using your knowledge of the
alphabet to move through the catal og.

Imagine the flexibility if the librarian was diligent enough to not only sort the books by title but also create another catalog sorted by author's name
and another sorted by topic. This process would provide you, the library user, with agreat deal of flexibility in retrieving information. Also, you
would be able to retrieve your information in afraction of the time it originally would have taken.

Adding indexes to your database enables SQL to use the Direct Access Method. SQL uses atreelike structure to store and retrieve the index's data.
Pointers to a group of data are stored at the top of the tree. These groups are called nodes. Each node contains pointers to other nodes. The nodes
pointing to the left contain values that are less than its parent node. The pointers to the right point to values greater than the parent node.

The database system starts its search at the top node and simply follows the pointers until it is successful.

NOTE: The result of a query against the unindexed table is commonly referred to as a full-table scan. A full-table scan isthe
process used by the database server to search every row of atable until all rows are returned with the given condition(s). This
operation is comparable to searching for abook in the library by starting at the first book on the first shelf and scanning every book
until you find the one you want. On the other hand, to find the book quickly, you would probably look in the (computerized) card
catalog. Similarly, an index enables the database server to point to specific rows of data quickly within atable.

Fortunately, you are not required to actually implement the tree structure yourself, just as you are not required to write the implementation for saving
and reading in tables or databases. The basic SQL syntax to create an index is as follows:

INPUT/OUTPUT:

SQL> CREATE | NDEX i ndex_nane
2 ON t abl e_nanme(col um_nanel, [colum_nane2], ...);

I ndex creat ed.

Asyou have seen many times before, the syntax for CREATE | NDEX can vary widely among database systems. For instance, the CREATE | NDEX
statement under Oracle7 looks like this:

SYNTAX:

CREATE | NDEX [schenma.]i ndex
ON { [schenma.]table (colum [!!under!! ASC| DESC]
[, colum [!!under!!ASC| DESC]] ...)
| CLUSTER [schema.]cluster }
[I NI TRANS integer] [MAXTRANS i nteger]
[TABLESPACE t abl espace]
[STORACE storage_cl ause]
[PCTFREE i nt eger]

[NOSORT]
The syntax for CREATE | NDEX using Sybase SQL Server isasfollows:
SYNTAX:

create [unique] [clustered | nonclustered]
i ndex index_nane
on [[database.]owner.]tabl e_nanme (col unm_nane
[, colum_nane]...)
[with {fillfactor = x, ignore_dup_key, sorted_data,
[ignore_dup_row | allow dup_row}]
[on segnent _nane]

Informix SQL implements the command like this:
SYNTAX:

CREATE [UNI QUE | DI STINCT] [CLUSTER] | NDEX i ndex_nane
ON tabl e_nanme (colum_nanme [ASC | DESC,
colum_nanme [ASC | DESC]...)

Notice that all of these implementations have several thingsin common, starting with the basic statement
CREATE | NDEX i ndex_nanme ON tabl e_name (colum_nane, ...)

SQL Server and Oracle alow you to create a clustered index, which is discussed later. Oracle and Informix allow you to designate whether the
column name should be sorted in ascending or descending order. We hate to sound like a broken record, but, once again, you should definitely
consult your database management system's documentation when using the CREATE | NDEX command.

For instance, to create an index on the ACCOUNT _| D field of the BI LLS table, the CREATE | NDEX statement would look like this:

INPUT:

SQL> SELECT * FROM BI LLS;

OUTPUT:

NAMVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Water Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.

INPUT/OUTPUT:

SQL> CREATE | NDEX | D_I NDEX ON BI LLS(ACCOUNT_ID);
I ndex creat ed.

SQL> SELECT * FROM BI LLS;

NAVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Sof t war e Conpany 250 1
Fl ori da Water Conpany 20 1
Record C ub 25 2
Cabl e TV Conmpany 35 3

Debtor's Credit Card 35 4
Joe's Car Pal ace 350 5
U- O Us | nsurance Conpany 125 5
S.C. Student Loan 200 6

10 rows sel ect ed.

TheBI LLS tableis sorted by the ACCOUNT_I D field until the index is dropped using the DROP | NDEX statement. As usual, the DROP | NDEX
statement is very straightforward:

SYNTAX:

SQL> DROP | NDEX i ndex_nane;

Here's what happens when the index is dropped:
INPUT/OUTPUT:

SQL> DROP | NDEX | D_I NDEX;
I ndex dropped.

SQL> SELECT * FROM BI LLS;

NAMVE AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Record Cl ub 25 2
Sof t war e Conpany 250 1
Cabl e TV Conpany 35 3
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6
Fl ori da Water Conpany 20 1
U- O Us | nsurance Conpany 125 5
Debtor's Credit Card 35 4

10 rows sel ect ed.
ANALYSIS:

Now the Bl LLS tableisin its origina form. Using the simplest form of the CREATE | NDEX statement did not physically change the way the table
was stored.

Y ou may be wondering why database systems even provide indexes if they also enable you to use the ORDER BY clause.

INPUT/OUTPUT:

SQ.> SELECT * FROM Bl LLS ORDER BY ACCOUNT_I D,

NAME AMOUNT ACCOUNT_I D
Phone Conpany 125 1
Power Conpany 75 1
Sof t war e Conpany 250 1
Fl ori da Water Conpany 20 1
Record Cl ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
Joe's Car Pal ace 350 5
U- O Us | nsurance Conpany 125 5
S.C. Student Loan 200 6

10 rows sel ect ed.
ANALYSIS:

This SELECT statement and the | D_I NDEX on the BI LLS table generate the same result. The differenceis that an ORDER BY clause re-sorts and
orders the data each time you execute the corresponding SQL statement. When using an index, the database system creates a physical index object
(using the tree structure explained earlier) and reuses the same index each time you query the table.

WARNING: When atableis dropped, all indexes associated with the table are dropped as well.

Indexing Tips
Listed here are severa tips to keep in mind when using indexes:
1 For small tables, using indexes does not result in any performance improvement.
1 Indexes produce the greatest improvement when the columns you have indexed on contain awide variety of data or many NULL values.

1 Indexes can optimize your queries when those queries are returning a small amount of data (a good rule of thumb is less than 25 percent of
the data). If you are returning more data most of the time, indexes simply add overhead.

1 Indexes can improve the speed of dataretrieval. However, they slow data updates. Keep thisin mind when doing many updatesin arow
with an index. For very large updates, you might consider dropping the index before you perform the update. When the update is complete,
simply rebuild your index. On one particular update, we were able to save the programmers 18 hours by dropping the index and re-creating
it after the dataload.

1 Indexes take up space within your database. If you are using a database management system that enables you to manage the disk space taken
up your database, factor in the size of indexes when planning your database's size.

1 Alwaysindex on fields that are used in joins between tables. This technique can greatly increase the speed of ajoin.

1 Most database systems do not allow you to create an index on aview. If your database system allows it, use the technique clause with the
SELECT statement that builds the view to order the data within the view. (Unfortunately, many systems don't enable the ORDER BY clause
with the CREATE VI EWstatement either.)

1 Do not index on fields that are updated or modified regularly. The overhead required to constantly update the index will offset any
performance gain you hope to acquire.

1 Do not store indexes and tables on the same physical drive. Separating these objects will eliminate drive contention and result in faster
queries.

Indexing on More Than One Field

SQL also enables you to index on more than one field. This type of index is a composite index. The following code illustrates a simple composite
index. Note that even though two fields are being combined, only one physical index is created (called | D_CMPD_I NDEX).

INPUT/OUTPUT:

SQ.> CREATE | NDEX | D CVPD | NDEX ON BI LLS(ACCOUNT_I D, AMOUNT);
I ndex created.

SQ.> SELECT * FROM BI LLS;

NAVE AMOUNT ACCOUNT_I D
Fl ori da Water Conpany 20 1
Power Conpany 75 1
Phone Conpany 125 1
Sof t war e Conpany 250 1
Record d ub 25 2
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
U- O Us | nsurance Conpany 125 5
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6

10 rows sel ect ed.
SQL> DROP | NDEX | D_CMPD_| NDEX;

I ndex dropped.

ANALYSIS:

Y ou can achieve performance gains by selecting the column with the most unique values. For instance, every value in the NAMVE field of the BI LLS
tableis unique. When using a compound index, place the most selective field first in the column list. That is, place the field that you expect to select
most often at the beginning of the list. (The order in which the column names appear in the CREATE | NDEX statement does not have to be the same
astheir order within the table.) Assume you are routinely using a statement such as the following:

SQL> SELECT * FROM Bl LLS WHERE NAME = "Cabl e TV Conpany";

To achieve performance gains, you must create an index using the NAMVE field as the leading column. Here are two examples:

SQL> CREATE | NDEX NAME_| NDEX ON BI LLS(NAME, AMOUNT) ;

or

SQL> CREATE | NDEX NANME_| NDEX ON BI LLS(NANE) ;
The NAME field is the left-most column for both of these indexes, so the preceding query would be optimized to search on the NAMVE field.

Composite indexes are also used to combine two or more columns that by themselves may have low selectivity. For an example of selectivity,
examine the BANK_ACCOUNTS table:

ACCOUNT_I D TYPE BALANCE BANK

1 Checki ng 500 First Federal

2 Money Mar ket 1200 First Investor's
3 Checki ng 90 Credit Union

4 Savi ngs 400 First Federal

5 Checki ng 2500 Second Mut ual

6 Busi ness 4500 Fidelity

Notice that out of six records, the value Checki ng appears in three of them. This column has alower selectivity than the ACCOUNT_I D field. Notice
that every value of the ACCOUNT_I D field is unique. To improve the selectivity of your index, you could combine the TYPE and ACCOUNT_I D fields
in anew index. This step would create a unique index value (which, of course, isthe highest selectivity you can get).

NOTE: Anindex containing multiple columnsis often referred to as a composite index. Performance issues may sway your
decision on whether to use a single-column or composite index. In Oracle, for example, you may decide to use a single-column
index if most of your queriesinvolve one particular column as part of a condition; on the other hand, you would probably create a
composite index if the columnsin that index are often used together as conditions for a query. Check your specific implementation
on guidance when creating multiple-column indexes.

Using the UNIQUE Keyword with CREATE INDEX

Composite indexes are often used with the UNI QUE keyword to prevent multiple records from appearing with the same data. Suppose you wanted to
forcethe BI LLS table to have the following built-in "rule": Each bill paid to a company must come from a different bank account. Y ou would create
a UNI QUE index on the NAME and ACCOUNT _|I D fields. Unfortunately, Oracle7 does not support the UNI QUE syntax. Instead, it implements the

UNI QUE feature using the UNI QUE integrity constraint. The following example demonstrates the UNI QUE keyword with CREATE | NDEX using
Sybase's Transact-SQL language.

INPUT:

1> create uni que index unique_id_nane
2> on BI LLS(ACCOUNT_| D, NAME)

3> go

1> select * fromBILLS

2> go

OUTPUT:

NAMVE AMOUNT ACCOUNT_I D
Fl ori da Water Conpany 20 1
Power Conpany 75 1
Phone Conpany 125 1

Sof t war e Conpany 250 1
Record d ub 25 2
Cabl e TV Conmpany 35 3
Debtor's Credit Card 35 4
U- O Us | nsurance Conpany 125 5
Joe's Car Pal ace 350 5
S.C. Student Loan 200 6

Now try to insert arecord into the Bl LLS table that duplicates data that already exists.
INPUT:

1> insert BILLS (NAVE, AMOUNT, ACCOUNT_I D)
2> val ues(" Power Conpany", 125, 1)
3> go

ANALYSIS:

Y ou should have received an error message telling you that the | NSERT command was not allowed. This type of error message can be trapped within
an application program, and a message could tell the user he or she inserted invalid data.

Example 10.3
Create an index on the BI LLS table that will sort the AMOUNT field in descending order.
INPUT/OUTPUT:

SQL> CREATE | NDEX DESC_AMOUNT
ON Bl LLS(AMOUNT DESC) ;

I ndex creat ed.
ANALYSIS:

Thisisthefirst time you have used the DESC operator, which tells SQL to sort the index in descending order. (By default a number field is sorted in
ascending order.) Now you can examine your handiwork:

INPUT/OUTPUT:

SQ.> SELECT * FROM BI LLS;

NAVE AMOUNT ACCOUNT_I D
Joe's Car Pal ace 350 5
Sof t war e Conpany 250 1
S.C. Student Loan 200 6
Phone Conpany 125 1
U- O Us | nsurance Conpany 125 5
Power Conpany 75 1
Cabl e TV Conpany 35 3
Debtor's Credit Card 35 4
Record Cl ub 25 2
Fl ori da Water Conpany 20 1

10 rows sel ect ed.
ANALYSIS:

This example created an index using the DESC operator on the column amount. Notice in the output that the amount is ordered from largest to
smallest.

Indexes and Joins

When using complicated joins in queries, your SELECT statement can take a long time. With large tables, this amount of time can approach several
seconds (as compared to the milliseconds you are used to waiting). This type of performance in a client/server environment with many users
becomes extremely frustrating to the users of your application. Creating an index on fields that are frequently used in joins can optimize the
performance of your query considerably. However, if too many indexes are created, they can slow down the performance of your system, rather than

speed it up. We recommend that you experiment with using indexes on several large tables (on the order of thousands of records). This type of
experimentation leads to a better understanding of optimizing SQL statements.

NOTE: Most implementations have a mechanism for gathering the elapsed time of a query; Oracle refersto this feature as timing.
Check your implementation for specific information.

The following example creates an index on the ACCOUNT_I D fieldsin the Bl LLS and BANK_ACCOUNTS tables:
INPUT/OUTPUT:

SQL> CREATE | NDEX BI LLS | NDEX ON Bl LLS(ACCOUNT_I D) ;

I ndex created.

SQL> CREATE | NDEX BI LLS_ | NDEX2 ON BANK_ACCOUNTS(ACCOUNT_I D) ;

I ndex created.

SQL> SELECT BILLS. NAME NAME, BILLS. AMOUNT AMOUNT, BANK_ACCOUNTS. BALANCE
2 ACCOUNT_BALANCE

3 FROM BI LLS, BANK_ACCOUNTS
4 \WHERE BI LLS. ACCOUNT_I D = BANK_ACCOUNTS. ACCOUNT_I D

NAME AMOUNT ACCOUNT_BALANCE
Phone Conpany 125 500
Power Conpany 75 500
Sof t war e Conpany 250 500
Fl ori da Water Conpany 20 500
Record Cl ub 25 1200
Cabl e TV Conpany 35 90
Debtor's Credit Card 35 400
Joe's Car Pal ace 350 2500
U- O Us | nsurance Conpany 125 2500
S.C. Student Loan 200 4500

10 rows sel ect ed.
ANALYSIS:

This example first created an index for the ACCOUNT_I D on both tablesin the associated query. By creating indexes for ACCOUNT_| D on each table,
the join can more quickly access specific rows of data. Asarule, you should index the column(s) of atable that are unique or that you plan to join
tables with in queries.

Using Clusters

Although we originally said that indexes can be used to present aview of atable that is different from the existing physical arrangement, this
statement is not entirely accurate. A specia type of index supported by many database systems allows the database manager or devel oper to cluster
data. When a clustered index is used, the physical arrangement of the data within atable is modified. Using a clustered index usually resultsin faster
dataretrieval than using atraditional, nonclustered index. However, many database systems (such as Sybase SQL Server) alow only one clustered
index per table. The field used to create the clustered index is usually the primary key field. Using Sybase Transact-SQL, you could create a
clustered, unique index on the ACCOUNT_I D field of the BANK_ACCOUNTS table using the following syntax:

SYNTAX:

create unique clustered index id_index
on BANK_ACCOUNTS(ACCOUNT_I D)
go

Oracle treats the concept of clusters differently. When using the Oracle relational database, a cluster is a database object like a database or table. A
cluster is used to store tables with common fields so that their access speed isimproved.

Here isthe syntax to create a cluster using Oracle7:

SYNTAX:

CREATE CLUSTER [schema.]cl uster

(colum datatype [, colunm datatype] ...)
[PCTUSED i nteger] [PCTFREE integer]

[SI ZE integer [KIM]

[I NI TRANS integer] [MAXTRANS i nteger]

[TABLESPACE t abl espace]

[STORACE storage_cl ause]

[T under! I NDEX

| [HASH IS col um] HASHKEYS i nt eger]

Y ou should then create an index within the cluster based on the tables that will be added to it. Then you can add the tables. Y ou should add tables
only to clusters that are frequently joined. Do not add tables to clusters that are accessed individually through a simple SELECT statement.

Obviously, clusters are a very vendor-specific feature of SQL. We will not go into more detail here on their use or on the syntax that creates them.
However, consult your database vendor's documentation to determine whether your database management system supports these useful objects.

Summary

Views are virtua tables. Views are simply away of presenting datain aformat that is different from the way it actualy exists in the database. The
syntax of the CREATE VI EWstatement uses a standard SELECT statement to create the view (with some exceptions). Y ou can treat aview as aregular
table and perform inserts, updates, deletes, and selects on it. We briefly discussed the use of database security and how views are commonly used to
implement this security. Database security is covered in greater detail on Day 12.

The basic syntax used to create aview is

CREATE VI EWvi ew_nane AS
SELECT field_nanme(s) FROMtabl e_name(s);

Here are the most common uses of views:
1 To perform user security functions
1 To convert units
1 To create anew virtua table format
1 To simplify the construction of complex queries

Indexes are also database design and SQL programming tools. Indexes are physical database objects stored by your database management system
that can be used to retrieve data already sorted from the database. In addition, thanks to the way indexes are mapped out, using indexes and properly
formed queries can yield significant performance improvements.

The basic syntax used to create an index looks like this:

CREATE | NDEX i ndex_nane
ON tabl e_nane(field_nanme(s));

Some database systems include very useful additional options such as the UNI QUE and CLUSTERED keywords.

Q&A
Q If thedata within my tableisalready in sorted order, why should | use an index on that table?

A Anindex dtill gives you a performance benefit by looking quickly through key valuesin atree. Theindex can locate records faster than a
direct access search through each record within your database. Remember--the SQL query processor doesn't necessarily know that your data
isin sorted order.

Q Can | createan index that containsfields from multiple tables?

A No, you cannot. However, Oracle?, for instance, allows you to create a cluster. Y ou can place tables within a cluster and create cluster
indexes on fields that are common to the tables. Thisimplementation is the exception, not the rule, so be sure to study your documentation
on thistopic in more detail.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz

1. What will happen if a unique index is created on a nonunique field?

2. Arethe following statements true or false?

Both views and indexes take up space in the database and therefore must be factored in the planning of the database size.

If someone updates a table on which aview has been created, the view must have an identical update performed on it to see the same data.
If you have the disk space and you really want to get your queries smoking, the more indexes the better.

3. Isthe following CREATE statement correct?

SQL> create view credit_debts as
(select all from debts
where account _id = 4);

4, Isthe following CREATE statement correct?

SQL> create unique view debts as
select * fromdebts_tbl;

5. Isthe following CREATE statement correct?
SQL> drop * fromview debts;
6. Isthe following CREATE statement correct?

SQL> create index id_index on bills
(account _id);

Exercises

1. Examine the database system you are using. Does it support views? What options are you allowed to use when creating a view? Write a
simple SQL statement that will create aview using the appropriate syntax. Perform some traditional operations such as SELECT or DELETE
and then DROP the view.

2. Examine the database system you are using to determine how it supports indexes. Y ou will undoubtedly have awide range of options. Try
out some of these options on atable that exists within your database. In particular, determine whether you are allowed to create UNI QUE or
CLUSTERED indexes on atable within your database.

3. If possible, locate atable that has several thousand records. Use a stopwatch or clock to time various operations against the database. Add
some indexes and see whether you can notice a performance improvement. Try to follow the tips given to you today.

{ ¢ Previous Chapter JR.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 11 -
Controlling Transactions

Y ou have spent the last 10 days learning virtually everything that you can do with data within arelational database. For example, you know how to
use the SQL SELECT statement to retrieve data from one or more tables based on a number of conditions supplied by the user. Y ou have also had a
chance to use data modification statements such as| NSERT, UPDATE, and DELETE. As of today, you have become an intermediate-level SQL and
database user. If required, you could build a database with its associated tables, each of which would contain severa fields of different data types.
Using proper design techniques, you could leverage the information contained within this database into a powerful application.

Objectives

If you are a casua user of SQL who occasionally needs to retrieve data from a database, the topics of the first 10 days provide most of the
information you will need. However, if you intend to (or are currently required to) develop a professional application using any type of relational
database, the advanced topics covered over the next four days--transaction control, security, embedded SQL programming, and database procedures-
-will help you agreat deal. We begin with transaction control. By the end of the day, you will know the following:

1 Thebasics of transaction control
1 How tofinalize and or cancel atransaction

1 Some of the differences between Sybase and Oracle transactions

NOTE: We used both Personal Oracle7 and Sybase's SQL Server to generate today's examples. Please see the documentation for
your specific SQL implementation for any minor differencesin syntax.

Transaction Control

Transaction control, or transaction management, refers to the capability of arelational database management system to perform database
transactions. Transactions are units of work that must be done in alogical order and successfully as agroup or not at all. The term unit of work
means that a transaction has a beginning and an end. If anything goes wrong during the transaction, the entire unit of work can be canceled if
desired. If everything looks good, the entire unit of work can be saved to the database.

In the coming months or years you will probably be implementing applications for multiple users to use across a network. Client/server
environments are designed specificaly for this purpose. Traditionally, aserver (in this case, a database server) supports multiple network
connectionsto it. As often happens with technology, this newfound flexibility adds a new degree of complexity to the environment. Consider the
banking application described in the next few paragraphs.

The Banking Application

Y ou are employed by First Federal Financial Bank to set up an application that handles checking account transactions that consist of debits and
credits to customers' checking accounts. Y ou have set up a nice database, which has been tested and verified to work correctly. After calling up your
application, you verify that when you take $20 out of the account, $20 actually disappears from the database. When you add $50.25 to the checking
account, this deposit shows up as expected. Y ou proudly announce to your bosses that the system is ready to go, and several computers are set up in
alocal branch to begin work.

Within minutes, you notice a situation that you did not anticipate: As oneteller is depositing a check, another teller is withdrawing money from the
same account. Within minutes, many depositors' balances are incorrect because multiple users are updating tables simultaneously. Unfortunately,
these multiple updates are overwriting each other. Shortly thereafter, your application is pulled offline for an overhaul. We will work through this
problem with a database called CHECKI NG. Within this database are two tables, shown in Tables 11.1 and 11.2.

Table11.1. The CUSTOMERS table.

|Name ||Address ||City ||State||Zip ||Customer_ID|
[Bill Turner ||[725N. Deal Parkway |[Washington |[DC |[20085||1
[John Keith |[1220 ViaDeLunaDr. |[Jacksonville |[FL |[33581|[2

[David Blanken |[405 N. Davis Highway ||Greenville |[SC |[29652||4
|RebeccaLittle 7753 Woods Lane |[Houston |[TX |[38764||5

|
|
[Mary Rosenberg][482 Wannamaker Avenue]|Williamsburg|[VA |[23478](3 |
|
|

Table11.2. The BALANCES table.

|Aver age_BaJ||Curr_BaJ||Account_I D|
[129853 |[s54.22 |1 |
[5427.22 |l6015.96 |2 |
[211.25 (19001 |3 |
[73.79 |[25.87 |4 |
|
|
|

[1285.90 |[1473.75 |5
(123456 |[1543.67 |6
[345.25 |[348.03 |7

Assume now that your application program performs a SELECT operation and retrieves the following data for Bill Turner:
OUTPUT:

NAME: Bill Turner

ADDRESS: 725 N. Deal Parkway
CI TY: Washi ngton

STATE: DC

ZI P: 20085

CUSTOMER ID: 1

While this information is being retrieved, another user with a connection to this database updates Bill Turner's address information:
INPUT:

SQL> UPDATE CUSTOVERS SET Address = "11741 Ki ngst owne Road"
WHERE Nane = "Bill Turner";

Asyou can see, the information you retrieved earlier could be invalid if the update occurred during the middle of your SELECT. If your application
fired off aletter to be sent to Mr. Bill Turner, the address it used would be wrong. Obviously, if the letter has already been sent, you won't be able to
change the address. However, if you had used a transaction, this data change could have been detected, and all your other operations could have been
rolled back.

Beginning a Transaction

Transactions are quite simple to implement. Y ou will examine the syntax used to perform transactions using the Oracle RDBMS SQL syntax as well
as the Sybase SQL Server SQL syntax.

All database systems that support transactions must have away to explicitly tell the system that a transaction is beginning. (Remember that a
transaction isalogical grouping of work that has a beginning and an end.) Using Personal Oracle?, the syntax looks like this:

SYNTAX:

SET TRANSACTI ON { READ ONLY | USE ROLLBACK SEGMVENT segnent}

The SQL standard specifies that each database's SQL implementation must support statement-level read consistency; that is, data must stay
consistent while one statement is executing. However, in many situations data must remain valid across a single unit of work, not just within asingle
statement. Oracle enables the user to specify when the transaction will begin by using the SET TRANSACTI ON statement. If you wanted to examine
Bill Turner'sinformation and make sure that the data was not changed, you could do the following:

INPUT:

SQ.> SET TRANSACTI ON READ ONLY
SQL> SELECT * FROM CUSTOVERS
WHERE NAME = 'Bill Turner'

---Do Other Operations---

SQL> COW T;

We discuss the COWM T statement later today. The SET TRANSACTI ON READ ONLY option enables you to effectively lock a set of records until the
transaction ends. Y ou can use the READ ONLY option with the following commands:

SELECT

LOCK TABLE
SET ROLE
ALTER SESSI ON

ALTER SYSTEM

The option USE ROLLBACK SEGMENT tells Oracle which database segment to use for rollback storage space. This option is an Oracle extension to
standard SQL syntax. Consult your Oracle documentation for more information on using segments to maintain your database.

SQL Server's Transact-SQL language implements the BEG N TRANSACTI ON command with the following syntax:

SYNTAX:

begin {transaction | tran} [transaction_nane]

This implementation is alittle different from the Oracle implementation. (Sybase does not allow you to specify the READ ONLY option.) However,
Sybase does allow you to give atransaction a name, as long as that transaction is the outermost of a set of nested transactions.

The following group of statements illustrates the use of nested transactions using Sybase's Transact-SQL language:
INPUT:

1> begin transaction new account

2> insert CUSTOMERS val ues ("lzetta Parsons", "1285 Pineapple H ghway", "Geenville", "AL" 32854, 6)
3> if exists(select * from CUSTOVERS where Nanme = "|zetta Parsons")

4> begin

5> begin transaction

6> insert BALANCES val ues(1250.76, 1431.26, 8)

7> end

8> el se

9> rol | back transaction

10> if exists(select * from BALANCES where Account _|ID = 8)

11> begin

12> begin transaction

13> insert ACCOUNTS val ues(8, 6)

14> end

15> el se

16> rol I back transaction

17> if exists (select * from ACCOUNTS where Account _|ID = 8 and Custoner_ID = 6)
18> conmmit transaction

19> el se

20> rol |l back transaction
21> go

For now, don't worry about the ROLLBACK TRANSACTI ON and COVMM T TRANSACTI ON statements. The important aspect of this exampleisthe
nested transaction--or a transaction within a transaction.

Notice that the original transaction (new_account) begins on line 1. After the first insert, you check to make sure the | NSERT was executed
properly. Another transaction begins on line 5. This transaction within atransaction is termed a nested transaction.

Other databases support the AUTOCOMM T option. This option can be used with the SET command. For example:

SET AUTCCOWI T [ON | OFF]

By default, the SET AUTOCOW T ON command is executed at startup. It tells SQL to automatically commit all statements you execute. If you do not
want these commands to be automatically executed, set the AUTOCOW T option to off:

SET AUTOCOW T COFF

NOTE: Check your database system's documentation to determine how you would begin a transaction.

Finishing a Transaction

The Oracle syntax to end atransaction is as follows:
SYNTAX:

COM T [WORK]
[COMMENT 'text'
| FORCE 'text' [, integer]]

Here is the same command using Sybase syntax:

SYNTAX:

COW T (TRANSACTI ON | TRAN | WORK) (TRANSACTI ON_NAVE)

The COW T command saves all changes made during a transaction. Executing a COMM T statement before beginning a transaction ensures that no
errors were made and no previous transactions are |eft hanging.

The following example verifies that the COM T command can be used by itself without receiving an error back from the database system.
INPUT:

SQL> COWM T;

SQ.> SET TRANSACTI ON READ ONLY;

SQL> SELECT * FROM CUSTOVERS
WHERE NAME = 'Bill Turner';

---Do Gther QOperations---

SQL> COWM T;
An Oracle SQL use of the COM T statement would look like this:

INPUT:

SQL> SET TRANSACTI ON;
SQL> | NSERT | NTO CUSTOVERS VALUES

("John MacDowel | ", "2000 Lake Lunge Road", "Chicago", "IL", 42854, 7);
SQL> COW T;

SQ.> SELECT * FROM CUSTQOVERS;

The CUSTOMERS table.
|Name ||Address ||City ||State||Zip ||Customer_| D|
[Bill Turner ~ |[725N. Deal Parkway |[Washington |[DC |[20085|[1
[John K eith |[1220 viaDeLunaDr. ||Jacksonville ||FL ||33581][2

|
|
[Mary Rosenberg |[482 Wannamaker Avenue]|williamsburg|[VA |[23478|[3 |
[David Blanken |[405 N. DavisHighway |[Greenville |[SC |[29652](4 |
|
|
|

[RebeccaLittle |[7753 Woods Lane |[Houston |[TX ||38764||5
|Izetta Parsons |[1285 Pineapple Highway ||Greenville ||AL |[32854||6
[John MacDowell|[2000 Lake Lunge Road ||Chicago ||IL |[42854]|7

A Sybase SQL use of the COW T statement would look like this:

INPUT:

1> begin transaction
2> insert into CUSTOVERS val ues

("John MacDowel I ", "2000 Lake Lunge Road", "Chicago", "IL", 42854, 7)
3> commit transaction
4> go
1> select * from CUSTOMVERS
2> go
The CUSTOMERS table.
|Name ||Address ||City ||State||Zip ||Customer_ID|
[Bill Turner ~ |[725N. Deal Parkway |[washington |[DC |[20085|[1
[John K eith |[1220 ViaDeLunaDr. ||Jacksonville ||FL ||33581][2

|
|
[Mary Rosenberg |[482 Wannamaker Avenue]|williamsburg|[VA |[23478|[3 |
[David Blanken |[405 N. DavisHighway ||Greenville ||SC |[29652][4 |
|
|
|

[RebeccalLittle |[7753 Woods Lane |[Houston ~ |[Tx][38764||5
|Izetta Parsons |[1285 Pineapple Highway ||Greenville ||AL |[32854||6
[John MacDowell|[2000 Lake Lunge Road ||Chicago ||IL |[42854]|7

The preceding statements accomplish the same thing as they do using the Oracle7 syntax. However, by putting the COMM T command soon after the
transaction begins, you ensure that the new transaction will execute correctly.

NOTE: The COM T WORK command performs the same operation as the COMM T command (or Sybase's COMM T TRANSACTI ON
command). It is provided simply to comply with ANSI SQL syntax.

Remember that every COWM T command must correspond with a previously executed SET TRANSACTI ON or BEG N TRANSACTI ON command. Note
the errors you receive with the following statements:

Oracle SQL.:

INPUT:

SQL> | NSERT | NTO BALANCES val ues (18765.42, 19073.06, 8);
SQ> COW T WORK;

Sybase SQL:

INPUT:

1> insert into BALANCES val ues (18765.42, 19073.06, 8)
2> conmmit work

Canceling the Transaction

While atransaction isin progress, some type of error checking is usually performed to determine whether it is executing successfully. Y ou can undo
your transaction even after successful completion by issuing the ROLLBACK statement, but it must be issued before a COMM T. The ROLLBACK
statement must be executed from within a transaction. The ROLLBACK statement rolls the transaction back to its beginning; in other words, the state
of the database is returned to what it was at the transaction's beginning. The syntax for this command using Oracle? is the following:

SYNTAX:

ROLLBACK [WORK]
[TO [SAVEPO NT] savepoi nt
| FORCE 'text']

Asyou can see, this command makes use of a transaction savepoint. We discuss this technique | ater today.
Sybase Transact-SQL's ROLLBACK statement looks very similar to the COW T command:

SYNTAX:

rol I back {transaction | tran | work}
[transacti on_nane | savepoi nt_nane]

An Oracle SQL sequence of commands might look like this:
INPUT:

SQL> SET TRANSACTI O\;
SQL> | NSERT | NTO CUSTOVERS VALUES
(" Bubba MacDowel | ", "2222 Blue Lake Way", "Austin", "TX", 39874, 8);
SQL> ROLLBACK;
SQ.> SELECT * FROM CUSTOMERS;

The CUSTOMERS table.
|Name ||Addrees ||City ||State||Zip ||Customer_| D|
Bill Turner ~ |[725N. Deal Parkway |[washington |[DC |[20085|[1
[John K eith |[1220 viaDeLunaDr. ||Jacksonville ||FL ||33581][2

|
|
[Mary Rosenberg |[482 Wannamaker Avenue]|williamsburg|[VA |[23478|[3 |
[David Blanken |[405 N. DavisHighway |[Greenville |[SC |[29652](4 |
|
|
|

[RebeccaLittle |[7753 Woods Lane |[Houston |[TX ||38764|(5
|Izetta Parsons |[1285 Pineapple Highway ||Greenville ||AL |[32854]|6
[John MacDowell|[2000 Lake Lunge Road ||Chicago ||IL |[42854]|7

A Sybase SQL sequence of commands might look like this:
INPUT:

1> begin transaction
2> insert into CUSTOMERS val ues
("Bubba MacDowel | ", "2222 Blue Lake Way", "Austin", "TX", 39874, 8)
3> rol |l back transaction
4> go
1> SELECT * FROM CUSTOVERS
2> go

The CUSTOMERS table.

|Name ||Addrees ||City ||Sta1e||Zip ||Customer_ID|
[Bill Turner ~ |[725N. Deal Parkway |[washington |[DC |[20085|[1 |
[John K eith |[1220 vViaDeLunaDr. ||Jacksonville ||FL ||33581][2 |
[Mary Rosenberg |[482 Wannamaker Avenue]|Williamsburg|[VA |[23478|[3 |
[David Blanken |[405 N. DavisHighway ||Greenville ||SC |[29652][4 |
|
|
|

[RebeccalLittle |[7753 Woods Lane |[Houston |[Tx][38764||5
|Izetta Parsons |[1285 Pineapple Highway ||Greenville ||AL |[32854||6
[John MacDowell|[2000 Lake Lunge Road ||Chicago ||IL |[42854]|7

Asyou can see, the new record was not added because the ROLLBACK statement rolled the insert back.

Suppose you are writing an application for a graphical user interface, such as Microsoft Windows. Y ou have a dialog box that queries a database and
alows the user to change values. If the user chooses OK, the database saves the changes. If the user chooses Cancel, the changes are canceled.
Obviously, this situation gives you an opportunity to use a transaction.

NOTE: Thefollowing code listing uses Oracle SQL syntax; notice the SQL > prompt and line numbers. The subsequent listing uses
Sybase SQL syntax, which lacks the SQL> prompt.

When the dialog box is loaded, these SQL statements are executed:
INPUT:

SQL> SET TRANSACTI ON;

SQL> SELECT CUSTOMERS. NAME, BALANCES. CURR BAL, BALANCES. ACCOUNT_I D
2 FROM CUSTOMERS, BALANCES
3 WHERE CUSTOMERS. NAME = "Rebecca Little"
4 AND CUSTQOVERS. CUSTOVER | D = BALANCES. ACCOUNT_I D

The dialog box allows the user to change the current account balance, so you need to store this value back to the database.
When the user selects OK, the update will run.

INPUT:

SQL> UPDATE BALANCES SET CURR _BAL = 'new-val ue' WHERE ACCOUNT_I D = 6;
SQ.> COW T,

When the user selects Cancel, the ROLLBACK statement is issued.

INPUT:

SQL> ROLLBACK;

When the dialog box is loaded using Sybase SQL, these SQL statements are executed:

INPUT:

1> begin transaction

2> sel ect CUSTOMERS. Nanme, BALANCES. Curr_Bal, BALANCES. Account | D
3> from CUSTOVERS, BALANCES

4> where CUSTOMVERS. Nane = "Rebecca Little"

5> and CUSTOMERS. Custoner | D = BALANCES. Account | D

6> go

The dialog box allows the user to change the current account balance, so you can store this value back to the database.

Here again, when the OK button is selected, the update will run.

INPUT:

1> updat e BALANCES set Curr_BAL = 'new-val ue' WHERE Account _ID = 6
2> commit transaction
3> go

When the user selects Cancel, the ROLLBACK statement is issued.

INPUT:

1> rol I back transaction
2> go

The ROLLBACK statement cancels the entire transaction. When you are nesting transactions, the ROLLBACK statement compl etely cancels all the
transactions, rolling them back to the beginning of the outermost transaction.

If no transaction is currently active, issuing the ROLLBACK statement or the COMM T command has no effect on the database system. (Think of them
as dead commands with no purpose.)

After the COW T statement has been executed, all actions with the transaction are executed. At this point it istoo late to roll back the transaction.

Using Transaction Savepoints

Rolling back a transaction cancels the entire transaction. But suppose you want to "semicommit” your transaction midway through its statements.
Both Sybase and Oracle SQL allow you to save the transaction with a savepoint. From that point on, if a ROLLBACK isissued, the transaction is
rolled back to the savepoint. All statements that were executed up to the point of the savepoint are saved. The syntax for creating a savepoint using
Oracle SQL isasfollows:

SYNTAX:

SAVEPO NT savepoi nt _nane;

Sybase SQL Server's syntax to create a savepoint is the following:
SYNTAX:

save transaction savepoi nt _nane

This following example uses Oracle SQL syntax.
INPUT:

SQ.> SET TRANSACTI ON;

SQL> UPDATE BALANCES SET CURR BAL = 25000 WHERE ACCOUNT I D = 5;
SQL> SAVEPO NT save_ it;

SQL> DELETE FROM BALANCES WHERE ACCOUNT_I D = 5;

SQL> ROLLBACK TO SAVEPO NT save_it;

SQL> COW T;

SQL> SELECT * FROM BALANCES;

The BALANCES table.

|Aver age_BaJ||Curr_BaJ||Account_I D|

[129853 |[s54.22 |1
[5427.22 |[6015.96 |[2
[211.25 |[190.01 |3

[1285.90 |[25000.00 ||5
(123456 |[1543.67 |l6

|
|
|
[73.79 |[25.87 |4 |
|
|
|

|345.25 |[348.03 |7 |
[1250.76 |[1431.26 |[8 |

This example uses Sybase SQL syntax:
INPUT:

1> begin transaction

2> updat e BALANCES set Curr_Bal = 25000 where Account_ID =5
3> save transaction save_it

4> del ete from BALANCES where Account_ID =5

5> rol |l back transaction save_it

6> conmit transaction

7> go

1> select * from BALANCES

2> go

The BALANCES table.

|Aver age_BaI||Cur r_BaI||Account_I D|
[1290853 |[s54.22 |1 |
[5427.22 |l6015.96 |2 |
[211.25 (19001 |3 |
[73.79 |[25.87 |4 |
|
|
|
|

[1285.90 |[25000.00 |[5
(123456 |[1543.67 |6
[345.25 |[348.03 |7
[1250.76 |[1431.26 |[8

The previous examples created a savepoint called SAVE_| T. An update was made to the database that changed the value of the CURR_BAL column of
the BALANCES table. Y ou then saved this change as a savepoint. Following this save, you executed a DELETE statement, but you rolled the
transaction back to the savepoint immediately thereafter. Then you executed COMM T TRANSACTI ON, which committed all commands up to the
savepoint. Had you executed a ROLLBACK TRANSACTI ON after the ROLLBACK TRANSACTI ON savepoi nt _name command, the entire transaction
would have been rolled back and no changes would have been made.

This example uses Oracle SQL syntax:
INPUT:

SQL> SET TRANSACTI O\

SQL> UPDATE BALANCES SET CURR BAL = 25000 WHERE ACCOUNT_I D = 5;
SQL> SAVEPO NT save_it;

SQL> DELETE FROM BALANCES WHERE ACCOUNT_I D = 5;

SQL> ROLLBACK TO SAVEPO NT save_it;

SQL> ROLLBACK;

SQL> SELECT * FROM BALANCES;

The BALANCES table.

|Aver age_BaI||Cur r_BaI||Account_I D|
[129853 |[854.22 |1 |
[5427.22 |l6015.96 |2 |
[211.25 (19001 |3 |
[73.79 |[25.87 |4 |
|
I
|

[1285.90 |[1473.75 |5
(123456 |[1543.67 |6

[345.25 |[348.03 |7
| I I

||1250.76 |[1431.26 ||s ||

This example uses Sybase SQL syntax:
INPUT:

1> begin transaction

2> updat e BALANCES set Curr_Bal = 25000 where Account_ID =5
3> save transaction save_it

4> del ete from BALANCES where Account_ID =5

5> rol |l back transaction save_it

6> rol |l back transaction

7> go

1> select * from BALANCES

2> go

The BALANCES table.

|Aver age_BaI”Cur r_BaI||Account_I D|
[129853 |[854.22 |1
[5427.22 |[6015.96 |2
[211.25 |[190.01 |3
[73.79 |[25.87 |4
[1285.90 |[1473.75 ||5
[123456 |[1543.67 |6
[345.25 |[348.03 |7
[1250.76 |[1431.26 ||8

Summary

A transaction can be defined as an organized unit of work. A transaction usually performs a series of operations that depend on previously executed
operations. If one of these operationsis not executed properly or if datais changed for some reason, the rest of the work in atransaction should be
canceled. Otherwise, if al statements are executed correctly, the transaction's work should be saved.

The process of canceling atransaction is called arollback. The process of saving the work of a correctly executed transaction is called a commit.
SQL syntax supports these two processes through syntax similar to the following two statements:

SYNTAX:

BEG N TRANSACTI ON
statenent 1
statenent 2
statenent 3

ROLLBACK TRANSACTI ON

or
SYNTAX:

BEG N TRANSACTI ON
statenent 1
statenent 2
statenent 3

COW T TRANSACTI ON

Q&A
Q If | have a group of transactions and one transaction is unsuccessful, will the rest of the transactions process?

A No. The entire group must run successfully.

Q After issuing the COW T command, | discovered that | made a mistake. How can | correct theerror?
A Use the DELETE, | NSERT, and UPDATE commands.
Q Must | issuethe COM T command after every transaction?

A No. But it is safer to do so to ensure that no errors were made and no previous transactions are left hanging.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz

1. When nesting transactions, does issuing a ROLLBACK TRANSACTI ON command cancel the current transaction and roll back the batch of
statements into the upper-level transaction? Why or why not?

2. Can savepoints be used to "save of f" portions of atransaction? Why or why not?

3. CanaCow T command be used by itself or must it be embedded?

4. If you issue the COM T command and then discover a mistake, can you still use the ROLLBACK command?

5. Will using a savepoint in the middle of atransaction save all that happened before it automatically?
Exercises

1. Use Persona Oracle7 syntax and correct the syntax (if necessary) for the following:

SQL> START TRANSACTI ON
| NSERT | NTO CUSTOMERS VALUES
("SMTH, 'JOHN)

SQL> COW T;

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the following:

SQL> SET TRANSACTI O\,
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COW T;

3. Use Personal Oracle? syntax and correct the syntax (if necessary) for the following:

SQL> SET TRANSACTI ON;
| NSERT | NTO BALANCES VALUES
('567.34', '230.00', '8');
SQL> ROLLBACK;

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 12 -
Database Security

Today we discuss database security. We specifically look at various SQL statements and constructs that enable you to administer and effectively
manage arelationa database. Like many other topics you have studied thus far, how a database management system implements security varies
widely among products. We focus on the popular database product Oracle? to introduce this topic. By the end of the day, you will understand and be
able to do the following:

1 Create users

1 Change passwords

1 Createroles

1 Useviewsfor security purposes

1 Use synonymsin place of views

Wanted: Database Administr ator

Security is an often-overlooked aspect of database design. Most computer professionals enter the computer world with some knowledge of computer
programming or hardware, and they tend to concentrate on those areas. For instance, if your boss asked you to work on a brand-new project that
obviously required some type of relational database design, what would be your first step? After choosing some type of hardware and software
baseline, you would probably begin by designing the basic database for the project. This phase would gradually be split up among several people--
one of them a graphical user interface designer, another alow-level component builder. Perhaps you, after reading this book, might be asked to code
the SQL queriesto provide the guts of the application. Along with this task comes the responsibility of actually administering and maintaining the
database.

Many times, little thought or planning goes into the actual production phase of the application. What happens when many users are allowed to use
the application across a wide area network (WAN)? With today's powerful personal computer software and with technol ogies such as Microsoft's
Open Database Connectivity (ODBC), any user with accessto your network can find away to get at your database. (We won't even bring up the
complexities involved when your company decides to hook your LAN to the Internet or some other wide-ranging computer network!) Are you
prepared to face this situation?

Fortunately for you, software manufacturers provide most of the tools you need to handle this security problem. Every new release of a network
operating system faces more stringent security requirements than its predecessors. In addition, most major database vendors build some degree of
security into their products, which exists independently of your operating system or network security. |mplementation of these security features
varies widely from product to product.

Popular Database Products and Security

Asyou know by now, many relational database systems are vying for your business. Every vendor wants you for short- and long-term reasons.
During the development phase of a project, you might purchase a small number of product licenses for testing, development, and so forth. However,
the total number of licenses required for your production database can reach the hundreds or even thousands. In addition, when you decide to use a
particular database product, the chances are good that you will stay with that product for years to come. Here are some points to keep in mind when
you examine these products:

Microsoft FoxPro database management system is a powerful database system that is used primarily in single-user environments. FoxPro
uses alimited subset of SQL. No security measures are provided with the system. It also uses an Xhase file format, with each file containing
one table. Indexes are stored in separate files.

Microsoft Accessrelational database management system implements more of SQL. Accessis still intended for use on the PC platform,
athough it does contain a rudimentary security system. The product enables you to build queries and store them within the database. In
addition, the entire database and all its objects exist within onefile.

Oracle? relational database management system supports nearly the full SQL standard. In addition, Oracle has added its own extension to
SQL, called PL*SQL. It contains full security features, including the capability to create roles and assign permissions and privileges on
objectsin the database.

Sybase SQL Server issimilar in power and features to the Oracle product. SQL Server also provides awide range of security features and
hasits own extensions to the SQL language, called Transact-SQL.

The purpose behind describing these productsisto illustrate that not all software is suitable for every application. If you are in a business
environment, your options may be limited. Factors such as cost and performance are extremely important. However, without adequate security
measures, any savings your database creates can be easily offset by security problems.

How Does a Database Become Secur €?

Up to this point you haven't worried much about the "security” of the databases you have created. Has it occurred to you that you might not want
other usersto comein and tamper with the database information you have so carefully entered? What would your reaction be if you logged on to the
server one morning and discovered that the database you had slaved over had been dropped (remember how silent the DROP DATABASE command
is)? We examine in some detail how one popular database management system (Personal Oracle7) enables you to set up a secure database. Y ou will
be able to apply most of this information to other database management systems, so make sure you read this information even if Oracleis not your
system of choice.

TIP: Keep the following questions in mind as you plan your security system:
Who gets the DBA role?

How many users will need access to the database?

Which users will need which privileges and which roles?

How will you remove users who no longer need access to the database?

Personal Oracle7 and Security

Oracle7 implements security by using three constructs:

Users
Roles

Privileges

Creating Users

Users are account names that are allowed to log on to the Oracle database. The SQL syntax used to create a new user follows.

SYNTAX:

CREATE USER user

| DENTI FI ED {BY password | EXTERNALLY}

[DEFAULT TABLESPACE t abl espace]

[TEMPORARY TABLESPACE t abl espace]

[QUOTA {integer [KIM | UNLIM TED} ON tabl espace]

[PROFI LE profile]

If the BY password option is chosen, the system prompts the user to enter a password each time he or she logs on. As an example, create a
username for yourself:

INPUT/OUTPUT:

SQL> CREATE USER Bryan | DENTI FI ED BY CUTI GER;

User created.
Each time | log on with my username Br yan, | am prompted to enter my password: CUTI GER.

If the EXTERNALLY option is chosen, Oracle relies on your computer system logon name and password. When you log on to your system, you have
essentially logged on to Oracle.

NOTE: Someimplementations allow you to use the external, or operating system, password as a default when using SQL
(I DENTI FI ED externally). However, we recommend that you force the user to enter a password by utilizing the | DENTI FI ED BY
clause (I DENTI FI ED BY password).

Asyou can see from looking at the rest of the CREATE USER syntax, Oracle also allows you to set up default tablespaces and quotas. Y ou can learn
more about these topics by examining the Oracle documentation.

Aswith every other CREATE command you have learned about in this book, thereis also an ALTER USER command. It looks like this:

SYNTAX:

ALTER USER user
[1 DENTI FI ED { BY password | EXTERNALLY}]
[DEFAULT TABLESPACE t abl espace]
[TEMPORARY TABLESPACE t abl espace]
[QUOTA {integer [KIM | UNLIM TED} ON tabl espace]
[PROFI LE profile]
[DEFAULT ROLE { role [, role] ...
| ALL [EXCEPT role [, role] ...] | NONg]

Y ou can use this command to change all the user's options, including the password and profile. For example, to change the user Bryan's password,
you typethis:

INPUT/OUTPUT:

SQL> ALTER USER Bryan
2 | DENTI FI ED BY ROSEBUD;

User altered.

To change the default tablespace, type this:
INPUT/OUTPUT:

SQ.> ALTER USER RON
2 DEFAULT TABLESPACE USERS;

User altered.

To remove a user, sSimply issue the DROP USER command, which removes the user's entry in the system database. Here's the syntax for this
command:

SYNTAX:

DROP USER user _nane [CASCADE] ;

If the CASCADE option is used, all objects owned by username are dropped along with the user's account. If CASCADE is not used and the user denoted
by user _nane still owns objects, that user is not dropped. This feature is somewhat confusing, but it is useful if you ever want to drop users.

Creating Roles

A roleisaprivilege or set of privileges that allows a user to perform certain functions in the database. To grant arole to a user, use the following
syntax:

SYNTAX:

GRANT role TO user [WTH ADM N OPTI ON] ;

If WTH ADM N OPTI ON is used, that user can then grant rolesto other users. Isn't power exhilarating?
To remove arole, use the REVOKE command:

SYNTAX:

REVCKE rol e FROM user ;

When you log on to the system using the account you created earlier, you have exhausted the limits of your permissions. Y ou can log on, but that is
about all you can do. Oracle lets you register as one of threeroles:

1 Connect
1 Resource
1 DBA (or database administrator)

These three roles have varying degrees of privileges.

NOTE: If you have the appropriate privileges, you can create your own role, grant privileges to your role, and then grant your role
to auser for further security.

The Connect Role

The Connect role can be thought of as the entry-level role. A user who has been granted Connect role access can be granted various privileges that
alow him or her to do something with a database.

INPUT/OUTPUT:

SQL> GRANT CONNECT TO Bryan;

Grant succeeded.

The Connect role enables the user to select, insert, update, and delete records from tables belonging to other users (after the appropriate permissions
have been granted). The user can also create tables, views, sequences, clusters, and synonyms.

The Resource Role

The Resource role gives the user more access to Oracle databases. In addition to the permissions that can be granted to the Connect role, Resource
roles can also be granted permission to create procedures, triggers, and indexes.

INPUT/OUTPUT:

SQL> GRANT RESOURCE TO Bryan;

Grant succeeded.

The DBA Role

The DBA role includes all privileges. Users with this role are able to do essentially anything they want to the database system. Y ou should keep the
number of users with this role to a minimum to ensure system integrity.

INPUT/OUTPUT:

SQL> GRANT DBA TO Bryan;

Grant succeeded.

After the three preceding steps, user Bryan was granted the Connect, Resource, and DBA roles. Thisis somewhat redundant because the DBA role
encompasses the other two roles, so you can drop them now:

INPUT/OUTPUT:

SQL> REVOKE CONNECT FROM Bryan;
Revoke succeeded.
SQL> REVOKE RESOURCE FROM Bryan;

Revoke succeeded.
Bryan can do everything he needs to do with the DBA role.
User Privileges

After you decide which roles to grant your users, your next step is deciding which permissions these users will have on database objects. (Oracle7
calls these permissions privileges.) The types of privileges vary, depending on what role you have been granted. If you actually create an object, you
can grant privileges on that object to other users as long as their role permits access to that privilege. Oracle defines two types of privileges that can
be granted to users. system privileges and object privileges. (See Tables 12.1 and 12.2.)

System privileges apply systemwide. The syntax used to grant a system privilegeis asfollows:
SYNTAX:

CGRANT system privilege TO {user_nanme | role | PUBLIC}
[WTH ADM N OPTI O\ ;

W TH ADM N OPTI ON enables the grantee to grant this privilege to someone else.
User Accessto Views
The following command permits all users of the system to have CREATE VI EWaccess within their own schema.

INPUT:

SQL> GRANT CREATE VI EW
2 TO PUBLI G

OUTPUT:
Grant succeeded.
ANALYSIS:

The publ i ¢ keyword means that everyone has CREATE VI EWprivileges. Obviously, these system privileges enable the grantee to have alot of
access to nearly all the system settings. System privileges should be granted only to special users or to users who have a heed to use these privileges.
Table 12.1 shows the system privileges you will find in the help files included with Personal Oracle?.

WARNING: Use caution when granting privilegesto publ i c. Granting publ i ¢ givesall users with access to the database
privileges you may not want them to have.

Table12.1. System privilegesin Oracle7.

|System Privilege ||Operations Permitted

ALTER ANY Allows the grantees to alter any index in any schema.

I NDEX

ALTER ANY Allows the grantees to alter any stored procedure, function, or package in any schema.

PROCEDURE

ALTER ANY ROLE ||Allows the grantees to alter any rolein the database.

ALTER ANY Allows the grantees to alter any table or view in the schema.

TABLE

ALTER ANY Allows the grantees to enable, disable, or compile any database trigger in any schema.

TRI GGER

ALTER DATABASE ||Allows the granteesto alter the database.

ALTER USER Allows the grantees to alter any user. This privilege authorizes the grantee to change another user's password or
authentication method, assign quotas on any tablespace, set default and temporary tablespaces, and assign a profile and
default roles.

CREATE ANY Allows the grantees to create an index on any table in any schema.

I NDEX

CREATE ANY Allows the grantees to create stored procedures, functions, and packages in any schema.

PROCEDURE

CREATE ANY Allows the grantees to create tablesin any schema. The owner of the schema containing the table must have space quota on

TABLE the tablespace to contain the table.

?;IE?;ERANY Allows the grantees to create a database trigger in any schema associated with a table in any schema.

CREATE ANY Allows the grantees to create views in any schema.

VI EW

CREATE Allows the grantees to create stored procedures, functions, and packagesin their own schema.

PROCEDURE

|CREATE PROFI LE ||Allows the grantees to create profiles.

[CREATE ROLE ||Allows the granteesto create roles,

[CREATE SYNONYM ||Allows the grantees to create synonyms in their own schemas.

CREATE TABLE Allows the grantees to create tablesin their own schemas. To create atable, the grantees must also have space quota on the
tablespace to contain the table.

[CREATE TRI GGER ||Allows the grantees to create a database trigger in their own schemas.

CREATE USER Allows the grantees to create users. This privilege also allows the creator to assign quotas on any tablespace, set default and
temporary tablespaces, and assign a profile as part of a CREATE USER statement.

[CREATE VIEW ||Allows the grantees to create viewsin their own schemas.

%EEEEE ANY Allows the grantees to delete rows from tables or views in any schema or truncate tables in any schema.

[DRCP ANY I NDEX ||Allows the grantees to drop indexes in any schema.

DROP ANY Allows the grantees to drop stored procedures, functions, or packages in any schema.

PROCEDURE

[DRCP ANY ROLE ||Allows the grantees to drop roles.

DROP ANY Allows the grantees to drop private synonymsin any schema.

SYNONYM

[DRGP ANY TABLE ||Allows the grantees to drop tablesin any schema.

DROP ANY Allows the grantees to drop database triggers in any schema.

TRI GGER

[DROP ANY VI EW || Allows the grantees to drop views in any schema.

[DRGP USER |[Allows the grantees to drop users.

EXECUTE ANY Allows the grantees to execute procedures or functions (standalone or packaged) or reference public package variablesin any

|GRANT ANY ||Allows the grantees to grant any system privilege:

|PRI VI LEGE |

[GRANT ANY ROLE ||Allows the grantees to grant any role in the database.

I NSERT ANY Allows the grantees to insert rows into tables and views in any schema.
TABLE

[LOCK ANY TABLE ||Allows the granteesto lock tables and views in any schema.

SELECT ANY Allows the grantees to reference sequencesin any schema.

SEQUENCE

SELECT ANY Allows the grantees to query tables, views, or snapshotsin any schema.
TABLE

UPDATE ANY Allows the grantees to update rows in tables.

Object privileges are privileges that can be used against specific database objects. Table 12.2 lists the object privilegesin Oracle?.

Table 12.2. Object privileges enabled under Oracle?.

-

2| B
1%

EE
B

NCE

cllell=
T(|m
S| m|| m
m|| Q|| &

(9

GRANT {object_priv | ALL [PRIVILEGES]} [(colum

[, colum]...)]
[, {object_priv | ALL [PRIVILEGES]} [(colum
[, colum] ...)] 1]

ON [schenm.] obj ect
TO {user | role | PUBLIC [, {user | role | PUBLIC]
[WTH GRANT OPTI O\

To remove the object privileges you have granted to someone, use the REVOKE command with the following syntax:
SYNTAX:

REVOKE {object_priv | ALL [PRI VI LEGES]}

{object_priv | ALL [PRIVILEGES]}]

ON [schenm.] obj ect

FROM {user role | PUBLIC} [, {user | role | PUBLIC}]
[CASCADE CONSTRAI NTS]

From Creating a Tableto Granting Roles
Create a table named SALARI ES with the following structure:
INPUT:

NAMVE, CHAR(30)
SALARY, NUNMBER
AGE, NUMVBER

SQL> CREATE TABLE SALARI ES (
2 NAME CHAR(30),

3 SALARY NUMBER,
4 AGE NUMBER);

OUTPUT:

Tabl e creat ed.

Now, create two users--Jack and Jill:
INPUT/OUTPUT:

SQL> create user Jack identified by Jack;
User creat ed.

SQL> create user Jill identified by Jill;
User created.

SQL> grant connect to Jack;

Grant succeeded.

SQL> grant resource to Jill;

Grant succeeded.
ANALYSIS:

So far, you have created two users and granted each a different role. Therefore, they will have different capabilities when working with the database.
First create the SALARI ES table with the following information:

INPUT/OUTPUT:

SQ.> SELECT * FROM SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 61000 55

Y ou could then grant various privileges to this table based on some arbitrary reasons for this example. We are assuming that you currently have
DBA privileges and can grant any system privilege. Even if you do not have DBA privileges, you can still grant object privileges on the SALARI ES
table because you own it (assuming you just created it).

Because Jack belongs only to the Connect role, you want him to have only SELECT privileges.

INPUT/OUTPUT:

SQL> GRANT SELECT ON SALARI ES TO JACK;

Grant succeeded.

Because Jill belongs to the Resource role, you alow her to select and insert some datainto the table. To liven things up a bit, allow Jill to update
values only in the SALARY field of the SALARI ES table.

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON SALARIES TO Jill;
Grant succeeded.
Now that this table and these users have been created, you need to look at how a user accesses a table that was created by another user. Both Jack

and Jill have been granted SELECT access on the SALARI ES table. However, if Jack tries to access the SALARI ES table, he will be told that it does
not exist because Oracle requires the username or schema that owns the tabl e to precede the table name.

Qualifyinga Table

Make a note of the username you used to create the SALARI ES table (mine was Bryan). For Jack to select data out of the SALARI ES table, he must
address the SALARI ES table with that username.

INPUT:

SQ.> SELECT * FROM SALARI ES;
SELECT * FROM SALARI ES
*

OUTPUT:

ERROR at line 1:
ORA- 00942: table or view does not exist

Here Jack was warned that the table did not exist. Now use the owner's username to identify the table:
INPUT/OUTPUT:

SQL> SELECT *
2 FROM Bryan. SALARI ES;

NANVE SALARY ACE
JACK 35000 29
JILL 48000 42
JOHN 61000 55
ANALYSIS:

Y ou can see that now the query worked. Now test out Jill's access privileges. First log out of Jack'slogon and log on again as Jill (using the
password Ji I 1).

INPUT/OUTPUT:

SQL> SELECT *
2 FROM Bryan. SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 61000 55

That worked just fine. Now try to insert a new record into the table.
INPUT/OUTPUT:

SQL> | NSERT | NTO Bryan. SALARI ES
2 VALUES('JCE' , 85000, 38);
I NSERT | NTO Bryan. SALARI ES
*

ERROR at line 1:
ORA-01031: insufficient privileges

ANALYSIS:
This operation did not work because Jill does not have | NSERT privileges on the SALARI ES table.
INPUT/OUTPUT:

SQL> UPDATE Bryan. SALARI ES
2 SET AGE = 42

3 WHERE NAME = 'JOHN ;
UPDATE Bryan. SALARI ES
*

ERROR at line 1:
ORA-01031: insufficient privileges

ANALYSIS:
Once again, Jill tried to go around the privileges that she had been given. Naturally, Oracle caught this error and corrected her quickly.
INPUT/OUTPUT:

SQL> UPDATE Bryan. SALARI ES
2 SET SALARY = 35000
3 WHERE NAME = 'JOHN ;

1 row updat ed.

SQL> SELECT *
2 FROM Bryan. SALARI ES;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 55
ANALYSIS:

Y ou can see now that the update works as long as Jill abides by the privileges she has been given.
Using Viewsfor Security Purposes

Aswe mentioned on Day 10, "Creating Views and Indexes," views are virtual tables that you can use to present aview of datathat is different from
the way it physically exists in the database. Today you will learn more about how to use views to implement security measures. First, however, we
explain how views can simplify SQL statements.

Earlier you learned that when a user must access a table or database object that another user owns, that object must be referenced with a username.
Asyou can imagine, this procedure can get wordy if you have to write writing several SQL queriesin arow. More important, novice users would be
required to determine the owner of atable before they could select the contents of atable, which is not something you want all your users to do. One
simple solution is shown in the following paragraph.

A Solution to Qualifying a Table or View

Assume that you are logged on as Jack, your friend from earlier examples. Y ou learned that for Jack to look at the contents of the SALAR! ES table,
he must use the following statement:

INPUT:

SQL> SELECT *
2 FROM Bryan. SALARI ES;

OUTPUT:

NANVE SALARY ACE
JACK 35000 29
JILL 48000 42
JOHN 35000 55

If you were to create aview named SALARY_VI EW, a user could simply select from that view.

INPUT/OUTPUT:

SQL> CREATE VI EW SALARY_VI EW
2 AS SELECT *
3 FROM Bryan. SALARI ES;

Vi ew creat ed.

SQL> SELECT * FROM SALARY_VI EW

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 55
ANALYSIS:

The preceding query returned the same values as the records returned from Br yan. SALARI ES.

Using Synonymsin Place of Views

SQL also provides an object known as a synonym. A synonym provides an alias for atable to simplify or minimize keystrokes when using atablein
an SQL statement. There are two types of synonyms: private and public. Any user with the resource role can create a private synonym. On the other
hand, only a user with the DBA role can create a public synonym.

The syntax for a public synonym follows.
SYNTAX:

CREATE [PUBLI C] SYNONYM [schena.] synonym
FOR [schenm.] obj ect [@bl i nk]

In the preceding example, you could have issued the following command to achieve the same results:
INPUT/OUTPUT:

SQL> CREATE PUBLI C SYNONYM SALARY FOR SALARI ES

Synonym cr eat ed.

Then log back on to Jack and type this:

INPUT/OUTPUT:

SQL> SELECT * FROM SALARY;

NANVE SALARY AGE
JACK 35000 29
JILL 48000 42
JOHN 35000 55

Using Viewsto Solve Security Problems

Suppose you changed your mind about Jack and Jill and decided that neither of them should be able to look at the SALARI ES table completely. You
can use views to change this situation and allow them to examine only their own information.

INPUT/OUTPUT:

SQL> CREATE VI EW JACK_SALARY AS
2 SELECT * FROM BRYAN. SALARI ES
3 WHERE NAME = ' JACK' ;

Vi ew creat ed.

INPUT/OUTPUT:

SQL> CREATE VI EW JI LL_SALARY AS
2 SELECT * FROM BRYAN. SALARI ES
3 VWHERE NAME = '"JILL'";

Vi ew creat ed.

INPUT/OUTPUT:

SQL> GRANT SELECT ON JACK_SALARY
2 TO JACK;

G ant succeeded.

INPUT/OUTPUT:

SQL> GRANT SELECT ON JI LL_SALARY
2 TO JILL;

Grant succeeded.

INPUT/OUTPUT:

SQL> REVOKE SELECT ON SALARI ES FROM JACK;

Revoke succeeded.

INPUT/OUTPUT:

SQL> REVOKE SELECT ON SALARI ES FROM JI LL;

Revoke succeeded.

Now log on as Jack and test out the view you created for him.
INPUT/OUTPUT:

SQL> SELECT * FROM Bryan. JACK_SALARY;

NANVE SALARY AGE
Jack 35000 29
INPUT/OUTPUT:

SQL> SELECT * FROM PERKI NS. SALARI ES;
SELECT * FROM PERKI NS. SALARI ES

*

ERROR at line 1:
ORA- 00942: table or view does not exist

Log out of Jack's account and test Jill's:
INPUT/OUTPUT:

SQL> SELECT * FROM Bryan. JI LL_SALARY;

NANMVE SALARY AGE
Jill 48000 42
ANALYSIS:

Y ou can see that access to the SALAR! ES table was completely controlled using views. SQL enables you to create these views as you like and then

assign permissions to other users. This technique allows a great deal of flexibility.
The syntax to drop asynonym is
SYNTAX:

SQL> drop [public] synonym synonym nane;

NOTE: By now, you should understand the importance of keeping to a minimum the number of people with DBA roles. A user
with this access level can have complete access to all commands and operations within the database. Note, however, that with
Oracle and Sybase you must have DBA-level access (or SA-level in Sybase) to import or export data on the database.

Usingthe WITH GRANT OPTION Clause

What do you think would happen if Jill attempted to pass her UPDATE privilege on to Jack? At first glance you might think that Jill, because she was
entrusted with the UPDATE privilege, should be able to passit on to other users who are allowed that privilege. However, using the GRANT statement
asyou did earlier, Jill cannot pass her privileges on to others:

SQL> GRANT SELECT, UPDATE(SALARY) ON Bryan. SALARIES TO Jill;
Here isthe syntax for the GRANT statement that was introduced earlier today:
SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(colum

[, colum]...)]

[, {object_priv | ALL [PRIVILEGES]} [(colum

[, colum] ...)] 1]

ON [schenm.] obj ect

TO {user | role | PUBLIC} [, {user | role | PUBLIC}]

[W TH GRANT GPTI ON]

What you are looking for isthe W TH GRANT OPTI ON clause at the end of the GRANT statement. When object privileges are granted and W TH
GRANT OPTI ON is used, these privileges can be passed on to others. So if you want to allow Jill to pass on this privilege to Jack, you would do the
following:

INPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
2 ON Bryan. SALARIES TO JILL
3 WTH GRANT OPTI ON,

OUTPUT:

Grant succeeded.

Jill could then log on and issue the following command:
INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
2 ON Bryan. SALARI ES TO JACK;

Grant succeeded.

Summary

Security is an often-overlooked topic that can cause many problemsif not properly thought out and administered. Fortunately, SQL provides severa
useful commands for implementing security on a database.

Users are originally created using the CREATE USER command, which sets up a username and password for a user. After the user account has been
set up, this user must be assigned to arole in order to accomplish any work. The three roles available within Oracle7 are Connect, Resource, and
DBA. Each role has different levels of access to the database, with Connect being the simplest and DBA having access to everything.

The GRANT command gives a permission or privilege to a user. The REVOKE command can take that permission or privilege away from the user. The
two types of privileges are object privileges and system privileges. The system privileges should be monitored closely and should not be granted to
inexperienced users. Giving inexperienced users access to commands allows them to (inadvertently perhaps) destroy data or databases you have
painstakingly set up. Object privileges can be granted to give users access to individual objects existing in the owner's database schema.

All these techniques and SQL statements provide the SQL user with a broad range of tools to use when setting up system security. Although we
focused on the security features of Oracle7, you can apply much of thisinformation to the database system at your site. Just remember that no matter
what product you are using, it isimportant to enforce some level of database security.

Q&A
Q | understand the need for security, but doesn't Oracle carry it a bit too far?

A No, especialy in larger applications where there are multiple users. Because different users will be doing different types of work in the
database, you'll want to limit what users can and can't do. Users should have only the necessary roles and privileges they need to do their
work.

Q It appearsthat thereisa security problem when the DBA that created my 1D also knows the password. Isthistrue?

A Yesitistrue. The DBA creates the IDs and passwords. Therefore, users should use the ALTER USER command to change their ID and
password immediately after receiving them.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. What is wrong with the following statement?
SQL> GRANT CONNECTI ON TO DAVI D;
2. True or False (and why): Dropping a user will cause all objects owned by that user to be dropped as well.
3. What would happen if you created atable and granted select privileges on the table to publ i ¢?
4. Isthefollowing SQL statement correct?

SQ.> create user RON
identified by RON;

5. Isthefollowing SQL statement correct?

SQL> alter RON
identified by RON;

6. Isthefollowing SQL statement correct?
SQL> grant connect, resource to RON,

7. If you own atable, who can select from that table?

Exercise

1. Experiment with your database system's security by creating a table and then by creating a user. Give this user various privileges and then
take them away.

{ ¢ Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
(‘JA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

- Day 13 -
Advanced SQL Topics
Objectives

Over the course of the past 12 days, you have examined every major topic used to write powerful queriesto retrieve data from a database. Y ou have
also briefly explored aspects of database design and database security. Today's purpose is to cover advanced SQL topics, which include the
following:

1 Temporary tables
1 Cursors

1 Stored procedures
1 Triggers

1 Embedded SQL

NOTE: Today's examples use Oracle7's PL/SQL and Microsoft/Sybase SQL Server's Transact-SQL implementations. We made an
effort to give examples using both flavors of SQL wherever possible. Y ou do not need to own a copy of either the Oracle? or the
SQL Server database product. Feel free to choose your database product based on your requirements. (If you are reading thisto gain
enough knowledge to begin a project for your job, chances are you won't have a choice.)

NOTE: Although you can apply most of the examples within this book to any popular database management system, this statement
does not hold for all the material covered today. Many vendors still do not support temporary tables, stored procedures, and triggers.
Check your documentation to determine which of these features are included with your favorite database system.

Temporary Tables

Thefirst advanced topic we discuss is the use of temporary tables, which are simply tables that exist temporarily within a database and are
automatically dropped when the user logs out or their database connection ends. Transact-SQL creates these temporary tablesin thet enpdb
database. This database is created when you install SQL Server. Two types of syntax are used to create atemporary table.

SYNTAX:

SYNTAX 1:
create table #table_nane (
fieldl datatype,

1.‘i el dn dat at ype)

Syntax 1 creates atablein thet enpdb database. This table is created with a unique name consisting of a combination of the table name used in the
CREATE TABLE command and a date-time stamp. A temporary tableis available only to its creator. Fifty users could simultaneously issue the
following commands:

1> create table #al buns (
2> artist char(30),

3> al bum nane char (50),
4> medi a_type int)

5> go

The pound sign (#) before the table's name is the identifier that SQL Server usesto flag atemporary table. Each of the 50 users would essentially
receive aprivate table for his or her own use. Each user could update, insert, and delete records from this table without worrying about other users
invalidating the tabl€e's data. This table could be dropped as usual by issuing the following command:

1> drop tabl e #al buns
2> go

The table could also be dropped automatically when the user who created it logs out of the SQL Server. If you created this statement using some
type of dynamic SQL connection (such as SQL Server's DB-Library), the table will be deleted when that dynamic SQL connection is closed.

Syntax 2 shows another way to create atemporary table on an SQL Server. This syntax produces a different result than the syntax used in syntax 1,
so pay careful attention to the syntactical differences.

SYNTAX:

SYNTAX 2:
create table tenpdb..tabl ename (
fieldl datatype,

fi el dn dat at ype)

Creating atemporary table using the format of syntax 2 still resultsin atable being created in the t enpdb database. This table's name has the same
format as the name for the table created using syntax 1. The differenceis that this table is not dropped when the user's connection to the database
ends. Instead, the user must actually issue a DROP TABLE command to remove this table from the t enpdb database.

TIP: Another way to get rid of atable that was created using the creat e tabl e tenpdb. . t abl enane syntax isto shut down and
restart the SQL Server. This method removes all temporary tables from the t enpdb database.

Examples 13.1 and 13.2 illustrate the fact that temporary tables are indeed temporary, using the two different forms of syntax. Following these two
examples, Example 13.3 illustrates a common usage of temporary tables: to temporarily store data returned from a query. This data can then be used
with other queries.

Y ou need to create a database to use these examples. The database MUSI Cis created with the following tables:
1 ARTISTS
1 MEDIA
1 RECORDI NGS

Use the following SQL statements to create these tables:

INPUT:

1> create table ARTISTS (
2> nane char (30),

3> honebase char (40),

4> style char(20),

5> artist_id int)

6> go

1> create table MEDI A (
2> nmedi a_type int,

3> description char(30),
4> price float)

5> go

1> create tabl e RECORDI NGS (
2> artist_id int,

3> nedia_type int,

4> title char(50),

5> year int)

6> go

NOTE: Tables 13.1, 13.2, and 13.3 show some sample data for these tables.

Table13.1. The ARTIST Stable.

|Name ||Homebase ||Sty|e ||Artist_| D|
[Soul Asylum |[Minneapolis [[Rock |[1 |
[Maurice Ravel ||France |[Classical|[2 |
|Dave Matthews Band ||Char|otteﬂ/ille||R0ck ||3 |
[Vince Gill [Nashville ||Country |[4 |
|Oingo Boingo |[LosAngeles [[Pop |5 |
[Crowded House |[New Zealand |[Pop |6 |
[Mary Chapin-Carpenter||Nashville ||Country |7 |
|Edward MacDowell ~ ||U.SA. |[Classical||s |

Table 13.2. The MEDIA table.

|Media_Type||D%cription||Price|
[1 |[Record][4.99 |
12 |[Tape [|9.99 |
3 |lco |[13.99|
4 |[cD-ROM][29.99|
5 |[DAT |[19.99|

Table 13.3. The RECORDINGS table.

|Artist_|d||M edia_Type||TitIe ||Year|
1 [[2 |[Hang Time |[1988]
[1 |3 |[Made to Be Broken |[1986]
[2 |[3 |[Bolero |[1990]
3 |5 ||Under the Table and Dreaming]|1994|
4 |E |[When Love Finds Y ou |[1994]
5 |[2 |[Boingo |[1987]
5 [[1 |[Dead Man's Party |[1984]
l6 [[2 ||woodface |[1990|
6 |[3 |[Together Alone |[1993]
[7 |5 ||Come On, Come On [[1992]
[7 [[3 ||Stonesiin the Road |[1994]
s |5 ||Second Piano Concerto |[1985]

Example 13.1

Y ou can create atemporary tablein the t enpdb database. After inserting adummy record into this table, log out. After logging back into SQL
Server, try to select the dummy record out of the temporary table. Note the results:

INPUT:

1> create table #al buns (

2> artist char(30),

3> al bum nane char (50),

4> nedi a_type int)

5> go

1> insert #al buns val ues ("The Repl acenents", "Pleased To Meet Me", 1)
2> go

Now log out of the SQL Server connection using the EXI T (or QUI T) command. After logging back in and switching to the database you last used,
try the following command:

INPUT:

1> sel ect * from #al buns
2> go

ANALYSIS:

This table does not exist in the current database.
Example 13.2

Now create the table with syntax 2:

INPUT:

1> create table tenpdb..al buns (

2> artist char(30),

3> al bum nane char (50),

4> medi a_type int)

5> go

1> insert #al buns values ("The Replacenents", "Pleased To Meet Me", 1)
2> go

After logging out and logging back in, switch to the database you were using when creat e tabl e tenpdb. . al buns() wasissued; then issuethe
following command:

INPUT:

1> select * from #al buns
2> go

Thistime, you get the following results:

OUTPUT:

arti st al bum nane medi a_t ype
The Repl acenents Pl eased To Meet Me 1

Example 13.3

This example shows a common usage of temporary tables: to store the results of complex queriesfor usein later queries.

INPUT:

1> create table #tenp_info (

2> nane char (30),

3> honebase char (40),

4> style char(20),

5> artist_id int)

6> insert #tenp_info

7> select * from ARTI STS where honebase = "Nashville"
8> sel ect RECORDI NGS. * from RECORDI NGS, ARTI STS

9> where RECORDINGS. artist_id = #tenp_info.artist_id
10> go

The preceding batch of commands selects out the recording information for all the artists whose home base is Nashville.

The following command is another way to write the set of SQL statements used in Example 13.3:

1> sel ect ARTISTS.* from ARTI STS, RECORDI NGS wher e ARTI STS. honebase = "Nashville"
2> go

Cursors

A database cursor is similar to the cursor on aword processor screen. Asyou press the Down Arrow key, the cursor scrolls down through the text
oneline at atime. Pressing the Up Arrow key scrolls your cursor up one line at atime. Hitting other keys such as Page Up and Page Down resultsin
aleap of severa linesin either direction. Database cursors operate in the same way.

Database cursors enable you to select a group of data, scroll through the group of records (often called a recordset), and examine each individual line
of data as the cursor pointsto it. Y ou can use a combination of local variables and a cursor to individually examine each record and perform any
external operation needed before moving on to the next record.

One other common use of cursorsisto save aquery'sresults for later use. A cursor's result set is created from the result set of a SELECT query. If
your application or procedure requires the repeated use of a set of records, it is faster to create a cursor once and reuse it several times than to
repeatedly query the database. (And you have the added advantage of being able to scroll through the query's result set with a cursor.)

Follow these stepsto create, use, and close a database cursor:
1. Create the cursor.
2. Open the cursor for use within the procedure or application.
3. Fetch arecord's data one row at atime until you have reached the end of the cursor's records.
4, Close the cursor when you are finished with it.
5. Deallocate the cursor to completely discard it.
Creating a Cursor
To create a cursor using Transact-SQL, issue the following syntax:

SYNTAX:

decl are cursor_nane cursor
for select_statenent
[for {read only | update [of colum_nane_list]}]

The Oracle7 SQL syntax used to create a cursor looks like this:

SYNTAX:

DECLARE cursor _name CURSOR
FOR { SELECT command | statenent_name | bl ock_nane}

By executing the DECLARE cur sor _nane CURSOR statement, you have defined the cursor result set that will be used for all your cursor operations.

A cursor has two important parts: the cursor result set and the cursor position.
The following statement creates a cursor based on the ARTI STS table:
INPUT:

1> create Artists_Cursor cursor
2> for select * from ARTI STS
3> go

ANALYSIS:

Y ou now have a simple cursor object named Arti st s_Cur sor that contains all the recordsin the ARTI STS table. But first you must open the
cursor.

Opening a Cursor
The simple command to open acursor for useis

SYNTAX:

open cursor_nane

Executing the following statement opens Arti st s_Cur sor for use:

1> open Artists_Cursor
2> go

Now you can use the cursor to scroll through the result set.

Scrolling a Cursor

To scroll through the cursor's result set, Transact-SQL provides the following FETCH command.
SYNTAX:

fetch cursor_nane [into fetch_target list]

Oracle SQL provides the following syntax:

FETCH cursor_nanme {INTO : host_variable

[[I NDI CATOR] : indicator_variable]
[, . host_variabl e
[[I NDI CATOR] : indicator_variable]]...

| USI NG DESCRI PTOR descriptor }

Each time the FETCH command is executed, the cursor pointer advances through the result set one row at atime. If desired, data from each row can
be fetched into the fetch_target |ist variables.

NOTE: Transact-SQL enables the programmer to advance more than one row at atime by using the following command: set
cursor rows number for cursor_name. Thiscommand cannot be used with the | NTO clause, however. It is useful only to
jump forward a known number of rows instead of repeatedly executing the FETCH statement.

The following statements fetch the datafrom the Arti sts_Cur sor result set and return the data to the program variables:
INPUT:

1> decl are @ane char(30)
2> decl are @onebase char (40)

3> declare @tyle char(20)

4> declare @rtist_id int

5> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
6> print @ane

7> print @onebase

8> print @tyle

9> print char(@rtist_id)

10> go

Y ou can use the WHI LE loop (see Day 12, "Database Security") to loop through the entire result set. But how do you know when you have reached
the end of the records?

Testing a Cursor's Status

Transact-SQL enables you to check the status of the cursor at any time through the maintenance of two global variables: @@ql st at us and
@@ owcount .,

The @& ql st at us variable returns status information concerning the last executed FETCH statement. (The Transact-SQL documentation states that
no command other than the FETCH statement can modify the @& ql st at us variable.) This variable contains one of three values. The following table
appears in the Transact-SQL reference manuals:

|Status||Meani ng |
[0 |[Successful completion of the FETCH statement. |
[|[The FETCH statement resulted inanerror. |
[2 |[Thereisno more datain the result set. |

The @@ owcount variable contains the number of rows returned from the cursor's result set up to the previous fetch. Y ou can use this number to
determine the number of records in a cursor's result set.

The following code extends the statements executed during the discussion of the FETCH statement. Y ou now use the WHI LE loop with the
@ql st at us variable to scroll the cursor:

INPUT:

1> decl are @uane char (30)

2> decl are @onebase char (40)

3> declare @tyle char(20)

4> declare @rtist_id int

5> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
6> while (@ql status = 0)

7> begin

8> print @ane

9> print @onebase

10> print @tyle

11> print char(@rtist_id)

12> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
13> end

14> go

ANALYSIS:

Now you have afully functioning cursor! The only step left is to close the cursor.
Closing a Cursor

Closing a cursor is avery simple matter. The statement to close a cursor is as follows:
SYNTAX:

cl ose cursor_nane

This cursor till exists; however, it must be reopened. Closing a cursor essentially closes out its result set, not its entire existence. When you are
completely finished with a cursor, the DEALLOCATE command frees the memory associated with a cursor and frees the cursor name for reuse. The

DEALLOCATE statement syntax is as follows:
SYNTAX:

deal | ocat e cursor cursor_nane
Example 13.4 illustrates the compl ete process of creating a cursor, using it, and then closing it, using Transact-SQL .

Example 13.4
INPUT:

1> decl are @ane char (30)

2> decl are @onebase char (40)

3> declare @tyle char(20)

4> declare @rtist_id int

5> create Artists_Cursor cursor

6> for select * from ARTI STS

7> open Artists_Cursor

8> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
9> while (@®ql status = 0)

10> begin

11> print @ane

12> print @onebase

13> print @tyle

14> print char(@rtist_id)

15> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
16> end

17> close Artists_Cursor
18> deal | ocate cursor Artists_Cursor
19> go

NOTE: Thefollowing is sample data only.

OUTPUT:

Soul Asyl um M nneapol i s Rock 1
Mauri ce Ravel France Cl assi cal 2
Dave Matthews Band Charlottesville Rock 3
Vince G 11 Nashvi | | e Country 4
O ngo Boi ngo Los Angel es Pop 5
Crowded House New Zeal and Pop 6
Mary Chapi n- Car pent er Nashvil | e Country 7
Edwar d MacDowel | U S A Cl assi cal 8

The Scope of Cursors

Unlike tables, indexes, and other objects such as triggers and stored procedures, cursors do not exist as database objects after they are created.
Instead, cursors have alimited scope of use.

WARNING: Remember, however, that memory remains allocated for the cursor, even though its name may no longer exist. Before
going outside the cursor's scope, the cursor should always be closed and deallocated.

A cursor can be created within three regions:

1 Inasession--A session begins when a user logs on. If the user logged on to an SQL Server and then created a cursor, then cursor_name
would exist until the user logged off. The user would not be able to reuse cursor_name during the current session.

1 Stored procedure--A cursor created inside a stored procedure is good only during the execution of the stored procedure. As soon as the
stored procedure exits, cur sor _namne isno longer valid.

1 Trigger--A cursor created inside atrigger has the same restrictions as one created inside a stored procedure.

Creating and Using Stored Procedures

The concept of stored proceduresis an important one for the professional database programmer to master. Stored procedures are functions that
contain potentially large groupings of SQL statements. These functions are called and executed just as C, FORTRAN, or Visual Basic functions
would be called. A stored procedure should encapsulate alogical set of commands that are often executed (such as a complex set of queries, updates,
or inserts). Stored procedures enable the programmer to simply call the stored procedure as a function instead of repeatedly executing the statements
inside the stored procedure. However, stored procedures have additional advantages.

Sybase, Inc., pioneered stored procedures with its SQL Server product in the late 1980s. These procedures are created and then stored as part of a
database, just as tables and indexes are stored inside a database. Transact SQL permits both input and output parameters to stored procedure calls.
This mechanism enables you to create the stored proceduresin a generic fashion so that variables can be passed to them.

One of the higgest advantages to stored procedures liesin the design of their execution. When executing alarge batch of SQL statementsto a
database server over a network, your application isin constant communication with the server, which can create an extremely heavy load on the
network very quickly. As multiple users become engaged in this communication, the performance of the network and the database server becomes
increasingly slower. The use of stored procedures enables the programmer to greatly reduce this communication load.

After the stored procedure is executed, the SQL statements run sequentially on the database server. Some message or datais returned to the user's
computer only when the procedure is finished. This approach improves performance and offers other benefits as well. Stored procedures are actually
compiled by database engines the first time they are used. The compiled map is stored on the server with the procedure. Therefore, you do not have
to optimize SQL statements each time you execute them, which also improves performance.

Use the following syntax to create a stored procedure using Transact-SQL.:

SYNTAX:

create procedure procedure_nane

[[(] @ar anet er _nane
datatype [(length) | (precision [, scale])
[= defaul t][output]

[, ©@parameter_nane
datatype [(length) | (precision [, scale])
[= default][output]]...[)]]

[with reconpil e]

as SQL_statenents

This EXECUTE command executes the procedure:

SYNTAX:

execute [@eturn_status =]
procedur e_nane
[[@araneter_nane =] val ue |
[@araneter_nanme =] @ariable [output]...]]
[with reconpil e]

Example 13.5
This example creates a simple procedure using the contents of Example 13.4.

INPUT:

1> create procedure Print_Artists_Name
2> as

3> decl are @ane char (30)

4> decl are @uonebase char (40)

5> decl are @tyl e char(20)

6> declare @rtist_id int

7> create Artists_Cursor cursor

8> for select * from ARTI STS

9> open Artists_Cursor

10> fetch Artists_Cursor into @ane, @onebase, @tyle, @rtist_id
11> while (@&ql status = 0)

12> begin

13> print @ane

14> fetch Artists_Cursor into @ane, @onebase, @Gtyle, @rtist_id
15> end

16> cl ose Artists_Cursor

17> deal | ocate cursor Artists_Cursor

18> go

Y ou can now executethe Print _Artists_Name procedure using the EXECUTE statement:

INPUT:

1> execute Print_Artists_Nane
2> go

OUTPUT:

Soul Asyl um

Mauri ce Rave

Dave Matthews Band
Vince GII

O ngo Boi ngo

Crowded House

Mary Chapi n- Car pent er
Edwar d MacDowel |

Example 13.5 was a small stored procedure; however, a stored procedure can contain many statements, which means you do not have to execute
each statement individually.

Using Stored Procedure Parameters

Example 13.5 was an important first step because it showed the use of the simplest CREATE PROCEDURE statement. However, by looking at the
syntax given here, you can see that there is more to the CREATE PROCEDURE statement than was demonstrated in Example 13.5. Stored procedures
also accept parameters as input to their SQL statements. |n addition, data can be returned from a stored procedure through the use of output
parameters.

Input parameter names must begin with the @symbol, and these parameters must be avalid Transact-SQL data type. Output parameter names must
also begin with the @symbol. In addition, the QUTPUT keyword must follow the output parameter names. (Y ou must also give this QUTPUT keyword
when executing the stored procedure.)

Example 13.6 demonstrates the use of input parameters to a stored procedure.
Example 13.6

The following stored procedure selects the names of all artists whose mediatypeisa CD:

1> create procedure Match_Nanes_To_Media @escription char(30)
2> as

3> sel ect ARTI STS. nane from ARTI STS, MeEDI A, RECORDI NGS

4> where MEDI A description = @lescription and

5> MEDI A. medi a_t ype = RECORDI NGS. nedi a_t ype and

6> RECORDI NGS. artist_id = ARTISTS. artist_id

7> go

1> execute Match_Nanes_To_Media "CD

2> go

Executing this statement would return the following set of records:

OUTPUT:

NAMVE

Soul Asyl um

Mauri ce Rave

Vince GII

Crowded House

Mary Chapi n- Car pent er

Example 13.7
This example demonstrates the use of output parameters. This function takes the artist's homebase as input and returns the artist's name as output:
INPUT:

1> create procedure Match_Honebase_To_Nane @onebase char(40), @ane char(30) out put
2> as

3> sel ect @ane = nane from ARTI STS where honebase = @onebase

4> go

1> declare @eturn_nanme char (30)

2> execute Match_Honebase_To_Nanme "Los Angel es", @eturn_nanme = @uane output

3> print @oane

4> go

OUTPUT:

O ngo Boi ngo
Removing a Stored Procedure

By now, you can probably make an educated guess as to how to get rid of a stored procedure. If you guessed the DROP command, you are absolutely
correct. The following statement removes a stored procedure from a database:

SYNTAX:

drop procedure procedure_nane

The DROP command is used frequently: Before a stored procedure can be re-created, the old procedure with its name must be dropped. From
personal experience, there are few instances in which a procedure is created and then never modified. Many times, in fact, errors occur somewhere
within the statements that make up the procedure. We recommend that you create your stored procedures using an SQL script file containing all your
statements. Y ou can run this script file through your database server to execute your desired statements and rebuild your procedures. This technique
enables you to use common text editors such as vi or Windows Notepad to create and save your SQL scripts. When running these scripts, however,
you need to remember to always drop the procedure, table, and so forth from the database before creating a new one. If you forget the DROP
command, errors will result.

The following syntax is often used in SQL Server script files before creating a database object:

SYNTAX:

if exists (select * from sysobjects where name = "procedure_nane")
begi n
drop procedure procedure_nane
end
go
create procedure procedure_nane
as

These commands check the SYSOBJECTS table (where database object information is stored in SQL Server) to see whether the object exists. If it
does, it is dropped before the new one is created. Creating script files and following the preceding steps saves you alarge amount of time (and many
potential errors) in the long run.

Nesting Stored Procedures

Stored procedure calls can also be nested for increased programming modularity. A stored procedure can call another stored procedure, which can
then call another stored procedure, and so on. Nesting stored procedures is an excellent idea for several reasons:

1 Nesting stored procedures reduces your most complex queriesto afunctional level. (Instead of executing 12 queriesin arow, you could
perhaps reduce these 12 queries to three stored procedure calls, depending on the situation.)

1 Nesting stored procedures improves performance. The query optimizer optimizes smaller, more concise groups of queries more effectively

than one large group of statements.

When nesting stored procedures, any variables or database objects created in one stored procedure are visible to al the stored proceduresit calls.
Any local variables or temporary objects (such as temporary tables) are deleted at the end of the stored procedure that created these elements.

When preparing large SQL script files, you might run into table or database object referencing problems. Y ou must create the nested stored
procedures before you can call them. However, the calling procedure may create temporary tables or cursors that are then used in the called stored
procedures. These called stored procedures are unaware of these temporary tables or cursors, which are created later in the script file. The easiest
way around this problem isto create the temporary objects before al the stored procedures are created; then drop the temporary items (in the script
file) before they are created again in the stored procedure. Are you confused yet? Example 13.8 should help you understand this process.

Example 13.8
INPUT:

1> create procedure Exanpl el3_8b

2> as

3> select * from #tenp_table
4> go

1> create procedure Exanpl el3_8a
2> as

3> create #tenp_table (

4> data char (20),

5> nunmbers int)

6> execut e Exanpl el3_8b

7> drop table #tenp_table

8> go

ANALYSIS:

Asyou can see, procedure Exanpl e13_8b usesthe#t enp_t abl e. However, the #t enp_t abl e isnot created until later (in procedure
Exanpl e13_8a). Thisresultsin a procedure creation error. In fact, because Exanpl e13_8b was not created (owing to the missing table
#t enp_t abl e), procedure Exanpl e13_8a is not created either (because Exanpl e13_8b was not created).

The following code fixes this problem by creating the #t enp_t abl e before the first procedure is created. #t enp_t abl e isthen dropped before the
creation of the second procedure:

INPUT:

1> create #tenp_table (
2> data char (20),
3> nunbers int)

4> go

1> create procedure Exanpl el3_8b
2> as

3> select * from #tenp_table
4> go

1> drop table #tenp_table

2> go

1> create procedure Exanpl el3_8a
2> as

3> create #tenp_table (

4> data char (20),

5> nunbers int)

6> execut e Exanpl el3_8b

7> drop table #tenp_table

8> go

Designing and Using Triggers
A trigger is essentially a special type of stored procedure that can be executed in response to one of three conditions:
1 An UPDATE

1 An| NSERT

1 A DELETE

The Transact-SQL syntax to create atrigger looks like this:
SYNTAX:

create trigger trigger_nane
on tabl e_nane
for {insert, update, delete}
as SQL_Statenents

The Oracle7 SQL syntax used to create atrigger follows.
SYNTAX:

CREATE [OR REPLACE] TRI GGER [schema.]trigger_nane

{BEFORE | AFTER}

{DELETE | I NSERT | UPDATE [COF colum[, colum]...]}
[OR {DELETE | I NSERT | UPDATE [OF colum [, colum] ...]}]...

ON [schena.]tabl e
[[REFERENCI NG { OLD [AS] old [NEW[AS] new]
| NEW[AS] new [OLD [AS] old]}]

FOR EACH ROW
[WHEN (condition)]]
pl /sqgl statenents...

Triggers are most useful to enforce referential integrity, as mentioned on Day 9, "Creating and Maintaining Tables," when you learned how to create
tables. Referential integrity enforces rules used to ensure that data remains valid across multiple tables. Suppose a user entered the following
command:

INPUT:

1> insert RECORDI NGS val ues (12, "The Cross of Changes", 3, 1994)
2> go

ANALYSIS:

This perfectly valid SQL statement inserts a new record in the RECORDI NGS table. However, a quick check of the ARTI STS table shows that thereis
noArtist_ID = 12. A user with | NSERT privilegesin the RECORDI NGS table can completely destroy your referential integrity.

NOTE: Although many database systems can enforce referential integrity through the use of constraints in the CREATE TABLE
statement, triggers provide agreat deal more flexibility. Constraints return system error messages to the user, and (as you probably
know by now) these error messages are not always helpful. On the other hand, triggers can print error messages, call other stored
procedures, or try to rectify a problem if necessary.

Triggersand Transactions
The actions executed within a trigger are implicitly executed as part of atransaction. Here's the broad sequence of events:
1. A BEG N TRANSACTI ON statement isimplicitly issued (for tables with triggers).
2. The insert, update, or delete operation occurs.
3. Thetrigger is caled and its statements are executed.
4., The trigger either rolls back the transaction or the transaction isimplicitly committed.
Example 13.9

This example illustrates the solution to the RECORDI NGS table update problem mentioned earlier.

INPUT:

1> create trigger check_ artists
2> on RECORDI NGS
3> for insert, update as

4> if not exists (select * from ARTI STS, RECORDI NGS
5> where ARTISTS.artist_id = RECORDI NGS. artist_id)
6> begi n

7> print "Illegal Artist_ID"

8> rol | back transaction

9> end

10> go

ANALYSIS:

A similar problem could exist for deletes from the RECORDI NGS table. Suppose that when you delete an artist's only record from the RECORDI NGS
table, you also want to delete the artist from the ARTI STS table. If the records have already been deleted when the trigger is fired, how do you know
which Arti st _I D should be deleted? There are two methods to solve this problem:

1 Deletedll the artists from the ARTI STS table who no longer have any recordings in the RECORDI NGS table. (See Example 13.10a.)

1 Examine the deleted logical table. Transact-SQL maintains two tables: DELETED and | NSERTED. These tables, which maintain the most
recent changes to the actual table, have the same structure as the table on which the trigger is created. Therefore, you could retrieve the artist
IDs from the DELETED table and then delete these | Ds from the ARTI STS table. (See Example 13.10b.)

Example 13.10a
INPUT:

1> create trigger delete_artists
2> on RECORDI NGS
3> for delete as

4> begin

5> del ete from ARTI STS where artist_id not in
6> (select artist_id from RECORDI NGS)

7> end

8> go

Example 13.10b

1> create trigger delete_artists
2> on RECORDI NGS
3> for delete as

4> begin

5> del ete ARTI STS from ARTI STS, del et ed

6> where ARTIST.artist_id = deleted.artist_id
7> end

8> go

Restrictionson Using Triggers
Y ou must observe the following restrictions when you use triggers:

1 Triggers cannot be created on temporary tables.

1 Triggers must be created on tables in the current database.

1 Triggers cannot be created on views.

1 When atableisdropped, al triggers associated with that table are automatically dropped with it.
Nested Triggers

Triggers can aso be nested. Say that you have created atrigger to fire on adelete, for instance. If thistrigger itself then deletes arecord, the database
server can be set to fire another trigger. This approach would, of course, result in aloop, ending only when all the records in the table were del eted

(or someinternal trigger conditions were met). Nesting behavior is not the default, however. The environment must be set to enable this type of
functionality. Consult your database server's documentation for more information on this topic.

Using SELECT Commandswith UPDATE and DELETE

Here are some complex SQL statements using UPDATE and DELETE:

INPUT:

SQ.> UPPDATE EMPLOYEE TBL
SET LAST_NAME = 'SM TH
WHERE EXI STS (SELECT EMPLOYEE_| D
FROM PAYROLL_TBL
WHERE EMPLOYEE_|ID = 2);

OUTPUT:

1 row updat ed.

ANALYSIS:

The EMPLOYEE table had an incorrect employee name. We updated the EMPLOYEE table only if the payroll table had the correct 1D.

INPUT/OUTPUT:

SQL> UPDATE EMPLOYEE_TABLE
SET HOURLY_PAY = 'HOURLY_PAY * 1.1
VWHERE EMPLOYEE_| D = (SELECT EMPLOYEE_| D
FROM PAYROLL_TBL
WHERE EMPLOYEE_ | D = ' 222222222');

1 row updat ed.
ANALYSIS:
We increased the employee's hourly rate by 10 percent.

INPUT/OUTPUT:

SQL> DELETE FROM EMPLOYEE_TBL
WHERE EMPLOYEE_| D = (SELECT EMPLOYEE_I D
FROM PAYROLL_TBL
WHERE EMPLOYEE_ I D = '222222222';

1 row del et ed.
ANALYSIS:

Here we deleted an employee with the ID of 222222222

Testing SELECT Statements Before Implementation

If you are creating areport (using SQL*PLUS for an example) and the report is rather large, you may want to check spacing, columns, and titles
before running the program and wasting alot of time. A simple way of checking isto add where rownum < 3 to your SQL statement:

SYNTAX:

SQL> select *
from enpl oyee_t bl
where rownum < 5;

ANALYSIS:

Y ou get the first four rows in the table from which you can check the spelling and spacing to seeif it suits you. Otherwise, your report may return
hundreds or thousands of rows before you discover amisspelling or incorrect spacing.

TIP: A major part of your job--probably 50 percent--is to figure out what your customer really wants and needs. Good
communication skills and a knowledge of the particular business that you work for will complement your programming skills. For
example, suppose you are the programmer at a car dealership. The used car manager wants to know how many vehicles he has for
an upcoming inventory. Y ou think (to yourself): Go count them. Well, he asked for how many vehicles he has; but you know that
for an inventory the manager really wants to know how many types (cars, trucks), models, model year, and so on. Should you give
him what he asked for and waste your time, or should you give him what he needs?

Embedded SQL

This book uses the term embedded SQL to refer to the larger topic of writing actual program code using SQL --that is, writing stored procedures
embedded in the database that can be called by an application program to perform some task. Some database systems come with complete tool kits
that enable you to build simple screens and menu objects using a combination of a proprietary programming language and SQL. The SQL codeis
embedded within this code.

On the other hand, embedded SQL commonly refersto what is technically known as Static SQL.
Static and Dynamic SQL

Static SQL means embedding SQL statements directly within programming code. This code cannot be modified at runtime. In fact, most
implementations of Static SQL require the use of a precompiler that fixes your SQL statement at runtime. Both Oracle and Informix have developed
Static SQL packages for their database systems. These products contain precompilers for use with several languages, including the following:

1 C
1+ Pasca
1 Ada
1 COBOL
1 FORTRAN
Some advantages of Static SQL are
1 Improved runtime speed
1 Compile-time error checking
The disadvantages of Static SQL are that
1 Itisinflexible.
1 It requires more code (because queries cannot be formulated at runtime).
1 Static SQL codeis not portable to other database systems (a factor that you should always consider).

If you print out a copy of this code, the SQL statements appear next to the C language code (or whatever language you are using). Program variables
are bound to database fields using a precompiler command. See Example 13.11 for a simple example of Static SQL code.

Dynamic SQL, on the other hand, enables the programmer to build an SQL statement at runtime and pass this statement off to the database engine.
The engine then returns datainto program variables, which are also bound at runtime. This topic is discussed thoroughly on Day 12.

Example 13.11

This exampleillustrates the use of Static SQL in a C function. Please note that the syntax used here does not comply with the ANS| standard. This

Static SQL syntax does not actually comply with any commercial product, although the syntax used is similar to that of most commercial products.
INPUT:

BOOL Print_Enpl oyee_Info (void)

{

int Age = 0;

char Nane[41] = "\0";

char Address[81] = "\0";

/* Now Bind Each Field W WII Select To a Program Variable */
#SQL BI ND(AGE, Age)

#SQL Bl ND(NAME, Nane) ;

#SQL Bl ND(ADDRESS, Address);

/* The above statenments "bind" fields fromthe database to variables fromthe program
After we query the database, we will scroll the records returned
and then print themto the screen */

#SQL SELECT AGE, NAME, ADDRESS FROM EMPLOYEES;

#SQL FI RST_RECORD
if (Age == NULL)

return FALSE;

}
while (Age != NULL)

printf("AGE = %l\n, Age);
printf("NAVE = %\n, Nane);
printf("ADDRESS = %\n", Address);
#SQL NEXT_RECORD

}
return TRUE;

}

ANALYSIS:

After you type in your code and save the file, the code usually runs through some type of precompiler. This precompiler converts the lines that begin
with the #SQL precompiler directive to actual C code, which is then compiled with the rest of your program to accomplish the task at hand.

If you have never seen or written a C program, don't worry about the syntax used in Example 13.11. (Aswas stated earlier, the Static SQL syntax is
only pseudocode. Consult the Static SQL documentation for your product's actual syntax.)

Programming with SQL

So far, we have discussed two uses for programming with SQL. The first, which was the focus of the first 12 days of this book, used SQL to write
queries and modify data. The second is the capability to embed SQL statements within third- or fourth-generation language code. Obviously, thefirst
use for SQL isessentia if you want to understand the language and database programming in general. We have aready discussed the drawbacks to
using embedded or Static SQL as opposed to Dynamic SQL. Day 18, "PL/SQL: An Introduction,” and Day 19 "Transact-SQL: An Introduction,"”
cover two extensions to SQL that you can use instead of embedded SQL to perform the same types of functions discussed in this section.

Summary

The popularity of programming environments such as Visual Basic, Delphi, and PowerBuilder gives database programmers many tools that are great
for executing queries and updating data with a database. However, as you become increasingly involved with databases, you will discover the
advantages of using the tools and topics discussed today. Unfortunately, concepts such as cursors, triggers, and stored procedures are recent database
innovations and have alow degree of standardization across products. However, the basic theory of usage behind all these features isthe samein all
database management systems.

Temporary tables are tables that exist during a user's session. These tables typically exist in a special database (named t enpdb under SQL Server)
and are often identified with a unique date-time stamp as well as aname. Temporary tables can store a result set from a query for later usage by other
queries. Performance can erode, however, if many users are creating and using temporary tables all at once, owing to the large amount of activity
occurring in the t enpdb database.

Cursors can store aresult set in order to scroll through this result set one record at atime (or several records at atime if desired). The FETCH
statement is used with a cursor to retrieve an individual record's data and also to scroll the cursor to the next record. Various system variables can be
monitored to determine whether the end of the records has been reached.

Stored procedures are database objects that can combine multiple SQL statements into one function. Stored procedures can accept and return
parameter values as well as call other stored procedures. These procedures are executed on the database server and are stored in compiled form in the
database. Using stored procedures, rather than executing standal one queries, improves performance.

Triggers are specia stored procedures that are executed when a table undergoes an | NSERT, a DELETE, or an UPDATE operation. Triggers often
enforce referential integrity and can aso call other stored procedures.

Embedded SQL is the use of SQL in the code of an actual program. Embedded SQL consists of both Static and Dynamic SQL statements. Static
SQL statements cannot be modified at runtime; Dynamic SQL statements are subject to change.

Q&A
Q If | createatemporary table, can any other usersuse my table?
A No, the temporary table is available only to its creator.
Q Why must | close and deallocate a cursor ?

A Memory is till allocated for the cursor, even though its name may no longer exist.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz

1. True or False: Microsoft Visual C++ allows programmersto call the ODBC API directly.

2. True or False: The ODBC API can be called directly only from a C program.

3. True or False: Dynamic SQL reguires the use of a precompiler.

4. What does the # in front of atemporary table signify?

5. What must be done after closing a cursor to return memory?

6. Are triggers used with the SELECT statement?

7. If you have atrigger on atable and the table is dropped, does the trigger still exist?
Exercises

1. Create a sample database application. (We used amusic collection to illustrate these points today.) Break this application into logical data
groupings.

2. List the queries you think will be required to complete this application.

3. List the various rules you want to maintain in the database.

4. Creste a database schema for the various groups of data you described in step 1.
5. Convert the queriesin step 2 to stored procedures.

6. Convert therulesin step 3 to triggers.

7. Combine steps 4, 5, and 6 into alarge script file that can be used to build the database and al its associated procedures.

8. Insert some sample data. (This step can also be a part of the script filein step 7.)

9. Execute the procedures you have created to test their functionality.

(¢ Previous Chapter JER.—> Mext Chapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 14 -
Dynamic Uses of SQL
Objectives

The purpose of today's lesson is to show you where to start to apply what you have learned so far. Today's lesson covers, in very broad strokes,
practical applications of SQL. We focus on applications in the Microsoft Windows environment, but the principles involved are just as applicable to
other software platforms. Today you will learn the following:

1 How various commercial products--Personal Oracle?, open database connectivity (ODBC), InterBase ISQL, Microsoft's Visual C++, and
Borland's Del phi--relate to SQL

1 How to set up your environment for SQL
1 How to create a database using Oracle7, Microsoft Query, and InterBase 1SQL
1 How to use SQL inside applications written in Visual C++ and Delphi
After reading this material, you will know where to start applying your new SQL skills.
A Quick Trip

This section examines several commercial products in the context of the Microsoft Windows operating system and briefly describes how they relate
to SQL. The principles, if not the products themselves, apply across various software platforms.

ODBC

One of the underlying technologies in the Windows operating system is ODBC, which enables Windows-based programs to access a database
through adriver. Rather than having a custom interface to each database, something you might very well have to write yourself, you can connect to
the database of your choice through a driver. The concept of ODBC is very similar to the concept of Windows printer drivers, which enables you to
write your program without regard for the printer. Individual differences, which DOS programming forced you to address, are conveniently handled
by the printer driver. The result is that you spend your time working on the tasks peculiar to your program, not on writing printer drivers.

ODBC appliesthisideato databases. The visua part of ODBC resides in the control panel in Windows 3.1, 3.11, and Windows 95 and in its own
program group in Windows NT.

We cover ODBC in more detail when we discuss creating the database later today.
Personal Oracle7

Personal Oracle? isthe popular database's latest incursion into the personal PC market. Don't be put off by the number of programs that Oracle7
installs--we built all the examples used in the first several days using only the Oracle Database Manager and SQL* Plus 3.3. SQL*Plusis shown in
Figure 14.1.

Figure 14.1.

Oracle?'s SQL*Plus.
INTERBASE SQL (1SQL)

Thetool used in the other examplesis Borland's ISQL. It is essentially the same as Oracle7 except that Oracle? is character oriented and ISQL is
more Windows-like.

An ISQL screenisshown in Figure 14.2. Y ou type your query in the top edit box, and the result appears in the lower box. The Previous and Next
buttons scroll you through the list of al the queries you make during a session.

Figure 14.2.
InterBase's Interactive SQL.
Visual C++

Dozens of books have been written about Visual C++. For the examplesin this book, we used version 1.52. The procedures we used are applicable
to the 32-bit version, C++ 2.0. It is used here because of its simple interface with ODBC. It is not the only compiler with the capability to connect to
ODBC. If you use a different compiler, this section provides a good point of departure.

Visual C++ installs quite afew tools. We use only two: the compiler and the resource editor.

Delphi

The last tool we examine is Borland's Delphi, which is the subject of many new books. Delphi provides a scalable interface to various databases.
Delphi has two programs that we use: the InterBase Server (Ibmgr) and the Windows ISQL (Wisql).

Setting Up

Enough with the introductions--let's get to work. After you install your SQL engine or your ODBC-compatible compiler, you must do a certain
amount of stage setting before the stars can do their stuff. With both Oracle7 and InterBase, you need to log on and create an account for yourself.
The procedures are essentially the same. The hardest part is sorting through the hard copy and online documentation for the default passwords. Both
systems have a default system administrator account. (See Figure 14.3.)

Figure 14.3.
Inter Base Security manager screen.

After logging on and creating an account, you are ready to create the database.

Creating the Database

This step iswhere all your SQL training starts to pay off. First, you have to start up the database you want to use. Figure 14.4 shows Oracle7's
stoplight visual metaphor.

Figure 14.4.

Oracle7 Database Manager.

After you get the green light, you can open up the SQL*Plus 3.3 tool shown in Figure 14.5.
Figure 14.5.

Oracle SQL*Plus.

At this point you can create your tables and enter your data using the CREATE and | NSERT keywords. Another common way of creating tables and
entering datais with a script file. A script fileis usually atext file with the SQL commands typed out in the proper order. Look at this excerpt from a
script file delivered with Oracle7:

-- Script to build seed database for Personal Oacle
-- NTES
Call ed from buildall. sql
-- MODI FI CATI ONS
-- rs 12/04/94 - Comment, clean up, resize, for production

startup nonount pfile=% dbns71%init.ora

-- Create database for Wndows RDBMS

create database oracle
control file reuse
logfile '%oracl e_hone% dbs\ wdbl ogl. ora' size 400K reuse,

' Y%or acl e_home% dbs\ wdbl og2. ora' size 400K reuse

datafile ' %oracl e_home% dbs\ wdbsys. ora' size 10M reuse
character set WE8|I SO8859P1;

The syntax varies slightly with the implementation of SQL and the database you are using, so be sure to check your documentation. Select File |
Open to load this script into your SQL engine.

Borland's InterBase loads data in a similar way. The following excerpt is from one of the filesto insert data:

/*
* Add countries.
*/
I NSERT | NTO country (country, currency) VALUES (' USA', "Dollar');
I NSERT | NTO country (country, currency) VALUES ('Engl and', " Pound');
I NSERT | NTO country (country, currency) VALUES (' Canada', "CdnDir');
I NSERT | NTO country (country, currency) VALUES ('Switzerland', 'SFranc');
I NSERT | NTO country (country, currency) VALUES ('Japan', "Yen');
I NSERT | NTO country (country, currency) VALUES ('ltaly', "Lira');
I NSERT | NTO country (country, currency) VALUES (' France', "FFranc');
I NSERT | NTO country (country, currency) VALUES (' Germany', '"D-Mark');
I NSERT | NTO country (country, currency) VALUES ('Australia', "ADol | ar');
I NSERT | NTO country (country, currency) VALUES ('Hong Kong', " HKDol | ar') ;
I NSERT | NTO country (country, currency) VALUES (' Netherlands', 'Cuilder');
I NSERT | NTO country (country, currency) VALUES ('Bel giuni, "BFranc');
I NSERT | NTO country (country, currency) VALUES ('Austria', "Schilling);
I NSERT | NTO country (country, currency) VALUES ('Fiji', "fdollar");
ANALYSIS:

This example inserts a country name and the type currency used in that country into the COUNTRY table. (Refer to Day 8, "Manipulating Data,” for an
introduction to the | NSERT command.)

There is nothing magic here. Programmers always find ways to save keystrokes. If you are playing along at home, enter the following tables:
INPUT:

/* Table: CUSTOVER Onaner: PERKINS */
CREATE TABLE CUSTOVER (NAME CHAR(10),
ADDRESS CHAR(10) ,
STATE CHAR(2),
ZI P CHAR(10),
PHONE CHAR(11),
REMARKS CHAR(10));

INPUT:

/* Table: ORDERS, Owner: PERKINS */
CREATE TABLE ORDERS (ORDEREDON DATE,
NAME CHAR(10),
PARTNUM | NTEGER,
QUANTI TY | NTEGER,
REMARKS CHAR(10)):

INPUT:

/* Tabl e: PART, Oamner: PERKINS */

CREATE TABLE PART (PARTNUM | NTEGER,
DESCRI PTI ON CHAR(20),
PRI CE NUVERI C(9, 2));

Now fill these tables with the following data:
INPUT/OUTPUT:

SELECT * FROM CUSTOVER

NAVE ADDRESS STATE ZIP PHONE REVARKS

TRUE WHEEL 550 HUSKER NE 58702 555- 4545 NONE

Bl KE SPEC CPT SHRI VE LA 45678 555- 1234 NONE

LE SHOPPE HOVETOMN KS 54678 555-1278 NONE

AAA BIKE 10 OLDTOMN NE 56784 555- 3421 JOHN- MGR
JACKS BI KE 24 EGIN FL 34567 555-2314 NONE
INPUT/OUTPUT:

SELECT * FROM ORDERS

ORDEREDON NAME PARTNUM QUANTI TY REMARKS

15- MAY- 1996 TRUE WHEEL 23 6 PAID
19- MAY- 1996 TRUE WHEEL 76 3 PAID

2- SEP- 1996 TRUE WHEEL 10 1 PAID
30- JUN- 1996 TRUE WHEEL 42 8 PAID
30- JUN- 1996 BI KE SPEC 54 10 PAID
30- VAY- 1996 BI KE SPEC 10 2 PAID
30- VAY- 1996 BI KE SPEC 23 8 PAID
17- JAN- 1996 BI KE SPEC 76 11 PAID
17- JAN- 1996 LE SHOPPE 76 5 PAID

1-JUN- 1996 LE SHOPPE 10 3 PAID

1-JUN- 1996 AAA BI KE 10 1 PAID

1-JUL- 1996 AAA BI KE 76 4 PAI D

1-JUL- 1996 AAA BI KE 46 14 PAID
11-JUL- 1996 JACKS BI KE 76 14 PAID
INPUT/OUTPUT:

SELECT * FROM PART

PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TI RES 15. 25
23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

After you enter this data, the next step is to create an ODBC connection. Open the Control Panel (if you arein Win 3.1, 3.11, or Windows 95) and
double-click the ODBC icon.

NOTE: Several flavors of SQL engines|oad ODBC. Visual C++, Delphi, and Oracle7 load ODBC as part of their setup.
Fortunately, ODBC is becoming as common as printer drivers.

Theinitial ODBC screenis shown in Figure 14.6.

Figure 14.6.

ODBC's Data Sources selection.

This screen shows the current ODBC connections. Y ou want to create a new connection. Assuming you used I nterBase and called the new database
TYSSQL (give yourself 10 bonus pointsif you know what TY SSQL stands for), press the Add button and select the InterBase Driver, as shownin
Figure 14.7.

Figure14.7.

Driver selection.

From this selection you move to the setup screen. Fill it in as shown in Figure 14.8.
Figure 14.8.

Driver setup.

Y ou can use your own name or something short and easy to type, depending on the account you set up for yourself. The only tricky bit here, at least
for us, was figuring out what InterBase wanted as a database hame. Those of you coming from a PC or small database background will have to get
used to some odd-looking pathnames. These pathnames tell the SQL engine where to look for the database in the galaxy of computers that could be
connected via LANS.

Using Microsoft Query to Perform a Join

Now that you have made an ODBC connection, we need to make a slight detour to arather useful tool called Microsoft Query. Thisprogramis
loaded along with Visual C++. We have used it to solve enough database and coding problems to pay for the cost of the compiler several times over.
Query normally installsitself in its own program group. Find it and open it. It should look like Figure 14.9.

Figure 14.9.
Microsoft Query.

Select File | New Query. Your TYSSQL ODBC link does not appear, so click the Other button to bring up the ODBC Data Sources dialog box,
shown in Figure 14.10, and select TY SSQL.

Figure 14.10.

Data Sources dialog box.

Click OK to return to the Select Data Source dialog box. Select TY SSQL and click Use, as shown in Figure 14.11.
Figure14.11.

Select Data Source dialog box.

Again, small database users aren't accustomed to logging on. Nevertheless, type your password to move through the screen.

The Add Tables dialog box, shown in Figure 14.12, presents the tables associated with the database to which you are connected. Select PART,
ORDERS, and CUSTOMER, and click Close.

Figure 14.12.
Selecting tablesin Query.

Y our screen should look like Figure 14.13. Double-click ADDRESS and NAME from the CUSTOMER table. Then double-click ORDEREDON and PARTNUM
from ORDERS.

Figure 14.13.
Visual representation of a tablein Query.

Now for some magic! Click the button marked SQL in the toolbar. Y our screen should now look like Figure 14.14.

Figure 14.14.

The query that Query built.

Thistool hastwo functions. Thefirst isto check the ODBC connection. If it works here, it should work in the program. This step can help you
determine whether a problem isin the database or in the program. The second use isto generate and check queries. Add the following line to the
SQL box and click OK:

WHERE CUSTOMER. NAVE = ORDERS. NAME AND PART. PARTNUM = ORDERS. PARTNUM
Figure 14.15 shows the remarkabl e result.

Figure 14.15.

Query's graphic representation of a join.

You have just performed ajoin! Not only that, but the fields you joined on have been graphically connected in the table diagrams (note the zigzag
lines between NAVE and PARTNUM).

Query is an important tool to havein your SQL arsena on the Windows software platform. It enables you examine and manipul ate tables and
queries. You can also useit to create tables and manipulate data. If you work in Windows with ODBC and SQL, either buy this tool yourself or have
your company or client buy it for you. It is not as interesting as a network version of DOOM, but it will save you time and money. Now that you
have established an ODBC link, you can useit in a program.

Using Visual C++ and SQL

NOTE: The source code for this example islocated in Appendix B, "Source Code Listings for the C++ Program Used on Day 14."

Call up Visual C++ and select AppWizard, as shown in Figure 14.16. The name and subdirectory for your project do not have to be identical.
Figure 14.16.

Initial project setup.

Click the Options button and fill out the screen as shown in Figure 14.17.

Figure14.17.

The Options dialog box.

Click OK and then choose Database Options. Select Database Support, No File Support as shown in Figure 14.18.
Figure 14.18.

The Database Options dial og box.

Click the Data Source button and make the choices shown in Figure 14.19.

Figure 14.19.

Selecting a data source.

Then select the CUSTOMER table from the Select a Table dialog box, shown in Figure 14.20.

Figure 14.20.

Selecting a table.

Now you have selected the CUSTOVER table from the TY SSQL database. Go back to the AppWizard basic screen by clicking OK twice. Then click
OK again to display the new application information (see Figure 14.21), showing the specifications of a new skeleton application.

Figure 14.21.
AppWizard's new application information.

After the program is generated, you need to use the resource editor to design your main screen. Select Tools | App Studio to launch App Studio. The
form you design will be simple--just enough to show some of the columnsin your table as you scroll through the rows. Y our finished form should
look something like Figure 14.22.

Figure 14.22.
Finished formin App Sudio.

For simplicity we named the edit boxes | DC_NAME, | DC_ADDRESS, | DC_STATE, and | DC_zI P, athough you can name them whatever you choose.
Press Ctrl+W to send the Class Wizard page to the Member Variables and set the variables according to Figure 14.23.

Figure 14.23.

Adding member variablesin Class Wizard.

NOTE: The program was nice enough to provide links to the table to which you are connected. Links are one of the benefits of
working through Microsoft's wizards or Borland's experts.

Save your work; then press Alt+Tab to return to the compiler and compile the program. If all went well, your output should look like Figure 14.24. If
it doesn't, retrace your steps and try again.

Figure 14.24.

A clean compile for the test program.

Now run your program. It should appear, after that pesky logon screen, and look like Figure 14.25.

Figure 14.25.

The test program.

An impressive program, considering that you have written zero lines of code so far. Use the arrow keys on the toolbar to move back and forth in the
database. Notice that the order of the datais the same asitsinput order. It is not alphabetical (unless you typed it in that way). How can you change
the order?

Y our connection to the database is encapsulated in aclass called ¢t yssql set , which the AppWizard created for you. Look at the header file
(tyssgset. h):

/'l tyssqgset.h : interface of the CTyssql Set class

/1
NN NNy
cl ass CTyssql Set : public CRecordset

{

DECLARE_DYNAM C(CTyssql Set)

public:

CTyssql Set (CDat abase* pDat abase = NULL);
/1 Fiel d/ Param Dat a

/1 {{ AFX_FI ELD(CTyssql Set, CRecordset)
Cstring m_NANE;

Cstring m_ADDRESS;

Cstring m _STATE;

Cstring m ZI P,

Cstring m_PHONE;

Cstring m_RENMARKS;

/1}}AFX_FI ELD

/'l I npl enentation

pr ot ect ed:

virtual CString GetDefaultConnect();// Default connection string
virtual CString GetDefaultSQ.();// default SQL for Recordset
virtual voi d DoFi el dExchange(CFi el dExchange* pFX);// RFX support

b
ANALYSIS:

Note that member variables have been constructed for all the columnsin the table. Also notice the functions Get Def aul t Connect and
Get Def aul t SQL; here'stheir implementations fromt yssqgset . cpp:

CString CTyssql Set: : Get Def aul t Connect ()

{
return ODBC, DSN=TYSSQL; ";

}
CString CTyssql Set:: Get Defaul t SQL()

{
return "CUSTOMER';

}

Get Def aul t Connect makes the ODBC connection. Y ou shouldn't change it. However, Get Def aul t SQL enables you to do some interesting things.
Changeit to this:

return "SELECT * FROM CUSTOVER ORDER BY NAME";
Recompile, and magically your tableis sorted by name, as shown in Figure 14.26.

Figure 14.26.

Database order changed by SQL.

Without going into atutorial on the Microsoft Foundation Class, let us just say that you can manipulate CRecor dSet and Cdat abase objects, join
and drop tables, update and insert rows, and generally have al the fun possiblein SQL. Y ou have looked as far over the edge as you can, and we
have pointed the way to integrate SQL into C++ applications. Topics suggested for further study are CRecor dSet and Cdat abase (both in the C++
books online that should come as part of the C++ software), ODBC API (the subject of several books), and the APIs provided by Oracle and Sybase
(which are both similar to the ODBC AP!).

Using Delphi and SQL

Another important database tool on the Windows software platform is Delphi. The splash that comes up as the program is loading has a picture of
the Oracle at Delphi, surrounded by the letters SQL. In the C++ example you rewrote one line of code. Using Delphi, you will join two tables
without writing asingle line of code!

NOTE: The code for this program is located in Appendix C, " Source Code Listings for the Delphi Program Used on Day 14."

Double-click Delphi'sicon to get it started. At rest the program looks like Figure 14.27.
Figure 14.27.
The Delphi programming environment.

Delphi requires you to register any ODBC connections you are going to use in your programming. Select BDE (Borland Database Environment)
from the Tools menu and then fill out the dialog box shown in Figure 14.28.

Figure 14.28.
Registering your connections.

Click the Aliases tab shown at the bottom of Figure 14.28 and assign the name TY SSQL, as shown in Figure 14.29.

Figure 14.29.

Adding a new alias.

Select File | New Form to make the following selections. Start by choosing the Database Form from the Experts tab, as shown in Figure 14.30.
Figure 14.30.

The Experts page in the Browse gallery.

Then choose the master/detail form and TQuer y objects, as shown in Figure 14.31.

Figure 14.31.

The Database Form Expert dialog box.

NOTE: Delphi enables you to work with either aquery or atable. If you need flexibility, we recommend the TQuer y object. If you
need the whole table without modification, use the TTabl e object.

Now select the TY SSQL data source you set up earlier, as shown in Figure 14.32.
Figure 14.32.

Choosing a data source.

Choose the PART table as the master, as shown in Figure 14.33.

Figure 14.33.

Choosing a table.

Choose dll itsfields, as shown in Figure 14.34.

Figure 14.34.

Adding all thefields.

Pick the Horizontal display mode, as shown in Figure 14.35.

Figure 14.35.

Display mode selection.

Then choose ORDERS, select all itsfields, and select Grid for its display mode, as shown in Figures 14.36, 14.37, and 14.38.

Figure 14.36.

Choosing the table for the detail part of the form.

Figure 14.37.

Sdlecting all thefields.

Figure 14.38.

Selecting the orientation.

Now the software enables you to make a join. Make the join on PARTNUM, as shown in Figure 14.39.

Figure 14.39.

Making thejain.

Now go ahead and generate the form. The result looks like Figure 14.40.

Figure 14.40.

The finished form.

Compile and run the program. As you select different parts, the order for them should appear in the lower table, as shown in Figure 14.41.
Figure 14.41.

The finished program.

Close the project and click one or both of the query objects on the form. When you click an object, the Object Inspector to the left of the screenin
Figure 14.42 shows the various properties.

Figure 14.42.
The query in the TQuery object.

Try experimenting with the query to see what happens. Just think what you can do when you start writing code!

Summary

Today you learned where to start applying SQL using the ordinary, everyday stuff you find lying on your hard drive. The best way to build on what
you have learned is to go out and query. Query as much as you can.

Q&A
Q What isthe difference between the ODBC API and the Oracle and Sybase APIs?

A On afunction-by-function level, Oracle and Sybase are remarkably similar, which is not a coincidence. Multiple corporate teamings and divorces
have led to libraries that were derived from somewhat of acommon base. ODBC's API is more generic--it isn't specific to any database. If you need
to do something specific to a database or tune the performance of a specific database, you might consider using that database's API library in your
code.

Q With all the available products, how do | know what to use?

A In abusiness environment, product selection is usually a compromise between management and "techies." Management looks at the cost of a
product; techies will look at the features and how the product can make their lives easier. In the best of all programming worlds, that compromise
will get your job done quickly and efficiently.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises.”

Quiz
1. In which object does Microsoft Visual C++ place its SQL?

2. Inwhich object does Delphi placeits SQL?

3. What isODBC?
4, What does Delphi do?
Exercises
1. Change the sort order in the C++ example from ascending to descending on the St at e field.

2. Go out, find an application that needs SQL, and useiit.

{ ¢ Previous Chapter JEK.—* Mext Chapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

Week 2 In Review

Week 1 spent agreat deal of time introducing a very important topic: the SELECT statement. Week 2 branched out into various topics that
collectively form athorough introduction to the Structured Query Language (SQL).

Day 8 introduced data manipulation language (DML) statements, which are SQL statements that you can use to modify the data within a database.
The three commands most commonly used are | NSERT, DELETE, and UPDATE. Day 9 described how to design and build a database and introduced
the commands CREATE DATABASE and CREATE TABLE. A table can be created with any number of fields, each of which can be a database-vendor-
defined datatype. The ALTER DATABASE command can change the physical size or location of a database. The DROP DATABASE and DROP TABLE
statements, respectively, remove a database or remove atable within a database.

Day 10 explained two ways to display data: the view and the index. A view is avirtual table created from the output of a SELECT statement. An
index orders the records within a table based on the contents of afield or fields.

Day 11 covered transaction management, which was your first taste of programming with SQL. Transactions start with the BEG N TRANSACTI ON
statement. The COW T TRANSACTI ON saves the work of atransaction. The ROLLBACK TRANSACTI ON command cancels the work of atransaction.

Day 12 focused on database security. Although the implementation of database security varies widely among database products, most
implementations use the GRANT and REVOKE commands. The GRANT command grants permissions to a user. The REVOKE command removes these
permissions.

Day 13 focused on developing application programs using SQL. Static SQL typically involves the use of a precompiler and is static at runtime.
Dynamic SQL is very flexible and has become very popular in the last few years. Sample programs used Dynamic SQL with the Visual C++ and
Delphi development toolkits.

Day 14 covered advanced aspects of SQL. Cursors can scroll through a set of records. Stored procedures are database objects that execute several
SQL statementsin arow. Stored procedures can accept and return values. Triggers are a special type of stored procedure that are executed when
records are inserted, updated, or deleted within atable.

{ ¢ Previous Chapter JR.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

Week 3 At A Glance

Applying Your Knowledge of SQL

Welcome to Week 3. So far you have learned the fundamentals of SQL and aready know enough to apply what you have learned to somereal -life
situations. This week builds on the foundation established in Weeks 1 and 2. Day 15 shows you how to streamline SQL statements for improved
performance. Day 16 talks about the data dictionary, or system catalog, of arelational database and shows you how to retrieve valuable information.
Day 17 extends the concept of using the data dictionary to generate SQL as output from ancther SQL statement. Y ou will learn the benefits of this
technique and discover how generating SQL can improve your efficiency on the job. Day 18 covers Oracle's PL/SQL, or Oracle procedural
language. PL/SQL is one of the many extensions to standard SQL. Another extension is Sybase's and Microsoft Server's Transact-SQL, which is
covered on Day 19. Day 20 returnsto Oracle to cover SQL* Plus, which allows you to use advanced commands to communicate with the database.
SQL*Plus a so enables you to format query-generated reports in an attractive manner. Y ou can use SQL* Plusin collaboration with PL/SQL. Day 21
examines errors and logical mistakes that relational database users frequently encounter. We provide brief descriptions of the errors, solutions, and
tips on avoiding errors.

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- 15 -
Streamlining SQL Statementsfor Improved Performance

Streamlining SQL statements is as much a part of application performance as database designing and tuning. No matter how fine-tuned the database
or how sound the database structure, you will not receive timely query results that are acceptable to you, or even worse, the customer, if you don't
follow some basic guidelines. Trust us, if the customer is not satisfied, then you can bet your boss won't be satisfied either.

Objectives

Y ou already know about the major components of the relational database language of SQL and how to communicate with the database; now it'stime
to apply your knowledge to real-life performance concerns. The objective of Day 15 isto recommend methods for improving the performance of, or
streamlining, an SQL statement. By the end of today, you should

1 Understand the concept of streamlining your SQL code
1 Understand the differences between batch loads and transactional processing and their effects on database performance
1 Beableto manipulate the conditions in your query to expedite data retrieval

1 Befamiliar with some underlying elements that affect the tuning of the entire database

Here's an analogy to help you understand the phrase streamline an SQL statement: The objective of competitive swimmers isto complete an event in
as little time as possible without being disqualified. The swimmers must have an acceptabl e technique, be able to torpedo themselves through the
water, and use all their physical resources as effectively as possible. With each stroke and breath they take, competitive swimmers remain
streamlined and move through the water with very little resistance.

Look at your SQL query the same way. Y ou should always know exactly what you want to accomplish and then strive to follow the path of least
resistance. The more time you spend planning, the less time you'll have to spend revising later. Y our goal should always be to retrieve accurate data
and to do soin aslittle time as possible. An end user waiting on aslow query is like a hungry diner impatiently awaiting atardy meal. Although you
can write most queries in several ways, the arrangement of the components within the query is the factor that makes the difference of seconds,
minutes, and sometimes hours when you execute the query. Sreamlining SQL is the process of finding the optimal arrangement of the elements
within your query.

In addition to streamlining your SQL statement, you should also consider several other factors when trying to improve general database
performance, for example, concurrent user transactions that occur within a database, indexing of tables, and deep-down database tuning.

NOTE: Today's examples use Personal Oracle7 and tools that are available with the Oracle7.3 relational database management
system. The concepts discussed today are not restricted to Oracle; they may be applied to other relational database management
systems.

Make Your SQL Statements Readable

Even though readability doesn't affect the actual performance of SQL statements, good programming practice calls for readable code. Readability is
especialy important if you have multiple conditions in the WHERE clause. Anyone reading the clause should be able to determine whether the tables
are being joined properly and should be able to understand the order of the conditions.

Try to read this statement:

SQL> SELECT EMPLOYEE TBL. EMPLOYEE_| D, EMPLOYEE_TBL. NAME, EMPLOYEE_PAY_TBL. SALARY, EMPLOYEE_PAY_TBL. HI RE_DATE
2 FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
3 WHERE EMPLOYEE TBL. EMPLOYEE_I D = EMPLOYEE_PAY_TBL. EMPLOYEE_| D AND
4 EMPLOYEE_PAY_TBL. SALARY > 30000 OR (EMPLOYEE_PAY_TBL. SALARY BETWEEN 25000
5 AND 30000 AND EMPLOYEE_PAY_TBL. H RE_DATE < SYSDATE - 365);

Here's the same query reformatted to enhance readability:

SQL> SELECT E. EMPLOYEE_I D, E. NAME, P. SALARY, P.H RE_DATE
FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL P
VWHERE E. EMPLOYEE | D = P. EMPLOYEE_I D
AND P. SALARY > 30000
OR (P. SALARY BETWEEN 25000 AND 30000
AND P. H RE_DATE < SYSDATE - 365);

~N~No o wWN

NOTE: Notice the use of table aliasesin the preceding query. EMPLOYEE_TBL in line 2 has been assigned the alias E, and
EMPLOYEE_PAY_TBL in line 3 has been assigned the alias P. Y ou can see that in lines 4, 5, 6, and 7, the E and P stand for the full
table names. Aliases require much less typing than spelling out the full table name, and even more important, queries that use
aliases are more organized and easier to read than queries that are cluttered with unnecessarily long full table names.

The two queries are identical, but the second one is obviously much easier to read. It is very structured; that is, the logical components of the query
have been separated by carriage returns and consistent spacing. Y ou can quickly see what is being selected (the SELECT clause), what tables are
being accessed (the FROMclause), and what conditions need to be met (the WHERE clause).

The Full-Table Scan

A full-table scan occurs when the database server reads every record in atable in order to execute an SQL statement. Full-table scans are normally
an issue when dealing with queries or the SELECT statement. However, afull-table scan can also come into play when dealing with updates and
deletes. A full-table scan occurs when the columns in the WHERE clause do not have an index associated with them. A full-table scan islike reading a
book from cover to cover, trying to find a keyword. Most often, you will opt to use the index.

Y ou can avoid afull-table scan by creating an index on columns that are used as conditions in the WHERE clause of an SQL statement. |ndexes
provide adirect path to the data the same way an index in abook refers the reader to a page number. Adding an index speeds up data access.

Although programmers usually frown upon full-table scans, they are sometimes appropriate. For example:

1 You are selecting most of the rows from atable.
1 You are updating every row in atable.

1 Thetables are small.

In thefirst two cases an index would be inefficient because the database server would have to refer to the index, read the table, refer to the index
again, read the table again, and so on. On the other hand, indexes are most efficient when the data you are accessing is a small percentage, usually no
more than 10 to 15 percent, of the total data contained within the table.

In addition, indexes are best used on large tables. Y ou should always consider table size when you are designing tables and indexes. Properly
indexing tables involves familiarity with the data, knowing which columns will be referenced most, and may require experimentation to see which
indexes work best.

NOTE: When speaking of a"largetable,” large isarelative term. A table that is extremely large to one individual may be minute to
another. The size of atable isréelative to the size of other tables in the database, to the disk space available, to the number of disks
available, and simple common sense. Obviously, a 2GB tableis large, whereas a 16K B table is small. In a database environment
where the average table size is 100MB, a 500M B table may be considered massive.

Adding a New Index

Y ou will often find situations in which an SQL statement is running for an unreasonable amount of time, although the performance of other
statements seems to be acceptable; for example, when conditions for data retrieval change or when table structures change.

We have also seen this type of slowdown when a new screen or window has been added to a front-end application. One of the first things to do when
you begin to troubleshoot is to find out whether the target table has an index. In most of the cases we have seen, the target table has an index, but one
of the new conditions in the WHERE clause may lack an index. Looking at the WHERE clause of the SQL statement, we have asked, Should we add
another index? The answer may be yesif:

1 The most restrictive condition(s) returns less than 10 percent of the rowsin atable.
1 The most restrictive condition(s) will be used often in an SQL statement.
1 Condition(s) on columns with an index will return unique values.

1 Columns are often referenced in the ORDER BY and GROUP BY clauses.

Composite indexes may also be used. A composite index is an index on two or more columns in atable. These indexes can be more efficient than
single-column indexes if the indexed columns are often used together as conditions in the WHERE clause of an SQL statement. If the indexed columns
are used separately as well as together, especialy in other queries, single-column indexes may be more appropriate. Use your judgment and run tests
on your data to see which type of index best suits your database.

Arrangement of Elementsin a Query

The best arrangement of elements within your query, particularly in the WHERE clause, really depends on the order of the processing stepsin a

specific implementation. The arrangement of conditions depends on the columns that are indexed, as well as on which condition will retrieve the
fewest records.

Y ou do not have to use a column that isindexed in the WHERE clause, but it is obviously more beneficial to do so. Try to narrow down the results of
the SQL statement by using an index that returns the fewest number of rows. The condition that returns the fewest recordsin atableis said to be the
most restrictive condition. As ageneral statement, you should place the most restrictive conditions last in the WHERE clause. (Oracle's query
optimizer reads a WHERE clause from the bottom up, so in a sense, you would be placing the most restrictive condition first.)

When the optimizer reads the most restrictive condition first, it is able to narrow down the first set of results before proceeding to the next condition.
The next condition, instead of looking at the whole table, should look at the subset that was selected by the most selective condition. Ultimately, data
isretrieved faster. The most selective condition may be unclear in complex queries with multiple conditions, subqueries, calculations, and several
combinations of the AND, OR, and LI KE.

TIP: Always check your database documentation to see how SQL statements are processed in your implementation.

The following test is one of many we have run to measure the difference of elapsed time between two uniquely arranged queries with the same
content. These examples use Oracle7.3 relational database management system. Remember, the optimizer in this implementation reads the WHERE
clause from the bottom up.

Before creating the SELECT statement, we selected distinct row counts on each condition that we planned to use. Here are the values selected for
each condition:

[Condition || Distinct Values |
[cal c_ytd =" -2109490.8"|[13000 + |
dt _stmp = ' 01- SEP- 96		15
out put_cd = ' 001"		13
act ivity cd = "IN		1o
stat us_cd = 'A ”4		
f unction_cd = ' 060’ ”6		

NOTE: The most restrictive condition is also the condition with the most distinct values.

The next example places the most restrictive conditions first in the WHERE clause:

INPUT:

SQ> SET TIMNG ON

SELECT COUNT(*)

FROM FACT_TABLE

WHERE CALC YTD = ' - 2109490. 8'
AND DT_STMP = ' 01- SEP- 96'
AND OUTPUT_CD = ' 001'
AND ACTIVITY CD = 'IN
AND STATUS CD = ' A
AND FUNCTI ON_CD = ' 060" ;

OCO~NOOUAWN

OUTPUT:

1 row sel ected.
El apsed: 00: 00: 15. 37

This example places the most restrictive conditions last in the WHERE clause:

INPUT/OUTPUT:

SQL> SET TIM NG ON
SELECT COUNT(*)
FROM FACT_TABLE
WHERE FUNCTI ON_CD = ' 060'
AND STATUS CD = ' A
AND ACTIVITY CD = 'IN
AND OUTPUT CD = ' 001'
AND DT_STMP = ' 01- SEP- 96'
AND CALC YTD = ' -2109490. 8' ;

||8

©CO~NOOA~WN

1 row sel ect ed.
El apsed: 00: 00: 01. 80

ANALYSIS:

Notice the difference in elapsed time. Simply changing the order of conditions according to the given table statistics, the second query ran amost 14
seconds faster than the first one. Imagine the difference on a poorly structured query that runs for three hours!

Procedures

For queries that are executed on aregular basis, try to use procedures. A procedure is a potentially large group of SQL statements. (Refer to Day 13,
"Advanced SQL Topics.")

Procedures are compiled by the database engine and then executed. Unlike an SQL statement, the database engine need not optimize the procedure
before it is executed. Procedures, as opposed to numerous individual queries, may be easier for the user to maintain and more efficient for the
database.

Avoiding OR

Avoid using the logical operator ORin aquery if possible. OR inevitably slows down nearly any query against atable of substantial size. We find that
I Nis generally much quicker than OR. This advice certainly doesn't agree with documentation stating that optimizers convert I N argumentsto OR
conditions. Nevertheless, here is an example of a query using multiple ORs:

INPUT:

SQL> SELECT *
2 FROM FACT_TABLE

WHERE STATUS_CD

OR STATUS_CD
STATUS_CD
STATUS_CD
STATUS_CD
STATUS_CD
ORDER BY STATUS_

©O~NOUTAW
TmMmQQ®>

(@]

D,
Hereisthe same query using SUBSTRand | N:

INPUT:

SQL> SELECT *
2 FROM FACT TABLE
3 WHERE STATUS CD IN (A ,'B','C,'D,'E,'F)
4 ORDER BY STATUS CD;

ANALYSIS:

Try testing something similar for yourself. Although books are excellent sources for standards and direction, you will find it is often useful to come
to your own conclusions on certain things, such as performance.

Hereis another example using SUBSTR and | N. Notice that the first query combines LI KE with OR.
INPUT:

SQL> SELECT *

FROM FACT_TABLE

WHERE PROD_CD LI KE ' AB%
OR PROD_CD LI KE ' AC%

ROD_CD LI KE ' BB%

KE ' BC%

KE ' CC%

oO~NO O WN

[92)

bwl\)p
\

SELECT *

FROM FACT_TABLE

WHERE SUBSTR(PROD CD,1,2) IN ('AB ,'AC,'BB','BC,'CC)
ORDER BY PROD CD

ANALYSIS:

The second example not only avoids the OR but also eliminates the combination of the OR and LI KE operators. Y ou may want to try this example to
see what the real-time performance differenceis for your data.

OLAPVesusOLTP

When tuning a database, you must first determine what the database is being used for. An online analytical processing (OLAP) database is a system
whose function isto provide query capabilities to the end user for statistical and general informational purposes. The dataretrieved in this type of
environment is often used for statistical reports that aid in the corporate decision-making process. These types of systems are also referred to as
decision support systems (DSS). An online transactional processing (OLTP) database is a system whose main function is to provide an environment
for end-user input and may also involve queries against day-to-day information. OL TP systems are used to manipul ate information within the
database on adaily basis. Data warehouses and DSSs get their data from online transactional databases and sometimes from other OLAP systems.

OLTP Tuning

A transactional database is a delicate system that is heavily accessed in the form of transactions and queries against day-to-day information.
However, an OLTP does not usually require avast sort area, at least not to the extent to which it isrequired in an OLAP environment. Most OLTP
transactions are quick and do not involve much sorting.

One of the biggest issuesin atransactional database is rollback segments. The amount and size of rollback segments heavily depend on how many
users are concurrently accessing the database, as well as the amount of work in each transaction. The best approach is to have severa rollback
segmentsin atransactional environment.

Another concern in atransactional environment is the integrity of the transaction logs, which are written to after each transaction. These logs exist

for the sole purpose of recovery. Therefore, each SQL implementation needs away to back up the logs for usein a"point in time recovery." SQL
Server uses dump devices; Oracle uses a database mode known as ARCHIVELOG mode. Transaction logs also involve a performance consideration
because backing up logs requires additional overhead.

OLAP Tuning

Tuning OLAP systems, such as a data warehouse or decision support system, is much different from tuning a transaction database. Normally, more
space is heeded for sorting.

Because the purpose of this type of system isto retrieve useful decision-making data, you can expect many complex queries, which normally involve
grouping and sorting of data. Compared to a transactional database, OLAP systems typically take more space for the sort area but less space for the
rollback area.

Most transactions in an OLAP system take place as part of a batch process. Instead of having several rollback areas for user input, you may resort to
one large rollback areafor the loads, which can be taken offline during daily activity to reduce overhead.

Batch Loads Versus Transactional Processing

A major factor in the performance of a database and SQL statementsis the type of processing that takes place within a database. One type of
processing is OLTP, discussed earlier today. When we talk about transactional processing, we are going to refer to two types: user input and batch
loads.

Regular user input usually consists of SQL statements such as | NSERT, UPDATE, and DELETE. These types of transactions are often performed by the
end user, or the customer. End users are normally using a front-end application such as PowerBuilder to interface with the database, and therefore
they seldom issue visible SQL statements. Nevertheless, the SQL code has already been generated for the user by the front-end application.

Y our main focus when optimizing the performance of a database should be the end-user transactions. After al, "no customer" equatesto "no
database," which in turn means that you are out of ajob. Alwaystry to keep your customers happy, even though their expectations of
system/database performance may sometimes be unreasonable. One consideration with end-user input is the number of concurrent users. The more
concurrent database users you have, the greater the possibilities of performance degradation.

What is a batch load? A batch load performs heaps of transactions against the database at once. For example, suppose you are archiving last year's
datainto amassive history table. Y ou may need to insert thousands, or even millions, of rows of datainto your history table. Y ou probably wouldn't
want to do this task manually, so you are likely to create a batch job or script to automate the process. (Numerous techniques are available for
loading data in a batch.) Batch loads are notorious for taxing system and database resources. These database resources may include table access,
system catalog access, the database rollback segment, and sort area space; system resources may include available CPU and shared memory. Many
other factors are involved, depending on your operating system and database server.

Both end-user transactions and batch loads are necessary for most databases to be successful, but your system could experience serious performance
problemsif these two types of processing lock horns. Therefore, you should know the difference between them and keep them segregated as much as
possible. For example, you would not want to load massive amounts of data into the database when user activity is high. The database response may
aready be slow because of the number of concurrent users. Always try to run batch loads when user activity isat a minimum. Many shops reserve
timesin the evenings or early morning to load data in batch to avoid interfering with daily processing.

Y ou should always plan the timing for massive batch loads, being careful to avoid scheduling them when the database is expected to be available for
normal use. Figure 15.1 depicts heavy batch updates running concurrently with several user processes, all contending for system resources.

Figure15.1.
System resour ce contention.

As you can see, many processes are contending for system resources. The heavy batch updates that are being done throw a monkey wrench into the
equation. Instead of the system resources being dispersed somewhat evenly among the users, the batch updates appear to be hogging them. This
situation is just the beginning of resource contention. As the batch transactions proceed, the user processes may eventually be forced out of the
picture. This condition is not a good way of doing business. Even if the system has only one user, significant contention for that user could occur.

Another problem with batch processesis that the process may hold locks on atable that a user istrying to access. If thereis alock on atable, the
user will be refused access until the lock is freed by the batch process, which could be hours. Batch processes should take place when system
resources are at their best if possible. Don't make the users' transactions compete with batch. Nobody wins that game.

Optimizing Data L oads by Dropping Indexes

One way to expedite batch updates is by dropping indexes. Imagine the history table with many thousands of rows. That history table is also likely to

have one or more indexes. When you think of an index, you normally think of faster table access, but in the case of batch loads, you can benefit by
dropping the index(es).

When you load data into a table with an index, you can usually expect a great deal of index use, especialy if you are updating a high percentage of
rowsin the table. Look at it thisway. If you are studying a book and highlighting key points for future reference, you may find it quicker to browse
through the book from beginning to end rather than using the index to locate your key points. (Using the index would be efficient if you were
highlighting only a small portion of the book.)

To maximize the efficiency of batch loads/updates that affect a high percentage of rows in atable, you can take these three basic steps to disable an
index:

1. Drop the appropriate index(es).
2. Load/update the tabl€e's data.

3. Rebuild the table's index.

A Frequent cOm T Keegpsthe DBA Away

When performing batch transactions, you must know how often to perform a"commit." Asyou learned on Day 11, "Controlling Transactions," a
COWM T statement finalizes a transaction. A COW T saves a transaction or writes any changes to the applicable table(s). Behind the scenes, however,
much more is going on. Some areas in the database are reserved to store completed transactions before the changes are actually written to the target
table. Oracle calls these areas rollback segments. When you issue a COW T statement, transactions associated with your SQL session in the rollback
segment are updated in the target table. After the update takes place, the contents of the rollback segment are removed. A ROLLBACK command, on
the other hand, clears the contents of the rollback segment without updating the target table.

Asyou can guess, if you never issue a COW T or ROLLBACK command, transactions keep building within the rollback segments. Subsequently, if the
datayou are loading is greater in size than the available space in the rollback segments, the database will essentially come to a halt and ban further
transactional activity. Not issuing COMM T commands is a common programming pitfall; regular COMM Ts help to ensure stable performance of the
entire database system.

The management of rollback segmentsisacomplex and vital database administrator (DBA) responsibility because transactions dynamically affect
the rollback segments, and in turn, affect the overall performance of the database as well asindividual SQL statements. So when you are loading
large amounts of data, be sure to issue the COMM T command on aregular basis. Check with your DBA for advice on how often to commit during
batch transactions. (See Figure 15.2.)

Figure 15.2.
Therollback area.

Asyou can see in Figure 15.2, when a user performs a transaction, the changes are retained in the rollback area.

Rebuilding Tables and Indexesin a Dynamic Environment

The term dynamic database environment refers to alarge database that is in a constant state of change. The changes that we are referring to are
frequent batch updates and continual daily transactional processing. Dynamic databases usually entail heavy OLTP systems, but can also refer to
DSSs or data warehouses, depending upon the volume and frequency of dataloads.

The result of constant high-volume changes to a database is growth, which in turn yields fragmentation. Fragmentation can easily get out of hand if
growth is not managed properly. Oracle allocates an initial extent to tables when they are created. When dataiis loaded and fills the table's initial
extent, anext extent, which is also allocated when the table is created, is taken.

Sizing tables and indexes is essentially a DBA function and can drastically affect SQL statement performance. The first step in growth management
isto be proactive. Allow room for tables to grow from day one, within reason. Also plan to defragment the database on aregular basis, even if doing
so means developing aweekly routine. Here are the basic conceptual steps involved in defragmenting tables and indexesin arelational database
management system:

1. Get agood backup of the table(s) and/or index(es).
2. Drop the table(s) and/or index(es).
3. Rebuild the table(s) and/or index(es) with new space all ocation.

4, Restore the data into the newly built table(s).

5. Re-create the index(es) if necessary.
6. Reestablish user/role permissions on the table if necessary.

7. Save the backup of your table until you are absolutely sure that the new table was built successfully. If you choose to discard the backup
of the original table, you should first make a backup of the new table after the data has been fully restored.

WARNING: Never get rid of the backup of your table until you are sure that the new table was built successfully.

The following example demonstrates a practical use of amailing list table in an Oracle database environment.
INPUT:

CREATE TABLE MAI LI NG TBL_BKUP AS
SELECT * FROM NAI LI NG _TBL;

OUTPUT:
Tabl e Creat ed.
INPUT/OUTPUT:

drop table mailing_tbl;
Tabl e Dropped.

CREATE TABLE MAI LI NG _TBL

(

I NDI VI DUAL_I D VARCHAR2(12) NOT NULL,

I NDI VI DUAL _NAVE VARCHAR2(30) NOT NULL,

ADDRESS VARCHAR(40) NOT NULL,

aTyY VARCHAR(25) NOT NULL,

STATE VARCHAR(2) NOT NULL,

ZI P_CODE VARCHAR(9) NOT NULL,

)

TABLESPACE TABLESPACE_NAME

STORACE (I NI TI AL NEW SI ZE,
NEXT NEW SI ZE)

Tabl e created.

I NSERT | NTO MAI LI NG _TBL
select * frommailing_tbl_bkup;

93, 451 rows inserted.
CREATE | NDEX MAI LI NG_| DX ON NAI LI NG TABLE
I(NDI VI DUAL_I D
2I'ABLESPACE TABLESPACE_NAMVE
STORAGE (I NI TI AL NEW SI ZE,
NEXT NEW SI ZE)
I ndex Created.
grant select on nmailing_thl to public;
Grant Succeeded.

drop table mailing_tbl_bkup;

Tabl e Dropped.
ANALYSIS:

Rebuilding tables and indexes that have grown enables you to optimize storage, which improves overall performance. Remember to drop the backup

table only after you have verified that the new table has been created successfully. Also keep in mind that you can achieve the same results with
other methods. Check the options that are available to you in your database documentation.

Tuning the Database

Tuning a database is the process of fine-tuning the database server's performance. As a newcomer to SQL, you probably will not be exposed to
database tuning unless you are anew DBA or a DBA moving into arelational database environment. Whether you will be managing a database or
using SQL in applications or programming, you will benefit by knowing something about the database-tuning process. The key to the success of any
database isfor al partiesto work together. Some general tips for tuning a database follow.

1 Minimize the overall size required for the database.

It's good to allow room for growth when designing a database, but don't go overboard. Don't tie up resources that you may need to
accommodate database growth.

1 Experiment with the user process's time-dice variable.
This variable controls the amount of time the database server's scheduler allocates to each user's process.
1 Optimize the network packet size used by applications.

The larger the amount of data sent over the network, the larger the network packet size should be. Consult your database and network
documentation for more details.

1 Store transaction logs on separate hard disks.

For each transaction that takes place, the server must write the changes to the transaction logs. If you store these log files on the same disk as
you store data, you could create a performance bottleneck. (See Figure 15.3.)

1 Stripe extremely large tables across multiple disks.

If concurrent users are accessing alarge table that is spread over multiple disks, there is much less chance of having to wait for system
resources. (See Figure 15.3.)

1 Store database sort area, system catalog area, and rollback areas on separate hard disks.

These are all areasin the database that most users access frequently. By spreading these areas over multiple disk drives, you are maximizing
the use of system resources. (See Figure 15.3.)

1 Add CPUs.

This system administrator function can drastically improve database performance. Adding CPUs can speed up data processing for obvious
reasons. If you have multiple CPUs on a machine, then you may be able to implement parallel processing strategies. See your database
documentation for more information on parallel processing, if it is available with your implementation.

1 Add memory.
Generaly, the more the better.
1 Store tables and indexes on separate hard disks.

Y ou should store indexes and their related tables on separate disk drives when- ever possible. This arrangement enables the table to be read
at the same time the index is being referenced on another disk. The capability to store objects on multiple disks may depend on how many
disks are connected to a controller. (See Figure 15.3.)

Figure 15.3 shows a simple example of how you might segregate the major areas of your database.

Figure 15.3.
Using available disks to enhance performance.

The scenario in Figure 15.3 uses four devices: diskO1 through disk04. The objective when spreading your heavy database areas and objectsis to keep
areas of high use away from each another.

1 Disk01-- The system catalog stores information about tables, indexes, users, statistics, database files, sizing, growth information, and other
pertinent data that is often accessed by a high percentage of transactions.

1 Disk02--Transaction logs are updated every time a change is made to a table (insert, update, or delete). Transaction logs are a grand factor in
an online transactional database. They are not of great concern in aread-only environment, such as a data warehouse or DSS.

1 Disk03--Rollback segments are also significant in atransactional environment. However, if there is little transactional activity (insert,
update, delete), rollback segments will not be heavily used.

1 Disk04-- The database's sort area, on the other hand, is used as atemporary areafor SQL statement processing when sorting data, asin a
GROUP BY or ORDER BY clause. Sort areas are typically an issue in a data warehouse or DSS. However, the use of sort areas should also be
considered in atransactional environment.

TIP: Also note how the application tables and indexes have been placed on each disk. Tables and indexes should be spread as much
aspossible.

Notice that in Figure 15.3 the tables and indexes are stored on different devices. Y ou can also see how a"Big Table" or index may be striped across
two or more devices. This technique splits the table into smaller segments that can be accessed simultaneously. Striping atable or index across
multiple devicesis away to control fragmentation. In this scenario, tables may be read while their corresponding indexes are being referenced,
which increases the speed of overall data access.

Thisexampleisreally quite simple. Depending on the function, size, and system-related issues of your database, you may find a similar method for
optimizing system resources that works better. In a perfect world where money is no obstacle, the best configuration is to have a separate disk for
each major database entity, including large tables and indexes.

NOTE: The DBA and system administrator should work together to balance database space all ocation and optimize the memory
that is available on the server.

Tuning a database very much depends on the specific database system you are using. Obviously, tuning a database entails much more than just
preparing queries and letting them fly. On the other hand, you won't get much reward for tuning a database when the application SQL is not fine-
tuned itself. Professionals who tune databases for aliving often specialize on one database product and learn as much as they possibly can about its
features and idiosyncrasies. Although database tuning is often looked upon as a painful task, it can provide very lucrative employment for the people
who truly understand it.

Perfor mance Obstacles

We have already mentioned some of the countless possible pitfalls that can hinder the general performance of a database. These are typically genera
bottlenecks that involve system-level maintenance, database maintenance, and management of SQL statement processing.

This section summarizes the most common obstacles in system performance and database response time.

1 Not making use of available devices on the server--A company purchases multiple disk drives for areason. If you do not use them
accordingly by spreading apart the vital database components, you are limiting the performance capabilities. Maximizing the use of system
resources isjust asimportant as maximizing the use of the database server capabilities.

1+ Not performing frequent COW Ts--Failing to use periodic COW Ts or ROLLBACKSs during heavy batch loads will ultimately result in
database bottlenecks.

1 Allowing batch loads to interfere with daily processing--Running batch loads during times when the database is expected to be available will
cause problems for everybody. The batch process will bein a perpetua battle with end users for system resources.

1 Being careless when creating SQL statements--Carelessly creating complex SQL statements will more than likely contribute to substandard
response time.

TIP: You can use various methods to optimize the structure of an SQL statement, depending upon the steps taken by the database
server during SQL statement processing.

1 Running batch loads with table indexes--Y ou could end up with a batch load that runs all day and all night, as opposed to a batch load that
finishes within afew hours. Indexes slow down batch loads that are accessing a high percentage of therowsin atable.

1 Having too many concurrent users for allocated memory--As the number of concurrent database and system users grows, you may need to
allocate more memory for the shared process. See your system administrator.

1 Creating indexes on columns with few unique values--Indexing on a column such as GENDER, which has only two unique values, is not very
efficient. Instead, try to index columns that will return alow percentage of rowsin a query.

1 Creating indexes on small tables--By the time the index is referenced and the data read, a full-table scan could have been accomplished.

1 Not managing system resources efficiently--Poor management of system resources can result from wasted space during database
initialization, table creation, uncontrolled fragmentation, and irregular system/database maintenance.

1 Not sizing tables and indexes properly--Poor estimates for tables and indexes that grow tremendously in alarge database environment can
lead to serious fragmentation problems, which if not tended to, will snowball into more serious problems.

Built-In Tuning Tools

Check with your DBA or database vendor to determine what tools are available to you for performance measuring and tuning. Y ou can use
performance-tuning tools to identify deficienciesin the data access path; in addition, these tools can sometimes suggest changes to improve the
performance of a particular SQL statement.

Oracle has two popular tools for managing SQL statement performance. These tools are expl ai n pl an and t kpr of . The expl ai n pl an tool
identifies the access path that will be taken when the SQL statement is executed. t kpr of measures the performance by time elapsed during each
phase of SQL statement processing. Oracle Corporation also provides other tools that help with SQL statement and database analysis, but the two
mentioned here are the most popular. If you want to simply measure the elapsed time of a query in Oracle, you can use the SQL* Plus command SET
TI' M NG ON.

SET TI' M NG ON and other SET commands are covered in more depth on Day 20, "SQL*Plus."

Sybase's SQL Server has diagnostic tools for SQL statements. These options are in the form of SET commands that you can add to your SQL
statements. (These commands are similar to Oracle's SET commands). Some common commands are SET SHOAPLAN ON, SET STATI STIC | O ON,
and SET STATI STI CS TI ME ON. These SET commands display output concerning the steps performed in a query, the number of reads and writes
required to perform the query, and general statement-parsing information. SQL Server SET commands are covered on Day 19, "Transact-SQL: An
Introduction.”

Summary

Two major elements of streamlining, or tuning, directly affect the performance of SQL statements: application tuning and database tuning. Each has
its own role, but one cannot be optimally tuned without the other. The first step toward successis for the technical team and system engineersto
work together to balance resources and take full advantage of the database features that aid in improving performance. Many of these features are
built into the database software provided by the vendor.

Application developers must know the data. The key to an optimal database design is thorough knowledge of the application's data. Developers and
production programmers must know when to use indexes, when to add another index, and when to allow batch jobs to run. Always plan batch |oads
and keep batch processing separate from daily transactional processing.

Databases can be tuned to improve the performance of individual applications that access them. Database administrators must be concerned with the
daily operation and performance of the database. In addition to the meticulous tuning that occurs behind the scenes, the DBA can usually offer

creative suggestions for accessing data more efficiently, such as manipulating indexes or reconstructing an SQL statement. The DBA should also be
familiar with the tools that are readily available with the database software to measure performance and provide suggestions for statement tweaking.

Q&A

Q If | streamlinemy SQL statement, how much of a gain in performance should | expect?

A Performance gain depends on the size of your tables, whether or not columnsin the table are indexed, and other relative factors. In avery
large database, a complex query that runs for hours can sometimes be cut to minutes. In the case of transactional processing, streamlining an
SQL statement can save important seconds for the end user.

Q How do | coordinate my batch loads or updates?

A Check with the database administrator and, of course, with management when scheduling a batch load or update. If you are a system
engineer, you probably will not know everything that is going on within the database.

Q How often should | commit my batch transactions?

A Check with the DBA for advice. The DBA will need to know approximately how much data you are inserting, updating, or deleting. The
frequency of COW T statements should also take into account other batch loads occurring simultaneously with other database activities.

Q Should | stripe all of my tables?

A Striping offers performance benefits only for large tables and/or for tables that are heavily accessed on aregular basis.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. What does streamline an SQL statement mean?
2. Should tables and their corresponding indexes reside on the same disk?
3. Why isthe arrangement of conditionsin an SQL statement important?
4, What happens during a full-table scan?

5. How can you avoid afull-table scan?

6. What are some common hindrances of general performance?
Exercises

1. Make the following SQL statement more readable.

SELECT EMPLOYEE. LAST_NAME, EMPLOYEE. FI RST_NAME, EMPLOYEE. M DDLE_NAME,
EMPLOYEE. ADDRESS, EMPLOYEE. PHONE_NUMBER, PAYRCLL. SALARY, PAYRCLL. PCSI TI ON,
EMPLOYEE. SSN, PAYROLL. START_DATE FROM EVMPLOYEE, PAYROLL WHERE

EMPLOYEE. SSN = PAYROLL. SSN AND EMPLOYEE. LAST_NAME LI KE ' S% AND

PAYROLL. SALARY > 20000;

2. Rearrange the conditions in the following query to optimize data retrieval time. Use the following statistics (on the tables in their entirety)
to determine the order of the conditions:

593 individuals have the last name SM TH.

712 individualslivein | NDI ANAPOLI S.

3,492 individuals are VALE.

1,233 individuals earn a salary >= 30, 000.

5,009 individuals are single.

I'ndi vi dual _i d isthe primary key for both tables.

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI P_CODE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG TBL M
I NDI VI DUAL_STAT_TBL S
WHERE M NAME LI KE ' SM TH%

AND M CITY = " | NDI ANAPCLI S§'

AND S. SEX = ' NMALE'

AND S. SALARY >= 30000

AND S. MARI TAL_STATUS = ' &

AND M | NDI VIDUAL_I D = S. 1 NDI VI DUAL_I D;

{4 Previous Chapter JER.—> Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
1L A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 16 -
Using Viewsto Retrieve Useful Information from the Data Dictionary
Objectives

Today we discuss the data dictionary, also known as the system catalog. By the end of the day, you should have a solid understanding of the
following:

1 The definition of the data dictionary
1 Thetype of information the data dictionary contains
1+ Different types of tables within the data dictionary

1 Effective ways to retrieve useful information from the data dictionary

Introduction to the Data Dictionary

Every relational database has some form of data dictionary, or system catalog. (We use both terms in today's presentation.) A data dictionary isa
system area within a database environment that contains information about the ingredients of a database. Data dictionaries include information such
as database design, stored SQL code, user statistics, database processes, database growth, and database performance statistics.

The data dictionary has tables that contain database design information, which are popul ated upon the creation of the database and the execution of
Data Definition Language (DDL) commands such as CREATE TABLE. This part of the system catal og stores information about a tabl€e's columns and
attributes, table-sizing information, table privileges, and table growth. Other objects that are stored within the data dictionary include indexes,
triggers, procedures, packages, and views.

User statistics tables report the status of items such as database connectivity information and privileges for individual users. These privileges are
divided into two major components: system-level privileges and object-level privileges. The authority to create another user is a system-level
privilege, whereas the capability to access atable is an object-level privilege. Roles are also used to enforce security within a database. This
information is stored as well.

Day 16 extends what you learned yesterday (Day 15, "Streamlining SQL Statements for Improved Performance”). Data retrieved from the system
catalog can be used to monitor database performance and to modify database parameters that will improve database and SQL statement performance.

The data dictionary is one of the most useful tools available with a database. It isaway of keeping a database organized, much like an inventory file
in aretail store. It is a mechanism that ensures the integrity of the database. For instance, when you create a table, how does the database server
know whether atable with the same name exists? When you create a query to select data from atable, how can it be verified that you have been
given the proper privileges to access the table? The data dictionary is the heart of a database, so you need to know how to useit.

Users of the Data Dictionary

End users, system engineers, and database administrators all use the data dictionary, whether they realize it or not. Their access can be either direct
or indirect.

End users, often the customers for whom the database was created, access the system catalog indirectly. When a user attempts to log on to the

database, the data dictionary is referenced to verify that user's username, password, and privileges to connect to the database. The database is also
referenced to see whether the user has the appropriate privileges to access certain data. The most common method for an end user to access the data
dictionary isthrough a front-end application. Many graphical user interface (GUI) tools, which allow a user to easily construct an SQL statement,
have been devel oped. When logging on to the database, the front-end application may immediately perform a select against the data dictionary to
define the tables to which the user has access. The front-end application may then build a"local" system catalog for the individual user based on the
dataretrieved from the data dictionary. The customer can use the local catalog to select the specific tables he or she wishes to query.

System engineers are database users who are responsible for tasks such as database modeling and design, application development, and application
management. (Some companies use other titles, such as programmers, programmer analysts, and data modelers, to refer to their system engineers.)
System engineers use the data dictionary directly to manage the development process, as well asto maintain existing projects. Access may also be
achieved through front-end applications, development tools, and computer assisted software engineering (CASE) tools. Common areas of the system
catalog for these users are queries against objects under groups of schemas, queries against application roles and privileges, and queries to gather
statistics on schema growth. System engineers may also use the data dictionary to reverse-engineer database objects in a specified schema.

Database administrators (DBAS) are most definitely the largest percentage of direct users of the data dictionary. Unlike the other two groups of
users, who occasionally use the system catalog directly, DBAs must explicitly include the use of the data dictionary as part of their daily routine.
Accessis usualy through an SQL query but can aso be through administration tools such as Oracle's Server Manager. A DBA uses data dictionary
information to manage users and resources and ultimately to achieve awell-tuned database.

Asyou can see, al database users need to use the data dictionary. Even more important, arelational database cannot exist without some form of a
datadictionary.

Contents of the Data Dictionary

This section examines the system catalogs of two RDBM S vendors, Oracle and Sybase. Although both implementations have unique specifications
for their data dictionaries, they serve the same function. Don't concern yourself with the different names for the system tables; simply understand the
concept of adatadictionary and the datait contains.

Oracle's Data Dictionary

Because every table must have an owner, the owner of the system tablesin an Oracle data dictionary is SYS. Oracle's data dictionary tables are
divided into three basic categories: user accessible views, DBA views, and dynamic performance tables, which also appear asviews. Viewsthat are
accessible to a user alow the user to query the data dictionary for information about the individual database account, such as privileges, or a catalog
of tables created. The DBA views aid in the everyday duties of a database administrator, allowing the DBA to manage users and objects within the
database. The dynamic performance tablesin Oracle are also used by the DBA and provide a more in-depth look for monitoring performance of a
database. These views provide information such as statistics on processes, the dynamic usage of rollback segments, memory usage, and so on. The
dynamic performance tables are all prefixed Vs.

Sybase's Data Dictionary

Asin Oracle, the owner of the tablesin a Sybase data dictionary is SYS. The tables within the data dictionary are divided into two categories: system
tables and database tables.

The system tables are contained with the master database only. These tables define objects (such as tables and indexes) that are common through
multiple databases. The second set of tablesin a Sybase SQL Server data dictionary are the database tables. These tables are related only to objects
within each database.

A Look Inside Oracle's Data Dictionary

The examplesin this section show you how to retrieve information from the data dictionary and are applicable to most relational database users, that
is, system engineer, end user, or DBA. Oracle's data dictionary has avast array of system tables and views for all types of database users, whichis
why we have chosen to explore Oracl€'s data dictionary in more depth.

User Views

User views are data dictionary views that are common to all database users. The only privilege a user needs to query against a user view isthe
CREATE SESSI ON system privilege, which should be common to all users.

Who AreYou?

Before venturing into the seemingly endless knowledge contained within a database, you should know exactly who you are (in terms of the database)
and what you can do. The following two examples show SELECT statements from two tables: one to find out who you are and the other to see who

else shares the database.

INPUT:

SQ.> SELECT *
2 FROM USER_USERS;

OUTPUT:
USERNAME USER | D DEFAULT_TABLESPACE TEMPORARY TABLESPACE CREATED
JSM TH 29 USERS TEMP 14 - MAR- 97

1 row sel ect ed.
ANALYSIS:

The USER_USERS view allows you to view how your Oracle ID was set up, when it was set up, and it also shows other user-specific, vita
statistics. The default tablespace and the temporary tablespace are also shown. The default tablespace, USERS, is the tablespace that objects will be
created under asthat user. The temporary tablespace is the designated tablespace to be used during large sorts and group functions for JSMITH.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM ALL_USERS;

USERNAME USER | D CREATED
SYS 0 01-JAN-97
SYSTEM 5 01-JAN-97
SCOTT 8 01-JAN-97
JSM TH 10 14 - MAR- 97
TIJONES 11 15- MAR- 97
VJOHNSON 12 15- MAR- 97

Asyou can see in the results of the preceding query, you can view all usersthat exist in the database by using the ALL_USERS view. However, the
ALL_USERS view does not provide the same specific information as the previous view (USER_USERS) provided because there is no need for this
information at the user level. More specific information may be required at the system level.

What AreYour Privileges?

Now that you know who you are, it would be nice to know what you can do. Severa views are collectively able to give you that information. The
USER_SYS PRIVSview and the USER_ROLE_PRIV S view will give you (the user) a good idea of what authority you have.

You can usethe USER_SYS PRIV S view to examine your system privileges. Remember, system privileges are privileges that allow you to do
certain things within the database as a whole. These privileges are not specific to any one object or set of objects.

INPUT:

SQL> SELECT *
2 FROM USER SYS PRI VS;

OUTPUT:

USERNAME PRI VI LEGE ADM
JSM TH UNLI M TED TABLESPACE NO
JSM TH CREATE SESSI ON NO

2 rows sel ected.
ANALYSIS:

JSMITH has been granted two system-level privileges, outside of any granted roles. Notice the second, CREATE SESSI ON. CREATE SESSI ON isalso
contained within an Oracle standard role, CONNECT, which is covered in the next example.

You can use the USER_ROLE_PRIV S view to view information about roles you have been granted within the database. Database roles are very
similar to system-level privileges. A role is created much like a user and then granted privileges. After the role has been granted privileges, the role
can be granted to a user. Remember that object-level privileges may also be contained within arole.

INPUT/OUTPUT:

SQ.> SELECT *
2 FROM USER_RCLE_PRIVS;

USERNAME GRANTED_ROLE ADM DEF os_
JSM TH CONNECT NO YES NO
JSM TH RESOURCE NO YES NO

2 rows sel ected.
ANALYSIS:

The USER_ROLE_PRIVS view enables you to see the roles that have been granted to you. As mentioned earlier, CONNECT contains the system
privilege CREATE SESSI ON, aswell as other privileges. RESOURCE has afew privileges of its own. Y ou can see that both roles have been granted as
the user's default role; the user cannot grant these roles to other users, as noted by the Admin option (ADM); and the roles have not been granted by
the operating system. (Refer to Day 12, "Database Security.")

What Do You Have Access To?

Now you might ask, What do | have accessto? | know who | am, | know my privileges, but where can | get my data? Y ou can answer that question
by looking at various available user viewsin the data dictionary. This section identifies a few helpful views.

Probably the most basic user view is USER_CATALOG, which is simply a catalog of the tables, views, synonyms, and sequences owned by the
current user.

INPUT:

SQ.> SELECT *
2 FROM USER_CATALGCG

OUTPUT:

TABLE_NAME TABLE_TYPE
MAGAZI NE_TBL TABLE
MAG_CQOUNTER SEQUENCE
MAG VI EW VI EW
SPORTS TABLE

4 rows sel ected.
ANALYSIS:

This example provides aquick list of tables and related objects that you own. Y ou can aso use a public synonym for USER_CATALOG for
simplicity'ssake: CAT. That is, try sel ect * fromcat; .

Another useful view isALL_CATALOG, which enables you to see tables owned by other individuals.

INPUT/OUTPUT:

SQL> SELECT *
2 FROM ALL_CATALOG

ONNER TABLE_NAME TABLE_TYPE
SYS DUAL TABLE

PUBLI C DUAL SYNONYM
JSM TH MAGAZI NE_TBL TABLE

JSM TH MAG_COUNTER SEQUENCE

JSM TH MAG_VI EW VI EW

JSM TH SPORTS TABLE

VJOHNSON TEST1 TABLE
VJOHNSON HOBBI ES TABLE
VJOHNSON CLASSES TABLE
VJOHNSON STUDENTS VI EW

10 rows sel ect ed.
ANALYSIS:

More objects than appear in the preceding list will be accessible to you as auser. (The SYSTEMtables alone will add many tables.) We have simply
shortened the list. The ALL_CATALOG view isthe same asthe USER_CATALOG view, but it shows you al tables, views, sequences, and
synonyms to which you have access (not just the ones you own).

INPUT:

SQL> SELECT SUBSTR(OBJECT_TYPE, 1, 15) OBJECT_TYPE,

2 SUBSTR(OBJECT_NANME, 1, 30) OBJECT_NANME,

3 CREATED,

4 STATUS

5 FROM USER OBJECTS

6 ORDER BY 1;
OUTPUT:
OBJECT_TYPE OBJECT_NAME CREATED STATUS
I NDEX MAGAZI NE_| NX 14 - MAR- 97 VALI D
I NDEX SPORTS_| NX 14 - MAR- 97 VALI D
I NDEX HOBBY_I NX 14 - MAR- 97 VALI D
TABLE MAGAZI NE_TBL 01 - MAR- 97 VALI D
TABLE SPORTS 14 - MAR- 97 VALI D
TABLE HOBBY_TBL 16 - MAR- 97 VALI D

6 rows sel ected.
ANALYSIS:

Y ou can use the USER_OBJECTS view to select general information about a user's owned objects, such as the name, type, date created, date
modified, and the status of the object. In the previous query, we are checking the data created and validation of each owned object.

INPUT/OUTPUT:

SQL> SELECT TABLE_NAME, | NI TI AL_EXTENT, NEXT_EXTENT
2 FROM USER_TABLES;

TABLE_NAMVE I' NI TI AL_EXTENT NEXT EXTENT
MAGAZI NE_TBL 1048576 540672
SPORTS 114688 114688
ANALYSIS:

Much more data is available when selecting from the USER_TABLES view, depending upon what you want to see. Most data consists of storage
information.

NOTE: Noticein the output that the values for initial and next extent are in bytes. In some implementations you can use column
formatting to make your output more readable by adding commas. See Day 19, "Transact-SQL: An Introduction,” and Day 20,
"SQL*Plus."

The ALL_TABLESview isto USER_TABLES asthe ALL_CATALOG view isto USER_CATALOG. In other words, ALL_TABLES alows you
to see all the tables to which you have access, instead of just the tables you own. The ALL_TABLES view may include tables that exist in another
user's catalog.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OMAER, 1, 15) OWNER,

2 SUBSTR(TABLE_NAME, 1, 25) TABLE_NAME,

3 SUBSTR(TABLESPACE_NAME, 1, 13) TABLESPACE

4 FROM ALL_TABLES;
OMNER TABLE_NAME TABLESPACE
SYS DUAL SYSTEM
JSM TH MAGAZI NE_TBL USERS
SM TH SPORTS USERS
VJ OHNSON TEST1 USERS
VJ OHNSON HOBBI ES USERS
VJ OHNSON CLASSES USERS
ANALYSIS:

Again, you have selected only the desired information. Many additional columnsin ALL_TABLES may also contain useful information.

As adatabase user, you can monitor the growth of tables and indexes in your catalog by querying the USER_SEGMENTS view. Asthe name
suggests, USER_SEGMENTS gives you information about each segment, such as storage information and extents taken. A segment may consist of &
table, index, cluster rollback, temporary, or cache. The following example shows how you might retrieve selected information from the
USER_SEGMENTS view.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(SEGVENT_NAME, 1, 30) SEGVENT_NAME,
2 SUBSTR(SEGVENT_TYPE, 1, 8) SEG TYPE,
3 SUBSTR(TABLESPACE_NAME, 1, 25) TABLESPACE NAME,
4 BYTES, EXTENTS
5 FROM USER_SEGVENTS
6 ORDER BY EXTENTS DESC;

SEGVENT_NAME SEG TYPE TABLESPACE_NANME BYTES EXTENTS
MAGAZI NE_TBL TABLE USERS 4292608 7
SPORTS_I NX I NDEX USERS 573440 4
SPORTS TABLE USERS 344064 2
MAGAZI NE_I NX I NDEX USERS 1589248 1

4 rows sel ected.
ANALYSIS:

The output in the preceding query was sorted by extentsin descending order; the segments with the most growth (extents taken) appear first in the
results.

Now that you know which tables you have access to, you will want to find out what you can do to each table. Are you limited to query only, or can
you update atable? The ALL_TAB_PRIVSview listsal privileges that you have as a database user on each table available to you.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_SCHEMA, 1, 10) OANER,

2 SUBSTR(TABLE_NAME, 1, 25) TABLE_NAME,

3 PRI VI LEGE

4 FROM ALL_TAB_PRI VS;
ONNER TABLE_NAME PRI VI LEGE
SYS DUAL SELECT
JSM TH MAGAZI NE_TBL SELECT
JSM TH MAGAZI NE_TBL | NSERT
JSM TH MAGAZI NE_TBL UPDATE
JSM TH MAGAZI NE_TBL DELETE
JSM TH SPORTS SELECT
JSM TH SPCRTS | NSERT
JSM TH SPCRTS UPDATE
JSM TH SPORTS DELETE
VJOHNSON TEST1 SELECT
VJOHNSON TEST1 | NSERT

VJOHNSON TEST1 UPDATE

VJOHNSON TEST1 DELETE

VJOHNSON HOBBI ES SELECT
VJOHNSON CLASSES SELECT
ANALYSIS:

Asyou can see, you can manipulate the data in some tables, whereas you have read-only access (SELECT only) to others.

When you create objects, you usually need to know where to place them in the database unless you allow your target destination to take the default.
An Oracle database is broken up into tablespaces, each of which are capable of storing objects. Each tablespace is allocated a certain amount of disk
space, according to what is available on the system. Disk space is usually acquired through the system administrator (SA).

Thefollowing query isfrom aview called USER_TABLESPACES, which will list the tablespaces that you have access to, the default initial and
next sizes of objects created within them, and their status.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME, 1, 30) TABLESPACE_NANE,

2 I NI TI AL_EXTENT,

3 NEXT_EXTENT,

4 PCT_| NCREASE,

5 STATUS

6 FROM USER_TABLESPACES;
TABLESPACE_NAME I NI TI AL_EXTENT NEXT_EXTENT PCT_| NCREASE STATUS
SYSTEM 32768 16384 1 ONLINE
RBS 2097152 2097152 1 ONLINE
TEMP 114688 114688 1 ONLINE
TOOLS 32768 16384 1 ONLINE
USERS 32768 16384 1 ONLINE

5 rows sel ected.
ANALYSIS:

Thistype of query isvery useful when you are creating objects, such as tables and indexes, which will require storage. When atable or index is
created, if theinitial and next storage parameters are not specified in the DDL, the table or index will take the tablespace's default values. The same
concept appliesto PCT | NCREASE, which is an Oracle parameter specifying the percentage of allocated space an object should take when it grows. If
avaluefor PCT | NCREASE is not specified when the table or index is created, the database server will alocate the default value that is specified for
the corresponding tablespace. Seeing the default values enables you to determine whether you need to use a storage clause in the CREATE statement.

Sometimes, however, you need to know more than which tablespaces you may access, that is, build tables under. For example, you might need to
know what your limits are within the tablespaces so that you can better manage the creation and sizing of your objects. The USER_TS QUOTAS
view provides the necessary information. The next query displays a user's space limits for creating objects in the database.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE NAME, 1, 30) TABLESPACE_NAME,
2 BYTES, MAX BYTES
3 FROM USER TS _QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES
SYSTEM 0 0
TOALS 5242880 16384
USERS 573440 -1

3 rows sel ected.
ANALYSIS:

The preceding output is typical of output from an Oracle data dictionary. BYTES identifies the total number of bytes in that tablespace that are
associated with the user. MAX BYTES identifies the maximum bytes allotted to the user, or the user's quota, on the tablespace. The first two valuesin
this column are self-explanatory. The - 1 in the third row means quota unlimited--that is, no limits are placed on the user for that tablespace.

NOTE: The SUBSTR function appearsin many of the preceding queries of data dictionary views. Y ou can use many of the functions
that you learned about earlier to improve the readablility of the data you retrieve. The use of consistent naming standards in your
database may allow you to limit the size of datain your output, as we have done in these examples.

These examples al show how an ordinary database user can extract information from the data dictionary. These views are just a few of the many
that exist in Oracle's data dictionary. It isimportant to check your database implementation to see what is available to you in your data dictionary.
Remember, you should use the data dictionary to manage your database activities. Though system catal ogs differ by implementation, you need only
to understand the concept and know how to retrieve data that is necessary to supplement your job.

System DBA Views

The DBA views that reside within an Oracle data dictionary are usually the primary, or most common, views that a DBA would access. These views
areinvaluable to the productivity of any DBA. Taking these tables away from a DBA would be like depriving a carpenter of a hammer.

Asyou may expect, you must have the SELECT_ANY_TABLE system privilege, which is contained in the DBA role, to access the DBA tables. For
example, suppose you are JSSMITH, who does not have the required privilege to select from the DBA tables.

INPUT:

SQL> SELECT *
2 FROM USER ROLE PRI VS;

OUTPUT:

USERNAME GRANTED_ROLE ADM DEF os_
JSM TH CONNECT NO YES NO
JSM TH RESOURCE NO YES NO
INPUT/OUTPUT:

SQL> SELECT *
2 FROM SYS. DBA ROLES;
FROM SYS. DBA ROLES;
*

ERROR at |ine 2:
ORA- 00942: table or view does not exi st

ANALYSIS:

When you try to access atable to which you do not have the appropriate privileges, an error is returned stating that the table does not exist. This
message can be alittle misleading. Virtualy, the table does not exist because the user cannot "see" the table. A solution to the problem above would
be to grant the role DBA to JSMITH. This role would have to be granted by a DBA, of course.

Database User Information

The USER_USERS and ALL_USERS views give you minimum information about the users. The DBA view called DBA_USERS (owned by SYS)
gives you theinformation on all usersif you have the DBA role or SELECT_ANY_TABLE privilege, as shown in the next example.

INPUT:

SQ.> SELECT *
2 FROM SYS. DBA_USERS;

OUTPUT:
USERNAME USER | D PASSWWORD
DEFAULT_TABLESPACE TEMPORARY_TABLESPACE CREATED

SYS 0 4012DA490794C16B

SYSTEM TEMP 06 - JUN- 96
DEFAULT

JSM TH 5 A4A94B17405C10B7

USERS TEMP 06 - JUN- 96
DEFAULT

2 rows sel ected.
ANALYSIS:

When you select al from the DBA_USERS view, you are able to see the vital information on each user. Notice that the password is encrypted.
DBA_USERS s the primary view used by a DBA to manage users.

Database Security

Three basic data dictionary views deal with security, although these views can be tied to-gether with other related views for more complete
information. These three views deal with database roles, roles granted to users, and system privileges granted to users. The three views introduced in
this section are DBA_ROLES, DBA_ROLE_PRIVS, and DBA_SYS PRIVS. The following sample queries show how to obtain information
pertinent to database security.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA_ROLES;

OUTPUT:

ROLE PASSWORD
CONNECT NO
RESOURCE NO

DBA NO
EXP_FULL_DATABASE NO

| MP_FULL_DATABASE NO
END_USER ROLE NO

6 rows sel ected.
ANALYSIS:

Theview DBA_ROLES lists all the roles that have been created within the database. It gives the role name and whether or not the role has a
password.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA_ROLE_PRI VS
3 WWHERE GRANTEE = ' RJENNI NGS' ;

GRANTEE GRANTED_ROLE ADM DEF
RIENNI NGS CONNECT NO YES
RIENNI NGS DBA NO YES
RIENNI NGS RESOURCE NO YES

3 rows sel ected.
ANALYSIS:

The DBA_ROLE_PRIVS view provides information about database roles that have been granted to users. The first column is the grantee, or user.
The second column displays the granted role. Notice that every role granted to the user corresponds to arecord in the table. ADMidentifies whether
the role was granted with the Admin option, meaning that the user is able to grant the matching role to other users. The last column is DEFAULT,
stating whether the matching role is a default role for the user.

INPUT/OUTPUT:

SQ.> SELECT *
2 FROM SYS. DBA_SYS_PRI VS
3 WHERE GRANTEE = ' RJIENNI NGS' ;

GRANTEE PRI VI LEGE ADM
RIENNI NGS CREATE SESSI ON NO
RIENNI NGS UNLI M TED TABLESPACE NO

2 rows sel ected.
ANALYSIS:

The DBA_SYS PRIV Sview listsal system-level privileges that have been granted to the user. Thisview issimilar to DBA_ROLE_PRIVS. You
can include these system privileges in arole by granting system privileges to arole, as you would to a user.

Database Objects

Database objects are another major focus for aDBA. Several views within the data dictionary provide information about objects, such as tables and
indexes. These views can contain general information or they can contain detailed information about the objects that reside within the database.

INPUT:

SQL> SELECT *
2 FROM SYS. DBA CATALCG
3 WWHERE ROMNUM < 5;

OUTPUT:

ONNER TABLE_NAME TABLE_TYPE
SYS CDEF$ TABLE

SYS TAB$ TABLE

SYS | ND$ TABLE

SYS CLU$ TABLE

4 rows sel ected.
ANALYSIS:

The DBA_CATALOG isthe same thing asthe USER_CATALOG, only the owner of the table isincluded. In contrast, the USER_CATALOG view
deals solely with tables that belonged to the current user. DBA_CATALOG isaview that the DBA can use to take aquick look at all tables.

The following query shows you what type of objects exist in a particular database.

TIP: You can use ROWNUMto narrow down the results of your query to a specified number of rows for testing purposes. Oracle calls
ROWNUM a pseudocolumn. ROANUM, like ROA D, can be used on any database table or view.

INPUT/OUTPUT:

SQ.> SELECT DI STI NCT(OBJECT_TYPE)
2 FROM SYS. DBA_OBJECTS;

OBJECT_TYPE
CLUSTER
DATABASE LI NK
FUNCTI ON

| NDEX
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE

SYNONYM
TABLE
TRI GGER
VI EW

12 rows sel ected.
ANALYSIS:

The DI STI NCT function in the preceding query lists all unique object types that exist in the database. This query is a good way to find out what types
of objects the database designers and devel opers are using.

The DBA_TABLES view gives specific information about database tables, mostly concerning storage.
INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWKER, 1,8) OWKNER,
2 SUBSTR(TABLE_NAME, 1, 25) TABLE_NAVE,
3 SUBSTR(TABLESPACE_NAME, 1, 30) TABLESPACE NANE
4 FROM SYS. DBA TABLES
5 WHERE OMER = 'JSM TH ;

ONNER TABLE_NAME TABLESPACE_NANVE
JSMTH MAGAZI NE_TBL USERS

JSMTH HOBBY_TBL USERS

JSM TH ADDRESS TBL SYSTEM

JSMTH CUSTQOVER TBL USERS

4 rows sel ected.
ANALYSIS:

All tables are in the USERS tablespace except for ADDRESS_TBL, which isin the SYSTEMtablespace. Because the only table you should ever storein
the SYSTEMtablespace is the SYSTEMtable, the DBA needs to be aware of this situation. It's a good thing you ran this query!

JSMITH should immediately be asked to move his table into another eligible tablespace.

The DBA_SYNONYMS view providesalist of al synonyms that exist in the database. DBA_SYNONYMS gives alist of synonymsfor all
database users, unlike USER_SYNONYMS, which lists only the current user's private synonyms.

INPUT/OUTPUT:

SQL> SELECT SYNONYM NANME,
2 SUBSTR(TABLE_OWNER, 1, 10) TAB_OMNER,
3 SUBSTR(TABLE_NANE, 1, 30) TABLE_NAVME
4 FROM SYS. DBA SYNONYMS
5 WHERE OMNER = 'JSM TH ;

SYNONYM_NANME TAB_OMWNER TABLE NAME

TRI VI A_SYN VJOHNSON TRIVI A TBL

1 row sel ected.
ANALYSIS:
The preceding output shows that JSMITH has a synonym called TRI VI A_SYN on atable called TRI VI A_TBL that is owned by VJOHNSON.

Now suppose that you want to get alist of all tables and their indexes that belong to JSM TH. Y ou would write a query similar to the following,
using DBA_| NDEXES.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_OWNER, 1, 10) TBL_OWNER,
2 SUBSTR(TABLE_NANE, 1, 30) TABLE_NANME,
3 SUBSTR(| NDEX_NANE, 1, 30) | NDEX_NAVE

4 FROM SYS. DBA_| NDEXES
5 WHERE OMNER = ' JSM TH
6 AND ROMNUM < 5

7 ORDER BY TABLE_NAMNE;

TBL_OMNER TABLE_NAME I NDEX_NAME
JSM TH ADDRESS_TBL ADDR _| NX
JSM TH CUSTOMER _TBL CUST_I NX
JSM TH HOBBY_TBL HOBBY_PK

JSM TH MAGAZI NE_TBL MAGAZI NE_I NX

4 rows sel ected.
ANALYSIS:

A query such as the previous one is an easy method of listing all indexes that belong to a schema and matching them up with their corresponding
table.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_NAME, 1, 15) TABLE_NAME,

2 SUBSTR(| NDEX_NANE, 1, 30) | NDEX_NAME,

3 SUBSTR(COLUVN_NANE, 1, 15) COLUMN_NAME,

4 COLUWN_PCSI TI ON

5 FROM SYS. DBA | ND_COLUWNS

6 WHERE TABLE OMER = 'JSM TH

7 AND ROWNUM < 10

8 ORDER BY 1,2, 3;
TABLE_NAME | NDEX_NANE COLUWN_NANE COLUWN_POSI TI ON
ADDRESS_TBL ADDR_| NX PERS I D 1
ADDRESS_TBL ADDR_| NX NAVE 2
ADDRESS_TBL ADDR_| NX aTY 3
CUSTOVER TBL CUST I NX CUST I D 1
CUSTOVER TBL CUST I NX CUST_NAME 2
CUSTOVER_TBL CUST_I NX CUST zI P 3
HOBBY_TBL HOBBY_PK SAKEY 1
MAGAZI NE_TBL MAGAZI NE_I NX | SSUE_NUM 1
MAGAZI NE_TBL MAGAZI NE_I NX EDI TOR 2

9 rows sel ected.
ANALYSIS:

Now you have selected each column that isindexed in each table and ordered the results by the order the column appearsin the index. Y ou have
learned about tables, but what holds tables? Tablespaces are on a higher level than objects such as tables, indexes, and so on. Tablespaces are
Oracle's mechanism for allocating space to the database. To allocate space, you must know what tablespaces are currently available. Y ou can
perform a select from DBA_TABLESPACES to see alist of all tablespaces and their status, as shown in the next example.

INPUT/OUTPUT:

SQL> SELECT TABLESPACE_NAME, STATUS
2 FROM SYS. DBA_TABLESPACES

TABLESPACE_NAME STATUS
SYSTEM ONLI NE
RBS ONLI NE
TEMP ONLI NE
TOALS ONLI NE
USERS ONLI NE
DATA TS ONLI NE
I NDEX_TS ONLI NE

7 rows sel ected.
ANALYSIS:

The preceding output tells you that all tablespaces are online, which means that they are available for use. If atablespace is offline, then the database

objects within it (that is, the tables) are not accessible.
What is JISMITH's quota on all tablespaces to which he has access? In other words, how much room is available for JISMITH's database objects?
INPUT/OUTPUT:

SQL> SELECT TABLESPACE NAME,
2 BYTES,
3 MAX_BYTES
4 FROM SYS. DBA_TS_QUOTAS
5 WWHERE USERNAME = ' JSM TH

TABLESPACE_NAME BYTES MAX_BYTES
DATA TS 134111232 -1
I NDEX_TS 474390528 -1

2 rows sel ected.
ANALYSIS:

JSMITH has an unlimited quota on both tablespaces to which he has access. In this case the total number of bytes available in the tablespaceis
available on afirst-come first-served basis. For instance, if JSMITH uses all the free spacein DATA_TS, then no one else can create objects here.

Database Growth

This section looks at two views that aid in the measurement of database growth: DBA_SEGMENTS and DBA_EXTENTS. DBA_SEGMENTS
provides information about each segment, or object in the database such as storage all ocation, space used, and extents. Each time atable or index
grows and must grab more space as identified by the NEXT_EXTENT, the table takes another extent. A table usually becomes fragmented when it
grows thisway. DBA_EXTENTS provides information about each extent of a segment.

INPUT:

SQL> SELECT SUBSTR(SEGVENT NAME, 1, 30) SEGVENT NAME,

2 SUBSTR(SEGVENT_TYPE, 1, 12) SEGVENT_TYPE,

3 BYTES,

4 EXTENTS,

5 FROM SYS. DBA_SEGVENTS

6 VWHERE OMNER = ' TW LLI AVB'

7 AND ROMNUM < 5;
OUTPUT:
SEGVENT_NAME SEGVENT_TYPE BYTES EXTENTS
I N\vO CE_TBL TABLE 163840 10
COVPLAI NT_TBL TABLE 4763783 3
HI STORY_TBL TABLE 547474996 27
HI STORY_I NX I NDEX 787244534 31

4 rows sel ected.
ANALYSIS:

By looking at the output from DBA_SEGMENTS, you can easily identify which tables are experiencing the most growth by referring to the number
of extents. Both H STORY_TBL and HI STORY_I NX have grown much more than the other two tables.

Next you can take alook at each extent of one of the tables. You can start with | NvOl CE_TBL.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWKER, 1, 10) OWKER,
2 SUBSTR(SEGVENT_NAME, 1, 30) SEGVENT_NAME,
3 EXTENT | D,

4 BYTES
5 FROM SYS. DBA_EXTENTS
6 WHERE OMNER = ' TW LLI AVS

7 AND SEGVENT_NAME = ' | NvO CE_TBL'
8 ORDER BY EXTENT_I D;

ONNER SEGVENT_NAME EXTENT_I D BYTES
TWLLIAMS | NVO CE_TBL 0 16384
TWLLIAMS | NVO CE_TBL 1 16384
TWLLIAMS | NVO CE_TBL 2 16384
TWLLIAMS | NVO CE_TBL 3 16384
TWLLIAMS | NVO CE_TBL 4 16384
TWLLIAMS | NVO CE_TBL 5 16384
TWLLIAVMS | NVO CE_TBL 6 16384
TWLLIAMS | NVO CE_TBL 7 16384
TWLLIAMS | NVO CE_TBL 8 16384
TWLLIAMS | NVO CE_TBL 9 16384

10 rows sel ect ed.
ANALYSIS:

This example displays each extent of the table, the ext ent _i d, and the size of the extent in bytes. Each extent is only 16K, and because there are 10
extents, you might want to rebuild the table and increase the size of thei ni ti al _ext ent to optimize space usage. Rebuilding the table will allow
all the table's data to fit into a single extent, and therefore, not be fragmented.

Space Allocated

Oracle alocates space to the database by using "datafiles." Spacelogically exists within a tablespace, but data files are the physical entities of
tablespaces. In other implementations, datais also ultimately contained in data files, though these data files may be referenced by another name. The
view called DBA_DATA_FILES enables you to see what is actually allocated to a tablespace.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME, 1, 25) TABLESPACE_NANE,

2 SUBSTR(FI LE_NANE, 1, 40) FI LE_NANE,

3 BYTES

4 FROM SYS. DBA DATA_FI LES;
TABLESPACE_NANVE FI LE_NAME BYTES
SYSTEM / di sk01/ syst enD. dbf 41943040
RBS / di sk02/ r bsO. dbf 524288000
TEMP / di sk03/t enp0. dbf 524288000
TOALS / di sk04/t ool sO. dbf 20971520
USERS / di sk05/ user s0. dbf 20971520
DATA TS / di sk06/ dat a0. dbf 524288000
I NDEX_TS / di sk07/ i ndex0. dbf 524288000

7 rows sel ected.
ANALYSIS:

Y ou are now able to see how much space has been all ocated for each tablespace that exists in the database. Notice the names of the datafiles
correspond to the tablespace to which they belong.

Space Available
Asthe following example shows, the DBA_FREE_SPACE view tells you how much free space is available in each tablespace.
INPUT:

SQL> SELECT TABLESPACE NAME, SUM BYTES)
2 FROM SYS. DBA FREE_SPACE
3 GROUP BY TABLESPACE NAME;

OUTPUT:

TABLESPACE_NAME SUM BYTES)

SYSTEM 23543040

RBS 524288000
TEMP 524288000
TOOLS 12871520
USERS 971520
DATA TS 568000
| NDEX_TS 1288000

7 rows sel ected.
ANALYSIS:

The preceding example lists the total free space for each tablespace. Y ou can also view each segment of free space by ssimply selecting bytes from
DBA_FREE_SPACE instead of SUM byt es) .

Rollback Segments

Asareas for rolling back transactions are a crucia part to database performance, you need to know what rollback segments are available.
DBA_ROLLBACK_SEGS provides thisinformation.

INPUT:

SQL> SELECT OMNER,
2 SEGVENT_NAMVE
3 FROM SYS. DBA_ROLLBACK_SEGS;

OUTPUT:

OMER SEGVENT_NAME

SYS RO

SYS RO1
SYS R02
SYS RO3
SYS RO4
SYS RO5

7 rows selected.

ANALYSIS:

This example performs a simple select to list al rollback segments by name. Much more data is available for your evaluation as well.
Dynamic Performance Views

Oracle DBAS frequently access dynamic performance views because they provide greater detail about the internal performance measures than many
of the other data dictionary views. (The DBA views contain some of the same information.)

These views involve extensive details, which is implementation-specific. This section simply provides an overview of the type of information a
given data dictionary contains.

Session | nformation

A DESCRI BE command of the V$SESSION views follows. (DESCRI BE is an SQL* Plus command and will be covered on Day 20.) Y ou can see the
detail that is contained in the view.

INPUT:
SQL> DESCRI BE V$SESSI ON

OUTPUT:

SADDR RAW(4)

SID NUVBER
SERI AL# NUVBER

AUDSI D NUMBER
PADDR RAW 4)

USER# NUVBER
USERNAVE VARCHAR2(30)
COMVAND NUVBER
TADDR VARCHAR?(8)
LOCKWAI T VARCHAR?(8)
STATUS VARCHAR2(8)
SERVER VARCHAR?2(9)
SCHEMA# NUVBER
SCHEMANAVE VARCHAR2(30)
OSUSER VARCHAR2(15)
PROCESS VARCHAR?2(9)
MACH! NE VARCHAR?(64)
TERM NAL VARCHAR2(10)
PROGRAM VARCHAR2(48)
TYPE VARCHAR?2(10)
SQL_ADDRESS RAW 4)
SQL_HASH VALUE NUVBER
PREV_SQL_ADDR RAW 4)
PREV_HASH_VALUE NUVBER
MODULE VARCHAR?(48)
MODULE_HASH NUVBER

ACTI ON VARCHAR2(32)
ACTI ON_HASH NUMBER

CLI ENT_I NFO VARCHAR?(64)
FI XED_TABLE_SEQUENCE NUVBER

ROW WA T_OBJ# NUVBER

ROW WAl T_FI LE# NUVBER

ROW WAl T_BLOCK# NUMBER

ROW WAl T_ROW NUVBER
LOGON_TI VE DATE

LAST CALL_ET NUVBER

To get information about current database sessions, you could write a SELECT statement similar to the one that follows from V$SESSION.
INPUT/OUTPUT:

SQL> SELECT USERNAME, COWVAND, STATUS
2 FROM V$SESSI ON
3 WHERE USERNAME | S NOT NULL;

USERNAME COMVAND STATUS
TW LLI AMS 3 ACTI VE
JSM TH 0 | NACTI VE

2 rows sel ected.
ANALYSIS:
TWILLIAMS s logged on to the database and performing a select from the database, which is represented by command 3.

JSMITH is merely logged on to the database. His session isinactive, and heis not performing any type of commands. Refer to your database
documentation to find out how the commands are identified in the data dictionary. Commands include SELECT, | NSERT, UPDATE, DELETE, CREATE
TABLE, and DROP TABLE.

Performance Statistics

Data concerning performance statistics outside the realm of user sessionsis also available in the data dictionary. This type of datais much more
implementation specific than the other views discussed today.

Performance statistics include data such as read/write rates, successful hits on tables, use of the system global area, use of memory cache, detailed
rollback segment information, detailed transaction log information, and table locks and waits. The well of knowledge is almost bottomless.

ThePlan Table

The Pl an table is the default table used with Oracle's SQL statement tool, EXPLAI N PLAN. (See Day 15.) Thistableis created by an Oracle script
called UTLXPLAN. SQL, which is copied on to the server when the software isinstalled. Datais generated by the EXPLAI N PLAN tool, which
populates the PLAN table with information about the object being accessed and the stepsin the execution plan of an SQL statement.

Summary

Although the details of the data dictionary vary from one implementation to another, the content remains conceptually the samein all relational
databases. Y ou must follow the syntax and rules of your database management system, but today's examples should give you the confidence to query
your data dictionary and to be creative when doing so.

NOTE: Exploring the data dictionary is an adventure, and you will need to explore in order to learn to use it effectively.

Q&A
Q Why should | usethe views and tablesin the data dictionary?

A Using the views in the data dictionary is the most accurate way to discover the nature of your database. The tables can tell you what you
have access to and what your privileges are. They can also help you monitor various other database events such as user processes and
database performance.

Q How isthedata dictionary created?

A The data dictionary is created when the database is initialized. Oracle Corporation provides several scripts to run when creating each
database. These scripts create all necessary tables and views for that particular database's system catal og.

Q How isthe data dictionary updated?

A The data dictionary is updated internally by the RDBMS during daily operations. When you change the structure of atable, the
appropriate changes are made to the data dictionary internally. Y ou should never attempt to update any tables in the data dictionary yourself.
Doing so may cause a corrupt database.

Q How can | find out who did what in a database?

A Normally, tables or viewsin a system catalog allow you to audit user activity.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. In Oracle, how can you find out what tables and views you own?
2. What types of information are stored in the data dictionary?
3. How can you use performance statistics?
4. What are some database objects?
Exercise

Suppose you are managing a small to medium-size database. Y our job responsibilities include developing and managing the database. Another
individual isinserting large amounts of datainto atable and receives an error indicating alack of space. Y ou must determine the cause of the
problem. Does the user's tablespace quota need to be increased, or do you need to allocate more space to the tablespace? Prepare a step-by-step list
that explains how you will gather the necessary information from the data dictionary. Y ou do not need to list specific table or view names.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

-Day 17 -
Using SQL to Generate SQL Statements

Objectives

Today you learn the concepts behind generating one or more SQL statements from a query. By the end of the day you should understand the
following:

1 The benefits of generating SQL statements from a query
1 How to make the output from a query appear in the form of another SQL statement

1 How to use the data dictionary, database tables, or both to form SQL statements

The Purpose of Using SQL to Generate SQL Statements

Generating SQL from another SQL statement simply means writing an SQL statement whose output forms another SQL statement or command.
Until now, all the SQL statements that you have learned to write either do something, such as manipulate the datain atable, one row at atime, or
produce some kind of report from a query. Today you learn how to write a query whose output forms another query or SQL statement.

Why you would ever need to produce an SQL statement from a query? Initialy, it isa matter of simplicity and efficiency. Y ou may never need to
produce an SQL statement, but without ever doing so you would be ignoring one of SQL's most powerful features, one that too many people do not
realize exists.

Generating SQL israrely mandatory because you can manually create and issue all SQL statements, although the process can be tediousin certain
situations. On the same note generating SQL statements may be necessary when you have atight deadline. For example, suppose your boss wants to
grant access on anew table to al 90 users in the marketing department (and you want to get home for dinner). Because some users of this database
do not work in marketing, you cannot simply grant access on the table to public. When you have multiple groups of users with different types of
access, you may want to enforce role security, which is abuilt-in method for controlling user access to data. In this situation you can create an SQL
statement that generates GRANT statements to all individuals in the marketing department; that is, it grants each individual the appropriate role(s).

Y ou will find many situations in which it is advantageous to produce an SQL statement as output to another statement. For example, you might need
to execute many similar SQL statements as a group or you might need to regenerate DDL from the data dictionary. When producing SQL as output
from another statement, you will always get the data for your output from either the data dictionary or the schema tablesin the database. Figure 17.1
illustrates this procedure.

Asyou can seein Figure 17.1, a SELECT statement can be issued to the database, drawing its output results either from the data dictionary or from
application tables in the database. Y our statement can arrange the retrieved data into one or more SQL statements. For instance, if one row is
returned, you will have generated one SQL statement. If 100 rows are returned from your statement, then you will have generated 100 SQL
statements. When you successfully generate SQL code from the database, you can run that code against the database, which may perform a series of
queries or database actions.

The remainder of the day is devoted to examples that show you how to produce output in the form of SQL statements. Most of your information will
come from the data dictionary, so you may want to review yesterday's material. (See Day 16, "Using Views to Retrieve Useful Information from the
Data Dictionary.")

Figure17.1.

The process of generating SQL from the database.

NOTE: Today's examples use Personal Oracle7. Asaways, you should apply the concepts discussed today to the syntax of your
specific database implementation.

Miscellaneous SQL * Plus Commands

Today's examples use afew new commands. These commands, known as SQL* Plus commands, are specific to Personal Oracle7 and control the
format of your output results. (See Day 20, "SQL*Plus.") SQL*Plus commands are issued at the SQL> prompt, or they can be used in afile.

NOTE: Although these commands are specific to Oracle, similar commands are available in other implementations, for example,
Transact-SQL. (Also see Day 19, "Transact-SQL: An Introduction.")

set echo on/off

Whenyouset echo on, youwill see your SQL statements as they execute. Set echo of f means that you do not want to see your SQL
statements as they execute--you just want to see the output.

SET ECHO[ON | OFF]

set feedback on/off

Feedback is the row count of your output. For instance, if you executed a SELECT statement that returned 30 rows of data, your feedback would be
30 rows sel ected

SET FEEDBACK ON displaysthe row count; SET FEEDBACK OFF eliminates the row count from your output.

SET FEEDBACK [ON | OFF]

set heading on/off

The headings being referred to here are the column headings in the output of a SELECT statement, such as LAST_NAME or CUSTOMER | D. SET
HEADI NG ON, which isthe default, displays the column headings of your data as a part of the output. SET HEADI NG OFF, of course, eliminates the
column headings from your output.

SET HEADING [ON | OFF]

spool filename/off

Spooling is the process of directing the results of your query to afile. In order to open a spool file, you enter
spool filenane

To close your spool file, you would type

spool off

start fil ename

Most SQL commands that we have covered so far have been issued at the SQL> prompt. Another method for issuing SQL statementsisto create and
then execute afile. In SQL* Plus the command to execute an SQL fileis START FI LENAME.

START FI LENAME

edfil enane

EDis aPersonal Oracle7 command that opens afile (existing or file). When you open afile with ed, you are using a full-screen editor, which is often
easier than trying to type alengthy SQL statement at the SQL> prompt. Y ou will use this command to modify the contents of your spool file. You
will find that you use this command often when generating SQL script because you may have to modify the contents of the file for customization.
However, you can achieve most customization through SQL* Plus commands.

ED FI LENAMVE

Counting the Rowsin All Tables

Thefirst example shows you how to edit your spool file to remove irrelevant linesin your generated code, thus allowing your SQL statement to run
without being tarnished with syntax errors.

NOTE: Take note of the edliting technique used in this example because we will not show the step in the rest of today's examples.
We assume that you know the basic syntax of SQL statements by now. In addition, you may choose to edit your spool filein various
ways.

Start by recalling the function to count all rowsin atable: COUNT(*) . Y ou aready know how to select a count on all rowsin asingle table. For
example:

INPUT:

SELECT COUNT(*)
FROM TBL1;

OUTPUT:

That technique is handy, but suppose you want to get arow count on all tables that you own or that are in your schema. For example, here's alist of
the tables you own:

INPUT/OUTPUT:

SELECT * FROM CAT,;

TABLE_NAVE TABLE_TYPE
ACCT_PAY TABLE
ACCT_REC TABLE
CUSTOMERS TABLE
EMPLOYEES TABLE
HI STORY TABLE
I N\vO CES TABLE
ORDERS TABLE
PRODUCTS TABLE
PRQIECTS TABLE
VENDORS TABLE

10 rows sel ected.
ANALYSIS:

If you want to get arow count on all your tables, you could manually issue the COUNT(*) statement on each table. The feedback would be

10 rows sel ect ed.

Thefollowing SELECT statement creates more SELECT statements to obtain arow count on all the preceding tables.

INPUT/OUTPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL CNT. SQL

SQL> SELECT ' SELECT COUNT(*) FROM' || TABLE NAME | |
2 FROM CAT
3/

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC,
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HI STORY;

SELECT COUNT(*) FROM | NVO CES;
SELECT COUNT(*) FROM ORDERS;

SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PRQIECTS;
sel ect count(*) FROM VENDCRS;

ANALYSIS:

Thefirst action in the preceding example is to use some SQL* Plus commands. Setting echo of f , f eedback of f , and headi ng of f condenses
the output to what is actually being selected. Remember, the output is not being used as areport, but rather as an SQL statement that is ready to be
executed. The next step is to use the SPOOL command to direct the output to afile, which is specified ascnt . sgl . Thefinal step isto issuethe
SELECT statement, which will produce output in the form of another statement. Notice the use of single quotation marks to select aliteral string. The
combination of single quotation marks and the concatenation (| |) allows you to combine actual data and literal strings to form another SQL
statement. This example selects its data from the data dictionary. The command SPOOL OFF closes the spoal file.

TIP: Always edit your output file before running it to eliminate syntax discrepancies and to further customize the file that you have
created.

INPUT:

SQ.> SPOOL OFF
SQL> ED CNT. SQL

OUTPUT:

SQL> SELECT ' SELECT COUNT(*) FROM ' || TABLE NAME| | ' ;'
2 FROM CAT;

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT REG;
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HI STORY;
SELECT COUNT(*) FROM I NVO CES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PRQJECTS;
SELECT COUNT(*) FROM VENDORS;
SQL> SPOOL OFF

ANALYSIS:

The command SPOOL OFF closes the spool file. Then the ED command edits the file. At this point you are inside the file that you created. You
should remove unnecessary lines from the file, such as the SELECT statement, which was used to achieve the results, and the SPOCL OFF at the end
of thefile.

Here is how your file should look after the edit. Notice that each lineisavalid SQL statement.

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS;

SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HI STCRY:;
SELECT COUNT(*) FROM | NV CES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PROJECTS;
SELECT COUNT(*) FROM VENDORS;

Now, execute thefile:
INPUT/OUTPUT:

SQL> SET ECHO ON
SQL> SET HEADI NG ON
SQL> START CNT. SQL

SQL> SELECT COUNT(*) FROM ACCT_PAY;

SQL> SELECT COUNT(*) FROM ACCT_REC;

SQ.> SELECT COUNT(*) FROM CUSTOVERS;

SQ.> SELECT COUNT(*) FROM EMPLOYEES;

SQL> SELECT COUNT(*) FROM Hi STORY;

26
SQL> SELECT COUNT(*) FROM | NVO CES;

SQ.> SELECT COUNT(*) FROM ORDERS;

SQ.> SELECT COUNT(*) FROM PRODUCTS;

10
SQL> SELECT COUNT(*) FROM PROJECTS;

16
SQL> SELECT COUNT(*) FROM VENDCRS;

ANALYSIS:

Set echo on enablesyou to see each statement that was executed. Set headi ng on displays the column heading COUNT(*) for each SELECT
statement. If you had included

set feedback on
then
1 row sel ect ed.

would have been displayed after each count. This example executed the SQL script by using the SQL*Plus START command. However, what if you
were dealing with 50 tables instead of just 10?

NOTE: The proper use of single quotation marks when generating an SQL script is vital. Use these quotations generously and make
sure that you are including all elements that will make your generated statement complete. In this example single quotation marks
enclose the components of your generated statement (output) that cannot be selected from atable; for example, ' SELECT COUNT
(*) FROM and';"'.

Granting System Privilegesto Multiple Users

As adatabase administrator or an individual responsible for maintaining users, you will often receive requests for user IDs. In addition to having to
grant privileges to users that allow them proper database access, you aso have to modify users' privileges to accommodate their changing needs.
Y ou can get the database to generate the GRANT statements to grant system privileges or roles to many users.

INPUT:

SQL> SET ECHO OFF

SQL> SET HEADI NG OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANTS. SQL

SQL> SELECT ' GRANT CONNECT, RESOURCE TO ' || USERNAME || ;'
2 FROM SYS. DBA USERS
3 VHERE USERNAME NOT IN (' SYS',' SYSTEM,' SCOTT',' RYAN ,' PO7',' DEMD)
a4

OUTPUT:

GRANT CONNECT, RESOURCE TO KEVI N,
GRANT CONNECT, RESOURCE TO JOHN,
GRANT CONNECT, RESOURCE TO JUDI TH;
GRANT CONNECT, RESOURCE TO STEVE;
GRANT CONNECT, RESOURCE TO RQON,
GRANT CONNECT, RESOURCE TO MARY;
GRANT CONNECT, RESOURCE TO DEBRA,
GRANT CONNECT, RESOURCE TO CHRI S;
GRANT CONNECT, RESOURCE TO CARQL;
GRANT CONNECT, RESOURCE TO EDWARD;
GRANT CONNECT, RESOURCE TO BRANDON;
GRANT CONNECT, RESOURCE TO JACOS;

INPUT/OUTPUT:

SQL> spool off

SQL> start grants. sql

SQL> GRANT CONNECT, RESOURCE TO KEVI N,
Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JOHN;
Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JUDI TH;
Grant succeeded.

SQL> GRANT CONNECT, RESOQURCE TO STEVE;

Grant succeeded.

SQ.> GRANT CONNECT, RESOURCE TO RON,
Grant succeeded.

SQ.> GRANT CONNECT, RESOURCE TO MARY;
Grant succeeded.

SQ.> GRANT CONNECT, RESOURCE TO DEBRA,
Grant succeeded.

SQ.> GRANT CONNECT, RESOURCE TO CHRI S;
Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO CARCOL;
Grant succeeded.

SQ.> GRANT CONNECT, RESOURCE TO EDWARD;
Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO BRANDON;
Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JACOB;

Grant succeeded.
ANALYSIS:

In this example you saved many tedious keystrokes by generating GRANT statements using a simple SQL statement, rather than typing each one
manually.

NOTE: The following examples omit the step in which you edit your output file. Y ou can assume that the files are already edited.

Granting Privilegeson Your Tablesto Another User

Granting privileges on atable to another user is quite smple, asis selecting arow count on atable. But if you have multiple tables to which you
wish to grant access to arole or user, you can make SQL generate a script for you--unless you just love to type.

First, review asimple GRANT to one table:

INPUT:

SQL> GRANT SELECT ON H STORY TO BRANDON;
OUTPUT:

Grant succeeded.
Areyou ready for some action? The next statement creates a GRANT statement for each of the 10 tables in your schema.

INPUT/OUTPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL GRANTS. SQL

SQL> SELECT ' GRANT SELECT ON ' || TABLE_NAME || ' TO BRANDON;'
2 FROM CAT

GRANT SELECT ON ACCT_PAY TO BRANDON;
GRANT SELECT ON ACCT_REC TO BRANDON;
GRANT SELECT ON CUSTOVERS TO BRANDON;
GRANT SELECT ON EMPLOYEES TO BRANDON;
GRANT SELECT ON HI STORY TO BRANDON;
GRANT SELECT ON | NVO CES TO BRANDON;
GRANT SELECT ON ORDERS TO BRANDON;
GRANT SELECT ON PRODUCTS TO BRANDON;
GRANT SELECT ON PRQIECTS TO BRANDON;
GRANT SELECT ON VENDORS TO BRANDON;
ANALYSIS:

A GRANT statement has been automatically prepared for each table. BRANDON is to have Select access on each table.
Now close the output file with the SPOOL command, and assuming that the file has been edited, thefileis ready to run.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET ECHO ON

SQL> SET FEEDBACK ON

SQL> START GRANTS. SQL

SQL> GRANT SELECT ON ACCT_PAY TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON ACCT_REC TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON CUSTOVERS TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON EMPLOYEES TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON HI STORY TO BRANDON;
Grant succeeded.

SQL> GRANT SELECT ON | NVO CES TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON ORDERS TO BRANDON;
Grant succeeded.

SQL> GRANT SELECT ON PRODUCTS TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON PRQIECTS TO BRANDON,
Grant succeeded.

SQL> GRANT SELECT ON VENDORS TO BRANDON;

G ant succeeded.
ANALYSIS:

Echo was set on and feedback was set on as well. Setting feedback on displayed the statement Gr ant succeeded. The Select privilege has been
granted to BRANDON on all 10 tables with very little effort. Again, keep in mind that you will often be dealing with many more than 10 tables.

Disabling Table Constraintsto Load Data

When loading data into tables, you will sometimes have to disable the constraints on your tables. Suppose that you have truncated your tables and
you are loading data into your tables from scratch. More than likely, your tables will have referential integrity constraints, such as foreign keys.
Because the database will not let you insert arow of datain atable that references another table (if the referenced column does not exist in the other
table), you may have to disable constraintsto initially load your data. Of course, after the load is successful, you would want to enable the
constraints.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQL> SPOCL DI SABLE. SQL
SQL> SELECT ' ALTER TABLE ' || TABLE NAME ||
2 " DI SABLE CONSTRAINT ' || CONSTRAINT_NAME || ';'
3 FROM SYS. DBA_CONSTRAI NTS
4 VHERE OMER = ' RYAN
5 /

OUTPUT:

ALTER TABLE ACCT_PAY DI SABLE CONSTRAI NT FK_ACCT_I D,
ALTER TABLE ACCT_REC DI SABLE CONSTRAI NT FK_ACCT_I D;
ALTER TABLE CUSTOVERS DI SABLE CONSTRAI NT FK_CUSTQOVER | D;
ALTER TABLE HI STORY DI SABLE CONSTRAI NT FK_ACCT_I D
ALTER TABLE | NVO CES DI SABLE CONSTRAI NT FK_ACCT_I D,
ALTER TABLE ORDERS DI SABLE CONSTRAI NT FK_ACCT_I D

ANALYSIS:

The objectiveisto generate aseries of ALTER TABLE statements that will disable the constraints on all tables owned by RY AN. The semicolon
concatenated to the end of what is being selected completes each SQL statement.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET ECHO OFF
SQ.> SET FEEDBACK ON
SQL> START DI SABLE. SQL
Constraint Disabl ed.
Constrai nt Disabl ed.
Constraint Disabl ed.
Constrai nt Disabl ed.

Constrai nt Disabl ed.

Constraint Disabl ed.

ANALYSIS:

Notice that echo is set to of f , which means that you will not see the individual statements. Because feedback is set to on, you can see the resullts.
Constraint Disabl ed.

If both echo and feedback were set to of f , nothing would be displayed. There would simply be a pause for aslong as it takes to execute the ALTER
TABLE statements and then an SQL> prompt would be returned.

Now you can load your data without worrying about receiving errors caused by your constraints. Constraints are good, but they can be barriers
during dataloads. Y ou may use the same idea to enable the table constraints.

Creating Numer ous Synonymsin a Single Bound

Another tedious and exhausting task is creating numerous synonyms, whether they be public or private. Only a DBA can create public synonyms,
but any user can create private synonyms.

The following example creates public synonymsfor all tables owned by RY AN.
INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQL> SPOOL PUB_SYN. SQL

SQL> SELECT ' CREATE PUBLI C SYNONYM ' || TABLE NAME || ' FOR ' ||
2 OMER || '.' || TABLE_NAME || ;'
3 FROM SYS. DBA TABLES
4 VHERE OMER = ' RYAN
5 /

OUTPUT:

CREATE PUBLI C SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY;
CREATE PUBLI C SYNONYM ACCT_REC FOR RYAN. ACCT_REC,;
CREATE PUBLI C SYNONYM CUSTOMERS FOR RYAN. CUSTOMERS;
CREATE PUBLI C SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
CREATE PUBLI C SYNONYM HI STORY FOR RYAN. HI STORY;
CREATE PUBLI C SYNONYM | NVO CES FOR RYAN. | NvO CES;
CREATE PUBLI C SYNONYM ORDERS FOR RYAN. ORDERS;
CREATE PUBLI C SYNONYM PRCDUCTS FOR RYAN. PRODUCTS;
CREATE PUBLI C SYNONYM PRQJECTS FOR RYAN. PRQJECTS;
CREATE PUBLI C SYNONYM VENDORS FOR RYAN. VENDORS;

Now run thefile.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQ.> ED PUB_SYN. SQL

SQL> SET ECHO ON

SQL> SET FEEDBACK ON

SQL> START PUB_SYN. SQL

SQ.> CREATE PUBLI C SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM ACCT_REC FOR RYAN. ACCT_REC;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM CUSTOVERS FOR RYAN. CUSTOMVERS;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM HI STORY FOR RYAN. H STORY;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM | NVO CES FOR RYAN. | NVO CES;
Synonym cr eat ed.

SQ.> CREATE PUBLI C SYNONYM ORDERS FOR RYAN. ORDERS;

Synonym cr eat ed.

SQL> CREATE PUBLI C SYNONYM PRODUCTS FOR RYAN. PRODUCTS;

Synonym cr eat ed.

SQL> CREATE PUBLI C SYNONYM PRQIECTS FOR RYAN. PRQJECTS;
Synonym cr eat ed.

SQL> CREATE PUBLI C SYNONYM VENDORS FCOR RYAN. VENDCRS;

Synonym cr eat ed.
ANALYSIS:

Almost instantly, all database users have access to a public synonym for all tables that RY AN owns. Now a user does not need to qualify the table
when performing a SELECT operation. (Qualifying means identifying the table owner, asin RYAN. VENDORS.)

What if public synonyms do not exist? Suppose that BRANDON has Select access to all tables owned by RY AN and wants to create private
synonyms.

INPUT/OUTPUT:

SQ.> CONNECT BRANDON
ENTER PASSWORD: ***** %%
CONNECTED.

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQ> SPOOL PRIV_SYN. SQL

SQL> SELECT ' CREATE SYNONYM ' || TABLE NAME || ' FOR ' |]
2 OMER || '.' || TABLE_NAME || ;'
3 FROM ALL_TABLES
4

CREATE SYNONYM DUAL FOR SYS. DUAL,

CREATE SYNONYM AUDI T_ACTI ONS FOR SYS. AUDI T_ACTI ONS;
CREATE SYNONYM USER_PROFI LE FOR SYSTEM USER_PRCFI LE;
CREATE SYNONYM CUSTOVERS FOR RYAN. CUSTOVERS;
CREATE SYNONYM ORDERS FOR RYAN. ORDERS;

CREATE SYNONYM PRODUCTS FOR RYAN. PRODUCTS;

CREATE SYNONYM | NVO CES FOR RYAN. | NVO CES;

CREATE SYNONYM ACCT_REC FOR RYAN. ACCT_REC;

CREATE SYNONYM ACCT_PAY FOR RYAN. ACCT_PAY;

CREATE SYNONYM VENDORS FOR RYAN. VENDCRS;

CREATE SYNONYM EMPLOYEES FOR RYAN. EMPLOYEES;
CREATE SYNONYM PRQJIECTS FOR RYAN. PRQJECTS;

CREATE SYNONYM HI STORY FOR RYAN. HI STCRY;

INPUT/OUTPUT:

SQL> SPOOL OFF
sQL>

SQL> SET ECHO OFF

SQL> SET FEEDBACK ON
SQL> START PRI V_SYN. SQL
Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.

Synonym cr eat ed.

Synonym cr eat ed.

Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.
Synonym cr eat ed.

Synonym cr eat ed.
ANALYSIS:

With hardly any effort, BRANDON has synonyms for all tables owned by RY AN and no longer needs to qualify the table names.

Creating Viewson Your Tables
If you want to create views on a group of tables, you could try something similar to the following example:
INPUT:

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQL> SPOOL VI EWB. SQL

SQL> SELECT ' CREATE VIEW' || TABLE_NAME || ' _VIEWAS SELECT * FROM' |]
2 TABLE_NAME || ' ;'
3 FROM CAT
4

OUTPUT:

CREATE VI EW ACCT_PAY_VI EW AS SELECT * FROM ACCT_PAY;
CREATE VI EW ACCT_REC VI EW AS SELECT * FROM ACCT_REC,
CREATE VI EW CUSTOMVERS_VI EW AS SELECT * FROM CUSTOMERS;
CREATE VI EW EMPLOYEES VI EW AS SELECT * FROM EMPLOYEES;
CREATE VI EW HI STORY_VI EW AS SELECT * FROM HI STCRY;
CREATE VI EW I NVO CES_VI EW AS SELECT * FROM | NvO CES;
CREATE VI EW ORDERS_VI EW AS SELECT * FROM ORDERS;
CREATE VI EW PRODUCTS_VI EW AS SELECT * FROM PRODUCTS;
CREATE VI EW PRQJECTS VI EW AS SELECT * FROM PRQJECTS;
CREATE VI EW VENDORS_VI EW AS SELECT * FROM VENDCRS;

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SET ECHO OFF
SQ.> SET FEEDBACK ON
SQL> START VI EWS. SQL
Vi ew Creat ed.

ew Creat ed.

ew Creat ed.

ew Creat ed.

ew Creat ed.

ew Creat ed.
ew Creat ed.

Vi
Vi
Vi
Vi
Vi ew Creat ed.
Vi
Vi
Vi ew Creat ed.
Vi

ew Creat ed.

ANALYSIS:

Thefilevi ews. sql was generated by the previous SQL statement. This output file has become another SQL statement file and contains statements
to create views on all specified tables. After running vi ews. sql , you can see that the views have been created.

Truncating All Tablesin a Schema

Truncating tables is an event that occursin a development environment. To effectively develop and test data load routines and SQL statement
performance, datais reloaded frequently. This process identifies and exterminates bugs, and the application being developed or tested is moved into
aproduction environment.

The following example truncates all tables in a specified schema.
INPUT:

SQ.> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SET HEADI NG OFF

SQ.> SPOOL TRUNC. SQL

SQL> SELECT ' TRUNCATE TABLE ' || TABLE_NAME ||
2 FROM ALL_TABLES
3 WHERE OMER = ' RYAN
4

OUTPUT:

TRUNCATE TABLE ACCT_PAY;
TRUNCATE TABLE ACCT_REC;
TRUNCATE TABLE CUSTOVERS;
TRUNCATE TABLE EMPLOYEES;
TRUNCATE TABLE HI STCRY,

TRUNCATE TABLE | NVO CES;
TRUNCATE TABLE ORDERS;

TRUNCATE TABLE PRODUCTS;
TRUNCATE TABLE PRQIECTS;
TRUNCATE TABLE VENDCRS;

Go ahead and run your script if you dare.
INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET FEEDBACK ON
SQL> START TRUNC. SQL
Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.

Tabl e Truncat ed.
ANALYSIS:

Truncating all tables owned by RY AN removes all the data from those tables. Table truncation is easy. Y ou can use this technique if you plan to
repopulate your tables with new data.

TIP: Before performing an operation such as truncating tables in a schema, you should always have a good backup of the tables you
plan to truncate, even if you are sure that you will never need the data again. (Y ou will--somebody is sure to ask you to restore the
old data.)

Using SQL to Generate Shell Scripts

Y ou can also use SQL to generate other forms of scripts, such as shell scripts. For example, an Oracle RDBM S server may be running in a UNIX
environment, which is typically much larger than a PC operating system environment. Therefore, UNIX requires a more organized approach to file
management. Y ou can use SQL to easily manage the database files by creating shell scripts.

The following scenario drops tablespaces in a database. Although tablespaces can be dropped using SQL, the actual data files associated with these
tablespaces must be removed from the operating system separately.

Thefirst step isto generate an SQL script to drop the tablespaces.
INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADI NG OFF
SQL> SPOOL DROP_TS. SQL

SQL> SELECT ' DROP TABLESPACE ' || TABLESPACE_NAME || ' | NCLUDI NG CONTENTS; '
2 FROM SYS. DBA_TABLESPACES
3 |/

OUTPUT:

DROP TABLESPACE SYSTEM | NCLUDI NG CONTENTS;
DROP TABLESPACE RBS | NCLUDI NG CONTENTS;
DROP TABLESPACE TEMP | NCLUDI NG CONTENTS;
DROP TABLESPACE TOOLS | NCLUDI NG CONTENTS;
DROP TABLESPACE USERS | NCLUDI NG CONTENTS;

Next you need to generate a shell script to remove the data files from the operating system after the tablespaces have been dropped.
INPUT/OUTPUT:

SQ.> SPOOL OFF
SQ.> SPOOL RM FI LES. SH

SQ.> SELECT 'RM -F ' || FILE_NAME
2 FROM SYS. DBA_DATA FI LES
3 |/

rm -f /disk01l/ orasys/ db01/ syst enD. dbf
rm-f /disk02/ orasys/ db01/rbs0. dbf
rm-f /disk03/orasys/db01/tenp0. dbf
rm -f /disk04/orasys/ db01/t ool sO. dbf
rm -f /disk05/orasys/ db01/ usersO0. dbf
SQL> spool off

SQL>

ANALYSIS:

Now that you have generated both scripts, you may run the script to drop the tablespaces and then execute the operating system shell script to
remove the appropriate data files. Y ou will also find many other ways to manage files and generate non-SQL scripts using SQL.

Reverse Engineering Tables and Indexes

Even though many CASE tools allow you to reverse-engineer tables and indexes, you can always use straight SQL for this purpose. Y ou can retrieve
al the information that you need from the data dictionary to rebuild tables and indexes, but doing so effectively is difficult without the use of a
procedural language, such as PL/SQL or a shell script.

We usually use embedded SQL within a shell script. Procedural language functions are needed to plug in the appropriate ingredients of syntax, such

as commas. The script must be smart enough to know which column isthe last one, so asto not place a comma after the last column. The script must
also know where to place parentheses and so on. Seek the tools that are available to regenerate objects from the data dictionary, whether you use C,
Perl, shell scripts, COBOL, or PL/SQL.

Summary

Generating statements directly from the database spares you the often tedious job of coding SQL statements. Regardless of your job scope, using
SQL statement generation techniques frees you to work on other phases of your projects.

What you have learned today is basic, and though these examples use the Oracle database, you can apply the concepts to any relational database. Be
sure to check your specific implementation for variations in syntax and data dictionary structure. If you keep an open mind, you will continually find
ways to generate SQL scripts, from simple statements to complex high-level system management.

Q&A
Q How do | decide when to issue statements manually and when to write SQL to generate SQL ?
A Ask yourself these questions:

1 How often will | be issuing the statements in question?
1 Will it take me longer to write the "mother" statement than it would to issue each statement manually?

Q From which tablesmay | select to generate SQL statements?

A You may select from any tables to which you have access, whether they are tables that you own or tables that reside in the data dictionary.
Also keep in mind that you can select from any valid objects in your database, such as views or snapshots.

Q Arethereany limitsto the statementsthat | can generate with SQL?

A For the most part any statement that you can write manually can be generated somehow using SQL. Check your implementation for
specific options for spooling output to a file and formatting the output the way you want it. Remember that you can always modify the
generated statements later because the output is spooled to afile.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. From which two sources can you generate SQL scripts?

2. Will the following SQL statement work? Will the generated output work?

SQ.> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL CNT. SQL

SQL> SELECT ' COUNT(*) FROM ' || TABLE_NAME ||
2 FROM CAT
3/

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANT. SQL

SQL> SELECT ' GRANT CONNECT DBA TO ' || USERNAME | |
2 FROM SYS. DBA USERS

3 WHERE USERNANE NOT IN (' SYS',' SYSTEM ,' SCOTT')
4

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SELECT ' GRANT CONNECT, DBA TO ' || USERNAME ||
2 FROM SYS. DBA USERS

3 WHERE USERNAME NOT IN (' SYS' ,' SYSTEM ,' SCOTT)

4

5. True or False: It is best to set feedback ON when generating SQL.
6. True or False: When generating SQL from SQL, always spool to alist or log file for arecord of what happened.
7. True or False: Before generating SQL to truncate tables, you should always make sure you have a good backup of the tables.
8. What is the ED command?
9. What does the SPOOL OFF command do?
Exercises

1. Using the SYS.DBA_USERS view (Persona Oracle7), create an SQL statement that will generate a series of GRANT statements to five
new users: John, Kevin, Ryan, Ron, and Chris. Use the column called USERNAME. Grant them Select accessto hi story_t bl .

2. Using the examplesin this chapter as guidelines, create some SQL statements that will generate SQL that you can use.

(¢ Previous Chapter JER.—> Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 18 -
PL/SQL: An Introduction
Objectives
PL/SQL isthe Oracle technology that enables SQL to act like a procedural language. By the end of today, you should
1 Have abasic understanding of PL/SQL
1 Understand the features that distinguish PL/SQL from standard SQL
1 Have an understanding of the basic elements of a PL/SQL program
1 Beabletowriteasimple PL/SQL program
1 Understand how errors are handled in PL/SQL programs

1 Beaware of how PL/SQL isused in the real world

I ntroduction

One way to introduce PL/SQL isto begin by describing standard Structured Query Language, or SQL. SQL is the language that enables relational
database users to communicate with the database in a straightforward manner. Y ou can use SQL commands to query the database and modify tables
within the database. When you write an SQL statement, you are telling the database what you want to do, not how to do it. The query optimizer
decides the most efficient way to execute your statement. If you send a series of SQL statements to the server in standard SQL, the server executes
them one at atime in chronological order.

PL/SQL is Oracle's procedural language; it comprises the standard language of SQL and awide array of commands that enable you to control the
execution of SQL statements according to different conditions. PL/SQL can aso handle runtime errors. Options such asloopsand | F. . . THEN
statements give PL/SQL the power of third-generation programming languages. PL/SQL allows you to write interactive, user-friendly programs that
can pass valuesinto variables. You can also use several predefined packages, one of which can display messages to the user.

Day 18 coversthese key features of PL/SQL.:
1 Programmers can declare variables to be used during statement processing.
1 Programmers can use error-handling routines to prevent programs from aborting unexpectedly.
1 Programmers can write interactive programs that accept input from the user.

1 Programmers can divide functionsinto logical blocks of code. Modular programming techniques support flexibility during the application
development.

1 SQL statements can be processed simultaneously for better overall performance.

Data Typesin PL/SQL

Most data types are obviously similar, but each implementation has unique storage and internal -processing requirements. When writing PL/SQL
blocks, you will be declaring variables, which must be valid data types. The following subsections briefly describe the data types availablein
PL/SQL.

In PL/SQL Oracle provides subtypes of data types. For example, the data type NUVBER has a subtype called | NTEGER. Y ou can use subtypesin your
PL/SQL program to make the data types compatible with data types in other programs, such asa COBOL program, particularly if you are
embedding PL/SQL code in another program. Subtypes are simply alternative names for Oracle data types and therefore must follow the rules of
their associated data type.

NOTE: Asin most implementations of SQL, case sensitivity is not afactor in the syntax of a statement. PL/SQL allows either
uppercase or lowercase with its commands.

Character String Data Types

Character string datatypesin PL/SQL, as you might expect, are data types generally defined as having al pha-numeric values. Examples of character
strings are names, codes, descriptions, and serial numbers that include characters.

CHAR stores fixed-length character strings. The maximum length of CHAR is 32,767 bytes, although it is hard to imagine a set of fixed-length values
in atable being so long.

SYNTAX:
CHAR (nmax_l ength)
Subtype: CHARACTER

VARCHAR?2 stores variable-length character strings. Y ou would normally user VARCHAR2 instead of CHAR to store variable-length data, such as an
individual's name. The maximum length of VARCHARZ is also 32,767 bytes.

SYNTAX:

VARCHAR2 (mex_l ength)
Subtypes. VARCHAR, STRI NG

LONG also stores variable-length character strings, having a maximum length of 32,760 bytes. LONG is typically used to store lengthy text such as
remarks, although VARCHAR2 may be used as well.

Numeric Data Types
NUMBER stores any type of number in an Oracle database.

SYNTAX:

NUMBER (nex_| ength)

Y ou may specify a NUMBER's data precision with the following syntax:

NUMBER (preci si on, scale)
Subtypes: DEC, DECI MAL, DOUBLE PRECI SI ON, | NTEGER, | NT, NUMERI C, REAL, SMALLI NT, FLOAT
PLS_I NTEGER defines columns that may contained integers with a sign, such as negative numbers.

Binary Data Types

Binary data types store datathat isin a binary format, such as graphics or photographs. These data types include RAWand L ONGRAW

The DATE Data Type

DATE isthe valid Oracle data type in which to store dates. When you define a column as a DATE, you do not specify alength, as the length of a DATE
field isimplied. The format of an Oracle dateis, for example, 01-OCT-97.

BOOLEAN

BOOLEAN stores the following values: TRUE, FALSE, and NULL. Like DATE, BOOLEAN requires no parameters when defining it as a column's or
variable's data type.

ROWID

ROW D is a pseudocolumn that existsin every table in an Oracle database. The ROW D is stored in binary format and identifies each row in atable.
Indexes use ROW Ds as pointers to data.

The Structure of a PL/SQL Block

PL/SQL is ablock-structured language, meaning that PL/SQL programs are divided and written in logical blocks of code. Within a PL/SQL block of
code, processes such as data manipulation or queries can occur. The following parts of a PL/SQL block are discussed in this section:

1 The DECLARE section contains the definitions of variables and other objects such as constants and cursors. This section is an optional part of
aPL/SQL block.

1 The PROCEDURE section contains conditional commands and SQL statements and is where the block is controlled. This section is the only
mandatory part of a PL/SQL block.

1 The EXCEPTI ON section tells the PL/SQL block how to handle specified errors and user-defined exceptions. This section is an optional part
of aPL/SQL block.

NOTE: A block isalogical unit of PL/SQL code, containing at the least a PROCEDURE section and optionally the DECLARE and
EXCEPTI ON sections.

Hereisthe basic structure of a PL/SQL block:

SYNTAX:
BEG N -- optional, denotes beginning of block
DECLARE -- optional, variable definitions
BEG N -- nmandatory, denotes beginning of procedure section
EXCEPTI ON -- optional, denotes beginning of exception section
END -- mandatory, denotes ending of procedure section
END -- optional, denotes ending of block

Notice that the only mandatory parts of a PL/SQL block are the second BEG N and the first END, which make up the PROCEDURE section. Of course,
you will have statements in between. If you use the first BEG N, then you must use the second END, and vice versa.

Comments

What would a program be without comments? Programming languages provide commands that allow you to place comments within your code, and
PL/SQL is no exception. The comments after each line in the preceding sample block structure describe each command. The accepted commentsin
PL/SQL are asfollows:

SYNTAX:

-- This is a one-line coment.

/* This is a
mul tiple-line conment.*/

NOTE: PL/SQL directly supports Data Manipulation Language (DML) commands and database queries. However, it does not
support Data Dictionary Language (DDL) commands. Y ou can generally use PL/SQL to manipulate the data within database
structure, but not to manipulate those structures.

The DECLARE Section

The DECLARE section of ablock of PL/SQL code consists of variables, constants, cursor definitions, and special datatypes. AsaPL/SQL
programmer, you can declare all types of variables within your blocks of code. However, you must assign a data type, which must conform to
Oracle'srules of that particular data type, to every variable that you define. Variables must also conform to Oracle's object naming standards.

Variable Assignment

Variables are values that are subject to change within a PL/SQL block. PL/SQL variables must be assigned a valid data type upon declaration and
can beinitialized if necessary. The following example defines a set of variables in the DECLARE portion of ablock:

DECLARE
owner char (10);
t abl enanme char (30);
byt es nunber (10);
t oday date;

ANALYSIS:

The DECLARE portion of ablock cannot be executed by itself. The DECLARE section starts with the DECLARE statement. Then individual variables are
defined on separate lines. Notice that each variable declaration ends with a semicolon.

Variables may aso beinitialized in the DECLARE section. For example:

DECLARE
custoner char (30);
fiscal _year nunber(2) :='97";

Y ou can use the symbol : = toinitialize, or assign an initia value, to variablesin the DECLARE section. Y ou must initialize a variable that is defined
asNOT NULL.

DECLARE
custoner char (30);
fiscal _year nunber(2) NOT NULL := '97";

ANALYSIS:
The NOT NULL clausein the definition of fi scal _year resembles acolumn definition in a CREATE TABLE statement.
Constant Assignment

Constants are defined the same way that variables are, but constant values are static; they do not change. In the previous example, f i scal _year is
probably a constant.

NOTE: You must end each variable declaration with a semicolon.

Cursor Definitions

A cursor is another type of variable in PL/SQL. Usually when you think of avariable, asingle value comesto mind. A cursor is avariable that points
to arow of datafrom the results of a query. In amultiple-row result set, you need away to scroll through each record to analyze the data. A cursor is
just that. When the PL/SQL block looks at the results of a query within the block, it uses a cursor to point to each returned row. Here is an example

of acursor being defined in a PL/SQL block:
INPUT:

DECLARE
cursor enployee_cursor is
sel ect * from enpl oyees;

A cursor is similar to aview. With the use of aloop in the PROCEDURE section, you can scroll a cursor. Thistechnique is covered shortly.
The % TYPE Attribute

9 YPE is avariable attribute that returns the value of a given column of atable. Instead of hard-coding the data type in your PL/SQL block, you can
use %0 YPE to maintain data type consistency within your blocks of code.

INPUT:

DECLARE
cursor enpl oyee_cursor is
sel ect enp_id, enp_nane from enpl oyees;
i d_num enpl oyees. enp_i d%I'YPE;
name enpl oyees. enp_nanme% YPE;

ANALYSIS:

Thevariablei d_numis declared to have the same datatype asenp_i d in the EMPLOYEES table. % YPE declares the variable nane to have the same
data type as the column enp_nane in the EMPLOYEES table.

The% ROWTYPE Attribute

Variables are not limited to single values. If you declare avariable that is associated with a defined cursor, you can use the “ROWYPE attribute to
declare the data type of that variable to be the same as each column in one entire row of data from the cursor. In Oracle's lexicon the ¥“RONTYPE
attribute creates arecord variable.

INPUT:

DECLARE
cursor enployee_cursor is
sel ect enp_id, enp_nane from enpl oyees;
enpl oyee_record enpl oyee_cur sor ¥RONYPE;

ANALYSIS:

This example declares a variable called enpl oyee_r ecord. The ¥ROMYPE attribute defines this variable as having the same data type as an entire
row of datain the enpl oyee_cur sor . Variables declared using the ¥ROAMTYPE attribute are also called aggregate variables.

The % ROWCOUNT Attribute
The PL/SQL %RONCOUNT attribute maintains a count of rows that the SQL statements in the particular block have accessed in a cursor.

INPUT:

DECLARE
cursor enpl oyee_cursor is
sel ect enp_id, enp_nane from enpl oyees;
records_processed : = enpl oyee_cur sor %RONCOUNT;

ANALYSIS:

In this example the variable r ecor ds_pr ocessed represents the current number of rows that the PL/SQL block has accessed in the
enpl oyee_cursor .

WARNING: Beware of naming conflicts with table names when declaring variables. For instance, if you declare avariable that has
the same name as atable that you are trying to access with the PL/SQL code, the local variable will take precedence over the table
name.

The PROCEDURE Section

The PROCEDURE section is the only mandatory part of a PL/SQL block. This part of the block calls variables and uses cursors to manipulate datain
the database. The PROCEDURE section isthe main part of a block, containing conditional statements and SQL commands.

BEGIN...END

In ablock, the BEG N statement denotes the beginning of a procedure. Similarly, the END statement marks the end of a procedure. The following
example shows the basic structure of the PROCEDURE section:

SYNTAX:

BEG N

open a cursor;
condi tionl;

st at enent 1;
condi tion2;

st at enent 2;
condi tion3;

st at enent 3;

cl ose the cursor;
END

Cursor Control Commands

Now that you have learned how to define cursorsin a PL/SQL block, you need to know how to access the defined cursors. This section explains the
basic cursor control commands; DECLARE, OPEN, FETCH, and CLOSE.

DECLARE

Earlier today you learned how to define a cursor in the DECLARE section of a block. The DECLARE statement belongsin the list of cursor control
commands.

OPEN

Now that you have defined your cursor, how do you use it? Y ou cannot use this book unless you open it. Likewise, you cannot use a cursor until you
have opened it with the OPEN command. For example:

SYNTAX:

BEG N
open enpl oyee_cursor;
st at enent 1;
st at enent 2;

END
FETCH

FETCH populates a variable with values from a cursor. Here are two examples using FETCH: One populates an aggregate variable, and the other
populates individual variables.

INPUT:

DECLARE
cursor enpl oyee_cursor is
sel ect enp_id, enp_nane from enpl oyees;
enpl oyee_record enpl oyee_cur sor ¥RONMYPE;
BEG N
open enpl oyee_cursor;
| oop
fetch enpl oyee_cursor into enpl oyee_record;
end | oop;
cl ose enpl oyee_cursor;
END

ANALYSIS:

The preceding example fetches the current row of the cursor into the aggregate variable enpl oyee_r ecor d. It uses aloop to scroll the cursor. Of
course, the block is not actually accomplishing anything.

DECLARE
cursor enpl oyee_cursor is
sel ect enp_id, enp_nane from enpl oyees;
i d_num enpl oyees. enp_i d%I'YPE;
nane enpl oyees. enp_nane% YPE;
BEG N
open enpl oyee_cursor;
| oop
fetch enpl oyee_cursor into id_num naneg;
end | oop;
cl ose enpl oyee_cursor;
END

ANALYSIS:
This example fetches the current row of the cursor into the variablesi d_numand nane, which was defined in the DECLARE section.
CLOSE

When you have finished using a cursor in ablock, you should close the cursor, as you normally close a book when you have finished reading it. The
command you use is CLOSE.

SYNTAX:

BEG N
open enpl oyee_cursor;
st at enent 1;
st at enent 2;

cl ose enpl oyee_cursor;
END

ANALYSIS:
After acursor is closed, the result set of the query no longer exists. Y ou must reopen the cursor to access the associated set of data.
Conditional Statements

Now we are getting to the good stuff--the conditional statements that give you control over how your SQL statements are processed. The conditional
statements in PL/SQL resemble those in most third-generation languages.

IF..THEN

Thel F. .. THEN statement is probably the most familiar conditional statement to most programmers. The | F. . . THEN statement dictates the
performance of certain actionsif certain conditions are met. The structure of an | F. . . THEN statement is as follows:

SYNTAX:

I F conditionl THEN
st at enent 1;
END | F;

If you are checking for two conditions, you can write your statement as follows:
SYNTAX:

I F conditionl THEN
statenent 1;

ELSE
st at enent 2;

END | F;

If you are checking for more than two conditions, you can write your statement as follows:

SYNTAX:

I F conditionl THEN
st at enent 1;

ELSI F conditi on2 THEN
st at enent 2;

ELSE
st at enent 3;

END | F;

ANALYSIS:

Thefinal example states: If condi ti onl ismet, then perform st at enent 1; if condi ti on2 ismet, then perform st at enent 2; otherwise, perform
statement 3.1 F. .. THEN statements may also be nested within other statements and/or loops.

LOOPS

Loopsin aPL/SQL block allow statements in the block to be processed continuously for as long as the specified condition exists. There are three
types of loops.

LOCP isan infinite loop, most often used to scroll a cursor. To terminate this type of loop, you must specify when to exit. For example, in scrolling a
cursor you would exit the loop after the last row in a cursor has been processed:

INPUT:

BEG N

open enpl oyee_cursor;

LOOP
FETCH enpl oyee_cursor into enpl oyee_record;
EXI T WHEN enpl oyee_cur sor ¥NOTFOUND;
statenent 1;

END LOCOP;
cl ose enpl oyee_cursor;
END;

9MOTFOUND is a cursor attribute that identifies when no more datais found in the cursor. The preceding example exits the loop when no more datais
found. If you omit this statement from the loop, then the loop will continue forever.

The WHI LE- LOOP executes commands while a specified condition is TRUE. When the condition is no longer true, the loop returns control to the next
Statement.

INPUT:

DECLARE

cursor paynent_cursor is
sel ect cust_id, paynment, total due from paynent_tabl e;
cust _id paynent _tabl e.cust_i d%YPE;
payment paynent _t abl e. payment % YPE;
total _due paynent _tabl e.total due%dYPE;
BEG N
open paynent _cursor;
WHI LE paynment < total _due LOOP
FETCH payment _cursor into cust_id, paynent, total _due;
EXIT WHEN paynent _cur sor ¥8NOTFOUND;
insert into underpay_table
values (cust_id, 'STILL OAES');
END LOCP;
cl ose paynent _cursor;
END;

ANALYSIS:

The preceding example uses the WHI LE- LOOP to scroll the cursor and to execute the commands within the loop as long as the condition paynment <
tot al _due ismet.

Y ou can use the FOR- LOOP in the previous block to implicitly fetch the current row of the cursor into the defined variables.

INPUT:

DECLARE
cursor paynent_cursor is
sel ect cust_id, paynment, total due from paynent_tabl e;
cust _id paynent _tabl e.cust_i d%YPE;
payment paynent _t abl e. paynment % YPE;
total _due paynent _tabl e.total due%dYPE;
BEG N
open paynent _cursor;
FOR pay_rec I N paynment_cursor LOOP
| F pay_rec. paynent < pay_rec.total due THEN
insert into underpay_table
val ues (pay_rec.cust_id, 'STILL OAES');
END | F;
END LOOP;
cl ose paynent _cursor;
END;

ANALYSIS:

This example uses the FOR- LOCOP to scroll the cursor. The FOR- LOOP is performing an implicit FETCH, which is omitted this time. Also, notice that
the YNOTFOUND attribute has been omitted. This attribute isimplied with the FOR- LOOP; therefore, this and the previous example yield the same
basic results.

The EXCEPTION Section

The EXCEPTI ON section is an optional part of any PL/SQL block. If this section is omitted and errors are encountered, the block will be terminated.
Some errors that are encountered may not justify the immediate termination of a block, so the EXCEPTI ON section can be used to handle specified
errors or user-defined exceptions in an orderly manner. Exceptions can be user-defined, although many exceptions are predefined by Oracle.

Raising Exceptions

Exceptions are raised in ablock by using the command RAI SE. Exceptions can be raised explicitly by the programmer, whereas internal database
errors are automatically, or implicitly, raised by the database server.

SYNTAX:

BEG N
DECLARE
exception_nanme EXCEPTI ON;
BEG N
I'F condition THEN
RAI SE excepti on_nane;
END I F;

EXCEPTI ON
WHEN exception_name THEN
st at enent ;
END;
END;

ANALYSIS:

This block shows the fundamentals of explicitly raising an exception. First except i on_name isdeclared using the EXCEPTI ON statement. In the
PROCEDURE section, the exception israised using RAI SE if agiven condition is met. The RAI SE then references the EXCEPTI ON section of the block,
where the appropriate action is taken.

Handling Exceptions

The preceding example handled an exception in the EXCEPTI ON section of the block. Errors are easily handled in PL/SQL, and by using exceptions,
the PL/SQL block can continue to run with errors or terminate gracefully.

SYNTAX:

EXCEPTI ON
WHEN exceptionl THEN
st at enent 1;
WHEN exception2 THEN
st at enent 2;
WHEN OTHERS THEN
st at enent 3;

ANALYSIS:

This example shows how the EXCEPTI ON section might look if you have more than one exception. This example expects two exceptions
(exceptionl and except i on2) when running this block. WHEN OTHERS tells st at ement 3 to execute if any other exceptions occur while the block
is being processed. WHEN OTHERS gives you control over any errors that may occur within the block.

Executing a PL/SQL Block

PL/SQL statements are normally created using a host editor and are executed like normal SQL script files. PL/SQL uses semicolons to terminate
each statement in a block--from variable assignments to data manipulation commands. The forward slash (/)is mainly associated with SQL script
files, but PL/SQL also uses the forward slash to terminate a block in a script file. The easiest way to start a PL/SQL block is by issuing the START
command, abbreviated as STA or @

Your PL/SQL script file might look like this:
SYNTAX:

/* This file is called procl.sqgl */
BEG N

DECLARE

BEG N

st at enent s;

EXCEi:’TI ON

END;
END;
/

Y ou execute your PL/SQL script file as follows:

SQL> start procl or
SQL> sta procl or
SQL> @rocl

NOTE: PL/SQL script files can be executed using the START command or the character @ PL/SQL script files can also be called
within other PL/SQL files, shell scripts, or other programs.

Displaying Output to the User

Particularly when handling exceptions, you may want to display output to keep users informed about what is taking place. Y ou can display output to
convey information, and you can display your own customized error messages, which will probably make more sense to the user than an error
number. Perhaps you want the user to contact the database administrator if an error occurs during processing, rather than to see the exact message.

PL/SQL does not provide a direct method for displaying output as a part of its syntax, but it does allow you to call a package that serves thisfunction
from within the block. The package is called DBMS_OUTPUT.

EXCEPTI ON
WHEN zer o_di vi de THEN
DBMS_OQUTPUT. put _line(' ERROR. DIVISOR | S ZERO. SEE YOUR DBA.');

ANALYSIS:

ZERO _DI VI DE is an Oracle predefined exception. Most of the common errors that occur during program processing will be predefined as exceptions
and are raised implicitly (which means that you don't have to raise the error in the PROCEDURE section of the block).

If this exception is encountered during block processing, the user will see:
INPUT:

SQL> @l ockl

ERROR: DIVISOR | S ZERO. SEE YOUR DBA.
PL/ SQ. procedure successfully conpl et ed.

Doesn't that message ook friendly than:
INPUT/OUTPUT:

SQL> @l ockl
begi n

ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA- 06512: at line 20

Transactional Control in PL/SQL

On Day 11, "Controlling Transactions," we discussed the transactional control commands COW T, ROLLBACK, and SAVEPO NT. These commands
allow the programmer to control when transactions are actually written to the database, how often, and when they should be undone.

SYNTAX:

BEG N
DECLARE

BEG N
statenents. ..
I F condition THEN
COW T;
ELSE
ROLLBACK;
END | F;

EXCEPTI ON

END;
END:;

The good thing about PL/SQL is that you can automate the use of transactional control commands instead of constantly monitoring large
transactions, which can be very tedious.

Putting Everything Together

So far, you have been introduced to PL/SQL, have become familiar with the supported data types, and are familiar with the major features of a
PL/SQL block. Y ou know how to declare local variables, constants, and cursors. Y ou have also seen how to embed SQL in the PROCEDURE section,
manipulate cursors, and raise exceptions. When a cursor has been raised, you should have a basic understanding of how to handleit in the

EXCEPTI ON section of the block. Now you are ready to work with some practical examples and create blocks from BEG N to END. By the end of this
section, you should fully understand how the parts of a PL/SQL block interact with each other.

Sample Tablesand Data

We will be using two tables to create PL/SQL blocks. PAYMENT_TABLE identifies a customer, how much he or she has paid, and the total amount
due. PAY_STATUS_TABLE does not yet contain any data. Datawill be inserted into PAY_STATUS_TABLE according to certain conditionsin the
PAYMENT_TABLE.

INPUT:

SQL> select *
2 from paynment _tabl e;

OUTPUT:

CUSTOVER PAYMENT TOTAL_DUE

ABC 90. 50 150. 99
AAA 79. 00 79. 00
BBB 950. 00 1000. 00
CCC 27.50 27.50
DDD 350. 00 500. 95
EEE 67. 89 67. 89
FFF 555. 55 455. 55
[cee] 122. 36 122. 36
HHH 26.75 0. 00

9 rows sel ected.

INPUT:

SQL> descri be pay_status_table

OUTPUT:
Nanme Nul | ? Type
CUST_I D NOT NULL CHAR(3)
STATUS NOT NULL VARCHAR2(15)
AMI_OVED NUMVBER(8, 2)
AMI_CREDI T NUMVBER(8, 2)
ANALYSIS:

DESCRI BE isan Oracle SQL command that displays the structure of a table without having to query the data dictionary. DESCRI BE and other Oracle
SQL*Plus commands are covered on Day 20, "SQL*Plus."

A Simple PL/SQL Block
Thisis how the PL/SQL script (bl ockl. sql) file looks:

INPUT:

set serverout put on
BEG N
DECLARE

At Zer o EXCEPTI ON;
cCustld paynent _table.cust_i d¥YPE;
f Paynent paynent _t abl e. paynment %9 YPE;
f Tot al Due paynent _tabl e.total _due% YPE;
cursor payment_cursor is
sel ect cust_id, paynent, total _due
from paynent _t abl e;
f Over Pai d nunber (8, 2);
f Under Pai d nunber (8, 2);
BEG N
open paynent _cursor;
| oop
fetch payment _cursor into
cCustld, fPaynent, fTotal Due;
exit when paynent _cur sor %NOTFOUND;
if (fTotalDue = 0) then
rai se Ant Zero;
end if;
if (fPaynent > fTotal Due) then
fOverPaid := fPaynment - fTotal Due;
insert into pay_status_table (cust_id, status, anmt_credit)
val ues (cCustld, 'Over Paid , fOverPaid);
elsif (fPayment < fTotal Due) then
fUnderPaid := fTotal Due - fPaynent;
insert into pay_status_table (cust_id, status, amt_owed)
values (cCustld, "Still Omes', fUnderPaid);

el se
insert into pay_status_table
values (cCustld, 'Paid in Full', null, null);
end if;
end | oop;
cl ose paynent _cursor;
EXCEPTI ON

when Ant Zero then
DBVMS_CQUTPUT. put _| i ne(' ERROR anpunt is Zero. See your supervisor.');
when OTHERS t hen
DBMS_QUTPUT. put _| i ne(' ERROR: unknown error. See the DBA');
END;
END;
/

ANALYSIS:

The DECLARE section defines six local variables, as well as a cursor called paynment _cur sor . The PROCEDURE section starts with the second BEG N
statement in which the first step isto open the cursor and start aloop. The FETCH command passes the current values in the cursor into the variables
that were defined in the DECLARE section. As long as the loop finds records in the cursor, the statement compares the amount paid by a customer to
thetotal amount due. Overpayments and underpayments are calculated according to the amount paid, and we use those cal culated amounts to insert
valuesinto the PAY_STATUS_TABLE. The loop terminates, and the cursor closes. The EXCEPTI ON section handles errors that may occur during
processing.

Now start the PL/SQL script file and see what happens.
INPUT:

SQL> @l ockl

OUTPUT:

I nput truncated to 1 characters
ERROR: anount is Zero. See your supervisor.
PL/ SQL procedure successfully conpl eted.

Now that you know that an incorrect amount appears in the total due column, you can fix the amount and run the script again.
INPUT/OUTPUT:

SQL> updat e paynent _tabl e
2 set total _due 26.75
3 where cust_id "HHH ;

1 row updat ed.

SQ> conmit;
Commit conpl ete.
SQL> truncate table pay_status_table;

Tabl e truncat ed.

NOTE: This example truncates the PAY_STATUS_TABLE to clear the tabl€e's contents; the next run of the statement will repopulate
the table. Y ou may want to add the TRUNCATE TABLE statement to your PL/SQL block.

INPUT/OUTPUT:

SQL> @l ockl

Input truncated to 1 characters
PL/ SQL procedure successfully conpl et ed.

Now you can select from the PAY_STATUS_TABLE and see the payment status of each customer.

INPUT/OUTPUT:

SQL> sel ect *
2 frompay_status_table
3 order by status;

CUSTOVER STATUS AMI_ONED AMT_CREDI T
FFF Over Paid 100. 00
AAA Paid in Full

CCC Paid in Full

EEE Paid in Full

[cece] Paid in Full

HHH Paid in Full

ABC Still Owes 60. 49

DDD Still Owes 150. 95

BBB Still Owes 50. 00

9 rows sel ected.
ANALYSIS:

A row wasinserted into PAY_STATUS_TABLE for every row of data that is contained in the PAYMENT_TABLE. If the customer paid more than the
amount due, then the difference wasinput into the ant _cr edi t column. If the customer paid less than the amount owed, then an entry was made in
theant _owed column. If the customer paid in full, then no dollar amount was inserted in either of the two columns.

Another Program
This example uses atable called PAY_TABLE:

INPUT:

SQL> desc pay_table

OUTPUT:

Nanme Nul I ? Type

NAVE NOT NULL VARCHAR2(20)
PAY_TYPE NOT NULL VARCHAR2(8)
PAY_RATE NOT NULL NUMBER(8, 2)
EFF_DATE NOT NULL DATE

PREV_PAY NUVBER(8, 2)

First take alook at the data:

INPUT:

SQL> sel ect *
2 frompay_table
3 order by pay_type, pay_rate desc;

OUTPUT:

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
SANDRA SAMUELS HOURLY 12.50 01-JAN-97

ROBERT BOBAY HOURLY 11.50 15 - MAY-96

KElI TH JONES HOURLY 10. 00 31 - CCT-96

SUSAN W LLI AMS HOURLY 9.75 01 - NAY-97

CHRI SSY ZOES SALARY 50000. 00 01 - JAN-97

CLCDE EVANS SALARY 42150. 00 01 - MAR-97

JOHN SM TH SALARY 35000. 00 15-JUN-96

KEVI N TROLLBERG SALARY 27500. 00 15-JUN-96

8 rows sel ected.

Situation: Sales are up. Any individual who has not had a pay increase for six months (180 days) will receive araise effective today. All eligible
hourly employees will receive a4 percent increase, and eligible salary employees will receive a5 percent increase.

Today is:
INPUT/OUTPUT:

SQL> sel ect sysdate
2 fromdual;

SYSDATE

20- MAY- 97
Before examining the next PL/SQL block, we will perform amanual select from the PAY_TABLE that flags individuals who should receive araise.

INPUT:

SQL> sel ect nanme, pay_type, pay_rate, eff_date,

2 "YES' due

3 frompay_table

4 where eff_date < sysdate - 180

5 UNON ALL

6 select nanme, pay_type, pay_rate, eff_date,

7 "No' due

8 from pay_table

9 where eff_date >= sysdate - 180

10 order by 2, 3 desc;

OUTPUT:
NAME PAY_TYPE PAY_RATE EFF_DATE DUE
SANDRA SAMUELS HOURLY 12.50 01-JAN-97 No
ROBERT BOBAY HOURLY 11.50 15- MAY-96 YES
KElI TH JONES HOURLY 10.00 31-0CT-96 YES
SUSAN W LLI AMS HOURLY 9.75 01-NMAY-97 No
CHRI SSY ZCES SALARY 50000. 00 01 -JAN-97 No
CLODE EVANS SALARY 42150. 00 01 - MAR-97 No
JOHN SM TH SALARY 35000. 00 15-JUN-96 YES
KEVI N TROLLBERG SALARY 27500. 00 15-JUN-96 YES

8 rows selected.
The DUE column identifies individuals who should be eligible for araise. Here's the PL/SQL script:

INPUT:

set serveroutput on
BEG N
DECLARE
UnknownPayType excepti on;
cursor pay_cursor is
sel ect nane, pay_type, pay_rate, eff_date,
sysdate, row d
from pay_tabl e;
I ndRec pay_cur sor %R0OM YPE;
cO dDat e date;
f NewPay nunber (8, 2);
BEG N
open pay_cursor;
| oop
fetch pay_cursor into |IndRec;
exit when pay_cur sor ¥NOTFOUND,
cO dDate : = sysdate - 180;
if (IndRec. pay_type = 'SALARY') then

f NewPay : = IndRec.pay_rate * 1.05;
elsif (IndRec.pay_type = 'HOURLY') then
f NewPay : = IndRec.pay_rate * 1.04;
el se
rai se UnknownPayType;
end if;

if (IndRec.eff_date < cO dDate) then
updat e pay_table
set pay_rate = fNewPay,
prev_pay = IndRec.pay_rate,

eff _date I ndRec. sysdat e
where rowid = I ndRec.row d;
conmit;
end if;
end | oop;
cl ose pay_cursor;
EXCEPTI ON
when UnknownPayType then
dbrs_out put . put _li ne(" ")

dbns_out put . put _I'i ne(' ERROR Aborting program"');
dbns_out put . put _I'i ne(' Unknown Pay Type for Nane');
when ot hers then
dbrs_out put . put _l'i ne(' ERROR During Processing. See the DBA.');
END;
END;
/

Are you sure that you want to give four employees a pay raise? (The final SELECT statement has four Yes values in the DUE column.) Why not...|et's
giveall four employees araise. Y ou can apply the appropriate pay increases by executing the PL/SQL script file, named bl ock2. sql :

INPUT/OUTPUT:

SQL> @l ock?2

I nput truncated to 1 characters
PL/ SQL procedure successfully conpl et ed.

Y ou can do aquick select to verify that the changes have been made to the pay_r at e of the appropriate individuals:
INPUT:

SQL> select *
2 frompay_table
3 order by pay_type, pay_rate desc;

OUTPUT:

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
SANDRA SAMUELS HOURLY 12.50 01-JAN-97

ROBERT BOBAY HOURLY 11.96 20 - MAY-97 11.5
KEI TH JONES HOURLY 10. 40 20 - MAY-97 10
SUSAN W LLI AMS HOURLY 9.75 01 - NAY-97

CHRI SSY ZOES SALARY 50000. 00 01 - JAN-97

CLCDE EVANS SALARY 42150. 00 01 - MAR-97
JOHN SM TH SALARY 36750. 00 20 - MAY- 97 35000
KEVI N TROLLBERG SALARY 28875. 00 20 - MAY- 97 27500

8 rows sel ected.
ANALYSIS:

Four employees received a pay increase. If you compare this output to the output of the original SELECT statement, you can see the changes. The
current pay rate was updated to reflect the pay increase, the origina pay rate was inserted into the previous pay column, and the effective date was
updated to today's date. No action was taken on those individual s who did not qualify for a pay increase.

Wait--you didn't get a chance to see how the defined exception works. Y ou can test the EXCEPTI ON section by inserting an invalid PAY_TYPE into
PAY_TABLE.

INPUT:

SQL> insert into pay_table val ues
2 ("JEFF JENNI NGS',' VEEKLY', 71.50, "' 01-JAN-97", NULL);

OUTPUT:

1 row created.
The moment of truth:
INPUT/OUTPUT:

SQL> @l ock?2

I nput truncated to 1 characters

ERROR: Aborting program
Unknown Pay Type for: JEFF JENNI NGS
PL/ SQ. procedure successfully conpl et ed.

ANALYSIS:

An error message told you that JEFF JENNI NGS had aPay Type with avalue other than SALARY or HOURLY. That is, the exception was handled
with an error message.

Stored Procedures, Packages, and Triggers

Using PL/SQL, you can create stored objects to eliminate having to constantly enter monotonous code. Procedures are simply blocks of code that
perform some sort of specific function. Related procedures can be combined and stored together in an object called a package. A trigger is a database
object that is used with other transactions. Y ou might have atrigger on atable called ORDERS that will insert datainto aH STORY table each time the
ORDERS table receives data. The basic syntax of these objects follows.

Sample Procedure
SYNTAX:

PROCEDURE procedure_nane | S
vari abl el dat atype;

BEG N
st at enent 1;

EXCEPTI ON

when ...
END procedur e_naneg;

Sample Package

SYNTAX:

CREATE PACKACGE package_nane AS

PROCEDURE procedurel (global _variablel datatype, ...);

PROCEDURE procedure2 (global variablel datatype, ...);
END package_nane;
CREATE PACKAGE BODY package_nane AS

PROCEDURE procedurel (global _variablel datatype, ...) IS

BEG N
st at enent 1;

END procedurel;
PROCEDURE procedure2 (global variablel datatype, ...) IS
BEGA N
st at enent 1,
END pr ocedure?2;
END package_nane;

Sample Trigger
SYNTAX:

CREATE TRI GGER trigger_nane
AFTER UPDATE OF col umm ON t abl e_nane
FOR EACH ROW

BEG N
statenent 1;

END;

The following example uses atrigger to insert arow of datainto atransaction table when updating PAY_TABLE. The TRANSACTI ON table looks like
this:

INPUT:

SQL> describe trans_table

OUTPUT:
Nane Nul I ? Type
ACTI ON VARCHAR2(10)
NAVE VARCHAR2(20)
PREV_PAY NUVBER(8, 2)
CURR_PAY NUVBER(8, 2)
EFF_DATE DATE

Here's asample row of data:
INPUT/OUTPUT:

SQL> sel ect *
2 frompay_table
3 where nane = 'JEFF JENNI NGS';

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY

JEFF JENNI NGS WEEKLY 71.50 01-JAN-97

Now, create atrigger:

SQL> CREATE TRI GGER pay_tri gger
AFTER update on PAY_TABLE
FOR EACH ROW
BEG N
insert into trans_table val ues
(' PAY CHANGE', :new. nane, :old.pay_rate,
:new. pay_rate, :new eff_date);

~NOoO b WwWN

8 END;
9 /

Trigger created.
Thelast step isto perform an update on PAY_TABLE, which should cause the trigger to be executed.

INPUT/OUTPUT:

SQL> update pay_table
2 set pay_rate = 15.50,
3 eff _date = sysdate
4 where nane = ' JEFF JENNI NGS' ;

1 row updat ed.

SQL> sel ect *
2 frompay_table
3 where nane = 'JEFF JENNI NGS';

NANVE PAY_TYPE PAY_RATE EFF_DATE PREV_PAY

JEFF JENNI NGS VEEKLY 15. 50 20 - VAY-97

SQL> select *
2 fromtrans_table;

ACTI ON NANVE PREV_PAY CURR_PAY EFF_DATE
PAY CHANGE JEFF JENNI NGS 71.5 15.5 20 - MAY-97
ANALYSIS:

PREV_PAY isnull in PAY_TABLE but PREV_PAY appears in TRANS_TABLE. This approach isn't as confusing as it sounds. PAY_TABLE does not need
an entry for PREV_PAY because the PAY_RATE of 71. 50 per hour was obviously an erroneous amount. Rather, we inserted the value for PREV_PAY
in TRANS_TABLE because the update was a transaction, and the purpose of TRANS_PAY isto keep arecord of all transactions against PAY_TABLE.

NOTE: If you are familiar with network technologies, you might notice similarities between PL/SQL and Java stored procedures.
However, some differences should be noted. PL/SQL is an enhancement of standard SQL, implementing the commands of a
procedural language. Java, which is much more advanced than PL/SQL, allows programmers to write more complex programs than
are possible with PL/SQL. PL/SQL is based on the database-intensive functionality of SQL ; Javais more appropriate for CPU-
intensive programs. Most procedural languages, such as PL/SQL, are devel oped specifically for the appropriate platform. As
procedural language technology evolves, a higher level of standardization will be enforced across platforms.

Summary

PL/SQL extends the functionality of standard SQL. The basic components of PL/SQL perform the same types of functions as a third-generation
language. The use of local variables supports dynamic code; that is, values within a block may change from time to time according to user input,
specified conditions, or the contents of a cursor. PL/SQL uses standard procedural language program control statements. | F. . . THEN statements and
loops enable you to search for specific conditions; you can also use loops to scroll through the contents of a defined cursor.

Errors that occur during the processing of any program are a major concern. PL/SQL enables you to use exceptions to control the behavior of a
program that encounters either syntax errorsor logical errors. Many exceptions are predefined, such as a divide-by-zero error. Errors can be raised
any time during processing according to specified conditions and may be handled any way the PL/SQL programmer desires.

Day 18 aso introduces some practical uses of PL/SQL. Database objects such as triggers, stored procedures, and packages can automate many job
functions. Today's examples apply some of the concepts that were covered on previous days.

Q&A
Q Does Day 18 cover everything | need to know about PL/SQL?

A Most definitely not. Today's introduction just scratched the surface of one of the greatest concepts of SQL. We have simply tried to
highlight some of the major features to give you a basic knowledge of PL/SQL.

Q Can | get by without using PL/SQL ?

A Yes, you can get by, but to achieve the results that you would get with PL/SQL, you may have to spend much more time coding in a third-
generation language. If you do not have Oracle, check your implementation documentation for procedural features like those of PL/SQL.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises.”

Quiz
1. How is adatabase trigger used?
2. Can related procedures be stored together?
3. True or False: Data Manipulation Language can be used in a PL/SQL statement.
4. True or False: Data Definition Language can be used in a PL/SQL statement.
5. Istext output directly a part of the PL/SQL syntax?
6. List the three major parts of a PL/SQL statement.
7. List the commands that are associated with cursor control.
Exercises
1. Declare avariable called Hour | yPay in which the maximum accepted value is 99. 99/hour.
2. Define a cursor whose content is al the datain the CUSTOVER _TABLE wherethe Cl TY is| NDI ANAPOLI S.
3. Define an exception called UnknownCode.

4, Write a statement that will set the AMT in the AMOUNT_TABLE to 10 if CODE is A, set the AMT to 20 if CODE is B, and raise an exception
caled UnknownCode if CODE is neither A nor B. The table has one row.

{ ¢ Previous Chapter JR.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 19 -
Transact-SQL: An Introduction
Objectives
Today's material supplements the previous presentations, as Transact-SQL is a supplement to the accepted SQL standard. Today's goals are to
1 ldentify one of the popular extensionsto SQL
1 Outline the major features of Transact-SQL

1 Provide practical examplesto give you an understanding of how Transact-SQL is used

An Overview of Transact-SQL

Day 13, "Advanced SQL Topics," briefly covered static SQL. The examples on Day 13 depicted the use of embedded SQL in third-generation
programming languages such as C. With this method of programming, the embedded SQL code does not change and is, therefore, limited. On the
other hand, you can write dynamic SQL to perform the same functions as a procedural programming language and allow conditions to be changed
within the SQL code.

Aswe have mentioned during the discussion of virtually every topic in this book, amost every database vendor has added many extensions to the
language. Transact-SQL is the Sybase and Microsoft SQL Server database product. Oracle's product is PL/SQL. Each of these languages contains
the complete functionality of everything we have discussed so far. In addition, each product contains many extensionsto the ANSI SQL standard.

Extensionsto ANSI SQL

To illustrate the use of these SQL extensions to create actual programming logic, we are using Sybase and Microsoft SQL Server's Transact-SQL
language. It contains most of the constructs found in third-generation languages, as well as some SQL Server-specific features that turn out to be
very handy tools for the database programmer. (Other manufacturers' extensions contain many of these features and more.)

Who Uses Transact-SQL ?

Everyone reading this book can use Transact-SQL--casual relational database programmers who occasionally write queries as well as developers
who write applications and create objects such as triggers and stored procedures.

NOTE: Users of Sybase and Microsoft SQL Server who want to explore the true capabilities of relational database programming
must use the Transact-SQL features.

The Basic Components of Transact-SQL

SQL extensions overcome SQL's limits as a procedural language. For example, Transact-SQL enables you to maintain tight control over your
database transactions and to write procedural database programs that practically render the programmer exempt from exhausting programming tasks.

Day 19 coversthe following key features of Transact-SQL :
1 A widerange of data types to optimize data storage
1 Program flow commands such asloops and | F- ELSE statements
1 Useof variablesin SQL statements
1 Summarized reports using computations
1 Diagnostic features to analyze SQL statements

1 Many other options to enhance the standard language of SQL

Data Types

On Day 9, "Creating and Maintaining Tables," we discussed data types. When creating tablesin SQL, you must specify a specific data type for each
column.

NOTE: Datatypes vary between implementations of SQL because of the way each database server stores data. For instance, Oracle
uses selected data types, whereas Sybase and Microsoft's SQL Server have their own data types.

Sybase and Microsoft's SQL Server support the following data types.
Character Strings
1 char storesfixed-length character strings, such as STATE abbreviations, when you know that the column will always be two characters.

1 varchar stores variable-length character strings, such as an individual's name, where the exact length of a name is not specified, for
example, AL RAY to WILLIAM STEPHENSON.

1 text storesstrings with nearly unlimited size, such as a remarks column or description of atype of service.
Numeric Data Types

1 int storesintegersfrom-2,147,483,647 to +2,147,483,647.

1 smal lint storesintegersfrom - 32, 768 to 32, 767.

1 tinyint storesintegersfrom 0 to 255.

1 float expresses numbers asrea floating-point numbers with data precisions. Decimals are allowed with these data types. The values range
from +2. 23E- 308 to +1. 79E308.

1 real expressesreal numbers with data precisions from +1. 18E- 38 to +3. 40E38.
DATE Data Types

1 datetine vauesrangefromJan 1, 1753 toDec 31, 9999.

1 smal | datetime valuesrangefromJan 1, 1900 toJun 6, 2079.
Money Data Types

1 nmoney storesvalues up to +922, 337, 203, 685, 477. 5808.

1 smal | noney storesvalues up to +214, 748. 3647.

Money values are inserted into atable using the dollar sign; for example:

insert paynent_tbl (custoner_id, paydate, pay_ant)
val ues (012845, "May 1, 1997", $2099.99)

Binary Strings

1 bi nary stores fixed-length binary strings.

1 var bi nary stores variable-length binary strings.

1 i mage storesvery large binary strings, for example, photographs and other images.
bit: A Logical Data Type

The datatype bi t is often used to flag certain rows of data within atable. The value stored within a column whose datatypeisbi t iseither al or 0.
For example, the value 1 may signify the condition true, whereas 0 denotes a false condition. The following example usesthe bi t datatype to create
atable containing individual test scores:

create table test_flag
(ind_id int not null,
test _results int not null,
result_flag bit not null)

ANALYSIS:
Thecolumnresul t _fl ag isdefined asabi t column, wherethe bi t character represents either a pass or fail, where passistrue and fail isfalse.

Throughout the rest of the day, pay attention to the data types used when creating tables and writing Transact-SQL code.

NOTE: The code in today's examples uses both uppercase and lowercase. Although SQL keywords are not case sensitive in most
implementations of SQL, always check your implementation.

Accessing the Database with Transact-SQL
All right, enough talk. To actually run the examples today, you will need to build the following database tables in a database named BASEBALL .
The BASEBALL Database

The BASEBALL database consists of three tables used to track typical baseball information: the BATTERS table, the Pl TCHERS table, and the TEAMS
table. This database will be used in examples throughout the rest of today.

TheBATTERSTABLE

NAVE char (30)
TEAM i nt
AVERAGE f 1 oat
HOVERUNS i nt
RBI'S i nt

The table above can be created using the following Transact-SQL statement:
INPUT:

1> create database BASEBALL on defaul t
2> go
1> use BASEBALL

2> go

1> create table BATTERS (
2> NAME char (30),

3> TEAM i nt,

4> AVERAGE f | oat,

5> HOMERUNS i nt,

6> RBIS int)

7> go

ANALYSIS:
Line 1 creates the database. Y ou specify the database BASEBALL and then create the table BATTERS underneath BASEBALL.

Enter the datain Table 19.1 into the BATTERS table.

NOTE: The command go that separates each Transact-SQL statement in the preceding exampleis not part of Transact-SQL. go's
purpose is to pass each statement from a front-end application to SQL Server.

Table 19.1. Datafor the BATTERS table.

|Name ||Team||Average||Homeruns||RBls|
[Billy Brewster|[[1 |[.275 [[14 ll46 |
[John Jackson |[1][.293 |2 |29 |
[Phil Hartman |[1 |[.221 |13 21 |
[Jim Gehardy |2 |[.316 |[29 lls4 |
[Tom Trawick |2 |[.258 |3 51 |
[EricRedstone|[2].305 [0 |28 |

ThePITCHERS Table
The PI TCHERS table can be created using the following Transact-SQL statement:

INPUT:

1> use BASEBALL

2> go

1> create table PITCHERS (
2> NAME char (30),

3> TEAM i nt,

4> WON i nt,

5> LOST int,

6> ERA fl oat)

7> go

Enter the datain Table 19.2 into the PI TCHERS table.

Table 19.2. Data for the PITCHERS table.

|Name ||Team||Won||Lost||Era|
[TomMadden|[t |[7 [[5 [[3.46]
[Billwitter |1 |8 [[2 |[2.75]
[effknox |2 |[2 |8]l4.82
[Hank Arnold|f2 ~ |[23 |[[z]|1.93]
[Timsmythe [[3 |4 [[2 |[2.76]

The TEAMS Table

The TEAMS table can be created using the following Transact-SQL statement:
INPUT:

1> use BASEBALL

2> go

1> create table TEAMS (

2> TEAM I D int,

3> CITY char(30),

4> NAME char (30),

5> WON i nt,

6> LOST int,

7> TOTAL_HOVE_ATTENDANCE i nt,
8> AVG HOVE_ATTENDANCE i nt)
9> go

Enter the datain Table 19.3 into the TEANS table.

Table 19.3. Data for the TEAM Stable.

|Team_| D||City ||Name ||W0n||Lost||T0taJ_H ome_Attendance”Avg_H ome_Attendance|
1 |[Portland ||Beavers [[72 |63 ||1,226,843 |[19,473 |
[2 |[washington||Representatives][50 |[85 |[941,228 |[14,048 |
[3 |[Tampa |[Sharks oo (36 |[2,028,652 |[30,278 |

Declaring Local Variables

Every programming language enables some method for declaring local (or global) variables that can be used to store data. Transact-SQL isno
exception. Declaring a variable using Transact-SQL is an extremely simple procedure. The keyword that must be used is the DECLARE keyword. The
syntax looks like this:

SYNTAX:
decl are @ari abl e_nanme data_type
To declare a character string variable to store players names, use the following statement:

1> decl are @uane char (30)
2> go

Note the @symbol before the variable's name. This symbol is required and is used by the query processor to identify variables.
Declaring Global Variables

If you delve further into the Transact-SQL documentation, you will notice that the @@symbol precedes the names of some system-level variables.
This syntax denotes SQL Server global variables that store information.

Declaring your own global variablesis particularly useful when using stored procedures. SQL Server also maintains several system global variables
that contain information that might be useful to the database system user. Table 19.4 contains the complete list of these variables. The source for this
list isthe Sybase SQL Server System 10 documentation.

Table 19.4. SQL Server global variables.

|Variab|e Name ||Purpose |
[@@har_convert |[0 if character set conversioniisin effect. |
[@@1ient csid |[Client's character set ID. |
@@! i ent_csnane	[Client's character set name.
@@onnecti ons	[Number of logons since SQL Server was started.
@@pu_busy	[Amount of time, in ticks, the CPU has been busy since SQL Server was

|@rror

||Contai ns error status.

|dentity

||Last value inserted into an identity column.

|@@dle |[Amount of time, in ticks, that SQL Server has been idle since started.
|@@ o_busy |[Amount of time, in ticks, that SQL Server has spent doing 1/O.

|@@ sol ati on |[Current isolation level of the Transact-SQL program.

[@ angi d |[Defines local language ID.

|@@ anguage ||[Defines the name of the local language.

|@raxchar| en |[Maximum length of a character.

|@@rax_connections |[Maximum number of connections that can be made with SQL Server.
|@charsi ze ||Average length of anational character.

|@est | evel |[Nesting level of current execution.

|@@ack_r ecei ved |[Number of input packets read by SQL Server sinceit was started.
|@@ack_sent |[Number of output packets sent by SQL Server since it was started.
|@acket _errors |[Number of errors that have occurred since SQL Server was started.
|@@r oci d |[1D of the currently executing stored procedure.

| owcount

||Number of rows affected by the last command.

|@er ver nane

|[Name of the local SQL Server.

|@@pi d |[Process ID number of the current process.
[@@ql stat us |[Contains status information.
|@@ ext si ze |[Maximum length of text or image data returned with SELECT statement.

|@@ hresh_hyst er esi s |[Change in free space required to activate a threshold.

[@@i et cks

|[Number of microseconds per tick.

| otal _errors

||Number of errors that have occurred while reading or writing.

|@ otal read

|[Number of disk reads since SQL Server was started.

|[@otal _wite

|[Number of disk writes since SQL Server was started.

| ranchai ned

|[Current transaction mode of the Transact-SQL program.

|@ r ancount

|[Nesting level of transactions.

|@ ranst at e

|[Current state of atransaction after a statement executes.

|@@'er si on

|[Date of the current version of SQL Server.

Using Variables

The DECLARE keyword enables you to declare several variables with a single statement (although this device can sometimes look confusing when

you look at your code later). An example of this type of statement appears here:

1> declare @atter_name char(30), @eamint, @uverage float

2> go

The next section explains how to use variablesit to perform useful programming operations.

Using Variablesto Store Data

Variables are available only within the current statement block. To execute a block of statements using the Transact-SQL language, the go statement
is executed. (Oracle uses the semicolon for the same purpose.) The scope of a variable refers to the usage of the variable within the current Transact-
SQL statement.

Y ou cannot initialize variables smply by using the = sign. Try the following statement and note that an error will be returned.

INPUT:

1> decl are @ane char(30)
2> @anme = "Billy Brewster"
3> go

Y ou should have received an error informing you of the improper syntax used in line 2. The proper way to initialize avariable is to use the SELECT
command. (Y es, the same command you have already mastered.) Repeat the preceding example using the correct syntax:

INPUT:

1> decl are @ane char(30)
2> select @ane = "Billy Brewster"
3> go

This statement was executed correctly, and if you had inserted additional statements before executing the go statement, the @ane variable could
have been used.

Retrieving Datainto Local Variables

Variables often store data that has been retrieved from the database. They can be used with common SQL commands, such as SELECT, | NSERT,
UPDATE, and DELETE. Example 19.1 illustrates the use of variablesin this manner.

Example 19.1
This example retrieves the name of the player in the BASEBALL database who has the highest batting average and plays for the Portland Beavers.

INPUT:

1> declare @eam.id int, @layer_nanme char(30), @mux_avg fl oat

2> select @eamid = TEAM ID from TEAVS where CITY = "Portl and"

3> select @mx_avg = max(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer_nane = NAME from BATTERS where AVERAGE = @rax_avg
5> go

ANALYSIS:
This example was broken down into three queries to illustrate the use of variables.
The PRINT Command

One other useful feature of Transact-SQL is the PRI NT command that enables you to print output to the display device. This command has the
following syntax:

SYNTAX:

PRI NT character_string

Although PRI NT displays only character strings, Transact-SQL provides a number of useful functions that can convert different data types to strings
(and vice versa).

Example 19.2
Example 19.2 repeats Example 19.1 but prints the player's name at the end.
INPUT:

1> declare @eam.id int, @layer_nanme char(30), @mux_avg fl oat

2> select @eamid = TEAM ID from TEAVS where CITY = "Portl and"

3> sel ect @mx_avg = max(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer_nane = NAME from BATTERS where AVERAGE = @rax_avg
5> print @l ayer_nane

6> go

Note that a variable can be used within a WHERE clause (or any other clause) just asif it were a constant value.

Flow Control

Probably the most powerful set of Transact-SQL features involves its capability to control program flow. If you have programmed with other
popular languages such as C, COBOL, Pascal, and Visual Basic, then you are probably aready familiar with control commands such as| F. . . THEN
statements and loops. This section contains some of the major commands that allow you to enforce program flow control.

BEGIN and END Statements

Transact-SQL uses the BEG N and END statements to signify the beginning and ending points of blocks of code. Other languages use brackets ({}) or
some other operator to signify the beginning and ending points of functional groups of code. These statements are often combined with | F. . . ELSE
statements and WHI LE loops. Here is a sample block using BEG N and END:

SYNTAX:

BEG N
statenent 1
st at ement 2
statenment 3. ..
END

IF...EL SE Statements

One of the most basic programming constructsisthel F. . . ELSE statement. Nearly every programming language supports this construct, and it is
extremely useful for checking the value of data retrieved from the database. The Transact-SQL syntax for the | F. . . ELSE statement looks like this:

SYNTAX:

if (condition)
begi n

(statenent bl ock)
end
else if (condition)
begi n

st atenent bl ock)
end

el se
begi n

(statenent bl ock)
end

Note that for each condition that might be true, anew BEG N END block of statements was entered. Also, it is considered good programming
practice to indent statement blocks a set amount of spaces and to keep this number of spaces the same throughout your application. This visua
convention greatly improves the readability of the program and cuts down on silly errors that are often caused by simply misreading the code.

Example 19.3

Example 19.3 extends Example 19.2 by checking the player's batting average. If the player's average is over .300, the owner wantsto give him a
raise. Otherwise, the owner could really care less about the player!

Example 19.3 usesthe | F. . . ELSE statement to evaluate conditions within the statement. If the first condition ist r ue, then specified text is printed;
aternative text is printed under any other conditions (ELSE).

INPUT:

1> declare @eam.id int, @layer_nanme char(30), @mx_avg fl oat

2> select @eam.id = TEAM ID from TEAVS where CITY = "Portland"

3> select @eax_avg = nmax(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer_nane = NAME from BATTERS where AVERAGE = @rax_avg
5> if (@max_avg > .300)

6> begin

7> print @l ayer_name

8> print "Gve this guy a raise!"
9> end

10> el se

11> begin

12> print @l ayer_nane

13> print "Conme back when you're hitting better!"
14> end
15> go

Example 19.4

This new | F statement enables you to add some programming logic to the simple BASEBALL database queries. Example 19.4 addsan | F. . . ELSE
I F. . . ELSE branch to the code in Ex- ample 19.3.

INPUT:

1> declare @eam.id int, @layer_nanme char(30), @mx_avg fl oat

2> select @eamid = TEAM ID from TEAVS where CITY = "Portl and"

3> select @ax_avg = nmax(AVERAGE) from BATTERS where TEAM = @eam.id
4> sel ect @l ayer_nane = NAME from BATTERS where AVERAGE = @rax_avg
5> if (@mux_avg > .300)

6> begin

7> print @l ayer_namne

8> print "Gve this guy a raise!"

9> end

10> else if (@max_avg > .275)

11> begin

12> print @l ayer_nane

13> print "Not bad. Here's a bonus!"
14> end

15> el se

16> begin

17> print @l ayer_nane

18> print "Conme back when you're hitting better!"
19> end

20> go

Transact-SQL aso enables you to check for a condition associated with an | F statement. These functions can test for certain conditions or values. If
the function returns TRUE, the | F branch is executed. Otherwise, if provided, the ELSE branch is executed, as you saw in the previous example.

The EXISTS Condition

The EXI STS keyword ensures that avalue is returned from a SELECT statement. If avalue isreturned, the | F statement is executed. Example 19.5
illustrates this logic.

Example 19.5
In this example the EXI STS keyword evaluates a condition in the | F. The condition is specified by using a SELECT statement.

INPUT:

1> if exists (select * from TEAVS where TEAM ID > 5)
2> begin

3> print "IT EXI STS!H!*"

4> end

5> el se

6> begin

7> print "NO ESTA AQUI!"

8> end

Testing a Query's Result

The! F statement can also test the result returned from a SELECT query. Example 19.6 implements this feature to check for the maximum batting
average among players.

Example 19.6

Thisexampleis similar to Example 19.5 in that it uses the SELECT statement to define a condition. Thistime, however, we are testing the condition
with the greater than sign (>).

INPUT:

1> if (select max(AVG from BATTERS) > .400

2> begin

3> print "UNBELI EVABLE!!"

4> end

5> el se

6> print "TED WLLIAVS IS GETTI NG LONELY!"
7> end

We recommend experimenting with your SQL implementation's | F statement. Think of several conditions you would be interested in checking in
the BASEBALL (or any other) database. Run some queries making use of the | F statement to familiarize yourself with its use.

The WHILE Loop
Another popular programming construct that Transact-SQL supportsisthe WHI LE loop. This command has the following syntax:

SYNTAX:

WHI LE | ogi cal _expression
st at enent (s)

Example 19.7

The WH LE loop continues to loop through its statements until the logical expression it is checking returns a FALSE. This example uses asimple
VHI LE loop to increment alocal variable (named COUNT).

INPUT:

1> declare @OUNT i nt
2> select @OUNT = 1
3> while (@OQOUNT < 10)

4> begin

5> sel ect @OUNT = @OUNT + 1
6> print "LOOP AGAIN"

7> end

8> print "LOOP FI NI SHED! '

NOTE: Example 19.7 implements a simple FOR loop. Other implementations of SQL, such as Oracle's PL/SQL, actually provide a
FOR loop statement. Check your documentation to determine whether the system you are using supports this useful command.

The BREAK Command

Y ou can issue the BREAK command within a WHI LE loop to force an immediate exit from the loop. The BREAK command is often used along with an
| F test to check some condition. If the condition check succeeds, you can use the BREAK command to exit from the WHI LE |oop. Commands
immediately following the END command are then executed. Example 19.8 illustrates a simple use of the BREAK command. It checks for some
arbitrary number (say @GCOUNT = 8). When this condition is met, it breaks out of the WHI LE loop.

Example 19.8
Notice the placement of the BREAK statement after the evaluation of the first conditionin the | F.

INPUT:

1> declare @COUNT i nt
2> select @OUNT = 1
3> while (@OQOUNT < 10)

4> begin

5> sel ect @OUNT = @OUNT + 1
6> if (@QUNT = 8)

7> begi n

8> br eak

9> end

10> el se

11> begi n

12> print "LOOP AGAIN"
13> end

14> end

15> print "LOOP FI NI SHED! "

ANALYSIS:
The BREAK command caused the loop to be exited when the @OUNT variable equaled 8.
The CONTINUE Command

The CONTI NUE command is also a special command that can be executed from within a WHI LE loop. The CONTI NUE command forces the loop to
immediately jump back to the beginning, rather than executing the remainder of the loop and then jumping back to the beginning. Like the BREAK
command, the CONTI NUE command is often used with an | F statement to check for some condition and then force an action, as shown in Example
19.9.

Example 19.9
Notice the placement of the CONTI NUE statement after the evaluation of the first condition in the | F.
INPUT:

1> decl are @COUNT i nt
2> select @OUNT = 1
3> while (@OUNT < 10)

4> begin

5> sel ect @OUNT = @OUNT + 1
6> if (@OQUNT = 8)

7> begi n

8> conti nue

9> end

10> el se

11> begi n

12> print "LOOP AGAIN"
13> end

14> end

15> print "LOOP FI NI SHED!"
ANALYSIS:

Example 19.9 isidentical to Example 19.8 except that the CONTI NUE command replaces the BREAK command. Now instead of exiting the loop when
@OUNT = 8, it simply jumps back to the top of the WHI LE statement and continues.

Using the WHILE Loop to Scroll Through a Table

SQL Server and many other database systems have a specia type of object--the cursor--that enables you to scroll through a table's records one record
at atime. (Refer to Day 13.) However, some database systems (including SQL Server pre-System 10) do not support the use of scrollable cursors.
Example 19.10 gives you an idea of how to use aWHI LE loop to implement a rough cursor-type functionality when that functionality is not
automatically supplied.

Example 19.10

Y ou can use the WHI LE loop to scroll through tables one record at atime. Transact-SQL stores the r owcount variable that can be set to tell SQL
Server to return only one row at atime during a query. If you are using another database product, determine whether your product has a similar
setting. By setting r oncount to 1 (itsdefault is 0, which means unlimited), SQL Server returns only one record at atime from a SELECT query.

Y ou can use this one record to perform whatever operations you need to perform. By selecting the contents of atable into atemporary tablethat is
deleted at the end of the operation, you can select out one row at atime, deleting that row when you are finished. When all the rows have been
selected out of the table, you have gone through every row in the table! (Aswe said, thisisavery rough cursor functionality!) Let's run the example
now.

INPUT:

1> set rowcount 1
2> decl are @LAYER char (30)
3> create table tenp_BATTERS (

4> NAME char (30),

5> TEAM i nt,

6> AVERAGE f | oat,

7> HOVERUNS i nt,

8> RBIS int)

9> insert tenp_BATTERS

10> select * from BATTERS

11> while exists (select * fromtenp_BATTERS)

12> begin

13> sel ect @LAYER = NAME from tenp_BATTERS

14> print @PLAYER

15> del ete fromtenp_BATTERS where NAME = @PLAYER
16> end

17> print "LOOP | S DONE!"
ANALYSIS:

Note that by setting ther owcount variable, you are simply modifying the number of rows returned from a SELECT. If the WHERE clause of the
DELETE command returned five rows, five rows would be deleted! Also note that the r owcount variable can be reset repeatedly. Therefore, from
within the loop, you can query the database for some additional information by simply resetting r owcount to 1 before continuing with the loop.

Transact-SQL Wildcard Operators

The concept of using wildcard conditionsin SQL was introduced on Day 3, "Expressions, Conditions, and Operators.” The LI KE operator enables
you to use wildcard conditionsin your SQL statements. Transact-SQL extends the flexibility of wildcard conditions. A summary of Transact-SQL's
wildcard operators follows.

1 Theunderscore character (_)represents any oneindividual character. For example, _M TH tells the query to look for afive-character string
ending with M TH.

1 The percent sign (%9 represents any one or multiple characters. For example, W LL%returns the value W LLI AVS if it exists. W LL%returns
thevalue W LL.

1 Brackets([1) alow aquery to search for characters that are contained within the brackets. For example, [ABC] tellsthe query to search for
strings containing the letters A, B, or C.

1 The” character used within the brackets tells a query to look for any characters that are not listed within the brackets. For example, [*ABC]
tells the query to search for strings that do not contain the letters A, B, or C.

Creating Summarized Reports Using COMPUTE

Transact-SQL also has a mechanism for creating summarized database reports. The command, COVPUTE, has very similar syntax to its counterpart in
SQL*Plus. (See Day 20, "SQL*Plus.")

The following query produces a report showing all batters, the number of home runs hit by each batter, and the total number of home runs hit by all
batters:

INPUT:

sel ect nane, honeruns
frombatters
conput e sun{ honer uns)

ANALYSIS:

In the previous example, COVPUTE alone performs computations on the report as a whole, whereas COVPUTE BY performs computations on specified
groups and the entire report, as the following example shows:

SYNTAX:

COVPUTE FUNCTI ON(expr essi on) [BY expression]
where the FUNCTION might include SUM MAX, MN, etc. and
EXPRESSI ON i s usually a columm nane or alias.

Date Conversions

Sybase and Microsoft's SQL Server can insert datesinto atable in various formats; they can also extract datesin several different types of formats.
This section shows you how to use SQL Server's CONVERT command to manipulate the way a date is displayed.

SYNTAX:

CONVERT (datatype [(length)], expression, format)

The following date formats are available with SQL Server when using the CONVERT function:

|Format code||Format picture |
[100 |[ron dd yyyy hh:ni AM PM |
[101 |[rm dd/ yy |
[102 |[yy. nm dd |
[103 |[dd/ i yy |
[104 |[ad. nm yy |
[105 |[dd- mm-yy |
[106 |[ad non yy |
[107 |[ron dd, yy |
[108 |[ph: ni:ss |
[109 |[ron dd, yyyy hh:ni:ss: mmAM PM|
[110 |[rm dd- yy |
[111 |lyy/ m dd |
[112 |[yymdd |
INPUT:

sel ect "PayDate" = convert(char(15), paydate, 107)
from paynent _t abl e
where custoner_id = 012845

OUTPUT:

ANALYSIS:

The preceding example uses the format code 107 with the CONVERT function. According to the date format table, code 107 will display the date in
the format mon dd, vyy.

SQL Server Diagnostic Tools--SET Commands

Transact-SQL provides alist of SET commands that enable you to turn on various options that help you analyze Transact-SQL statements. Here are
some of the popular SET commands:

1 SET STATI STICS 1 0 ON tellsthe server to return the number of logical and physical page requests.
1 SET STATI STICS TI ME ON tellsthe server to display the execution time of an SQL statement.

1 SET SHOWPLAN ON tellsthe server to show the execution plan for the designated query.

1 SET NOEXEC ON tellsthe server to parse the designated query, but not to execute it.

1 SET PARSONLY ON tellsthe server to check for syntax for the designated query, but not to executeit.

Transact-SQL aso has the following commands that help to control what is displayed as part of the output from your queries:
1 SET ROWCOUNT n tellsthe server to display only the first n records retrieved from a query.

1 SET NOCOUNT ON tells the server not to report the number of rows returned by a query.

NOTE: If you are concerned with tuning your SQL statements, refer to Day 15, "Streamlining SQL Statements for Improved
Performance."

Summary

Day 19 introduces a number of topics that add some teeth to your SQL programming expertise. The basic SQL topics that you learned earlier in this
book are extremely important and provide the foundation for all database programming work you undertake. However, these topics are just a
foundation. The SQL procedural language concepts explained yesterday and today build on your foundation of SQL. They give you, the database
programmer, agreat deal of power when accessing data in your relational database.

The Transact-SQL language included with the Microsoft and Sybase SQL Server database products provide many of the programming constructs
found in popular third- and fourth-generation languages. Its features include the | F statement, the WHI LE loop, and the capability to declare and use
local and global variables.

Keep in mind that Day 19 isabrief introduction to the features and techniques of Transact-SQL code. Feel free to dive head first into your
documentation and experiment with al the tools that are available to you. For more detailed coverage of Transact-SQL, refer to the Microsoft SQL
Server Transact-SQL documentation.

Q&A
Q Does SQL provide a FOR loop?

A Programming constructs such as the FOR |oop, the WHI LE loop, and the CASE statement are extensions to ANSI SQL. Therefore, the use of
these items varies widely among database systems. For instance, Oracle provides the FOR loop, whereas Transact-SQL (SQL Server) does
not. Of course, aWH LE loop can increment a variable within the loop, which can simulate the FOR loop.

Q | am developing a Windows (or Macintosh) application in which the user interface consists of Windows GUI elements, such as
windows and dialog boxes. Can | usethe PRINT statement to issue messagesto the user?

A SQL isentirely platform independent. Therefore, issuing the PRI NT statement will not pop up a message box. To output messages to the
user, your SQL procedures can return predetermined values that indicate success or failure. Then the user can be notified of the status of the
queries. (The PRI NT command is most useful for debugging because a PRI NT statement executed within a stored procedure will not be
output to the screen anyway.)

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises."

Quiz
1. True or False: The use of the word SQL in Oracle's PL/SQL and Microsoft/Sybase's Transact-SQL implies that these products are fully
compliant with the ANSI standard.
2. True or False: Static SQL isless flexible than Dynamic SQL, athough the performance of static SQL can be better.

Exercises

1. If you are not using Sybase/Microsoft SQL Server, compare your product's extensions to ANSI SQL to the extensions mentioned today.

2. Write abrief set of statements that will check for the existence of some condition. If this condition is true, perform some operation.

Otherwise, perform another operation.

(¢ Previous Chapter JER.—> Mext Chapter

2 MACMILLAN COMPUTER PUBLISHING USA
(‘.h YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 20 -
SQL*Plus
Objectives

Today you will learn about SQL*Plus, the SQL interface for Oracles RDBMS. By the end of Day 20, you will understand the following elements of
SQL*Plus:

1 How to use the SQL* Plus buffer

1 How to format reports attractively

1 How to manipulate dates

1 How to make interactive queries

1 How to construct advanced reports

1 How to use the powerful DECODE function
Introduction

We are presenting SQL* Plus today because of Oracle's dominance in the relational database market and because of the power and flexibility
SQL*Plus offers to the database user. SQL* Plus resembles Transact-SQL (see Day 19, "Transact-SQL: An Introduction™) in many ways. Both
implementations comply with the ANSI SQL standard for the most part, which is still the skeleton of any implementation.

SQL*Plus commands can enhance an SQL session and improve the format of queries from the database. SQL* Plus can also format reports, much
like a dedicated report writer. SQL* Plus supplements both standard SQL and PL/SQL and helps relational database programmers gather datathat is
in adesirable format.

The SQL*Plus Buffer

The SQL*Plus buffer is an area that stores commands that are specific to your particular SQL session. These commands include the most recently
executed SQL statement and commands that you have used to customize your SQL session, such as formatting commands and variable assignments.
This buffer is like a short-term memory. Here are some of the most common SQL buffer commands:

1 LI ST I'ine_nunber --Lists aline from the statement in the buffer and designates it as the current line.

1 CHANGE/ ol d_val ue/ new_val ue --Changesol d_val ue to new_val ue on the current linein the buffer.
1 APPEND t ext --Appendst ext to the current line in the buffer.

1 DEL-- Deletesthe current line in the buffer.

1 SAVE newfi | e-Savesthe SQL statement in the buffer to afile.

1 GET fil ename--Getsan SQL file and placesit into the buffer.
1 /--Executes the SQL statement in the buffer.
We begin with asimple SQL statement:

INPUT:

SQL> sel ect *
2 from products
3 where unit_cost > 25;

OUTPUT:

PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

The Ll ST command lists the most recently executed SQL statement in the buffer. The output will simply be the displayed statement.

SQL> |ist
1 select *
2 from products
3* where unit_cost > 25

ANALYSIS:

Notice that each line is numbered. Line numbers are important in the buffer; they act as pointers that enable you to modify specific lines of your
statement using the SQL* PLUS buffer. The SQL*Plus buffer is not afull screen editor; after you hit Enter, you cannot use the cursor to move up a
ling, as shown in the following example.

INPUT:

SQL> select *
2 from products
3 where unit_cost > 25
4

NOTE: Aswith SQL commands, you may issue SQL* Plus commands in either uppercase or lowercase.

TIP: You can abbreviate most SQL* Plus commands; for example, LI ST can be abbreviated as| .

Y ou can move to a specific line from the buffer by placing aline number after thel :

INPUT:

SQ> 13

3* where unit_cost > 25
ANALYSIS:

Notice the asterisk after the line number 3. This asterisk denotes the current line number. Pay close attention to the placement of the asterisk in
today's examples. Whenever aline is marked by the asterisk, you can make changes to that line.

Because you know that your current lineis 3, you are free to make changes. The syntax for the CHANGE command is as follows:

SYNTAX:
CHANGE/ ol d_val ue/ new_val ue
or
Cl/ ol d_val ue/ new_val ue
INPUT:
SQL> c/>/<
OUTPUT:
3* where unit_cost < 25
INPUT:
SQL> |
OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

ANALYSIS:

The greater than sign (>) has been changed to less than (<) on line 3. Notice after the change was made that the newly modified line was displayed.
If you issue the LI ST command or | , you can see the full statement. Now execute the statement:

INPUT:

SQL> /

OUTPUT:

PRO PRODUCT _NANVE UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12.99
ANALYSIS:

The forward slash at the SQL> prompt executes any statement that isin the buffer.
INPUT:

SQL> |

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

Now, you can add aline to your statement by typing a new line number at the SQL> prompt and entering text. After you make the addition, get afull
statement listing. Here's an example:

INPUT:

SQL> 4 order by unit_cost

SQ> 1
OUTPUT:
1 select *
2 from products
3 where unit_cost < 25
4* order by unit_cost

ANALYSIS:

Deleting alineis easier than adding aline. Simply type DEL 4 at the SQL> prompt to delete line 4. Now get another statement listing to verify that
thelineis gone.

INPUT:

SQ.> DEL4
SQL> |

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

Another way to add one or more lines to your statement is to use the | NPUT command. As you can see in the preceding list, the current line number
is 3. At the prompt type input and then press Enter. Now you can begin typing text. Each time you press Enter, another line will be created. If you
press Enter twice, you will obtain another SQL> prompt. Now if you display a statement listing, as in the following example, you can see that line 4
has been added.

INPUT:

SQL> i nput
4i and product_id = ' POl
5

SQL>

OUTPUT:

sel ect *

from products

where unit_cost < 25
and product _id = 'P01'

order by unit_cost

abrwWN PR

*

To append text to the current line, issue the APPEND command followed by the text. Compare the output in the preceding example--the current line
number is 5--to the following example.

INPUT:
SQL> append desc
OUTPUT:

5* order by unit_cost desc
Now get afull listing of your statement:
INPUT:

SQL> |

OUTPUT:

sel ect *

from products

where unit_cost < 25
and product _id = ' POl

order by unit_cost desc

*

b wWNPEF

Suppose you want to wipe the slate clean. Y ou can clear the contents of the SQL* Plus buffer by issuing the command CLEAR BUFFER. Asyou will
see later, you can also use the CLEAR command to clear specific settings from the buffer, such as column formatting information and computes on a
report.

INPUT:

SQ.> clear buffer

OUTPUT:

buffer cleared

INPUT:

SQL>

OUTPUT:

No lines in SQ. buffer.

ANALYSIS:

Obviously, you won't be able to retrieve anything from an empty buffer. Y ou aren't a master yet, but you should be able to maneuver with ease by
manipulating your commands in the buffer.

The DESCRIBE Command

The handy DESCRI BE command enables you to view the structure of atable quickly without having to create a query against the data dictionary.
SYNTAX:

DESC[Rl BE] tabl e_nane

Take alook at the two tables you will be using throughout the day.

INPUT:

SQL> describe orders

OUTPUT:

Narme Nul | ? Type
ORDER_NUM NOT NULL NUMBER(2)
CUSTOMER NOT NULL VARCHAR2(30)
PRODUCT I D NOT NULL CHAR(3)
PRODUCT_QTY NOT NULL NUMBER(5)
DELI| VERY_DATE DATE

The following statement uses the abbreviation DESC instead of DESCRI BE:
INPUT:
SQL> desc products

OUTPUT:

Name Nul I ? Type

PRODUCT_I D NOT NULL VARCHAR2(3)

PRODUCT _NAME NOT NULL VARCHAR2(30)

UNI T_COST NOT NULL NUMBER(8, 2)
ANALYSIS:

DESC displays each column name, which columns must contain data (NULL/NOT NULL), and the data type for each column. If you are writing many
queries, you will find that few days go by without using this command. Over along time, this command can save you many hours of programming
time. Without DESCRI BE you would have to search through project documentation or even database manuals containing lists of data dictionary
tables to get thisinformation.

The SHOW Command

The SHOWcommand displays the session's current settings, from formatting commands to who you are. SHOW ALL displays al settings. This
discussion covers some of the most common settings.

INPUT:
SQL> show al
OUTPUT:

appinfo is ON and set to "SQL*Pl us"

arraysi ze 15

aut ocommt OFF

aut oprint OFF

autotrace OFF

bl ockterminator "." (hex 2e)

btitle OFF and is the 1st few characters of the next SELECT statenent
cl osecursor OFF

colsep "

cmdsep OFF

conmpatibility version NATIVE
concat "." (hex 2e)

copycomit O
copytypecheck is ON

crt ""

define "&" (hex 26)
echo OFF

editfile "afiedt. buf"
enbedded OFF

escape OFF

feedback ON for 6 or nore rows
flagger OFF

flush ON

headi ng ON

headsep "|" (hex 7c)
I'inesize 100

Ino 6

I ong 80

| ongchunksi ze 80
maxdat a 60000

newpage 1

nul | ""

nunf or mat

numM dth 9

pagesi ze 24

pause is OFF

pno 1

recsep WRAP

recsepchar " " (hex 20)
rel ease 703020200
repheader OFF and is NULL
repfooter OFF and is NULL
serverout put OFF
shownode OFF

spool OFF

sql case M XED

sqgl code 1007

sqgl continue "> "

sqgl nunber ON

sql prefix "#" (hex 23)

sqgl pronpt "SQ.> "
sgltermnator ";" (hex 3b)
suffix "SQ"

tab ON

termout ON

tine OFF

timng OFF

trinout ON

trinspool OFF

ttitle OFF and is the 1st few characters of the next SELECT statenent

underline "-" (hex 2d)

user is "RYAN'

verify ON

wap : lines will be wapped

The SHOW command displays a specific setting entered by the user. Suppose you have access to multiple database user |Ds and you want to see how
you are logged on. Y ou can issue the following command:

INPUT:

SQL> show user

OUTPUT:

user is "RYAN'

To seethe current line size of output, you would type:
INPUT:

SQL> show |inesize

OUTPUT:

i nesize 100

File Commands

Various commands enable you to manipulate filesin SQL* Plus. These commands include creating afile, editing the file using a full-screen editor as
opposed to using the SQL* Plus buffer, and redirecting output to afile. Y ou also need to know how to execute an SQL file after it is created.

The SAVE, GET, and EDIT Commands
The SAVE command saves the contents of the SQL statement in the buffer to afile whose name you specify. For example:

INPUT:

SQL> sel ect *
2 from products
3 where unit_cost < 25

SQL> save queryl. sql
OUTPUT:

Created file queryl. sql
ANALYSIS:

After afile has been saved, you can use the GET command to list the file. GET isvery similar to the LI ST command. Just remember that GET deals
with statements that have been saved to files, whereas LI ST deals with the statement that is stored in the buffer.

INPUT:
SQL> get queryl
OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

Y ou can use the EDI T command either to create a new file or to edit an existing file. When issuing this command, you are taken into a full-screen
editor, more than likely Notepad in Windows. You will find that it is usually easier to modify afilewith EDI T than through the buffer, particularly if
you are dealing with alarge or complex statement. Figure 20.1 shows an example of the EDI T command.

INPUT:

SQL> edit queryl. sql

Figure 20.1.
Editing afilein SQL*Plus.

Starting aFile
Now that you know how to create and edit an SQL file, the command to execute it is simple. It can take one of the following forms:

SYNTAX:

START fil enane

or

STA fil enane

or
@il enane

TI1P: Commands are not case sensitive.
INPUT:

SQL> start queryl. sql

OUTPUT:

PRO PRODUCT _NAVE UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99

NOTE: You do not have to specify the file extension . sql to start afile from SQL* Plus. The database assumes that the file you are
executing has this extension. Similarly, when you are creating afile from the SQL> prompt or use SAVE, GET, or EDI T, you do not
have to include the extension if itis. sql .

INPUT:

SQL> @ueryl

OUTPUT:

PRO PRCDUCT_NANME UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5

PO5 NATURE CALENDAR 12.99
INPUT:

SQL> run queryl

OUTPUT:

1 select *
2 from products
3* where unit_cost < 25

PRO PRCDUCT_NANME UNI T_COST
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12.99

Notice that when you use RUN to execute a query, the statement is echoed, or displayed on the screen.
Spooling Query Output

Viewing the output of your query on the screen is very convenient, but what if you want to save the results for future reference or you want to print
the file? The SPOOL command allows you to send your output to a specified file. If the file does not exist, it will be created. If the file exists, it will
be overwritten, as shown in Figure 20.2.

INPUT:

SQL> spool prod.| st
SQL> sel ect *
2 from products;

OUTPUT:

PRO PRCDUCT_NANME UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12.99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

INPUT:

SQL> spool off
SQL> edit prod.|st

ANALYSIS:

The output in Figure 20.2 is an SQL*Plusfile. Y ou must use the SPOOL OFF command to stop spooling to afile. When you exit SQL* Plus, SPOOL
OFF isautomatic. But if you do not exit and you continue to work in SQL*Plus, everything you do will be spooled to your file until you issue the
command SPOCL OFF.

Figure 20.2.
Spooling your output to afile.

SET Commands

SET commandsin Oracle change SQL* Plus session settings. By using these commands, you can customize your SQL working environment and
invoke options to make your output results more presentable. Y ou can control many of the SET commands by turning an option on or off.

To see how the SET commands work, perform asimple sel ect :

INPUT:

SQL> select *
2 from products;

OUTPUT:

PRO PRODUCT _NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.
ANALYSIS:

Thelast line of output

7 rows sel ected.

is called feedback, which is an SQL setting that can be modified. The settings have defaults, and in this case the default for FEEDBACK ison. If you
wanted, you could type

SET FEEDBACK ON

before issuing your select statement. Now suppose that you do not want to see the feedback, as happens to be the case with some reports, particularly
summarized reports with computations.

INPUT:

SQL> set feedback off
SQL> sel ect *
2 from products;

OUTPUT:
PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
P07 BLACK LEATHER BRI EFCASE 99. 99
ANALYSIS:

SET FEEDBACK OFF turns off the feedback display.

In some cases you may want to suppress the column headings from being displayed on areport. This setting is called HEADI NG, which can also be
set ON or OFF.

INPUT:

SQL> set heading off

sQL> /

OUTPUT:

PO1 M CKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
PO5 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
P07 BLACK LEATHER BRI EFCASE 99. 99
ANALYSIS:

The column headings have been eliminated from the output. Only the actual datais displayed.

Y ou can change awide array of settings to manipulate how your output is displayed. One option, LI NESI ZE, allows you to specify the length of

line of your output. A small line size will more than likely cause your output to wrap; increasing the line size may be necessary to suppress wrapping
of aline that exceeds the default 80 characters. Unless you are using wide computer paper (11 x 14), you may want to landscape print your report if
you are using aline size greater than 80. The following example shows the use of LI NESI ZE.

INPUT:

SQL> set |inesize 40
SQL> /

OUTPUT:

P01 M CKEY MOUSE LANMP
29.95

P02 NO 2 PENCILS - 20 PACK
1.99

P03 COFFEE MUG
6. 95

P04 FAR SI DE CALENDAR
10.5

PO5 NATURE CALENDAR
12.99

P06 SQL COMIVAND REFERENCE
29. 99

P07 BLACK LEATHER BRI EFCASE

99. 99

Y ou can also adjust the size of each page of your output by using the setting PAGESI ZE. If you are simply viewing your output on screen, the best
setting for PAGESI ZE is 23, which eliminates multiple page breaks per screen. In the following example PAGESI ZE is set to alow number to show
you what happens on each page break.

INPUT:

SQL> set |inesize 80
SQL> set heading on
SQL> set pagesize 7
SQL> /

OUTPUT:

PRO PRODUCT _NANE UNI T_COST
PO1 M CKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1. 99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
PRO PRODUCT _NAVE UNI T_COST
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99
ANALYSIS:

Using the setting of PAGESI ZE 7, the maximum number of lines that may appear on a single page is seven. New column headings will print
automatically at the start of each new page.

The TI ME setting displays the current time as part of your SQL> prompt.
INPUT:

SQL> set tinme on

OUTPUT:

08:52: 02 SQL>

These were just afew of the SET options, but they are all manipulated in basically the same way. Asyou saw from the vast list of SET commandsin
the earlier output from the SHOW ALL statement, you have many options when customizing your SQL* Plus session. Experiment with each option
and see what you like best. Y ou will probably keep the default for many options, but you may find yourself changing other options frequently based
on different scenarios.

LOGIN.SQL File

When you log out of SQL*Plus, all of your session settings are cleared. When you log back in, your settings will have to be reinitialized if they are
not the defaults unless you are using al ogi n. sql file. Thisfileis automatically executed when you sign on to SQL*Plus. Thisinitiaization fileis
similar to the aut oexec. bat file onyour PC or your . profi | e inaUNIX Korn Shell environment.

In Personal Oracle7 you can use the EDI T command to create your Logi n. sql file, as shown in Figure 20.3.

Figure 20.3.
Your Logi n. sql file.

When you log on to SQL*Plus, here iswhat you will see:

SQL*Plus: Release 3.3.2.0.2 - Production on Sun May 11 20:37:58 1997
Copyright (c) Oracle Corporation 1979, 1994. Al rights reserved.
Enter password: ****

Connected to:

Personal Oracle7 Release 7.3.2.2.0 - Production Rel ease

Wth the distributed and replication options
PL/ SQ. Rel ease 2.3.2.0.0 - Production

HELLO !

20:38: 02 sQ.>

CLEAR Command

In SQL*Plus, settings are cleared by logging off, or exiting SQL* Plus. Some of your settings may also be cleared by using the CLEAR command, as
shown in the following examples.

INPUT:

SQL> clear co
OUTPUT:

columms cl eared
INPUT:

SQL> cl ear break
OUTPUT:

breaks cl eared
INPUT:

SQL> cl ear conpute
OUTPUT:

conputes cl eared

Formatting Y our Output

SQL*Plus a so has commands that enable you to arrange your output in almost any format. This section covers the basic formatting commands for
report titles, column headings and formats, and giving a column a"new value."

TTITLEand BTITLE

TTI TLE and BTl TLE enable you to create titles on your reports. Previous days covered queries and output, but with SQL*Plus you can convert
simple output into presentable reports. The TTI TLE command places atitle at the top of each page of your output or report. BTl TLE places atitle at
the bottom of each page of your report. Many options are available with each of these commands, but today's presentation covers the essentials. Here
isthe basic syntax of TTI TLE and BTI TLE:

SYNTAX:

TTITLE [center|left|right] "text' [&variable] [skip n]
BTI TLE [center|left|right] 'text' [&variable] [skip n]

INPUT:

SQ> ttitle 'A LI ST OF PRODUCTS
SQL> btitle ' THAT IS ALL'
SQL> set pagesize 15

sQL> /
OUTPUT:
Ved May 07
page 1
A LI ST OF PRODUCTS
PRO PRODUCT _NAVE UNI T_COST

P01 M CKEY MOUSE LANMP 29.95

P02 NO 2 PENCILS - 20 PACK 1.99

P03 COFFEE MUG 6. 95
P04 FAR S| DE CALENDAR 10.5
PO5 NATURE CALENDAR 12.99
P06 SQL COVIVAND REFERENCE 29.99
PO7 BLACK LEATHER BRI EFCASE 99. 99

THAT IS ALL

7 rows sel ected.
ANALYSIS:

Thetitle appears at the top of the page and at the bottom. Many people use the bottom title for signature blocks to verify or make changes to data on
the report. Also, in the top title the date and page number are part of the title.

Formatting Columns (COLUMN, HEADING, FORMAT)

Formatting columns refers to the columns that are to be displayed or the columns that are listed after the SELECT in an SQL statement. The COLUMN,
HEADI NG, and FORVMAT commands rename column headings and control the way the data appears on the report.

The COL[uMN] command is usually used with either the HEADI NG command or the FORVAT command. COLUMWN defines the column that you wish to
format. The column that you are defining must appear exactly asit istyped in the SELECT statement. Y ou may use a column dias instead of the fulll
column name to identify a column with this command.

When using the HEADI NG command, you must use the COLUMN command to identify the column on which to place the heading.
When using the FORMAT command, you must use the COLUMN command to identify the column you wish to format.

The basic syntax for using all three commands follows. Note that the HEADI NG and FORMAT commands are optional. In the FORVAT syntax, you must
use an a if the data has a character format or use 0s and 9s to specify humber data types. Decimals may a so be used with numeric values. The
number to theright of the a isthe total width that you wish to allow for the specified column.

SYNTAX:
COL[UMN] col um_nane HEA[DI NG "new_headi ng" FOR[MAT] [al]|99.99]

The simple SELECT statement that follows shows the formatting of a column. The specified column is of NUMBER data type, and we want to display
the number in a decimal format with adollar sign.

INPUT:

SQ.> col umm unit_cost heading "PRI CE' format $99.99
SQL> sel ect product_nane, unit_cost
2 from products;

OUTPUT:

PRODUCT _NANME PRI CE
M CKEY MOUSE LAMP $29. 95
NO 2 PENCILS - 20 PACK $1.99
COFFEE MUG $6. 95
FAR SI DE CALENDAR $10. 50
NATURE CALENDAR $12. 99
SQL COMVAND REFERENCE $29. 99
BLACK LEATHER BRI EFCASE $99. 99

7 rows sel ected.
ANALYSIS:

Because we used the format 99. 99, the maximum number that will be displayed is 99. 99.

Now try abbreviating the commands. Here's something neat you can do with the HEADI NG command:
INPUT:

SQL> col unit_cost hea "UN T| COST" for $09.99
SQL> sel ect product_nane, unit_cost
2 from products;

OUTPUT:

PRODUCT _NANME UNI' T COST
M CKEY MOUSE LAMP $29. 95
NO 2 PENCILS - 20 PACK $01. 99
COFFEE MUG $06. 95
FAR SI DE CALENDAR $10. 50
NATURE CALENDAR $12.99
SQL COMVAND REFERENCE $29. 99
BLACK LEATHER BRI EFCASE $99. 99

7 rows sel ected.
ANALYSIS:

The pipe sign (|) in the HEADI NG command forces the following text of the column heading to be printed on the next line. Y ou may use multiple
pipe signs. The technique is handy when the width of your report starts to push the limits of the maximum available line size. The format of the unit
cost column is now 09. 99. The maximum number displayed is still 99. 99, but now a0 will precede all humbers lessthan 10. Y ou may prefer this
format because it makes the dollar amounts appear uniform.

Report and Group Summaries

What would areport be without summaries and computations? Let's just say that you would have one frustrated programmer. Certain commandsin
SQL*Plus alow you to break up your report into one or more types of groups and perform summaries or computations on each group. BREAK isa
little different from SQL's standard group functions, such as COUNT() and SUM) . These functions are used with report and group summaries to
provide a more complete report.

BREAK ON

The BREAK ON command breaks returned rows of datafrom an SQL statement into one or more groups. If you break on a customer's name, then by
default the customer's name will be printed only the first time it is returned and left blank with each row of data with the corresponding name. Here
isthe very basic syntax of the BREAK ON command:

SYNTAX:

BRE[AK] [ON col urml ON col urm2. ..][SKI P n| PAGE] [DUP| NCDUP|

Y ou may also break on REPORT and ROW Breaking on REPORT performs computations on the report as awhole, whereas breaking on ROWperforms
computations on each group of rows.

The SKI P option alows you to skip a number of lines or a page on each group. DUP or NCDUP suggests whether you want duplicates to be printed in
each group. The default is NODUP.

Hereis an example:
INPUT:

SQ.> col unit_cost head ' UNIT| COST' for $09.99
SQL> break on customner
SQL> sel ect o.custoner, p.product_nane, p.unit_cost
2 fromorders o,
3 products p
4 where o.product_id = p.product _id
5 order by custoner;

OUTPUT:

CUSTOMER PRODUCT _NAME UNI' T COST
JONES and SONS M CKEY MOUSE LAMP $29. 95
NO 2 PENCILS - 20 PACK $01. 99
COFFEE MUG $06. 95
PARAKEET CONSULTI NG GROUP M CKEY MOUSE LAMP $29. 95
NO 2 PENCILS - 20 PACK $01. 99
SQL COMVAND REFERENCE $29. 99
BLACK LEATHER BRI EFCASE $99. 99
FAR SI DE CALENDAR $10. 50
PLEWSKY MOBI LE CARWASH M CKEY MOUSE LAMP $29. 95
BLACK LEATHER BRI EFCASE $99. 99
BLACK LEATHER BRI EFCASE $99. 99
NO 2 PENCILS - 20 PACK $01. 99
NO 2 PENCILS - 20 PACK $01. 99

13 rows sel ect ed.

Each unique customer is printed only once. This report is much easier to read than one in which duplicate customer names are printed. Y ou must
order your resultsin the same order as the column(s) on which you are breaking for the BREAK command to work.

COMPUTE

The COVPUTE command is used with the BREAK ON command. COMPUTE allows you to perform various computations on each group of data and/or
on the entire report.

SYNTAX:
COWP[UTE] function OF colum_or_alias ON colum_or_row_ or_report
Some of the more popular functions are
1 AVG--Computes the average value on each group.
1 COUNT--Computes a count of values on each group.
1 SUM-Computes a sum of values on each group.
Suppose you want to create a report that lists the information from the PRODUCTS table and computes the average product cost on the report.
INPUT:

SQL> break on report
SQL> conpute avg of unit_cost on report
SQL> sel ect *

2 from products;

OUTPUT:

PRO PRCDUCT_NANME UNI T_COST
P01 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6. 95
P04 FAR SI DE CALENDAR 10. 50
PO5 NATURE CALENDAR 12.99
P06 SQL COMIVAND REFERENCE 29.99
P07 BLACK LEATHER BRI EFCASE 99. 99
avg 27.48
ANALYSIS:

Y ou can obtain the information you want by breaking on REPORT and then computing the avg of theuni t _cost on REPORT.

Remember the CLEAR command? Now clear the last compute from the buffer and start again--but this time you want to compute the amount of
money spent by each customer. Because you do not want to see the average any longer, you should also clear the computes.

INPUT:

SQL> cl ear conpute

OUTPUT:

comput es cl eared

Now clear the last BREAK. (Y ou don't really have to clear the BREAK in this case because you still intend to break on report.)
INPUT:

SQL> cl ear break

OUTPUT:

breaks cl eared

The next step is to reenter the breaks and computes the way you want them now. Y ou will also have to reformat the column uni t _cost to
accommodate a larger number because you are computing a sum of theuni t _cost on the report. Y ou need to alow room for the grand total that
uses the same format as the column on which it is being figured. So you need to add another place to the left of the decimal.

INPUT:

SQL> col unit_cost hea 'UNIT| COST' for $099.99
SQL> break on report on custonmer skip 1

SQL> conpute sum of unit_cost on custoner

SQL> conpute sum of unit_cost on report

Now list the last SQL statement from the buffer.
INPUT:

SQL>

OUTPUT:

1 select o.customer, p.product_nane, p.unit_cost
2 fromorders o,

3 products p

4 where o.product_id = p.product_id

5* order by custoner

ANALYSIS:

Now that you have verified that this statement is the one you want, you can execute it:

INPUT:
SQL> /
OUTPUT:
UNIT
CUSTOVER PRODUCT_NAVE cosT
JONES and SONS M CKEY MOUSE LAMP $029. 95
NO 2 PENCILS - 20 PACK $001. 99

COFFEE MJUG $006. 95

khkkkkkkkkkkkrkkkkkrkkkkkrkkkxx

sum $038. 89

PARAKEET CONSULTI NG GROUP M CKEY MOUSE LAMP $029. 95
NO 2 PENCILS - 20 PACK $001. 99

SQL COMVAND REFERENCE $029. 99

BLACK LEATHER BRI EFCASE $099. 99

FAR SI DE CALENDAR $010. 50

R I I I I
sum $172. 42
PLEWSKY MOBI LE CARWASH M CKEY MOUSE LAMP $029. 95
BLACK LEATHER BRI EFCASE $099. 99

BLACK LEATHER BRI EFCASE $099. 99

NO 2 PENCILS - 20 PACK $001. 99

NO 2 PENCILS - 20 PACK $001. 99

R I I I I
UNI T

CUSTOVER PRODUCT _NAME COST
sum $233.91
sum $445. 22

13 rows sel ected.
ANALYSIS:
This example computed the total amount that each customer spent and also calculated agrand total for all customers.

By now you should understand the basics of formatting columns, grouping data on the report, and performing computations on each group.
Using Variablesin SQL*Plus

Without actually getting into a procedural language, you can still define variablesin your SQL statement. Y ou can use special optionsin SQL* Plus
(covered in this section) to accept input from the user to pass parameters into your SQL program.

Substitution Variables (&)

An ampersand (&) isthe character that calls avalue for avariable within an SQL script. If the variable has not previously been defined, the user will
be prompted to enter avalue.

INPUT:

SQL> select *
2 from &TBL
3/

Enter value for tbl: products
The user entered the value "products.”

OUTPUT:

old 2: from &TBL
new 2: from products

PRO PRODUCT _NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

The value pr oduct s was substituted in the place of &TBL in this "interactive query."
DEFINE

Y ou can use DEFI NE to assign values to variables within an SQL script file. If you define your variables within the script, users are not prompted to
enter avalue for the variable at runtime, as they are if you use the & The next example issues the same SELECT statement as the preceding example,
but this time the value of TBL is defined within the script.

INPUT:

SQL> define TBL=products
SQL> sel ect *
2 from &TBL;

OUTPUT:

ol d 2: from &TBL
new 2: from products

PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows selected.

ANALYSIS:

Both queries achieved the same result. The next section describes another way to prompt users for script parameters.
ACCEPT

ACCEPT enables the user to enter avalueto fill avariable at script runtime. ACCEPT does the same thing as the & with no DEFI NE but is alittle more
controlled. ACCEPT also allows you to issue user-friendly prompts.

The next example starts by clearing the buffer:
INPUT:

SQL> cl ear buffer

OUTPUT:

buf fer cleared

Then it uses an | NPUT command to enter the new SQL statement into the buffer. If you started to type your statement without issuing the | NPUT
command first, you would be prompted to enter the value for newt i t | e first. Alternatively, you could go straight into a new file and write your
Statement.

INPUT:

SQL> i nput
1 accept newtitle pronpt 'Enter Title for Report:
ttitle center newtitle
sel ect *
from products

pU‘Ibwl\)

> save prod

OUTPUT:

File "prod.sqgl" already exists.
Use anot her nane or "SAVE fil enanme REPLACE".

ANALYSIS:

Whoops...thefile pr od. sql aready exists. Let's say that you need the old pr od. sql and do not care to overwrite it. Y ou will have to use the
replace option to save the statement in the buffer to pr od. sql . Notice the use of PROVPT in the preceding statement. PROVPT displays text to the
screen that tells the user exactly what to enter.

INPUT:

SQL> save prod repl ace

OUTPUT:

Wote file prod

Now you can use the START command to execute the file.
INPUT:

SQL> start prod

Enter Title for Report: A LIST OF PRODUCTS

OUTPUT:

A LI ST OF PRODUCTS
PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MJG 6. 95
P04 FAR SI DE CALENDAR 10.5
P05 NATURE CALENDAR 12. 99
P06 SQL COMVAND REFERENCE 29. 99
PO7 BLACK LEATHER BRI EFCASE 99. 99

7 rows sel ected.

ANALYSIS:

The text that you entered becomes the current title of the report.

The next example shows how you can use substitution variables anywhere in a statement:
INPUT:

SQL> i nput
1 accept prod_id pronpt 'Enter PRODUCT ID to Search for:
2 select *
3 from products
4 where product_id = '&prod_id

5
SQL> save prodl
OUTPUT:

Created file prodl

INPUT:

SQL> start prodl

Enter PRODUCT ID to Search for: PO1

OUTPUT:
ol d 3: where product_id = '&prod_id
new 3: where product_id = 'PO1l'

A LI ST OF PRODUCTS

PRO PRODUCT NAVE UNI T_COST
PO1 M CKEY MOUSE LAMP 29. 95
ANALYSIS:

Y ou can use variables to meet many needs--for example, to name the file to which to spool your output or to specify an expression in the ORDER BY
clause. One of the ways to use substitution variablesisto enter reporting dates in the WHERE clause for transactional quality assurance reports. If your
query is designed to retrieve information on one particular individua at atime, you may want to add a substitution variable to be compared with the
SSN column of atable.

NEW_VALUE

The NEW VALUE command passes the value of a selected column into an undefined variable of your choice. The syntax is as follows:
SYNTAX:

COL[UMN] col umm_nane NEW VALUE new_nane

You cal the values of variables by using the & character; for example:

&new_nane

The COLUMN command must be used with NEW VALUE.

Notice how the & and COLUMN command are used together in the next SQL*Plus file. The GET command gets the file.
INPUT:

SQ.> get prodl

OUTPUT:

line 5 truncated.
1 ttitle left 'Report for Product: &rod_title' skip 2
2 col product_nane new val ue prod_title
3 select product_nane, unit_cost
4 from products
5* where product_nanme = ' COFFEE MJG

INPUT:
SQL> @rodl
OUTPUT:

Report for Product: COFFEE MJUG

PRODUCT _NANME UNI T_COST

ANALYSIS:

The value for the column PRODUCT_NAME was passed into the variable prod_ti t | e by means of new_val ue. The value of the variable
prod_title wasthencaledintheTTI TLE.

For more information on variablesin SQL, see Day 18, "PL/SQL: An Introduction,” and Day 19.

The DUAL Table

The DUAL table is adummy table that existsin every Oracle database. Thistable is composed of one column called DUMWY whose only row of datais
the value X. The DUAL tableis available to all database users and can be used for general purposes, such as performing arithmetic (where it can serve
as acalculator) or manipulating the format of the SYSDATE.

INPUT:

SQ.> desc dual;

OUTPUT:

Name Nul | ? Type

DUMWY VARCHAR2(1)
INPUT:

SQL> sel ect *
2 fromdual;

OUTPUT:

D

X

Take alook at a couple of examples using the DUAL table:
INPUT:

SQL> sel ect sysdate
2 fromdual;

OUTPUT:

SYSDATE

08- VAY- 97
INPUT:

SQL> select 2 * 2
2 fromdual;

OUTPUT:

Pretty simple. The first statement selected SYSDATE from the DUAL table and got today's date. The second example shows how to multiply in the
DUAL table. Our answer for 2 * 2 is4.

The DECODE Function

The DECCDE function is one of the most powerful commands in SQL* Plus--and perhaps the most powerful. The standard language of SQL lacks

procedural functions that are contained in languages such as COBOL and C.

The DECCDE statement issimilar toan | F. . . THEN statement in a procedural programming language. Where flexibility is required for complex
reporting needs, DECODE is often able to fill the gap between SQL and the functions of a procedural language.

SYNTAX:

DECODE(col um1, val uel, outputl, value2, output2, output3)

The syntax example performs the DECODE function on col umnl. If col um1 hasavalue of val uel, then display out put 1 instead of the column's
current value. If col unmm1 has avalue of val ue2, then display out put 2 instead of the column’s current value. If col uim1 has avalue of anything
other than val uel or val ue2, then display out put 3 instead of the column's current value.

How about some examples? First, perform a simple select on anew table:
INPUT:
SQ.> select * from states;

OUTPUT:

ST

I'N
FL
KY
IL
OoH
CA
NY

7 rows sel ected.

Now use the DECODE command:
INPUT:

SQL> sel ect decode(state,"IN,"'IND ANA',' OTHER) state
2 from states;

OUTPUT:

| NDI ANA
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER

7 rows sel ected.
ANALYSIS:

Only one row met the condition where the value of state was| N, so only that one row was displayed as | NDI ANA. The other states took the default
and therefore were displayed as OTHER.

The next example provides output strings for each value in the table. Just in case your table has states that are not in your DECODE list, you should
still enter adefault value of ' OTHER' .

INPUT:

SQL> sel ect decode(state,' I N ,'|ND ANA',

"FL",' FLORI DA,
" KY', " KENTUCKY" ,

"IL","ILLINO S,
oH,'CH O,

"CA', ' CALI FORNI A",

"NY', ' NEW YORK' , ' OTHER)

from states;

OUTPUT:

DECODE(STATE)
| NDI ANA

FLORI DA
KENTUCKY
ILLINO S

oHI O

CALI FORNI A
NEW YORK

7 rows sel ected.
That was too easy. The next example introduces the PAY table. This table shows more of the power that is contained within DECODE.

INPUT:

SQL> col hour_rate hea "HOURLY| RATE" for 99.00
SQL> col date_last_raise hea "LAST| RAI SE'
SQL> sel ect nane, hour_rate, date_|ast_raise

2 from pay;
OUTPUT:
HOURLY LAST

NAVE RATE RAI SE
JOHN 12.60 01-JAN-96
JEFF 8.50 17-MAR-97
RON 9.35 01-OCT-96
RYAN 7.00 15- MAY-96
BRYAN 11.00 01-JUN-96
MARY 17.50 01-JAN-96
ELAI NE 14.20 01-FEB-97

7 rows sel ected.

Areyou ready? It istimeto give every individual in the PAY table a pay raise. If the year of an individual'slast raiseis 1996, calculate a 10 percent
raise. If the year of the individual's last raise is 1997, calculate a 20 percent raise. In addition, display the percent raise for each individual in either
situation.

INPUT:

SQL> col new_pay hea ' NEW PAY' for 99.00

SQL> col hour_rate hea ' HOURLY| RATE' for 99.00
SQL> col date_last_raise hea ' LAST| RAI SE'

SQL> sel ect nanme, hour_rate, date_last_raise,

2 decode(substr(date_l ast_raise, 8,2),' 96", hour_rate * 1.2,
3 '97' ,hour_rate * 1.1) new_pay,
4 decode(substr(date_| ast _raise, 8,2),"'96","' 20%,
5 '97',"10%,null) increase
6 from pay;
OUTPUT:
HOURLY LAST
NAME RATE RAI SE NEW PAY | NC
JOHN 12.60 01-JAN-96 15.12 20%
JEFF 8.50 17- MAR-97 9.35 10%

RON 9.35 01-CCT-96 11. 22 20%

RYAN 7.00 15- VAY-96 8.40 20%

BRYAN 11.00 01-JUN-96 13.20 20%
MARY 17.50 01-JAN-96 21.00 20%
ELAI NE 14.20 01-FEB-97 15.62 10%

7 rows sel ected.
ANALYSIS:

According to the output, everyone will be receiving a 20 percent pay increase except Jeff and Elaine, who have already received one raise this year.

DATE Conversions

If you want to add a touch of class to the way dates are displayed, then you can use the TO_CHAR function to change the "date picture." This example
starts by obtaining today's date:

INPUT:

SQL> sel ect sysdate
2 from dual;

OUTPUT:

SYSDATE

08- MAY- 97

When converting a date to a character string, you use the TO_CHAR function with the following syntax:
SYNTAX:

TO CHAR(sysdate,'date picture')

dat e picture ishow you want the date to look. Some of the most common parts of the date picture are as follows: Mont h The current month
spelled out.

[Mon |[The current month abbreviated.
[Day |[The current day of the week.

[rm |[The number of the current month.

[yy |[Thelast two numbers of the current year.

[dd |[The current day of the month.

[ddd |[The current day of the year since January 1

[hh|[The current hour of the day.
[|[The current minute of the hour.

|SS ||The current seconds of the minute.

|
|
|
|
|
|yyyy||The current year. |
|
|
|
|
|

[a. m |[Displaysam. or p.m.

The date picture may also contain commas and literal strings as long as the string is enclosed by double quotation marks " " .
INPUT:

SQL> col today for a20
SQL> sel ect to_char(sysdate,' Mon dd, yyyy') today
2 fromdual;

OUTPUT:

TODAY

May 08, 1997
ANALYSIS:
Notice how we used the COLUMN command on the aliast oday .

INPUT:

SQL> col today hea ' TODAYs JULI AN DATE for a20
SQL> sel ect to_char(sysdate,'ddd') today
2 fromdual;

OUTPUT:

TODAYs JULI AN DATE

ANALYSIS:

Some companies prefer to express the Julian date with the two-digit year preceding the three-digit day. Y our date picture could also look like this:
'yyddd' .

Assume that you wrote alittle script and saved it as day. The next example getsthefile, looks at it, and executes it to retrieve various pieces of
converted date information.

INPUT:
SQL> get day
OUTPUT:

line 10 truncated.

set echo on

2 col day for al0
3 col today for a25
4 col year for a25
5 col tine for alb
6 select to_char(sysdate, ' Day') day,
7

8

9

0

[N

to_char(sysdate, ' Mon dd, yyyy') today,

to_char(sysdate, ' Year') year,

to_char(sysdate,"hh:m:ss a.m') tine
10* from dual

Now you can run the script:
INPUT:

SQL> @lay

OUTPUT:

SQL> set echo on

SQL> col day for all

SQL> col today for a25

SQL> col year for a25

SQL> col time for alb

SQL> sel ect to_char(sysdate, ' Day') day,
to_char(sysdate,' Mon dd, yyyy') today,
to_char(sysdate, ' Year') year,
to_char(sysdate, ' hh:m:ss a.m') tinme

from dual ;

abwnN

Thur sday May 08, 1997 Ni net een Ni nety - Seven 04:10:43 p.m
</ FO

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

- Day 21 -

Common SQL Mistakes/Errorsand Resolutions

Objectives

Welcome to Day 21. By the end of today, you will have become familiar with the following:
1+ Several typical errors and their resolutions
1 Common logical shortcomings of SQL users

1 Waysto prevent daily setbacks caused by errors

I ntroduction

Today you will see various common errors that everyone--from novice to pro--makes when using SQL. Y ou will never be able to avoid all errors
and/or mistakes, but being familiar with awide range of errorswill help you resolve them in as short atime as possible.

NOTE: We used Persona Oracle7 for our examples. Y our particular implementation will be very similar in the type of error, but
could differ in the numbering or naming of the error. We ran our SQL statements using SQL* PLUS and set ECHO and FEEDBACK to
on to see the statement.

Keep in mind that some mistakes will actually yield error messages, whereas others may just be inadequacies in logic that will inevitably cause more
significant errors or problems down the road. With a strict sense of attention to detail, you can avoid most problems, although you will always find
yourself stumbling upon errors.

Common Errors

This section describes many common errors that you will receive while executing all types of SQL statements. Most are simple and make you want
to kick yourself on the hind side, whereas other seemingly obvious errors are misleading.

Tableor View Does Not Exist

When you receive an error stating that the table you are trying to access does not exist, it seems obvious; for example:
INPUT:

SQL> @ abl es. sql

OUTPUT:

SQL> spool tables.Ist

SQL> set echo on

SQL> set feedback on

SQL> set pagesi ze 1000

SQL> select owner|| '.' || table_nane
from sys. dba_t abl e

where owner = ' SYSTEM

order by tabl e_nane

/

from sys. dba_tabl e

*

ERROR at line 2:

ORA-00942: table or view does not exist
SQL> spool off

SQL>

A~ wN

ANALYSIS:
Notice the asterisk below the word t abl e. The correct table nameissys. dba_t abl es. An swas omitted from the table name.

But what if you know the table exists and you still receive this error? Sometimes when you receive this error, the table does in fact exist, but there
may be a security problem--that is, the table exists, but you do not have accessto it. This error can also be the database server's way of saying nicely,
"Y ou don't have permission to access thistable!"

TIP: Before you alow panic to set in, immediately verify whether or not the table exists using a DBA account, if available, or the
schema account. Y ou will often find that the table does exist and that the user lacks the appropriate privileges to accessit.

Invalid Username or Password
INPUT:

SQ*Plus: Release 3.2.3.0.0 - on Sat May 10 11:15:35 1997
Copyright (c) Oracle Corporation 1979, 1994. Al rights reserved.
Enter user-nane: rplew

Enter password:

OUTPUT:

ERROR ORA-01017: invalid usernane/ password; |ogon denied
Ent er user - nane:

This error was caused either by entering the incorrect username or the incorrect password. Try again. If unsuccessful, have your password reset. If
you are sure that you typed in the correct username and password, then make sure that you are attempting to connect to the correct database if you
have access to more than one database.

FROM Keyword Not Specified
INPUT:

SQL> @bl spc. sql

OUTPUT:

SQL> spool thbhlspc.Ist
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> sel ect substr(tabl espace_nane, 1, 15) a,
2 substrfile_nanme, 1,45) c, bytes
3 fromsys.dba_data_files
4 order by tabl espace_nane;
substrfile_nane, 1,45) c, bytes
*
ERROR at line 2:
ORA- 00923: FROM keyword not found where expected

SQL> spool off
SQL>

ANALYSIS:

This error can be misleading. The keyword FROMis there, but you are missing a left parenthesis between substr andfi | e_nane online 2. This
error can aso be caused by a missing comma between column names in the SELECT statement. If a column in the SELECT statement is not followed
by a comma, the query processor automatically looks for the FROMkeyword. The previous statement has been corrected as follows:

SQL> sel ect substr(tabl espace_nane, 1, 15) a,
2 substr(file_nane, 1,45) c, bytes
3 fromsys.dba_data files
4 order by tabl espace_nane;

Group Function IsNot Allowed Here
INPUT:

SQL> sel ect count(last_nane), first_name, phone_nunber
2 from enpl oyee_t bl
3 group by count(last_nane), first_nanme, phone_nunber
4

OUTPUT:

group by count(last_nane), first_nanme, phone_nunber
*

ERROR at line 3:
ORA-00934: group function is not allowed here

sQL>
ANALYSIS:

Aswith any group function, COUNT may not be used in the GROUP BY clause. Y ou can list only column and nongroup functions, such as SUBSTR, in
the GROUP BY clause.

TIP: COUNT isafunction that is being performed on groupsin the query.

The previous statement has been corrected using the proper syntax:

SQL> sel ect count(last_nane), first_name, phone_nunber
2 from enpl oyee_t bl
3 group by last_nane, first_nanme, phone_nunber;

Invalid Column Name
INPUT:

SQL> @ abl es. sql
OUTPUT:

SQL> spool tables.Ist
SQL> set echo on
SQL> set feedback on
SQL> set pagesi ze 1000
SQL> select owner|| '.' || tablenane
2 fromsys.dba_tables
3 where owner = 'SYSTEM
4 order by table_nane
5 /
select owner|| '.' || tablenane
*

ERROR at line 1:

ORA- 00904: invalid colum nane
SQL> spool off

SQL>

ANALYSIS:

Inline 1 the column t abl enane isincorrect. The correct column nameist abl e_name. The underscore was omitted. To see the correct columns,
use the DESCRI BE command. This error can also occur when trying to qualify a column in the SELECT statement by the wrong table name.

Missing Keyword
INPUT:

SQL> create view enp_vi ew
2 select * from enpl oyee_tbl
3/

OUTPUT:

sel ect * from enpl oyee_thl
*

ERROR at line 2:
ORA- 00905: mi ssing keyword
SQL>

ANALYSIS:

Here the syntax isincorrect. This error occurs when you omit a mandatory word with any given command syntax. If you are using an optional part
of the command, that option may require a certain keyword. The missing keyword in this example is as. The statement should look like this:

SQL> create view enp_vi ew as
2 select * fromenpl oyee_tbl
3/

Missing L eft Parenthesis
INPUT:

SQL> @nsert. sql
OUTPUT:

SQL> insert into people_tbl values
2 '303785523', 'SMTH, "JOAN, 'JAY', 'MALE', '10-JAN-50')
3/
'303785523', 'SMTH , 'JOHN, 'JAY', 'MALE, '10-JAN-50')
*
ERRCR at |ine 2:
ORA-00906: missing |left parenthesis
SQL>

ANALYSIS:
On line 2 a parenthesis does not appear before the Social Security number. The correct syntax should look like this:

SQL> insert into people_tbhl values
2 ('303785523', "SMTH, '"JOHN, 'JAY', 'NMALE', '10-JAN-50")
3/

Missing Right Parenthesis

INPUT:

sel ect substr(tabl espace_nane, 1, 15 a,

SQL> @bl spc. sql

OUTPUT:

SQL> spool thlspc.Ist

SQL> set echo on

SQL> set feedback on

SQL> set pagesi ze 1000

SQL>
2 substr(file_nane
3 fromsys.dba_data files
4

order by tabl espace_nane
sel ect substr(tabl espace_nane, 1,15 a
*

ERROR at line 1

ORA-00907: missing right parenthesis

sQL>
sQL>

spool off

ANALYSIS:

1,45) c,

byt es

On line 1 the right parenthesis is missing from the subst r . The correct syntax |ooks like this:

SQ.> sel ect substr(tabl espace_nane, 1, 15) a,
substr(file_nane, 1,45) c

fromsys.dba_data files
order by tabl espace_nane

Missing Comma

INPUT:

sQL>

@zinsert. sql

OUTPUT:

sQL>
sQL>
sQL>
sQL>
2
3

spool ezinsert.|st
set echo on
set feedback on

insert into office_thl values

('303785523" 'SM TH

/

" OFFI CE OF THE STATE OF | NDI ANA, ADJUTANT

byt es

GENERAL')

('303785523" 'SM TH , 'OFFI CE OF THE STATE OF | NDI ANA, ADJUTANT GENERAL')
*

ERROR at line 2
ORA- 00917: missing conma

sQL>
sQL>

spool off

ANALYSIS:

On line 2 acommais missing between the Socia Security number and SM TH.

Column Ambiguously Defined

INPUT:

SQL> @npl oyee_t bl
OUTPUT:

SQL> spool enpl oyee. | st
SQL> set echo on

SQL> set feedback on
SQL> sel ect p.ssn, nane

2
3

from enpl oyee_t bl
payrol | _tbhl p

e

e. addr ess

e. phone

4 where e.ssn =p.ssn;
sel ect p.ssn, nane, e.address, e.phone
*

ERROR at line 1:

ORA-00918: col um anbi gously defi ned
SQL> spool off

SQL>

ANALYSIS:

On line 1 the column name has not been defined. The tables have been given aiases of e and p. Decide which table to pull the name from and define
it with the table dlias.

SQL Command Not Properly Ended
INPUT:

SQL> create view enp_thl as
2 select * fromenpl oyee_tbl
3 order by nane
4

OUTPUT:

order by nane

ERROR at line 3:
ORA-00933: SQL conmmand not properly ended
SQL>

ANALYSIS:

Why is the command not properly ended? Y ou know you can usea/ to end an SQL statement. Another fooler. An ORDER BY clause cannot be used
in aCREATE VI EW statement. Use a GROUP BY instead. Here the query processor islooking for aterminator (semicolon or forward slash) before the
ORDER BY clause because the processor assumes the ORDER BY isnot part of the CREATE VI EWstatement. Because the terminator is not found
before the ORDER BY, this error isreturned instead of an error pointing to the ORDER BY.

Missing Expression
INPUT:

SQL> @ abl es. sql
OUTPUT:

SQL> spool tables.|st
SQL> set echo on
SQL> set feedback on
SQL> set pagesi ze 1000
SQL> select owner|| '." || table,
2 fromsys.dba_tables
3 where owner = 'SYSTEM
4 order by table_nane
5 /
from sys. dba_t abl es
*
ERROR at line 2:
ORA-00936: mi ssing expression
SQL> spool off
SQL>

ANALYSIS:

Notice the comma after t abl e on thefirst line; therefore, the query processor is looking for another column in the SELECT clause. At this point, the
processor is not expecting the FROMclause.

Not Enough Argumentsfor Function
INPUT:

SQL> @bl spc. sql

OUTPUT:

SQL> spool thlspc.Ist
SQL> set echo on
SQL> set feedback on
SQL> set pagesi ze 1000
SQL> sel ect substr(tabl espace_nane, 1, 15) a,
2 decode(substr(file_nane, 1,45)) c, bytes
3 fromsys.dba _data files
4 order by tabl espace_nane;
decode(substr(file_nane, 1,45)) c, bytes
*

ERROR at line 2:

ORA- 00938: not enough argunents for function
SQL> spool off

SQL>

ANALYSIS:

There are not enough arguments for the DECODE function. Check your implementation for the proper syntax.

Not Enough Values
INPUT:

SQL> @zinsert.sql
OUTPUT:

SQL> spool ezinsert.|st
SQL> set echo on
SQL> set feedback on
SQL> insert into enployee_tbl val ues

2 ('303785523', "SMTH, '"JOHN, 'JAY', 'MALE')

3/

insert into enployee_tbl val ues
*

ERROR at line 1:

ORA-00947: not enough val ues
SQL> spool off

SQL>

ANALYSIS:

A column value is missing. Perform a DESCRI BE command on the table to find the missing column. Y ou can insert the specified data only if you list
the columns that are to be inserted into, as shown in the next example:

INPUT:

SQL> spool ezinsert.|st

SQ.> set echo on

SQ.> set feedback on

SQL> insert into enployee_tbl (ssn, last_name, first_nane, md_nane, sex)
2 values ('303785523', 'SMTH , 'JOHN, 'JAY', 'MALE)
3/

Integrity Constraint Violated--Parent Key Not Found

INPUT:

SQL> insert into payroll_tbl values
2 ('1111111221', "SMTH , "JOHN)
3/

OUTPUT:

insert into payroll_tbl values
*

ERROR at line 1:
ORA-02291: integrity constraint (enployee_cons) violated - parent
key not found

sQL>
ANALYSIS:

This error was caused by attempting to insert datainto a table without the data existing in the parent table. Check the parent table for correct data. If
missing, then you must insert the data into the parent table before attempting to insert data into the child table.

Oracle Not Available
INPUT:

(sun_su3)/ honme> sql pl us

SQL*Plus: Release 3.2.3.0.0 - Production on Sat May 10 11:19:50 1997
Copyright (c) Oracle Corporation 1979, 1994. Al rights reserved.
Enter user-nane: rplew

Enter password:

OUTPUT:

ERROR: ORA-01034: ORACLE not avail abl e
ORA-07318: snsget: open error when openi ng sgadef.dbf file.

ANALYSIS:

Y ou were trying to sign on to SQL*PLUS. The database is probably down. Check status of the database. Also, make sure that you are trying to
connect to the correct database if you have access to multiple databases.

Inserted Value Too Largefor Column
INPUT:

SQL> @zinsert.sql

OUTPUT:

SQL> spool ezinsert.|st
SQL> set echo on
SQL> set feedback on
SQL> insert into office_thl values
2 ('303785523', 'SMTH , 'OFFICE OF THE STATE OF | NDI ANA, ADJUTANT CENERAL')
3 |/
insert into office_thl values
*
ERROR at line 1:
ORA- 01401: inserted value too |large for colum
SQL> spool off
SQL>

ANALYSIS:

One of the values being inserted is too large for the column. Use the DESCRI BE command on the table for the correct data length. If necessary, you
can perform an ALTER TABLE command on the table to expand the column width.

TNS:listener Could Not Resolve SID Given in Connect Descriptor

INPUT:
SQLDBA> connect rpl ew xxxx@lat abasel
OUTPUT:

ORA- 12505: TNS: listener could not resolve SID given in connect descriptor
SQLDBA> di sconnect

Di sconnect ed.

SQ.DBA>

ANALYSIS:

Thiserror is very common in Oracle databases. The listener referred to in the preceding error is the process that allows requests from a client to
communicate with the database on aremote server. Here you were attempting to connect to the database. Either the incorrect database name was
typed in or the listener is down. Check the database name and try again. If unsuccessful, notify the database administrator of the problem.

I nsufficient Privileges During Grants
INPUT:

SQL> grant select on people_tbl to ron;
OUTPUT:

grant select on people_tbl to ron

*

ERROR at line 1:

ORA-01749: you may not CRANT/ REVOKE privileges to/from yourself
SQL>

INPUT:

SQL> grant select on denp.enpl oyee to ron;

OUTPUT:

grant select on denp. enpl oyee to ron
*

ERROR at line 1:
ORA-01031: insufficient privileges
SQL>

This error occurs if you are trying to grant privileges on another user's table and you do not have the proper privilege to do so. Y ou must own the
table to be able to grant privileges on the table to other users. In Oracle you may be granted a privilege with the Admin option, which means that you
can grant the specified privilege on another user's table to another user. Check your implementation for the particular privileges you need to grant a

privilege.
Escape Character in Your Statement--Invalid Character

Escape characters are very frustrating when trying to debug a broken SQL statement. This situation can occur if you use the backspace key while
you are entering your SQL statement in the buffer or a file. Sometimes the backspace key puts an invalid character in the statement depending upon
how your keys are mapped, even though you might not be able see the character.

Cannot Create Operating System File

This error has a number of causes. The most common causes are that the associated disk is full or incorrect permissions have been set on thefile
system. If the disk isfull, you must remove unwanted files. If permissions are incorrect, change them to the correct settings. This error is more of an
operating system error, so you may need to get advice from your system administrator.

Common Logical Mistakes

So far today we have covered faultsin SQL statements that generate actual error messages. Most of these errors are obvious, and their resolutions

leave little to the imagination. The next few mistakes are more (or less) logical, and they may cause problems later--if not immediately.

Using Reserved Wordsin Your SQL statement
INPUT:

SQL> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE
*

ERROR at line 1:
ORA- 00923: FROM keyword not found where expected

ANALYSIS:

In this example the query processor is not expecting the word DATE becauseiit is areserved word. There is no comma after the pseudocolumn
SYSDATE; therefore, the next element expected is the FROMclause.

INPUT:

SQL> sel ect sysdate "DATE"
2 fromdual;

OUTPUT:

15- MAY-97
ANALYSIS:

Notice how the reserved word problem is alleviated by enclosing the word DATE with double quotation marks. Double quotation marks allow you to
display the literal string DATE as a column alias.

NOTE: Be sureto check your specific database documentation to get alist of reserved words, as these reserved words will vary
between different implementations.

Y ou may or may nhot have to use double quotation marks when naming a column alias. In the following example you do not have to use double
quotation marks because TODAY is not areserved word. To be sure, check your specific implementation.

INPUT:

SQL> sel ect sysdate TODAY
2 from dual;

OUTPUT:

15- MAY- 97
sQL>

The Use of DISTINCT When Selecting Multiple Columns
INPUT:

SQL> sel ect distinct(city), distinct(zip)
2 from address_tbl;

OUTPUT:

sel ect distinct(city), distinct(zip)
*

ERROR at line 1:
ORA-00936: mi ssing expression
SQL>

ANALYSIS:
A city can have more than one ZIP code. As arule, you should use the DI STI NCT command on only one selected column.
Dropping an Unqualified Table

Whenever dropping atable, always use the owner or schema. Y ou can have duplicate table names in the database. If you don't use the owner/schema
name, then the wrong table could be dropped.

Therisky syntax for dropping atable:

SYNTAX:

SQL> drop table people_thl;

The next statement is much safer because it specifies the owner of the table you want to drop.
SYNTAX:

SQL> drop table ron. people_thl;

WARNING: Qualifying the table when dropping it is always a safe practice, although sometimes this step may be unnecessary.
Never issue the DROP TABLE command without first verifying the user id by which you are connected to the database.

The Use of Public Synonymsin a Multischema Database

Synonyms make life easier for users; however, public synonyms open tables that you might not want all usersto see. Use caution when granting
public synonyms especially in a multischema environment.

The Dreaded Cartesian Product

INPUT:

SQL> select a.ssn, p.last_n
2 from address_thl a,

3 peopl e_t bl p;
OUTPUT:
SSN LAST_NAME

303785523 SM TH
313507927 SM TH
490552223 SM TH
312667771 SM TH
420001690 SM TH
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES
303785523 OSBORN
313507927 OSBORN
490552223 OSBORN

312667771 OSBORN
420001690 OSBORN
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES

16 rows sel ect ed.

This error is caused when you do not join the tables in the WHERE clause. Notice how many rows were selected. Both of the preceding tables have 4
rows; therefore, we wanted 4 rows returned instead of the 16 rows that we received. Without the use of ajoin in the WHERE clause, each row in the
first table is matched up with each row in the second. To calcul ate the total number of rows returned, you would multiple 4 rows by 4 rows, which
yields 16. Unfortunately, most of your tables will contain more than 4 rows of data, with some possibly exceeding thousands or millions of rows. In
these cases don't bother doing the multiplication, for your query is sure to become arun-away query.

Failureto Enforce Input Standards

Assuring that input standards are adhered to is commonly known as quality assurance (QA). Without frequent checks on the data entered by data
entry clerks, you run avery high risk of hosting trash in your database. A good way to keep a handle on quality assurance isto create several QA
reports using SQL., run then on atimely basis, and present their output to the data entry manager for appropriate action to correct errors or data
inconsistencies.

Failureto Enforce File System Structure Conventions

Y ou can waste alot of time when you work with file systems that are not standardized. Check your implementation for recommended file system
structures.

Allowing Large Tablesto Take Default Storage Parameters

Default storage parameters will vary with implementations, but they are usually rather small. When alarge or dynamic table is created and forced to
take the default storage, serious table fragmentation can occur, which can severely hinder database performance. Good planning before table creation
will help to avoid this. The following example uses Oracl€'s storage parameter options.

INPUT:

SQL> create table test_thl

(ssn nunber (9) not null,
nanme varchar2(30) not null)
storage

(initial extent 100M

next extent 20M

m nextents 1

maxextents 121

pctincrease 0};

OCO~NOUOR~WN

Placing Objectsin the System Tablespace

The following statement shows a table being created in the SYSTEMtablespace. Although this statement will not return an error, it islikely to cause
future problems.

INPUT:

SQL> create table test _thl

2 (ssn nunmber (9) not null,
3 nane varchar2(30) not null)
4 tabl espace SYSTEM

5 storage

6 (initial extent 100M

7 next extent 20M

8 mnextents 1

9 naxextents 121

10 pctincrease 0};

The next example corrects this so-called problem:

INPUT:

SQL> create table test _thl

2 (ssn nunber (9) not null,
3 nane varchar2(30) not null)
4 tablespace linda_ts
5 (initial extent 100M
6 next extent 20M
7 minextents 1
8 nmaxextents 121
9 pctincrease 0};
ANALYSIS:

In Oracle, the SYSTEMtablespace is typically used to store SYSTEMowned objects, such as those composing the data dictionary. If you happen to
place dynamic tables in this tablespace and they grow, you run the risk of corrupting or at least filling up the free space, which in turn will probably
cause the database to crash. In this event the database may be forced into an unrecoverable state. Always store application and user tablesin
separately designated tablespaces.

Failureto Compress L arge Backup Files

If you do large exports and do not compress the files, you will probably run out of disk space to store the files. Always compress the export files. If
you are storing archived log files on hard disk instead of on tape, these files can be and probably should be compressed to save space.

Failureto Budget System Resour ces

Y ou should always budget your system resources before you create your database. The result of not budgeting system resources could be a poorly
performing database. Y ou should always know whether the database is going to be used for transactions, warehousing, or queries only. The
database's function will affect the number and size of rollback segments. The number of database users will inevitably affect the sizing of the USERS
and TEMP tablespaces. Do you have enough space to stripe your larger tables? Tables and indexes should be stored on separate devices to reduce disk
contention. Y ou should keep the redo logs and the data tablespaces on separate devices to alleviate disk contention. These are just afew of the issues
to address when considering system resources.

Preventing Problemswith Your Data

Y our data processing center should have a backup system set up. If your database is small to medium, you can take the extra precaution of using
EXPORT to ensure that your data is backed up. Y ou should make a backup of the export file and keep it in another location for further safety.
Remember that these files can be large and will require a great deal of space.

Sear ching for Duplicate Recordsin Your Database

If your database is perfectly planned, you should not have a problem with duplicate records. Y ou can avoid duplicate records by using constraints,
foreign keys, and unique indexes.

Summary

Many different types of errors--literally hundreds--can stand in the way of you and your data. Luckily, most errors/mistakes are not disasters and are
easy to remedy. However, some errors/mistakes that happen are very serious. Y ou need to be careful whenever you try to correct an error/mistake, as
the error can multiply if you do not dig out the root of the problem. When you do make mistakes, as you definitely will, use them as learning
experiences.

TIP: We prefer to document everything related to database errors, especially uncommon errors that we happen to stumble upon. A
file of errorsis an invaluable Troubleshooting reference.

NOTE: Day 21 provides you with a sample of some of the most common Personal Oracle? errors. For acomplete list of errors and
suggested resol utions, remember to refer to your database documentation.

Q&A

Q You makeit sound asif every error hasaremedy, so why worry?

A Yes, most errors/mistakes are easy to remedy; but suppose you drop atable in a production environment. Y ou might need hours or days to
do a database recovery. The database will be done during this time, and your company will be paying overtime to several people to complete
the fix. The boss will not be happy.

Q Any advice on how to avoid errors/mistakes?

A Being human, you will never avoid all errors/mistakes; however, you can avoid many of them through training, concentration, self-
confidence, good attitude, and a stress-free work environment.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the material covered, as well as exercisesto provide you with
experience in using what you have learned. Try to answer the quiz and exercise questions before checking the answersin Appendix F, "Answers to
Quizzes and Exercises.”

Quiz
1. A user callsand says, "l can't sign on to the database. But everything was working fine yesterday. The error says invalid user/password.
Can you help me?' What steps should you take?
2. Why should tables have storage clauses and a tablespace destination?

Exercises

1. Suppose you are logged on to the database as SYSTEM, and you wish to drop atable called HI STORY in your schema. Y our regular user id
isJSM TH. What is the correct syntax to drop this table?

2. Correct the following error:
INPUT:

SQL> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE
*

ERROR at line 1:
ORA- 00923: FROM keyword not found where expected

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

Week 31n Review

This week should have been very productive. Week 3 shows you the flexibility of SQL, explains how you can apply these features to real -world
problems, and introduces some popular extensions to SQL. Y ou should know how to use the tools that are available with your implementation of
SQL to make your code more readable. By now you realize that all implementations of SQL share the same general concepts, although the syntax
may differ dightly.

Y ou should have a clear understanding of the data dictionary, what data it contains, and how to retrieve useful information from it. If you understand
how to generate SQL from another SQL statement, you should be ready to fly to unlimited heights.

What about errors? Y ou will never be immune from syntax errors or logical mistakes, but as you gain experience with SQL, you will learn how to
avoid many problems. But then again, errors can be excellent learning opportunities.

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

- Appendix A -
Glossary of Common SQL Statements

ALTER DATABASE

ALTER DATABASE dat abase_nane;

ALTER DATABASE command changes the size or settings of a database. Its syntax varies widely among different database systems.
ALTER USER

ALTER USER user

ALTER USER statement changes a user's system settings such as password.

BEGIN TRANSACTION

1> BEG N TRANSACTI ON transacti on_nane
2> transaction type

3> if exists

4> begin

BEG N TRANSACTI ON statement signifies the beginning of a user transaction. A transaction ends when it is either committed (see COM T
TRANSACTI ON) or canceled (see ROLLBACK TRANSACTI ON). A transaction isalogical unit of work.

CLOSE CURSOR

cl ose cursor_nane

CLOSE cursor _nane statement closes the cursor and clearsit of data. To completely remove the cursor, use the DEALLOCATE CURSOR statement.
COMMIT TRANSACTION

SQL> COWM T,

COMM T TRANSACTI ON statement saves all work begun since the beginning of the transaction (since the BEG N TRANSACTI ON statement was
executed).

CREATE DATABASE

SQL> CREATE DATABASE dat abase_nane;

dat abase_nane creates a new database. Many different options can be supplied, such as the device on which to create the database and the size of
theinitial database.

CREATE INDEX

CREATE | NDEX i ndex_namne
ON tabl e_nanme(col um_nanel, [colum_nane2], ...);

the contents of the indexed field(s).

CREATE PROCEDURE

create procedure procedure_nane

[[(] @ar anet er _nane
datatype [(length) | (precision [, scale])
[= defaul t][output]

[, @paraneter_nane
datatype [(length) | (precision [, scale])
[= default][output]]...[)]]

[with reconpile]

as SQL_statenents

CREATE PROCEDURE statement creates a new stored procedure in the database. This stored procedure can consist of SQL statements and can then be
executed using the EXECUTE command. Stored procedures support input and output parameters passing and can return an integer value for status
checking.

CREATE TABLE

CREATE TABLE tabl e_nane

(fieldl datatype [NOT NULL],
field2 datatype [NOT NULL],
field3 datatype [NOT NULL]...)

CREATE TABLE statement creates a new table within a database. Each optional field is provided with a name and data type for creation within that
table.

CREATE TRIGGER

create trigger trigger_nane
on tabl e _nane
for {insert, update, delete}
as SQ._Statenents

CREATE TRI GGER statement creates a trigger object in the database that will execute its SQL statements when its corresponding table is modified
through an | NSERT, UPDATE, or DELETE. Triggers can also call stored procedures to execute complex tasks.

CREATE USER
CREATE USER user
CREATE USER statement creates a new user account complete with user D and password.

CREATE VIEW

CREATE VI EW <vi ew_nane> [(columl, colum2...)] AS
SELECT <t abl e_nane col utm_nanes>
FROM <t abl e_nane>

using the CREATE VI EWstatement. After aview is created, it can be queried and data within the view can be modified.

DEALLOCATE CURSOR

deal | ocat e cursor cursor_nane

DEALLOCATE CURSOR statement completely removes the cursor from memory and frees the name for use by another cursor. Y ou should always
close the cursor with the CLOSE CURSOR statement before deallocating it.

DECLARE CURSOR

decl are cursor_nane cursor
for select_statenent

DECLARE CURSOR statement creates a new cursor from the SELECT statement query. The FETCH statement scrolls the cursor through the data until
the variables have been loaded. Then the cursor scrolls to the next record.

DROP DATABASE

DROP DATABASE dat abase_nane;

DROP DATABASE statement completely deletes a database, including all data and the database's physical structure on disk.
DROP INDEX

DROP | NDEX i ndex_nane;

DROP | NDEX statement removes an index from atable.

DROP PROCEDURE

drop procedure procedure_nane

DROP PROCEDURE statement drops a stored procedure from the database; its function is similar to the DROP TABLE and DROP | NDEX statements.
DROP TABLE

DROP TABLE t abl e_nane;

DROP TABLE statement drops a table from a database.

DROP TRIGGER

DROP TRI GGER tri gger _nane

DROP TRI GGER statement removes a trigger from a database.

DROP VIEW

DROP VI EW vi ew_nane;

DROP VI Ewstatement removes a view from a database.

EXECUTE

execute [@eturn_status =]
procedur e_nane
[[@araneter _nane =] val ue |
[@aranmeter_nanme =] @ariable [output]...]]

EXECUTE command runs a stored procedure and its associated SQL statements. Parameters can be passed to the stored procedure, and data can be
returned in these parametersiif the out put keyword is used.

FETCH

fetch cursor_nane [into fetch_target list]

FETCH command loads the contents of the cursor's data into the provided program variables. After the variables have been loaded, the cursor scrolls

to the next record.

FROM

FROM <t abl eref> [, <tableref> ...]

FROM specifies which tables are used and/or joined.
GRANT

GRANT role TO user

or

GRANT system privilege TO {user_nanme | role | PUBLIC}

GRANT command grants a privilege or role to a user who has been created using the CREATE USER command.
GROUP BY

GROUP BY <col > [, <col> ...]

GROUP BY statement groups all the rows with the same column value.

HAVING

HAVI NG <sear ch_cond>

HAVING isvalid only with GROUP BY and limits the selection of groups to those that satisfy the search condition.
INTERSECT

| NTERSECT

INTERSECT returns all the common elements of two SELECT statements.

ORDER BY

ORDER BY <order_list>

ORDER BY statement orders the returned values by the specified column(s).

ROLLBACK TRANSACTION

ROLLBACK TRANSACTI ON statement effectively cancels all work done within atransaction (since the BEG N TRANSACTI ON statement was
executed).

REVOKE

REVOKE rol e FROM user;

or

REVOKE {object_priv | ALL [PRI VI LEGES]}

[, {object_priv | ALL [PRIVILEGES]}]

ON [schenm.] obj ect

FROM {user | role | PUBLIC} [, {user | role | PUBLIC}]

REVOKE command removes a database privilege from a user, whether it be a system privilege or arole.
SELECT
SELECT [DI STINCT | ALL]

SELECT statement is the beginning of each dataretrieval statement. The modifier DI STI NCT specifies unique values and prevents duplicates. ALL is
the default and allows duplicates.

SET TRANSACTION

SQ.> SET TRANSACTI ON (READ ONLY | USE ROLLBACK SEGVENT);

SET TRANSACTI ON enables the user to specify when atransaction should begin. The READ ONLY option locks a set of records until the transaction
ends to ensure that the datais not changed.

UNION

UNI ON
UNI ON statement returns all the elements of two SELECT statements.

WHERE

WHERE <sear ch_cond>

WHERE statement limits the rows retrieved to those meeting the search condition.

* getsal the columns of a particular table.

{ % Previous Chapter JEK.—* Mext Chapter

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

PUBLISHING

Teach Yourself SQL in 21 Days, Second Edition

- Appendix B -

Source Code Listingsfor the C++ Program Used on Day 14

/'l tyssqvw. h : interface of the CTyssqgl View cl ass
/1
FLEEEEETTTEEEE i i

cl ass CTyssql Set;
class CTyssql View : public CRecordVi ew

protected: // create fromserialization only
CTyssql View);
DECLARE_DYNCREATE(CTyssql Vi ew)

public:
/1 {{ AFX_DATA(CTyssqgl Vi ew)
enum{ 1DD = | DD_TYSSQ._FORM };
CTyssql Set* m pSet;
/1}} AFX_DATA

/] Attributes
public:
CTyssql Doc* Get Docunent () ;

/| Operations
public:
virtual CRecordset* OnGet Recordset();

/'l I nplenentation
public:
virtual ~CTyssql View);
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunmpCont ext & dc) const;
#endi f

pr ot ect ed:
virtual void DoDat aExchange(CDat aExchange* pDX);// DDX/ DDV support
virtual void OnlnitialUpdate(); // called first tinme after construct

/| Cenerated nessage map functions
prot ect ed:
11 {{ AFX_MSQE CTyssql Vi ew)
/1 NOTE - the ClassWzard will add and renove nenber functions here.
11 DO NOT EDI T what you see in these bl ocks of generated code !
/1}} ARX_MSG
DECLARE_NMESSAGE_MAP()

}s

#i fndef _DEBUG // debug version in tyssqvw. cpp
inline CTyssqgl Doc* CTyssql Vi ew. : Get Docunent ()

{ return (CTyssql Doc*)m pDocunent; }
#endi f

FEEEEEEEEEEEE i i i i i i e i rrrn g

/1 tyssqgl.h : main header file for the TYSSQL application
/1

#ifndef _ AFXWNH
#error include 'stdafx.h' before including this file for PCH
#endi f

#i ncl ude "resource. h" /1 main synbols

N N NN NN
/| CTyssql App:

/1 See tyssql.cpp for the inplenmentation of this class

/1

cl ass CTyssql App : public CW nApp

public:
CTyssql App() ;

/1 Overrides
virtual BOOL Initlnstance();

/1 1nplenmentation

/1 {{ AFX_MSE CTyssql App)
af x_msg void OnAppAbout () ;
/1 NOTE - the ClassWzard will add and renove nenber functions here.
/1 DO NOT EDI T what you see in these bl ocks of generated code !
11} } ARX_MSG
DECLARE_MESSAGE_NMAP()

b

FEEELELEEE i i i i i iy
/] tyssgset.h : interface of the CTyssql Set class

/1

FEEEEEETTTEEEE i i iy
class CTyssqgl Set : public CRecordset

{

DECLARE_DYNAM C(CTyssql Set)

public:
CTyssql Set (CDat abase* pDat abase = NULL);

/] Fiel d/ Param Dat a
/1 {{ AFX_FI ELD(CTyssql Set, CRecordset)
CString m_NANE;
CString m_ADDRESS;
CString m_STATE;
CString m ZI P;
CString m_PHONE;
CString m_RENMARKS;
/1}}AFX_FI ELD

/1 1nplementation

pr ot ect ed:
virtual CString GetDefaultConnect(); /1 Default connection string
virtual CString GetDefaul t SQL(); /1 default SQ for Recordset
virtual void DoFi el dExchange(CFi el dExchange* pFX); /'l RFX support

}s

/'l tyssqdoc.h : interface of the CTyssql Doc cl ass

/1

TLEEEEETTTEEEE i i b
class CTyssqgl Doc : public CDocunent

protected: // create fromserialization only
CTyssql Doc();
DECLARE_DYNCREATE(CTyssql Doc)

/] Attributes
public:
CTyssql Set m tyssql Set;

/| Operations
public:

/1 1nplenmentation
public:
virtual ~CTyssql Doc();
#i f def _DEBUG
virtual void AssertValid() const;
virtual
#endi f

prot ect ed:
virtual BOOL OnNewDocunent () ;
/| Cenerated nessage map functions
protect ed:
/1 {{ AFX_MSQE CTyssql Doc)
/1 NOTE - the ClassWzard wll

voi d Dunp(CDunpCont ext & dc) const;

add and renove nenber functions here.

11 DO NOT EDI T what you see in these bl ocks of generated code !

/1}} AFX_MBG
DECLARE_MESSAGE_MAP()
I

FEEEEEEEEEEE i i e i i i i rrrn g

/'l stdafx.h :

/1 or project specific include files that are used frequently,
/1 are changed infrequently

/1

#i ncl ude <af xwi n. h>
#i ncl ude <af xext. h>
#i ncl ude <af xdb. h>

include file for standard systeminclude files,

but

/'l MFC core and standard conponents
/'l MFC extensions (including VB)
/'l MFC dat abase cl asses

FEEEEEEETEEL i i rr i r i rrrry

/ 1 {{ NO_DEPENDENCI ES} }

/1 App Studio generated include file.
/'l Used by TYSSQ.. RC

/1

#def i ne
#def i ne
#def i ne
#defi ne
#defi ne
#def i ne
#def i ne
#def i ne

ADDRESS
STATE
> ZIP
/1 Next default values for new objects
/1
#i f def APSTUDI O_| NVOKED
#i f ndef APSTUDI O_READONLY_SYMBOLS

#defi ne _APS NEXT_RESOURCE_VALUE
#defi ne _APS_NEXT_COWAND VALUE
#define _APS NEXT_CONTROL_VALUE
#define _APS NEXT_SYMED VALUE
#endi f

#endi f

100
101
103
1000
1001
1002
1003

102
32771
1004
101

N N NNy

/1 mainfrmh :
/1

interface of the CMainFrane cl ass

N N NN NN NN

cl ass CMai nFrane : public CFraneWd

protect ed:
CMai nFrane() ;
DECLARE_DYNCREATE(CVai nFr ane)

/] Attributes
public:

/| Operations
public:

/1 create fromserialization only

/1 I nplenentation
public:
virtual ~CMainFrane();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f

protected: // control bar enbedded nmenbers
CSt at usBar m wndSt at usBar ;
CTool Bar m wndTool Bar ;

/| Cenerated nessage map functions
pr ot ect ed:
/1 {{ AFX_NMSGE CMai nFr ane)
af x_nsg i nt OnCreat e(LPCREATESTRUCT | pCreateStruct);
/1 NOTE - the ClassWzard will add and renove nmenber functions here.
11 DO NOT EDI T what you see in these blocks of generated code!
/1}} ARX_MSG
DECLARE_MESSAGE_MAP()
I

FEETEEEEEEEEr i i e i i i e i rrrn g

/'l tyssqvw.cpp : inplenmentation of the CTyssql View cl ass
/1

#i ncl ude "stdafx.h"
#include "tyssql.h"

#i ncl ude "tyssqset.h"
#i ncl ude "tyssqdoc. h"
#include "tyssqvw. h"

#i f def _DEBUG

#undef THI' S_FILE

static char BASED CODE THI S FILE[] = _ FILE ;
#endi f

N NN NNy
/'l CTyssql Vi ew
| MPLEMENT_DYNCREATE(CTyssql Vi ew, CRecor dVi ew)

BEG N_MESSAGE _NMAP(CTyssql Vi ew, CRecor dVi ew)
[1 {{ AFX_MSG_MAP(CTyssql Vi ew)
/1 NOTE - the ClassWzard will add and renpve mappi ng nacros here.
/1 DO NOT EDI T what you see in these bl ocks of generated code!
/'1}} AFX_NVBG_NMVAP
END_MESSAGE_MAP()

FLEEEEETTTEEEE i bbb
/'l CTyssql Vi ew construction/destruction

CTyssql Vi ew. : CTyssql Vi ew()
CRecor dVi ew(CTyssql Vi ew. : | DD)

{
/1 {{ AFX_DATA | NI T(CTyssql Vi ew)
m pSet = NULL;
/1}}ARX_DATA INIT
/1 TODO add construction code here
}
CTyssql Vi ew. : ~CTyssql Vi ew()
{
}

voi d CTyssql Vi ew: : DoDat aExchange(CDat aExchange* pDX)

CRecor dVi ew. : DoDat aExchange(pDX) ;

/1 {{ AFX_DATA_NMAP(CTyssql Vi ew)

DDX_Fi el dText (pDX, | DC_ADDRESS, m pSet - >m ADDRESS, m pSet);
DDX_Fi el dText (pDX, | DC_NAME, m pSet ->m NAME, m pSet);
DDX_Fi el dText (pDX, | DC_STATE, m pSet ->m STATE, m pSet);
DDX_Fi el dText (pDX, IDC ZI P, m pSet ->m ZI P, m pSet);

/1}} AFX_DATA MAP
}

voi d CTyssql View: : Onl ni tial Updat e()

m pSet = &Get Docunent () - >m tyssql Set;
CRecordView : Onlnitial Update();

}

N N NN NN
/1 CTyssql Vi ew di agnostics

#i f def _DEBUG
voi d CTyssql Vi ew. : AssertValid() const

{
CRecordVi ew. : AssertValid();
}
voi d CTyssql Vi ew: : Dunp(CDunpCont ext & dc) const
{
CRecor dVi ew. : Dunp(dc);
}

CTyssql Doc* CTyssql Vi ew. : Get Docunent () // non-debug version is inline

ASSERT(m pDocunent - >I sKi ndOf (RUNTI ME_CLASS(CTyssql Doc)));
return (CTyssql Doc*) m pDocunent ;

}
#endif //_DEBUG

N N NN NNy
/| CTyssql Vi ew dat abase support

CRecordset* CTyssql Vi ew. : OnCGet Recor dset ()
{

}

return mpSet;

N NN NNy
/| CTyssql Vi ew nessage handl ers

/] tyssqgset.cpp : inplenentation of the CTyssql Set class
/1

#i ncl ude "stdafx. h"
#i ncl ude "tyssql.h"
#i ncl ude "tyssqset.h"

FEEELELEEE i i i i ey
/1 CTyssql Set inplenmentation

| MPLEMENT_DYNAM C(CTyssql Set, CRecordset)

CTyssql Set: : CTyssql Set (CDat abase* pdb)
CRecor dset (pdb)

{
/1 {{AFX_FI ELD | NI T(CTyssql Set)
m NAME = "";
m ADDRESS = ""
m STATE = "";
mZzZIlp="";
m PHONE = ""
m REMARKS = ;
m nFi el ds = 6;
/[1}}AFRX_FIELD INIT
}
CString CTyssql Set: : CGet Def aul t Connect ()
{
return "ODBC;, DSN=TYSSQL; ";
}

CString CTyssql Set:: Get Def aul t SQL()
{

return "SELECT * FROM CUSTOMER ORDER BY NAME";
}

voi d CTyssql Set: : DoFi el dExchange(CFi el dExchange* pFX)

/1 {{ AFX_FI ELD _MAP(CTyssql Set)
pFX- >Set Fi el dType(CFi el dExchange: : out put Col um) ;
RFX_Text (pFX, "NAME"', m NANE);
RFX_Text (pFX, "ADDRESS', m ADDRESS);
RFX_Text (pFX, "STATE"', m STATE);
RFX_Text (pFX, "ZI P, mZIP);
RFX_Text (pFX, "PHONE', m PHONE);
RFX_Text (pFX, "REMARKS"', m REMARKS);
/1}} AFX_FI ELD VAP
}

/'l tyssqgl.cpp : Defines the class behaviors for the application.
/1

#i ncl ude "stdafx.h"
#i ncl ude "tyssql.h"

#i ncl ude "mai nfrm h"
#i ncl ude "tyssqset.h"
#i ncl ude "tyssqdoc. h"
#i nclude "tyssqvw. h"

#i f def _DEBUG

#undef THI S_FI LE

static char BASED CODE THI S FILE[] = _ FILE ;
#endi f

FLEEELETTTEEEE i bbb
/'l CTyssql App

BEG N_MESSAGE _MAP(CTyssql App, CW nApp)
/1 {{ AFX_NMSG_MAP(CTyssql App)
ON_COMVAND(| D_APP_ABQOUT, OnAppAbout)
/1 NOTE - the ClassWzard will add and renove mappi ng macros here.
11 DO NOT EDI T what you see in these bl ocks of generated code!
/1}} AFX_MSG_NMAP
END_MESSAGE MAP()

N N NN NN
/| CTyssql App construction

CTyssql App: : CTyssql App()

// TODO add construction code here,
/1 Place all significant initialization in Initlnstance

}

N NN NN
/1 The one and only CTyssql App obj ect

CTyssql App NEAR t heApp;

FIEEEEETTTEEEE i bbb
/1 CTyssql App initialization

BOOL CTyssql App:: I nitlnstance()

// Standard initialization

/1 If you are not using these features and wi sh to reduce the size
/1 of your final executable, you should renove fromthe follow ng
/1 the specific initialization routines you do not need.

Set Di al ogBkCol or () ; /1 Set dialog background color to gray
LoadStdProfileSettings(); // Load standard IN file options (including MRU)

/'l Register the application's docunment tenplates. Docunent tenplates
/'l serve as the connection between docunents, frame wi ndows and vi ews.

CSi ngl eDocTenpl at e* pDocTenpl at e;
pDocTenpl ate = new CSi ngl eDocTenpl at e(
| DR_MAI NFRANME,
RUNTI ME_CLASS(CTyssql Doc),

RUNTI ME_CLASS(CVai nFr ane) , /1 main SDI
RUNTI ME_CLASS(CTyssql View));
AddDocTenpl at e(pDocTenpl at e) ;

/] create a new (enpty) docunent

OnFil eNew() ;
if (mlpCndLine[0] !'="\0")
/1l TODO add command |ine processing here
}
return TRUE;

}

NN NN
/| CAbout Dl g di al og used for App About

class CAboutDl g : public CDial og

{
public:
CAbout DI g() ;

// Dialog Data
/1 {{ AFX_DATA(CAbout DI g)
enum { |1 DD = | DD_ABOUTBOX };
/1}} AFX_DATA

/1 I nplenentation
pr ot ect ed:

virtual void DoDat aExchange(CDat aExchange* pDX);

/1 {{ AFX_MSG CAbout Dl g)
/'l No nessage handl ers
/1}} ARX_MSG
DECLARE_NMESSAGE_MAP()
b

CAbout DI g: : CAbout DI g() : CDi al og(CAbout DI g: : | DD)

/1 {{ AFX_DATA | NI T(CAbout DI g)
/1}}AFX_DATA INIT
}

voi d CAbout DI g: : DoDat aExchange(CDat aExchange* pDX)

CDi al og: : DoDat aExchange(pDX) ;
[1 {{ AFX_DATA_NAP(CAbout Dl g)
/1}} AFX_DATA NMVAP

}

BEG N_MESSAGE_NMAP(CAbout DI g, CDi al og)
[1 {{ AFX_MSG_MAP(CAbout DI g)
/1 No message handl ers
/'1}} AFX_NVBG_NVAP
END_MESSAGE_MAP()

/1 App command to run the dial og
voi d CTyssql App: : OnAppAbout ()
{
CAbout DI g about DI g;
about DI g. DoMbdal () ;
}

frame w ndow

[LEEEEEEEEr i rnn

/1 DDX/ DDV support

N N NN NN NN

/| CTyssql App conmands
/'l tyssqdoc.cpp : inplenentation of the CTyssql Doc
/1

#i ncl ude "stdafx.h"
#include "tyssql.h"

#i ncl ude "tyssqset.h"
#i ncl ude "tyssqdoc. h"

#ifdef _DEBUG
#undef TH S_FILE

cl ass

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

NN
/'l CTyssql Doc

| MPLEMENT_DYNCREATE(CTyssql Doc, CDocunent)
BEG N_MESSAGE_MAP(CTyssql Doc, CDocunent)
/1 {{ AFX_MSG_MAP(CTyssql Doc)
/1 NOTE - the ClassWzard will add and renove mappi ng macros here.
/1 DO NOT EDI T what you see in these bl ocks of generated code!
/1}} AFX_MSG_NMAP
END_MESSAGE_MAP()

N NNy
/1 CTyssql Doc construction/destruction

CTyssql Doc: : CTyssql Doc()
{

/1 TODO add one-tine construction code here

}

CTyssql Doc: : ~CTyssql Doc()

}

BOOL CTyssql Doc: : OnNewDocumnent ()

if (!CDocunent::OnNewDocument ())
return FALSE;

/1 TODO add reinitialization code here
/1 (SDI docunents will reuse this docunent)

return TRUE;
}

FEEEEEETTTEEEE i i
/'l CTyssql Doc di agnostics

#i f def _DEBUG
voi d CTyssql Doc: : AssertValid() const

{
CDocunent : : AssertValid();
}
voi d CTyssqgl Doc: : Dunp(CDunpCont ext & dc) const
{

CDocunent : : Dunp(dc);
}
#endi f // _DEBUG

FIEEEEETTTEEEE i i i
/'l CTyssql Doc comands

/| stdafx.cpp : source file that includes just the standard includes
/1 stdafx.pch will be the pre-conpiled header
/1 stdafx.obj will contain the pre-conpiled type information

#i ncl ude "stdaf x. h"

/1 mainfrmcpp : inplenmentation of the CMVai nFrane cl ass
/1

#i ncl ude "stdafx.h"
#include "tyssql.h"

#i nclude "mainfrmh"

#i f def _DEBUG

#undef TH S_FILE

static char BASED CODE THI S FILE[] = __FILE ;
#endi f

FELITEEEEL i r i rrrrrirrrrri
/| CMai nFrane

| MPLEMENT _DYNCREATE(CMVai nFr anme, CFr ameWd)

BEG N_MESSAGE_MAP(CMai nFrane, CFranmeWd)
/1 {{ AFX_NMSG_NMAP(CVai nFr ane)
/'l NOTE - the ClassWzard will add and renove mappi ng macros here.
11 DO NOT EDI T what you see in these bl ocks of generated code !
ON_WM CREATE()
/1}} AFX_MSG_NMAP
END_MESSAGE_MAP()

N NNy
/1 arrays of IDs used to initialize control bars

/'l tool bar buttons - IDs are conmand buttons
static U NT BASED CODE buttons[] =
{
/'l same order as in the bitmap 'tool bar. bnp'
I D_EDI T_CUT,
| D_EDI T_COPY,
| D_EDI T_PASTE,
| D_SEPARATOR,
I D_FI LE_PRI NT,
| D_SEPARATOR,
D RECORD _FI RST,

D RECORD_LAST,
| D_SEPARATOR,

| D_APP_ABQUT,
I
static U NT BASED CODE indicators[] =
{

| D_SEPARATOR, /'l status line indicator

| D_I NDI CATOR_CAPS,

| D_I NDI CATOR_NUM

I D_I NDI CATOR_SCRL,
I

TEEITELLEL i rrrrrrirrrrri
/1 CMai nFranme construction/ destruction

CMai nFrane: : CMai nFrane()

/1 TODO add nenber initialization code here

}

CMai nFr ane: : ~CMai nFr ane()

{

}

int CMai nFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)
{

if (CFrameWhd:: OnCreate(l pCreateStruct) == -1)
return -1;

if (!mwndTool Bar. Create(this) ||
I'm wndTool Bar. LoadBi t map(| DR_MAI NFRAMVE) | |
I'm wndTool Bar. Set Butt ons(buttons,
si zeof (buttons)/sizeof (U NT)))

TRACE("Failed to create tool bar\n");
return -1; /'l fail to create

}

if (!mwndStatusBar.Create(this) ||
I'm wndSt at usBar . Set | ndi cat ors(i ndi cators,
si zeof (i ndi cators)/sizeof (U NT)))

TRACE("Failed to create status bar\n");
return -1; /'l fail to create

}

return O;

FLEEEEETTTEEEE i bbb
/1 CMai nFrane di agnostics

#i f def _DEBUG
voi d CMai nFrane: : AssertValid() const

{
CFrameWhd: : AssertValid();
}
voi d CMai nFrane: : Dunp(ChunpCont ext & dc) const
{
CFr aneWhd: : Dunp(dc);
}

#endi f //_DEBUG

FIEEEEETTTEEEE i i
/1 CMai nFranme nessage handl ers

{ % Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
21 A YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

PUBLISHING

Teach Yourself SQL in 21 Days, Second Edition

- Appendix C -

Source Code Listingsfor the Delphi Program Used on Day 14

program Tyssql ;

uses
For ns,
Unitl in "UNIT1. PAS {Forml},
Unit2 in 'UNIT2. PAS {Fornk};

{$R *. RES}

begi n
Appl i cation. Creat eFor m(TFor n2, FornR);
Appl i cation. Creat eForm(TFor niL, Fornt);
Appl i cati on. Run;

end.

unit Unitl;

interface

uses
SysUils, WnTypes, WnProcs, Messages,
Forns, Dial ogs;

type
TFornl = cl ass(TForm
private
{ Private declarations }
public
{ Public declarations }
end;
var

Formil: TFor ni,;
i npl ement ati on
{$R *. DFM
end.
unit Unit2;
interface
uses
SysUtils, WnTypes, WnProcs, Messages,

Cl asses, Graphics, Controls,

Cl asses, Gaphics, Controls,

StdCtrls, Forns, DBCtrls, DB, DBGids, DBTables, Gids, Mask, ExtCirls;

type
TForn2 = cl ass(TForm
Scrol | Box: TScrol | Box;
Label 1: TLabel ;
Edi t PARTNUM TDBEdi t ;
Label 2: TLabel ;
Edi t DESCRI PTI ON: TDBEdi t ;
Label 3: TLabel ;
Edi t PRICE: TDBEdi t;
DBGi d1: TDBG i d;
DBNavi gat or: TDBNavi gat or ;
Panel 1: TPanel ;
Dat aSour cel: TDat aSour ce;
Panel 2: TPanel ;
Panel 3: TPanel ;
Queryl: TQuery;
Query2: TQuery;
Dat aSour ce2: TDat aSour ce;
procedure FornCreate(Sender: TObject);
private
{ private declarations }
public

{ public declarations }
end;
var
For n2: TFor n2;
i npl ement ati on
{$R *. DFM
procedure TFornR. For nCr eat e(Sender: TObj ect);
begi n
Queryl. Open;
Query2. Open;
end;
end.

{ % Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
(‘JA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ % Previous Chapter JEK.—* Mext Chapter

- Appendix D -
Resour ces
Books
1 Developing Sybase Applications

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30700-6

1 Sybase Developer's Guide

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30467-8

1 Microsoft SQL Server 6.5 Unleashed, 2E

Imprint: Sams
Author: David Solomon, Ray Rankins, et al.
ISBN: 0-672-30956-4

1 Teach Yourself Delphi in 21 Days

Imprint: Sams
Author: Andrew Wozniewicz
ISBN: 0-672-30470-8

1 Delphi Developer's Guide

Imprint: Sams
Authors. Steve Teixeiraand Xavier Pacheco
ISBN: 0-672-30704-9

1 Delphi Programming Unleashed

Imprint: Sams
Author: Charlie Calvert
ISBN: 0-672-30499-6

1 Essential Oracle 7.2

Imprint: Sams
Author: Tom Luers
ISBN: 0-672-30873-8

1 Developing Personal Oracle7 for Windows 95 Applications

Imprint: Sams
Author: David Lockman
ISBN: 0-672-31025-2

1 Teach Yourself C++ Programming in 21 Days

Imprint: Sams
Author: Jesse Liberty
ISBN: 0-672-30541-0

1 Teach Yourself Tansact-SQL in 21 Days

Imprint: SAMS
Author: Bennett Wm. McEwan and David Solomon
ISBN: 0-672-31045-7

1 Teach Yourself PL/SQL in 21 Days

Imprint: SAMS
Author: Tom Luers, Timothy Atwood, and Jonathan Gennick
ISBN: 0-672-31123-2

Please check the Information SuperLibrary at www.mcp.com for further information and new releases.
M agazines
1 DBMS

P.O Box 469039
Escondido, CA 92046-9039
800-334-8152

1 Oracle Magazine

500 Oracle Parkway
Box 659510 Redwood Shores, CA 94065-1600
415-506-5304

Internet URLsfor the Keyword SQL

1 http://ww. asl ani nc. com

Aslan Computing Inc.: Specializesin SQL databases, Windows development tools, Windows NT networking, and Web services.

1 http://ww. radi x. net/ ~abl aze/

Ablaze Business Systems, Inc.: A leading Microsoft Solution Provider specializing in Visua Basic, MS Server, PowerBuilder, and the
Internet.

1 http://ww. f ourgen. com

FourGen: Open systems software supporting Windows, 4GL, UNIX, SQL, and OLE standards.

1 http://ww. innovisionl. con steel epd/ ddi . htnl

Digital Dreamshop: Providers of innovative client/server applications, computer graphics services, and commercia software programming
in Visua Basic, Access, Transact-SQL, C++, and Delphi.

1 http://ww. noval i nk. com bachnman/ i ndex. ht m

Bachman Information Systems: Vendor of database design tools for Sybase and Microsoft SQL Server databases and other development
tools.

1 http://ww. everyware. conl

EveryWare Development Corp.: Developers of Butler SQL, the SQL database server for Macintosh.

1 http://ww. edb. coni nb/i ndex. ht i

Netbase: Nethase provides alow-cost client/server SQL database for UNIX.

1 http://ww. quadbase. conlf quadbase. ht m

Quadbase: Quadbase-SQL is a high-performance, full-featured, industrial -strength SQL relational DBMS.

1 http://ww. sagus. con!

Software AG of North America (SAGNA): Develops and markets open, multiplatform product solutionsin the areas of distributed
computing (ENTIRE), application engineering (NATURAL), SQL querying and reporting (ESPERANT), database management
(ADABAYS), and data warehousing.

1 http://ww. nis.net/sql power/

Sqgl Power Tools: Second-generation tools for SQL developers and database administrators.

1 http://world. std. coml ~engw z/

English Wizard: English Wizard trandates plain English into SQL for access to your database.

1 http://ww. mcrosoft.conl SQL/

Microsoft.

1 http://ww. jcc.comsqgl stnd. htn

SQL Standards: The central source of information about the SQL standards process and its current state.

1 http://ww. sybase. coml WAV

Connecting to Sybase SQL Server viathe World Wide Web.

1 http://wwmv ncsa. ui uc. edu/ SDG Peopl e/ | ason/ pub/ gsql / start here. htm

GSQL: A Mosaic-SQL gateway.

FTP Sites

1 ftp://ftp.cc.gatech. edu/ pub/ gvu/ ww pi t kow gsql -oracl e/ oracl e- backend. ht m

GSQL: Oracle Backend.
Newsgroups

1 news: conp. dat abases. oracl e

Usenet: The SQL database products of the Oracle Corporation.

1 news: conp. dat abases. sybase

Usenet: Implementations of the SQL Server.

{4 Previous Chapter JER.—> Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
(‘JA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

{ ¢ Previous Chapter JR.—* Mext Chapter

-Appendix E -
ASCII Table

D Hex ERinary ASCIT Duec Hex Rinary ASCIT
X, * X X, X X

D0oc oo DO CO00 nuall [t 14 D001 1010

o 5} [EEERIREE @ D& 1B LoCl 1011

(L) D2 DG O & (s 12 D001 1100 .
oo 03 COO0 Dol ¥ bE 10 Dokl 110

Ly O GO0 o100 + oan 1E [EEENRRRIE A
(L] (1] [EEE 0T * 021 1F LoCl 1111 -
et 5] D00 Ol 10 - 0az m G010 D000 space
LR 7 Cooo 0111 . 033 il L0110 00 !
o g CO00r 1000 =} 034 s D010 Do10 "
Loa A CO00 1001 & [FE5 2 [ER e R B #
e DA DOGC 1010 2 Las i3 G010 A0]
11 0B OO0 1011 o 037 i3 DO10 10 ';‘tu
oz 2 QOO0 1100 @ [EL2S . CO10 0110 &
012 0D D000 1101 t (K2 & Lol1e 111 !
014 0E D000 1110 A) 1% COL G 1000 [
o135 OF Dooo 1111 E il 2 010 1001 1
oG 10 DO OO0 - (2 24 D010 1010 *
017 11 001 D001 - () B Lo10 1011 +
ol 12 D001 O0c i g 22 D010 1100 :
o1 13 0o01 0011 I 5 b I e B T -
(B 14 00010100 1 S B CO1t 1110

(A 13 Lo01 ol [(7 &F Lol 1111 !
DEE 15 CO01 C110 - [Al 011 D000 [
(B 17 [EEENRBIRE] i (] A [ERRNEED] 1
()03 12 Lo 1000 i D s D011 Dot z
(3 18 o0l 1001 ! (331 23 [ERRNEN S 2

Dec Hex Eimaxy ASCIT Dec Her Bimry ASCIT
X, X X X X X

o3z M 00110100 & o078 4E 010D 1110 3
053 3% oolloim 5 079 4 DloD 1111 o
0% A5 00110110 6 0Er S D101 0000 T
(B R ¢ i B N S B 7 OEL 51 DI01 0001 Q
0% A3 0011 1000 & 082 52 01010010 78
057 A 00111001 9 082 52 01010011 5
5% A4 0011 1040 [= (3 N e) T
(5] 3B 00111011 085 33 D0l oI u
0D AC 0011 1100 £ 086 S5 0101 011D W
el A0 G011 1104 = 087 A v [Nl R W
DE 2E 0011 11D » 058 S8 DI01 1000 *
LG AF 0111111 # 0E9 0101 1001 T
£ 0 DLDD D000 @ o SA D101 1010 Zz
(4 &l OO0 G001 A o 0101101 [
s &1 DLDO 001D B [r2r] SC D101 1100 !
87 43 0100 0oLl c 092 S 0101 1101]
08 4 01000100 D 094 3E 0101 1110 A
02 &5 DloDoLod E 095 SF 0101 1111 -
o0 46 OLOD o110 F 096 G0 OLIDO00D

CFl 47 olooolnl G 097 Gl DLID000L 2
072 48 010D 1000 H 098 G 01100010 b
073 49 D100 1001 I 099 &2 01100011 c
O 44 DLOD 104D b w00 6% 01100100 d
075 4B 010D 1011 K il 65 ollooim .
O7E 4C 010D 1100 L 02 66 0100110 Y
OF7 4D 10D 1101 B 03 67 olioodid =

D H= Rinaoy ASCIT D Ha Rimary ASCIT

% X % X X X

104 B8 D110 1000 h 130 82 1000 o1 £
1035 &2 O110 1001 i 131 a3 1000 D011 ik
100 A D10 1000 j 132 2% 1000 D100 3
107 EB Glic 1011 k 133 a5 1000 GLDL i
108 G D10 1100 1 134 5 1000 L1l %
102 =R eI R IR § Lul m 133 a7 1000 (111 g
116 GE D110 1100 o 136 1] 1000 1000 i
111 GF Ddiriiid =] 137 & 1000 1001 E
112 o G111 OOCo F 135 2A 1000 1010 .
113 71 D111 00Dl q 132 8B 100D 1011 i
11% 7z 0111 pOI0 £ 140 ac 1000 1300 i

=r

115 73 D111 001 141 D 10D 11

"

e 7 ol 0d * 142 #E 1000 1110 A
117 75 Dl110101 a 123 gF 1001111 A
11% PR R RS (] ¥ 144 L 1001 DOCO E
119 7 oooin w 145 o 1000 0001

120 78 DIl An0o x 145 e 1001 OO10 E
121 78 ou11 1001 ¥ 147 @3 1001 0011 &
122 FA 0 D111 1010 z 148 D& 1001 OO0 &
123 7B D111 1011 { 169 95 1001 0101 &
124 7 DLIL LIG | 150 L 1008 G110 i
123 ki im } 131 o 1001 i1l &
13 FE 0111 1110 - 152 28 1001 1000 ¥
127 JF b1 1in A 133 » 1001 1001 @
128 & 1000 D000 [15 94 1000 1010 o
123 81 1000 0001 i 133 #1001 1011 ¢

Drac: H= Bivary ASCIT Dac Ha= Emary ASCIT

 _x =X * & X

156 9C 1001 1100 £ 182 BE 1011 OLID 1
157 9D 1004 1104 ¥ 183 BF 10110411 7
158 SE 1001 1110 R 186 B2 1011 1000 1
158 9F 1001 111) i 185 B3 1011 1001 i
160 AD 1010 000D 3 185 BA 1011 1010 I
61 Al 104D (on i 157 BE 10111011 7
152 AL 1010 010 & le8 BT 011 1100 4
162 A3 L0I00D1L @ 189 BD 1011 1101 4
164 A& 101D 010D £ 190 BE 1011 1110 d
165 A5 100 01D 1T 191 BF 10111111 1
166 AG 1010 0110 ¥ 192 0 1100 0000 L
167 A7 10100111 v 193 €1 1100 000 L
168 A% 1DAD 100D i 196 ©2 1100 001D T
169 A9 101D 10D - 195 €2 Hoool F
170 AR 1000 §010 - 196 O 1100 GG =)
71 4B 101D 1011 % 157 €3 1100 0a0l +
172 AT 10ID 1100 % 198 ©5 1100 0110 E
172 AD 1010 1104 i 199 7 Mool Ik
174 AE 1010 1110 u MmO 08 1100 1000 L
175 AF 10ID 1111 . ™ 2 1100 1001 T
176 BO 1DL1 000D WI CA 1100 1010 L
177 Bl 1041 Oo0] [] b ik L 2} B10D 1011 ir
178 B 10LL 0010 | WmE oo LD 1100 [k
72 B3 10110011 | s CD 1100 1101 =
120 Bé 1011 010D i WE CE 100 111D +
13 BS 1611 oltt q Wi CF 6o 111 =+

D Hmx Einaxy ASCIT Do Hmx Binary ASCIT
X X X X X X

ng Ll 1101 QOO0 4 i Ea 1110 1010]
B9 D1 11 600 T ¥s E 1110 1011 &
HO DI 10 0010 T e EC 1110 1100 -
Al D3 1 foil L A7 EL> 1110 1id o
Hi D& 1101 0100 E .] EE 1910 11160 =
713 D5 1101 0101 E ¥9 O uwuu a
Hé D 1101 0110 g i F» 1210 D00]
213 D7 1o 011l 4+ 1 Bl 1111 000 *
HE DE 11061 1060 + M F2 1111 0010 =
H7 D9 10l 100 4 %3 F2 1111001 =
Ha DA 1101 1010 r 2l F4 1111 oo r
79 DB 1101 1011 [| M5 FS 1111 idd }
2o DS R 1160 = ME R 11110110 *
2l DD 1 110l i %7 F7 1111 ot =
.o DE 110 1110]] Fa 1111 100G =
223 DF 1o 1111 = M9 F? 111 10M .
4 EX 1110 QOO0 [250 FA 1111 10D

75 El 11100001 fi #»m1 OFR 1110 1011 o
i E: 11100010 T $»2 FC 1111 1100 n
227 E3 11100011 n /3 OFD 111 1]
¥t E4 1110 D100 L I FE 1111 1w]
29 Ed L0001 & {5 FF 1111 1113

7o EE 1Ibol1o In

21 EF 1Ib0lil ¥

oy E& 1100 1000 L]

#3 E9 1110 1001 #

{ % Previous Chapter JEK.—* Mext Chapter

A MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

SAMS

PUBLISHING
Teach Yourself SQL in 21 Days, Second Edition

(e Pravious Chopter

- Appendix F -
Answersto Quizzes and Exercises

Day 1, " Introduction to SQL"
Quiz Answers

1. What makes SQL a nonprocedural language?
SQL determines what should be done, not how it should be done. The database must implement the SQL request. This featureisabig plus
in cross-platform, cross-language development.

2. How can you tell whether a database istruly relational ?
Apply Dr. Codd's 12 (we know there are 13) rules.

3. What can you do with SQL?

SQL enables you to select, insert, modify, and delete the information in a database; perform system security functions and set user
permissions on tables and databases; handle online transaction processing within an application; create stored procedures and triggers to
reduce application coding; and transfer data between different databases.

4. Name the process that separates data into distinct, unique sets.
Normalization reduces the amount of repetition and complexity of the structure of the previous level.

Exer cise Answer

Determine whether the database you use at work or at home istruly relational.
(On your own.)

Day 2, " Introduction to the Query: The SELECT Statement”

Quiz Answers
1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
sel ect * from checks;?

The only difference between the two statementsis that one statement is in lowercase and the other uppercase. Case sensitivity is not
normally afactor in the syntax of SQL. However, be aware of capitalization when dealing with data.

2. None of the following queries work. Why not?

a. Select *
The FROM clause is missing. The two mandatory components of a SELECT statement are the SELECT and FROM

b. Sel ect * from checks
The semicolon, which identifies the end of a SQL statement, is missing.

c. Sel ect anmpbunt nane payee FROM checks;
Y ou need a comma between each column name: Sel ect anpunt, nane, payee FROM checks;

3. Which of the following SQL statements will work?

a.select *
from checks;

b. select * from checks;

c.select * from checks
/

All the above work.
Exercise Answers

1. Using the CHECKS table from earlier today, write a query to return just the check numbers and the remarks.

SELECT CHECK#, REMARKS FROM CHECKS;

2. Rewrite the query from exercise 1 so that the remarks will appear as the first column in your query results.

SELECT REMARKS, CHECK# FROM CHECKS;
3. Using the CHECKS table, write a query to return al the unique remarks.
SELECT DI STI NCT REMARKS FROM CHECKS;

Day 3, " Expressions, Conditions, and Operators'

Quiz Answers

Use the FRI ENDS table to answer the following questions.

LASTNAME FI RSTNAME AREACODE PHONE ST ZIP
BUNDY AL 100 555-1111 IL 22333
VEZA AL 200 555-2222 WK

MERRI CK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRI S 345 555-3223 I L 23332
PERKI NS ALTON 911 555-3116 CA 95633
BCSS SIR 204 555-2345 CT 95633

1. Write aquery that returns everyone in the database whose last name begins with M

SELECT * FROM FRI ENDS WHERE LASTNAME LI KE ' M»% ;

2. Write aquery that returns everyone who livesin Illinois with afirst name of AL.

SELECT * FROM FRI ENDS
WHERE STATE = 'IL'
AND FI RSTNAME = "AL';

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how would you find out which part numbers are in both tables?
Write the query.

Use the | NTERSECT. Remember that | NTERSECT returns rows common to both queries.

SELECT PARTNO FROM PART1
| NTERSECT
SELECT PARTNO FROM PART2;

4. What shorthand could you use instead of WHERE a >= 10 AND a <=307
WHERE a BETWEEN 10 AND 30;

5. What will this query return?

SELECT FI RSTNAME

FROM FRI ENDS

WHERE FI RSTNAME = " AL’
AND LASTNAME = ' BULHER ;

Nothing will be returned, as both conditions are not true.
Exercise Answers

1. Using the FRI ENDS table, write a query that returns the following:

SQL> SELECT (FIRSTNAME || ' FROM) NAME, STATE
FROM FRI ENDS

WHERE STATE = 'IL'

AND

LASTNAME = ' BUNDY' ;

abwnN

2. Using the FRI ENDS table, write a query that returns the following:

NAVE PHONE

MERRI CK, BUD 300 - 555- 6666

MAST, JD 381-555- 6767

BULHER, FERRI S 345 - 555- 3223

INPUT:

SQL>SELECT LASTNAME || ',' || FIRSTNAVE NANE
2 AREACCDE || ' -' || PHONE PHONE

3 FROM FRI ENDS
4 WHERE AREACODE BETWEEN 300 AND 400;

Day 4, " Functions: Molding the Data You Retrieve'

Quiz Answers

1. Which function capitalizes the first letter of a character string and makes the rest lowercase?
I NI TCAP

2. Which functions are also known by the name ?
Group functions and aggregate functions are the same thing.

3. Will this query work?

SQ.> SELECT COUNT(LASTNAME) FROM CHARACTERS;

Yes, it will return the total of rows.
4, How about this one?

sql > SELECT SUM LASTNAME) FROM CHARACTERS
No, the query won't work because LASTNAME is a character field.

5. Assuming that they are separate columns, which function(s) would splice together FI RSTNAVE and LASTNAVE?
The CONCAT function and the | | symboal.

6. What does the answer 6 mean from the following SELECT?

INPUT:

SQL> SELECT COUNT(*) FROM TEAMSTATS;

OUTPUT:

COUNT(*)

6 isthe number of recordsin the table.

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME, 1,5 FROM NAVE_TBL;

No, missing () around | ast nare, 1, 5. Also, abetter plan isto give the column an alias. The statement should look like this:

SQL> SELECT SUBSTR(LASTNAME, 1,5) NAME FROM NAME TBL;
Exercise Answers

1. Using today's TEAMSTATS table, write a query to determine who is batting under .25. (For the baseball-challenged reader, batting average
is hits/ab.)

INPUT:

SQL> SELECT NAME FROM TEANMSTATS
2 VHERE (H TS/AB) < .25;

OUTPUT:

2. Using today's CHARACTERS table, write a query that will return the following:

OUTPUT:
INNTIALS._ CODE
K A P. 32

1 row sel ect ed.

INPUT:

SQL> sel ect substr(firstname,1,1)||"'."|]|
substr(m ddl enane, 1,1)||"'."|]
substr(lastnane,1,1)||'." INTIALS, code
fromcharacters

where code = 32;
Day 5, " Clausesin SQL"
Quiz Answers

1. Which clause works just like LI KE(<exp>% ?
STARTI NG W TH

2. What is the function of the GROUP BY clause, and what other clause doesit act like?
The GROUP BY clause groups data result sets that have been manipulated by various functions. The GROUP BY clause acts like the ORDER
BY clausein that it orders the results of the query in the order the columns are listed in the GROUP BY.

3. Will this SELECT work?

SQL> SELECT NAME, AVG SALARY), DEPARTMENT
FROM PAY_TBL
VWHERE DEPARTMENT = ' ACCOUNTI NG
ORDER BY NAME
GROUP BY DEPARTMENT, SALARY;

No, the syntax isincorrect. The GROUP BY must come before the ORDER BY. Also, all the selected columns must be listed in the GROUP
BY.

4, When using the HAVI NG clause, do you always have to use a GROUP BY also?
Yes.

5. Can you use ORDER BY on a column that is not one of the columnsin the SELECT statement?

Yes, it isnot necessary to use the SELECT statement on a column that you put in the ORDER BY clause.

Exercise Answers
1. Using the ORGCHART table from the preceding examples, find out how many people on each team have 30 or more days of sick leave.

Here is your baseline that shows how many folks are on each team.
INPUT:

SELECT TEAM COUNT(TEAM
FROM CRGCHART
GROUP BY TEAM

OUTPUT:

TEAM COUNT

COLLECTI ONS
MARKETI NG
PR

RESEARCH

NP WN

Compare it to the query that solves the question:
INPUT:

SELECT TEAM COUNT(TEAM
FROM CRGCHART

VWHERE S| CKLEAVE >=30
GROUP BY TEAM

OUTPUT:

TEAM COUNT
COLLECTI ONS 1
MARKETI NG 1
RESEARCH 1

The output shows the number of people on each t eamwith a SI CKLEAVE balance of 30 days or more.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:

CHECK# PAYEE AMOUNT__
1 MA BELL 150

INPUT:

SQL> SELECT CHECK#, PAYEE, AMOUNT
FROM CHECKS
WHERE CHECK# = 1;

Y ou can get the same results in several ways. Can you think of some more?

Day 6, " Joining Tables'

Quiz Answers
1. How many rows would a two-table join produce if one table had 50,000 rows and the other had 100,000?
5,000,000,000 rows.

2. What type of join appearsin the following select statement?

sel ect e.name, e.enployee_id, ep.salary
fromenpl oyee_thl e

enpl oyee_pay_thbl ep
where e.enployee_id = ep.enployee_id

The preceding join is an equi-join. You are matching all the enpl oyee_i dsin the two tables.

3. Will the following SELECT statements work?

sel ect name, enployee_id, salary
fromenpl oyee_thl e
enpl oyee_pay_thl ep
where enpl oyee_id = enpl oyee_id
and nane |ike '%M TH ;

No. The columns and tables are not properly named. Remember column and table aliases.

sel ect e.name, e.enployee_id, ep.salary
fromenpl oyee_thl e

enpl oyee_pay_thbl ep
where nane |ike ' %M TH

No. Thej oi n command is missing in the wher e clause.

sel ect e.nane, e.enployee_id, ep.salary
fromenpl oyee_thl e
enpl oyee_pay_tbl ep

where e.enployee_id = ep.enployee_id
and e.nane like '9%M TH ;

Yes. The syntax is correct.

4. In the WHERE clause, when joining the tables, should you do the join first or the conditions?
Thejoins should go before the conditions.

5. Injoining tables are you limited to one-column joins, or can you join on more than one column?

Y ou can join on more than one column. Y ou may be forced to join on multiple columns depending on what makes arow of data unique or
the specific conditions you want to place on the data to be retrieved.

Exercise Answers

1. In the section on joining tables to themselves, the last example returned two combinations. Rewrite the query so only one entry comes up
for each redundant part number.

INPUT/OUTPUT:

SELECT F. PARTNUM F. DESCRI PTI ON,

S. PARTNUM S. DESCRI PTI ON

FROM PART F, PART S

VWHERE F. PARTNUM = S. PARTNUM

AND F. DESCRI PTI ON <> S. DESCRI PTI ON
AND F. DESCRI PTI ON > S. DESCRI PTI ON

PARTNUM DESCRI PTI ON PARTNUM DESCRI PTI ON

76 ROAD BI KE 76 CLI PPLESS SHCE

2. Rewrite the following query to make it more readable and shorter.
INPUT:

sel ect orders. orderedon, orders.name, part.partnum
part.price, part.description fromorders, part
where orders. partnum = part.partnum and orders. orderedon
between ' 1-SEP-96' and ' 30- SEP-96'
order by part.partnum

Answer :

SQL> sel ect o0.orderedon ORDER DATE, o.nane NAME, p.partnum PART#,
p.price PRICE, p.description DESCRIPTI ON
fromorders o,
part p
where o.partnum = p.partnum
and o.orderedon |ike ' %SEP%
order by ORDER_DATE;

3. From the PART table and the ORDERS table, make up a query that will return the following:

OUTPUT:

ORDEREDON NANVE PARTNUM QUANTI TY
2- SEP- 96 TRUE WHEEL 10 1
Answer:

sel ect o.orderedon ORDEREDON, o.nanme NAME, p.partnum PARTNUM o.quanity QUANITY

fromorders o,

part p
where o.partnum = p.partnum
and o.orderedon |ike ' %SEP% ;

Many other queries will also work.

Day 7, " Subqueries: The Embedded SELECT Statement”

Quiz Answers

1. In the section on nested subqueries, the sample subquery returned several values:

LE SHOPPE
Bl KE SPEC
LE SHOPPE
Bl KE SPEC
JACKS BI KE

Some of these are duplicates. Why aren't these duplicatesin the final result set?
The result set has no duplicates because the query that called the subquery

SELECT ALL C. NAME, C. ADDRESS, C. STATE, C. ZIP
FROM CUSTOVER C
VWHERE C. NAME | N

returned only the rows where NAME was in the list examined by the statement | N. Don't confuse this simple I N statement with the more
complex join.

2. Arethe following statements true or false?

The aggregate functions SUM, COUNT, M N, MAX, and AVG all return multiple values.
False. They all return asingle value.

The maximum number of subqueriesthat can be nested is two.
False. The limit isafunction of your implementation.

Correlated subqueries are completely self-contained.

False. Correlated subqueries enable you to use an outside reference.

3. Will the following subqueries work using the ORDERS table and the PART table?

INPUT/OUTPUT:

SQL> SELECT *

FROM PART;

PARTNUM DESCRI PTI ON PRI CE
54 PEDALS 54. 25
42 SEATS 24.50
46 TIRES 15. 25
23 MOUNTAI N BI KE 350. 45
76 ROAD BI KE 530. 00
10 TANDEM 1200. 00

6 rows sel ected.

INPUT/OUTPUT:

SQL> SELECT *

FROM ORDERS;

ORDEREDON NAME PARTNUM QUANI TY REMARKS
15- MAY- 96 TRUE VWHEEL 23 6 PAID
19- MAY- 96 TRUE VHEEL 76 3 PAID

2- SEP-96 TRUE WHEEL 10 1 PAID
30-JUN- 96 BI KE SPEC 54 10 PAID

30- VAY- 96 BI KE SPEC 10 2 PAID

30- VAY- 96 BI KE SPEC 23 8 PAID
17-JAN-96 BI KE SPEC 76 11 PAID
17-JAN-96 LE SHOPPE 76 5 PAID
1-JUN-96 LE SHOPPE 10 3 PAD
1-JUN-96 AAA BI KE 10 1 PAID
1-JUN-96 AAA BI KE 76 4 PAD
1-JUN-96 AAA BI KE 46 14 PAID
11-JUL-96 JACKS BI KE 76 14 PAID

13 rows sel ect ed.

a SQL.> SELECT * FROM ORDERS
VWHERE PARTNUM =

SELECT PARTNUM FROM PART

VWHERE DESCRI PTION = ' TRUE WHEEL' ;

No. Missing the parenthesis around the subquery.

b. SQL> SELECT PARTNUM

FROM CRDERS

VWHERE PARTNUM =

(SELECT * FROM PART

WHERE DESCRI PTI ON = ' LE SHOPPE') ;

No. The SQL engine cannot correlate all the columnsin the par t table with the operator =.

C. SQL> SELECT NAME, PARTNUM
FROM CRDERS

VWHERE EXI STS

(SELECT * FROM ORDERS

WHERE NAME = ' TRUE WHEEL');

Yes. Thissubquery is correct.
Exercise Answer
Write a query using the table ORDERS to return all the NAVES and ORDEREDON dates for every store that comes after JACKS BI KE in the alphabet.

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM CRDERS

VWHERE NAME >

(SELECT NAME

FROM CRDERS

WHERE NAME =' JACKS BI KE')

NANVE ORDEREDON

TRUE WHEEL 15- MAY-1996
TRUE WHEEL 19- MAY- 1996
TRUE WHEEL 2- SEP- 1996
TRUE WHEEL 30- JUN- 1996
LE SHOPPE 17-JAN- 1996
LE SHOPPE 1-JUN- 1996

Day 8, " Manipulating Data"
Quiz Answers

1. What iswrong with the following statement?

DELETE COLLECTI ON;

If you want to delete all records from the COLLECTI ON table, you must use the following syntax:

DELETE FROM COLLECTI ON,

Keep in mind that this statement will delete al records. Y ou can qualify which records you want to delete by using the following syntax:

DELETE FROM COLLECTI ON
WHERE VALUE = 125

This statement would delete all records with avalue of 125.

2. What iswrong with the following statement?

I NSERT | NTO COLLECTI ON SELECT * FROM TABLE_ 2

This statement was designed to insert all the records from TABLE_2 into the COLLECT! ON table. The main problem hereis using the | NTO
keyword with the | NSERT statement. When copying data from one table into another table, you must use the following syntax:

I NSERT COLLECTI ON
SELECT * FROM TABLE_2;

Also, remember that the data types of the fields selected from TABLE_2 must exactly match the data types and order of the fields within the
COLLECTI ON table.

3. What iswrong with the following statement?

UPDATE COLLECTI ON (" HONUS WAGNER CARD', 25000, "FOUND I T");

This statement confuses the UPDATE function with the | NSERT function. To UPDATE values into the COLLECTI ONS table, use the following
syntax:

UPDATE COLLECTI ONS

SET NAME = "HONUS WAGNER CARD',
VALUE = 25000,
REVARKS = "FOUND | T";

4, What would happen if you issued the following statement?

SQL> DELETE * FROM COLLECTI ON,
Nothing would be deleted because of incorrect syntax. The * isnot required here.

5. What would happen if you issued the following statement?

SQL> DELETE FROM COLLECTI ON;
All rowsin the COLLECTI ON table will be deleted.

6. What would happen if you issued the following statement?

SQ.> UPDATE COLLECTI ON
SET WORTH = 555
SET REMARKS = ' UP FROM 525' ;

All valuesin the COLLECTI ON table for the worth column are now 555, and all remarksin the COLLECTI ON table now say UP FROM 525.
Probably not a good thing!

7. Will the following SQL statement work?

SQL> | NSERT | NTO COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

No. The syntax is not correct. The | NSERT and the SET do not go together.

8. Will the following SQL statement work?

SQL> UPDATE COLLECTI ON
SET VALUES = 900
VWHERE | TEM = ' STRI NG ;

Yes. Thissyntax is correct.
Exercise Answers

1. Try inserting values with incorrect data types into a table. Note the errors and then insert values with correct data types into the same
table.

Regardless of the implementation you are using, the errors that you receive should indicate that the data you are trying to insert is not
compatible with the data type that has been assigned to the column(s) of the table.

2. Using your database system, try exporting a table (or an entire database) to some other format. Then import the data back into your
database. Familiarize yourself with this capability. Also, export the tables to another database format if your DBM S supports this feature.
Then use the other system to open these files and examine them.

See your database documentation for the exact syntax when exporting or importing data. Y ou may want to delete all rows from your table if
you are performing repeated imports. Always test your export/import utilities before using them on production data. If your tables have
unigue constraints on columns and you fail to truncate the data from those tables before import, then you will be showered by unique
constraint errors.

Day 9, " Creating and Maintaining Tables'
Quiz Answers
1. Trueor False: The ALTER DATABASE statement is often used to modify an existing table's structure.

False. Most systems do not have an ALTER DATABASE command. The ALTER TABLE command is used to modify an existing table's
structure.

2. True or False: The DROP TABLE command is functionally equivalent to the DELETE FROM <t abl e_nane> command.

False. The DROP TABLE command is not equivalent to the DELETE FROM <t abl e_nanme> command. The DROP TABLE command
completely deletes the table along with its structure from the database. The DELETE FROM .. command removes only the records from a
table. The table's structure remains in the database.

3. True or False: To add a new table to a database, use the CREATE TABLE command.
True.

4. What is wrong with the following statement?

INPUT:

CREATE TABLE new tabl e (
| D NUMBER,

FI ELD1 char (40),
FI ELD2 char (80),
I D char (40);

This statement has two problems. The first problem is that the name | D is repeated within the table. Even though the data types are different,
reusing afield name within atable isillegal. The second problem isthat the closing parentheses are missing from the end of the statement. It
should look like this:

INPUT:

CREATE TABLE new_table (
I D NUMBER,

FI ELD1 char (40),

FI ELD2 char (80));

5. What is wrong with the following statement?
INPUT:

ALTER DATABASE BI LLS (
COWPANY char (80));

The command to modify afield's datatype or length isthe ALTER TABLE command, not the ALTER DATABASE command.
6. When atableis created, who is the owner?

The owner of the new table would be whoever created the table. If you signed on as your 1D, then your ID would be the owner. If you
signed on as SY STEM, then SY STEM would be the owner.

7. If datain a character column has varying lengths, what is the best choice for the data type?
VARCHARZ is the best choice. Here's what happens with the CHAR data type when the data length varies:

INPUT/OUTPUT:

SQL> SELECT *
2 FROM NAME TABLE;

LAST_NANE FI RST_NAME
JONES NANCY
SM TH JOHN

2 rows sel ected.

SQL.> SELECT LAST_NAME
2 FROM NAVE_TABLE
3 VWHERE LAST_NAME LIKE ' %V TH ;

No rows sel ect ed.
ANALYSIS:

Y ou were looking for SM TH, but SM TH does exist in our table. The query finds SM TH because the column LAST_NAME is CHAR and there
are spaces after SM TH. The SELECT statement did not ask for these spaces. Here's the correct statement to find SM TH:

INPUT/OUTPUT:

SQ.> SELECT LAST_NAME
2 FROM NAVE_TABLE
3 VWHERE LAST_NAME LI KE ' %V TH% ;

LAST_NANVE
SM TH
1 row sel ect ed.

ANALYSIS:

By adding the %after M TH, the SELECT statement found SM TH and the spaces after the name.

TIP: When creating tables, plan your data types to avoid this type of situation. Be aware of how your data types act. If you allocate
30 bytes for a column and some values in the column contain fewer than 30 bytes, does the particular data type pad spaces to fill up
30 bytes? If so, consider how this may affect your select statements. Know your data and its structure.

8. Can you have duplicate table names?
Yes. Just as long as the owner or schemais not the same.

Exercise Answers

1. Add two tables to the BI LLS database named BANK and ACCOUNT_TYPE using any format you like. The BANK table should contain
information about the BANK field used in the BANK_ACCOUNTS table in the examples. The ACCOUNT_TYPE table should contain information
about the ACCOUNT_TYPE field in the BANK_ACCOUNTS table also. Try to reduce the data as much as possible.

Y ou should use the CREATE TABLE command to make the tables. Possible SQL statements would look like this:

SQL> CREATE TABLE BANK

2 (ACCOUNT_ID NUVBER(30) NOT NULL,
BANK_NANE VARCHAR2(30) NOT NULL,
ST _ADDRESS VARCHAR2(30) NOT NULL,
aTy VARCHAR2(15) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP NUVBER(5) NOT NULL;
SQL> CREATE TABLE ACCOUNT TYPE
(ACCOUNT_ID NUVBER(30) NOT NULL,
SAVI NGS CHAR(30) ,
CHECKI NG CHAR(30) ;

2. With the five tables that you have created--Bl LLS, BANK_ACCOUNTS, COVPANY, BANK, and ACCOUNT _TYPE--change the table structure so
that instead of using CHAR fields as keys, you use integer | D fields as keys.

SQL> ALTER TABLE BI LLS DROP PRI MARY KEY;
SQL> ALTER TABLE BILLS ADD (PRI MARY KEY (ACCOUNT_ID));
SQL> ALTER TABLE COVPANY ADD (PRI MARY KEY (ACCOUNT_ID));

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several queriesto join the tablesin the Bl LLS database.

Because we altered the tables in the previous exercise and made the key field the ACCOUNT_I D column, al the tables can be joined by this
column. Y ou can join the tables in any combination; you can even join al five tables. Don't forget to qualify your columns and tables.

Day 10, " Creating Views and | ndexes"

Quiz Answers
1. What will happen if a unique index is created on a nonunique field?

Depending on which database you are using, you will receive some type of error and no index at all will be created. The constituent fields of
aunique index must form a unique value.

2. Are the following statements true or false?
Both views and indexes take up space in the database and therefore must be factored in the planning of the database size.

False. Only indexes take up physical space.
If someone updates a table on which aview has been created, the view must have an identical update performed on it to see the same data.

False. If someone updates atable, then the view will see the updated data.
If you have the disk space and you really want to get your queries smoking, the more indexes the better.

False. Sometimes too many indexes can actually slow down your queries.
3. Isthe following CREATE statement correct?

SQL> create view credit_debts as
(select all from debts

where account _id = 4);
No. You do not need the parentheses; also theword al | should been an *.
4, Isthe following CREATE statement correct?

SQL> create uni que view debts as
select * fromdebts_thbl;

No. Thereis no such thing as aunique view.
5. Isthe following CREATE statement correct?
SQL> drop * fromview debts;

No. The correct syntax is

drop view debts;

6. Isthe following CREATE statement correct?

SQL> create index id_index on bills
(account _id);

Yes. Thissyntax is correct.
Exercise Answers

1. Examine the database system you are using. Does it support views? What options are you allowed to use when creating a view? Write a
simple SQL statement that will create a view using the appropriate syntax. Perform some traditional operations such as SELECT or DELETE
and then DROP the view.

Check your implementation's data dictionary for the proper tables to query for information on views.

2. Examine the database system you are using to determine how it supports indexes. Y ou will undoubtedly have awide range of options. Try
out some of these options on atable that exists within your database. In particular, determine whether you are allowed to create UNI QUE or
CLUSTERED indexes on atable within your database.

Microsoft Access allows devel opersto use graphical tools to add indexes to atable. These indexes can combine multiple fields, and the sort
order can also be set graphically. Other systems require you to type the CREATE | NDEX statement at a command line.

3. If possible, locate a table that has several thousand records. Use a stopwatch or clock to time various operations against the database. Add
some indexes and see whether you can notice a performance improvement. Try to follow the tips given to you today.

Indexes improve performance when the operation returns a small subset of records. As queries return alarger portion of atable's records, the
performance improvement gained by using indexes becomes negligible. Using indexes can even slow down queries in some situations.

Day 11, " Controlling Transactions"

Quiz Answers

1. When nesting transactions, does issuing a ROLLBACK TRANSACTI ON command cancel the current transaction and roll back the batch of
statements into the upper-level transaction? Why or why not?

No. When nesting transactions, any rollback of atransaction cancels al the transactions currently in progress. The effect of al the
transactions will not truly be saved until the outer transaction has been committed.

2. Can savepoints be used to "save off" portions of atransaction? Why or why not?
Y es. Savepoints alow the programmer to save off statements within atransaction. If desired, the transaction can then be rolled back to this
savepoint instead of to the beginning of the transaction.

3. CanaCow T command be used by itself or must it be embedded?
A COW T command can be issued by itself or in the transaction.

4. If you issue the COMWM T command and then discover a mistake, can you still use the ROLLBACK command?
Yesand No. You can issue the command, but it will not roll back the changes.

5. Will using a savepoint in the middle of atransaction save al that happened before it automatically?

No. A savepoint comesinto play only if aROLLBACK command is issued--and then only the changes made after the savepoint will be rolled
back.

Exercise Answers

1. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the following:

SQL> START TRANSACTI ON
| NSERT | NTO CUSTOMERS VALUES
("SMTH, 'JOHN)

SQL> COW T;

Answer :

SQL> SET TRANSACTI ON;
I NSERT | NTO CUSTOVERS VALUES
("SMTH, 'JOIN);

SQL> COW T;

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the following:

SQL> SET TRANSACTI ON;
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COW T;

Answer :

SQL> SET TRANSACTI O\,
UPDATE BALANCES SET CURR BAL = 25000;
SQL> COW T;

This statement is correct and will work quite well; however, you have just updated everyone's current balance to $25,000!

3. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the following:

SQL> SET TRANSACTI ON\;
I NSERT | NTO BALANCES VALUES
('567.34', '230.00', '8");
SQL> ROLLBACK;

This statement is correct. Nothing will be inserted.

Day 12, " Database Security"

Quiz Answers
1. What iswrong with the following statement?
SQL> GRANT CONNECTI ON TO DAVI D
Thereis no CONNECTI ON role. The proper syntax is

SQL> GRANT CONNECT TO DAVI D

2. True or False (and why): Dropping a user will cause all objects owned by that user to be dropped as well.

This statement istrue only if the DROP USER user name CASCADE statement is executed. The CASCADE option tells the system to drop all
objects owned by the user as well asthat user.

3. What would happen if you created atable and granted select privileges on the table to publ i ¢?
Everyone could select from your table, even users you may not want to be able to view your data.

4, Isthefollowing SQL statement correct?

SQL> create user RON
identified by RON;

Yes. This syntax creates auser. However, the user will acquire the default settings, which may not be desirable. Check your implementation
for these settings.

5. Isthefollowing SQL statement correct?

SQL> alter RON
identified by RON;

No. The user is missing. The correct syntax is

SQL> alter user RON
identified by RON;

6. Isthefollowing SQL statement correct?

SQL> grant connect, resource to RON,

Yes. The syntax is correct.

7. If you own atable, who can select from that table?

Only users with the select privilege on your table.
Exercise Answer

Experiment with your database system's security by creating a table and then by creating a user. Give this user various privileges and then take them
away.

(On your own.)
Day 13, " Advanced SQL Topics'
Quiz Answers
1. True or False: Microsoft Visual C++ alows programmers to call the ODBC API directly.

False. Microsoft Visual C++ encapsulates the ODBC library with a set of C++ classes. These classes provide a higher-level interface to the
ODBC functions, which results in an easier-to-use set of functions. However, the overall functionality is somewhat limited. If you purchase
the ODBC Software Development Kit (SDK) (you can obtain the SDK by joining the Microsoft Developers Network), you can call the API
directly from within a Visual C++ application.

2. True or False: The ODBC API can be called directly only from a C program.
False. The ODBC API resides within DLLs that can be bound by a number of languages, including Visual Basic and Borland's Object
Pascal.

3. True or False: Dynamic SQL reguires the use of a precompiler.

False. Static SQL requires a precomplier. Dynamic SQL isjust that: dynamic. The SQL statements used with Dynamic SQL can be prepared
and executed at runtime.

4. What does the # in front of atemporary table signify?
SQL Server usesthe # to flag atemporary table.

5. What must be done after closing a cursor to return memory?
Y ou must deallocate the cursor. The syntax is

SQL> deal | ocate cursor cursor_nang;
6. Are triggers used with the SELECT statement?
No. They are executed by the use of UPDATE, DELETE, or | NSERT.
7. If you have atrigger on atable and the table is dropped, does the trigger still exist?
No. Thetrigger is automatically dropped when the table is dropped.
Exercise Answers

1. Create a sample database application. (We used amusic collection to illustrate these points today.) Break this application into logical data
groupings.

2. List of queries you think will be required to complete this application.

3. List the various rules you want to maintain in the database.

4. Cresate a database schemafor the various groups of data you described in step 1.

5. Convert the queriesin step 2 to stored procedures.

6. Convert therulesin step 3 to triggers.

7. Combine steps 4, 5, and 6 into alarge script file that can be used to build the database and all its associated procedures.
8. Insert some sample data. (This step can also be a part of the script filein step 7.)

9. Execute the procedures you have created to test their functionality.
(On your own.)

Day 14, " Dynamic Uses of SQL"
Quiz Answers

1. In which object does Microsoft Visual C++ place its SQL?
In the CRecor dSet object's Get Def aul t SQL member. Remember, you can change the string held here to manipulate your table.

2. Inwhich object does Delphi placeits SQL?
Inthe TQuery object.

3. What isODBC?
ODBC stands for open database connectivity. This technology enables Windows-based programs to access a database through a driver.

4, What does Delphi do?
Delphi provides a scalable interface to various databases.

Exercise Answers

1. Change the sort order in the C++ example from ascending to descending on the St at e field.
Change the return value of Get Def aul t SQL as shown in the following code fragment:

CString CTyssql Set: : Get Def aul t SQL()

{
return " SELECT * FROM CUSTOMER ORDER DESC BY STATE ";
}

2. Go out, find an application that needs SQL, and useit.
(On your own.)

Day 15, " Streamlining SQL Statementsfor Improved Perfor mance"

Quiz Answers

1. What does streamline an SQL statement mean?
Streamlining an SQL statement is taking the path with the least resistance by carefully planning your statement and arranging the elements
within your clauses properly.

2. Should tables and their corresponding indexes reside on the same disk?
Absolutely not. If possible, aways store tables and indexes separately to avoid disk contention.

3. Why is the arrangement of conditionsin an SQL statement important?
For more efficient data access (the path with the least resistance).

4, What happens during a full-table scan?
A tableisread row by row instead of using an index that points to specific rows.

5. How can you avoid afull-table scan?
A full-table scan can be avoided by creating an index or rearranging the conditionsin an SQL statement that are indexed.

6. What are some common hindrances of general performance?
Common performance pitfalls include

1 Insufficient shared memory

1 Limited number of available disk drives

1 Improper usage of available disk drives

1 Running large batch loads that are unscheduled

1 Failing to commit or rollback transactions

1 Improper sizing of tables and indexes
Exercise Answers

1. Make the following SQL statement more readable.

SELECT EMPLOYEE. LAST_NAME, EMPLOYEE. FI RST_NAME, EMPLOYEE. M DDLE_NAME,
EMPLOYEE. ADDRESS, EMPLOYEE. PHONE_NUMBER, PAYRCLL. SALARY, PAYRCLL. POSI TI ON,
EMPLOYEE. SSN, PAYROLL. START_DATE FROM EMPLOYEE, PAYROLL WHERE

EMPLOYEE. SSN = PAYROLL. SSN AND EMPLOYEE. LAST_NAME LI KE ' S% AND

PAYROLL. SALARY > 20000;

Y ou should reformat the SQL statement as follows, depending on the consistent format of your choice:

SELECT E. LAST_NAME, E. FI RST_NAME, E. M DDLE_NAME,
E. ADDRESS, E. PHONE_NUMBER, P. SALARY,

P. POSI TI ON, E. SSN, P. START_DATE
FROM EMPLOYEE E,
PAYROLL P
VWHERE E. SSN = P. SSN
AND E. LAST_NAME LI KE ' S%
AND P. SALARY > 20000;

2. Rearrange the conditions in the following query to optimize data retrieval time.Use the following statistics (on the tablesin their entirety)
to determine the order of the conditions:

593 individual s have the last name SM TH.

712 individualslivein | NDI ANAPQLI S.

3,492 individuals are MALE.

1,233 individuals earn a salary >= 30, 000.

5,009 individuals are single.

I'ndi vi dual _i d isthe primary key for both tables.

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI P_CODE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG _TBL M
I NDI VI DUAL_STAT_TBL S
VWHERE M NAME LI KE ' SM TH%
AND M CITY = "I NDI ANAPCLI S
AND S. SEX = ' MALE'
AND S. SALARY >= 30000
AND S. MARI TAL_STATUS = ' §
AND M | NDI VIDUAL_I D = S. 1 NDI VI DUAL_I D;

Answer:

According to the statistics, your new query should look similar to the following answer. Name i ke ' SM TH% isthe most restrictive
condition because it will return the fewest rows:

SELECT M | NDI VI DUAL_NAME, M ADDRESS, M CITY, M STATE, M ZI P_CODE,
S. SEX, S. MARI TAL_STATUS, S. SALARY
FROM MAI LI NG _TBL M
I NDI VI DUAL_STAT_TBL S
VWHERE M | NDI VIDUAL_ID = S. I NDI VI DUAL_I D
AND S. MARI TAL_STATUS = ' §
AND S. SEX = ' MALE'
AND S. SALARY >= 30000
AND M CITY = "I NDI ANAPCLI S§'
AND M NAME LI KE ' SM TH% ;

Day 16, " Using Viewsto Retrieve Useful Information from the Data Dictionary"
Quiz Answers
1. In Oracle, how can you find out what tables and views you own?

By selecting from USER_CATALOG or CAT. The name of the data dictionary object will vary by implementation, but all versions have
basically the same information about objects such as tables and views.

2. What types of information are stored in the data dictionary?
Database design, user statistics, processes, objects, growth of objects, performance statistics, stored SQL code, database security.

3. How can you use performance statistics?

Performance statistics suggest ways to improve database performance by modifying database parameters and streamlining SQL, which may
aso include the use of indexes and an evaluation of their efficiency.

4. What are some database objects?
Tables, indexes, synonyms, clusters, views.

Exercise Answers

Suppose you are managing a small to medium-size database. Y our job responsibilities include developing and managing the database. Another
individual isinserting large amounts of datainto atable and receives an error indicating alack of space. Y ou must determine the cause of the
problem. Does the user's tablespace quota need to be increased, or do you need to allocate more space to the tablespace? Prepare a step-by-step list
that explains how you will gather the necessary information from the data dictionary. Y ou do not need to list specific table or view names.

1. Look up the error in your database documentation.

2. Query the data dictionary for information on the table, its current size, tablespace quota on the user, and space allocated in the tablespace
(the tablespace that holds the target table).

3. Determine how much space the user needs to finish inserting the data.
4. What isthe real problem? Does the user's tablespace quota need to be increased, or do you need to allocate more space to the tablespace?

5. If the user does not have a sufficient quota, then increase the quota. If the current tablespace is filled, you may want to allocate more
space or move the target table to a tablespace with more free space.

6. Y ou may decide not to increase the user's quota or not to allocate more space to the tablespace. In either case you may have to consider
purging old data or archiving the data off to tape.

These steps are not irrevocable. Y our action plan may vary depending upon your company policy or your individual situation.

Day 17, " Using SQL to Generate SQL Statements"
Quiz Answers
1. From which two sources can you generate SQL scripts?
Y ou can generate SQL scripts from database tables and the data dictionary.

2. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL CNT. SQL

SQL> SELECT ' COUNT(*) FROM ' || TABLE_NAME ||
2 FROM CAT
3/

Y esthe SQL statement will generate an SQL script, but the generated script will not work. You need sel ect ' sel ect’ infront of count
(*):

SELECT ' SELECT COUNT(*) FROM' || TABLE_NAME || ';'
Otherwise, your output will look like this:

COUNT(*) FROM TABLE_NAME;

whichisnot avalid SQL statement.

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANT. SQL

SQL> SELECT ' GRANT CONNECT DBA TO ' || USERNAME ||
2 FROM SYS. DBA USERS
3 WHERE USERNANE NOT IN (' SYS',' SYSTEM ,' SCOTT')
4

Once again, yes and no. The statement will generate an SQL script, but the SQL that it generates will be incomplete. Y ou need to add a
comma between the privileges CONNECT and DBA:

SELECT ' GRANT CONNECT, DBA TO ' || USERNAME ||

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SELECT ' GRANT CONNECT, DBA TO' || USERNAME || ';°
2 FROM SYS. DBA USERS
3 VHERE USERNAME NOT IN (' SYS',' SYSTEM ,' SCOTT')
4

Yes. The syntax of the main statement is valid, and the SQL that will be generated will grant CONNECT and DBA to all users selected.
5. True or False: It is best to set feedback on when generating SQL.

False. You do not care how many rows are being selected, as that will not be part of the syntax of your generated statements.

6. True or False: When generating SQL from SQL, always spool to alist or log file for arecord of what happened.

False. You should spool to an . sql file, or whatever your naming convention is for an SQL file. However, you may choose to spool within
your generated file.

7. True or False: Before generating SQL to truncate tables, you should always make sure you have a good backup of the tables.
True. Just to be safe.
8. What isthe ed command?

The ed command takes you into a full screen text editor. ed isvery similar tovi on a UNIX system and appears like a Windows Notepad
file.

9. What doesthe spool of f command do?
Thespool of f command closes an open spooal file.

Exercise Answers

1. Using the SYS.DBA_USERS view (Persona Oracle7), create an SQL statement that will generate a series of GRANT statements to five
new users: John, Kevin, Ryan, Ron, and Chris. Use the column called USERNAME. Grant them Select accessto hi story_t bl .

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF

SQL> SPOOL GRANTS. SQL

SQL> SELECT ' GRANT SELECT ON HI STORY TBL TO ' || USERNAME ||
2 FROM SYS. DBA USERS
3 WHERE USERNAME I N (' JOHN ,' KEVIN ,' RYAN ,' RON ,' CHRI'S')
a4

grant select on history thl to JOHN;
grant select on history thl to KEVIN;
grant select on history_thl to RYAN
grant select on history_thl to RO\
grant select on history thl to CHRI'S;

2. Using the examplesin this chapter as guidelines, create some SQL statements that will generate SQL that you can use.

There are no wrong answers as long as the syntax is correct in your generated statements.

WARNING: Until you completely understand the concepts presented in this chapter, take caution when generating SQL statements
that will modify existing data or database structures.

Day 18, " PL/SQL: An Introduction”

Quiz Answers
1. How is adatabase trigger used?

A database trigger takes a specified action when datain a specified table is manipulated. For instance, if you make a changeto atable, a
trigger could insert arow of datainto a history table to audit the change.

2. Can related procedures be stored together?
Related procedures may be stored together in a package.

3. True or False: Data Manipulation Language can be used in a PL/SQL statement.
True.

4, True or False: Data Definition Language can be used in a PL/SQL statement.
False. DDL cannot be used in a PL/SQL statement. It is not a good idea to automate the process of making structural changes to a database.

5. Istext output directly a part of the PL/SQL syntax?
Text output is not directly apart of the language of PL/SQL; however, text output is supported by the standard package DBVMS_OUTPUT.

6. List the three major parts of a PL/SQL statement.
DECLARE section, PROCEDURE section, EXCEPTI ON section.

7. List the commands that are associated with cursor control.
DECLARE, OPEN, FETCH, CLCSE.

Exercise Answers
1. Declare avariable called Hour | yPay in which the maximum accepted value is 99. 99/hour.

DECLARE
Hour | yPay nunber (4, 2);

2. Define a cursor whose content is all the datain the CUSTOVER_TABLE wherethe Cl TY is| NDI ANAPOLI S.

DECLARE
cursor cl is
select * fromcustoner_table
where city = '| NDI ANAPCLI S';

3. Define an exception called UnknownCode.

DECLARE
UnknownCode EXCEPTI ON;

4, Write a statement that will set the AMT in the AMOUNT_TABLE to 10 if CODE is A, set the AMT to 20 if CODE is B, and raise an exception
caled UnknownCode if CODE is neither A nor B. The table has one row.

IF (CODE = 'A) THEN

updat e AMOUNT_TABLE
set AMI = 10;

ELSIF (CODE = 'B'") THEN
updat e AMOUNT_TABLE
set AMI = 20;

ELSE
rai se UnknownCode;

END | F;

Day 19, " Transact-SQL : An Introduction”

Quiz Answers

1. True or False: The use of the word SQL in Oracle's PL/SQL and Microsoft/Sybase's Transact-SQL implies that these products are fully
compliant with the ANS| standard.

False. The word is not protected by copyright. The products mentioned do comply with much of the ANSI standard, but they do not fully
comply with everything in that standard.

2. True or False: Static SQL isless flexible than Dynamic SQL, athough the performance of static SQL can be better.

True. Static SQL requires the use of a precompiler, and its queries cannot be prepared at runtime. Therefore, static SQL islessflexible than
dynamic SQL, but because the query is already processed, the performance can be better.

Exercise Answers
1. If you are not using Sybase/Microsoft SQL Server, compare your product's extensions to ANSI SQL to the extensions mentioned today.

Because nearly all of Day 19 deals with Transact-SQL, we did not explore the many other extensionsto ANSI SQL. Most documentation
that accompanies database products makes some effort to point out any SQL extensions provided. Keep in mind that using these extensions
will make porting your queries to other databases more difficult.

2. Write abrief set of statements that will check for the existence of some condition. If this condition is true, perform some operation.
Otherwise, perform another operation.

This operation requires an | F statement. There are no wrong answers as long as you follow the syntax for logical statements (I F statements)
discussed today.

Day 20, " SQL*Plus"
Quiz Answers
1. Which commands can modify your preferences for an SQL session?
SET commands change the settings available with your SQL session.
2. Can your SQL script prompt a user for a parameter and execute the SQL statement using the entered parameter?
Yes. Your script can accept parameters from a user and pass them into variables.
3. If you are creating a summarized report on entries in a CUSTOMER table, how would you group your data for your report?
Y ou would probably break your groups by customer because you are selecting from the CUSTOVER table.
4, Are there limitations to what you can havein your LOG N. SQL file?
The only limitations are that the text in your LOG N. SQL file must be valid SQL and SQL* Plus commands.

5. True or False: The DECODE function is the equivalent of aloop in a procedural programming language.

False. DECODE islikean | F. . . THEN statement.
6. True or False: If you spool the output of your query to an existing file, your output will be appended to that file.
False. The new output will overwrite the original file.

Exercise Answers

1. Using the PRODUCTS table at the beginning of Day 20, write a query that will select al data and compute a count of the records returned
on the report without using the SET FEEDBACK ON command.

compute sum of count(*) on report
break on report
sel ect product _id, product_nane, unit_cost, count(*)
from products
group by product _id, product_nane, unit_cost

2. Suppose today is Monday, May 12, 1998. Write a query that will produce the following output:
Today i s Monday, May 12 1998

Answer :

set heading of f
sel ect to_char(sysdate,' "Today is "Day, Mnth dd yyyy')
from dual

3. Usethe following SQL statement for this exercise:

1 select *

2 fromorders

3 where custoner_id = '001'
4* order by custoner_id;

Without retyping the statement in the SQL buffer, change the table in the FROM clause to the CUSTOVER table:

|2
c/ orders/ cust oner

Now append DESC to the ORDER BY clause:

I 4
append DESC

Day 21, " Common SQL Mistakes/Errorsand Resolutions'
Quiz Answers

1. A user callsand says, "l can't sign on to the database. But everything was working fine yesterday. The error says invalid user/password.
Can you help me?' What steps should you take?

At first you would think to yourself, yeah sure, you just forgot your password. But this error can be returned if afront-end application cannot
connect to the database. However, if you know the database is up and functional, just change the password by using the ALTER USER
command and tell the user what the new password is.

2. Why should tables have storage clauses and a tablespace destination?

In order for tables not to take the default settings for storage, you must include the storage clause. Otherwise medium to large tables will fill
up and take extents, causing slower performance. They also may run out of space, causing a halt to your work until the DBA can fix the
space problem.

Exercise Answers

1. Suppose you are logged on to the database as SYSTEM, and you wish to drop atable called HI STORY in your schema. Y our regular user ID
isJSM TH. What is the correct syntax to drop this table?

Because you are signed on as SYSTEM, be sure to qualify the table by including the table owner. If you do not specify the table owner, you
could accidentally drop atable called HI STORY in the SYSTEMschema, if it exists.

SQL> DROP TABLE JSM TH. HI STORY;

2. Correct the following error:
INPUT:

SQL> sel ect sysdate DATE
2 fromdual;

OUTPUT:

sel ect sysdate DATE
*

ERROR at line 1:
ORA- 00923: FROM keyword not found where expected

DATE isareserved word in Oracle SQL. If you want to name a column heading DATE, then you must use double quotation marks: " DATE" .

{ ¢ Previous Cha ptf:r-'

MACMILLAN COMPUTER PUBLISHING USA
LA YIACOM COMPANY

© Copyright, Macmillan Computer Publishing. All rights reserved.

Indice de Figuras

Root node

Level 1
Children of Root

Level 2
Chitdren of Level 1

Levei3
Chitdren of Level 2

Figure 1.1

Set A SetB

JOIN

UNION

fleEdit Search Options Help

WE)

|SOLPlus: Release 3.1.3.5.4 - Production on Hon May 29 20:20:35 1995
[Copyright (c) Oracle Corporation 1978, 1994, ALl rights reserved,

[Enter password: |

Figure 1.2

Figure 1.3

4 Figure 1.4

File Edit View Formai Table Criterla Records Window Help

(o [o7] (G (=[] [2R) (LKD) O]

Halp |

SDD Module | QTP TestStep |]

unitl
unit2 5
Uint3 7

W[4 [Fecord] D CNE 1 [z

Get help on & menu command, acl. or screen ragion [[INUM |

Application

(Calls ODBC functions)

Y

Driver Manager

(Loads ODBC driver)

A

ODBC Driver
(Processes ODBC calls,
Submits SQL request,
Returns results)

A 4

Data Source

(Underlying DBMS)

Spuciicaian tiome: NN =]
File Type: [Windows (ANST) +
Test Delimiter: [+ [2] Fietd Separator: [o

Eield Information: (fised width anly)

HIH

Fieid Name [Doin Type [Stat [width

f Dates, Times, and Numbers
Dote Order: [MDY'
Dote Delimitor: [§

I Leading Zeros in Dates
™ Four Digit Years

Tima Delimiter:

Decimel Separator. [

5 I 5] [

]

Figure 1.5

Figure 1.6

Fill Specification Grid from Table_..

= SQlLrLoader
Usemame:
Passward:

Database: | <local hosty

« i

e
E—
e —
Control File: | Browss... Help
Optional Filas
Date [Browse
Log [Defaulis
fad]
bieers: [

Figure8.1

Figure 8.2

Oracle SQL*Plus
Search Options Help

File Edit

iSQL> SELECT =
2 FROH BIKES;

FRAMESIZE COMPOSITION

LI

HILERIDDEH TYPE

TREK 2308 22.5 CARBON FIBER
URLEY 22 STEEL

IANT 19 STEEL

uJI 28 STEEL
PECIALIZED 16 STEEL
ANHONDALE 22.5 ALUMINUM

rows selected.

3500 RACING
2000 TAHDEM
1588 COMMUTER
508 TOURING
108 HOUNMTAIN
3000 RACIHNG

¢

el T

Figure 14.1

= Data Sources

Data Sources [Driver]:

) [Microsoft Te: ap [1l
CFPS [Microsoft Access D vel[mdb]] .
InterBase [Borland Interbase]
MMEMONIC [Microsoft Access Driver (*.mdb))
Oracle? [Dracle?1]

PROTRACK [Microsoft Access Driver [*. mdb]]
RS_Buieve (Blieve Data [file.ddf]}

RS_dBASE (dBase Files [~ dbf))

RS_Excel ([Excel Files [*.xls]]

RS_FoxPro [FoxPro Files [*.dbf)) 2

TRUE HHEE:L 550 HUSKER HE
BIKE SF CFT SHR I WVE LA
1E S"iOPPE HOMETOW KS
AAR io OIDTOUN II'E
T CKB BIRE 24 EGLIN

File Edit Session View Extr
saQL Slalenont
SELECT - Run
FROM CU STOMER
Previous

MHext
IS@L Dustpest: i Save Aesult
SELECT = =]
FROH CUSTOMER

=

4]

23 [|

[=

|Database: TYSSaL

| Local Server

Figure 14.2

= InterBase Security

~Server: Local Server
Uszer Mame:

SYSDBA

Add User..

M udll_v User._.

D elete U sel

OK

][tHew |

Figure 14.3

Configuration: Windows 7.1 PL/SOL

Database:

| Oracle Database Manager

Host status: Available. running

Close |

Figure 14.4

= Oracle SQL*Plus [-]-]
File Search Options Help
SOL> +
+ -
c =] Figure 14.5

Figure 14.6

|= Add Data Source

Select which ODBC driver you want to
use from the list. then choose OK.

Installed DDBC Drivers:

Access Data [x mdb]

Btrieve Data [file_ddf]
Btrieve Files [file_ddf]
dBase Files [*.dbf)
Excel Files [*.xls)

Figure 14.7

Data Sources

| 0DBC Interbase Driver Setup

Data Source Name: |TYSS€IL

Description: |Teal:h yourself SAL

Database Name: ID:\SAMS\TYSSIJLHYSSQL

Dptional Settings

Default Logon ID: [PEHKINS

F e

=

Figure 14.8

Resdy

= 0ODBC Data Sources I

Enter Data Source:
|TyssaL

CFPS +
RS5_MS_Access

SYSA

PROTRACK

Diacle?

MNEMONIC

Figure 14.10

Figure 14.9

Available Data Sources:

CARD - admin

PROTRACK - admin

Oracle? - PERKINS

MNEMONIC
]

Dwner: .
Database: .

Figure 14.12

File Edit Yiew Formal Table Criteria cl:mlls Window Help

[=] Mi ft Query ﬂﬂ

] (s (cFlF] (ol (=] (4] (2] (8]

—] Microsoft Visual C++ - TYSSO0L.MAK Al
Wi

Ele Edit Yicw Projcc Browse [Debug Tools gyl ow_|
Bl B [oecsveo J[3] () EIEE) C17] CIIE0]
-
Project Hame: |lyssal I OK I

Froject Path————————

dvsamsimave Myssalityszal mak

OLE Options... I

Hew Subdirectory:

Diive:

d: slavel

3 LEHE

Figure 14.16

[Multiple Document Interface

[Initial Toolbar :

[Printing and Print Preview

[] Custom ¥BX Controls

[] Context Sensitive Help

Memory Model
[] External Makefile
B Generate Source Comments Fl gure 14 17

ORDERS FAAT
DESCRIPTION
PARTHUM
FRICE
| T I3
1. irag fiskd froen erse table to relatend fiskd in arvcther |I= TNUM |

Figure 14.13

SQOL Statement:

SELECT CUSTOMER.ADDRESS, CUSTOMER.NAME,
ORDERS.ORDEREDON. ORDERS PARTNUM

FROM CUSTOMER CUSTOMER. ORDERS DRDERS. PART
PART

(@] MNo Database Support

O Include Header Files
Dat support, N upport! |

Figure 14.14

Microsoft Query - [Dueryl]

= SQL Data Sources

Select Data Source:

RS5_Excel
RS_FoxPio
R5_M5_Access

0K I New. .. I| Cancel I

JADDRESS
MAME
PHONE
REMARKS
STATE

HAME
(ORDEREDON
PARTNUIM

E
100LDTOWH Adh BIKE
100LOTOWN AdA BIKE
CPT SHANE | BIKE SPEC
CPT SHAIVE | BIKE SPEC
CPT SHAIVE | BERE SPEC
CPT SHANE | BEKE SPEC
JALKS BIRE 159607
LE SHOFFE | 193605
LE SHOPPE | 193601
TRUE WHEEL 19960802 10
TAUE WHEEL 15960515 23
TAUE WHEEL 19960630 42
TAUE WHEEL 13360513 |76

Figure 14.19

—_—

Data Source: TYSSAL

WA Fecod] TR IH]

Select View Criena o show/edt criterss imitng 1ecords shown NUM

Figure 14.15

Figure 14.20

Figure 14.18

=] Microsoft Visual C+# - TYSSOL.MAK

Filc Edit Yicw Projedt Browse Dcbug Tools QOptions Windew Help

n Inform

= New Applicat on

AppWizard will cieate a new skeleton application with the following
apecifications:

Clazzes Lo be cieated
Application: CTyssqlApp in TYSSOLH and TYSSAL EPP
Frame: CHainFrame in MAINFAM.H and MAINFRM C]
Document: CTyszqiloc in TYSSODOC.H and 'IYSSQDIJC CPP
AecordView: CTyssgiiew in TYSSOVW.H and TYSSOVW.CPP
Recordzet: CTyszqiSet in TYSSUSET.H and TYSSQSET.CPP
lconnected Lo table CUSTOMER in data source TYSSOL)

il

Featues:
+ Supports the Single Document Intestace [SDI]
+ MSVE Compadible project file [TYS50L.MAK)
+ Initial toolbas and slalus bad in main frame
+ Database support, withoul file suppoil
+ Uses shased DLL implementation (MFC250,DLL)

Install Diveclony: DASAMS\MSYCATYSSAL

I::igure 14.21

App Studio - TYSSQL.AC - IDD_TYSS0L_FORM [Dialog)

Name Addiess State Zin

Fon e

Figure 14.22

Member Yariable Hame:

I 0K I
im_pSet->m_ZIP)
oo i

Property:

[Volue g

Variable Type:
|CSlling |£I

Description: CString with length validation

Figure 14.23

Options Window Help

Initializing

lCompiling resources

[Compiling
Ssanshasvehtyssqlistdaix. cpp
ompiling. .

H:\sansimsvchtyssqlityssql cpp

[“sans msvchtyssqlimainfrs.cpp

l:sansmsvchtyssqlityssqdoc. cpp

{d ssans asvchtyssqlityssqev .cpp

d: ssansnsvchtyssqlityssqset cpp

Linking.

Binding rescurces

Creatlnq brovser database. .
[TYSSQL.EXE — 0 erzor(s). 0 warning{s}

[TYSSOLEAE -0 eror(s), 0 waming(s) [READ[NOM [odis poi

Figure 14.24

Tyssgl Windows Application - Tyssql
Edit Hecord Yiew Help

Name: Addiess State Zin
[vRuE wi | [s50 Husk | [WE | [sn702

Feady
Figure 14.25

THEMT

YW Inao
i File Edit Becord View Help
HFCDL |. |-|«|<|p|p||.
Address Zin
oo] [ro0iora) far—] seres—]
Resdy [NOH]
[+

Figure 14.26

Delphi - Project]

Edit Search Yiew Qumpir: Run Dpliuns Tools tlelp

o

DataBase EXpert

[EEEFCT

IPaga 5 Secd A8 [ATE LnF Caid [12FaM [REC [

Figure 14.27

BDE Configuration Utility - DAIDAPNIDAPIL.CFG X

Pages Help

Add ODBC Driver

Default ODBC Driver: Borland InterBase
Default Data Source Name: | TYSS0L

| 0K I | Cancel I | Help]

=

dBASE Diiver Configuration

\ Drivers f Absses dSystem ADete f Time JHurnber [

Figure 14.28

New alias name:
[TrssaL |
Alias type:
|opAC_Tyssal [*]
| OK I | Cancel i | Help i

Figure 14.29

7 _Help

5l
Pl

Cieates a new form from local or iemote data

: \Ew_ﬂts.ﬂemplale:f
Figure 14.30

|= Database Form Expert

b Choose the lype of form that the Expert will create
from the options below.

wH ' Form Options
:E ' Create a simple form
=

i H (@ Create a master/detail form

i~ DataSet Options
(" Cieate a form using TTable objects

(& [Create a Form using TQuery obje

|x&1m:ell|? ﬂe‘hl] va”} llesotl

Figure 14.31

= Database Form Expert
' Choosze a table to use with the master query

Table Name:

= d:\delphi\bin

List Files of Type: Drive or Alias name:

<User Tables> E A=

| x Cancel]
Figure 14.32

7 Help l |‘ Prev]ll Next |

|=| Database Form Expert

’ Choose a table to use with the master query

List Files of Type: Driye or Alias name:
[<User Tables> [2] [& TvssaL 2]

‘XCam:eI”? Help |]1 Frev ||} Neml

Figure 14.33

=] Database Form Expert

To add fields to the form, click each one in the
Available Fields list and then click the “>" button.
To choose all fields. click the “>>" button.

~ Available Fields: — Ordered Selected Fields: |

PARTNUM
DESCRIPTION
PRICE

(1 [s]

‘Xunmll‘? Help |]1 Prev Il} nm'

Figure 14.34

=] Database Form Expert

Choose the way you want the Expert to layout
fields on the form by clicking one of the options

(® Horizontal
@ Place each field side-by-side starting at the left comer
warking towards the bottom nght.
C Vertical

Place each field directly below the previous one
working from the top down to the bottom,
C Grid
Flace each field within its own column nside a grid object
working from left o right.

‘Xunmll‘? ﬂem||1 |} nm'

Figure 14.35

= Database Form Expert

b Choose a table to use with the detail query

Table Name:

ORDERS

List Files of Type:

Driye or Alias name:
I(Usel Tables>

[2] [& TrssoL [2]

[X concat][2 s | [4 Fiew | [p nen |

Figure 14.36

Database Form Expert

To add fields to the form, click each one in the
Available Fields list and then click the "'>" button.
To choose all fields. click the “>>™ button.

—Available Fields: Ordered Selected Fields: |

DRDEREDON
NAME

PARTHNUM
QUANTITY
REMARKS

(4] (5]

|x Cancel I

7 ten | [4 pev |[p wen |

Figure 14.37

= Database Form Expert

Choose the way you want the Expert to layout
fields on the form by clicking one of the options

(1| .
C Horizontal
Place each field side-by-side starting at the left comer
working towards the bottom right.
C Veitical
Place each field ditectly below the previous one
wotking from the top down to the bottom.
@ Grid
Flace each field within #s own column inside a gid object
working from left to nght.
|x l:am:el]]? Help I |{ Prev l
Figure 14.38
|= Database Form Expert

Select pairs of fields from the field lists that will join the
two queries. Use the add button to add the selected pair

e to the list.
A 5|
I

e | Detail Fields Master Fields
i = M
i ORDEREDON DESCRIPTION
NAME PRICE
QUANTITY
REMARKS
Joined Fields
PARTNUM -> PARTNUM Dolote
Clear
[% cancet | [7 mew | [prev |[p Hew

[<[<]>[m]+][=[~[v]x]e]

FARTNUM DESCRIPTION PRICE

j_l

IFigure 14.40

= Form2

RIRE R EEEEEE

A

PARTNUM DESCRIPTION PRICE
[0] [1anDEM || 1200

ORDEREDON |NAME PARTNUM |E!UANTIT‘|" REMARKS |+
#|a/2/96 TRUE “wHEE 10 1 PAID
| |5/30/96 BIKE SPEC 10 2 PaID
| |BM/96 LE SHOFFE 10 3 PaID
| |BM1498 Adn BIKE 1 1 PAID
[+]
* * -
Figure 14.41
|= String list editor
5 lines
Select +
PART_PARTNUM,
PART_DESCRIPTION,
PART_PRICE
From PART
¥
+ +

| Load... | ‘ Save... I |J DK I | x Cancel I | ? Help

Figure 14.42

User

process

User

User
PrOCEss

System
resources

Figure 14.39

Figure 15.1

Usar
process

User
process

Usor
process

Rollback coMmmIT Changes
segment made to
target
lable
User
transaction ROLLBACK

Changes
discarded

Figure 15.2

System catalog Transaction logs

Tables Tables Indexes Indexes
BigTable la BigTable Ib Bigindex la Bigindex Ib

disko1 disko2 disk03 disk04

Figure 15.3

user j————— SELECT stalement Data dictionary
or

application tablas

Generates SQL
sSaL < statements
Code from SELECT
slalements

Generated SQL can be -
used to quary or madify — Database
the dalabase

Figure17.1

select = =
From products

where unit_cost < 25

u

| stan] £ 0rocs SOLP: |) quosai-Hoimpod | I 542

Figure 20.1

SOL> select =
2 from products;

FRO PRODUCT_HAHE UHIT_COST
FO1 MICKEY MOUSE LAMP 20.95
FO2 HD 2 PEHCILS - 28 PACK 1.99
Fi3 COFFEE MUG 6.95
POl FAR SIDE CALEHDAR .5
P05 HATURE CALENDAR 12.99
FO6 SOL CONMAMD REFERENCE 29.99
FO7 BLACK LEATHER BRIEFCASE 29.99

7 rous selected.

S0L> spool off

| Stant| | Orock S0P | g - 34 i (4| (3] e Holopad | B suseu

Figure 20.2

1 Lagin =gl - Notepad

Fe Edl Sewch Hep

set time on =
ren

select "HELLD 1°

From dual;

Shston| vcosops | Glewieng iFoomin) | & lomsaitiowssd | [551PM

Figure 20.3

Compilacion PDF por JLKinG

© 2004

	Table of Contents
	Acknowledgments
	Week 1 at a glance
	Day 1 - Introduction to SQL
	Day 2 - Introduction to the Query: The SELECT Statement
	Day 3 - Expressions, Conditions, and Operators
	Day 4 - Functions: Molding the Data You Retrieve
	Day 5 - Clauses in SQL
	Day 6 - Joining Tables
	Day 7 - Subqueries: The Embedded SELECT Statement
	Week 1 in Review
	Week 2 at a Glance
	Day 8 - Manipulating Data
	Day 9 - Creating and Maintaining Tables
	Day 10 - Creating Views and Indexes
	Day 11 - Controlling Transactions
	Day 12 - Database Security
	Day 13 - Advanced SQL Topics
	Day 14 - Dynamic Uses of SQL
	Week 2 in Review
	Week 3 at a Glance
	Day 15 - Streamlining SQL Statements for Improved Performance
	Day 16 - Using Views to Retrieve Useful Information from the Data Dictionary
	Day 17 - Using SQL to Generate SQL Statements
	Day 18 - PL/SQL: An Introduction
	Day 19 - Transact-SQL: An Introduction
	Day 20 - SQL*Plus
	Day 21 - Common SQL Mistakes/Errors and Resolutions
	Week 3 in Review
	Appendix A - Glossary of Common SQL Statements
	Appendix B - Source Code Listings for the C++ Program Used on Day 14
	Appendix C - Source Code Listings for the Delphi Program Used on Day 14
	Appendix D - Resources
	Appendix E - ASCII Table
	Appendix F - Answers to Quizzes and Exercises
	Indice de Figuras

