

The development of the Crystal Clear Electronics curriculum was supported by the European Commission

in the framework of the Erasmus + programme in connection with the “Developing an innovative

electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” project

number.

The project was implemented by an international partnership of the following 5 institutions:

• Xtalin Engineering Ltd. – Budapest

• ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely

• Bolyai Farkas High School – Târgu Mureș

• Selye János High School – Komárno

• Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín

Copyrights

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the

coordinator. The materials are designed for educational use and are therefore free to use for this purpose;

however, their content cannot be modified or further developed without the written permission of Xtalin

Engineering Ltd. Re-publication of the materials in an unchanged content is possible only with a clear

indication of the authors of the curriculum and the source of the original curriculum, only with the written

permission of Xtalin Engineering Ltd.

Contact http://crystalclearelectronics.eu/en/

info@kristalytisztaelektronika.hu

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

11 - Microcontrollers II.
Written by János Tóth

English translation by Xtalin Engineering Ltd.

Revised by Gábor Proksa

By the end of this chapter, you will able to implement the running lights of K.I.T.T. from the Knight Rider

series.

INTRODUCTION TO THE DEVELOPMENT ENVIRONMENT

CREATING A NEW PROJECT
During the previous parts, we have installed the development environment, now let’s get a closer look at

it, and create our project. This can be achieved from several places, the easiest way for me is the file

menu. Choose the New menu then the Project menu.

Figure 1 - Create new project menu

After that, we need to set the type of the project. We can choose from C/C++ projects, or even assembly

projects. Choose C/C++ on the left, then choose „GCC C Executable Project”. This project type indicates

that we would like to write our code in C language, and we would like the project to be able to run

(executable). Give a name for the project in the Name towards the bottom of the window, I’ve chosen the

MyAppl name, but you can give it a different name if you’d like. With Location option you can set the

directory where you would like to save your project, but the default location works fine too. Click on the

OK button to move on.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 2 - New project window

In the next window we can choose the type of microcontroller we want to use. There is a search field in

the upper right corner to help the selection. In our case, search for the ATmega16A keyword to quickly

find the correct device. Of course, if you are using another microcontroller, choose the correct one. Under

the device info pane, you can find the controller’s datasheet and the supported programmer devices.

Pressing the OK button creates our project.

Figure 3 - Device selection, ATmega16A

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 4 - The created blank project

When the project is created, the development environment creates a C file, with the same name as the

project. This file contains a main function with an infinite loop (the while(1) with the curly braces) inside.

Now, we can start to develop software for our microcontroller.

FUSE BITS - MEANING AND SETUP
Before we talk about FUSE bits, we must clarify a very important definition, because you will surely see it

during embedded development: the register. Registers are used to store data and with their help, the

peripherals inside our microcontroller can be configured, or data can be sent to, or read from them. The

size of a register is usually given in bits, and can vary between 8, 16 or 32 bits (or even 64 bits in newer

microcontrollers). You can imagine a register as a shelf divided into equal sections corresponding to its

size. We can place something or take something from these sections, which correspond to the bits of a

register. In the following picture, you can see one of the registers called the PORTA register, from the

microcontroller’s datasheet. This is an 8-bit register and every single bit can be written or read. There are

some registers where some or even all bits can only be read and not written. The initial value means the

default value of each bit after turning on the microcontroller. In this case every bit will be 0.

Figure 5 - Structure of Port A register

Previously I’ve mentioned that we store data in registers, and that in microcontrollers, we use memory to

store data. You can guess from here, that registers are nothing but small sections of memory. In order to

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

reach these small parts of the memory, we need their addresses, which tell us where exactly these

sections can be found inside the whole memory. Similarly, to how a postman also needs to know the

street, house number, floor and door number to successfully deliver mail; knowing only the name of the

city isn’t enough. All the registers have a fix address, that never changes. Remembering these addresses

would be hard, and in many cases the registers are on different addresses in different models of

microcontrollers, which means we would have to re-write our whole program if we wanted to use another

controller, and hope that we didn’t mess up any of the addresses. To avoid that we can use a bit of help.

It’s much easier if we only need to write down, that the PORTA register’s value is 0, instead of searching

for the address of the PORTA register in the datasheet and writing the value 0 to this address. For most

microcontrollers, the manufacturer usually publishes a header file, where all the names and addresses of

the registers can be found. This header file can be included in our program, and we can refer to registers

by their names. When the compiler creates machine code from our code, it will translate our register

names to the correct address using the header file. If we want to use a microcontroller where the registers

have different addresses, we only need to change the header file and not our code.

After talking about the registers, let’s move on to the FUSE bits. At this point it probably won’t surprise

you that the FUSE bits are inside a register too, namely the FUSE register. The most important settings of

the microcontroller can be set with the help of these FUSE bits. Be careful, a badly set FUSE bit

permanently sever the connection between us and the microcontroller, in this case, we won’t be able to

program our microcontroller anymore, and we need to replace it. You can see the FUSE bits of the ATmega

16 in the picture below.

Figure 6 - FUSE register setup

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

The description of every single bit can be found in the datasheet, now we’ll discuss only those, that will

be used further on. One of the most important bit is the SUT_CKSEL, which is not just one bit but a setting

that has 6 bits. With it you can set which oscillator the microcontroller will get the clock signal from. In

our example the built-in 8 MHz internal oscillator is selected, but later you can build a circuit with a more

accurate external oscillator. In that case you will have to choose the correct oscillator here. This setting is

very important, because if you set a wrong value, then the timings will be wrong, and the peripherals

won’t work properly.

In order to save the settings, you must click on the Program button while the microcontroller is connected

to the programmer and the PC. When you click Program, the values of the FUSE register are saved inside

the microcontroller, and the microcontroller will use these values at the time of next launch.

Warning! Make sure that the JTAGEN fuse is set before you program the fuse bits to your device (it is

set by default, the checkbox is selected). If you unset the JTAGEN fuse, and program that setting, you

won’t be able to program your microcontroller anymore, and you will have to replace it.

BLINKING AN LED

So far, we have learned about the development environment and the FUSE bits. Now, let’s go over why

the circuit built in the 9th chapter is working.

Load the CE11_1_LED_blink_delay project into the development environment. You can do this by clicking

File → Open → Project/Solution, and choosing the project file in the pop-up window.

Figure 7 - Open project

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

When the project finishes loading, and you can see the relevant files of the project inside the Solution

Explorer window (upper right), open the “main.c” file. This file contains the main function that is first

executed after switching on the microcontroller.

Figure 8 - main.c file

The first command calls another function, the IOInit() function. It was already mentioned in chapter

9, that the PA0...7, PB0...7, PC0...7, PD0...7 pins can be used as digital inputs and digital outputs. In order

to light up our LED, we need to set the PA0 pin to logic high. This means, that an internal switch connects

the chosen pin and the supply voltage together. If we set PA0 to logic low, then the pin is connected to

ground, and the LED won’t light up.

We have also mentioned in chapter 9, that if we would like to set a pin’s logic value, then the pin has to

be set up as a digital output. We can use the register called DDR (Data Direction) for this purpose. As

described in the datasheet, each port has its own DDR register, for example, for PORTA the register is

called DDRA.

In the DDR register each bit corresponds to one of the pins of that port. The DDRA register contains the

data direction description for each pin of PORTA. According to the datasheet, if the value of a given bit is

1, then the corresponding pin works as a digital output. So, for the PA0 pin to be a digital output, we have

to set rightmost bit (bit zero) inside the DDRA register to 1. This can be easily achieved if we assign the

value of the register as a binary number. In case of a binary representation, the value of every single bit is

represented by a 0 or a 1. Right click on the IOInit() function, then choose the Goto Implementation

option from the drop-down menu (or use the Alt+G keyboard shortcut). The development environment

will search for the place where the function is defined, and offer the results. Choose the upper option

(io.c), where we can see exactly what the function does. Look at the line below:

DDRA = 0b00000001;

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Here, the function sets the value of the DDRA register. As you have seen in chapter 10, the “0b” prefix

tells the compiler we would like it to interpret the following number as a binary number. We can see in

the example code, that 8 digits follow the prefix, which means an 8-bit number, that is exactly the size of

the DDRA register. In the first position, the highest place-value can be found, in our case this is bit 7. This

is the same way we write the numbers in the decimal numeral system. In the example code, you can see,

that only the final number has a value of 1, and the others are all 0, so it sets bit zero to 1 and all the

others to 0.

Assigning a value to set the register is recommended only if you would like to set all bits in the register at

once to a known state. If you want to set only 1 bit, using some built-in functions is recommended. To set

and clear (write to 1 and to 0 respectively) you can use the sbi (setbit) and cbi (clearbit) functions. These

functions are declared inside the ”compat/deprecated.h” files. To use them, we need to include this

file into our code with an #include directive placed in the “.c” file. Our case is no exception, we have

to write #include ”compat/deprecated.h” at the beginning of our file. Setting a bit to 1 with

the sbi function looks like this:

sbi(register, bitposition);

In our example, setting the zero bit of the DDRA register to 1, happens with the following command:

sbi(DDRA,0);. If we would like to set a bit to 0, then we use the cbi function. As an example, to revert

the 0 bit of the DDRA to 0, we can do this using the following command:

cbi(DDRA, 0);

Let’s have a look at what type of registers belong to the individual ports. Apart from the DDRx registers,

there are PORTx and PINx registers as well. The PORTx register performs two functions depending on the

direction of the given pin. If a certain pin is set up as an output, then we can set the pin’s value to logic

high or logic low by the setting the PORTx register’s corresponding bit. If we write 1 to the position, then

the corresponding pin will be set to logic high, in case of 0, it will be set to logic low. The other scenario

is, that the pin is set up as an input. In that case, we can turn on the pull-up resistor of the pin with the

PORTx register and read the status (logic high or low) of the pin with the PINx register. If you think of the

register as a variable with 8 bits (the PINx register is 8-bit wide) then each bit position corresponds to pin

of the port. For example, if the value of PINB is 0b00000001, then the zero pin (PB0) has a value of logic

high, all the others have a value of logic low. If the value of PIND is 0b01001010, then the 6th, 3rd And 1st

pins (PD6, PD3, PD1) have logic high values, the others (PD7, PD5, PD4, PD2 and PD0) have logic low values.

Looking further in the IOInit() function you can see that, we turn off the pull up resistors for every

port, and set up all the pins as inputs except the PA0 pin. So, in this function, the initialization of the ports

and pins happens (inputs and outputs), which is why it is called “IO init”.

Looking back at the main.c file, after the initialization an infinite while(1){} loop follows. The

commands inside the infinite loop will be executed over and over until we restart the controller, or an

error occurs. The first command of the loop sets the PA0 pin to logic high value through the PORTA

register. We already know how this works from the previous section. After running the code, the LED

connected to the pin will light up. In order to flash the LED, it’s not enough to just turn it on, we’ll have to

turn it off as well, then turn it on again, and so on. Thus, after turning it on, inside the cycle, we need to

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

turn it off too, which can be achieved by setting the PORTA register’s 0 bit to 0. Now build the circuit which

we tested in chapter 9 again.

Figure 9: Wiring diagram of blinking an LED

Then upload the example code to the microcontroller without changing anything by clicking on the Start

Debugging button.

Figure 10: Upload of program (reminder)

We can see, if the main loop contains only these two commands, the LED won’t flash, but continuously

light up instead. But why? It turns out it is flashing, but we just cannot see it. During the previous chapters,

we have already talked about that the microcontroller executes a command after every single clock signal.

The clock signal of the microcontroller is 8 MHz. This means, that it executes 8 million commands under a

second. Our main loop has only two commands to execute, so we turn off the LED 4 million times under

a second, and then back on. Our eyes cannot see a change this fast. We should put a delay between the

turn on and turn off commands somehow. Think about how we could achieve this. How to put the

execution on hold in the microcontroller a certain period of time? We will talk about this a little bit later,

but for now let’s use the pre-existing _delay_ms() function, which will make the controller stop and

wait for some amount of time, specified by the parameter of the function in milliseconds. Use this function

after calling each of the two commands, so the processor will wait for a certain time after turning the LED

on or off. Let the delay be 500 for example, therefore we will turn on and off the LED every half second.

Write _delay_ms(500); after both turning on and turning off the LED:

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 while (1)
 {
 //Turns on the LED
 PORTA = 0b0000001;
 //Wait
 _delay_ms(500);
 //Turns off the LED
 PORTA = 0b0000000;
 //Wait
 _delay_ms(500);
 }

This ensures, that the LED flashes only once a second. Upload the code to the controller and check its

operation.

DELAY VERSUS COUNTING CLOCK SIGNAL

In the previous section we have talked about the way we can make the microcontroller wait, by using the

_delay_ms function. Is there another way to achieve the same effect? Let’s have a look at the things

we’ve learnt so far. We know that the microcontroller executes a command in every clock signal cycle.

We also know the clock signal frequency. From these two we can calculate the number of commands that

are executed under a certain amount of time. For example, if we have a variable, and we continuously

increase its value inside a cycle, then we’ll get a counter which steps forward one after every clock signal.

All we have to do is move the counter until it reaches a value we have calculated for our desired delay.

An example: The clock signal of the microcontroller is 8 MHz, so 8 million commands are executed each

second. Create a variable and increase its value inside a loop, until it reaches 8 million. In this case, if we

check the variable at the end of every loop, then 1 second has elapsed when the counter reaches 8 million.

We can implement a delay algorithm using this method, which can be used if we do not require very

accurate timing, just an approximate delay. On the other hand, the _delay_ms function provides very

accurate timing. An example function:

void _own_delay_ms(unsigned int delay)
{
 //internal variables
 static unsigned int counter;
 static unsigned int time;

 //reset the elapsed time
 time = 0;
 //until it reaches the required time
 while(delay > time)
 {
 //at the beginning of every cycle reset the counter
 counter = 0;
 //increase the value of the counter until 8000

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 //theoretically we wait 1 second with this
 while(counter <= 8000)
 {
 counter++;
 }
 //increase the value of elapsed time
 time++;
 }
}

Copy this function before the main function, and replace our calls of _delay_ms(500) to

_own_delay_ms(500).

while(1)
{
 //Turns on the LED
 PORTA = 0b0000001;
 //Waits
 _own_delay_ms(500);
 //Turns off the LED
 PORTA = 0b0000000;
 //Waits
 _own_delay_ms(500);
 }

After uploading the code, we can see that the LED is flashing, but it’s much slower than we expected. One

period is just under about 6-7 seconds instead of 1. The reason for this is we are not only executing one

instruction in each loop (counter++), but also a bunch of other instructions:

1. counter reading the value of the variable from the memory to the operational register

2. 8000, writing it into the operational register as a value

3. executing the comparing operation(<=)

4. jumping to the counter++ or the time++ lines according to the result of the previous

operation

5. increasing the value of the counter or the time variable

6. writing the value of the counter or the time variable to the memory

7. jumping to the beginning of the cycle

It isn’t that easy to calculate how much time it takes to run a delay cycle like this, for this reason it’s

inappropriate for precise timing as we’ve mentioned before. If we write 1195 instead of 8000, then the

delay will be quite acceptable, but it’s still not accurate enough.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

It’s worth to mention about the example, that the variables may overflow. We know that our variables

are stored in finite sized memory, so they cannot be arbitrary big. An unsigned 8-bit variable (char) can

have a value from 0 to 255. Why would that be a problem? Let’s have a look at this number represented

in binary, to see what happens at the time of overflow. Remember, the processor also works with in

binary. If we write the decimal 178 in binary, stored on 8 bits we’ll get 0b10110010. Add decimal 150 to

this number, which looks like 0b10010110.

 10110010

 +10010110

 101001000

The result cannot be represented with an 8-bit number because it is larger than 255. However, we store

the result as an 8-bit number in memory, so the highest place-value won’t have a place to go. In technical

terms this is called an overflow (like overfilling water in a glass). In this case, the calculated result will be

72 (0b01001000) instead of the expected 328 (0b101001000). This could cause a big problem with any

mathematical operations, so you have to watch out for the variables’ range.

Variable Type Size Range

char 8 bit 0 - 255 or -128 - 127

unsigned char 8 bit 0 - 255

signed char 8 bit -128 - 127

int 16 bit -32768 - 32767

unsigned int 16 bit 0 - 65535

long 32 bit -2147483648 - 2147483647

unsigned long 32 bit 0 - 4294967295

Think about increasing the variable in the previous example until it reaches 8000 (or 1195). If my counter

was an 8-bit variable, then there wouldn’t be any problems until 255, each cycle would increase the value

by 1. However, if we added 1 to the maximum value of 255, we wouldn’t get 256, but 0 again. This way

the counter would never reach 8000 or 1195, or any value higher than 255, and the program would stay

in an endless loop forever.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

BLINKING 2 LEDS

In the previous section we have seen, how we can flash an LED with our microcontroller. We have learnt

how we can configure the pins to be outputs, and how we can turn on and turn off the LED connected to

a pin. We’ve also examined how we can introduce delays in our code.

In this section, we will make things a little more complicated. We don’t want to flash only a single LED,

but two LEDs. First, we have to build the circuit by modifying the previous circuit a little bit. Connect a

second LED and resistor to the PA2 pin, similarly to the first one on PA0.

Figure 11 - Circuit for blinking two LEDs

Now it’s time to modify the code. Open the CE11_2_LED_blink_delay project first to keep our previous

example as well. Remember what we did that time:

1. The pins have to be configured as an output

2. The pull up resistors of the pins have to be turned off

3. Changing the state of the pin at the right time

The configuration of the pins, i.e. the IOInit() function, can be found in the io.c file just like last time,

so let’s make the changes here first. We already know that we can set the direction of the pins with the

DDRx register. In this case, we would like to configure PA0 and PA2 pin as an output. In our example code

we configure the whole DDRA register with a single command, so it’s makes sense to modify this.

Alternatively ever bit could be set with calling cbi() and sbi() functions. Since we entered the value

of the register in binary, we simply need to change to 2nd bit’s position to 1 as well. The command will

look like the following:

DDRA = 0b00000101;

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

This file doesn’t need any further modifications, so you can save and close it. If you have connected the

LED to a pin of another port, let’s say PB5, then we should set the value of the DDRB register’s 5th bit

instead.

This is the end of the configuration process; you can now control the pins. We will do this in the main.c

file just like last time. We will modify the status inside an infinite loop too, as we did it at the time of LED

flashing. Currently, we set the whole port during state change by assignment, but if we would like to

control more than one pin independently, this isn’t the best solution. Let’s use the already learnt sbi()

and cbi() functions instead. With them, it’s guaranteed, only that particular pin will change its state,

and the others will remain the same.

At first, we will flash the LEDs alternately, as long as one lights up, the other doesn’t. Let the time between

each status change be 1 second, so in every second the other LED will light up. The initial state should be

such, that the LED on the PA0 pin lights up first and then 1 second later the one on PA2 pin does. To

achieve this, in the infinite loop the first command should be sbi(PORTA,0); and the second

command should be cbi(PORTA,2);. Then we wait for 1 second, so the next command is

_delay_ms(1000); Next, we have to make changes to the states again, setting the PA0 pin to logical

low and the PA2 pin to logical high. Thus, the following two commands are cbi(PORTA,0); and

sbi(PORTA,2); Now the two pins are inverted, only a final but very important command is missing,

waiting for 1 second again. If we would omit the second _delay_ms(1000); command the infinite

loop would start over immediately, switching the two LED-s back to the first state.

 while (1)
 {
 //Turns on the LED1, turns off the LED2
 sbi(PORTA,0);
 cbi(PORTA,2);
 //Waiting
 _delay_ms(1000);
 //Turns off the LED1, turns on the LED2
 cbi(PORTA,0);
 sbi(PORTA,2);
 //Waiting
 _delay_ms(1000);
 }

Save the code, then compile and download it to the microcontroller. If you did everything right, you should

get a compiled code without errors and the LED-s flash as expected.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

A small programming trick for inversion

We would like to show a small trick which can be used to implement the same flashing or simply to switch

a pin’s state back and forth. If we would like to invert a pin’s state, we can use bitwise operators as well.

Let’s stick to the code where we would like to flash two LEDs. We’re inverting the state of the PA0 and

PA2 pins at specified intervals. An initial value is needed. Let’s put this before the infinite loop, because

we would like to set this only once. Like this: PORTA = 0b00000001; With that, we have set the PA0

pin to logic high value and the PA2 pin to logic low value.

Now for the trick. We have the initial state and we would like to invert the state of the two pins. Use the

command PORTA ^= 0b00000101; This will change the state of the two pins in a single instruction.

What exactly did we do? We know, that we have to modify the PORTA register’s two bits, and leave the

others as they are. The previous code contains language abbreviations, the ^= operator is just the short

way of writing:

PORTA = PORTA ^ 0b00000101;

The two code does the same thing. Take a look at the longer one to better see how it works. We’ve already

talked about bitwise operators in previous chapters, so I won’t explain those. Here we are using the

exclusive or operator. We know, when using the exclusive or, the result will be 1 if the bits on the right

and left side differ from each other, which is the property we are exploiting here. Where we don’t want

to modify the state, we write 0, where we would like to modify the state, we write 1. The following table

will help you to understand why this works:

The table is identical to the the truth table of the exclusive or operator. We see that if the modifier bit is

0, the operation retains the original state, while if the modifier bit is 1, the operation flips the bit. The

complete alternate LED blinking can be implemented as shown below, with only the exclusive or operator

and a delay inside the infinite loop.

PORTA = 0b00000001;
while (1)
{

PORTA ^= 0b00000101;
_delay_ms(1000);

}

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

