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22 - Processing Analog Signals, the ADC 
Written by Erzsébet Szomorú-Ozsváth 

English translation by Xtalin Engineering Ltd. 

Revised by Gábor Proksa, Gergely Lágler 

INTRODUCTION 

We often face the problem in real-life where we want to measure some physical quantity, like what is the 

temperature, how noisy the street is, what color a petal is, or how tall someone is. These values usually 

vary in time. If we measure them continuously, these quantities can be represented by analog signals. An 

analog signal is a continuous physical quantity that is a continuous function of time. This means, that the 

analog  signal  takes  a  value  at  any  given  moment,  and  this  value  may  even  be  different  at  any  given 

moment. 

We want the measured values to be displayed, stored in a user-friendly format, or to be transmitted to 

other devices such as a computer, microprocessor, FPGA, etc. for further processing. Since these devices 

operate  with  digital  signals,  therefore  analog-to-digital  conversion  is  essential  for  processing  analog 

signals. Generally, the analog signal is a voltage to which a number is assigned, so the signal is converted 

to a series of number. 

A digital signal is a signal that consists of a discrete (multiples of a unit) set of values, so it can only take a 

finite number of values. 

In practice, we always have to make a trade-off when mapping analog signals to digital, because we need 

to choose the range and accuracy of the measurement. Of course, when measuring something we want 

to approach the real value as closely as possible, so we want to minimize the difference between the real 

value and the measured value, in other words the measurement error. 

However, it is not the same if we want to measure the height of a house with an accuracy of meters or 

the height of a new-born with an accuracy of cm. When measuring the house, we do not start measuring 

with millimeter paper, while it is pointless to measure a new-born baby with a one-meter long stick. The 

range  also  determines  the  accuracy  of  the  measurement,  i.e.  the  resolution.  We  can  see  that  it  is 

important to know the parameters of the signal we want to measure in order to select the appropriate 

measuring device. 

For example, if we want to measure the height of a person with a tape measure, the biggest measurement 

error  we  can  make  (if  we  are  making  accurate  measurements)  is  a  few  millimeters  because  of  the 

resolution of our measuring device (even though we know that people are growing continuously, and not 

in centimeter or millimeter increments). We can't read smaller values than a millimeter from the tape 

measure. 

Another example could be that even though we see the temperature rise on the mercury display of a  

traditional outdoor thermometer continuously, due to the scale the temperature can be read only with 
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the accuracy of one degree Celsius or one tenth of a degree Celsius. We are trying to describe a continuous 

quantity by its discrete value, that is, quantize it. 

As shown in the examples above, many signals are not available in the form of an electrical signal. In such 

cases it has to be converted into an electrical signal using appropriate transducers or sensors (see the 

chapter on sensors for more details). Then, this continuous electrical signal is connected to the input of 

an Analog-Digital Converter (ADC). Usually the signal range can only be positive, but there are also bipolar 

converters that operate in the negative range as well. 

THE ANALOG-DIGITAL CONVERTER 

The ADC is a converter which converts the continuous electrical signal connected to its input to a digital 

signal and the digital equivalent of the analog signal measured periodically (sampling time) appears on its 

output. The figure below shows a signal connected to an ADC input in green and the signal appearing on 

the output in red. Time is on the x-axis and the signal value is on the y-axis. After marking the maximum 

of the signal range, the range is divided into 8 equal parts. The measurement range is the range between 

the minimum and maximum value of the signal to be measured, in which we want to measure with a 

certain accuracy. The digital output shows which small range, interval, the measured signal falls into. For 

example, a value of 3 means that the output is in the third interval. 

 
Figure 1 – Input (green) and output (red) signal of the ADC 

This example highlights several problems we face during analog-digital conversion. First of all, the signal 

we received does not look like the input, the shape is different, there is a lot of distortion. The figure 

above shows that the peak amplitude of our input signal is greater than the maximum of the selected 

measurement range, so the output signal gone into “saturation”, which means it has reached the highest 

possible value. If this happens, we have no information about the signal above the saturation range, as 
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the ADC cannot show a higher value. This phenomenon indicates that the Full Scale of the selected ADC, 

that is, the maximum input analog voltage the converter can measure without saturation, is too small. 

There are two types of ADCs: unipolar ADCs can measure between a reference voltage and ground, while 

bipolar ADCs can measure in a symmetric range around ground. 

The Atmel microcontroller used in our measurements also has an ADC peripheral. On some of its pins we 

can measure and digitize the voltage appearing there. The microcontroller datasheet indirectly reveals 

that it is a unipolar ADC, because it has a pin, called "AREF", which stands for the ADC analog reference 

voltage input pin, and only a positive voltage can be connected to that pin. 

We can decrease the distortion by measuring more frequently, increasing the sampling frequency, thus 

reducing the sampling period. The waveforms with a higher sampling frequency are shown in figure 2. 

 
Figure 2 – Increasing the sampling frequency 

You read about the operation of the ADC, including how to adjust the sampling frequency in the second 

half of this chapter.  

Another way to decrease the distortion is to make the intervals on the y axis smaller, see Figure 3. 
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Figure 3 – Increasing the resolution 

The number of intervals is called resolution, which shows that how many different values the analog input 

signal can be converted to by the device. This is usually given by number of bits. In our example, the 10-

bit ADC has a resolution of 210 , so it divides the measuring range into 1024 equal intervals. If the reference 

voltage is X, then we can measure with X/1024 V accuracy. This brings us to the next important concept, 

LSB (Least Significant Bit). The LSB shows the smallest difference in the input voltage needed to change 

the lowest bit of the output, i.e. it is the voltage of a digital step. The LSB can be calculated using the 

following formula:  𝐿𝑆𝐵  = 𝐾𝑇(2𝑛  −  1),  
where KT is the Full Scale (FS), and n is the number of bits. 

Example 

Calculate the LSB of a 10-bit ADC if the reference voltage is 5 V! 

Solution: 

The input range is 0-5 V, so the full scale (FS) is 5 V, and the number of bits is 10.  𝐿𝑆𝐵  =  5 [V]210 − 1  =  0.00489 [V] =  4.89 [mV] 
 

What would the resolution be if we were only using 8 bits instead of 10? 
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From the above example, it is clearly visible that ADCs have to be selected carefully taking the application 

specific circumstances into consideration. In reality, an engineer must always pay attention to price as 

well. The more accurate, higher-resolution analog-to-digital converter we choose, the more expensive it 

will  be.  Just  think  about  that  the  price  increase  of  a  component  in  a  computer  hardware,  which  is 

manufactured by the million will increase the total cost of production by a million times the price increase 

of the component. As a result, mass-produced products are usually not overdesigned (using better, more 

accurate, stronger than absolutely necessary). Unfortunately, the direct consequence of a price-sensitive 

market is that manufacturers often only want to meet the minimum requirements, therefore they do not 

design for safety margins, and this is partly the reason why electronic devices often fail after a few years, 

and unfortunately, garbage is produced in enormous amounts. 

OPERATING MODES 
Let's look at the different operating modes of ADCs, especially the ADC in the ATMega16A microcontroller 

(see for more details Chapter 22, "Analog to Digital Converter" of the datasheet). 

Asymmetric mode 

The  asymmetric mode means  that  the  voltage measured  on  the  input  channel  (pin)  is  relative  to the 

reference voltage. In this case, separate signals can be connected to each input pin. We will use this mode 

for the measurements used in this chapter of the curriculum. 

Symmetric/differential mode 

The other mode is the differential or symmetric mode, where the input signals run on two wires instead 

of  a  single  wire.  This  is  especially  important  for  high  frequency  signals  (above  1  -  10  MHz)  to  avoid 

unwanted noise. The consequence of this is that we cannot utilize each wire individually, but only in pairs. 

If more differential channels are required, then another type of microcontroller or an external ADC should 

be chosen. 

How to avoid noise? 

In wires, external magnetic and electrical fields can cause relatively large interference even  at a short 

distance. With a certain amount of noise on the receiver side, it's hard to differentiate the original signal 

from the noise. To avoid this, there are many ways to eliminate noise. 

Hardware noise reduction: 

One of the most commonly used methods is using shielded wires. A metal sleeve is wrapped around the 

wire, acting as a Faraday cage. A good example is the commonly known coaxial cable.  

Another important noise elimination method is the symmetric signal transmission mentioned above.  

A twisted pair consists of two wires spirally twisted together. The point is that the signals of the pairs do 

not interact. It is used for telephone cables and internet cables. There are two types: Unshielded Twisted 

Pair (UTP) and Shielded Twisted Pair (STP). The shielded version protects against external noises as well.  

In case of printed circuit boards, separate ground layers are usually placed between the high-frequency 

signal route layers so that the signals do not interact. The effect of the wires on each other can be further 

reduced if the wires are perpendicular to each other in the different layers. 
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Software noise reduction: 

The most common software noise reduction mode is averaging. In this case, we make more 

measurements than necessary and average the measured values: a = 𝛴 𝑎𝑛 / 𝑛 

USING THE ADC ON THE MICROCONTROLLER 
Let's see the main features of the ADC built into the microcontroller: 

•  8 channels in asymmetric mode 

•  7 differential input channels in symmetrical mode 

•  successive approximation (we will talk about this later) 

•  10 bits 

•  measurement range up to 𝑉𝑟𝑒𝑓  voltage 

•  interrupt when conversion is completed 

•  a maximum sampling rate of 15 ksps at maximum resolution 

In this microcontroller the differential mode can be used by placing the negative signal on the ADC1 pin 

and  the  other  on  one  of  the  other  7  channels.  However,  this  mode  is  only  available  with  the  TQFP 

packaged microcontroller and not with the DIP package. Nevertheless, in our example measurement high 

noise  immunity  is  not  required,  the  asymmetric  mode  can  be  used  as  it  is  common  in  low  frequency 

measurements. See chapter 22 of the datasheet for a more detailed explanation. 

The ADC requires 50 to 200 kHz clock for accurate operation. If the 10-bit resolution is not required, the 

ADC clock may be over 200 kHz. We are satisfied with only 8-bit resolution as well. The conversion takes 

13 ADC clock cycles (except for the first conversion because there it takes 25). 

Calculation 

Let’s calculate the maximum sampling frequency, that can be achieved in 10-bit mode.  

The highest speed can be achieved with the highest possible clock rate, so 𝑓  =  200 [kHz] is selected as 

the clock rate. One conversion takes place over 13 clock cycles, so a maximum sampling rate of 200 ÷13  =  15.4 [ksps(kilosamples per second)] can be achieved. This is the same as the value given in the 

datasheet. 

In our examples, the built-in RC oscillator is used to generate the microcontroller clock. The operating 

frequency in this mode can be set with bits CKSEL3:0 according to table 8.8 of the datasheet. We want 

to set 8 MHz clock, which is achieved by setting the CKSEL3:0 bits to 0100. To produce an 50-200 kHz 

clock, which is suitable for the ADC, the microcontroller's 8MHz clock is divided by 128 with the prescaler 

(see later the ADCEnable() function), which means a 62.5 kHz clock. From this, the sampling rate is 

approximately 4.8 ksps. 
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Measurement 1 

Assemble the following circuit. 

 

 
Figure 4 – Measurement layout 

For better understanding, we recommend reading the datasheet simultaneously to the solution. 

Task: 

Compare the voltage of the potentiometer on PA1 (ADC1) with the voltage created by the voltage divider 
with the NTC. Use A/D conversion for the measurement. If the NTC voltage is greater than that measured 
voltage on the potentiometer, the LED on the PA0 pin should light up, otherwise it should not light up. 
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Implementation: 

Initializing the IO ports 

void IOInit() 
{ 
    //Turning off PORTA pull-up resistors on the inputs 
    PORTA = 0x00; 
    DDRA = 0x00; 
    sbi(DDRA, 0); //The LED is on PA0, PORTA0 should be configured as output (0x01) 
 
    //Turning off PORTB pull-up resistors, and all pins should be configured as inputs 
    PORTB = 0x00; 
    DDRB = 0x00; 
 
    //Turning off PORTC pull-up resistors, and all pins should be configured as inputs 
    PORTC = 0x00; 
    DDRC = 0x00; 
 
    //Turning off PORTD pull-up resistors, and all pins should be configured as inputs 
    PORTD = 0x00; 
    DDRD = 0x00; 
} 

As  a  first  step, we  define the  operating  modes of  IO  ports, whether they  are  configured  as  inputs  or 
outputs,  and  we  give  them  an  initial  value,  using  a  technical  term  we  initialize  them,  see  function 
IOInit() in the “io.c” file.  

In the PORTA, PORTB, PORTC, PORTD data registers, we turn off the pull-up resistors and define the 
pins as inputs, except for PA0 pin on PORTA, this is an output because it controls the status LED. 

Initializing the clock 

void TimerInit() 
{ 
    //1x prescaler 
    cbi(TCCR1B, CS12); 
    cbi(TCCR1B, CS11); 
    sbi(TCCR1B, CS10); 
 
    //Timer1 interrupt on 
    sbi(TIMSK, TOIE1); 
 
    //Global interrupt on 
    sei(); 
} 

The  clock  is  initialized  in  “timer.c”  using  the TimerInit()  function.  The TCCR1B  (Timer  Counter 
Control Register) contains the clock controller settings. The register bits are described in chapter 16.11.2 
of the datasheet.  

Table 16-6 shows that if no prescaler is needed then CS12 = 0, CS11 = 0, CS10 = 1 must be set in this 
order. The other bits in the register are not set, they are not needed, so they remain at the default value 
of 0. As described in chapter 16.11.7, the interrupt of Timer1 is enabled by setting the TOIE1 bit of the 
TIMSK  (Timer  /  Counter  Interrupt  Mask  Register)  register,  which  is  responsible  for  setting  the  clock 
interrupt. Finally, we enable interrupts globally. 
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Initializing the ADC 

void ADCInit() 
{ 
    //AVCC reference 
    cbi(ADMUX, REFS1); 
    sbi(ADMUX, REFS0); 
 
    //ADC1 input 
    sbi(ADMUX, MUX0); 
    ADC_state = potmeter; 
 
    //Result is shifted to the left -> upper 8 bit in ADCRH 
    sbi(ADMUX, ADLAR); 
} 

To initialize the ADC, you must first set the ADC reference voltage in the ADCInit() function using the 

ADMUX (ADC Selection Multiplexer Register) register according to chapter 22.9.1, which in our case equals 
with  the external AVCC voltage (REFS1 = 0, REFS0 = 1). 

Using Table 22.4, we select the register bits to set so that the first channel (ADC1) is the input. For this, 
MUX0 must be set to 1, the remaining MUX bits can remain at the default value of 0, they do not need to 
be set. 

We set the ADC_state flag to potmeter. This variable is important to be volatile because it is modified 
only  in  the  interrupt  handler  function  and  since  that  only  access  after  an  interrupt,  the  compiler  will 
otherwise optimize the variable. 

The result of the ADC conversion is put into the ADCH and ADCL (ADC data register high and low) registers. 

The figure below shows how the format of the conversion result is modified by the ADLAR bit of the 

ADMUX register. For the sake of simplicity, we are now satisfied with the only upper 8 bits. 

 
Figure 5 – ATMega16A ADC data registers 

Source: ATMega16A datasheet chapter 22.9 

For this reason, it is more practical to use ADLAR = 1 mode so that the result is left-aligned in the ADCH 
register. 
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Enabling the ADC 

void ADCEnable() 
{ 
    //prescaler 128 
    sbi(ADCSRA, ADPS2); 
    sbi(ADCSRA, ADPS1); 
    sbi(ADCSRA, ADPS0); 
 
    //Enabling interrupt 
    sbi(ADCSRA, ADIE); 
 
    //Enabling the AD converter 
    sbi(ADCSRA, ADEN); 
} 

The ADC is enabled by the ADCEnable() function. In this function, we set the ADC control and status 
bits according to chapter 22.9.2 of the datasheet. The prescaler is set to 128 according to Table 22-5 by 
setting the ADPS0, ADPS1, ADPS2 bits to 1. We enable interrupt and ADC as well. 

    while (1) 
    { 
        //If the voltage of the NTC divider is greater than the voltage of the potentiometer, 
        // then the LED is on 
        if (U_poti > U_NTC) 
        { 
            sbi(PORTA, 0); 
        } 
 
        //Otherwise the LED is off 
        else 
        { 
            cbi(PORTA, 0); 
        } 
    } 

In the main function, we start an infinite loop, which controls the LED. If the voltage of the potentiometer 
is higher than the voltage of the NTC divider, then the LED should light up, otherwise not. 

ISR(TIMER1_OVF_vect) 
{ 
    //The counter is increased, if it hasn’t reached the maximum yet 
    if (cntr < CNTR_MAX) 
    { 
        cntr++; 
    } 
 
    //If it has reached 
    else 
    { 
        cntr = 0; 
        //AD conversion is started (sampling) 
        ADCStart(); 
    } 
} 
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The  interrupt  is  implemented  in  the ISR(TIMER1_OVF_vect)  function.  The  value  of  the cntr 
counter is incremented until it reaches the maximum value (CNTR_MAX), which is defined as a constant 
value of 10. When the counter has reached this value, we set it to 0 and call the ADCStart() function, 
which does nothing else than sets the ADSC bit of the ADCSRA register, that is, the ADC conversion is 
started. The timer settings and the CNTR_MAX value could be different values as well, but then we would 
start the conversion less or more often. 

ISR(ADC_vect) 
{ 
    //Saves the measured voltage to the appropriate variable based on the ADC state (channel) 
    switch (ADC_state) 
    { 
    case poti: 
        U_poti = ADCH * ADC_CONST; 
        break; 
 
    case NTC: 
        U_NTC = ADCH * ADC_CONST; 
        break; 
 
    default: 
        break; 
    } 
 
    //Switching to the next ADC channel 
    NextCH(); 
} 

When the conversion is completed, another interrupt function is called, namely the ISR(ADC_vect) 
function.  In  this  function,  depending  on  the  value  of  the  flag ADC_state,  the  voltage  of  either  the 
potentiometer or the NTC is saved in the appropriate variable. The voltage is obtained by multiplying the 
result of the ADC conversion by the resolution, which in our case is dividing the 5 V range into 256 parts 
(using only the top 8 bits of the ADC), see the value of ADC_CONST defined in “main.h”. This corresponds 
to a resolution of 20 mV. 

After that we switch to the next channel using NextCH() function.  

void NextCH() 
{ 
    switch (ADC_state) 
    { 
    //On ADC1 pin is the potentiometer 
    case poti: 
        //The next pin is the ADC2, there is the NTC divider 
        cbi(ADMUX, MUX0); 
        sbi(ADMUX, MUX1); 
        ADC_state = NTC; 
        break; 
 
    //On ADC2 pin is the NTC divider 
    case NTC: 
        //The next pin is the ADC1, there is the potentiometer 
        cbi(ADMUX, MUX1); 
        sbi(ADMUX, MUX0); 
        ADC_state = poti; 
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        break; 
 
    default: 
        break; 
    } 
} 

In this case, the input channel and the value of the status flag must be changed. 

If  the  value  of  the  flag ADC_state  is potmeter,  so  the  voltage  of  the  potentiometer  has  been 
measured,  then  it  must  be  switched  to  the  NTC,  which  means  that  according  to  Table  22-4  of  the 
datasheet, the ADC2 (which has the NTC divider) channel must be chosen as input, and the state flag must 
be set to NTC. 

In case of ADC_State = NTC, the reverse should be done, the input channel will be ADC1 (which has 
the potentiometer) and the state flag will be potmeter. 

After getting through the technical details, let’s enjoy a bit the results of our work. Put breakpoints to 
lines,  which  control  the  LED  in the main  function  and  add  the cntr  counter, U_potmeter, U_NTC 
variables to the variables to be monitored (right click on variable name in code and select "Add Watch"). 
Then our variables will be displayed in the watch window. When running our program in Debug mode, we 
can see the voltage measured on the potentiometer and the NTC divider in the watch window. 

 
Figure 6 – Watch variables during debug 

When the counter has reached 10, one of the measured voltages is updated. Check the last bit of the 
PORTA register (PA0) in the IO View window based on the value of U_potmeter and U_NTC. We can 
see if everything has been done well, that if the voltage of the potentiometer ( U_potmeter) is higher 
than the voltage measured on the NTC divider ( U_NTC) then PA0 = 1, so the LED is on, otherwise 0 and 
the LED is off. 

 
Figure 7 – PORTA register state in the IO View 

As a practice, let's try setting the voltage on the potentiometer to 2 V. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

Measurement 2 

Pulse Width Modulation using analog-digital converter (ADC_PWM Project) 

Let’s assemble the following circuit. 

 
Figure 8 – Setup for measurement 2 

Task: 
The lower bit of the AD value of the potentiometer on the PA1 pin (ADC1) is written into the PWM register 
of TMR2, i.e. the potentiometer is used to adjust the duty cycle of the PWM signal appearing on PD7 pin. 

Initializing the IO Ports 

void IOInit() 
{ 
    //Turning off PORTA pull-up resistors on the inputs 
    PORTA = 0x00; 
    DDRA = 0x00; 
    //The LED is on PA0, so PORTA0 should be configured as output (0x01) 
    sbi(DDRA, 0); 
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    //Turning off PORTB pull-up resistors and all pins should be configured as inputs 
    PORTB = 0x00; 
    DDRB = 0x00; 
 
    //Turning off PORTC pull-up resistors and all pins should be configured as inputs 
    PORTC = 0x00; 
    DDRC = 0x00; 
 
    //Turning off PORTD pull-up resistors and all pins should be configured as inputs 
    PORTD = 0x00; 
    DDRD = 0x00; 
    //The PD7 pin of PORTD should be configured as output, as Timer2 PWM output is on this pin 
    sbi(DDRD, 7); 
} 

First we initialize the input and output pins, see function IOInit() in “io.c” file. 

On PORTA, PORTB, PORTC, PORTD, we turn off the pull-up resistors and configure these pins as inputs, 
except the PA0 pin on PORTA, because this controls the status LED, and PD7 pin on PORTD, which has a 
special function, according to chapter 12.3.4 of the datasheet, the PWM output of Timer2 is on this pin. 

Initializing the clock 

void TimerInit() 
{ 
    //1x prescaler 
    cbi(TCCR1B, CS12); 
    cbi(TCCR1B, CS11); 
    sbi(TCCR1B, CS10); 
 
    //Timer1 interrupt on 
    sbi(TIMSK, TOIE1); 
    //Global interrupt on 
    sei(); 
} 

The clock is initialized in “timer.c” using the TimerInit() function. The bits of the TCCR1B register 
are described in chapter 16.11.2 of the datasheet. 

Table 16-6 shows that if no prescaler is needed, then bits CS12, CS11, CS10 must be set 0,1,1 in this 
order. We do not set the value of the remaining bits, we do not need them, their value remains the default 
0.  

As described in chapter 16.11.7, enable the interrupt of Timer1 by setting the TOIE1 bit and finally enable 
the interrupt (the global interrupt). 

Setting up Pulse Width Modulation 

void PWMInit() 
{ 
    //TIMER2 (PWM) 
    //1x prescaler (Page 126) 
    cbi(TCCR2, CS22); 
    cbi(TCCR2, CS21); 
    sbi(TCCR2, CS20); 
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    //TIMER2 (PWM) 
    //1024x prescaler (Page 126) 
    //sbi(TCCR2, CS22); 
    //sbi(TCCR2, CS21); 
    //sbi(TCCR2, CS20); 
  
    //Phase correct PWM mode (Page 125) 
    cbi(TCCR2, WGM21); 
    sbi(TCCR2, WGM20); 
 
    //Non-inverting mode (Page 126) 
    sbi(TCCR2, COM21); 
    cbi(TCCR2, COM20); 
} 

Pulse width modulation is set by the PwmInit() function of the “pwm.c” file by setting the TCCR2 
register. 

For Timer2 we use no clock division the same way we did for Timer 1 (prescaler 1x, see chapter 17.11.1 of 

the  datasheet).  According  to  the  datasheet  table  17.2  when  selecting  operating  mode  1  the  output 

waveform will  be  phase  correct  (WGM21  =  1, WGM20  =  0). The  behaviour  of COM20  and COM21  pins 

depends of the selected operating mode In mode 1 the table 17.5 is valid, which in non-inverting operation 

setting COM21 and COM20 pins to 1 and 0. 

ADC Initialization 

void ADCInit() 
{ 
    //AVCC reference 
    cbi(ADMUX, REFS1); 
    sbi(ADMUX, REFS0); 
 
    //ADC1 input 
    sbi(ADMUX, MUX0); 
 
    //Result is left-aligned -> upper 8 bit in ADCRH 
    sbi(ADMUX, ADLAR); 
} 

To initialize the ADC, we must first set the ADC reference voltage in the ADCInit() function using the 
ADMUX register according to chapter 22.9.1, which in our case equals with the external AVCC voltage 
(REFS1, REFS0 = 0, 1). 

Using Table 22.4, we select the register bits to set so that the first channel (ADC1) is the input. For this, 

MUX0 must be set to 1, the remaining MUX bits can remain at the default value of 0, and they do not need 

to be set. 

If the ADLAR bit is 1, the result is left-aligned, in ADCRH the result is displayed on the top 8 bits. See 
measurement example 1 for an explanation. 
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ADC enable 

void ADCEnable() 
{ 
    //128x prescaler 
    sbi(ADCSRA, ADPS2); 
    sbi(ADCSRA, ADPS1); 
    sbi(ADCSRA, ADPS0); 
 
    //Interrupt enable 
    sbi(ADCSRA, ADIE); 
 
    //AD converter enable 
    sbi(ADCSRA, ADEN); 
} 

After initializing the ADC, you can enable the ADC with the ADCEnable() function. 

In the ADCSRA ADC Controller register, we can set the clock rate of the ADC relative to the clock. We set 
this prescaler to 128 based on chapter 22.9.2 of the datasheet. Enable interrupt and the operation of the 
ADC. 

Additional code snippets for the main function 

    OCR2 = 0; 
 
    //Infinite loop 
    while (1) 
    { 
        //PWM setting happens by interrupt 
    } 

In the beginning, the duty cycle of the PWM is 0, that is, the LED connected to PD7 should not be lit. This 
is achieved by setting the Output Compare 8-bit register ( OCR2 register) to 0 (see chapter 17.7.4 of the 
datasheet). 

We start an infinite loop because the logic is implemented in the interrupt handlers. 

ISR(TIMER1_OVF_vect) 
{ 
    //The counter is increased, if it hasn’t reached the maximum yet 
    if (cntr < CNTR_MAX) 
    { 
  //The counter is increased 
        cntr++; 
    } 
 
    //If it has reached it 
    else 
    { 
 
        cntr = 0; 

//AD conversion is started (sampling) 
        ADCStart(); 
    } 
} 
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The interrupt function does nothing else but starts a counter that counts to 10, if this is done, we clear 
(set to 0) the counter and start the AD conversion with the ADCStart() function. 

void ADCStart() 
{ 
    sbi(ADCSRA, ADSC); 
} 

This function writes the ADSC bit of the ADCSRA control register to 1, which starts the conversion. 

ISR(ADC_vect) 
{ 
    //Load the upper 8 bits of the AD result into the PWM timer register 

    OCR2 = ADCH; 
} 

When  the  conversion  is  completed,  another  interrupt  function,  namely ISR(ADC_vect),  is  called, 
which copies the top 8 bits of the conversion result into the PWM Timer register, which already directly 
modifies the duty cycle of the output signal. 

In  IO  View,  observe  the  operation  of  the ADCSRA  and  ADC  registers  within  the  AD_Converter/ADC 
Prescaler Select, with a breakpoint placed next to the commands of ADCEnable() and ADCStart() 
functions. 

 
Figure 9 – ADC registers in IO View 

Put a breakpoint in front of the line, where OCR2 is set in the main function and in the interrupt function. 

In  IO  View,  observe  the  operation  of  the OCR2  register  within  the TIMER_COUNTER_2/Clock 
select bits, and also look at our output LED. Turn the potentiometer and observe the change again.  

When  running  the  program  we  can  observe  with  the  naked  eye,  that  with  a  higher  duty  cycle  (the 
potentiometer is turned up), the LED is brighter. 

Practice 

Modify the task by changing the Timer2 prescaler to 1024. Notice how much the output changes. At this 
time, the LED will blink if the duty cycle is reduced. 
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For deeper understanding this field, we briefly review the main types of analog-

to-digital converters: 

Flash ADC 

In case of flash ADC, the input voltage is converted directly into a number proportional to the voltage in 

one step. It consists of parallel comparators, each comparing the input voltage with a reference voltage 

obtained  from  a  voltage  divider,  which  is  built  from  different  resistors  connected  in  series.  Then  an 

encoder gives number of the highest comparator having a high output in binary. Although the advantage 

of the flash ADC is its speed, its huge need for the comparators makes the circuit complex, its  power 

requirement is high, its resolution is low compared to its complexity and it is very expensive. Mostly used 

in low-resolution, high-frequency circuits. 

 

Figure 10 – Internal structure of the Flash ADC 

Sigma-delta converter 

Explaining how it works is beyond this curriculum, so we only sum up its main features. It achieves a high 

bit number by sampling much at a much higher rate than the clock signal. Due to oversampling, it is slow 

but in exchange, it has high resolution and does not require external precision components. Usually used 

in audio frequency applications. 

Dual slope converter 

The  input  signal  charges  a  capacitor  for  a  definite  period  of  time.  By  integrating  over  time,  noise  is 

averaged. When the capacitor is discharged to a certain level, a counter counts the output bits. The higher 

the discharge time, the higher the counter value.  

Compared to previous types, its noise immunity is higher, it is accurate, but slow, and external precision 

components (resistors, capacitors) are required for accuracy.  

Nowadays, when integrated ADCs in microcontrollers are available, its role has diminished, but it is still 

worth considering when measuring noisy signals. 
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Figure 11 – Internal structure of the dual slope ADC 

Successive approximation ADC 

For us, this is the most interesting type because a successive approximation type ADC is built into our 

microcontroller. It's not a coincidence, because its structure is simple, and because of its accuracy and 

speed, it is one of the most common converters.  

Here, the result is obtained in as many steps as the number of bits the ADC has (this requires that the 

input is not changed during the measurement, otherwise a false result will be obtained. To avoid this, we 

have to place a sample and hold circuit in front of the converter). We always specify only one place-value 

at  a  time,  starting  with  the  highest  place-value.  The  comparator  checks  whether  the  input  voltage  is 

greater than the reference voltage for the highest place-value. This reference voltage is generated by a 

built-in DAC for this purpose (the operation of the DAC is reversed, compared to the ADC, so it assigns a 

voltage to a digital number). If the input voltage is less than the voltage at the output of the DAC, then 

the next bit of the SAR (Successive Approximation Register) is 0, otherwise 1. The rest is compared to the 

following place-value, and so on. We need as many reference voltages as the bit number. 

 

Figure 12 – Internal structure of the successive approximation ADC 
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Independent measurement task 

Software implementation of comparator with hysteresis 

The comparator with hysteresis can be implemented by hardware, assembling physical components (see 

the  Comparator  chapter)  and  using  ADC,  from  software  code  as  well.  We  will  implement  the  latter 

solution. 

Add a potentiometer which changes its resistance according to position to our microcontroller circuit. 

Modify the code so that an LED lights up if the ADC reading is above 600, and turns off below that, and 

set 3 V on the potentiometer. 

Note that if we set the potentiometer very accurately close to where the ADC reading is 600, then the LED 

for the same input will sometimes light up and sometimes not. This phenomenon is possible because both 

the signal and power can be noisy, and comparisons (evaluating of the comparisons of the two input 

values) can produce different output even in case of very little difference. 

This range, where the signal changes, can be extended using comparator with hysteresis, if we do not 

want that a small change in the input to appear immediately at the output, and this noise bouncing the 

output. Let's try out changing the comparison condition so that 

if(ADC>600) output=1; 

if(ADC<400) output=0; 

then the output will change at about 3 V and 2 V, which will be exactly 1 V hysteresis. 

SUMMARY 

In  this  chapter  of  the  curriculum,  we  have  learned  about  how  to  convert  analog  signals  into  digital 

numbers and use them in our program. Because the world around us is analog, and has continuous signals, 

this has a big role in computing, where we can only operate on digital signals. In the later chapters we will 

build on the knowledge gained here. 
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