

The development of the Crystal Clear Electronics curriculum was supported by the European Commission

in the framework of the Erasmus + programme in connection with the “Developing an innovative

electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” project

number.

The project was implemented by an international partnership of the following 5 institutions:

• Xtalin Engineering Ltd. – Budapest

• ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely

• Bolyai Farkas High School – Târgu Mureș

• Selye János High School – Komárno

• Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín

Copyrights

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the

coordinator. The materials are designed for educational use and are therefore free to use for this purpose;

however, their content cannot be modified or further developed without the written permission of Xtalin

Engineering Ltd. Re-publication of the materials in an unchanged content is possible only with a clear

indication of the authors of the curriculum and the source of the original curriculum, only with the written

permission of Xtalin Engineering Ltd.

Contact http://crystalclearelectronics.eu/en/

info@kristalytisztaelektronika.hu

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

22 - Processing Analog Signals, the ADC
Written by Erzsébet Szomorú-Ozsváth

English translation by Xtalin Engineering Ltd.

Revised by Gábor Proksa, Gergely Lágler

INTRODUCTION

We often face the problem in real-life where we want to measure some physical quantity, like what is the

temperature, how noisy the street is, what color a petal is, or how tall someone is. These values usually

vary in time. If we measure them continuously, these quantities can be represented by analog signals. An

analog signal is a continuous physical quantity that is a continuous function of time. This means, that the

analog signal takes a value at any given moment, and this value may even be different at any given

moment.

We want the measured values to be displayed, stored in a user-friendly format, or to be transmitted to

other devices such as a computer, microprocessor, FPGA, etc. for further processing. Since these devices

operate with digital signals, therefore analog-to-digital conversion is essential for processing analog

signals. Generally, the analog signal is a voltage to which a number is assigned, so the signal is converted

to a series of number.

A digital signal is a signal that consists of a discrete (multiples of a unit) set of values, so it can only take a

finite number of values.

In practice, we always have to make a trade-off when mapping analog signals to digital, because we need

to choose the range and accuracy of the measurement. Of course, when measuring something we want

to approach the real value as closely as possible, so we want to minimize the difference between the real

value and the measured value, in other words the measurement error.

However, it is not the same if we want to measure the height of a house with an accuracy of meters or

the height of a new-born with an accuracy of cm. When measuring the house, we do not start measuring

with millimeter paper, while it is pointless to measure a new-born baby with a one-meter long stick. The

range also determines the accuracy of the measurement, i.e. the resolution. We can see that it is

important to know the parameters of the signal we want to measure in order to select the appropriate

measuring device.

For example, if we want to measure the height of a person with a tape measure, the biggest measurement

error we can make (if we are making accurate measurements) is a few millimeters because of the

resolution of our measuring device (even though we know that people are growing continuously, and not

in centimeter or millimeter increments). We can't read smaller values than a millimeter from the tape

measure.

Another example could be that even though we see the temperature rise on the mercury display of a

traditional outdoor thermometer continuously, due to the scale the temperature can be read only with

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

the accuracy of one degree Celsius or one tenth of a degree Celsius. We are trying to describe a continuous

quantity by its discrete value, that is, quantize it.

As shown in the examples above, many signals are not available in the form of an electrical signal. In such

cases it has to be converted into an electrical signal using appropriate transducers or sensors (see the

chapter on sensors for more details). Then, this continuous electrical signal is connected to the input of

an Analog-Digital Converter (ADC). Usually the signal range can only be positive, but there are also bipolar

converters that operate in the negative range as well.

THE ANALOG-DIGITAL CONVERTER

The ADC is a converter which converts the continuous electrical signal connected to its input to a digital

signal and the digital equivalent of the analog signal measured periodically (sampling time) appears on its

output. The figure below shows a signal connected to an ADC input in green and the signal appearing on

the output in red. Time is on the x-axis and the signal value is on the y-axis. After marking the maximum

of the signal range, the range is divided into 8 equal parts. The measurement range is the range between

the minimum and maximum value of the signal to be measured, in which we want to measure with a

certain accuracy. The digital output shows which small range, interval, the measured signal falls into. For

example, a value of 3 means that the output is in the third interval.

Figure 1 – Input (green) and output (red) signal of the ADC

This example highlights several problems we face during analog-digital conversion. First of all, the signal

we received does not look like the input, the shape is different, there is a lot of distortion. The figure

above shows that the peak amplitude of our input signal is greater than the maximum of the selected

measurement range, so the output signal gone into “saturation”, which means it has reached the highest

possible value. If this happens, we have no information about the signal above the saturation range, as

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

the ADC cannot show a higher value. This phenomenon indicates that the Full Scale of the selected ADC,

that is, the maximum input analog voltage the converter can measure without saturation, is too small.

There are two types of ADCs: unipolar ADCs can measure between a reference voltage and ground, while

bipolar ADCs can measure in a symmetric range around ground.

The Atmel microcontroller used in our measurements also has an ADC peripheral. On some of its pins we

can measure and digitize the voltage appearing there. The microcontroller datasheet indirectly reveals

that it is a unipolar ADC, because it has a pin, called "AREF", which stands for the ADC analog reference

voltage input pin, and only a positive voltage can be connected to that pin.

We can decrease the distortion by measuring more frequently, increasing the sampling frequency, thus

reducing the sampling period. The waveforms with a higher sampling frequency are shown in figure 2.

Figure 2 – Increasing the sampling frequency

You read about the operation of the ADC, including how to adjust the sampling frequency in the second

half of this chapter.

Another way to decrease the distortion is to make the intervals on the y axis smaller, see Figure 3.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 3 – Increasing the resolution

The number of intervals is called resolution, which shows that how many different values the analog input

signal can be converted to by the device. This is usually given by number of bits. In our example, the 10-

bit ADC has a resolution of 210 , so it divides the measuring range into 1024 equal intervals. If the reference

voltage is X, then we can measure with X/1024 V accuracy. This brings us to the next important concept,

LSB (Least Significant Bit). The LSB shows the smallest difference in the input voltage needed to change

the lowest bit of the output, i.e. it is the voltage of a digital step. The LSB can be calculated using the

following formula: 𝐿𝑆𝐵 = 𝐾𝑇(2𝑛 − 1),
where KT is the Full Scale (FS), and n is the number of bits.

Example

Calculate the LSB of a 10-bit ADC if the reference voltage is 5 V!

Solution:

The input range is 0-5 V, so the full scale (FS) is 5 V, and the number of bits is 10. 𝐿𝑆𝐵 = 5 [V]210 − 1 = 0.00489 [V] = 4.89 [mV]

What would the resolution be if we were only using 8 bits instead of 10?

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

From the above example, it is clearly visible that ADCs have to be selected carefully taking the application

specific circumstances into consideration. In reality, an engineer must always pay attention to price as

well. The more accurate, higher-resolution analog-to-digital converter we choose, the more expensive it

will be. Just think about that the price increase of a component in a computer hardware, which is

manufactured by the million will increase the total cost of production by a million times the price increase

of the component. As a result, mass-produced products are usually not overdesigned (using better, more

accurate, stronger than absolutely necessary). Unfortunately, the direct consequence of a price-sensitive

market is that manufacturers often only want to meet the minimum requirements, therefore they do not

design for safety margins, and this is partly the reason why electronic devices often fail after a few years,

and unfortunately, garbage is produced in enormous amounts.

OPERATING MODES
Let's look at the different operating modes of ADCs, especially the ADC in the ATMega16A microcontroller

(see for more details Chapter 22, "Analog to Digital Converter" of the datasheet).

Asymmetric mode

The asymmetric mode means that the voltage measured on the input channel (pin) is relative to the

reference voltage. In this case, separate signals can be connected to each input pin. We will use this mode

for the measurements used in this chapter of the curriculum.

Symmetric/differential mode

The other mode is the differential or symmetric mode, where the input signals run on two wires instead

of a single wire. This is especially important for high frequency signals (above 1 - 10 MHz) to avoid

unwanted noise. The consequence of this is that we cannot utilize each wire individually, but only in pairs.

If more differential channels are required, then another type of microcontroller or an external ADC should

be chosen.

How to avoid noise?

In wires, external magnetic and electrical fields can cause relatively large interference even at a short

distance. With a certain amount of noise on the receiver side, it's hard to differentiate the original signal

from the noise. To avoid this, there are many ways to eliminate noise.

Hardware noise reduction:

One of the most commonly used methods is using shielded wires. A metal sleeve is wrapped around the

wire, acting as a Faraday cage. A good example is the commonly known coaxial cable.

Another important noise elimination method is the symmetric signal transmission mentioned above.

A twisted pair consists of two wires spirally twisted together. The point is that the signals of the pairs do

not interact. It is used for telephone cables and internet cables. There are two types: Unshielded Twisted

Pair (UTP) and Shielded Twisted Pair (STP). The shielded version protects against external noises as well.

In case of printed circuit boards, separate ground layers are usually placed between the high-frequency

signal route layers so that the signals do not interact. The effect of the wires on each other can be further

reduced if the wires are perpendicular to each other in the different layers.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Software noise reduction:

The most common software noise reduction mode is averaging. In this case, we make more

measurements than necessary and average the measured values: a = 𝛴 𝑎𝑛 / 𝑛

USING THE ADC ON THE MICROCONTROLLER
Let's see the main features of the ADC built into the microcontroller:

• 8 channels in asymmetric mode

• 7 differential input channels in symmetrical mode

• successive approximation (we will talk about this later)

• 10 bits

• measurement range up to 𝑉𝑟𝑒𝑓 voltage

• interrupt when conversion is completed

• a maximum sampling rate of 15 ksps at maximum resolution

In this microcontroller the differential mode can be used by placing the negative signal on the ADC1 pin

and the other on one of the other 7 channels. However, this mode is only available with the TQFP

packaged microcontroller and not with the DIP package. Nevertheless, in our example measurement high

noise immunity is not required, the asymmetric mode can be used as it is common in low frequency

measurements. See chapter 22 of the datasheet for a more detailed explanation.

The ADC requires 50 to 200 kHz clock for accurate operation. If the 10-bit resolution is not required, the

ADC clock may be over 200 kHz. We are satisfied with only 8-bit resolution as well. The conversion takes

13 ADC clock cycles (except for the first conversion because there it takes 25).

Calculation

Let’s calculate the maximum sampling frequency, that can be achieved in 10-bit mode.

The highest speed can be achieved with the highest possible clock rate, so 𝑓 = 200 [kHz] is selected as

the clock rate. One conversion takes place over 13 clock cycles, so a maximum sampling rate of 200 ÷13 = 15.4 [ksps(kilosamples per second)] can be achieved. This is the same as the value given in the

datasheet.

In our examples, the built-in RC oscillator is used to generate the microcontroller clock. The operating

frequency in this mode can be set with bits CKSEL3:0 according to table 8.8 of the datasheet. We want

to set 8 MHz clock, which is achieved by setting the CKSEL3:0 bits to 0100. To produce an 50-200 kHz

clock, which is suitable for the ADC, the microcontroller's 8MHz clock is divided by 128 with the prescaler

(see later the ADCEnable() function), which means a 62.5 kHz clock. From this, the sampling rate is

approximately 4.8 ksps.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Measurement 1

Assemble the following circuit.

Figure 4 – Measurement layout

For better understanding, we recommend reading the datasheet simultaneously to the solution.

Task:

Compare the voltage of the potentiometer on PA1 (ADC1) with the voltage created by the voltage divider
with the NTC. Use A/D conversion for the measurement. If the NTC voltage is greater than that measured
voltage on the potentiometer, the LED on the PA0 pin should light up, otherwise it should not light up.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Implementation:

Initializing the IO ports

void IOInit()
{
 //Turning off PORTA pull-up resistors on the inputs
 PORTA = 0x00;
 DDRA = 0x00;
 sbi(DDRA, 0); //The LED is on PA0, PORTA0 should be configured as output (0x01)

 //Turning off PORTB pull-up resistors, and all pins should be configured as inputs
 PORTB = 0x00;
 DDRB = 0x00;

 //Turning off PORTC pull-up resistors, and all pins should be configured as inputs
 PORTC = 0x00;
 DDRC = 0x00;

 //Turning off PORTD pull-up resistors, and all pins should be configured as inputs
 PORTD = 0x00;
 DDRD = 0x00;
}

As a first step, we define the operating modes of IO ports, whether they are configured as inputs or
outputs, and we give them an initial value, using a technical term we initialize them, see function
IOInit() in the “io.c” file.

In the PORTA, PORTB, PORTC, PORTD data registers, we turn off the pull-up resistors and define the
pins as inputs, except for PA0 pin on PORTA, this is an output because it controls the status LED.

Initializing the clock

void TimerInit()
{
 //1x prescaler
 cbi(TCCR1B, CS12);
 cbi(TCCR1B, CS11);
 sbi(TCCR1B, CS10);

 //Timer1 interrupt on
 sbi(TIMSK, TOIE1);

 //Global interrupt on
 sei();
}

The clock is initialized in “timer.c” using the TimerInit() function. The TCCR1B (Timer Counter
Control Register) contains the clock controller settings. The register bits are described in chapter 16.11.2
of the datasheet.

Table 16-6 shows that if no prescaler is needed then CS12 = 0, CS11 = 0, CS10 = 1 must be set in this
order. The other bits in the register are not set, they are not needed, so they remain at the default value
of 0. As described in chapter 16.11.7, the interrupt of Timer1 is enabled by setting the TOIE1 bit of the
TIMSK (Timer / Counter Interrupt Mask Register) register, which is responsible for setting the clock
interrupt. Finally, we enable interrupts globally.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Initializing the ADC

void ADCInit()
{
 //AVCC reference
 cbi(ADMUX, REFS1);
 sbi(ADMUX, REFS0);

 //ADC1 input
 sbi(ADMUX, MUX0);
 ADC_state = potmeter;

 //Result is shifted to the left -> upper 8 bit in ADCRH
 sbi(ADMUX, ADLAR);
}

To initialize the ADC, you must first set the ADC reference voltage in the ADCInit() function using the

ADMUX (ADC Selection Multiplexer Register) register according to chapter 22.9.1, which in our case equals
with the external AVCC voltage (REFS1 = 0, REFS0 = 1).

Using Table 22.4, we select the register bits to set so that the first channel (ADC1) is the input. For this,
MUX0 must be set to 1, the remaining MUX bits can remain at the default value of 0, they do not need to
be set.

We set the ADC_state flag to potmeter. This variable is important to be volatile because it is modified
only in the interrupt handler function and since that only access after an interrupt, the compiler will
otherwise optimize the variable.

The result of the ADC conversion is put into the ADCH and ADCL (ADC data register high and low) registers.

The figure below shows how the format of the conversion result is modified by the ADLAR bit of the

ADMUX register. For the sake of simplicity, we are now satisfied with the only upper 8 bits.

Figure 5 – ATMega16A ADC data registers

Source: ATMega16A datasheet chapter 22.9

For this reason, it is more practical to use ADLAR = 1 mode so that the result is left-aligned in the ADCH
register.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Enabling the ADC

void ADCEnable()
{
 //prescaler 128
 sbi(ADCSRA, ADPS2);
 sbi(ADCSRA, ADPS1);
 sbi(ADCSRA, ADPS0);

 //Enabling interrupt
 sbi(ADCSRA, ADIE);

 //Enabling the AD converter
 sbi(ADCSRA, ADEN);
}

The ADC is enabled by the ADCEnable() function. In this function, we set the ADC control and status
bits according to chapter 22.9.2 of the datasheet. The prescaler is set to 128 according to Table 22-5 by
setting the ADPS0, ADPS1, ADPS2 bits to 1. We enable interrupt and ADC as well.

 while (1)
 {
 //If the voltage of the NTC divider is greater than the voltage of the potentiometer,
 // then the LED is on
 if (U_poti > U_NTC)
 {
 sbi(PORTA, 0);
 }

 //Otherwise the LED is off
 else
 {
 cbi(PORTA, 0);
 }
 }

In the main function, we start an infinite loop, which controls the LED. If the voltage of the potentiometer
is higher than the voltage of the NTC divider, then the LED should light up, otherwise not.

ISR(TIMER1_OVF_vect)
{
 //The counter is increased, if it hasn’t reached the maximum yet
 if (cntr < CNTR_MAX)
 {
 cntr++;
 }

 //If it has reached
 else
 {
 cntr = 0;
 //AD conversion is started (sampling)
 ADCStart();
 }
}

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

The interrupt is implemented in the ISR(TIMER1_OVF_vect) function. The value of the cntr
counter is incremented until it reaches the maximum value (CNTR_MAX), which is defined as a constant
value of 10. When the counter has reached this value, we set it to 0 and call the ADCStart() function,
which does nothing else than sets the ADSC bit of the ADCSRA register, that is, the ADC conversion is
started. The timer settings and the CNTR_MAX value could be different values as well, but then we would
start the conversion less or more often.

ISR(ADC_vect)
{
 //Saves the measured voltage to the appropriate variable based on the ADC state (channel)
 switch (ADC_state)
 {
 case poti:
 U_poti = ADCH * ADC_CONST;
 break;

 case NTC:
 U_NTC = ADCH * ADC_CONST;
 break;

 default:
 break;
 }

 //Switching to the next ADC channel
 NextCH();
}

When the conversion is completed, another interrupt function is called, namely the ISR(ADC_vect)
function. In this function, depending on the value of the flag ADC_state, the voltage of either the
potentiometer or the NTC is saved in the appropriate variable. The voltage is obtained by multiplying the
result of the ADC conversion by the resolution, which in our case is dividing the 5 V range into 256 parts
(using only the top 8 bits of the ADC), see the value of ADC_CONST defined in “main.h”. This corresponds
to a resolution of 20 mV.

After that we switch to the next channel using NextCH() function.

void NextCH()
{
 switch (ADC_state)
 {
 //On ADC1 pin is the potentiometer
 case poti:
 //The next pin is the ADC2, there is the NTC divider
 cbi(ADMUX, MUX0);
 sbi(ADMUX, MUX1);
 ADC_state = NTC;
 break;

 //On ADC2 pin is the NTC divider
 case NTC:
 //The next pin is the ADC1, there is the potentiometer
 cbi(ADMUX, MUX1);
 sbi(ADMUX, MUX0);
 ADC_state = poti;

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 break;

 default:
 break;
 }
}

In this case, the input channel and the value of the status flag must be changed.

If the value of the flag ADC_state is potmeter, so the voltage of the potentiometer has been
measured, then it must be switched to the NTC, which means that according to Table 22-4 of the
datasheet, the ADC2 (which has the NTC divider) channel must be chosen as input, and the state flag must
be set to NTC.

In case of ADC_State = NTC, the reverse should be done, the input channel will be ADC1 (which has
the potentiometer) and the state flag will be potmeter.

After getting through the technical details, let’s enjoy a bit the results of our work. Put breakpoints to
lines, which control the LED in the main function and add the cntr counter, U_potmeter, U_NTC
variables to the variables to be monitored (right click on variable name in code and select "Add Watch").
Then our variables will be displayed in the watch window. When running our program in Debug mode, we
can see the voltage measured on the potentiometer and the NTC divider in the watch window.

Figure 6 – Watch variables during debug

When the counter has reached 10, one of the measured voltages is updated. Check the last bit of the
PORTA register (PA0) in the IO View window based on the value of U_potmeter and U_NTC. We can
see if everything has been done well, that if the voltage of the potentiometer (U_potmeter) is higher
than the voltage measured on the NTC divider (U_NTC) then PA0 = 1, so the LED is on, otherwise 0 and
the LED is off.

Figure 7 – PORTA register state in the IO View

As a practice, let's try setting the voltage on the potentiometer to 2 V.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Measurement 2

Pulse Width Modulation using analog-digital converter (ADC_PWM Project)

Let’s assemble the following circuit.

Figure 8 – Setup for measurement 2

Task:
The lower bit of the AD value of the potentiometer on the PA1 pin (ADC1) is written into the PWM register
of TMR2, i.e. the potentiometer is used to adjust the duty cycle of the PWM signal appearing on PD7 pin.

Initializing the IO Ports

void IOInit()
{
 //Turning off PORTA pull-up resistors on the inputs
 PORTA = 0x00;
 DDRA = 0x00;
 //The LED is on PA0, so PORTA0 should be configured as output (0x01)
 sbi(DDRA, 0);

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 //Turning off PORTB pull-up resistors and all pins should be configured as inputs
 PORTB = 0x00;
 DDRB = 0x00;

 //Turning off PORTC pull-up resistors and all pins should be configured as inputs
 PORTC = 0x00;
 DDRC = 0x00;

 //Turning off PORTD pull-up resistors and all pins should be configured as inputs
 PORTD = 0x00;
 DDRD = 0x00;
 //The PD7 pin of PORTD should be configured as output, as Timer2 PWM output is on this pin
 sbi(DDRD, 7);
}

First we initialize the input and output pins, see function IOInit() in “io.c” file.

On PORTA, PORTB, PORTC, PORTD, we turn off the pull-up resistors and configure these pins as inputs,
except the PA0 pin on PORTA, because this controls the status LED, and PD7 pin on PORTD, which has a
special function, according to chapter 12.3.4 of the datasheet, the PWM output of Timer2 is on this pin.

Initializing the clock

void TimerInit()
{
 //1x prescaler
 cbi(TCCR1B, CS12);
 cbi(TCCR1B, CS11);
 sbi(TCCR1B, CS10);

 //Timer1 interrupt on
 sbi(TIMSK, TOIE1);
 //Global interrupt on
 sei();
}

The clock is initialized in “timer.c” using the TimerInit() function. The bits of the TCCR1B register
are described in chapter 16.11.2 of the datasheet.

Table 16-6 shows that if no prescaler is needed, then bits CS12, CS11, CS10 must be set 0,1,1 in this
order. We do not set the value of the remaining bits, we do not need them, their value remains the default
0.

As described in chapter 16.11.7, enable the interrupt of Timer1 by setting the TOIE1 bit and finally enable
the interrupt (the global interrupt).

Setting up Pulse Width Modulation

void PWMInit()
{
 //TIMER2 (PWM)
 //1x prescaler (Page 126)
 cbi(TCCR2, CS22);
 cbi(TCCR2, CS21);
 sbi(TCCR2, CS20);

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 //TIMER2 (PWM)
 //1024x prescaler (Page 126)
 //sbi(TCCR2, CS22);
 //sbi(TCCR2, CS21);
 //sbi(TCCR2, CS20);

 //Phase correct PWM mode (Page 125)
 cbi(TCCR2, WGM21);
 sbi(TCCR2, WGM20);

 //Non-inverting mode (Page 126)
 sbi(TCCR2, COM21);
 cbi(TCCR2, COM20);
}

Pulse width modulation is set by the PwmInit() function of the “pwm.c” file by setting the TCCR2
register.

For Timer2 we use no clock division the same way we did for Timer 1 (prescaler 1x, see chapter 17.11.1 of

the datasheet). According to the datasheet table 17.2 when selecting operating mode 1 the output

waveform will be phase correct (WGM21 = 1, WGM20 = 0). The behaviour of COM20 and COM21 pins

depends of the selected operating mode In mode 1 the table 17.5 is valid, which in non-inverting operation

setting COM21 and COM20 pins to 1 and 0.

ADC Initialization

void ADCInit()
{
 //AVCC reference
 cbi(ADMUX, REFS1);
 sbi(ADMUX, REFS0);

 //ADC1 input
 sbi(ADMUX, MUX0);

 //Result is left-aligned -> upper 8 bit in ADCRH
 sbi(ADMUX, ADLAR);
}

To initialize the ADC, we must first set the ADC reference voltage in the ADCInit() function using the
ADMUX register according to chapter 22.9.1, which in our case equals with the external AVCC voltage
(REFS1, REFS0 = 0, 1).

Using Table 22.4, we select the register bits to set so that the first channel (ADC1) is the input. For this,

MUX0 must be set to 1, the remaining MUX bits can remain at the default value of 0, and they do not need

to be set.

If the ADLAR bit is 1, the result is left-aligned, in ADCRH the result is displayed on the top 8 bits. See
measurement example 1 for an explanation.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

ADC enable

void ADCEnable()
{
 //128x prescaler
 sbi(ADCSRA, ADPS2);
 sbi(ADCSRA, ADPS1);
 sbi(ADCSRA, ADPS0);

 //Interrupt enable
 sbi(ADCSRA, ADIE);

 //AD converter enable
 sbi(ADCSRA, ADEN);
}

After initializing the ADC, you can enable the ADC with the ADCEnable() function.

In the ADCSRA ADC Controller register, we can set the clock rate of the ADC relative to the clock. We set
this prescaler to 128 based on chapter 22.9.2 of the datasheet. Enable interrupt and the operation of the
ADC.

Additional code snippets for the main function

 OCR2 = 0;

 //Infinite loop
 while (1)
 {
 //PWM setting happens by interrupt
 }

In the beginning, the duty cycle of the PWM is 0, that is, the LED connected to PD7 should not be lit. This
is achieved by setting the Output Compare 8-bit register (OCR2 register) to 0 (see chapter 17.7.4 of the
datasheet).

We start an infinite loop because the logic is implemented in the interrupt handlers.

ISR(TIMER1_OVF_vect)
{
 //The counter is increased, if it hasn’t reached the maximum yet
 if (cntr < CNTR_MAX)
 {
 //The counter is increased
 cntr++;
 }

 //If it has reached it
 else
 {

 cntr = 0;

//AD conversion is started (sampling)
 ADCStart();
 }
}

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

The interrupt function does nothing else but starts a counter that counts to 10, if this is done, we clear
(set to 0) the counter and start the AD conversion with the ADCStart() function.

void ADCStart()
{
 sbi(ADCSRA, ADSC);
}

This function writes the ADSC bit of the ADCSRA control register to 1, which starts the conversion.

ISR(ADC_vect)
{
 //Load the upper 8 bits of the AD result into the PWM timer register

 OCR2 = ADCH;
}

When the conversion is completed, another interrupt function, namely ISR(ADC_vect), is called,
which copies the top 8 bits of the conversion result into the PWM Timer register, which already directly
modifies the duty cycle of the output signal.

In IO View, observe the operation of the ADCSRA and ADC registers within the AD_Converter/ADC
Prescaler Select, with a breakpoint placed next to the commands of ADCEnable() and ADCStart()
functions.

Figure 9 – ADC registers in IO View

Put a breakpoint in front of the line, where OCR2 is set in the main function and in the interrupt function.

In IO View, observe the operation of the OCR2 register within the TIMER_COUNTER_2/Clock
select bits, and also look at our output LED. Turn the potentiometer and observe the change again.

When running the program we can observe with the naked eye, that with a higher duty cycle (the
potentiometer is turned up), the LED is brighter.

Practice

Modify the task by changing the Timer2 prescaler to 1024. Notice how much the output changes. At this
time, the LED will blink if the duty cycle is reduced.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

For deeper understanding this field, we briefly review the main types of analog-

to-digital converters:

Flash ADC

In case of flash ADC, the input voltage is converted directly into a number proportional to the voltage in

one step. It consists of parallel comparators, each comparing the input voltage with a reference voltage

obtained from a voltage divider, which is built from different resistors connected in series. Then an

encoder gives number of the highest comparator having a high output in binary. Although the advantage

of the flash ADC is its speed, its huge need for the comparators makes the circuit complex, its power

requirement is high, its resolution is low compared to its complexity and it is very expensive. Mostly used

in low-resolution, high-frequency circuits.

Figure 10 – Internal structure of the Flash ADC

Sigma-delta converter

Explaining how it works is beyond this curriculum, so we only sum up its main features. It achieves a high

bit number by sampling much at a much higher rate than the clock signal. Due to oversampling, it is slow

but in exchange, it has high resolution and does not require external precision components. Usually used

in audio frequency applications.

Dual slope converter

The input signal charges a capacitor for a definite period of time. By integrating over time, noise is

averaged. When the capacitor is discharged to a certain level, a counter counts the output bits. The higher

the discharge time, the higher the counter value.

Compared to previous types, its noise immunity is higher, it is accurate, but slow, and external precision

components (resistors, capacitors) are required for accuracy.

Nowadays, when integrated ADCs in microcontrollers are available, its role has diminished, but it is still

worth considering when measuring noisy signals.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 11 – Internal structure of the dual slope ADC

Successive approximation ADC

For us, this is the most interesting type because a successive approximation type ADC is built into our

microcontroller. It's not a coincidence, because its structure is simple, and because of its accuracy and

speed, it is one of the most common converters.

Here, the result is obtained in as many steps as the number of bits the ADC has (this requires that the

input is not changed during the measurement, otherwise a false result will be obtained. To avoid this, we

have to place a sample and hold circuit in front of the converter). We always specify only one place-value

at a time, starting with the highest place-value. The comparator checks whether the input voltage is

greater than the reference voltage for the highest place-value. This reference voltage is generated by a

built-in DAC for this purpose (the operation of the DAC is reversed, compared to the ADC, so it assigns a

voltage to a digital number). If the input voltage is less than the voltage at the output of the DAC, then

the next bit of the SAR (Successive Approximation Register) is 0, otherwise 1. The rest is compared to the

following place-value, and so on. We need as many reference voltages as the bit number.

Figure 12 – Internal structure of the successive approximation ADC

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Independent measurement task

Software implementation of comparator with hysteresis

The comparator with hysteresis can be implemented by hardware, assembling physical components (see

the Comparator chapter) and using ADC, from software code as well. We will implement the latter

solution.

Add a potentiometer which changes its resistance according to position to our microcontroller circuit.

Modify the code so that an LED lights up if the ADC reading is above 600, and turns off below that, and

set 3 V on the potentiometer.

Note that if we set the potentiometer very accurately close to where the ADC reading is 600, then the LED

for the same input will sometimes light up and sometimes not. This phenomenon is possible because both

the signal and power can be noisy, and comparisons (evaluating of the comparisons of the two input

values) can produce different output even in case of very little difference.

This range, where the signal changes, can be extended using comparator with hysteresis, if we do not

want that a small change in the input to appear immediately at the output, and this noise bouncing the

output. Let's try out changing the comparison condition so that

if(ADC>600) output=1;

if(ADC<400) output=0;

then the output will change at about 3 V and 2 V, which will be exactly 1 V hysteresis.

SUMMARY

In this chapter of the curriculum, we have learned about how to convert analog signals into digital

numbers and use them in our program. Because the world around us is analog, and has continuous signals,

this has a big role in computing, where we can only operate on digital signals. In the later chapters we will

build on the knowledge gained here.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21

