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1.2 Three definitions of “bit”:
(1) A binary digit (p. 1). 
(2) Past tense of “bite” (p. 1). 
(3) A small amount (pp. 6, 10).

1.3

ASIC Application-Specific Integrated Circuit 

CAD Computer-Aided Design 

CD Compact Disc 

CO Central Office 

CPLD Complex Programmable Logic Device

DAT Digital Audio Tape 

DIP Dual In-line Pin 

DVD Digital Versatile Disc

FPGA Field-Programmable Gate Array 

HDL Hardware Description Language

IC Integrated Circuit 

IP Internet Protocol

LSI Large-Scale Integration 

MCM Multichip Module 
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MSI Medium-Scale Integration 

NRE Nonrecurring Engineering 

OK Although we use this word hundreds of times a week whether things are OK or not, we have probably
rarely wondered about its history. That history is in fact a brief one, the word being first recorded in
1839, though it was no doubt in circulation before then. Much scholarship has been expended on the
origins of OK, but Allen Walker Read has conclusively proved that OK is based on a sort of joke.
Someone pronounced the phrase “all correct” as “oll (or orl) correct,” and the same person or someone
else spelled it “oll korrect,” which abbreviated gives us OK. This term gained wide currency by being
used as a political slogan by the 1840 Democratic candidate Martin Van Buren, who was nicknamed
Old Kinderhook because he was born in Kinderhook, New York. An editorial of the same year, refer-
ring to the receipt of a pin with the slogan O.K., had this comment: “frightful letters . . . significant of
the birth-place of Martin Van Buren, old Kinderhook, as also the rallying word of the Democracy of the
late election, ‘all correct’ .... Those who wear them should bear in mind that it will require their most
strenuous exertions ... to make all things O.K.” [From the American Heritage Electronic Dictionary
(AHED), copyright 1992 by Houghton Mifflin Company]

PBX Private Branch Exchange

 PCB Printed-Circuit Board 

PLD Programmable Logic Device

PWB Printed-Wiring Board

 SMT Surface-Mount Technology 

SSI Small-Scale Integration 

VHDL VHSIC Hardware Description Language

VLSI Very Large-Scale Integration

1.4

ABEL Advanced Boolean Equation Language

CMOS Complementary Metal-Oxide Semiconductor

JPEG Joint Photographic Experts Group

MPEG Moving Picture Experts Group

OK (see above)

PERL According to some, it’s “Practical Extraction and Report Language.” But the relevant Perl FAQ entry,
in perlfaq1.pod, says “never write ‘PERL’, because perl isn't really an acronym, apocryphal folklore
and post-facto expansions notwithstanding.”  (Thanks to Anno Siegel for enlightening me on this.)

VHDL VHSIC Hardware Description Language

1.8 In my book, “dice” is the plural of “die.”
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2.1 (a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)  (j)

2.3 (a)

(b)

(c)  

(d)  

(e)  

(f)  

2.5 (a)  (b)

(c)  (d)

(e)  (f)

(g)  (h)

(i)  (j)

11010112 6B16= 1740038 11111000000000112=

101101112 B716= 67.248 110111.01012=

10100.11012 14.D16= F3A516 11110011101001012=

110110012 3318= AB3D16 10101011001111012=

101111.01112 57.348= 15C.3816 101011100.001112=

102316 10000001000112 100438= =

7E6A16 1111110011010102 771528= =

ABCD16 10101011110011012 1257158= =

C35016 11000011010100002 1415208= =

9E36.7A16 1001111000110110.01111012 117066.3648= =

DEAD.BEEF16 1101111010101101.10111110111011112 157255.5756748= =

11010112 10710= 1740038 6349110=

101101112 18310= 67.248 55.312510=

10100.11012 20.812510= F3A516 6237310=

120103 13810= AB3D16 4383710=

71568 369410= 15C.3816 348.2187510=
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2.6 (a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

2.7 (a) (b) (c) (d)

2.10 (a) (b) (c) (d)  

2.11

2.18

Suppose a 3n-bit number B is represented by an n-digit octal number Q. Then the two’s-complement of B is
represented by the 8’s-complement of Q.

2.22 Starting with the arrow pointing at any number, adding a positive number causes overflow if the arrow is
advanced through the +7 to –8 transition. Adding a negative number to any number causes overflow if the
arrow is not advanced through the +7 to –8 transition.

12510 11111012= 348910 66418=

20910 110100012= 971410 227628=

13210 10001002= 2385110 5D2B16=

72710 104025= 5719010 DF6616=

143510 26338= 6511310 FE5916=

1100010

110101

+  11001

1001110
--------------------------

1011000

101110

+ 100101

1010011
--------------------------

111111110

11011101

+    1100011

101000000
-----------------------------------

11000000

1110010

+ 1101101

11011111
-----------------------------

1372

+ 4631

59A3
--------------------

4F1A5

+ B8D5

5AA7A
----------------------

F35B

+ 27E6

11B41
---------------------

1B90F

+ C44E

27D5D
----------------------

decimal + 18 + 115 +79 –49 –3 –100

signed-magnitude 00010010 01110011 01001111 10110001 10000011 11100100

two’s-magnitude 00010010 01110011 01001111 11001111 11111101 10011100

one’s-complement 00010010 01110011 01001111 11001110 11111100 10011011

hj b4j i+ 2
j⋅

i 0=

3

∑=

Therefore,

B bi 2i⋅
i 0–

4n 1–

∑ hi 16i⋅
i 0=

n 1–

∑= =

B– 24n bi
i 0=

4n 1–

∑ 2i⋅– 16n hi 16i⋅
i 0=

n 1–

∑–= =



EXERCISE SOLUTIONS 2–3

2.24 Let the binary representation of  be . Then we can write the binary representation of  as

, where . Note that  is the sign bit of . The value of  is

Case 1  In this case,  if and only if , which is true if and
only if all of the discarded bits  are 0, the same as .

Case 2  In this case,  if and only if , which
is true if and only if all of the discarded bits  are 1, the same as .

2.25 If the radix point is considered to be just to the right of the leftmost bit, then the largest number is  and
the 2’s complement of  is obtained by subtracting it from 2 (singular possessive). Regardless of the position
of the radix point, the 1s’ complement is obtained by subtracting  from the largest number, which has all 1s
(plural).

2.28

Case 1  First term is 0, summation terms have shifted coefficients as specified. Overflow if
.

Case 2  Split first term into two halves; one half is cancelled by summation term  if
. Remaining half and remaining summation terms have shifted coefficients as specified. Overflow if
.

2.32 001–010, 011–100, 101–110, 111–000. 

2.34 Perhaps the designers were worried about what would happen if the aircraft changed altitude in the middle of a
transmission. With the Gray code, the codings of “adjacent” alitudes (at 50-foot increments) differ in only one
bit. An altitude change during transmission affects only one bit, and whether the changed bit or the original is
transmitted, the resulting code represents an altitude within one step (50 feet) of the original. With a binary
code, larger altitude errors could result, say if a plane changed from 12,800 feet (0001000000002) to 12,750
feet (0000111111112) in the middle of a transmission, possibly yielding a result of 25,500 feet
(0001111111112).

X xn 1– xn 2– …x1x0 Y

xmxm 1– …x1x0
m n d–= xm 1– Y Y

Y 2m 1–– xm 1– xi 2i⋅
i 0=

n 2–

∑+⋅=

The value of  X is

X 2n 1–– xn 1– xi 2i⋅
i 0=

n 2–

∑+⋅=

2n 1–– xn 1– Y 2m 1– xm 1–⋅ xi 2i⋅
i m 1–=

n 2–

∑+ + +⋅=

2n 1–– xn 1– Y 2 2m 1–⋅ xi 2i⋅
i m=

n 2–

∑+ + +⋅=

xm 1– 0=( ) X Y= 2n 1–– xn 1–⋅ xi 2i⋅
i m=
n 2–∑+ 0=

xm…xn 1–( ) xm 1–

xm 1– 1=( ) X Y= 2n 1–– xn 1–⋅ 2 2m 1–⋅ xi 2i⋅
i m=
n 2–∑+ + 0=

xm…xn 1–( ) xm 1–

1.11…1
D

D

B bn 1–– 2n 1–⋅ bi 2i⋅
i 0=

n 2–

∑+=

2B bn 1–– 2n bi 2i 1+⋅
i 0=

n 2–

∑+⋅=

bn 1– 0=( )
bn 2– 1=

bn 1– 1=( ) bn 2– 2n 1–⋅
bn 2– 1=
bn 2– 0=
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2.37  
010 011

000 001

111110

100 101
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3.1 The “probably” cases may cause damage to the gate if sustained.

3.3 A logic buffer is a non-linear amplifier that maps the entire set of possible analog input voltages into just two
output votages, HIGH and LOW. An audio amplifier has a linear response over its specified operating range,
mapping each input voltage into an output voltage that is directly proprtional to the input voltage. 

3.6 From the American Heritage Electronic Dictionary (AHED), copyright 1992 by Houghton Mifflin Company:

(1) A structure that can be swung, drawn, or lowered to block an entrance or a passageway.

(2) a. An opening in a wall or fence for entrance or exit. b. The structure surrounding such an opening, such as
the monumental or fortified entrance to a palace or walled city.

(3) a. A means of access: the gate to riches. b. A passageway, as in an airport terminal, through which passen-
gers proceed for embarkation.

(4) A mountain pass.

(5) The total paid attendance or admission receipts at a public event: a good gate at the football game.

(6) A device for controlling the passage of water or gas through a dam or conduit.

(7) The channel through which molten metal flows into a shaped cavity of a mold.

(8) Sports. A passage between two upright poles through which a skier must go in a slalom race.

(9) Electronics. A circuit with multiple inputs and one output that is energized only when a designated set of
input pulses is received.

(a) 0 (b) 1 (c) 0 (d) undefined

(e) 1 (f) probably 1 (g) probably 0 (h) probably 0
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Well, definition (9) is closest to one of the answers that I had in mind. The other answer I was looking for is the
gate of a MOS transistor. 

3.14 A CMOS inverting gate has fewer transistors than a noninverting one, since an inversion comes “for free.” 

3.15 Simple, inverting CMOS gates generally have two transistors per input. Four examples that meet the require-
ments of the problem are 4-input NAND , 4-input NOR , 2-in, 2-wide AND–OR–INVERT , and 2-in, 2-wide OR–
AND–INVERT. 

3.18 One way is that a romance could be sparked, and the designers could end up with a lot less time to do their
work. Another way is that the stray perfume in the IC production line could have contaminated the circuits used
by the designers, leading to marginal operation, more debugging time by the deidicated designers, and less time
for romance. By the way, the whole perfume story may be apocryphal. 

3.20 Using the maximum output current ratings in both states, the HIGH-state margin is 0.69V and the LOW-state
margin is 1.02V. With CMOS loads (output currents less than 20 µA), the margins improve to 1.349V and
1.25V, respectively. 

3.21 The first answer for each parameter below assumes commercial operation and that the device is used with the
maximum allowable (TTL) load. The number in parentheses, if any, indicates the value obtained under a lesser
but specified (CMOS) load.

VOHmin 3.84V (4.4V )

VIHmin 3.15V

VILmax 1.35V

VOLmax 0.33V (0.1V)

IImax 1µA 

IOLmax 4 mA (20 µA)

IOHmax -4 mA (-20 µA)

3.22 Current is positive if it flows into a node. Therefore, an output with negative current is sourcing current. 

3.23 The 74HC00 output drive is so weak, it’s not good for driving much:

(a) Assume that in the LOW state the output pulls down to 0.33V (the maximum  spec). Then the output

current is , which is way more than the 4-mA commercial spec.

(b) For this problem, you first have to find the Thévenin equivalent of the load, or  in series with

. In the HIGH state, the gate must pull the output up to 3.84V, a difference of 1.59V across ,

requiring 10.7 mA, which is out of spec. In the LOW state, we have a voltage drop of  across

, so the output must sink 12.9 mA, again out of spec. 

3.24 (In the first printing, change “74FCT257T” to “74HC00.”) The specification for the 74HC00 shows a maxi-
mum power-supply current of 10 µA when the inputs aree at 0 or 5V, but based on the discussion in
Section 3.5.3 we would expect the current to be more when the inputs are at their worst-case values (1.35 or
3.15V). If we consider “nonlogic” input values, the maximum current will flow if the inputs are held right at
the switching threshold, approximately VCC/2.

3.26 (In the first printing, change “74FCT257T” to “74HC00.”) Using the formulas on page 119, we can estimate
that  or, using the higher value of  in the spec, that

. (The discrepancy shows that the output characteristic of this device
is somewhat nonlinear.) We can also estimate . 

3.29 The purpose of decoupling capacitors is to provide the instantaneous power-supply current that is required dur-
ing output transitions. Printed-circuit board traces have inductance, which acts as a barrier to current flow at
high frequencies (fast transition rates). The farther the capacitor is from the device that needs decoupling, the
larger is the instantaneous voltage drop across the connecting signal path, resulting in larger spike (up or down)
in the device’s power-supply voltage. 

VOL

5.0V( ) 120Ω⁄ 41.7mA=

148.5Ω
2.25V 148.5Ω

2.25V 0.33V–

148.5Ω

Rp(on) 5.0 3.84–( ) 0.004⁄ 290Ω= = VOHmin
Rp(on) 5.0 4.4–( ) 0.00002⁄ 30KΩ= =

Rn(on) 0.33 0.004⁄ 82.5Ω= =



EXERCISE SOLUTIONS 3–3

3.32 (a) 5 ns. 

3.38 Smaller resistors result in shorter rise times for LOW-to-HIGH transitions but higher power consumption in the
LOW state. Stated another way, larger resistors result in lower power consumption in the LOW state but longer
rise times (more ooze) for LOW -to-HIGH transitions. 

3.39 The resistor must drop  with 5mA of current through it. Therefore
; a good standard value would be . 

3.41 (The Secret of the Ooze.) The wired output has only passive pull-up to the HIGH state. Therefore, the time for
LOW-to-HIGH transitions, an important component of total delay, depends on the amount of capacitive loading
and the size of the pull-up resistor. A moderate capacitive load (say, 100 pF) and even a very strong pull-up
resistor (say, ) can still lead to time constants and transition times (15 ns in this example) that are longer
than the delay of an additional gate with active pull-up. 

3.42 The winner is 74FCT-T—48 mA in the LOW state and 15 mA in the HIGH state (see Table 3–8). TTL families
don’t come close. 

3.46 n diodes are required. 

3.49 For each interfacing situation, we compute the fanout in the LOW state by dividing  of the driving gate
by  of the driven gate. Similarly, the fanout in the HIGH state is computed by dividing  of the
driving gate by  of the driven gate. The overall fanout is the lower of these two results.

3.50 For the pull-down, we must have at most a 0.5-V drop in order to create a  that is no worse than a standard
LS-TTL output driving the input. Since , we get  and

. (Alternatively, )

For the pull-up, we must have at most a 2.3-V drop in order to create a  that is no worse than a standard
LS-TTL output driving the input. Since , we get  and

. (Alternatively, we could have calculated the result as
.)  The pull-up dissipates less power. 

3.52 The main benefit of Schottky diodes is to prevent transistors from saturating, which allows them to switch more
quickly. The main drawback is that they raise the collector-to-emitter drop across an almost-saturated transis-
tor, which decreases LOW -state noise margin. 

3.55

Low-state High-state Overall Excess

Case Ratio Fanout Ratio Fanout Fanout State Drive

74LS driving 74LS 20 20 20 none

74LS driving 74S 4 8 4 HIGH

LOW-state HIGH-state

OK? OK?

470 — 5.0 470 4.5 9.57 no <0 — yes

330 470 2.9375 193.875 2.4375 12.57 no <0 — yes

5.0 2.0– 0.37– 2.63V=
r 2.63 0.005⁄ 526Ω= = 510Ω

150Ω

IOLmax
I ILmax IOLmax

I IHmax

8mA
0.4mA
---------------- 400µA

20µA
-----------------

8mA
2mA
------------ 400µA

50µA
----------------- 200µA

VIL
I ILmax 0.4mA= Rpd 0.5 0.004⁄ 1250Ω= =

Ppd VIL
2 Rpd⁄ 0.5( )2 1250⁄ 0.2mW= = = Ppd VIL I IL 0.5 0.0004⋅ 0.2mW= = =

VIH
I IHmax 20µA= Rpu 2.3 0.00002⁄ 115kΩ= =

Ppu VIH
2 Rpu⁄ 2.3( )2 115000⁄ 0.046mW= = =

Ppu VIHI IH 2.3 0.00002⋅ 0.046mW= = =

RVCC
Ω( )

RGND
Ω( )

VThev
V( )

RThev
Ω( )

VThev VOL
V( )
– IOL

mA( )
VOH VThev

V( )
– IOH

µA( )
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3.56

3.57 For each interfacing situation, we compute the fanout in the LOW state by dividing  of the driving gate
by  of the driven gate. Similarly, the fanout in the HIGH state is computed by dividing  of the
driving gate by  of the driven gate. The overall fanout is the lower of these two results.

3.64 TTL-compatible inputs have , and typical TTL outputs have . CMOS output
levels are already high compared to these levels, so there’s no point in wasting silicon to make them any higher
by lowering the voltage drop in the HIGH state. 

3.68 Including the DC load, a CMOS output’s rise and fall
times can be analyzed using the equivalent circuit
shown to the right. This problem analyzes the fall time.
Part (a) of the figure below shows the electrical condi-
tions in the circuit when the output is in a steady HIGH
state. Note that two resistors form a voltage divider, so
the HIGH output is 4.583V, not quite 5.0 V as it was in
Section 3.6.1. At time  the CMOS output changes
to the LOW state, resulting in the situation depicted
in (b). The output will eventually reach a steady LOW
voltage of 0.227 V, again determined by a voltage
divider.

At time ,  is still 4.583V, but the Thévenin equivalent of the voltage source and the two resistors in
the LOW state is  in series with a 0.227-V voltage source. At time , the capacitor will be dis-
charged to the Thévenin-equivalent voltage and  will be 0.227V. In between, the value of  is gov-

LOW-state HIGH-state

Case Margin Margin

74HCT driving 74LS 0.8V 0.33V 0.47V 2.0V 3.84V 1.84V

LOW-state HIGH-state Overall Excess

Case Ratio Fanout Ratio Fanout Fanout State Drive

74HCT driving 74LS 10 200 10 HIGH

VILmax VOLmax(T) VIHmin VOHmin(T)

IOLmax
I ILmax IOHmax

I ILmax

4mA
0.4mA
---------------- 4000µA

20 µA
-------------------- 3800µA

VIHmin 2.0V= VOHmin 2.7V=

VDD = +5.0 V

VOUT
VIN

Rn

Rp

CMOS
inverter

Equivalent load for
transition-time analysis

+

–

2.5 V

1 kΩ

100 pFt 0=

AC load

+

–

2.5 V

1 kΩ
100 pF

VDD = +5.0 V

VOUT = 4.583V

IOUT = 0
IOUT

VIN

> 1 MΩ

200 Ω
AC load

VDD = +5.0 V

VOUT
VIN

(a) (b)

100 Ω

> 1 MΩ

+

–

2.5 V

1 kΩ
100 pF

t 0= VOUT
90.9Ω t ∞=

VOUT VOUT



EXERCISE SOLUTIONS 3–5

erned by an exponential law:

Because of the DC load resistance, the time constant is a little shorter than it was in Section 3.6.1, at 9.09 ns.

To obtain the fall time, we must solve the preceding equation for VOUT = 3.5 and VOUT = 1.5, yielding

The fall time  is the difference between these two numbers, or 7.7 ns. This is slightly shorter than the 8.5 ns
result in Section 3.6.1 because of the slightly shorter time constant. 

3.70 The time constant is . We solve the rise-time equation for the point at which VOUT is
1.5 V, as on p. 118 of the text:

3.77 The LSB toggles at a rate of 16 MHz.  It takes two clock ticks for the LSB to complete one cycle, so the transi-
tion frequency is 8 MHz. The MSB’s frequency is 27 times slower, or 62.5 KHz.  The LSB’s dynamic power is
the most significant, but the sum of the transitions on the higher order bits, a binary series, is equivalent to
almost another 8 MHz worth of transitions on a single output bit. Including the LSB, we have almost 16 MHz,
but applied to the load capacitance on just a single output. If the different ouputs actually have different load
capacitances, then a weighted average would have to be used.

3.81

3.84 In the situations shown in the figure, the diode with the lowest cathode voltage is forward biased, and the anode
(signal C) is 0.6V higher. However, under the conditions specified in the exercise, neither diode is forward
biased, no current flows through , and  is 5.0V. 

VOUT 0.227V 4.583 0.227V–( )+ e t RnCL( )⁄–⋅=

4.356 e t 90.9 100 1012–⋅ ⋅( )⁄– V⋅=

4.356 e t–( ) 90.9 10 9–⋅( )⁄ V⋅=

t 9.09– 10 9–
VOUT

4.356
-------------ln⋅⋅=

t3.5 1.99 ns=

t1.5 9.69 ns=

tf

1kΩ 50 pF⋅ 50 ns=

t1.5 50– 10 9– 5.0 1.5–
5.0

---------------------ln⋅⋅=

t1.5 17.83 ns=

VCC

A

EN

OUT

Q1

Q2

EN

L
L
H
H

A

L
H
L
H

B

H
H
L
L

C

H
L
H
H

D

H
L
L
L

 Q1

on
off
off
off

 Q2

off
on
off
off

OUT

L
H

Hi-Z
Hi-Z

EN

A OUT

(a) (b)

(c)

B
C

D

R2 VC
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3.85

3.86 In order to turn on Q2 fully, VA must be 1.2V , corresponding to the sum of the base-to-emitter drops of Q2 and
Q5. This could happen if both X and Y are 0.95V or higher. In reality, a somewhat higher voltage is required,
because the voltage divider consisting of R1, R3, and other components diverts current from the base of Q2
from turning on fully until X and Y are about 1.1V or higher (at , according to the typical characteristics
graphed in the TI TTL Data Book). 

3.90 When the output is HIGH, the relay coil will try to pull it to 12 volts. The high voltage will typically cause high
current to flow through the output structure back into the 5-V supply and will typically blow up the output.
Open-collector TTL outputs theoretically should not have this problem, but most are not designed to withstand
the 12-V potential and transistor breakdown will occur. A few TTL open-collector devices are designed with
“high-voltage  outputs”  to solve this problem.

3.92  F = W ⋅ X + Y ⋅ Z

/* Transistor parameters */
#define DIODEDROP 0.6   /* volts */
#define BETA 10;
#define VCE_SAT 0.2     /* volts */
#define RCE_SAT 50      /* ohms  */
#define MAX_LEAK 0.00001 /* amperes */

main()
{
    float Vcc, Vin, R1, R2;  /* circuit parameters */
    float Ib, Ic, Vce;       /* circuit conditions */

    if (Vin < DIODEDROP) {   /* cut off */
       Ib  = 0.0;
       Ic  = Vcc/R2;  /* Tentative leakage current, limited by large R2 */
       if (Ic > MAX_LEAK) Ic = MAX_LEAK;  /* Limited by transistor */
       Vce = Vcc - (Ic * R2);
    }
    else {                   /* active or saturated */
        Ib = (Vin - DIODEDROP) / R1;
        if ((Vcc - ((BETA * Ib) * R2)) >= VCE_SAT) {   /* active */
            Ic  = BETA * Ib;
            Vce = Vcc - (Ic * R2);
        }
        else {               /* saturated */
           Vce = VCE_SAT;
           Ic  = (Vcc - Vce) / (R2 + RCE_SAT);
        }
    }
}

W X Y Z G F W X Y Z G F

0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 1 1 0 1 0 0 1 1 0

0 0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 0 1 1 0 1 1 0 1

0 1 0 0 1 0 1 1 0 0 0 1

0 1 0 1 1 0 1 1 0 1 0 1

25°C
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3.96 When one module is driving HIGH and the other  modules are output-disabled, each disabled module has
a 74LS125 output sinking  of leakage current. In addition, each of the n modules has a 74LS04 input
sinking  of leakage current. Thus, the total sink current is . The 74LS125 can source
2.6 mA in the HIGH state, so we find

When one module is driving LOW and the other  modules are output-disabled, each disabled module has a
74LS125 output sourcing  of leakage current. In addition, each of the n modules has a 74LS04 input
sourcing 0.4 mA. Thus, the total source current is . The 74LS125 can sink 24 mA
in the LOW state, so we find

Overall, we require . 

0 1 1 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 1 1 1 0 1

W X Y Z G F W X Y Z G F

n 1–
20µA

20µA n 1– n+( ) 20µA⋅

n 1– n+( ) 20µA⋅ 2.6mA≤
n 65≤

n 1–
20 µA

n 1 )–( ) 20 µA⋅ n 0.4µA⋅+

n 1–( ) 20µA⋅ n 0.4mA⋅+ 24mA≤
n 57≤

n 57≤
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4

4.2

4.3

4.4

T2:
= 1

0 1 = 1

1 1 = 1

X X 1+

T3:
=

0 0 = 0

1 1 = 1

X X X+ X

=

0 0 = 0

1 1 = 1

T3′
X X X⋅ X

=

0 0 0 = 0

0 1 1 = 1

1 0 1 = 1

1 1 1 = 1

T6

X Y X Y+ Y X+
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4.5 The original expression assumes precedence of over , that is, the expression is . The paren-
thesization must be retained for the correct result, , or the precedence must be swapped. 

4.6 The answers for parts (a), (b), (c) are as follows.

4.7  (a) (b)

4.9

(a)

(b)

4.12 (1) Including inverters makes the problem too difficult. (2) In modern PLD-based designs, inverters do cost
nothing and really can be ignored.

4.13  

  ⋅   + X Y Z⋅( )+
X ′ Y′ Z′+( )⋅

W X Y Z (W X Y Z′ W+ X ′ Y Z W′+ X Y Z W+ X Y′ Z)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
W X Y Z W X Y Z′ W X Y Z W X′ Y⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ Z W X Y Z W′ X Y Z⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ W X Y Z W X Y′ Z (T8)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=

0 0 0 0 T6′ T5′ T2′, ,( )+ + +=

0 A4′( )=

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F X ′ Y Y′ X⋅+⋅ X( Y ) X′ Y′+( )⋅+= =

F A B⋅ A B+( ) A B ′+( ) A′ B+( )⋅⋅= =

1

1 11 1

X ⋅ Y

Z

00 01 11 10

X Y

0

X

Y

Z1

Z

F = X ⋅ Y + Z 

(a)

F = W′ ⋅ X + X′ ⋅ Y′ ⋅ Z + X ⋅ Y

00 01 11 10

W X

Y Z

00

1 1

1

1

1

1

11

11

10

W

X

Y

Z

X ⋅ Y

X′ ⋅ Y′ ⋅ Z′

W′ ⋅ X

(b)

01

W′ ⋅ Y′ ⋅ Z
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4.14  

4.15 (a)  Cost is less —one less gate input.

4.19

4.20

4.21 For the minimal sum-of-products expression to equal the minimal product-of-sums expression, the correspond-
ing maps must have the opposite don’t-cares covered, so that the expressions yield the same value for the don’t-
care input combinations.

(a) Both mininal sum-of-products expressions cover cell 15; they are equal. The minimal product-of-sums
expression also covers cell 15, so the expressions are not equal. The s-of-p and p-of-s expressions require the
same number of gates, but the p-of-s requires one fewer input. 

(b) Both mininal sum-of-products expressions cover cell 3 and 9 and not 15; they are equal. The minimal
product-of-sums expression covers cell 15, and not 3 or 9, so the expressions are equal. The p-of-s expression
requires fewer gates and inputs. 

11 1

Y′ ⋅ Z′00 01 11 10

X Y

0

X

Y

Z1

Z

F′ = X′ ⋅ Z′ + X ⋅ Y′ + W ⋅ X ⋅ Y′

(b)(a)
01 11

W X

Y Z

1 1

1

1

1

1 1

111

W

Y

Z
01

X′ ⋅ Z′

X′ ⋅ Y

X′ ⋅ Z′
W ⋅ X ⋅ Y′

X

F′ = X′ ⋅ Z′ + Y′ ⋅ Z′

00

00

10

10

W ⋅ Y′ ⋅ Z′

F = (X + Z) ⋅ (Y + Z)

F = (X + Z) ⋅ (X′ + Y) ⋅ (W′ + X′ + Y)

X′ + Z

X + Y′ + Z′ Y + Z

X′ +  Z

X + Y′ + Z′

Y + Z

0

00 01 11 10
X Y

Z

X

Y

Z0

0 0

1

0

X

Y′

Z′

X′

Z

Y

F

F = W′ ⋅ Y′ ⋅ Z + W′ ⋅ X′ ⋅ Z + W ⋅ X ⋅ Y

+ W′ ⋅ X′ ⋅ Y′ or  X′ ⋅ Y′ ⋅ Z′

00 01 11 10

W X

Y Z

1 1

1

1

d

d

1

11

10

W

X

Y

Z

W ⋅ X ⋅ Y

X′ ⋅ Y′ ⋅ Z′
(a)

01

W′ ⋅ X′ ⋅ Y′

W′ ⋅ X′ ⋅ Z

W′ ⋅ Y′ ⋅ Z

00

F = W′ ⋅ X′ + X′ ⋅ Y′ + X′ ⋅ Z

00 01 11 10

W X

Y Z

1

1

1

d

d d 1

1

10

W

X

Y

Z

W ⋅ Y ⋅ Z

X′ ⋅ Y′
(b)

W′ ⋅ X′

00

11

X′ ⋅ Z

01

F = (W + X′ + Y′) ⋅ (X′ + Y + Z) ⋅ (W′ + Z′) ⋅ (X + Y′ + Z)

00 11 10

W X

Y Z

0 0

0 0

0 0

d

d

000

W

X

Y

Z

W′ + Z

X + Y′ + Z 

W′ + Y

W′ + X

(a)

01

X′ + Y′ + Z′
W + X′ + Z

W + Y′ + Z

W + X′ + Y′

 

00

F = X′ ⋅ (W′ + Y′ + Z)

00 01 11 10

W X

Y Z

0 0

0

0 0 0

d

d d0

0

10

W

X

Y

Z

W′ + Y′ + Z

W′ + Y + Z′

X′
(b)

01

00

11

10

11

01

W + Y′ + Z′

X′ + Y + Z
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4.22 Consensus terms that must be added to cover the hazards are “circled” with rectangles. 

4.28

4.29

4.31

4.35

4.37 Figure 3–4(d) is more appropriate, since electrically a TTL NOR gate is just the wired-AND of inverters. 

4.39

(a) True. If  then either  or . If  then either  or . Therefore,

, and .

Analyzing this circuit with the standard
method for feedback sequential circuits
(Section 5.5), we get the following
excitation equation:

Thus,  is a function of X alone, and
is independent of the circuit’s previous
“state.”

11

1

1

00 01 11 10

W X

0

W

X

Y1

Y

W′ ⋅ Y′

00

W X

Y Z

11

1

1

1

1

1

W

X

Y

Z

W ⋅ X′ ⋅ Y′

W ⋅ Y′ ⋅ Z

(b)(a)

01

00

11

01

X ⋅ Z
10

X ⋅ Y′

W ⋅ X

X ⋅ Y

11 10

1

X ⋅ Y′ ⋅ Z

X

Q
Y

Q∗ X′ Y Q⋅( )′ Q+( )⋅=

X′ Y ′ Q ′ Q+ +( )⋅=

X′ 1⋅= X ′=

Q∗

X 1⋅ X  (T1′)=

X Y Y′+( )⋅ X  (T5)=

X Y⋅ X Y′⋅+ X  (T8)=

X Y ′+( ) Y⋅ X Y⋅ Y ′ Y (T8)⋅+=

X Y⋅ Y Y′ (T6′)⋅+=

X Y⋅ 0 (T5′)+=

X Y (T1)⋅=

X1 X2 … Xn Xn⋅ ⋅ ⋅ ⋅ X1 X2 … Xn Xn⋅( ) (T6′, T7′ as required)⋅ ⋅ ⋅=

X1 X2 … Xn (T3′)⋅ ⋅ ⋅=

X1 X2 … Xn Xn+ + + + X1 X2 … Xn Xn+( ) (T6, T7 as required)+ + +=

X1 X2 … Xn+ + +( ) (T3)=

A B⋅ 0= A 0= B 0= A B+ 1= A 1= B 1=

A B, 0 1 or 1,0,= A B ′=



EXERCISE SOLUTIONS 4–5

4.41

A dual theorem may be written based on maxterms. 

4.46 Yes, 2-input NAND gates form a complete
set of logic gates. We prove the result in
the figure on the right by showing that
these gates can be used to make 2-input
AND gates, 2-input OR gates, and inverters,
which form a complete set.

4.52 Take the dual, “multiply out,” and take the
dual again. The result is the same as “add-
ing out.” 

4.58 (a) 16 ns. (c) 18 ns. (d) 10 ns. 

4.61 To make it easier to follow, we’ll take the
dual, multiply out, and then take the dual
again. Also, we’ll simplify using theorems  and , otherwise we’ll get a nonminimal result for sure. For
Figure 4–27:

For Figure 4-29:

4.63

F X1 … Xi, X i 1+ … Xn, ,,,( ) X1′ … Xi ′, , F 0 … 0 Xi 1+ … Xn, , , , ,( )⋅=

 X1′ … X i ′, , F 0 … 1 Xi 1+ … Xn, , , , ,( )⋅+

…
 X1′ … Xi ′, , F 1 … 1, , X i 1+ … Xn, , ,( )⋅+

2i minterms      2i  combs

       
T3′ T6′

F X Z⋅ Y ′ Z⋅ X′ Y Z′⋅ ⋅+ +=

FD X Z+( ) Y′ Z+( ) X′ Y Z′+ +( )⋅⋅=

X Y ′ Z ′ X Z Y Z Y ′ X′ Z Y ′ X ′ Z Z X ′ Z Z Y(T8, T5′, T2′)⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅=

X Y ′ Z ′⋅ ⋅ X Y Z⋅ ⋅ X′ Y′ Z ′⋅ ⋅ X ′ Z⋅ Y Z (T3′, T6′)⋅+ + + +=

F X Y ′ Z ′+ +( ) X Y Z+ +( ) X ′ Y ′ Z+ +( ) X ′ Z+( ) Y Z+( ) (not minimal)⋅ ⋅ ⋅ ⋅=

F X Z ′⋅ Y′+=

FD X Z ′+( ) Y′⋅=

X Y ′ Z′ Y ′⋅ (T8)+⋅=

X Y ′⋅ Y ′ Z ′⋅  (T6′)+=

F X Y ′+( ) Y′ Z′+( ) (minimal)⋅=

1

1

00 01 11 10

W X

Y Z

00

1

1

1

1

01

11

10

W

X

Y

Z

X
W′ ⋅ Y ⋅ Z′

W ⋅ Y′ ⋅ Z

W ⋅ X ⋅ Z

F = W′ ⋅ X ⋅ Y + W′ ⋅ Y ⋅ Z′ + W ⋅ Y′ ⋅ Z + W ⋅ X ⋅ Z

W′ ⋅ X ⋅ Y
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4.69 For part (d), note that it is easiest to work with the product-of-sums directly; rather than multiplying out, one
simply enters the 0s on the map.  

4.70 Note that in these maps are drawn for the “true” function and we’ve written sum terms for the prime implicates
(the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.  

4.72

1

1 11 1

X 

Z

00 01 11 10

X Y

0

X

Y

Z1

Z

F = X ⋅ Y + Z 

(b)(a)

F = D

00 01 11 10

A B

C D

00

1

1

1

1

11

1 111

10

A

C

D

B

D

01

1 1 1 1

1

Y + Z00 01 11 10
X Y

0

X

Y

Z1

Z

(b)(a)

00 01 11 10

A B

C D

00

1 1 11

1 1 1111

10

A

C

D
01

D

X + Z

F = D

B

1

1

(a) V ⋅ W′ ⋅ Y′ ⋅ Z′

1 1

V = 0

01 11

1

11

W

X

Y

Z

X

01

V′ ⋅ X ⋅ Z

W X

Y Z

00

10

00

1

10

11

V = 1

01 11

1

11

W

X

Y

Z

X

01

W ⋅ X ⋅ Z

W X

Y Z

00

10

00

V ⋅ W ⋅ Z

1

1 1

10

V′ ⋅ X′ ⋅ Y′ ⋅ Z′

F = V′ ⋅ X ⋅ Z + V ⋅ W ⋅ Z + V ⋅ W′ ⋅ Y′ ⋅ Z′

(b) W′ ⋅ X′ ⋅ Y′ ⋅ Z′

1 1

V = 0

01 11

1

11

W

X

Y

Z

X

01

W X

Y Z

00

10

00

V′ ⋅ W ⋅ Y′ 

X ⋅ Y ⋅ Z V ⋅ X ⋅ Y

1

1

11

10

1

1

V = 1

01 11

11

W

X

Y

Z

X

01

W X

Y Z

00

10

00

1

1

10

F = V′ ⋅ W ⋅ Y′ + X ⋅ Y ⋅ Z + W′ ⋅ X′ ⋅ Y′ ⋅ Z′ + V ⋅ X ⋅ Y



EXERCISE SOLUTIONS 4–7

4.73 Note that in these maps are drawn for the “true” function and we’ve written sum terms for the prime implicates
(the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.

4.74

4.83 The name of the circuit comes from its output equation,
 F = 2B OR NOT 2B.

0

(a)

0 00

V = 0

01 11

0

00

0

W

X

Y

Z

0

01

W X

Y Z

00

00

0

10

V = 1

F = (V + Z) ⋅ (V + X) ⋅ (W′ + Z) ⋅ (V′ + W + Z′) ⋅ (Y′ + Z)

11

10

0

11

W

X

Y

Z
01

W X

Y Z

00

00

0

0 0

00

00

0

0

0

0

10

11

10

01

0

(b)

V = 0

0

0

0

Y

X

0

0

0 0

0

0

0 0

V = 1

01

11
Y

Z
01

W X

Y Z

00

10

00

0

F = (X + Y′) ⋅ (V + Y′ + Z) ⋅ (V′ + W′ + Y′) ⋅ (W + X′ + Y′) ⋅ (W + Y + Z′) or (W + X + Z′)

01 11

W
W X

00 10

Z
11

01

00

10

Y Z

X XX

11

W

10

0

0 0 0

0

0

0

W′ + Z

V′ + W + Z′

Y′ + Z
V + W + Y′

V + Y′ + Z

W + X + Z′

W + Y + Z′

W + X + Y′

W + X + Z′

V + Z

V + X

V′ + W′ + X

V′ + Y + Z

V′ + W′ + Y
V′ + X′ + Y

V′ + X + Z′

X + Y′

W + X′ + YV + W + X′ + Z

(a)

U,V = 0,0

1111

Y

X F = U′ ⋅ V′ ⋅ Y′ ⋅ Z + U′ ⋅ V ⋅ X ⋅ Z
        + X ⋅ Y′ ⋅ Z

U′ ⋅ V′ ⋅ Y′ ⋅ Z

01 11

W
W X

00 10

Z
11

01

00

10

Y Z

X

U,V = 0,1

1

11

1
Y

X
U′ ⋅ V ⋅ X ⋅ Z

01 11

W
W X

00 10

Z
11

01

00

10

Y Z

X

U,V = 1,0

11

Y

XX  ⋅ Y′ ⋅ Z

01 11

W
W X

00 10

Z
11

01

00

10

Y Z

X

U,V = 1,1

11

Y

X

01 11

W
W X

00 10

Z
11

01

00

10

Y Z

X

3 t INV

2B

F

tOR



5–1

E X E R C I S E  S O L U T I O N S

COMBINATIONAL
LOGIC DESIGN 
PRINCIPLES

574LS138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6

4

5

15

14

13

7

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

5.4 READY′ is an expression, with ′ being a unary operator. Use a name like READY_L or /READY instead.

5.8 Both LOW-to-HIGH and HIGH-to-LOW transitions cause positive transitions on the outputs of three gates (every
second gate), and negative transitions on the other three. Thus, the total delay in either case is

Since  and  for a 74LS00 are identical, the same result is obtained using a single worst-case delay of
15 ns.

5.12 The smallest typical delay through one ’LS86 for any set of conditions is 10 ns. Use the rule of thumb, “mini-
mum equals one-fourth to one-third of typical,” we estimate 3 ns as the minimum delay through one gate.
Therefore, the minimum delay through the four gates is estimated at 12 ns.

The above estimate is conservative, as it does not take into account the actual transitions in the conditions
shown. For a LOW-to-HIGH input transition, the four gates have typical delays of 13, 10, 10, and 20 ns, a total
of 53 ns, so the minimum is estimated at one-fourth of this or 13 ns. For a HIGH-to-LOW input transition, the
four gates have typical delays of 20, 12, 12, and 13 ns, a total of 57 ns, so the minimum is estimated at 14 ns.

5.15 A decoder with active-low outputs ought to be faster, considering that this decoder structure can be imple-
mented directly with inverting gates (which are faster than noninverting) as shown in Figures 5–35 and 5–37.

5.16 The worst-case ’138 output will have a transition in the same direction as the worst-case ’139 output, so we use
tpHL numbers for both, which is the worst combination. The delay through the ’139 is 38 ns, and from the

tp 3tpLH(LS00) 3tpHL(LS00)+=

3 15⋅ 3 15⋅+=

90 ns=

tpLH tpHL
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active-low enable input of the ’138 is 32 ns, for a total delay of 70 ns. Using “worst-case” numbers for the parts
and ignoring the structure of the circuit, an overly pessimistic result of 79 ns is obtained. 

We can also work the problem with 74HCT parts. Worst-case delay through the ’139 is 43 ns, and from the
active-low enable input of the ’138 is 42 ns, for a total delay of 85 ns. Ignoring the structure of the circuit, an
overly pessimistic result of 88 ns is obtained.

We can also work the problem with 74FCT parts. Worst-case delay through the ’139 is 9 ns, and from the
active-low enable input of the ’138 is 8 ns, for a total delay of 17 ns. Ignoring the structure of the circuit, a
slightly pessimistic result of 18 ns is obtained. 

Finally, we  can work the problem with 74AHCT parts. Worst-case delay through the ’139 is 10.5 ns, and from
the active-low enable input of the ’138 is 12 ns, for a total delay of 22.5 ns. Ignoring the structure of the circuit,
a slightly pessimistic result of 23.5 ns is obtained. 

5.19

5.21 Both halves of the ’139 are enabled simultaneously when EN_L is asserted. Therefore, two three-state drivers
will be enabled to drive SDATA at the same time. Perhaps the designer forgot to put an extra inverter on the
signal going to 1G or 2G, which would ensure that exactly one source drives SDATA at all times.

5.22 The total delay is the sum of the decoding delay through the 74LS139, enabling delay of a 74LS151, and delay
through a 74LS20: .

5.25 The worst-case delay is the sum of the delays through an ’LS280, select-to-output through an ’LS138, and
through an ’LS86: .

5.30 The worst-case delay is the sum of four numbers:

• In U1, the worst-case delay from any input to C4 (22 ns).

• In U2, the worst-case delay from C0 to C4 (22 ns).

• In U3, the worst-case delay from C0 to C4 (22 ns).

• In U4, the worst-case delay from C0 to any sum output (24 ns).

Thus, the total worst-case delay is 90 ns.

5.35 With the stated input combination, Y5_L is LOW and the other outputs are HIGH . We have the following cases:

(a) Negating G2A_L or G2B_L causes Y5_L to go HIGH within 18 ns.

(b) Negating G1 causes Y5_L to go HIGH within 26 ns.

(c) Changing A or C causes Y5_L to go HIGH within 27 ns (the change propagates through 3 levels of logic
internally), and causes Y4_L or Y1_L respectively to go LOW within 41 ns (2 levels).

(d) Changing B causes Y5_L to go HIGH within 20 ns (2 levels), and causes Y7_L to go LOW within 39 ns (3

levels). The delays in the ’LS138 are very strange—the worst-case  for 3 levels is shorter than for 2 levels!

5

74LS138

G2A

G1

G2B

Y0

Y1

Y2

Y3

15

14

13

7

B

A

C

Y4

Y5

Y6

Y7

12

11

10

9

74LS10

U2

1

2

13

12 F

6

4

1

2

3

Z

Y

X

+5 V
R

5

74LS138

G2A

G1

G2B

Y0

Y1

Y2

Y3

15

14

13

7

B

A

C

Y4

Y5

Y6

Y7

12

11

10

9

74LS10

U2

1
2

13
12 F

6

4

1

2

3

C

B

A

+5 V
R

(a) (b)

U1U1

38 30 15+ + 83 ns=

50 41 30+ + 121 ns=

tpHL
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5.39

5.46 The inputs are active low and the outputs are active high in this design.

C

d

d

d

d d

d

11

1 1

1

1

1

B

01 11

D
D C

00 10

A
11

01

00

10

B A

D C

B A

D C

B A

A′ + B + C + D

A + B′ + C

A + C′

B

a

not minimal

C

d

d

d

d d

d

11

1 1

1

1

1 1

B

01 11

D

00 10

A
11

01

00

10

A′ + B + C′

B′ + D′
A + B′ + C′

b

not minimal

C

d

d

d

d d

d

11

1 1

1

1

1

1 1

B

01 11

D

00 10

A
11

01

00

10

C′ + D′

c

not minimal

Y3

Y2

Y1

Y0

I1_L

I0_L

I2_L
I3_L

I4_L
I5_L
I6_L
I7_L

I8_L
I9_L

I10_L
I11_L

I12_L
I13_L
I14_L
I15_L



5–4 DIGITAL CIRCUITS

5.47

I7

I6

I5
I4

I3

I2

I1

I0

A2

I7_L

I6_L

I5_L

I4_L

I3_L

I2_L

I1_L

I0_L

A1

A0

GS

EO

EI

A2

A1

A0

IDLE

74x148

U1

9

U3

8

74x04

4

5

3

2

1

13

12

11
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6

7

9
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5

U3

6
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U3
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U3
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I7

I6

I5

I4

I3

I2

I1

I0

11

U2
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13

U2
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1

U3

2

3

U3

4

3

U2

4

74x04

1

U2

2

5

U2

6

9

U2
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5.54 An internal logic diagram for the multiplexer is shown below.

1D2

1D1

1D0
(23)

(1)

(2)

1Y
(2)

2D2

2D1

2D0
(3)
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(5)

2Y
(21)

3D2

3D1

3D0
(6)

(7)

(8)

3Y
(20)

4D2

4D1

4D0
(9)

(10)

(11)

4Y
(19)

S0

5D2

5D1

5D0

S1
(14)

(13)

(18)

(17)

(16)

5Y
(15)
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A truth table and pin assignment for the mux are shown below. 

The mux can be built using a single PLD, a PAL20L8 or GAL20V8; the pin assignment shown above is based
on the PLD. The corresponding ABEL program, MUX3BY5.ABL, is shown below. 

module Mux_3x5
title '5-Bit, 3-Input Multiplexer
J. Wakerly, Marquette University'
MUX3BY5 device 'P20L8';

" Input pins
I1D0, I1D1, I1D2                     pin 23, 1, 2;
I2D0, I2D1, I2D2                     pin 3, 4, 5;
I3D0, I3D1, I3D2                     pin 6, 7, 8;
I4D0, I4D1, I4D2                     pin 9, 10, 11;
I5D0, I5D1, I5D2                     pin 18, 17, 16;
S0, S1                               pin 13, 14;
" Output pins
Y1, Y2, Y3, Y4, Y5                   pin 22, 21, 20, 19, 15;

" Set definitions
BUS0 = [I1D0,I2D0,I3D0,I4D0,I5D0];
BUS1 = [I1D1,I2D1,I3D1,I4D1,I5D1];
BUS2 = [I1D2,I2D2,I3D2,I4D2,I5D2];
OUT  = [Y1,  Y2,  Y3,  Y4,  Y5  ];

" Constants
SEL0 = ([S1,S0]==[0,0]);
SEL1 = ([S1,S0]==[0,1]);
SEL2 = ([S1,S0]==[1,0]);
IDLE = ([S1,S0]==[1,1]);

equations

OUT = SEL0 & BUS0 # SEL1 & BUS1 # SEL2 & BUS2 # IDLE & 0;

end Mux_3x5

Inputs Outputs

S1 S0 1Y 2Y 3Y 4Y 5Y

0 0 1D0 2D0 3D0 4D0 5D0

0 1 1D1 2D1 3D1 4D1 5D1

1 0 1D2 2D2 3D2 4D2 5D2

1 1 0 0 0 0 0

74LS998

S0

2

21

20

19

15

221Y

2Y

3Y

4Y

5Y

3

4

5

6

7

8

9

S1

1D0

1D1

1D2

2D0

2D1

2D2

3D0

3D1

3D2

4D0
10 4D1
11 4D2
18 5D0
17 5D1
16 5D2

14

23

1

13



EXERCISE SOLUTIONS 5–7

5.55 This is the actual circuit of a MUX21H 2-input multiplexer cell in LSI Logic’s LCA 10000 series of CMOS
gate arrays. When S is 0, the output equals A; when S is 1, the output equals B.

5.60

5.67 The ’08 has the same pinout as the ’00, but its outputs are the opposite polarity. The change in level at pin 3 of
U1 is equivalent to a change at pin 4 of U2 (the input of an XOR tree), which is equivalent in turn to a change at
pin 6 of U2 (the parity-generator output). Thus, the circuit simply generated and checked odd parity instead of
even.

The change in level at pin 6 of U1 changed the active level of the ERROR signal.

5.69 This problem is answered in Section 5.9.3 of the text, which makes it a silly question.

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6

5
Y

Y
3

2

1

15

14

13

12

A

B

C

11

10

9

7

U1 – U18

S0

S1

S2

Ai Fi

Bi

Ci

Di
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5.75

5.79 The function has 65 inputs, and the worst 65-input function (a 65-input parity circuit) has  terms in the
minimal sum-of-products expression. Our answer can’t be any worse than this, but we can do better.

The expression for  has 3 product terms: 

The expression for  is 

If we substitute our previous expression for c1 in the equation above and “multiply out,” we get a result with
 product terms. Let us assume that no further reduction is possible.

Continuing in this way, we would find that the expression for  has  product terms and, in
general, the expression for  has  product terms.

Thus, the number of terms in a sum-of-products expression for  is no more than , fewer if minimiza-
tion is possible.

19
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U1
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P

Q
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3

4 6
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U4
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74x27
2
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1

74x02
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5

6
4

74x02

U5

8
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c1 c1 c0 x0⋅ c0 y0⋅ x0 y0⋅+ +=

c2 c2 c1 x1⋅ c1 y1⋅ x1 y1⋅+ +=

3 3 1+ + 7=

c3 7 7 1+ + 15=
c i 2i 1+ 1–

c32 233 1–
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5.80

74LS181

CIN
P

G

74S182

C0

G0

P0

G

P

74LS181
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P

G
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G1

P1
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G
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5.82

5.91

5.93 The obvious solution is to use a 74FCT682, which has a maximum delay of 11 ns to its PEQQ output. How-
ever, there are faster parts in Table 5–3. In particular, the 74FCT151 has a delay of only 9 ns from any select
input to Y or Y. To take advantage of this, we use a ’138 to decode the SLOT inputs statically and apply the
resulting eight signals to the data inputs of the ’151. By applying GRANT[2–0] to the select inputs of the ’151,
we obtain the MATCH_L output (as well as an active-high MATCH, if we need it) in only 9 ns!

                  

5

15

74LS138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6

1

2
3

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

F2

F1

F3

F4

Z

Y

X

+5V

U1

R U2

4
6

U2

12

13
11

U2

9

10
8

U2

74LS00

74LS00

74LS00

74LS00

74x153

1G

1C0

1C1

1C2

1C3

2C0

2C1

2C2

2C3

A

1

71Y

92Y

6

5

4

3

15

10

11

12

13

B2

14

2G

U1

S1

S2

74x157

1A

1B

2A

2B

3A

3B

4A

4B

2
41Y

72Y

93Y

124Y

3

5

6

11

10

14

13

S1

15

B0

C0

D0

E0

B1

C1

D1

E1

BCDE0

BCDE1

74x153

1G

1C0

1C1

1C2

1C3

2C0

2C1

2C2

2C3

A

1

71Y

92Y

6

5

4

3

15

10

11

12

13

B2

14

2G

U2

B2

C2

D2

E2

B3

C3

D3

E3

BCDE2

BCDE3

B[0:3]

C[0:3]

D[0:3]

E[0:3]

A0

A1

A2

A3

T0

T1

T2

T3

G

U3

S0

A[0:3]

T[0:3]



119

E X E R C I S E  S O L U T I O N S

Sequential 
Logic Design Principles

7

7.2

7.3 The latch oscillates if S and R are negated simultaneously. Many simulator programs will exhibit this same
behavior when confronted with such input waveforms.

S

R

Q

QN

S

R

Q

QN
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7.5

7.8 Just tie the J and K inputs together and use as the D input. 

7.9 Excitation and output equations: 

Excitation/transition table; state/output table:

7.15 Excitation equations:

Excitation/transition table; state table:

7.18 Excitation and output equations:

QN

QQ

QT

EN
J

K

CLK

D1 Q1 ′ Q2+=

D2 Q2 ′ X⋅=

Z Q1 Q2′+=

EN

Q1 Q2 0 1

00 10 11

01 10 10

10 00 01

11 10 10

Q1* Q2*

EN

S 0 1 Z

A C D 1

B C C 0

C A B 1

D C C 1

S*

D2 Q( 1 Q0 ) Q1′ Q2′⋅( )⊕ ⊕=

D1 Q2=

D0 Q1=

Q2 Q1 Q0 Q2* Q1* Q0*

000 100

001 000

010 101

011 001

100 010

101 110

110 111

111 011

S S*

A E

B A

C F

D B

E C

F G

G H

H D

J0 K0 EN= =

J1 K1 Q0 EN⋅= =

MAX EN Q1 Q0⋅⋅=
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Note that the characteristic equation for a J-K flip-flop is . Thus, we obtain the following
transition equations: 

Transition/output table; state/output table:

State diagram:

Timing diagram:

7.20 This can be done algebraically. If all of the input combinations are covered, the logical sum of the expressions
on all the transitions leaving a state must be 1. If the sum is not 1, it is 0 for all input combinations that are
uncovered. For double-covered input combinations, we look at all possible pairs of transitions leaving a state.
The product of a pair of transition equations is 1 for any double-covered input combinations.

(a) State D, Y = 0 is uncovered.

(b) State A, (X+Z′) = 0 is uncovered. State B, W = 1 is double-covered; (W+X) = 0 is uncovered. State C,
(W+X+Y+Z) = 0 is uncovered; (W⋅X + W⋅Y + Z⋅Y + Z⋅X) = 1 is double covered. State D, (X⋅Y + ⋅X′⋅Z + W⋅Z) = 0
is uncovered; (W⋅X′⋅Z + W⋅X⋅Y⋅Z) = 1 is double-covered; 

Q∗ J Q ′⋅ K ′ Q⋅+=

Q0∗ EN ′ Q0⋅ EN Q0′⋅+=

Q1∗ EN ′ Q1⋅ EN Q0⋅ Q1 ′⋅ EN Q0′ Q1⋅⋅+ +=

EN

Q1 Q2 0 1

00 00,0 01,0

01 01,0 10,0

10 10,0 11,0

11 11,0 00,1

Q1* Q2*, MAX

EN

S 0 1

A A,0 B,0

B B,0 C,0

C C,0 D,0

D D,0 A,1

S*, MAX

A

EN

EN

EN

EN′EN′

EN′EN′

EN

B

CD

CLK

EN

Q0

Q1

MAX
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7.21 Table 9–4 on page 804 shows an output-coded state assignment. Here is a corresponding transition list:

The excitation equations and circuit diagram follow directly from this transition list. 

7.25 The minimum setup time is the clock period times the duty cycle. That is, the minimum setup time is the time
that the clock is 1. 

7.27 As shown in Section 7.9.1, the excitation equation for the latch of Figure 7–72 is 

Below, we analyze Figure X7.27 in the same way:

The feedback equation is

The feedback equations are the same, and so the circuits have identical steady-state behavior.

The circuit in Figure X7.27 is better in two ways. It uses one less gate, and it has one less load on the D input. 

7.29 The AND gate in the original circuit is replaced with a NAND gate. As a result, the second flip-flop stores the
opposite of the value stored in the original circuit; to compensate, swap connections to its Q and QN outputs.

S L3Z L2Z L1Z R1Z R2Z R3Z Transition expression S* L3Z* L2Z* L1Z* R1Z* R2Z* R3Z*

IDLE 0 0 0 0 0 0 (LEFT + RIGHT + HAZ)′ IDLE 0 0 0 0 0 0

IDLE 0 0 0 0 0 0 LEFT ⋅ HAZ′ ⋅ RIGHT′ L1 0 0 1 0 0 0

IDLE 0 0 0 0 0 0 HAZ + LEFT ⋅ RIGHT LR3 1 1 1 1 1 1

IDLE 0 0 0 0 0 0 RIGHT ⋅ HAZ′ ⋅ LEFT′ R1 0 0 0 1 0 0

L1 0 0 1 0 0 0 HAZ′ L2 0 1 1 0 0 0

L1 0 0 1 0 0 0 HAZ LR3 1 1 1 1 1 1

L2 0 1 1 0 0 0 HAZ′ L3 1 1 1 0 0 0

L2 0 1 1 0 0 0 HAZ LR3 1 1 1 1 1 1

L3 1 1 1 0 0 0 1 IDLE 0 0 0 0 0 0

R1 0 0 0 1 0 0 HAZ′ R2 0 0 0 1 1 0

R1 0 0 0 1 0 0 HAZ LR3 1 1 1 1 1 1

R2 0 0 0 1 1 0 HAZ′ R3 0 0 0 1 1 1

R2 0 0 0 1 1 0 HAZ LR3 1 1 1 1 1 1

R3 0 0 0 1 1 1 1 IDLE 0 0 0 0 0 0

LR3 1 1 1 1 1 1 1 IDLE 0 0 0 0 0 0

Y∗ C D⋅ C′ Y⋅ D Y⋅+ +=

D

C

(C ⋅ D)′

((C ⋅ D)′ ⋅ C) + Y′

C ⋅ D + (((C ⋅ D)′ ⋅ C) + Y′)′

((C ⋅ D)′ ⋅ C)′

Q

QN

Y∗
Y

Y∗ C D⋅ C D⋅( )′ C⋅( ) Y′+( )′+=

C D⋅( ) C D⋅( )′ C⋅( )′ Y⋅+=

C D⋅ C D⋅( )( C′ ) Y⋅+ +=

C D⋅ D C ′+( ) Y⋅+=

C D⋅ D Y⋅ C ′ Y⋅+ +=
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The OR gates in the original circuit are also replaced with NAND gates. As a result, each input must be con-
nected to a signal of the opposite polarity as before, that is, to the complementary flip-flop output. In the case of
connections to the second flip-flop, we swapped outputs twice, so the connections remain the same.

The final circuit below uses three 2-input NAND gates.

7.45 A transition table corresponding to the state table is shown below: 

This table leads to the following Karnaugh maps for the excitation logic, assuming a “minimal cost” treatment
of unused states.

A B

Q2 Q1 Q0 00 01 11 10 Z

000 001 001 010 010 0

001 011 011 010 010 0

010 001 001 100 100 0

011 011 011 110 010 1

100 001 101 100 100 1

101 011 011 110 010 1

110 001 101 100 100 1

Q2* Q1* Q0*

D Q

QCLK

D Q

QCLK

X

Z

CLK

00 01 11 10

00

01

11

10

00 01 11 10

A B

Q1 Q2

00

01

11

10

A

B

A B
A

B

A B
A

B

A B
A

B

A B
A

B

A B
A

B

Q1

Q2

Q0=0

Q1 Q2

Q1

Q2

Q0=1

10

00

01

11

10

00 01 11 10Q1 Q2

00

01

11

10
Q1

Q2

Q0=0

Q1 Q2

Q1

Q2

Q0=1

00 01 11 10

00

01

11

10

00 01 11 10Q1 Q2

00

01

11

10
Q1

Q2

Q0=0

Q1 Q2

Q1

Q2

Q0=1

D0

D1

D2

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

0 00

0 01

0 0

0

0

0 1

0

d d d d

d d d d

d d d d

0 0 0

0 0 1 1

0 1 1 1

0 1 1 1

1 1 1 1

A′

00 11

Q1′ ⋅ Q2′ ⋅ A 

Q0

Q0′ ⋅ Q1 ⋅ B

01

Q0′ ⋅ Q2 ⋅ A

Q0′ ⋅ Q1 ⋅ A

Q1 ⋅ A ⋅ B

Q2 ⋅ A ⋅ B
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The resulting excitation equations are

Ignoring inverters, a circuit realization with the new equations requires one 2-input gate, six 3-input gates, and
one 5-input gate. This is more expensive than Figure 7–54, by four gates.

7.49 The new state assignment yields the following
transition/excitation table and Karnaugh maps:

This yields the following excitation equations:

Compared with the results of original state assigment, these equations require two more 3-input AND gates,
plus a 6-input OR gate inplace of a 4-input one. However, if we are not restricted to a sum-of-products realiza-
tion, using the fact that  might make this realization less expensive when discrete gates are
used. 

D0 A′=

D1 Q1′ Q2 ′⋅ A⋅ Q0+=

D2 Q2 A⋅ B⋅ Q0 ′ Q2⋅ A⋅ Q0′ Q1⋅ A⋅ Q1 A⋅ B⋅ Q0′ Q1⋅ B⋅+ + + +=

X Y

Q1 Q0 00 01 11 10 Z

00 00 01 11 01 1 

01 01 11 10 11 0 

11 11 10 00 10 0 

10 10 00 01 00 0 

Q2* Q1* or D1 D2

00 01 10

00

01

11

10

00 01 11 10

X Y

Q1 Q2

00

01

11

10

X

Y

Q1

Q2

D1 X Y

Q1 Q2

X

Q1

Q2

D2

1

1

1 0

1

0

1

1

0

0

00

0 1

0

1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

11

Y

Q1 ⋅ Q2′ ⋅ X′ Q1 ⋅ Q2′ ⋅ Y′

Q1′ ⋅ Q2 ⋅ Y Q1′ ⋅ X ⋅ Y

Q2 ⋅ X′ ⋅ Y′ Q2 ⋅ X ⋅ Y

Q2′ ⋅ X′ ⋅ Y Q2′ ⋅ X ⋅ Y′

Q1 ⋅ X′ ⋅ Y′

Q1′ ⋅ Q2 ⋅ X

D1 Q1′ Q2 X⋅ ⋅ Q1 ′ Q2 Y⋅ ⋅ Q1′ X Y⋅ ⋅ Q1 Q2′ X′⋅ ⋅ Q1 Q2 ′ Y ′⋅ ⋅ Q1 X ′ Y′⋅ ⋅+ + + + +=

D2 Q2 X Y⋅ ⋅ Q2′ X Y ′⋅ ⋅ Q2′ X′ Y Q2 X ′ Y ′⋅ ⋅+⋅ ⋅+ +=

D2 Q2 X Y⊕ ⊕=
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7.57 Here is the transition list:

The transition/excitation and output equations below follow directly from the transition list.

Starting from the IDLE state, the following transitions may be observed:

For each input combination, the machine goes to the R1 state, because R1’s encoding is the logical OR of the
encodings of the two or three next states that are specified by the ambiguous state diagram.

S Q2 Q1 Q0 Transition expression S* Q2* Q1* Q0*

IDLE  0 0 0 (LEFT+RIGHT+HAZ)′ IDLE 0 0 0

IDLE  0 0 0 LEFT L1 0 0 1

IDLE  0 0 0 HAZ LR3 1 0 0

IDLE  0 0 0 RIGHT R1 1 0 1

L1  0 0 1 1 L2 0 1 1

L2  0 1 1 1 L3 0 1 0

L3  0 1 0 1 IDLE 0 0 0

R1  1 0 1 1 R2 1 1 1

R2  1 1 1 1 R3 1 1 0

R3  1 1 0 1 IDLE 0 0 0

LR3  1 0 0 1 IDLE 0 0 0

S Q2 Q1 Q0 LEFT RIGHT HAZ Q2* Q1* Q0* S*

IDLE  0 0 0  1 0 1 1 0 1 R1

IDLE  0 0 0  0 1 1 1 0 1 R1

IDLE  0 0 0  1 1 0 1 0 1 R1

IDLE  0 0 0  1 1 1 1 0 1 R1

D2 Q2∗ Q2′ Q1′ Q0 ′ HAZ⋅ ⋅ ⋅= =

 Q2′ Q1′ Q0 ′ RIGHT⋅ ⋅ ⋅+

 Q2 Q1′ Q0⋅ ⋅+

 Q2 Q1 Q0⋅ ⋅+

Q2′ Q1′ Q0 ′ HAZ RIGHT+( )⋅ ⋅ ⋅ Q2 Q0⋅+=

D1 Q1∗ Q2′ Q1 ′ Q0⋅ ⋅= =

 Q2′ Q1 Q0⋅ ⋅+

 Q2 Q1′ Q0⋅ ⋅+

 Q2 Q1 Q0⋅ ⋅+

Q0=

D0 Q0∗ Q2 ′ Q1′ Q0′ LEFT⋅ ⋅ ⋅= =

 Q2 ′ Q1′ Q0′ RIGHT⋅ ⋅ ⋅+

 Q2 ′ Q1′ Q0⋅ ⋅+

 Q2 Q1′ Q0⋅ ⋅+

Q2′ Q1′ Q0 ′ LEFT RIGHT+( )⋅ ⋅ ⋅ Q1′ Q0⋅+=
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The behavior aboveis not so good and is a result of synthesis choices—state encoding and logic synthesis
method. If a different state encoding were used for R1, or if a different synthesis method were used (e.g., prod-
uct-of-s-terms), then the results could be different. For example, starting with the transition list given earlier,
we can obtain the following set of transition equations using the product-of-s-terms method:

 

These equations yield the following transitions:

This is obviously different and still not particularly good behavior. 

7.58 Let E(SB), E(SC), and E(SD) be the binary encodings of states SB, SC, and SD respectively. Then
, the bit-by-bit logical OR of E(SB) and E(SC). This is true because the synthesis

method uses the logical OR of the next values for each state variable and, by extension, the logical OR of the
encoded states. 

S Q2 Q1 Q0 LEFT RIGHT HAZ Q2* Q1* Q0* S*

IDLE  0 0 0  0 0 0 0 0 0 IDLE

IDLE  0 0 0  0 1 1 1 0 0 LR3

IDLE  0 0 0  1 1 0 0 0 1 L1

IDLE  0 0 0  1 1 1 0 0 0 IDLE

D2 Q2∗ Q2 Q1 Q0 LEFT RIGHT HAZ+ + + + +( )= =

 Q2 Q1 Q0 LEFT′+ + +( )⋅
 Q2 Q1 Q0′+ +( )⋅
 Q2 Q1′ Q0′+ +( )⋅
 Q2 Q1′ Q0+ +( )⋅
 Q2′ Q1′ Q0+ +( )⋅
 Q2′ Q1 Q0+ +( )⋅

Q2 Q1 RIGHT HAZ+ + +( ) Q2 Q1 LEFT′+ +( ) Q2 Q0 ′+( ) Q1′ Q0+( ) Q2′ Q0+( )⋅ ⋅ ⋅ ⋅=

D1 Q1∗ Q2 Q1 Q0 LEFT RIGHT HAZ+ + + + +( )= =

 Q2 Q1 Q0 LEFT′+ + +( )⋅
 Q2 Q1 Q0 HAZ′+ + +( )⋅
 Q2 Q1 Q0 RIGHT′+ + +( )⋅
 Q2 Q1′ Q0+ +( )⋅
 Q2′ Q1′ Q0+ +( )⋅
 Q2′ Q1 Q0+ +( )⋅

Q2 Q1 Q0+ +( ) Q1 ′ Q0+( ) Q2′ Q0+( )⋅ ⋅=

D0 Q0∗ Q2 Q1 Q0 LEFT RIGHT HAZ+ + + + +( )= =

 Q2 Q1 Q0 HAZ′+ + +( )⋅
 Q2 Q1′ Q0′+ +( )⋅
 Q2 Q1′ Q0+ +( )⋅
 Q2 ′ Q1 ′ Q0 ′+ +( )⋅
 Q2′ Q1′ Q0+ +( )⋅
 Q2′ Q1 Q0+ +( )⋅

Q2 Q0 LEFT RIGHT+ + +( ) Q2 Q0 HAZ′+ +( ) Q1′( ) Q2′ Q0+( )⋅ ⋅ ⋅=

E SD( ) E SB( ) E SC( )+=
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7.68 As far as I know, I was the first person to propose BUT-flops, and Glenn Trewitt was the first person to analyze
them, in 1982. To analyze, we break the feedback loops as shown in the figure to the right.

The excitation and output equations are

The corresponding transition/state table is

The two stable total states are circled. Notice that state 00 is unreachable.

When X1 X2 = 00 or 11, the circuit generally goes to stable state 11, with Q1 Q2 = 11. The apparent oscillation
between states 01 and 10 when X1 X2 = 11 may not occur in practice, because it contains a critical race that
tends to force the circuit into stable state 11.

When X1 X2 = 01 or 10, the Q output corresponding to the HIGH input will oscillate, while the other output
remains HIGH .

Whether this circuit is useful is a matter of opinion. 

7.71 When X=1, the circuit was supposed to “count” through its eight states in Gray-code order. When X=0, it
remains in the current state. If this were the case, I suppose it could be used as a 3-bit random number genera-
tor. However, I messed up on the logic diagram and the circuit actually does something quite different and
completely useless, compared to what I intended when I wrote the problem. Someday I’ll fix this problem.
Also, metastability may occur when X is changed from 1 to 0. 

7.79 Figure X5.59 requires two “hops” for each input change. Figure 7–66 is faster, requiring only one hop for each
input change. On the other hand, Figure 7–66 cannot be generalized for n>2.

7.90 Either this exercise is a joke, or a correct answer is much too dangerous to publish. Nevertheless, Earl Levine
offers two possible answers:

(Stable output) Was the last answer to this question “yes”?

(Oscillating output) Was the last answer to this question “no”?

X2

X1
Q1

Q2

Y1∗

Y2∗

Y1

Y2

Y1 X1 Y1⋅( ) X2 Y2⋅( )′⋅[ ]′=

X1′ Y1 ′ X2 Y2⋅+ +=

Y2 X2 Y2⋅( ) X1 Y1⋅( )′⋅[ ]′=

X2′ Y2 ′ X1 Y1⋅+ +=

Q1 Y1=

Q2 Y2=

X1 X2

Y1 Y2 00 01 11 10

00 11 11 11 11 

01 11 10 10 11 

11 11 10 11 01 

10 11 11 01 01 

Y1* Y2*
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874x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

8.1 In the first three printings, change “RAMBANK0” to “RAMBANK1” in the third line of the exercise. The results are
the same. The new expression describes exactly the input combinations in which the 8 high-order bits of ABUS

are 000000012, the same as the original expression using don’t-cares.

8.2 The 16-series devices have  or 2048 fuses (see Figure 10–2). The 20-series devices have  or
2560 fuses. 

8.3 There are  fuses in the AND array (see Figure 10–4). Each of the eight macrocells has one fuse
to control the output polarity and one fuse to select registered vs. combinational configuration in the 16V8R, or
to assert the output-enable in the 16V8S. There are also two global fuses to select the overall configuration
(16V8C, 16V8R, or 16V8S). The total number of fuses is therefore .

A real 16V8 (depending on the manufacturer) has at least 64 additional fuses to disable individual product
terms, 64 user-programmable fuses that do nothing but store a user code, and a security fuse. (Once the security
fuse is programmed, the rest of the fuse pattern can no longer be read.) 

8.5 The  column below gives the answers in MHz.

Part numbers Suffix

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -5  5  4 –  4.5  0 117.7 117.7

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -7  7.5  6.5 –  7  0 74.1 74.1

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -10  10  8 –  10  0 55.6 55.6

GAL22V10  -25  25  15  13  15  0 33.3 35.7

64 32× 64 40×

64 32× 2048=

2048 16 2+ + 2066=

fmaxE

tPD tCO tCF tSU tH fmaxE fmaxI
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8.6 The  column above gives the answers in MHz. 

8.7
module Eight_Bit_Reg
title ’8-bit Edge-Triggered Register’
Z74X374 device ’P16V8R’;

" Input pins
CLK, !OE                          pin 1, 11; 
D1, D2, D3, D4, D5, D6, D7, D8    pin 2, 3, 4, 5, 6, 7, 8, 9;

" Output pins 
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8    pin 19, 18, 17, 16, 15, 14, 13, 12;

" Set definitions 
D = [D1,D2,D3,D4,D5,D6,D7,D8]; 
Q = [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8];

equations

Q := D;

end Eight_Bit_Reg 

8.10 If EN or CLK is 0, the output will be stable. If both are 1, the results are unpredictable, since they depend on
circuit timing. It is certain that the circuit’s output will be unstable as long as this condition is true. 

8.11 The counter is modified to return to a count of 0 when count 9 is reached.

8.13 The counting direction is controlled by QD: count up when QD=1, count down when QD=0. A load occurs
when the counter is in the terminal state, 1111 when counting up, 0000 when counting down. The MSB is com-
plemented during a load and the other bits are unchanged.

Let us assume that the counter is initially in one of the states 0000–0111. Then the counter counts down
(QD=0). Upon reaching state 0000, it loads 1000 and subsequently counts up (QD=1). Upon reaching state
1111, the counter loads 0111, and subsequently counts down, repeating the cycle.

module Z74x162

title '4-bit Decade Counter' 

"Z74X162 device 'P16V8R'; 

" Input pins 

CLK, !OE                          pin 1, 11; 

A, B, C, D                        pin 2, 3, 4, 5; 

!LD, !CLR, ENP, ENT               pin 6, 7, 8, 9; 

" Output pins 

QA, QB, QC, QD                    pin 19, 18, 17, 16 istype 'reg';

RCO                               pin 15; 

" Set definitions 

INPUT = [ D,  C,  B,  A ]; 

COUNT = [QD, QC, QB, QA ]; 

equations 

COUNT.CLK = CLK; 

COUNT := !CLR & (  LD & INPUT 

                # !LD &  (ENT & ENP) & (COUNT < 9) & (COUNT + 1) 

                # !LD &  (ENT & ENP) & (COUNT == 9) & 0 

                # !LD & !(ENT & ENP) &  COUNT); 

RCO = (COUNT == 9) & ENT; 

end Z74x162

fmaxI
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If the counter is initially in one of the states 1000–1111, the same cyclic behavior is observed. The counting
sequence has a period of 16 and is, in decimal,

8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, 1, 0, 8, 9, ...

If only the three LSBs are observed, the sequence is

0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0, 0, 1, ...

8.14 The only difference between a ’163 and a ’161 is that the CLR_L input of ’161 is asynchronous. Thus, the
counter will go from state 1010 to state 0000 immediately, before the next clock tick, and go from state 0000 to
state 0001 at the clock tick. Observing the state just before each clock tick, it is therefore a modulo-10 counter,
with the counting sequence 0, 1, ..., 9, 0, 1, .... 

Note that this type of operation is not recommended, because the width of the CLR_L pulse is not well con-
trolled. That is, the NAND gate will negate the CLR_L pulse as soon as either one of its inputs goes to 0. If, say,
the counter’s QB output clears quickly, and its QD output clears slowly, it is possible for CLR_L to be asserted
long enough to clear QB but not QD, resulting in an unexpected next state of 1000, or possibly metastability of
the QD output.

8.17 The path from the Q1 counter output (B decoder input) to the Y2_L output has 10 ns more delay than the Q2 and
Q0 (C and A) paths. Let us examine the possible Y2_L glitches in Figure 8–43 with this in mind:

3→4 (011→100) Because of the delay in the Q1 path, this transition will actually look like 011→110→100.
The Y6_L output will have a 10-ns glitch, but Y2_L will not.

7→0 (111→000) Because of the delay in the Q1 path, this transition will actually look like 111→010→000.
The Y2_L output will have a 10-ns glitch, but the others will not.

8.19 The delay calculation is different, depending on the starting state.

In the INIT state, U7 and U8 take 21 ns to propagate the CLEAR signal to the outputs. Then U6 requires 20 ns
setup time on its D inputs while U3 requires 20 ns setup time on its RIN input. This implies a minimum clock
period of 41 ns, assuming zero delay from the control unit.

In states M1–M8, the minimum clock period depends on the delay of the combinational logic in the control unit
that asserts SELSUM when MPY0 is asserted. However, the most obvious way to do this is to connect MPY0
directly to SELSUM, creating a delay of 0 ns. This assumption is made below. Also, it is assumed that MPY0 is
1 to find the worst case. The figure on the next page shows the worst-case path, in heavy lines, to be 106 ns.
Since we would like to use the same clock for all states, the minimum clock period is 106 ns.
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8.20 The synchronizer fails if META has not settled by the beginning of the setup-time window for FF2, which is
5 ns before the clock edge. Since the clock period is 40 ns, the available metastability resolution time is 35 ns.
The MTBF formula is

Substituting the proper values of and  for the ’F74, and of  and  for the problem, we calculate

8.22 Refer to the sample data sheet on page 169 of the text: “Not more than one output should be shorted at a time;
duration of short-circuit should not exceed one second.” In the switch debounce circuit, the short lasts only for
a few tens of nanoseconds, so it’s OK. 

8.23 CMOS outputs can “latch up” under certain conditions. According to the Motorola High-Speed CMOS Logic
Data book (1988 edition, pp. 4–10), a 74HCT output can latch up if a voltage outside the range

 is forced on the output by an external source. In a switch debounce circuit using
74HCT04s, the switch connection to ground is an external source, but the voltage (0 V) is within the acceptable
range and should not be a problem.

Another potential problem is excessive short-circuit current, but again the data book indicates that shorting the
output briefly is not a problem, as long as “the maximum package power dissipation is not violated” (i.e., the
short is not maintained for a long time).

Similar considerations apply to 74AC and 74ACT devices, but in the balance, such devices are not recom-
mended in the switch-debounce application, as we’ll explain. On one hand, typical 74AC/74ACT devices are
even less susceptible to latch-up than 74HCT devices. (For example, see the Motorola FACT Data book, 1988
edition, pp. 2–9.) On the other hand, 74AC/74ACT’s high performance may create noise problems for other
devices in a system. In particular, when the 74AC/74ACT HIGH output is shorted to ground, it may momen-
tarily drag the local 5 V power-supply rail down with it, especially if the decoupling capacitors are small, far
away, or missing. This will in turn cause incorrect operation of the other, nearby logic devices. 

8.25 TTL inputs require significant current, especially in the LOW state. The bus holder cannot supply enough
current unless the series resistor is made much smaller, which then creates a significant load on the bus.

MTBF tr( )
tr τ⁄( )exp

T0 f⋅ a⋅
------------------------=

τ T0 f a

MTBF 35ns( ) 35 0.4⁄( )exp

2.0 10 4– 106 106⋅ ⋅ ⋅
------------------------------------------- 2 1028s⋅≈=

0.5– Vout VCC 0.5V+≤≤
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8.26 .

8.28 The maximum delay from clock to output of a 74HCT74 flip-flop is 44 ns. For a 4-bit ripple counter, the delay
ripples through four such stages for a total maximum delay of 176 ns. Similarly, the maximum delays using
74AHCT and 74LS74 flip-flops are 40 ns and 160 ns, respectively.

8.32

library IEEE;

use IEEE.std_logic_1164.all;

--

-- Exercise 8-26 

-- This code combines the address latch and

-- and the decoder and its latch

entity latch_decode is

port (

abus : in std_logic_vector ( 31 downto 0);

avalid : in std_logic;

la : out std_logic_vector ( 19 downto 0);

romcs, ramcs0, ramcs1, ramcs2 : out std_logic

);

end entity latch_decode;

architecture behave of latch_decode is

begin

process (avalid, abus)

begin

if (avalid = '1') then 

la <= abus (19 downto 0);

end if;

end process;

process (abus, avalid)

variable rom, ram1, ram2, ram0 : std_logic_vector (11 downto 0);

begin

rom  := "111111111111";

ram0 := "000000000000";

ram1 := "000000010000";

ram2 := "000000100000";

If (avalid= '1') then

    if (abus (31 downto 20) = rom ) then romcs  <= '1'; else romcs  <= '0'; end if;

    if (abus (31 downto 20) = ram0) then ramcs0 <= '1'; else ramcs0 <= '0'; end if;

    if (abus (31 downto 20) = ram1) then ramcs1 <= '1'; else ramcs1 <= '0'; end if;

    if (abus (31 downto 20) = ram2) then ramcs2 <= '1'; else ramcs2 <= '0'; end if;

end if;

end process;

end behave;

tperiod(min) tpTQ 3tAND tsetup++=

fmax 1 tperiod(min)⁄=
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8.37

Inputs Current state Next state

CLR_L LD_L ENT ENP QD QC QB QA QD∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

1 1 0 x x x x x QD QC QB QA

1 1 x 0 x x x x QD QC QB QA

1 1 1 1 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 1 0 0 1 0

1 1 1 1 0 0 1 0 0 0 1 1

1 1 1 1 0 0 1 1 0 1 0 0

1 1 1 1 0 1 0 0 0 1 0 1

1 1 1 1 0 1 0 1 0 1 1 0

1 1 1 1 0 1 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 1 0 0 1

1 1 1 1 1 0 0 1 0 0 0 0

1 1 1 1 1 0 1 0 1 0 1 1

1 1 1 1 1 0 1 1 0 1 0 0

1 1 1 1 1 1 0 0 1 1 0 1

1 1 1 1 1 1 0 1 0 1 0 0

1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0
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8.38
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The minimum clock period is the sum of:

(a) The delay from the clock edge to any RCO output (35 ns).

(b) The delay from any RCO output to any ENP input, that is, two gate delays ( ).

(c) The setup time to the next clock edge required by the ENP inputs (20 ns).

Thus, the minimum clock period is 85 ns, and the corresponding maximum clock frequency is 11.76 MHz. 

8.41 To get even spacing, the strategy is for the MSB (N3) to select half the states, the ones where QA is 0. The next
bit down (N2) selects one-fourth of the states, the ones where QB is 0 and the less significant counter bits (i.e.,
QA) are all 1. Likewise, N1 selects the one-eighth of the states where QC is 0 and QB and QA are 1, and N0
selects the state where QD is 0 and QC, QB, and QA are all 1.  In this way, each non-1111 counter state is
assigned to one input bit.   

2 15⋅ 30 ns=

14
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8.53
--Chris Dunlap 

--Xilinx Applications

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

entity v74x163s is

generic(size : integer := 8);  --added generic

port (clk,clr_l,ld_l,enp,ent : in std_logic;

d : in std_logic_vector (size-1 downto 0); --changes range of input

q : out std_logic_vector (size-1 downto 0); --changes range of output

rco : out std_logic);

end v74x163s;

architecture v74x163_arch of v74x163s is

component synsercell is

  port (clk, ldnoclr, di, coclrorld,cntenp,cnteni : in std_logic;

   qi,cnteni1 : out std_logic);

end component;

signal ldnoclr,noclrorld : std_logic;

signal scnten : std_logic_vector (size downto 0); --creates a ranged temp with overflow room

begin

ldnoclr <= (not ld_l) and clr_l;

noclrorld <= ld_l and clr_l;

scnten(0) <= ent;

rco <= scnten(size);

gi: for i in 0 to size-1 generate --counts for size of counter

  U1: synsercell port map (clk, ldnoclr, noclrorld, enp, d(i), scnten(i), scnten(i+1), q(i));

  end generate;

end v74x163_arch;
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8.54                     
--**********************************

-- PROBLEM : WAKERLY - 8.54

-- FILES : 

--   8_54_top.vhd : top level file

--   8_54_par2ser.vhd : parallel to serial converter

--   8_54_control.vhd : control module

--   8_54_shift_synch.vhd : 8 bit shift register

--

-- DESCRIPTION : 

--   Creates a parallel to serial converter.

--   Data in is described as 8 x 8bit modules,

--   with a single 8 bit data bus that carries

--   data of the format given in Figure 8-55.

--   Each serial link has its own SYNCH(i) line;

--   the pulses should be staggered so SYNCH(i+1)

--   occurs 1 clock cycle after SYNCH(i).

--   

--   Because of this, the load_synch line should

--   also be staggered so the data transmitted 

--   over the serial link will correspond to its

--   associated SYNCH line.

--**********************************

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity wak_8_54_top is

    port (

        data: in STD_LOGIC_VECTOR (63 downto 0);

        clock: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0);

        sdata: out STD_LOGIC_VECTOR (7 downto 0)

    );

end wak_8_54_top;

architecture wak_8_54_arch of wak_8_54_top is

signal load_shift_master: std_logic;

signal synch_master: std_logic;

signal load_shift: std_logic_vector (7 downto 0);

--component declarations

component par2ser is

    port (

        clock: in STD_LOGIC;

        data: in STD_LOGIC_VECTOR (7 downto 0);

        load_shift: in STD_LOGIC;

        sdata: out STD_LOGIC

    );

end component;
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component control is

    port (

        clock: in STD_LOGIC;

        load_shift: out STD_LOGIC;

        synch: out STD_LOGIC

    );

end component;

component shift_synch is

    port (

        clock: in STD_LOGIC;

        synch_in: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0)

    );

end component;

begin

--component instantiations

S1: shift_synch port map (clock=>clock, synch_in=>synch_master, synch=>synch);

S2: shift_synch port map (clock=>clock, synch_in=>load_shift_master, 

synch=>load_shift);

U1: par2ser port map (clock=>clock, data=>data(7 downto 0), load_shift=>load_shift(0), 

sdata=>sdata(0));

U2: par2ser port map (clock=>clock, data=>data(15 downto 8), 

load_shift=>load_shift(1), sdata=>sdata(1));

U3: par2ser port map (clock=>clock, data=>data(23 downto 16), 

load_shift=>load_shift(2), sdata=>sdata(2));

U4: par2ser port map (clock=>clock, data=>data(31 downto 24), 

load_shift=>load_shift(3), sdata=>sdata(3));

U5: par2ser port map (clock=>clock, data=>data(39 downto 32), 

load_shift=>load_shift(4), sdata=>sdata(4));

U6: par2ser port map (clock=>clock, data=>data(47 downto 40), 

load_shift=>load_shift(5), sdata=>sdata(5));

U7: par2ser port map (clock=>clock, data=>data(55 downto 48), 

load_shift=>load_shift(6), sdata=>sdata(6));

U8: par2ser port map (clock=>clock, data=>data(63 downto 56), 

load_shift=>load_shift(7), sdata=>sdata(7));

U9: control port map (clock=>clock, load_shift=>load_shift_master, 

synch=>synch_master);

 

end wak_8_54_arch;
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--*************************************

-- Basically an 8-bit shift register

--  takes the synch_in signal as an

--  input, and outputs an 8 bit signal,

--  each consecutive bit delayed by one

--  from the previous bit.

-- library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

-- top level entity declaration

entity shift_synch is

    port (

        clock: in STD_LOGIC;

        synch_in: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0)

    );

end shift_synch;

architecture shift_synch_arch of shift_synch is

begin

-- low order synch signal is simply passed through

-- to output.  all others are delayed.

  synch(0) <= synch_in;

  process(clock)

  begin

    if clock'event and clock='1' then

    

      for I in 0 to 6 loop

        synch(I+1) <= synch(I);

      end loop;

    end if;

  end process;

  

end shift_synch_arch;
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--***************************************

-- Parallel to serial converter

--  Data is entered through 8 bit DATA bus

--  It is loaded into the register when

--  load_shift is low.  If load_shift is

--  high, shift data serially out through sdata

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity par2ser is

    port (

        clock: in STD_LOGIC;

        data: in STD_LOGIC_VECTOR (7 downto 0);

        load_shift: in STD_LOGIC;

        sdata: out STD_LOGIC

    );

end par2ser;

architecture par2ser_arch of par2ser is

-- internal signal declaration

signal REG: STD_LOGIC_VECTOR(7 downto 0);

signal DIN: std_logic;

begin

  

-- DIN <= 0 will set the high order bit to be 

-- zero once data is loaded in.

DIN <= '0';

-- process to create shift register

--accomplished by simply taking the DIN signal

--and concatenating on the end the previous

--6 high order bits.

process (clock)

  begin

    if clock'event and clock='1' then  

      if load_shift = '0' then

   REG <= data;

      else 

        REG <= DIN & REG(7 downto 1);

      end if;

    end if;

  sdata <= REG(0);

end process;

end par2ser_arch;
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8.55 This is really the second paragraph of Exercise 8.54.

--******************************

-- Control logic

--  controls the loading of the

--  parallel to serial shift register

--  through the load_shift signal.

--  also, controls the synch word.  

--  this occurs every 256 clock cycles.

--library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

--top level entity declaration

entity control is

    port (

        clock: in STD_LOGIC;

        load_shift: out STD_LOGIC;

        synch: out STD_LOGIC

    );

end control;

architecture control_arch of control is

--internal signal declaration

signal COUNT: STD_LOGIC_VECTOR(7 downto 0);

signal load: STD_LOGIC;

begin

load <= '0';  --define constant

  

process (clock)

  begin

    if clock'event and clock='1' then  

    

      count <= count + 1;

    

      if count(2 downto 0) = "110" then

        load_shift <= load;

      else 

        load_shift <= not load;

      end if;

      

      if count = 254 then

        synch <= '1';

      else

        synch <= '0';

      end if;

    end if;

end process;

end control_arch;
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8.62 Regardless of the number of shift-register outputs connected to the odd-parity circuit, its output in state 00...00
is 0, and the 00...00 state persists forever. However, suppose that an odd number of shift-register outputs are
connected. Then the output of the odd-parity circuit in state 11...11 is 1, and the 11...11 state also persists for-
ever. In this case, the number of states in the “maximum-length” sequence can be no more than , since
two of the states persist forever. Therefore, if an LFSR counter generates a sequence of length , it must
have an even number of shift-register outputs connected to the odd-parity circuit. 

8.64 The figure below shows the effect of physically changing the odd-parity circuit to an even-parity circuit (i.e.,
inverting its output).

From Exercise 9.32, we know that an even number of shift-register outputs are connected to the parity circuit,
and we also know that complementing two inputs of an XOR gate does not change its output. Therefore, we can
redraw the logic diagram as shown below.
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Finally, we can move the inversion bubbles as shown below.

This circuit has exactly the same structure as Figure 8–68, except that the shift register stores complemented
data. When we look at the external pins of the shift register in the first figure in this solution, we are looking at
that complemented data. Therefore, each state in the counting sequence of the even-parity version (our first
figure) is the complement of the corresponding state in the odd-parity version (Figure 8–68). The odd-parity
version visits all states except 00...00, so the even-parity version visits all states except 11...11. 

N-bit
parallel-out
shift register
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CLK
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QB
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QC

QY
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CLOCK

RESET_L
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connect to
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XN–3

X2

X1
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8.68    
--Johnny West

--Xilinx Applications

--8.68 : Design an iterative circuit for checking the parity of a 16-bit data

--       word with a single even-parity bit.

------------------------------------------------------------------------------------

------------

--This portion of the code constructs the iterative module that will cascaded 16 

--times in order to check the parity of a 16 bit word.

------------------------------------------------------------------------------------

------------

library IEEE;

use IEEE.std_logic_1164.all;

--Generic Iterative Module

entity Iterative_Module is

  port (

        carry_in, primary_in: in STD_LOGIC;

carry_out: out STD_LOGIC

   );

end Iterative_Module;

--An XOR is performed on the current parity of a word (carry_in) and the

--next bit in the word (boundary_in)

--Even parity produces a 0 and odd parity produces a 1 

architecture Parity_Check of Iterative_Module is

begin

  carry_out <= carry_in xor primary_in;

end Parity_Check;
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8.75 In the following design, RESET is not recognized until the end of phase 6. RESTART is still recognized at the
end of any phase; otherwise it would have no real use (i.e., only going back to phase 1 after the end of phase 6,

    

-----------------------------------------------------------------------------------

--This portion of the code cascades the interative module 16 times and connects the

--modules together.

-----------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

--Top level entity for checking the parity of a 16bit word

entity Parity_16bit is

  port (data_word: in STD_LOGIC_VECTOR (15 downto 0);

        parity: out STD_LOGIC                         );

end Parity_16bit;

        

--Architecture consists of 16 cascaded iterative modules

architecture Parity_16bit_arch of parity_16bit is

component Iterative_Module

  port (carry_in, primary_in: in STD_LOGIC;

carry_out: out STD_LOGIC    );

end component;

signal carry: STD_LOGIC_VECTOR (15 downto 0);

signal cin0: STD_LOGIC;

begin  

  cin0 <= '0';

  P0: Iterative_Module port map (cin0, data_word(0), carry(0)); 

  P1: Iterative_Module port map (carry(0), data_word(1), carry(1));

  P2: Iterative_Module port map (carry(1), data_word(2), carry(2));

  P3: Iterative_Module port map (carry(2), data_word(3), carry(3));

  P4: Iterative_Module port map (carry(3), data_word(4), carry(4));

  P5: Iterative_Module port map (carry(4), data_word(5), carry(5));

  P6: Iterative_Module port map (carry(5), data_word(6), carry(6));

  P7: Iterative_Module port map (carry(6), data_word(7), carry(7));

  P8: Iterative_Module port map (carry(7), data_word(8), carry(8));

  P9: Iterative_Module port map (carry(8), data_word(9), carry(9));

  P10: Iterative_Module port map (carry(9), data_word(10), carry(10));

  P11: Iterative_Module port map (carry(10), data_word(11), carry(11));

  P12: Iterative_Module port map (carry(11), data_word(12), carry(12));

  P13: Iterative_Module port map (carry(12), data_word(13), carry(13));

  P14: Iterative_Module port map (carry(13), data_word(14), carry(14));

  P15: Iterative_Module port map (carry(14), data_word(15), carry(15));

  parity <= carry(15); --parity = 0 is even parity and 1 if odd parity

end parity_16bit_arch;
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which happens anyway.) Presumably, RESTART would be used only with great care or in unusual circum-
stances (e.g., during debugging).

8.81 This problem can be a bit confusing since the states in Table 7–14 have the same names as the ’163 data inputs.
Therefore, we shall use the names SA, SB, and so on for the states.

The idea is to normally allow the counter to count to the next state, but to force it to go to SA or SB when the
wrong input is received. The CLR_L input is used to go to SA (0000), and the LD_L input is used to go to SB
(0001; the counter’s A–D data inputs are tied LOW and HIGH accordingly).

Inspecting the state table on page 582 of the text, we see that state A should be loaded when X=1 and the
machine is in state SA, SD, or SH. Thus,

All of the other next-states when X=1 are the natural successors obtained by counting.

Similarly, state SB should be loaded when X=0 and the machine is in state SB, SC, SE, SF, or SH. In addition,
notice that in state SG, the next state SE is required when X=0; the load input must be used in this case too, but
a different value must be loaded. Thus, LD_L will be asserted in six of the eight states when X=0.

Optionally, LD_L could be easily asserted in the remaining two states as well, since the required next states (SB
and SE) are ones that we must generate in other six cases anyway. Thus, we can connect X to the LD_L input, so
we always load when X=0. Then, we load either SB (0010) or SE (0100) depending on the current state. There-
fore, we can write the following equations for data inputs A–D:

Alternatively, we could realize C as an AND-OR circuit and complement to get B:

module TIMEGEN6 
title 'Six-phase Master Timing Generator'

" Input and Output pins 
MCLK, RESET, RUN, RESTART                  pin;
T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L     pin istype 'reg'; 

" State definitions
PHASES = [P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];
NEXTPH = [P6_L, P1_L, P2_L, P3_L, P4_L, P5_L];
SRESET = [1, 1, 1, 1, 1, 1];
P1 =     [0, 1, 1, 1, 1, 1];
P6 =     [1, 1, 1, 1, 1, 0];

equations
T1.CLK = MCLK; PHASES.CLK = MCLK;

WHEN (RESET & PHASES==P6 & !T1) THEN {T1 := 1; PHASES := SRESET;}
ELSE WHEN (PHASES==SRESET) # RESTART THEN {T1 := 1; PHASES := P1;}
ELSE WHEN RUN & T1 THEN {T1 := 0; PHASES := PHASES;}
ELSE WHEN RUN & !T1 THEN {T1 := 1; PHASES := NEXTPH;}
ELSE {T1 := T1; PHASES := PHASES;}

end TIMEGEN6

CLR_L X Q( C ′ QB′ QA ′⋅ ⋅ ⋅ QC ′ QB QA⋅ ⋅ QC QB QA )⋅ ⋅+ +[ ]′=

X Q( C ′ QB′ QA⋅ ⋅ ⋅ QB QA )⋅+[ ]′=

A 0=

B SA SB SC SE SF SH+ + + + +=

QB ′ QC′ QA ′⋅ QC QA⋅+ +=

C B ′=

D 0=

C QC′ QB QA⋅ ⋅ QC QB QA′⋅ ⋅+=

B C′=
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The logic diagram follows directly from these equations. The output logic can be realized using the equations
on page 584 of the text. 

8.90 Transitions on SYNCIN occur a maximum of 20 ns after the rising edge of CLOCK. Given a 40-ns clock period
and a 10-ns setup-time requirement for the other ’ALS74s, 10 ns is the maximum propagation delay of the
combinational logic.
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