Trusted Platform Module Library
Part 4: Supporting Routines

Family “2.0”
Level 00 Revision 01.59
November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published

Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 4: Supporting Routines

Licenses and Notices

Copyright Licenses:

Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

THIS SPECIFICATION IS PROVIDED "AS I1S" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

Page ii TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

mailto:admin@trustedcomputinggroup.org

Part 4: Supporting Routines Trusted Platform Module Library

CONTENTS
Y o 01 1= PP 1
2 Terms and defiNitiONSoou it 1
3 Symbols and abbreviated termMS 1
O U1 1o 12 - o o PP 1
R o T 1o LU = LA (0] I == U= 1
I 1 (Vo (| (T o | €] =T PP 2
0t R [014 o o [T 1o I 2
4.2.2 Unmarshaling Code ProtOtyPecuiiviiiiiiei e e e e e e 2
4.2.21 Simple Types and SIrUCTUMESviiiii e i e e aas 2
A U o T To T T 1877 o =1 3
4.2.2.3 NUI Ty PBS et et e e e e e 3
4. 2.2.4 A AY Sttt e R e e e e eaaaeas 3
4.2.3 Marshaling Code FUNCLION PrototyPeS ... iuu it 3
4.2.31 Simple Types and SIrUCTUMNES tiiuuiii i e 3
o B U o T Uo T o I I8 o == PP 4
B TR T L Y 5 = £ T PPN 4
4.2.3.4 The generated code for an array uses a count-limited loop within which it
calls the marshaling code for TYPE.Table-driven Marshaling...............cccco.c.e. 4
R T = U T =] 1 o 5
O U1 [Lo I 0] (0] 14 0 1= 5
4.5 P OM Ay oo e 5
I = =T T [=] gl =T PP 7
L0 A 1o o Yo U 1 ' o 7
B.2 BASETYPES. N ot i e 7
5.3 Capabilities. N e e e 8
5.4 CommandAttributeData. N ... 9
5.5 CommandAtribDULES. N .. i 10
5.6 CommandDispatChData. No 11
.7 COMMANAS. N e e 12
5.8 CompilerDependencCies.h 13
LSS € o o - Y I8 o 14
O I €011 = Tod o 1= o B PRSPPI 15
5.11 INterNalROULINES . N Lot i 16
D12 LI SUP POt N 17
5.3 MINMAX. N oo e e 17
LS N o PR 18
L T I 11 = T o PR 19
LS G T I oY 02 T o P 20
B5.17 TpMBUIIdSWItCRES. N ..o 21
B L8 TP O . N e e e e 22
B L0 TP T Y PG N e e 23
5.20 VeNdOrStIING. N oo e 24
B 2L S AP N e e 25
S N O 10 PR 26
LT 1V - 11 27
LS A 1o (oY 18 [£ o] o HO PP 27
6.2 EXECCOMMEANG.C ..ottt et et 27
6.3 ComMMAaNADISPALCNEI.C . .uniee e 28
L T R 1 04 o o LT3 4o P 28
Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

B.4 SESSION P IO CE S S . C it ittt 29
7 Command SUPPOIt FUNCHIONS e et e e eeas 30
% S | o} (o Yo [To3 4T o U PP 30
7.2 Attestation Command Support (AttEST_SPL.C) ..eevriiriitiiiiii e 30
7.3 Context Management Command Support (Context_SPL.C) ...ccveeviiiriiiniiiiiiieiieieeis 31
7.4 Policy Command Support (PONCY _SPL.C) veeunieriitiiiiii e 32
7.5 NV Command SUPPOrt (NV_SPL.C) .ueeuiiiiiiiiiiiei e e et 33
7.6 Object Command Support (OBJECT_SPL.C) .euuieriiriiiiiii e 34
7.7 Encrypt Decrypt Support (EncryptDecrypt_SPt.C) covvvvviriiiiiiiiei e 35
A% S T X O STV T o] o o (AN @ I o} O) 36
B SUD Y S M. i 37
8.1 COMMANUAUIL. C et e 37
S I S PR 38
8.3 HIBIAICNY . G 39
S N AV 0 Y - ¥ 1T o 40
S ST AV S 4TS Y =T oYL= o B o PPN 41
S T T 1 =T o3 42
S S = O = o PPN 43
S TR = = PR 44
T BT 111 (o] o TN o TP PPN 45
S O I T o ¢ 1= PPN 46
LS ST U o T] o S PP 47
LS T N [o 14 2 (= o 1 47
S I = 1| = o TP P PPN 48
9.3 CommandCoOdeAIIDULES.C...euieiei 49
LS o o (] 4V PP UPTPPTUPN 50
0.5 GlODAL G 51
0.6 HaANAIE . C i e 52
LS T A (0] =1 V) 1 (=] £ o PP 53
0.8 LOCA Y. Ottt et 54
LS RS Y/ =Y 1 1= 1o {0 = 55
9.10 MaAISNAL C ot 56
LS 0 0 I A 1 0 4 e o [U To3 £ o] o PRSP PRT 56
9.10.2 Unmarshal and Marshal a Value ..o 56
9.10.3 Unmarshal and Marshal @ Union ..o 57
9.10.4 Unmarshal and Marshal @ StrUCIUIE.........ceuiiiiiii e 59
9.10.5 Unmarshal and Marshal an Arfayccoiiiiiiiiiii e 60
9.10.6 TPM2B HaNAIING . oviiiiiiiii e 62
9.10.7 Table Marshal HEAUEISceniiiiii e e 62
9.10.7.1 TableMarshal.n. ... 62
9.10.7.2 TableMarshalData.h ... e 63
9.10.7.3 TableMarshalDefines.h ... e 63
9.10.7.4 TableMarshal TypPes.h ..o et eaaes 63
9.10.8 Table Marshal SOUICE ..ot e 63
9.10.8.1 TableDrivenMarshal.C.......coooiii e 63
9.10.8.2 TableMarshalData.C........c. e e e 63
9.11 MathONBYLtEBUEIS.C et e 64
1S B |V 1= o ¢ To] A R PP 65
LS T R T =0 1 =T o 66
.14 PrOPEITY C AP .C cuenittt ettt ettt 67
.15 RESPONSE.C cenitiititt ettt e 68
9.16 ReSpPONSECOUEPIOCESSING.C.uuiitriitiiit it e et et e 69
.07 TPMEAILC et e 70
Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10 CryptographiC FUNCHIONS ... e et eaees 71
O R o 1T Vo =T PP 71
L10.1.1 BRVaAlUES . N e 71
10.1.2 CrYPLECC. N o 72
10.1.3 CryptHASh. N oo 73
10.1.4 CryptRANG. N .o 74
10.1.5 CrYPIRSA. N oo 75
L10.1.6 CrYPIT SN et e 76
10.1.7 HaShTeStDAta. N ...t 77
10.1.8 KAfTESIDALA. N ..ot e 78
10.1.9 RSATESIDAIA N Lot 79
10,010 Sl T St N i 79
10.1.11 SupportLibraryFunctionPrototypes fp.h ...t 79
10.1.12 SymmetricTestData. N ... 80
10.1.13 SYMMETFICTEST.N oot e et 81
10.1.14 ECCTeStData. N..ete e e 82
10,115 CrYPESYMLN Lot et 83
L0 G T 5 10 o P 84
10.1.17 PRNG_TESIVECIOIS.N et it 84
10,018 TPMASN LN e e 84
O O e €5 01 I o e T 84
10.1.20 TpmAIgorithmDefiNeS. N ... e 84
O T2 S o 11 | of = PP 85
10.2.1 AlGONTNMT @SS C ceuen ittt e ettt ettt e e e aa 85
O T =1 0 10 o] 01V =T o S o PP 86
10.2.3 BRMaATN. Couniiiiii i e e 87
10.2.4 BRNIMEIMOIY.C ittt ettt et e ettt e S h e ettt ettt et e e e e e en e 88
0 T2 S T O 5V o1 {04 1 = Lo o T TP 89
10.2.6 CrYPLULILC ..o s e ettt ettt e e 90
O A 01 4 V] o] 1= | =S B o TP 91
10.2.8 CrYPECCDAIA.C . ovuieieii ittt et ettt ettt e 92
10,2, I P D S C teiiniiit it bttt e 93
10.2.10 CryptECCKEYEXCNANGE.C ...iinniiitiiii i e 94
0 Tt I O 1Y o =X o Y = T A 95
10.2.12 CryptECCSIGNATIUIE.C .. cunenitit ittt ettt e e e e eneenas 96
10.2.13 CryptHASN.C oo 97
0t O Y o 1 T .= N 98
10.2.15 Cry PP IIMESIEVE.C ettt ettt 99
10.2.168 CrYPLRANG.C .ottt et et ettt et et e n e ea e eaaes 100
F0.2.07 CrYPLRSE.C oottt e 101
O T S B 04 5 V] o1 551 1 E= (o o PSPPI 102
0T R O 5 V] 01 55 Y/ 1 1 X o PP 103
10.2.20 PrimMED@Ata.C cituiuitiiei e 104
10.2.21 RSAKEY CACNE.C . vt e 105
O I o =Y o PP 106
22 T I o 1= o O o P 107
O 4 0 1 T = O O o PP 108
10.2.25 X500 RS A ittt ettt e e e e e e e e e et e aa e 109
F0.2.26 X509 SPE.C ttuitiititei ettt 110
L0, 2. 27 A SPE.C ttitit e 111
Annex A (informative) Implementation Dependentcoooviiiiiiiiii i 112
AL INEFOAUCTION Lo ettt e 112
A2 T PMPIO i e N 112
A3 TPMSIZECNECKS . Coneeiei i 112
Annex B (informative) Library-SPeCifiC.......oiiiiiiiii e 113
Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

B.Ll INtrOQUCTION e e e 113
B.2 OpenSSL-SPeCifiC FileS .. . 114
2 2200 R 1 o 1o Yo [T oY o 114
B.2.2. HeEAAEI FileS . i ittt 114
B.2.2.1. TpmMTOOSSIHASN. N e e e e e e e ens 114
B222 TpMTOOSSIMAtN. N . e e e a e e 115
2.2.3. TpPMTOOSSISYM.N e e e e 116
B.2.3. SOUICE FilBS ittt 117
B.2.3.1. TpmToOSsIDesSSUPPOIt.C ..o e 117
B.2.3.2. TpmToOssIMath.C . ..o e 118
B.2.3.3. TpMTOOSSISUPPOI.C e e e 119
Annex C (informative) Simulation ENVIFONMENTo 120
L R 1o) (oY 11 o 1o o P 120
L @7 ¥ o= o 120
O T O [T o] G o2 PSPPSR 121
O 1 (0] ¢)V o PTPT TP 122
C.5 LOCAIYPIAL.C et 123
(O T VAV 1Y/ =T o o T o 124
(O A =0 V=Y = T | X o PRSP 125
C.8 PlatformData. N oo 126
LGS I o P Yo T 10 = 1 = U o 127
L 0 = - X PP 128
L I R 1 1 @ o .4 0 = 1 o 1o 129
L 12 O 1 o YT 1= PR 130
LR G T 0 T o 10 T | 1= 1 1= o 131
Gl PlatfOrM L N L e 132
C.15 PIAatf oM A C T N e 133
(O KT = =Y o1 11 1A\ O I o PSPPSR 134
C.17 PlatformCIOCK. N 135
Annex D (informative) Remote Procedure Interfacecooooviiiiiiiiiiiiii e 136
[2 N 1 011 o Yo [T o 136
D.2 TPMTCPPIOIOCOLN (oot e 137
[O ot 0 15T =T oY = o o PP 138
D4 TP MM C ottt e e e e 139
(D ST I o (O 3 Vo [PSPPI 140
Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

Trusted Platform Module Library
Part 4. Supporting Routines

1 Scope

This part contains C code that describes the algorithms and methods used by the command code in TPM
2.0 Part 3. The code in this document augments TPM 2.0 Part 2 and TPM 2.0 Part 3 to provide a
complete description of a TPM, including the supporting framework for the code that performs the
command actions.

Any TPM 2.0 Part 4 code may be replaced by code that provides similar results when interfacing to the
action code in TPM 2.0 Part 3. The behavior of code in this document that is not included in an annex is
normative, as observed at the interfaces with TPM 2.0 Part 3 code. Code in an annex is provided for
completeness, that is, to allow a full implementation of the specification from the provided code.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,
firmware update), it is not possible to provide a compliant implementation. In those cases, any
implementation provided by the vendor that meets the general description of the function provided in TPM
2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this
specification require that a TPM meet any particular level of conformance.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

4 Automation

TPM 2.0 Part 2 and 3 are constructed so that they can be processed by an automated parser. For
example, TPM 2.0 Part 2 can be processed to generate header file contents such as structures, typedefs,
and enums. TPM 2.0 Part 3 can be processed to generate command and response marshaling and
unmarshaling code.

The automated processor is not provided by the TCG. It was used to generate the Microsoft Visual Studio
TPM simulator files. These files are not specification reference code, but rather design examples.

The automation produces TPM_Types.h, a header representing TPM 2.0 Part 2. It also produces, for
each major clause of Part 4, a header of the form _fp.h with the function prototypes.

EXAMPLE The header file for SessionProcess.c is SessionProcess_fp.h.

4.1 Configuration Parser
The TPM configuration is largely defined by TpmProfiles.h. This file may be edited in order to change the
algorithms and commands supported by a TPM implementation.

A parser exists to process a Word document that defines the TPM configuration. This parser is used to
create TpmProfiles.h.

Family “2.0” TCG Published Page 1
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

4.2 Structure Parser

4.2.1 Introduction

The program that processes the tables in TPM 2.0 Part 2 is called "The TPM 2.0 Part 2 Structure Parser."

NOTE A Perl script was used to parse the tables in TPM 2.0 Part 2 to produce the header files and unmarshaling code
in for the reference implementation.

The TPM 2.0 Part 2 Structure Parser takes as input the files produced by the TPM 2.0 Part 2
Configuration Parser and the same TPM 2.0 Part 2 specification that was used as input to the TPM 2.0
Part 2 Configuration Parser. The TPM 2.0 Part 2 Structure Parser will generate all of the C structure
constant definitions that are required by the TPM interface. Additionally, the parser will generate
unmarshaling code for all structures passed to the TPM, and marshaling code for structures passed from
the TPM.

The unmarshaling code produced by the parser uses the prototypes defined below. The unmarshaling
code will perform validations of the data to ensure that it is compliant with the limitations on the data
imposed by the structure definition and use the response code provided in the table if not.

EXAMPLE: The definition for a TPMI_RH_PROVISION indicates that the primitive data type is a TPM_HANDLE and the
only allowed values are TPM_RH_OWNER and TPM_RH_PLATFORM. The definition also indicates that the
TPM shall indicate TPM_RC_HANDLE if the input value is not none of these values. The unmarshaling code
will validate that the input value has one of those allowed values and return TPM_RC_HANDLE if not.

The sections below describe the function prototypes for the marshaling and unmarshaling code that is
automatically generated by the TPM 2.0 Part 2 Structure Parser. These prototypes are described here as
the unmarshaling and marshaling of various types occurs in places other than when the command is
being parsed or the response is being built. The prototypes and the description of the interface are
intended to aid in the comprehension of the code that uses these auto-generated routines.

4.2.2 Unmarshaling Code Prototype

4.2.2.1 Simple Types and Structures

The general form for the unmarshaling code for a simple type or a structure is:

TPM RC TYPE Unmarshal (TYPE *target, BYTE **buffer, INT32 *size);

Where:
TYPE name of the data type or structure
*target location in the TPM memory into which the data from **buffer is placed
**puffer location in input buffer containing the most significant octet (MSO) of
*target
*size number of octets remaining in *buffer

When the data is successfully unmarshaled, the called routine will return TPM_RC_SUCCESS.
Otherwise, it will return a Format-One response code (see TPM 2.0 Part 2).

If the data is successfully unmarshaled, *buffer is advanced point to the first octet of the next parameter
in the input buffer and size is reduced by the number of octets removed from the buffer.

When the data type is a simple type, the parser will generate code that will unmarshal the underlying type
and then perform checks on the type as indicated by the type definition.

When the data type is a structure, the parser will generate code that unmarshals each of the structure
elements in turn and performs any additional parameter checks as indicated by the data type.

Page 2 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

4.2.2.2 Union Types

When a union is defined, an extra parameter is defined for the unmarshaling code. This parameter is the
selector for the type. The unmarshaling code for the union will unmarshal the type indicated by the
selector.

The function prototype for a union has the form:

TPM_RC TYPE Unmarshal (TYPE *target, BYTE **buffer, INT32 *size, UINT32 selector);

where:
TYPE name of the union type or structure
*target location in the TPM memory into which the data from **buffer is placed
**buffer location in input buffer containing the most significant octet (MSO) of
*target
*size number of octets remaining in **buffer
selector union selector that determines what will be unmarshaled into *target

4.2.2.3 Null Types

In some cases, the structure definition allows an optional “null” value. The “null” value allows the use of
the same C type for the entity even though it does not always have the same members.

For example, the TPMI_ALG_HASH data type is used in many places. In some cases, TPM_ALG_NULL
is permitted and in some cases it is not. If two different data types had to be defined, the interfaces and
code would become more complex because of the number of cast operations that would be necessary.
Rather than encumber the code, the “null” value is defined and the unmarshaling code is given a flag to
indicate if this instance of the type accepts the “null” parameter or not. When the data type has a “null”’
value, the function prototype is

TPM_RC TYPE Unmarshal (TYPE *target, BYTE **buffer, INT32 *size, BOOL flag);

The parser detects when the type allows a “null” value and will always include flag in any call to
unmarshal that type. f£1ag TRUE indicates that null is accepted.

4.2.2.4 Arrays

Any data type may be included in an array. The function prototype use to unmarshal an array for a TYPE is

TPM RC TYPE Array Unmarshal (TYPE *target, BYTE **buffer, INT32 *size,INT32 count);

The generated code for an array uses a count-limited loop within which it calls the unmarshaling code for
TYPE.

4.2.3 Marshaling Code Function Prototypes

4.2.3.1 Simple Types and Structures

The general form for the marshaling code for a simple type or a structure is:

UINT16 TYPE Marshal (TYPE *source, BYTE **buffer, INT32 *size);

Where:

Family “2.0” TCG Published Page 3
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

TYPE name of the data type or structure

*source location in the TPM memory containing the value that is to be marshaled
in to the designated buffer

**buffer location in the output buffer where the first octet of the TYPE is to be
placed

*size number of octets remaining in **buffer.

If buffer is a NULL pointer, then no data is marshaled, but the routine will compute and return the size
of the memory required to marshal the indicated type. *size is not changed.

If buffer is not a NULL pointer, data is marshaled, *buffer is advanced to point to the first octet of the
next location in the output buffer, and the called routine will return the number of octets marshaled into
**buffer. This occurs even if size is a NULL pointer. If size is a not NULL pointer *size is reduced by
the number of octets placed in the buffer.

When the data type is a simple type, the parser will generate code that will marshal the underlying type.
The presumption is that the TPM internal structures are consistent and correct so the marshaling code
does not validate that the data placed in the buffer has a permissible value. The presumption is also that
the size is sufficient for the source being marshaled.

When the data type is a structure, the parser will generate code that marshals each of the structure
elements in turn.

4.2.3.2 Union Types

An extra parameter is defined for the marshaling function of a union. This parameter is the selector for the
type. The marshaling code for the union will marshal the type indicated by the selector.

The function prototype for a union has the form:

UINT16 TYPE Marshal (TYPE *source, BYTE **buffer, INT32 *size, UINT32 selector);

The parameters have a similar meaning as those in 4.2.2.2 but the data movement is from source to
buffer.

4.2.3.3 Arrays

Any type may be included in an array. The function prototype use to unmarshal an array is:
UINT16 TYPE_ Array Marshal (TYPE *source, BYTE **buffer, INT32 *size, INT32 count);

4.2.3.4 The generated code for an array uses a count-limited loop within which it calls
the marshaling code for TYypPE.Table-driven Marshaling

The most recent versions of the TPM code includes the option to use table-driven marshaling rather that
the procedural marshaling described in previous clauses in 4.2.2. The structure and processing of this
code is complex and is provided in the code.

Page 4 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

4.3 Part 3 Parsing

The Command / Response tables in Part 3 of this specification are processed by scripts to produce the
command-specific data structures used by functions in this TPM 2.0 Part 4. They are:

¢ CommandAttributeData.h -- This file contains the command attributes reported by
TPM2_GetCapalbility.

e CommandAttributes.h — This file contains the definition of command attributes that are extracted by
the parsing code. The file mainly exists to ensure that the parsing code and the function code are
using the same attributes.

e CommandDispatchData.h — This file contains the data definitions for the table driven version of the
command dispatcher.

Part 3 parsing also produces special function prototype files as described in 4.4.

4.4 Function Prototypes

For functions that have entry definitions not defined by Part 3 tables. a script is used to extracts function
prototypes from the code. For each .c file that is not in Part 3, a file with the same name is created with a
suffix of _fp.h. For example, the function prototypes for Create.c will be placed in a file called Create_fp.h.
The _fp.h is added because some files have two types of associated headers: the one containing the
function prototypes for the file and another containing definitions that are specific to that file.

In some cases, a function will be replaced by a macro. The macro is defined in the .c file and extracted by
the function prototype processor. A special comment tag (“//%”) is used to indicate that the line is to be
included in the function prototype file. If the “//%” tag occurs at the start of the line, it is deleted. If it occurs
later in the line, it is preserved. Removing the “//%/ at the start of the line allows the macro to be placed in
the .c file with the tag as a prefix, and then show up in the _fp.h file as the actual macro. This allows the
code that includes that function prototype code to use the appropriate macro.

For files that that contain the command actions, a special _fp.h file is created from the tables in Part 3.
These files contain:

o the definition of the input and output structure of the function;
o definition of command-specific return code modifiers (parameter identifiers); and
e the function prototype for the command action function.

Create_fp.h (shown below) is prototypical of the command _fp.h files.

|[[[create fp h]]]

4.5 Portability

Where reasonable, the code is written to be portable. There are a few known cases where the code is not
portable. Specifically, the handling of bit fields will not always be portable. The bit fields are marshaled
and unmarshaled as a simple element of the underlying type. For example, a TPMA_SESSION is defined
as a bit field in an octet (BYTE). When sent on the interface a TPMA_SESSION will occupy one octet.
When unmarshaled, it is unmarshaled as a UINT8. The ramifications of this are that a TPMA_SESSION
will occupy the 0™ octet of the structure in which it is placed regardless of the size of the structure.

Many compilers will pad a bit field to some "natural" size for the processor, often 4 octets, meaning that
sizeof (TPMA_SESSION) would return 4 rather than 1 (the canonical size of a TPMA_SESSION).

For a little endian machine, padding of bit fields should have little consequence since the 0" octet always
contains the O™ bit of the structure no matter how large the structure. However, for a big endian machine,
the 0" bit will be in the highest numbered octet. When unmarshaling a TPMA_SESSION, the current

Family “2.0” TCG Published Page 5
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

unmarshaling code will place the input octet at the 0" octet of the TPMA_SESSION. Since the 0™ octet is
most significant octet, this has the effect of shifting all the session attribute bits left by 24 places.

As a consequence, someone implementing on a big endian machine should do one of two things:

a) allocate all structures as packed to a byte boundary (this may not be possible if the processor does
not handle unaligned accesses); or

b) modify the code that manipulates bit fields that are not defined as being the alignment size of the
system.

For many RISC processors, option #2 would be the only choice. This is may not be a terribly daunting
task since only two attribute structures are not 32-bits (TPMA_SESSION and TPMA_LOCALITY).

Page 6 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5 Header Files

5.1 Introduction

The files in this section are used to define values that are used in multiple parts of the specification and
are not confined to a single module.

5.2 BaseTypes.h

|[[BaseTypes_h]]]

Family “2.0” TCG Published Page 7
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.3 Capabilities.h

This file contains defines for the number of capability values that will fit into the largest data buffer.

These defines are used in various function in the "support" and the "subsystem" code groups. A module
that supports a type that is returned by a capability will have a function that returns the capabilities of the

type.

EXAMPLE PCR.c contains PCRCapGetHandles() and PCRCapGetProperties().

|[[[Capabilities_h]]]

Page 8 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.4 CommandAttributeData.h

|[[CommandAttributeData h]]|

Family “2.0” TCG Published Page 9
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.5 CommandAttributes.h

|[[CommandAttributes h]]|

Page 10 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.6 CommandDispatchData.h

|[[CommandDispatchData h]]]

Family “2.0” TCG Published Page 11
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.7 Commands.h

|[[Commands _h]]|

Page 12 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.8 CompilerDependencies.h

|[[CompilerDependencies_h]]|

Family “2.0” TCG Published Page 13
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.9 Global.h

|[[[Global h]]|

Page 14 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.10 GpMacros.h

|[[GpMacros_h]]|

Family “2.0” TCG Published Page 15
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.11 InternalRoutines.h

[[[InternalRoutines_h]]]

Page 16 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines

5.12 LibSupport.h

|[[LibSupport_h]]]

5.13 MinMax.h

|[[MinMax _h]]|

Family “2.0”
Level 00 Revision 01.59

TCG Published
Copyright © TCG 2006-2020

Trusted Platform Module Library

Page 17
November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.14 NV.h

[[NV_h]]

Page 18 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.15 TPMB.h

[[TPMB h]]

Family “2.0” TCG Published Page 19
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.16 Tpm.h

[[Tpm h]]

Page 20 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.17 TpmBuildSwitches.h

|[[TpmBuildSwitches_h]]]

Family “2.0” TCG Published Page 21
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.18 TpmError.h

|[[TpmError_h]]|

Page 22 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.19 TpmTypes.h

|[[TpmTypes h]]]

Family “2.0” TCG Published Page 23
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.20 VendorString.h

|[[VendorString h]]]

Page 24 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

5.21 swap.h

[[swap h]]

Family “2.0” TCG Published Page 25
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

5.22 ACT.h

[[ACT h]]

Page 26 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

6 Main

6.1 Introduction

The files in this section are the main processing blocks for the TPM. ExecuteCommand.c contains the
entry point into the TPM code and the parsing of the command header. SessionProcess.c handles the
parsing of the session area and the authorization checks, and CommandDispatch.c does the parameter
unmarshaling and command dispatch.

6.2 ExecCommand.c

|[[ExecCommand]]]

Family “2.0” TCG Published Page 27
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

6.3 CommandDispatcher.c

6.3.1 Introduction

CommandDispatcher() performs the following operations:

¢ unmarshals command parameters from the input buffer;

NOTE 1 Unlike other unmarshaling functions, parmBufferStart does not advance. parmBufferSize Is reduced.

¢ invokes the function that performs the command actions;
e marshals the returned handles, if any; and

e marshals the returned parameters, if any, into the output buffer putting in the parameterSize field if
authorization sessions are present.

NOTE 2 The output buffer is the return from the MemoryGetResponseBuffer() function. It includes the header, handles,
response parameters, and authorization area. respParmSize is the response parameter size, and does not
include the header, handles, or authorization area.

NOTE 3 The reference implementation is permitted to do compare operations over a union as a byte array. Therefore,
the command parameter in structure must be initialized (e.g., zeroed) before unmarshaling so that the compare
operation is valid in cases where some bytes are unused.

|[[CommandDispatcher]]|

Page 28 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

6.4 SessionProcess.c

|[[SessionProcess]]]

Family “2.0” TCG Published Page 29
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

7 Command Support Functions

7.1 Introduction

This clause contains support routines that are called by the command action code in TPM 2.0 Part 3. The
functions are grouped by the command group that is supported by the functions.

7.2 Attestation Command Support (Attest_spt.c)

[[[Attest spt]]]

Page 30 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

7.3 Context Management Command Support (Context_spt.c)

|[[[Context spt]]]

Family “2.0” TCG Published Page 31
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

7.4 Policy Command Support (Policy_spt.c)

[[[Policy sptl]|

Page 32 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

7.5 NV Command Support (NV_spt.c)

[[NV_spt]]

Family “2.0” TCG Published Page 33
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

7.6 Object Command Support (Object_spt.c)

|[[[Object spt]]|

Page 34 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c)

|[[EncryptDecrypt _spt]]]

Family “2.0” TCG Published Page 35
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

7.8 ACT Support (ACT_spt.c)

[[ACT spt]]

Page 36 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

8 Subsystem

8.1 CommandAudit.c

[[[CommandAudit]]]

Family “2.0” TCG Published Page 37
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

8.2 DA.c

Page 38 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

8.3 Hierarchy.c

|[[Hierarchy]]|

Family “2.0” TCG Published Page 39
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

8.4 NvDynamic.c

|[[NVDynamic]]|

Page 40 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

8.5 NvReserved.c

|[[NVReserved]]|

Family “2.0” TCG Published Page 41
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

8.6 Object.c

[[Object]]

Page 42 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

8.7 PCR.c

[[PCR]]

Family “2.0” TCG Published Page 43
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

8.8 PP.c

Page 44 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

8.9 Session.c

[[Session]]

Family “2.0” TCG Published Page 45
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

8.10 Time.c

[[Time]]

Page 46 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9 Support

9.1 AlgorithmCap.c

[[[AlgorithmCap]]]

Family “2.0” TCG Published Page 47
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.2 Bits.c

[[Bits]]

Page 48 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.3 CommandCodeAttributes.c

|[[CommandCodeAttributes]]]

Family “2.0” TCG Published Page 49
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.4 Entity.c

[[Entity]]

Page 50 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.5 Global.c

[[Globall]l

Family “2.0” TCG Published Page 51
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.6 Handle.c

[[Handle]]

Page 52 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.7 loBuffers.c

|[[IoBuffers]]|

Family “2.0” TCG Published Page 53
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.8 Locality.c

|[[Locality]]|

Page 54 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.9 Manufacture.c

|[[Manufacture]]|

Family “2.0” TCG Published Page 55
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

oo WN R

=Y

Trusted Platform Module Library Part 4: Supporting Routines

9.10 Marshal.c

9.10.1 Introduction

This file contains the marshaling and unmarshaling code.

The marshaling and unmarshaling code and function prototypes are not listed, as the code is repetitive,
long, and not very useful to read. Examples of a few unmarshaling routines are provided. Most of the
others are similar.

Depending on the table header flags, a type will have an unmarshaling routine and a marshaling routine
The table header flags that control the generation of the unmarshaling and marshaling code are delimited
by angle brackets ("<>") in the table header. If no brackets are present, then both unmarshaling and
marshaling code is generated (i.e., generation of both marshaling and unmarshaling code is the default).

9.10.2 Unmarshal and Marshal a Value

In TPM 2.0 Part 2, a TPMI_DI_OBJECT is defined by this table:

Table xxx — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments
{TRANSIENT_FIRST:-TRANSIENT_LAST} allowed range for transient objects
{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects
+TPM_RH_NULL the null handle

#TPM_RC_VALUE

This generates the following unmarshaling code:

TPM RC
TPMI DH OBJECT Unmarshal (TPMI_DH_OBJECT *target, BYTE **buffer, INT32 *size,
BOOL flag)
{
TPM_RC result;

result = TPM HANDLE Unmarshal ((TPM_HANDLE *)target, buffer, size);
if (result != TPM _RC_SUCCESS)
return result;

if (*target == TPM RH NULL)
{
if (flaqg)
return TPM_RC_SUCCESS;
else

return TPM RC_VALUE;
}
if (((*target < TRANSIENT FIRST) || (*target > TRANSIENT LAST))
&&((*target < PERSISTENT FIRST) || (*target > PERSISTENT_ LAST)))
return TPM_BC_VALUE;
return TPM RC_SUCCESS;
}

and the following marshaling code:
NOTE The marshaling code does not do parameter checking, as the TPM is the source of the marshaling data .

UINT16
TPMI_DH OBJECT_ Marshal (TPMI_DH_OBJECT *source, BYTE **buffer, INT32 *size)

Page 56 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

»

(o2}

©CoOo~NOoO UL WNPRE

Part 4: Supporting Routines Trusted Platform Module Library

{
return UINT32 Marshal ((UINT32 *)source, buffer, size);

}

An additional script is used to do the work that might be done by a linker or globally optimizing compiler. It
searches for functions like TPMI_DH_OBJECT_Marshal() that do nothing but call another function and
replaces the function with a #define.

#define TPMI_DH OBJECT_ Marshal (source, buffer, size) \
UINT32 Marshal ((UINT32 *)source, buffer, size)

When replacing the function with a #define, the #define is placed in marshal_fp.h and the function body is
removed from marshal.c.

9.10.3 Unmarshal and Marshal a Union

In TPM 2.0 Part 2, a TPMU_PUBLIC_PARMS union is defined by:

Table xxx — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Parameter Type Selector Description

keyedHash TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH |sign | encrypt | neither

symDetail TPMT_SYM_DEF_OBJECT TPM_ALG_SYMCIPHER a symmetric block cipher

rsaDetail TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign

eccDetail TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign

asymDetall TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTE The Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT .sign may be set.

“+” indicates that both may be set but one shall be set. “|” indicates the optional settings.

From this table, the following unmarshaling code is generated.

TPM RC
TPMU PUBLIC_PARMS Unmarshal (TPMU_PUBLIC_PARMS *target, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch (selector) {
#if ALG_KEYEDHASH
case TPM ALG KEYEDHASH:
return TPMS KEYEDHASH PARMS Unmarshal (
(TPMS_KEYEDHASH PARMS *) & (target->keyedHash), buffer, size);
#endif
#if ALG_SYMCIPHER
case TPM ALG_SYMCIPHER:
return TPMT_SYM DEF OBJECT Unmarshal (
(TPMT_SYM DEF_OBJECT *) & (target->symDetail), buffer, size, FALSE);
#fendif
#if ALG_RSA
case TPM_ALG RSA:
return TPMS_RSA_PARMS_Unmarshal (
(TPMS_RSA PARMS *)&(target->rsaDetail), buffer, size);
#fendif
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_PARMS Unmarshal (
(TPMS_ECC_PARMS *) & (target->eccDetail), buffer, size);
#endif
}

Family “2.0” TCG Published Page 57
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27
28

WCoOoOJdJonUld WNPEF

NNOMNNONNMNNNODHERRER DR RB R
WO RWNROIOLVOIONO ™ WN KO

Trusted Platform Module Library Part 4: Supporting Routines

return TPM RC_SELECTOR;

NOTE The #1f/#endif directives are added whenever a value is dependent on an algorithm ID so that removing
the algorithm definition will remove the related code.

The marshaling code for the union is:

UINT1l6
TPMU_PUBLIC PARMS Marshal (TPMU_PUBLIC_PARMS *source, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch (selector) {
#if ALG_KEYEDHASH
case TPM_ALG KEYEDHASH:
return TPMS KEYEDHASH PARMS Marshal (
(TPMS_KEYEDHASH PARMS *) & (source->keyedHash), buffer, size);
#endif
#if ALG_SYMCIPHER
case TPM ALG_SYMCIPHER:
return TPMT SYM DEF OBJECT Marshal (
(TPMT_SYM DEF_OBJECT *) & (source->symDetail), buffer, size);
#endif
#if ALG RSA
“case TPM_ALG_RSA:
return TPMS_RSA PARMS Marshal (
(TPMS_RSA PARMS *) & (source->rsaDetail), buffer, size);
#endif
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_PARMS Marshal (
(TPMS_ECC_PARMS *) & (source->eccDetail), buffer, size);
#endif
}
assert(1l);
return 0;

For the marshaling and unmarshaling code, a value in the structure containing the union provides the
value used for selector. The example in the next section illustrates this.

Page 58 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

WCoOoJdoUld WN B

Part 4: Supporting Routines

Trusted Platform Module Library

9.10.4 Unmarshal and Marshal a Structure

In TPM 2.0 Part 2, the TPMT_PUBLIC structure is defined by:

Table xxx — Definition of TPMT_PUBLIC Structure

Parameter Type Description
type TPMI_ALG_PUBLIC “algorithm” associated with this object
nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.

objectAttributes

TPMA_OBJECT

attributes that, along with type, determine the manipulations of this
object

authPolicy

TPM2B_DIGEST

optional policy for using this key
The policy is computed using the nameAlg of the object.
NOTE shall be the Empty Buffer if no authorization policy is present

[type]parameters

TPMU_PUBLIC_PARMS

the algorithm or structure details

[type]unique

TPMU_PUBLIC_ID

the unique identifier of the structure
For an asymmetric key, this would be the public key.

This structure is tagged (the first value indicates the structure type), and that tag is used to determine how
the parameters and unique fields are unmarshaled and marshaled. The use of the type for specifying the
union selector is emphasized below.

The unmarshaling code for the structure in the table above is:

TPM_RC

TPMT PUBLIC Unmarshal (TPMT PUBLIC *target, BYTE **buffer, INT32 *size, BOOL flag)

{
TPM_RC

result;

result = TPMI_ALG_PUBLIC Unmarshal ((TPMI_ALG PUBLIC *)&(target->type),

if (result != TPM RC_SUCCESS)
return result;
result = TPMI_ALG_HASH Unmarshal ((TPMI_ALG HASH *)&(target->nameAlg),

if (result != TPM _RC_SUCCESS)
return result;
result = TPMA OBJECT Unmarshal ((TPMA_OBJECT *)& (target->objectAttributes),

if (result != TPM RC_SUCCESS)
return result;
result = TPM2B DIGEST Unmarshal ((TPM2B DIGEST *)&(target->authPolicy),

if (result != TPM _RC_SUCCESS)
return result;

buffer, size);

buffer, szze, flag) ;

buffer, size);

buffer, size);

result = TPMU_PUBLIC_PARMS Unmarshal ((TPMU_PUBLIC_PARMS *) & (target->parameters),

if (result !'= TPM_RC_SUCCESS)
return result;

buffer, size, (UINT32)target->type)

result = TPMU_PUBLIC_ID Unmarshal ((TPMU_PUBLIC_ID *)& (target->unique),

if (result !'= TPM_RC_SUCCESS)
return result;

return TPM_RC_SUCCESS ;

}

Family “2.0”

Level 00 Revision 01.59

buffer, size, (UINT32) target->type) ;

TCG Published Page 59

Copyright © TCG 2006-2020 November 8, 2019

woJdJoudWNE

MNNNNMNNNRRHRERBRRRRERBRR
UBRWNHOWVWOIOUIBWNKRO

WoOoJdoUld WN -

o el
wWNh RO

Trusted Platform Module Library

Part 4: Supporting Routines

The marshaling code for the TPMT_PUBLIC structure is:

UINT16

TPMT PUBLIC Marshal (TPMT_PUBLIC *source, BYTE **buffer, INT32 *size)

{
UINT16

result

result

result

result

result

result

return

result = 0;

= (UINT16) (result + TPMI_ALG PUBLIC Marshal(

(TPMI_ALG_PUBLIC *) & (source->type), buffer, size));
= (UINT16) (result + TPMI_ALG_HASH Marshal (

(TPMI_ALG_HASH *) & (source->nameAlqg), buffer, size))

= (UINT16) (result + TPMA OBJECT Marshal (
(TPMA_OBJECT *) & (source->objectAttributes), buffer, size));

= (UINT16) (result + TPM2B DIGEST Marshal (
(TPM2B_DIGEST *) & (source->authPolicy), buffer, size));

= (UINT16) (result + TPMU PUBLIC_ PARMS Marshal (
(TPMU_PUBLIC_PARMS *) & (source->parameters), buffer, size,

(UINT32) source->type)) ;

= (UINT16) (result + TPMU_PUBLIC_ID Marshal (
(TPMU_PUBLIC_ID *)&(source->unique), buffer, size,

result;

9.10.5 Unmarshal and Marshal an Array

In TPM 2.0 Part 2, the TPML_DIGEST is defined by:

(UINT32) source->type)) ;

Table xxx — Definition of TPML_DIGEST Structure

Parameter Type Description
count {2:} UINT32 number of digests in the list, minimum is two
digests[count]{:8} TPM2B_DIGEST | a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE

response code when count is not at least two or is
greater than 8

The digests parameter is an array of up to count structures (TPM2B_DIGESTS). The auto-generated
code to Unmarshal this structure is:

TPM_RC

TPML DIGEST Unmarshal (TPML DIGEST *target, BYTE **buffer, INT32 *size)

{
TPM_RC

result;

result = UINT32 Unmarshal ((UINT32 *)&(target->count), buffer, size);
if (result !'= TPM_RC_SUCCESS)
return result;

if((target->count < 2))

return TPM_RC_SIZE;

if ((target->count) > 8)

Page 60

November 8, 2019

// This check is triggered by the {2:} notation
// on ‘count’

// This check is triggered by the {:8} notation

TCG Published Family “2.0”

Copyright © TCG 2006-2020 Level 00 Revision 01.59

14
15
16
17
18
19
20
21
22
23

WCoOoOJdoUld WN PR

el ol
s WNh kRO

woJdJonUldWNPEF

woJdJonUldWNPEF-

Part 4: Supporting Routines Trusted Platform Module Library

// on ‘digests’.
return TPM RC_SIZE;

result = TPM2B DIGEST Array Unmarshal ((TPM2B_DIGEST *) (target->digests),
buffer, size, (INT32) (target->count)) ;
if (result !'= TPM_RC_SUCCESS)
return result;

return TPM RC_SUCCESS;

The routine unmarshals a count value and passes that value to a routine that unmarshals an array of
TPM2B_DIGEST values. The unmarshaling code for the array is:

TPM RC
TPM2B _DIGEST Array Unmarshal (TPM2B DIGEST *target, BYTE **buffer, INT32 *size,
INT32 count)
{
TPM_RC result;
INT32 i;
for(i = 0; i < count; i++) {
result = TPM2B DIGEST Unmarshal (&target[i], buffer, size);
if (result !'= TPM_RC_SUCCESS)
return result;

}
return TPM RC_SUCCESS;

Marshaling of the TPML_DIGEST uses a similar scheme with a structure specifying the number of
elements in an array and a subsequent call to a routine to marshal an array of that type.

UINT16
TPML DIGEST Marshal (TPML_DIGEST *source, BYTE **buffer, INT32 *size)
{
UINT16 result = 0;
result = (UINT16) (result + UINT32 Marshal ((UINT32 *)&(source->count), buffer,
size));
result = (UINT16) (result + TPM2B DIGEST Array Marshal (
(TPM2B_DIGEST *) (source->digests), buffer, size,
(INT32) (source->count))) ;

return result;

The marshaling code for the array is:

TPM RC
TPM2B_DIGEST Array Unmarshal (TPM2B DIGEST *target, BYTE **buffer, INT32 *size,
INT32 count)
{
TPM _RC result;
INT32 i;
for(i = 0; i < count; i++) {
result = TPM2B DIGEST Unmarshal (&target[i], buffer, size);
if (result !'= TPM_RC_SUCCESS)
return result;
}
return TPM_RC_SUCCESS;

Family “2.0” TCG Published Page 61
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

WoOoJouUdWNR

SJood W PR

Trusted Platform Module Library Part 4: Supporting Routines

9.10.6 TPM2B Handling

A TPM2B structure is handled as a special case. The unmarshaling code is similar to what is shown in
9.10.5 but the unmarshaling/marshaling is to a union element. Each TPM2B is a union of two sized
buffers, one of which is type specific (the ‘" element) and the other is a generic value (the ‘b’ element).
This allows each of the TPM2B structures to have some inheritance property with all other TPM2B. The
purpose is to allow functions that have parameters that can be any TPM2B structure while allowing other
functions to be specific about the type of the TPM2B that is used. When the generic structure is allowed,
the input parameter would use the ‘b’ element and when the type-specific structure is required, the ‘t’
element is used.

When marshaling a TPM2B where the second member is a BYTE array, the size parameter indicates the
size of the array. The second member can also be a structure. In this case, the caller does not prefill the
size member. The marshaling code must marshal the structure and then back fill the calculated size.

Table xxx — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 Size of the operand
buffer [size] {:1024} BYTE The operand

TPM RC

TPM2B_EVENT Unmarshal (TPM2B_EVENT *target, BYTE **buffer, INT32 *size)
{
TPM_RC result;
result = UINT16 Unmarshal ((UINT16 *)&(target->t.size), buffer, size);
if (result != TPM_RC_SUCCESS)
return result;
// if size equal to 0, the rest of the structure is a zero buffer
// so stop processing
if (target->t.size == 0)
return TPM RC_SUCCESS;
if ((target->t.size) > 1024) // This check is triggered by the {:1024}
// notation on ‘buffer’
return TPM_RC_SIZE;
result = BYTE Array Unmarshal ((BYTE *) (target->t.buffer), buffer, size,
(INT32) (target->t.size));
if (result != TPM RC_SUCCESS)
return result;
return TPM RC_SUCCESS;
}

using these structure definitions:

typedef union {

struct {

UINT16 size;

BYTE buffer[1024];
} t;
TPM2B b;

} TPM2B_EVENT;

9.10.7 Table Marshal Headers

9.10.7.1 TableMarshal.h

[[[TableMarshal h]]]

Page 62 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.10.7.2 TableMarshalData.h

|[[TableMarshalData h]]|

9.10.7.3 TableMarshalDefines.h

|[[TableMarshalDefines h]]

9.10.7.4 TableMarshalTypes.h

|[[[TableMarshalTypes h]]

9.10.8 Table Marshal Source

9.10.8.1 TableDrivenMarshal.c

[[[TableDrivenMarshal]]

9.10.8.2 TableMarshalData.c

|[[TableMarshalDatal]]

Family “2.0” TCG Published Page 63
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.11 MathOnByteBuffers.c

|[[MathOnByteBuffers]]|

Page 64 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.12 Memory.c

[[Memory]]

Family “2.0” TCG Published Page 65
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.13 Power.c

[[Power]]

Page 66 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.14 PropertyCap.c

|[[PropertyCap]]|

Family “2.0” TCG Published Page 67
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.15 Response.c

|[[Response]]|

Page 68 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

9.16 ResponseCodeProcessing.c

|[[ResponseCodeProcessing]]|

Family “2.0” TCG Published Page 69
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

9.17 TpmFail.c

[[TpmFail]]

Page 70 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines

10 Cryptographic Functions
10.1 Headers

10.1.1 BnValues.h

[[[BnValues h]]|

Family “2.0”
Level 00 Revision 01.59

TCG Published
Copyright © TCG 2006-2020

Trusted Platform Module Library

Page 71
November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.2 CryptEcc.h

|[[CryptEcc_h]]|

Page 72 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.1.3 CryptHash.h

|[[CryptHash h]]]

Family “2.0” TCG Published Page 73
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.4 CryptRand.h

|[[[CryptRand h]]]

Page 74 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.1.5 CryptRsa.h

|[[[CryptRsa_h]]|

Family “2.0” TCG Published Page 75
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.6 CryptTest.h

|[[[CryptTest h]]]

Page 76 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.1.7 HashTestData.h

|[[HashTestData h]]]

Family “2.0” TCG Published Page 77
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.8 KdfTestData.h

|[[KdfTestData h]]]

Page 78 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines

10.1.9 RsaTestData.h

|[[RsaTestData h]]

10.1.10 SelfTest.h

[[[SelfTest h]]|

10.1.11 SupportLibraryFunctionPrototypes_fp.h

|[[SupportLibraryFunctionPrototypes fp hll

Family “2.0”
Level 00 Revision 01.59

TCG Published
Copyright © TCG 2006-2020

Trusted Platform Module Library

Page 79
November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.12 SymmetricTestData.h

|[[SymmetricTestData h]]|

Page 80 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.1.13 SymmetricTest.h

|[[SymmetricTest h]]|

Family “2.0” TCG Published Page 81
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.1.14 EccTestData.h

|[[EccTestData_h]]]

Page 82 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.1.15 CryptSym.h

[[[CryptSym h]]]

Family “2.0” TCG Published Page 83
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library

10.1.16 OIDs.h

[[OIDs h]]

10.1.17 PRNG_TestVectors.h

|[[PRNG TestVectors_h]]|

10.1.18 TpmAsnl.h

[[[TpmAsnl h]]]

10.1.19 X509.h

[[X509 h]]

10.1.20 TpmAlgorithmDefines.h

This file contains the algorithm values from the TCG Algorithm Registry.

|[[TpmAlgorithmDefines h]]]

Page 84 TCG Published
November 8, 2019 Copyright © TCG 2006-2020

Part 4: Supporting Routines

Family “2.0”
Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2 Source

10.2.1 AlgorithmTests.c

|[[[AlgorithmTests]]]

Family “2.0” TCG Published Page 85
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.2 BnConvert.c

|[[BnConvert]]|

Page 86 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.3 BnMath.c

[[BnMath]]

Family “2.0” TCG Published Page 87
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.4 BnMemory.c

|[[BnMemory]]|

Page 88 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.5 CryptCmac.c

|[[CryptCmac]]|

Family “2.0” TCG Published Page 89
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.6 CryptUtil.c

|[[[CryptUtil]]]

Page 90 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.7 CryptSelfTest.c

|[[[CryptSelfTest]]]

Family “2.0” TCG Published Page 91
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.8 CryptEccData.c

|[[CryptEccDatal]]

Page 92 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.9 CryptDes.c

|[[CryptDes]]|

Family “2.0” TCG Published Page 93
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.10 CryptEccKeyExchange.c

|[[CryptEccKeyExchange]]|

Page 94 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.11 CryptEccMain.c

|[[CryptEccMain]]]

Family “2.0” TCG Published Page 95
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.12 CryptEccSignature.c

|[[CryptEccSignature]]|

Page 96 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.13 CryptHash.c

|[[CryptHash]]]

Family “2.0” TCG Published Page 97
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.14 CryptPrime.c

|[[CryptPrime]]|

Page 98 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.15 CryptPrimeSieve.c

|[[CryptPrimeSieve]]|

Family “2.0” TCG Published Page 99
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.16 CryptRand.c

|[[CryptRand]]|

Page 100 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.17 CryptRsa.c

|[[CryptRsa]]|

Family “2.0” TCG Published Page 101
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.18 CryptSmac.c

|[[CryptSmac]]|

Page 102 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.19 CryptSym.c

[[[CryptSym]]|

Family “2.0” TCG Published Page 103
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.20 PrimeData.c

|[[PrimeData]]|

Page 104 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.21 RsaKeyCache.c

|[[RsaKeyCache]]|

Family “2.0” TCG Published Page 105
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.22 Ticket.c

[[Ticket]]

Page 106 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.23 TpmAsnl.c

[[TpmAsnl]]

Family “2.0” TCG Published Page 107
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.24 X509_ECC.c

[[[X509 EccC]]|

Page 108 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.25 X509_RSA.c

[[[X509 RsA]]|

Family “2.0” TCG Published Page 109
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

10.2.26 X509_spt.c

[[[X509 spt]]|

Page 110 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

10.2.27 AC_spt.c

[[AC_spt]]

Family “2.0” TCG Published Page 111
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

Annex A
(informative)
Implementation Dependent

A.1 Introduction

This header file contains definitions that are used to define a TPM profile. The values are chosen by the
manufacturer. The values here are chosen to represent a full featured TPM so that all of the TPM'’s
capabilities can be simulated and tested. This file would change based on the implementation.

The file listed below was generated by an automated tool using three documents as inputs. They are:
1) The TCG_Algorithm Registery,

2) Part 2 of this specification, and

3) A purpose-built document that contains vendor-specific information in tables.

All of the values in this file have #ifdef ‘guards’ so that they may be defined in a command
line.Additionally, TpmBuildSwitches.h allows an additional file to be specified in the compiler command
line and preset any of these values.

A.2 TpmProfile.h

|[[TpmProfile h]]]

A.3 TpmSizeChecks.c

|[[TpmSizeChecks]]|

Page 112 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

Annex B
(informative)
Library-Specific

B.1 Introduction

This clause contains the files that are specific to a cryptographic library used by the TPM code.
Three categories are defined for cryptographic functions:
1) big number math (asymmetric cryptography),

2) symmetric ciphers, and

3) hash functions.

The code is structured to make it possible to use different libraries for different categories. For example,
one might choose to use OpenSSL for its math library, but use a different library for hashing and
symmetric cryptography. Since OpenSSL supports all three categories, it might be more typical to
combine libraries of specific functions; that is, one library might only contain block ciphers while another
supports big number math.

Family “2.0” TCG Published Page 113
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

B.2 OpenSSL-Specific Files

B.2.1. Introduction

The following files are specific to a port that uses the OpenSSL library for cryptographic functions.

B.2.2. Header Files

B.2.2.1. TpmToOsslHash.h

[[[TpmToOss1Hash h]]|

Page 114 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

B.2.2.2. TpmToOssIMath.h

|[[TpmToOss1Math h]]|

Family “2.0” TCG Published Page 115
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

B.2.2.3. TpmToOssISym.h

|[[TpmToOss1Sym h]]]

Page 116 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

B.2.3. Source Files

B.2.3.1. TpmToOsslIDesSupport.c

|[[TpmToOsslDesSupport]]|

Family “2.0” TCG Published Page 117
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

B.2.3.2. TpmToOsslIMath.c

|[[TpmToOss1Math]]|

Page 118 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

B.2.3.3. TpmToOsslISupport.c

|[[TpmToOsslSupport]]]

Family “2.0” TCG Published Page 119
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

Annex C
(informative)
Simulation Environment

C.1 Introduction
These files are used to simulate some of the implementation-dependent hardware of a TPM. These files

are provided to allow creation of a simulation environment for the TPM. These files are not expected to be
part of a hardware TPM implementation.

C.2 Cancel.c

[[Cancel]]

Page 120 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.3 Clock.c

[[Clock]]

Family “2.0” TCG Published Page 121
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.4 Entropy.c

[[Entropy]]

Page 122 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.5 LocalityPlat.c

|[[[LocalityPlat]]]

Family “2.0” TCG Published Page 123
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.6 NVMem.c

Page 124 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.7 PowerPlat.c

|[[PowerPlat]]|

Family “2.0” TCG Published Page 125
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.8 PlatformData.h

|[[[PlatformData h]]]

Page 126 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.9 PlatformData.c

|[[[PlatformData]]]

Family “2.0” TCG Published Page 127
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.10 PPPIlat.c

[[PPPlat]]

Page 128 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.11 RunCommand.c

|[[RunCommand]]|

Family “2.0” TCG Published Page 129
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.12 Unique.c

[[Unique]]

Page 130 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.13 DebugHelpers.c

|[[DebugHelpers]]]

Family “2.0” TCG Published Page 131
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.14 Platform.h

|[[[Platform h]]|

Page 132 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.15 PlatformACT.h

|[[[PlatformACT h]]]

Family “2.0” TCG Published Page 133
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

C.16 PlatformACT.c

|[[[PlatformACT]]|

Page 134 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

C.17 PlatformClock.h

|[[[PlatformClock h]]|

Family “2.0” TCG Published Page 135
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

Annex D
(informative)
Remote Procedure Interface

D.1 Introduction

These files provide an RPC interface for a TPM simulation.

The simulation uses two ports: a command port and a hardware simulation port. Only TPM commands
defined in TPM 2.0 Part 3 are sent to the TPM on the command port. The hardware simulation port is
used to simulate hardware events such as power on/off and locality; and indications such as
_TPM_HashStart.

Page 136 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

D.2 TpmTcpProtocol.h

|[[TpmTcpProtocol hl]|

Family “2.0” TCG Published Page 137
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

D.3 TcpServer.c

|[[TcpServer]]|

Page 138 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 4: Supporting Routines Trusted Platform Module Library

D.4 TPMCmdp.c

[[TPMCmdp]]

Family “2.0” TCG Published Page 139
Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library Part 4: Supporting Routines

D.5 TPMCmds.c

[[TPMCmds]]

Page 140 TCG Published Family “2.0”
November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

	1 Scope
	2 Terms and definitions
	3 Symbols and abbreviated terms
	4 Automation
	4.1 Configuration Parser
	4.2 Structure Parser
	4.2.1 Introduction
	4.2.2 Unmarshaling Code Prototype
	4.2.2.1 Simple Types and Structures
	4.2.2.2 Union Types
	4.2.2.3 Null Types
	4.2.2.4 Arrays

	4.2.3 Marshaling Code Function Prototypes
	4.2.3.1 Simple Types and Structures
	4.2.3.2 Union Types
	4.2.3.3 Arrays
	4.2.3.4 The generated code for an array uses a count-limited loop within which it calls the marshaling code for TYPE.Table-driven Marshaling

	4.3 Part 3 Parsing
	4.4 Function Prototypes
	4.5 Portability

	5 Header Files
	5.1 Introduction
	5.2 BaseTypes.h
	5.3 Capabilities.h
	5.4 CommandAttributeData.h
	5.5 CommandAttributes.h
	5.6 CommandDispatchData.h
	5.7 Commands.h
	5.8 CompilerDependencies.h
	5.9 Global.h
	5.10 GpMacros.h
	5.11 InternalRoutines.h
	5.12 LibSupport.h
	5.13 MinMax.h
	5.14 NV.h
	5.15 TPMB.h
	5.16 Tpm.h
	5.17 TpmBuildSwitches.h
	5.18 TpmError.h
	5.19 TpmTypes.h
	5.20 VendorString.h
	5.21 swap.h
	5.22 ACT.h

	6 Main
	6.1 Introduction
	6.2 ExecCommand.c
	6.3 CommandDispatcher.c
	6.3.1 Introduction

	6.4 SessionProcess.c

	7 Command Support Functions
	7.1 Introduction
	7.2 Attestation Command Support (Attest_spt.c)
	7.3 Context Management Command Support (Context_spt.c)
	7.4 Policy Command Support (Policy_spt.c)
	7.5 NV Command Support (NV_spt.c)
	7.6 Object Command Support (Object_spt.c)
	7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c)
	7.8 ACT Support (ACT_spt.c)

	8 Subsystem
	8.1 CommandAudit.c
	8.2 DA.c
	8.3 Hierarchy.c
	8.4 NvDynamic.c
	8.5 NvReserved.c
	8.6 Object.c
	8.7 PCR.c
	8.8 PP.c
	8.9 Session.c
	8.10 Time.c

	9 Support
	9.1 AlgorithmCap.c
	9.2 Bits.c
	9.3 CommandCodeAttributes.c
	9.4 Entity.c
	9.5 Global.c
	9.6 Handle.c
	9.7 IoBuffers.c
	9.8 Locality.c
	9.9 Manufacture.c
	9.10 Marshal.c
	9.10.1 Introduction
	9.10.2 Unmarshal and Marshal a Value
	9.10.3 Unmarshal and Marshal a Union
	9.10.4 Unmarshal and Marshal a Structure
	9.10.5 Unmarshal and Marshal an Array
	9.10.6 TPM2B Handling
	9.10.7 Table Marshal Headers
	9.10.7.1 TableMarshal.h
	9.10.7.2 TableMarshalData.h
	9.10.7.3 TableMarshalDefines.h
	9.10.7.4 TableMarshalTypes.h

	9.10.8 Table Marshal Source
	9.10.8.1 TableDrivenMarshal.c
	9.10.8.2 TableMarshalData.c

	9.11 MathOnByteBuffers.c
	9.12 Memory.c
	9.13 Power.c
	9.14 PropertyCap.c
	9.15 Response.c
	9.16 ResponseCodeProcessing.c
	9.17 TpmFail.c

	10 Cryptographic Functions
	10.1 Headers
	10.1.1 BnValues.h
	10.1.2 CryptEcc.h
	10.1.3 CryptHash.h
	10.1.4 CryptRand.h
	10.1.5 CryptRsa.h
	10.1.6 CryptTest.h
	10.1.7 HashTestData.h
	10.1.8 KdfTestData.h
	10.1.9 RsaTestData.h
	10.1.10 SelfTest.h
	10.1.11 SupportLibraryFunctionPrototypes_fp.h
	10.1.12 SymmetricTestData.h
	10.1.13 SymmetricTest.h
	10.1.14 EccTestData.h
	10.1.15 CryptSym.h
	10.1.16 OIDs.h
	10.1.17 PRNG_TestVectors.h
	10.1.18 TpmAsn1.h
	10.1.19 X509.h
	10.1.20 TpmAlgorithmDefines.h

	10.2 Source
	10.2.1 AlgorithmTests.c
	10.2.2 BnConvert.c
	10.2.3 BnMath.c
	10.2.4 BnMemory.c
	10.2.5 CryptCmac.c
	10.2.6 CryptUtil.c
	10.2.7 CryptSelfTest.c
	10.2.8 CryptEccData.c
	10.2.9 CryptDes.c
	10.2.10 CryptEccKeyExchange.c
	10.2.11 CryptEccMain.c
	10.2.12 CryptEccSignature.c
	10.2.13 CryptHash.c
	10.2.14 CryptPrime.c
	10.2.15 CryptPrimeSieve.c
	10.2.16 CryptRand.c
	10.2.17 CryptRsa.c
	10.2.18 CryptSmac.c
	10.2.19 CryptSym.c
	10.2.20 PrimeData.c
	10.2.21 RsaKeyCache.c
	10.2.22 Ticket.c
	10.2.23 TpmAsn1.c
	10.2.24 X509_ECC.c
	10.2.25 X509_RSA.c
	10.2.26 X509_spt.c
	10.2.27 AC_spt.c

	Annex A (informative) Implementation Dependent
	A.1 Introduction
	A.2 TpmProfile.h
	A.3 TpmSizeChecks.c

	Annex B (informative) Library-Specific
	B.1 Introduction
	B.2 OpenSSL-Specific Files
	B.2.1. Introduction
	B.2.2. Header Files
	B.2.2.1. TpmToOsslHash.h
	B.2.2.2. TpmToOsslMath.h
	B.2.2.3. TpmToOsslSym.h

	B.2.3. Source Files
	B.2.3.1. TpmToOsslDesSupport.c
	B.2.3.2. TpmToOsslMath.c
	B.2.3.3. TpmToOsslSupport.c

	Annex C (informative) Simulation Environment
	C.1 Introduction
	C.2 Cancel.c
	C.3 Clock.c
	C.4 Entropy.c
	C.5 LocalityPlat.c
	C.6 NVMem.c
	C.7 PowerPlat.c
	C.8 PlatformData.h
	C.9 PlatformData.c
	C.10 PPPlat.c
	C.11 RunCommand.c
	C.12 Unique.c
	C.13 DebugHelpers.c
	C.14 Platform.h
	C.15 PlatformACT.h
	C.16 PlatformACT.c
	C.17 PlatformClock.h

	Annex D (informative) Remote Procedure Interface
	D.1 Introduction
	D.2 TpmTcpProtocol.h
	D.3 TcpServer.c
	D.4 TPMCmdp.c
	D.5 TPMCmds.c

