Elll'llﬂ’.ll.’]ﬂ'lllf]ﬂlﬂl
l[ll}llllﬂlll'[]]-lf‘il[}ll]
101010011001111048 ‘-
11110100110010 -'."'“n.,,‘

Forensics ||

Linux
file systems
Ext4, Btrfs and ZFS

Repetition begin

See forensic 1
http://users.du.se/~hjo/cs/dt1059/presentation/CF1_9 filesystems.pdf

ext4 is important since most Android devices run it ==
Actually most of the computers in the world!

Slides from forensic 1 begin

UNIX filsystem UFS, ext2... osv.

Anvander datastrukturer som kallas for index noder i en tabell
for att representera filer, bibliotek och symboliska lankar

Inode falten (128 byte) ar av ett fixt antal och lagrar metadata
Varije fil och mapp har ett associerat entry i inode tabellen
Inodens nr som hanterar filen/mappen kan visas med Is -i
Inode nr 1 anvands vanligen for att lagra bad blocks

Inode nr 2 anvands alltid for root directory

Bra program for lagniva diskundersokning

— The Sleuth Kit — fsstat och istat kommandot

— Linux Disk Editor — Ide

— Tune2fs — visar filsystem info mm. for ext2/ext3
Vissa icke traditionella UNIX filsystem har en ganska olik
uppbyggnad pa lag niva tex. ReiserFS

— Kraver sina egna program/verktyg

UNIX filsystem UFS, ext2... osv.

Delar upp partitionen i ett antal block grupper for
redundans, ca: 128MB (32k*4k) per grupp for file space

Superblocket (1 kB) innehaller viktig filsysteminfo som
block size, ant. block, block per grupp, last mounted mm.

— Sparse superblock, group desc.

Group descriptor haller reda pa grupperna och var saker
finns (bitmaps, inode table)

Block/inode - bitmappar hanterar allokeringsstatus

sector 1

(MBR) partition #1 partition #2

partition table
boot sector
superblock #1
group descriptor
table
block bitmap
inode bitmap
superblock #1
(backup)
table (backup)
block bitmap
inode bitmap
inode table

superblock #2
group descriptor
table

group descriptor

group #1 group #2

tune2fs
kommandot

* Ger info om inoders
iIndex/falt- och block
size

* Antalet inodes och
blocks per grupp

* Mm. mm.

linuxbox:~# tune2fs -l /dev/hda2
tune2fs 1.40-WIP (14-Nov-2006)
Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID:
Filesystem magic number: OxEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: filetype sparse_super
Default mount options: (none)

Filesystem state: not clean

Errors behavior: Continue

Filesystem OS type: Linux

Inode count: 14469312
Block count: 14460508
Reserved block count: 723025
Free blocks: 9935321
Free inodes: 14340692
First block: 0

Block size: 4096
Fragment size: 4096

Blocks per group: 32768

Fragments per group: 32768

Inodes per group: 32736

Inode blocks per group: 1023

Last mount time: Sun Mar 28 21:06:36 2010
Last write time: Mon Apr 26 21:31:38 2010
Mount count: 1

Maximum mount count: 37

Last checked: Sun Mar 28 21:02:21 2010
Check interval: 15552000 (6 months)

Next check after: Fri Sep 24 21:02:21 2010
Reserved blocks uid: 0 (user root)

Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 128

70be05e9-3e15-4456-be27-4153e420d320

UNIX filsystem, sla upp fil

Nar systemet skall visa en viss fil tex. /etc/passwd gar man forst
till superblocket for att hitta inod 2 (root directory)

Man letar sedan upp mappen “etc” i blocket som inodens info
lagras |

Nar "etc” hittats gar man till den inode som “etc” pekar pa och
letar efter "passwd” i dess info data block

Nar "passwd” hittats gar man till "passwd” inodens info och de
data block "passwd” inoden refererar till och kan slutligen lasa
in sjalva fildatat

inode 229505

root directory

inode 229377 blocks
163841: var (/etc directory) ngnfgg{gﬁ e
220377 ot - | | fietype data
' passwd: 229505 time stamps
group: 229509 reference count
fstab: 229749 file size in bytes
data blocks #s
data

Inode 2 (root directory) -> block 5

linuxbox:~# Ide -i 2 /dev/hda2

Device "/dev/hda2" is mounted, be careful

User requested autodetect filesystem. Checking device . . .
Found ext2fs on device.

Warning: First block (0) != Normal first block (1)

INODE: 2 (0x00000002)
drwxr-xr-x root root 4096 Sun Dec 24 01:10:00 2006
TYPE: directory
LINKS: 21
MODEFLAGS.MODE: 004.0755 0x00005000
SIZE: 4096 0x00005010
BLOCK COUNT: 8 0x00005020
UID: 00000 (root) 0x00005030
GID: 00000 (root) 0x00005040
ACCESS TIME: Tue Apr 28 10:14:37 2009 0x00005050
CREATION TIME: Sun Dec 24 01:10:00 2006 ~ 0x00005060
MODIFICATION TIME: Sun Dec 24 01:10:00 2006 0x00005070
DELETION TIME: Thu Jan 1 .01:00:00 1970 gigggggggg
DIRECT BLOCKS: 0x00000005 OX000050A0
0x000050B0
0x000050C0
INDIRECT BLOCK: 0x000050D0
DOUBLE INDIRECT BLOCK: 0x000050E0
TRIPLE INDIRECT BLOCK: 0x000050F0
0x00005100
0x00005110
0x00005120
0x00005130

Linux Disk Editor — Ide

block 5 4096 stort

linuxbox:~# Ide -b 5 /dev/hda2

02 00 00 00 0C 00 01 02 : 2E 00 00 00 02 00 00 00
0C 00 02 02 2E 2E 00 00 : OB 00 00 00 14 00 OA 02
6C 6F 73 74 2B 66 6F 75 : 6E 64 00 00 OC 00 00 00 lost+found......
0C 000302657463 00:230500000C000402 ...etc#......

72 6F 6F 74 59 16 00 00 : 0C 00 03 02 74 6D 70 00 rootY....... tmp.
79 16 00 00 0C 00 04 02 : 62 6F 6F 74 8C 16 00 00 y....... boot....
10 00 07 07 76 6D 6C 69 : 6E 75 7A 00 8D 16 00 00vmlinuz.....
0C 0003 02 6C 69 62 00:29 19 00 00 0C 0003 02lib.).......
7573 72 00 OF EE 00 00 : 0C 00 04 02 73 62 69 6E wusr......... sbin
B3 EE 00 00 0C 00 03 02 : 76 61 72 00 5F 16 01 00

64 65 76 00 A9 2A 01 00 : 0OC 00 04 02 68 6F 6D 65 dev..*......home
AC 4101 00 0C 00 03 02 : 6D 6E 74 00 AE 41 01 00 .A.....mnt..A..
0C 00 04 02 70 72 6F 63 : AF 41 01 00 0C 00 03 02proc.A......
6F 70 74 00 BO 41 01 00 : 10 00 06 02 66 6C 6F 70 opt..A......flop
707900 00B1410100:1000 05026364 726F py...A......cdro
6D 00 00 00 B241 0100 : 1000 06 02 69 6E 69 74 m....A......init
72640000B3410100:ECOE030273797300 rd...A......sys.
00 00 00 00 EO OE 05 02 : 2E 72 6F 6F 74 00 00 OO root...

00 00 00 00 00 00 00 00 : 00 00 00 00 00 00 00 00

Is -i kommandot visar filens inod i inode table

Inode structure

linuxbox:~# Ide -i 1636804 /dev/hda2

Device "/dev/hda2" is mounted, be careful

User requested autodetect filesystem. Checking device . . .
Found ext2fs on device.

Warning: First block (0) != Normal first block (1)

INODE: 1636804 (0x0018F9C4)

-rWXr--r-- hjo hjo 17923572 Mon Apr 13 11:45:58 2009
| TYPE: regular file |

LINKS: 1

MODEFLAGS.MODE: 010.0744

SIZE: 17923572

BLOCK COUNT: 35056 = 912 byte block

UID: 01000 (hjo)

GID: 01000 (hjo)

ACCESS TIME: Mon Apr 13 11:45:58 2009

CREATION TIME:
MODIFICATION TIME:

Mon Apr 13 11:46:04 2009
Mon Apr 13 11:45:58 2009
DELETION TIME: Thu Jan 1 01:00:00 1970

DIRECT BLOCKS: 0x0019500A 0x0019500B 0x0019500C
0x0019500D 0x0019500E 0x0019500F 0x00195010 0x00195011
0x00195012 0x00195013 0x00195014 0x00195015

INDIRECT BLOCK: 0x00195016

DOUBLE INDIRECT BLOCK: 0x00196B05

TRIPLE INDIRECT BLOCK:

Byte Range Description Essential
0-1 File mode (type and permissions) (see Yes
Tables 15.11, 15.12, and 15.13)
-3 Lower 16 bits of user ID No
4-7 Lower 32 bits of size in bytes Yes
g-11 Access Time No
12-15 Change Time No
16-19 Modffication time No
20-23 Deletion time No
24-25 Lower 16 bits of group ID No
26-27 Link count No
21831 Sector count No
32-35 Flags (see Table 15 14) No
36-39 Unused No
40-87 12 direct block pointers Yes
8801 1 single indirect block pointer Yes
0195 1 double indirect block pointer Yes
9699 1 triple indirect block pointer Yes
100-103 Generation number (NES) No
104-107 Extended attribute block (File ACL) No
108-111 Upper 32 bits of size / Directory ACL No
Yes/

112-115 Block address of fragment No
116-116 Fragment index in block No
117-117 Fragment size No
118-119 Unused No
120-121 Upper 16 bits of user ID No
122-123 Upper 16 bits of group 1D No
124-127 Unused No

Direct Blocks (12)
[File sizes to 48K]

Indirect Blocks (1024)

UNIX filsystem forts. ... |
y 4 Double Indirect (1M)

= [4GB storage]
T
Biiiitiimitiiiieit et iniiieiiitieiii ittt 11 L
plilniiigddiniiioniieaiimiinidieniendiieaitadiiaaiinalemaiiniid /
—>

Block/inode - bitmap

0 indicates WSED 1 inaicates FREE
Logical Sectors 147456 147459 (Cyl= 72 Head= 1 Sector= 1) FREE
10D000O0oBE0ROOMS00M00000OMMD0GDOO0DO0 1 DOODDOMDO0GDDOD0O0MDO0
(R 0 1 COES D A C CW EO DN R CR B R D) W e e o i v 1 v i o
priippiimiigniigiiieiiiegiianiiggiteigaiioiiad@idragii@iiinaii

IR R R IR R IR R AR IR RN SRR IR RN
OLIXRLLIGRITR0L 001N 1 C LRI DI RO I R IR nlleOLIlnnllx
OLIEE1LIG0 I 01 001 R 1 L R DIl Rl el N1l 1l nllollnnlll 10
BlI1R011001 0011001010110l Da1n11ion1 11 Ioain1liol1alls

W ~NdDHa s whN =

BITIN0LIIEM NI Y NI LRI NI eI eI naInan1eEna1nnnna 12
FILIRQLTRODRNQYERDIRRDLEROLDRDTRDID DTN NNDTRN0TRND1IRR0TRNN1Y 13 -
FILERQLDBQTIEROIIRRIZRILERALITRNETLNILINELL1IDO0GR00MIO0ON00MGO0NNO0 \\\)
DD 0000000 B0 0N0 000000 0000000000 0B00R0 00000 0SD 00000 14 7
15 \
* Inoden har pekare till block Treble Indirect Pointer
[Up to 1G blocks, 4TB storage] —

dar data lagras
— Vid stora filer lagrar dessa istallet pekare till nya block, upp till 3 ggr.
* Det finns speciella filtyper som inte lagrar data
— Pekare till hardvara, symbolisk lank etc. allt ar filer i UNIX!
* Raderad fil fungerar lite olika i ext2 och ext3 filsystem

— ext2fs markerar inoder med block pekare som lediga i block bitmaps och markerar "info
inoden” som “deleted” i inode bitmap - men later block pekarna sta kvar i inoden

— ext3fs nollstaller aven block pekarna i inoder med block pekare

* Det finns inga verktyg for att hantera journalen i journalbaserade filsystem
annu som tex. ext3?

Ext3 delete

Directory Entry

File
Content

Accessed Time Size
Blk1 Blk2

File Block

ub ciD
Indirect Blk 1

Content Addresses

File
Content

Before deletion

HOWTO recover deleted
files on an ext3 file system

http://lwww.xs4all.nl/~carlo17/howto/undelete_ext3.html

FIGURE 1

RELATIONSHIP BETWEEN THE DIRECTORY ENTRY, AN INODE,
AND BLOCKS OF AN ALLOCATED FILE

After deletion

Block pointers are
zeroed out in the inode

Directory Entry

Accessed Time uib GID

File
Content
File File
Content Content

File
Content

FIGURE 2 RELATIONSHIP BETWEEN THE DIRECTORY ENTRY, AN INODE, AND BLOCKS OF AN UNAL-

LOCATED EXT3 FILE. THE LINKS BETWEEN THE INODE AND BLOCKS HAS BEEN CLEARED.

B-tree/B+ tree (not a binary tree)

* Representerar sorterad data som medger effektiv
iInsattning, hamtning och borttagning av poster, samt
indexering av metadata i filsystem och databaser

— http://en.wikipedia.org/wiki/B-tree

* Anvands av NTFS, HFS, ReiserFS, XFS, JFS2, btrfs,
ext4 mm.

* Ett enkelt B+ trad som lankar nycklarna 1-7 till
datavardena d1-d7 3 5|

— Den lankade listan

(rott) medger snabb
in-order traversering

http://en.wikipedia.org/wiki/B%2B_tree

Ext4 file system

* Ext4 is the successor of ext3 which is developed to solve
performance issues and scalability bottleneck on ext3
and also provide backward compatibility with ext3

 Ext4 features

— Bigger file/filesystem size support (assuming 4 kB blocks):
because the block pointers are 48 bits instead of 32 bits

Filesystem Max. file size Max. filesystem size
ext3 2TB 16TB
ext4 16TB 1EB

— /O performance improvement: delayed allocation, multi block
allocator extent map and persistent preallocation

— Fast fsck: flex_bg and uninit_bg (file system feature flags)
— Reliability: journal checksumming
— Maintenance: online defrag

— Misc: backward compatibility with ext2/ext3, nanosec
timestamps, subdir scalability, etc.

Ext4 file system - compability

* When you want to migrate an ext3 file system to ext4,
you can do so gradually

— This means that old files that you have not moved can remain in
the older ext3 format, while new files (or older files that have
been copied) will occupy the new ext4 data structures

— In this way, you can migrate an ext3 file system online to an ext4

file system
Mountable as Ext3 Ext4 Ext3 Extd
On-disk
file system Ext3 Ext3 Ext4 Ext4
format (without
extents)
Forward Backward

compatible compatible

Ext4 file system — Extents 1

One of the primary disadvantages of ext3 was its method of allocation. Files
were allocated using a bit map of free space, which was not very fast nor
very scalable.

Ext3's format is very efficient for small files but horribly inefficient for large
files. Ext4 replaces ext3's mechanism with extents to improve allocation and
support a more efficient storage structure.

An extent is simply a way to represent a contiguous sequence of blocks. In
doing this, metadata shrinks, because instead of maintaining information
about where a block is stored, the extent maintains information about where
a long Ii)st of contiguous blocks is stored (thus reducing the overall metadata
storage).

Extents in ext4 adopt a layered approach to efficiently represent small files
as well as extent trees to efficiently represent large files. For example, a
single ext4 inode has sufficient space to reference four extents (where each
extent represents a set of contiguous blocks).

For large files (including those that are fragmented), an inode can reference
an index node, each of which can reference a leaf node (referencing multiple
extents). This constant depth extent tree provides a rich representation
scheme for large, potentially sparse files. The nodes also include self-
checking mechanisms to further protect against file system corruption.

Read more: http://www.kernel.org/doc/ols/2007/0ls2007v2-pages-21-34.pdf

Ext4 file system — Extents 2

* Ext4 supports two block maps. Extent map is more efficient and can
handle large file in comparison with the old indirect block map

| leaf nodes
ext4_inode disk blocks
, node header
index node
extent
node header
. _-‘--‘-""'
i_block P >
extentindg/
eh_header ~ extent
—---"""'-—-..
I’OOt / LI] N
el
/ H E N
, node header
extent index
extent
\\\ — >
extent

—l >

Repetition end

See forensic 1
http://users.du.se/~hjo/cs/dt1059/presentation/CF1_9 filesystems.pdf

ext4 is important since most Android devices run it ==
Actually most of the computers in the world!

Slides from forensic 1 end

* Ext4 supports two block maps. Extent map is more efficient and can

Ext4 file system — Extents 2 (alt.)

handle large file in comparison with indirect block map

i_data

Data Data Data
Block Block Block
¥
i
F 3
Data Data
Block Block

0

v

Direct Blocks

Indirect Block Map

Indirect Blocks

1_data

Data Blocks
—
?
oy M
o as
F 3 F 3
ny
-
EH
S
T
Extent Index
Extent Map

Ext4 file system - timestamps

Timestamps in the extended file system arena prior to ext4
were seconds based

This was satisfactory in many settings, but as processors
evolve with higher speeds and greater integration (multi-core
processors) and Linux finds itself in other application domains
such as high-performance computing, the seconds-based
timestamp fails in its own simplicity

Ext4 has essentially future-proofed timestamps by extending
them into a nanosecond LSB. The time range has also been
extended with two additional bits to increase the lifetime by
another 500 years

Feature flags of ext filesystems

Ext2 features (common) Ext3 features Ext4 features
xt4 ext attr resize_inode dir_index |has_journal huge file uninit_bg dir_nlink
filetype sparse super extra 1size extent' flex bg'

"unremovable feature flag

Ext4 file system - Performance

Prevent file fragmentation and decrease CPU utilization.
File-level preallocation

— Certain applications, such as databases or content streaming, rely on files to be
stored in contiguous blocks (to exploit sequential block read optimization of
drives as well as to maximize Read command-to-block ratios).

Delaying block allocation

— Delayed allocation is used by write system call. It delays real block allocation until
written data is flushed from memory to disk

Multi-block allocation

— A final optimization—again, contiguous block related—is the block allocator for
ext4.

— In ext3, the block allocator worked by allocating a single block at a time. When
multiple blocks were necessary, it was possible to find contiguous data in non-
contiguous blocks. Ext4 fixes this with a block allocator that allocates multiple
blocks at a time, likely contiguous on disk. Like the previous optimizations, this
optimization collects related data on the disk to optimize for sequential Read
optimization.

— The other aspect of multi-block allocation is the amount of processing required
for allocating the blocks. Recall that ext3 performed allocation one block at a
time. In the simplest units, that required a call to block allocation for each block.
Allocating multiple blocks at a time requires many fewer calls to the block
allocator, resulting in faster allocation and reduced processing.

Ext4 file system - Reliability

* Checksumming the file system journal

Ext4 supports multiple modes of journaling, depending upon the needs of the user.
For example, ext4 supports a mode in which only metadata is journaled (Writeback
mode), a mode in which metadata is journaled but data is written as the metadata is
written from the journal (Ordered mode), and a mode in which both metadata and data
are journaled (Journal mode—the most reliable mode). Note that Journal mode,
although the best way to ensure a consistent file system, is also the slowest, because
all data flows through the journal.

* Online defragmentation
— Although ext4 incorporates features to reduce fragmentation within the file system

(extents for sequential block allocation), some amount of fragmentation is impossible
to avoid when a file system exists for a long period of time. For this reason, an online
defragmentation tool exists to defragment both the file system and individual files for
improved performance. The online defragmenter is a simple tool that copies files into
a new ext4 inode that refers to contiguous extents.

The other aspect of online defragmentation is the reduced time required for a file
system check (fsck). Ext4 marks unused groups of blocks within the inode table to
allow the fsck process to skip them entirely to speed the check process. When the
operating system decides to validate the file system because of internal corruption
(which is inevitable as file systems increase in size and distribution), ext4's
overall design means improved overall reliability.

* There is a trade-off between performance and reliability.

_There is a knovyn-i_ssue on data loss. If a crash opcurs_when created or truncated file
is closed, or a file is renamed to replace the previous file, data may be lost.

— To avoid the issue, mount ext4 filesystem with “noauto_da_alloc” option.

BTRFS and ZFS

* Advantages of Btrfs or ZFS over Ext4 or other mature file-systems is
support for sub-volumes, snapshots, built-in file-system
compression, built-in RAID support, and various other modern
features as automatic FS repair (scrubbing)

* Birfs

— Btrfs is a new copy on write (CoW) filesystem for Linux aimed at implementing
advanced features while focusing on fault tolerance, repair and easy administration.

— Jointly developed at Oracle, Red Hat, Fujitsu, Intel, SUSE, STRATO and many others,
Btrfs Is licensed under the GPL and open for contribution from anyone.

« ZFS

— ZFS is an advanced filesystem created by Sun Microsystems (now owned by Oracle)
and released for OpenSolaris in November 2005. Features of ZFS include: pooled
storage (integrated volume management -- zpool), Copy-on-write, snapshots, data
integrity verification and automatic repair (scrubbing), RAID-Z, a maximum 16 Exabyte
file size, and a maximum 256 Zettabyte volume size. ZFS is licensed under the
Common Development and Distribution License (CDDL).

— Described as "The last word in filesystems" ZFS is stable, fast, secure, and future-
proof. Being licensed under the CDDL, and thus incompatible with GPL, it is not
possible for ZFS to be distributed along with the Linux Kernel. This requirement,
however, does not prevent a native Linux kernel module from being developed and
distributed by a third party, as is the case with zfsonlinux.org (ZOL).

— ZOL is a project funded by the Lawrence Livermore National Laboratory to develop a
native Linux kernel module for its massive storage requirements and super
computers.

Read more about BTRFS and ZFS

Comparisons — they got similar features

— In short ZFS is more portable, require more RAM and is not
integrated into the Linux kernel. Btrfs is Linux only, still under
development and may not be production safe yet

* http://discourse.ubuntu.com/t/zfs-vs-btrfs-experience/1648
— Facebook is using Btrfs since mid 2104 for trial deployment
* http://www.phoronix.com/scan.php?
page=news_item&px=MTYONDk
Article from Linux Format in fronter
— Linux Format - January 2015.pdf
Wikipedia
— http://fen.wikipedia.org/wiki/Btrfs
— http://fen.wikipedia.org/wiki/ZFS

Arch Linux Wiki guides

— https://wiki.archlinux.org/index.php/ZFS
— https://wiki.archlinux.org/index.php/Btrfs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20

