Reverse Engineering Self-Modifying Code: Unpacker Extration

Saumya Debray Jay Patel
Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA
Email: {debray, jaypatel }@cs.arizona.edu

Abstract—An important application of binary-level reverse Because of the prevalence of packed code in malware,
engineering is in reconstructing the internal logic of compiter researchers attempting to extract the actual malware code
malware. Most malware code is distributed in encrypted (or ,g;a|ly resort to dynamic analysis: they execute the malwar
packed”) form; at runtime, an unpacker routine transforms | btai t f the instructi ted W
this to the original executable form of the code, which is sample, 0 al_n a race(_) € Instructions execute ,an_ wor
then executed. Most of the existing work on analysis of such back from this to obtain a more-abstract representation of
programs focuses on detecting unpacking and extracting the the program. It is useful, in this context, to be able to
unpacked code. However, this does not shed any light on the distinguish unpacker code from unpacked code, for a number
functionality of different portions of the code so obtained ¢ yaag50ns. First, automatic identification of unpackingeco
and in particular does not distinguish between code that d the i ded f . . b
performs unpacking and code that does not; identifying such can re uce the ume needed Tor reverS(_a engineering by
functionality can be helpful for reverse engineering the cde. allowing researchers to focus on code with non-unpacker
This paper describes a technique for identifying and extrating functionality. Second, unpacker identification can help im
the unpacker code in a self-modifying program. Our algoritm prove the precision of similarity analyses and phylogeny
uses offline ar_1a|y5|s of a dynamu_: instruction trace _both_ to analyses of malware [10], [11], [13]-[15] by allowing them
identify the point(s) where unpacking occurs and to identif -

to focus on the actual malware payloads and not be misled

and extract the corresponding unpacker code. wu) - _ -0
by similarities in unpacker code. Third, identifying the
Keywords-reverse engineering; binary analysis; malware —unpacker code can help shed light on some aspects of a

analysis; self-modifying code malware’s behavior, e.g., the predicates in any conditiona
invocation of an unpacker can help us understand the nature
|. INTRODUCTION and scope of time bombs or logic bombs embedded in

the malware code. Finally, the code and logic of unpacker

One of the most important applications of binary-level routines—especially specially-crafted custom unpaekers
reverse engineering is in dealing with malware: when develmay be interesting in themselves, and may shed light on
oping countermeasures against newly-discovered malwaréhe specific ways in which the malware code was cloaked.

itis necessary to reverse-engineer the code to underdtand i In addition to the large-scale code modification involved

internal logic. However, this reverse engineering prodsss in decrvoting the entire pavioad of a malicious broaram
complicated by the fact that malware binaries are typically yping bay program.

transmitted in “packed” form, i.e., they are encrypted Ormalware sometimes also resort to small, tightly-targeted

o .~ code modifications whose primary aim is code obfuscation
compressed; estimates of the prevalence of such packing n

o o in order to hamper reverse engineering (an example is the
malware range f“’”.‘ 79/? [.4] to 92% [3]. When the progralT‘Netsky.AAprogram discussed in Section 1V). For the sake
is executed at runtime, it invokes ampackerroutine that

converts the packed code into its original executable form?f simplicity, the remainder of this paper uses the term
P 9 ‘lénpacking” to refer to both kinds of code modification.

and transfers control to the unpacked code. Packing serves
number of purposes. First, it can hamper reverse engirgeerin Existing tools for malware analysis include several that
of new malware and thereby slow down the developmentletect unpacking and extract the code after unpacking sccur
of countermeasures. Second, even if countermeasures ha\@, [12], [16], [19], but they typically do not offer adddnal
been developed and deployed, packing can make it harder feupport to specifically identify the unpacker code. Much
anti-virus scanners to detect the malware. Finally, pagkin of the literature on reverse engineering packed code seems
can help reduce the size of the malware file and thus make tb make the explicit or implicit assumption that unpacking
less conspicuous. When reverse engineering malware codis, carried out by “tightly bound loops found immediately

it is necessary to deal with the possibility of runtime codeafter the entry point of the program” [18]. This assumption
unpacking. This can be challenging, however: malware maynay not be unreasonable for programs where the unpacker
be protected using multiple layers of packing, and in somés more or less separate from the program code and is
cases the code may modify itself many hundreds of timegssentially layered on top of it. However, it is not diffictdt
during execution [12].

envision scenarios where the unpacker code and the malware B0 ‘

payload are tightly integrated. In such a scenario invgvin
incremental unpacking, for example, the unpacker might (1) | %edx = Oxl52a
i .) %eax = 0x401000

decrypt a few payload instructions and execute them, then (3) | oesi = 0x44b3080
decrypt some more and execute these, and so on. In this case,
unpacking is not manifested as a separate part of the program B1 ¢
that is conceptually independent from the payload—instead @ | [eeax] —= esi
the two are closely interwoven, and pieces of unpacker code (5) | %esi +=0x2431400
alternate with pieces of payload code through the execution (6) | %eax +=4

. . . @ %edx -= 1
Without automated support for identifying unpacker code, @ | ine B1
distinguishing between unpacker code and payload code can ‘
be difficult in such situations. B2

. 9) ‘ jmp 0x401000 ‘

The contribution of this paper is to describe an algorithm

for automatically identifying code responsible for making \J\;to unpacked

modifications to the code of a program as it executes. Our code

approach is based on an offline analysis of a dynamic
execution trace, and uses the notion of dynamic slicingrigure 1. Structure of the unpacker routine for the Hybriss@ail worm.
to identify instructions that cause or contribute to code

moqmcanon. Since traditional slicing algorithms assume; «iruction 6), and the count decremented (instructionf7)
static programs where the code does not change durin : S
e count is non-zero, control loops back to the beginning

execution, they do not carry over directly to self-modifyin of the loop (instruction 8); otherwise, it falls through to a

code; to address this, we describplease semanticahere " : : .
the execution of a self-modifying program can be modeled"ncondltlomlI jump to the decrypted code (instruction 9).

semantically as a sequence of code snapshots, each of whichwWhile this code is very simple—unpackers very often
can be processed using classical algorithms [8]. have more complex structure—the example illustrates a
. . . . number of important issues that arise. The first of these
The remainder of this paper is organized as follows. . e .
Section Il brovides backaround material on unpacking and that the identification of the unpacker code may require
P g P 9 ome analysis. To see this, note that in order to understand

phase semantics for self-modifying code, and mtroducefhe structure and logic of the unpacker code it is not enough

f’?f:rr]:s ii?ng'::t.sf "?‘:d nrc])taat(l:cl)(nr; S;s(tjlot?]é“s?rlsgtusrzezf atlr?gfo focus only on the instruction(s) that actually generate o
! ! ying unpacking uctu modify code in memory—in this example, instruction 4; it

corresponding unpackers. Section IV describes the resilts . . .

some of our initial experiments. Section V discusses somes also important to take into account other code that plays

of the underlvin assEm tions .made bv our approach an supporting role. In Figure 1, for example, instructions 1,
ying P y PP and 8 do not directly affect the values that are written

?g;ﬁzga&%?lf t:r?é g%lggoxlﬂﬁtigggmd;ecuon Vi dlscusse%,q memory; they d_on_’t even ha_/e any registers in common
' ' with the code-modifying instruction 4. Nevertheless, e
of instructions plays an important role in the unpacking
process because it controls the location and size of the
memory region where code self-modification takes place.
In general, malware code may be littered with otherwise-
Code unpacking refers to the runtime self-modification ofUS€l€ss instructions added for obfuscation purposes], a

code. Figure 1 shows the structure of a very simple unpackeProgram analysis is necessary to tease apart their refation
that for the Hybris-C email worrh Basic blockgo initializes ~ SNiPS to determine which instructions affect the unpacking
three registergsedx to the size of the region to be unpacked, and whlt_:h are semantically irrelevant. This brings us to the
%eax to the address from where unpacking is to begin’second issue: how can we perform program analysis when
and %esi to a decryption key. Block1 is the decryption th€ Program may be changing during execution? The reason
loop. At each iteration, instruction 4 subtracts registesi IS IS an issue is that traditional program analyses make th
from the contents of the memory word pointed atdbyax, ~ fundamental assumption that the program being analyzed
causing the contents of that word to change to its unpackeld Static and immutable, which means that they cannot be
executable form. After this the decryption key ipesi is ~ aPplied as is to self-modifying code.

updated (instruction 5), the code pointéeax incremented This simple example is also misleading in some ways.
o g , _ First, Hybris.C has a simple execution structure congjsaiin
1For simplicity of exposition we use a quasi-C notation ratkiean

conventional assembly code syntax. The numerical labdiddeft of each aphase where th_e malware .payload IS unpaCke_d' foll(zwed bX
instruction is given to make it easier to refer to individiratructions. a phase where this payload is executed (the notion of “phase

Il. BACKGROUND

A. Code Unpacking

is discussed in more detail in Section II-B). Many malwarean execution trace; the corresponding code snapshot is a
have much more complex execution structures, and Kadng static notion, i.e., a code fragment which, when executed,
al. report malware samples with over 500 distinct executiorproduces the instruction sequengeThis is illustrated in
phases [12]. Second, the Hybris.C unpacker is clean anBigure 2, which shows an execution trace consisting of five
minimal, and does not contain any extraneous obfuscatiophases. Each phase is shown together with the corresponding
code, making the unpacker logic fairly obvious. This is notcode snapshot. Notice that while each phase (except the first
always the case, e.g., in the case of the unpacker for mecessarily has its code modified by the previous phase—
sample of the Rustock.C spambot [5], the initial unpackeithis follows from the definition of a phase—there is no
consists of 395 instructions, of which only 55—i.e., lessrequirement that its code be modifiedly by the previous
than 15%—actually pertain to unpacking; the remaining 34(hase. In Figure 2, for example, phase 3 is modified by
consist of small groups of instructions that cancel eackroth both phases 1 and 2, while phase 5 is modified by phases
out, effectively behaving as NOPs whose only purpose is td, 3, and 4. Such arbitrary code-modification relationships
obfuscate. A different kind of anti-detection trick oftesedl between phases can complicate the task of characterizing
by unpackers is to try to “out-wait” anti-virus scanners by unpacker code in self-modifying programs.

stretching out the unpacking process over a large number of

instructions; this can result in unpacker instructionsaaca- We can identify phase boundaries in an execution trace by

: o . . . keeping track of the memory locations that are modified by
ing for a nontrivial portion of the execution trace. Finally o . S .
. ' ach memory write; for any given phaggethis information
in the case of Hybris.C the unpacker code and the payloa .

. . can then be used to determine the end of that phase and the
code are distinct and therefore relatively easy to tell apar I S

S e) . i beginning of the next one, namely, when execution is about
However, it is not difficult to imagine self-modifying code

o . to go to a location that was modified by some instruction in
where the unpacker code is interspersed with the payloa . . " X
) : L @. In this way, each execution trace can be partitioned into
code, and teasing the two apart is nontrivial.

a sequence of phasém, @1, @, . ..), whose behavior can be
understood in terms of a sequence of code snapshots

(Code(@),Code(@y),Code(@,),...)
To deal with the issue of analysis of self-modifying code,)))
we have developed a low-level formal semantics for self-Th€ case of a conventional program with static cédean

modifying programs [8]. A detailed discussion of this work then be seen as a degenarate case.where every execuf[ion has
is beyond the scope of this paper; the essential intuitior®t Single phase and the corresponding code snapsifot is

is that the semantics of a program is expressed in terms As a concrete example, the execution of the Hybris-C
of its possible execution traces, and the effect of codeinpacker shown in Figure 1 consists of two phases: the first
self-modification during an execution is to partition the phase is the execution of the unpacker code, upto and includ-
corresponding trace into a sequencepbiises A phase is ing the execution of instruction 9jmp 0x401000, which

a maximal sequence of instructioBsn an execution trace transfers control to the unpacked code; the corresponding
that does not execute any location that has been mOdIer@bde Snapshot consists of just the code for the unpacker_
by an instruction inS—in other words, one phase ends andThe second phase consists of the execution of the unpacked
another begins when a program attempts to execute codedbde, and the code for this snapshot consists of the unpacked

has just modified. An execution of a self-modifying programcode together with that of the unpacRer.
can then be modeled as a sequence of distinct phases. Each

phasepinduces aode snapshatode(y) that consists of the ¢ pefinitions and Notation

program code as it exists at the beginning of the execution of

¢ together with an instruction in this code where execution An instruction at the machine level occupies one or more
begins. A key result is thatode(¢) has the property that adjacent bytes of memory. Let the number of bytes occupied
it is safely analyzable—in the sense that the runtime edfectby an instruction be denoted byz(1). Suppose that these
of the execution ofp on the instructions comprising can bytes start at memory addreasand comprise the set of
be computed safely—using traditional analyses?[@he locations with addressega,a+1,...,a+sz(l) —1}, then
notion of phases forms the foundation for our analysis ofiwe say that occurs ataddressa.

self-modifying programs.

B. Phases

This paper is concerned with dynamic execution traces,
A phaseg is thus a dynamic notion, namely, a part of which makes it necessary to be able to reason about prop-
erties or behaviors of particular runtime occurrences of

“A phase obviously cannot always be safely analyzed in isolat may an jnstruction. We refer to a particular runtime instance
be necessary to take into account the preceding or succeptases. For

example, in order to remove obfuscation code via dead cddenetion, ~ Of @n instruction in an execution by its position in the
it is necessary to take into account uses of registers andomyelocations

in later phases. The point is that phases allow us to deal tvétheffects 3Since the unpacking process does not overwrite the unpacids in

of code modification in a precise and well-defined way. this case, the latter remains part of the program.

phase 1 phase 2 phase 3 phase 4 phase 5

! — =7 <1 —

instruction |

trace {

code Y

snapshots |
phase 1 phase 2 phase 3 phase 4 phase 5
code code code code code
shapshot shapshot shapshot snapshot shapshot

————— = : code modification actions

Figure 2. Phases, code modification, and code snapshots

corresponding execution trace. L®be a sequence, then the In general, a memory location may be modified many times
i element ofS is denoted bySJi]. An execution trace for during the execution of a program. When an unpacked
a program is a sequence of triplesddr,instr,regs), where instructionl is executed, therefore, we would like to focus
addris a memory addresgstr the instruction occurring at on those instructions that actually wrote one or more of the
that address, angkgsis a set of register-value pairs giving bytes comprising. To this end, we use the notion of the set
the values of the machine registers just before the insruct of modifiers ofl. Intuitively, an instructionl; is a modifier

is executed. The reason for including register values in thef an unpacked instructioty if I; makes some change to
trace is that they allow us to determine which memorythe memory locations occupied lythat “survives” untilly
locations are accessed—and, in particular, modified—bys executed. More formally, we have:

indirect memory references. Definition 2.2: An instruction at positionj in a traceT

Consider a trace is a modifier of an instruction at positiotk in T iff Jw e
T — (a1, R0), (32, 12,R0), ..., (&, i, R), .. Locns(T[k]) such that the following hold:

Theith element of this trace i§[i] = (a;,i,R). The address, (i) W& Write(T[j]), i.e., Instr(T[j]) modifies some loca-

instruction, and register components of tife element of tion occupied byinstr(T[k]); and

T are denoted by, respectivelddr(T[i]), Instr(T[i]), and (i) there is no positiori such thatj <i <k andw €

Regs(T[i]). The set of locations occupied by the instruction Write(T[i]), i.e., locationw is not overwritten by any

at positioni in traceT is denoted byLocns(T]i]): intervening instruction between positiopsandk.
Locns(T[i]) = {a, & +1,...,a +sz(l;) — 1}. The set of modifiers of an instruction at positiom a trace

o . T is denoted byModifiers(T[i]). O

We use the notatiokvrite(T[i]) to denote the set of memory

locations that are written by the instruction at positioof In general, an unpacked instruction may have more than

a traceT. one modifier. For example, an instruction that occupiesethre

))) o bytes of memory may have three different modifiers, each
Since the instructions for a program reside in memory, the;t \vhich modifies one of its constitutent bytes.
only way to modify code at runtime is to modify the contents

of memory by writing to it. In order to identify unpackers,
therefore, a first step is to identify which instructions &éav
been unpacked, i.e., are being executed after being madified
To this end, we have the following definitions:

I1l. UNPACKING AND UNPACKERS

Our approach to identifying unpackers consists of three
main steps. Starting with an execution trace for a program,

Definition 2.1: An instruction at positiork in a traceT we first identify the different phases and the unpacked
is unpackedf one or more of the locations it occupies have instructions in each phase. The second step is to identfy th
been modified earlier in the execution, i.e., if there existamodifier instructions for each of the unpacked instructions
j <k such thatLocns(T[K]) N Write(T[j]) # 0. O Finally, we use slicing techniques to identify the unpacker

code. The remainder of this section describes these steps &t a later position in the trace. Note that since an instoacti

more detail. that is not unpacked will never have its locations overlap
with the locations written to by any instruction, we can make
A. |dent|fy|ng Phases and Unpacked Instructions this IOOp a little faster by eliminating the check labeled *

above, i.e., making the updateModinsLocaunconditional,

Once an execution trace has been collected, we identify without affecting the correctness of the algorithm. Theetff
its phases along with the set of unpacked instructions, imf this change is to remove a test from the loop; however, it
a single forward pass over its instructions. The algorithnresults in a larger number of values in the btadIinsLocs
maintains two sets of memory location&lobalWriteSet which can lead to more expensive set operations elsewhere
keeps track of the set of locations that have been modiin the loop.
fied since the beginning of the program’s execution, while
CurrWriteSet gives the set of locations modified so far
in the current phase. For each position in the trace, the

set of locations occupied by the corresponding instruc- The concepts introduced in the previous section allow us
tion is compared with these two sets: if it overlaps with g jdentify which instructions in a phase have been unpacked
GlobalWriteSet the instruction has been unpacked; if it and which instructions actually performed the correspogdi
overlaps withCurrWriteSet that instruction position marks memory modifications. This information, while useful, may
the beginning of a new phase. Pseudocode for the algorithot he enough, however. For example, consider the Hybris.C
is as follows: unpacker shown in Figure 1: for each unpacked instruction in

. _ the second phase of this program, the modifier is instruction
PhaseNa= 1; CurrWriteSet:= 0; GlobalWriteSet= 0; 5 in basic blockB1: ‘[%eax] - = %esi.” This instruction, by

Identifying Unpackers

mark the first position ifl as the start of phase 1; itself, does not tell us much about the unpacker.
for each position in the trace, going forwardjo] _
if Locns(T [i]) N GlobalWriteSet£ 0 then _ To see V_/hat e!se we need, con_3|de_r an unp_acked_mstruc-
mark positioni as unpacked; tion at posmonk in a trgceT; for ;lmp!|C|ty Of.dISCUS.SIOH.,
fi suppose that it has a single modifier instruction, which is at
if Locns(T[i]) N CurrWriteSet£ 0 then position |, I..,

incrementPhaseNg . oy .

mark positioni as the start of phagéhaseNo Modifiers(T[i]) = {Instr(T{j])}.

CurrWriteSet= 0; To understand the behavior of the unpacker, we need to iden-
fi tify the instructions and program logic involved with com-
GlobalWriteSet= GlobalWriteSet) Write(T[i]); puting the valuer that is written to memory bynstr(T[j]).
CurrWriteSet= CurrWriteSetU Write(T[i]); But this is exactly the dynamic slice of the program for

od the slicing criterion(inp, v, j), whereinp is the set of inputs
to the program for trac@. If the unpacked instruction has
B. ldentifying Modifier Instructions more than one modifier instruction, then this applies to each

modifier: we combine the dynamic slice for each modifier.
The set of modifier instructions can be identified via awe can generalize the idea to an entire phasmpute the
single backward pass over the execution trace, as follows:appropriate dynamic slice for each modifier of each modified
instruction in@ and combine the results. This is illustrated

ModinsLocs=0; . by the following example.
for i?e:/(\:/?itzc()il[?]?% Il\r/l]o-(rjylr?sol_lzg;ag Imga;dsdo _Example 3.1:Figure _3(51) shows a variation on the Hy-
mark positioni as a modifier: br|s._C_ ur_lpacker of Figure 1, where an addltlo_nal code
ModinsLocs= ModInsLocg Write(T i]); modification phase has been added before the main unpacker
fi loop. Execution now consists of three phases: Phase A,
if positioni is unpackedhen A K which modifies two instructions in the code for Phase B;
ModinsLocs= ModInsLocs/ Locns(T|i]): Phase B, the main unpacker loop; and Phase C, the execution
fi of the unpacked code. The program behaves as follows:
od

« Initially, when Phase A begins execution, the locations
occupied by instructions B1 and B4 (in Phase B) are

At each iteration of this loop, the s&todInsLocsgives the occupied bynop instructionst

set of locations that are occupied by unpacked instructions
!a_ter "_1 the execution tr"?‘ce' Thu_s' an ms_tructlon 'S_ a med_'f' “For the sake of simplicity of discussion, we assume in thamgxe that
if it writes to some location that is occupied by an instronti all instructions are the same size.

Code(Phase A) Code(Phase B) Code(Phase C) Slice(Phase A) Slice(Phase B)

(A) | @(B1) := «%edx = 0x152a» - — (BL) #nep” %edx = Ox152a 22 (A1) | @(BL):= «%edx = 0x152a> B1)| %edx = 0x152a
(A2) | @(B4) := «[%eax] —= %esi B2) | “%eax = %ebx Ve unpacked code (A2) | @(B4):= «[%eax] -= %esi> (B2) | %eax = %ebx
(A3) | %eax = 0x27 B3) %esi = 0x44b3080 ’, : (B3) | %esi = 0x44b3080
(A4) | push %eax N sy
(A5) | %ebx = 0x401000 N ¢ a2 (A5) | %ebx = 0x401000 ¢
(A6) | jmp @(B1) 4 (AB) jmp @(B1)
N nop~ [veax] —= %esi 4 (B4) | [veax] -= %esi
%esi += 0x2431400 (BS) | %esi += 0x2431400
%eax += 4 (B6) | %eax += 4
%edx -= 1 (B7)| %edx -=1
jne @(B4) (B8)| jne @(B4)

——-» : code modification

(B9) | jmp 0x401000

(a) Code snapshots for the original program (b) The unpacker code

Figure 3. An example unpacked program and its unpackerugtgins in the original program that are not in the dynanfimescomprising the unpacker
are shown in light color and crossed out.

« Instruction Al writes the binary encoding of the in- of phases described earlier. Recall that the code for a self-
struction %edx = 0x152a to the memory location(s) modifying program can be expressed as a sequence of static
occupied by instruction B1. In Figure &(the binary- programs—i.e., code snapshots—one per phase. A dynamic
level encoding of an instructiohis denoted by >, slice for a self-modifying program can, correspondingly, b
while the location(s) occupied by an instructidnis expressed as a corresponding sequence of dynamic slices,
written ‘@J’. The nop instruction at this location is thus one for each phase. The main issue that has to be taken
overwritten, which is indicated by showing tihep as into account is that dependencies due to code modification
crossed out. have to be taken into account. These are very similar to

« Instruction A2 writes the binary encoding of the in- ordinary data dependencies, with the difference that while
struction [%eax] -= %esi to the locations occupied by a data dependende®— B exists between two instructions
instruction (B4) of Phase B. (statements)A and B if A defines a location whose value

is used by byB, a code-modification dependenée—; B

Once Phase A ends, the code for Phase B is essentially tt@&ists if A defines a location that is occupied Byi.e., if A
same as that in Figure 1—the one minor difference is thats @ modifier ofB. The key intuition here is that in order to
instruction B2, which is in Phase B, uses registesbx, €Xecute an instruction it is necessary to read—and, therefo
which is defined by instruction A5 in Phase A. This changeto “use”—the memory locations it occupies.

was made to introduce a cross-phase data dependency and:yisting dynamic slicing algorithms can be extended to
make the slicing problem more interesting. incorporate the notion of code-modification dependences in

The unpacked instructions in Phase C all have instructio® humber of different ways; here we discuss one simple
B4 as their modifier. If the instruction in Phase C at positionaPproach. The idea is to extend each instruction to take a
j in the execution tracd is unpacked by an execution of number of “pseudo-arguments” that correspond to the mem-
instruction B4 at positionj’ in the trace, then the slicing OrY locations it occupies. Thus, considek-ayte instruction
criterion is the value that is written thocns(T[j]) by (Y1,---¥n,X1,...,Xm), with source operands, ..., xm and
T[j'], i.e., the value of the expressiof¥éeax] — %esi’ at destination operands,...,yn, whose semantics is given as
position j’ in T. This slice consists of instructions A5 and o
A6 from Phase A and instructions B1, ..., B8 from Phase V- ¥n) =0 Xem)
B. Since instructions B1 and B4 are themselves unpackedor some appropriate functiofy that depends on the instruc-
with modifiers A1 and A2 respectively, we include the tion |. We rewrite this instruction to incorporakeadditional

dynamic slices for these as well. When these slices are alirguments, one corresponding to the address of each byte
merged together, the result is the code shown in Figusk 3(that it occupies:

This matches what we would intuitively consider to be the
unpacker code for this prograntl F(Y1s- -5 Yn Xa, -, Xm, @, -+, 3K),

To make this work, we have to compute program slicesThe semantics of the rewritten function remains the same as
for self-modifying programs. We do this using the notion before; however, the set of locations it “uses” is defined

to be {xi,...,Xm,Mem[ay],...,Mem[ay]}, where Mem|a]
denotes the memory location with addres§ he additional
arguments thus serve to capture the semantic property that
the behavior of this instruction depends on the most recent
instructions that modify any of the locations with addrasse
ai,...,a. Thus, suppose thatdd(y,xi,x2) is a four-byte
instruction that computey = x; + %2, then a particular
add instructionadd(rz,ro,r1)’ occupying memory locations
1000 ...1003 would be rewritten as

add(rz,ro,r1,1000,1001,1002, 1003).

With instructions rewritten in this manner to make explicit
the memory locations they occupy, code modification de-
pendences are translated to data dependences and can be
handled in the same way without any additional changes to
the slicing algorithm.

IV. EXPERIMENTAL RESULTS

We have implemented our ideas in a prototype tool for re-
verse engineering malware code. We applied our tool to four
different malware sample&reatle.J Hybris.C Mydoom.Q
andNetsky.AAOf theseHybris.CandNetsky.AAise custom
packersMydoom.Quses the UPX packer [17], agteatle.J
uses a combination of two commercial packers: Aspack
[1] and UPX. We collected traces for these programs by
executing them under the control of the OllyDbg debugger
[21] and using the tracing facility of OllyDbg to record the
instructions executed (however, our approach is not tied to
OllyDbg, and will work with any tracing tool that provides
a minimal set of information about executing instructions
(see Section 11-C), and we are currently in the process of
switching to a tracing tool called Ether [9]). These progsam
were run on Windows XP on a VMware virtual machine
that, for security reasons, was configured to have no network
connectivity; because of this, the behaviors we observed
were most likely incomplete—the malware would typically
attempt to connect to the Internet and quit after repeated

unsuccessful attempts. However, in order to get to thistpoin Figure 4. Unpacker structure fatydoom.Q
they had to unpack their code, so we were able to observe
their unpacking behavior. two phases: an unpacking phase followed by the execution

The results obtained using our unpacker extraction tool offf the unpacked code.

the resulting execution traces are discussed below. We man- The unpacker extracted by our algorithm for this program
ually verified correctness for the smaller unpackers obtiin s identical to that shown in Figure 1, with the single

(Hybris.G Mydoom.Q the first two phases dfetsky.AX difference that the unpacker slice computed does not gontai
for the larger unpackers, where the size and complexity ofnstruction 9, which branches to the unpacked code. This

the code made manual verification impractical, we checkeg@xclusion is appropriate, since instruction 9 does notrizelo
that the modifying instructions were being found correctlyin the slice for the modifier instruction.

and that dependencies between instructions were being com-
puted correctly, which gives us confidence that the slices

Mydoom.Q: This program uses a commercial packer,
computed are also correct. Y Q brog P

UPX [17], to pack its code. UPX was originally developed to
Hybris.C: This program, whose unpacker was dis- compress executable files to reduce file size—and, therefore

cussed in Section Il (see Figure 1), is the simplest prograrthe size of the packed code. In keeping with this goal,

in our test suite. The execution of this program consists ofthe unpacker code is such that the size of the unpacker

0x403e5f] mov eax, 0x403e6e o The two add instructions in Phase 1 (Figure &Y
0x403e64] add byte [eax], 0x28

[
{Oxmgem] inc eax modify the locations immediately following the second
[0x403e68] add dword [eax], 0x12345§ of these add instructions. Execution then falls through
to this modified code (thus, there is no explicit jump
(a) Phase 1 to the unpacked code), which installs an exception

handler, with code addre€x5cbc32, and prepares to
[0x403e84] mov [eax], ecx raise an exception.
[0x5cbc32] mov eax, Oxf05cabd3 « The second phase begins with a deliberate null-pointer-
[0x5cbc37] lea ecx, [eax+0x1000108 dereference via an indirect store through the register

[0x5cbedd] mov [ecx+0x1], eax eax, which was zeroed out in the previous phase. This
[0x5cbc44] mov edx, [edx+0xc] R

[0x5cbca7] mov byte [edx], Oxe9 causes an exception and transers control to the excep-
[0x5cbcda] add edx, 0x5 tion handler installed in the previous phase (note the

[0x5cbc4d] sub ecx, edx
[0x5cbc4f] mov [edx-0x4], ecx

=

large difference in addresses between the first instruc-

tion in Figure 5b), which raises the exception, and the

second instruction, which handles)it The exception

(b) Phase 2 handler modifies the code at two widely different places
in the program: it overwrites code at addr@s5cbc56
(corresponding to the Phase 3 unpacker), and changes
the instruction at addres®x403e84, which originally
raised the exception that transferred control to the
handler, with an instructiorrhp 0x5cbc55’. Thus, when
control returns from the exception handler it finds this
newly-written unconditional jump that causes control to
be transferred to the Phase 3 unpacker.

o The third phase is considerably larger than the two
preceding phases and has more complex control flow
logic. It is this phase that carries out the real unpacking
of the malware payload. The control flow graph for this
phase is shown in Figure &(due to space constraints
we only indicate the control-flow relationships between
basic blocks but do not show the instructions within
each block. (This graph seems to have disconnected
components because it does not show call/return edges

(c) Phase 3 for indirect function calls.)

Figure 5. Unpacker structure fotetsky.AA Breatle.J: Of the programs we testeByeatle.Jhas the
greatest complexity of unpacking: it has the largest number

is kept as small as possible, even at the cost of mor8f execution phases: a total of six, of which five involve
complex unpacking logic. Program execution consists of tw npacfkl_nlg, and tlhe unpac:ﬁrs f(l)r the d_|fferer23t prrllases r?lso
phases: an unpacking phase followed by the execution of th ave fairly c]f)rr;]p ex contlrticl ow og|hc. Ilegurr(]a f_s ows t ?
unpacked code. The structure of the control flow graph forstru?Fures 0 tk? conr:ro OV\:C gr:ap s for the r|]rst two c|>(
the unpacker is shown in Figure 4 (due to space constraim@e ive unpacking phases of this program. The unpacker

we show only the basic blocks and control flow edges, pystructure for these two phases, as well as those not shown,
not the instructions within the blocks) suggests that parts of the unpacker logic are similar across

the various unpacking phases. The section names in the
file suggest that it is protected using a combination of two

Netsky.AA: This program’s execution consists of four g
phases, of which the first three are given to unpackingcommercial packers, Aspack [1] and UPX [17], but the

the code structure for these are shown in Figure 5. Wha#ctual unpacker code found seems to be significantly more
is interesting about this is the wide disparity in size andCOMPlex than what one would expect for these two packers;

complexity between the first two unpacker phases and th§liS suggests that there may be additional layers of packing
last. The first two unpacking phases involve only smallinvolved. We are currently investigating this in more detai

amounts of code modification—in each case the unpacker

consists of a small piece of straight-line code that modifies 5Arguably, these two instructions should be in differentibmocks that
re connected by some sort of exception edge. Our control dlualysis

Only a few bytes _Of memory—and seem to be '”te”deqas currently not smart enough to infer that theov instruction in reality
purely for obfuscation: effects a control transfer through an exception.

(a) Phase 1 (a) Phase 2

Figure 6. Unpacker structure f@reatle.J(the first two of five unpacking phases)

V. DISCUSSION VI. RELATED WORK

A number of authors have described tools to detect
runtime code modification and extract the dynamically un-
packed code [2], [12], [16], [19]. However, these tools
A fundamental assumption in the work described above—typ'(:a”.y simply present all pf the _unpacked co_de in-an

. execution phase as a collection of instructions without any

and one that is also made by other tools that detect un=" """ . . :

. . . Indication of any of their possible roles, e.g., as unpacker
packing [2], [12], [16]—is that we can detect unpacking s

. . : : vs. malicious payload.

by comparing the virtual addresses of instructions that are
executed with the virtual addresses of memory locationts tha Quist and Liebrock describe a visualization tool that
are written to. This assumption may not hold if a techniquecan assist users with identifying unpacker code [18]. The
known asdual mapping[20] is used. The basic idea of tool's function is to provide a high-level visualization of
this obfuscation is to map a physical page to two virtualvarious characteristics of different portions of the peogr
pages, one of which is mapped as a writable page and thather than to specifically extract and identify unpacker
other is mapped as an executable page. This has an effemde. It reconstructs a program’s control flow graph from
similar to pointer aliasing: since both virtual pages referan execution trace and uses heuristic rules, based on a
to the same physical page, writing to the writable virtualcomparison of the program’s code in memory with that
page changes what is seen on the executable virtual page. the original executable file, to identify unpacker loops.
However, since the two virtual pages have different virtualwWhile the tool provides a great deal of information about
addresses, it appears as though the executed locations hate functionality of different parts of the program, the
disjoint virtual addresses from the modified ones. heuristic nature of unpacker identification means thatrerro

It turns out that not all automatic unpackers are suscceptiblm unpacker identification cannot be ruled out.

to this obfuscation technique [20]. The investigation ofvho ~ Cooganet al. have investigated the use of static analysis
the techniques used by such unpackers might be incorporatéeichniques for static identification and extraction of urkea
into our system is a topic of future work. code [7]. While the goals of both works are conceptually

similar, the details of the approaches used are very differe
In particular, the work of Coogast al. assumes accurate

static disassembly, which is not always easy to guarantee,
and requires a sophisticated pointer analysis to obtain rea
sonable precision; the dynamic approach described here, by
contrast, allows the use of simpler analysis algorithms and
generally obtains more precise results, albeit for thelsing [©]
execution path covered by the execution that is considered.

VIl. CONCLUSIONS

An important application of binary-level reverse engi-

neering is in dealing with malware. Since most malware
are transmitted in encrypted form and are decrypted, i.e.[,ll]
“unpacked,” at runtime, the reverse engineering process ha

to contend with runtime unpacking as well. In this context,
an interesting question is that of automatically identifyi

and characterizing the code that carries out such unpacking
This paper describes an approach that can be used to identify
code that carries out unpacking. Our approach is based on
a low-level semantics that can be used to reason about selfft3)
modifying code. We use dynamic analysis to extract an exe-
cution trace for the program and then apply dynamic slicing
(appropriately adapted to handle self-modifying code) to
identify unpacker code. Our ideas have been implemente

in a prototype tool; experiments indicate that it is effeeti
in identifying unpacker code even for programs with fairly
complex unpacking logic.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES
ASProtect software. http://www.aspack.com/asprotespx.

Lutz Bdhne. Pandora’s Bochs: Automated Unpacking of
Malware. PhD thesis, Aachen University, January 2008.

T. Brosch and M. Morgenstern. Runtime packers: The hidde
problem? InBlack Hat Briefings August 2006.

P. Bustamante. Mal(ware)formation statistics, May 200
PandaResearch Blog.
http://research.pandasecurity.com/malwareformation-
statistics/.

K. Chiang and L. Lloyd. A case study of the Rustock rootkit
and spam bot. IfProc. HotBots '07: First Workshop on Hot
Topics in Understanding Botnettlsenix, April 2007.

Mihai Christodorescu, Johannes Kinder, Somesh Jhdarste [20]

Katzenbeisser, and Helmut Veith. Malware normalization.
Technical Report 1539, University of Wisconsin, Madison,
Wisconsin, USA, November 2005.

K. Coogan, S. Debray, T. Kaochar, and G. Townsend. Auto-
matic static unpacking of malware binaries. Pnoc. 16th.
IEEE Working Conference on Reverse Engineeripgges
167-176, October 2009.

10

[8] S. K. Debray,

K. P. Coogan, and G. M. Townsend.

On the semantics of self-unpacking malware
code. Technical report, Dept. of Computer
Science, University of Arizona, Tucson, July 2008.

http://www.cs.arizona.edu/” debray/Publications/
self-modifying-pgm-semantics.pdf

Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke
Lee. Ether: malware analysis via hardware virtualization
extensions. IrProceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexan-
dria, Virginia, USA, October 27-31, 200pages 51-62, 2008.

M. Gheorghescu. An automated virus classification esyst
In Virus Bulletin Conferencepages 294-300, October 2005.

L. A. Goldberg, P. W. Goldberg, and C.A.Phillips,
G.B.Sorkin. Constructing computer virus phylogenies.
Algorithms 26(1):188-208, January 1998.

M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden
code extractor for packed executables. Froc. Fifth ACM
Workshop on Recurring Malcode (WORM 200Kpvember
2007.

M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida.
Malware phylogeny generation using permutations of code.
J. in Computer Virology1(1):13-23, 2005.

A. Lakhotia, Md. E. Karim, A. Walenstein, and L. Parida.
Malware phylogeny using maximalpatterns. IrEICAR 2005
Conference: Best Papers Proceedingages 167-174, 2005.

Z. Liang, T. Wei, Y. Chen, X. Han, and J. Zhuge. Component
similarity based methods for automatic analysis of malisio
executables. Ivirus Bulletin ConferenceSeptember 2007.

L. Martignoni, M. Christodorescu, and S. Jha. Omniltipa
Fast, Generic, and Safe Unpacking of Malware. RAro-
ceedings of the 21st Annual Computer Security Applications
Conference, ACSAC 2007, Miami Beach, Florida, URZEE
Computer Society, December 2007.

M. F. X. J. Oberhumer, L. Molnar, and J. F. Reiser. UPhé t
Ultimate Packer for eXecutables. http://upx.sourceforg.

D. A. Quist and L. M. Liebrock. Visualizing compiled
executables for malware analysis. Rroc. VizSec 2009:
Workshop on Visualization for Cyber Securi@ctober 2009.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
Polyunpack: Automating the hidden-code extraction of
unpack-executing malware. IACSAC '06: Proceedings of
the 22nd Annual Computer Security Applications Conference
on Annual Computer Security Applications Conferempzges
289-300. IEEE Computer Society, 2006.

skape. Using dual-mappings to evade automated
unpackers. Uninformed Journagl 10(1), October 2008.
http://www.uninformed.org/?v=10&a=1&t=sumry

[21] O. Yuschuk. Ollydbg.http://www.ollydbg.de/

