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What’s the Difference? 

 Typical malware  

 Different motivation, budget … 

 Use 1-days for distribution 

 Anti-stealth for bypassing AV  

 Stealth timing: months 

 Developed in C or C++ in C style 

 Simple architecture for plugins 

 Traditional ways for obfuscation: 

 packers  

 polymorphic code 

 vm-based protection 

 … 

 

 

 

 Stuxnet/Flame … 
 Different motivation, budget … 

 Use 0-days for distribution 

 Anti-stealth for bypassing all sec 
soft 

 Stealth timing: years 

 Tons of C++ code with OOP 

 Industrial  OO framework platform 

 Other ways of code obfuscation: 

 tons of embedded static code 

 specific compilers/options  

 object oriented wrappers for 
typical OS utilities 

 
 

 

 



Stuxnet/Duqu/Flamer/Gauss Appearance 



Code Complexity Growth 
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Code Complexity Growth 



C++ Code REconstruction 

Problems 



C++ Code Reconstruction Problems 

 Object identification  
 Type reconstruction 

 

 

 Class layout reconstruction 
 Identify constructors/destructors 

 Identify class members 

 Local/global type reconstruction 

 Associate object with exact method calls  

 

 RTTI reconstruction 
 Vftable reconstruction 

 Associate vftable object with exact object 

 Class hierarchy reconstruction 

 

 

 

 



C++ Code Reconstruction Problems 

Class A

vfPtr
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a2()
A::vfTable

meta
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C++ Code Reconstruction Problems 



Identify Smart Pointer Structure 



Identify Exact Virtual Function Call in vtable 



Identify Exact Virtual Function Call in vtable 



Identify Exact Virtual Function Call in vtable 



Identify Custom Type Operations 



Identify Objects Constructors 



Identify Objects Constructors 



Library code identification 

problems 



Library Code Identification Problems 

 Compiler optimization  
 

 Wrappers for WinAPI calls 
 

 Embedded library code  
 Library version identification problem  

 

 IDA signatures used syntax based detection methods 
 Recompiled libraries problem 

 Compiler optimization problem 

 

 

 

 



Library Code Identification Problems 



Object Oriented API Wrappers and Implicit Calls  



Object Oriented API Wrappers and Implicit Calls  



Object Oriented API Wrappers and Implicit Calls  



Festi: OOP in kernel-mode 



Main Festi Functionality store in kernel mode 
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Install kernel-mode
 driver
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Festi: Architecture 

Win32/Festi
C&C Protocol 

Parser

Win32/Festi
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Plugin Manager
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Memory 
Manager



Festi: Plugin Interface 

Plugin1
Plugin 1

struct PLUGIN_INTERFACE

Plugin 1
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...

Array of pointers 
to plugins



Festi: Plugins 

 

 Festi plugins are volatile modules in kernel-mode address space: 

 downloaded each time the bot is activated 

 never stored on the hard drive 

 

 The plugins are capable of: 

 sending spam – BotSpam.dll 

 performing DDoS attacks – BotDoS.dll 

 providing proxy service – BotSocks.dll 
 



Flamer Framework Overview 



An overview of the Flamer Framework 

The main types used in Flamer Framework are: 
 

 Command Executers –the objects exposing interface that allows 

the malware to dispatch commands received from C&C servers 
 

 Tasks – objects of these type represent tasks executed in 

separate threads which constitute the backbone of the main 

module of Flamer 
 

 Consumers – objects which are triggered on specific events 

(creation of new module, insertion of removable media and etc.) 
 

 Delayed Tasks – these objects represent tasks which are executed 

periodically with certain delay. 



An overview of the Flamer Framework 
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Some of Flamer Framework Components 

Security 
Identifying processes in the systems corresponding to 
security software: antiviruses, HIPS, firewalls, system 
information utilities and etc. 

Microbe Leverages voice recording capabilities of the system 

Idler Running tasks in the background 

BeetleJuice Utilizes bluetooth facilities of the system 

Telemetry Logging of all the events 

Gator Communicating with C&C servers 



Flamer SQL Lite Database Schema 



Flamer SQL Lite Database Schema 



REconstructing Flamer Framework 



Data Types Being Used 

 

 

 Smart pointers 
 

 Strings 
 

 Vectors to maintain the objects 

 

 Custom data types: wrappers, tasks, triggers and etc. 

 

 



Data Types Being Used: Smart pointers 

typedef struct SMART_PTR 

{ 

 void  *pObject; // pointer to the object 

 int  *RefNo; // reference counter 

}; 

 



Data Types Being Used: Strings 

struct USTRING_STRUCT 

{ 

  void *vTable;  // pointer to the table 

  int RefNo;   // reference counter 

  int Initialized;  

  wchar_t *UnicodeBuffer; // pointer to unicode string 

  char *AsciiBuffer; // pointer to ASCII string 

  int AsciiLength;  // length of the ASCII string 

  int Reserved; 

  int Length;  // Length of unicode string 

  int LengthMax;   // Size of UnicodeBuffer 

}; 

 



Data Types Being Used: Vectors 

struct VECTOR 

{ 

  void *vTable;  // pointer to the table 

  int NumberOfItems; // self-explanatory 

  int MaxSize;  // self-explanatory 

  void *vector;  // pointer to buffer with elements 

}; 

 Used to handle the objects: 
 tasks  

 triggers 

 etc. 



Using Hex-Rays Decompiler 

 Identifying constructors/destructors 
 Usually follow memory allocation  

 The pointer to object is passed in ecx (sometimes in other registers) 

 

 

 Reconstructing object’s attributes 
 Creating custom type in  “Local Types” for an object 

 

 

 Analyzing object’s methods 
 Creating custom type in  “Local Types” for a table of virtual routines 
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Reconstructing Object’s Attributes 



Reconstructing Object’s Attributes 



Reconstructing Object’s Methods 



Reconstructing Object’s Methods 



Reconstructing Object’s Methods 



DEMO 



Relationship 

Stuxnet/Duqu/Gauss/Flamer 



Source Code Base Differences 



Exploit Implementations 

Stuxnet Duqu Flame Gauss 

MS10-046 
(LNK) 

MS10-046 
(LNK) 

MS10-046 
(LNK) 

MS10-061  
(Print Spooler) 

MS10-061  
(Print Spooler) 

MS08-067 
(RPC) 

MS08-067 
(RPC) 

MS10-073 
(Win32k.sys) 

MS10-092 
(Task Scheduler) 

MS11-087 
(Win32k.sys) 



Exploit Implementations: Stuxnet & Duqu 

 The payload is injected into processes from both kernel-
mode driver & user-mode module 

 

 Hooks: 
 ZwMapViewOfSection   

 ZwCreateSection  

 ZwOpenFile 

 ZwClose 

 ZwQueryAttributesFile 

 ZwQuerySection 

 

 Executes LoadLibraryW passing as a parameter either: 
 KERNEL32.DLL.ASLR.XXXXXXXX  

 SHELL32.DLL.ASLR.XXXXXXXX  

 



Exploit Implementations: Stuxnet & Duqu 

 The payload is injected into processes from both kernel-
mode driver & user-mode module 

 

 Hooks: 
 ZwMapViewOfSection   

 ZwCreateSection  

 ZwOpenFile 

 ZwClose 

 ZwQueryAttributesFile 

 ZwQuerySection 

 

 Executes LoadLibraryW passing as a parameter either: 
 KERNEL32.DLL.ASLR.XXXXXXXX  

 SHELL32.DLL.ASLR.XXXXXXXX  

 



Injection mechanism: Flame 

 The payload is injected into processes from user-mode 
module 

 

 The injection technique is based on using: 
 VirtualAllocEx  

 WriteProcessMemory\ReadProcessMemory 

 CreateRemoteThread\RtlCreateUserThread 

 

 The injected module is disguised as shell32.dll 

 

 Hooks the entry point of msvcrt.dll by modifying PEB 



Injection mechanism: Flame 

 The payload is injected into processes from user-mode 
module 

 

 The injection technique is based on using: 
 VirtualAllocEx  

 WriteProcessMemory\ReadProcessMemory 

 CreateRemoteThread\RtlCreateUserThread 

 

 The injected module is disguised as shell32.dll 

 

 Hooks the entry point of msvcrt.dll by modifying PEB 



Exploit Implementations: Gauss 

 The payload is injected into processes from user-mode 

module 
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