
Attacking RFID
Systems

Exploiting ID and ticketing
applications

Lukas Grunwald
DN-Systems GmbH Germany

Power of Community 2006
Korea

Agenda

What is RFID?
How to exploit and attack RFID systems
Attacks against the middleware
Reader-emulation, soft-tags
Unexpected risk middleware
New ways to exploit the system
Encrypted RFID Tags (14443, MRTD)

What is RFID?
Radio Frequency Identification (RFID)

Wireless transmission of information between
transponder and reader without visibility
Bidirectional transfer (read and write)
Transponder (tag) can be attached, embedded or
implanted
Automatic correlation between object and saved
data

Generic Terms
RFID is often used as generic term for complete
infrastructures.

A transponder (aka RFID-chip, -tag, -label, wireless label
or simply chip)
A reader (in fact most of them can write to the tag too)
Some middleware, which connects the reader to a server
Some communication infrastructure
Integration with server farms, data warehouses, services
and supporting systems

Variants
Different types of RFID transponders

EM-fieldEM-fieldE-field, magnetic field

860-956 MHz (UHF)
2.4 GHz (Microwave)
5.8 GHz (Microwave)

13.56 MHz,
125-135kHz

13.56 MHz,
125-134.2kHz

ISO 18000-xxISO 15693ISO 14443 A+B

Up to 500 meter<= 5meter<= 15 centimeter

Long rangeMid rangeShort range

Transponders

There are different kinds of transponders:
Only transmitting a unique ID (serial-number)

Only passive
Identification
Tracking (Fast-track)
Only clear text communication

Transponders

There are different types of transponders:
Storage of Data / Metadata R/W WORM

Most passive, some active
EPC
Smart Labels
Most use clear text communication, some are with
encrypted communication

Transponders

There are different types of transponders:
Act as Smart Card Interface

Most active, some passive
Biometric Passport (ICAO - MRTD)
Access Control System (Mifare DESFire)
Encryption, authentication, encrypted communication

Generic Attacks

Sniffing of the communication between
transponder and reader

Counterfeiting of the communication
Obtaining UID, user data and meta data
Basic attack on structures and tags
Replay attack to fool the access control systems

Generic Attacks

Counterfeiting the identity of the reader and
unauthorized writing to the tag

Change of UID via manipulation of the
administrative block
Declare false identity
UID must be readable in clear text
Manipulation of product groups and prices

Generic Attacks

Manipulation of data stored on the
transponder

Manipulation of data
Manipulation of metadata
Swap of objects
Logical duplication of objects

Generic Attacks

Deactivation of the transponder
Disable the traceability of objects
Disable the visibility of objects

Generic Attacks
Attack the structures in the middleware and
backends, manipulation of data structures.

Injection of malware into the backend and middleware
systems
E.g. database worms
Manipulation of backend systems
Denial of Service attack against the infrastructure

Generic Attacks

Jamming of the RFID frequencies
Use of “out-of-the-box” police jammer (broadband
jamming transmitter)
Attack against anti-collision (RSA attack)
Prevent reading of the tag
Simple denial of service attack against the RFID
System
Shut down production, sales or access

Encrypted RFID

MIFARE are the most used RFID
transponders featuring encryption

Technology is owned by Philips Austria GmbH
Technology is based on

ISO 14443
13.56 MHz Frequency

MIFARE Tags

MIFARE Standard
Proprietary high-level protocol
Philips proprietary security protocol for
authentication and ciphering
MIFARE UltraLight: same tags without encryption

MIFARE Tags

MIFARE Pro, ProX, and SmartMX
Fully comply to ISO 14443-4 standard
The different types of tags offer memory protected
by two different keys (A and B)
Each sector could be protected with one of these
keys.

Brute Force the Tag
2^6^8 bit for the keyspace
25 ms per try with a brute force perl script using
Linux and a self written driver
Using one RFID reader

()
Years

s
s

22623 Days 81445305
3600

025.06
82

≈≈
•

Brute Force the Tag
2^6^8 bit for the keyspace
25 ms per try with a brute force perl script using
Linux and a self written driver
Using 1.000 RFID readers

()
Years

s
s

226 Days 81445
10003600
025.06

82

≈≈
•

•

MIFARE Sector Keys
Philips puts all information under NDA
We are not interested to sign an NDA
Extract information from RFID software via „UNIX
strings“
Google helps a lot, Google desktop search is very
popular among smartcard developers´ PCs ;-)
Look at the results

Default Keys

Found the following default keys:
Key A A0 A1 A2 A3 A4 A5
Key A FF FF FF FF FF FF
Key B B0 B1 B2 B3 B4 B5
Key B FF FF FF FF FF FF
About 60 keys from example applications
No protection 00 00 00 00 00 00

MAD

Additional found the Mifare Application
Directory.
This PDF that shows how MIFARE are
specifying the type of use of one of the
transponders, each applications should have
an entry to show the Type of Service.

Example Layouts

In the datasheets and „googled“ documentation
are a lot of examples.
These examples include different keys and tag /
memory layout and data structure for:

Ticketing
Access Control
Online Payment

Software developers are
lazy

Checking a couple of cards shows that more
than 75% use one of these default keys!
It compiles let's ship it !
The programmers not only use the example
layouts, they also use the example keys !

Attack the Tag

Directory attacks are possible with found
default and example keys

Variations of the directory are always possible
„Smart“ brute-force attack to the tag are
possible

never seen a lockout or false login counter
a delay for a false key does not exist

Attacks to the Backend

The memory of a ISO 15693 tag acts like a
normal storage
RFDump (Black Hat 2004) could help to
manipulate data like with a hex-editor
SQL-Injection and other attacks are possible

Preventing security
functions

If the tag is „read only“ read it with RFDump
and write the manipulated data to an empty
one
Checksum, some implementations use the
UID (Unique ID) as mirror block in the UD,
both must be changed
If the block is encrypted, the Sector Key must
be broken

The RFID Supply chain

Lifecycle Management

Point of Sales

Customer Care
Distribution

Production

Data Warehouse

Customer

Break into the Systems

Event Manager
Reader control

Information
Server

(Middleware)

ERP

....

CRP

EDGE BACKEND

Problem Memory Size
Adr Memory

0x1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0x9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xa 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xb 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xd 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xe 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0xf 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Page 0x76
Byte 6

Representation to the
Backend

Looks like unlimited space on the tag
E.g. RFDump uses a tag database to avoid
reading over the boundary

Normally reading is event-driven
Reading up to the EOF
Input is unchecked in all implementations we have
seen

Tag DoS with C-Strings

Adr Memory

0x1 68547369 69202073 6e616520 6178706d 656c6f20 20662061 616d696e 75706100

0x2 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x3 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x4 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x5 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x6 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x7 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x8 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0x9 FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xa FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xb FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xc FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xd FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xe FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

0xf FFFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF FFFFFFF FFFFFFF

End of String

Tag DoS with XML

Add
r Memory in ASCII

0x1 <rfiduid:ID>urn:epc:1:4.16.36</rfuid:ID>

0x2 <rfidcore:Observation><rfidcore:DateTime>

0x3 <rfidcore:DateTime>2002-11-06T13:04:34-06:00

0x4 </pmlcore:DateTime>

0x5
0x6

Mass reading

Add
r Memory in ASCII

0x1 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

0x2 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

0x3 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

0x4 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

0x5 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

0x6 <rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID><rfiduid:ID>

Inf. Items in one Tag

Soft-Tags

Emulation of RFID-Tag and/or reader
Serial-Emulation of any ISO 15693 tag
Useful for testing backend and middleware
Reads „backup“ from real tags
Manipulation of any UID, User Data or
administrative block.

ePassports

This image is a work of a United States Department of Homeland Security employee,
taken or made during the course of an employee's official duties.

As a work of the U.S. federal government, the image is in the public domain.

MRTD
Machine Readable Travel Document aka Electronic
Passports (ePassports)
Specifications by ICAO

(International Civil Aviation Organization)

Enrollment on a global basis

ePass from Germany

RFID tag embedded into the cover
Produced by the Bundesdruckerei GmbH

MRTD

Store passport data and biometric information
on an RFID transponder

Alternative storage methods like 2D barcodes
also covered
Common standard for interoperability
Some features are mandatory, others are optional

2D Code and MRZ

Passport with 2D barcode and MRZ (machine readable zone)

MRTD Data-Layout
LDS (Logical Data Structure)

Data is stored in DG (Data Groups)
DG1: MRZ information (mandatory)
DG2: Portrait Image + Biometric template (mandatory)
DG3-4: fingerprints, iris image (optional)
EF.SOD: Security Object Data (cryptographic
signatures)
EF.COM: Lists with Data Groups Exist

Data is stored in BER-encoded ASN.1
DG2-DG4 uses CBEFF for encoding

common biometric file format, ISO 19785

MRTD Security Features
Random UID for each activation

Normally all ISO 14443 transponders have a fixed unique
serial number
The UID is used for the anti collision
Prevent tracking of owner without access control
Problem: ICAO MRTD specs don't require unique serial
number
Only some countries will generate random serial numbers

Passive Authentication
This method is mandatory for all passports
Method of proof that the passport files are signed by issuing
country
Inspection system to verify the hash of DG's

EF.SOD contains individual signatures for each DG
EF.SOD itself is signed
Document Signer Public Key from PKD / bilateral channels
Document Signer Public Key can be stored on the passport
Useful only if Country Root CA public key known

Signed Data

EF.DG2 EF.DG3EF.COM EF.DG1

HASH over
Data

HASH over
Data

HASH over HASH
HASH Signed by

Country CA
EF.SOD

Basic Access Control
Permits access to the data after the inspection systems are
authorized
Authorization through the Machine Readable Zone (MRZ)

Nine digit document number
In many countries: issuing authority + incrementing number
Six digit date of birth

Can be guessed or assumed to be a valid date
Six digit expiry date
16 most significant bytes of SHA1-hash over MRZ_info are 3DES
key used for S/M (ISO7816 secure messaging)

Extended Access Control

Optional method
Should prevent the unauthorized access to
biometric data

Not internationally standardized
Implemented by individual issuers
Only shared with those countries that are allowed
access

PKI Integration

X.509 Certificates
Every issuer operates a self controlled CA
Signer keys are derived from CA root
Public keys are distributed via ICAO PKD
Everyone can verify
Certificate revocation list (CRL) not planned yet

Cloning of passports
Dual Interface Tags could act as MRTD Tag
Data could be retrieved from an issued passport
Personalization is possible via Smartcard Shell or
other tools.
Cloned tag behaves like an „Official“ ePassport

Chaos of Standarts
TLV and ASN.1 not correctly implemented
Redundant meta formats for biometric data
If sign-key gets lost, the whole country is doomed
First the data must be parsed, then it can be verified
Design was made by politics and not by IT Security
experts
It is possible to manipulate data

Security Issues

UID could be changed from the tag
Passport-tag could act as Access-Control
tag, if only UID is used, this tag could act as
any access tag
Manipulated DGs could crash the reader /
terminal

Thank You

Questions ?

