
DNS Cache Poisoning:
Definition and Prevention

Tom Olzak
March 2006

 The Internet would grind to a halt – would not be possible – without a Domain
Name System (DNS). As you’ll see in this paper, the proper operation of DNS is
fundamental to the maintenance and distribution of the addresses for the vast number of
nodes around the globe. So it would be too much to hope for crackers (malicious
hackers) to ignore DNS as they continuously look for new ways to circumvent your
security.
 There are several facets to DNS security. In this paper we focus on one of the
most dangerous types of attack – DNS cache poisoning. To provide a complete picture of
this threat, we’ll explore how DNS works, two ways crackers facilitate cache poisoning,
what impact this type of attack can have on your organization, and steps you can take to
protect your information assets.

What is DNS?

 In the world of the Internet and TCP/IP, IP addresses are used to route packets
from source to destination. A single IP address, for example 203.192.135.234, is not
difficult to remember. But trying to learn or track thousands of these addresses, including
which server/node is associated with each address, is a daunting task. So instead, we use
domain names to refer to systems with which we want to communicate.

A real-world Internet domain name example is Google.com. When you enter the
Google domain name into the address bar of your browser, the Google page appears.
This is because your PC executed a process to resolve Google.com to an IP address.
Only by having the IP address is a system able to initiate a session with another system
across the Internet. Let’s look at two ways IP address resolution can occur.
 Figure 1 depicts the domain name/IP address resolution process when the target
system and DNS server are internal. In this example, a workstation must establish a
session with a server with a domain name of Farpoint.company.com. In order for a
workstation to implement DNS, it must be running a DNS Client or Client Resolver. The
resolver initiates the following process, resulting in the conversion of the domain name to
an IP address (Microsoft TechNet, 2005).

Step 1: The resolver checks the resolver cache in the workstation’s memory to
see if it contains an entry for Farpoint.company.com. The entry would be present
if the workstation had resolved the name to an IP address since the last time it was
powered on, and the Time to Live of the entry had not been exceeded. In this
example, no entry is found.

http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/Packet
http://www.answers.com/topic/domain-name?method=22
http://en.wikipedia.org/wiki/Time_to_live#Time_to_live_of_DNS_records

Step 2: Having found no entry in the resolver cache, the resolver sends a
resolution query to the internal DNS server.

Step 3: When the DNS server receives the query, it first checks to see if it’s
authoritative for the company.com domain. In other words, is it responsible for
managing the zone in which the company.com domain resides? If it is, the server
performs a lookup in its internal zone table. In this case, it finds a host Resource
Record (RR) that includes the IP address for Farpoint.company.com.

Step 4: The IP address of Farpoint.company.com is returned to the resolver.

Step 5: The resolved domain name and IP address are placed into the resolver
cache. Figure 2 is an actual listing of the contents of a workstation’s resolver
cache. The IP address is used to contact Farpoint.

Figure 1: Internal DNS Server Lookup

 In the previous example, the target server was located within the requestor’s
network. But there are many instances in which the target device is located somewhere
on the Internet. In these cases, the process is somewhat different. Please refer to Figure
3 as we step through this second DNS resolution process.

Step 1: The resolver checks the resolver cache in the workstation’s memory to
see if it contains an entry for Farpoint.companyA.com.

Step 2: Having found no entry in the resolver cache, the resolver sends a
resolution request to the internal DNS server.

http://en.wikipedia.org/wiki/DNS_zone
http://en.wikipedia.org/wiki/Domain_Name_System#Types_of_DNS_records
http://en.wikipedia.org/wiki/Domain_Name_System#Types_of_DNS_records

Figure 2: Actual Resolver Cache Listing

Step 3: When the DNS server receives the request, it first checks to see if it’s
authoritative. In this case, it isn’t authoritative for companyA.com. The next
action it takes is to check its local cache to see if an entry for
Farpoint.companyA.com exists. It doesn’t. So in Step 4 the internal DNS server
begins the process of iteratively querying external DNS servers until it either
resolves the domain name or it reaches a point at which it’s clear that the domain
name entry doesn’t exist.

Figure 3: Recursive DNS Query

Step 4: A request is sent to one of the Internet “root” servers. The root server
returns the address of a server authoritative for the .COM Internet space.

Step 5: A request is sent to the authoritative server for .COM. The address of a
DNS server authoritative for the companyA.com domain is returned.

Step 6: A request is sent to the authoritative server for companyA.com. The IP
address of Farpoint.companyA.com is returned.

Step 7: The IP address for Farpoint is returned to the client resolver.

Step 8: An entry is made in the resolver cache, and a session is initiated with
Farpoint.companyA.com.

 This process, from the client resolver perspective, is known as a recursive query.
With the proper software, the client resolver could perform the iterative query illustrated
by Steps 4, 5, and 6.
 Now that we have a good idea how DNS is supposed to work, it’s time to look at
how this process can be used to co-opt one or more DNS caches.

What is DNS Cache Poisoning?

 DNS cache poisoning consists of changing or adding records in the resolver
caches, either on the client or the server, so that a DNS query for a domain returns an IP

http://www.answers.com/topic/root-server?method=22

address for an attacker’s domain instead of the intended domain. To demonstrate how
this might work, let’s step through Figure 4.

Figure 4: DNS Cache Poisoning

Step 1: The resolver checks the resolver cache in the workstation’s memory to
see if it contains an entry for Farpoint.companyA.com.

Step 2: Having found no entry in the resolver cache, the resolver sends a
resolution request to the internal DNS server.

Step 3: When the DNS server receives the request, it first checks to see if it’s
authoritative. In this case, it isn’t authoritative for companyA.com. The next
action it takes is to check its local cache to see if an entry for
Farpoint.companyA.com exists. It doesn’t. So in Step 4 the internal DNS server
begins the process of iteratively querying external DNS servers until it either
resolves the domain name or it reaches a point at which it’s clear that the domain
name entry doesn’t exist.

Step 4: A request is sent to one of the Internet root servers. The root server
returns the address of a server authoritative for the .COM Internet space.

Step 5: A request is sent to the authoritative server for .COM. The address of a
DNS server authoritative for the companyA.com domain is returned.

Step 6: A request is sent to the authoritative server for companyA.com. This is
identical to the standard process for an iterative query – with one exception. A
cracker has decided to poison the internal DNS server’s cache. In order to
intercept a query and return malicious information, the cracker must know the
transaction ID. Once the transaction ID is known, the attacker’s DNS server can
respond as the authoritative server for companyA.com.

Although this would be a simple matter with older DNS software (e.g.
BIND 4 and earlier), newer DNS systems have build-in safeguards. In our
example, the transaction ID used to identify each query instance is randomized.
But figuring out the transaction ID is not impossible. All that’s required is time.
To slow the response of the real authoritative server, our cracker uses a botnet to
initiate a Denial of Service (DoS) attack. While the authoritative server struggles
to deal with the attack, the attacker’s DNS server has time to determine the
transaction ID.

Once the ID is determined, a query response is sent to the internal DNS
server. But the IP address for Farpoint.companyA.com in the response is actually
the IP address of the attacker’s site. The response is placed into the server’s
cache.

Step 7: The rogue IP address for Farpoint is returned to the client resolver.

Step 8: An entry is made in the resolver cache, and a session is initiated with the
attacker’s site. At this point, both the workstation’s cache and the internal DNS
server’s cache are poisoned. Any workstation on the internal network requesting
resolution of Farpoint.companyA.com will receive the rogue address listed in the
internal DNS server’s cache. This continues until the entry is deleted.

 Another method used to poison a DNS cache is the use of a recursive query sent
by the attacker. The query can force the target server to connect to the authoritative
source of the domain in the query. Once connected, rogue information about one or more
domains might be sent to the querying server and posted to the server’s cache.
 There are other methods attackers use to poison DNS caches, but the objective is
the same. Now we’ll explore the consequences of using a poisoned DNS cache.

Potential Consequences of Cache Poisoning

 Pharming is the primary risk associated with cache poisoning. Crackers employ
pharming for four primary reasons (Hyatt, 2006): identity theft, distribution of malware,
dissemination of false information, and man-in-the-middle attacks.

http://en.wikipedia.org/wiki/Botnet

Identity Theft
 Once an attacker gets you to his site, he’ll try to trick you into leaving behind
information he can use to impersonate you. One way to do this in our first example is to
create a site identical to the real Farpoint.companyA.com. When the user connects using
the poisoned cache information, she might be fooled into entering information about
herself through apparently legitimate requests for her name, social security number,
address, etc.

Distribution of Malware
 Another of objective of attackers using cache poisoning is the automatic
distribution of malware. Instead of releasing malicious code into the Internet and
realizing random results, the use of rogue IP addresses to redirect unsuspecting users to
the attacker’s site can be a more focused attack vector. Once a workstation initiates a
session with the malicious site, malware is uploaded to the workstation without
intervention by or the knowledge of the user.

Dissemination of False Information
 This aspect of pharming is useful to attackers who want to spread self-serving
information about an organization. It’s also been used to manipulate stock prices in an
attempt to realize a large profit.

Man-in-the-middle Attack
 In this attack type, the workstation initiates a session with the attacker’s server.
The attacker’s server initiates a session with the actual target site. All information
flowing between the workstation and the genuine site passes through and is intercepted
by the cracker’s server.

 There can be serious consequences when security is an afterthought during the
configuration and deployment of DNS servers. The next section provides guidelines that
can help prevent cache poisoning.

Protecting Your Assets

 The first layer of defense against cache poisoning is the use of the latest version
of DNS. DNS based on BIND 9.3.x or Microsoft Windows Server 2003 is far more
secure than DNS implemented with earlier versions. Successful completion of our first
poisoning example would have been more difficult, because these systems also
randomize the port used for the DNS query in addition to the transaction ID.
 Recursive queries should be limited to internal DNS servers. If Internet facing
recursive queries are required, only queries from internal addresses should be accepted.
This will help prevent outside systems from sending queries with malicious intent. The
following list provides additional guidance (Hyatt, 2005):

▲ Physically separate external and internal DNS servers
▲ Restrict zone transfers to authorized (secondary servers) devices

http://www.answers.com/topic/port-computing?method=22
http://www.answers.com/topic/dns-zone-transfer?method=22

▲ Use TSIG to digitally sign zone transfers and zone updates – one of the
best ways to prevent poisoning is to force identification of the sending
authoritative source
▲ Restrict dynamic DNS updates when possible
▲ Hide the version of BIND being used on the DNS servers
▲ Remove unnecessary services running on the DNS servers
▲ Where possible, use dedicated appliances instead of multi-purpose servers

Conclusion

 DNS cache poisoning is a large risk for organizations running early versions of
DNS solutions. Elevated risk extends to companies that carelessly deploy DNS,
regardless of the DNS software version used. Careful attention to version management
and the secure configuration of DNS devices should reduce risk from cache poisoning to
an acceptable level.

http://romana.now.ie/james/tsig.html
http://www.answers.com/topic/dynamic-dns-update?method=22

Works Cited

Hyatt, M. (2005, June). Five steps to minimize DNS cache poisoning. Retrieved March
14, 2006 from
http://searchwindowssecurity.techtarget.com/tip/1,289483,sid45_gci1101998,00.h
tml

Hyatt, R. (2006, January). Keeping DNS trustworthy. The ISSA Journal. January 2006,

p. 37-38.

Microsoft TechNet (2005, January). How DNS query works. Retrieved March 14, 2006

from http://technet2.microsoft.com/WindowsServer/en/Library/1fd5b3be-ca29-
43d0-b5e2-8a65192d5b781033.mspx

http://searchwindowssecurity.techtarget.com/tip/1,289483,sid45_gci1101998,00.html
http://searchwindowssecurity.techtarget.com/tip/1,289483,sid45_gci1101998,00.html
http://technet2.microsoft.com/WindowsServer/en/Library/1fd5b3be-ca29-43d0-b5e2-8a65192d5b781033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/1fd5b3be-ca29-43d0-b5e2-8a65192d5b781033.mspx

