v:invincea’

CrowdSource: Applying machine learning to web technical documents to
automatically identify malware capabilities

Joshua Saxe, Rafael Turner, Kristina Blokhin, Jose Nazario

Invincea Labs
A DARPA Cyber Fast Track research effort

jinvincea’

The inspiration behind
CrowdSource...

- The Internet is rife with text that combines example code with
natural language description of its functionality

- Why not use this data to train machine learning models to
automatically reverse engineer software?

- Such an approach harnesses the web “crowd,” which holds more
knowledge than the mind of any one malware reverse engineer

- As the web changes such an approach would automatically stay up
to date with the latest programming idioms and APIs

6 invincea ‘ Sound crazy? Is this even possible?
) ... what are the research questions?

KEY RESEARCH QUESTIONS
Typical web technical document:

What judgments can we

- _— t k rﬂ Tags § Users | Badges | Unanswered
make about the capability =lstackoverflow Toos Lusers L Bacoee J Unaneversd

How to get screenshot of a window as bitmap object in C++?

profile of a malware sample
based on this entirely

1 Answer

automatic approach?

. you should call the PrintWindow API:

7 void CScreenShotDlg: :OnPaint()

w
How does this approach einiac dectninys
compare with systems that (WD hHnd = 2 Finduindon(0. T("calculator)3
rely on explicit encodings of {1 Take screanshor.
expert knowledge to } de-Gersaterac),
automatically analyze —

malware?

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

:invincea’ | Initial evidence that it’s feasible ...

We took 53 malware samples, unpacked them, and took the
union of the function names appearing in their Import
Address Tables.

Then we downloaded the entire body of Stack Overflow
postings (6.5 million in all), loaded them into a database and
indexed their text using a full text indexing system (SQLite3,

to be precise).

Finally, we counted the number of posts in which each
symbol appears.

etpixel
settgxt golor
lineto

rsmgleo%]ecqt
deleteobject
showwi ow

tprocaddress
setf%(us

|nput ile
setlasterror
writefil
sscan

cat

ellipse
instr

callo
getparen%
arc
getlasterror
onerror

e
strcr[r)w
memset
rec

nesatdﬂ Ie

mkdlr
erase

pog on

-"-:' invincea

Occurrences of symbols found in malware in Stack Overflow posts

Number of posts where symbol occurs

‘ Promising results ...

Overall 77.6% of the function call
names found in the malware
appeared somewhere in the
Stack Overflow posts. The mean
number of posts for the function
calls was 3195.78, with a standard
deviation of 37034.2.

Punchline: the DLL functions
called by a sample of malware
binaries are discussed explicitly
on the web

If we could mine these web
documents, could we
automatically say something
about what the malware does?

@1,
"W
o
I.l
O."
‘./

: Extracting useful information from the mapping:
semantic networks for malware symbols

invincea

4. Heyalliwant to login onto my works webpage with wininet, this is my current code: I

2 int main()

w |
MR ke InternetOpentl "UserAgent/1.8", INTERNET_OPE
if(!hInet)
{
printf("hInet Failed!\n");
return -1;
}
n;mcRﬁH—heunﬂ'Erﬁm-ﬂInter‘netConnectAl(hInet,"app.tamigo.c
if (!hConnection)
{
|InternetCloseHandlel‘mu; ;
printf("InternetConnectA failed!\n");
return -1;
}
HINTERMET hRegquest = HttpOpenRequestA'fﬂm
T 1
within 20 words of each other, so we add “1” to their

co-occurrence count.

occur within 20 words of each other so we add “1” to
their co-occurrence count as well.

CREATING A SIMPLE SEMANTIC MAP OF THE
MALWARE API

Our method is based on co-occurrence of a
malware sample’s function call names within
20-word windows within the StackOverflow
posts.

By calculating overall call occurrence as well as
pairwise co-occurrence relationships, we build
up a network of co-occurrence probabilities.
This statistical relationship strongly suggests
functional and semantic dependence.

The edge weight between two imported
function calls is computed by the following
equation, which is equivalent to the minimum
probability of “call A” appearing given the
appearance of “call B” and vice versa:

man(

|Callg N Callg| |Cally N Callp|

ICally] ' [Callg]

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

& W @ ™ H
v ‘invincea StackOverflow Based Semantic Network

for One “Kbot” IRC bot
S GRAPHICAL CLUSTER
_ STRUCTURE
— == This example and most others
e W exhibit a graph in which almost

all nodes are mutually reachable

Graphical cluster structure aligns
with intuitive sense of shared
meaning and functional
dependency between symbols

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

o5 o . " StackOverflow Based Semantic Network for One
oo .nVlncea uKbotn Samp|e

Graph depicting Stack Overflow post co-occurrence relationships for strings in a
single “Kbot” IRC bot sample

Zoomed in view: network component?

internetconnecta

CEE@I&')

C_T joytetowidechar > (:;Tm;m:;a_;‘)

T
winifiet c++ connect webpage

Zoomed in view: edge labeled with post tags

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

The next step, actionable intelligence:
Explicit recognition of malware capabilities

e Basic idea:

— We have a list of predefined capabilities (takes
screenshot, logs keystrokes)

— And a set of textual strings that we observe in a
malware sample, such as file paths, registry keys and
function names

— We would like to know P(capability [symbol) for each
capability given each symbol observed in the sample

* Research problem: Can we somehow compute
these probabilities by training on the
StackOverflow corpus?

Computing capability profiling model based on StackOverflow posts

* To compute P(capability | symbol)

|posts_referencing capability N posts with_symbol|

P(capability|symbol) = -
|posts_with_symbol|
* Tolearn our model, pull out all symbols occurring in the malware corpus under analysis

* Compute P(capability [symbol) for every possible capability to symbol pair, caching them in a
database as we go

* After this training phase, finding the probability of a capability given a symbol is a single constant
time lookup of a mapping between symbol/capability and probability

* Computing probability for a capability given a string of symbols can be performed as follows :

g
1— |l_[1 — P(capability|symbol;)

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official 1
policy or position of the Department of Defense or the U.S. Government.

StackOverflow approach allows for minimal work in defining capabilities

Defining our capability patterns in a configuration file

patterns = {

format is capability name : StackOverflow query terms

-- general categories --

"memory allocation":"tags:memory OR tags:heap OR title:memory",
"string operations":"tags:string OR tags:unicode",

"file operations":"title:file",

"process operations":"title:process",

"database operations":"tags:*sql*",

"cryptography activity":"tags:*crypt",

"shellcode related":"tags:shellcode OR title:shellcode",

-- network related --

"network connectivity":"tags:socket OR title:socket OR title:tcp OR title:udp OR title:icmp"

"network share activity": "tags:samba OR tags:SMB OR tags:CIFS",
"web browser related activity": "tags:*browser*",

"portscan activity": "tags:*portscan*",

"SMTP transmission": "tags:SMTP OR tags:sendmail”,

"HTTP transmission": "tags:HTTP",

"ICMP transmission":"title:icmp OR tags:icmp",

"DNS transmission":"title:DNS OR tags:DNS",

"irc activity":"tags:IRC title:IRC",

-- 0S related --
"system service activity": "tags:service OR tags:system-service",
"authentication activity": "title:active AND title:directory",

"privilege elevation": "title:elevation OR title:privilege OR tags:privilege OR tags:elevation”,

"thread injection": "title:thread AND title:injection"”,
"anti-antivirus activity": "title:anti AND title:virus",
"error handling": "tags:error AND tags:handling",

In contrast to rules
based approaches,
defining our patterns
takes very little work

Because
StackOverflow is a
living corpus, our
capability definitions
will stay up to date
with new APIs and
programming trends

Preliminary empirical
results indicate
system accuracy is
on par with expert
rules based
approaches but with
vastly less work to
create rules

"keylogging": "tags:*keylog* OR title:*keylog* OR title:keystroke OR tags:keystroke",

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official

11
policy or position of the Department of Defense or the U.S. Government.

Using the approach outlined above, our model “learns” what function

calls are associated with what malware capabilities

[*] cryptography activity

[*]

[*] CryptUnprotectData 0.557620817844
graphical user interface related ---

[*] GetPaletteEntries 0.921658986175
[*] GetNextDlgTabItem 0.921658986175
[*] ScrollDC 0.921658986175
[*] IsDlgButtonChecked 0.883218842002
[*] ValidateRect 0.875912408759
[*] StrokePath 0.854700854701
[*] CreatePalette 0.834492350487
[*] ExcludeClipRect 0.827966881325
[*] SetWorldTransform 0.824742268041
[*] RealGetWindowClass 0.815217391304
[*] InvalidateRgn 0.815217391304
[*] GetBkColor 0.796812749004
[*] PolyBezier 0.7968127496004
[*] GradientFill 0.793231094659
[*] CloseFigure 0.786163522013
[*] CreatePatternBrush 0.779220779221
[*] CommDlgExtendedError 0.779220779221
[*] FillPath 0.774336283186
[*] MapWindowPoints 0.767918088737
[*] glPolygonOffset 0.746268656716
[*] glFogfv 0.746268656716
[*] SetMapMode 0.73589533933
[*] CreatePolygonRgn 0.730816077954
[*] InflateRect 0.725806451613
[*] IsDialogMessage 0.720164609053
[*] AdjustWindowRect 0.715990453461
[*] SetROP2 0.715990453461
[*] CombineRgn 0.701754385965

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the

[*]

[*]

[*]

[*]

[*]

[*]

command shell input ---
[*] SHChangeNotify
[*] ShellExecute*

privilege elevation ---

[*] LookupPrivilegeValue*

[*] SeDebugPrivilege

[*] OpenProcessToken

upload activity ---
[*] InternetConnect*
[*] HttpOpenRequest*
[*] HttpSendRequest*

search for files ---
[*] SearchPath*

registry activity ---

[*] RegSetValue*

[*] RegDeleteValue*

[*] RegCloseKey

[*] RegOpenKey*

[*] RegQueryValue*

[*] AdjustTokenPrivileges
[*] LookupPrivilegeValue*

webcam spying

[*] capCreateCaptureWindow*

official policy or position of the Department of Defense or the U.S. Government.

lo o o] o o)

oo o

oo oolololol

0.

.804073974806
.516467065868

.528401585205
.524475524476
.407424173834

.585365853659
.533997864009
.450788880541

4212004212

.875912408759
.863060989643
.836186987338
.818367810866
.815217391304
.486854917235
.456621004566

854700854701

12

* By linking back to StackOverflow titles, tags and posts, model is
also “self-documenting”

* In other words, the model can show why it “thinks” certain
malware string symbols are associated with certain malware
capabilities, by referencing the StackOverflow posts

€ malware corpus capability given the symbol
A\/
[*] compression\/ decompression activity --- M
[*] 0.748161568795
[*] Example post Are there any downsides to using UPX to compress a Windows executable?
[*] Example post uncompress .Z file in C 1
[*] compress 0.714790586074
[*] Example post - How to compress JPEG images with ASP on Windows CE
[*] Example post - Best way to compress HTML, CSS & JS with mod_deflate and mod_gzip disabled .
which both the
[*] webcam spying
[¥] capCreateCaptureWindowA 0.871586287042 symbol and the
[*] Example post - Webcam usage in C# topic co-occur
[*] Example post - Webcam Capture Resolution issues
[*] SetBitmapBits 0.79086115993
[*] Example post - Getting a snapshot from a webcam with Delphi
[*] Example post - Getting a snapshot from a webcam with Delphi
[*] _setmode 0.477200424178
[*] Example post - Flash: BitmapData.draw(Video) ignores video height
[*] Example post - Flash: BitmapData.draw(Video) ignores video height
[*] SendMessageA 0.42036431574
[*] Example post - C# Trying to use WM_CAP_SET_SEQUENCE_SETUP to allow me to maintain control of the application during video capture
[*] Example post - (# Trying to use WM_CAP_SET_SEQUENCE_SETUP to allow me to maintain control of the application during video capture
Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official 13

policy or position of the Department of Defense or the U.S. Government.

) Visual results, per sample:
' invincea' Below, automated analysis results for a
SpyEyes malware binary

network share activity system service activity
/
[

Illnuu“ rlr.ﬁk e —
upload activity / - . Croncfompesiomy >
/_;_L‘\ 4_,7

SeBitmaplliss
((Sefams

graphical user interface related

@:“r) ¢ GrCommandL _r;‘-> - "S“ lmag eTo! e) —

— — I —— GaipSatiag eToFike
Re;rluf?)_ T
= \ alpha

| S

o \ \‘n Freetieny AhlocaeVimuaMenory
Rqﬂl@ s— Y eyt e T o —_r “’ﬁ“;’“:)
F Th oSy i X

o ’C‘;“_‘;’\ = — NS
C:;"j_/"/’.‘_ e Window Threadbi \ C;-E«' ..aw:') @\\@ E‘K;\ =
LeaveCriticalS ection

e T \ ‘ // U m\wu@ 7 e Vaime \)) Tﬁf
< uerytato e C‘“_l"'""“’"" hﬂﬂl;D \ ‘I ‘. readPro C_"i;myh{muﬂmnza:n:)

S | — file operations
3 - - [NiCresedion aFersugiObin
device driver operations @ T — e —— thread opcmu(ms i
< | = = GerC wrren(Threadld
SaFicPom < Frietrocamdemony| - R—— \ = -
~—~ | — - - \ GeModi 75.13
- — ot > ﬁ‘) .
p any TOCESS O eranons rtcals TnitaizeC itcatSection
e > 2 — r P Coponasconei N —
¢ GeMureadPrioriy RelemcSemaphore
- @C‘T o > b \ @mm;fr; \%) =
e ST T
Cjil(}-rryl.lulmmn?m C\ pnkuumm pmmlT:‘\ “ —
_ S —
G \\ Teminarbroses > Clid]'uknl-ln@

)

command shell mput
e
database operations
wass)

p ey

CrypiGeils HKQ CRYPT32 dll

@;mm e

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. 4

invincea’“ Automated results for the Kbot IRC bot

l 10
] oo/
Prs

PRUMVVOD Upviauuia

network connectivity

Cas O
Qo —
C DR TS
/ el
< oo
file operations
<>
@ @
o)
e,) & | ® e

thread operations

CreameThread InterlockedD ecrement

IsBadWritePt @ '
e —— o

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

15

How accurate is all this?
The answer in the form of ROC curves:

* Test dataset: ~300 Windows binaries, ~300 malware samples with known
capabilities

* All samples came unpacked or we unpacked them ourselves

 We are assuming that an unpacking technology is deployed before
running the CrowdSource approach...

irc n=311
T T T T T T
1.0 - .
-
-~
-
//
.
0.8 Phd |
-~
-
P
-
[a}] .
b -~
3 g 0.6 | - n
detecting s O P
= o
R
IRC z -7
fal rd
bclnt [al] 0.4 [~ /, I
capability E Pk
-
-
-
0.2+ e |
-
-
-
-
-
-
0.0 .
—— ROC curve (area = 0.99)
1 Il 1 1 1 Il
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

Detecting cryptography functionality in malware, decent performance

1.0

0.8

o
o))

True Positive Rate
=
B

0.2

0.0

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the

on true and positive examples ..

crypt n=324

—— ROC curve (area

= 0.91)

0.0 0.2

0.4 0.6
False Positive Rate

0.8

1.0

official policy or position of the Department of Defense or the U.S. Government.

17

Detecting screenshot grabbing functionality...

screenshot n=311

P
D.B_ ,-', -

0.6 - 1

True Positive Rate
*,

0.2} e 1

0.0¢ — ROC curve (area = 0.97) ||

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Detecting SMTP communication functionality, slightly less accurate ...

smtp n=384
1.0 | . y .
Es
e
P &
D.B B . g -
,f
b} ~ ”
'E" -~
= 0.6 | . .
4] -~
= s
= -~
a ~
o 0.4} e |
- Pad
|_
P e
-
0.2 + L7 |
-
-
p &
F
&
0.0 + |
—— ROC curve (area = 0.94)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Detecting webcam functionality, quite accurate ...

webcam n=349

1.0 | . — |
f.f
ff
D.B_ ,,-', -
'
-
Q ,’
'E" ”
£ 0.6 . |
[al] -~
= Fa
= ra
& e
o 0.4} p |
- Pad
|_
//
e
0.2+ P |
-
-
‘,{
Fa
&
0.0 + x |
—— ROC curve (area = 0.96)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Speed test: Speed of database queries for

v:invincea’ T
retrieving relevant posts

1200 Time to compute conditional probabilities

1000

800

600

Number of queries

400

200

80 0.5 1.0 1.5 2.0 2.5
Time per guery

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

21

v:invincea’

a sample assuming cached queries

0 Times to detect individual capabilities in individual samples

500

Mumber of samples
= S
] o

BJ
=
o

100

Time per capability

Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the

offici

al policy or position of the Department of Defense or the U.S. Government.

Speed to run capability detection on

22

wiinvincea’ | Where CrowdSource is going ...

- In November, we will release an open source version of
CrowdSource to run on Debian based Linux systems

- We will continue to develop our statistical model to extract more
information from the technical documents

- As our approach grows in accuracy we plan to explore detecting
more malware capabilities

