

Mitchell Adair

1/22/2013

 Know Owen from our time at Sandia National Labs

 Currently work for Raytheon

 Founded UTDallas’s Computer Security Group (CSG) in

Spring 2010

 Reversing, binary auditing, fuzzing, exploit dev, pen testing…

 Python

 At the end of this, you should feel comfortable

o Being handed a binary

o Examining a binaries sections, imports, strings

o Renaming and simplifying the disassembly

o Converting from assembly to source, where needed

o Understanding process memory layout

o Figuring out function arguments and local variables

• How many and what types

o Using a debugger to fill in the gaps or manipulate program execution

 Static vs Dynamic (overview)

 PE and ELF

 Assembly

 Registers

 The Stack

 Functions

 IDA

 Debugging

 Note on Bytecode

 Conclusion

Try to reverse

Learn
something new

Apply the new
knowledge

 Static

o Looking at the code, figure things out

o It’s all there, but possibly more complicated

o A safer approach

• Not running the code!

 Dynamic

o Examine the process during execution

o Can see the values in real time

• Registers, memory contents, etc.

o Allows manipulation of the process

o Should run in a VM!

 Disassemblers are usually the tool of choice for static

o IDA Pro, objdump, etc.

 Debuggers are used for dynamic analysis

o Windows

• WinDBG, Immunity, OllyDBG, IDA

o Linux

• GDB

 A good disassembler will have several useful features

o Commenting

o Renaming variables

o Changing function prototypes

o Coloring, grouping and renaming nodes (IDA)

o …

 A good debugger will have several useful features

o Set breakpoints

o Step into / over

o Show loaded modules, SEH chain, etc.

o Memory searching

o …

 Okay, no more!

 We’ll be going into each of these heavily.

 That was just a high level overview to understand

o The difference between static and dynamic analysis

o The general approach taken between the two

 PE (Portable Executable)

o “File format for executables, object code and DLLs, used in 32-bit

and 64-bit versions of Windows operating systems” – wikipedia

 ELF (Executable and Linkable Format)

o “A common standard file format for executables, object code,

shared libraries, and core dumps” – wikipedia

o Linux, Unix, Apple OS

Image from http://software.intel.com/sites/default/files/m/d/4/1/d/8/keep-memory-002.gif

 We could go very, very deep into file formats… but let’s not

 Each format is just a big collection of fields and sections

 Fields will have a particular meaning and hold a particular

value

o Date created, last modified, number of sections, image base, etc.

 A section is, generally, a logical collection of code or data

o Has permissions (read/write/execute)

o Has a name (.text, .bss, etc.)

 Okay, so what? Why is this useful?

 Can get an overview of what the binary is doing

o Can look at what libraries the binary is loading

o Can look at what functions are used in a library

• Find vulns

o Can parse data sections for strings

• Very helpful on CTFs

o Can help determine if a binary is packed

• Weird section names or sizes, lack of strings, lack of imports

 How do we analyze them?

o PE : CFF Explorer, IDA, pefile (python library), …

o ELF : readelf, objdump, file, …

 This is CFF Explorer looking at calc.exe’s sections headers

Represent

permissions

 This is CFF Explorer looking at a UPX packed executable

from a recent CTF

 Huge red flag with section names like this

 This is using readelf to look at section headers

 This is IDA exemaning what functions are imported

 I have filtered using the regular expression .*str.*

Probably

worth

investigating ;)

 This is IDA examining strings it has found for a recent CTF
problem

 Probably want to start from the “Get your flag %s\n” string and
work backwards ;)

 Open number_checker.exe and

number_checker_packed.exe

 Compare these two!

 In CFF Explorer

o Look at different fields in the PE format

o Look at sections

o Just explore

 In IDA

o Look at strings (shift+f12)

o Look at imports (view->open subviews->imports)

o Look at sections (shift+f7)

 Two syntax options

o ATT

o Intel

 ATT

o instruction source, dest

o mov %eax, %edx

o “Move eax into edx”

 Intel

o instruction dest, source

o mov edx, eax

o “Move into edx, eax”

 It’s a known fact that Intel’s syntax > ATT’s, so we’ll be using

Intels ;)

 mov eax, ecx

o Move into eax, the contents of ecx

 mov eax, [ecx]

o Move into eax, the contents of what ecx points to

o The brackets, […], mean dereference the value between them

o In C, this is like a pointer dereference

o eax = *ecx

 Memory values and immediates can be used as well

 mov eax, 5

o Move into eax, the value 5

 mov edx, [0x12345678]

o Move into edx, what 0x12345678 points to

 A very small handful of instructions will get you a long way

o call, mov, cmp, jmp

 call 0x12345678

o Call the function at 0x12345678

 cmp eax, 8

o Compare eax to 8

o Compare left to right

 jmp 0x12345678

o Unconditional jump to 0x12345678

 jle 0x12345678

o Jump to 0x12345678 if eax is less than or equal to 8

 jg 0x12345678

o Jump to 0x112345678 if eax is greater than 8

 Let’s focus on the instructions we know

o mov, cmp, jmp, call

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 Two values, relative to the

pointer contained in ebp

have been assigned values

 One register has been

assigned a value

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

o eax == [ebp-0x8] ?

o 4 == 10 ?

 jge 0x80483d7

o If 4 was >= 10, jmp

o Else, continue execution

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

o eax == [ebp-0x8] ?

o 4 == 10 ?

 jge 0x80483d7

o If 4 was >= 10, jmp

o Else, continue execution False, so execution just

continues to the next

instruction

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

 jge 0x80483d7

 mov eax, 0x1

o eax = 1

 jmp over the mov eax, 0

 leave and return

 So two memory addresses, relative to the pointer contained

in ebp, have values. One has 4, one has 10.

 There is a comparison

 If operand 1 >= operand 2, take the jump

 If not, continue execution

 Eax gets assigned the value of 1

 The function returns

 Let’s dig deeper

 Everything shown in the disassembly has a purpose

 mov DWORD PTR [ebp-0x4], 0x4

o What does DWORT PTR mean?

 We know the brackets […] mean get the value held at the

dereferenced value between them… but DWORD PTR?

 mov DWORD PTR [ebp-0x4], 0x4

 DWORD PTR

o DWORD = the size

o PTR = dereference the value, accompanied by the brackets

 We have a few number of sizes allowed

Type Size (bytes) Size (bits) ASM Example

char 1 byte 8 bits BYTE char c;

short 2 bytes 16 bits WORD short s;

int 4 bytes 32 bits DWORD int i;

long long 8 bytes 64 bits QWORD long long l;

 So…

 mov DWORD PTR [ebp-0x4], 0x4

 The address pointed to by the dereferenced value of [ebp-4]

is getting 4 bytes moved into it, with the value of 4.

 [ebp-4] is an int

 So our source code probably has some int value and hard

codes a value of 4 to it

 mov DWORD PTR [ebp-0x4], 0x4

 mov DWORD PTR [ebp-0x8], 0xa

 This leaves us with 2 ints being assigned a hard coded

value

o int x = 4;

o int y = 10;

 Are these locals, globals, static variables???

 We need a little background on process memory layout.

 int x = 4;

 int y = 10;
o We don’t know where these are

declared

 if (4 >= 10)
o jmp to main+0x23

 eax = 1

 jmp to main+0x28

 main+0x23 :
o eax = 0

 main+0x28:
o ret

 We don’t take the jmp as already
discussed.

 It’s starting to look like source
code!

 Let’s do a quick introduction to process memory layout,

then we’ll continue with the first example

 We want to know

o Why things are relative to esp/ebp?

o What are the push/pop instructions doing?

o What about the leave/ret instructions?

Image from https://www.corelan.be/wp-

content/uploads/2010/08/image_thumb3.png

Image from

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_fil

es/image022.png

Register Name Description

EIP Next instruction executed

*Want to hijack during exploitation

ESP Stack pointer

EBP Base pointer

EAX Accumulation

*Holds the return value, usually.

EBX Base

ECX Counter

EDX Data

ESI Source index

EDI Destination index

 Okay, we have some background on the registers, the stack,

and process layout

 Let’s try to figure out what this code’s stack layout would

look like

 Then, we’ll look back at the code and what we know

 sub esp, 0x10

o There is room for 16 bytes of

locals, or 4 ints

 [ebp-4] is a local

 [ebp-8] is a local

 Return value, eax, is either

1 or 0 depending on the

comparison

…

RET

EBP

ESP

EBP-4

EBP-8

4

10

No [ebp+x], no arguments to

the function

EBP-16

args start at

EBP+8

 int someFunction() {

 int x = 4;

 int y = 10;

 if (4 >= 10)

o jmp to main+0x23

 eax = 1

 jmp to main+0x28

 main+0x23 :

o eax = 0

 main+0x28:

o return

 ‘if’ comparisons get translated opposite from source to

assembly

 if x > y

 Will become

o cmp x, y

o jle 0x12345678 (jump less than or equal)

o If some condition is *not true*, jump over it

 If x <= y

 Will become

o cmp x, y

o ja 0x12345678 (jmp above)

 int someFunction() {

 int x = 4;

 int y = 10;

 if (4 < 10)

o Return 1

 Return 0

 }

 Hey, that’s source code!

 Produce the source code for the following function

 How many local variables, how many arguments, what

types?

 Hint: lea eax, [edx+eax*1] is the same thing as

o eax = edx+eax

 What we just saw was the
sum function.

 The compiler used lea
edx+eax for efficiency

 It could have similarly used
the add instruction

 eax contains the return
value

 No local variables were
used (no [ebp-x]), just
arguments ([ebp+x])

 Looking at the previous exercise introduces a question

about how function calls are handled

 We know

o eax holds the return value

o Arguments (from the functions point of view) begin at ebp+8

 But how do those arguments get there, and how are they

removed?

 Two main calling conventions are commonly used

 CDECL

o Originates from C

o Args pushed on the stack, right to left (reverse)

o Calling function cleans up

 STDCall

o Orignates from Microsoft

o Args pushed on the stack, right to left (reverse)

o Called function cleans up

• Must know how many bytes ahead of time

 GCC tends to use : move [esp+x], arg

 Visual studio tents to use : push arg

 Regardless, we’re putting args on top of the stack

…

RET

EBP

7

5 ESP EBP + 8

 Now that the stack is setup, sum is called

 Functions reference local variables and arguments via their

stack frame pointers, esp and ebp

 So, every function has it’s own prolog and epilog to adjust

esp and ebp to contain the correct values

 Prolog – push ebp to save it on the stack, then move ebp to the
top of the stack, then make room for locals

o Push ebp

o mov ebp, esp

o sub esp, x

 Epilog – move esp back to ebp, pop the top of the stack into ebp,
return to the address on top of the stack

o add esp, x

o pop ebp

o ret

 Epilog 2 – leave is equivalent to : mov esp, ebp; pop ebp

o leave

o ret

…

RET

EBP

7

5

 The call instruction pushes EIP onto the stack

RET

ESP

EBP

…

RET

EBP

7

5

 EBP is saved

RET

EBP

ESP

EBP

…

RET

EBP

7

5

 EBP has the same value as ESP now

RET

EBP

ESP

EBP

…

RET

EBP

7

5

 EAX gets the value of arg 2

RET

EBP

ESP

EBP

EAX = 7

…

RET

EBP

7

5

 EDX gets the value of arg 1

RET

EBP

ESP

EBP

EAX = 7

EDX = 5

…

RET

EBP

7

5

 EAX contains a new value now, not what was in arg2

RET

EBP

ESP

EBP

EAX = 12

EDX = 5

…

RET

EBP

7

5

 In the epilog now, set EBP back to the callers value

RET

ESP

EBP

EAX = 12

EDX = 5

…

RET

EBP

7

5

 Ret is the same as : pop EIP

 Control flow returns to the next instruction in the caller

ESP

EBP

EAX = 12

EDX = 5

 What is the stack going to look like at the printf call?

…
RET

EBP

Sally

29

RET

EBP

real_age

real_age

name

Main

function1

ESP

EBP

.data section char *

 for(i = 0; i < 10; i++)

 Without a single

instruction, it’s clear what

is happening at a high

level here

 This common “stair step”

graph structure is a series

of calls/checks that error

out on failure

 IDA rocks…

 We can do many things, including grouping a set of nodes,

color coding them, and renaming them

 Knowing that all these checks error out on failure we can

simplify the graph

 I could spend on all day on IDA, too much information to put

into slides without making it a pure IDA talk

 Live demo goes here

o How to use IDA

o Go over variable renaming, function protocol modification,

comments, coloring, grouping, sections, string, imports, etc.

 Can you figure out the correct input to get the key program

to print the key?

 Use the executable number_checker.exe

 Everything covered so far has been static analysis

 Now we’ll cover dynamic analysis through debugging

 Remember

 A good debugger will have several useful features

o Set breakpoints

o Step into / over

o Show loaded modules, SEH chain, etc.

o Memory searching

o …

 WinDBG, OllyDBG, Immunity, IDA, GDB, etc. are good

debuggers

 Keep in mind…

 You control everything!

 If you want to skip over an instruction, or a function call, do

it!

 If you want to bypass the “authentication” method or make

it return true… you can!

 You can change register contents and memory values,

whatever you want.

 You can even patch programs (make changes and save it to

a new executable).

 F2 will set a breakpoint in IDA, Olly, Immunity

 The breakpoint has been hit, execution is stopped

• The registers

• The stack

 The breakpoint has been hit, execution is stopped

• The registers

• The stack

args

 We can now see the function call is

 InterlockedCompareExchange(__native_startup_lock,

0x47000, 0)

 Looking at the MSDN site for the prototype :

 Knowing the data types of the parameters, we can trace

back up through the program where the values in ebx, esi

and edi came from

 Then we can rename those values to something useful

 Just looking at calls, figuring out their arguments, and

tracing back to fill in the data types can really help figure

out most of the functions

 We’ll again use the number_checker.exe binary for this

exercise

 Can you bypass the key check entirely?

 In CTFs a lot of times we can see where the key get’s

printed, and we’ll try to just jump directly to that function, or

make checks return True/False depending on where we

want to go.

o Usually can get a quick low point problem this way ;)

 Set a breakpoint at the beginning of the function (f2)

 When execution is stopped, find where you want to jump to,

and right click -> set ip

 Most of the Windows debuggers are similar

o Same windows, same hotkeys, etc.

o Except WinDBG, WinDBG is more GDB like

 GDB is similar, but is command line

 We’ll cover some simple GDB usage

Command Description

gdb ./my_program Launch gdb, debug my_program

gdb --args ./my_program arg1 arg2 Launch gdb, debug my_program,

passing two arguments

run Run the application

run arg1 arg2 Run the application, pass two args

run $(python –c “print ‘A’*1000”) Run the application, pass one arg, just

like regular shell execution

 Starting GDB and launching the application

o With and without arguments

 1. Launch GDB with the program we want to debug

 2. Run it

 Hmm… we need more information

o (I would just open it in IDA, but we’re trying to learn GDB here!)

2

1

Command Description

set disassembly-flavor intel Use Intel syntax

disas [function_name] Disassemple the chosen function

Command Description

break main Set a breakpoint on the function “main”

break *0x12345678 Set a breakpoint on the address 0x…

info breakpoints Show information regarding breakpoints

delete breakpoint 2 Delete breakpoint 2

delete breakpoints Delete all breakpoints

Commands Description

si Step Instruction. Execute to next

instruction, go *into* functions

ni Next Instruction. Execute to next

instruction, go *over* functions

• Look at the

addresses

• We’re manually

stepping through

the instructions

Commands Description

si Step Instruction. Execute to next

instruction, go *into* functions

ni Next Instruction. Execute to next

instruction, go *over* functions

• Look at the

addresses

• We’re manually

stepping through

the instructions

This still

isn’t

helping us

though!

 We can disassemble, set breakpoints, and step through the

program… but

 We need to

o See the contents of registers

o See the contents of memory

o Modify (if desired)

Image from http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Command Description

x/5i $eip Examine 5 instructions at EIP

x/4xw $esp Examine 4 hex words at ESP

x/s 0x12345678 Examine the string at 0x12345678

x/5b $ecx Examine 5 bytes at ECX

i r “info register”, show the values of all

registers

i r esp ebp ecx Show the values of registers ESP, EBP,

and ECX

 x/nfu <address|register>

1 1. Run the program

1 1. Run the program

2. Where are we? Check

out EIP
2

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

2

3

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

2

3

4

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

5. Check out the argument

passed to puts

2

3

4

5

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

5. Check out the argument

passed to puts

2

3

4

5

Aha! We don’t satisfy the

compare (1 != 3), and

call puts, then exit!

 Think about the function protocol for main

o int main (int argc, char *argv[])

 In main, [ebp+8] would reference the first argument, argc

 We aren’t passing any arguments, besides argv[0], the

program name, hence why [ebp+8] has the value 1

 Haha, passing the program 2 more arguments (3 total)

does in fact satisfy the first cmp instruction

 A new code path is taken!

 Try to figure out the correct input that will cause the

program to print message, "Congrats, you did it!“

 Use IDA and GDB!

• Hey, we’ve seen this graph

pattern before!

 Everyone has their own preferences

 But the combination of the two will undoubtedly yield the

best results

 IDA, WinDBG, Immunity, GDB all have scripting

o In fact, they all use Python except WinDBG*

o There are awesome scripts that will import results from debuggers

into IDA’s view, filling in all the registers/operands for each

instruction.

 key_checker.exe or

 We’ll do a real crackme

 Crackme at

o http://www.woodmann.com/RCE-CD-

SITES/Quantico/mib/crackme2.zip

 This might be a little tricky, that’s okay.

http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip

 What about bytecode?

o .NET applications, java, python, etc.

 Just download a disassembler

 You’ll get near complete source code back

 It’s really that easy…

 Hopefully you feel comfortable

o Opening up and examining a binary and looking at it’s sections to

get a feel for it

o Renaming and simplifying the disassembly

o Converting back to source code where needed

o Using a debugger to fill in the gaps or manipulate program execution

 Fantastic books

o Reversing: The secrets of reverse engineering

o The IDA Pro book

o The Art of Exploitation

 Challenges

o Crackmes.de

o Woodmann.com

o Smashthestack.org (plenty of debugging involved ;))

 Links

o CSG : csg.utdallas.edu and irc.oftc.net #utdcsg (everyone is welcome)

o IDA : hex-rays.com

o CFF Explorer : ntcore.com/exsuite.php

o Immunity Debugger : immunityinc.com

