
Visualization and Analysis of Assembly Code in an Integrated Comprehension

Environment

by

Dean W. Pucsek

B.Eng., Carleton University, 2008

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Dean Pucsek, 2013

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Visualization and Analysis of Assembly Code in an Integrated Comprehension

Environment

by

Dean W. Pucsek

B.Eng., Carleton University, 2008

Supervisory Committee

Dr. Y. Coady, Supervisor

(Department of Computer Science)

Dr. H. Muller, Departmental Member

(Department of Computer Science)

iii

Supervisory Committee

Dr. Y. Coady, Supervisor

(Department of Computer Science)

Dr. H. Muller, Departmental Member

(Department of Computer Science)

ABSTRACT

Computing has reached a point where it is visible in almost every aspect of one’s

daily activities. Consider, for example, a typical household. There will be a desk-

top computer, game console, tablet computer, and smartphones built using different

types of processors and instruction sets. To support the pervasive and heterogeneous

nature of computing there has been many advances in programming languages, hard-

ware features, and increasingly complex software systems. One task that is shared by

all people who work with software is the need to develop a concrete understanding

of foreign code so that tasks such as bug fixing, feature implementation, and security

audits can be conducted. To do this tools are needed to help present the code in a

manner that is conducive to comprehension and allows for knowledge to be trans-

ferred. Current tools for program comprehension are aimed at high-level languages

and do not provide a platform for assembly code comprehension that is extensible

both in terms of the supported environment as well as the supported analysis.

This thesis presents ICE, an Integrated Comprehension Environment, that is de-

veloped to support comprehension of assembly code while remaining extensible. ICE

is designed to receive data from external tools, such as disassemblers and debuggers,

which is then presented in a series of visualizations: Cartographer, Tracks, and a

Control Flow Graph. Cartographer displays an interactive function call graph while

Tracks displays a navigable sequence diagram. Support for new visualizations is

provided through the extensible implementation enabling analysts to develop visual-

izations tailored to their needs. Evaluation of ICE is completed through a series of

iv

case studies that demonstrate different aspects of ICE relative to currently available

tools.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

List of Listings xi

Acknowledgements xii

Dedication xiii

1 Introduction and Related Work 1

1.1 Program Comprehension . 2

1.2 Assembly Code . 3

1.2.1 Disassembly . 4

1.2.2 Decompilation . 4

1.3 Visualizations . 5

1.4 Foundations for Comprehension . 7

1.4.1 Binary-Based Frameworks . 7

1.4.2 Intermediate Language-Based Frameworks 12

1.5 Requirements for Comprehension . 15

1.6 Thesis Statement . 16

1.7 Thesis Organization . 16

1.8 Summary . 17

vi

2 ICE: Evolution, Design, and Implementation 18

2.1 Guiding Principles . 18

2.2 Evolution of ICE . 20

2.2.1 REIL Translator and Simulator 20

2.2.2 Rails . 21

2.3 Design . 22

2.4 Implementation . 23

2.4.1 Communication . 24

2.4.2 Data Model . 26

2.4.3 Visualizations . 27

2.5 Summary . 33

3 Case Studies 34

3.1 Case Study: Dynamic Linker . 34

3.1.1 Overview of dyld . 34

3.1.2 Analysis with ICE . 35

3.1.3 Analysis with IDA Pro . 38

3.1.4 Analysis with Hopper . 41

3.1.5 Evaluation: Source Code . 43

3.2 Case Study: Malware . 45

3.2.1 Overview of Sample . 45

3.2.2 Initial Analysis . 48

3.2.3 Analysis with ICE . 49

3.2.4 Analysis with IDA Pro . 51

3.2.5 Analysis with Hopper . 53

3.2.6 Evaluation: Practical Malware Analysis 55

3.2.7 Sample Restrictions . 56

3.3 Case Study: Data Source Integration 56

3.3.1 Multiple Data Sources . 56

3.3.2 Data Source Integration . 58

3.4 Summary . 59

4 Validation 63

4.1 Validating the Requirements . 63

4.2 Ramifications of the Design and Implementation 64

vii

4.3 Limitations of ICE . 65

4.4 Summary . 66

5 Future Work and Conclusions 68

5.1 Conclusion . 68

5.2 Future Work . 69

Bibliography 70

A Source Code Listing for iced 76

B Malware Analysis Tools 82

viii

List of Tables

Table 3.1 Summary of the functions identified in dlopen() 49

Table 4.1 Summary of requirements met by ICE 63

Table 5.1 Summary of frameworks relative to ICE 68

ix

List of Figures

Figure 1.1 A sample call graph . 6

Figure 1.2 A sample sequence diagram. 7

Figure 1.3 A software terrain map . 8

Figure 1.4 Control flow graph showing a for-loop. 8

Figure 1.5 Conceptual representation of a binary-based framework 9

Figure 1.6 IDA Pro during a typical reverse engineering session 10

Figure 1.7 Main window of BinNavi . 11

Figure 1.8 Conceptual representation of a intermediate language 12

Figure 2.1 Rails being used to analyze an a crackme 21

Figure 2.2 High-level design of ICE . 22

Figure 2.3 Graph representation of a program 23

Figure 2.4 Message passing between ICE and a data source 24

Figure 2.5 ICE Data Model containing relationships between modules,

functions, and instructions. 26

Figure 2.6 Screenshot of Cartographer 28

Figure 2.7 Screenshot of Tracks . 30

Figure 2.8 Screenshot of Control Flow Graph 31

Figure 2.9 Screenshot of Tours . 32

Figure 3.1 dlopen() as seen through Cartographer 36

Figure 3.2 dlopen() as seen through Tracks 37

Figure 3.3 dyld::load() as seen through Cartographer 38

Figure 3.4 dyld::loadPhase0() as seen through Cartographer 39

Figure 3.5 dyld::loadPhase6() as seen through Cartographer 40

Figure 3.6 ImageLoaderMachO::instantiateFromFile() as seen through Car-

tographer . 41

Figure 3.7 ImageLoaderMachOClassic::instantiateFromFile() as seen through

Cartographer . 42

x

Figure 3.8 parseLoadCmds() in Cartographer 43

Figure 3.9 CFG of parseLoadCmds() with the Joins filter 44

Figure 3.10 CFG of parseLoadCmds() with the Loops filter 45

Figure 3.11 Graph of references from dlopen() in IDA Pro 46

Figure 3.12 List of references from dlopen() in IDA Pro 46

Figure 3.13 Proximity View of dlopen() in IDA Pro 47

Figure 3.14 Proximity View of parseLoadCmds() in IDA Pro 47

Figure 3.15 Control flow graph of parseLoadCmds() in IDA Pro 48

Figure 3.16 Disassembly of dlopen() in Hopper 48

Figure 3.17 Call graph of main() produced by Cartographer 50

Figure 3.18 Call graph of sub 401679() produced by Cartographer 51

Figure 3.19 Call graph of DllMain() produced by Cartographer 52

Figure 3.20 Call graph of WlxInitialize() produced by Cartographer 53

Figure 3.21 Call graph of sub 10001000() produced by Cartographer . . . 54

Figure 3.22 Function call graph of malware produced by IDA Pro 55

Figure 3.23 Proximity view of main() produced by IDA Pro 55

Figure 3.24 Call graph of LLDB’s main() function produced by Cartographer 57

Figure 3.25 LLDB’s main() as seen through Tracks 60

Figure 3.26 Screenshot of Driver::parseArgs() in Cartographer 61

Figure 3.27 Searching for push back() in Cartographer 61

Figure 3.28 Control flow graph of push back() with Joins highlighted . . . 62

Figure 4.1 Tour of the LLDB and libstdc++ code 64

xi

List of Listings

Listing 1.1 Implementation of string length in x86 3

Listing 1.2 Implementation of string length in ARM 3

Listing 1.3 Implementation of string length in LLVM 13

Listing 1.4 Implementation of string length in REIL 15

Listing 2.1 Sample REIL Code . 20

Listing 2.2 Sample JSON message . 25

xii

ACKNOWLEDGEMENTS

I would like to thank:

Mark, Sharon, Matthew, Blake, Kerry, Chris Aylard, and Bailey Adamson,

for supporting me in all I do.

Yvonne Coady,

for mentoring, support, encouragement, and patience.

Defence Research and Development Canada,

for financial support throughout this endeavour.

xiii

DEDICATION

UVic Vikes Rowing and Rowing Canada.

It is the discipline and commitment I’ve learned on the water that has enabled me

to achieve my goals off the water.

Chapter 1

Introduction and Related Work

Computing has reached a point where it is visible in almost every aspect of one’s

daily activities. Consider, for example, a typical household. There will be a desktop

computer, game console, tablet computer, and smartphones built using a different

types of processors and instruction sets. To support the pervasive and heteroge-

neous nature of computing there has been many advances in programming languages,

hardware features, and increasingly complex software systems. For example, modern

processors now include hardware virtualization to better support cloud computing;

software is now typically written in high-level languages that enable programmers to

more easily express their ideas; and, technologies such as multi-threading are now

commonplace in software.

In conjunction with all of the new software being developed there is also the issues

of maintaining legacy software and performing security audits on existing software.

Legacy software continues to be used, such as in some mainframes, and for one reason

or another must continue to be maintained. Security audits are becoming increasingly

important as people enlist computers in areas such as health care, military, and critical

infrastructure.

One task that is shared by all people who work with software is the need to

develop a concrete understanding of foreign code so that tasks such as bug fixing,

feature implementation, and security audits can be conducted. To do this tools are

needed to help present the code in a manner that is conducive to comprehension and

allows for knowledge to be transferred.

2

1.1 Program Comprehension

Program comprehension is the task of developing an understanding of a particu-

lar piece of software; the understanding can be either functional—how the software

works—or holistic—what the software does [63, 50]. The need for program compre-

hension is seen in all areas of computing such as: security audits, development [48, 45],

and educational purposes [50].

Despite this need for program comprehension each group of people that interacts

with software may have access to different types of information (e.g. source code,

access to developers, documentation) and, as a result, a different set of tools available.

A software engineer—and student—typically has access to a wealth of information

and is able to leverage a wide variety of tools [16, 17, 24, 62, 15, 54, 41], including

those that specifically target the language in use. Conversely, a reverse engineer is

faced with a lack of information available and must rely on tools such as assembly-

level debuggers [43, 28] and disassemblers [33, 32, 21]. It is these differences in

information and tool availability, as well as the differences in the environment that

lead to several issues for reverse engineers when faced with the task of understanding

the implementation and functional details of a program.

Of the many groups that interact with software, reverse engineers are tasked with

the job of taking already written code—usually in binary form—and developing an

understanding of both the functional and holistic elements. In order to develop this

understanding reverse engineers must work with assembly code which leads to three

primary issues.

1. Information Overload: Reverse engineers must deal with an extremely large

number of assembly instructions since each high-level statement is translated

into at least one assembly instruction, if not more.

2. Information Loss: Assembly code does not include information such as variable

types, function names, and structure definitions that, in other situations, can

provide a great deal of insight.

3. Tool Support: Few tools exist to assist a reverse engineer in understanding as-

sembly code. Furthermore, available tools tend to be centred around a particular

type of assembly code and lack visual components to assist comprehension.

3

1.2 Assembly Code

Even with an extraordinarily high affinity towards high-level languages, assembly

code is still prevalent and widely used [59]. For example, assembly code is still widely

used in mainframe programming.

Due to the fact that assembly code is a human-readable representation of a proces-

sors machine instructions the syntax and semantics are not necessarily transferable.

This unbreakable tie between assembly code and processors gives rise to the need for

flexibility in approaches to program comprehension.

To help illustrate the wide variety of assembly code Listing 1.1 shows an imple-

mentation of a string length routine in x86; the architecture found in most desktop

computers.

Listing 1.1: Implementation of string length in x86

push ebp ; save previous stack pointer

mov ebp , esp ; adjust stack to current frame

mov eax , [esp +4] ; get pointer to string

next: cmp byte ptr [eax], 0 ; is null terminator?

je done ; if terminator , jump

inc eax ; else , increment string pointer

jmp next ; and loop

done: sub eax , [esp +4] ; subtract start of string pointer

; from end of string pointer

leave ; release stack frame

ret ; return to caller

Similarly, Listing 1.2 is the same string length algorithm implemented in ARM,

found in most smartphones and tablet computing devices.

Listing 1.2: Implementation of string length in ARM

stmfd sp!, {r1, r2, lr} @ preserve caller values of r1 and

@ r2 , return address on the stack

mov r2 , r0 @ keep copy of start string pointer

next: ldrb r1 , [r0], #0x1 @ place current character in r1 ,

@ increment string pointer by 1

cmp r1 , #0x0 @ is current the null terminator?

beq done @ if yes , go to done

bal next @ if no , continue loop

done: sub r0 , r0 , r2 @ subtract start of string pointer

@ from end of string pointer

4

ldmfd sp!, {r1, r2, pc} @ restore caller values of r1 and

@ r2 , put return address in

@ program counter

Although assembly code may be encountered from numerous sources one of the

most common is disassembly.

1.2.1 Disassembly

A disassembler takes as input a binary program and returns as output a representa-

tion, usually textual, of the machine code. The need for disassembly is two-fold. On

one hand, a reverse engineer may only have access to a binary and therefore must

disassemble it in order to have a starting point for program comprehension. On the

other hand, a reverse engineer may have access to the source code in addition to a

binary and will disassemble the binary in order to verify that the source code provided

could have generated the binary [4].

There are many tools [33, 32, 2, 1] and techniques [36, 13, 44] available to disas-

semble code; however, IDA Pro [33] is generally accepted as the industry standard.

IDA Pro boasts a long history coupled with support for multiple binary file formats,

supported operating systems, and supported instruction sets.

As stated in Section 1.1, one of the major drawbacks to program comprehension

based on assembly code is the sheer amount of code to be processed. The challenge

here is largely cognitive in that it is extremely difficult for a reverse engineer to

keep track of all pertinent details while developing a complete understanding of the

program [8]. Furthermore, in malicious environments it is not reasonable to assume

that the disassembly is correct due to techniques employed by malware authors [64,

26].

1.2.2 Decompilation

An approach to alleviating the cumbersome nature of assembly code is to decompile, or

translate, it into a high-level language or pseudo-language. While the techniques [13,

14] used to decompile are outside the scope of this thesis, it is important to note some

of the drawbacks of this approach.

The first, and foremost, drawback to decompilation is that it is an undecidable

problem [61] and is therefore not possible in all cases. Current decompilers work

5

around this by limiting themselves to specific classes of code (e.g. strictly conforming

C code) or making assumptions about the resulting code. However, this limitation is

magnified when one considers code outside the class the technique was developed for

and especially when faced with potentially malicious code.

A second drawback to decompilation is that it is difficult to conclusively identify

the data type or high-level control flow structure used [61]. Consider how a decompiler

might differentiate between a 32-bit integer and a 32-bit pointer value. In this case

the correct interpretation depends on the context the value is used in which is not

necessarily possible to determine during decompilation.

A third drawback to decompilation is that it is not well suited to the object-

oriented, and dynamic, nature of languages such as C++ [27]. In the case of C++

some of the issues that are encountered are related to reconstructing the class hi-

erarchy, identifying and associating member functions, and reconstructing exception

handling code blocks.

1.3 Visualizations

Through stakeholders, one aspect that was identified as necessary for a program

comprehension environment suited for assembly code is the usage of visualizations to

display different aspects of the code being analyzed. At the core of each visualization

is a type of graph designed to show some specific type of information; for example,

a function call graph displays the relationship between the caller and callee. The

following is a brief survey of commonly used graphs and the type of information they

focus on.

A call graph is a directed graph (Figure 1.3) that represents the caller-callee re-

lationship in functions [49, 11]. Since every modern programming language supports

the notion of a function the call graph is language and paradigm agnostic [29]. From

the call graph a reverse engineer is able to form an understanding of the structure of

the program and, provided accurate function names are available in the binary, able

to deduce the action carried out in each function.

Sequence diagrams are a visualization that depict the interactions between objects

in the sequential order they occur. Figure 1.31 shows a sample sequence diagram in

which the events required for a student to register in a class are examined. Sequence

1Image source: http://www.ibm.com/developerworks/rational/library/3101.html

http://www.ibm.com/developerworks/rational/library/3101.html

6

main

foo bar

print

Figure 1.1: A sample call graph

diagrams were born in the Unified Model Language [34] and tend to be used when

describing object-oriented code bases.

Continuing with the effort to identify relationships in program components are

software terrain maps [19]. Software terrain maps (Figure 1.3) provide a spatial

representation of relationships between functions. One notable feature of software

terrain maps is that functions are placed in the map such that their size is indicative

of the function size and location depicts the relationship with surrounding functions.

Despite the amount of information and understanding that can be obtained at a

functional (or global) level, at times it is necessary to delve into the implementation

details of a single function. For this task, a control flow graph (CFG) [3] is commonly

used. Control flow graphs operate on basic blocks, a set of assembly instructions that

has at most one entrance and one exit, and provide insight into the paths that can

be taken within a function as well as how the various paths relate to each other.

Finally, there continues to be new graphing and diagramming approaches created

as analysts better understand the type of information they are after. Tree maps and

thread graphs [60] aim to give insight into the behavioural aspects of a program;

where as distribution maps [22] aim to visualize the properties of a software system

identified by a human analyst.

7

Figure 1.2: A sample sequence diagram.

1.4 Foundations for Comprehension

The primary goal of this thesis is to improve comprehension of assembly code through

visualizations and analyses. Before developing the prototype discussed in the follow-

ing chapters a survey of related approaches was conducted. We found that existing

solutions can be classified in one of two categories: binary-based frameworks and

intermediate language-based frameworks.

1.4.1 Binary-Based Frameworks

One approach to developing tools for program comprehension is to build a framework

around a specific type of binary. In this approach the interface for tools has specific

8

Figure 1.3: A software terrain map

Figure 1.4: Control flow graph showing a for-loop.

knowledge about the binary being examined. For example, if a Portable Executable

(PE) 2 binary that contains code for an Intel 32-bit system must be analyzed then

the framework would have specific knowledge of this type of binary and know how to

access specific information such as the binary headers.

2Portable Executable binaries are commonly found on Microsoft Windows systems.

9

Binaries

Analysis

Figure 1.5: Conceptual representation of a binary-based framework

As seen in Figure 1.5, the binary is a central component and the analyses are

developed around it. The benefit of this approach is that the coupling between the

interface used by analyses and the binary is extremely tight enabling for very specific

information to be extracted from the binary. Moreover, analyses are tightly integrated

with each other enabling common functionality to be shared.

The tight integration found in a framework comes at the cost of having to develop

a separate framework for each type of binary being analyzed. Therefore, if an analyst

needed to examine a Mach-O 3 executable containing Intel 64-bit code an entirely

new framework must be developed.

A summary of numerous binary-based frameworks follows.

IDA Pro

IDA Pro [30] is an industry-standard interactive disassembler. It has been designed

such that it is able to integrate a suite of builtin analysis tools with those provided by

third-parties in order to provide an extensible general-purpose binary analysis frame-

work. IDA Pro provides this functionality through a traditional plugin architecture

and a well-defined API that allows third-party developers to produce task-specific

analysis algorithms [5]. The primary strength of IDA Pro is its disassembler which

supports a multitude of instruction sets. Figure 1.6 shows a typical IDA Pro session. 4

3Mach-O binaries are commonly found on Mac OS X systems.
4Image is from https://www.hex-rays.com/products/ida/index.shtml

10

Figure 1.6: IDA Pro during a typical reverse engineering session

BitBlaze

BitBlaze [53] is an open-source project consisting of two integrated binary analysis

frameworks (one static, one dynamic), and a mixed concrete and symbolic execution

engine. BitBlaze was developed at UC Berkeley and aims to provide a better un-

derstanding of software through a fusion of static and dynamic analysis. It supports

both static and dynamic analysis of 32-bit x86 binaries. All tools produce textual

output only through a command-line interface. The analysis tools are dependent

on the intermediate language, which is generated using several third-party tools in-

cluding an emulator called QEMU [9]; a recent study names QEMU as one of four

emulators that allegedly unfaithfully emulates certain instructions [39]. The static

analysis framework—Vine—can be extended by building tools on top of the Vine IL.

In the dynamic analysis framework, extensibility is achieved through plugins to the

BitBlaze emulator, TEMU, which is based on QEMU. Shortly after BitBlaze was de-

veloped two members of the research team released another framework, BAP (Binary

Analysis Platform) [18].

BinNavi

BinNavi [66], Figure 1.7 5, is a binary analysis framework produced by Zynamics

and is specifically designed to facilitate vulnerability detection in executables. Bin-

Navi makes heavy usage of graph-based visualizations during analysis and currently

supports x66, PowerPC, and ARM code. As with IDA Pro, BinNavi provides ex-

5BinNavi screenshot from http://www.zynamics.com/binnavi.html

11

Figure 1.7: Main window of BinNavi

tensibility using a plug-in architecture and is platform-independent. BinNavi can be

either used as a standalone tool or leverage the disassembling capabilities of IDA Pro.

If IDA Pro is used then the disassembly data must be exported to BinNavi using an

IDA Pro plugin.

HERO

HERO (Hybrid sEcurity extension of binaRy translatiOn) [31] is a promising academic

framework that claims to support an efficient combination of static and dynamic

binary analysis methods. HERO is designed specifically for malware analysis and it

claims to be entirely self-contained; that is to say, it does not rely on any third-party

components. The intermediate language used within HERO, according to the paper,

is formally specified however no details are given.

12

Valgrind

Valgrind [42] is a robust, well-established framework that provides support for both

static and dynamic analysis. It runs on multiple flavours of Linux and Mac OS X,

with plans to extend to more operating systems. It uses two intermediate languages:

VEX and UCode, a RISC-like language. Each instruction is translated individually

and independently and unsupported instructions are inserted as comments to preserve

dynamic analysis functionality.

1.4.2 Intermediate Language-Based Frameworks

The second approach, an intermediate language-based framework, focuses on encap-

sulating common aspects of binaries in an intermediate language. This approach

enables for a potentially limitless number of binary file format and instruction set

combinations as well as enables analyses to be written once for the intermediate lan-

guage. However, an intermediate language-based approach does require a translator

to be written for each instruction set in order to be supported in the framework.

Figure 1.8 depicts a schematic of this approach.

Binaries

Analysis

Intermediate
Language

Figure 1.8: Conceptual representation of a intermediate language

The primary advantage of this approach is the ability to support a range of in-

struction sets; however, this approach raises numerous challenges as well. First, since

each analysis tool is based upon an intermediate language it is not necessarily inte-

grated with other tools leading to a potentially significant lack of code re-use and the

13

potential for incompatibilities between analysis tools. Second, the intermediate lan-

guage must be designed to satisfactorily encapsulate various aspects of an instruction

set and the associated processor. For example, the intermediate language should be

able to encapsulate the notion of processor status flags which may differ across pro-

cessors. Additionally, there is potential for complications to arise when attempting

to incorporate functionality such as SIMD and hardware virtualization.

A summary of intermediate language-based frameworks follows.

LLVM Code

LLVM [37] is an open-source project that was initially designed as a framework for

compiler construction but has now evolved to provide a collection of tools and li-

braries including debuggers, disassemblers, and high-level language parsers. At the

core of LLVM is a language that can be used in three forms: an in-memory com-

piler intermediate representation, an on-disk byte-code representation, and a human

readable representation. As noted in the LLVM language reference [38] aims to be

a “universal IR” that is low-level yet capable of mapping to high-level constructs.

The LLVM language contains a fully specified instruction set as well as many other

functions and data types relevant to program comprehension. In particular, it de-

fines a mechanism to attach metadata to any translation and supports FPU, MMX,

and SSE instructions and data types. Extensibility in LLVM is almost unlimited,

as mechanisms are provided to add instructions, types, and intrinsics6. Listing 1.3

shows the LLVM code output when compiling the implementation of string length

presented in Section 1.2.

Listing 1.3: Implementation of string length in LLVM

define i32 @length(i8* %str1) nounwind uwtable ssp {

%1 = alloca i8*, align 8

%str2 = alloca i8*, align 8

store i8* %str1 , i8** %1, align 8

%2 = load i8** %1, align 8

store i8* %2, i8** %str2 , align 8

br label %3

; <label >:3 ; preds = %8, %0

6An intrinsic is a compiler specific, highly optimized function provided by a language where the
underlying optimal implementation is handled by the compiler. The compiler has knowledge of the
intrinsic function and can integrate based on the situation or program circumstances.

14

%4 = load i8** %1, align 8

%5 = load i8* %4, align 1

%6 = sext i8 %5 to i32

%7 = icmp ne i32 %6, 0

br i1 %7, label %8, label %11

; <label >:8 ; preds = %3

%9 = load i8** %1, align 8

%10 = getelementptr inbounds i8* %9, i32 1

store i8* %10, i8** %1, align 8

br label %3

; <label >:11 ; preds = %3

%12 = load i8** %1, align 8

%13 = load i8** %str2 , align 8

%14 = ptrtoint i8* %12 to i64

%15 = ptrtoint i8* %13 to i64

%16 = sub i64 %14, %15

%17 = trunc i64 %16 to i32

ret i32 %17

}

Reverse Engineering Intermediate Language (REIL)

REIL (Reverse Engineering Intermediate Language) [23] provides a platform-independent

intermediate language of disassembled code for static analysis. REIL uses a side-

effect-free, RISC-style intermediate language consisting of 17 instructions. Each in-

struction contains exactly three operands (some instructions have operands of type

<empty>), making the operation of individual instructions easier to understand. REIL

instructions can easily be traced back to the original assembly instruction since the

address of REIL instruction is the address of the original instruction with an offset

value appended to the end. Unrecognized source instructions are essentially ignored

by translating them into the UNKN instruction, a variant of a NOP instruction, render-

ing dynamic analysis unfeasible. Finally, there is no mechanism to extend the REIL

instruction set and REIL does not support instruction set extensions such as SSE,

virtualization, and floating point operations. Listing 1.4 shows the REIL implemen-

tation of the string length routine discussed in Section 1.2.

15

Listing 1.4: Implementation of string length in REIL

strlen1:

0x00100 str esp , , t1

0x00101 add t1, 4, t2

0x00102 ldm t2, , t3

0x00103 str t3, , eax

0x00200 ldm eax , , t4

0x00201 bisz t4, , t5

0x00300 jcc t5, , 0x00600

0x00400 add eax , 1, t6

0x00401 str t6, , eax

0x00500 jcc 1, , 0x00200

0x00600 add esp , 4, t7

0x00601 ldm t7, , t8

0x00602 str t8, , eax

0x00603 sub t8, t9, eax

0x00700 str esp , , t10

0x00701 sub t10 , 4, t11

0x00702 ldm t11 , , eip

0x00703 jcc 1, , eip

Static Analysis Intermediate Language (SAIL)

SAIL (Static Analysis Intermediate Language) [20] is an open-source project that

translates C—or C++—code into two complimentary intermediate languages: a high-

level language, and a low-level language. The high-level language retains constructs

from the original source code where as the low-level language is source code indepen-

dent and is more amenable to static analysis.

1.5 Requirements for Comprehension

A study completed by a colleague designed to understand the needs of developers

and analysts who work with assembly code on a regular basis revealed many common

16

requirements for tools in the domain of program comprehension [7]. As a proof-of-

concept, this work focuses on the following subset of requirements identified by the

analysts in that study:

1. Multiple Executables: Their disassembler cannot disassemble more than one

executable file at a time (e.g. DLL libraries) and link between them.

2. Map of Analysis: It is easy to get lost when going deeper into the code—hard

to track where the exploration started and how a deeper point was arrived at.

3. Tagging: There is no tagging mechanism for assembly where, for example, one

could tag a global variable and see where it comes from.

4. Cross Reference Mechanism: Lack of a cross reference mechanism between a

given function in an executable file to a DLL.

The requirements were ranked in the study and, although the above are a subset,

the first listed (providing support for multiple executables) received the highest rank

out of the total 15 requirements. The second and third in the above list were fourth

and fifth respectively in the final ranking while the fourth listed was number 12.

1.6 Thesis Statement

The goal of this work is to explore the feasibility of applying principles from high-level

program comprehension tools to low-level codebases. The design and implementation

of ICE demonstrates that it is possible to build an extensible framework for interactive

visualizations that is flexible in terms of the data acquisition.

1.7 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces ICE, an

Integrated Comprehension Environment, and discusses characteristics of the design

as well as the implementation. Chapter 3 then discusses three case studies that

investigate the ability of ICE to assist an analyst with program comprehension. A

discussion and evaluation of ICE is then presented in Chapter 4 followed by future

work and a conclusion presented in Chapter 5.

17

1.8 Summary

In this chapter the notion of program comprehension was introduced along with

several approaches. The cognitive disadvantage of assembly code was raised as a core

issue; decompilation and visualization where identified as current solutions to the

problem.

18

Chapter 2

ICE: Evolution, Design, and

Implementation

Given the challenges outlined in Chapter 1—and further developed in [7]—my thesis

proposes ICE, an Integrated Comprehension Environment, as a framework for program

comprehension that is based on extensibility and modularity. This chapter delves into

the evolution, design, and prototype implementation of ICE as well as the guiding

principles that helped shape the overall development process.

2.1 Guiding Principles

Early in the project several guidelines were established that helped steer the devel-

opment process and work completed. The guidelines are:

1. Instruction set independent

2. Extensible visualizations

3. Flexible data acquisition

4. Operating system independent

The relevance and impact of each guideline on the development process is varied;

however, the unifying concept between all four guidelines is the need to remove as

many limitations as possible while providing a cohesive solution for program compre-

hension.

19

Instruction set independent. The first guideline conceived was the need for ICE

to be instruction set and binary file format independent. This guideline came about

because of the observation that there is an ever increasing number of instruction sets

available on the market; especially as new computing paradigms become ubiquitous.

A motivating example of this guideline comes from the domain of embedded devices

as processors become better tailored to specific tasks. In this case, the ARM processor

has become commonplace with the rise in smartphone and tablet computing devices.

Similarly, the burgeoning domain of general purpose GPU computing has brought

new, GPU specific, instruction sets into the main stream. The impact of this guideline

on the development of ICE is that there is a need to better understand what differences

exist between various instruction sets and how these differences could be reconciled.

This guideline was a large motivating factor for the investigation of frameworks and

intermediate languages discussed in Section 1.4.2.

Extensible visualizations. The next guideline was that the visualization infras-

tructure provided by ICE must be extensible. The need for this guideline lies in the

fact that (1) not all analysts will be interested in the same set of visualizations, and

(2) in order to foster further research in program comprehension it is important to

enable a researcher to develop and explore custom visualizations. As a result of this

guideline ICE was developed around the Model-View-Controller (MVC) [46] paradigm

in order to provide a clear boundary between the data available for visualizations and

the visualizations themselves.

Flexible data acquisition. Since ICE currently does not parse or disassemble

any binaries this guideline was put in place to allow ICE to be able to accept data

from a wide variety of sources. For example, it may be necessary for an analyst to

retrieve data from a disassembler while concurrently retrieving data from a debugger.

Furthermore, this guideline also serves to support the need for ICE to be capable

of working with multiple binaries simultaneously. In addition to the need for an

extensible visualization infrastructure this guideline was another primary motivator

to leverage the MVC paradigm. This guideline also shaped a large portion of the

communication mechanism used between ICE and the data sources.

Operating system independent. The final guideline that helped to shape the

development process of ICE was that ICE should be operating system independent.

20

This guideline was largely founded in the growth of operating systems other than

Microsoft Windows and the idea that to help future-proof ICE it should not mandate

a specific operating system for the analyst to use. The impact of this guideline on

ICE was that all supporting libraries used in the prototype must also be operating

system independent; additionally, this guideline had a large influence on the selection

of programming language and environment.

2.2 Evolution of ICE

Before delving into the design and implementation of ICE it is important to under-

stand the process that lead to its inception. Following the investigation of frameworks

and intermediate languages (Section 1.4.2) we decided that, to provide a reasonable

solution to the problem of assembly code analysis, an approach that leveraged both

frameworks and intermediate languages was required.

The need for a hybrid solution follows from the fact that multiple instruction sets

need to be supported in order to support the wide variety of modern electronics.

Through a hybrid solution it would be possible to write the vast majority of analyses

and visualizations against a single intermediate language while providing access to

arbitrary data in a binary through an API.

2.2.1 REIL Translator and Simulator

Due to the simplicity of leveraging a pre-existing intermediate language the first step

taken after the initial investigation into intermediate languages was to develop a

translator and simulator for REIL. Both of which were written in Python.

The translator took as input a disassembly of 32-bit Intel code and produced as

output semantically equivalent REIL code. As an example, given the instruction

mov eax, [esp-4] the REIL code shown in Listing 2.1 would be generated.

Listing 2.1: Sample REIL Code

sub t1 , esp , 4

ldm t2 , t1

mov eax , t2

In this example, the value 4 is subtracted from esp (the stack pointer), then the

value stored in memory at that location is loaded into t2, and finally that value is

moved into eax.

21

With nearly 600 instructions in the Intel instruction set, the translator did not

implement each instruction. Instead it focused on a core set that are commonly used

by compilers. The translator was tested using various implementations of functions

that computed the length of a null-terminated string.

As a proof-of-concept, a colleague developed a simulator that was able to evaluate

the REIL code generated by the translator. The simulator allowed for inspection of

the memory as well as registers in use. The veracity of the simulator was validated

by comparing the results of the string length computations to values computed using

the standard strlen() function available in C.

2.2.2 Rails

Figure 2.1: Rails being used to analyze an a crackme

As a result of the requirements solicited in [7] and discussed in Section 1.5, there

was a clear need for functionality in IDA Pro that would ease the process of working

with multiple binaries simultaneously.

Rails, Figure 2.1, is a plugin I developed for IDA Pro that facilitates communi-

cation between multiple instances. It allows for comments to be propagated between

instances, eases navigation between instances, and significantly cuts down on the du-

plication of work when analyzing binaries that leveraged dynamic libraries. Rails

22

was submitted to the 2012 Hex Rays Plugin Contest and was given an honourable

mention.

2.3 Design

The design of ICE leverages the Model-View-Controller (MVC) [47] design pattern

in which information from any Executable Entity, a binary or intermediate language

representing assembly code, is stored in an extensible data model and visualizations

act as views of that data model describing the Executable Entity being analyzed.

The primary reason the MVC pattern was selected is because it allows for multiple

visualizations to be created using a single description of the Executable Entity in

question—enabling the creation of new visualizations in a way that is more language-

agnostic than previous approaches in this domain.

Application Platform

Communication

Data Model

Visualization Visualization

Data
Source

Data
Source

Data
Source

Data
Source

Data
Source

Data
Source

Figure 2.2: High-level design of ICE

A schematic representation of the design of ICE is shown in Figure 2.2. The lowest

layer, the Application Platform, is responsible for providing all aspects of a graphi-

cal user interface and application. This layer includes functionality such as window

management, delivering mouse and keyboard events, and a minimal environment for

the creation of an application.

Above the Application Platform is the Communication layer. The Communication

layer enables bi-directional communication between ICE and external applications.

Within ICE the external applications are referred to as Data Sources and ICE is

known as a Data Sink. Although this terminology implies that information only flows

23

from sources to the sink, ICE is capable of pushing changes—such as added comments

and function name changes—to the sources.

Directly above the Communication layer is the Data Model ; the “Model” in tra-

ditional MVC terms. The Data Model is a core component of ICE and forms the

foundation upon which analyses are built, and data pertaining to low-level repre-

sentations being analyzed is stored. The Data Model is encapsulated in a directed

graph that models the structure of the Executable Entity under analysis. Within an

Executable Entity function calls are used as the “edges” of this model since they are

a ubiquitous mechanism to connect sections of code. For example, Figure 2.3 depicts

the directed graph representation of a small program in which main() calls foo()

and bar(), and bar() calls print().

main

foo bar

print

Figure 2.3: Graph representation of a program

Above the Data Model, ICE provides a mechanism for the development of visual-

izations that can easily be created by an analyst. Visualizations are the components

that an analyst interacts with and are the viewport into the data model, or the “View”

in MVC. The MVC paradigm is rounded out with the “Controller” being the logic of

ICE that enables a user to switch between the various Views and interact with them

to better understand what is being presented.

2.4 Implementation

Given the overall modular design of ICE outlined in Section 2.3, we carried out the

prototype implementation by composing several existing technologies.

24

ICE was written in Java using the Eclipse Rich Client Platform (RCP) [25] as its

foundation. The selection of this environment was guided in part by the prevalence of

Java and the Eclipse RCP; however, it also allowed for a large amount of code reuse,

specifically in the Tracks visualization (Section 2.4.3) and the Zest framework [65] for

rendering graphs. The following subsections delve into the current communication,

data model, and visualizations present in ICE.

2.4.1 Communication

As previously described in Section 2.3, ICE allows bi-directional communication be-

tween Data Sources and itself. Communication is carried out over a predetermined

port on the loopback interface. Taking this approach restricts communication to the

localhost which cuts down on network traffic and is beneficial in the context of mal-

ware analysis, since machines dedicated to this task are typically separated from all

networks to promote security.

ICE
Data

Source

hello

request functions

response functions

sync

Figure 2.4: Message passing between ICE and a data source

The communication protocol used in ICE is built upon the JSON model [35] and

is outlined in Figure 2.4. Communication begins by a Data Source sending a hello

message to ICE. Upon receiving this message ICE creates a new entry in its Data

Model that uniquely identifies the sender. A sample hello message is shown in

25

Listing 2.2.

Listing 2.2: Sample JSON message

{

origin = ‘‘program.exe ’’,

instance_id = 1234,

action = ‘‘hello ’’,

actionType = null ,

data = null

}

The fields presented in Listing 2.2 have all been chosen to allow for a flexible

messaging protocol. The origin is the name assigned to the binary by the Data

Source. For example, this could be the actual name of the binary or some other

identifier such as a project name if Java byte-code was being analyzed. The next

field, the instance id, is a unique numeric identifier of the Data Source. Currently

this is taken to be the process ID of the Data Source since that is guaranteed to be

unique due to ICE being restricted to a single machine. The action describes what

the message does—it can be thought of as the ‘verb’ in the message. The messaging

protocol defines numerous action values including: hello, request, and response.

Similarly, the actionType field can be thought of as the ‘adverb’ of the message since

it describes the action of the message being sent. Finally, the data field is specific to

the combination of action and actionType and can contain any valid JSON object.

Once the entry in the Data Model has been created ICE then requests information

about the functions contained in the Executable Entity—a binary or intermediate lan-

guage representing assembly code—under analysis. For each function ICE requests:

• Module name

• Function name

• Entry point

• Starting location

• Ending location

• Comment

26

Socket Instance

InstanceSocket

Socket Instance

InstanceSocket

Instance Map

ID

Name

Functions

Instance From

To

Target

Call

Entry Point

Name

Start

End

Module

Comment

Calls

Function

Instructions

Address Instruction

Instruction Map

InstructionAddress

Address Instruction

Address

Flow

Next

Instruction

Figure 2.5: ICE Data Model containing relationships between modules, functions,
and instructions.

Note that the starting and ending location may be either an address or a line

number depending the Executable Entity being analyzed. Moreover, the Entry point

is a boolean value indicating if the function is reachable from outside the Executable

Entity and the function request triggers the Data Source to return similar information

about all calls made within the function.

Upon sending all requested information, the Data Source sends a sync message

causing ICE to commit all the data it has received, analyze the data for relationships

between functions, and notify any visualizations currently open to update their view.

2.4.2 Data Model

The Data Model in ICE, depicted in Figure 2.5, is based on a directed graph and

models the relationships between modules, functions, and instructions. Since ICE is

able to support multiple Data Sources, the top-level of the model is an Instance Map.

The Instance Map serves the purpose of mapping each Instance onto its corresponding

communication socket.

For each connected Data Source there is an Instance object that describes it. The

Instance object contains metadata such as the instance identifier and name, along with

a hash table containing a mapping of locations to Function objects. Each Function

object contains the following metadata:

• Entry Point: Boolean value indicating if the function is an entry point.

• Name: Name of the function.

27

• Start: Location the function starts at.

• End: Location the function ends at.

• Module: Name of the containing binary.

• Comment: Associated comment (if any).

In addition to this metadata, each Function object contains a list of Call Sites.

These Call Sites contain pointers to their target Function object, creating a graph of

functions.

Lastly, the Function object contains a mapping of locations to Instructions. Each

Instruction object is comprised of the following attributes:

• Address: Location of this instruction.

• Container: Location of the function containing this instruction.

• Flow Type: The ”flow” of the instruction (e.g. normal, jump, call).

• Next: List containing pointers to the next instruction(s).

Through this directed graph model of an Executable Entity it is possible to apply

existing graph analysis algorithms to explore the Executable Entity at the function- or

instruction-level as well as analyze the relationships between multiple Data Sources,

potentially representing multiple Executable Entities. This also enables ICE to show

correspondence between several levels of abstraction such as a high-level code base

coupled with its binary.

2.4.3 Visualizations

The final major components of ICE are the visualizations. Visualizations are the pri-

mary user interface element, and allow an analyst to look inside a program. Currently

ICE contains three visualizations: simple call graphs provided by Cartographer, se-

quence diagrams provided by Tracks, a Control Flow Graph (CFG), and Tours. Due

to the extensible design and implementation leveraging the Eclipse architecture, cre-

ating new visualizations is a straightforward process discussed further in Section 4.

28

Figure 2.6: Screenshot of Cartographer

Cartographer

At the core of Cartographer, Figure 2.6, is a function call graph [49, 11], generated as

ICE receives information about functions from its Data Sources. While the function

call graph is a core component of Cartographer, there are two additional central

aspects: interactivity, and navigation.

The key to the interactivity of Cartographer is that the call graph is not static,

meaning that it accepts modifications by the analyst. Actions that allow the analyst

to gain insight and manage the process of program comprehension include:

• Assigning names to functions

• Assigning comments to functions

• Re-positioning nodes in the graph

29

• Navigating to associated code in the Data Source

With the ability to assign names and comments to functions the analyst is able

to better track portions of code that have been analyzed as well as assign meaningful

names to functions. For example, a default function name in IDA Pro is of the

form sub_<address> where <address> is the start address of the function. This

name leaves much to be desired and a descriptive name such as decryptCode would

provide the analyst a much clearer idea of what the function does. Similarly, with

comments the analyst is able to better describe what the purpose of a function is and

track functions that have been analyzed.

Additionally, the analyst is able to place the nodes in a visualization on the screen

as desired, allowing for logical groupings—such as these nodes have been analyzed—

and to manage clutter in complex functions. The colour of the nodes is also used

to indicate the number of instructions in a function. Nodes that have a greener tint

to them are shorter in terms of the number of instructions and nodes that have a

redder tint to them are longer. The colour helps quickly identify functions that may

be potentially more complicated.

With respect to navigation, Cartographer supports navigation within the call

graph and navigation to the code. Navigation within the call graph is achieved

by double-clicking a node which will cause the call graph of the selected function

to be displayed. In addition to displaying the call graph of the current function,

Cartographer also keeps track of calls made—by doubling-clicking a function—in a

call stack. The call stack displays a sequential view of all the calls made by the

analyst along with information such as the address, name, and comment associated

with the corresponding function. The call stack also supports navigation. Finally, it

is possible to further navigate to the code in a function from Cartographer—in this

case the function will be opened up in the containing Data Source.

Tracks

In previous work we developed Tracks [5] (Figure 2.7), a visualization tool that dis-

plays function calls within a program as a sequence diagram for both static and

dynamic control flow. Through the sequence diagram an analyst is able to gain in-

sight into the functions called as well as the order in which the calls are made. Tracks

additionally shows calls to functions in external libraries as well as provides loop de-

tection. Actions from the user are also supported in the connected Data Source, such

30

Figure 2.7: Screenshot of Tracks

as navigation to the code (either the function or specific call), setting breakpoints, and

syncing renamed functions. Tracks was refactored to adhere to the design discussed

in the previous Section, which allowed us an initial analysis of the plugin architecture

that is used in ICE.

Tracks was built on top of Diver [10] to support extremely large traces so provides

features such as hiding/collapsing call trees and package or module structures, setting

new roots of diagrams, navigable thumbnail outline view, and saving the state of the

diagram. Previous work has also investigated the use of comment threads within the

sequence diagram itself [6].

Control Flow Graph (CFG)

A Control Flow Graph (CFG) makes it possible to become better acquainted with

the inner workings of a function by identifying key structures such as loops and

31

Figure 2.8: Screenshot of Control Flow Graph

branches. As with Cartographer and Tracks, the CFG visualization—Figure 2.9—is

also interactive and provides filters to help pinpoint how instructions are related.

With respect to interactivity, the CFG visualization supports zooming in and out,

panning, and rotating the nodes of the graph. This is particularly important in this

domain, where the number of lines of code in a function may have exploded several

orders of magnitude relative to its high-level representation. In addition, individual

nodes can be selected and moved to arbitrary locations, once again aiding in clutter

management and comprehension.

The novel aspect of the CFG related specifically to comprehension is the ability

to select from a set of filters. Each filter highlights the associated set of nodes making

them visually discernible and easy to spot relative to the other nodes shown. The

CFG in ICE provides filters for: Calls, Joins, and Loops. The Call filter simply

highlights all call instructions and can be used to correlate where a call is located

32

Figure 2.9: Screenshot of Tours

within a function without the need to analyze the assembly code. The Joins filter

highlights all nodes that have an in- or out-degree greater than one. These nodes

represent locations in the function where high-level control flow constructs such as

if-then-else, try-catch, switch, and other related statements are found. By identifying

these nodes it can be seen if certain instructions have an abnormal number of incident

edges aiding in the identification of “interesting” locations in the function. Finally,

Loop detection is based on the Tarjan strongly connected component [57] algorithm.

Tours & TagSEA

Finally, given the challenges of scale and multiple levels of abstraction, in order to

better support the transferal of knowledge between developers in these domains, ICE

further leverages an existing Eclipse based plugin called Tours [12, 55]. Tours was

developed in previous work at the University of Victoria in cooperation with IBM in

order to provide programmers a lightweight method of developing walkthroughs of

source code [12].

The key benefit of this plugin is that it does not require analysts to jump between

environments to understand correspondence between high- and low-level code. Tours

is used essentially as a means of providing comprehensive documentation, providing

a predetermined path around the code, but still allowing an analyst to explore areas

of interest on their own. The tool is meant to help with the transfer of knowledge

between programmers. In ICE, Tours can currently be used on any representation of

code. To create a tour, the user selects lines of code which a presentation will flow

33

through, demonstrating significance between the segments. The tool comes with a

number of presentation inspired features including highlighting and dimming of the

workspace. The plug-in uses an XML representation of the line number and file name

to create a tour point.

2.5 Summary

In this chapter we explored the design and implementation details of ICE as well

as the guiding principles. The fundamental data structure, a directed graph, was

introduced along with how it can help support the remainder of ICE. The model

behind ICE was discussed and, finally, three visualizations—Cartographer, Tracks,

and a Control Flow Graph—were introduced.

34

Chapter 3

Case Studies

This chapter presents three case studies that investigate different aspects of program

comprehension. The first two case studies analyze a binary with notable characteris-

tics using ICE, IDA Pro, and Hopper. Hopper is a disassembler recently released for

Mac OS X and has quickly gained popularly within the Mac OS X reverse engineering

community. The final case study investigates the ability for ICE to be integrated into

existing Data Sources.

3.1 Case Study: Dynamic Linker

This case study investigates the ability of an analyst to comprehend an algorithm that

has been implemented. This technique could be used to verify that an implementation

is accurate or to identify weaknesses in an implementation. For this case study the

dynamic linker (dyld) that is used in Mac OS X and on iOS devices is analyzed. The

implementation of dyld being analyzed is from iOS and is available from Apple’s open

source repositories.

3.1.1 Overview of dyld

Before analyzing the implementation of dyld used in iOS it is beneficial to first define

the scope of the case study and briefly discuss how an executable is organized in iOS.

On iOS executables use the Mach-O architecture. Mach-O binaries consist of a

header followed by the required number of segments for the program being executed.

Among other information, the header contains a list of load commands. These load

35

commands are what dyld uses to properly load the segments in the executable and

handle other details that may be present in the executable.

In this case study we want to analyze the functionality that is executed up until

the point where the load commands have been parsed. To do this our entry point

into dyld will be the dlopen() function which has been selected due to its presence

across multiple UNIX-based systems and its intention as a way to load a dynamic

library.

3.1.2 Analysis with ICE

Using ICE an analysis of dyld was carried out with the goal of understanding the

process used to load an executable up to the point where load commands have been

parsed. As a first step in this analysis the executable for dyld was loaded in IDA Pro

and then ICE was started. With ICE open, dlopen() was found in Cartographer

as seen in Figure 3.1. A cursory look at dlopen() results in a lot of information to

digest and no clear method of approaching it. To give the analysis some direction,

we switch to Tracks and investigate dlopen() from that perspective.

Figure 3.2 is a screenshot of dlopen() viewed in Tracks. Since Tracks displays

function calls ordered by the address of the call 1 a best guess of which function to

move to next is dyld::load(LoadContext *) 2.

Within dyld::load(LoadContext *) 3.3 it is seen that a function exists named

dyld::loadPhase0() and it is selected as the best candidate to move forward. This

selection was made because the function is called twice from dyld::load() as seen

by the two lines connecting the nodes and the name hints at it being the path used

to load an executable—our goal for this case study.

Continuing with dyld::loadPhase0() 3.4 we see that there is a call to a function

named dyld::loadPhase1(). The naming convention being used hints that loading

an executable occurs in multiple stages.

Investigating dyld::loadPhase1() we discover that both dyld::loadPhase2()

and dyld::loadPhase3() are called. Both Cartographer and Tracks are unable

to help decide which path to take so we investigate both of them to discover that

they both call dyld::loadPhase4(). This likely means that either phase two or

1The order of function calls in Tracks is not necessarily the same as the order that the calls may
occur during execution.

2The function names shown are as IDA Pro has parsed them and include the namespace-mangling
used in C++

36

Figure 3.1: dlopen() as seen through Cartographer

phase three of the loading process are a fallback of some kind or used to handle

a special case. From dyld::loadPhase4() we are taken into dyld::loadPhase5()

and from there into dyld::loadPhase6(). In dyld::loadPhase6() 3.5 we do not

find any references to further phases in the loading process but do find a call to

ImageLoaderMachO::instantiateFromFile().

Inside ImageLoaderMachO::instantiateFromFile() 3.6 there are calls to both

”Classic” and ”Compressed” variations of the loader. Without knowing the difference

between these two variations we arbitrarily select the Classic variation. Following this

path (Figure 3.7) we discover a call to ImageLoaderMachO::parseLoadCmds() which

sounds like a match for the goal of this case study.

Using Cartographer (Figure 3.8) and Tracks to investigate ImageLoaderMachO::parseLoadCmds()

does not give much insight into the implementation of the function. However, by fo-

cusing in on a control flow graph of the function we can gain some key insights before

having to go to the level of reading and analyzing the assembly code directly.

ICE provides the ability to view, and interact with, a Control Flow Graph (CFG)

37

Figure 3.2: dlopen() as seen through Tracks

where each node represents an instruction in the function being examined. The CFG

provides three filters to help deal with a potential overload of information: Calls,

Joins, and Loops. Each filter works by highlighting the nodes so that they stand out

among the rest. For our analysis of ImageLoaderMachO::parseLoadCmds() the Calls

filter does little to help further our understanding due to the small number of calls

made.

Figure 3.9 shows the CFG of ImageLoaderMachO::parseLoadCmds() with the

Joins filter enabled. Each highlighted node identifies an instruction that has one

or more incident edges. In Figure 3.9 the nodes labelled 1 and 2 indicate points

in ImageLoaderMachO::parseLoadCmds() where a switch-like statement appears to

converge. The reason this is not conclusive is that the labelled nodes could be points

where other statements, such as a loop, converges. The switch statement is an edu-

cated guess based on the high number of incoming edges and our previous knowledge

of the load commands used in Mach-O files.

If we now switch the CFG to highlight loops we are shown the graph in Figure 3.10.

38

Figure 3.3: dyld::load() as seen through Cartographer

In this figure the node labelled 1 appears to, once again, be a convergence of multiple

code paths. Similarly, the node labelled 2 appears to be the entry point of a loop

where as the node labelled 3 appears to be some kind of a boolean check point.

From our analysis using ICE we have found a potential path from dlopen() to the

code that parses Mach-O load commands. In the function for load command parsing

we have identified numerous instructions that would be acceptable candidates for an

analysis of the assembly code.

3.1.3 Analysis with IDA Pro

Analyzing the code executed by dlopen() to the point that the load commands are

parsed with IDA Pro is now shown.

The first step taken during this analysis is to navigate in IDA Pro to the dlopen()

function. Once here we view a graph of the references from dlopen(), Figure 3.11.

As seen in the figure, this graph is exceedingly complicated. The complication largely

39

Figure 3.4: dyld::loadPhase0() as seen through Cartographer

arises from the fact that graph includes sub-references, that is references made by

references from dlopen(), and the graph does not take advantage of the available

screen real estate. The graph does support zooming and panning which helps mitigate

some of the complexity; but it is not possible to interact with nodes in any way. To

try and make sense of this graph a list of references from dlopen() was requested in

IDA Pro (Figure 3.12), unfortunately IDA Pro informs us that there are no references

to be displayed.

A recent update to IDA Pro unveiled a new graph called the Proximity View.

The Proximity View displays all references (data and calls) to and from a selected

function. The graph supports panning and zooming as well as the interactivity of

nodes. The next step in our analysis of dlopen() was to view it in the Proximity

View (Figure 3.13). To make Figure 3.13 more readable the number of child references

was limited to 1, parents and data references are not shown, and the layout was set

to radial rather than the default tree-like layout.

From the information shown in the Proximity View, we decided to follow the call

40

Figure 3.5: dyld::loadPhase6() as seen through Cartographer

to dyld::load() as was done when analyzing with ICE. Using the Proximity View

as the primary method of discovering code paths the same series of function calls was

traversed as was done with ICE. This path eventually yielded a call do the function

of interest for this case study which is ImageLoaderMachO::parseLoadCmds().

The Proximity View of ImageLoaderMachO::parseLoadCmds() is shown in Fig-

ure 3.14. Like Figure 3.13, the Proximity View has references to data and parents

disabled as well as the number child levels to display set to 1. The default layout was

used for this graph because the graph is somewhat simple. From Figure 3.14 it is not

clear what the ImageLoaderMachO::parseLoadCmds() function does so a closer look

is necessary.

Figure 3.15 is the control flow graph of the ImageLoaderMachO::parseLoadCmds()

function. The first aspect of this graph that stands out is that the nodes represent

basic blocks rather than individual instructions. The usage of basic blocks does cut

down on the number of nodes displayed; however, when zoomed in the blocks display

41

Figure 3.6: ImageLoaderMachO::instantiateFromFile() as seen through Cartographer

all the instructions contained the basic block so the nodes end up consuming a large

amount of space. The second aspect of this graph that stands out is that it is difficult

to identify the loops found in the function. To discover the loops it is necessary to

(1) understand the flow of the code and (2) trace the jumps through the basic blocks.

The end result of this analysis was that ICE was able to display similar information

in a manner that is a easier to understand due to the lack of assembly code being

shown. It is also concerning that the graph of references from dlopen() displays a

different set of information than the list of references from dlopen().

3.1.4 Analysis with Hopper

Completing the analysis one last time with Hopper we begin by navigating to the

dlopen() function. Unfortunately Hopper does not provide a way to view a func-

tion call graph so it is necessary to search (manually or via a script) through the

assembly code looking for calls. Doing this search through dlopen() we find a call

42

Figure 3.7: ImageLoaderMachOClassic::instantiateFromFile() as seen through Car-
tographer

to dyld::load() 3.16 after reading through 192 instructions. Furthermore, without

the availability of a function call graph it is not known if any other relevant function

calls occur after this point so dlopen() must be searched in its entirety.

Having performed the analysis with both ICE and IDA Pro we skip to the anal-

ysis of ImageLoaderMachO::parseLoadCmds() to leverage previous knowledge and

limit the amount of manual searching required. As with dlopen(), our analysis of

ImageLoaderMachO::parseLoadCmds() begins by first searching through the assem-

bly to identify any function calls of interest. Like the analyses carried with ICE and

IDA Pro this search yields no new information.

Switching our attention from the function at a high-level we generate a control

flow graph with Hopper. Investigating the control flow graph, it is difficult to identify

control flow structures and gain insight into the implementation of this function. This

difficulty arises from the size, complexity, and amount of information shown on the

graph.

43

Figure 3.8: parseLoadCmds() in Cartographer

Through out the analysis of the dynamic linker with Hopper it was necessary to

deal directly with the disassembly and it was not possible to leverage any high-level

abstractions to aid the task of understanding how calling dlopen() leads to load

commands being parsed.

3.1.5 Evaluation: Source Code

For this case study the authoritative source is the source code itself 3. As with each

analysis we begin by investigating the function dlopen().

Table 3.1 compares the number of functions identified by ICE as seen in Figure 3.1

to the source code and IDA Pro. It is seen that ICE identifies 34 function calls where

as there are 30 identified by IDA Pro and 40 calls made in the source code.

Since ICE uses information from IDA Pro it is important to note that the addi-

tional calls identified by ICE are a result of a function being called numerous times.

3Source code available at http://opensource.apple.com/source/dyld/dyld-210.2.3/

44

Figure 3.9: CFG of parseLoadCmds() with the Joins filter

For example, the call to dyld::mainExecutable() is made twice in the source code

which is reflected in ICE. However, the graph used in IDA Pro—Figure 3.13—only

displays connections for function calls made, not a connection per function call made.

The path from dlopen() to ImageLoaderMachO::parseLoadCmds() is as seen in

both ICE and IDA Pro. Aside from identifying functions behind pointers and inline

functions, ICE was able to assist in determining the correct path taken by code from

dlopen() to ImageLoaderMachO::parseLoad().

From this case study we have learned that ICE is capable of working with an

ARM-based codebase and that it is capable of displaying in a manner that facilities

an analyst to discover the correct path taken by the code.

45

Figure 3.10: CFG of parseLoadCmds() with the Loops filter

3.2 Case Study: Malware

The second case study looks at the ability to identify actions in malicious software.

The study looks at the infection mechanism and system changes within a malware

sample from the textbook Practical Malware Analysis [51].

3.2.1 Overview of Sample

The sample used in this case study is from Chapter 11 Lab 1 of the book Practical

Malware Analysis [51]. The sample was chosen based on the criteria that it is not

obfuscated and does not make use of self-modifying code. As a result of these criteria

it is possible to analyze the sample without having to first reconstruct import address

table or decrypt the code. The goal of this sample is malicious and it can still be

extremely destructive to the infected system.

Analysis of this sample was carried out using Windows XP Service Pack 3 running

46

Figure 3.11: Graph of references from dlopen() in IDA Pro

Figure 3.12: List of references from dlopen() in IDA Pro

inside a virtual machine. Before delving into the sample with and without ICE

an initial analysis was performed as this is the first step when performing malware

47

Figure 3.13: Proximity View of dlopen() in IDA Pro

Figure 3.14: Proximity View of parseLoadCmds() in IDA Pro

analysis.

As a reference for this case study, the analysis provided [51] by the authors of the

48

Figure 3.15: Control flow graph of parseLoadCmds() in IDA Pro

Figure 3.16: Disassembly of dlopen() in Hopper

sample is used to gauge to correctness and completeness of this study.

3.2.2 Initial Analysis

The first step taken during malware analysis is to conduct a static analysis on the bi-

nary as a whole and then to conduct a behavioural analysis as the sample is executed.

The goal of this initial analysis is to gain insight into the intentions and functionality

of the sample before the process of reverse engineering begins.

The initial static analysis of this sample was conducted using a variety of tools

(Appendix B) and we found that the sample makes several references to a file named

msgina32.dll and that a binary is contained within the resources section of the

49

Method Functions Identified
Source Code 40

ICE 34
IDA Pro 30

Table 3.1: Summary of the functions identified in dlopen()

sample. Upon extracting the binary contained within the sample, we found that it

is a dynamic link library (DLL) which is likely used as the replacement GINA [40]

DLL.

A behavioural analysis was then conducted where the sample was observed during

execution. During this analysis we observed that the sample makes no attempt to

communicate over the network. We also saw that the sample extracts the DLL con-

tained within it and modifies the Windows registry so that it is used as the GINA DLL

as suspected. Ultimately, this sample allows Windows credentials to be harvested for

later use.

3.2.3 Analysis with ICE

We begin the analysis by viewing the function calls made by the main() function in

Cartographer 3.17.

From Cartographer it is seen that the malware sample makes two calls to code in

the sample itself and the remainder to functions in Windows API. The two function

calls to itself are sub_401000 and sub_401080. Our analysis continues in sub_401080.

The call graph presented shows that the function makes calls to various functions

in the Windows API related to loading and using resources as well as a single call to

another function. Even without knowing the details of the function it is a fairly safe

assumption that this function unpacks the DLL stored in the sample and writes it to

file. At this point it is a good idea to rename the function so that it better describes

what it does and assign a comment.

Moving deeper into the call stack, we encounter a function called sub_401679

(Figure 3.18). From the call graph produced by Cartographer it is not clear what

the intent of this function is. However, we are able to see that there is a strong

correlation between this function and get_int_arg as well as write_string and

write_multi_char. Since the intent of this function is not apparent from the infor-

mation provided by Cartographer it is now necessary to analyze the assembly code

directly in IDA Pro as in the first analysis.

50

Figure 3.17: Call graph of main() produced by Cartographer

Since the binary contained a DLL in the resource section it is also necessary to

examine it. The main entry point of a DLL is a function called DllMain(), this will

be our starting point and is shown in Figure 3.19.

From Figure 3.19 it is difficult to grasp fully what is going on in this function.

While is clear that the function gets the path of the system directory, loads a library,

and does a string concatenation it is not clear what library it is trying to load and

why. To learn this we would need to turn to the assembly code and work through the

data being accessed.

Another point of interest about this malware is that it appears to implement all

required functions for a GINA DLL replacement 4. Moreover, as seen in Figure 3.20,

each implementation of these functions calls another subroutine.

The function being called, sub_10001000, is shown in Figure 3.21. Here we see a

call to sprintf(), GetProcAddress(), and ExitProcess().

4The full list of functions required in GINA DLL can be seen at http://msdn.microsoft.com/en-
us/library/windows/desktop/aa374731.aspx

51

Figure 3.18: Call graph of sub 401679() produced by Cartographer

Since the intention of GetProcAddress() is to find the address of an exported

function in a library it is likely that the library being loaded in DllMain() was

official GINA library and that this usage of GetProcAddress() is where the malware

jumps back to the official implementation so that users don’t suspect any malicious

activity. Note also the usage of sprintf() to print a message to a file, this is likely

used to log passwords entered at the logon screen.

At this point we have covered both the main executable and the library dropped

by this malware. Without having looked at a single assembly instruction we have

information on the relationships between functions and even been able to take an

educated guess at how the malware operates.

3.2.4 Analysis with IDA Pro

Analyzing this malware with IDA Pro proceeds as follows. Once again we begin by

analyzing the main executable and then progress to the contained library.

52

Figure 3.19: Call graph of DllMain() produced by Cartographer

Figure 3.22 shows the call graph of the main executable provided by IDA Pro.

From this graph 5 it is seen that the main function makes a call to a function that

deals with resources and one that makes calls to the API for the Windows registry.

Although this is useful information, the graph is static and we are forced to search

through IDA Pro for the main function.

At this point we focus our attention on the main function. Figure 3.23 is the

Proximity View of this function. The Proximity View is a visualization provided by

IDA Pro that shows all references, both code and data, to and from a function. For

this analysis we use the Proximity View to see what functions main calls and what

data it manipulates. With the Proximity View we once again see that main calls two

functions in the sample in addition to some functions in the Windows API.

Turning our attention to the function sub_401080() we find, as we did with ICE,

that this function is responsible for locating and extracting the DLL from the main

5Analysis was completed using a properly magnified graph

53

Figure 3.20: Call graph of WlxInitialize() produced by Cartographer

executable. If we now look at the function sub_401000() in IDA Pro we will see that

it is responsible for retrieving and setting the value of a registry key. To determine

which key is set and where the library is stored it is necessary to analyze the data

being accessed in the assembly code.

A similar analysis can be carried out for the library that was extracted from the

main executable. The information available and ease of the analysis is on par with

that of ICE, in particular because the high level does not require the usage of a control

flow graph.

3.2.5 Analysis with Hopper

Finally, completing the analysis with Hopper is a bit more of a challenge. As with

both ICE and IDA Pro we want to start our analysis of the main executable in the

main() function. Unfortunately, Hopper is not able to identify and label the function

as main so it necessary to search manually.

54

Figure 3.21: Call graph of sub 10001000() produced by Cartographer

The search can be conducted in one of two ways. First, Hopper does identify

the initial entry point of the executable (commonly referred to as start()). So we

could work through the assembly code and eventually identify the function that looks

the most promising. Second, since we have previously carried out the analysis we can

search for references to the functions sub_401000() and sub_401080(). Regardless of

which method is used it is either necessary to (1) work directly with the assembly code

or (2) leverage knowledge from a previous analysis. Since there is no visualizations

in Hopper it is necessary to analyze the assembly code to determine the functionality

of the code.

The process of working through assembly code continues with both sub_401000()

and sub_401080(). However, due to the need to work with the assembly code it is a

much slower process and may lead to an incorrect understanding of the code.

A similar approach can be taken to the library that was extracted from the main

executable. The lack of visualizations in Hopper continues to impede comprehension

and force the usage of the assembly code as the primary means to gaining insight into

55

Figure 3.22: Function call graph of malware produced by IDA Pro

Figure 3.23: Proximity view of main() produced by IDA Pro

the functionality of the library.

3.2.6 Evaluation: Practical Malware Analysis

A detailed analysis of the malware sample was provided by the authors in Practical

Malware Analysis [51] and can be found in Chapter 11 Lab 1 of the textbook.

The intention of the malware in this case study is to gather user credentials during

the logon process through a mechanism known as GINA. When the malware is exe-

cuted it extracts a library from its resource section named ”msgina32.dll” and stores

it on the local computer. The malware than modifies the GINA registry key pointing

it to the newly extracted library.

The library simply implements the required functions by redirecting them to the

Microsoft implementation in the original GINA library. For the functions that deal

with user credentials they are written to a log file on the local system.

Both ICE and IDA Pro were able to successfully guide us to the correct conclusions

about the malware where as Hopper required a significant amount of work to even

identify the main() function before working through the assembly code to understand

its functionality.

56

3.2.7 Sample Restrictions

The restrictions placed on the sample—no packing and no self-modifying code—were

a result of trying to analyze the Mariposa [58, 52] botnet. During this analysis we

found that the static nature of ICE made it extremely difficult to work with self-

modifying code which is used for packing. Note that this is inherent in all static

analysis techniques regardless of the tool used.

3.3 Case Study: Data Source Integration

The case studies outlined in Section 3.1.5 and Section 3.3.2 focused on different anal-

yses that may be conducted in order to better understand how a piece of software

works. This final case study shifts that focus and looks at how well ICE is able to

work with multiple Data Sources and what it takes to integrate ICE into existing

tools.

3.3.1 Multiple Data Sources

A common technique in software development is to leverage existing code as much

as possible in order to cut down on development time and costs. Consequently, the

use of libraries has become quite routine. Due to the ubiquity of libraries the need to

be able to analyze the main executable as well as associated libraries is an aspect of

program comprehension that must be considered.

As a demonstration of ICE and the default visualizations two open-source projects

have been selected under the LLVM umbrella project for analysis. The main ex-

ecutable that will be analyzed is the LLVM Debugger (LLDB) and the associated

library is the LLVM implementation of the standard C++ library, libstdc++. The

goal of this analysis is to use ICE to trace through a specific feature of the debugger,

the command-line option parsing, and then to drill down to investigate the imple-

mentation of a function in the standard C++ library.

The first step of our analysis is to look at the implementation of the main()

function since this is the entry point into LLDB and where command-line options

are first available. Figure 3.24 shows main() as seen in Cartographer; however, to

gain an idea of the order in which function calls are made it is beneficial to look at

main() as seen through Tracks (Figure 3.25). From these two views we know that

the main() function begins by initializing the lldb::SBDebugger object, spawns a

57

Figure 3.24: Call graph of LLDB’s main() function produced by Cartographer

thread, modifies signal handlers, parses command-line arguments, and then enters

the main loop of LLDB.

This combination of Cartographer and Tracks reveals that command-line argu-

ments are passed to a function called Driver::ParseArgs(). Double-clicking this

entry will enable Cartographer to display the call graph for Driver::ParseArgs(),

Figure 3.26, which reveals that a large number of functions are called from here. Due

to the lack of data-flow in this view it is not possible to determine which command-

line arguments result in which function calls; but, it is clear that the arguments result

in functions being called that can set the architecture to be debugged and query the

version of LLDB among other things. One point of interest in the Cartographer vi-

sualization is that the number of lines connecting two functions indicates the number

of times the function is called.

One function call in Figure 3.26 that stands out is a call to function called

push_back(). Although the function displayed contains the C++ name mangling

58

from the compiler, this can be decoded to learn that this function is part of the stan-

dard C++ library string implementation. This can be confirmed by searching for

push_back in the Function Selector of Cartographer as seen in Figure 3.27.

At this point we can leverage the Control Flow Graph visualization in ICE to get

a better idea of how the push_back() function is implemented. Figure 3.28 shows

the CFG of push_back() with Joins highlighted. Joins are any point in a function

where an instruction has either multiple predecessors or successors and in this case

shows that push_back() likely contains nested if-else statements.

The ability to work with multiple data sources in ICE enables not only the collec-

tion of data from a variety of sources such as IDA Pro, debuggers, and even IDEs; but

it also enables the data to be consolidated into a single model that can be analyzed

through the visualizations provided.

3.3.2 Data Source Integration

Currently the primary tool used in conjunction with ICE for disassembly is IDA

Pro. However, as an experiment to get a better understanding of how well the ICE

communication model suits other tools and to demonstrate that ICE is not explicitly

tied to IDA Pro a program based on a popular disassembling library was written that

could interact with ICE.

Writing a custom program was selected as the approach for this experiment be-

cause of lack of a plugin system provided by other disassemblers. For example,

Hopper—used in the previous case studies—provides a minimal scripting environ-

ment; however, since this is a Python interface and the Python interpreter is embed-

ded into the same process as Hopper executing long-lived scripts will cause Hopper to

block. The situation is similar for popular debuggers such as OllyDBG and Immunity

Debugger.

The program, iced 6, was written in Python and leverages the diStorm 7 disassem-

bler library for the x86 instruction set. In addition to diStorm, iced also leveraged the

standard Python socket library for communication as well as a library called pefile 8

to parse the PE file format for input to diStorm. Development of iced consumed

approximately one day of work and resulted in fully functional connection with ICE.

With respect to the communication mechanism in ICE we found that the use

6Source code presented in Appendix A
7diStorm is an open-source project hosted at https://code.google.com/p/distorm/
8pefile is an open-source project hosted at https://code.google.com/p/pefile/

59

of sockets enabled a programming language agnostic approach. This is clearly seen

given that the code for iced was written in Python, the code for IDA Pro in C++,

and the code for ICE in Java. Extrapolating from this, given the near ubiquitous

support for sockets in modern programming language environments, it is reasonable

to conclude that ICE will be able to communicate with Data Sources of all varieties.

A similar observation was made regarding the selection of JSON as the transport

protocol between ICE and its Data Sources.

Through iced we found that the data required by ICE can be readily available

given a suitable processing of the binary to be analyzed prior to communicating

with ICE. This was first seen when passing information about the functions present

in the binary to ICE from iced. Unlike IDA Pro, diStorm only provides a stream of

disassembled instructions that must then be processed to identify function boundaries.

During this experiment only 32-bit x86 binaries were used and we assumed that the

binary correctly followed the System V ABI [56] which allowed for the identification

of function boundaries. Providing information to ICE regarding call sites was less

involved since the call instruction contains the address of target location. Finally,

when producing a Control Flow Graph in ICE it was a straight forward process to

iterate through all relevant instructions and send the data to ICE.

3.4 Summary

This chapter developed three case studies focusing on different aspects of program

comprehension. The first case study investigates how one might use ICE to validate

the implementation of an algorithm. The second case study looks at program com-

prehension of malicious software and, finally, the third case study looks at the ability

of ICE to be integrated into existing Data Sources.

60

Figure 3.25: LLDB’s main() as seen through Tracks

61

Figure 3.26: Screenshot of Driver::parseArgs() in Cartographer

Figure 3.27: Searching for push back() in Cartographer

62

Figure 3.28: Control flow graph of push back() with Joins highlighted

63

Chapter 4

Validation

This chapter evaluates ICE relative to the requirements identified in Chapter 1 as

well as discusses specific aspects of ICE and the limitations it has with respect to

program comprehension.

4.1 Validating the Requirements

The results of the experiments in Chapter 3 show that ICE is capable of meeting the

initial needs outlined in Chapter 1 through its modular design and implementation

as summarized in Table 4.1.

Requirement Satisfying Component
Operate on multiple binaries ICE Core

Cross references between binaries ICE Core
Map of the analysis Tracks, Cartographer and Tours

Inline documentation through tagging TagSea

Table 4.1: Summary of requirements met by ICE

Of these requirements, the need to be able to analyze multiple binaries at one time

as well as have data propagated between binaries are met due to ICE being grounded

on the MVC model and demonstrated in Section 3.3.2. Furthermore, Figure 4.1

demonstrates the use of Tours on the same codebase as in Section 3.3.2.

Through the graph-based Data Model discussed in Section 2.4.2 ICE consoli-

dates the various pieces of information that describe an Executable Entity as a single

model accessible through visualizations. ICE provides the ability to track an analy-

sis through two of the default visualizations, Tracks and Cartographer, and through

64

Figure 4.1: Tour of the LLDB and libstdc++ code

Tours. Finally, documentation can be created using TagSEA.

4.2 Ramifications of the Design and Implementa-

tion

In addition to meeting the requirements outlined in Chapter 1 there are several ram-

ifications of the design and implementation of ICE that should be considered.

The primary benefit of the design and implementation of ICE is the flexibility

and extensibility realized through the symbiosis of Eclipse, the graph-based Data

Model, and the loosely coupled communication mechanism. The flexibility afforded by

these technologies permeates ICE, enabling analysts to work with multiple Executable

Entities simultaneously, and integrate visualizations that focus on the many levels of

relationships between the levels of abstraction.

The Eclipse-based implementation of ICE is also able to support rapid devel-

opment of new visualizations, just as Eclipse supports plugins. For example, the

initial development of Cartographer took approximately two days of development

time; including the time necessary to become familiar with the Zest rendering library.

Similarly, refactoring Tracks and Tours took under a day to configure for the ICE en-

vironment. Due to the age of the Tours project, the main challenge with integrating

this tool came from finding the correct version of multiple build files.

Currently the design and implementation of ICE assume that the Data Source will

perform an analysis of its Executable Entity to identify function boundaries. The con-

sequence of this assumption is that any piece of code not contained in a function as

65

identified by the Data Source will not be included in ICE. When developing ICE,

we decided that this was a reasonable assumption for a prototype implementation

as our primary Data Source in testing was IDA Pro which is capable of identifying

functions and passing that data to ICE. In addition, the majority of binaries used

for testing were not malicious in nature and were compiled using standard compilers.

However, this assumption potentially becomes a limitation when working with mal-

ware and binaries that leverage some programming language features. With respect

to programming language features, Data Sources are typically unable to identify to

location of functions that been inlined as the generated assembly code is placed inside

all calling functions. This is similar to the situation found in some malware where

functions are malformed and do not follow a published calling convention. Another

problem area is the analysis of exception handlers. Exception handlers are typically

written such that they have multiple entry and exit points; however, the Data Model

in ICE does not track entry or exit points.

Continuing with the discussion of multiple exit points, it is important to revisit

the information ICE stores in the Data Model. From the discussion of the Data

Model in Section 2.4.2 it is seen that for each function ICE stores an ‘end location’.

However, there is an important distinction between ‘exit point’ and ‘end location’ and

it is that the ‘end location’ is the the last address that belongs in a given function

where as an ‘exit point’ is any instruction that would cause execution to leave the

function. The consequence of this distinction is that ICE does not track exit points

in the Data Model. Conversely, when viewing a CFG through ICE it is possible to

see multiple exit points because the CFG is generated using data provided directly

from the instructions and not data from any previous analysis performed by a Data

Source.

4.3 Limitations of ICE

Despite the many advantages of ICE it does bring some limitations to light. Firstly,

ICE is currently incapable of performing dynamic analysis. This limitation will likely

be a large issue for malware analysis as malware typically includes self-modifying code

which must be evaluated in order to reverse engineer. During the development of ICE

we consciously decided to leave dynamic analysis as future work.

Secondly, a big limitation of ICE in its current implementation is the reliance on an

external application to disassemble and analyze the binary for function boundaries.

66

This becomes a problem because ICE must trust that the external application is

providing the correct information and ICE is not able to supplement the information

with an additional analysis. Furthermore, this approach of using external tools for

disassembly and analysis ties ICE to the platforms supported by the tools being

used. For the case studies conducted IDA Pro was used as the external tool which

has an excellent reputation for disassembling and analyzing code; however, it would

be beneficial to ICE to be able to perform these tasks as that would enable a larger

range of Data Sources to be used.

Thirdly, the lack of data flow analysis present in ICE limits an analyst to working

either at the function-level or with the control flow of an Executable Entity. As an

example, this limitation would prevent an analyst from performing an analysis that

identifies how user-input modifies the internal state of the program.

In addition to the limitations that can be attributed to the core components of

ICE there are a couple limitations in the default visualizations.

Tracks. The primary limitation of Tracks is that function calls are listed in as-

cending order based on the address of the call. The issue with this approach is that

the analyst can be mislead to believe one function call occurs before another when,

potentially, it may occur after due to control flow used in the function.

Control Flow Graph. The Control Flow Graph (CFG) facility provided through

ICE provides an analyst with the opportunity to gain insight into the implementation

of a function without reading the assembly code. However, due to the typically high

number of instructions required to implement a function the CFG can become ex-

tremely cluttered leading to information overload. The filters provided help mitigate

the information overload; however, as indicated in the future work, more needs to be

done to help an analyst grasp the implementation of a function.

4.4 Summary

This chapter presented an evaluation of ICE relative to requirements of Chapter 1

where we found that ICE meets the requirements through its core components and

67

visualizations. Additionally, a discussion of the consequences of the design and im-

plementation was presented along with the known limitations of ICE.

68

Chapter 5

Future Work and Conclusions

This chapter concludes the thesis and provides suggestions for future work to improve

ICE and better understand its impact on program comprehension.

5.1 Conclusion

Framework Foundation Extensibility Mechanism Visualizations
ICE Hybrid Communication and core ar-

chitecture
Yes, extensible

IDA Pro Binary Plugins (SDK) Yes, not extensible
BinNavi Binary None Yes, not extensible
BitBlaze Binary None No, not extensible
LLVM
Code

Intermediate
Language

API, Libraries No, not extensible

Table 5.1: Summary of frameworks relative to ICE

Program comprehension is an extremely difficult task where relationships between

components, and the manner in which information flows through the program, must

be reasoned about at both a high- and low-level in many codebases. The proposed

Integrated Comprehension Environment provides a framework for analysts to visual-

ize and share the relationships they find in a program through the use of interactive

call graphs and sequence diagrams. ICE is specifically designed to be flexible and ex-

tensible, allowing new visualizations to be developed and shared as they are required.

We have explored how ICE meets many of the needs in this domain, how it can easily

accept new sources, and how it can be used to mitigate issues of scale at this level

69

where the number of instructions is formidable compared to high-level code. Ta-

ble 5.1 provides a summary of how ICE compares to existing program comprehension

solutions. Though ICE establishes a good first step as a prototype comprehension

environment in this domain, it still has several limitations (Section 4.3), which we

plan to address in future work.

5.2 Future Work

The most pressing item in terms of future work is to extend ICE such that it is able

to support dynamic analysis. ICEs inability to support dynamic analysis is not a

limitation of the design and was intentionally left out due to the engineering effort

required. In order to provide support for dynamic analyses Data Sources would need

to notify ICE when new data is available. Not only would this enable dynamic analysis

of code it would also open up the possibility of investigating hybrid static-dynamic

analysis techniques.

Furthermore, development time is planned to provide support for an interface to

the Data Model through a query language. This interface would enable analysts to

focus on specific characteristics of the data available—performing queries such as what

function calls this API? and find all functions that implement this characteristic. A

query language would also find great use in overloaded and cluttered visualizations.

Another consideration, when working with object-oriented codebases, is that it is

currently challenging to associate functions with the containing class. Additionally,

the lack of a class diagram leaves some questions surrounding the code base.

With respect to avenues for research, it would be interesting to perform a user

study and investigate a potential normalized representation of instructions. Through

a user study it would be possible to better understand how ICE can fit into an analysts

workflow, what cognitive barriers—either broken or found—may be associated with

ICE, and to better understand what limitations may be associated when working

with code written using a variety of programming paradigms. Finally, investigating

possible representations of instructions would allow ICE to be further separated from

the underlying instruction set as well as enable it to include functionality to discover

functions or other aspects of a program.

70

Bibliography

[1] objdump: Gnu binary utilities. http://www.gnu.org/software/binutils/. Ac-

cessed on: 04-12-2012.

[2] otool - object file displaying tool. https://developer.apple.com/xcode/. Accessed

on: 04-12-2012.

[3] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages

1–19. ACM, 1970.

[4] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. Wysinwyx: What you

see is not what you execute. Verified Software: Theories, Tools, Experiments,

pages 202–213, 2008.

[5] J. Baldwin, P. Sinha, M. Salois, and Y. Coady. Progressive user interfaces for

regressive analysis: Making tracks with large, low-level systems. In AUIC’11:

Proceedings of the Australasian User Interface Conference, 2011.

[6] Jennifer Baldwin and Yvonne Coady. Social security: collaborative documenta-

tion for malware analysis. In Proceedings of the 12th Annual Conference of the

New Zealand Chapter of the ACM Special Interest Group on Computer-Human

Interaction, CHINZ ’11, pages 17–24, New York, NY, USA, 2011. ACM.

[7] Jennifer Baldwin, Alvin Teh, Elisa Baniassad, Dirk van Rooy, and Yvonne

Coady. Applying social psychology techniques to requirements elicitation within

highly-specialized industry software groups. In Submission, 2013.

[8] Jon Beck and David Eichmann. Program and interface slicing for reverse engi-

neering. In Proceedings of the 15th international conference on Software Engi-

neering, pages 509–518. IEEE Computer Society Press, 1993.

71

[9] Fabrice Bellard. Qemu: A fast and portable dynamic translator. In Proceedings

of the USENIX Annual Technical Conference, pages 41–46, 2005.

[10] C. Bennett, D. Myers, M. A Storey, and D. German. Working with ’monster’

traces: Building a scalable, usable, sequence viewer. In In Proceedings of the 3rd

International Workshop on Program Comprehension Through Dynamic Analysis

(PCODA), pages 1–5, Vancouver, Canada, 2007.

[11] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy. Constructing the procedure

call multigraph. Software Engineering, IEEE Transactions on, 16(4):483–487,

1990.

[12] Li-Te . T. Cheng, Michael Desmond, and M-A . A. Storey. Presentations by

programmers for programmers. In Software Engineering, 2007. ICSE 2007. 29th

International Conference on, pages 788–792. IEEE, 2007.

[13] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland

University of Technology, 1994.

[14] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to high-level

language translation. In Software Maintenance, 1998. Proceedings. International

Conference on, pages 228–237. IEEE, 1998.

[15] Codeviz: A callgraph visualiser. http://www.csn.ul.ie/ mel/projects/codeviz/.

Accessed on: 2012-12-07.

[16] cscope: Source code browser. http://cscope.sourceforge.net/. Accessed on: 2012-

12-07.

[17] ctags. http://ctags.sourceforge.net/. Accessed on: 2012-12-07.

[18] Brumley D and Jager I. The bap handbook. 2009.

[19] R. DeLine. Staying oriented with software terrain maps. In Proc. of the Workshop

on Visual Languages and Computation. Citeseer, 2005.

[20] Isil Dillig, Thomas Dillig, and Alex Aiken. Sail: Static analysis intermediate

language with a two-level representation. Technical report, Stanford University

Technical Report, 2009.

72

[21] diStorm - Powerful Disassembler Library for x86/AMD64.

http://code.google.com/p/distorm/. Accessed on: 2012-12-07.

[22] S. Ducasse, T. Girba, and A. Kuhn. Distribution map. In Software Maintenance,

2006. ICSM’06. 22nd IEEE International Conference on, pages 203–212. IEEE,

2006.

[23] T. Dullien and S. Porst. Reil: A platform-independent intermediate representa-

tion of disassembled code for static code analysis. CanSecWest, 2009.

[24] The eclipse foundation. http://eclipse.org/. Accessed on: 2012-12-07.

[25] Eclipse rich client platform. http://www.eclipse.org/home/categories/rcp.php.

Accessed on: 2012-09-10.

[26] Peter Ferrie. Anti-unpacker tricks. In Virus Bulletin, page 4, 2008.

[27] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. Smartdec: Approach-

ing c++ decompilation. In Reverse Engineering (WCRE), 2011 18th Working

Conference on, pages 347–356. IEEE, 2011.

[28] GDB: GNU Debugger. http://www.gnu.org/software/gdb/.

[29] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction in

object-oriented languages. In ACM SIGPLAN Notices, volume 32, pages 108–

124. ACM, 1997.

[30] Ilfak Guilfanov. Decompilers and beyond. BlackHat USA 2008, pages 1–12, 7

2008.

[31] Haoran Guo, Jianmin Pang, Yichi Zhang, Feng Yue, and Rongcai Zhao. Hero:

A novel malware detection framework based on binary translation. In Intelligent

Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference

on, volume 1, pages 411–415. IEEE, 2010.

[32] Hopper - disassembler for mac os x.

[33] IDA Pro. http://www.hex-rays.com/products/ida/index.shtml. Accessed on:

2012-09-10.

73

[34] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Modeling Language.

University Video Communications, 1996.

[35] JSON: JavaScript Object Notation. http://www.json.org/. Accessed on: 2012-

12-07.

[36] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of

obfuscated binaries. In Proceedings of the 13th USENIX Security Symposium,

pages 255–270, 2004.

[37] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Cali-

fornia, 3 2004.

[38] LLVM Language Reference. http://llvm.org/docs/LangRef.html Accessed on:

2011-08-20.

[39] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Br-

uschi. Testing cpu emulators. In Proceedings of the 2009 International Confer-

ence on Software Testing and Analysis (ISSTA), pages 261–272, Chicago, Illinois,

USA. ACM.

[40] Microsoft. Winlogon and gina. http://msdn.microsoft.com/en-

us/library/windows/desktop/aa380543.aspx.

[41] Hausi A. Müller, Scott R. Tilley, Mehmet A. Orgun, B. D. Corrie, and Nazim H.

Madhavji. A reverse engineering environment based on spatial and visual soft-

ware interconnection models. In ACM SIGSOFT Software Engineering Notes,

volume 17, pages 88–98. ACM, 1992.

[42] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. ACM Sigplan Notices, 42(6):89–100, 2007.

[43] OllyDbg. http://www.ollydbg.de/. Accessed on: 2011-08-20.

[44] Jianmin Pang, Yichi Zhang, Chao Dai, Di Sun, and Qiang Wang. A novel

disassemble algorithm designed for malicious file. Research Journal of Applied

Sciences, 5, 2013.

74

[45] Sukanya Ratanotayanon, Susan Elliott Sim, and Rosalva Gallardo-Valencia. Sup-

porting program comprehension in agile with links to user stories. In Agile Con-

ference, 2009. AGILE’09., pages 26–32. IEEE, 2009.

[46] Trygve Reenskaug. Models-views-controllers. Technical note, Xerox PARC,

32:55, 1979.

[47] Trygve Reenskaug. Thing-model-view-editor-an example from a planningsystem.

Xerox PARC technical note, 12, 1979.

[48] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do

professional developers comprehend software? In Proceedings of the 2012 Inter-

national Conference on Software Engineering, pages 255–265. IEEE Press, 2012.

[49] B. G. Ryder. Constructing the call graph of a program. Software Engineering,

IEEE Transactions on, (3):216–226, 1979.

[50] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.

Paterson. An introduction to program comprehension for computer science ed-

ucators. In Proceedings of the 2010 ITiCSE working group reports, pages 65–86.

ACM, 2010.

[51] Michael Sikorski and Andrew Honig. Practical Malware Analysis. No Starch

Press, 1 edition, February 2012.

[52] P. Sinha, A. Boukhtouta, V. H. Belarde, and M. Debbabi. Insights from the

analysis of the mariposa botnet. In Risks and Security of Internet and Systems

(CRiSIS), 2010 Fifth International Conference on, pages 1–9. IEEE, 2010.

[53] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. New-

some, P. Poosankam, and P. Saxena. BitBlaze: A New Approach to Computer

Security via Binary Analysis. Information Systems Security, pages 1–25, 2008.

[54] M. A. Storey, C. Best, and J. Michand. Shrimp views: An interactive envi-

ronment for exploring java programs. In Program Comprehension, 2001. IWPC

2001. Proceedings. 9th International Workshop on, pages 111–112. IEEE, 2001.

[55] Storey, M.A. and Cheng, L.T. and Singer, J. and Muller, H. and Myers, D. and

Ryall, J. How Programmers Can Turn Comments Into Waypoints For Code

75

Navigation. In Software Maintenance, 2007. ICSM 2007. IEEE International

Conference on, pages 265–274. IEEE, 2007.

[56] System v application binary interface: Intel 386 supplement. Technical report,

3 1997.

[57] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal

on computing, 1(2):146–160, 1972.

[58] M. Thompson. Mariposa botnet analysis. Technical report, Technical report,

Defence Intelligence, 2009.

[59] Tiobe programming language index. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

Accessed on: 2011-08-20.

[60] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling. Visual analysis of malware

behavior using treemaps and thread graphs. In Proceedings of the IEEE 6th

International Workshop on Visualization for Cyber Security, pages 33–38. IEEE,

2009.

[61] K. Troshina, A. Chernov, and Y. Derevenets. C decompilation: Is it possible? In

Proceedings of International Workshop on Program Understanding, pages 18–27,

2009.

[62] Microsoft visual studio. http://www.microsoft.com/visualstudio/.

[63] Anneliese von Mayrhauser and A. Marie Vans. From program comprehension to

tool requirements for an industrial environment. In Proceedings of IEEE Second

Workshop on Program Comprehension, pages 78–86. IEEE, 1993.

[64] Mark V. Yason. The art of unpacking. In BlackHat USA 2007, volume 12, page

2008, 7 2007.

[65] Eclipse zest - graphing framework. http://www.eclipse.org/gef/zest/.

[66] Zynamics. BinNavi. http://www.zynamics.com/binnavi.html.

76

Appendix A

Source Code Listing for iced

file: iced.py

#

author: Dean Pucsek <dpucsek@uvic.ca>

license: none , free in all senses of the word

#

Script to parse a PE file , disassemble the code section , and

communicate

with ICE over a socket.

#

import distorm3

import pefile

import peutils

import argparse

import socket

import json

import os

----- Global Variables -----

gExecutableFileName = ’’

COMM_HEADER_LEN = 4

COMM_HOST = "localhost"

COMM_PORT = 4040

----- Identifying & Creating Functions -----

77

class Function (object):

def __init__(self , startEA , endEA , startSlice , endSlice):

self.startEA = startEA

self.endEA = endEA

self.startSlice = startSlice

self.endSlice = endSlice

self.name = "sub_"

hs = hex(self.startEA)[2:]

if hs[-1] is ’L’:

self.name += hs[:-1]

else:

self.name += hs

def __str__(self):

return "Function: (%s) [%s :: %d, %s :: %d]" % (self.name ,

hex(self.startEA), self.startSlice , hex(self.endEA), self

.endSlice)

def generateFunctions(calls , instructions):

funcs = []

for c in calls:

if c.operands [0]. type != distorm3.OPERAND_IMMEDIATE:

continue

startEA = c.operands [0]. value

startSlice = seekAddress(instructions , startEA)

(endEA , endSlice) = findNextReturn(instructions , startSlice)

if (startEA != None) and (endEA != None):

funcs.append(Function(startEA , endEA , startSlice ,

endSlice))

return funcs

----- Instruction Operations -----

def seekAddress(instructions , address):

78

for seed , instr in enumerate(instructions):

if instr.address == address:

return seed

return None

def findNextReturn(instructions , seed):

if seed is None:

return (None , None)

for idx , i in enumerate(instructions[seed :]):

if i.flowControl is "FC_RET":

return (i.address , seed+idx)

return (None , None)

----- Disassembly & PE Parsing -----

def parsePE(exe):

pe = pefile.PE(exe)

ib = pe.OPTIONAL_HEADER.ImageBase

cb = pe.OPTIONAL_HEADER.BaseOfCode

cs = pe.OPTIONAL_HEADER.SizeOfCode

data = pe.get_memory_mapped_image ()[cb:cb+cs]

return (data , ib , cb)

def disassemble(exe):

(data , ib , cb) = parsePE(exe)

instructions = distorm3.Decompose(ib+cb , data , distorm3.

Decode32Bits , distorm3.DF_NONE)

return instructions

----- Communication With ICE -----

def buildMessage(_action , _data):

_instance_id = os.getpid ()

_origin = gExecutableFileName

79

return json.dumps({’instance_id ’: _instance_id , ’origin ’:

_origin ,

’action ’: _action , ’data’: _data})

def handle_request_functions ():

pass

@return string - json reponse

def handleICERequest(req_json):

req = json.loads(req_json)

if req is None:

return None

if req[’action ’] not ’request ’:

return None

if req[’actionType ’] is ’functions ’:

return handle_request_functions ()

elif req[’actionType ’] is ’calls’:

print "Request (calls) not handled yet"

elif req[’actionType ’] is ’updateCursor ’:

print "Request (calls) not handled yet"

elif req[’actionType ’] is ’setComment ’:

print "Request (calls) not handled yet"

elif req[’actionType ’] is ’rename ’:

print "Request (calls) not handled yet"

elif req[’actionType ’] is ’cfg’:

print "Request (calls) not handled yet"

else:

print "Unhandled request type: " + req[’actionType ’]

return None

@return none

def sendToICE(ice_socket , req_json):

req_len = len(req_json)

if req_len > 0xFFFF:

return

hi = req_len & 0xFF00

lo = req_len & 0x00FF

data = chr(hi) + chr(lo) + "\r\n" + req_json

80

ice_socket.send(data)

@return string - json request

def recvFromICE(ice_socket):

header = ice_socket.recv(COMM_HEADER_LEN)

hi = header [0]

lo = header [1]

header [2:3] are ignored since they are

the sequence "\r\n" and not needed

msgLen = ((hi << 2) | lo)

print "recFromICE msgLen: " + hex(msgLen)

msg = ice_socket.recv(msgLen)

return msg

def connectToICE ():

ice = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

ice.connect ((COMM_HOST , COMM_PORT))

hello = buildMessage(’hello ’, None)

sendToICE(ice , hello)

while True:

req = recvFromICE(ice)

resp = handleICERequest(req)

if resp != None:

sendToICE(ice , resp)

----- Entry Point -----

def main():

parser = argparse.ArgumentParser(description=’Disassemble an

executable and provide it to ICE.’)

parser.add_argument(’executable ’, metavar=’executable ’,

help=’Executable to disassemble ’)

args = parser.parse_args ()

81

global gExecutableFileName

gExecutableFileName = os.path.basename(args.executable)

instructions = disassemble(args.executable)

We need to do this filter ourselves because the Python

interface

of distorm3 does not properly handle the DF_RETURN_FC_ONLY

flag.

If you use that flag there will be a mismatch between the

values

received in the Instruction.instructionBytes field and the

address

that is being referred too. See the DecomposeGenerator method

in the distorm3 Python API and the usage of instructionBytes/

instruction_off

for more info.

calls = [i for i in instructions if i.flowControl is "FC_CALL"]

rets = [i for i in instructions if i.flowControl is "FC_RET"]

sys = [i for i in instructions if i.flowControl is "FC_SYS"]

unc_jmps = [i for i in instructions if i.flowControl is "

FC_UNC_BRANCH"]

cnd_jmps = [i for i in instructions if i.flowControl is "

FC_CND_BRANCH"]

ints = [i for i in instructions if i.flowControl is "FC_INT"]

funcs = generateFunctions(calls , instructions)

connectToICE ()

if __name__ == "__main__":

main()

82

Appendix B

Malware Analysis Tools

The following tools were used to perform the malware analysis of Section 3.2.7.

Kernel Based Virtual Machine (KVM)

KVM is a popular virtualization platform for Linux. It is used during the malware

analysis to provide a means of isolating the malware from the network and to allow

for easy restore of a clean virtual machine. More information about KVM can be

found at http://www.linux-kvm.org/.

IDA Pro

IDA Pro is the industry-standard disassembler. It is capable of disassembling a

wide range of binaries and provides many features to assist with reverse engineer-

ing. Hex Rays is the developer of IDA Pro and has information about it located at

https://www.hex-rays.com/products/ida/index.shtml.

Import REConstructor

Import REConstructor (ImpREC) is a tool that allows you to rebuild the Import

Address Table (IAT) of an executable. Malware will often intentionally damage

the IAT in order to obfuscate its behaviour during static analysis. ImpREC can be

obtained from http://tuts4you.com/download.php?view.415.

INetSim

INetSim is used to simulate a typical network and analyze the traffic of unknown

malware. It is run on a Linux host and is able to simulate various services typi-

cally found on a network such as HTTP/HTTPS, SMTP/SMTPS, DNS, among

83

many others. The INetSim project page is located at http://www.inetsim.org/.

LordPE

LordPE is a tool to dump an executable from memory and is capable of editing PE

files. It was used to dump the original malware executable from memory once it

has been unpacked. LordPE can be found at http://www.woodmann .com/collabo-

rative/tools/index.php/LordPE.

OllyDbg

OllyDbg is a debugger for the Microsoft Windows platform. It serves as a way to

step through the malware during execution and helps to evade obfuscation and

anti-reverse engineering techniques employed by the malware. OllyDbg is a free

download available at http://www.ollydbg.de/.

PEiD

PEiD analyzes an executable to identify what type of packer, if any, was used on

it. It is capable of identifying a wide range of packers that are commonly used

in malware. PEiD is available from http://tuts4you.com/download.php?view.398.

PEView

PEView is a tool to view structural aspects of a PE file. PEView allows for analysis

of the PE file header and inspection of the segments contained within the file. PE-

View can be downloaded from http://wjradburn.com/software/.

Process Explorer

Process Explorer (Procexp) is a utility for Microsoft Windows that displays cur-

rently executing processes along with detailed information about each. Procexp is

part of the Sysinternals package and is available from http://www.sysinternals.com/.

Process Monitor

Process Monitor (Procmon) is a utility for Microsoft Windows that tracks various

operations performed by a process. It is capable of tracking operations such as

forking threads and processes and accessing registry values as well as a large num-

ber of other operations. Procmon is part of the Sysinternals package and is avail-

able from http://www.sysinternals.com/.

84

Resource Hacker

Resource Hacker is static analysis utility to inspect, modify, and extract data

from the resource section of a PE file. Resource Hacker is available online at

http://www.angusj.com/resourcehacker/.

Strings

Strings is a utility that analyzes a binary for static strings and displays them

to the user. Strings are extremely useful when performing malware analysis as

they may provide information such as malicious URLs, text used for debugging,

or other textual data that indicates possible malware behaviour. Strings is part

of the Sysinternals package and is available from http://www.sysinternals.com/.

Wireshark

Wireshark is a popular packet capture and analysis program. Wireshark is capable

of performing analysis on the packet stream and saving the raw packets to file for

later analysis. It is used in malware analysis to inspect the network traffic of a mal-

ware sample and can be found on its project page at http://www.wireshark.org/.

VirusTotal

VirusTotal is an online utility that analyzes a given sample of malware and pro-

duces a report. The report includes detection information by numerous anti-virus

solutions and information obtained from running several tools on the provided

sample. VirusTotal is located at https://www.virustotal.com/.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Acknowledgements
	Dedication
	Introduction and Related Work
	Program Comprehension
	Assembly Code
	Disassembly
	Decompilation

	Visualizations
	Foundations for Comprehension
	Binary-Based Frameworks
	Intermediate Language-Based Frameworks

	Requirements for Comprehension
	Thesis Statement
	Thesis Organization
	Summary

	ICE: Evolution, Design, and Implementation
	Guiding Principles
	Evolution of ICE
	REIL Translator and Simulator
	Rails

	Design
	Implementation
	Communication
	Data Model
	Visualizations

	Summary

	Case Studies
	Case Study: Dynamic Linker
	Overview of dyld
	Analysis with ICE
	Analysis with IDA Pro
	Analysis with Hopper
	Evaluation: Source Code

	Case Study: Malware
	Overview of Sample
	Initial Analysis
	Analysis with ICE
	Analysis with IDA Pro
	Analysis with Hopper
	Evaluation: Practical Malware Analysis
	Sample Restrictions

	Case Study: Data Source Integration
	Multiple Data Sources
	Data Source Integration

	Summary

	Validation
	Validating the Requirements
	Ramifications of the Design and Implementation
	Limitations of ICE
	Summary

	Future Work and Conclusions
	Conclusion
	Future Work

	Bibliography
	Source Code Listing for iced
	Malware Analysis Tools

