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1 Introduction

This document describes the use of the iii tool for the analysis of an obfuscated executable
file. This tutorial does not cover all features of the tool but presents the most usual ones. iii
is essentially a simulator built on top of Insight framework ([Insight], page 27). Symbolic
simulation can be an efficient tool for the debugging and the understanding of program
behaviors.

Insight framework permits to interpret program semantics over different domains. Even
if its design is quite independent of the interpretation domain, iii allows, for now, only
two kinds of values: concrete and formula. In the first case, the tool behaves roughly like a
classical debugger. However, iii is limited to the interpretation of the internal model of the
program i.e., its microcode. Many low-level aspects are not yet captured by the framework:
system calls, dynamic loading, multi-threading and so on. To be short, microcode model
has threes kind of instructions:

1. Assignments lv := E where lv is a l-value i.e., a register or a memory cell and E is a
bitvector expression.

2. Guarded static jumps change the program counter to an address known a priori, if the
guard is satisfied.

3. Dynamic jumps that change the program counter to an address computed on-the-fly
by the program.

By default, values are interpreted as formulas. In this case iii behaves like a sym-
bolic simulator ([JK76], page 27). Since the arising of efficient solvers, symbolic simulation
has became an effective tool for the analysis of programs. For more details on symbolic
simulation we refer the reader to the literature, this document focus only on main ideas.

Regardless of the interpretation domain, the simulator maintains a state of the simulation
that models the content of the memory and registers, and the value of the program counter.
In the context of symbolic simulation this state associates a formula to each byte of the
memory and to each register that have been accessed during the symbolic execution; the
program counter is a concrete address that points somewhere into the loaded memory. In
addition to these three components, a symbolic state possesses a fourth one: a formula
called the path-condition which is initially set to true.

Each time an instruction of the microcode is interpreted, the symbolic state is changed
as follows:

• If the instruction is an assignment lv = E where lv is an l-value (i.e., either a register
or a memory cell) and E is an expression then, each register and memory cell used by
E are replaced by their assigned value in the current state. If some register or memory
cell, says x, used by E is not assigned then a fresh variable fv is generated and assigned
to x in the new state and x is replaced by fv in E. Finally the formula obtained from
E when all substitutions have been done is assigned to lv in the new state.

• If the instruction is a static jump to the address tgt and if the jump is guarded by some
condition G, then the simulator check first if G is satisfiable in the current state. To
this aim, as for assignments, any occurrence of a register or memory cell is replaced by
its current value or a fresh variable in G ; this gives a formula G’. The solver is then used
to verify the satiafiability of (G’ and pc) where pc is the current path-condition. If the
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formula is satisfiable then the new path-condition becomes (G’ and pc) and program
counter is updated; else the simulator tries the next microcode instruction at the same
address or stops.

• If the instruction is a dynamic jump to an address obtained from an expression E, then,
as for others instructions, registers and memory cells are replaced by their value in E.
And, the solver is used to compute a valid value addr for E under the constraint of
the path condition. If this is the case, the constraint (E = addr) is added to the new
path condition and the program counter is set to addr.
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2 Analyzed program

The program we are studying using iii is a crackme challenge, meaning that the program
implements a few security mechanisms to protect some critical parts of the software and we
have to bypass these to access the protected data.

The binary code has been obtained by compiling a small x86 assembly program using
fasm assembler ([FASM], page 27). The source code of this challenge is given in Appendix A
[Crackme source code], page 28.

As shown below, the behavior of this program is simple: It displays a prompt, reads
on the standard input a password and spawns a /bin/sh shell program if the password is
correct or exits in the other case.

$ ./crackme

Enter password:

toto

Wrong password

$ ./crackme

Enter password:

Iv6oCb2U

sh-4.2$

Our challenge is to discover, from the binary code, the password that permits the ex-
ecution of the shell program. In order to counter analysis of the binary file, the program
implements fences to protect itself from reverse-engineering:

1. The password is not stored as-is in the binary data but is hashed.

2. The algorithm that computes the hash-value of the input is cyphered and this part of
the binary is uncyphered on-the-fly at execution time.

The last point imposes to change the read/write/execute flags of the .text section of
the executable to allow self-modifying code (see elf (5)).
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3 Basic Features

3.1 pynsight interpreter

pynsight is Python interpreter extended with Insight bindings. iii is a debugger built on
the top of pynsight. As shown below, when iii is started a banner is displayed and the
tool presents a prompt that permits to interact with pynsight:

$ iii

iii

Insight Interactive Inspector

Try ’help(insight.debugger)’ to get information on debugger commands.

Type ’aliases()’ to display list of defined aliases.

No module named iiirc

iii>

The interpreter indicates that iiirc module has not been found. This point will be
clarified in Section 4.2 [Initialization file], page 14.

After the prompt, iii>, any Python script can be executed:

iii> for i in range(5):

... print 2*i

...

0

2

4

6

8

iii>

In the context of iii, some modules are pre-loaded. The most interesting one,
insight.debugger, contains all functions proposed by iii. Since we are in a Python

interpreter, documentation related to Insight modules can be displayed using the help

function; as suggested by the banner try ’help(insight.debugger)’ to discover all
functions implemented in iii.

Since iii is an interactive tool, several shorcuts have been defined for most frequently
used commands e.g., run, step, ... The function aliases lists these shortcuts:

iii> aliases()

ms -> microstep

P -> prog

cond -> cond

ep -> entrypoint

...

Each function should be documented. For instance help(microstep), or equivalently
help(ms), describes the behavior of microstep function.

3.2 Getting started

The tool can be started without any argument or with the path to a binary file to analyse.
iii accepts several options; the usual --help option lists all others. Let’s start iii with
our crackme program.
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$ iii crackme

crackme has been successfully loaded. Another way to load a binary file is to use the
binfile function. We can get informations related to what kind of program is currently
loaded; to this purpose we use the function info():

iii> info()

address_size : 0x20(32)

memory_min_address : 0x8048000(134512640)

memory_max_address : 0x80ec4b3(135185587)

format : elf32-i386

inputname : crackme

registers : ’ac’: 1, ’gs’: 16, ’af’: 1, ’zf’: 1, ’edi’: 32,

’iopl’: 2, ’cf’: 1, ’vip’: 1, ’ebp’: 32, ’cs’: 16, ’vif’: 1, ’edx’: 32,

’ebx’: 32, ’id’: 1, ’es’: 16, ’if’: 1, ’esp’: 32, ’rf’: 1, ’pf’: 1,

’tf’: 1, ’nt’: 1, ’esi’: 32, ’fs’: 16, ’df’: 1, ’vm’: 1, ’eax’: 32,

’ds’: 16, ’ecx’: 32, ’ss’: 16, ’of’: 1, ’sf’: 1

entrypoint : 0x8048c18(134515736)

word_size : 0x20(32)

endianness : little

cpu : x86-32

iii>

Among other informations, info() gives the list of registers with their respective size in
number of bits.

iii is a debugger i.e., it simulates behaviors of analyzed programs according to some
domain used to evaluate values. By default, the symbolic domain is used; this means that
values are formulas. The domain is specified as an argument to the binfile function. Cur-
rently only two domains are supported formulas and concrete values (see help(binfile)).

In iii, most of functions are related to simulation. Among them, one cannot be avoided:
run(). This function starts the simulation of the loaded program. A simulation-related
function should fail if it has not been preceded by a call to run(). For instance, if we
request the execution of one assembler instruction using the step() function while the
simulation is not started we obtain:

iii> step()

Traceback (most recent call last):

File "<console>", line 1, in <module>

File "/home/point/LaBRI/Projects/dev/install/linux-x86_64/share/insight/pynsight/in

sight/debugger.py", line 272, in step

__record(pc(), step, a)

File "/home/point/LaBRI/Projects/dev/install/linux-x86_64/share/insight/pynsight/in

sight/debugger.py", line 583, in pc

return mcpc()[0]

File "/home/point/LaBRI/Projects/dev/install/linux-x86_64/share/insight/pynsight/in

sight/debugger.py", line 594, in mcpc

return simulator.get_pc()

SimulationNotStartedException

iii>

The reader should have noticed that pynsight interpreter prints out its call stack. Re-
member that we are interacting with a Python interpreter; step() is a simple call to a
function which could have been invoked from a script.
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3.3 Step-by-step simulation

So, let’s start the simulation with run(). At this point, if run() is used without any
argument, the execution will start at the entrypoint of the program (see ep()). The function
can accept a different start address which is reused later when run is invoked a new time
without arguments.

After the invocation of run the simulator displays the list of enabled microcode arrows:

iii> run()

Arrows from (0x8048c18,0):

0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

iii>

At any moment one can display currently enabled arrows using the function arrows.
Above, only one arrow is enabled. This arrow goes from microcode address (0x8048c18,0)
to (0x8048c18,1). A microcode address has two components. The first one is a global
address that corresponds to an actual address in the concrete memory of the process (aka.
virtual memory). The second one is local address used to implement the semantics of
instructions. To know what is the current instruction pointed by the current microcode
address, use the function instr() and mcpc() to know what is the current value of the
program pointer:

iii> instr()

xor %ebp,%ebp

iii> map(hex, mcpc())

[’0x8048c18’, ’0x0’]

iii>

This instruction, xor %ebp,%ebp, can not be implemented by only one microcode state-
ment; this is why the destination of this first arrow is a local microcode address. When
the arrow is triggered the register ebp is set to 0; actually it receives the exclusive-or of its
current value with itself.

The execution of an arrow is requested using microstep() (or ms()) function:

iii> ms()

Arrows from (0x8048c18,1):

0 : (0x8048c18,1) %sf{0;1} := %ebp{31;1} --> (0x8048c18,2)

iii>

iii displays a new microcode arrow between two local addresses. Actually, following
Intel specifications, xor instruction computes the exclusive-or of its operands and then,
assigns several flags according to the resulting value; here the sign flag (sf) is computed.
The reader should have noticed that flags are implemented using an ad-hoc register instead
of a window into the actual eflags register. This is essentially due to performance reasons.

Let’s continue until the end of the xor assembly instruction:

iii> ms()

Arrows from (0x8048c18,2):

0 : (0x8048c18,2) %zf{0;1} := (EQ %ebp{0;32} 0x0{0;32}){0;1} --> (0x8048c18,3)

iii> ms()

Arrows from (0x8048c18,3):

0 : (0x8048c18,3) %pf{0;1} := (XOR (XOR (XOR (XOR (XOR (XOR (XOR (XOR 0x1{0;1} ...

--> (0x8048c18,4)

iii> ms()

Arrows from (0x8048c18,4):

0 : (0x8048c18,4) %cf{0;1} := 0x0{0;1} --> (0x8048c18,5)

iii> ms()
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Arrows from (0x8048c18,5):

0 : (0x8048c18,5) %of{0;1} := 0x0{0;1} --> (0x8048c1a,0)

iii> ms()

Arrows from (0x8048c1a,0):

0 : (0x8048c1a,0) %esi{0;32} := [%esp{0;32}]{0;32} --> (0x8048c1a,1)

iii> instr()

pop %esi

iii>

For clarity reasons, the expression at microde address (0x8048c18,3) has been cutted
off because of its length (value of the parity flag pf). After a few microsteps, the simulation
reach the address (0x8048c1a,0) which points to the assembly instruction pop %esi.

The simulation of the program at the microde-level is not so interesting. As usual with
a debugger, it is preferable to step forward at instruction-level. In this case the function
step() (or s()) must be used. Let’s restart the program and execute the first instruction
in a single step (i.e., intermediate microcode steps will be hidden):

iii> r()

Arrows from (0x8048c18,0):

0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

iii> instr()

xor %ebp,%ebp

iii> s()

Arrows from (0x8048c1a,0):

0 : (0x8048c1a,0) %esi{0;32} := [%esp{0;32}]{0;32} --> (0x8048c1a,1)

iii> instr()

pop %esi

iii>

run(), microstep() and step() are functions that drive a simulator that interprets the
semantics of instructions according to some state of the program. This state is given by:

1. The value of the program counter (i.e. the current microcode address);

2. and some context that represents the values stored into the memory and the assignment
of registers. This context depends on the domain used to represent values.

In the sequel, we will only use the symbolic domain. The context component of the states
is an assignment of memory cells and registers with formulas, and an additional formula,
called the path condition. This condition is actually a constraint on all variables used in the
formulas of the state.

The function print_state() can be used to display the current state. Actually it must
be used with care because it can print out an huge amount of data. The following example
continues the simulation for two more steps and then invokes print_state():

iii> s(); s()

Arrows from (0x8048c1b,0):

0 : (0x8048c1b,0) %ecx{0;32} := %esp{0;32} --> (0x8048c1d,0)

Arrows from (0x8048c1d,0):

0 : (0x8048c1d,0) %esp{0;32} := (AND %esp{0;32} 0xfffffff0{0;32}){0;32}

--> (0x8048c1d,1)

iii> print_state()

<(0x8048c1d,0), MemoryDump:

Registers:

[sf{0;1} = 0x0{0;1}]

[of{0;1} = 0x0{0;1}]

[esp{0;32} = (ADD uv_3_0x8048c1a_32b{0;32} 0x4{0;32}){0;32}]

[ecx{0;32} = (ADD uv_3_0x8048c1a_32b{0;32} 0x4{0;32}){0;32}]
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[esi{0;32} = [uv_3_0x8048c1a_32b{0;32}]{0;32}]

[zf{0;1} = 0x1{0;1}]

[cf{0;1} = 0x0{0;1}]

[ebp{0;32} = 0x0{0;32}]

[pf{0;1} = 0x1{0;1}]

condition = 0x1{0;1}

>

iii>

The displayed state indicates that the simulator is currently stopped at microcode ad-
dress (0x8048c1d,0). It also shows that no memory cell has been yet assigned by the
program; nothing is displayed after MemoryDump message1. Up to now, only registers have
been assigned. Some have received constant values; for instance, zf flag has been set to
0x1{0;1}. Others registers are assigned with formulas e.g. ecx is assigned with the value
(ADD uv_3_0x8048c1a_32b{0;32} 0x4{0;32}){0;32}. uv_3_0x8048c1a_32b is the iden-
tifier of a fresh variable created by the simulator. The identifier gives us some informations
on its creation context:

• uv: This variable has been allocated when an unknown value had to be assigned to a
register or a memory cell.

• 3: This is the third fresh variable created so far.

• 0x8048c1a: This variable has been created by the instruction at the address 0x8048c1a

• 32b: This variable is a bitvector of size 32 bits.

If we have a look to instruction at 0x8048c1a we obtain:

iii> instr(0x8048c1a)

pop %esi

iii>

What is the connection with ecx ? Actually, this instruction pops the top of the stack
and stores the value into the register esi. The top of the stack is pointed out by the register
esp. When this instruction has been triggered, we has the following context:

• esp was not assigned. In order to continue, the simulator assigned to esp an unknown
value abstracted with a fresh variable: uv_3_0x8048c1a_32b.

• Then, the top of the stack can be assigned to esi; it is the memory cell located at
the address pointed by esp i.e. uv_3_0x8048c1a_32b. esi receives the value/formula:
[uv_3_0x8048c1a_32b{0;32}]{0;32}].

• The top of the stack must be removed thus, according to Intel specifications, esp is
increased to point 4 bytes forward: it is assigned the value (ADD uv_3_0x8048c1a_

32b{0;32} 0x4{0;32}){0;32}.

• Finally the value of ecx comes from the next instruction located at address
(0x8048c1b,0): mov %esp,%ecx.

Like other debuggers, we can let iii run the simulation until we interrupt it or something
enforces it to stop. iii’s continue function, is called cont() (or c()). The following example
restarts the simulation and execute cont() just after the run() call.

iii> run()

Arrows from (0x8048c18,0):

1 This does not mean that the memory is empty! Actually some parts of the memory is already occupied
by the loaded sections of the program itself.
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0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

iii> cont()

execution interrupted:

Undefined value (SUB (AND (ADD uv_13_0x8048c1a_32b{0;32} 0x4{0;32}){0;32}

0xfffffff0{0;32}){0;32} 0x4{0;32}){0;32}

Arrows from (0x8048c20,1):

0 : (0x8048c20,1) [%esp{0;32}]{0;32} := %eax{0;32} --> (0x8048c21,0)

iii>

We are back to iii prompt with a message from cont() indicating that the simulation
has been interrupted due to an undefined value. The enabled arrow indicates that we are
stopped at microcode address (0x8048c20,1). At this location the program tries to assign
the value of register eax into the memory cell pointed by register esp i.e., it tries to put
eax on the stack2. Here, the problem is that we cannot concretize the value of esp because
it is an unknown value. We use the function register() to get it:

iii> register("esp")

’(SUB (AND (ADD uv_13_0x8048c1a_32b{0;32} 0x4{0;32}){0;32} 0xfffffff0{0;32}){0;32}

0x4{0;32}){0;32}’

iii>

esp is assigned a formula that depends on the variable uv_13_0x8048c1a_32b. Thanks
to the embedded SMT solver of Insight, the simulator guesses that uv_13_0x8048c1a_32b
can take many values, but concretization requires that value to be unique in order to be
translated into a memory address, thus iii can not determine the memory cell to assign.

The behavior of the simulator is not surprising since esp is not initialized3. In order to
assign explicitly a value to a register or a memory cell we use the function set(). Let’s try
to assign 0x12345678 to esp:

iii> set("esp", 0x12345678)

try to assign an inconsistent value to esp

iii>

iii replies that 0x12345678 is an inconsistent value in the current context. Meaning
that 0x12345678 is not compatible with the current formula assigned to esp, (SUB

(AND (ADD uv_13_0x8048c1a_32b{0;32} 0x4{0;32}){0;32} 0xfffffff0{0;32}){0;32}

0x4{0;32}){0;32}, under the constraint of the current path condition (which is true
here). A consistent value in this case is 0xfffffffc.

iii> set("esp", 0xfffffffc)

iii> register("esp")

’0xfffffffc0;32’

iii>

3.4 Hooks

In order to prevent the problem with an unknown esp, we should assign it just after the
call to run(). When the simulator is started, the memory and registers are not initialized;
thus, any value can be assigned to esp. However, it is preferable to choose a value that
have a sense for the program. Usually 0xFFFFFFF0 is a good candidate.

When debugging a program, run() is called quite often (for the entrypoint or elsewhere)
and initializing esp each time becomes a tedious task. Fortunately iii possesses a mean
to get rid of such repeative work.

2 Which is confirmed by a call to instr().
3 This assignment is usually done by the OS which is not described in our model.
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iii permits to attach callbacks to simulation functions (i.e., run(), microstep(),
step() and cont()). Such callbacks are called hooks.

A hook is a Python function invoked with no argument; a function with default values
assigned to all its parameters can be used as a hook. In order to attach a hook h to a
function F, one can used two functions:

1. add_hook(F, h)

2. add_F_hook(h)

The first version attach a hook to any function used for the simulation (and only them).
The list of currently attached hooks can be obtained using show("hooks") and a hook can
be removed using del_hook().

We can now set the initialization of esp as a hook4:
iii> add_run_hook(lambda: set("esp", 0xFFFFFFF0))

iii> run()

Arrows from (0x8048c18,0):

0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

iii> cont()

stop in a configuration with several output arrows

Arrows from (0x8048ed7,0):

0 : (0x8048ed7,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8048ed0,0)

1 : (0x8048ed7,0) << %zf{0;1} >> Skip --> (0x8048ed9,0)

iii> instr()

jne 0x8048ed0

iii>

The call to cont() led the simulator farther. Now the simulation display a choice between
two enabled arrows. Actually, as shown by instr(), we face a conditional jump instruction.

iii displays both arrows of the conditional jumps because both guards (NOT

%zf{0;1}){0;1} and %zf{0;1} can be satisfied (obviously not by the same assignment of
variables):

iii> register("zf")

’(EQ [(ADD (ADD 0xfffffff4{0;32} (MUL_U uv_8_0x8048c1a_32b{0;32} 0x4{0;32}){0;32}){0;

32} 0x4{0;32}){0;32}]{0;32} 0x0{0;32}){0;1}’

iii>

In order to continue the simulation, we have to follow one of the two arrows. Indeed,
microstep(), step() and cont() accept a parameter. By default this parameter is set to
0. But, in fact, this parameter is the index of the arrow to trigger. For instance, if we want
to continue the simulation assuming zf set to 1 we call cont(1). For the moment we just
make a single step and have a look to the simulation state:

iii> s(1)

Arrows from (0x8048ed9,0):

0 : (0x8048ed9,0) %esp{0;32} := (SUB %esp{0;32} 0x4{0;32}){0;32} --> (0x8048ed9,1)

iii> print_state()

<(0x8048ed9,0), MemoryDump:

...

...

condition = (EQ [(ADD (ADD 0xfffffff4{0;32} (MUL_U uv_4_0x8048c1a_32b{0;32} 0x4{0;32})

{0;32}){0;32} 0x4{0;32}){0;32}]{0;32} 0x0{0;32}){0;1}

>

iii>

4 Note that the ’lambda:’ construction is part of the standard Python language.
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The reader can notice that the value of zf has been assigned to the path condition of
the state. Each time we enforce the simulator to follow an arrow with a guard, this guard
is conjuncted to the path condition of the current state.

Now, we continue a little bit more with cont().

iii> c()

stop in a configuration with several output arrows

Arrows from (0x8057c89,0):

0 : (0x8057c89,0) << %zf{0;1} >> Skip --> (0x8057dce,0)

1 : (0x8057c89,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8057c8f,0)

iii>

Since we are yet stopped by a conditional jump, we could take a while to have a look
to the code of the program. This can be done using the disas() function. This function
accepts several parameters. The first one is a start address from which the function have
to display instructions; if it is omitted the whole program is displayed. A second one is l,
the number of instructions to be displayed (set by default to 20). Let’s have a look to the
ten first instructions from the entrypoint:

iii> disas(entrypoint(),l=10)

08048c18 <_start>:

8048c18: xor %ebp,%ebp

8048c1a: pop %esi

8048c1b: mov %esp,%ecx

8048c1d: and $0xfffffff0,%esp

8048c20: push %eax

8048c21: push %esp

8048c22: push %edx

8048c23: push $0x80494c0

8048c28: push $0x8049420

8048c2d: push %ecx

8048c2e:

iii>

Note that these instructions are those collected from the microcode built during the
simulation and not the output of a direct linear-sweep on the binary code.

3.5 Graphical views

A graphical view of the CFG of assembly instructions can be diplayed by the view_asm()

function which is based on the GraphViz tool ([DOT], page 27). When invoked, the function
view_asm() opens an XDot ([XDot], page 27) window while iii remains active:

iii> view_asm()

iii> arrows()

Arrows from (0x8057c89,0):

0 : (0x8057c89,0) << %zf0;1 >> Skip --> (0x8057dce,0)

1 : (0x8057c89,0) << (NOT %zf0;1)0;1 >> Skip --> (0x8057c8f,0)

iii>

Figure 3.1 shows an example of the graphical representation of the CFG. Each block
has a distinct color. If Insight succeeds to extract symbols, view_asm displays them on
the graph (as _dl_aux_init on the figure). The current program point is marked with a
double-surrounding red line. Some nodes appear with an oval shape; they correspond to
pending arrows for unexplored program points. Edges can be labeled with a number that
is the index of the arrow printed out by iii (by using arrows() function for instance).
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Figure 3.1: Graphical view of the CFG.

The view_mc() function displays also a graphical view of the CFG but at a microcode
level. For example, Figure 3.2 shows the exact same program as in Figure 3.1 but from a
microcode perspective.

Figure 3.2: Graphical view of the Microcode.

view_asm, as well as view_mc, can be used as hooks. The following example attaches
view_asm to all simulation functions. If the simulation is pursued then the graphical view
of the CFG is automatically updated.

iii> for f in [ cont, step, run]: add_hook(f, view_asm)

iii> cont()

...



Chapter 4: Advanced features 13

4 Advanced features

4.1 Using stubs

Still on our running example, we can notice (using the view_asm() or disas()

functions) that several symbols are discovered: __libc_start_main, _dl_aux_init,
_dl_discover_osversion, ... It seems that simulation has entered inside initialization
procedure done by the libc library. This part of the program should not be actually
connected with the behaviors of the crackme challenge.

iii offers a mechanism to bypass parts of the program. It is possible to preload a
microcode model at a specified address. These preloaded models are called stubs.

In order to skip the initialization work done by __libc_start_main, we have to:

• Abstract the behaviors of __libc_start_main into a microcode model;

• Create a loadable (i.e., xml) file for this model;

• Attach this model to the address of __libc_start_main.

The disassembly of program from the entrypoint (_start) shows that the address
0x8048da9 is pushed onto the stack just before the call to __libc_start_main. This
address points to main function1. When __libc_start_main has finished its jobs, it jumps
to the address pushed by _start onto the stack.

iii> disas (entrypoint())

08048c18 <_start>:

8048c18: xor %ebp,%ebp

8048c1a: pop %esi

8048c1b: mov %esp,%ecx

8048c1d: and $0xfffffff0,%esp

8048c20: push %eax

8048c21: push %esp

8048c22: push %edx

8048c23: push $0x80494c0

8048c28: push $0x8049420

8048c2d: push %ecx

8048c2e: push %esi

8048c2f: push $0x8048da9

8048c34: call 0x8048e80 # jump to : __libc_start_main

08048e80 <__libc_start_main>:

8048e80: push %edi

8048e81: mov $0x80ea5c0,%eax

8048e86: push %esi

8048e87: push %ebx

8048e88: sub $0x40,%esp

8048e8b: test %eax,%eax

8048e8d: mov 0x5c(%esp),%esi

8048e91:

iii>

Since initialization done by __libc_start_main does not matter for our analysis, we
will abstract its behaviors as a direct jump to the main function. For this purpose we could

1 This information can be obtained (if available) using the table of symbols attached to the program; try
help(prog().sym).
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create a microcode model that jump to the address 0x8048da9 but this is not re-usable at
all; we should prefer to jump to the address stored in the stack.

Microcode files are XML files. Even if the model for __libc_start_main is quite simple,
writing it by hands is a tedious task. The simplest way to proceed is to:

1. Write the abstraction into a small x86 assembly program:

$ cat stub_libc_start_main.s

jmp *4(%esp)

$

2. Compile it using gcc for instance;

$ gcc -m32 -c stub_libc_start_main.s -o stub_libc_start_main.o

3. Generate the microcode file using the cfgrecovery tool. A simple linear sweep disas-
sembly is sufficient to generate the exact microcode for this small program

$ cfgrecovery -f mc-xml -d linear stub_libc_start_main.o -o \

stub_libc_start_main.mc.xml

Now we have the abstraction for __libc_start_main stored into the file stub_libc_

start_main.mc.xml; it remains to load it at the address pointed by the __libc_start_main
symbol. The function load_stub() is used for this purpose. All stubs should be loaded
before the first call to run(). Actually stubs are merged into the microcode on demand
and not as a replacement of existing microcode. load_stub() takes three arguments: a
filename, an address and a Boolean that indicates whether the microcode must be relocated
at the same microcode address or not.

4.2 Initialization file

Since we already have recovered the first instruction of __libc_start_main, the loading of
the stub is useless; we must restart iii to make the stub effective.

If we restart iii, we have to redo all the work we have done so far; and it will be the
case each time we will restart the tool. Fortunately, iii permits to specify an initialization
module using the -c option. When no module is specified, the interpreter looks for a module
called iiirc. This file must be a Python script that contain calls to iii functions.

The initialization file must first import Insight/iii functions into the script
(insight.debugger and insight.iii). Then, comes a line that indicates the binary file
to load (see help(binfile) for details). And, then, it follows all our previous work:

1. First the stub for __libc_start_main is loaded;

2. Then we define a function, init_registers, in charge of the initialization of registers
according to a global table valregs.

3. Hooks are then attached: init_registers is attached to run and view_asm is attached
to simulation functions.

4. Finally the simulation is started.
$ cat iiirc.py

# mandatory import to be able to use Insight functions

from insight.debugger import *

from insight.iii import *
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# we load the binary file

binfile ("crackme", target="elf32-i386", domain="symbolic")

# load the stub replacing __libc_start_main

load_stub ("stub_libc_start_main.mc.xml", P ().sym ("__libc_start_main"))

# initialization of register

valregs = {

’esp’ : 0xFFFFFFF0,

’df’ : 0 # mandatory for string operations

}

# useful hooks

def init_registers ():

global valregs

for r in P().info()[’registers’]:

if r in valregs:

val = valregs[r]

set(r, val)

add_hook (run, init_registers)

add_hook (cont, view_asm)

add_hook (run, view_asm)

add_hook (step, view_asm)

# start simulation from entrypoint

run ()

cont()

Starting iii with the above initialization module will produce the following output:
$ iii

Insight Interactive Inspector

Try ’help(insight.debugger)’ to get information on debugger commands.

Type ’aliases()’ to display list of defined aliases.

Arrows from (0x8048c18,0):

0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

stop in a configuration with several output arrows

Arrows from (0x805ad7a,0):

0 : (0x805ad7a,0) << %zf{0;1} >> Skip --> (0x805ad9b,0)

1 : (0x805ad7a,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x805ad7c,0)

iii>

And, thanks to the view_asm window, we can see on Figure 4.1 that the simulation has
gone yet farther. Indeed, the actual code of __lib_start_main has been skipped thanks to
its attached stub. However, iii is now simulating another function of the standard library:
printf. This function will be replaced by the following stub:

mov $0x0, %eax

ret

We assume that it has no interesting side effect and enforce its return value to 0 which
is stored to eax. Another standard function should appear later, read, which is called to
read the password. The stub for this function is the following:

mov 12(%esp), %eax

mov %eax, %ecx
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mov 8(%esp), %ebx

label: movb $0x33, (%ebx)

inc %ebx

dec %ecx

jnz label

ret

This stub simulates the read of n characters stored into a memory area at address p. n
and p are themself stored onto the stack at 12(%esp) and 8(%esp), respectively. Then the
stub assigns the n memory cells with the value 0x33. This special value is used to locate
the assignment into the microcode file. This value is replaced by hand (or a sed script) by
a RND expression that will be interpreted as an unknown value by the symbolic simulator.

Figure 4.1: Graphical view of the Microcode. __lib_start_main has been replaced by
its stub but, __printf is now decoded.

We add the new load_stub calls into the initialization file and restart the tool. The
simulation stops on a jne instruction. The CFG is the following:
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After the call to read i.e., the user has entered its password, the program enters into a
loop. The small piece of code that precedes the loop does the following things:

• At address 0x8048ddb, the return value of read is copied from eax into edx. edx is
then decremented and a null character is stored at the address 0x8048d44+eax. Indeed,
the last byte read from the standard input is a carriage-return character. At address
0x8048dde, it is replaced by 0 in order to form a valid null-terminated C string. edx

store the length of the password and must not take into account the last null byte.

• From addresses 0x8048de5 to 0x8048dec, registers esi, edi and ecx are prepared for
some string operation. esi and edi are the source and destination pointers of the
operation and ecx the number of iterations. We can see that, esi and edi have the
same starting value (0x8048e08).

According to the value assigned to ecx, the loop is iterated 28 times. At each iteration of
the loop, the byte pointed by esi is XOR-ed with 0xaa. The loop covers addresses between
0x8048e08 and 0x8048e24 which are located few bytes after the loop itsef. This means that
this loop is used to modify instructions just after the loop; it is a known trick to obfuscate
programs and prevent static-analysis of it.

We can compare on-the-fly decoded instructions by the simulator and the ones that were
loaded at start-up using functions disas (left) and insight.utils.pretty_disas_memory2

(right). The latter uses a linear sweep algorithm on the original binary file raw bytes.

2 prog() returns an opaque object that contains the loaded binary file.
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iii> disas (0x8048e08, l=8)

8048e08: xor %eax,%eax

8048e0a: lods %ds:(%esi),%al

8048e0b: add %ebx,%eax

8048e0d: shl %eax

8048e0f: xor $0x12,%eax

8048e12: mov %al,%bl

8048e14: scas %es:(%edi),%al

8048e15: jne 0x8048e3f # jump to L_1

8048e17:

iii> insight.utils.pretty_disas_memory

... (prog(), 0x8048e08, l=8)

8048e08 : fwait

8048e09 : push $0x6

8048e0b : stos %eax,%es:(%edi)

8048e0c : jb 0x8048e89

8048e0e : dec %edx

8048e0f : sub %ebx,-0x48(%edx)

8048e12 : and 0x4(%ecx),%ch

8048e15 : fild -0x5cbebab8(%edx)

4.3 Examining memory

We are still stuck at address 0x8048e15. arrows() tells us what are the enabled arrows
and we choose to follow the arrow 0.

iii> arrows()

Arrows from (0x8048e15,0):

0 : (0x8048e15,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8048e3f,0)

1 : (0x8048e15,0) << %zf{0;1} >> Skip --> (0x8048e17,0)

iii> cont(0)

sink node reached after(0x8048e59, 2)

Arrows from (0x8048c39,0):

iii>

The tool indicates that the simulator has reached a sink node i.e., no successor state
can be visited. If we have a look at the code visited after the conditional jump at address
0x8048e15 we obtain:

iii> disas(0x8048e3f,10)

08048e3f <L_2>:

8048e3f: mov %esp,%ebp

8048e41: sub $0x4,%esp

8048e44: and $0xfffffff0,%esp

8048e47: add $0x4,%esp

8048e4a: push $0x8048e62

8048e4f: call 0x8049dd0 # jump to : printf, __printf, _IO_printf

08048e54 <L_4>:

8048e54: mov %ebp,%esp

8048e56: xor %eax,%eax

8048e58: inc %eax

8048e59: ret # jump to : L_0

8048e5a:

The program prints out (using printf) a string stored at address 0x8048e62 and then
returns (to the termination instruction hlt). dump function is used to display values stored
in the memory for the current state. Let’s try to dump it directly from the memory:

iii> dump(0x8048e62, l = 10)

0x57{0;8}

0x72{0;8}

0x6f{0;8}

0x6e{0;8}

0x67{0;8}

0x20{0;8}

0x70{0;8}

0x61{0;8}

0x73{0;8}
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0x73{0;8}

iii>

We get 10 values. Actually these are symbolic values; even if they are concrete. Here we
were lucky to get constants and no abstract values. dump() accepts an additional parameter
that is a callback called to transform the value returned by the simulator. The following
Python script defines a function that we will use later to translate abstract constants into
printable characters. This code is added to the configuration file.

import re

def filter_abstract_byte (val):

"""translate a concrete "abstract" value into a character"""

p = re.compile(’^(0x[0-9A-Fa-f]1,2)\.*\$’)

m = p.match (val)

if m is not None:

return chr(int(m.group(1),16))

else:

return val

If we call dump with filter_abstract_byte we get:

iii> dump(0x8048e62, l = 10, filter=filter_abstract_byte)

W

r

o

n

g

p

a

s

s

iii>

We can deduce from the content of this string that we have followed the branch where
the user enters a wrong password.

4.4 Assignment of abstract values

We restart the simulation and continue until coming back to the conditional jump at address
0x8048e15. This time we will follow the second branch:

iii> r(); c(); c(1)

Arrows from (0x8048c18,0):

0 : (0x8048c18,0) %ebp{0;32} := (XOR %ebp{0;32} %ebp{0;32}){0;32} --> (0x8048c18,1)

stop in a configuration with several output arrows

Arrows from (0x8048e15,0):

0 : (0x8048e15,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8048e3f,0)

1 : (0x8048e15,0) << %zf{0;1} >> Skip --> (0x8048e17,0)

stop in a configuration with several output arrows

Arrows from (0x8048e15,0):

0 : (0x8048e15,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8048e3f,0)

1 : (0x8048e15,0) << %zf{0;1} >> Skip --> (0x8048e17,0)

iii>

We are back to the instruction at 0x8048e15 but this time we have visited a new loop
as show on the following CFG:
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Figure 4.2

The reader should wonder why the simulation did not stop at instruction 0x8048e17

while two outgoing arrows exist there. Indeed, the simulator follows #0 arrow because it
is the only one that is enabled ! Let’s see why. We make a single step from 0x8048e15 to
0x8048e17.

iii> arrows()

Arrows from (0x8048e15,0):

0 : (0x8048e15,0) << (NOT %zf{0;1}){0;1} >> Skip --> (0x8048e3f,0)

1 : (0x8048e15,0) << %zf{0;1} >> Skip --> (0x8048e17,0)

iii> s(1)

Arrows from (0x8048e17,0):
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0 : (0x8048e17,0) %ecx{0;32} := (SUB %ecx{0;32} 0x1{0;32}){0;32} --> (0x8048e17,1)

iii> ms()

Arrows from (0x8048e17,1):

0 : (0x8048e17,1) << (NEQ %ecx{0;32} 0x0{0;32}){0;1} >> Skip --> (0x8048e08,0)

iii> register("ecx")

’0x6{0;32}’

iii>

The loop assembly instruction jumps to 0x8048e08 until ecx falls to 0. However, in the
current state, register ecx is the constant 6; thus, the second arrow going out of the loop

instruction can not be enabled.

We will be back on the loop later. For the moment we want to know what happens
when the program follows the second branch. To enable the arrow that moves to address
0x8048e19 we request the simulator to forget the current value of ecx. This is done using
the function unset() (see help(unset)).

unset() permits to replace the current value of a register or a memory cell with an
unknown value. In the context of symbolic simulation, this means that a fresh variable is
used in place of the current value.

unset() takes one, two or three parameters. Only the first one, loc is mandatory; it is
a register or an address. The second parameter, len, is the size of the memory area that
is asbtracted; by default len is set to 1. The third parameter, keep, is a Boolean value
that indicates whether or not the new value must be kept consistent with the old one. This
notion of consistency varies with the domain used for the simulation. In the case of symbolic
simulation this means that:

• if keep is true, the new state generated by unset enforces the fresh variable, say fv,
to be equal to the current value val of the register or memory cell i.e., the constraint
fv=val is added to the path-condition.

• if keep is false, the new state generated by unset forgets the current value and any
value can be assigned to the fresh variable.

keep=true is used to maintain the simulation into a real execution path. Using
keep=false means that the simulation is authorized to follow a spurious trace; this is
exactly what we want to do there: we want to enforce the trace to follow an arrow that is
not possible in the current state.

iii> arrows()

Arrows from (0x8048e17,1):

0 : (0x8048e17,1) << (NEQ %ecx{0;32} 0x0{0;32}){0;1} >> Skip --> (0x8048e08,0)

iii> unset("ecx",keep=False)

iii> register("ecx")

’abs_50_0x8048e17_1_32b{0;32}’

iii> arrows()

Arrows from (0x8048e17,1):

0 : (0x8048e17,1) << (NEQ %ecx{0;32} 0x0{0;32}){0;1} >> Skip --> (0x8048e08,0)

1 : (0x8048e17,1) << (NOT (NEQ %ecx{0;32} 0x0{0;32}){0;1}){0;1} >> Skip --> (0x8048e19,0)

iii> cont(1)

Now, the value assigned to ecx is a fresh symbol. The prefix abs is used to indicate that
the variable comes from an abstraction required by the user and the address locates the
program point where the abstraction has been invoked. The two arrows becomes enabled
and we can now follow the arrow to 0x8048e19.
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On the CFG, we can see that, after the loop, the program reaches a call to the libc

function system(). It is invoked with the string located at address 0x8048e5a as parameter
(see instruction at 0x8048e2f).

iii> dump(0x8048e5a,l=10,filter=filter_abstract_byte)

/

b

i

n

/

s

h

W

r

iii>

Good news! The call to system() spawns a shell /bin/sh; this is where we have to go.
We, now, get back to the analysis of the loop.

4.5 Breakpoints

In order to study the loop between addresses 0x8048e08 and 0x8048e17 (see Figure 4.2),
we execute r(); c(). As suggested by instructions at 0x8048df7 and 0x8048dfc, we are
apparently in a loop that compares strings located at addresses 0x8048d45 and 0x8048e1b.
Since the instruction loop is used to iterate the comparisons, it means that the length of
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the strings is stored into ecx by instruction at 0x8048e01 which assigns edx to ecx. Now
remember that edx is the length of the input (see remarks related to read in Section 4.2
[Initialization file], page 14).

Let’s have a look to these strings:
iii> register("edx")

0x80;32

iii> dump(0x8048d45, l = 8, filter = filter_abstract_byte)

uv_58_0x8056020_3_8b{0;8}

uv_60_0x8056020_3_8b{0;8}

uv_62_0x8056020_3_8b{0;8}

uv_64_0x8056020_3_8b{0;8}

uv_66_0x8056020_3_8b{0;8}

uv_68_0x8056020_3_8b{0;8}

uv_70_0x8056020_3_8b{0;8}

uv_72_0x8056020_3_8b{0;8}

iii> dump(0x8048e1b, l = 8, filter = filter_abstract_byte)

?

Z

2

P

4

>

?

?

iii>

We can deduce that string at 0x8048d45 is the input string (fresh variable has been
generated by __read). String at 0x8048e1b is quite cryptic; it should be a hashed value of
the password.

Interpreting the code of the loop could be a complicated task. In order to understand it
we can try to wait the termination of the loop and have a look to the content of the state.

To this aim we could iterate the loop by hand until instruction 0x8048e17 permits us
to go to 0x8048e19 but this a tedious work. A more generic way is the following:

1. We create a conditional breakpoint at 0x8048e17 that will be enabled when ecx is
equal to 1 (loop first decreases ecx before checking its value).

2. We add a constraint at 0x8048e15 that enforces the simulator to stay in the loop.

The function breakpoint() requests the simulator to stop at a given address. Used
without argument, it sets a breakpoint at the current program point. Otherwise, it takes a
microcode address (a global and a local address); and the latter is by default set to 0. The
function returns the identifier of the breakpoint; it can be used later by a client script.

iii> breakpoint(0x8048e17)

breakpoint set at (0x8048e17,0) with id=1.

1

iii>

To make a breakpoint conditional we use the function cond(). It can be invoked with
one or two arguments. The first one is always an identifier of a breakpoint. The second
one is a string that contains the condition to enable the breakpoint. The syntax of these
expressions is given elsewhere in Insight documentation. If the second argument is omitted
the condition is removed from the breakpoint.

iii> cond (1, "(EQ %ecx 1)")

making breakpoint 1 conditional
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1 : breakpoint: (0x8048e17,0) cond = (EQ %ecx{0;32} 0x1{0;32}){0;1}

iii>

The reader should notice that, in expressions, registers are prefixed by a ’%’ character as
in AT&T syntax. The list of breakpoints can be obtained using show ("breakpoints"):

iii> show ("breakpoints")

1 : hits=0 breakpoint: (0x8048e17,0) cond = (EQ %ecx{0;32} 0x1{0;32}){0;1}

iii>

show("breakpoints") gives the number of times the simulation did hit the breakpoint.

In order to enforce the simulator to continue inside the loop at instruction 0x8048e15,
we use the function assume(). This latter can take up to 3 arguments; the third one is the
local component of a microcode address and is, by default, set to 0. The first argument is
the location where the enforcement takes place i.e., an address. The second argument is a
string that contains a Boolean expression (same syntax as for conditional breakpoints).

In the context of symbolic simulation, the assume() adds constraints on the path condi-
tion with its second argument. The list of assumptions can be displayed using the function
show("assumptions"):

iii> assume(0x8048e15, "%zf")

iii> show("assumptions")

0x8048e15 : %zf{0;1}

iii> cont()

After the assumption at 0x8048e15, we let the simulator does its work and wait for the
termination of the loop.

4.6 Concretization

After a while we get:
iii> cont()

stop condition 1 reached: breakpoint: (0x8048e17,0) cond = (EQ %ecx{0;32} 0x1{0;32})

{0;1}

Arrows from (0x8048e17,0):

0 : (0x8048e17,0) %ecx{0;32} := (SUB %ecx{0;32} 0x1{0;32}){0;32} --> (0x8048e17,1)

iii> s()

Arrows from (0x8048e19,0):

0 : (0x8048e19,0) Skip --> (0x8048e24,0)

iii>

The simulator says that it stops because it encounters the conditional breakpoint at
address 0x8048e17 while its condition enables it. Contrary to previous sections, this time,
if we make a step forward the simulator exits the loop. Now, we have to look at what has
been computed.

In Section 4.5 [Breakpoints], page 22, we have discovered that the string at address
0x8048d45 is the input given by the user. If we look at the content of the string we can
notice that it does not change.

iii> dump(0x8048d45, l = 8, filter = filter_abstract_byte)

uv_58_0x8056020_3_8b{0;8}

uv_60_0x8056020_3_8b{0;8}

uv_62_0x8056020_3_8b{0;8}

uv_64_0x8056020_3_8b{0;8}

uv_66_0x8056020_3_8b{0;8}

uv_68_0x8056020_3_8b{0;8}

uv_70_0x8056020_3_8b{0;8}
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uv_72_0x8056020_3_8b{0;8}

A quick look at the iterated code shows that it just compute a value that is then compared
at the corresponding offset in the hashed password located at 0x8048e1b.

iii> disas(0x8048e08,l=10)

08048e08 <L_3>:

8048e08: xor %eax,%eax

8048e0a: lods %ds:(%esi),%al

8048e0b: add %ebx,%eax

8048e0d: shl %eax

8048e0f: xor $0x12,%eax

8048e12: mov %al,%bl

8048e14: scas %es:(%edi),%al

8048e15: jne 0x8048e3f # jump to : L_2

8048e17: loop 0x8048e08 # jump to : L_3

8048e19: jmp 0x8048e24 # jump to : L_4

8048e1b:

iii>

Actually the data related to computed values is stored in the path condition accumulated
each time we enforced the simulator to follow the arrow #1 to stay in the loop.

Now, we are outside the loop. This means that the current state of the simulation
encodes all traces that can reach the current program point (i.e., 0x8048e19). Thanks
to the SMT-solver integrated to Insight, it is possible to compute an assignment of fresh
variables (i.e., a concrete input) that satisfies the path-condition of the current state.

Here, we reuse a function already encountered: set(). In Section 3.3 [Step-by-step
simulation], page 6, this section was used to assign a value to register esp; the function was
called with two arguments. This time, we use set without specifying a value. In this case,
iii requests the SMT solver to pick-up a value that is consistent with the current state.

The following script calls set for each byte of the input string. Then iii displays values
computed by the solver.

iii> for i in range(8): set (0x8048d45 + i)

...

iii> dump(0x8048d45, l = 8, filter = filter_abstract_byte)

I

v

6

o

C

b

2

U

iii>

It is the password; see Chapter 2 [Analyzed program], page 3.
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Appendix A Crackme source code

Here is the source code of the crackme program. It is written using fasm ([FASM], page 27)
assembly language.

format ELF

;======================================= DATA ==================================

include ’ccall.inc’

macro crypt dstart,dsize {

local a

repeat dsize

load a from dstart+%-1

a = a xor $AA

store a at dstart+%-1

end repeat

}

;======================================= CODE =================================

section ’.text’ executable writeable

public main

extrn printf

extrn system

extrn read

extrn strcmp

msg db "Enter password:",0xA,0

buffer db 100 dup(0)

main:

;pwd = Iv6oCb2U

ccall printf, msg

ccall read,0,buffer,9

mov edx,eax

dec edx

mov [buffer+eax-1],byte 0

mov esi,debut_crypt

mov edi,esi

mov ecx,to_crypt

decrypt:

lodsb ; obfuscation par chiffrement de code

xor al,0xAA

stosb

loop decrypt

mov esi,buffer
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mov edi,pwd

mov ecx,edx

mov ebx, 0x0015

debut_crypt:

teste:

xor eax, eax

lodsb

add eax, ebx

shl eax, 1

xor eax, 0x12

mov bl, al

scasb

jnz ko

loop teste

jmp ok

pwd db 174, 90, 50, 80, 52, 62, 242, 156, 0

to_crypt=$-debut_crypt

crypt debut_crypt,$-debut_crypt

ok:

ccall system,shell

xor eax,eax

jmp fin

ko:

ccall printf,msg2

xor eax,eax

inc eax

fin:

ret

shell db "/bin/sh",0

msg2 db "Wrong password",0xA,0

The example includes the following file containing the ccall macro:

macro ccall proc,[arg]

{ common

local size

size = 0

mov ebp,esp

if ~ arg eq

forward

size = size + 4

common

sub esp,size

end if

and esp,-16

if ~ arg eq

add esp,size

reverse

pushd arg

common

end if

call proc

mov esp,ebp }
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Appendix B Stubs

Stubs have to be compiled into an object file (using gcc for instance) and then their mi-
crocode is generated using cfgrecovery.

B.1 __libc_start_main

jmp *4(%esp)

B.2 __printf

mov $0x0, %eax

ret

B.3 __read

mov 12(%esp), %eax

mov %eax, %ecx

mov 8(%esp), %ebx

label: movb $0x33, (%ebx)

inc %ebx

dec %ecx

jnz label

ret

For this stub, the constant 0x33 (51) has to be replaced by a random expression into the
generated XML file. To this aim you can use the following sed commands:

sed -e ’s+<const size="8" offset="0">51</const>+<random size="8" \

offset="0"></random>+g’ stub_read.mc.xml
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Appendix C Script for automatic password
recovery

The following Python script can be used as an initialization file (see Section 4.2 [Initialization
file], page 14 to automatically recover the password hidden in the crackme file.

# mandatory import to be able to use Insight functions

from insight.debugger import *

from insight.iii import *

# we load the binary file

binfile ("crackme", target="elf32-i386", domain="symbolic")

# load the stub replacing __libc_start_main

load_stub ("stub_libc_start_main.mc.xml", P ().sym ("__libc_start_main"), True)

load_stub ("stub_printf.mc.xml", P ().sym ("__printf"), True)

load_stub ("stub_read.mc.xml", P ().sym ("__read"), True)

# useful hooks

def init_registers ():

valregs = {

’esp’ : 0xFFFFFFF0,

’df’ : 0 # mandatory for string operations

}

for r in P().info()[’registers’]:

if r in valregs:

val = valregs[r]

set(r, val)

# filter functions

import re

def filter_abstract_byte (val):

"""translate a concrete "abstract" value into a character"""

p = re.compile(’^(0x[0-9A-Fa-f]{1,2})\{.*\}$’)

m = p.match (val)

if m is not None:

return chr(int(m.group(1),16))

else:

return val

# setting hooks

add_hook (run, init_registers)

for f in [cont, run, step]: add_hook(f, view_asm)

# conditional breakpoint to stop just after the loop that checks

# if the password given by the user is correct.

breakpoint(0x8048e17)

cond(1, "(EQ %ecx 1)")

# start the simulator

run()

# assumption must be introduced after the simulation is started

assume(0x8048e15, "%zf")

# start the computation until the breakpoint is reached.

cont()

# go out of the loop
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step()

# let the SMT solver gives us valid input character

for i in range(8): set(0x8048d45+i)

# display the password

dump(0x8048d45, l = 8, filter = filter_abstract_byte)
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