TDL3: Part 1

“Why so serious? Let’s put a smile ...”

A detailed analysis of TDL rootkit 3" generation
By Nguyén Pho Son — npson at cmcinfosec.com

I. Introduction

TDL or TDSS family is a famous trojan variant for its effectiveness and active technical
development. It contains couple compoments: a kernel-mode rootkit and user-mode
DLLs which performs the trojan operation such as downloaders, blocking Avs, etc,. Since
the rootkit acts as an “injector” and protector for the usermode bot binaries, almost all
technical evolutions of this threat family focus on rootkit technology so as to evade AV
scanners.

As in its name, TDL3 is the 3" generation of TDL rootkit which still takes its aims at
convering stealthy existences of its malicious codes. Beside known features, this threat is
exposed with a couple of impressive tricks which help it bypassing personal firewall and
staying totally undetected by all AVs and ARKSs at the moment. These aspects and
techniques will be discussed in more detail in the sections that follow.

I1. The Dropper
I1.1 The packer

The dropper (0a374623£102930d3£1b6615cd3e£0£3) comes in packed and
obfuscated as usual by a similar packer to which was used by other TDL/TDSS variants
in the past. Despite of the author’s attempt to bypass PE-file heuristics scanning by
inserting several random API imports and exports, the sample still get detected by various
heuristics based scanner.



11.2 The installation mechanism

There’s nothing interesting with the dropper except its unique approach for installation
into systems. Instead of using known or documented method, this sample actually
implements an “Oday” to execute itself thus it can bypass some lame HIPS/personal
firewalls easily.

Figure 1 illustrates pseudo-code snippet of one part of the dropper

if (¢ )
4

RtlAadjustPrivilege(8xAu, 1, HULL, {(char =)& + 3);
GetPrintProcessorDirectoryA{HULL, MULL, u, & » MAX_PATH, {(DUWORD =)#& '
GetTempFileNameA{{const CHAR *)& , NULL, NULL, & bH
GetHoduleFileMameA(NULL, (CHAR =)& , MAX_PATH);
CopyFileA{{const CHAR *)& . & . HULLY;

= CreateFilen(& , BX1FB1FFu, 1u, NULL, 3u, HULL, NULL);

’!= (HANDLE)}-1 }

-

if
{

= GetModuleHandleA{HULL});

= RtlImageNtHeader{u13);

= (PIMAGE_NT_HEADERS)
SetFilePointer(vs, - {_DUWORD) + Bx16, HULL, HULL};
= {unsigned _ int16)( ->FileHeader .Characteristics | {unsigned  int16)IMAGE_FILE_DLL);// from PE EXE to PE DLL
WriteFile(us, & . 2u, (DUDRD =)& , NULL);
CloseHandle{uZ);
= PathFindFileNanen {&

'H
AddPrintProcessorA(HULL, HULL, N "tdl");'
;e;efel’rlnﬂ’rocessorﬁlFI'I]I:I:, HOCC, “tdl"J;

DeleteFilen (& );

H
delete_dropper{);
ExitProcess{HULL);

Figure 1. Pseudo code of TDL3’s bypassing personal firewall method

First, the dropper copies itself into the Print Processor directory with a random name
determined by the system, then it modifies the characteristics of the newly created file to
convert it into a PE Dynamic Linked Library (DLL).

And here comes the interesting part of the dropper. After changing the characteristics, the
dropper registers the malicious DLL file as an Print Processor which is named “tdl” by
calling winspool API AddPrintProcessoraA (). Internally, this API will issue an RPC
call to the Printing Subsystem hosted by spoolsv. exe process and force spoolsv.exe
to load the Print Processor DLL remotely. In this case, spoolsv.exe will execute the
DLL version of the dropper copied inside the Print Processor directory inside the context
of spoolsv.exe process. In fact, spoolsv.exe is usually a system-trusted process to
almost personal firewalls hence the malicious DLL has the permission to do anything to
the system without neither any notification nor alarm to the users.

Although this is a pretty cool method to remotely load and execute a malicious DLL into
another trusted process, it has some limitations too. First, the caller must have
SeLoadDriverPrivilege and second, it has to be able to write file to Print Processor
directory. Moreover, when an application tries to acquire the
SeLoadDriverPrivilege, some personal firewall will notify the user about that
suspectious behaviour. Anyway, due to the fact that most of users aren’t technical aware



and always log in with Administrator privilege, I guess the successful installation rate
isn’t affected seriously by these aforementioned obstacles.

L
TDL3_dropper.exe Spoolsv.exe
CopyFileA

(%PrintProcessorDir%\7.tmp)
™,

Patch 7.tmp to 7.t -

tmp to convert 7.Imp LoadLibrary(%PrintProcessor
» to DLL file P

ey
(%PrintProcessorDir%\7.tmp) Dir%\7.tmp)

7 tmp drops the driver file A
CreateFile “h
(%systemroot%\system32\ | &

drivers\8.tmp)

» AddPrintProcessor(“7.tmp”)

.| Create service “tdiserv” for
8.tmp driver

> Self delete

> NtLoadDriver(“tdlserv”)

Figure 2. TDL3 user-mode dropper: Bypassing personal firewall mechanism

Back to the dropper, after being loaded into spoolsv.exe, the malicious DLL drops a
driver and begins its second stage infection in kernel space by calling
NtLoadDriver () directly.

I1.3 The first kernel mode dropper stage: Unpacking

Now the battlefield takes place in kernel mode. The dropped driver loaded by
spoolsv.exe is actually a loader for another embedded kernel codes. From the its
DriverEntry(), the driver allocates kernel pool heap to copy the compressed data to and
employs aPlib to unpack the real rootkit driver inside itself.

One thing worth to mention: the author employed a small trick in an attempt for anti-
static analysis during this unpacking process. He first hooks an imported API in the IAT
of current driver with the unpacking routine, then call that API, and because that API
address in the IAT has been modified already, the execution is transferred to the real
decompressing procedure. When an analyst uses static analysis (e.g IDA disassembly) he
could miss the unpacking routine.



In the sample I analyze, the hooked API is Rt1AppendAsciizToString.

Before After
kd> dps 0FE8B32000 3

kd> dps 0FSB22000 f8b32000 804e367c nt!strchr
£2b32000 B804e367c nt!strchr £8b32004 8050fd66 nt!ExillocatePool
ESLI200% BOZ72515 mi|ToCrereStrconFileobisoilite foboghnn DERTRaLl mtllocrotentroanmrloOnIo NS

7 £ [ nt |[ExAdcquireResourceSharedlite
Eggggggg 233333?3 E'é:Ezégggi;gﬂﬁgﬁgifgigﬁdééte £8b32010 804dd0f2 ntlZwCreateSymboliclinkObiect
EEBIZ014 B0FfE3d nt!Rt1NtStatusToDosErrezHaTeh fobszlid  Blirdfed ntiRtIitstotusTolosErzomlioloh
fEDAZ018 040650 ntiBuCpenElle £8b32018 §04dd69d nt!ZwlpenFile
£8b3201c B050=0ba nt|FoSetPoverState £8b3201c  8050=0ba nt!PoSetPoverState
£8b32020 B8050b62d ntlsprintf £8b32020 8050b62d ntlsprintf

f6b32024 804£a9d5 nt!RtlInageltHeader
PRt PE-T Ak T

Qoaadnr

f8b32024 804£f29d5 nt!REtlImageNtHeader
g Qg BOE7910C nt!RtlueryvitonIndtomTable

f8b3202c  818a0iba

Tobl

ESb3202c 80632949 nt!RtlippendisciizToString|

fBBa2020 TIddUCy Lt 1LV Icatensct 100 BDa2040  o04ddich nt | ZyCreateSection
f8b32034 B04£{dBEf7 ntlwcscat £8b32034 504{d8f7 ntlwcscat

£8b32038 804d9437 nt!RtlInitUnicodsString £8b32038 804d9437 nt!RtlInitUnicodeString
£8b3203c  8056b&d4 ntlCclnpinData £8b3203c 8056b6d4 nt!Cclnpinlata

f8b32040 304d%=3a nt!mencpy |

£8b22044 B8054b7aa nt|ExFrocPool LEDAZDAL Blidacss.mtinencpye.

£8b32048 80573b01 nt!MnMapView(iSection
f8b3204c 00000000

Figure 3. TDL3 kernel mode dropper anti-static analysis: IAT self hooking

At the end of this stage, the loader performs the PE mapping against the unpacked driver
over an NonpagedPool and finally jumps to that new zone, begins its second stage of
kernel mode infection.

I1.4 The second kernel mode dropper stage: Infecting & storing rootkit’s code

The real deal actually lies in the “freshly baked” codes. It does various things to survive
the rootkit reboot, but the most important and interesting parts are:

o Infecting miniport driver
o Survive-reboot strategy
o Direct read/write to hard disk using SCSI class request

e Infecting driver

The infector first queries the device object responsible with partition0 on the
hard disk device which the “\systemroot” is linked/installed on. It’s convinient
for the rootkit to retrieve the last miniport driver object and the name of the
driver’s binary file via that device object. For example, in my analysis, name of
the driver is “atapi” while
“\systemroot\system32\drivers\atapi.sys” is going to be infected.

The infecting algorithm isn’t complicated, it overwrites the data of “.rsrc” section
of victim driver with 824 bytes instead of kidnapping the whole driver like others
did (e.g Rustock.C), so that size of the infected file isn’t changed before and after
the infection occurs. The original overwritten data is then stored to certain sectors
on disk for later file content counterfeiting. The infector also modifies the entry
point of infected file to address of the 824 bytes codes.



Rootkit’s survive-reboot strategy

The previous variants of TDL/TDSS survive reboot by creating themselves
startup services and keep their malicious codes in files normally. So what’s new
in this TDL3? The author(s) made their decision to go lower & deeper. The
rootkit no longer uses file system to store its files, it reads and writes directly onto
disk’s sectors. The main rootkit’s code is stored at the last sectors of the disk with
the sector number is calculated by formula total number of disk -

(number of rootkit sector + number of overwritten_data_ sector).

The next time system reboots, when the 824 bytes in infected driver gets
executed, it waits for file system’s setup finishing (by registering itself a
filesystem notification routine), then loads and runs the rootkit stored at last
sectors of the disk.

Figure 5 demonstates how TDL3 performs the installation: the real rootkit’s codes
and overwritten atapi.sys’s data are placed into a buffer at 0x817e1000. Total
size of data to be written down is 0x5e00 bytes. Next, it writes this buffer into
continous sectors start at sector number 0x3fffc0. Notice that 4 bytes of written
buffer is the signature of the rootkit - “TDL3’ (without quotes). The 824 bytes
loader also checks for this signature when it reads back these sectors.

nov eax, 388h
mov eax, [eax-210808606h]
1] eax, [eax]
|_I(I:‘?r|p dword ptr [eax], "3LDT®
jnz short loc 266A7
mouv eax, [ebp+delta]

Figure 4. 824 bytes loader check for TDL3 signature
Rootkit’s direct read/write feature
Another interesting feature of the infector/dropper is its approach to issue

read/write/query requests directly to hard disk via the infected miniport driver
dispatch routine.



kd: p
f8c99fdl e8dla3ffff call f8-943a7 ——» execute_srb_operation()

kdr dd esp 16

£929f464 G1lbaB7£0 £396H7hd 00000080

£9=9€474 [E17e1000 00009=00] CSIOP_WRITE

kdr . writemem L 3 BrPeddl0 15e00 CJ

WUriting 5e00 bytes. . .. f.......

Ohiject: 81bafrt0 b=
UbjectHeader:
HandleCount: 0O
Directory Object

kd: ln £996b7h4

(£996b7L4) atapi ! JiePortDispatch | (£996bcoc) atapi!IdePortTickHandler

Exact matches

IataEi!IdePortDisEatchl = «no type information:

kd: db 817=1000 TDL3 signature
§17=1000 54 44 4c 33 00 00 00 0O-00 OO gﬂ 00 o0 grme=e0| TOL3. |..........
§17=1010 00 00 01 00 10 00 00 00-18 nn nn #n nn nn nn o0=—-—

81721020 00 00 00 00 00 00 00 po-o@riginal overwritten opp .. . .. . . ..
81721030 30 00 00 80 00 00 00 00-00 atapi.sys's-bytes - 00 —H——————
B1721040 00 0D 01 00 09 04 00 D0—48 AD DG B eDnG—J—DJ._EL% ........ H... .c..
817=1050 8c 03 00 00 00 00 00 00-00 00 00 00 00 00 00 O0) . ... ..........
817=1060 00 00 00 00 8c 03 34 00-00 OO0 56 00 53 00 S5f 00| ... . .4. V.5 _
81721070 56 00 45 00 52 00 53 00-49 00 4f 00 4= 00 5f 00| V.E.R.S.I.0.N._.
kd> u B17=1000+384

write buffer and its length

81721384 210803dfff mowv sax,.dvord ptr ds: [FFDFO308h]

81721389 8bdc2408 mow ecx. dvord ptr [esp+i] .
817=1308d 56 push esi «———— Rootkit's codes
817=138= 8b742408 mow e=i.dvord ptr [esp+8] (384 bytes from the start
817=1392 57 pu=sh edi a

81721397 298804010000  mov dvord ptr [eaz+l04h] ece OF Written buffer)
81721399 8b7elc nov edi, dvord ptr [esi+0Ch]

8172139 6844923789 push 89379244h

kdr u

817=l3al e8fe0l10000 call 81721534

817=13a6 50 push =ax

817=13a7 =847020000 call 817=1513

817el3ac 57 push edi

817=13ad ££d40 call =154 .

kd> dd esp 17 sactor number to write

f9=29f464 81baf7f0 £996b704 00000025 00000080
f929f4?4 81721000 00005300 _..---""'-‘) over
Figure 5. TDL3 uses SCSI requests to write rootkit codes to harddisk

For example, as seen in the Figure 5, in order to write the rootkit’s codes along
with the orginal overwritten atapi.sys’s bytes to the last sectors of hard disk, the
kernel mode dropper calls a special routine to build an IRP with
I0_STACK_LOCATION stack contains an SRB_FUNCTION EXECUTE_SCSI
SCSI_REQUEST BLOCK which is filled in with appropriate information about
write buffer, buffer’s length, sector to write to, the dispatcher’s routine
(IdePortDispatch) and target device object. This method has been used before
in class drivers such as classpnp. sys and especially implemented in some
famous antirootkit tools such as RootkitUnhooker. Figure 6 shows the pseudo-
code of TDL3 setting up the SRB before sending requests to infected miniport
driver’s dispatch routines.

-SrbFlags = | 8x28;

-SenselnfoBuffer = & H

.Cdb[8] = g // OperationCode
.DataBuffer = (FUDID) S /7 LogicalBlockByte@
.Cdb[2] = >» {char)8x18u; // LogicalBlockByte1
-Cdb[3] = >> (char)@x18u;

.Length = Bx46u;
-.Function = @;

-QueueAction = B8x28u;
.CdbLength = BxAu;
-SenseInfoBufferLength = Bx12u;

.DataTransferLength = H
.TimeOutValue = 5000;
.InternalStatus = H
.Cdb[4] = BYTE1( I H // LogicalBlockByte2
.Cdb[5] = 5 // LogicalBlockByte3
if ( )
{
-Cdb[?] = >> 9 3> 8; #/ TransferBlockshish
-Cdb[8] = >» 9; #/ TransferBlockslsh

Figure 6. TDL3 setting up SCSI_REQUEST_BLOCK



II1I. The TDL3 Rootkit
I11.1 File content counterfeiting

The most stand-out feature of TDL/TDSS rootkit family is their ability in hiding the
rootkits’ files from scanners. Obviously files are the most important weakness in the
gang’s plan to stay under radars. So that’s why the author(s) put so much efforts in to
improve their stealthy existences. You can reference DiabloNova’s article in his
rootkit.com blog for more information about this rootkit family file-hiding technique
evolution.

Not so surprised, it is indisputably still a hide-and-seek game with the mysterious TDL3
rootkit. The author(s) of this rootkit no longer hide their whole files from scanners.
Instead, they followed Rustock.C’s trick: counterfeiting the content of infected victim
and other protected areas.

And it did pretty well. Currently all fully updated AVs and ARKs out there cannot detect
the rogue while it is active. Even if they could, there would be just a little piece of it (e.g
the load image notify routine, steathy codes etc,.). All attempts at reading the real
infected file’s content simply return innocent and orignial bytes.

How did TDL3 protect itself so effectively?

In order to protect the real content of the infected hard disk miniport driver, the rootkit
hooks the the miniport driver object and patches all dispatch routines to the rootkit’s one.

817=64=4 GG push e=i esi = address of rootkit hook handler
217eb4a? f£756cC push dword ptr r['ebpf&%hf P

gl7ebdea fid0 call gax {ntlREtlFillHenorylllong (&804dbl1d)}
Gl7ebdec ££R7EE000000 push dword ptr [edi+88h]

817e6R4f2 57 puzh edi

Figure 7. TDL3 patching atapi.sys’s dispatcher table

The rootkit’s hook handler will filter out every IRP IRP_MJ_SCSI type packet traveling
through the miniport driver but have interests only in IRP SCSI requests which have SRB
function set to SRB_FUNCTION EXECUTE_SCSI and SRB flags consists of
SRB_FLAGS_DATA IN or SRB_FLAGS DATA OUT.

If SRB flags is in combination of SRB_FLAGS_DATA 1IN, the hook handler performs the
file content counterfeiting by setting a completion routine before forwarding the original

IRPs. This completion routine does the dirty stuffs on returned buffers.

The completion routine is illustrated by Figure 8a



io_compl routine (

_OBJECT target deviece, IN PIRP irp, IN PVOID context)
PPROTECTED SECTOR protected sector_info = (FPROTECTED SECTOR) (®(uint32_t *) (Oxffdf0308) + O0x114);
read buffer = MmGetSystemRddressForMdlSafe (irp->mdl, NormalPagePriority)
start_sector = context->read write sector;

if (start_sector + read len / sector_ size < total disk sector)
if (number of protected sectors)

num sector = 0;

if (| start_sector + read len / sector_size > protected sector_info[i]->»sector_number)

dest = read buffer + protected sector info[i]-»offset +
sector_size * (protected sector in [i]->=ector_number - Start_sector);

memcpy [ dest,

rotected sector info[i]-»original data,
rotected sector info[i]->data_len);
num Sector++;
while (num sector < number of protected sectors);:

Figure 8a. Pseudo code of TDLS3 filtering completion routine

NOTE: Protected sectors array is where TDL3 store the information about content-modified sectors: the sector number,
length of data to be copied, offset and address of buffer contains original data. Its structure is defined in Figure 8b. The
protected sectors in the sample I have are ones which were overwritten with 824 bytes rootkits loader and other
atapi.sys areas.

Figure 8b. TDL3 protected sector structure

TR s T BTN

} PROTECTED SECTOR, *PPROTECTED SECTCR;

As shown above, if an application issues one TDL3’s interested SCSI request, the
completion routine will loop through the protected sectors array to check whether the
requested start sector and number of sector perform operation on fall within one of them.
If it does, the rootkit copies the orginal data over the input buffer, returns the application
totally fake data.

The rootkit will also zero out request buffer if it’s an attempt at retrieving last sectors of
hard disk where rootkit’s code (kernel codes, config.ini, DLLSs) is stored.



protected sSector 1Rnioli]->original_data,

protected sector info[i]->data len);
num Sector++;
while (num sector < number of protected sectors);
else
if (start_sector > last_sector store_rootkit codes)
Zero-out the read buffer ...

Figure 9. Pseudo code of TDL3 blocking reading last sectors of disk

TDL3 also adjusts modified parts of infected image in kernel memory so that any
memory forensic attempt will fail in detecting suspectious mismatches between hard disk
image and the loaded one.

Because the hook takes place in a very low-level miniport driver, all AVs and ARKSs have
turned into fools relying the forged data returning from the rogue. I believe none of them
can detect it without changing the read/write mechanism.

1I1.2 Anti-Hook detection

Of course, rootkits hook. That’s isn’t new. So before throwing this nasty creature into
debugger, I tested it with some most up-to-date version of antirootkits out there to find its
hooks: my CodeWalker private version, a_d 13’s RootRepeal, UG North’s RkU, GMER.
None of them gave the correct result of TDL3’s dispatcher patches.

Why? After a few debugging sessions, it turned out there was just a small trick to defeat
all those above tools. The rootkit simply creates a 11 bytes stub inside the infected driver
image space. As you can see on Figure 11, this 11 bytes stub actually transfers the
execution flow to real rootkit IRP hook handler remains on kernel pool heap at
0x817e4e31. Because the detection algorithm of all above antirootkit tools basicallly
relies only upon checking whether the dispatcher routines’ addresses fall within the range
of driver images without analyzing the actually absolute destination of the handlers, thus
definitely they would buy the rootkit’s trap.



kd> !drvobj 81lbaBfig 2

Driver object (81bagf38) iz for:
~Driver~atapi
DriverEntry:

£997a5f7 atapi!GeDriverEntry

DriverStartIlo: £996c7ct atapi!IldePortStartlo

DriverlUnload:
AddDevice:

Dizpatch routines:

[00] IRP_MJ_CEEATE

] IRF_MJ_CREATE NAMWED FIPE
] IRF_MJ_CLOSE

] IRP_MJ_READ

] IRF_MJ_URITE

] IRF_MJ_QUERY_INFORMATION
1 IRP_MJ_SET_INFORMATION
] IRP_MJ_QUERY_EA
1 IRP_MJ_SET_EA

1 IRF_MJ_FLUSH_BUFFERS

] IRF_MJ_QUERY_VOLUME_INFORMATION
1 IRP_MJ_SET VOLUME INFORMATION

1 IRF_MJ_DIERECTORY_CONTROL

1 IEF_MJ_FILE SYSTEM CONTROL

O] IRP_MJ_DEVICE CONTROL

0f] IRP _MJ_IHTEENAL DEVICE CONTEOL
10] IRP_MJ_SHUTDOWH

11] IRP MJ_TOCK_CONTROL

12] IRF MJ_CLEANUP

13] IRP MJ_CREATE MAILSIOT

14] IRP_MJ_QUERY_SECURITY

15] IRF _MJ_SET_SECURITY

16] IRF_MJ_POUER

17] IRP_MJ_SVSTEM_CONTROL

18] IRF _MJ_DEVICE CHANGE

19] IRP_MJ_QUERY_QUOTA

[1a] IRP_MJ_SET QUOTA

[1b] IRF_MJ_FNP

[ Y e e e e W e e e e W e
CLO O w0 00 =0 O e G0 RO

£9976204 atapi!IdePortUnload
£9974300 atapi!Channeliddhevice

£996£572
805025e4
f996£572
8050254
805025=4
805025=4
805025=4
805025=4
805025=4
805025=4
805025=4
205025=4
2050254
80502524
£996£592
£996b7hd
805025=4
805025=4
8050254
8050254
805025=4
805025=4
£996£5bc
£9976164
805025=4
805025=4
8050254
£9976130

atapi ! IdePortalwaysStatusSucces=Irp
nt ! IopInvalidlDeviceRequest

atapi ! IdePortalwaysStatusSucces=Irp
nt ! IopInvalidDeviceRequest

nt ! IopInvalidDeviceRequest

nt !l IoplnvalidleviceRequest

nt !l IopInvalidleviceRequest

nt ! IopInvalidlDeviceRequest

nt ! IopInvalidleviceRequest
nt!IoplnvalidleviceRequest
nt!IoplnvalidlDeviceRequest
nt!IoplnvalidleviceRequest
nt!IoplnvalidlDeviceRequest
nt!IoplnvalidlDeviceRequest

atapl! IdePortDispatchDeviceControl
atapi! IdePortDispatch

nt ! IopInvalidDeviceRequest

nt ! IopInvalidDeviceRequest

nt ! IopInvalidDeviceRequest

nt ! IopInvalidDeviceRequest
nt!IopInvalidDeviceRequest

nt ! IopInvalidDeviceRequest

atapi | IdePortDispatchPover

atapi ! IdePortDispatchSystenControl
nt ! IopInvalidDeviceRequest

nt !l IopInvalidleviceRequest

nt | IoplnvalidleviceRequest

atapi! IdePortDispatchPnp

Figure 10. atapi.sys’s dispatcher table before TDL’s hooks

Dispatch routines:

00] IRP_MJ_CEEATE f99629£2
01] IRP_MJ_CEEATE_KAMED PIPE £99629£2
02] IRP_MJI_CLOSE f99629{2
03] IRP_MJ_READ f99629{2
04] IRP _MJ_WRITE f99629{2
05] IRP _MJ QUERY_INFORMATION f99629£2
06] IRE MJ SET INFORMATION f99629£2
07] IRP_HMJ_QUERY_EA f996=912
02] IRP_MJ_SET_EA £99629£2
09] IRP_MJI_FLUSH BUFFERS f99629£2
O0z] IRP_MJ_QUERY_VOLUME IHFORMATION £99629£2
0b] IRP_MJ_SET_VOLUME INFORMATION £99629£2
Oc] IRP_MJ_DIRECTORY_CONTROL f99629£2
0d] IRP_MJ_FILE_SYSTEM _CONTROL f99629{2
Oz] IRP _MJ_DEVICE_CONTROL f99629{2
0f] IRP HJ INTERWAL DEVICE CONTROL £99629£2
10] IRP_HJ_SHUTDOWH £99629£2
11] IRP_MJ_LOCK_CONTROL f996=912
12] IRP_MI_CLEANUP £99629£2
13] IRP_MJ_CEEATE_KAILSLOT f99629£2
14] IRP_MI_QUERY_SECURITY f99629£2
15] IRP_MJ_SET_SECURITY £99629£2
16] IRP_MJ_POWER f99629{2
17] IRP_MJ_SYSTEM_CONTROL f99629{2
18] IRP_MJ_DEVICE_CHANGE f99629{2
19] IRP_MJ QUERY_QUOTA f99629£2
la] IRP_HJ _SET_QUOTA f99629£2
1b] IRP_HJ_FHF f996=912

atapi |PortPassThroughZerolnusedBuf fers+0x34
atapi |PortPassThroughZerollnusedBuf fers+0=x34
atapi |PortPassThroughZerolnusedBuf fers+0=x34
atapi |PortPassThroughZerolnusedBuf fers+0=34
atapi |PortPassThroughZerolnusedBuf fers+0x=34
atapi |PortPassThroughZerolnusedBuf f er=+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPaszsThroughZeraollnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerollnusedBuf fers+0x34
atapi |PortPassThroughZerolnusedBuf fers+0x34
atapi |PortPassThroughZerolnusedBuf fers+0=34
atapi |PortPassThroughZerolnusedBuf fers+0=34
atapi |PortPassThroughZerolnusedBuf f er=+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPazsThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x234
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerolnusedBuf fers+0=34
atapi |PortPassThroughZerolnusedBuf fers+0=34
atapi |PortPassThroughZerolnusedBuf fers+0x34
atapi |PortPassThroughZerolnusedBuf f er=+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34
atapi |PortPassThroughZerallnusedBuf fers+0x34

d> u £996e9£2 12
b tapi | PortPassThroughZerolnusedBuf fers+0xz34
f99629f2 al0803dEff mov
996297 ffalfc000000 imp

gax,.dword ptr ds: [FFDF0308h]
dword ptr [eaz+0FCh]

Hook stub inside atapi
image space

-

kd: u poi(poi(FFDFO308h)+fc) LY
55

. Real rootkit's IRP hook

817ededl push ebp

817ede3? Gbec mow ebp. esp

817ed=34 8bdL0c Mo eax, dword ptr [ebp+0Ch]
817ed=37 8b4d08 mow ecx, dwvord ptr [ebp+#]
817ede=3a 83ecic sub e=p, 0Ch

handler

Figure 11. atapi.sys’s dispatcher table after hooking.



IT1.3 User-mode injection

Although there’re lots of efforts put in, the rootkit itself is just an “injector” (as the
author(s) call it themselves) and injecting the user-mode bot components into processes is

its main task.

For that ultimate purpose, the rootkit registers a load image notify routine so that
everytime a thread loads “kernel32.d11”, the notify routine will schedule an APC start
at LoadLibraryExA to force that thread executing the dropped trojan dlls (tdlemd.dll
and tdlswp.dll) inside user-mode thread’s process. This is the only suspected behaviour
that current ARKs are able to detect.

Ereakpalnt 3 hit

erneliZ | LoadLibrarvE=zh:

U0lE: foolUladr sbhIt
kd> lthread

THREAD El86edad
Inperszonation token:

Cid 05=8.0604

mow edi, edi

Teb: 7ffdc000 Win3ZThread: =102db43 RUNHING

=2102dd48 (Level Impersonation)

DeviceMap elB8f1698

Owning Proces=s 0 Inage: <nknown

Attached Process 8187 3dal Inage: =poolsv . exe
Wait Start TickCount 4469 Ticks: O

Context Switch Count 103 LargeStaclk

OserTine oo:oo0:o0. 350

EernelTine Qo:oo0-o0. 290

Win3? Start Address 0=000013d41

LFC Server thread working on mes=zage Id 13d1

Start Address kerneli?!|BaseThreadStartThunk (0=x7c810856)

Stack Init £8ad3000 Current £8ad2198 Base £8ad3000 Limit f8acf000 Call 0

Friority

ChildEEP Retiddr Ara

8 BasePriority 8 PrioritvDecrement 0 DecrementCount 0
to Child

[009549be 7oB01dad

0095=460 00000000 00000000 kernel32!loadlibraryExd (FPO| |

IToa5d948
WARNING:
0095=59c

Uld=lad4d
Fram= IF
noooooon

09tedcld O04dEUZEE U0dcUZBE0 kernelddTLoadlibrarvi+U0=x91 (FPC
not in any known module. Following frames may be wrong.
000=000a 00deZ0cB 00000228 Oxdeladd

d» da poli{esp+d)
N095e=460
0952480

"1 gEE

otnglobalroot~Device~Ide~IdePor"

cvi~tdlemd 411"

Figure 12. TDL3 DLL injection by scheduling APC execution



I11.4 TDL3 RC4 Encrypted File System

As soon as TDL3 kernel mode rootkit is active, the dropper drops 3 files into systems:
tdlemd.dll, tdlswp.dll and config.ini. onto its own storage. In details, TDL3
organizes itself a special storage mode rather than using traditional filesystem:

Implements a type of RC4 Encrypted File System, reserved within a dynamic
amount of hard disk’s last sectors calculated at landing time. Default RC4 key for
this EFS is “td1” (without quotes).

It creates a simple “partition table” stored at the last sectors of hard disk which is
tagged as *TDLD’ (which could stand for “TDL Data”) as shown in Figure 13.
Inside this table, TDL stores the filenames, their information.

kd: db £8ad2598

f8ad2598 54 44 4c 44 00 00 OO0 OO0-00 0O 00 00 63 6f 6= 66 TDLD........ conf
f8ad25a8 69 67 2e 69 6= 69 00 00-00 00 00 00 £2 00 00 OO0 ig.imi..........
f8ad25b8 01 00 00 OO0 00 00 OO0 O0-00 00 00 00 74 64 B 63 ... ... .. ..., tdlc
f3ad25c8 6d 64 2e 64 6c 6c 00 O0-00 0O 00 00 OO0 3c 00 OO0 md.dll....... <L

f8ad25d8 02 00 00 00 00 OO0 0O OO-0OO0 OO OO 00 00 OO0 00 00 ... .............
f8ad25=8 00 00 00 00 00 00 00 O0-00 00 00 00 00 00 00 00 ............. ...
f8=2d25f8 00 00 00 00 00 OO0 0O OO-0OO0 OO OO0 00 00 OO0 00 00 ... .............
f8ad2e08 00 00 00 00 00 00 OO0 OO0-00 00 00 00 00 00 00 00 ............. ...

Figure 13. TDL3 “partition table”

All files are encrypted and stored in the last sectors of hard disk as well, right
before TDL’s “partition table” . Each is tagged as “TDLF” — I believe it’s
abbreviation of “TDL Files”. Irregularly they’re not written contiguously but
backwardly by 2 sectors one by one. Since TDL3’s storage is EFS-model,
obviously the content of sectors are RC4 encrypted and decrypted on-the-fly per
request transparently to readers. Figure 14 and 15 demonstrates an TDL3 system
write request to its EFS. The screenshot was taken while TDL3’s dropper was
dropping tdlemd.d11 to disk via trivial APl WriteFile().

kd: lhandle 224

processor numnber 0, process 81873dal

PROCESS 81873dall  SessionlId: 0 Cid: 058 Peb: 7f££d4000 ParentCid: 025c
DirBase: 02265000 ObjectTable: elabblel HandleCount: 129,

Lisgey Sponlsvics file to be written plain data to be written

Handle table at =1a5b000 with 129 Entries in use
0224: Object: 819dd420 Grantediccess: 001£01ff Entry: =latb448
Object: 819dd420 Type: (81bbe730) File
ObjectHeader: 815dd408 old version) yLo skl
HandleCount: 1 PointerCount: 3
Directory Object: 00000000 Hame: \enticxfj\tdlcmd.dlll{l ePortl}

kdr db £8ad27c0 1200
f8ad27c0 G54 44 4c 46 00 00 00 0O0-f4 032 00 00 44 S5a 90 00 TDLFI ....... MZ.

f8ad2740 032 00 00 00 04 00 00 O0-—£f £f 00 00 b8 00 00 00 . .. ..
f8ad27=0 00 00 00 00 40 00 00 00-00 00 00 00 OO0 OO0 00 00§ ....@. .. ... ... ..
f8ad27£0 00 00 00 00 00 00 00 00-00 00 00 00 00 OO0 00 00§ . ...............
f28ad2800 00 00 00 00 00 00 00 00—d0 00 00 00 Os 1f ba O | .. ... .........
f8ad2810 00 b4 09 cod 21 b8 01 4c-cd 21 54 68 69 73 20 70| ....!. L. !Thi=s p
flad2820 72 6f 67 72 61 6d 20 63-61 ke 62 6f 74 20 62 65 | rogram cannot be
f8ad2830 20 72 75 fe 20 69 6e 20-44 4f B3 20 6d 6f 64 65 run in DOS mode
f8ad2840 2= 0d 04 0a 24 00 00 00-00 00 00 00 4c 57 50 1| ... .5....... LWE.
f282d2850 08 36 3= 4d 08 36 3= 4d-08 36 32 4d 28 bo a0 4d | 6:M 6:M 6:M(. M
f8ad2860 15 36 32 4d c4 Gd 4d 4d-15 36 3e 4d 93 dd 62 4d | 6:H. MM 6:M. bM
f8ad2870 04 36 3= 4d 09 d4 22 4d-24 36 3e 4d 47 d9 75 4d | 6:M. "MS6 MG ul
f2ad2880 16 36 3e 4d 32 74 4e 4d-00 36 3Je 4d 52 E9 63 68 | 6:M2tHM 6:MRic
f8ad2890 08 36 3= 4d 00 00 00 00-00 00 00 OO 50 45 00 00 | é:M. .. ... .. FE. .
f8ad28a0 4c 01 05 00 1d 2b bd 4a-16 1c 00 00 OO0 OO OO0 OO L....+.J........
f8ad28b0 =0 00 02 21 0Ob 01 08 00-00 12 00 00 OO0 26 OO0 OO0 .. . 0. . . ...... e

LA_JdAf_n  AA AR AN AR Ao 40 AR NN AR AA AR AR AR a0 AA 0N ol

Figure 14. tdlemd.dIl’s non-encrypted content before being written



kd:
PROCESS 81873dal Sessionld: 0 Cid: 05ed Peb: 7f£fd4000 ParentCid: 025c
DirBase: 02a65000 ObjectTable: elabklel HandleCount: 129.

1 target sector
SR WRITE =

fEadle?4 407 00 00 00 00 00/00 Q0-00 20 0a 12 &0 00 00 00 @........ ......
fSadlea4 00 04 00 00 88 00 00-c0 27 ad £8 d4 le ad £8 .. ... .. .. o

£Gadicbd " 00 00 00 || e B8 81-00 OO DO 00 ba Ff 3f 00 . { .. . 7
fhadlecd uu 00[3f £ ba]00 D002 00 00 00 00 00 00 00 * . 7.... . ...
%gag%eai Dngggign size of data el ULICE N C
E=1 23 " . .

81721846 E call  dword ptr [ebpeoch]  Will be W”’-'te’l‘ to disk
kd> db fB8ad27cD {
£82d27c0 d9 6f db al 6b 92 es bi—fe 28 fa 1f 74 07 56 19 |.o. k. ¥u(. .t V.
£62d77d0 44 ob B f8 7e d9 4o 1a—48 Ad b3 sa b9 Bd £6 50 |1 . ~.T.H . E
£82d2720 08 od b8 2d 55 oF 87 B9-o3 £4 BT ac £7 ed 54 7f | -0 iz
£82d27E0 34 94 94 Of af ob le 6f-57 bS d4 94 67 £9 79 d4 |4 S
£82d2800 95 d9 BE 22 fh 4f a9 fo—41 89 2b d5 A4 44 =f 9d |.. . ".0. A+ .D..
£62d7810 66 56 b? al Ob dd a7 73-ob a= 4f oo 68 o6 5f 00 |V, s Oh
£82d2820 29 72 £2 14 74 49 fo 38-bd bY 3o ab ef of 23 fe |)r. +1.8 <. . F.
£82d2830 09 ef 54 05 a4 f1 88 £3-b9 a8 6o a6 B0 43 36 99 | T . 1 g

Figure 15. After being encrypted with RC4, data is written to disk

e In order to access its files inside its own EFS, TDL3 constructs a random path
such as \Device\Ide\IdePortl\enticxfj. to redirect requests into its own
filesystem stack. Therefore TDL3 encrypted files are still valid and accessible via
ordinary system’s API such as CreateFile (), WriteFile (), etc,.

When the rootkit is reloaded at next reboot, it re-creates another random path similar to
above one, then begins the user-mode DLL injection with that random path as in Figure
12.

I11.5 TDL3 fun stuff

While trying to harm to victims, the author(s) exposes his good taste of films. In the first
sample I have, he chooses one in 4 random quotes from “Fight Club” — a famous action
flick filming Brad Pitt in 1999 — and “The Simpsons Movie”, an 2007 funny cartoon - to
be displayed as debug string when the filesystem setups finish:

The things you own end up owning you

You are not your fucking khakis

This is your life, and it's ending one minute at a time

Spider-Pig, Spider-Pig, does whatever a Spider-Pig does. Can he swing,
from a web? No he can't, he's a pig. Look out! He is a Spider-Pig!

DSw N -

In the second sample retrived in 11/03/2009, these random strings are suddenly changed
to other Homer Simpson’s quotes and a special message to malware analysers:

5. Jebus where are you? Homer calls Jebus!

Dude, meet me in Montana XX00, Jesus (H. Christ)

7. Spider-Pig, Spider-Pig, does whatever a Spider-Pig does. Can he swing,
from a web? No he can't, he's a pig. Look out! He is a Spider-Pig!

8. I'm normally not a praying man, but if you're up there, please save me
Superman.

9. Alright Brain, you don't like me, and I don't like you. But lets Jjust do
this, and I can get back to killing you with beer

10.TDL3 is not a new TDSS!

o



The author(s) tries to tells us TDL3 isn’t new TDSS. Well, honestly I don’t care, TDL3
or TDSS, it doesn’t matter. The important thing is likely we share a common film
favourites, at least.

IV. TDL3 detection

Although being armed with special techniques as described above, there’re some traces
this rootkit creates inside systems but it couldn’t clean out due to its mechanism and lacks
of protection. For such reason, it’s trivial to detect its existence without executing
anything from kernel mode. Currently I’'m developing a tool to detect TDL3 in user-
mode, yet it’s unstable so the tool will be released as soon as I find it right time (: Of
course, I guess soon as it goes out, the author(s) will immediately counteract by
modifying current sources for next TDL versions (TDL4, TDLS etc,.), but that’s the
game, isn’t it?

Anyway, technically, what if you want to bypassing its protection from kernel mode?
The rootkit uses hooks on miniport’s dispatcher table. Therefore one need to get the
miniport port dispatch routine manually and transfer SCSI requests without relying on
class driver in order to avoid sector content tampering. Or you can implement your own
IDE/SCSI miniport driver. Pro is it’s ultimate solution help dealing with future TDL or
other type of rootkits which will definitely hook deeper and deeper, lower and lower.
However both suggested methods take developers much efforts and time and more
important, they aren’t hardware independent.

V. Conclusion

TDL3 is most advanced and stealthiest TDL rootkit I have ever analyzed so far. It
operates at the very low levels of Windows storage system and hevily relies on many
undocumented concepts such as miniports driver dispatcher routine and other kernel
mode objects. This version is a proof of the professionalism approach practised by the
gang’s through out its technical evolution. It’s also clear that the gang is watching and
reversing 3" party ARKs tools to utilize deeper and more sophiticated techniques to be
able to counteract malcode scanners. “Low, low and lower” should be enough to describe
their motto and current rootkit scene’s today.

VI. Greets, thanks

Greets and Thanks go to:

e a_d_13: for his generosity to provide me the TDL3 dropper sample, for his
review on this analysis & friendly discussion we had.

e Thai mrro: for his reviews & corrections.

e Frank Boldewin: for his review and his information about a cool rootkit (:

e jussi: for his review, suggestions and opinions about professionalism the analysis
should have (:

e DiabloNova: for his early notification about this TDL version 3 and his review.

e TDL3’s author(s): without your works, this analysis would never existed (:



VII. APPENDIX

First look at TDL3 rootkit codes suggest it could be generated automatically from another
compiled binary. It uses simple obfuscated string builder, such as

mou [ebp+var_ 28], ; =
mou [ebp+var_ 24], R
mou [ebp+var_24], ; 'K
mou [ebp+uar_22], ; 'E’
mou [ebp+var_28], : 'R’
mou [ebp+var_1E], ; 'H°
mou [ebp+var_1C], ; 'ET
mou [ebp+var_1A], s LT
mou [ebp+var_18], -
mow [ebp+var_16], s 20
mou [ebp+var_14], S
mou [ebp+var_12], N
mou [ebp+var_ 18], ; 'L
mou [ebp+var_E], ; 'L
mov [ebp+var_C], si

Appendix 1. Obfuscated string builder

Almost every malware reverser uses string as a start to begin his static analysis. In this
case, difficulty of listing all strings appear inside the rootkit makes our usual habit
useless.

Moveover, the rootkit might stymie static analysis by calling on-the-fly ntosknrl.exe’s
APIs despite of importing them as typical binaries do. As a rule, it resolves those
routines’ addresses via custom hashes of APIs’ names then passes required arguments
whenever it has to call one of them.

loc_M4673: ; CODE XREF: sub_A4561+D2Tj
; sub_u561+FAtj
mow edi, [ebp+var_ 4]
push BFDBASB1Bh ; ZuClose
call get_ntos_base
push eax !
call get_api address by hash
push edi
call eax
loc_4689: ; CODE XREF: sub_A4561+508Tj
push CLF178FZh ; KeSetEvent
call get_ntos_base
push eax HE
call get _api_ address by hash
nnch shy

Appendix 2. Calling ntoskrnl’s exports on-the-fly



As a matter of fact, the rootkit binaries are very hard to follow in IDA. I made two small
Python helper scripts to identify embedded strings and resolve routines’ names by their
hashes for better codes understanding and removing mentioned obstacles. You can use
them with IDAPython. The first script requires pefile Python module which can be
acquired at http://code.google.com/p/pefile/

# 10/15/2009
# build string from TDL3 rootkit binaries
# thug4lif3 at g00gles mail or npson at cmcinfosec.com

#

data = []

print type (data)

current head = 0

for seg ea in Segments():

for head in Heads (seg ea, SegEnd(seg ea)):
if GetOpType (head, 0) == 4 and GetOpType (head, 1) == 5 and GetMnem (head)

mov ' :

char = int (GetOpnd (head, 1).replace('h','"'), 16)
if char > 0x19 and char < Ox7F:
data.append (chr (char))
if current head ==
current_head = head
else:
if data:
print '$x - %s' % (current head, ''.join(data))
data = [] #reset the list
current head = 0

# 10/15/2009
# resolve TDL3 ntosknrl.exe’s names and comment them into IDA disassembly
# thug4lif3 at g00gles mail or npson at cmcinfosec.com

#

import pefile, sys, string

[IRIR1]

api string = al;
for ( result = 0; *api string; ++api string )

return result;

[IRIR1]

ntos_api = dict()

def

def

pe

for exp in pe.DIRECTORY ENTRY EXPORT.symbols:

for seg ea in Segments():

result = *(_WORD *)api string + 0x1003F * result;

c mul(a, b):
return eval (hex((long(a) * b) & OxXFFFFFFFFL) [:-1]
calc_hash (api name) :
value = 0
for i in range(len(api name)-1):
value = ord(api name[i+1]) * 0x100 + ord(api name[i]) + c mul(value, 0x1003F)

value = ord(api name[len(api name)-1]) + c mul(value, 0x1003F)
return value

pefile.PE ('C:\\WINDOWS\\system32\\ntoskrnl.exe')

ntos_api[calc hash(exp.name)] = exp.name

for head in Heads (seg ea, SegEnd(seg ea)):
if GetOpType (head, 0) == 5 and GetMnem (head) == 'push' and len (GetOpnd (head, 0)) > 4:
hash val = int (GetOpnd(head, 0).replace('h',''), 16)
api name = ntos api.get(hash val, 0)
if api_name != 0:
print '$x - hash %x - api %s' % (head, hash val, api name)
MakeComm (head, api name)




Running two scripts yields very useful information to start static-analysis

44z - tdl
6d5 - HnZ

TransportAddress
wdevicehtcpConnectionContext

X[TDLKAD] Packet Ox
TDL: Connection #x
d udpdvictcp
ymachinestwaemicsTcypgaphy
@machineguid#. = 7% globalroot:
=injector*\KERNEL32.DLL
\HS

(ox#x) Trom x:sd

The things vo
config.inis
ytemrootytems

u own end up owning youYou are not your fucking khakisThis is your 1ife, and it's ending one minute at a time
s MG

Appendix 3. Deobfuscated strings inside TDL3

66d - hash dberdose - api ZwqueryInformationProcess
&a0 - hash ¥8b42153 - api _snprintf

&d5 - hash aeasdrec - api strrchr

704 - hash 3a39s853ef - api strncpy

7de - hash &5a03blo - api KeInitializeEvent

7fc - hash dfdccas4 - api IoallocateIrp

81f - hash 142ff71z - api IoAllocatemd]

53d - hash 58c51132 - api MmProbeaAndLockPages

864 - hash &assfthsr - api KeGetlurrentThread

8b0 - hash s&dsobrcl - api KewaitrForsingleobject
122b - hash &35a03bl0 - api KeInitializeEvent

hash cdz98e8c - api IocallDriwver

hash &dsob7ci - api KewaitForsingleObject
hash 5e35b3T4 - api Rtl1InitUnicodeString
hash 2ces55acd - api memset

hash 272f3b77 - api memcpy

hash befabsss - api ZwCreaterFile

hash ziebc5ze - api obReferencedbjectByHandle

Appendix 4. Resolved ntosknr!’s exports used by TDL3



