

McAfee Labs Threat Advisory

TDSS.rootkit
April 11, 2012

Summary
TDSS rootkit appeared around 2008 and is known for its ability to survive in the machine without being
detected and the challenges it presents in terms of cleanup. There have been four versions of TDSS before

this latest variant, and there have been improvements with every version in terms of being stealthy.

Detailed information about the rootkit, propagation vector, characteristics and mitigation etc are explained in
the following sections.

 Infection and Propagation Vectors
 Characteristics and Symptoms

 Restart Mechanism
 Getting Help from the McAfee Foundstone Services team

Infection and Propagation Vectors
TDSS spreads by using affiliate marketing programs. Most affiliate marketing programs spreading malicious
code use a Pay Per Install model which means the amount earned by the malware author depends on the

number and the location of the machines it infects.

Characteristics and Symptoms

TDSS.e!rootkit
There are multiple variants of TDSS in the wild. All these variants exhibit different behavior. These are some
of the behaviors exhibited by this variant TDSS.e!rootkit:

Upon execution of the dropper adjusts “SE_LOAD_DRIVER_PRIVILEGE“, on success copies itself as a .DLL
and calls AddPrintProcessor, which requests the system process “SPOOLSV.EXE” to load the specified
library. It then creates a random service by executing ZwLoadDriver.

The malware hooks ”KiDebugRoutine” which enables the malware to hide its traces in memory from a
debugging program. When a debugging program tries to access the malware traces in memory through this

hook, the malware intercepts the request and points to clean memory instead of the actual malicious code.

It then infects a windows component (.SYS file) which will enable it to start during system boot. The malware
injects a thread in the kernel, so whenever the infected .SYS file is requested it always returns a clean one,

instead of the one infected by the malware. In addition to this, the malware redirects searches. It also
connects to its command and control server and sends information and receives commands. Connections to
the following domains were observed on a infected machine:

 https://nichtadden.in/
 https://91.212.226.67/

 https://li1i16b0.com/
 https://zz87jhfda88.com/
 https://n16fa53.com/

 https://01n02n4cx00.cc/

 https://lj1i16b0.com/
 http://clickpixelabn.com/
 http://thinksnotaeg.com/

 http://ijmgwarehouse.com/

 http://getbestbanner.com/

 http://pixelrotator.com/
 http://rf9akjgh716zzl.com/
 http://justgomediainc.in

TDSS.f!rootkit
Like other droppers of TDSS, TDSS.f dropper also carries actual infector in its resource section in an

encrypted form. The actual infector is first decrypted and the dropper image is replaced with the decrypted

infector.

Workflow Diagram for TDSS:

(1.0 TDSS Workflow)

Remaining malicious components are present in infector’s resource section as shown below:

(1.1 Resource Section of infector)

These resources are loaded whenever required. Initially, it loads few resources like “BUILD”, “NAME” of

“PAIR” type and “SUBID”, “MAIN” of type “FILE”.

Some variants of TDSS.f before infection checks if it is running in controlled environment.

It connects to the “Root\Cimv2” WMI interface, retrieve system resource information like instances of
Win32_BIOS, Win32_DiskDrive, Win32_SCSIController, Win32_Processor, Win32_Process and check if the
malware is being executed in controlled environment.

(1.2 WMI Instance)

If the malware discovers that it is running in controlled environment,

 It skips the execution path which is responsible for MBR partition table modification and creation of
hidden filesystem, wherein it keeps original MBR and other malicious components in encrypted form.

 It directly calls a routine which removes its traces by deleting the dropper and other files from the

%TEMP% folder as shown below:

(1.3 code flow 1)

When the malware is executed on a physical machine, it retrieves handle of the first HDD
“\\.\PhysicalDrive0” and uses IOCTL_SCSI_PASS_THROUGH_DIRECT I/O control code to read and
write to the HDD.

For data transfer operations, a buffer with alignment matching the adapter device is required.

Therefore it first retrieves AlignmentMask using the IOCTL_STORAGE_QUERY_PROPERTY control code

and then retrieves the capacity of the device using IOCTL_SCSI_PASS_THROUGH_DIRECT control code.

Infection Flow

It first reads MBR into memory, parses the partition table and look for the bootable partition.

After identifying the bootable partition, it computes absolute number of sectors by adding the LBA of the first

absolute sector of active partition and number of sectors in the partition.

The summation of the above two is then subtracted from 0x1000000. It then calculates the number of

sectors to be used in the filesystem to be created.

Number of sectors = 0x1000000 – (LBA of first absolute sector of the active partition + Number of sectors in
the partition) – 0x10

(1.4 Modified MBR)

It then loads, and decrypts the resource named “vbr” of type “BIN” in memory. To avoid re-infection, it
compares the malicious VBR code with the original VBR code as shown below:

(1.5 Code flow 2)

The original MBR which was read previously into memory is encrypted, written into the hidden file system
and the storage information is saved in secondary configuration as shown below:

(1.6 Original MBR is encrypted before it is saved into hidden file system)

(1.7 Sector where the original MBR is saved in encrypted form)

The BIOS Parameter Block (BPB) of the boot sector is then updated with information like:

 Number of Hidden Sectors in Partition [offset: 0x1C]
 Sector Number of the File System Information Sector [offset: 0x30]
 Total Sectors (in the Volume) [offset: 0x28]. This value is 1 sector less than the total number of

sectors in the volume's partition table entry, because an NTFS "Backup Sector" is not considered part

of the NTFS Volume.
 Starting Cluster Number for the $MFTMirror File in this partition [offset: 0x38].

o This field is populated with the data which is used to identify the sector which contains

primary configuration file.
 NTFS Volume Serial Number [offset: 0x48]

o This field is populated with the decryption key.

After BPB modification, VBR is encrypted, written into the hidden file system and the storage information are
saved in the secondary configuration file as shown below:

(1.8 Boot Sector BIOS Parameter Block updated)

(1.9 code flow 3)

Now, all the resources of type “FILE” are searched in the module, transfers control to a callback function
which writes them into the hidden filesystem and update information about each file or data which is saved
into the hidden file system into the secondary configuration file as shown below:

(1.10 code flow 4)

The configuration file consists of a set of blocks. Each block is 0x20 bytes long. Primary configuration file has

four blocks whereas the secondary file has fifteen blocks. Each block begins with 0x10 bytes long name
which indicates type of data which is saved in the disk. It is followed by 4 bytes long element which helps in
identifying the sector wherein data has been saved. This is followed by “Number of Sectors” and “Data Size”

elements as shown below:

The secondary configuration file is encrypted and saved into the hidden filesystem. Information about the

sector where the secondary configuration file is saved with the number of sectors and data size is stored in
the primary configuration file as shown in the above picture. Later the primary configuration file is encrypted,
written to the disk and storage information is saved in the malicious VBR.

The malicious VBR is written into the first (0xFFAC53) and the last sectors (0xFFFFFE) of the partition.

Then the partition table in memory is updated to reflect the newly created partition and the new volume is
made the bootable in order to transfer control to the malicious code as soon as possible as shown below:

(1.12 Partition table modified)

Finally, the malicious dropper file is deleted from the infected system to remove traces of infection. It also
mark files in the %TEMP% folder for deletion on reboot and the system is rebooted.

On reboot, malicious VBR residing in the hidden file system is loaded by the MBR and control is transferred to
the VBR code. It first reads the sector containing primary configuration file which is later parsed to retrieve
information about the secondary configuration file. The secondary configuration file is then parsed to load

sectors (block named “boot” in the secondary configuration file) containing code which is responsible for
hooking Interrupt Vector Table as shown below:

(1.13 Picture shows how VBR decides what to load)

(1.14 Picture shows how boot code decides what to load)

Interrupt Vector Table (IVT) Hook
Pointer to the Interrupt Service Routine (ISR) INT13h is replaced with an address which points to the
malware’s code.

(1.15 Interrupt vector table hook installed)

INT13h hook checks which service is being requested. If the service doesn’t involve sector read operation
(function code: 02h and 42h), it calls the original INT13h handler and transfers the control back to the caller
as shown below:

(1.16 INT13h Services to monitor)

If the requested service involves sector read operation, it saves information like the number of sectors to

read; sector number etc before calling the original INT13h handler. After reading the sector into memory, it

checks if it matches either of the following conditions:
 PE Image with IMAGE_DIRECTORY_ENTRY_EXPORT.Size == 0xFA or 0x110

o If it finds any module matching the above condition, it loads dbg32 or dbg64 (fake kdcom.dll)

depending on the OS environment

 Check Boot Configuration Data (BCD) store for BcdLibraryBoolean_EmsEnabled [16000020]. If it is

found, replace it with BcdOsLoaderBoolean_WinPEMode [26000022].

(1.17 Check module with IMAGE_DIRECTORY_ENTRY_ EXPORT size = 0xFA or 0x110)

(1.18 Windows Pre-installation Environment)

After installing Interrupt Vector Table hook, it again reads sectors containing primary and secondary

configuration file. Then it looks for a block named “mbr” in the secondary configuration file which contains
original MBR.

Now the original MBR gets control, it loads the VBR and transfers control to it. VBR boot code loads the
bootstrap code (0xF Sectors following the VBR). It first loads itself at address 0D00:0000, then following 0xF
sectors are loaded in the successive memory addresses. Once all the sectors have been loaded, it transfers
control to the bootstrap code as shown below:

(1.19 Control transferred to bootstrap code)

Bootstrap code read contents from the root drive, loads NTLDR at address 2000:0000h and transfers control
to the NTLDR.

(1.20 Control transferred to NTLDR)

NTLDR contains an embedded PE file (osloader.exe) which loads the Windows system files (starting with the
ntoskrnl.exe, its dependencies (HAL.dll, bootvid.dll, and kdcom.dll), SYSTEM hive, and the boot drivers) into

memory.

osloader.exe mostly executes in protected mode, but for input/output operation it depends on the BIOS
services. So it keeps switching between real and protected mode.

Since the size of kdocm.dll’s EXPORT_DATA_DIRECTORY is 0xFA. As soon as kdcom.dll is loaded, INT13h
hook loads fake kdcom.dll (dbg32 or dbg64) into memory, updates checksum and replaces the original

kdcom.dll with the fake kdcom.dll as shown below. Control is then transferred back to the osloader.exe

(1.21 kdcom.dll IMAGE_DIRECTORY_ENTRY_EXPORT.Size = 0xFA)

(1.22 Original kdcom.dll is replaced in memory with dbg32 – fake kdcom.dll)

KDCOM.DLL is COM-based debugging plug-in, so by faking the exported APIs it is actually disabling kernel
debugging option via COM port.

(1.23 APIs faked by malicious kdcom.dll)

Mitigation

 Block access to the unused ports and block the access to the above mentioned URLs.

 Users who are identified to be infected are requested to change their passwords.

 Reboot the system in safe mode and log in as the Administrator user.

Execute the CSSCAN command line tool using the Beta DATs to remove any Trojan or infected file

from the system:

o VSE 8.7

"C:\Program Files\McAfee\VirusScan Enterprise\csscan.exe" -All -Unzip -Program -Analyze -

Sub -Clean -Log c:\scan-rpt.txt C:\

o VSE 8.8

“C:\Program Files\Common Files\McAfee\SystemCore\csscan.exe” -All -Unzip -Program -

Analyze -Sub -Clean -Log c:\scan-rpt.txt C:\

o Other McAfee product users

Please use the following Stinger standalone tool.

To use the Stinger tool, please make sure the targets "Processes" and "Registry" are disabled

and the interface "List of all files scanned" is enabled in the stinger before scanning the

infected machine.

 Read more about using the Stinger tool here.

 Reboot the system normally.

 Run GMER again to confirm that no malicious threads of patched files exist anymore.

Restart Mechanism
The malware restarts by randomly infecting a system driver (usually located in %windir%/system32/drivers).

This particular variant mostly infects the file VOLSNAP.SYS

Getting Help from the McAfee Foundstone Services team

This document is intended to provide a summary of current intelligence and best practices to ensure the

highest level of protection from your McAfee security solution. The McAfee Foundstone Services team offers a

full range of strategic and technical consulting services that can further help to ensure you identify security

risk and build effective solutions to remediate security vulnerabilities.

You can reach them here: https://secure.mcafee.com/apps/services/services-contact.aspx

© 2011 McAfee, Inc. All rights reserved.

http://www.mcafee.com/us/downloads/free-tools/stinger.aspx
http://www.mcafee.com/us/downloads/free-tools/how-to-use-stinger.aspx
https://secure.mcafee.com/apps/services/services-contact.aspx

