
Mayl, 10th 2013

 07/2013

1

http://www.cyexdesign.com/

Mayl, 10th 2013

 07/2013

3

SQL INJECTION - detailed

overview
NOTE: this article was made for education purposes only.

Many web developers are not aware that SQL query
search can be easily manipulated and assume that a
SQL query search is a reliable command. This means
that SQL searches are capable of passing, unnoticed,
by access control mechanisms. Using methods of
diverting standard authentication and by checking the
authorization credentials, you can gain access to
important information stored in a database.

The direct injection of SQL commands is a technique
where the attacker creates or changes existing SQL
commands in order to expose hidden data, obtaining
valuable data, or even execute malicious scripts into
the attacked server (mostly the attacks by SQL
injection are a kind of attack that aim at sites that
support relational databases).

In these kinds of sites, the parameters are passed to
the database in the form of an SQL request. In this
way, if the web developer doesn’t make any control
over the parameters that are passed in the SQL
request, it is possible that an attacker can change the
request with the intention of accessing the web site’s
databases, and hypothetically, changing the content.

Certain characters allow combining several SQL
requests or ignoring a sequence of requests. Thereby,
adding these types of characters in the request, an
attacker can potentially execute a request of his
choice.

For example, in the following request, a parameter is
passed for a name of a user:

SELECT * FROM users WHERE
name="$name";
Code 1. SQL query select with parameter name.

The attacker just needs to introduce a true logical
expression like 1=1:

SELECT * FROM users WHERE 1=1;
Code 2. SQL query select with logical expression.

Thus, with the query above, the WHERE clause is
always executed, which means that it will return the
values that match to all users.

These types of flaws were very common in the old
days, but nowadays it’s estimated that less that 5% of
the sites have this type of vulnerability. More that
half of all web pages reported flaws that are related to
input data fields. Besides the SQL injection, these
types of flaws facilitate the occurrence of other types
of attacks, such as cross site scripting or buffer
overflows.

Besides SQL injection, the site administrator must also
be aware to the possibility of a variation of this attack,
called Blind SQL injection. This type of attack is less
known but it’s estimated that over 20% of the sites
have this flaw. The difference between SQL injection
and Blind SQL injection is that the first one reveals the
information by the attacker writing them in his own
content. In Blind SQL, it is not like that; the attacker
needs to ask the server if something is true or false. If
I ask if the user is “xpto”, it will return if true or not by
either loading the site or not. If the site loads it’s true,
if not, then false.

Based on these concepts, I will teach the reader how
to perform this type of attack, and in the end, give
you tips to prevent this type of attacks to your site.
First of all, the reader needs to identify if the site is
vulnerable to this type of attacks or not.

a) Check if site is vulnerable

Let’s take as an example, a site called “targetsite”,
and that this site contains data that is sent by URL:

http://www.targetsite.com/news.php?id=5

In this case, the name of the site is
www.targetsite.com. Every time that you see in a site
URL, the question mark followed by some type of
letter, or word, this means that a value is being sent
from a page to another. Example = ?id=5.

In this hypothetical case, the page “news.php” is
receiving this data. The page “news.php” will have
some type of code similar to this:

$id =$_post[‘id’];

And an associated SQL query like,

Query_rs = “select * from noticias
where código=’$id’”
Code 3. SQL query associated with parameter id.

This means that the news.php page is selecting news
in which the code of the news is equal to the code
passed in the URL.

Let’s start the fun part! First we are going to identify if
the target site is vulnerable. To do so, we will put, at
the end of the URL, a simple quote symbol (‘).

http://www.targetsite.com/news.php?id=5’

If the site returns an error similar to,

 “You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the…”

This means that the referred site is vulnerable to SQL
injection attacks. The error above says that the SQL
search syntax is incorrect, instructing the pseudo site
administrator to check the correct way to make a
search.

b) locate tables and number of columns of the
database

For this task we will use a simple way of finding out
the existing number of columns and tables in a
database. It’s in this moment, that we find handy
another powerful tool that is provided in the
Backtrack 5 release – SQLMAP python module
(http://sqlmap.org/).

Figure 1. SQLMAP application logo.

This python based application streamlines the SQL
injection process, by automating the process of
detecting and exploiting SQL injection flaws of a
database.

Take in attention the practical case of this website,
www.hacketsite.com :

Figure 2. Vulnerable to SQL injection site.

In this process, the application will use several
automated mechanisms to find the database name,
table names and columns and his content. By using
the ORDER BY command, it will be able to locate the
amount of columns. It will try to order all columns
from x to infinity. Being an error based attack the
iteration stops when the response shows that the
input column x does not exist. The UNION command
is also used and responsible for gathering several data
located in different table columns. The automated
process will try to gather all information contained in
columns/table x,y,z obtained by the ORDER BY
command, something similar to:

…?id … union all select 1,2,3

http://www.targetsite.com/news.php?id=5
http://www.targetsite.com/
http://www.targetsite.com/news.php?id=5
http://www.hacketsite.com/

The next step is to find the name of the
tables/columns. Normally the Database Administrator
uses common names to define the tables/columns
like:

user, admin, member, password, passwd, pwd,
user_name

The injector used a trial and error technique, to try to
identify the name of the table/column. Something
similar to this:

http://www.hacketsite.com/conteudo_link.php?id=5
union all select 1,2,3 from admin
If an error occurs, it means that the name admin
doesn’t exist.

In our case study, in order to find out the database
names, we run the sqlmap script with target –u and
the enumeration option --dbs, in order to enumerate
DBMS databases:

python sqlmap.py –u
http://www.hacketsite.com/counteudo_link.php?id=6
--dbs

Figure 3. sqlmap command to find database name.

The tool will start the process of finding the existing
databases, based on the methods describe earlier.
When the process stops, it displays the collected
information about:

- the type of web application technology used (in
this case is an Apache 1.3.42 with PHP 5.2.15);

- DBMS information (in this case, MySQL >=5.0.0);
- The available databases (in this case,

information_schema and wlisses_moto)

Figure 4. Result of the sqlmap command.

Now that we know that there are two databases
available, let’s focus on the wlisses_moto. We need to
find out how many tables exist in the wlisses_moto
database and their respective names. To achieve this,
we will use the same sqlmap command but with the --
tables argument:

python sqlmap.py –u
http://www.hacketsite.com/counteudo_link.php?id=6
--tables <database-name>
Used as an argument is the name of the database, in
this case, wlisses_moto.

Figure 5. sqlmap command to find tables names.

In this case, we found out that the wlisses_moto
database has 5 tables with the names config, link,
moto, slide and users.

The main objective of this type of attack is to find the
usernames and password in order to gain access/login
to the site, so we will redirect efforts to find the
columns in the users table, which is the table that
contains this type of information. The sqlmap
command to achieve this is:

http://www.hacketsite.com/conteudo_link.php?id=5
http://www.hacketsite.com/counteudo_link.php?id=6
http://www.hacketsite.com/counteudo_link.php?id=6

python sqlmap.py –u
http://www.hacketsite.com/counteudo_link.php?id=6
--columns -D <database-name> -T users

Used as parameters are the options: --columns and –
T that indicate the target table. The –D option refers
to the database name.

The command returns information about the columns
in the users table. In this case, we have 5 columns in
the users table with the following names: email, id,
login, name and password.

Now we perform the dump of all data of all columns:

python sqlmap.py –u
http://www.hacketsite.com/counteudo_link.php?id=6
--columns -D <database-name> -T users –C
‘id,nome,senha,login,email’ --dump

For this purpose we used as an argument the –C
option and the respective column names (id, nome,
senha, login, email) that we want to retrieve.

As a result of this command we obtain all data of the
columns id, name, password, login and email.

Figure 6. sqlmap command to dump content of columns.

As we can see in this case the password is in clear
text, but depending on the database it can show it
hashed in md5 or other. We also found the email and
the respective login name.

And that’s it! In easy steps, we were able to find all
the information needed to login into the website.

How to prevent SQL injection
attacks

Now the question from the database/website
administrator’s point of view; how do I prevent these
types of attacks?

In order to perform an attack, the attacker needs to
obtain a bit of information about the type of database
schema, as we showed above. If the database
administrator uses a public, open-source package to
deal with the database (which may belong to a
content control system or a forum, the invader easily
produces a copy of part of the code. This attack’s
intent is to explore flaws in the written code without
worrying about security aspects. Never trust any type
of entry specially sent by the client/user side (a value
of a combobox, a hidden entry or a cookie). There are
different rules that allow a web administrator to
prevent against attacks by SQL injection.

First, never connect to a database as a super user or
as root. Always use personalized users with well
limited privileges.

Second, check if any kind of entry has the expected
result. PHP has a large number of functions that allow
to validate input data (is_numeric(), ctype_digit()). If
the application expects to receive numeric entries,
you should check it with the is_numeric() function, or,
casting the entry to his type using settype().

Add quotes (“) to all non-numeric values specified by
the user which will be passed to the database by using
escape chars functions, (mysql_real_escape_string(),
sqlite_escape_string()). Here’s how the
mysql_real_scape_string() function works:

$name = "JohnDoe";

 $name =

mysql_real_escape_string($name);

 $SQL = "SELECT * FROM users WHERE

username = '$name'";

Code 4. Mysql_real_escape_string() usage.

http://www.hacketsite.com/counteudo_link.php?id=6
http://www.hacketsite.com/counteudo_link.php?id=6

If someone not well intended tries to execute a SQL
injection attack with this function, it would be in the
following form:

$malcious_input = "' OR 1'";

 // The Above Is The Malicious Input.

 // With The mysql_real_escape_string()

usage, the following is obtained:

 \' OR 1\'

 // Notice how the slashes escape the

quotes! Now users can't enter malicious

data

Code 5. Logical Mysql_real_escape_string function.

Conclusion: this type of function,
mysql_real_escape_string() can save you from a
lot of troubles! If a specified escape char
mechanism is not available, the addslashes() and
str_replace() functions can be very helpful (depending
on the type of data stored in the database). The idea
is to put backslashes in quotes, in other words, when
the script finds a simple or double quote, it adds a
backslash (\) in the quote. The query looks something
like this:

SELECT id, name, surname FROM users

WHERE name = \'jo\'nh\' AND surname =

\'

Code 6. Add backslash method.

Third, you should always perform a parse of data that
is received from the user. Let’s check this example in
ASP and PHP, for values received by the POST and
FORM methods:

//ASP

consulta = "DELETE FROM tabela WHERE

id_tabela = " & Request.Form("id")

// PHP

$consulta = "DELETE FROM tabela WHERE

id_tabela = " . $_POST[id];

Code 7. Search query example in ASP and PHP.

Instead, first handle the $_POST(ID) :

//ASP

If IsNumeric(Request.Form("id")) Then
consulta = "DELETE FROM tabela WHERE
id_tabela = " & Request.Form("id")

Else
 Response.Write "Dados Inválidos"
 Response.End
End If

//PHP
if (is_numeric($_POST[id])) {
$consulta = "DELETE FROM tabela WHERE
id_tabela = " . $_POST[id];

} else {
 die("Wrong data!");

}
Code 8. Correct handling post(ID).

In the ASP we can simply specify the REQUEST(ID),
however this action didn’t invalidates the data being
passed through the GET method (by URL) or POST
(data are sent by a form and not shown in the URL).
Alternatively, use:

ASP:
Request.QueryString("id") -> if the "id" is
passed via GET
Request.Form("id") -> if the "id" is passed
via POST

PHP:
$_GET[id] -> se o "id" tiver que ser passado
via GET
$_POST[id] -> se o "id" tiver que ser passado
via POST

To string type of fields it’s advisable to check each
typed char:

 " (double quote)
 ' (simple quote)
 (space)
 ; (semicolon)
 = (equal sign)
 < (less-than)
 > (greater-than)
 ! (esclamation point)
 -- (two hyphens,states beginning of a

comment in some databases)
 # (hash mark,also states the beginning of a

comment in some databases)
 // (two front slashes, beginning of a comment

in some databases)

Or by the reserved words:

 - SELECT - INSERT
 - UPDATE - DELETE
 - WHERE - JOIN
 - LEFT - INNER
 - NOT - IN
 - LIKE - TRUNCATE
 - DROP - CREATE
 - ALTER - DELIMITER

Fourth, do not display explicit error messages that
show the request or a part of the SQL request. This
can give valuable information to the attacker, as we
already saw.

Fifth, you should erase user accounts that are not
used, namely the default accounts. These types of
accounts will be the first to be found in this type of
attack. You should also avoid user accounts without
passwords- each user should have a type of password
different from blank. Globally, the account privileges
should be restricted to the minimum- It is very
common to solve functionality problems by giving too
many permissions to a user (similar to chmod 777 in
Linux). For this matter, this type of situation should
also be avoided.

To restrict these attacks, DBAs have been decreasing
the quantity of searches that a web application can
submit; instructions gathered in called white lists.
Likewise, the framework/application developers have
been creating black lists that list the SQL instructions
that potentially can carry danger. The size of black
lists tends to be very big, which makes the framework
maintenance unfeasible, because the modification
rules in a framework involves the update of all the
tools. The analysis of the white and black lists can
occur at execution time, but it requires a great
computational effort that discards this use.

Alternative solutions to black lists, to detect and
prevent attacks were developed, such as AMNESIA
(Analysis and Monitoring for NEutralizing SQL-
Injection Attacks) and Java Static Tainting.

AMNESIA is able to identify SQL injection attacks that
present the following types of searches: tautological,
incorrect, union, piggy-backed or inference. It is a tool
based in models, so if a SQL injection attack occurs it
will violate a predicted SQL model.

The tool begins by identifying all designated hotspots.
A hotspot is considered a bulk of code that could be
vulnerable to an attack. After identifying each
hotspot, the tool will build a SQL query model of
expected legitimate queries, by parsing each group of
characters into SQL tokens. After this process, each
hotspot is wrapped with calls to a monitor function.
The monitoring is made at runtime. All queries will be
checked against the created SQL model.

Many academic studies have shown that the
percentage of prevented and detected attacks with
this tool is more than 90%. Regarding runtime
overhead, it’s very low (< 1ms, which is insignificant
compared with network or database access).

On the other hand, Java Static Tainting has a
detection and prevention mechanism that prevents
stored procedures (besides all types of searches
mentioned above).

A Stored procedure is a set of SQL instructions that
are executed inside the database. It is like writing a
script inside the database that will be executed. Inside
the stored procedures are Transact-SQL types of
commands, very similar to any other type of
programming language. The Transact-SQL has
comparison instructions (if), loops (while), operators,
and variables functions…

See this example:

CREATE

PROCEDURE Test @param1 INT

AS

BEGIN

UPDATE TABLE1 SET FIELD1 = ‘NEW_VALUE’

WHERE FIELD2 = @param1

END

Code 9. Stored Procedure example.

All stored procedures begin and end with BEGIN and
END blocks. We can receive parameters and use them
in SQL instructions that will be executed inside the
stored procedure. Stored procedures are pre-
compiled so the SQL server will execute it quicker.

If you are a web developer, it’s possible to use from
scratch, web application frameworks that, per se,
allow the developer to configure validation rules
when developing the web site code. One of these
tools is Codeigniter.

Figure 7. Codeigniter logo.

Code Igniter allows you to configure some rules for a
certain field; cascading in order. It also allows you to
treat and pre-process the field data. Let’s see it in
some examples:

Validation Rules

function index(){

 (…)

$this->load->library('validation');

 $rules['username']= "required";

 $rules['password']= "required";

 $rules['email'] = "required";

$this->validation->set_rules($rules);

(…)

}

Code 10.Codeigniter validation rules example.

By adding this code to your index function, the
username, password and email will be validated.

Changing error delimiters

By default, the system adds a paragraph tag (<p>) in
each shown error message. You can easily change
these delimiters to another tag:

$this->validation->set_error_delimiters('<div

class="error">', '</div>');

Code 11. Codeigniter changing error delimiter tag example.

In this example, we changed it to DIV.

Cascading rules

Code Igniter allows you to concatenate several
rules. Using the same example described above,
let’s change the array rules to:

$rules['username'] =

"required|min_length[5]|max_length[12]";

$rules['password'] = "required|

matches[passconfirmation]";

$rules['email'] = "required|valid_email";

Code 12. Codeigniter concatenation example.

In this way, we constrain that:

1. the username field cannot be less than 5
chars and greater than 12;

2. that the value in the password file must
match the value of passconfirmation field;

3. that the email field must contain a valid email
address.

Treating data

Among the validation functions that we described
above, the data can be treated in several other ways,
such as:

 the use of trims (field trimming);

 convert the password field value to md5.

$rules['username'] =

"trim|required|min_length[5]|max_length[12]";

$rules['password'] =

"trim|required|matches[passconf]|md5";

$rules['email'] = "trim|required|valid_email";

Code 13. Use of trim and MD5 hash.

Callbacks

The validation system supports callbacks to its own
validation functions. This allows the developer to
extend the validation class according to his needs. For
example, if you need to execute a query to check if a
user picked a unique name to be his username, you
can create a callback function to do it. See this
example :

$rules['username'] =

"callback_username_check";

Code 14. Callback example.

Hope you enjoy!

About the author

NunoTaxeiro
has a degree in Electronics and Telecommunications Engineering in ISEL (Superior Institute
of Engineering of Lisbon). Nuno Taxeiro was born in 27 May 1983 in Lisbon, Portugal.
Since early on in his academic life, he focused in Data Network related subjects, specially
Security.
His special interests reside in RADIUS, network monitoring (Nagios) and network intrusion
detection (Snort).

Workshops and Publications: attended FCCN (Foundation for National Scientific Computing)
in 2010 workshop about DNSSEC and Common Network Information Service.
Has a publication about the implementation and monitoring of a 3G network based on a
distributed antenna system grid in ANACOM – 3rd URSI.

LinkedIn Profile:- http://www.linkedin.com/in/nunotaxeiro

http://www.linkedin.com/in/nunotaxeiro

This publication and 23 more are

available in our annual

subscription. The content is

written by IT Professionals for IT

Professionals thats why we call

our magazine the collection of

secrets that are shared only

between hackers. Don't hesitate

to subscribe Hack Insight and

enjoy the hacking during the

whole year!

https://www.facebook.com/hackinsight

	How to prevent SQL injection attacks
	Now the question from the database/website administrator’s point of view; how do I prevent these types of attacks?
	In order to perform an attack, the attacker needs to obtain a bit of information about the type of database schema, as we showed above. If the database administrator uses a public, open-source package to deal with the database (which may belong to a c...
	First, never connect to a database as a super user or as root. Always use personalized users with well limited privileges.
	Second, check if any kind of entry has the expected result. PHP has a large number of functions that allow to validate input data (is_numeric(), ctype_digit()). If the application expects to receive numeric entries, you should check it with the is_num...
	Add quotes (“) to all non-numeric values specified by the user which will be passed to the database by using escape chars functions, (mysql_real_escape_string(), sqlite_escape_string()). Here’s how the mysql_real_scape_string() function works:
	Validation Rules
	Changing error delimiters

	Cascading rules
	Callbacks

