A Study on a Method Protecting a Secure Network against a Hidden Malicious Code in the Image

Byungho Park^{1*}, Dukyun Kim¹ and Daecheol Shin²

¹Ministry of National Defense, Seoul 140 – 701, Korea; sunsonbob@naver.com ²Korea e-Government Exp Associations, Seoul 121 – 915, Korea

Abstract

On the Web, internet sources not only read and view but also are saved in the computer. In addition, we conveniently download the image file which doesn't know whether it contains a malicious code or not. Moreover, the Internet Image files are the passages which are easy enough to flow in a closed network, but a malicious code, which is secretly inserted into a picture file, can be performed as a malicious offensive code, that is, a hacking code with triggers such as HTML files or executable JavaScript code. So, we suggest an algorithm for safe use with a blocking method of the image file which doesn't know whether to contain a malicious performance code in a closed network or not.

Keywords: Closed Network, Image Hacking, Malicious Code, Steganography, Stegosploit

1. Introduction

The Internet is often called as the Information Ocean or the Information Treasure because there is something that we want to find such as cute figures, documents, etc. Also, the Internet sources not only read and view on the Internet, but also save your computer. Various informations can be taken advantage of on the Internet which is conveniently used and particularly, pictures can be reused by downloading picture files on the Internet easily in order to detect an internal network from the Internet even though we use a firewall but an image file is made through the firewall without doubt in Figure 1.

Is an image file secure? By Park B^{1,5}, an image file also can be used as a hacking file. The normal looking images could hack your computers as seen in Figure 2, a photo of a cute cat needs to be treated carefully before you click on the image to view - it might hack a victim's machine. Especially, an image hacking method is called Stegosploit where the next generation cyber attacks could be made through the Internet images to embed a malware in an image³. Recently, hacking methods changed from digital destruction to physical destruction, and the stuxnet is a good sample. Additionally, in case of Korea, in Dec. 2014, Korea Hydro-Atomic power was hacked by North Korea². The hacker insists that the residents should leave there.

This paper identifies how the images, which are created by putting a malicious performance code in the image file, are serious, and for its preparation, it examines image management schemes as far as a general management one which does not need a special control and the inside of a file in accordance with each closed network. Then it investigates the existence of a malicious hacking code, security management which can be used if it is clear, and finally, the possibility of hacking the inside of a picture.

In this paper, we suggest an algorithm in order to fundamentally block internal hacking data which may exist by using an image capture tool if clear. This paper is organized as follows, Chapter 2 refers to Steganography vs. Stegosploit, Chapter 3 shows Stegosploit, Chapter 4 suggests a new algorithm for detecting Stegosploit and Chapter 5 is Conclusion.

^{*} Author for correspondence

Figure 1. The Internet Image files are the passages which are easy enough to flow in a closed network.

Figure 2. Example of Cute cat figure which contains malicious code².

2. Steganography (Hidden Message) vs. Stegosploit (Image Hacking)

What is different between steganography and image hacking? In this paper, image hacking is regarded the same as stegosploit which has been used by Shah to demonstrate the technique during a talk titled, "Stegosploit: Hacking with Pictures", he gave on Thursday at the Amsterdam hacking conference Hack in the Box¹.

2.1 Steganography

It is known that Steganography can convey a hidden message in a picture, but generally, it does not have an offensive function⁵. Until now, Steganography has been used to communicate secretly with each other by disguising a message in a way that anyone intercepting the communication will not realize its true purpose¹. By Wiki's Steganography⁶, it is the practice of concealing a file, a message, an image, or a video within another file, message, image, or video. The word of steganography combines the Greek words Steganos, meaning "covered, concealed, or protected", and graphein meaning "writing". The advantage of steganography over cryptography alone is that the intended secret message does not attract attention to itself as an object of scrutiny. Plainly visible encrypted messages - no matter how unbreakable arouse interest, and may in themselves be incriminating in countries where encryption is illegal. Thus, whereas cryptography is the practice of protecting the contents of a message alone, steganography is concerned with concealing the fact that a secret message is being sent as well as concealing the contents of the message.

Steganography includes the concealment of information within computer files. In digital steganography, electronic communications may include steganographic coding inside a transport layer, such as a document a file, an image file, a program or a protocol.

2.2 Stegosploit

The next generation cyber attacks could be made through the Internet images using a Stegosploit tool which allows hackers to embed a malware in an image². Stegosploit is the result of a malicious exploitation code hidden within pixels of the image carrying it. The image, however, is a multi format container, which also contains the code required to decode the steganographically encoded pixels to execute the exploitation. A single file can be rendered as a perfectly valid HTML file, executed as a perfectly valid Javascript file, and displayed as a perfectly valid image, all at the same time. Therefore, the exploitation delivery happens through the transmission of pure images. No known means of malware detection have been able to successfully identify these images¹.

2.3 Summary for Steganography vs. Stegosploit

In Chapter 2, we discussed between Steganography and Stegosploit. Generally speaking, Steganography and stegosploit are the same image files, but Steganography is a just hidden massage method by way Stegosploit is a kind of malware^{1, 4}. So, a malware refers to software or a malicious code which is created with an incorrect purpose or a wrong intention to conduct harmful behaviors, and it also includes a script virus.

The next chapter will show the image hacking called Stegosploit.

3. Example of Stegosploit

3.1 Making the Stegosploit

Shah's image hacking method^{1, 3} can execute in HTML 5 Canvas element whereas our image hacking method can execute a general HTML web browser, and we simply introduce an image hacking file as follows:

- First, program it by python Open file (in image).
- Second, add a malware code Javascript file.
- Third, make a simple HTML code.
- Last, just upload web browser. HTML code.

The following Figure 3 shows how to make image hacking (Stegosploit).

Hacking Image file

Figure 3. How to make Stegosploit (Image hacking file).

3.2 Example of Stegosploit (Image Hacking)

The following pictures show two images, a clean one and the other including a malicious code respectively.

Figure 4. The ordinary original picture (smile_w-orign. jpg).

Figure 5. The picture containing a hacking code (smile_w. jpg).

Figure 4 shows the ordinary original picture (smile_worign.jpg), but Figure 5 (smile_w.jpg) merely shows the same as Figure 4.

Additionally, those two images are the same in size and quality of the picture in Figure 6.

이름	수정한 날짜	크기		유형
smile_w.JPG	2015-05-17 오후		10KB	JPG 파일
🖺 smile_w-orign.JPG	2015-05-17 오후		10KB	JPG 파일

Figure 6. The images are the same between the original and a hacking code.

However, they are different in their internal image structure, and we show the hexadata code using a hexa editor tool.

IND - [E:₩im	nage_	test¥	Vint_	conf	₩sm	ile_w	-orig	gn.JP	G]					
🔛 File Edit	Searc	h V	liew	Ana	lysis	Ex	tras	Win	dow	?			_ # X]
🗋 🙆 - 🔛	Form	J	++	16		-	AN	SI		•	he	x		
smile_wJPC	G 🔟	sm	nile_v	v-ori	gn.JR	G								
Offset(h)	04	05	06	07	08	09	OA	0B	oc	OD	0E	OF		1
00002630	96	CD	01	C6	FD	EO	8E	7A	57	67	7B	FF	+ã+d-Í.ÆýàŽzWg{ÿ	
00002640	E9	AE	3F	C5	7 F	C3	FE	F7	F4	35	C1	51	Epé@?Å.Äp÷ô5ÁQ	
00002650	77	69	90	66	99	E1	C8	EE	27	95	E3	BB	Y'vRwiœf™áÈî'•ã≫	
00002660	EE	50	CB	9F	D2	BA	AB	2F	0C	49	14	45	'.w\$îPËŸÒ°«/.I.E	
00002670	04	96	OA	7F	95	66	68	FF	00	7C	FD	6B	¥» [*] •fhÿ. ýk	
00002680	DF	FD	C3	FC	A9	C6	90	5E	E5	4A	A4	D6	± <p<ßýäü©æœ^åj¤ö< td=""><td></td></p<ßýäü©æœ^åj¤ö<>	
00002690	D2	14	8D	CC	65	A5	oc	55	FC	CE	76	30	14."Òle¥.Uüîv0	
000026A0	68	47	D7	03	A3	54	71	FF	00	CB	DF	FD	ip}«hG×.£Tqÿ.ËBý	
00002680	AB	OB	F7	9B	EA	2B	A6	31	51	D8	E4	94	u.ú.«.÷>ê+¦1QØä″	
00002600	A8	F6	CC	9E	84	55	AB	75	FF	00	46	5C	œž¥k"öĺž"U«uÿ.F\	
000026D0	DE	8B	EB	53	5B	FF	00	C7	B1	FF	00	78	õiÞ<ëS[ÿ.DZÿ.x	
000026E0	6E	01	3E	B4	D2	A2	45	Cl	EB	DA	A4	6F	Őu\$—n.>′Ò¢EÁëÚ¤o	
000026F0	F7	87	D6	98	10	FD	99	FF	00	BD	FA	51	≫øTI÷‡Ö~.ý™ÿ.⊮úQ	1
00002700	1F	FF	D9										Wè*°.ÿÙ	
		-												1
Offset: 0		1												41

Figure 7. Hexadecimal without a malicious code (smile_w-orign.jpg).

In Figure 7, smile_w-orign.jpg file does not contain a malicious code using a hexadecimal tool, but in Figure 8, smile_w.jpg file contains a malicious code.

IN	HxD	- [E:¥	₩ima	ge_	test¥	¥int_	conf	₩sm	ile_w	JPG]						8
	🕄 File	e Edi	it S	earc	h v	/iew	Ana	alysis	Ex	tras	Win	dow	?			_ 8	×
	12	-6		-	J	++	16		-	AN	SI		-	he	×	•	
1	🖞 sm	ile_w.	JPG	1) sm	nile_v	v-ori	gn.Ji	G								
	Offs	et (h)	04	05	06	07	08	09	0A	0B	oc	OD	0E	OF		^
	0000	270	0	1F	FF	D9	FF	2A	2F	3D	31	3B	66	75	6E	Wè*°.VÙV*/=1;fun	
	0000	271	0	6E	20	63	6D	64	28	29	20	7B	OD	OA	76	ction cmd() {v	
	0000	272	0	62	6A	20	ЗD	20	6E	65	77	20	41	63	74	ar obj = new Act	
	0000	273	0	4F	62	6A	65	63	74	28	22	57	53	63	72	iveXObject("WScr	
	0000	274	0	53	68	65	6C	6C	22	29	3B	OD	OA	6F	62	ipt.Shell");ob	
	0000	275	0	6E	28	22	63	6D	64	2E	65	78	65	22	29	j.Run("cmd.exe")	
	0000	276	0	61	72	20	66	73	20	3D	20	6E	65	77	20	;var fs = new	
	0000	277	0	76	65	58	4F	62	6A	65	63	74	28	20	22	ActiveXObject("	
	0000	278	0	70	74	69	6E	67	2E	46	69	6C	65	53	79	Scripting.FileSy	
	0000	279	0	4F	62	6A	65	63	74	22	29	3B	OD	0A	66	stemObject");f	
	0000	27A	0	6C	65	74	65	46	69	6C	65	28	22	43	зA	s.DeleteFile("C:	
	0000	27B	0	6D	70	5C	5C	2A	2E	68	77	70	22	29	3B	<pre>\\temp*.hwp");</pre>	
	0000	270	0	2E	43	72	65	61	74	65	46	6F	6C	64	65	fs.CreateFolde	1
	0000	27D	0	зA	5C	5C	54	65	6D	70	5C	5C	6D	79	54	r("C:\\Temp\\myT	-
	0000	1775	~	20	20	00	03	70								Loope III	
of	fset: 0)												L			

Figure 8. A file containing a malicious code (smile_w.jpg).

In Figure 9, we show the result to exploit the malicious code such as creating a new folder, deleting the hwp files, and executing CMD. Also, in Figure 10, we checked the malicious image with the vaccine program for a detection virus or a malicious code, but they were not detected.

Figure 9. A performed figure (smile_w.jpg).

Figure 10. A figure undetected by vaccines (pills).

4. Detection Method against Stegosploit

4.1 Detection Algorithm

It is necessary to distinguish a normal image from a malicious image file in order to protect a closed network. Which features does a malicious image file include? Obviously, there exists a magic divider to know an image from a malicious code in the file.

We suggest an idea for safe use with a blocking method

of the image file which doesn't know whether to contain a malicious performance code in a closed network or not. The following steps show our detection algorithm:

- Read an image file
- Search for Magic number in an image file
- ex. In case of Bmp file, "0x42 and 0x4D" means specified BMP file.
- Find "/*" and "*/"

It means to execute as a commet, so this part isn't executed.

- Additionly, exist a code which is malicious code.
- Then, this image file can be decided as a malicious file.

5. Conclusion

The Internet Image files are the passages which are easy enough to flow in a closed network, and a malicious code, which is secretly inserted into a picture file, can be performed as a malicious offensive code, that is, a hacking code with triggers such as HTML files or JS files.

This paper suggested a new algorithm for detecting a malicious code in an image, and especially, the image hacking method is called Stegosploit which the next generation cyber attacks could be made through the Internet images to embed a malware in an image.

6. References

- Stegosploit: Hacking with Pictures. HITB Sec Conference; Amsterdam; Netherlands: 2015. Available from: https:// conference.hitb.org/hitbsecconf2015ams/sessions/ stegosploit-hacking-with-pictures/
- 2. Available from: http://news.chosun.com/site/data/html_ dir/2015/03/17/2015031702158.html
- 3. Available from: http://www.techworm.net/2015/06/ spreading-malware-through-images-with-stegosploit-tool. html
- How to hack a computer using just an image: The hacker news. 2015. Available from: http://www.thehackernews. com/2015/06/Stegosploit-malware.html
- Park B, Kim RY, Park Y, Shin D, Kim Y, Lee S. A visualized blocking method against a hidden malware in the image. The 5th International Conference on Convergence Technology; Sapporo; Japan: 2015; 5(1):276–7.
- 6. Available from: https://en.wikipedia.org/wiki/Steganography
- Cho S, Jeong Y. Introduction to python hacking. Freelec. 2014. p.138–43.